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Abstract Nonlocal gradient mechanics of elastic beams subject to torsion is estab-
lished by means of a variationally consistent methodology, equipped with suitable
functional spaces of test fields. The proposed elasticity theory is the generalization
of size-dependent models recently contributed in literature to assess size-effects in
nano-structures, such as modified nonlocal strain gradient and strain- and stress-
driven local/nonlocal elasticity formulations. General new ideas are elucidated by
examining the torsional behavior of elastic nano-beams. Equivalence between nonlo-
cal integral convolutions and differential problems subject to variationally consistent
boundary conditions is demonstrated for special averaging kernels. The variational
procedure leads towell-posed engineering problems in nano-mechanics. Elasto-static
responses and free vibrations of nano-beams under torsion are analyzed applying
an effective analytical solution technique. Nonlocal strain- and stress-driven gradi-
ent models of elasticity can efficiently predict both stiffening and softening struc-
tural responses, and thus, notably characterize small-scale phenomena in structures
exploited in modern Nano-Electro-Mechanical-Systems (NEMS).
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1 Introduction

Nano-engineered materials are nowadays widely exploited as fundamental con-
stituents of modern Nano-Electro-Mechanical-Systems (NEMS) due to their out-
standing physical features [1–5]. Nano-structures arewell-recognized to demonstrate
size-dependent mechanical responses at small-scales which cannot be technically
modeled by the local elasticity theory. The thematic concerning with the analysis of
size-effects in advanced materials and structures has stimulated a great deal of inter-
est in the current literature, such as nonlocal elasticity [6–12], local/nonlocal mixture
[13–15], strain gradient elasticity [16–19], nonlocal strain gradient theory [20–22]
and variational nonlocal gradient elasticity [23, 24]. Recent reviewon size-dependent
elasticity models can be found in Ref. [25].

Nonlocal constitutive law associated with the strain-driven nonlocal elasticity,
originally exploited by Eringen [26], is extensively applied for the investigation
of size-effects in nano-structures [27, 28]. Inapplicability of strain-driven nonlocal
integral elasticity to nano-beams of technical interest, involving bounded structural
domains has been discussed and acknowledged in the recent literature [29]. On the
contrary, the stress-driven nonlocal elasticity, conceived in [30], leads to mathe-
matically well-posed nonlocal problems. Pure and two-phase stress-driven nonlo-
cal models have been effectively utilized to capture size-effects in nano-structures
subject to both static and dynamic phenomena, see e.g. [31, 32]. Nonlocal strain
gradient model [33, 34] is also widely utilized to tackle small-scale effects in nano-
continua while employing unnecessary higher-order boundary conditions. There is,
however, a dispute in the literature on the suitable choice of non-standard boundary
conditions required to close the nonlocal strain gradient problem [20, 21, 35, 36].
The constitutive boundary conditions, naturally stemmed from the nonlocal integral
constitutive law, have been recently addressed in the framework of modified nonlo-
cal strain gradient elasticity [35]. The consistent variational scheme, with suitably
selected functional spaces describing test fields, is lately conceived for nonlocal gra-
dient inflected beams [36]. The well-posed strain- and stress-driven approaches of
nonlocal gradient elasticity are able to efficiently demonstrate both softening and
stiffening nonlocal responses in the flexure of elastic nano-beams [23, 36].

In view of the importance of examining scale phenomena in torsional elements of
modern NEMS, the motivation of the present chapter is to generalize the variational
nonlocal gradient approach to the torsion of elastic nano-beams. The outline of the
present chapter is as follows. Preliminary notions of kinematics and equilibrium of
elastic beams under torsion are briefly recalled in Sect. 2. Nonlocal strain- and stress-
driven gradient formulations of elasticity for torsion of nano-beams are developed in
Sect. 3. Section 4 is devoted to the elasto-static and -dynamic analysis of the torsional
behavior of nano-beams where numerical results are also provided and commented
upon. Concluding remarks are drawn in Sect. 5.
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2 Local Elastic Beams

A straight beam of length L subject to torsion, with circular cross-section �, is
considered. The abscissa x is taken along the beam axis, orthogonal to the cross-
sectional plane including the axes y and z. Motivated by the Saint-Venant’s problem
solution [37, 38], the displacement field u of the beam, up to an inessential additional
rigid body motion, writes as

u (r, x) = θ (x)Rr (1)

with θ : [0,L] �→ � torsional cross-sectional rotation function. The tensor R is the
rotation by π/2 counter clock-wise in � and position vector of a cross-sectional
point with respect to the centroid is represented by r = (y, z). The shear strain vector
γ = (

γyx, γzx
)
, kinematically compatible with the displacement field u, is detected as

γ (r, x) = χ (x)Rr = ∂xθ (x)Rr (2)

with the geometric torsional curvature χ : [0,L] �→ � being the first derivative of
the torsional rotation along the axial abscissa x. Furthermore, introducing the mass
polar moment of inertia Jρ and torsional stiffness JG is useful in the formulation of
the torsional problem

Jρ =
∫∫

�

ρ (r · r) dA

JG =
∫∫

�

G (r · r) dA (3)

with ρ and G material density and shear elastic modulus, respectively. The dot into
the integrals stands for inner product between vectors.

The loading systemon the beam is assumed to consist of distributed torque per unit
lengthm : [0,L] �→ � and concentrated couples T0 and TL at the end cross-sections.
The principle of virtual work can be applied to prescribe the dynamic equilibrium
condition as

∫ L

0

(
m − Jρ∂ttθ

)
δθdx + [T0δθ (0) + TLδθ (L)] =

∫ L

0
Tδχdx (4)

for any virtual torsional rotation field δθ : [0,L] �→ � fulfilling homogeneous kine-
matic boundary conditions. The twisting resultant moment T is defined by

T =
∫∫

�

τ · (Rr) dA (5)

with τ = (
τyx, τzx

)
shear stress vector field.
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As a result of employing a standard localization procedure based on the integration
by parts, differential and standard boundary conditions associatedwith the variational
formulation Eq. (4) are expressed by

∂xT + m = Jρ∂ttθ (6)

(T + T0) δθ|x=0 = (T − TL) δθ|x=L = 0 (7)

3 Nonlocal Gradient Elastic Beams

The nonlocal gradient model introduced in Ref. [36] for elastic inflected nano-beams
is extended in this section to formulate nonlocal gradient nano-beams under tor-
sion. A consistent variational formulation for both Nonlocal strain-driven Gradi-
ent (NstrainG) and Nonlocal stress-driven Gradient (NstressG) models of elasticity
is introduced. The conceived NstrainG and NstressG elasticity theories are shown
to result in well-posed nonlocal problems in bounded structural domains of nano-
engineering interest.

The definition of integral convolution between a smoothing kernel ϕc and a scalar
field f is preliminarily recalled for conciseness sake

(ϕc ∗ f ) (x) :=
∫ L

0
ϕc (x − x̄) f (x̄)dx̄ (8)

with x and x̄ being the points of the structural interval [0,L]. The length-scale param-
eter demonstrating nonlocal effects is denoted by c ∈ ]0,∞[. The smoothing kernel
ϕc is selected to meet positivity, symmetry, normalization and impulsivity proper-
ties [29].

3.1 Nonlocal Strain-Driven Gradient (NstrainG) Elasticity

The abstract formulation of nonlocal gradient beams under torsion consistent with
NstrainG is governed by the following elastic energy, �NstrainG,

�NstrainG (χ) := 1

2
JG

∫ L

0

[
αχ2 + (1 − α) (ϕc ∗ χ)χ + �2 (ϕc ∗ ∂xχ) ∂xχ

]
dx (9)

with α ∈ [0, 1] mixture parameter and � ∈ [0,∞[ gradient length-scale parameter.
The relevant nonlocal gradient twisting moment T is provided by the variational
condition
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〈T , δχ〉 :=
∫ L

0
T (x)δχ (x) dx = 〈d�NstrainG (χ) , δχ〉 (10)

for any virtual torsional curvature field δχ ∈ C1
0 ([0,L] ; �) having compact support

in the structural domain. To determine the NstrainG constitutive law defining the
twisting moment T in terms of torsional curvature χ, the directional derivative of the
elastic energy �NstrainG is evaluated while integrating by parts

〈d�NstrainG (χ) , δχ〉 = JG

∫ L

0
[αχδχ + (1 − α) (ϕc ∗ χ) δχ] dx

+JG

∫ L

0

[
�2 (ϕc ∗ ∂xχ) (∂xδχ)

]
dx

= JG

∫ L

0

[
αχ + (1 − α) (ϕc ∗ χ) − �2∂x (ϕc ∗ ∂xχ)

]
δχdx

+JG�2
[
(ϕc ∗ ∂xχ) δχ|x=L − (ϕc ∗ ∂xχ) δχ|x=0

]
(11)

The choice of assuming virtual torsional curvature fields to have compact supports
leads to vanishing boundary values δχ|x=0 and δχ|x=L. As a result of implementing
a standard localization procedure, the sought nonlocal gradient constitutive law is
detected via prescription of the variational condition Eq. (10) as

T (x) = JG
[
αχ (x) + (1 − α) (ϕc ∗ χ) (x) − �2∂x (ϕc ∗ ∂xχ) (x)

]
(12)

Helmholtz bi-exponential kernel, fulfilling positivity, symmetry, normalization
and impulsivity conditions, is a well-accepted choice for the special smoothing ker-
nel ϕc

ϕc (x) := 1

2c
exp

(
−|x|

c

)
(13)

Following the proposition 3.1 of [36], the NstrainG integro-differential law can
be demonstrated to be equivalent to an appropriate differential constitutive problem
equipped with suitable constitutive boundary conditions.

Proposition 7.1. Constitutive equivalency for NstrainG

The nonlocal gradient constitutive law Eq. (12), on a bounded structural interval
[0,L], with bi-exponential kernel Eq. (13) for nano-beams subject to torsion is equiv-
alent to the differential constitutive equation

1

c2
T (x) − ∂xxT (x) = 1

c2
JGχ (x) − JG

(
α + �2

c2

)
∂xxχ (x) (14)

subject to two constitutive boundary conditions (CBCs)
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∂xT (0) − 1

c
T (0) = −JG

α

c
χ (0) + JG

(
α + �2

c2

)
∂xχ (0)

∂xT (L) + 1

c
T (L) = JG

α

c
χ (L) + JG

(
α + �2

c2

)
∂xχ (L) (15)

The general formulation of nonlocal gradient elasticity comprises some well-
established special models adopted in mechanics of nano-structures. The nonlocal
strain gradient constitutive law equipped with suitable CBCs [24] can be recovered
via vanishing the mixture parameter α → 0 as

1

c2
T (x) − ∂xxT (x) = 1

c2
JGχ (x) − JG

�2

c2
∂xxχ (x)

∂xT (0) − 1

c
T (0) = JG

�2

c2
∂xχ (0)

∂xT (L) + 1

c
T (L) = JG

�2

c2
∂xχ (L) (16)

The two-phase local/nonlocal strain-driven model and associated CBCs can be
also obtained as the gradient characteristic length approaches zero � → 0 [32]

1

c2
T (x) − ∂xxT (x) = 1

c2
JGχ (x) − JGα∂xxχ (x)

∂xT (0) − 1

c
T (0) = −JG

α

c
χ (0) + JGα∂xχ (0)

∂xT (L) + 1

c
T (L) = JG

α

c
χ (L) + JGα∂xχ (L) (17)

3.2 Nonlocal Stress-Driven Gradient (NstressG) Elasticity

While the roles of stress and strain fields can be readily swapped in the framework
of local elasticity, two distinct nonlocal gradient formulations should be prescribed
based on the physical interpretation of source and output elastic fields. NstressG can
be introduced by converting the source and output fields of the integral convolution
with respect to NstrainG model. Accordingly, the elastic potential of nano-beams
under torsion �NstressG associated with NstressG is defined by

�NstressG (T ) : = 1

2

1

JG

∫ L

0

[
αT 2 + (1 − α) (ϕc ∗ T ) T

]
dx

+ 1

2

1

JG

∫ L

0

[
�2 (ϕc ∗ ∂xT ) ∂xT

]
dx (18)
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The torsional curvatureχ of NstressG is established by the variational constitutive
condition

〈χ, δT 〉 :=
∫ L

0
χ (x)δT (x) dx = 〈d�NstressG (T ) , δT 〉 (19)

for any virtual twisting moment field δT ∈ C1
0 ([0,L] ; �) having compact support

in the structural domain. The directional derivative of the elastic potential along a
virtual twistingmoment can be determined by introducing the expression of�NstressG

and integrating by parts

〈d�NstressG (T ) , δT 〉 = 1

JG

∫ L

0
[αTδT + (1 − α) (ϕc ∗ T ) δT ] dx

+ 1

JG

∫ L

0

[
�2 (ϕc ∗ ∂xT ) (∂xδT )

]
dx

= 1

JG

∫ L

0

[
αT + (1 − α) (ϕc ∗ T ) − �2∂x (ϕc ∗ ∂xT )

]
δTdx

+ 1

JG
�2

[
(ϕc ∗ ∂xT ) δT |x=L − (ϕc ∗ ∂xT ) δT |x=0

]
(20)

The boundary terms in Eq. (20) are disappeared due to assuming virtual test fields
to have compact supports in the structural domain. A standard localization procedure
then provides theNstressG torsional curvatureχ in terms of twistingmomentT while
applying the variational condition Eq. (19)

χ (x) = 1

JG

[
αT (x) + (1 − α) (ϕc ∗ T ) (x) − �2∂x (ϕc ∗ ∂xT ) (x)

]
(21)

The equivalent differential constitutive problemwith the correspondingnewCBCs
in the framework of NstressG is similarly determined by assuming the smoothing
kernel to be the Helmholtz bi-exponential function.

Proposition 7.2. Constitutive equivalency for NstressG

The nonlocal gradient constitutive relation Eq. (21), endowed with the Helmholtz
bi-exponential kernel Eq. (13), is equivalent to the differential constitutive equation

1

c2
χ (x) − ∂xxχ (x) = 1

c2
1

JG
T (x) − 1

JG

(
α + �2

c2

)
∂xxT (x) (22)

equipped with the constitutive boundary conditions
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∂xχ (0) − 1

c
χ (0) = − 1

JG

α

c
T (0) + 1

JG

(
α + �2

c2

)
∂xT (0)

∂xχ (L) + 1

c
χ (L) = 1

JG

α

c
T (L) + 1

JG

(
α + �2

c2

)
∂xT (L) (23)

The stress-driven type formulation of NstressG includes well-known particular
elasticity models of nano-mechanics. Setting the gradient characteristic length zero
� → 0, the two-phase local/nonlocal stress-driven model and associated CBCs can
be recovered [32]

1

c2
χ (x) − ∂xxχ (x) = 1

c2
1

JG
T (x) − 1

JG
α∂xxT (x)

∂xχ (0) − 1

c
χ (0) = − 1

JG

α

c
T (0) + 1

JG
α∂xT (0)

∂xχ (L) + 1

c
χ (L) = 1

JG

α

c
T (L) + 1

JG
α∂xT (L) (24)

As expected, the stress-driven purely nonlocal formulation of elastic torsion can be
obtained via vanishing the mixture parameter α → 0 and the gradient characteristic
length � → 0 as [32]

1

c2
χ (x) − ∂xxχ (x) = 1

c2
1

JG
T (x)

∂xχ (0) − 1

c
χ (0) = 0

∂xχ (L) + 1

c
χ (L) = 0 (25)

4 Nonlocal Gradient Nano-Structures Under Torsion

The established variationally consistent nonlocal strain- and stress-driven gradient
models of elasticity are exploited in this section to examine size-dependent torsional
responses of structural schemes of nano-mechanical interest: cantilever and fully-
clamped nano-beams. In elasto-static torsional analysis, a nano-beam of length L
is assumed to be subjected to uniformly distributed couples m̄ per unit length. The
non-dimensional parameters: axial abscissa x̄, nonlocal characteristic parameter λ,
gradient characteristic parameter μ, torsional rotation θ̄ and fundamental torsional
frequency ω̄ are introduced as

x̄ = x

L
, λ = c

L
, μ = �

L
, θ̄ (x̄) = θ (x)

JG
m̄L2

, ω̄2 =
(
L2Jρ

π2JG

)
ω2 (26)



Nonlocal Gradient Mechanics of Elastic Beams Under Torsion 195

4.1 Elastostatic Torsion

Inertia terms are absent in the elasto-static analysis, and thus, the differential con-
dition of equilibrium Eq. (6) can be integrated to detect the twisting moment T in
terms of an integration constant �1 as

T (x) = −
∫ x

0
m (ζ) dζ + �1 (27)

The torsional curvature χ is subsequently determined via solving the constitutive
differential equation ofNstrainGEq. (14) in terms of integration constants�2 and�3

χ (x) = �2exp

(
− x√

αc2 + �2

)
+ �3exp

(
x√

αc2 + �2

)

+ 1

2JG
√

αc2 + �2
exp

(
− x√

αc2 + �2

)

·
∫ x

0
exp

(
ξ√

αc2 + �2

) (
T (ξ) − c2∂ξξT (ξ)

)
dξ

− 1

2JG
√

αc2 + �2
exp

(
x√

αc2 + �2

)

·
∫ x

0
exp

(
− η√

αc2 + �2

) (
T (η) − c2∂ηηT (η)

)
dη (28)

Similarly, the constitutive differential equation of NstressG Eq. (22) can be solved
to determine the torsional curvature field in terms of integration constants�2 and�3

χ (x) = �2exp
(
−x

c

)
+ �3exp

(x
c

)

+ 1

2cJG
exp

(
−x

c

) ∫ x

0
exp

(
ξ

c

) (
T (ξ) − (

αc2 + �2
)
∂ξξT (ξ)

)
dξ

− 1

2cJG
exp

(x
c

) ∫ x

0
exp

(
−η

c

) (
T (η) − (

αc2 + �2
)
∂ηηT (η)

)
dη (29)

Lastly, the torsional rotation field θ can be evaluated integrating the differential
condition of kinematic compatibility χ = ∂xθ in terms of the integration constant�4

as

θ (x) =
∫ x

0
χ (ζ)dζ + �4 (30)

The integration constants �k (k = 1,…,4) can be detected by prescribing two
Constitutive Boundary Conditions of NstrainG Eq. (15) or NstressG Eq. (23), which
are independent of the considered boundary kinematic constraints, in addition to two
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standard kinematic and static boundary conditions (BCs) specialized here for the
examined case-studies.

In case of the cantilever nano-beam subject to uniformly distributed couples, the
torsional solution field has to fulfill the (standard) classical boundary conditions

θ (0) = 0, T (L) = 0 (31)

The (standard) essential kinematic boundary conditions in case of a fully-clamped
nano-beam subject to uniformly distributed couples are also given by

θ (0) = 0, θ(L) = 0 (32)

The proposed analytical approach provides exact analytical solutions in conse-
quenceof integratingdifferential equations of lower order. In the sequel, the acronyms
LOC, NstrainG and NstressG, respectively, denote the local beam model, nonlocal
strain-driven gradient model and nonlocal stress-driven gradient model.

To visibly demonstrate the effects of the gradient characteristic parameter on the
torsional responses of cantilever nano-beams, numerical values of torsional rotations
are evaluated in the mid-span. The normalized torsional rotations at the mid-span of
the cantilever nano-beam associated with NstrainG and NstressG under uniformly
distributed couples are exhibited in Figs. 1 and 2.

Likewise, the normalized maximum torsional rotations of fully-clamped nano-
beams consistent with NstrainG and NstressG under uniformly distributed couples
are illustrated in Figs. 3 and 4. Detected torsional rotation fields are also normal-
ized exploiting the corresponding torsional rotation of the local beam model θ̄LOC.
In Figs. 1, 2, 3 and 4, while the nonlocal characteristic parameter λ is ranging in
the interval ]0, 1[, the gradient characteristic parameter μ is ranging in the set of

Fig. 1 Cantilever NstrainG nano-beams under uniform couples: normalized mid-span torsional
rotation
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Fig. 2 Cantilever NstressG nano-beams under uniform couples: normalized mid-span torsional
rotation

{0, 0.1, 0.3, 0.5, 0.7, 1.0} and two values of the mixture parameter as α = 0 and
α = 0.5 are prescribed. It is deduced from Figs. 1, 2, 3 and 4 that the size-dependent
NstrainG model exhibits a softening behavior in terms of nonlocal characteristic
parameter λ, that is a larger λ involves a larger torsional rotation for given gradi-
ent and mixture parameters. The torsional rotation of elastic nano-beams decreases
as the gradient or the mixture parameters increase, and accordingly, NstrainG the-
ory demonstrates a stiffening behavior in terms of gradient and mixture parameters
for a given value of λ. Effects of characteristic parameters are more pronounced
in NstrainG beams with fully-clamped ends. On the contrary, a softening response
is demonstrated in the framework of NstressG for increasing gradient or mixture

Fig. 3 Fully-clamped NstrainG nano-beams under uniform couples: normalized maximum tor-
sional rotation
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Fig. 4 Fully-clamped NstressG nano-beams under uniform couples: normalized maximum tor-
sional rotation

parameters and a stiffening behavior is detected for increasing nonlocal character-
istic parameter. In the framework of NstressG model, size-dependent elastostatic
responses of fully-clamped beams are more affected by characteristic parameters.

As expected, the size-dependent elastic torsional rotation of nano-beams in accor-
dance with either of the NstrainG or NstressG models coincides with the local
response for vanishing small-scale characteristic and mixture parameters. Addition-
ally, size-dependent effects of nonlocal and gradient parameters are less noticeable
in the presence of non-vanishing mixture parameter α �= 0. Notably, NstrainG and
NstressG theories demonstrate different softening and stiffening structural responses
in terms of characteristic parameters due to profound differences in the fundamental
assumptions of the models to capture scale phenomena.

4.2 Torsional Free Vibrations

In order to examine torsional free vibrations of nano-beams, the relevant elasto-
dynamic problems associated with NstrainG and NstressG are formulated in terms
of the torsional rotation field. The distributed couple is allowed to vanish, and con-
sequently, twisting moment field T can be determined by prescribing the differential
condition of equilibrium Eq. (6) to the constitutive differential law of NstrainG Eq.
(14) or NstressG Eq. (22) as



Nonlocal Gradient Mechanics of Elastic Beams Under Torsion 199

1

c2
TNstrainG (x, t) = Jρ∂ttχ (x, t)

+ 1

c2
JGχ (x, t) − JG

(
α + �2

c2

)
∂xxχ (x, t)

1

c2
TNstressG (x, t) =

(
α + �2

c2

)
Jρ∂ttχ (x, t)

+ 1

c2
JGχ (x, t) − JG∂xxχ (x, t) (33)

The differential condition of dynamic equilibrium governing torsional vibrations
of nano-beams can be expressed in terms of torsional rotation field by applying kine-
matic compatibility. Accordingly, the differential condition of dynamic equilibrium
consistent with the NstrainG is

Jρ∂ttxxθ (x, t) + 1

c2
JG∂xxθ (x, t) − JG

(
α + �2

c2

)
∂xxxxθ (x, t)

= 1

c2
Jρ∂ttθ (x, t) (34)

and NstressG writes as

(
α + �2

c2

)
Jρ∂ttxxθ (x, t) + 1

c2
JG∂xxθ (x, t) − JG∂xxxxθ (x, t)

= 1

c2
Jρ∂ttθ (x, t) (35)

equippedwith the classical (standard) boundary conditions Eq. (7) and corresponding
constitutive boundary conditions associated with NstrainG Eq. (15) or NstressG Eq.
(23). A standard procedure of separating spatial and time variables is subsequently
employed to study torsional free vibrations

θ (x, t) = �(x) exp (iωt) (36)

with i = √−1, � and ω denoting the spatial mode shapes and natural frequency of
torsional vibrations. Imposing the separation of variables Eq. (36) on the differen-
tial conditions of dynamic equilibrium Eqs. (34)–(35), the differential condition of
torsional coordinate functions for NstrainG is

− JG

(
α + �2

c2

)
d4�

dx4
(x) +

(
1

c2
JG − Jρω

2

)
d2�

dx2
(x) + 1

c2
Jρω

2�(x) = 0 (37)

and for NstressG is obtained as

− JG
d4�

dx4
(x) +

(
1

c2
JG −

(
α + �2

c2

)
Jρω

2

)
d2�

dx2
(x) + 1

c2
Jρω

2�(x) = 0 (38)
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The torsional coordinate function can be analytically detected as

�(x) = ϒ1 exp (β1x) + ϒ2 exp (β2x) + ϒ3 exp (β3x) + ϒ4 exp (β4x) (39)

where unknown integration constants ϒk (k = 1, 2, 3, 4) have yet to be determined
alongwith βk (k = 1, 2, 3, 4) being the roots of the characteristic equation associated
with the differential equations of Eq. (37) or Eq. (38).

For the NstrainG cantilever nano-beam, a homogeneous fourth-order algebraic
system in terms of the unknown integration constants ϒk ( k = 1, 2, 3, 4) is estab-
lished as a result of imposing (standard) classical BCs Eq. (31) along with CBCs
Eq. (15) to the closed form solution of the torsional coordinate function Eq. (39). In
the same way, homogeneous fourth-order algebraic systems can be determined for
nano-beamsassociatedwith either ofNstrainGorNstressGmodels. Todetect the non-
trivial solution of torsional free vibrations, the system of algebraic equations has to be
singular. Accordingly, a highly nonlinear characteristic equation is obtained for nano-
beams consistent with either of nonlocal gradient models that is numerically solved.

Fundamental torsional frequencies of cantilever and fully-clamped nano-beams
associatedwithNstrainG andNstressG theories are numerically detected and demon-
strated in Figs. 5, 6, 7 and 8. The detected torsional frequencies are also normalized
employing their corresponding local natural frequencies ω̄LOC. The characteristic
and mixture parameters are assumed to have the same ranging set as the elasto-static
torsional response exhibited in Figs. 1 through 4.

It is inferred from the illustrative results associated with the NstrainG model
that the nonlocal characteristic parameter λ has the effect of decreasing the funda-
mental torsional frequencies, that is a larger λ involves a smaller natural torsional
frequency. The natural torsional frequencies consistent with the NstrainG model,
therefore, demonstrate a softening structural response in terms of nonlocal character-
istic parameter λ. Furthermore, the natural frequencies associated with the NstrainG
model increase by increasing the gradient characteristic or themixture parameter, and

Fig. 5 Normalized torsional fundamental frequency of NstrainG cantilever nano-beams
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Fig. 6 Normalized torsional fundamental frequency of NstressG cantilever nano-beams

Fig. 7 Normalized torsional fundamental frequency of NstrainG fully-clamped nano-beams

accordingly, demonstrating a stiffening structural response in terms of gradient and
mixture parameters. Conversely, a softening behavior is detected for torsional fre-
quencies consistent with NstressG for increasing gradient or mixture parameters and
a stiffening response is demonstrated for increasing nonlocal characteristic parame-
ter. In bothNstrainG andNstressGmodels, the effects of characteristic parameters are
more noticeable in nano-beams with fully-clamped ends. For non-vanishing mixture
parameterα �= 0, the fundamental torsional frequency of nano-beams is less affected
by the nonlocal and gradient characteristic parameters. Fundamental torsional fre-
quencies of the local elastic beam model can be recovered as the small-scale char-
acteristic and mixture parameters approach zero. NstrainG and NstressG models
are founded on different theoretical bases, and thus, exhibit different softening and
stiffening structural responses in terms of characteristic parameters.
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Fig. 8 Normalized torsional fundamental frequency of NstressG fully-clamped nano-beams

5 Conclusions

The nonlocal gradient elasticity theory of inflected nano-beams is extended in this
chapter to the mechanics of elastic nano-beams under torsion. Size-dependent tor-
sional response of the elastic beams is investigated bymaking recourse to a consistent
variational constitutive formulation equipped with appropriately selected test fields.
The convolution integrals of the constitutive law are transformed into equivalent dif-
ferential conditions subject to non-standard boundary conditions of nonlocal type.
A consistent unified theory of nonlocal gradient elasticity is established for the elas-
tic torsion problem comprising both strain- and stress-driven nonlocal approaches.
The well-established elasticity theories adopted in the mechanics of nano-structures
including purely nonlocal stress-driven model, two-phase local/nonlocal strain- and
stress-driven models as well as modified nonlocal strain gradient model are recov-
ered as special cases. The novel NstrainG and NstressG theories of elasticity are
applied to advantageously investigate the size-dependent torsional response of struc-
tural schemes of nano-technology applications. Elasto-static and -dynamic torsional
responses of nano-beams are examined applying an efficient analytical solution pro-
cedure. The variational nonlocal gradient theory is demonstrated to lead to mathe-
matically well-posed problems of mechanics of nano-structures, generally defined
in bounded domains. The nonlocal strain- and stress-driven gradient models of elas-
ticity can effectively simulate both stiffening and softening structural responses, and
accordingly, provide an innovative viable approach for design and optimization of
nano-engineered structures exploited in ground-breaking NEMS.
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9. Numanoğlu HM,CivalekÖ (2019)On the torsional vibration of nanorods surrounded by elastic
matrix via nonlocal FEM. Int J Mech Sci 161–162:105076

10. Hache F, Challamel N, Elishakoff I (2019) Asymptotic derivation of nonlocal plate models
from three-dimensional stress gradient elasticity. Continuum Mech Thermodyn 31:47–70

11. Tashakorian M, Ghavanloo E, Fazelzadeh SA, Hodges DH (2018) Nonlocal fully intrinsic
equations for free vibration of Euler-Bernoulli beams with constitutive boundary conditions.
Acta Mech 229:3279–3292

12. Barretta R, Fazelzadeh SA, Feo L, Ghavanloo E, Luciano R (2018) Nonlocal inflected nano-
beams: A stress-driven approach of bi-Helmholtz type. Compos Struct 200:239–245

13. Tuna M, Kirca M, Trovalusci P (2019) Deformation of atomic models and their equivalent
continuum counterparts using Eringen’s two-phase local/nonlocal model. Mech Res Commun
97:26–32

14. Zhu X, Li L (2017) Longitudinal and torsional vibrations of size-dependent rods via nonlocal
integral elasticity. Int J Mech Sci 133:639–650

15. Fernández-Sáez J, Zaera R (2017) Vibrations of Bernoulli-Euler beams using the two-phase
nonlocal elasticity theory. Int J Eng Sci 119:232–248

16. Barretta R, Faghidian SA, Marotti de Sciarra F (2019) Aifantis versus Lam strain gradient
models of Bishop elastic rods. Acta Mech 230:2799–2812

17. Li L, Hu Y (2019) Torsional statics of two-dimensionally functionally graded microtubes.
Mech Adv Mater Struct 26:430–442

18. Dilena M, Dell’Oste MF, Fernández-Sáez J, Morassi A, Zaera R (2019) Mass detection in
nanobeams from bending resonant frequency shifts. Mech Syst Sig Process 116:261–276

19. Bagheri E, Asghari M, Danesh V (2019) Analytical study of micro-rotating disks with angular
acceleration on the basis of the strain gradient elasticity. Acta Mech 230:3259–3278

20. Zaera R, Serrano Ó, Fernández-Sáez J (2020) Non-standard and constitutive boundary condi-
tions in nonlocal strain gradient elasticity. Meccanica 55:469–479

21. Zaera R, Serrano Ó, Fernández-Sáez J (2019) On the consistency of the nonlocal strain gradient
elasticity. Int J Eng Sci 138:65–81

22. Barretta R, Faghidian SA, Marotti de Sciarra F, Vaccaro MS (2020) Nonlocal strain gradient
torsion of elastic beams: variational formulation and constitutive boundary conditions. Arch
Appl Mech 90:691–706

https://doi.org/10.1007/s00161-019-00843-6
https://doi.org/10.1007/s00161-019-00843-6


204 F. P. Pinnola et al.

23. Pinnola FP, Faghidian SA, Barretta R, Marotti de Sciarra F (2020) Variationally consistent
dynamics of nonlocal gradient elastic beams. Int J Eng Sci 149:103220

24. Barretta R, Faghidian SA, Marotti de Sciarra F, Penna R, Pinnola FP (2020) On torsion of
nonlocal Lam strain gradient FG elastic beams. Compos Struct 233:111550

25. Rafii-Tabar H, Ghavanloo E, Fazelzadeh SA (2016) Nonlocal continuum-based modeling of
mechanical characteristics of nanoscopic structures. Phys Rep 638:1–97

26. Eringen A (1983) On differential equations of nonlocal elasticity and solutions of screw dislo-
cation and surface waves. J Appl Phys 54:4703–4710

27. Ghavanloo E, Rafii-Tabar H, Fazelzadeh SA (2019) Computational continuum mechanics of
nanoscopic structures: nonlocal elasticity approaches. Springer

28. Rafii-TabarH (2008) Computational physics of carbon nanotubes. CambridgeUniversity Press,
Cambridge

29. Romano G, Luciano R, Barretta R, Diaco M (2018) Nonlocal integral elasticity in nanostruc-
tures, mixtures, boundary effects and limit behaviours. Continuum Mech Thermodyn 30:641–
655

30. Romano G, Barretta R (2017) Nonlocal elasticity in nanobeams: the stress-driven integral
model. Int J Eng Sci 115:14–27

31. Barretta R, Caporale A, Faghidian SA, Luciano R, Marotti de Sciarra F, Medaglia CM (2019)
A stress-driven local-nonlocal mixture model for Timoshenko nano-beams. Compos Part B
164:590–598

32. Apuzzo A, Barretta R, Fabbrocino F, Faghidian SA, Luciano R, Marotti de Sciarra F (2019)
Axial and torsional free vibrations of elastic nano-beams by stress-driven two-phase elasticity.
J Appl Comput Mech 5:402–413

33. Aifantis EC (2011) On the gradient approach-relation to Eringen’s nonlocal theory. Int J Eng
Sci 49:1367–1377

34. Lim CW, Zhang G, Reddy JN (2015) A higher-order nonlocal elasticity and strain gradient
theory and its applications in wave propagation. J Mech Phys Solids 78:298–313

35. Barretta R, Marotti de Sciarra F (2018) Constitutive boundary conditions for nonlocal strain
gradient elastic nano-beams. Int J Eng Sci 130:187–198

36. Barretta R,Marotti de Sciarra F (2019) Variational nonlocal gradient elasticity for nano-beams.
Int J Eng Sci 143:73–91

37. Romano G, Barretta A, Barretta R (2012) On torsion and shear of Saint-Venant beams. Eur J
Mech A-Solid 35:47–60

38. Faghidian SA (2016) Unified formulation of the stress field of Saint-Venant’s flexure problem
for symmetric cross-sections. Int J Mech Sci 111–112:65–72


	 Nonlocal Gradient Mechanics of Elastic Beams Under Torsion
	1 Introduction
	2 Local Elastic Beams
	3 Nonlocal Gradient Elastic Beams
	3.1 Nonlocal Strain-Driven Gradient (NstrainG) Elasticity
	3.2 Nonlocal Stress-Driven Gradient (NstressG) Elasticity

	4 Nonlocal Gradient Nano-Structures Under Torsion
	4.1 Elastostatic Torsion
	4.2 Torsional Free Vibrations

	5 Conclusions
	References




