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Abstract The various mathematical models developed in the past to interpret the
behavior of natural and manmade materials were based on observations and exper-
iments made at that time. Classical laws (such as Newton’s for gravity, Hooke’s
for elasticity, Navier-Stokes for fluidity, Fick’s/Fourier’s for diffusion/heat transfer,
Coulomb’s for electricity, as well as Maxwell’s for electromagnetism and Einstein’s
for relativity) formed the basis for shaping our current technology and civilization.
The discovery of new phenomena with the aid of recently developed experimental
probes have led to various modifications of these laws across disciplines and scales:
from subatomic and elementary particle physics to cosmology and from atomistic
and nano/micro to macro/giga scales. The emergence of nanotechnology and the
further advancement of space technology are ultimately connected with the design
of novel tools for observation and measurements, as well as with the development
of new methods and approaches for quantification and understanding. This chapter
first reviews the author’s previously developed weakly nonlocal or gradient models
for elasticity, diffusion and plasticity within a unifying internal length gradient (ILG)
framework. It then proposes a similar extension for fluids and Maxwell’s equations
of electromagnetism. Finally, it ventures a gradient modification of Newton’s law
of gravity and examines its implications to some problems of elementary particle
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physics, also relevant to cosmology. Along similar lines, it suggests an analogous
extension of London’s quantum mechanical potential to include both an “attractive”
and a “repulsive” branch. It concludes with some comments on a fractional general-
ization of the ILG framework.

1 Introduction

In a recent chapter in Advances of Applied Mechanics [1], a detailed account is
presented of the author’s internal length gradient (ILG) mechanics framework. It is
based on the assignment of internal lengths (ILs) (associated with the local geome-
try/topology of material substructure) as scalar multipliers of extra Laplacian terms
that are introduced to account for heterogeneity effects andweak nonlocality. Related
background work for this framework can be found in the references quoted therein,
as well as in earlier published articles by the author and his coworkers [2–10].

Themotivation for the development of the initial continuummechanics-based ILG
framework was the need for describing deformation pattern-forming instabilities that
emerge when an externally applied stress reaches a certain threshold. Beyond that
threshold, the evolution equations governing the system’s homogeneous response
were becoming ill-posed and further analysis was not possible. The method pro-
posed earlier by the author to overcome the difficulty for macroscopic deforma-
tion and fracture instabilities, was to introduce higher-order gradients (in the form
of Laplacians) in the constitutive equations and corresponding ILs accounting for
the heterogeneity of the underlying micro/nano structures. The resulting differential
equations eliminate ill-posedness, estimate the width/spacings of deformation bands,
dispense with the mesh-size dependence in finite element calculations, and remove
stress/strain singularities at crack tips. A similar approach has been employed by
the author for higher-order diffusion and heat conduction theories, as well as for
phase transitions by revisiting van der Waals theory of liquid-vapor interfaces and
Cahn-Hilliard theory of spinodal decomposition [11–16] through the introduction of
chemical ILs. In these works, mechanical and chemical ILs were treated separately
as phenomenological parameters, depending on the material local configuration and
scale of observation. Their calibration and/or estimation was left to numerical and/or
laboratory experiments. Moreover, statistical features emerging at sub-macroscopic
scales were not considered. A preliminary effort to address these issues has been out-
lined in [1], and is further elaborated upon herein. In particular, the powerful multi-
scale technique proposed by Kevrekidis and co-workers [17, 18]—the equation-free
method (EFM)—can be utilized for the hierarchical calibration of mechanical ILs.
Their experimental estimation, usually inferred from “indirect” measurements of
spatio-temporal features (width/spacing/velocity of deformation bands) and related
size effects, can be based on “direct” measurements through novel nanoindentation
(NI) tests by monitoring the local strain gradients at various indentation depths.

The enhancement of the above deterministic ILG considerations to include
stochastic effects associated with internal stress fluctuations that manifest as stress
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drops/strain bursts in micro/nanopillar experiments and popins/popouts in nanoin-
dentation tests, may be pursued along the lines also outlined in [1]. Corresponding
gradient-stochastic models can be derived to capture intermittent plasticity and ser-
rated stress-strain graphs, as well as to determine statistical features such as fractal
dimensions (FDs) and probability density functions (PDFs). This task can be carried
out by employing Tsallis q-statistics [19–21]—based on “nonextensive entropy” (as
opposed to Boltzmann-Gibbs (B-G) “extensive thermodynamics” )—resulting to q-
dependent multifractal spectra and q-dependent PDFs, as well as q-generalization
of B-G universal power laws. Novel NI tests may be conducted on multiple speci-
men sites and at different penetration depths for the determination of q-distributions
by recording the observed popins/popouts and comparing them with corresponding
determinations from micro/nanopillar serrated stress-strain curves. Such a statistical
mechanics enhanced ILG frameworkmay also be conveniently employed to consider
the Portevin Le Chatelier (PLC) and persistent slip band (PSB) plastic instabilities,
along with related size effects, as outlined below.

At very small scales, mechanical and chemical effects are often equipresent, and
an extended chemomechanical ILG framework is necessary in order to consider
higher-order IL couplings, as suggested in [1]. In view of the fact that mechanical
and chemical ILs are introduced as scalar multipliers of corresponding Laplacian
terms, it turns out that such coupled chemomechanical formulation is appealing and
robust. Since in mathematical biology models cells are represented by scalar con-
centration fields (i.e. in the same way as chemical species), the formulation could
be easily adapted for the description of higher-order couplings between mechanical
and biochemical ILs. Such an extended ILGmechanics framework, including syner-
gistic effects between mechanical and chemical or biological ILs, can be employed
to consider chemomechanical instabilities in Lithium ion Battery (LiB) anodes and
biomechanical instabilities in brain tumors, as also outlined below.

As mentioned above, we conclude this introductory section by summarizing main
results of the ILG framework and its potential to be employed for considering a variety
of problems of current or emerging interest as follows:

• Plastic Instabilities and Size Effects: Recent experiments at micro/nano scales [22]
have revealed a strong dependence on specimen size. Ongoing work in several
Labs has revealed, in particular, that PLC and PSB instabilities may be suppressed
when the ratio of the specimen size over the internal length is reduced below
a certain threshold. The previous deterministic ILG models earlier advanced by
the author and collaborators for these instabilities at macro/meso scales can be
revisited and evaluated for “small-volumes” and strain localization phenomena
observed in nanocrystalline (NC) and ultrafine-grain (UFG) polycrystals. New
combined gradient-stochastic ILG models for both PLC and PSB instabilities
can be employed to capture spatio-temporal periodicity, fractality, and transition
to chaos. FDs for the observed deformation bands and PDFs for the recorded
serrations in stress-strain curves can be determined through Tsallis q-statistics.

• Chemomechanical Instabilities & Lithiation Fronts in LiB Anodes: A determinis-
tic version of our coupled chemomechanical ILG framework can be employed to



420 E. C. Aifantis

address chemostress damage instabilities in nanostructured LiB anodes leading to
cracking and capacity fade during Li insertion/de-insertion under electrochemical
cycling. This is due to the huge local volume expansions (up to 400%) and asso-
ciated internal stress generation occurring in Si active particles during lithiation
[23–26]. A related issue is to understand the size/stress dependence of lithiation,
as well as the propagation of stress-assisted lithiated fronts which controls battery
efficiency. The interplay between higher-order mechanical and chemical ILs has
not yet been sufficiently considered to address these chemomechanical instabili-
ties in LiB, despite of their wide use in microelectronics, laptops and electric car
technologies.

• Biomechanical Instabilities & Cancer Growth/Metastasis in Human Brain: A
striking analogy1 exists between the Walgraef-Aifantis (W-A) model [27–29] of
dislocation patterning in PSBs and the Go or Grow (GoG) model for glioblastoma
cancer cells [30, 31]. Both processes are described by similar reaction-diffusion
(R-D) type equations for mobile-immobile dislocations in the W-A model (under
the action of applied stress) and themotile-immotile cancer cells in the GoGmodel
(under the action of internally generated stress). Such internal stress effects have
not been explicitly accounted for in the GoG model, despite of the fact that Mur-
ray [32, 33]—the father ofmodernmathematical biology—had already introduced
cell-tractions and corresponding strain gradients (in the form of Laplacians, as in
author’s work; see, for example, the related discussions in [1]) to revisit Turing’s
seminal R-Dwork ofmorphogenesis. The interplay between higher-ordermechan-
ical and biochemical ILs in the GoG model can be studied, and the role of internal
stress can thus be evaluated. The results can provide new insight on brain cancer
progression and potential therapeutic procedures.

2 State-of-the Art: Previous Literature & Current State
of Affairs

An extensive bibliography on gradient theories has already been mentioned that can
be found in [1]. Specific aspects pertaining to the present review and related work
on continuum mechanics models at micro/meso/macro scales are discussed in this
section. For the convenience of the reader, we present this section in two parts. In
the first part, we provide background on relatively recent phenomenological strain
gradient models that have been developed to capture mechanically-induced plastic
instabilities and size effects under the action of applied loads. In the second part, we
provide a brief account of earlier, more fundamental work on phase transitions which
was a direct motivation for the author’s initial ILG deterministic models, as well as

1An elaboration of this analogy is given in a forthcoming article by H. Hatzikirou and E.C. Aifantis:
On the similarities between the W-A model for dislocations and the GoG model for cancer cells (in
preparation).
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for the development of coupled chemomechanical/ biomechanical ILG models to be
used for addressing instabilities in LiBs and brain tumors.

2.1 Plastic Instabilities & Size Effects

The terms “material instabilities” and “dislocation patterning” were quoted by the
author in the mid 1980s [2–5, 34–37] to denote the self-organization of local-
ized strain bands and dislocations in deforming solids. Various gradient dislocation
dynamics and gradient plasticity models were generated to deal with dislocation pat-
tern formation and shear band thickness/spacing evolution, as well as for interpreting
size effects [38–44]. Soon afterwards, in the beginning of the 1990s and later on [2–5,
7, 9, 34–36, 45–47], the author incorporated the Laplacian of the Hookean stress
into the standard constitutive equation of linear elasticity, to remove the singularities
from dislocation lines and crack tips. Some of the aforementioned author’s early
work on gradient theory is reviewed in a number of specific book chapters [38–44]
by leading authors in the field.

Subsequently, or in parallel to the above developments, other types of gradient
models have been developed such as the Fleck-Hutchinson and the Gao-Nix-Huang
strain gradient theories, as well as improved gradient theories taking into account
surface effects. As an outgrowth of the initial W-A phenomenological model for
dislocation patterning, a substantial effort has been devoted to discrete dislocation
dynamics (DDD) modeling. Due to computational limitations of DDD for obtaining
dislocation patterns and motivated by the initial W-A model, alternative dislocation
density basedmethods or continuumdislocation dynamics (CDD)have beenpursued.
Related references connected to the above named authors and works can be found in
the bibliography listed in [38–43, 48–53]. In this connection, it is pointed out that our
gradient elasticity model has recently been successfully utilized by Ghoniem’s group
in UCLA to dispense with near-core singularities causing code-malfunctioning in 3D
discrete dislocation dynamics simulations [54]. Moreover, our related non-singular
strain/stress crack tip solutions have been successfully used by Isaksson’s group
in Uppsala to interpret experimental measurements on crack-tip profiles in micro-
heterogeneous materials such as solid foams and bone tissue [55, 56].

With the exception of author’s preliminary efforts described in [1], all the above
works on gradient models for addressing plastic instabilities and size effects do
not account for internal stress/structural defect fluctuations and synergistic gradient-
stochastic effects. There are no attempts for a hierarchical IL calibration through
EFMmultiscale simulations and novel NI tests. The same holds for the use of Tsallis
q-statistics to determine FDs and PDFs. All these are open inter-dependent issues
that need to be addressed. It is also pointed out that none of the above gradient elastic-
ity/plasticity models incorporate diffusion and chemical reaction effects. An excep-
tion can again be found in [1] where higher-order chemomechanical IL couplings
are discussed. This issue needs further be addressed to consider chemomechanical
and biomechanical instabilities as described below.
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2.2 Chemomechanical Instabilities in LiBs & Biomechanical
Instabilities in Brain

Themain reason that the author’s Laplacian-based ILGmodels can easily be extended
to include chemical and biochemical ILs is due to the fact that their motivation stems
from his earlier treatment (with Serrin [11, 12]) of van der Waals theory [13] of fluid
interfaces, which was also the predecessor of Ginzburg-Landau theory [14] of phase
transitions and the Cahn-Hilliard theory [15, 16] of spinodal decomposition. This
is in contrast to the aforementioned Fleck-Hutchinson and related strain gradient
models which were motivated by Cosserat-type generalized continuum mechanics
theories that do not contain explicitly the Laplacian and, thus, they do not exhibit
the corresponding mathematical and physical properties that this operator implies.
On the other hand, chemical reactions and phase transformations have traditionally
been treated with R-D equations involving the Laplace operator. The fact that both
mechanical and chemical or biochemical ILs can be treated on the same footing,
through the introduction of the corresponding Laplacians, allows for a robust for-
mulation of a chemomechanical and biomechanical ILG framework that can be used
to consider corresponding instability phenomena in LiB anodes and brain glioblas-
tomas, respectively.

There is a large number of recent articles on LiB capacity fade due to colos-
sal volume changes in anodes (up to 400% for Li-Si based anodes) during lithi-
ation/delithiation [23–26]. While in some of these works diffusion and coupled
deformation-diffusion effects have been accounted for, higher-order strain gradi-
ents and corresponding mechanical ILs have not been considered. An exception is
the recent article by the author and coworkers [57] employing strain gradients and
mechanical ILs to model size effects in LiB anodes, as well as in [58] employing
both mechanical and chemical ILs to model the propagation of lithation fronts. This
work can be used as a guide to develop criteria for the most optimum nanocompos-
ite configuration (size/spacing of active Si-nanoparticles) for LiB anodes to prevent
cracking and/or accelerate lithtiation/delithiation.

Similarly to the case of LiBs, there is an abundance of mathematical models for
brain cancer. However, related ILG models accounting for internal stress gradient
effects due to tumor growth and cancer cell migration/proliferation are missing. This
is also true for the aforementioned GoG [30, 31] phenotypic plasticity model of
cancer cell migration and its impact on tumor progression. It was found that low-
grade tumormicro-ecology potentially exhibits an emergentAllee effect, i.e. a critical
tumor cell density implying tumor growth or control. The precise quantification
of this critical tumor cell density could be a relevant prognostic criterion for the
tumor fate through biopsy measurements. It was shown that the GoG mechanism
explains the fast tumor recurrence time of high-grade brain tumors after resection.
These findings can be re-evaluated by transferring the stability analysis results earlier
derived for the W-A model (of mobile-immobile dislocations) to the GoG model (of
motile-immotile cells), by also considering stochastic heterogeneity and internal
stress gradient effects.
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3 ILG Formulation Through Continuum
& Statistical Mechanics

In this section we briefly review the formulation of ILG framework by using ingre-
dients of generalized continuum and statistical mechanics.

• ILs in Elasticity/Plasticity & Diffusion/Gradient Dislocation Dynamics: For elas-
tic deformations, the term �2ε∇2[λεmmδi j + 2Gεi j ]—where �ε denotes elastic IL,
εi j is the elastic strain (εi j = 1/2[ui, j + u j,i ] ; ui designates displacement), and
(λ,G) are the Lamé constants—is incorporated into classical Hooke’s law. Previ-
ous results of the author and his coworkers (see [1] and references quoted therein)
show that the resulting ILG model can eliminate stress/strain singularities from
dislocation/disclination lines and crack tips, as well as interpret elastic size effects.
Similarly, the term �2p∇2γ p—where �p denotes plastic IL and γ p = ∫

γ̇ pdt

(γ̇ p =
√
2ε̇ p

i j ε̇
p
i j ) is the equivalent plastic strain with ε

p
i j denoting the plastic strain

tensor—is introduced in the classical von-Mises yield condition or the flow rule to
derive differential equations that remain well-posed in the unstable flow regime.
Previous results of the author and his coworkers (e.g. [1] and references therein)
show that the resulting ILG model can determine shear band widths and spacings,
as well as interpret plasticity induced size effects in micro-torsion/bending and
micro/nano indentation experiments. For elastic deformations at the atomic scale
(near dislocation lines in crystals), �ε relates to the subatomic configuration and
electronic state (e.g. through DFT calculations), while at the microscale �ε relates
to particle size/spacing (e.g. through MD simulations). For plastic deformations
at micro/meso scales (deformation bands, dislocation cells), �p relates to disloca-
tion source distance/pileup length/grain size (e.g. through DDD simulations). This
suggests that our earlier practice of treating the ILs as “fitting” constants needs to
be revised and consider them as evolving parameters in the course of deformation.
This point of view can be adopted for exploring the IL-dependence on the current
state of deformation and underlying micro/nanostructural configuration, also in
relation to the size of the volume considered.
For diffusion problems, the ILs enter through the additional term �2d∇2 ji which
generalizes the classical Fick’s law (�d is a diffusional internal length and ji denotes
the diffusion flux) in a manner similar to the Cahn-Hilliard theory for spinodal
decomposition. For collective dislocation phenomena, the IL enters through the
extra Laplacian term D∇2ρ, where ρ denotes dislocation density and D is an
“effective” diffusion-like transport coefficient. Unlike in random diffusion pro-
cesses however, D here is a strain rate driven parameter. Since the strain rate
depends (through Orowan’s equation) linearly to the average dislocation velocity
(which, in turn, relates to the local stress), the coefficient D is treated as a stress-
dependent parameter that relates to individual dislocation interactions. It is noted,
in this connection, that the originalW-Amodel for dislocation patterning, which is
based on such type of D∇2ρ terms for the mobile and immobile dislocation den-
sities, was initially criticized for the phenomenological nature of these Laplacian
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terms. However, recent work on continuum dislocation density based dynamics
(CDD)—in contrast to discrete dislocation based dynamics (DDD) simulations
which were unable to produce dislocation patterns—generate such type of Lapla-
cian terms which are necessary for dislocation pattern formation interpretations.

• Stochasticity and Tsallis q-Statistics: The enhancement of the above discussed ILG
deterministic models through the incorporation of stochastic terms is necessary in
order to account for the heterogeneity and fluctuations of internal stresses, as well
as deformation-induced random micro/nanostructures. The resulting combined
gradient-stochasticmodels can capture the observed behavior atmicro/nano scales,
including size dependent serrated stress-strain graphs and intermittent plasticity
phenomena. Some initial results along this direction have recently been reported
by the author and his coworkers [59, 60] by resorting to empirical Weibull distri-
bution functions, as also reviewed in [1]. This approach can be adopted to describe
existing experimental data on stress drops/strain jumps routinely observed inmicro
tension/compression and nanoindentation laboratory tests. An additional issue that
can be explored here is to employ time-dependent probability distributions guided
by our earlier [61, 62] and most recent [63, 64] works based on the formalism of
stochastic differential equations.
A convenient way to consider the competition between deterministic
gradient and random effects is to introduce (in analogy to Wiener processes
in statistical mechanics) an additive stochastic term of the form h(γ )g(x);〈
g(x)g(x ′)

〉 = lcorrδ(x − x ′)—with lcorr denoting a correlation length, and δ being
the usual Dirac delta function—into the gradient expression of the flow stress. This
is not an arbitrary assumption but emerges generically if one aims at a description
above the scale of the discrete substructure which defines the correlation length—
i.e. within a continuummodel. The delta function then simply emerges because the
individual volume elements of the continuum theory are effectively uncorrelated.
The function h (γ ) also covers the limiting case where only the material param-
eters fluctuate while the evolution is deterministic (e.g. in the case of flow stress
fluctuations due to fluctuating grain orientation or in the presence of a chemical
environment).
Standard deterministic ILG models cannot provide any information on measured
statistical aspects of plastic deformation, such as fractal dimensions for defor-
mation patterns; power-law exponents for dislocation avalanches [65, 66]; and
strain bursts recorded during nanoindentation [67] or micro/nanopillar compres-
sion tests [22, 59, 60]. When differential equations cannot be invented to interpret
experimental data and simulations, system characterization is left to statistical
analyses for investigating, among other things, fractality and universal power-
laws. In many cases, however, the usual power-laws based on Boltzmann-Gibbs
statistics exclude the regime of low intensity-high probability events. Tsallis q-
statistics [19–21] based on nonextensive entropy thermodynamics remove this
difficulty and can be employed here to analyze intermittent plasticity and defor-
mation patterned images obtained experimentally. This information can also allow
the construction of appropriate PDFs to be used in the aforementioned com-
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bined gradient-stochastic models. Tsallis nonextensive (non-additive) q-entropy
reads Sq = k

(
1 −∑

i p
q
i

)
/(q − 1) and by letting q → 1 recovers the familiar

Boltzmann-Gibbs extensive entropy. Corresponding q-distribution functions (q-
Gaussian, q-exponential, q-Weibull) can thus be obtained, which for q → 1 reduce
to their standard counterparts.

4 ILG Applications: Mechanics, ChemoMechanics,
and BioChemoMechanics

In this section, we discuss applications of the ILG framework to describe deforma-
tion instabilities and intermittent plasticity phenomena, as well as chemomechanical
instabilities in lithium-ion battery anodes and tumor glioblastomas.

4.1 Mechanical Deformation Instabilities & Intermittent
Plasticity

In this subsection we briefly discuss earlier developed ILG deformation models
that were used to capture two types of propagating and stationary instabilities in
metallic specimens under monotonic or cyclic applied loads. As the specimen size
decreases these instabilities may be suppressed or manifest in a more complex non-
deterministic manner when stochastic effects appear on equal footing with deter-
ministic ones. This is the case for micro/nano pillar deformation where intermittent
plasticity prevails and combined gradient-stochastic models are needed for interpret-
ing size-dependent serrated stress-strain curves.

• Propagating Portevin Le Chatelier Bands/PLC: In order to provide insight on the
applicability of ILG framework to capture propagating plastic deformation bands
routinely observed inAl-Mg alloy specimens under tension, we list below an initial
strain gradient model equation used by the author and coworkers for that purpose.
It reads

σ = hε + f (ε̇) + cε,xx (1)

where σ denotes stress, ε denotes strain, h is a hardening modulus, f (ε̇) is a
non-monotone function with a branch of negative slope modeling strain rate soft-
ening, and the gradient coefficient c (units [m]2×[sec]) is a phenomenological
parameter. For constant stress rate tests (σ = σ̇0 = h ε̇s) and travelling wave solu-
tions ε̇ = z(x − V t)—where x denotes the spatial coordinate, t time, and V the
deformation band propagation velocity—we obtain the following Lienard type
nonlinear equation
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Zηη − μ f ′(Z)Zη + (Z − Zs) = 0 (2)

where η = √
h/c (x − V t) andμ = V/

√
ch. This equation exhibits periodic solu-

tions for propagating strain rate bands traveling through the specimen with con-
stant velocity. It also leads to the staircase stress-strain graphs [3]. This model,
which may be considered as a predecessor of later developed more elaborate PLC
models, can be revisited for a strain-dependent gradient coefficient c to account
for the observed increase of the strain jumps in the course of deformation. In
addition, it can be used for applied constant strain-rate conditions to interpret ser-
rated stress-strain curves exhibiting stress drops (instead of strain jumps). Internal
stress fluctuations can be accounted for by introducing a stochastic term in Eq.
(1) for the constitutive expression of the gradient-dependent stress. The resulting
combined gradient-stochastic model can be evaluated according to themethod dis-
cussed below to interpret non-deterministic serrations and intermittent plasticity
phenomena in micro/nanopillar tests. Statistical characteristics for the serrations
and corresponding PDFs can be obtained through Tsallis nonextensive q-entropy
procedures. Additional typical experimental results for PLC bands and serrations
in NC and UFG polycrystals can be analyzed in a similar way, as in the recent
work of the author and coworkers [68, 69].

• Stationary Persistent Slip Bands/PSBs: Next, we briefly discuss the model equa-
tions describing the periodic ladder structure of stationary PSBs. The initial W-A
model for the densities of immobile (ρi ) and mobile (ρm) dislocations reads

ρ̇i = g(ρi ) + Di∇2
xxρi − h(ρi , ρm) (3a)

ρ̇m = Dm∇2
xxρm + h(ρi , ρm) (3b)

where (Di , Dm) denote transport stress-dependent gradient coefficients for the two
dislocation populations; h(ρi , ρm) is an exchange term modeling dislocation reac-
tions of the form h(ρi , ρm) = βρi − γ ρmρ2

i ; and g(ρi ) is a generation term for
immobile dislocations. The coefficients (β, γ ) depend on stress with β measuring
the rate of production of mobile dislocations at the expense of immobile, and γ

measuring the rate of immobilization of mobile dislocations by immobile dipoles.
Since the stress remains constant during PSB formation, all these model coeffi-
cientsmaybe assumed as constants. Then, linear stability analysis ofEq. (3) around
an equilibrium homogeneous state

(
ρ0
i , ρ

0
m

)
results to a Turing instability for a

critical value of the bifurcation parameter β = βc = [√
α + ρ0

i

√
γ (Di/Dm )

]2
,

where α = −g′(ρ0
i ). The critical wave number qc is given by the expression

qc = [
αγρ2

i /Di Dm
]1/4

and the corresponding critical wavelength λc = 2π/qc
turns out to be of the same order of magnitude as in the experiments (see, for
example, [3] and references quoted therein).
The above linear stability results were obtained for infinite domains, i.e. for spec-
imen sizes much larger than the internal length. For finite size specimens, corre-
sponding linear and nonlinear stability results were obtained recently by the author
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and coworkers [29]. The periodic ladder structure of PSBs is revealed again but it
now turns out that below a critical specimen size comparable to the internal length,
the PSB instability is suppressed. This size-dependence is consistent with recently
obtained experimental results [70, 71]. Stochasticity can also be introduced in Eq.
(3) and the implication of a corresponding gradient-stochastic W-A model can
readily be investigated.
An additional issue that can be considered is the coupling of the W-A model with
an equation for the local stress τ related to the macroscopic stress σ through the
gradient expression

τ − l2τ ∇2τ = σ (4)

where now the model parameters in Eq. (3) depend on τ rather than σ . This could
offer an alternative simpler way to arrive at the result of the plateau stress during
PSB formation than the method followed earlier by the author and coworkers
[61, 62].

• Intermittent Plasticity: We conclude this section with some preliminary results
on intermittent plastic instabilities by elaborating on a one dimensional combined
gradient-stochastic model and Tsallis q-statistics, as an illustrative example. The
combined gradient-stochastic expression for the flow stress σ reads

σ = σ ys + hε − �2p
(
∂2ε/∂x2

)
(5)

where the yield stress σ ys contains both an average and a fluctuating part given
by σ ys = (1 + δ) σ̄ ys– where σ̄ ys denotes mean value and δ follows a Weibull
distribution fitted to experimental data. The rest of the quantities have their usual
meanings; ε is the strain; h is a linear hardening modulus, and �p is a deterministic
internal length.
When this model is incorporated into a cellular automaton (CA) grid, it results to
serrated stress-strain curves and power-law interpretations of the corresponding
statistical events. Appropriate expressions for the stochastic component of the flow
stress can be more fundamentally deduced by employing the formalism of random
processes and stochastic differential equations [61–64]. Another possibility is to
resort to a class of Tsallis q-distributions that are used in many non-equilibrium
physics problemswhere the usual power-laws based onBoltzmann-Gibbs statistics
fail to predict observed behavior. An expression used for interpreting intermittent
deformation behavior ofMomicropillar compression is Tsallis q-exponential PDF
of the form P (s) = A[1 + (q − 1)Bs]1/(1−q) : (A, B) are constants and the q-
index is a measure of the system fractality, whereas s denotes the burst size. A
power-law relationship between the internal length �p and the entropic index q
seems to hold, but this needs to be examined further (this issue is also reviewed in
[1]).
Further elaboration along the above lines on combined gradient-stochastic models
for the interpretation of size dependent serrated stress-strain graphs by employ-
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ing Tsallis q-statistics and the relationship of these findings to corresponding
image observations on deformation patterns, is a challenging task that needs to
be addressed in the future. In this connection, it is pointed out that the needed
experimental information on appropriate PDF forms for the stochastic component
of the flow stress can be deduced frommultiple nanoindentation/NI tests and asso-
ciated measurements of strain burst events. The PDF of the strain bursts would
be related to a corresponding PDF for the flow stress on the assumption that a
strain burst of a certain magnitude is the outcome of a number of material points
yielding simultaneously. NI measurements at different locations and penetration
depths can be conducted to deduce the statistical properties (mean, variance) for
the local hardness which, in turn, can be used to extract information on the form of
the stochastic component of the flow stress. From these multiple NI measurements
one can extract direct information for both the deterministic ILs and the form of
the stochastic contribution to the gradient-dependent flow stress.

4.2 Chemomechanical Instabilities in LiB Anodes

In this subsection, we provide elements of the ILG formulation that can be used
to address chemomechanical instabilities in LiB anodes. In particular, we briefly
present the basics of the stress-assisted diffusion and coupled ILG chemoelasticity
theory that can be employed to consider local volume expansion in lithiated anodes
and propagation of lithiation fronts.

• Size Dependent Stress-Assisted Diffusion: The standard equations that are usually
employed to model coupled elasto-diffusion processes are of the form

σi j = λεmmδi j + 2Gμεi j − αρδi j (6a)

j = −D∇ρ + Mρ∇σi i (6b)

for the chemostress σi j and the diffusive flux jwhere the coefficients (α, M) denote
chemomechanical coupling constants and D is the diffusivity. The fields (ρ, εi j )
denote concentration of the diffusing chemical agent and mechanical strain, while
(λ,G) are the Lamé constants. Since these constitutive equations do not contain
higher-order ILs, related chemomechanical size effects may not be captured.
Within our Laplacian-based ILG formulation, it turns out that the above consti-
tutive equations are generalized by replacing σi j with σi j − �2σ∇2σi j ; εi j with
εi j − �2ε∇2εi j ; and ρ with ρ − �2ρ∇2ρ, with (�σ , �ε, �ρ) denoting stress, strain
and diffusional ILs. Under suitable assumptions, it is possible to uncouple the
deformation and chemical fields by first computing a “ground” hydrostatic stress
component σ 0

h = σ 0
i i

(
or σ 0

i i/3
)
from a conventional or gradient elasticity theory,

and then derive the concentration ρ from a stress-assisted diffusion equation of
the form
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∂ρ/∂t = (
D + Nσ 0

h

)∇2
[
ρ − �2ρ∇2ρ

]− M∇σ 0
h · ∇ [ρ − �2ρ∇2ρ

]
(7)

where N is a new phenomenological constant accounting for the effect of hydro-
static stress on diffusivity. This model with �ρ = 0 has been used extensively to
model hydrogen embrittlement and stress corrosion cracking in metals [72]. It can
be adapted here, to consider chemomechanical damage and failure in LiB anodes.

• Size-Dependent Lithiation Fronts: To consider the propagation of lithiation fronts
one may start with an expression for the free energy density ψ of the form

ψ (ε,∇e, ρ,∇ρ) = f (ρ) + 1

2
κ ∇ρ · ∇ρ + 1

2
ε · Cε + 1

2
c∇e · ∇e (8)

where (κ, c) are respectively chemical and mechanical gradient coefficients, C
denotes elasticity tensor, ε is the strain tensor and e its hydrostatic part, while
ρ denotes concentration as before. In this case, both chemical ILs (through κ)
and mechanical ILs (through c) enter into the formulation. Minimization of a
corresponding energy functional yields field equations (and associated boundary
conditions) for the local stress/strain and concentration of Li species, including
the synergistic effect or interplay between higher-order mechanical and chemical
ILs. The resulting governing coupled chemoelasticity equations for the stress and
chemical potential read

σ = 2Gε + λ(tr ε)1 − �2ε∇2[2Gε + λ(tr ε)1] − (2G + 3λ)Mρ 1 (9)

μ = μ0 + RT

[

ln

(
ρ

1 − ρ

)

+ α(1 − 2ρ)

]

− κ∇2ρ − �Liσh (10)

where R is the universal gas constant, T is the absolute temperature,μ0 a reference
value of the chemical potential, σh = trσ/3 the hydrostatic stress, and �Li =
3M/ρmax is the partial molar volume of the diffusing species. [It should be noted
that the coefficients (α, M) in Eq. (6) have different meaning than those in Eqs.
(9) and (10).]

4.3 Glioblastoma Instabilities in Brain

In this final subsection, we present some details on the GoG model, along with its
mathematical similarities to the W-A model, and outline the potential new results
to be expected from this comparison. Recent evidence in glioblastoma shows that
one-size-fits-all vaso-modulatory interventions usually fail because control of glioma
invasion characteristics, such as tumor front speed and infiltration width, vary widely
and may require more personalized therapeutic interventions, in contrast to existing
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GoG models, which assume that all glioma cells have an identical GoG mechanism.
In reality, each cell may have an idiosyncratic migration and proliferation regulation
due to internal stress dependence and associated intrinsic heterogeneity. The rele-
vant question is “how can we model and analyze the impact of such internal stress
dependence and intrinsic heterogeneity of a tumor cell population, where migration
and proliferation are regulated by the GoG mechanism”.

This question can be addressed by incorporating internal stress effects in the D
terms of the GoGmodel in analogy to theW-Amodel discussed earlier for structural
defects. The GoG model as formulated by Hatzikirou and coworkers [30, 31] reads

∂ρm/∂t = Dm�ρm + E(ρm, ρi ) (11a)

∂ρi/∂t = Di�ρi − E(ρm, ρi ) + g(ρi ) (11b)

where (ρm, ρi ) denote respectively the motile and immotile glioma cell densities,
with (Dm, Di ) being the corresponding diffusion coefficients. The term E(ρm, ρi )

signifies the switching between the two different phenotypes. Finally, the function
g(ρi ) denotes the cell proliferation of the immotile population. The phenomenolog-
ical resemblance of the GoG model for motile-immotile cells to the W-A model for
mobile-immobile dislocations is striking. The results obtained from the earlier study
of the W-A model to consider heterogeneity, stochasticity and local stress depen-
dence can be used to improve predictions of the GoGmodel. It is expected that these
predictive results can enable to understand the impact of intratumoral heterogeneity
in glioma progression: in particular, the persistence and size dependence of the Allee
effect under different heterogeneity and internal stress distributions, as well as the
role of the pertinent spatio-temporal instabilities on potential therapeutic failures.

5 ILG and Rheology: Newtonian and Complex Fluids

In this section, we suggest possibilities for a gradient enhancement of constitutive
equations used in fluid mechanics and rheology. In this connection, it is pointed out
that following the author’s work on gradient theory, a number of such generalizations
have been proposed in these communities. ForNewtonian fluids, such generalizations
have been proposed by Silber and coworkers [73], as well as in more rigor and detail
by Fried and Gurtin [74]. For complex fluids, such generalizations can be found in
the pioneering articles by Olmsted and coworkers (e.g. [75] and references quoted
therein), as well as in the enlightening review by Cates and Fielding [76]; see also
an earlier one by Dhont and Briels [77].

In the spirit of the ILG formulation such type of generalizations can be readily
deduced by replacing the local fields for the fluid density ρ, stretching tensor D =
1/2 [grad v + (grad v)T ], and vorticity tensor W = 1/2 [grad v − (grad v)T ] with
their gradient-dependent counterparts ρ − �2ρ∇2ρ, D − �2D∇2D,W − �2W∇2W.
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Another possibility is to include the Laplacian of the viscoelastic stress � as
proposed in the diffusive Johnson-Segalman (DJS) model employed to study shear
banding flows of wormlike micelles or polymer solutions. In such wormlike micellar
systems, it is assumed [75] that the total stress T is separated into contributions
from the Newtonian solvent and a viscoelastic stress � from the micelles, so that for
creeping flow we have

T = −p1 + 2μD + � (12a)

divT = 0 (12b)

with p denoting the pressure, μ being the solvent’s shear viscosity, and the sec-
ond equation standing for quasi-static equilibrium. It is further assumed that the
viscoelastic stress � obeys the following evolution equation

o
� + 1

τ
� = 2μ∗

τ
D + D∇2� (13)

where τ denotes relaxation time, μ∗ is the micelle polymer-like viscosity and D

is a diffusion-like coefficient. The corotational time derivative
o
� may assumed to

take various forms depending on the local micelle microstructural configuration.
The above model and variants of it have been used extensively to address shear
banding in complex fluids. The introduction of the Laplacian is needed to deal with
ill- posedness in the negative slope regime of the shear stress—shear strain rate
graph, i.e. the nonmonotonicity of the flow curve that also requires the introduction
of Laplacians in the author’s gradient plasticity theory used to address shear banding
in the deformation softening regime [3].

On returning to the topic of an appropriate generalization of the Navier-Stokes
(N-S) equations for incompressible fluids, i.e. of the constitutive equation T =
−p1 + 2μD, we can propose, in analogy to the author’s gradient elasticity theory
[7], the following gradient model

T − �2T∇2T = −p1 + 2μ(D − �2D∇2D) (14)

where �T and �D denote internal lengths associated with stress and strain rate inho-
mogeneities. On assuming that �T can be neglected and introducing Eq. (14) in the
equation of momentum balance ρv̇ = divT (ρ is now the constant fluid density
and v̇ its acceleration), we obtain the following gradient generalization of the N-S
equations

ρv̇ = −∇ p + μ(�v − �2D�2v) (15)

where � = ∇2 and �2 = ∇4 denote the Laplacian and biharmonic or bi-Laplacian
operators respectively. It is noted that Eq. (15) is identical to the equation used by
Fried and Gurtin [74] to discuss plane Poiseuille liquid flow at small-length scales. A
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slightly generalized model was also used by the same authors to consider turbulence.
The governing differential equations for this model read (in their notation)

ρv̇ = −∇ p + μ(1 − α2�)�v + 2ρα2div
∇
D (16)

where the parameter α denotes a statistical correlation length and
∇
D = •

D + DW −
WD denotes the usual corotational Jaumann rate.

Steady-state solutions of Eq. (16) with α = 0, may be determined by employing
the operator splitmethod (or the use ofRu-Aifantis theorem [78]) utilized to eliminate
singularities from dislocation lines and crack tips in the theory of gradient elasticity
(see also [1]). This same procedure leads to the cancelation of singularities in typical
fluid flow calculations involving immersed objects. It turns out, for example, that the
resulting gradient Oseen tensor OG

i j , which generalizes its classical counterpart Oi j

Oi j = 1

8πμ r

(
δi j + rir j

r2

)
(17)

where ri denotes the position vector and r its magnitude, reads

OG
i j = 1

8πμ r

[

1 − 2e−r/� − 2�

r
e−r/� + 2�2

r2
(1 − e−r/�)

]

δi j

+ 1

8πμ r

[

1 + 2e−r/� + 6�

r
e−r/� − 6�2

r2
(1 − e−r/�)

]
rir j
r2

(18)

which resembles the exponential regularization of Green’s tensor in gradient elas-
ticity, resulting to nonsingular gradient expressions for the stresses and strains in
dislocation lines and crack tips. More details can be found in [79] where the authors
seemed to be unaware of analogous developments in gradient elasticity.

6 ILG in Other Disciplines & Scales

In this section we summarize the applicability of the ILG framework to other disci-
plines and scales ranging from earth scales to quantum scales.

• ILG in Geology: Some initial work on introducing internal lengths and Laplacians
of strain has been published by the author and coworkers to model shear banding
and related instability phenomena in geomaterials including granular materials,
soils, rocks and snow/ice (see, for example, [80–91]). Various types of gradient-
dependent constitutive equations for such classes of geomaterials have also been
proposed and elaborated upon in detail by many other authors. This was mainly
due to the fact that the Laplacian was regularizing unstable behavior in the geoma-
terial’s softening regime and allowed for the determination of shear band thickness
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and convergence of corresponding finite element calculations. The popularization
of the approach in the geomechanics community is mainly due to the follow-up
works by Vardoulakis and collaborators for soils, as well as de Borst and col-
laborators for concrete. These are too many to mention and can be found in the
web.
In connection with the above, it is worth noting that theW-Amodel for dislocation
patterning has recently been used by Ord and Hobbs [92] to interpret fracture pat-
terns in frictional, cohesive, granular materials. Their article was one contribution
of seventeen to a Theme Issue “Patterns in our planet: applications of multi-scale
non-equilibrium thermodynamics to Earth-system science”.

• ILG in Electrodynamics: The inclusion of higher-order gradients in deforming
materials under the action of electromagnetic fields has also become very popular
in recent years due to emerging applications and design of piezoelectric (induction
of electricity due to applied stress) and flexoelectric (induction of electricity due
to strain gradients) components. The large number of published articles on these
topics makes it prohibitive to mention them here and we only refer to few recent
ones by the author and coworkers [93–95], as well as the bibliography listed there
for related literature on size effects in electromechanical components.
In relation to the issue of eliminating singularities and introducing screening effects
(e.g. Debye screening) in the electric and magnetic fields, the following gradi-
ent modification of Coulomb’s law of electrostatics has been proposed (see, for
example, [96] where a fractional generalization of Debye screening is also dis-
cussed)

��(r) − 1

r2D
�(r) = − 1

ε0
ρ(r) (19)

where� is the electrostatic potential [E(r) = −∇�(r) ; E(r) is the electric field],
ρ(r) denotes now the charge density, ε0 is the vacuum permittivity, rD is the
Debye screening distance, and r denotes as usual the position vector. The classical
Coulomb’s potential for spherical symmetry at a point charge of strength Q has
the form �(r) = Q/4πε0r , while its Debye screened counterpart obtained from
Eq. (19) (which is identical in form to the reducedRu-Aifantis equation for gradient
elasticity [78]) reads

�(r) = 1

4πε0

Q

r
e−r/rD (20)

In concluding this discussion on gradient electrodynamics, reference is made to
an author’s unpublished work where MacCullagh’s 1850 proposal for an inter-
esting formal analogy between elasticity and electromagnetism [97] is extended
to include rotational gradients of the elastic aether. On assuming that the aether
behaves as an elastic medium with its stress T depending linearly on rotations
(instead of strains), we have
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T = 2kω , ω = 1/2 [ ∇u − (∇u)T ], divT = ρü (21)

where u denotes displacement, ρ is density and k is an elastic constant. These lead
to the equation k curl curl u + ρü = 0 and by setting the terms k curl u and ρu̇
to be proportional to the electric (E) andmagnetic (B) fields respectively, we arrive
at Maxwell’s equations

∂B
∂t

+ curl E = 0, divB = 0,
∂E
∂t

− 1

μ0ε0
curl B = 0, divE = 0 (22)

where the identities div curl u = 0 and curl (∂u/∂t) − ∂(curl u)/∂t = 0, along
with the following identification of the various coefficients (β = kε0, μ0= ρ/β ;
with β being an arbitrary constant), were used. By adopting the above procedure,
but replacing Eq. (21) for aether’s elastic stress with its gradient counterpart

T = 2k(ω − �2∇2ω) (23)

we arrive at the following generalization of Maxwell’s equations

∂B
∂t

+ curl
[
(1 − �2∇2)E

] = 0, divB = 0

∂E
∂t

− 1

μ0ε0
curl B = 0, divE = 0 (24)

It is noted that for electrostatics under the assumption that the electric fieldE is pro-
portional to a potential gradient ∇�, Podolsky’s non-quantum electromagnetics
equation �

[
(1 − �2�)

]
� = 0 is obtained.2

• ILG in Atomistics and Quantum Mechanics: We conclude this section on applica-
bility of the ILG framework to various disciplines and scales by focusing on two
specific topics: A possible gradient generalization of the microscopic or molecular
dynamics (MD) stress, and an analogous generalization of the quantum mechani-
cal (QM) stress. In this connection, it is noted that the following expressions were
proposed for these stresses [98, 99]:

〈σ 〉 = 1

V

[〈
1

2

∑

i

fi j ⊗ (
ri − r j

)
〉

−
〈
∑

i

miυ i ⊗ υ i

〉]

(25)

and

2Podolsky [B. Podolsky, A generalized electrodynamics Part I” Non-quantum. Phys. Rev. 62, 68–
71 (1942); B. Podolsky, P. Schwed, Review of a generalized electrodynamics. Rev. Mod. Phys.
20, 40–50(1948)] has derived a generalization of Maxwell’s equations through a variational prin-
ciple, leading to the appearance of ∇2B in addition to ∇2E. This is also possible through the
aforementioned analogy by replacing u with u − �2∇2u.
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σαβ = − 1

V

∑

i

〈
piα piβ
mi

〉

− 1

2V

∑

i, j
( j 
=i)

〈(
ri − r j

)
α

(
ri − r j

)
β∣

∣ri − r j
∣
∣ U

′
i j

(∣∣ri − r j
∣
∣)
〉

(26)

where the various symbols have their usual meaning [98, 99]. The striking formal
similarity between these two expressions and their resemblance with the virial stress
and other statistical stress measures is noted. However, the problem to connect such
discrete “microscopic” stress measures with the continuum “macroscopic” measure
of Cauchy stress in a “seamless”way is a challenging issue. A gradient generalization
of the force fields fi j in Eq. (25) and the interaction potential U

′
i j in Eq. (26) may be

appropriate which, among other things, could naturally introduce screening distances
and eliminate associated singularities.

The effect of strain ε on the electronic structure has been described [100] through
the equations

(Ec − �
2

2m∗ ∇2) ψ(r) + actr(ε) ψ(r) = Eψ(r)

ε = ε0; σ = [C] ε ; div σ = 0 (27)

where ψ(r) denotes the wavefunction, C is the Hookean elasticity matrix, ac the
so-called deformation potential constant, and the rest of the symbols have their usual
quantum mechanical meaning [100]. This is an uncoupled framework where strain
can affect the electronic state but not vice-versa. A generalization to also account
for the inverse effect on strain due to changes in the quantum field through the
wavefunction ψ(r), has already proposed as follows [101]:

(Ec − �
2

2m∗ ∇2) ψ(r) + actr(ε) ψ(r) = Eψ(r)

ε = ε0 − ac
3K

|ψ(r)|21; σ = [C] ε ; div σ = 0 (28)

where K is the isotropic bulk elasticmodulus.Apossible gradientmodification is then
to replace ε with its gradient counterpart ε − �2ε∇2ε, and this formal generalization
may be of interest to further explore.

7 ILG Modification of Newton’s Gravitational Law

In this section, we venture a gradient generalization of Newton’s Law which allows
for the corresponding gravitational force to attain values larger than the electromag-
netic force and even reach the levels of the nuclear and strong force which keeps
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matter together. The proposed modification is analogous to that earlier adopted by
the author for gradient elasticity through the introduction of a Laplacian and a cor-
responding internal length.3

We begin with the following integral generalization of the gravitational force f in
its component form ( fi ):

fi (r) =
∫

Gi j (r − r′) Fj (r′) d3r′ (29)

where Gi j (r − r′) is a nonlocal interaction kernel and Fj is the classical Newton’s
force. By assuming spherical symmetry/isotropy, Fourier transforming Eq. (29),
Taylor series expanding up to the second order term, and inverting, we arrive at
the following differential equation

(
1 − �2∇2

)
f = F (30a)

�2δi j = 1

2

∣
∣
∣
∣
∣
d2G̃i j (0)

dk2

∣
∣
∣
∣
∣

(30b)

where k = |k| denotes wave vector, G̃i j is the Fourier transform of Gi j and � is
an internal length, with δi j appearing due to the assumed isotropy/spherical sym-
metry. In general, the sign in front of the Laplacian term of Eq. (30a) may be
positive or negative depending on the sign of d2G̃i j (0)/dk2 of the second order
term in the Taylor expansion. In other words, for Gi j (0) = δi jG(0) and �2 = | l | =∣
∣
∣d2G̃ (k) /dk2

∣
∣
∣
k=0

, the term in the parenthesis of Eq. (30a) becomes
(
1 − �2∇2

)

for l > 0 and
(
1 − sgn[l] �2∇2

)
for l < 0. Stability and related arguments may be

employed to decide on the sign of l in a particular application.
Such a formal derivation can also be established by considering the two point

masses M0 and M in the classical Newton’s Law, as being distributed and bounded
by spheres of finite radii. By considering, for example, the mass M0 (M0 = ∑

i mi )
being distributed within a sphere of radius R0, summing up the interactions of each
point massmi (located at distance ri from the center of the sphere where ri = 0) with
the point massM , and expanding in Taylor series the density ρ(ri ) around ρ0 = ρ(0)
keeping terms up to the second order we obtain the following relationship

f = −GMV

R2
(ρ0 + �2∇2ρ0)eR with �2 = R2

0

10
(31)

3In fact, the question of exploring the consequences of such generalization to gravitation emerged
during initial discussions with my daughter K.E. Aifantis during my visit in February 2019 to
the University of to Florida at Gainesville and follow-up discussions with my former classmate
C. Vayenas of the Academy of Athens during his visit in June 2019 to Thessaloniki. The initial
numerical calculations reported herein started with the help of KEA’s students in Gainesville and
completed with the assistance of my Ph.D. student K. Parisis in Thessaloniki. The same holds for
the results on gradient interatomic potentials listed in Sect. 8.
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where eR = R/R denotes the unit vector along the line connecting the center of M0

with the point mass M . On setting
∫
V ρ0dV = M0, we then have f = (1 + �2∇2)F

which by inversion leads to (1 − �2∇2)f = F. This simplified and rather intuitive
calculation is similar to that earlier adopted by the author and coworkers (e.g. [10,
82]) to produce a corresponding gradient-dependent plastic strain.

Onassuming a radial dependenceof f andF {f = − f (r)er ,F = −Fer , F = A/r2

with A(= GMM0) and G denoting now Newton’s classical gravitational constant,
where we have also adopted the notation eR ≡ er}, we can readily solve the radial
scalar counterpart of (1 − �2∇2)f = F, i.e.

f − �2(
∂2 f

∂r2
+ 2

r

∂ f

∂r
− 2 f

r2
) = A

r2
(32)

by also requiring that f → 0 as r → ∞. The result is

f = A

r2
[1 + Be−r/�(1 + r

�
)] (33)

where B is a new parameter to evaluate in connection with experiments. It is noted
that the above expression of Eq. (33) reduces to Newton’s classical force FN = A/r2

as r → ∞ and to the expression FSF = AB/r2 as r → 0. By adjusting the value of
the new parameter B (B >> 1) we can attain values of the nuclear and strong force.

The internal length parameter can be identified with the de Broglie relativis-
tic length, the Compton length, the Planck length or the Schwarzschild distance,
according to the configuration at hand, i.e.

– De Broglie: � = �/γm0c ................ 6.309 × 10−16 m
– Compton: � = �/mpc .................... 2.10 × 10−16 m
– Planck: � = √

�G/c3 ..................... 1.616 × 10−35 m
– Schwarzschild: � = 2GmBH/c2 ...... 1010 − 1013 m

where � denotes the Planck constant, c is the speed of light; and (m0,mp,mBH )

denote rest masses for neutrino, proton, and black hole, respectively; whereas G in
the above, as in Eq. (31), denotes the classical Newton’s gravitational constant (not
to be confused with the same symbol earlier used for the shear modulus), and γ is
the Lorentz factor (γ = 1/

√
1 − (v/c)2; with v denoting particle speed), not to be

confused with a similar symbol used in earlier sections for the strain.
On adopting the Vayenas and coworkers Rotating Neutrino model (RNM) for the

nucleus [102, 103] we now utilize the above expression for the gravitational force
given by Eq. (33), in conjunction with the centrifugal force FC = γm0c2/r , where
r denotes the radius of the nucleus modeled by the three rotating neutrinos whose
total relativistic mass is mN = 3γm0. An estimate of γ can be obtained by equating
the proton energy mpc2 with the relativistic neutrino mass. This gives the value of
γ = mp/mN which, according to experimental measurements for mp and m0 turns
out to be equal to 7.818 × 109.
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Having such a value of γ available, we can make effective use of the aforemen-
tioned equality between gravitational and centrifugal forces in Vayenas’ RNM to
deduce the relationship

FR = A√
3r2

[1 + Be−√
3r/�(1 +

√
3r

�
)] = FC = γm0c2

r
(34)

where the factor
√
3 rises by considering the resultant gravitational force FR = f/

√
3

due to the interaction of the 3 symmetrically placed (at angles 120◦) rotated neutri-
nos. One possibility for the constant A is to set it equal to A = Gm2

0γ
2, to account

for relativistic effects during the interaction of each pair of neutrinos in the assumed
RNM configuration. The above relationship (for � identified with de Broglie’s rel-
ativistic length � = �/γm0c = 6.31 × 10−16 m) gives the following value for the
coefficient B

B =
√
3e

√
3
�c

(
1 + √

3
)
Gm2

0γ
2

= 5.47 × 1039 (35)

and a corresponding value of FR

FR = 7.92 × 104 N (36)

i.e. the value of the strong force obtained for the RNM configuration [102, 103]
by using an entirely different approach. In that approach Eq. (34) with B = 0 was
usedwith A = Gm2

0γ
6 giving avalue forγ = 31/12m1/3

pl m
−1/3
0 = 7.167 × 109,where

mpl is the Planck mass (mpl = √
�c/G), and the value of m0 was taken as m0 =

0.0436 eV/c2. And since γ = mp/3m0, this gives mp = 9.38 × 108 eV/c2, i.e. the
same value as the one used in the previous paragraph by properly adjusting the
parameters (A, B), as well as by identifying the internal length parameter � with
de Broglie relativistic length. Other choices of (A, B, � ) are possible not only for
the RNM configuration at hand, but also other more complex geometric models
for elementary particles represented by several neutrinos where the aforementioned
gradient enhanced gravitational potential can be used.

8 Gradient Interatomic Potentials

Motivated by the above extension of Newton’s gravitational potential, we consider
in this section a similar gradient generalization of London’s quantum mechanical
potential. Based on exact quantum mechanical calculations London [104, 105] has
arrived at the following forms of the interatomic force F (= −dw/dr) and inter-
atomic potential w
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w = w(r) =
{

− 3α2
0hv

4(4πε0)
2
1
r6 = − C

r6 ; r ≥ σ

∞; r < σ
(37)

where C = 3α2
0hv/4(4πε0)

2, α0 is the atomic polarizability and ε0 the vacuum
dielectric permittivity. The quantities (h, v) denote respectively the Planck constant
(h = 2π�) and the electron orbital frequency. It is noted that the above form provides
an explicit expression for the attractive interaction until a critical distance σ below
which the model breaks down as the interaction becomes repulsive going to infinity
as r → 0. To describe quantitatively “repulsive” interactions for distances r < σ ,
Lennard-Jones [106] suggested the following modification of London’s potential

wL−J (r) = − A

r6
+ B

r12
(38)

where A and B are determined by fitting them to obtain through atomistic simu-
lations the measured experimental values of macroscopic properties. Other type of
interaction potentials can be found in [107].

The gradient modification of London’s quantummechanical potential, denoted as
wG

L , is obtained in terms of its classical counterpart w through the inhomogeneous
Helmholtz equation

(
1 − �2∇2

)
wG

L = w(r) = −C

r6
(39)

The solution of Eq. (39) for (wG
L → 0, r → ∞) is given by the expression

wG
L (r) = A�

e−r/�

r

+ C

48�6

{
4�4

r4
+ 2�2

r2
+ �

r

[
er/� Ei(−r

�
) − e−r/� Ei(

r

�
)
]}

(40)

where A is a new integration constant, � is an internal length parameter, andEi denotes
the exponential integral Ei(x) = − ∫∞

−x (e−t/t )dt . Near the origin (r → 0), it turns
out that wG

L (r) → (C/12�2r4), while at large distances (r → ∞) it approaches the
classical London’s potential, i.e. wG

L (r) → −(C/r6) for r >> �.
As an example application of the newly derived gradient potential, we consider

the case of Argon (Ar). It has been shown that the Lennard-Jones potential is able
to describe accurately the simulated liquid argon properties in agreement with the
experiment. Numerical/experimental values can be utilized by the data provided in
[108] (see also Table6.1 of [107]). Among these data, of particular interest are the
minimum of the potential function, designated by ε (in units of Joules or eV), as
well as its location rm (in Å). Their estimated values are ε = 1.95 × 10−21 J and
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rm = 0.37 nm respectively. The Lennard-Jones potential can be uniquely deter-
mined from these parameters. For this purpose, Eq. (38) is written in the form
wL−J (r) = ε((rm/r)12 − 2(rm/r)6), where it is evident that the minimum occurs
at rm with wL−J (rm) = −ε and dwL−J (rm)/dr = 0. This point determines the tran-
sition from “attractive” to “repulsive” branch for distances r < rm . Additionally,
the Lennard-Jones potential is zero at r = σ = 2−1/6rm = 0.89 rm = 0.32 nm. The
parameters (ε, rm) are related with (A, B) of Eq. (38) through the relationships
A = εr12m = 4εσ 12 and B = 2εr6m = 4εσ 6. The fitted London’s constant is C =
50 × 10−79 J· m6, which was determined such as the classical London’s potential
passes through the experimentally determined potential minimum exactly at rm .

Next, and in order to demonstrate the ability of the gradient modification of Lon-
don’s potential to recover the behavior of the Lennard-Jones potential for the Ar-Ar
interaction case, we adjust the gradient parameters (A, �,C), such as the position of
the minimum of the potential occurs at rm , i.e. wG

L (rm) = −ε, and the corresponding
potential curves are as close as possible by minimizing their mean square error. The
obtained parameter values are A = 1.392 × 10−17 J, � = 0.57Å, andC= 90 × 10−79

J·m6, with the estimated value for the internal length being consistent with the atom-
istic simulations.As shown in Fig. 1a, the gradientmodification of London’s potential
curve fits nicely the Lennard-Jones curve, with both having their minima at distance
rm . It is noted that the gradient potential has the same asymptotic behavior O

(
r−6
)

at distances r > rm , in agreement with both Lennard-Jones and London’s potential.
Finally, as expected, the gradient modified London’s potential becomes “repulsive”
for r < rm , where the change of slope occurs, in contrast to London’s original 1/r6

monotonic potential.
Another indicative example of the applicability of the newly derived gradient

potential is the Stillinger-Weber potential, which is broadly used to model the inter-
atomic interactions of materials with diamond structure, such as crystalline semi-
conductors (Si, Ge). The analytical expression of the two-body Stillinger-Weber
potential reads [109]

wS−W (r) =
{

εA
[
B σ 4

r4 − 1
]
exp

(
1

r/σ−a

)
; r < a σ

0; r ≥ a σ
(41)

in a most simplified form, excluding anisotropy effects.
The appropriate fitted values for the Stillinger-Weber potential when applied to

Si semiconductor read A = 7.04955627, B = 0.602224558, ε = 50kcal×mol−1 =
3.4723 × 10−19J, σ = 2.0951 Å, and a = 1.8 [109]. The Stillinger-Weber potential
has a cutoff at distance r = aσ , confining the interatomic interaction within that
range, while for short distances it has a “repulsive” branch with asymptotic behavior
wS−W (r) → εe−1/a ABσ 4/r4.

The estimated values for the gradient potential are A = 5.702 × 10−17 J, � =
0.974 Å, and C= 1.333 × 10−78J · m6 respectively. They are adjusted such as the
fitted minimum of wG

L coincides with the corresponding one of the Stillinger-Weber
potential, which satisfies wS−W (rm) = −ε at rm = 1.118σ = 2.34 Å. In Fig. 1b, it
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Fig. 1 Quantitative plots of the gradient London potential fitting to a Lennard-Jones (Ar-Ar) and
b Stillinger-Weber (Si) potential

is illustrated how a suitable choice of the parameters (A, �,C) can describe with
desired accuracy the behavior of wS−W for small distances. This is due to the fact
that wG

L (r) → (C/12�2r4 ) as r → 0, which is in agreement with the asymptotic
behavior of wS−W at the origin.

Another possible generalization of the gradient approach for constructing new
interatomic potentials is through the introduction of an additional bi-Laplacian term
in London’s potential. Motivated by the 4th order GradEla extension used earlier by
the author and co-workers [110–112], we can further generalize Eq. (39) to read

(
1 − �̃21∇2 + �̃42∇4

)
wG

L = wL (r) (42)

where
(
�̃1, �̃2

)
now denote two internal lengths. In passing, it is noted that such a

fourth-order equation for the elastic fields, derived within a second strain gradient
elasticity/GradEla theory [46, 110–112], leads to the elimination of singularities of
the dislocation density tensor, which remains singular in first strain GradEla. [The
signs in front of the higher order terms in Eq. (42) may alter according to dynamic
stability and related requirements–a subject partially addressed in [110] and further
to be discussed elsewhere.]

Equation (42) can be factored as the product of two Helmholtz operators as(
1 − �21∇2

) (
1 − �22∇2

)
wG

L = wL (r) where the internal lengths
(
�1, �2

)
are given

by the expression �21,2 = (�̃21/2)(1 ±
√
1 − 4(�̃42/�̃

4
1)). The solution of Eq. (42) is

obtained by applying the operator split approach of Ru-Aifantis theorem, arriving at
the equation

(
1 − �22∇2

)
wG

L = wG,1
L

(
r; �1

)
where wG,1

L

(
r; �1

)
is the gradient Lon-

don’s potential of Eq. (40) with internal length �1. It is given by the expression
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wG
L (r) = B �32

�22 − �21

e−r/�2

r
+ A �31

�21 − �22

e−r/�1

r

− C

48�31�
3
2

�32(
�21 − �22

)
r

[

er/�1 Ei(− r

�1
) − e−r/�1 Ei(

r

�1
)

]

− C

48�31�
3
2

[
2�31�2(

�21 − �22
)
r2

+ 2�32�1(
�22 − �21

)
r2

]

− C

48�31�
3
2

�31(
�22 − �21

)
r

[

er/�2 Ei(− r

�2
) − e−r/�2 Ei(

r

�2
)

]

(43)

where B is a new integration constant and (�1, �2) have been defined above, while C
is London’s constant and A the integration constant of Eq. (40). It is noted that the
first two exponential terms in Eq. (43), which are related to the homogeneous part of
the corresponding Helmholtz equation, are formally similar to expressions derived
earlier for nuclear potentials in quantum electrodynamics based on an extension of
Yukawa-type interactions. A quantitative elaboration for specific material types will
be a subject of a future study.4

9 Fractional Considerations

In this final section, an extension of the ILG framework to incorporate fractional
derivatives is presented. A fractional generalization of GradEla can be established
by replacing the standard (integer) Laplacian � ≡ ∇2 with a fractional one of
the Riesz form (−�)α/2 (or the Caputo form C�α

W ) in the constitutive expression
σi j = λεkkδi j + 2Gεi j − �2∇2[ λεkkδi j + 2Gεi j ]. An example of such a fractional
generalization reads [113–117]

σi j = (λεkkδi j + 2Gεi j ) + �α(−�)α/2[λεkkδi j + 2Gεi j ] (44)

where (−�)α/2 is the fractional generalization of the Laplacian in the Riesz form,
defined in terms of the Fourier transform F by

(
(−�)α/2εi j

)
(r) = F−1

( |k|αε̃i j (k)
)
(r) (45)

wherek denotes thewave vector, and ε̃i j (k) = F (εi j (r)
)
(k) is the Fourier transform

of εi j (r). On introducing the fractionalGradEla constitutive relation given byEq. (44)
into the equilibrium relation divσ = 0, we obtain

4For completeness, however, wemay refer to the paper byReid (R.V. Reid, Local phenomenological
nucleon–nucleon potentials, Annal. Phys. 50, 411–448 (1968)), where the following expression,
among others, is proposed VC = h

[
e−x/3 − 13.8 e−3x + 138 e−6x

]
/x , with h = 10.463 MeV and

x = μr, μ = mc/� ≈ 0.7 fm−1.
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(1 + �α(−�)α/2)(λ∇tr ε + 2G div ε) = 0 (46)

where, as in Eq.(44), the notation �α is adopted for the corresponding fractional
internal length. Noting the fact that the spatial operators commute and that the second
bracket in Eq. (46) is also zero by replacing ε with ε0, where ε0 denotes the solution
of the corresponding equation for classical elasticity, (i.e.λ∇tr ε0 + 2G div ε0 = 0),
we can easily deduce that a solution of Eq. (46) satisfies the reduced fractional partial
differential equation5

(1 + �α(−�)α/2)ε = ε0 (47)

which for the case α = 2 reduces to the inhomogeneous Helmholtz equation. It is
then useful to derive fundamental solutions for Eq. (47); i.e. for the equation

(1 + �α(−�)α/2)Gα(r) = δ(r) (48)

where Gα(r) denotes the fundamental solution, δ(r) denotes the delta function and
r is the radial coordinate in a 3D space. To obtain the fundamental solution of
Eq. (48) with the natural boundary condition Gα(r) → 0 as r → ∞, we employ
the method of Fourier transforms. Using the properties of the Fourier transform of
the Riesz fractional Laplacian as defined by Eq. (45), along with the well-known
transform of the delta function F{δ(r)} (k) = 1, we obtain the algebraic equation
(1 + �α|k|α)Gα(k) = 1 which gives for the fundamental solution in Fourier space
Gα(k) = (1 + �α|k|α)

−1. Consequently, the fundamental solution of Eq. (48) in the
physical space is obtained through inversion as

Gα(r) = 1

(2π)3

∫
1

1 + �α|k|α e
ik·rd3k (49)

The inversion of Eq. (49) is performed through application of the convolution
property of the Mellin transform, along with a corresponding Mellin-Barnes integral
representation, which yields the following corresponding Fox-H function expression
[115]

Gα(r) = 1

2α π3/2�|r|2 H
2,1
1,3

⎡

⎣ |r|
2�

;
(1 − 1

α
, 1

α
)

(1 − 1
α
, 1

α
) (1, 1

2 ) ( 12 ,
1
2 )

⎤

⎦ (50)

For more details concerning the definition, properties and applications of the
Fox-H function in fractional analysis, the reader can consult [118–120]. A corre-
sponding series expansion of Eq. (50) is also provided in [115]. It is noted that as

5The fact that solutions of Eq. (46) can be obtained in terms of solutions of Eq. (47)was first observed
in [78] for the non-fractional GradEla and was extended later for more general fractional/fractal
elastic materials in [114]
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α → 2, we obtain the Green’s function of the integer order Helmholtz equation, i.e.
Gα(r)|α→2 = (1/4π�2r) e−r/�.

Motivated by the above analysis of the fractional Helmholtz equation, as well as
by noticing that Eq. (49) reduces to a Yukawa-like potential in the classical limit
α → 2, a fractional treatment of Eq. (29), listed below again for convenience,

fi (r) =
∫

Ki j (r − r′) Fj (r′) d3r′ (51)

is undertaken, where now Ki j denotes a fractional interaction kernel, and the forces
fi and Fj have been defined in Sect. 7. Such type of integral expressions have been
previously introduced to model nonlocal constitutive relations in electrodynamics
leading to fractional Debye screening effects [96]. Similar arguments have been
recently applied to model fractional nonlocality in GradEla [116]. Through a Taylor
series expansion (up to second order) of the fractional kernel Ki j in Fourier space
involving non-integer powers of the wave vector |k|α , and subsequent inversion
through Eq. (45), the corresponding fractional counterpart of Eq. (30) is obtained as

(
1 + �α(−�)α/2

)
f = F; �αδi j = 1

� (α + 1)

∣
∣
∣
(
C
0 D

α
k K̃i j

)
(0)
∣
∣
∣ (52)

where C
0 D

α
k K̃i j is the Caputo fractional derivative of order α with respect to k [118–

120]. In the limitα → 2 the solution of Eq. (52) coincides with the one obtained from
Eq. (30), since the fractional Laplacian and corresponding derivatives reduce to their
classical counterparts. The solution of Eq. (52) can be obtained through convolution
of the corresponding Green’s function of Eq. (49) with the classical field F, i.e.
fi = Gα ∗ Fi , resulting to the expression

f = A

r2
[1 + B Kα(r/�)] (53)

where A and B are the constants, defined in Sect. 7, and Kα is the fractional
generalization of the modified (fractional-like) Bessel function Kα (r) ≡ (1/2π2r)∫∞
0 [(k2 cos(k r))/(k2−α (1 + �αkα))] dk. An analogous result can be obtained by
further generalizing Eqs. (30) and (52) to include bi-Laplacian terms of the type
appearing in Eq. (42) for both the integer and non-integer case. This will be a sub-
ject of future publication. However, for the completeness of this review, we list the
corresponding formulas below:

f = A

r2
[1 + B1e

−r/�1(1 + r

�1
) + B2e

−r/�2(1 + r

�2
)]; Integer case (54)

f = A

r2
[1 + B1 Kα(r/�1) + B2 Kα(r/�2)]; Non-integer case (55)
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where B1 and B2 are dimensionless constants,
(
�1, �2

)
are two internal lengths, while

the function Kα (r) has been defined above.

10 Conclusions

A concise review of gradient models (across scales, materials, and processes) was
provided based on the author’s ILG approach. As a result, earlier references on
generalized continuum mechanics and recent contributions on gradient and non-
local theories were not discussed due to space limitation. For solids, one should
single out the contributions of Eringen [121], Fleck and Hutchinson [122, 123]
Gurtin and Anand [124], Gao et al. [125], Nix and Gao [126], de Borst et al. [127,
128], Geers et al. [129], Peerlings et al. [130],Willis [131], Aifantis andWillis [132],
and Polizzotto [133, 134]. Many more are included in a most recent and detailed
article by Voyiadjis and Song [135] focusing on gradient plasticity. Gradients in
fluid and granular flows were considered most recently by Goddard [136, 137]. For
additional recent developments on granular flow, one may also consult references
[138–142], while for internal length interpretations based on kinetic theory, one may
consult [143]. However, the intention of the article was not to elaborate on and review
the various important classical-like gradient models for solids and fluids, as well as
for rheology and electrodynamics. Its main purpose was to explore the applicability
of gradient theory for scales and processes not considered before, and point out its
potential usefulness for atomistic simulations and elementary particles, as well as for
earth and planetary processes. In this connection, it is noted that while completing
this article, it came to the attention of the author that an expression similar to that
derived herein and given by Eq. (33) was also proposed on rather intuitive grounds
by Fischbach et al. [144] in an effort to re-interpret existing measurements on earth’s
gravity (see also [145]). The values of their constants were entirely different than
ours, as they used it for a reanalysis of the Eötvös experiment on Earth’s gravitational
field. There has been a vast literature on this expression, subsequently referred to
as the “fifth force,” which we will discuss in a forthcoming publication, as this is
beyond the scope of the present review. In concluding, the reader is referred to another
review-like article [146] where nonlocal and gradient models with applications to
biophysics are discussed. Forthcoming work on elementary particle physics is in
progress by using the gradient Newton’s gravitational force instead of the classical
one and adjusting the new phenomenological parameter B to describe a variety of
internuclear potentials. The same holds for gradient interatomic potentials by using
both classical and fractional/fractal Laplacians6.

6In fact, two preprints (by C. G. Vayenas, D. Tsousis, D. Grigoriou, K. Parisis and E. C. Aifantis)
on Kaons and Deuteron are available and scheduled for arXiv and journal publication. Two more
articels on gradient London’s potential (byK. Parisis, F. Shuang, B.Wang, P. Hu,A.Glannakoudakis
and A. Konstantinidis: J. Appl. Math. Phys.) and its fractional extension (by K. Parisis and E. C.
Aifantis: TMS Proc. 2021) are forthcoming
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Note added in proof: A few words are due on “why” the dedication under the title
of this chapter. Jim Serrin – formerly a Regents Professor of Mathematics at the
University of Minnesota and member of the US Academy of Sciences – was a strong
advocate of gradient theory andmywork with him on revisiting van derWaals theory
on vapor-liquid transitions and relocating Maxwell’s equal area rule within a purely
mechanical framework without assuming the existence of a free energy function,
was the predecessor of gradient plasticity. Hussein Zbib – my graduate student at
Michigan Tech and later Chair at the Washington State University – was the first,
in his PhD Thesis, to illustrate the need of gradient plasticity theory for deriving
breakthrough results on shear band widths and spacings. The recent work (based
on Newton’s classical gravitational law and Einstein’s special relativity) of Costas
Vayenas – my undergraduate classmate at the National University of Athens, later a
faculty member at MIT and the University of Patras and currently a member of the
Academy of Athens and the US Academy of Engineering – was an additional moti-
vation for extending gradient theory to the field of elementary particles and revisiting
Newton’s gravitational law, thus stimulating a challenging area of research after my
retirement. Finally, my daughter Katerina – born the same year of writing first pub-
lication on gradient theory – was the first to enhance gradient plasticity with surface
effects and guide me through recent advances on intermolecular potentials, lithium-
ion batteries, and biomedical research, thus opening-up new paths for scientific and
personal endeavors for the rest of my life.
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