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Abstract In the current chapter, a finite element theory has been developed based
on the nonlocal integral elasticity using Hamilton’s principle. Formulations have
been derived using Euler-Bernoulli beam theory and classical plate theory in order
to study the bending, buckling and vibration behavior of nanostructures. The cur-
rent method is capable of modelling complex geometries and boundary conditions.
Besides, effects of nonlocal parameter, geometrical parameters, boundary condi-
tions and viscoelastic parameter on the mechanical behavior of nano-scaled beams
and plates have been studied.

1 Introduction

There are several fields, which cannot be examined thoroughly using classical theo-
ries. Solid fracture, stress field on the dislocation core and crack tip, singularities at
points where loads are applied, sharp corners and discontinuities in the body, elastic
short-wavelength behavior prediction, and viscosity increase of fluid flows in micro-
scopic channels are some weaknesses of the classical theories. Besides, polaritons,
gyrotropic effects and superconductivity cannot be investigated using the classical
field theories. Also, classical continuum field theories are unable to predict the cor-
rect behavior of materials in micro and nano-scale. So, for studying the mechanical
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behavior ofmaterials in small-scale and phenomena that inherently happens in small-
scale, atomic or nonlocal theories, which can consider the long-range interatomic
force effects, should be employed. Atomic theories have relatively higher computa-
tional cost than nonlocal theories.

In summary, in nonlocal theories, the behavior of the material at one point is a
function of the state of all points. One of the most popular non-local theories for
studying nano-scale structures is Eringen’s nonlocal theory [1]. In Eringen’s nonlo-
cal theory, stress at a point is a function of strains at all points of the material [1].
Under certain conditions, the nonlocal differential form could be extracted from the
more general nonlocal integral theory. Despite the relative simplicity of nonlocal
differential elasticity theory, it has some restrictions, e.g., some individual kernels
must be considered for nonlocal differential elasticity to be derived, applying the
natural boundary conditions for nano-plates are somehow ambiguous, investigating
the complex geometries are intricate. Therefore, it is more reasonable to use the
nonlocal integral theory for the accuracy of some applications and problems. Some
researchers have conducted some investigations using the nonlocal integral elastic-
ity theory. Finite element nonlocal integral elasticity theory, which first have been
prepared by Polizzotto [2], is one of the best-known methods, that have advantages
of both the nonlocal integral theory and finite element method. Also, Marotti de
Sciarra [3, 4] has proved the complete family of variational principles, developed a
consistent nonlocal finite element procedure based on a suitable definition of weight
function and provided some numerical applications for a bar in tension. The nonlo-
cal FE method has been then further developed by Pisano et al. [5] (for analyzing a
nano-plates under tension), Taghizadeh et al. [6, 7] (for analyzing the bending and
buckling of nano-beams and nano-plates), Koutsoumaris et al. [8–10] (for investi-
gating the bending and dynamic response of nano-beams considering the modified
kernel type), Norouzzadeh and Ansari [11] (for Bending of nanobeams), Tuna and
Kirca [12] (for analyzing the bending, buckling and vibration of nano-beams) and
Naghinejad and Ovesy [13–16] (for considering the viscoelastic effects and studying
the vibrations and buckling of nano-beams and nano-plates).

For accuracy of analyzing the nanostructures in some applications, the viscoelas-
tic properties have been taken into account, in some studies. For example, the proper
functioning of oscillators depends on considering their damping characteristics [17].
Also, by assuming the viscoelastic characteristics in the nano-scale mass sensors,
which works by measuring the shift in the vibration frequency, more accurate detec-
tions can be achievable. Also, considering these properties leads to the excellent
image quality of atomic force microscopes (AFM) [18]. Knowing the importance of
considering viscoelasticity in some applications of nanostructures, recently some
researchers have combined the nonlocal theory with viscoelastic properties. For
instance, Ghavanloo and Fazalzadeh [19] have studied the flexural vibration of vis-
coelastic carbon nanotubes conveying fluid and embedded in viscous fluid. They con-
sidered the nonlocalTimoshenkobeammodel andusedHamilton’s principle to derive
the formulations. Lei et al. [20, 21] have investigated the free vibration of nano-beams
based on nonlocal differential elasticity theory by considering viscoelastic properties.
They obtained complex frequencies by the transfer function method. Pouresmaeeli
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et al. [22] have investigated the vibration behavior of viscoelastic orthotropic nano-
plates using the nonlocal differential theory and the Kelvin-Voigt viscoelastic model.
They have studied the effects of nonlocal parameter, structural damping, stiffness
and damping coefficient of the foundation on the vibration frequency. Free vibra-
tion of multi-nanoplate system embedded in viscoelastic medium have been studied
by Karlicic et al. [23] using nonlocal differential theory. Governing equations have
been derived using D’Alamberts principle and Kirchhoff-Love plate theory. Nagh-
inejad and Ovesy [15] have developed a non-local integral finite element method to
investigate the free vibration of viscoelastic Euler-Bernoulli nano-scaled beam. The
formulations have been obtained using Hamilton’s principle, and effects of different
parameters and boundary conditions on the free vibration behavior have been dis-
cussed. They have also studied the viscoelastic buckling of nano-scaled beams using
the nonlocal differential theory and the Kelvin-Voigt viscoelastic model [14].

In the current chapter, firstly, the constitutive equations of nonlocal elasticity and
viscoelasticity theories are derived, then the aforementioned finite element nonlocal
integral elasticity theory is developed using Hamilton’s principle and the formula-
tions are explained. Besides, applying the boundary conditions for beams and plates
in the current method and the governing formulations of bending, buckling, and
vibration are discussed. Finally, bending, buckling, and vibration of nano-scaled
beams and plates are investigated through numerical examples, and the effects of
different parameters on the mechanical behavior are studied.

2 Nonlocal Integral Theory

2.1 Elastic Constitutive Equations

In classical elasticity theory, the stress-strain relations are stated only for a single
material point. Whereas, weighted averages of a material state-variable over a region
should be taken into account for defining the constitutive law at a point, in an integral-
type nonlocal theory. Eringen and Edelen [24, 25] developed the theories of nonlocal
elasticity in which the nonlocal characteristics have been attached to many fields,
includingmass, entropy, internal energy, and body forces. Because of their ambiguity,
yet to be verified and be used in real problems, simplifications have been considered
later. After that, equilibrium and kinematic equations have been used as a standard
form, and only the nonlocal form of the constitutive equations have been considered
[26, 27]. Thus, in mentioned non-local theory, stress at any point of the material is
a function of all strains at the vicinity. For a linear isotropic elastic continuum, the
constitutive equation is given by Eq. (1)

t (x) =
∫

V

α
(∣∣x′ − x

∣∣ , τ
)
σ

(
x′) dV, ∀x ∈ V (1)
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in which t, α and σ are nonlocal stress tensor, nonlocal kernel function, and local
stress tensor respectively. The local stress tensor is written as σ (x) = D : ε (x) in
whichD is the fourth-order elasticmoduli tensor, and ε is a strain tensor. The nonlocal
kernel is a function of distance, between any point in the domain and reference point,
and τ = e0a/ l in which a and l are the internal (e.g. lattice parameter or granular
distance) and external (e.g. wavelength or crack length) characteristic lengths. e0
is a constant for any material which can be calibrated by comparing the results
with different methods such as molecular dynamics or lattice dynamics according to
various parameters, e.g. geometry, mode shapes and boundary conditions [13]. As a
result, the nonlocal stress is expressed as a weighted value of the strain field:

t (x) =
∫

V

α
(∣∣x′ − x

∣∣ , τ
)
D : ε

(
x′) dV ′, ∀x ∈ V (2)

It is known that, if the nonlocal kernel was taken as the Dirac delta function, the
nonlocal constitutive equation reduces to that of the local theory. It is worth noting
that the nonlocal constitutive equation can be considered as two-phase [2, 5]. The
first phase corresponds to the local part (local fraction ζ1) and the second phase to the
nonlocal part (non-local fraction ζ2). It is evident that ζ1 + ζ2 = 1 and ζ1, ζ2 > 0. ζ1
and ζ2 can be obtained using different methods. An approach to calculate values of
ζ1 and ζ2 can be determining the contribution of reference point and all points in the
region (except the reference point) on the stiffness [13, 15, 28, 29]. For example, in
the current study, for determining the values of ζ1 and ζ2 on each element, nonlocal
kernel is integrated on the whole domain (the value is called I1). Then kernel is
integrated on the element containing the reference point (namely I2). Obviously the
remaining portion is named I3 = I1 − I2. So, the ratio of I2 to I1 corresponds to ζ1
and the ratio of I3 to I1 corresponds to ζ2. The two-phase model mathematically
handles the constitutive equation. In particular, the two-phase model transforms the
first kind Fredholm integral equation into a second kind one. In applications in a finite
domain, the first kindFredholm integral equation leads to an ill-posed problem,which
is difficult to deal with [30]. Assuming the kernel function as follows:

α
(∣∣x′ − x

∣∣ , τ) = ζ1δ
(
x′ − x

) + ζ2ᾱ
(∣∣x′ − x

∣∣ , τ)
(3)

in which, ᾱ is the typical nonlocal kernel function, Eq. (2) could be written as the
two-phase nonlocal constitutive equation:

t (x) = ζ1σ (x) + ζ2

∫

V

ᾱ
(∣∣x′ − x

∣∣ , τ
)
D : ε

(
x′) dV ∀x ∈ V (4)

The better performance of the latter form in some applications has led to the usage
of this form over the original form in some recent articles [13, 15, 16, 31].
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2.2 Viscoelastic Constitutive Equations

For a nonlocal viscoelastic material, Eq. (1) can be written as follows [15, 20]

tve (x) =
∫

V

α
(∣∣x′ − x

∣∣ , τ
)
σ ve

(
x′) dV ∀x ∈ V (5)

in which, tve and σ ve are the nonlocal and local viscoelastic stress tensors, respec-
tively [15, 20]. It is known that the viscoelastic constitutive equation for a linear
homogeneous solid is as follows.

σ ve = G (t) ε (0) +
t∫

0

G (t − T )
∂ε (T )

∂T
dT (6)

whereG is the stress relaxation tensor and ε is the strain tensor. Substituting Eq. (6)
into Eq. (5) gives

tve (x) =
∫

V

α
(∣∣x′ − x

∣∣ , τ
)
G (t) ε

(
x′, 0

)
dV

+
∫

V

α
(∣∣x′ − x

∣∣ , τ
)
⎛
⎝

t∫

0

G (t − T )
∂ε

(
x′, T

)
∂T

dT

⎞
⎠ dV ∀x ∈ V (7)

Equation (7) is the constitutive equation of a nano-material considering nonlo-
cal integral theory and viscoelastic properties. The relaxation tensor of a general
viscoelastic model (see Fig. 1) could be stated as

G (t) = G0 −
N∑

n=1

Gn

(
1 − e−tTn

−1
)

= G∞ +
N∑

n=1

Gne
−tTn

−1
(8)

in which, G0 = G∞ +�Gn is the initial relaxation tensor and Tn = Gn
−1ηn are the

relaxation times (in which Tn and ηn are diagonal). Using the Boltzmann super-
position principle and substituting Eq. (8) into Eq. (7), the nonlocal viscoelastic
constitutive equation is obtained as (due to the fact that, as time passes the values of
tTn

−1 and strain increases, and the value of Tn is relatively small, we can neglect∑
Gne−tT−1

n ε (0) compared to other terms)
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Fig. 1 General viscoelastic
model schematic according
to relaxation modulus

tve (x) =
∫

V

α
(∣∣x′ − x

∣∣ , τ
)
G∞ε

(
x′, t

)
dV

+
∫

V

α
(∣∣x′ − x

∣∣ , τ
)
⎛
⎝

t∫

0

N∑
n=1

Gne
−(t−T )Tn

−1 ∂ε
(
x′, T

)
∂T

dT

⎞
⎠ dV (9)

Different viscoelastic models are assumed by considering different values for
parameters of Eq. (9). For example, by taking N = 1 and G1 → ∞ Kelvin-Voigt
model is given, and by considering N = 1, the three-parameter standard viscoelastic
model can be yielded [20]. By considering the above parameters the Kelvin-Voigt
and the three-parameter standard model are respectively obtained as follows. For the
Kelvin-Voigt model the derivation process is as follows

tve (x) =
∫

V

α
(∣∣x′ − x

∣∣ , τ
)
G∞ε

(
x′, t

)
dV

+
∫

V

α
(∣∣x′ − x

∣∣ , τ
) (

G1e
−(t−T )T1

−1 ∂ε
(
x′, T

)
∂T

dT

)
dV (10)

By carrying out the integration, considering the Kelvin-Voigt assumptions,

tve (x) =
∫

V

α
(∣∣x′ − x

∣∣ , τ
) (

G∞ε
(
x′, t

) + ∂ε
(
x′, t

)
∂t

G1T1

)
dV (11)

So,

tve (x) =
∫

V

α
(∣∣x′ − x

∣∣ , τ
) (

G∞ε
(
x′, t

) + ∂ε
(
x′, t

)
∂t

η1

)
dV (12)

and by introducing Td = G∞−1η1, finally we have
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tve (x) =
∫

V

α
(∣∣x′ − x

∣∣ , τ
)
G∞

(
ε

(
x′, t

) + Td
∂ε

(
x′, t

)
∂t

)
dV (13)

It is noted that the classical form of the above constitutive equation is as follows:

σ ve = G∞
(

ε + Td
∂ε

∂t

)
(14)

Also considering the three-parameter viscoelastic model, Eq. (9) can be simply
written as

tve (x) =
∫

V

α
(∣∣x′ − x

∣∣ , τ
)
G∞ε

(
x′, t

)
dV

+
∫

V

α
(∣∣x′ − x

∣∣ , τ
) (

G1e
−(t−T )T1

−1 ∂ε
(
x′, T

)
∂T

dT

)
dV (15)

For a two-phase nonlocal theory, using Eqs. (4) and (9) the constitutive equation
will be obtained as

tve (x) = ζ1

⎛
⎝G∞ε (x, t) +

t∫

0

N∑
n=1

Gne
−(t−T )T−1

n
∂ε (x, T )

∂T
dT

⎞
⎠

+ζ2

∫

V

ᾱ
(∣∣x′ − x

∣∣ , τ
)
G∞ε

(
x′, t

)
dV

+ζ2

∫

V

ᾱ
(∣∣x′ − x

∣∣ , τ
)
⎛
⎝

t∫

0

N∑
n=1

Gne
−(t−T )T−1

n
∂ε

(
x′, T

)
∂T

dT

⎞
⎠ dV (16)

2.3 Notes on the Kernel Type

Looking at the constitutive Eq. (1), the three dimensional nonlocal kernel
ᾱ

(∣∣x′ − x
∣∣ , τ)

has the (length)−3 dimension. Besides, it is known that ᾱ is a function
of the characteristic length ratio (a/ l). Also, the nonlocal kernel has some notable
specifications. For example, as it has been expressed by Eringen [1]:

(i) Nonlocal kernels maximum value happens at the reference point (i.e., x′ = x).
(ii) ᾱ converts to Dirac-delta whenever τ → 0, i.e., the classical theory must be

extracted when τ → 0.
(iii) ᾱ can be determined for a certain material by curve-fitting the plane waves

dispersion-curves with those of experiments or atomic lattice dynamics.
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Fig. 2 Modifications of kernel function near the boundaries

It is noted that because of defining the kernel function on the infinite domain, for
using it in the finite domain it must be normalized and, in the current approach,
truncated at the boundaries [5, 7, 13] (e.g., see Fig. 2). The normalization process is
carried out since the nonlocal kernel should satisfy the following condition

∫

V∞

α
(∣∣x′ − x

∣∣ , τ)
dV = 1 (17)

where V∞ is an infinite domain, inwhich theworking domain is embedded [2, 5]. The
condition (17) also guarantees that for an infinite domain, when the strain is uniform,
the related stress will also be uniform [2]. For this purpose in the current study the
kernel function, which may violate the condition (17) considering a finite length or
truncating near the boundaries, is normalized by dividing it by the normalization
parameter. The normalization parameter is obtained by integrating the kernel value
in the finite domain of the problem.

Some examples of kernel function are [1]:

• One-dimensional form:

α
(∣∣x ′ − x

∣∣ , e0a
l

)
=

{
1
e0a

(
1 − |x ′−x|

e0a

) ∣∣x ′ − x
∣∣ ≤ e0a

0
∣∣x ′ − x

∣∣ > e0a
(18)

α
(∣∣x ′ − x

∣∣ , e0a
l

)
= 1

2e0a
exp

(− ∣∣x ′ − x
∣∣ /e0a)

(19)

α
(∣∣x ′ − x

∣∣ , e0a
l

)
= 1√

πe0al
exp

(
−(

x ′ − x
)2

/e0al
)

(20)

• Two-dimensional form:

α
(∣∣x′ − x

∣∣ , e0a
l

)
= 1

2π(e0a)2
K0(

∣∣x′ − x
∣∣ /e0a) (21)
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in which K0 is the modified Bessel function of the second kind.

α
(∣∣x′ − x

∣∣ , e0a
l

)
= 1

πe0al
exp

(− (
x′ − x

)
.
(
x′ − x

)
/e0al

)
(22)

• Three-dimensional form

α
(∣∣x′ − x

∣∣ , t) = 1

8(π t)
3
2

exp

(
−

(
x′ − x

)
.
(
x′ − x

)
4t

)
(23)

where t = e0al/4.

α
(∣∣x′ − x

∣∣ , e0a
l

)
= 1

4π(e0a)2

× 1√
(x′ − x) . (x′ − x)

exp

(
−

√
(x′ − x) . (x′ − x)

e0a

)
(24)

In addition to the above solution to deal with the normalization problem, Kout-
soumaris et al. [9, 30] have used the so-calledmodified kernel which has been defined
by Bazant and Jirasek [32]. This modified kernel preserves symmetry with respect to
x, satisfies the normalization condition at each point of a finite domain V and satis-
fies all the properties of a nonlocal kernel [9]. In addition it is seen that the modified
kernel recalls the locality only when the normalization condition is violated [9] (i.e.
near the boundaries).

αmod
(∣∣x − x′∣∣ , τ

) =
⎛
⎝1 −

∫

V

α
(∣∣x′ − x

∣∣ , τ)
dV

⎞
⎠ δ

(∣∣x − x′∣∣)

+ α
(∣∣x − x′∣∣ , τ)

(25)

3 Nonlocal Integral Finite Element Method

3.1 Variational Equations

In this section, the finite element nonlocal integral method is developed considering
viscoelastic properties as it has been proposed by Polizzotto [2] for elastic materi-
als. The finite element formulations are derived using Hamilton’s principle based
on nonlocal integral theory. These formulations are then extended in the following
sections to study the bending, buckling, and vibration of nanostructures. Considering
the two-phase non-local theory using Eqs. (4) and (5), and taking into account the
inertia effects, the total potential energy can be written as follows
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 = 1

2
ζ1

∫

V

ε (x) : σ ve (x) dV

+ 1

2
ζ2

∫

V

∫

V ′

α
(∣∣x′ − x

∣∣ , τ
)
ε (x) : σ ve

(
x′) dV ′dV

− Winrt − Wext − Wg (26)

where Winrt is the work done by inertia forces, Wext is the work done by external
forces, andWg shows the energy due to geometric stiffness. Considering the Kelvin-
Voigt model (Eqs. (13)), (26) can be written as [15]


 = 1

2
ζ1

∫

V

ε (x) : D :
(

ε (x, t) + Td
∂ε (x, t)

∂t

)
dV

+ 1

2
ζ2

∫

V

∫

V ′

α
(∣∣x′ − x

∣∣ , τ
)
ε (x) : D : ε

(
x′) dV ′dV

+ 1

2
ζ2

∫

V

∫

V ′

α
(∣∣x′ − x

∣∣ , τ
)
ε (x) : D :

(
Td

∂ε
(
x′, t

)
∂t

)
dV ′dV

− Winrt − Wext − Wg (27)

in which D = G∞ is the fourth rank elastic moduli tensor. It is noted that the above
statement can be extended for other viscoelastic models by using the explained
procedure. Now, applying the variations, the total potential energy (Eq. (27)) is
minimized as

δ
 = ζ1

∫

V

δε (x) : D :
(

ε (x, t) + Td
∂ε (x, t)

∂t

)
dV

+ ζ2

∫

V

∫

V ′

α
(∣∣x′ − x

∣∣ , τ
)
δε (x) : D : ε

(
x′) dV ′dV

+ ζ2

∫

V

∫

V ′

α
(∣∣x′ − x

∣∣ , τ
)
δε (x) : D :

(
Td

∂ε
(
x′, t

)
∂t

)
dV ′dV

− δWinrt − δWext − δWg = 0 (28)

By substituting the corresponding terms of Winrt , Wext and Wg , we have

δ
 = ζ1

∫

V

δε (x) : D :
(

ε (x, t) + Td
∂ε (x, t)

∂t

)
dV

+ ζ2

∫

V

∫

V ′

α
(∣∣x′ − x

∣∣ , τ
)
δε (x) : D : ε

(
x′) dV ′dV
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+ ζ2

∫

V

∫

V ′

α
(∣∣x′ − x

∣∣ , τ
)
δε (x) : D :

(
Td

∂ε
(
x′, t

)
∂t

)
dV ′dV

−
∫

V

δu · (−ρü) dV −
∫

V

b̄ · δudV

−
∫

St

t̄ · δu dS −
∫

V

σ 0mδεnl (x) dV = 0 (29)

where εnl is the nonlinear strain tensor, σ 0m is the external compressive stress, ρ

is the mass density, t̄ and b̄ are respectively the surface force on the surface St and
body force in volume V and u is the displacement field. It is seen that Eq. (29) is
of a general form that can be used for analyzing the various mechanical behavior
of nanostructures. For example, it can be used for extracting the formulations for
studying the bending, buckling, and vibration.

3.2 Finite Element Formulations

In this section, the foundation of finite element formulation is to be established. For
developing the finite element nonlocal integral theory Eq. (29) should be discretized.
So, domain V will be partitioned to N subdomains, and displacement field u(x) and
strain tensor ε(x) of the n-th element can be written as

u (x) = Nn (x) dn, n = 1, . . . , N (30)

ε (x) = Bn (x) dn, n = 1, . . . , N (31)

MatricesNn (x),Bn (x) anddn (x) include the shape functions, corresponding par-
tial derivatives, and node degrees of freedom, respectively. Applying the discretizing
process and using Eqs. (30) and (31), then Eq. (29) can be written as

δ
 = ζ1

N∑
n=1

δdT
n

⎛
⎝

∫

Vn

BT
n : D : BndV

⎞
⎠dn

+ζ1

N∑
n=1

δdT
n

⎛
⎝

∫

Vn

TdBT
n : D : BndV

⎞
⎠ ḋn
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+ζ2

N∑
n=1

N∑
m=1

δdT
n

⎛
⎝

∫

Vn

∫

Vm

α
(∣∣x′ − x

∣∣ , τ)
BT
n : D : B′

mdV
′dV

⎞
⎠dm

+ζ2

N∑
n=1

N∑
m=1

δdT
n

⎛
⎝

∫

Vn

∫

Vm

Tdα
(∣∣x′ − x

∣∣ , τ)
BT
n : D : B′

mdV
′dV

⎞
⎠ ḋm

−
N∑

n=1

⎛
⎝δdT

n

∫

Vn

NT
n .b̄ dV

⎞
⎠ −

N∑
n=1

⎛
⎜⎝δdT

n

∫

Stn

NT
n .t̄ dS

⎞
⎟⎠

−
N∑

n=1

⎛
⎝δdT

n

⎛
⎝

∫

Vn

NT
n . (−ρNn) dV

⎞
⎠ d̈n

⎞
⎠

−
N∑

n=1

(
δdT

n

(∫
Vn
Bg
n
T : σ 0 : Bg

ndV
)
dn

)
= 0 (32)

It is noted that matrix Bg
n is related to nonlinear strains and ḋn = ∂dn/∂t . More-

over, as it has been defined ζ1 and ζ2 correspond to the local and nonlocal fractions
(ζ1 + ζ2 = 1, ζ1, ζ2 > 0). Using the Boolean matrix Qn the degrees of freedom of
the n-th element (dn) is connected to the structural DOF matrix (U)

dn = QnU (33)

Substituting Eq. (33) into Eq. (32) gives

δ
 = ζ1

N∑
n=1

δUTQT
n

⎛
⎝

∫

Vn

BT
n : D : BndV

⎞
⎠QnU

+ζ1

N∑
n=1

δUTQT
n

⎛
⎝

∫

Vn

TdBT
n : D : BndV

⎞
⎠QnU̇

+ζ2

N∑
n=1

N∑
m=1

δUTQT
n

⎛
⎝

∫

Vn

∫

Vm

α
(∣∣x′ − x

∣∣ , τ)
BT
n : D : B′

mdV
′dV

⎞
⎠QmU

+ζ2

N∑
n=1

N∑
m=1

δUTQT
n

⎛
⎝

∫

Vn

∫

Vm

Tdα
(∣∣x′ − x

∣∣ , τ)
BT
n : D : B′

mdV
′dV

⎞
⎠QmU̇

−
N∑

n=1

⎛
⎝δUTQT

n

∫

Vn

NT
n .b dV

⎞
⎠ −

N∑
n=1

⎛
⎜⎝δUTQT

n

∫

Stn

NT
n .t dS

⎞
⎟⎠
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−
N∑

n=1

⎛
⎝δUTQT

n

⎛
⎝

∫

Vn

NT
n . (−ρNn) dV

⎞
⎠QnÜ

⎞
⎠

−
N∑

n=1

(
δUTQT

n

(∫
Vn
BgT

n : σ 0 : Bg
ndV

)
QnU

)
= 0 (34)

Equation (34) is the governing finite element equation based on the nonlocal
integral theory considering the Kelvin-Voigt viscoelastic model. Mechanical behav-
ior of nanostructures (e.g., bending, vibration, and buckling) can be analyzed by
considering the related terms of the current equation.

3.3 Element Types

Noting that the proposed method has a finite element base, various types of elements
can be used for analyzing different problems. For example, to analyze the simple
tension problem of a plate (for axial behavior), elements of the C0 continuity class
will suffice, however, for analyzing the bending, buckling or vibration assuming
the classical beam theory elements of the C1 continuity class is usually needed. C0

continuity means that the displacements between the elements are continuous, but
their first derivatives are not (Lagrange elements). However, in C1 continuity, both
the displacements and their first derivatives are continuous (Hermite elements). In
this section, some of the sample elements that have relatively more applications are
introduced.

Hermite beam element (Fig. 3) is used later in this chapter for analyzing the
mechanical behavior of Euler-Bernoulli beam elements. These elements include two
nodes with two degrees of freedom for each node, i.e. displacement and rotation.
The displacement matrix and shape functions of Hermite beam elements in the local
coordinate system are considered as

Fig. 3 Hermite beam element
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Fig. 4 Local and general
coordinates of the beam

dn =

⎧⎪⎪⎨
⎪⎪⎩

w1(
∂w
∂x

)
1

w2(
∂w
∂x

)
2

⎫⎪⎪⎬
⎪⎪⎭

(35)

NT
n (ξ) = 1

8

⎧⎪⎪⎨
⎪⎪⎩

2(1 − ξ)2 (2 + ξ)

le(1 − ξ)2 (1 + ξ)

2(1 + ξ)2 (2 − ξ)

le(1 + ξ)2 (ξ − 1)

⎫⎪⎪⎬
⎪⎪⎭

(36)

The general coordinates can be converted to local ones using (see Fig. 4)

ξ = 2x

le
− 1; 0 ≤ x ≤ le, − 1 ≤ ξ ≤ 1 (37)

in which le is the element length.
Conforming elements (displacements are always continuous between adjacent

elements) are mostly based on higher degree polynomials and need relatively high
computational cost for producing the correspondingmatrices.Moreover, the nonlocal
integral finite elementmethod hasmore computational cost in comparison to the local
method. Therefore, it is more efficient to use elements with polynomials of lower
degree (e.g. non-conforming elements) for modelling the nonlocal plate problems.
If the assumed elements pass the “patch test”, the results will converge [33]. The
original patch test, developed by Irons et al. [34] is a check that determines whether
a patch of elements subject to a constant strain reproduced the constitutive behavior
of the material and resulted in correct stresses when it became infinitesimally small
[35]. In other words, patch test is a sufficient requirement for convergence.

The Adini-Clough quadrilateral element (Fig. 5) is a non-conforming element,
which despite being unable to pass the patch test, is known to give good convergent
results for bending and buckling of thin plates, i.e. it is a generalized conforming
element [36]. These elements consist of four nodes with three degrees of freedom
for each. Matrix dn for the n-th element is expressed as
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Fig. 5 Adini-Clough
quadrilateral plate element

dn = [w1 w1,x w1,y w2 w2,x w2,y . . .

. . . w3 w3,x w3,y w4 w4,x w4,y]T (38)

Also, the shape functions of the Adini-Clough elements are as (−1 < ξ < 1, −
1 < η < 1)

NT
n (ξ, η) = 1

8

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e (a − ξ − η)

e
(
1 − ξ 2

)
e
(
1 − η2

)
f (a + ξ − η)

− f
(
1 − ξ 2

)
f
(
1 − η2

)
g (a + ξ + η)

−g
(
1 − ξ 2

)
−g

(
1 − η2

)
h (a − ξ + η)

h
(
1 − ξ 2

)
−h

(
1 − η2

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(39)

where

a = 2 − ξ 2 − η2, e = (1 − ξ) (1 − η) , f = (1 + ξ) (1 − η) ,

g = (1 + ξ) (1 + η) , h = (1 − ξ) (1 + η) (40)

The 8-node C0-quadratic isoparametric Serendipity elements with 2 degrees of
freedom per node can be used for analyzing the beam in 3-dimensions [6] or tension
of a plate [5]. dn and Nn matrices are as
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dn = [u1 v1 u2 v2 u3 v3 u4 v4 . . .

. . . u5 v5 u6 v6 u7 v7 u8 v8]T (41)

NT u (or) v

n (ξ, η) = 1

4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− (ξ + η + 1) (ξ − 1) (η − 1)
2 (ξ − 1) (ξ + 1) (η − 1)

(−ξ + η + 1) (ξ + 1) (η − 1)
− 2 (η − 1) (ξ + 1) (η + 1)
(ξ + η − 1) (ξ + 1) (η + 1)
−2 (ξ − 1) (ξ + 1) (η + 1)

− (−ξ + η − 1) (ξ − 1) (η + 1)
2 (ξ − 1) (η + 1) (η − 1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(42)

where NT u (or) v

n includes the shape functions of the element corresponding to both u
and v degrees of freedom.

3.4 Notes on the Boundary Conditions

In this section, by considering a sample case, it is attempted to demonstrate the inca-
pability of nonlocal differential elasticity theory for efficiently applying the natural
boundary conditions on a plate. Consider a plate of length andwidth lx and ly , respec-
tively. The boundary conditions of the mentioned plate are simply-supported on all
four edges. Using the nonlocal differential constitutive equation, the following set
of equations can be obtained [37]

Mxx − l2τ 2∇2Mxx = −D11
∂2w

∂x2
− D12

∂2w

∂ y2
(43a)

Myy − l2τ 2∇2Myy = −D12
∂2w

∂x2
− D22

∂2w

∂ y2
(43b)

Mxy − l2τ 2∇2Mxy = −2D66
∂2w

∂x∂y
(43c)

Assuming the bottom left corner of the plate as the center of the coordinate system,
the boundary condition at x = 0 would be like Mxx = 0. So the Eq. (43) becomes

∂2w

∂x2
= l2τ 2

D11

∂2Mxx

∂x2
− D12

D11

∂2w

∂ y2
(44)

It is noted that the equilibrium equations for a plate are as [37]
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∂2Mxx

∂x2
+ 2

∂2Mxy

∂x∂y
+ ∂2Myy

∂ y2
+ ∂

∂x

(
Nx
0
∂w

∂x

)
+ ∂

∂y

(
N y
0

∂w

∂y

)

+ ∂

∂x

(
Nxy
0

∂w

∂y

)
+ ∂

∂y

(
Nxy
0

∂w

∂x

)
− m0

∂2w

∂t2
+ q = 0 (45a)

Qx − ∂Mxx

∂x
− ∂Mxy

∂y
− Nx

0
∂w

∂x
− Nxy

0

∂w

∂y
= 0 (45b)

Qy − ∂Mxy

∂x
− ∂Myy

∂y
− N y

0

∂w

∂y
− Nxy

0

∂w

∂x
= 0 (45c)

Now the Navier solution can only be applied when ∂2w/∂n2 is zero across the
boundary of the plate. It means that, for considering the Navier solution, according
to Eq. (44) (l2τ 2/D11 )[(∂2Mxx/∂x2) − (D12/D11)(∂

2w/∂ y2)] should be zero at
x = 0, but it is not. Even for a free boundary condition, the mentioned problem
arises for a plate. It is where the finite element nonlocal integral method comes in
and makes things easier! No such complexity is seen in the FEM based method, and
various kinds of rather complex boundary conditions can be dealt with.

4 Nano-Scaled Beams

The finite element formulations for bending, vibration, and buckling of nano-scaled
beams are prepared in the following sections. It is noted that various beam theories
can be included in the formulation, but for the sake of brevity only Euler-Bernoulli
beam theory is assumed here.

4.1 Applying Boundary Conditions for Nano-Scaled Beams

The boundary conditions can be applied rather quickly in the currently proposed
method. For instance, some of the common boundary conditions are as follow (see
Fig. 6)

Both-ends simply supported beam:

w (x) = 0 at x = 0

w (x) = 0 at x = l (46)

Both-ends clamped beam:

w (x) = w,x (x) = 0 at x = 0

w (x) = w,x (x) = 0 at x = l (47)
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Fig. 6 The geometry of a beam

Clamped-free beam:

w (x) = w,x (x) = 0 at x = 0 (48)

Simply supported-clamped beam:

w (x) = 0 at x = 0

w (x) = w,x (x) = 0 at x = l (49)

4.2 Bending of Elastic Nano-Scaled Beams

The bending formulations are given for an Euler-Bernoulli nano-scaled beam. It is
noted that this method can be extended for other beam theories. Considering the
classical beam theory, the displacement field is given as

u (x, z) = u0 (x) − z
∂w0

∂x
(50)

w (x, z) = w0 (x) (51)

in which u and w are longitudinal and transverse displacements of the beam, respec-
tively. Also, u0 and w0 are the displacement components at the mid-axis. Also,
neglecting the higher-order terms, the strain can be expressed as

ε = εx = ∂u

∂x
= ∂u0

∂x
− z

∂2w0

∂x2
(52)

For an Euler-Bernoulli beam, if the pure bending condition is assumed, Eq. (52)
might be written as
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ε = εx = −z
∂2w0

∂x2
= Bndn = zBb

ndn (53)

whereBb
n consists of the partial derivatives of the shape functions of the subject beam.

Substituting Eq. (53) into Eq. (34) and only considering the terms corresponding to
elastic bending, the local and nonlocal stiffness matrices and external force matrix
can be obtained as

KL
n = ζ1

⎛
⎝Iyy

1∫

−1

Bb
n
T

(ξ) EBb
n (ξ) det (J (ξ)) dξ

⎞
⎠ (54)

KNL
nm = ζ2[bh Iyy

1∫

−1

1∫

−1

α
(∣∣x ′ (ξ) − x (ξ)

∣∣ , τ)
Bb
n
T

(ξ) EBb
m

(
ξ ′)

× det(J
(
ξ ′)) det (J (ξ)) dξ ′dξ ] (55)

Fn = bh

1∫

−1

NT
n .b̄ det (J (ξ)) dξ + b

1∫

−1

NT
n .t̄ det (J (ξ)) dξ (56)

where KNL
nm shows the nonlocal effect of the m-th element on the n-th one. J is the

Jacobian matrix, and Iyy is the second moment of area. Also, total matrices can be
written as

KL
total =

N∑
n=1

QT
n

(
KL

n

)
Qn (57)

KNL
total =

N∑
n=1

N∑
m=1

QT
n

(
KNL

nm

)
Qm (58)

Ftotal =
N∑

n=1

QT
n (Fn) Qn (59)

It is noted that for carrying out the corresponding integration, numerical integra-
tion schemes can be used. Substituting Eqs. (54)–(58) into Eq. (34) and assuming
bending related terms, the corresponding governing bending equation of the elastic
beam is developed as follows
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(
KL

total + KNL
total

)
U = Ftotal (60)

By solving Eq. (60), displacement matrix U can be calculated as

U = (
KL

total + KNL
total

)−1
Ftotal (61)

4.3 Vibration of Nano-Scaled Beams

For analyzing the vibration of the beam, mass (inertia effects) and stiffness of the
beam should be considered. It is noted that for a viscoelastic beam, the damping
matrix should also be taken into account. So, Eq. (34) can be written as

δ
 = ζ1

N∑
n=1

δUTQT
n

⎛
⎝

∫

Vn

BT
n : D : BndV

⎞
⎠QnU

+ζ1

N∑
n=1

δUTQT
n

⎛
⎝

∫

Vn

TdBT
n : D : BndV

⎞
⎠QnU̇

+ζ2

N∑
n=1

N∑
m=1

δUTQT
n

⎛
⎝

∫

Vn

∫

Vm

α
(∣∣x′ − x

∣∣ , τ)
BT
n : D : B′

mdV
′dV

⎞
⎠QmU

+ζ2

N∑
n=1

N∑
m=1

δUTQT
n

⎛
⎝

∫

Vn

∫

Vm

Tdα
(∣∣x′ − x

∣∣ , τ)
BT
n : D : B′

mdV
′dV

⎞
⎠QmU̇

−
N∑

n=1

⎛
⎝δUTQT

n

∫

Vn

NT
n .b dV

⎞
⎠ −

N∑
n=1

⎛
⎜⎝δUTQT

n

∫

Stn

NT
n .t dS

⎞
⎟⎠

−
N∑

n=1

⎛
⎝δUTQT

n

⎛
⎝

∫

Vn

NT
n . (−ρNn) dV

⎞
⎠QnÜ

⎞
⎠ = 0 (62)

Local and nonlocal stiffnessmatrices are expressed asEqs. (54)–(58).Massmatrix
(Mn) and damping matrices (CL

n and CNL
nm ) might be extracted for elements by sub-

stituting Eqs. (50)–(53) into Eq. (62).

Mn =
⎛
⎝bh

1∫

−1

NT
n (ξ) ρNn (ξ) det (J (ξ)) dξ

⎞
⎠ (63)
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CL
n = ζ1

⎛
⎝Iyy

1∫

−1

BbT
n (ξ) ETdBb

n (ξ) det (J (ξ)) dξ

⎞
⎠ (64)

CNL
nm = ζ2[bh Iyy

1∫

−1

1∫

−1

α
(∣∣x ′ (ξ) − x (ξ)

∣∣ , τ)
Bb
n
T

(ξ) ETdBb
m

(
ξ ′)

× det
(
J

(
ξ ′)) det (J (ξ)) dξ ′dξ ] (65)

Besides, the total mass and damping matrices are as follows

Mtotal =
N∑

n=1

QT
n (Mn) Qn (66)

CL
total =

N∑
n=1

QT
n

(
CL

n

)
Qn (67)

CNL
total =

N∑
n=1

N∑
m=1

QT
n

(
CNL

nm

)
Qm (68)

Substituting Eqs. (54)–(58) and (63)–(68) into Eq. (62), the following equation is
obtained for viscoelastic vibration of nonlocal Euler-Bernoulli nano-scaled beam.

MtotalÜ + (
CL

total + CNL
total

)
U̇ + (

KL
total + KNL

total

)
U = 0 (69)

Free vibration frequencies and mode shapes are the eigenvalues and eigenfunc-
tions of Eq. (69), respectively. For solving the eigenvalue problem of Eq. (69), the
following parameters are first defined.

V =
[
U̇
U

]
(70)

M∗=
[
Mtotal 0
0 I

]
(71)
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C∗=
[
CL

total+CNL
total K

L
total+KNL

total
−I 0

]
(72)

Assuming Eqs. (70)–(72), (69) becomes

M∗V̇ + C∗V = 0 (73)

For calculating the complex eigenvalues of the free vibration, the solution of the
following form is assumed

V = φ (x) eiωt (74)

Now substituting Eq. (74) in Eq. (73), the following relation has resulted.

(
iωM∗ + C∗) φ = 0 (75)

For obtaining the eigenvalues of Eq. (75), the determinant of the coefficient matrix
should be set to zero as

∣∣iωM∗ + C∗∣∣ = 0 (76)

By solving Eq. (76), the values of ω are calculated and by substituting them into
Eq. (75) mode shapes can be obtained. It is noted that for an elastic beam, Eq. (69)
becomes

MtotalÜ + (
KL

total + KNL
total

)
U = 0 (77)

By considering matrix U as

U = φ (x) eiωt (78)

Equation (77) can be written as

((
KL

total + KNL
total

) − ω2Mtotal
)
φ (x) = 0 (79)

By equating the determinant of coefficient matrix of Eq. (79)to zero, natural
frequencies and mode shapes can be calculated.

∣∣(KL
total + KNL

total

) − ω2Mtotal

∣∣ = 0 (80)
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4.4 Buckling of Nano-Scaled Beams

For analyzing the viscoelastic buckling of structures (relaxation or creep model), an
imperfection (initial displacement) is needed to be assumed. So, for deriving more
general relations, imperfection effects are taken into account. Retaining the buckling
related terms and the imperfection effects, Eq. (34) takes the form

δ
 = ζ1

N∑
n=1

δUTQT
n

⎛
⎝

∫

Vn

BT
n : D : BndV

⎞
⎠QnU

+ζ1

N∑
n=1

δUTQT
n

⎛
⎝

∫

Vn

TdBT
n : D : BndV

⎞
⎠QnU̇

−ζ1

N∑
n=1

(
δUTQT

n

(∫
Vn
B0T

n : D : B0
ndV

)
QnU0

)

+ζ2

N∑
n=1

N∑
m=1

δUTQT
n

⎛
⎝

∫

Vn

∫

Vm

α
(∣∣x′ − x

∣∣ , τ)
BT
n : D : B′

mdV
′dV

⎞
⎠QmU

+ζ2

N∑
n=1

N∑
m=1

δUTQT
n

⎛
⎝

∫

Vn

∫

Vm

Tdα
(∣∣x′ − x

∣∣ , τ)
BT
n : D : B′

mdV
′dV

⎞
⎠QmU̇

−ζ2

N∑
n=1

N∑
m=1

(
δUTQT

n

(∫
Vn

∫
Vm

α
(∣∣x′ − x

∣∣ , τ)
B0T

n : D : B0
m

′
dV ′dV

)
QmU0

)

−
N∑

n=1

(
δUTQT

n

(∫
Vn
BgT

n : σ 0 : Bg
ndV

)
QnU

)
= 0 (81)

In addition to Eqs. (54)–(58) and (64), (65), (67) and (68), initial stiffness matrix
and geometric stiffness matrix are defined as follows

KL0

n = ζ1

⎛
⎝Iyy

1∫

−1

B0b
n
T

(ξ) EB0b
n (ξ) det J (ξ) dξ

⎞
⎠ (82)

KNL0

nm = ζ2[bh Iyy

1∫

−1

1∫

−1

α
(∣∣x ′ (ξ) − x (ξ)

∣∣ , τ)
B0bT

n (ξ) EB0b
m

(
ξ ′)

× det
(
J

(
ξ ′)) det (J (ξ)) dξ ′dξ (83)
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Kg
n =

⎛
⎝bh

1∫

−1

Bg
n
T

(ξ) σ0Bg
n (ξ) det (J (ξ)) dξ

⎞
⎠ (84)

It is known that, for an Euler-Bernoulli beam, the nonlinear strain can be assumed
as

εnl = 1

2

(
∂w

∂x

)2

(85)

Bg
n is consistent with the nonlinear strain form. Taking into account the defined

parameters, the governing viscoelastic buckling equation becomes

(
CL

total + CNL
total

)
U̇ + (

KL
total + KNL

total

)
U

−
(
KL0

total + KNL0

total

)
U0 − Kg

totalU = 0 (86)

By numerically solving Eq. (86), the viscoelastic buckling solutions can be
acquired. By viscoelastic buckling solution, we mean the condition in which the
compressive load is kept constant and as time passes, the displacements increase.
There comes a time in which the displacements exceed the assumed buckling con-
dition. This time is called the viscoelastic buckling time. Also, by keeping out the
time-related terms and imperfections in Eq. (86) the eigenvalue problem for the
elastic buckling of perfect beam would result.

(
KL

total + KNL
total

)
U − Kg

totalU = 0 (87)

5 Nano-Scaled Plates

The appropriate formulations are to be introduced for analyzing the bending, vibra-
tion, and buckling of nano-scaled plates. As it has been assumed with respect to the
beams, in the plate case also the classical plate theory is only taken into account, and
other theories can be added to the formulation by following a similar procedure.

5.1 Applying Boundary Conditions for Nano-Scaled Plates

One of the main advantages of finite element integral elasticity approach is the
straightforwardness of applying the boundary conditions for a plate (Fig. 7). It is
noted that the boundary conditions are applied as they are imposed in conventional
finite element methods of classical elasticity. For example, the following commonly
used boundary conditions are outlined.
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Fig. 7 Plate dimensions

All-sides simply supported plate:

w(x, y) = 0 at x = 0, lx
w(x, y) = 0 at x = 0, ly (88)

All-sides clamped plate:

w (x, y) = w,x (x, y) = 0 at x = 0, lx
w (x, y) = w,x (x, y) = 0 at x = 0, ly (89)

Two-sides clamped, two-sides free (opposite sides):

w (x, y) = w,x (x, y) = 0 at x = 0, lx (90)

Two-sides simply supported, two-sides clamped (opposite sides):

w (x, y) == 0 at x = 0, lx
w (x, y) = w,x (x, y) = 0 at x = 0, ly (91)

Interestingly enough, the partial boundary conditions can also be applied fairly
easily and with little effort using the current method, for instance, some partial
boundary conditions are expressed below.

Two-sides clamped, the other two sides each partially simply supported:

w (x, y) = w,x (x, y) = 0 at x = 0, lx
w (x, y) = 0 at y = 0, x = 0 − lx1
w (x, y) = 0 at y = ly, x = 0 − lx2 (92)

Two-sides simply supported, the other two sides each partially clamped:
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w (x, y) = 0 at x = 0, lx
w (x, y) = w,x (x, y) = 0 at y = 0, x = 0 − lx1
w (x, y) = w,x (x, y) = 0 at y = ly, x = 0 − lx2 (93)

5.2 Bending of Nano-Scaled Plates

Bending formulations considering the nonlocal integral theory and classical plate
theory are presented in the current section. Through the classical plate theory, the
following relation is assumed for the strain field of a plate.

ε (x) =
⎧⎨
⎩

εx
εy
γxy

⎫⎬
⎭ =

⎧⎨
⎩

u0,x
v0,y

u0,x + v0,y

⎫⎬
⎭ − z

⎧⎨
⎩

w,xx

w,yy

2w,xy

⎫⎬
⎭ (94)

in which, εx , εy , and γxy are the longitudinal strain, transverse strain, and in-plane
shear strain, respectively. Also, u0, v0, and w are the displacements of mid-plane
in the x-, y-, and z-directions. By considering the pure bending condition, Eq. (94)
becomes

ε (x) =
⎧⎨
⎩

εx
εy
γxy

⎫⎬
⎭ = −z

⎧⎨
⎩

w,xx

w,yy

2w,xy

⎫⎬
⎭ = Bn (x) dn = zBp

n (x) dn (95)

Substituting Eq. (95) into Eq. (34), using Eq. (33) and considering the bending-
related terms, for an elastic case, Eq. (34) becomes

δ
 = ζ1

N∑
n=1

δUTQT
n

⎛
⎝

∫
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BT
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N∑
m=1

δUTQT
n

⎛
⎝

∫

Vn

∫

Vm

α
(∣∣x′ − x

∣∣ , τ)
BT
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mdV
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⎞
⎠QmU

−
N∑

n=1

⎛
⎝δUTQT

n

∫

Vn

NT
n .b̄ dV

⎞
⎠ −

N∑
n=1

⎛
⎜⎝δUTQT

n

∫

Stn

NT
n .t̄ dS

⎞
⎟⎠ = 0 (96)
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Substituting the last term of Eq. (95) into Eq. (96) the following relations are defined
for local and nonlocal stiffness matrices of the n-th element.

KL
n = ζ1

⎛
⎝

∫

Aelem

∫

h

Bp
n
T : D : Bp

n det (J) z
2dz d Aelem

⎞
⎠ (97)

KNL
nm = ζ2[

∫

Aelem

∫

h

∫

A
′
elem

∫

h′

α
(∣∣x′ (ξ, η) − x (ξ, η)

∣∣ , τ)
z′2 Bp

n
T : D : Bp′

m

× det (J) det
(
J′) dz′ d A

′
elemdz d Aelem] (98)

The total stiffness matrices are also given as Eqs. (57) and (58). Also, the bending
governing equations (similar to Eq. (60)) can be solved by the same procedure as
that explained in Sect. 4.2.

5.3 Vibration of Nano-Scaled Plates

For analyzing the vibration of nano-scaled plates, the general form of Eq. (62) could
be used. For a nano-scaled plate, the local and nonlocal stiffness matrices can be
expressed as Eqs. (97) and (98). Also, noting Eq. (62) the element mass matrix and
damping matrices can be obtained as

Mn =
∫

Aelem

∫

h

NT
n . (ρNn) det (J) dzd Aelem (99)

CL
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⎛
⎝

∫

Aelem
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h
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n det (J) z
2dz d Aelem

⎞
⎠ (100)

CNL
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Aelem
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h
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′
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∫
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α
(∣∣x′ (ξ, η) − x (ξ, η)

∣∣ , τ)
Td z′2Bp

n
T : D : Bp′

m

× det (J) det
(
J′) dz′ d A

′
elemdz d Aelem] (101)
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The total structural matrices can also be calculated by Eqs. (66)–(68). Also, the
eigenvalues and eigenfunctions of vibration might also be given by applying the
same procedure as that explained in Sect. 4.3.

5.4 Buckling of Nano-Scaled Plates

Buckling analysis of nano-scaled plates can also be carried out by considering the
buckling form of general variational Eq. (34) as Eq. (81). The nonlinear strain for a
plate is assumed as

εnl = 1

2

⎧⎨
⎩

w2
,x

w2
,y

2w,xw,y

⎫⎬
⎭ (102)

It is seen that the stiffness matrices are given by Eqs. (97) and (98), and geometric
stiffness matrix and initial stiffness matrices are given as follow

KL0

n = ζ1

⎛
⎝

∫

Aelem

∫

h

B0 p
n
T : D : B0 p

n det (J) z
2dz d Aelem

⎞
⎠ (103)

K NL0
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Aelem

∫

h

∫

A
′
elem

∫

h′

α
(∣∣x′ (ξ, η) − x (ξ, η)
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′
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′
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Kg
n =

∫

Aelem

∫

h

BgT
n : σ 0 : Bg

ndz d Aelem (105)

in which, σ 0 is the initial stress which has the following form

σ 0 =
[
σ 0
xx σ 0

xy

σ 0
yx σ 0

yy

]
(106)

Considering the mentioned equations, Eqs. (86) and/or (87) are used for nano-
scaled plates to solve the viscoelastic/elastic buckling problems.



Finite Element Nonlocal Integral Elasticity Approach 289

6 Numerical Examples and Discussions

In this section, the bending, buckling, and vibration of nano-scaled beams and plates
are studiedusing thepresentedfinite element nonlocal integralmethod.Due to abetter
correlation between current results with those of nonlocal differential elasticity, the
Bessel kernel is used in the following analysis. The assumed kernel is [6, 13]

ᾱ
(∣∣x − x′∣∣ , τ

) = 2π(e0a)2K0

(∣∣x − x′∣∣
e0a

)
(107)

6.1 Elastic Beam and Plate Bending

In this section, the bending of nano-beams and nano-plates are analyzed using some
examples. It is noted that in the current section, the constitutive equation (2) (one-
phase nonlocal integral elasticity theory) has been adopted for implementing the
finite element nonlocal integral elasticity method.

6.1.1 Bending of Nano-Scaled Beams

The bending of nonlocal Euler-Bernoulli nano-scaled beams is investigated. Results
are obtained using the approach explained in Sect. 4.2. The Hermite element (see
Sect. 3.3) is assumed in the analysis, and for the numerical integration, the Gauss-
Legendre quadrature rule is used by considering three Gauss points.

Figure 8 shows the non-dimensional maximum deflection (w/wL ) for two-sides
simply supported beam, under k̄ = 1 and q̄ = 1 loading. k̄ = Fl2/E I is the non-
dimensional central point load parameter, and q̄ = ql3/E I is the non-dimensional

Fig. 8 Variations of
non-dimensional deflection
with the nonlocal parameter
for both-sides simply
supported Euler-Bernoulli
nano-scale beam [6] (l =
10nm and h =0.1nm)
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Fig. 9 Variations of
non-dimensional deflection
with the nonlocal parameter
for both-sides clamped
Euler-Bernoulli nano-scale
beam [6] (l = 10nm and
h =0.1nm)

uniformly-distributed load parameter. The results of the finite element nonlocal inte-
gral elasticity (nonlocal integral elasticity theory NLIET) are compared with those
of Wang et al. [38] (for distributed load) and Wang and Liew [39] (for point load)
based on the nonlocal differential elasticity theory (NLDET). It is observed that for
a beam with simply supported boundary conditions subjected to a point load, the
nonlocal differential elasticity theory could not predict the bending deflection prop-
erly. However, both the differential and integral theories show a rise in deflection by
increasing the nonlocal parameter for uniformly-distributed load case.

Figure 9 shows the variation of maximum deflection with the nonlocal parameter
for two-sides clamped boundary condition (k̄ = 1, q̄ = 1). It is seen that in this
case the nonlocal differential elasticity has not captured the effect of nonlocality by
considering distributed load. However, the nonlocal integral theory shows an increase
in deflection by considering the nonlocal parameter, for both loading conditions.

6.1.2 Bending of Nano-Scaled Plates

Figure 10 show the variations of deflection for the midpoint of a nano-scaled simply
supported plate under the uniformly-distributed loading q0 = 1 nN/nm. The assumed
plate have properties of l = 10nm, E = 30 × 103 nN/nm2, and ν = 0.3. The Adini-
clough element type is used for modeling the plate and for numerical integration,
the Gauss-Legendre quadrature method assuming three integration points in each
direction is considered. Also, the results of the current study have been compared
with those of Aghababaei and Reddy [40] based on the nonlocal differential elastic-
ity theory. As it is seen, by increasing the nonlocal parameter, both the integral and
differential theories predict the decrease in the stiffness of the plate. However, the
increase in deflection is more pronounced for the nonlocal integral elasticity method.
It might have occurred because the nonlocal differential elasticity theory has been
extracted from the general integral form and cannot satisfy the force boundary con-
ditions properly [6].



Finite Element Nonlocal Integral Elasticity Approach 291

Fig. 10 Variations of
non-dimensional deflection
with the nonlocal parameter
for all-sides simply
supported nano-scale plate
(l/b = 1) under distributed
load

Fig. 11 Variations of
non-dimensional deflection
with the nonlocal parameter
for all-sides simply
supported nano-scale plate
under point load

Figure 11 shows the variation of midpoint deflection of the all-sides simply sup-
ported nano-scaled plate with nonlocal parameter under point load F0 = 1 nN. It
is seen that the increase in deflection is more pronounced for nonlocal differential
elasticity case in comparison with the nonlocal integral elasticity.

6.2 Elastic Beam and Plate Vibration

Free vibration of nano-beams and nano-plates are studied using the finite element
nonlocal integral elasticity method and considering the two-phase nonlocal consti-
tutive equation (Eq. (4)). The convergence study is carried out for obtaining the
optimum number of elements. The results are then compared with those available in
the literature, and finally, the effects of various parameters are investigated on free
vibration behavior. For the subject beam E = 1 TPa and ρ = 2000 kg/m3, and for
the plate E = 1 TPa, ν = 0.16 and ρ = 2250 kg/m3.
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Table 1 Convergence study of natural frequency (ω̄ = l
√

ω/C0, C0 = √
E I/ρA) by nonlocal

Euler-Bernoulli beam theory [13]

Number Simply supported beam Clamped beam

of
elements

τ = 0 τ = 0.01 τ = 0.1 τ = 0.2 τ = 0 τ = 0.01 τ = 0.1 τ = 0.2

10 3.1417 3.1897 3.1772 3.1642 4.7301 4.8198 4.7956 4.7642

20 3.1416 3.1388 3.1351 3.0801 4.7300 4.7258 4.7139 4.6050

50 3.1416 3.1103 3.0482 2.9695 4.7300 4.6826 4.5685 4.3934

100 3.1416 3.0421 2.9561 2.8154 4.7300 4.5786 4.4126 4.2259

200 3.1416 2.9532 2.8738 2.7956 4.7300 4.4789 4.2661 4.0938

300 3.1416 2.9315 2.8339 2.7857 4.7300 4.4026 4.2053 4.0350

400 3.1416 2.9259 2.8332 2.7851 4.7300 4.4002 4.2018 4.0303

6.2.1 Free Vibration of Nano-Scaled Beams

The free vibration of nano-scaled beams is investigated through the assumption of
Euler-Bernoulli beam theory. Thus, the procedure of Sect. 4.3 has been adopted for
elastic beams, and Hermite beam elements have been considered (see Sect. 3.3).
For the numerical integration, three integration points are used for Gauss-Legendre
quadraturemethod. Dimensions of the beam are as l = 10 nm, h = 1 nm and b = 0.5
nm.

Table 1 shows the convergence study for free vibration of nano-scaled Euler-
Bernoulli beam considering two types of boundary conditions. It is seen that the
convergence rate for the local case (τ = 0) is faster than the nonlocal case. This
behavior can be explained by further investigation of the nonlocal kernel function
characteristics. For a given reference point, the value of kernel function is maximum,
i.e.g.oes to infinity, on that point and it decreases by moving further from it. So, for
accurately capturing the nonlocal effects near the reference point, several elements
are needed. Besides, by decreasing the size of elements the accuracy of numerical
integrations increases.

Table 2 shows the comparison of the natural frequencies based on the nonlocal
integral theory with those of differential elasticity theory which have been reported
by Lu et al. [41], Reddy [42] and Ghannadpour [43]. It is seen that the nonlocal
differential theory cannot predict the softening effect of the nonlocal parameter for
the cantilever beam (considering the fundamental natural frequency). As it has been
said, the current discrepancy might have been caused by the fact that the nonlocal
differential theory is extracted from the integral one under certain assumptions and
in the region far from the boundaries. However, there has been a generally good
agreement between the results.

Figure 12 shows the variations of the fundamental natural frequency with the non-
local parameter considering different length to thickness ratio for cantilever boundary
conditions. It is seen that, by increasing the nonlocal parameter value, natural fre-
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Table 2 Comparison of non-dimensional natural frequencies (ω̄ = l
√

ω/C0, C0 = √
E I/ρA) for

nonlocal Euler-Bernoulli beam

Ref. τ Simply
supported beam

Clamped beam Cantilever beam

Present 0 3.14 4.73 1.88

0.1 2.83 4.2 1.67

0.2 2.78 4.03 1.63

0.5 2.56 3.65 1.49

0.7 2.49 3.55 1.45

Lu et al. [41] 0 3.14 4.73 1.88

0.1 3.07 4.59 1.88

0.2 2.89 4.28 1.89

0.5 2.30 3.31 2.02

0.7 2.02 2.89 –

Reddy [42] 0 3.14 – –

0.1 3.00 – –

0.2 2.87 – –

Ghannadpour et
al. [43]

0 3.14 4.73 1.88

0.5 2.30 3.31 2.02

0.7 2.02 2.89 –

Fig. 12 Fundamental
frequency variations with the
nonlocal parameter
considering different length
to thickness ratios for
cantilever nano-scaled beam
[13]

quency decreases. Also, it is observed that for larger values of l/h, the sensitivity of
frequency to e0a decreases. This might be due to the fact that, the effects of nonlo-
cality are more pronounced near the boundaries, so for shorter beams these effects
can increase.
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Fig. 13 Variations of the
fundamental natural
frequency with length to
thickness ratio for
nano-scaled beams [13]

Figure 13 shows the effect of length to thickness ratio on the natural frequency
considering different nonlocal parameters and various boundary conditions. It is seen
that regardless of local/nonlocal effects, the increase in l/h has led to the reduction of
natural frequencies. The highest reduction belongs to both-sides clamped boundary
condition and the lowest to cantilever.

6.2.2 Free Vibration of Nano-Scaled Plates

The classical plate theory is used to investigate the free vibration of nano-scaled
plates [16]. The procedure of Sect. 5.3, in conjunction with Adini-Clough element
types (3.3), have been adopted. Three points in each direction have been assumed
for numerical integration. It is noted that the length and thickness of the square plate
are 10nm and 0.34nm, respectively.

Convergence study of a square plate considering e0a = 1 nm and all-sides simply
supported boundary condition are shown in Table 3. Equal size square elements
have been used for mesh allocation. It is seen that the results converge for 45 × 45
elements.
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Table 3 Convergence study of free vibration considering a simply-supported square nano-scaled
plate (e0a = 1 nm)

Number of square elements Fundamental natural frequency [GHz]

3 × 3 71.5887

7 × 7 59.9211

11 × 11 55.953

15 × 15 54.1543

19 × 19 53.1874

23 × 23 52.6066

27 × 27 52.2302

31 × 31 51.9721

33 × 33 51.8128

37 × 37 51.789

41 × 41 51.788

45 × 45 51.788

Table 4 Comparison of the results for free vibration of a square nano-scaled plate (ωND =
ωl2

√
ρh/D)

Boundary
conditions

Present
(e0a = 1
nm)

Reference
[44]

Reference
[45]

Reference
[46]

Reference
[46] MD
(zigzag)

Reference
[46] MD
(armchair)

Simply
supported

15.52 18.02 18.01 18.88 7.62 17.84

Clamped 28.16 – – 33.78 34.36 34.84

Table 4 shows the comparison of non-dimensional fundamental natural frequency
based on finite element integral nonlocal elasticity with those of nonlocal differential
theory.Results of Pradhan andPhadikar [44] are obtainedbyusing theNavier solution
and nonlocal classical plate theory.Murmu and Pradhan [45] have also used nonlocal
classical plate theory whereas Ansari et al. [46] have implemented nonlocal first-
order shear deformation theory. Besides, the results of molecular dynamics have
been included in the table. As it is predictable, considering the non-locality leads to
some discrepancies between the results which are relatively more pronounced for
all-sides simply supported boundary condition. By comparing the results of current
study with those of molecular dynamics, it can be concluded that for the subject case
the value of nonlocal parameter lies between 0 and 1nm.

Figure 14 shows the effect of nonlocal parameter on thenatural frequencyof square
nano-scaled plate considering different length to thickness ratios. As observed, by
increasing the nonlocal parameter natural frequency decrease. This softening effect
is more pronounced for the lower values of the plate length to thickness ratio, i.e.,
the variation of natural frequency with l/h is less noticeable for larger plates. This
might be due to the importance of nonlocal effects near the boundaries, that is to say,
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Fig. 14 Effect of the nonlocal parameter on the natural frequency of square plate with all-sides
simply supported, all-sides clamped and cantilever boundary condition (h = 0.34 nm) [16]

for the smaller plates, the boundary conditions play an important role in nonlocal
characteristics of the structure. It is noted that by increasing the length of the structure
the e0a/ l value diminishes for a given value of e0a.

Figure 15 shows the variations of the natural frequency with the length of the
square plate for different boundary conditions considering e0a = 1 nm. It is seen that,
by increasing the length the natural frequency decreases. Also, decrease in natural
frequency is more steep for all-sides clamped boundary condition in comparison
with all-sides simply supported and clamped free conditions.

Figure 16 shows the effect of aspect ratio on free vibration of rectangular nano-
scaled plate considering all-sides simply supported boundary condition. As it is seen,
by increasing the aspect ratio, the natural frequencies decrease.
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Fig. 15 Effect of the length
of the square plate on the
natural frequency for
e0a = 1 nm and h = 0.34
nm

Fig. 16 Effect of the aspect
ratio of the rectangular plate
on the natural frequency
considering all-sides simply
supported boundary
condition [16]

6.3 Elastic Beam and Plate Buckling

The buckling of nano-beams and nano-plates are investigated employing the finite
element nonlocal integral elasticity method and considering the single-phase nonlo-
cal constitutive equation (Eq. (2)).

6.3.1 Buckling of Nano-Scaled Beams

The procedure of Sect. 4.4 has been employed for the buckling analysis of Euler-
Bernoulli nano-scaled beams. Hermite beam elements (see Sect. 3.3 ) are used and
the beam properties are E = 1 TPa, l = 20 nm, b = t = 1 nm. Table 5 shows the
convergence study for a two-sides clamped beam considering e0a = 1 nm and 2nm.

Figures17 and 18 show the variations of buckling load ratio with the nonlo-
cal parameter for both-sides simply supported and clamped boundary conditions,
respectively. Also, the results of the current study have been compared with those
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Table 5 Convergence study for buckling of nonlocal Euler-Bernoulli beam considering two-sides
clamped boundary condition

Number of elements e0a = 1 nm e0a = 2 nm

10 12.3789 7.4291

20 9.2301 6.6915

30 8.4526 6.5072

50 7.9771 6.3892

100 7.7294 6.3213

200 7.6488 6.2952

300 7.6296 6.2879

400 7.6214 6.2845

Fig. 17 Variations of
buckling load ratio with the
nonlocal parameter for both
sides simply supported
Euler-Bernoulli beam [7]

based on the nonlocal differential elasticity [7] considering the Timoshenko beam
theory. It is seen that, by increasing the nonlocal parameter buckling load decreases.

Figures19 and 20 show the variations of buckling load with length to thickness
ratio for different boundary conditions considering e0a = 1 nm. It is observed that,
by increasing the length to thickness ratio, the discrepancy between the results of
the current method with those of local elasticity and differential elasticity theory
decreases.Also, it is seen that the effect of the nonlocal parameter ismore pronounced
for shorter beams.

6.3.2 Buckling of Nano-Scaled Plates

The buckling of classical plates are analyzed using the finite element nonlocal integral
method, and the results are compared with those of nonlocal differential elasticity
theory. The Adini-Clough element has been used for the analysis (see Sect. 3.3).
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Fig. 18 Variations of
buckling load ratio with the
nonlocal parameter for both
sides clamped
Euler-Bernoulli beam [7]

Fig. 19 Variations of
buckling load with length to
thickness ratio for e0a = 1
nm considering both sides
simply supported beam [7]

Fig. 20 Variations of
buckling load with length to
thickness ratio for e0a = 1
nm considering both sides
clamped beam [7]
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Fig. 21 Variations of
non-dimensional buckling
load with the length of the
square plate considering
all-sides simply supported
boundary conditions

Fig. 22 Variations of
non-dimensional buckling
load with the length of the
plate for different values of
aspect ratio considering
all-sides simply supported
boundary condition

Figure 21 shows the variations of buckling load ratio with the length of square
plate for all-sides simply supported boundary condition considering e0a = 1 nm
and e0a = 2 nm. The results of the current study have been compared with those
obtained by Levy method based on nonlocal differential elasticity theory [47]. It is
seen that by increasing the length of the plate, the nonlocal effects decrease. These
effects in smaller dimensions result in more reduction of buckling loads. In other
hands, by increasing the e0a discrepancy between the results of the current study
with those of nonlocal differential elasticity increase. This might be due to the fact
that by increasing the value of e0a, the effects of boundary conditions can play a
more important part.

Figure 22 shows the variations of buckling load ratio with the length of the plate
for lx/ly = 1 and lx/ly = 2 considering e0a = 1 nm and all-sides simply supported
boundary conditions.

Figure 23 shows the effect of nonlocal parameter on the buckling ratio of nano-
scaled plate considering all sides simply supported, and all sides clamped boundary
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Fig. 23 Effect of the
nonlocal parameter on the
buckling load ratio for
all-sides clamped and
all-sides simply supported
nano-scaled plate
(lx = ly = 1.5 nm)

conditions. It is seen that for all sides clamped boundary condition, the reduction in
buckling load is more pronounced in comparison with the all sides simply supported
boundary conditions. It is due to the fact that, stronger boundary conditions lead to
more pronounced nonlocal effects near the boundaries.

6.4 Viscoelastic Free Vibration

The free vibration of nano-scaled beams and plates are studied using the finite ele-
ment nonlocal integral elasticity approach considering the Kelvin-Voigt viscoelastic
model. Properties of the beam are E = 1 TPa and ρ = 2000 kg/m3, and for the plate
E = 1 TPa, ν = 0.16 and ρ = 2250 kg/m3.

6.4.1 Free Vibration of Viscoelastic Nano-Scaled Beams

For obtaining the results of the viscoelastic free vibration of nano-scaled beams, the
procedure explained in Sect. 4.3 have been adopted. Hermite type elements have
been used for meshing the beam (see Sect. 3.3). The complex eigenvalues of the
current study based on the finite element nonlocal integral method are compared
with those of Lu et al. [41] and Lei et al. [20] based on the nonlocal differential
elasticity theory and those obtained by Abaqus/CAE commercial software (local
viscoelasticity) in Table6 [15]. The results have been extracted for different values of
nonlocal and viscoelastic parameters considering various boundary conditions. The
complex eigenvalues obtained by the finite element integral nonlocal method is lower
than those of the nonlocal differential theory. Also, both the real and imaginary parts
of the eigenvalue decrease by increasing the nonlocal parameter for both methods,
except in the case of cantilever boundary condition for the nonlocal differential
theory.
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Fig. 24 Variations of the real part of the frequency with viscoelastic parameter for Euler-Bernoulli
nano-scaled beam for e0a = 0 nm and e0a = 1 nm [15]

Fig. 25 Variations of the imaginary part of the frequency with viscoelastic parameter for Euler-
Bernoulli nano-scaled beam for e0a = 0 nm and e0a = 1 nm [15]

Figures 24 and 25 show the variations of real and imaginary parts of non-
dimensional eigenvalues, (non-dimensionalized by local elastic natural frequency
ωLE ) with the viscoelastic parameter considering different values of nonlocal param-
eter and various boundary conditions. It is seen that by increasing the viscoelastic
parameter the real part of complex eigenvalues decreases and the imaginary part
increases. Also, it is observed that for the both-sides clamped boundary condition, in
comparison with other boundary conditions, the effect of the viscoelastic parameter
is more noticeable. However, by increasing the nonlocal parameter the change in
eigenvalues due to viscoelastic parameter decreases.

Figure 26 shows the effect of nonlocal parameter on the real and imaginary parts
of eigenvalues for viscoelastic nonlocal Euler-Bernoulli beam considering both sides
simply supported boundary condition and various viscoelastic parameters and beam
lengths. It is seen that by increasing the value both the real and imaginary parts of
frequency decrease. For shorter beams, the variations of the eigenvalues are rela-
tively more pronounced, because by decreasing the length of the beam, the effects



304 M. Naghinejad et al.

Fig. 26 Effects of the nonlocal parameter on the complex eigenvalues for both sides simply sup-
ported Euler-Bernoulli beam [15]

of boundary conditions become more important and nonlocality effects are stronger
near the boundaries. Besides, for shorter beams, the effects of viscoelastic parameter
on the imaginary part become more noticeable.

6.4.2 Free Vibration of Viscoelastic Nano-Scaled Plates

For analyzing the free vibration behavior of viscoelastic square nano-scaled plates,
the procedure explained in Sect. 5.3 is followed. The plate has been meshed by
Adini-Clough type elements (see Sect.3.3), and it has length and thickness of 10
and 0.34nm, respectively. Also, in the current section terms of diagonal matrix Td

(viscoelastic parameters) are assumed to be equal and shown by Td .
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Table 7 Comparison between the fundamental natural frequency (GHz) of nano-scaled plates based
on nonlocal integral theory and nonlocal differential theory considering all sides simply supported
boundary condition

References τ Undamped
elastic plate
(Td = 0 [ns])

Kelvin-Voigt
viscoelastic plate
(Td = 0.5 × 10−4

[ns])

Kelvin-Voigt
viscoelastic plate
(Td = 10−4 [ns])

Pang et al.
[48]

0.0 65.7909 65.7873 + 0.6799i 65.7768 + 1.3598i

0.5 64.2253 64.2220 + 0.6479i 64.2122 + 1.2959i

1.0 60.1240 60.1213 + 0.5678i 60.1132 + 1.1356i

1.5 54.7472 54.7452 + 0.4708i 54.7391 + 0.9416i

2.0 49.1803 49.1789 + 0.3799i 49.1745 + 0.7599i

Present study 0.0 65.7909 65.7873 + 0.6799i 65.7768 + 1.3598i

0.5 57.5403 57.5380 + 0.5201i 57.5309 + 1.0401i

1.0 51.788 51.7845 + 0.4243i 51.7810 + 0.8486i

1.5 45.5904 45.5892 + 0.3265i 45.5857 + 0.6530i

2.0 38.1002 38.0995 + 0.2280i 38.0974 + 0.4560i

Comparison between the fundamental eigenvalues based on the nonlocal integral
theory with those of nonlocal differential theory [48] considering all sides simply
supported boundary condition is shown in Table 7. It is seen that for a local case
(τ = 0), the agreement between the results is excellent. By increasing the nonlocal
parameter, the results start to differentiate.

Figure 27 shows the effect of nonlocal parameter on the free vibration behavior of
viscoelastic classical nano-scaled plate for different viscoelastic and length param-
eters considering all sides simply supported boundary condition. It is seen that by
increasing the value of e0a, both the real and imaginary parts of eigenvalues decrease
and this effect is more pronounced for smaller plates. Also, the decrease in the imag-
inary part due to increase in nonlocal parameter is more pronounced for larger values
of Td .

Figure 28 shows the variations of real and imaginary parts of non-dimensional
eigenvalues (non-dimensionalized by the natural frequency of local elastic plate)with
the viscoelastic parameter considering different boundary conditions for e0a = 1 nm.
It is observed that by increasing the value of Td , the real part of eigenvalues decrease
and imaginary part increase. Besides, this variation is more pronounced for all-sides
clamped boundary condition.
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Fig. 27 Variations of the complex eigenvalues with nonlocal parameter for all-sides simply sup-
ported plate considering different viscoelastic parameters

7 Conclusions

In this chapter, a finite element method based on the nonlocal integral theory has
been developed to study the mechanical behavior of nano-scaled beams and plates.
The constitutive equation has been obtained considering the nonlocal integral theory
and viscoelastic properties. Then, Hamilton’s principle has been adopted for deriving
the formulations and preparing the finite element foundation. Despite the simplicity
of non-local differential theory in some aspects, it has been extracted from the more
general nonlocal integral theory under certain conditions, thus it can only manage
some limited problems (e.g. simple geometries, boundary conditions, and certain
kernel types). However, the method presented in the current chapter can be used



Finite Element Nonlocal Integral Elasticity Approach 307

Fig. 28 Variations of the
complex eigenvalues for a
nano-scaled plate with the
viscoelastic parameter for
different boundary
conditions

for modeling a broad range of problems, including complex geometries, various
boundary conditions, and different kernel types. For instance, by using the finite
element nonlocal theory the force boundary conditions can be analyzed properly
for nano-scaled plates. In addition, the paradox, which has been seen in some cases
considering the nonlocal differential theory, does not arise in the current method.

In previous sections, the formulations for studying bending, buckling, and vibra-
tion of nano-scaled beams and plates have been presented, and some examples have
been discussed for understanding the effects of non-local parameters, geometri-
cal parameters, boundary conditions and viscoelastic effects on the corresponding
mechanical behavior.
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