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Foreword

The present book “Size-Dependent Continuum Mechanics Approaches: Theory and
Application” is a collection of papers edited by Esmaeal Ghavanloo, S. Ahmad
Fazelzadeh and Francesco Marotti de Sciarra. It covers a lot of interesting infor-
mation about continuum mechanics approaches taking into account size-dependent
effects. Approaches present in the book are mostly based on nonlocal theories, but
also on micromorphic, peridynamic and gradient theories. Instead of the classical
continuum mechanics with taking into account the material point and its
infinitesimal surrounding, the alternative theories include also far-distance (beyond
the infinitesimal surrounding) information. The majority of presentations in this
book are related to contributions in this field of Ahmed Cemal Eringen (see, for
example, W.H. Müller, “Eringen, Ahmed Cemal”, In H. Altenbach, A. Öchsner
(eds), Encyclopedia of Continuum Mechanics, Springer, 2020, 860–862).

It should be noted that the non-classical continuum mechanics approaches are
much more complicated in comparison with the classical ones. Many examples are
presented in the book for beams and one can follow the discussion in a simple
manner having only basic knowledge on the Euler-Bernoulli beam theory. In
addition, several applications are given and one can see that non-classical
approaches are helpful if the structural size is very small. In this case, size effects
are obvious and classical theories failed. The advanced theories allow the solution
of new problems, but they have also disadvantages: the number of constitutive
parameters increases. The estimation of the constitutive parameters is not trivial and
several suggestions are discussed in the literature.

The book contains 15 papers prepared by leading scientists in size-dependent
theories. In the first chapter “Lattice-Based Nonlocal Elastic Structural Models” in
the sense of Lagrange, Hencky and Eringen are discussed and compared. In the
following chapter, “Eringen’s Nonlocal Integral Elasticity and Applications for
Structural Models” are presented. The focus of applications is on carbon nanotubes.
The third chapter is devoted to “Nonlocal Mechanics in the Framework of the
General Nonlocal Theory”. Here the focus is on the general nonlocal theory and it is
shown that the strain gradient theory can capture the same phenomena. In the next
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chapter “Displacement Based Nonlocal Models for Size Effect Simulation in
Nanomechanics” are presented. The main results of such theory and the differences
with other nonlocal models are described. In the fifth chapter “One-Dimensional
Well-Posed Nonlocal Elasticity Models for Finite Domains” are introduced. It is
shown that some paradoxical results disappear by using the suggested models. In
chapter “Iterative Nonlocal Residual Elasticity”, a new approach is presented
allowing to avoid some complications of finding solutions of Eringen’s nonlocal
model. The seventh chapter deals with “Nonlocal Gradient Mechanics of Elastic
Beams Under Torsion”. The theory is applied to nano-electro-mechanical systems.
The eighth chapter presents the “Reformulation of the Boundary Value Problems of
Nonlocal Type Elasticity: Application to Beams”. In the ninth chapter “Application
of Combined Nonlocal and Surface Elasticity Theories to Vibration Response of a
Graded Nanobeam” is discussed. It is well known that the correct modeling of
small-size structures can be performed if the surface energy is taken into account.
Special numerical techniques are necessary for nonlocal theories. In the tenth
chapter, “Finite Element Nonlocal Integral Elasticity Approach” is introduced. In
the focus of chapter “‘Explicit’ and ‘Implicit’ Non-local Continuum Descriptions:
Plate with Circular Hole” is a model for materials with internal material organi-
zation when the internal and external length scales are of the same order. The
twelfth chapter presents “Micromorphic Continuum Theory: Finite Element
Analysis of 3D Elasticity with Applications in Beam- and Plate-Type Structures”.
A special 3D micromorphic element with 12 degrees of freedom (3 classical, 9
non-classical) is developed. “Peridynamic modeling of laminated composites”
(which is in the focus of chapter “Peridynamic Modeling of Laminated Composites”)
presents a new approach to failure analysis. Chapter “Nonlocal Approaches to the
Dynamics of Metamaterials” is devoted to a new class of materials with outstanding
properties. In the last Chapter “Gradient Extension of Classical Material Models:
From Nuclear & Condensed Matter Scales to Earth & Cosmological Scales” the
extension of gradient theories to greater sizes is given.

All papers of the present book demonstrate that the modelling of small-size
structures cannot be realized using the classical continuum approach. With respect
to the scale effects, non-local theories can be applied, but this is not the only one
possibility.

Magdeburg, Germany
September 2020

Holm Altenbach
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Preface

Classical continuum mechanics has been widely utilized to solve fundamental
problems in various fields of engineering and many aspects of physics. Despite its
many successes, the classical continuum mechanics cannot always predict well
experimentally-observed phenomena in both natural and man-made materials. For
example, it fails to describe physical phenomena in which the long-range interac-
tions play a major role. Furthermore, the mathematical modeling of matter via the
classical continuum mechanics ignores the fact that the material is made of atoms
and so it cannot be directly applied to study the discrete nature of the matter. In
addition, the classical continuum mechanics is invariant with respect to length scale
and cannot predict the size-dependency of mechanical properties of microstructures
and nanostructures.

These limitations have motivated the development of various size-dependent
continuum mechanics approaches including micromorphic, micropolar, nonlocal,
and high-order strain/rotation gradient mechanics. The conception of these
approaches was based on the query, Is it possible to construct continuum-based
approaches that can predict physical phenomena on the micro- or nano-scales?

The starting point of the development of size-dependent continuum approaches
was the monograph of the Cosserat brothers in 1909. Their work was forgotten over
half a century since it was ahead of their time. After 1955, the Cosserat theory was
extended by several research groups and many advances and criticisms were made
since then. In two recent decades, these approaches have been recognized to be
practical for mathematical representations of the physical world. In addition, several
modifications and improvements of the size-dependent continuum mechanics
approaches have been proposed, and their applications to describe the mechanics of
various types of advanced materials and structures have been discussed.

The book presents a series of independent chapters written by scientists with
worldwide expertise and international reputation in various fields of continuum and
computational mechanics, as well as material science. In this book, recent
advancements of size-dependent continuum mechanics approaches and their
applications to describe the material behavior on different scales have been inte-
grated. One main feature of this book is its in-depth discussions of the vast and
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rapidly expanding research works pertinent to the nonlocal continuum mechanics.
By compiling different approaches into one book, a unique perspective is provided
on the current state of the size-dependent continuum mechanics approaches and
what the future holds. It is hoped that the reader will find this book a useful resource
as he/she progresses in their study and research.

This book contains fifteen chapters by thirty-five researchers which are from
Australia, China, France, Greece, India, Iran, Italy, Qatar, Tunisia, Turkey, UAE,
and USA. Chapter “Lattice-Based Nonlocal Elastic Structural Models” describes
the lattice-based nonlocal approach and presents some applications of the proposed
approach for some lattice structural systems including axial lattices, beam lattices
and plate lattices. The contemporary advances in Eringen’s nonlocal elasticity
theory with an emphasis on solving structural engineering problems are discussed
in chapter “Eringen’s Nonlocal Integral Elasticity and Applications for Structural
Models”. In chapter “Nonlocal Mechanics in the Framework of the General
Nonlocal Theory”, general nonlocal theory is introduced and it is shown that the
theory can be reduced to the strain gradient theory and the couple stress theory.
Chapter “Displacement Based Nonlocal Models for Size Effect Simulation in
Nanomechanics” considers the displacement based nonlocal models which belong
to the mechanically based nonlocality. A well-posed nonlocal differential model for
finite domains is developed in chapter “One-Dimensional Well-Posed Nonlocal
Elasticity Models for Finite Domains” and its applicability to predict the static
behavior of nanorods and nanobeams is investigated. Motivated by the existing
complications of finding solutions of Eringen’s nonlocal model, iterative nonlocal
residual elasticity is presented in chapter “Iterative Nonlocal Residual Elasticity”.
The nonlocal gradient elasticity theory of inflected nanobeams is extended in
chapter “Nonlocal Gradient Mechanics of Elastic Beams Under Torsion” to the
mechanics of elastic nanobeams under torsion. Chapter “Reformulation of the
Boundary Value Problems of Nonlocal Type Elasticity: Application to Beams” is
dedicated to the reformulation of the boundary value problems of nonlocal type
elasticity. Application of the combined nonlocal and surface effects on the free and
forced vibration response of a graded nanobeam is investigated in Chap.
“Application of Combined Nonlocal and Surface Elasticity Theories to Vibration
Response of a Graded Nanobeam”.

In chapter “Finite Element Nonlocal Integral Elasticity Approach”, a nonlocal
finite element method is developed to study the bending, buckling, and vibration
behavior of nanostructures. Chapter “‘Explicit’ and ‘Implicit’ Non-local Continuum
Descriptions: Plate with Circular Hole” is focused on the correspondence between
“implicit” type Cosserat (micropolar) and “explicit” type Eringen’s two-phase
local/nonlocal models, in terms of characteristic quantities. To investigate the
mechanical behavior of small-scale structures, a new 12-DOF three-dimensional
size-dependent micromorphic element is introduced in chapter “Micromorphic
Continuum Theory: Finite Element Analysis of 3D Elasticity with Applications in
Beam- and Plate-Type Structures”. Chapter “Peridynamic Modeling of Laminated
Composites” presents peridynamic modeling approaches namely bond-based,
ordinary state-based, and peridynamic differential operator for predicting
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progressive damage in fiber-reinforced composite materials under general loading
conditions. Chapter “Nonlocal Approaches to the Dynamics of Metamaterials”
provides a concise review of nonlocal theories as applied to metamaterials, with
special consideration given to vibrations and dynamics. Finally, in Chapter
“Gradient Extension of Classical Material Models: From Nuclear & Condensed
Matter Scales to Earth & Cosmological Scales”, a concise review of gradient
models (across scales, materials, and processes) is provided based on the internal
length gradient approach.

The editors would like to thank all the contributing authors for their participation
and cooperation, in spite of their busy work schedules during Covid-19 pandemic,
which made this book possible. In addition, we wholeheartedly thank the anony-
mous reviewers for their carefully performed job and also the team of Springer,
especially Dr. Leontina Di Cecco, for their excellent cooperation during the
preparation of this edited book. Furthermore, we would like to thank Prof. Holm
Altenbach for writing a foreword to the book. Finally, it should be noted that the
completion of this book would not have been possible without the help, support and
understanding of our families.

Shiraz, Iran Esmaeal Ghavanloo
Shiraz, Iran S. Ahmad Fazelzadeh
Naples, Italy
September 2020

Francesco Marotti de Sciarra
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Lattice-Based Nonlocal Elastic
Structural Models

Noël Challamel, Chien Ming Wang, Hong Zhang, and Isaac Elishakoff

Abstract This chapter is devoted to lattice-based nonlocal approaches in relation
with elastic microstructured elements. Nonlocal continuous approaches are shown to
be relevant for capturing length scale effects in discrete structural mechanics models.
The chapter contains three complementary parts. In the first part, axial lattices, as
already studied by Lagrange during the XVIIIth century are investigated, both for
statics and dynamics problems. This discrete model is also called the Born-Kármán
lattice model with direct neighbouring interactions. Exact solutions are presented for
general boundary conditions. A nonlocal elastic rod model is then constructed from
the lattice difference equations. The nonlocal model is similar to the nonlocal model
proposed by Eringen in 1983 that is based on a stress gradient approach, although
the small length scale of the nonlocal model may differ from statics to dynamics
applications. This part is closed with a discussion on generalized lattices with direct
and indirect neighbouring interactions and their possible nonlocal modelling. The
second part of this study deals with lattice beam elements called Hencky-Bar-Chain
models, due to the fact that the discrete beam model was introduced by Hencky in
1920. Exact solutions are presented for general boundary conditions in both statics
and dynamics settings. A nonlocal elastic Euler-Bernoulli beammodel is then devel-
oped from the lattice difference equations. The nonlocal model is similar to a stress
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2 N. Challamel et al.

gradient nonlocal Euler-Bernoulli beam,where the nonlocality is of the Eringen type,
although the length scale of the nonlocal model may also differ for statics or dynam-
ics applications. The last part is devoted to lattice plates as introduced by Wifi et al.
in 1988, and El Naschie in 1990, in connection with the finite difference formulation
of Kirchhoff-Love plate models. Exact solutions for lattice plate statics and dynam-
ics problems are presented for the Navier-type boundary conditions. A nonlocal
elastic Kirchhoff-Love plate model is then derived based on the difference equa-
tions of the lattice plate. The microstructure-based nonlocal model slightly differs
from an Eringen stress gradient Kirchhoff-Love plate model. The methodology fol-
lowed from fundamental lattice microstructures shows that new nonlocal structural
elements may be built from physical discrete structural approaches. The nonlocal
models derived herein are closely related to the lattice microstructure assumed at the
discrete level. It is expected that alternative nonlocal models may be achieved for
some other microstructures.

1 Introduction

In this chapter, the behaviour of discrete structural elements (also labelled as
microstructured elements or lattice models) is studied both in statics and in dynam-
ics settings. The structural elements considered are typically discrete rods, discrete
beams and discrete plates in the elastic range. The discrete models are composed
of a finite number of elements connected by some elastic interactions, mainly axial
and rotational springs. It is shown that these elastic structural elements possess some
scale effects, as compared to their continuous analogues for an asymptotic large num-
ber of elements. Exact solutions of lattice structural mechanics problems (including
discrete beams and plates) are available in the recent book of Wang et al. [1]. Scale
effects in structural mechanics may be also captured within nonlocal mechanics, as
extensively developed by Eringen and Kim [2], Eringen [3] (see also the seminal
book of Eringen [4]). Owing to some common scale effects, Eringen [3] calibrated
a stress gradient model (also called differential nonlocal model) from axial lattice
dynamics results. He showed the possibility of approximating some wave dispersive
properties of an axial lattice with a nonlocal axial model. This result opens some
new directions in the connection of lattice mechanics with nonlocal mechanics. This
chapter presents theoretical results in the same direction, for introducing nonlocal
rod, beam and plate models from lattice structural mechanics. It is worth mentioning
that exact solutions of nonlocal rod, beam and plate models are available in mono-
graphs such as the one of Elishakoff et al. [5], Gopalakrishnan and Narendar [6],
Karlic et al. [7] or Ghavanloo et al. [8]. However, the connection of these nonlocal
models with some discrete lattice formulation has not been studied in details in these
books.

Therefore, wewill connect the behaviour of lattice structural elements with nonlo-
cal structural mechanics, using phenomenological or lattice-based nonlocal models.
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The chapter consists of three complementary parts. In the first part, axial lattices (as
already studied by Lagrange) are investigated for some dynamics problems including
axial elastic supports. Historically, the theoretical investigation of one-dimensional
lattices goes back to the XVIIIth century with the pioneering works of Lagrange.
Lagrange [9, 10] calculated the exact eigenfrequencies of finite strings with con-
centrated masses, which can be viewed as a lattice string. Such a system composed
of a finite number of degrees-of-freedom is governed by difference equations, as
opposed to continuous systems governed by differential or partial differential equa-
tions. The mathematical problem of this difference eigenvalue problem valid for the
finite string is in fact equivalent to the vibration problem of a finite microstructured
rod in the axial direction or finite shaft in the torsional direction. The discrete axial
model composed of masses connected by elastic springs, is also referred to as the
Born-Kármán lattice model with direct neighbouring interactions. In this chapter,
this Born-Kármán lattice model (or Lagrange model) will be investigated in pres-
ence of axial external supports, thus generalizing the results of Lagrange for general
boundary conditions and elastic supports. A nonlocal elastic rod model is then devel-
oped from the lattice difference equations. The nonlocal model is similar to a stress
gradient nonlocal model of Eringen [3], although the length scale of the nonlocal
model may differ from statics to dynamics applications. This part ends with a discus-
sion on generalized lattices with direct and indirect neighbouring interactions and
their possible nonlocal modelling. The second part deals with lattice beam elements
called Hencky-Bar-Chain models [11]. In 1920, Hencky developed a discrete model
composed of a finite number of rigid elements connected by rotational springs [11].
Among various discrete structural problems (in-plane buckling of discrete columns,
out-of-plane buckling of discrete beams, in-plane buckling of discrete arches and
etc.), he solved the buckling problem of this Hencky-Bar-Chain model for some
finite number of elements (typically for two, three and four elements). Exact solu-
tions of this buckling problem, whatever the number of elements, have been derived
later by Wang [12, 13], from the exact resolution of a linear difference equation.
In the chapter, exact solutions of the buckling and vibration of Hencky-Bar-Chain
model (labelled as Hencky beam model) are presented for general boundary condi-
tions. A nonlocal elastic Euler-Bernoulli beam model is then built from the lattice
difference equations of Hencky-Bar-Chain formulation. The nonlocal model is sim-
ilar to a stress gradient nonlocal Euler-Bernoulli beam, where the nonlocality is of
the Eringen type [3], although the length scale of the nonlocal model may also dif-
fer for statics or dynamics applications. The last part is devoted to lattice plates (or
microstructured plates) as introduced by Wifi et al. [14] and El Naschie [15], in
connection with the finite difference formulation of Kirchhoff-Love plate models.
Exact solutions are presented for the Navier-type boundary conditions, any number
of elements, both in statics and in dynamics settings. A nonlocal elastic Kirchhoff-
Love plate model is then constructed from the lattice difference equations of the plate
lattices. The microstructure-based nonlocal model slightly differs from an Eringen
stress gradient Kirchhoff-Love plate model.More generally, exact solutions of lattice
structural mechanics problems are available in the recent book of Wang et al. [1],
including straight, curved Hencky beam models and lattice plate models. Lerbet et
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al. [16] also investigated non-conservative discrete structural mechanics problems
with circulatory loading. In this chapter, nonlocal rod, beam and plate models are
elaborated for each lattice structural model. The methodology followed from funda-
mental lattice microstructures shows that new nonlocal structural elements may be
built from physical discrete structural approaches.

2 Discrete and Nonlocal Rods

2.1 Axial Lattices

This chapter studies the vibration behaviour of axial lattices composed of concen-
trated masses connected by elastic springs (lattice with direct elastic neighbouring
interaction). Exact solutions of this discrete rod problem can be found for general
boundary conditions, from the resolution of some linear difference equations. His-
torically, Lagrange [9, 10] was apparently the first to have derived the exact solutions
of fixed-fixed finite lattices. He determined the eigenfrequencies of a lattice string
(string with concentrated masses) with fixed-fixed boundary conditions. This prob-
lem has been recently revisited by Zhang et al. [17] within the theory of nonlocal
string mechanics. From a mathematical point of view, the discrete string problem
(or lattice string) is mathematically analogous to the one of a discrete rod (or lattice
rod), as considered herein (see also Lagrange [9, 10]). Such a lattice with direct
neighbouring interactions may be referred to as a Lagrange lattice or a Born-Kármán
lattice [18]. This lattice problem is actually to be solved via a set of linear difference
equations with corresponding discrete boundary conditions. The calculation of the
eigenfrequencies of such finite lattices is available in many textbooks, for various
boundary conditions (see for instance [19–21]). For instance, the vibration frequen-
cies of such a general one-dimensional lattice system were initially calculated by
Lagrange [9, 10] for fixed-fixed case (and later by [19], Tong et al. [22], Thomson
and Dahleh [20], Blevins [21] or more recently by Challamel et al. [23]). The mod-
elling of the free end boundary condition may be achieved by considering only half
of the lumped mass at the lattice border. With such an assumption for the free end
condition, the eigenfrequencies of a clamped-free axial lattice has been calculated
by Thomson and Dahleh [20] and more recently by Challamel et al. [23]. As detailed
in Challamel et al. [24], the lattice string is mathematically equivalent to the axial
lattice, but it is also analogous to a torsional lattice, or a shear lattice at some extent.
A one-dimensional shear lattice model could capture the shear properties of a multi-
storey building (see Thomson and Dahleh [20] or Luongo and Zulli [25] who solved
a shear lattice problem with clamped-free ends and assuming a full lumped mass
at the border). In this chapter, we will mainly focus on the vibrational behaviour
of axial lattices. It is worth mentioning that exact results are also available for the
static problem of axial lattices under concentrated load and distributed axial load.
For instance, Triantafyllidis and Bardenhagen [26] studied the static behaviours of
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a nonlinear axial lattice loaded by a tension at the ends. Hérisson et al. [27] used
Hurwitz Zeta functions to derive exact solutions for nonlinear lattices with elastic
quadratic interactions and subjected to distributed axial load. Gazis and Wallis [28]
derived the exact solutions for an axial lattice of semi-infinite length with direct
and indirect neighbouring interactions . The derivation considered linear interaction
inside the lattice while except for the lattice boundaries. Charlotte and Truskinovsky
[29] studied a four end forces loaded lattice with direct and indirect neighbouring
interactions.

Lagrange [9, 10] already in 1759discussed the link betweenfinite lattice string and
the continuous string. The finite string will asymptotically converge to a continuum
string when the number of elements increases. The vibration of a continuous string is
ruled by a “local” continuous wave equation. The introduction of length scale effects
representing the discreteness of the lattice structure in a corrected (or enriched) con-
tinuous model is more recent. The development of higher-order continuous models
from the lattice formulation may be achieved by expanding the pseudo-differential
operators with high-order continuous differential operators. This methodology, also
called continualization technique, has been initiated in the 1960s especially for appli-
cations in the field of discrete wave equations, or wave in nonlinear axial lattices
(see for instance Kruskal and Zabusky [30]). Various approximations of the pseudo-
differential operators may be used, using power series (Taylor expansion) or rational
series (Padé approximants). Enriched continua, also called quasicontinua by Collins
[31] can be viewed as a continuous approximation of the exact (or reference) lattice
problem. They mathematically differ from the lattice problem, due to the asymptotic
expansion of the pseudo-differential operators at a given order. For instance, Kruskal
and Zabusky [30] expanded the pseudo-differential operator involved in a nonlinear
axial lattice in power series, by considering a fourth-order Taylor-based asymptotic
expansion. It can be shown that the additional term responsible of small length scale
effects due to this expansion modifies the potential energy functional, which is then
nomore positive definite. Some alternative expansions of the pseudodiffential opera-
tors have been used, for deriving alternative quasicontinua. For instance, Benjamin et
al. [32] transformedKorteweg-deVrieswave equation by replacing higher-order spa-
tial derivatives with coupled spatio-temporal derivatives. Collins [31] and Rosenau
[33] used the same methodology to avoid higher-order uncoupled spatial derivatives,
by inverting the spatial pseudo-differential operator. For linear elastic interactions,
Jaberolanssar and Peddieson [34] obtained a nonlocal wave equation with coupled
spatio-temporal derivatives (without higher-order spatial derivatives). The result has
been generalized by Rosenau [33] who expanded the pseudo-differential operator
of the nonlinear lattice, with a Padé approximant, for deriving a consistent nonlocal
(and nonlinear) wave equationwithout higher-order spatial derivatives. Jaberolanssar
and Peddieson [34] and Rosenau [33] obtained a nonlocal wave equation built from
the difference equations of the axial elastic lattice. Eringen [3] postulated a nonlocal
elastic model from a phenomenological point of view, in a differential format [3,
4]. The stress gradient of Eringen [3] relates the stress and the strain in an implicit
differential form. The obtained nonlocal wave equation is mathematically similar
to the one issued of a continualization process applied to the difference equations
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of the axial lattice, as followed by Jaberolanssar and Peddieson [34] and Rosenau
[33]. Therefore, there is a strong relation between the discrete lattice mechanics the-
ory and the continuous nonlocal mechanics theory, where the nonlocal terms of the
approximated continuous model can be calibrated with respect to the lattice spac-
ing. Enriched continuous formulations of axial lattices have been already derived
in dynamics [3, 33] as well as in statics applications. For instance, Triantafyllidis
and Bardenhagen [26] used a Taylor expansion of the pseudo-differential operators
(continualization technique) to derive a gradient elasticity theory applied to the static
response of an axial lattice. Hérisson et al. [27] used Padé approximant for charac-
terizing nonlinear lattices with a nonlocal nonlinear continuous bar model. Gul et al.
[35] also used a Taylor expansion of the pseudo-differential operator to approximate
the vibration behavior of finite axial lattices with a gradient elasticity model (with
no definite positive energy functional).

It has been already commented that the continualization technique applied to the
vibration of the lattice problem could be reformulated in terms of nonlocal wave
equation. The continuous nonlocal phenomenological model of Eringen [3] (stress
gradient model) has been identified based on the wave dispersive properties of the
axial lattice. Aydogdu [36] calculated the analytical vibration frequencies of finite
rods with clamped-clamped and clamped-free ends based on Eringen’s nonlocal the-
ory. A hybrid gradient/nonlocal model (which includes the strain gradient elasticity
model and the stress gradient model of Eringen) has been developed by Challamel
et al. [37], in order to better calibrate the dispersive parameters of the linear axial
lattice. Aydogdu [38] generalized his earlier results [36] by considering a nonlocal
elastic rod embedded in elastic medium (with linear elastic interaction with the sub-
strate). The nonlocal longitudinal wave propagation problem formulti-walled carbon
nanotubes with van der Waals interactions between each nanotube walls has been
studied by Aydogdu [39].

This chapter ismainly focusedon the axial lattice problem.Axial latticewithfixed-
fixed and fixed-free boundary conditions in the presence of elastic neighbouring
interactions are analyzed in statics and dynamics. It should be noted that elastic
interactions on an elastic substrate are also included in Rosenau [33] as we shall
study in this chapter. Also, a nonlocal model will be continualized from the discrete
equations to fit the behavior of an axial lattice on elastic support (see also Challamel
et al. [40]).

2.2 Lattice Formulation: Governing Equations

In the first part of this chapter, we study a one-dimensional uniform lattice composed
of n + 1 masses connected by n springs with identical stiffness as shown in Fig. 1.

The mass mi of each particle are identical, except for the border mass which is
mi/2. L is the total length of the lattice system and L = n × a, where a is the nodal
spacing in the lattice. Fixed-fixed and fixed-free boundary conditions are specifically
studied. For fixed-fixed boundary conditions, there are n + 1 particles with two of
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Fig. 1 One dimensional lattice with fixed-fixed and fixed-free boundary conditions under dis-
tributed load

them attached at the border, i.e. n − 1 free particles, whereas for the fixed-free chain,
there are n + 1 particles, one of them attached, and the other free i.e. n free particles.
The balance equations of the axial lattice with only direct neighbouring interactions
including the presence of distributed load can be obtained from:

Ni+1/2 − Ni−1/2

a
= ρA

d2ui
dt2

+ kui − qi (1)

where k is the equivalent stiffness of the elastic substrate, ρA denotes the mass
density per unit length, qi is the distributed axial load applied at node i , ui is the
displacement of node i and Ni denotes the normal force in the i th spring (with half a



8 N. Challamel et al.

shift for the considered element). The mass distribution is uniformmi = ρAa except
at the borderwherem0 = mn = ρAa/2. Equations are derived for a one-dimensional
axial lattice, but the developments could also be used for string lattices, shear lattices
and torsional lattices (see Ref. [23] or Ref. [24] for a discussion on the analogies
between these different kinds of lattices). We shall mainly focus on the calculation of
eigenfrequencies of this lattice. The distributed axial force qi is assumed to vanish,
i.e. qi = 0 (see Challamel et al. [40] for the general calculations valid in case of
parabolic axial forces).

The normal force in the spring i + 1/2 (defined in the element) is relative to the
axial displacement between two adjacent nodes:

Ni+1/2 = E A
ui+1 − ui

a
(2)

where E A/a is the stiffness of the axial spring. The governing mixed functional
differential equation (or mixed differential-difference equation – see Myshkis [41])
is obtained by substituting Eq. (2) into Eq. (1):

E A
ui+1 − 2ui + ui−1

a2
− ρA

d2ui
dt2

− kui = −qi (3)

In this chapter,wewill focus on the dynamic analysis andwill not take into account
the distributed axial forces so that qi = 0. Distributed forces and elastic medium are
absent in the usual Born-von Kármán lattice equations, i.e. for qi = 0 and k = 0 so
that the governing Eq. (3) becomes

qi = k = 0 ⇒ E A
ui+1 − 2ui + ui−1

a2
− ρA

d2ui
dt2

= 0 (4)

The dynamic behaviours of this latticewill be studied for two archetypal boundary
conditions, namely for fixed-fixed and fixed-free boundary restraints. The boundary
conditions for fixed-fixed ends (as shown in Fig. 1) are given by:

u0 = 0 and un = 0 (5)

whereas the boundary conditions for fixed-free ends should be written as:

u0 = 0 and
Nn+1/2 − Nn−1/2

a
= ρA

2

d2un
dt2

+ k

2
un with Nn+1/2 = 0 (6)

which may be equivalently formulated as

u0 = 0 and E A
un − un−1

a
= −a

ρA

2

d2un
dt2

− a
k

2
un (7)
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Note that half mass is attached at the last spring of half elastic interaction. As
notably mentioned by Maugin [42] (see more recently Challamel et al. [24] for
structural mechanics applications), the difference equations valid for lattice elas-
ticity exactly corresponds to the finite difference approximation for the continuous
medium (elastic medium). Hence, the theoretical foundation of lattice mechanics
is firmly related to the numerical analysis of continuum elasticity as solved by the
finite difference method. The free boundary condition considered is related to the
central finite difference discretization of the continuous equations. The last mass
mn = mi/2 naturally appears in this scheme, as shown by LeVeque [43] who treated
Neumann type continuous boundary conditions by using a central finite difference
approximation. Challamel et al. [23] also considered this kind of discrete boundary
condition for formulating the Neumann boundary condition. Of course, it would
have been possible to get an exact solution of the lattice problem with a mass mn

equal to the other values mi for instance (or a border mass not equal to mi/2), but
the resulting discrete solution would be slightly different from the solution presented
herein. In addition, Kivshar et al. [44] set last particle mass mn different from half
of the internal particle mass and then the associated continuous boundary conditions
are in a mixed-type in presence of both displacement and its derivative.

It is possible, equivalently, to derive the governing difference Eq. (3) from energy
arguments, based on the potential energy W given by

W =
n−1∑

i=0

E A

2
a

[(
ui+1 − ui

a

)2
]

+
n−1∑

i=1

k

2
au2i + k

4
au20 + k

4
au2n (8)

With half of the mass at the ends, the kinetic energy T could be written as

T =
n−1∑

i=1

ρA

2
a(

dui
dt

)
2

+ ρA

4
a(

du0
dt

)
2

+ ρA

4
a(

dun
dt

)
2

(9)

By using Hamilton’s principle, the mixed differential-difference governing equa-
tion is found again. Considering a harmonic motion ui (t) = uie jωt where j = √−1
and ω is the angular frequency of vibration, the linear mixed differential-difference
Eq. (3) may reduce in a linear second-order difference equation in space:

E A
ui+1 − 2ui + ui−1

a2
+ (ρAω2 − k

)
ui = 0 (10)

2.3 Lattice Formulation: Resolution

By introducing the following dimensionless parameters

q∗ = qL2

E A
, k∗ = kL2

E A
, β = ρ

ω2L2

E
(11)
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the linear second-order difference equation can be expressed as:

ui+1 −
(
2 + k∗ − β

n2

)
ui + ui−1 = 0 (12)

This linear difference equation can be solved by assuming a displacement solution
in a form of power function (Goldberg [45]):

ui = u0 λ i (13)

The substitution of Eq. (13) into the difference Eq. (12) furnishes the following
auxiliary equation:

λ2 −
(
2 + k∗ − β

n2

)
λ + 1 = 0 (14)

Note that this equation is palindromic, implying that if λ is its solution, so is its
reciprocal 1/λ.

The auxiliary equation admits two complex conjugate solutions

λ = 1 − β − k∗

2n2
±
√(

1 − β − k∗

2n2

)2

− 1 = cosφ ± j sin φ

with cosφ = 1 − β − k∗

2n2
(15)

The general solution for the linear difference Eq. (12) can finally be expressed in
trigonometric functions:

ui = A cos (φ i) + B sin (φ i) (16)

For fixed-fixed boundary conditions, using one boundary condition u0 = 0 nec-
essarily shows that the eigenmode is reduced to a simple sinusoidal function:

ui = B sin (φ i) (17)

The eigenfrequencies are obtained by using the second boundary condition un = 0
and consequently the frequency equation is given by

sin (nφ) = 0 with φ = arccos

[
1 − β − k∗

2n2

]
(18)

The exact eigenfrequencies of the lattice system with fixed-fixed boundary con-
ditions are obtained for the mth mode from Eq. (18):

βm,n = 4n2sin2
(mπ

2n

)
+ k∗ for m ∈ {1, 2, ..., n − 1, n} (19)
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For fixed-free ends, the two boundary conditions are given by the kinematic con-
straint and the free end boundary condition un − un−1 = (β − k∗) un/2n2. The con-
sideration of the essential boundary condition u0 = 0 leads again to the trigonometric
solution (17). One obtains from the second boundary condition:

cos (nφ) = 0 with φ = arccos

[
1 − β − k∗

2n2

]
(20)

The natural frequencies of themth mode, valid for fixed-free boundary conditions
are finally obtained from Eq. (20):

βm,n = 4n2sin2
[
(2m − 1) π

4n

]
+ k∗ for m ∈ {1, 2, ..., n − 1, n} (21)

Both formula valid for fixed-fixed and fixed-free boundary conditions coincide
with the ones presented in Challamel et al. [23] without considering the external
medium, i.e. for k∗ = 0.

2.4 Nonlocal Continualized Model and Eringen’s Model

Following the methodology introduced by Kruskal and Zabusky [30] for nonlinear
lattices, the mixed differential-difference Eq. (3) is continualized to:

E A
u (x + a, t) − 2u (x, t) + u (x − a, t)

a2
− ρA

∂2u(x, t)

∂t2
− ku (x, t) = −q (x)

(22)
It is possible to expand the spatial difference operator inTaylor series for the spatial

difference operator, for sufficiently smooth displacement fields (see Salvadori [46],
Kruskal and Zabusky [30], Rosenau [33], Andrianov and Awrejcewicz [47, 48] and
Andrianov et al. [49]):

u (x ± a, t) =
∞∑

k=0

(±a)k

k !
∂k

∂xk
u (x, t) = [ea∂/∂x

]
u (x, t) (23)

so that Eq. (22) could also be rewritten by using a pseudo-differential operator:

4E A

a2

[
sinh2

(
a

2

∂

∂x

)]
u (x, t) − ρA

∂2u(x, t)

∂t2
− ku (x, t) = −q (x) (24)

The pseudo-differential operator can be truncated at order 4, by using a Taylor-
based expansion [30]:



12 N. Challamel et al.

4E A

a2

[
sinh2

(
a

2

∂

∂x

)]
u (x, t) = E A

∂2

∂x2

[
1 + a2

12

∂2

∂x2

]
u (x, t) + O

(
a4
)

(25)

Rosenau [33], following the idea of Benjamin et al. [32] or Collins [31], replace
the higher-order spatial derivatives using Padé approximant of order [2, 2] to expand
the pseudo-differential operator (see Baker and Graves-Morris [50] for an extensive
analysis of Padé approximants):

4E A

a2

[
sinh2

(
a

2

∂

∂x

)]
u (x, t) = E A

∂2

∂x2

1 − a2
12

∂2

∂x2

u (x, t) + ... (26)

The pseudo-differential equation would then be written with coupled spatio-
temporal derivatives based on Padé approximant:

E A
∂2u (x, t)

∂x2
− ρA

[
1 − a2

12

∂2

∂x2

]
∂2u (x, t)

∂t2

−k

[
1 − a2

12

∂2

∂x2

]
u (x, t) = −

[
1 − a2

12

∂2

∂x2

]
q (x) (27)

Jaberolanssar and Peddieson [34] obtained Eq. (27) in the context of dynamics
and without considering elastic medium interaction, namely for q(x) = 0 and k = 0.
Rosenau [33] derived a similar equation in a dynamic context, i.e. for q(x) = 0, in
the presence of elastic external interaction.

It is possible to derive equivalently the governing partial differential Eq. (27) from
the following total potential energy

W =
L∫

0

(
1

2
E A(

∂u

∂x
)
2

+ 1

2
ku2 + 1

2
l2c k(

∂u

∂x
)
2

− qu − l2c (
dq

dx
)(

∂u

∂x
)

)
dx

with l2c = a2

12
(28)

coupled with the modified kinetic energy:

T =
L∫

0

(
1

2
ρA(

∂u

∂t
)
2

+ 1

2
l2cρA(

∂2u

∂x∂t
)

2
)

dx (29)

This modified kinetic energy which includes additional small length scale terms,
has beenobtained equivalently byRosenau [51] fromcontinualizing the lattice kinetic
energy. Rosenau [51] also derived the modified energy potential from the continual-
ization of the lattice potential energy including the elastic medium interaction while
without distributed forces.
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Furthermore, it is possible to re-express Eq. (27) from the following nonlocal
(differential) constitutive law, coupled to local balance equations:

[
1 − a2

12

∂2

∂x2

]
N (x, t) = E A

∂u

∂x
(x, t)

and
∂N (x, t)

∂x
= ρA

∂2u(x, t)

∂t2
+ ku (x, t) − q (x) (30)

One easily recognizes the stress gradient model of Eringen [3] in Eq. (30) where
the length scale lc of the nonlocal Eringen’s model, is calibrated with respect to the
lattice spacing a:

N − l2c
∂2N

∂x2
= E A

∂u

∂x
with l2c = (e0a)2 = a2

12
and e0 = 1

2
√
3

(31)

It is shown from Eq. (31) that the small length scale coefficient of the nonlocal
model can be calibrated from the lattice problem and is found to be e0 = 1/2

√
3. The

nonlocalmodel derived from the lattice equations exactly coincides with the nonlocal
Eringen’s stress gradient model, where the small length scale parameter of the non-
local model is calculated regarding the nodal spacing in lattice. Eringen’s nonlocal
model [3] and the lattice-based nonlocal model (as obtained by Jaberolanssar and
Peddieson [34] or Rosenau [33]) are both formulated in a modified wave equation
where the additional small length scale term uses coupled second-order spatial and
time derivatives. Similarmodels with additional spatio-temporal coupling terms have
been proposed for other applications of one-dimensional continuum system by Love
[52] for axial vibration problems in the presence of lateral inertia effects, Mindlin
[53] and Polyzos and Fotiadis [54] for axial vibration problems, and by Rayleigh
[55] for the bending problem of beam including the effect of rotary inertia.

It is possible to extract the normal force (of Eringen’s stress gradient model) from
Eqs. (30) and (31), thus leading to:

N = (E A + kl2c
) ∂u

∂x
+ l2cρA

∂3u

∂x∂t2
− l2c

dq

dx
(32)

This expression of normal force corresponds to the natural boundary condition
derived from application of Hamilton’s principle. The nonlocal boundary condition
raised from potential energy Eq. (28) and kinetic energy formula Eq. (29) is given
by

[(
E A + kl2c

) ∂u

∂x
+ l2cρA

∂3u

∂x∂t2
− l2c

dq

dx

]
δu| L

0 = 0 (33)

It is shown from Eq. (33), that no additional boundary condition is required for
such a nonlocalmodel, as opposed to gradient elasticitymodels based on higher-order
differential equations with additional extra boundary conditions.
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The normal force expression Eq. (32) derived fromEringen’s differential nonlocal
model is consistent with the normal force formulae issued of the energy approach.
This formula is obtained from continualization of the mixed differential-difference
equation in displacement, which is a second-order difference equation in space. The
normal force identificationwould have been different if onewould have continualized
directly the normal force in the difference equations of the centred lattice problem
(first-order difference equation in space). The lattice difference equations (Eqs. (1)
and (2)) are formulated with a central finite difference scheme. A similar centered
difference scheme was already used by Jaberolanssar and Peddieson [34]. Such a
scheme implicitly assumes that the normal force is an element quantity (defined at
the middle of the spring element), as opposed to the displacement exactly defined
at the nodal points. Now continualizing each first-order difference equation based
on the Padé approximant of the pseudo-differential operator leads to the nonlocal
balance equation and the nonlocal constitutive law:

∂N

∂x
=
(
1 − a2

24

∂2

∂x2

)(
ρA

∂2u

∂t2
+ ku − q

)

and

(
1 − a2

24

∂2

∂x2

)
N = E A

∂u

∂x
(34)

A nonlocal coupling of both the balance equation and the constitutive law was
also reported by Challamel et al. [56] in the continualization process of lattice beam
equations (in bending). Going back to the axial problem investigated in this part, the
normal force (of the continualized nonlocal model) can be obtained from Eq. (34),
which after neglecting higher-order terms in a4, gives:

N =
(
E A + k

l2c
2

)
∂u

∂x
+ l2c

2
ρA

∂3u

∂x∂t2
− l2c

2

dq

dx
with l2c = a2

12
(35)

This continualization process is equivalent in term of displacement Eq. (27), to
the one directly applied to the mixed differential-difference displacement equation.
However, the boundary conditions in terms of normal force calculated by both meth-
ods differ, as highlighted by the formulae issued of Eringen’s nonlocal model (see
Eq. (32)) and the one issued of the continualized nonlocal model (see Eq. (35)).

2.5 Nonlocal Solutions

To summarize, the governing equation of the nonlocal rod embedded in an elastic
medium is given by a linear wave equation corrected by small length scale terms:

(
E A + kl2c

) ∂2u

∂x2
− ρA

∂2u

∂t2
+ ρAl2c

∂4u

∂x2∂t2
− ku = −q + l2c

d2q

dx2
(36)
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where lc = e0a. Here a is the characteristic intrinsic length of the elastic medium
and e0 is a parameter used to approximate lattice dynamic results. This equation
is valid for Eringen’s nonlocal model and for the continualized nonlocal model of
lattice equations. e0 = 1/2

√
3 has been found previously for the calibration of the

small length scale parameter. It is worth mentioning that Eringen [3] obtained by
equating the nonlocal wave dispersion frequency and lattice dynamic results at the
end of the first Brillouin zone. We shall discuss such results later in the chapter.

The dimensionless parameters are introduced:

q∗ = qL2

E A
, k∗ = kL2

E A
, β = ρ

ω2L2

E
, x = x

L
, u = u

L
, lc

2 = l2c
L2

(37)

The length scale ratio lc depends on the number of elements in the lattice consid-

ered. More specifically, we have lc
2 = 1

/(
12n2

)
.

The nonlocal rod problem is governed by a linear second-order differential equa-
tion, which includes small length scale terms and interaction with elastic medium:

(
1 + k∗lc

2 − βlc
2
) d2u

dx2
+ (β − k∗) u = 0 (38)

This differential equation can be easily integrated in term of trigonometric func-
tions. For fixed-fixed boundary condition, the eigenmode is expressed in sinusoidal
form:

u (x) = u0 sin (mπx) (39)

The dimensionless frequency can then be obtained by inserting the eigenmode
expression in the second-order differential Eq. (38):

βm = k∗ + (mπ)2

1 + lc
2
(mπ)2

(40)

The nonlocal continuous approximation Eq. (40) is a good approximation of the
exact lattice solution given by Eq. (19) (Fig. 2). The same result was also reported
by Aydogdu [38], who also studied the free vibration behaviour of a nonlocal rod
embedded in elastic medium.

For fixed-free ends, the vibration mode shape can be also expressed in sinusoidal
form:

u (x) = u0 sin

[
(2m − 1) π

x

2

]
(41)

The substitution of this solution into the governing differential Eq. (38) gives
the dimensionless frequency Eq. (42), which was also reported by Aydogdu [38]
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Fig. 2 Comparison of the
axial lattice and the nonlocal
rod models-Frequency
versus the number n of
elements; Fixed-fixed
boundary conditions

for the clamped-free nonlocal rod. This vibration mode satisfies the displacement
and the normal force boundary conditions of both Eringen’s nonlocal model and the
continualized nonlocal models.

βm = k∗ +
[
(2m − 1) π

2

]2

1 + lc
2[

(2m − 1) π
2

]2 (42)

The same results could have been derived from application of the stationarity
of the Rayleigh quotient based on the augmented (nonlocal) potential energy and
kinetic energy, as defined by Eqs. (28) and (29).

ω2
m =

L∫

0

(
E A( dudx )

2 + ku2 + l2c k(
du
dx )

2
)
dx

L∫

0

(
ρAu2 + l2cρA( dudx )

2
)
dx

(43)

In conjunction with the trigonometric solution assumed for the vibration mode
in this Rayleigh quotient (for both boundary conditions), one obtains the frequency
solution for each boundary condition (Eqs. (40) and (42)).

The lattice solution can be compared to the nonlocal one, via expanding the lower
frequency solutions. For instance, for fixed-fixedboundary conditions, the asymptotic
expansion of the exact solution for a sufficiently large number n of elements gives:

βm,n = 4n2sin2
(mπ

2n

)
+ k∗ = k∗ + (mπ)2

[
1 − (mπ)2

12n2

]
+ O

(
1

n2

)
(44)

whereas the corresponding nonlocal continuous solution has been calculated before
and may be expanded in the same way:
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βm,n = k∗ + (mπ)2

1 + ( e0aL
)2

(mπ)2
= k∗ + (mπ)2

[
1 − (mπ)2

(e0a
L

)2]+ O

(
1

n4

)

(45)
The small length scale coefficient can be easily identified for low frequencies and

a sufficient number of elements n, by comparing Eqs. (44) and (45):

e0 = 1

2
√
3

≈ 0.289 (46)

For the highest frequency, one obtains for m = n:

βm,n = k∗ + 4n2 = k∗ + (nπ)2

1 + π2e20
⇒ e0 =

√
1

π2

(
π2

4
− 1

)
≈ 0.386 (47)

The value e0 = 0.39 is reported by Eringen [3] who equated the nonlocal wave
dispersion frequency and the corresponding lattice dynamic results at the end of the
first Brillouin zone (in the absence of elastic medium interaction-see also Challamel
et al. [37]). It is worth mentioning that the stiffness k of the elastic medium does not
affect this length scale calibration in this case.

2.6 Lattice with Direct and Indirect Interactions

The one-dimensional lattice studied in the previous part is the lattice with direct
interaction, where each particle only interacts with its neighbours, without long
range interactions. This direct interaction has been investigated for instance by Born
and von von Kármán [18] for one-dimensional or three-dimensional lattices. As
already commented, for one-dimensional system, the one-dimensional axial lattice
is equivalent to a lattice string, that was first studied by Lagrange [9, 10], who dis-
covered the exact vibration frequencies for fixed-fixed boundary conditions. This
initial approach based on the simplest interaction can be generalized for considering
direct and indirect neighbouring interactions, with a so-called general N-neighbour
interaction problem (see Fig. 3). Such generalized lattices with N-neighbour inter-
actions may be encountered in the field of molecular mechanics, when both short-
and long-range interactions are included. These generalized interactions may be
taken into account, to derive material properties at different scales, from nano to
micro or to macro scales (see also Challamel et al. [57] or Challamel et al. [58]).
Exact solutions of such generalized lattices for various boundary conditions are
available in the literature. Pipes [59], Chen [60], Chen [61], Eaton and Peddieson
[62] calculated the eigenfrequencies of a generalized lattice (lattice with short and
long range interaction) of finite size for specific long range dependence. Brillouin
[63], Eaton and Peddieson [62] and Roseneau [64] investigated more specifically



18 N. Challamel et al.

Fig. 3 Axial lattice composed of concentrated masses with p-neighbour elastic interaction

the wave dispersive properties of an infinite generalized lattice (lattice with short
and long range interaction). Rosenau [64] studied the specific problem of a general-
ized lattice with an interaction that includes two closest neighbours (Rosenau [64]
also derived the results for more neighbours). Pipes [59], Chen [60] and Chen [61]
studied a specific generalized lattice with N-neighbour interaction, characterized by
equal stiffness for each interaction. The exact eigenfrequencies of this specific gen-
eralized lattice have been obtained. The problem studied by Pipes [59], Chen [60]
and Chen [61] is very specific in the sense that short- and long-range interactions
are equal. For many physical systems, the effect of long range interaction decreases
with respect to the distance so that a differentiation between short- and long-range
interactions is necessary. When considering the N-neighbour interaction problem
with generalized interactions, Eaton and Peddieson [62], calculated the exact eigen-
frequencies of a generalized lattice with N-interaction for fixed-free, fixed-fixed and
free-free boundary conditions. They also used a continualization procedure based
on a Taylor-based asymptotic expansion of the pseudo-differential operator involved
in the difference formulation of the generalized lattice (associated with a difference
operator of order 2N) (this methodology was also followed by Rosenau [64]). Both
Eaton and Peddieson [62] and Rosenau [64] derived with such a continualization
procedure a higher-order gradient approach associated with the generalized lattice.
The wave dispersion relation of this generalized lattice, was studied by Brillouin
[63], Eaton and Peddieson [62] and Rosenau [64]. Rosenau [64] followed the same
methodology used for the direct interaction problem, and presented a lower order
spatial differential wave equation (with spatio-temporal derivatives), for capturing
the inherent scale effects in the generalized lattice. We shall follow this approach by
considering a nonlocal equivalent rod model associated with the finite generalized
lattice. Triantafyllidis and Bardenhagen [26] also investigated the static behaviour of
a generalized lattice and formulated an equivalent gradient elasticity approach at the
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macroscopic scale. More generally, generalized and complex interactions in lattice
mechanics are still important to be studied, for a better understanding of the macro-
scopic properties of nonlocal and nonlinear generalized wave propagation properties
(see Maugin [42]).

Nonlocalmedium and generalized latticeswith generalized interactions have been
already related in the literature. Eringen and Kim [2] studied an N-neighbour inter-
action model as a discrete formulation of a strain-based nonlocal continuum model.
The N-neighbour interaction lattice model can be also considered as the discrete for-
mulation of a peridynamicmodel (nonlocal relative displacement-basedmodel) [65].
Carcaterra et al. [66] revisited this problem with generalized interactions, and built
a microscopic generalized lattice model (with direct and indirect neighbour interac-
tions) based on a macroscopic higher-order gradient continuum media. Tarasov [67]
studied the generalized elastic lattice with two closest neighbours. Tarasov [67] also
continualized the higher-order difference operators to derive a higher-order constitu-
tive law which is similar to the one derived by Eaton and Peddieson [62] or Rosenau
[64]. Tarasov [67] also commented the possible loss of definite positiveness of the
macroscopic elastic energy (issued of the continualization procedure) from the struc-
ture of the generalized interactions at the lattice level. The definite positivity of the
generalized interaction is not necessarily associated with the definite positivity of
the equivalent gradient elasticity approach. Michelitsch et al. [68] investigated the
properties of generalized lattices with both short range and long-range interactions
governed by a power law. They showed the link between such generalized lattice and
some equivalent nonlocal media based on fractional nonlocal mechanics. Ghavanloo
et al. [69] studied the wave propagation of diatomic lattices, with both a discrete
and a nonlocal lattice-based approach formulated from a continualization procedure.
Ghavanloo and Fazelzadeh [70] generalized the lattice problem with long-range
interactions with additional coupling with internal mass called metamaterial.

The generalized axial lattice comprises concentrated masses mi connected by an
elastic network as shown in Fig. 3 (mi = ρAa except at the border). Fixed-fixed
boundary conditions will be assumed for the generalized lattice. The generalized
lattice is characterized by a distribution of elastic stiffnesses k j , where k j is the
axial stiffness of the j-th spring associated with its neighbouring interaction, for
j ∈ {1, 2, ..., p}. This stiffness can be rewritten via a scaling law as:

k j = α j
E A

j2a
(48)

where a is the lattice spacing (identical to the lattice problemwith direct interactions),
α j is a dimensionless influence function which characterizes the contribution of the
long range interaction forces. E A is the equivalent axial rigidity of the continuum
rod (local continuum rod). The higher-order mixed differential-difference equation
of the generalized lattice is given by (see for instance Challamel et al. [57])

E A
p∑

j=1

α j
ui+ j − 2ui + ui− j

( ja)2
− ρA

d2ui
dt2

= 0 (49)
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with α j ≥ 0 is a positive parameter (generally a decreasing function with the inter-
action distance) and the new normalization requirement

∑p
j=1 α j = 1.

By assuming a harmonicmotion, the eigenvalue problem is governed bydifference
equation of order 2p

E A
p∑

j=1

α j
ui+ j − 2ui + ui− j

( ja)2
+ ρAω2ui = 0 (50)

This difference equation can be equivalently written as:

p∑

j=1

α j
ui+ j − 2ui + ui− j

j2
+ β

n2
ui = 0 (51)

We consider fixed-fixed boundary conditions with the higher-order anti-periodic
boundary conditions:

u−(k−1) = −uk−1, un−(k−1) = −un+k−1 for k ∈ {1, 2, ..., p} (52)

For this generalized lattice with such a generalized boundary condition, the exact
vibration mode can be assumed in a sinusoidal form as

ui = u0 sin

(
π
i

n

)
(53)

The fundamental frequency is obtained from the substitution of Eq. (53) into Eq.
(52):

β =
p∑

j=1

α j

(
2n

j

)2

sin2
(

π j

2n

)
(54)

Eaton and Peddieson [62] also obtained a similar formulae by using dimensional
quantities without scaling factors.

It is possible to develop a nonlocal approach associated with the lattice problem,
by using a continualization procedure. The higher-order difference Eq. (50) can be
continualized with the introduction of a pseudo-differential operator:

E A

⎡

⎣
p∑

j=1

4α j

( ja)2
sinh2

(
ja

2

d

dx

)⎤

⎦ u + ρAω2u = 0 (55)



Lattice-Based Nonlocal Elastic Structural Models 21

The pseudo-differential operator is expanded with a Taylor-based asymptotic
expansion truncated at order 2:

⎡

⎣
p∑

j=1

4α j

( ja)2
sinh2

(
ja

2

d

dx

)⎤

⎦ u (x) = d2

dx2

⎡

⎣1 + a2

12

p∑

j=1

j2α j
d2

dx2

⎤

⎦ u (x) + O
(
a4
)

(56)

The Padé approximant of order [2,2] for the pseudo-differential operator can be
alternatively used, as proposed by Rosenau [64]:

⎡

⎣
p∑

j=1

4α j

( ja)2
sinh2

(
ja

2

d

dx

)⎤

⎦ u (x) =
d2

dx2

1 + a2
12

p∑
j=1

j2α j
d2

dx2

u (x) + ... (57)

The pseudo-differential equation is then approximated by a linear second-order
differential equation which is Eringen’s type nonlocal model defined by

(
1 − βlc

2
) d2u

dx2
+ βu = 0 (58)

where the nonlocal length scale ratio calibrated from:

l2c = a2
p∑

j=1

j2
α j

12
(59)

For direct neighbor interaction, this general equation simplifies to:

α j = 0 if j ≥ 2 ⇒ l2c = a2

12
(60)

For fixed-fixed boundary conditions, the dimensionless frequency of the approx-
imated nonlocal rod (of Eringen’s type) is then given by

β = π2

1 + π2l2c
L2

= π2

1 + π2

12n2

p∑
j=1

j2α j

(61)

Equation (61) is an approximation of Eq. (54) which is the exact eigenfrequency
of the generalized lattice problem.
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3 Discrete and Nonlocal Beams

3.1 Hencky-Bar-Chain Model

The microstructured beam model considered in this part (or lattice beam model)
comprises rigid periodic segments linked by concentrated elastic rotational springs,
sometimes referred to as Hencky’s chain model (Hencky [11]-see also the discussion
in Silverman [71] or El Naschie [15]). Hencky [11] introduced this discrete elastic
model for capturing the behaviour of continuous Euler-Bernoulli beam elements
for an infinite number of elements. Among various discrete structural problems (in-
plane buckling of columns, lateral-torsional buckling of beams, buckling of curved
elements, buckling of frames, etc.), Hencky [11] solved the buckling problem of
this Hencky-Bar-Chain model for some finite number of elements (typically for two,
three and four elements). Exact solutions of this buckling problem whatever the
number of elements has been found later by Wang [12, 13] from the exact resolution
of the second-order linear difference equation. In this chapter, exact solutions of
the buckling and vibration of the Hencky-Bar-Chain model (labelled as Hencky
beam model) are presented for general boundary conditions. Hencky’s Bar Chain
model has been widely used in the literature (see for instance Zaslavsky [72], El
Naschie [15] or more recently Challamel et al. [56] or Wang et al. [1]). A nonlocal
elastic Euler-Bernoulli beammodel is then built from the lattice difference equations
of the Hencky-Bar-Chain formulation. The nonlocal model is similar to a stress
gradient nonlocal Euler-Bernoulli beam, where the nonlocality is of Eringen type
[3], although the length scale of the nonlocal model may also differ for statics or
dynamics applications [56]. Recently, Challamel et al. [73] compared equation and
results of the continualized nonlocal beam models to those of the lattice models and
highlighted the special role of boundary conditions. Wang et al. [74] derived a set
of lattice-based continualized boundary conditions (static and kinematic boundary
conditions) by using the displacement field at the adjacent nodes of the boundary
nodes.

In this chapter, the buckling, vibration and bending of a Hencky-Bar Chain struc-
tural system are studied. Hencky-Bar Chain is represented in Fig. 4 with simply
supported boundary conditions. Hencky-Bar Chain is a microstructured system (or
discrete beam) that comprises n cells or n rigid elements connected by some elas-
tic rotational springs of stiffness C . The length of each rigid segment is denoted
by a while the length of the whole structure is L and L = n × a, where n is the
number of rigid bars. C = E I/a is the spring stiffness (the scaling law relates the
rotational spring stiffness C to the equivalent beam stiffness E I of the continuous
Euler-Bernoulli beam achieved for an infinite number n of elements). The beam is
loaded by an axial compressive force P , and by the uniformly distributed vertical
force q at the nodes. The massesmi are concentrated at each node i . The scaling law
mi = μa can be used for the correspondence between the lattice and the continuous
beam and μ is the mass per unit length of the beam (of the equivalent continuum
model achieved for an infinite number n of elements).
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Fig. 4 Microstructured beammodel (Hencky-Bar-Chain model); Simply supported boundary con-
ditions w0 = wn = 0

The elastic potential energyU due to the deformation of elastic rotational springs
in the Hencky-Bar-Chain system is written as

U = C

2

n−1∑

i=1

(
wi+1 − 2wi + wi−1

a

)2

(62)

where wi = w (x = xi = ia). The work done We by the transverse distributed load
and the axial load is obtained from

We =
n−1∑

i=1

qawi + P

2
a

n−1∑

i=0

(
wi+1 − wi

a

)2

(63)

Hencky-Bar-Chain model is composed of concentrated masses of equal value
mi = μa, of which the motion leads to the following kinetic energy T :
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T =
n−1∑

i=1

1

2
mi (

dwi

dt
)
2

(64)

The equation of motion is obtained from application of Hamilton’s principle
t2∫
t1

(δT − δU + δWe) dt = 0 for the discrete structural system:

E I
wi+2 − 4wi+1 + 6wi − 4wi−1 + wi−2

a4
+ P

wi+1 − 2wi + wi−1

a2
+ μ

d2wi

dt2
= q

(65)
One immediately recognizes that Eq. (65) is a mixed differential-difference equa-

tion which is actually the finite difference approximation for a continuous Euler-
Bernoulli beam problem. Therefore, the Hencky-Bar Chain system can be treated
as the physical support for the finite difference method applied to the continuous
Euler-Bernoulli beam (see the remark of Silverman [71], and the physical interest of
Hencky’s chain versus the “abstract” numerical-based finite difference method).

The above governing equation in space can also be directly obtained from the
discrete constitutive law and the second-order equilibrium equations for the bending
problem

Mi = E I
wi−1 − 2wi + wi+1

a2
(66)

Mi−1 − 2Mi + Mi+1

a2
+ P

wi−1 − 2wi + wi+1

a2
+ μ

d2wi

dt2
= q (67)

3.2 Continualised Nonlocal Beam Model

As followed for the axial lattice, the discrete equations of the beam lattice (Hencky-
Bar-Chain model) are continualized to derive an equivalent nonlocal beam con-
tinuum. The relation between the discrete and continuous displacements wi =
w (x = xi = ia) also requires a smooth function as:

w (x + a, t) =
∞∑

k=0

ak

k !
∂kw(x, t)

∂xk
= [ea∂/∂x ]w(x, t) (68)

The following pseudo-differential operators can be expressed as:

wi−1 + wi+1 − 2wi = [ea∂/∂x + e−a∂/∂x − 2
]
w (x, t) = 4sinh2

(
a

2

∂

∂x

)
w (x, t)

(69)
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and

wi+2 − 4wi+1 + 6wi − 4wi−1 + wi−2 =[
e2a∂/∂x − 4ea∂/∂x + 6 − 4e−a∂/∂x + e−2a∂/∂x

]
w (x, t) =

16sinh4
(
a

2

∂

∂x

)
w (x, t) (70)

The generalized governing equation for bending problem is then expressed as
follows

μ
∂2w

∂t2
+ 16

E I

a4
sinh4

(
a

2

∂

∂x

)
w + 4P

a2
sinh2

(
a

2

∂

∂x

)
w = q (71)

The pseudo-differential operator can be efficiently approximated by Padé’s
approximant (Rosenau [33]; Wattis [75] or Andrianov et al. [49]):

4

a2
sinh2

(
a

2

∂

∂x

)
=

∂2

∂x2

1 − l2c
∂2

∂x2

+ ... with l2c = a2

12
(72)

The Padé approximant is applied to the lattice beam equations. Hencky-Bar-Chain
model can then be approximated by a nonlocal continuous formulation given by

μ

(
1 − 2l2c

∂2

∂x2

)
∂2w

∂t2
+ E I

∂4w

∂x4
+ P

(
1 − l2c

∂2

∂x2

)
∂2w

∂x2

=
(
1 − 2l2c

d2

dx2

)
q (73)

which can be considered as a nonlocal continuous approximation of the lattice beam
model. For the pure buckling problem (μ = 0 and q = 0), Eq. (73) simplifies in

E I
d4w

dx4
+ P

(
1 − l2c

d2

dx2

)
d2w

dx2
= 0 (74)

Equation (74) can be equivalently obtained from a nonlocal Euler-Bernoulli beam
where the nonlocality is of Eringen’s type (in the sense that the bending moment-
curvature differential law is a stress gradient model, first introduced by Eringen [3]
for one-dimensional or three-dimensional nonlocal elasticity):

M − l2c
d2M

dx2
= E I

d2w

dx2
and

d2M

dx2
= −P

d2w

dx2
(75)

A review of various nonlocal beam formulations (based on Eringen’s nonlocal-
ity) applied to Euler-Bernoulli, Bresse-Timoshenko or higher-order kinematics is
available in Elishakoff et al. [5] or Challamel [76]. Equation (75) shows that the



26 N. Challamel et al.

Hencky-Bar-Chain system can be captured by an Eringen’s type nonlocal elastic
model [3] applied at the beam scale (stress gradient model), with a scaling factor

lc = a/
(
2
√
3
)
of the nonlocalmodel calibrated from the length of the rigid elements.

For the uncoupled bending problem (μ = 0 and P = 0), Eq. (73) reduces to

E I
d4w

dx4
= q − 2l2c

d2q

dx2
(76)

This above differential equation can be equivalently derived from the following
second-order differential equations:

M − 2l2c
d2M

dx2
= E I

d2w

dx2
and

d2M

dx2
= q (77)

One recognizes an Eringen’s based nonlocal beammodel, but with a scaling factor
lc = a/

√
6, which is different from the buckling problem. Finally, the pure vibration

problem (q = 0 and P = 0), is governed by

μ

(
1 − 2l2c

∂2

∂x2

)
∂2w

∂t2
+ E I

∂4w

∂x4
= 0 (78)

This Rayleigh-type equation (in the sense that the nonlocal bendingwave equation
is corrected by some nonlocal rotary effects similar to the rotary effect introduced
by Bresse (1859) and Rayleigh [55] for correcting the Euler-Bernoulli beam model)
is equivalent to that considered in an Eringen’s based nonlocal model applied at the
beam scale (see Challamel [76]; Zhang et al. [77]):

M − 2l2c
d2M

dx2
= E I

d2w

dx2
and

d2M

dx2
= −μ

∂2w

∂t2
(79)

The small length scale parameter lc = a/
√
6 appears again in the vibration analy-

sis (Challamel et al. [78];Wang et al. [79]). A surprising finding is that the calibration
of Eringen’s length scale parameter is apparently dependent on the type of analysis,
namely bending, buckling or vibration (see the discussion in Challamel et al. [78];
Wang et al. [79]). Thiswould suggest that theHencky-Bar-Chain for statics/dynamics
problems is not strictly speaking captured by a stress gradient of Eringen’s type with
a constant length scale. Regarding this length-scale dependence on the type of anal-
ysis (buckling, vibration, static bending), Wang et al. [79] calibrated the nonlocal
length scale with respect to the axial load intensity.

It is also possible to change the point of view, and to consider local constitutive
laws but additional nonlocal inertia contributions.

M = E I
∂2w

∂x2
and

∂2M

∂x2
= −μ

∂2w

∂t2
+ 2μl2c

∂4w

∂x2∂t2
(80)
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This set of equation can be obtained froma “local” elastic potential energy formula
and a revised form (or “nonlocal”) of kinetic energy:

U [w] = 1

2

L∫

0

E I (
∂2w

∂x2
)

2

dx

and T [w] = 1

2

L∫

0

(
μ (

∂w

∂t
)
2

+ 2μlc
2(

∂2w

∂x∂t
)

2
)

dx (81)

Thismodification of the kinetic energy in the vibration analysis ofmicrostructures
is followed by Mindlin [53] and by Polyzos and Fotiadis [54]. The enriched kinetic
energy Eq. (81) clearly contains an additional nonlocal rotary inertia.

An alternative model is derived based on the nonlocal corrections of the moment-
curvature relationship and the balance equation with a nonlocal rotary term:

M − l2c
∂2M

∂x2
= E I

∂2w

∂x2
and

∂2M

∂x2
= −μ

∂2w

∂t2
+ μl2c

∂4w

∂x2∂t2
(82)

The coupling of both equations in Eq. (82) again gives a bending wave equation
very close to Eq. (78), when the higher-order term in l4c is neglected:

μ

(
1 − 2l2c

∂2

∂x2

)
∂2w

∂t2
+
(
E I + μl4c

∂2

∂t2

)
∂4w

∂x4
= 0 (83)

In order to resolve the apparent paradox of the dependence of Erigen’s length
scale on the type of problem considered, we develop herein another point of view
which considers that the Hencky-Bar-Chain system behaves like a nonlocal beam
with just one small length scale but with modified equilibrium equations.

This nonlocal model can be elaborated from the discrete equilibrium equation and
the discrete formulation of the bending constitutive law Eq. (66), continualized as
follows:

M (x) = 4E I

a2
sinh2

(
a

2

∂

∂x

)
w (x) (84)

When applying the Padé approximant to the pseudo-differential operator in Eq.
(84), Eringen’s nonlocal elastic constitutive law with only one length scale is clearly
recognized from this last equation:

M − l2c
∂2M

∂x2
= E I

∂2w

∂x2
and lc = a

2
√
3

(85)
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The governing equation can also be built from the continualization of Eq. (67),
which again is approximated using a Padé approximant, as:

∂2M

∂x2
+ P

∂2w

∂x2
+ μ

(
1 − l2c

∂2

∂x2

)
∂2w

∂t2
=
(
1 − l2c

d2

dx2

)
q (86)

The governing equation is no more local, and has been enriched with some nonlo-
cal rotary inertia and an additional external load term. It is then possible to solve the
paradox of apparent dependence of the length scale, with a nonlocal model coupled
to modified nonlocal equilibrium equation. The nonlocal generalization of Newton’s
second law has already been formulated in a different context by Milton and Willis
[80] or Charlotte and Truskinovsky [81]. For the beam lattice model considered in
this chapter (Hencky-Bar-Chainmodel), the nonlocalmoment-curvature relationship
and the governing equation are written by

M = E I

〈
∂2w

∂x2

〉
and

〈
∂2M

∂x2

〉
+ P

〈
∂2w

∂x2

〉
+ μ

∂2w

∂t2
= q (87)

where the angle bracket 〈〉 represents the nonlocal average operator associated with
the pseudo-differential operator, given by Eq. (84) for the moment-curvature law, or
Eq. (85) for its Padé approximant.

This correction Eq. (86) in the equilibrium equation may resolve the paradox of
the dependence of length scale on the analysis type (buckling or vibrations analyses).
When correctingboth the balance equation and the constitutive lawbynonlocal terms,
the nonlocal length scale calibrated from the beam lattice is no more dependent on
the configuration.

3.3 Buckling and Vibrations Analyses of Discretized Beam

In this section, the buckling and vibration solutions for the Hencky beam model
with simply supported ends are presented. It should be noted that the post-buckling
behavior of Hencky-bar-chain (also called as the discrete Euler beam) has been
studied by Domokos [82], and more recently Challamel et al. [83]. We shall restrict
the presentation to linear behavior.

We first solve the buckling problem of the Hencky-Bar-Chain system, formulated
by a second-order linear difference equation:

Pwi + E I

a2
(wi+1 − 2wi + wi−1) = 0 with w0 = wn = 0 (88)

The exact analytical solution of this problem has been given by Wang [12, 13] or
Seide [84]. By introducing dimensionless parameters, the second-order difference
equation can be transformed to
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wi+1 +
(

β̄

n2
− 2

)
wi + wi−1 = 0 with β̄ = PL2

E I
(89)

The characteristic equation is obtained by replacing the displacement expressed
as a power function wi = Wλi in Eq. (89) which leads to

λ + 1

λ
= 2 − β̄

n2
(90)

which again is a palindromic equation. This last equation admits the following
two solutions:

λ1,2 = 1 − β̄

2n2
± j

√

1 −
(
1 − β̄

2n2

)2

with j2 = −1

and for

∣∣∣∣1 − β̄

2n2

∣∣∣∣ < 1 (91)

It can be shown that the shape of solution wi changes for the other cases if∣∣∣1 − β̄

2n2

∣∣∣ ≥ 1 (in term of hyperbolic functions). In this particular case, the solution

is identically vanishing with the considered boundary conditions. The solution of the
characteristic equation is therefore given, with the conditions Eq. (91), by

λ1,2 = cos θ ± j sin θ with θ = arccos

(
1 − β̄

2n2

)
(92)

The general solution for the linear difference equation can be expressed in a
trigonometric function:

wi = A cos (θ i) + B sin (θ i) with θ = arccos

(
1 − β̄

2n2

)
(93)

The two boundary conditions require a fundamental buckling mode wi =
B sin(θ i) and then the formula for buckling load is given by:

sin (θn) = 0 ⇒ θn = π ⇒ cos
π

n
= 1 − β̄

2n2

⇒ β̄ = 4n2sin2
( π

2n

)
(94)

Equation (94) is consistent with the buckling load reported by Wang [12, 13].
Challamel et al. [85] obtained the same result with an alternative method based on
recursive formula and Chebyschev polynomials. More generally, the higher eigen-
values are obtained from θn = kπ with the exact k-th buckling load:
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β̄k,n = 4n2sin2
(
kπ

2n

)
(95)

We are mainly interested in the calculation of the critical buckling load, i.e. k = 1.
However, we could also compare the exact formulae associated with the higher
modes, by approximating the Eringen’s nonlocal buckling solution via:

β̄k,n = (kπ)2

1 + (kπ)2

n2
( lc
a

)2 (96)

The comparison between Eqs. (95) and (96) shows that the best matching for
the critical buckling load (k = 1) is different from the highest buckling load (i.e.,
k = n):

k = 1 ⇒ e20 =
(
lc
a

)2

= 1

12

and k = n ⇒ e20 =
(
lc
a

)2

= 1

4
− 1

π2
(97)

Andrianov et al. [49] obtained both values of e0 reported in Eq. (97) via thematch-
ing of low frequency and high frequency of an axial discrete chain. As highlighted
from the differential equations of the continualised nonlocal beam model, the value

e0 = 1/
(
2
√
3
)

≈ 0.289 appears again for the buckling problem when n is large.

The last value e0 = √1/4 − 1/π2 ≈ 0.386 that is valid for the highest buckling
loads (same as axial dynamics) corresponds to that in Eringen [3] in which the non-
local model is compared with the dispersive wave equations of the Born-Kármán
model (Eringen [3]; see also Challamel et al. [37] for a two-length-scale nonlocal
model).

For practical applications, the exact buckling load formulae restricted to the critical
bucking case obtained for k = 1 can be asymptotically expanded as follows,

β̄ = 4n2sin2
( π

2n

)
= π2

(
1 − π2

12n2

)
+ O

(
1

n4

)
(98)

This formulae can be re-expressed in a more general equation. As mentioned by
Seide [84], the dimensionless buckling load for the clamped-free, clamped-clamped
or hinged-hinged boundary conditions can be formulated in a general form, which
covers the previous structural case:

Pdiscrete
PE

= 1 − PEL2

12E I

1

n2
+ O

(
1

n4

)
(99)
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where PE is the buckling load of the Euler-Bernoulli column. A very similar length
scale dependence would have been obtained from the buckling formulae of a hinge-
hinge nonlocal Euler-Bernoulli beam model based on Eringen’s nonlocal theory
[56]:

Pnonlocal
PE

= 1

1 +π2
( lc
L

)2 = 1 − π2

12n2
+ O

(
1

n4

)

with
lc
a

= 1

2
√
3

and PE = π2E I

L2
(100)

More generally, we find that for other classical boundary conditions such as
clamped-free, clamped-clamped, hinged-hinged or clamped-hinged ends, the buck-
ling load of the nonlocal column can be calculated from the following formulae (see
Wang et al. [86], Reddy and Pang [87], Challamel et al. [78]):

Pnonlocal
PE

= 1

1 + PEl2c
E I

= 1 − PEL2

12E I

1

n2
+ O

(
1

n4

)
= 1 − PEa2

12E I
+ O

(
a4

L4

)

(101)
The length scale dependence is of order 2 which is similar to the asymptotic

formulae of the Hencky-Bar- Chain model. The lattice column presents a lower
buckling load than that of the “local” Euler column. FromEq. (101), and in agreement
with Salvadori [46] and Wang [13], the convergence rate of finite difference method
shows that the error in the buckling load is of the a2-type (a = L/n) in the present
homogeneous difference eigenvalue problem. The Finite Difference approximation
(or its equivalent lattice formulation) for linear buckling problem provides a lower
bound buckling load to its corresponding continuous local problem (the comparison
between local and nonlocal continuum formulations yield the same tendency).

The eigenfrequencies of the Hencky-Chain-Bar can be exactly calculated in the
same manner, as detailed for instance by Leckie and Lindberg [88] or more recently
Santoro and Elishakoff [89] (for the equivalent finite difference formulation), from
the following linear fourth-order difference Eq. (102):

wi+2 − 4wi+1 + 6wi − 4wi−1 + wi−2 − �2

n4
wi = 0 with �2 = ω2 μL4

E I
(102)

Similar to the buckling problem, the vibration mode can also assume a power
function wi = Wλi , and then by substituting the function into Eq. (102), one obtains
the following characteristic equation:

(
1

λ
+ λ

)2

− 4

(
1

λ
+ λ

)
+ 4 − �2

n4
= 0 (103)
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This quartic equation generates the following four solutions [89]:

λ1,2 = cos θ ± j sin θ and λ3,4 = 2 − cos θ ±
√

(2 − cos θ)2 − 1

with θ = arccos

(
1 − �

2n2

)
(104)

For simply supported boundary conditions, the eigenmodes are obtained from
the trigonometric shape function wi = B sin(θ i). The fundamental eigenfrequency
is then obtained by injecting the trigonometric solution in the fourth-order difference
Eq. (102), as obtained by Leckie and Lindberg [88]:

� = 4n2sin2
( π

2n

)
= π2

(
1 − π2

12n2

)
+ O

(
1

n4

)
(105)

This formulae is very similar in its form to the non-dimensional buckling formulae.
From Eq. (105), we then have the square of the fundamental frequency as

ω2
discrete

ω2
E

= 1 − π2

6n2
+ O

(
1

n4

)
with ω2

E = E I

μ

(π

L

)4
(106)

As for the buckling problem, the lattice beam also presents lower natural frequen-
cies than those of the continuous “local” beams.

ω2
nonlocal

ω2
E

= 1

1 + (π lc
L

)2 = 1 − π2

6n2
+ O

(
1

n4

)
with

lc
a

= 1√
6

(107)

Eringen’s nonlocal model is an efficient continuous theory to get an approxima-
tion of the fundamental frequency of the Hencky-Bar-Chain model while the Finite
Difference approximation gives a lower bound of the asymptotic Euler-Bernoulli
beam.

The capability of the nonlocal beam theory to predict the eigenfrequencies of
the Hencky-Bar-Chain model is also valid for higher frequencies. The frequency
spectrum can be obtained from θn = kπ where k represents the k-th eigenfrequency.
The exact formulae valid for all eigenfrequencies of the Hencky- Bar-Chain model
includes the one of the fundamental frequency:

�k,n = 4n2sin2
(
kπ

2n

)
⇒ �2

k,n = 16n4sin4
(
kπ

2n

)
(108)

The nonlocal continuous approximation obtained from Eringen’s beam theory:

�2
k,n = (kπ)4

1 + (kπ)2

n2
( lc
a

)2 (109)
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The comparison between Eqs. (108) and (109) also shows that the best match for
the fundamental frequency (k = 1) and the highest natural frequency (k = n) have
a discrepancy:

k = 1 ⇒ e20 =
(
lc
a

)2

= 1

6

and k = n ⇒ e20 =
(
lc
a

)2

= π2

16
− 1

π2
(110)

The fundamental eigenfrequency (k = 1) can be calibrated from e0 = 1/
(√

6
)

≈
0.408, whereas e0 = √π2/16 − 1/π2 ≈ 0.718 is valid for the highest frequencies
(particularly k = n).

It is possible to consider the coupling between buckling and vibrations. In this
case, the difference eigenvalue problem is governed by the following fourth-order
linear difference equation:

wi+2 − 4wi+1 + 6wi − 4wi−1 + wi−2 − �2

n4
wi

+ β̄

n2
(wi+1 − 2wi + wi−1) = 0 (111)

Following the procedure detailed for the free vibration of the Hencky-Bar-Chain,
the vibration mode can be assumed as wi = Wλi , and then by substituting the shape
function into Eq. (111), one obtains the characteristic palindromic equation:

(
1

λ
+ λ

)2

−
(
4 − β̄

n2

)(
1

λ
+ λ

)
+ 4 − 2β̄

n2
− �2

n4
= 0 (112)

Again, this quartic equation admits four solutions:

λ1,2 = cos θ ± j sin θ

and λ3,4 = 2 − β̄

2n2
− cos θ ±

√(
2 − β̄

2n2
− cos θ

)2

− 1

with θ = arccos

⎛

⎝1 − β̄

4n2
− 1

2n2

√
β̄2

4
+ �2

⎞

⎠ (113)

These solutions include the free vibration case treated by Leckie and Lindberg
[88] and Santoro and Elishakoff [89].

For simply supported boundary conditions, the eigenmodes could be assumed as
the trigonometric shape function wi = B sin(θ i) and then we have
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sin (θn) = 0 ⇒ θ = π

n

⇒ β̄

2
+
√

β̄2

4
+ �2 = 4n2sin2

π

2n
(114)

The frequency-normal force equation can be equivalently reformulated in a
Dunkerley type interaction formulae valid for the Hencky-Bar-Chain system:

[
�

4n2sin2 π
2n

]2
+ β̄

4n2sin2 π
2n

= 1 (115)

Dunkerley’s line, or Melan’s formula is known to relate linearly the square fre-
quency and the load parameter (see Tarnai [90]). Even for the continuous beam
problem, it is also known that the linearity between the square frequency and the
load parameter valid for the simply supported boundary conditions does not exactly
apply to other boundary conditions, even though it provides a closed approximation
(see for instance Massonnet [91] and Galef [92]).

This exact relationship between load and frequency for the Hencky-Bar-Chain
system can be generally approximated using the asymptotic expansion as follows

(
�

π2

)2

= 1 − π2

6n2
− β̄

π2

(
1 − π2

12n2

)
+ O

(
1

n4

)
(116)

This last formulae valid for the Hencky-Bar-Chain system can now be matched
to that obtained from Eringen’s method based on the single length scale lc = e0a =
e0L/n (see recently Wang et al. [79]):

(
�

π2

)2

= 1

1 + e20
π2

n2

− β̄

π2
= 1 − e20

π2

n2
− β̄

π2
+ O

(
1

n4

)
(117)

The equivalent length scale coefficient of Eringen’s model can be calculated from
the discrete beam model, by comparing Eq. (116) with Eq. (117), thus leading to a
load-dependent nonlocal length scale:

e20 = 1

6
− β̄

12π2
(118)

In this chapter, the nonlocal length scale e0 is calibrated from the exact relationship
between normal force and frequency in the Hencky-Bar-Chain model, a method
which differs from that in Wang et al. [79] who derived the same relationship by
continualizing the difference equations of the lattice beam.
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4 Discrete and Nonlocal Plates

4.1 Hencky-Bar-Chain Net

In this part, we propose a microstructured plate model (or Hencky-bar-net model)
for the vibration of an axially loaded rectangular lattice plate with simply supported
edges. The idea to investigate continuous plates with discrete elements is old, and is
behind the development of modern numerical methods such as Finite Element Mod-
els (Absi and Prager [93]; Zienkiewicz and Taylor [94]). Wieghardt [95], Riedel [96]
or Hrennikoff [97] used equivalent truss elements to investigate continuous structural
problems such as plates or two-dimensional elasticity problems. The generalization
of the Hencky-Bar-Chain model to plates with concentrated stiffnesses is probably
more recent. Zaslavsky [72] and Wu [98] developed a beam grid net by connecting
two Hencky-Bar-Chain systems. A complete Hencky-Bar-Net model (in the sense
that the difference equations of the lattice plate model exactly coincide with the finite
difference formulation of Kirchhoff-Love plate model) was initially developed at the
end of the 1980s with the works of Wifi et al. [14], followed by El Naschie [15].
The governing equations for the Hencky-Bar-Net model are equivalent to the finite
difference formulation of Kirchhoff-Love plate model. For sufficiently small spac-
ing, Hencky-Bar-Net then asymptotically converges towards a Kirchhoff-Love plate
model. The connection between Hencky-Bar-Net plate model and a continualized
nonlocal Kirchhoff-Love plate model is more recent [99].

Some studies have been focused on modelling microstructured lattice membrane
structures (Ari and Eringen [100]; Rosenau [64]; Andrianov and Awrejcewicz [48];
Lombardo and Askes [101]; Hérisson et al. [102]). In this last part of the chapter, we
show that the Hencky-Bar-Net model (or the lattice plate model) can be reasonably
well approximated by a nonlocal plate theorywhose governing equation has a similar
form as that of the Eringen’s nonlocal plate theory. Exact solutions for buckling and
vibration problems in the Hencky-Bar-Net model and the continualized nonlocal
plate model are obtained. The small length scale coefficient e0 of the Eringen’s
nonlocal model is calibrated for both the vibration and the buckling cases. It is found
that e0 is depend on the initial loading, effect of rotary inertia, mode shape and aspect
ratio (width to length ratio) (see also Zhang et al. [103, 104]; Challamel et al. [99]).
A continualized nonlocal plate model is then built from the difference equations of
the Hencky-Bar-Net model. This alternative nonlocal plate theory possesses a length
scale which is independent on the structural parameters of the problem.

Consider a rectangular lattice plate subjected to uniform compressive stress σ

(see Fig. 5). The plate has four simply supported edges and of L and αL (0 < α ≤ 1)
in length and width.

The bending deformation of the Hencky-Bar net plate model is made possible by
rotational springs placed at individual nodes. Repetitive unit cells comprising four
rigid beam segments in rectangular alignment connected by springs at center (Wifi
et al. [14]; El Naschie [15]) are introduced for modelling the torsional deformation.
The masses are lumped at the nodes of Hencky-Bar net plate model.
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Fig. 5 Hencky-Bar-Net model under initial stress σ

The elastic stain energy potential due to the deformation of the rotational springs
at joints is given by

Ub = D

2

nx−1∑

i=1

ny−1∑

j=1

[
(�θ i, j

x )
2 �y

�x
+ (�θ i, j

y )
2 �x

�y
+ 2ν�θ i, j

x �θ i, j
y

]
(119)

where nx and ny are the number of rigid segments in x and y directions, respectively.
�x and �y are their lengths and they are given by �x = L/nx and �y = αL/ny .
D is the equivalent bending stiffness of the elastic plate. ν is the Poisson’s ratio. �θx
and �θy are rotations at node (i , j) of the Hencky-Bar net plate model, which can
be expressed by

�θ i, j
x = wi+1, j − 2wi, j + wi−1, j

�x

�θ i, j
y = wi, j+1 − 2wi, j + wi, j−1

�y
(120)

The total torsional energy in the Hencky-Bar-Net model is written as [15]:

Ut = D

2
(1 − ν)

nx∑

i=1

ny∑

j=1

[
(�θ i, j

xy )
2 �x

�y
+ (�θ i, j

yx )
2 �y

�x

]
(121)

where

�θ i, j
xy = wi, j+1 − wi+1, j+1

�x
− wi, j − wi+1 j

�x

�θ i, j
yx = wi, j+1 − wi, j

�y
− wi+1, j+1 − wi+1, j

�y
(122)
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The kinetic energy of the Hencky-Bar-Net model can be formulated, as

T = 1

2
(m0�x�y)

nx−1∑

i=1

ny−1∑

j=1

(
dwi, j

dt
)
2

(123)

where m0 is the mass per unit cell area, i.e. m0 = M/(�x�y) and M = ρAh is the
total mass of beam-grid. The work done by the axial loading in each direction is
written

We = σh�x�y
nx∑

i=1

ny−1∑

j=1

(1 − cos θ i, j
x ) + σh�x�y

ny∑

i=1

nx−1∑

j=1
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y )

≈ 1

2
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⎡

⎣
nx∑
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ny−1∑
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2 +
ny∑
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(θ i, j
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2

⎤

⎦ (124)

where

θ i, j
x = wi+1, j − wi, j

�x

θ i, j
y = wi, j+1 − wi, j

�y
(125)

By setting �y = �x , the total potential energy function is expressed as

W = U − We

= D

2
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x + �θ i, j

y )
2

− D(1 − ν)

⎡

⎣
nx−1∑

i=1

ny−1∑

j=1

�θ i, j
x �θ i, j

y −
nx∑

i=1

ny∑

j=1

(�θ i, j
xy )

2

⎤

⎦

− 1

2
(σh�x2)

nx∑

i=1

ny−1∑

j=1

(θ i, j
x )

2 − 1

2
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2
(126)

where U = Ub +Ut . By resorting to the Hamilton’s principle

t2∫

t1

(δT − δW ) dt = 0 (127)

and considering harmonic motion, we have the governing equation for the two-
dimensional microstructured beam-grid model given by
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n4y L
i, j − n2yλH

i, j
x − n2yλH

i, j
y − �̂2wi, j = 0 (128)

where

Li, j = 20wi, j + (wi, j−2 + wi, j+2 + wi−2, j + wi+2, j )

− 8(wi, j−1 + wi, j+1 + wi−1, j + wi+1, j )

+ 2(wi+1, j−1 + wi+1, j+1 + wi−1, j−1 + wi−1, j+1)

Hi, j
y = wi, j−1 − 2wi, j + wi, j+1

Hi, j
x = wi−1, j − 2wi, j + wi+1, j

λ = σh(αL)2

D
= N (αL)2

D

�̂2 = m0ω
2(αL)4

D
(129)

where �̂ is the vibration frequency for the Hencky-Bar-Net model.
For a Hencky-Bar-Net model with four simply supported edges, an exact solution

can be thought for this difference boundary value problem of the Navier type, with
a double Fourier sine series as

wi, j = w0 sin
mπ i

nx
sin

nπ j

ny
(130)

In fact, the displacement field in Eq. (130) converges to the classical continuum
solution for rectangular plates with simply supported edges when nx → ∞ and
ny → ∞. The substitution of Eq. (130) into (128) yields

sin
mπ i

nx
sin

nπ j

ny

[
− �̂2

n4y
+ 2λ(γ + χ)

n2y
+ 4(γ + χ)2

]
= 0 (131)

where γ = cos mπ
nx

− 1 andχ = cos nπ
ny

− 1. FromEq. (131), the vibration frequency
can be expressed explicitly as

�̂2 = 2n2y(γ + χ)
[
2n2y(γ + χ) + λ

]
(132)

By assuming that nx = ny/α and then setting ny → ∞, Eq. (132) can be refor-
mulated

�̂2 = π2(n2 + m2α2)
[
π2(n2 + m2α2) − λ

]
(133)

Equation (133) reduces to the classical solution of vibration frequency for trans-
versely vibrating rectangular plates under uniform axial loadings (see for instance
Rao [105]).
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4.2 Eringen’s Nonlocal Plate Model

In the following, wewill try to capture the length scale effects of themicro-structured
plate model with a phenomenological nonlocal model called Eringen’s nonlocal
model [3]. For Eringen’s nonlocal plate, the nonlocal constitutive law is characterized
by the following differential law between the moment and the curvature variables
(see for instance Lu et al. [106]):

Mxx − (e0a)2�Mxx = D

[
∂2w

∂x2
+ υ

∂2w

∂ y2

]

Myy − (e0a)2�Myy = D

[
∂2w

∂ y2
+ υ

∂2w

∂x2

]

Mxy − (e0a)2�Mxy = D (1 − υ)
∂2w

∂x∂y
(134)

where the length scale e0a can be calibrated from lattice models. The equilibrium
equations are in presence of uniform compressive stress:

∂2Mxx

∂x2
+ 2

∂2Mxy

∂x∂y
+ ∂2Myy

∂ y2
+ N

(
∂2w

∂x2
+ ∂2w

∂ y2

)
− m0ω

2w = 0 (135)

leading to the fourth-order partial differential equation, valid for the vibration prob-
lem of a nonlocal rectangular plate subjected uniform compressive stress

D

[
∂4w

∂x4
+ 2

∂4w

∂x2∂ y2
+ ∂4w

∂ y4

]
+ σh

(
∂2w

∂x2
+ ∂2w

∂ y2

)

−m0ω
2w − (e0a)2σh

[
∂4w

∂x4
+ 2

∂4w

∂x2∂ y2
+ ∂4w

∂ y4

]

+(e0a)2ω2m0

(
∂2w

∂x2
+ ∂2w

∂ y2

)
= 0 (136)

where the quantity w is the transverse displacement, ω is the vibration frequency,
D = Eh3/[12(1 − ν2)] denotes the flexural rigidity, h is the thickness of plate, ν is
the Poisson ratio, E is Young’s modulus. The quantity m0 = ρh is the mass inertia
and ρ denotes the mass density. Besides, e0 is the small length scale coefficient, a is
the internal characteristic length and σh = N the axial hydrostatic loading.

This equation valid for nonlocal Kirchhoff-Love plate theory can be reformulated
as:

(
D − (e0a)2N

)
��w + (N + (e0a)2m0ω

2
)
�w − m0ω

2w = 0 (137)
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where �w = (∂2w/∂x2 + ∂2w/∂ y2
)
is the Laplacian operator. This last equation is

given by Murmu and Pradhan [107] or Zhang et al. [104]. For the pure buckling
problem, Eq. (137) has been obtained by Pradhan and Murmu [108]:

(
D − (e0a)2N

)
��w + N�w = 0 (138)

For the pure vibrations problem, Eq. (137) has been obtained by Lu et al. [106]:

D��w + (e0a)2m0ω
2�w − m0ω

2w = 0 (139)

It is seen from Eq. (139) that the presented nonlocal plate theory reduces to
a Kirchhoff plate theory with additional nonlocal rotary effects (as considered by
Wang and Wang [109] for Kirchhoff-Love plates with rotary effects).

In case of simply supported boundary conditions, the general solution for the
displacement w in Eq. (137) may be expressed as

w(x, y) = w0 sin
mπx

L
sin

nπy

αL
(140)

where w0 is an unknown constant, m and n are the number of half waves in x and y
directions, respectively. The substitution of Eq. (140) into Eq. (137), generates the
following vibration frequency expressed as,

�2 = π4(n2 + m2α2)
2( αL

a

)2
[
e20n

2π2 + e20m
2α2π2 + ( αL

a

)2] − λπ2(n2 + m2α2) (141)

where �2 = ω2m0(αL)4/D is the square of dimensionless vibration frequency of
nonlocal rectangular plate and λ = σh(αL)2/D is the dimensionless buckling stress.
When setting e0 = 0, Eq. (141) can be simplified to

�2 = π2(n2 + m2α2)
[
π2(n2 + m2α2) − λ

]
(142)

It can be checked that Eq. (142) reduces to the classical frequency solution for
transversely vibrating rectangular plates under initial loading (Rao [105]).

The buckling load is calculated from � = 0 in Eq. (141) and is equal to (see also
Pradhan and Murmu [108]):

λ = min
(m,n)

(nπ)2 + (αmπ)2

1 + (e0a)2
[(

nπ
αL

)2 + (mπ
L

)2] (143)

The frequency is calculated from λ = 0 in Eq. (141) and is equal to (see also Lu
et al. [106]):



Lattice-Based Nonlocal Elastic Structural Models 41

�2 =
[
(nπ)2 + (αmπ)2

]2

1 + (e0a)2
[(

nπ
αL

)2 + (mπ
L

)2] (144)

The small length scale parameter existing in the Eringen’s nonlocal model can be
calculated based on the exact solution of the micro-structured plate model. For the
pure buckling problem (� = 0 in Eq. (144) as well as �̂ = 0 in Eq. (132)), by setting
their buckling stresses equal, the small length scale coefficient can be calibrated by
assuming one half wave in y direction (i.e. n = 1) as

lim
ny→∞ e20 = 1 + m4α4

12(1 + m2α2)
2 (145)

Note that the buckling stress for one half-wave buckling mode in y direction is
λ = π2(1 + m2α2). Equation (145) shows that the small length scale coefficient e0
in nonlocal rectangular plates is relative to both the buckling mode m and the aspect
ratio α. It is worth mentioning that e0 → √

1/12 ≈ 0.289 when α → 0, which gives
the same small length scale coefficient as that in the buckling of nonlocal beams.

A remarkable result is that the small length scale coefficient e0 in the nonlocal
rectangular plate varies with respect to both buckling modes and aspect ratios (see
Fig. 6). It is not independent of the geometrical parameters of the structural problem.
It means that Eringen’s nonlocal plate model is not asymptotically derived from the
lattice plate model, as opposed to the beam comparison problem. It is found that e0
is in the range of 0.204 to 0.215. It is also confirmed from Fig. 6 that the calibrated
value of e0 = √

1/24 ≈ 0.204 in nonlocal rectangular plate is consistent with the
proposedHencky-Bar-Netmodel subjected to uniform compression. For square plate
(α = 1) of 1st buckling mode (m = 1) rectangular plate α = 1/2 of 2nd buckling
mode (m = 2), we have the same length scale coefficient.

The dependence of the length scale factor to the geometry of the plate and the
considered mode is also confirmed in the free vibration analysis. Regarding free
vibration problem without axial loading, i.e. λ = 0, it is possible to show that

lim
ny→∞ e20 = 1 + m4α4

6(1 + m2α2)
2 (146)

The small length scale coefficient e0 in Eq. (146) reduces to 1/
√
6 by taking

m = 1 and α = 1, which is also valid for free vibration of nonlocal Euler beam
models. Figure 7 shows that varies with respect to both the mode shape m and the
aspect ratio α. This discovery is different from the nonlocal beams where e0 = 1/

√
6

is always a constant, irrespective of boundary conditions and mode shapes.
This apparent dependence of the length scale calibration to some other parameters

of the problem can be explained by considereing an alternative nonlocal plate model
built from the lattice difference equations.
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Fig. 6 Calibrated small length scale coefficient with respect to width to length ratio for buckling
nonlocal rectangular plate of different modes m—Calibration with respect to the Hencky-Bar-Net
model

4.3 Microstructure-Based Nonlocal Plate Model

Starting from the difference Eq. (128), it is possible to continualize the difference
equations using pseudo-differential operators (as introduced for the beam lattice):

D
16

a4

[
sinh2

(
a

2

∂

∂x

)
+ sinh2

(
a

2

∂

∂y

)]2
w

+N
4

a2

[
sinh2

(
a

2

∂

∂x

)
+ sinh2

(
a

2

∂

∂y

)]
w − m0ω

2w = 0 (147)

A Taylor-based asymptotic expansion of the pseudo-differential operators gives:

D

[
�2 + a2

6
�

(
∂4

∂x4
+ ∂4

∂ y4

)]
w

+N�w + N
a2

12

(
∂4

∂x4
+ ∂4

∂ y4

)
w − m0ω

2w = 0 (148)
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Fig. 7 Calibrated small length scale coefficientwith respect towidth to length ratio for free vibrating
nonlocal rectangular plate of different modes m—Calibration with respect to the Hencky-Bar-Net
modellabel

It is possible to multiply Eq. (148) by 1 − a2/12 � and neglecting higher-order
terms, thus leading to the alternative nonlocal equation:

D�2w + a2

12
D�

[
2

(
∂4

∂x4
+ ∂4

∂ y4

)
− �2

]
w + N�w

+N
a2

12

[
∂4

∂x4
+ ∂4

∂ y4
− �2

]
w − m0ω

2

(
1 − a2

12
�

)
w = 0 (149)

which can be equivalently re-expressed as (see also Challamel et al. [99]; Hache et
al. [110])

D��w +
(
N + a2

12
m0ω

2

)
�w − m0ω

2w − a2

6
N

∂4w

∂x2∂ y2

+D
a2

12

[
∂6w

∂x6
− ∂6w

∂x4∂ y2
− ∂6w

∂x2∂ y4
+ ∂6w

∂ y6

]
= 0 (150)
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This continualization scheme contains sixth-order spatial derivatives. It is possible
to derive an alternative continualization scheme by multiplying Eq. (150) by 1 −
a2/12 �, thus leading to:

D�2w + N

(
1 − a2

12
�

)
�w − m0ω

2

(
1 − a2

6
�

)
w

−a2

3
D

∂4

∂x2∂ y2
�w − a2

6
N

∂4w

∂x2∂ y2
= 0 (151)

This nonlocal model can be equivalently rewritten as

(
D − (e0a)2N

)
��w + (N + 2(e0a)2m0ω

2
)
�w − m0ω

2w

−4(e0a)2D
∂4

∂x2∂ y2
�w − 2(e0a)2N

∂4w

∂x2∂ y2
= 0 (152)

where (e0a)2 = a2/12. This nonlocal plate model is similar to an Eringen’s nonlocal
plate model, apart from the spatially coupled derivatives, highlighted by the last two
terms in Eq. (152). Equation (152) has been also derived by Hache et al. [110]. It
is seen here that the lattice-based nonlocal plate model slightly differs from a stress
gradient Eringen’s plate model.

The nonlocal beam model Eq. (73) is found from this nonlocal plate model when
the spatially coupling terms of the continualized nonlocal plate model are vanishing:

[
E I − (e0a)2P

] ∂4w

∂x4
+ [P + 2(e0a)2m0ω

2
] ∂2w

∂x2
− m0ω

2w = 0 (153)

These spatially coupling terms in Eq. (152) are caused by the difference between
the Eringen’s nonlocal plate model and the continualized nonlocal model based on
Hencky-net plate model. This explains the geometrical dependence of the scaling
factor of Eringen’s nonlocal model, when we match the results of this model and
the microstructured results. The corrected nonlocal model derived in Eq. (152) has
a length scale independent on the mode and the geometry of the plate.

5 Conclusions

In this chapter, we have presented exact solutions of some lattice structural sys-
tems, including axial lattices, beam lattices and plate lattices. We have restricted our
study to discrete linear elasticity. Lattice inelasticity is another branch of structural
mechanics, which still needs to be explored. The exact solutions of the lattice struc-
tural problems are then compared to some approximated continuous models, built
from the continualization of the linear difference equations for lattice structures.
Nonlocal rod, beam and plate models have been derived based on a series of asymp-
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totic expansions of the pseudo-differential operator of the discrete model. Nonlocal
models continualized from one-dimensional lattices are typically consistent with the
stress gradient model of Eringen [3], where the small length scale parameter was
calibrated regarding the lattice spacing. For two-dimensional lattices such as lattice
membranes or lattice plates (even if we mainly focus only on lattice plates in the last
part of the chapter), some differences are highlighted between the two-dimensional
stress gradient plate model and the continualized (or lattice-based) nonlocal plate
model [99]. The same conclusions have been reached for lattice membrane (see for
instance Hérisson et al. [102]).

This chapter focused on the building of nonlocal structural elements from phys-
ical discrete structural approaches. Nowadays, the applicability of nonlocal models
(mostly strain-based integral nonlocal models) tends to be measured from purely
mathematical point of view rather than their ability on reflecting the underlying
discrete material behavior. We have shown, for some very elementary periodic
microstructures, that a class of differential nonlocal models may be rigorously
introduced from the governing equations of the lattice reference problem (for one-
dimensional and two-dimensional lattice structural elements). The continuous non-
local models are efficient in reproducing some scale effects inherent to the discrete
approach.

The microstructure considered herein is based on concentrated microstructures
(for instance, concentrated masses and concentrated stiffness for the Hencky-Bar-
Chain model with localized rotational stiffness). It has been shown that such
microstructures can be handled by the stress gradient nonlocal models with corre-
sponding boundary conditions. However, other patterns of microstructures can also
be considered as shown by Challamel et al. [23] for axial lattices. This is the case of
distributed microstructure which may be associated to strain gradient elasticity mod-
els, with differentmacroscopic properties. It appears that the length scale dependence
strongly depends on the type of microstructure that governs themechanics of lattices.
It is worth noting that the concluding remarks are limited to simple lattice structures
(that is periodic spring networks, homogeneous Hencky-Bar Chain models or homo-
geneous Hencky-Bar Net models). Other microstucture may be alternatively used for
each structural element (microstructured rods, microstructured beams or microstruc-
tured plates). More general lattices of two-dimension or three-dimension are under
investigation for deriving new nonlocal elastic structural models.
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Eringen’s Nonlocal Integral Elasticity
and Applications for Structural Models

Constantinos Chr. Koutsoumaris and Konstantinos G. Eptaimeros

Abstract The requirement of studying theunsolvedproblemsof continuummechan-
ics in the context ofmicro- andnano-dimensions imperatively arose during the second
half of the 20th century. For instance, the concentration of stresses at the tip of a crack
and the wave dispersion at atomic dimensions were some of the problems that con-
cerned the scientific community for decades. Moreover, the mechanical response of
micro- and nano-structures ranging from carbon nanotubes (CNTs), graphene sheets
to microtubules is significant for designing structural elements, micro- and nano-
devices (micro/nano-sensors, micro/nano-electromechanical systems (M/NEMS)),
biomaterials and bioengineering structures, etc. Eringen’s nonlocal theory, in par-
ticular, is widely used to explore problems of this scientific field. There are sheets
of research papers investigating the mechanical response of CNTs, graphene sheets
and microtubules by using the weak form (i.e., the differential form) of Eringen’s
theory, yet paradoxes and inconsistencies are raised in the majority of the practical
engineering problems that studied. Recently, the great value of the strong form (i.e.,
the integral form) of Eringen’s constitutive equation has been pointed up by many
researchers, and this chapter will focus on this matter.

1 Introduction

There has been a significant development of advanced materials of micro/nano-
dimensions in recent years. Scale dependent phenomena of materials on micro- and
nano-structures have not been adequately explained by classical continuum theory.
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However, the generalized continuum theories (GCT) suggest a way to handle the
material size effect, since they bridge the gap between the classical continuum theory
and lattice atomic theories as the long and the short range cohesive forces at an atomic
scale are elucidated [1–6].

Micro-polar, couple stress, strain gradient andnonlocal elasticity theories are some
of themost widely known and acceptedGCT. The aforementioned theories have been
successfully applied to numerous problems of engineering, such as the concentration
of stresses at the tip of a crack, the wave dispersion at atomic dimensions and screw
dislocations [7–17]. An overview of GCT has been presented by Maugin [18].

The nonlocal continuum field theories are put forward into several studies and
they explore the physics of material bodies in which the behavior at a material point
is dependent on the state of all the points of the body [11, 19–21]. The nonlocal field
theory of elasticity, specifically advanced by Eringen [7, 10, 11, 20–25], suggests
that the stress at a point is expressed by an integral constitutive equation by means
of the convolution of an attenuation function and a macroscopic stress field as well
[10, 11].

Both the gradient elasticity theory and the nonlocal elasticity theory were devel-
oped at the same time [26–28]. The former was considered as an alternative approach
of handling size effect phenomena. Mindlin [29] subsequently assumed the cohesion
within the aforementioned theories by introducing Taylor (expansion) series of the
strain of the nonlocal integral constitutive equation leading to deducing the equations
of the gradient elasticity theory.

The nonlocal integral constitutive equation is a first kind Fredholm integral equa-
tion that is hard to handle even in one-dimension. The use of either weakly singular
or continuous kernels representing attenuation functions leads to ill-posed prob-
lems [30]. Eringen [10] noticed that the integral constitutive equation could be trans-
formed into a differential equation in an infinite domain for a class of attenuation
functions, considered a fundamental solution of Helmholtz type differential operator
wherein a physical interpretation was attributed [10, 11, 31].

Meanwhile, the nonlocal differential constitutive equationwas employed to inves-
tigate the beam models [32, 33]. Those works encouraged the use of the aforemen-
tioned models for the mechanical response of a CNT and a nanobeam [34–41], since
the modeling of the CNT as a beam structural element had been suggested by exper-
imental and theoretical researches in advance [42–46]. Studies [34–36, 47], looking
into the dynamical response of the nonlocal differential beam model, concluded that
the above model exhibits a softening response in comparison with that of the classic-
local model for benchmark engineering applications. By this approach, however, the
fundamental eigenfrequency of a cantilever beam was assigned higher values than
that of the classic-local model. This was, of course, one of the paradoxes of the
nonlocal differential form [35].

What is more, the researches into the static response of nonlocal differential
beam models [37, 39, 41] suggested that the behavior of the nonlocal effect is more
flexible than that of the classic-local beam model in the majority of boundary condi-
tions (BCs) and loadings. Nevertheless, there are specific cases of BCs and loadings
wherein paradoxes are raised [39, 41]. In particular, the nonlocal transverse deflec-



Eringen’s Nonlocal Integral Elasticity and Applications for Structural Models 53

tion is identical to the classical one for the case of a cantilever beam subjected to a
concentrated load at the free end, a clamped-clamped and a clamped-pinned beam
subjected to a uniformly distributed load, respectively. In addition, the response of a
nonlocal cantilever beam, with a uniformly distributed load, is more stiff in compar-
ison with that of the classical one. As regards a cantilever beam with a concentrated
load applied to an internal point, the nonlocal transverse deflection is identical to
the classical one at the interval ranging from the clamped point of the beam to the
load point, yet the nonlocal deflection is smaller than the classical one at the interval
ranging from the load point to the free end of the beam [48].

All the paradoxes of a beam have drawn the researchers’ attention [49, 50]. The
last-mentioned studies have not address the main disadvantage of the nonlocal dif-
ferential beam form, which is the inadequacy of producing energy quadratic func-
tional [37]. This inadequacy is not consistent with Eringen’s nonlocal integral theory,
according towhich it is proved that the energy quadratic functional can be formulated
for a homogeneous and an isotropic solid [11, 51]. It goes without saying that the
transformation of the integral form into the differential form is not an injective pro-
cess in a finite domain, and as a consequence energy inconsistencies and paradoxes
are raised [52–54].

Except for one-dimensional problems, the nonlocal differential constitutive equa-
tions have been used to formulate the equilibrium equations of shells and plates [40,
55–60]. These studies reached the conclusion that the nonlocal differential form
demonstrates a flexible behavior compared to that of the classic-local form only for
solvable cases.

The aforementioned inconsistencies of the nonlocal differential form are over-
come on the condition that the integral stress formmay be reconsidered. Eringen [61]
andAltan [62] put forth the two phase nonlocal integral (TPNI) stressmodel regarded
as the constitutive equation of a two phase elastic material. This model represents
a convex combination of the local elasticity and the nonlocal integral elasticity.
The TPNI stress model additionally transforms the constitutive equation into a sec-
ond kind Fredholm integral equation being manageable in comparison with the first
kind Fredholm one. Thereafter, Polizzotto [51] studied the variational principles and
advanced the TPNI stress model, while Pisano and Fuschi [63] analytically solved
the problem of a tensile bar by applying the last-mentioned model afterward.

After Khodabakhshi and Reddy’s [64] research into the TPNI stress model and its
applications, the researchers’ interest centered on the nonlocal integral form of one-
dimensional beam problems. Closed form and numerical solutions of static problems
regarding the TPNI stress model were also proposed by Eptaimeros et al. [65], Wang
et al. [66, 67], Koutsoumaris et al. [48], Zhu et al. [68], Zhu and Li [69]. Meanwhile,
Fernández-Sáez and Zaera [70] pointed up the inadequacy of finding an accepted
analytical solution to a beam problem from a physical point of view.

As regards dynamical problems, Eptaimeros et al. [71], Fernández-Sáez and
Zaera [70], Zhu and Li [72, 73] as well as Mikhasev and Nobili [74] employed the
TPNI stress model and investigated the free vibration problem of beams and rods.
Not only did Eptaimeros et al. [71] investigate the free vibration Euler-Bernoulli (EB)
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beam problem by applying the FEM, but they also tackled the cantilever paradox for
the first time. The FEM results were subsequently verified by the analytical results
of Fernández-Sáez and Zaera [70].

A property of the TPNI stress model concerns the violation of the normalization
condition in a finite body, especially on the boundary. Needless to say, a similar argu-
ment had been made by Eringen [61]. A modified type kernel suggested by Borino et
al. [75] as well as Bažant and Jirásek [76] and satisfying all the kernel’s properties of
Eringen [10] is symmetric, well-defined and applied to the investigation of plasticity
problems. A significant remark made by Bažant and Jirásek [76] is that the violation
of the normalization condition gives rise to inconsistencies as a uniform straining
of a body does not generate a uniform stress. Also, the normalization condition is
satisfied if and only if the nonlocal attenuation function reverts to Dirac delta func-
tion (distribution) when the nonlocal parameter tends to zero at each point of a finite
body. To elucidate, unlike the TPNI stress model, the modified kernel confirms that
the nonlocal model reverts to the classic model as the nonlocality reduces [48].

Koutsoumaris et al. [48] pointed out the great significance of the attenuation func-
tion as a probability density function (PDF), and the satisfaction of the normalization
condition in a finite domain too. Moreover, the physical interpretation was attributed
to the modified kernel. As regards the nonlocal integral models (i.e., both modified
kernel’s and TPNI stress models), the flexibility of the response compared to that of
the classic-local model for static EB beam problems was numerically presented. Fur-
thermore, all the paradoxes deriving from the use of the nonlocal differential model
were successfully tackled by the nonlocal integral models for the first time. Their
numerical solutions and the closed form solutions of Wang et al. [66] additionally
deduced similar results concerning the TPNI stress model.

The bending strain of beam problems was subsequently investigated by Kout-
soumaris and Eptaimeros [54]. To be more specific, the modified kernel’s and the
TPNI stress models for Helmholtz and bi-Helmholtz types of kernel [77] were
employed. The use of bi-Helmholtz type kernel led to strains’ oscillations at the
load points and on the boundary. This behavior is not encouranging for applying bi-
Helmholtz type kernel in structural engineering problems. Another important con-
clusion was that the modified kernel successfully handles the boundary layer and is
considered the optimal choice for a mixed local/nonlocal model.

In themeantime, the nonlocal integral stressmodels (i.e., themodified kernel’s and
the TPNI stress models) were used by Eptaimeros et al. [78, 79] for the investigation
of the dynamical response of a nanobeam and a microtubule, embedded in an elastic
medium, respectively. The responses of the nonlocal integral models appear to have a
softening behavior in comparisonwith that of the classicmodel for all the investigated
problems. It is crucial that no paradox is raised for the fundamental eigenfrequency
of an embedded cantilever beam. A general conclusion is also that the nonlocality’s
effect attempts to prevail over the effect of the elastic medium and vice versa.

This chapter revolves around the contemporary advances in Eringen’s nonlocal
elasticity theory with emphasis on solving structural engineering problems. To be
more specific, an overview of the literature is presented, and a discussion about
the integral formulation (i.e., the strong form) and the differential formulation of
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the nonlocal elasticity theory then follows. What is more, we point out the corre-
lation between the nonlocal elasticity theory and the strain gradient elasticity the-
ory as introduced by Mindlin, presenting the above correlation in detail. Thereafter
an exhaustive discussion regarding the suitability of the nonlocal modulus for the
problems’ solution in a finite body follows. Finally, applications for both static and
dynamical engineering problems are investigated as well.

To recap, this chapter is structured as follows: Sect. 2 focuses on the governing
equations of the nonlocal elasticity theory and the exhaustive discussion about the
strong and the weak form of the aforementioned theory. We then go on correlating
the strain gradient elasticity theory with the nonlocal elasticity theory. Section 3
contains a number of applications for static and dynamical benchmark engineering
problems. Finally, the conclusions of this chapter are reiterated.

2 Eringen’s Formulation

2.1 Governing Equations

The linear theory of the nonlocal elasticity is expressed by the following set of
equations for a homogeneous and an isotropic solid [10, 11]:

tkl,k + ρ( fl − ül) = 0 (1)

tkl(x) =
∫
V
K (||x′ − x||, τ )σkl(x′)dυ(x′) (2)

σkl(x′) = λerr (x′)δkl + 2μekl(x′) (3)

ekl(x′) = 1

2

(
∂uk(x′)

∂x ′
l

+ ∂ul(x′)
∂x ′

k

)
(4)

where λ and μ are the constants of Lamé and || · || is the Euclidean norm. The stress
tensor, the mass density, the body force density and the displacement vectors at a
reference point x of the body at time t are denoted by tkl , ρ, fl and ul , respectively.
Also, the classical stress tensor at x′ at time t and the linear strain tensor at any point
x′ of the body at time t are denoted by σkl(x′) and ekl(x′), respectively. The former
is associated with the latter by means of Hooke’s law. The volume integral of Eq. (2)
is evaluated over the region V of the body as well.

Equation (2) expresses the contribution of the material points of the body to the
stress field at a point x via the attenuation function K (nonlocal modulus) [10, 11].
The attenuation function is of dimension of (length)−3 as well. Ergo, it should be
dependent on a characteristic length ratio τ := e0a/�, where a is an internal char-
acteristic length, i.e., a lattice parameter/bond length, � is an external characteristic
length, i.e., a wave length, and e0 is also a dimensionless material constant.
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The following properties are attributed to the nonlocal modulus K :
(i) K has to revert to the Dirac delta function (δ) as τ → 0, so that the classical

elasticity can be approximated when the limit of the internal characteristic length
vanishes.

lim
τ→0

K (||x′ − x||, τ ) = δ(||x′ − x||) (5)

(ii) K is symmetric with respect to x as well.
(iii) The maximum of K is also attained at x′ = x and K → 0 at large distances

as well.
(iv) K satisfies the normalization condition:

∫
�

K (||x||, τ )d� = 1 (6)

where x ∈ �, � is an infinite domain, and K corresponds to a PDF [10, 48].

2.2 A Discussion About Eringen’s Nonlocal Stress Models

2.2.1 Integral Equations, Fundamental Solutions and Green Functions

The nonlocal integral constitutive equation being generally hard to handle is a first
kind Fredholm. The use of either weakly singular or continuous kernels representing
attenuation functions leads to ill-posed problems [30].

Eringen [10] noticed that the nonlocal integral constitutive equation could be
transformed into a differential one. Provided that K is a fundamental solution of a
linear differential operator L, it then holds in an infinite domain:

L [
K (||x′ − x||, τ )

] = δ(||x′ − x||) (7)

Applying the differential operator L to Eq. (2), it yields:

Ltkl = σkl (8)

Equation (8) is then called the nonlocal differential constitutive equation. Eringen
attributed a physical interpretation to the nonlocal differential form [10, 11].

Although this fundamental solution was adequate for a number of engineering
problems [7–10, 21], it is not suitable for a problem in a finite domain since it is
essential to find the corresponding Green function [53].
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2.2.2 Two Phase Nonlocal Integral Constitutive Model

TheTPNI stressmodel suggested byEringen [61]was based onKröner’s research [2].
Eringen underlined the advantages of the above model from a mathematical point of
view, yet there was some doubt if this model was suitable from a physical point of
view [61].

The TPNI stress model can be regarded as the constitutive equation of a two
phase elastic material, where phase 1 complies with local elasticity and phase 2 with
nonlocal elasticity. The aforementioned model transforms the constitutive equation
into a second kind Fredholm integral equation that is manageable and a well-posed
problem. Altan [62] and subsequently Polizzotto [51] advanced the TPNI stress
model which is defined as follows:

tkl(x) := k1σkl(x) + k2

∫
V
K (||x′ − x||, τ )σkl(x′)dυ(x′) (9)

where k1 + k2 = 1 and k1, k2 > 0.
The attenuation function corresponding to the TPNI stress model is defined as:

K̃ (||x′ − x||, τ ) := k1δ(||x′ − x||) + k2K (||x′ − x||, τ ) (10)

2.2.3 Two Phase Constitutive Model with the Modified Kernel

An essential feature of a nonlocal kernel is associated with the normalization condi-
tion. To elucidate, the normalization condition has to be such that attenuation function
converges toward Dirac delta function as the nonlocal parameter tends to zero at each
point of a finite body. This characteristic corroborates that the nonlocal model reverts
toward the classic-local model at each point of a finite body. A PDF is defined by the
attenuation function. The key point is therefore to find an appropriate transformation
from an infinite domain into a finite one. Borino et al. [75] as well as Bažant and
Jirásek [76] proposed an efficient transformation, which leads to a modified, sym-
metric attenuation function being well-defined and satisfying all the properties of a
nonlocal kernel. The model of the modified kernel is defined as follows:

Kmod(||x′ − x||, τ ) := ξ(x, τ )δ(||x′ − x||) + K (||x′ − x||, τ ) (11)

where ξ(x, τ ) := 1 − ∫
V K (||x − ζ||, τ )dζ.

If the normalization condition is violated, the uniform straining of the finite body
can not generate a uniform stress [76].

The nonlocal stresses at a reference point x are defined by a weighted average via
a nonlocal modulus (PDF) and the macroscopic (Cauchy) stresses of all the points
of the body. This definition introduces the nonlocal interactions between the atoms
(or the molecules) without necessitating the determination of the cohesive forces
which are responsible for. The nonlocal modulus defined in an infinite domain is
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symmetric with respect to x and it satisfies the normalization condition (Eq. (6)).
The normalization condition corroborates that the sum of all the weights of Cauchy
stresses is equal to 1 at each point x of the infinite body. The violation of the latter
on the boundary of a finite domain is obvious, since no material points exist out of
the body to contribute to the stresses [48].

To exemplify, let us consider a beam of length L with boundaries 0 and L in
one-dimension. For ε > 0 and ε → 0, the points found in the intervals [0, ε) and
(L − ε, L] have no adjacent points found in the intervals (−∞, 0) and (L ,+∞)

to interact with each other. Ergo, the locality increases in these points and it exists
together with the interactions between the adjacent points in the intervals (0, ε) and
(L − ε, L).

To shed light on, themodified kernel gives rise to the localitywhen the interactions
between the particles/points are absent. The latter consideration can be generalized
in two- and three-dimensions. The modified kernel can be inserted into Eq. (2), and
it can be then considered as a physical expansion of the nonlocal theory of Eq. (2)
on a finite body [48].

The classic types of a kernel do not satisfy the normalization condition on the
boundary of the body, because they are normalized in an infinite domain. The
TPNI stress model appears both mathematical and physical inconsistencies when
it is applied to a finite domain. This model additionally violates the normalization
condition in a finite domain and especially on the body’s boundary.

2.3 The Correlation Between Eringen’s Nonlocal Model and
Mindlin’s Gradient Model

The correlation between the nonlocal elasticity theory of Eringen and the strain gradi-
ent elasticity theory ofMindlin has been an open problem. The next process following
Mindlin’s rationale [29] attempts to explain the aforementioned correlation.

Consider the nonlocal constitutive equation (Eq. (2)) with respect to the strains:

ti j (xm) =
∫
V
Ci jkl K (||xm − x ′

m ||)ekl(x ′
m)d3x ′

m (12)

where d3x ′
m ≡ dV = dx ′

i dx
′
j dx

′
k and Ci jkl is the stiffness tensor.

Defining that Ci jkl(xm − x ′
m) := Ci jkl K (||xm − x ′

m ||), Eq. (12) yields:

ti j (xm) =
∫
V
Ci jkl(xm − x ′

m)ekl(x
′
m)d3x ′

m (13)

Considering that x ′
m = xm + �xm , Taylor series of the strain ekl(x ′

m) gives:

ekl(x
′
m) = ekl(xm) + ∂ekl(xm)

∂xq
�xq + 1

2

∂2ekl(xm)

∂xq∂xn
�xq�xn + . . . (14)
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Inserting Eq. (14) into Eq. (13), it yields:

ti j (xm) =
∫
V
Ci jkl(xm − x ′

m)

[
ekl(xm) + ∂ekl(xm)

∂xq
�xq

+ 1

2

∂2ekl(xm)

∂xq∂xn
�xq�xn + . . .

]
d3x ′

m (15)

The stresses are ergo defined by selecting the first three terms of Taylor series of
Eq. (15):

t̄i j (xm) = ekl(xm)

∫
V
Ci jkl(xm − x ′

m)d3x ′
m

+ ∂ekl(xm)

∂xq

∫
V
Ci jkl(xm − x ′

m)�xqd
3x ′

m

+ 1

2

∂2ekl(xm)

∂xq∂xn

∫
V
Ci jkl(xm − x ′

m)�xq�xnd
3x ′

m (16)

We also consider the mathematical expressions:

Di jkl := Di jkl(xm) =
∫
V
Ci jkl(xm − x ′

m)d3x ′
m = K0,

Bi jklq := Bi jklq(xm) =
∫
V
Ci jkl(xm − x ′

m)�xqd
3x ′

m,

Ei jklqn := Ei jklqn(xm) =
∫
V
Ci jkl(xm − x ′

m)�xq�xnd
3x ′

m (17)

Thereby, Eq. (16) can be written as:

t̄i j (xm) = Di jklekl(xm) + Bi jklqekl,q(xm) + Ei jklqnekl,qn(xm) (18)

It will hold Bi jklq = 0, provided that the material is centroid and symmetric.
Equation (18) will therefore give:

t̄i j (xm) = Di jklekl(xm) + Ei jklqnekl,qn(xm) (19)

As regards the strain gradient elasticity theory, the equilibrium equation can be
expressed as:

σpq = τpq − μrpq,r (20)

where σpq are the total stresses, τpq are the Cauchy stresses according to Mindlin
and μrpq,r are the double stresses.

Based on the simplified theory (i.e., the form II of the strain gradient elasticity
theory of Mindlin), we have:
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μrpq = �2τpq,r (21)

where � is a length scale which represents a material length associated with the
surface elastic strain energy.

We thus obtain by combining Eq. (20) with Eq. (21):

σpq = τpq − �2τpq,rr (22)

We next consider the simplified form:

Ei jklqn = −�2δqnDi jkl (23)

where δqn is Kronecker delta.
Equation (19) can be then written by inserting Eq. (23):

t̄i j (xm) = Di jklekl(xm) − �2δqnDi jklekl,qn(xm) (24)

or
t̄i j (xm) = Di jklekl(xm) − �2Di jklekl,rr (xm) (25)

Equation (25) will be identical to Eq. (22) provided that τkl = Di jklekl(xm).

3 Applications for One-Dimensional Problems

This section deals with engineering applications in one-dimension by using the struc-
tural beam element. Both static and dynamical beam problems are investigated, and
the results deduced from the classic-local model, the nonlocal differential model and
the nonlocal integral models are compared with each other.

The kernels of Eq. (10) and Eq. (11) are customized in one-dimension:

Amod(|x − s|, τ ) := ξ(x, τ )δ(|x − s|) + A(|x − s|, τ ) (26)

Ã(|x − s|, τ ) := k1δ(|x − s|) + k2A(|x − s|, τ ) (27)

where k1 + k2 = 1 and k1, k2 > 0.
The exponential kernel suggested by Eringen [10] is normalized in an infinite

domain and it is employed to this work. This kernel’s form is defined as follows:

A(|x − s|, e0a) = 1

2e0a
exp

(−|x − s|
e0a

)
(28)

The kernel of Eq. (28) in a finite domain is depicted in Fig. 1, where the violation
of the normalization condition is obvious.
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Fig. 1 a The nonlocal modulus A with respect to the normalized distance x/L with e0a = 0.1L .
b Values of the integral J (x) of the nonlocal modulus A with respect to the normalized distance
x/L , for different values of the nonlocal parameter, where J (x) = ∫ L

0 A(|x − s|, e0a)ds
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The one-dimensional differential operator corresponding to the exponential kernel
is given by:

H = 1 − (e0a)2
d2

dx2
(29)

The nonlocal differential constitutive equation in one-dimension is then defined
as:

Htxx = σxx (30)

3.1 Beam Equilibrium Equations

Let us consider a beam of length L . The uniform cross section and the constant stiff-
ness of the beam are denoted by S

(:= ∫
S dS

)
and E I , respectively. Also, Young’s

modulus of the material and the second moment of an area about y-axis are respec-
tively denoted by E and I , where I := ∫

S z
2dS. EB beam theory (EBBT) is based

on the displacement field as well:

u1 = u(x, t) − z
∂w(x, t)

∂x
, u2 = 0, u3 = w(x, t) (31)

The axial and the transverse displacements of the point (x, 0) on the middle plane
of the beam as well as the axial and the longitudinal coordinate are denoted by u, w,
x and z, respectively. The strain is, according to EBBT:

εxx = ∂u

∂x
− z

∂2w

∂x2
≡ ε0xx + zκ (32)

where ε0xx is the axial strain and κ is the curvature. This work centers on the bending
equation; thereby we assume that εxx = −z ∂2w

∂x2 .

3.1.1 Integral Stress Models

The nonlocal integral motion equation of the Rayleigh prismatic beam is defined as
follows [54]:

∂2

∂x2

[
E I

∫ L

0
Â(|x − s|, e0a)

∂2w(s, t)

∂s2
ds

]
+ m0

∂2w

∂t2
− m2

∂4w

∂x2∂t2
= q(x, t)

(33)
where Â is either Amod or Ã. The distributed mass, the rotary inertia, the density, the
moment of inertia, the cross section and the dynamical transverse distributed force
of the beam are denoted by m0, m2, ρ, I , S and q(x, t), respectively. The distributed
mass and the rotary inertia are given by m0 = ρS and m2 = ρI .
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Furthermore, the BCs of Eq. (33), which are either the shear force or the transverse
displacement and either the bending moment or the slope, follow:

QNL := ∂

∂x

[
E I

∫ L

0
Â(|x − s|, e0a)

∂2w(s, t)

∂s2
ds

]
− m2

∂3w

∂x∂t2
= 0 or

w = 0 (34)

MNL := E I
∫ L

0
Â(|x − s|, e0a)

∂2w(s, t)

∂s2
ds = 0 or

∂w

∂x
= 0 (35)

at x = 0 and x = L , where L is the beam’s length.

3.1.2 Differential Stress Model

The nonlocal differential motion equation is defined as follows [37]:

− E I
∂4w

∂x4
+ (e0a)2

∂2

∂x2

(
m0

∂2w

∂t2
− m2

∂4w

∂x2∂t2
− q

)

−m0
∂2w

∂t2
+ m2

∂4w

∂x2∂t2
+ q = 0 (36)

Equation (36) can be ergo written in a compressed form as:

E I
∂4w

∂x4
+ H

(
m0

∂2w

∂t2
− m2

∂4w

∂t2∂x2
− q

)
= 0 (37)

where the parenthesis is the variable of the operatorH (Eq. (29)).
The boundary terms and their energy conjugated quantities are given by the fol-

lowing expressions:

Q := −E I
∂3w

∂x3
+ (e0a)2

∂

∂x

(
m0

∂2w

∂t2
− m2

∂4w

∂t2∂x2
− q

)
+ m2

∂3w

∂t2∂x
= 0 (38)

or w = 0 at the boundary either 0 or L ,

M := −E I
∂2w

∂x2
+ (e0a)2

(
m0

∂2w

∂t2
− m2

∂4w

∂t2∂x2
− q

)
= 0 (39)

or ∂w/∂x = 0 at the boundary either 0 or L .
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3.2 Static Problems

3.2.1 Direct Approach to the Nonlocal Integral Model

Adirect handling of the nonlocal integral constitutive equation is to deduce the strains
by vanishing the dynamical terms of Eq. (33) and then integrating by parts twice.
The following equation concerning the strain is ergo obtained [80]:

∫ L

0
Â(|x − s|, e0a)

d2w

ds2
ds = q̃(x) + C1x + C2 (40)

where q̃(x) := 1
E I

∫ (∫ x
0 q(y)dy

)
dx and C1,C2 ∈ �.

A cantilever and a simply supported beam subjected to two types of loading (i.e.,
a concentrated load applied to the beam’s middle and a uniformly distributed load)
are respectively studied. The essential BCs of a cantilever and a simply supported
beam are respectively: w(L) = dw(L)/dx = 0 and w(0) = w(L) = 0.

The following values are selected for the concentrated load, the uniformly dis-
tributed load, the length, the bending stiffness, the radius as well as the thick-
ness of the SWCNT/nanobeam: P0 = 1 × 10−9N, q0 = 1 × 10−9N/1 × 10−9m, L =
10 × 10−9m, E I = 4.41 × 10−26Nm2, r = 0.34 × 10−9m and t = 0.34 × 10−9m.

We note that A ∈ L2(0, L) (i.e.,
∫ L
0

∫ L
0 |A(|x − s|, e0a)|2 ds < ∞), since the

attenuation function is continuous and the integral operator is compact. This entails
the solution’s existence and uniqueness to the investigated problems. To solve numer-
ically the integral Eq. (40), we use Gauss quadrature rule converging toward the
analytical expression of the integral, since the points’ number tends to infinity [81].

Owing to the existence of the boundary layer, the number of Gauss points selected
without a significant computational cost is 3000.A linear systemof equationsKe = g
is deduced. The coefficient matrix, the vector of unknowns and the vector of external
loads are denoted by K, e and g, respectively.

The ratio of the beam’s length to the beam’s height is sufficiently large in all the
above examples as well. Ergo, we assume that the thin beams’ theory is appropriate,
and the fact that the EBBT does not take into consideration the shear deformation
does not produce a significance error.

The next results of figures exhibit the normalized strain εxx := exx
max |eclxx | , exx :=

exx (x, z) = −zmax
d2w
dx2 , with respect to the length of the beam for each explored case.

The classic strain is denoted by eclxx . The following figures display the strain εxx of
the classic-local model, the TPNI stress model and the model of the modified kernel
for e0a = 0.01L . To display the strain in all the figures, a representative set of 3000
Gauss points is indicatively selected.

Equation (40) can be alternatively written as:

MNL(x) = E I q̃(x) + C̃1x + C̃2 (41)

where C̃1, C̃2 ∈ �.
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The strains are deducedby the following equations for the case of a cantilever beam
subjected to a uniformly distributed load q0 (BCs: MNL(0) = QNL(0) = 0) [54]:

d2w

dx2
ξ(x, e0a) +

∫ L

0
A(|x − s|, e0a)

d2w

ds2
ds = q0x2

2E I
(42)

k1
d2w

dx2
+ k2

∫ L

0
A(|x − s|, e0a)

d2w

ds2
ds = q0x2

2E I
(43)

What is more, the next equations give the strains for the case of a cantilever beam
subjected to a concentrated load at an interior point x0 (BCs: MNL(0) = QNL(0) =
0) [54]:

d2w

dx2
ξ(x, e0a) +

∫ L

0
A(|x − s|, e0a)

d2w

ds2
ds = P0

E I
(x − x0)H(x − x0) (44)

k1
d2w

dx2
+ k2

∫ L

0
A(|x − s|, e0a)

d2w

ds2
ds = P0

E I
(x − x0)H(x − x0) (45)

where H(x − x0) is the step/Heaviside function at point x0. Furthermore, the strains
are obtained by the following equations for the case of a simply supported beam
subjected to a uniformly distributed load q0 (BCs: MNL(0) = MNL(L) = 0) [54]:

d2w

dx2
ξ(x, e0a) +

∫ L

0
A(|x − s|, e0a)

d2w

ds2
ds = q0x

E I

( x
2

− 1
)

(46)

k1
d2w

dx2
+ k2

∫ L

0
A(|x − s|, e0a)

d2w

ds2
ds = q0x

E I

( x
2

− 1
)

(47)

Moreover, the next equations yield the strains for the case of a simply supported
beam subjected to a concentrated load at an interior point x0 (BCs: MNL(0) =
MNL(L) = 0) [54]:

d2w

dx2
ξ(x, e0a) +

∫ L

0
A(|x − s|, e0a)

d2w

ds2
ds

= P0
E I

(x − x0)H(x − x0) − P0
E I

(
1 − x0

L

)
x (48)

k1
d2w

dx2
+ k2

∫ L

0
A(|x − s|, e0a)

d2w

ds2
ds

= P0
E I

(x − x0)H(x − x0) − P0
E I

(
1 − x0

L

)
x (49)
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The discrete mathematical expressions of Eq. (42)–(49) take the form [54]:

f (ti )ξ(ti , e0a) +
G∑
j=1

c j A(|ti − t j |, e0a) f (t j ) = g(ti ), i = 1, . . . ,G (50)

f (ti )k1 + k2

G∑
j=1

c j A(|ti − t j |, e0a) f (t j ) = g(ti ). i = 1, . . . ,G (51)

A cantilever beam is subjected to a uniformly distributed load in Fig. 2. A dif-
ference between the nonlocal integral models and the classic model is indicated.
Apart from an area near to the fixed point, the strains of the nonlocal integral models
exceed that of the classic model (Fig. 2b). When k1-parameter reduces, the integral
models also tend to each other without including the area close to the fixed point
(Fig. 2b). Moreover, the boundary layer concerning the TPNI stress model intensi-
fies close to the fixed point of the beam (Fig. 2b). The boundary layer, in particular,
decreases, yet its influence zone increases as k1-parameter augments. The classic
model is approached by the TPNI stress model when k1-parameter increases as well
(Fig. 2). Another conclusion is that the TPNI stress model converges toward the
model of the modified kernel when k1-parameter decreases, and the points of the
body are not too close to the fixed point (Fig. 2). On the other hand, the boundary
layer of the model of the modified kernel is indiscernible near to the fixed point.
Additionally, the corresponding strain exceeds that of the classic model when the
distance between an arbitrary point and the fixed point increases. What is more, the
strain of the modified kernel model reduces and is exceeded by that of the classic
model when the free end is approached.

A concentrated load is applied to the middle of a cantilever beam in Fig. 3. The
stains of the nonlocal integral models are identical to that of the classic model except

Fig. 2 a The normalized strain εxx of a cantilever beam, with a uniformly distributed load, for
e0a/L = 0.01. b Details of an area close to the fixed point. (AH

mod = Amod )
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Fig. 3 a The normalized strain εxx of a cantilever beam, with a concentrated load applied to the
beam’s middle, for e0a/L = 0.01. Details of an area of the load point b and an area close to the
fixed point c

for the areas close to the load and the fixed points of the beam. When k1-parameter
reduces, the strain of the TPNI stress model decreases (Fig. 3a). As regards the
TPNI stress model, a boundary layer, similar to the case of a cantilever beam with
a uniformly distributed load, is developed near to the fixed point (Fig. 3b, c). To
be more specific, the boundary layer decreases, but at the same time its influence
zone increases as k1-parameter augments. Taking into account the increase of k1-
parameter, the TPNI stress model tends to the classic model (Fig. 3). Nevertheless,
the strain of the model of the modified kernel takes smaller values than those of the
other models at the load points (Fig. 3b). Furthermore, the strain of the TPNI stress
model tends to that of the model of the modified kernel at the load point when k1-
parameter decreases. A significant conclusion is that themodel of themodified kernel
does not appear to have a discernible boundary layer at the fixed point (Fig. 3c).

Another conclusion of importance is that the boundary layer depends only on the
investigated governing equation, but not the exerted loading (Figs. 2b and 3c).

Two different types of loading are applied to a simply supported beam in Fig. 4a,
c. Similarities are presented between the models which are explored. However, the
boundary layer regarding the TPNI stress model is less sharp and the strain takes
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Fig. 4 The normalized strain εxx of a simply supported beam for e0a/L = 0.01. a A concentrated
load applied to the beam’s middle. b Details of an area close to the fixed point. c A uniformly
distributed load. d Details of an area close to the fixed point

smaller values than that of a cantilever beam in an area close to the fixed points
(Fig. 4b, d). The influence zone of the boundary layer of the TPNI stress model
enlarges as k1-parameter increases, yet the boundary layer compared to that of the
modified kernel and being close to the fixed points decreases (Fig. 4b, d). The strain
of the model of the modified kernel, in particular, takes larger values than that of the
TPNI stress model with k1 = 0.5 in areas close to the fixed points. This indicates
the difficulty of the model of the modified kernel to handle the boundary layer of a
simply supported beam.

To check the stability of the linear system of equations, the condition number of
the coefficient matrix K should be calculated. The condition number of a matrix K
n × n is defined as κ(K) = ||K|| · ||K−1||.

The definitions of the norm are given by ||K||∞ = max1≤i≤n
∑n

j=1 |Ki j |, ||K||1 =
max1≤ j≤n

∑n
i=1 |Ki j | and ||K||2 =

[∑n
1≤i, j≤n

(
Ki j

)2]1/2
.

If K is a symmetric matrix, then ||K||2 = ρ(K), where ρ(K) = max{λi : K} and
λi are the eigenvalues of the matrix K. In case that K is a symmetric and a normal
matrix, it then holds that κ(K) = |λmax|/|λmin|.
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Table 1 Cantilever beam: Condition number
(
κ(K) = ||K|| · ||K−1||) of the matrix of coeffi-

cients, K

e0a/L Gauss
points

Amod k1 = 0.01 k1 = 0.1 k1 = 0.2 k1 = 0.5

0.01 500 4875.431 100.9415 10.00192 4.984897 1.990991

1000 2335.448 101.0362 10.00464 4.985585 1.991034

2000 2240.871 101.1099 10.00701 4.986253 1.991106

3000 1663.168 101.1350 10.00786 4.986504 1.991137

0.1 [54] 500 93.13096 97.12981 9.651288 4.82809 1.951197

1000 92.71524 97.19989 9.653703 4.82881 1.951289

2000 92.54316 97.25277 9.655588 4.829385 1.951368

3000 92.51211 97.27045 9.65623 4.829583 1.951395

The linear system corresponding to the TPNI stress model is stable. The condition
number of the coefficient matrix K tends to 1 when k1-parameter increases. Also,
the condition number is slightly affected by the nonlocal parameter (Table 1).

What is more, the condition number of the coefficient matrix K corresponding to
the model of the modified kernel is acceptable for the case of e0a/L = 0.01. When
the nonlocal parameter takes such a small value, the model of the modified kernel
approaches the first kind Fredholm integral equation.On the other hand, the condition
number gives excellent results when e0a/L = 0.1, and the linear system deriving is
stable (Table 1).

3.2.2 Calculation of Static Deflection Through FEM

This section focuses on the transverse deflections of the nonlocal integral models
for various types of loading and BCs. The static nonlocal integral EB beam bending
equation derives from Eq. (33):

d2

dx2

[
E I

∫ L

0
Â(|x − s|, e0a)

d2w(s)

ds2
ds

]
= q(x) (52)

The values of Sect. 3.2.1 have been taken into consideration for the numerical
simulations. The selected values of e0a also range from 0.01L to 0.04L .

Each transverse deflection is normalized as wnorm := w/wcl
max , where w is the

delection of a nanobeam and ωcl
max is the maximum deflection of the classical EBBT

for all the problems explored below.
In the next figures, a comparison is drawn between the transverse deflections of

the classic-local model, the nonlocal differential model, the TPNI stress model with
different values of c1-parameter and the model of the modified kernel of a nanobeam
with respect to the nonlocal parameter.
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The numerical transverse deflections regarding the nonlocal integral models are
deduced by the following FEMs [48]:

N∑
n=1

⎡
⎣ 4∑

j=1

wn
j

∫ xn

xn−1

d2φn
i

dx2
E Iξ(x, e0a)

d2φn
j

dx2
dx

+
∫ xn

xn−1

d2φn
i

dx2
E I

M∑
m=1

4∑
j=1

wm
j

∫ sm

sm−1

A(|x − s|, e0a)
d2φm

j

ds2
dsdx

⎤
⎦

=
N∑

n=1

∫ xn

xn−1

φn
i (x)q(x)dx − φN

i (L)Q̄NL(L) + φ1
i (0)Q̄

NL(0)

+ (
φN
i

)′
(L)M̄ NL(L) − (

φ1
i

)′
(0)M̄ NL(0) (53)

N∑
n=1

⎡
⎣k1

4∑
j=1

wn
j

∫ xn

xn−1

d2φn
i

dx2
E I

d2φn
j

dx2
dx

+ k2

∫ xn

xn−1

d2φn
i

dx2
E I

M∑
m=1

4∑
j=1

wm
j

∫ sm

sm−1

A(|x − s|, e0a)
d2φm

j

ds2
dsdx

⎤
⎦

=
N∑

n=1

∫ xn

xn−1

φn
i (x)q(x)dx − φN

i (L)Q̃NL(L) + φ1
i (0)Q̃

NL(0)

+ (
φN
i

)′
(L)M̃ NL(L) − (

φ1
i

)′
(0)M̃ NL(0), (54)

where the arbitrary finite elements of the beam are denoted by Vn = (xn−1, xn) and
V ′
m = (sm−1, sm) and the numbers of finite elements by N and M , respectively. Also,

Hermite shape functions are denoted by φn
i (x) (i = 1, . . . , 4), the approximate trans-

verse deflection by w(x) = ∑4
j=1 w

n
jφ

n
j (x) as well as the generalized displacements

bywj , respectively. Gauss quadrature rule is used for the integrals’ calculation of Eq.
(53) andEq. (54) aswell. N = M = 100 is also selected for all the below investigated
problems.

(a) Cantilever beam with a concentrated load at the middle of the beam

The essential and the natural BCs of a cantilever beam subjected to a concentrated
load at the middle of the beam are given by:

w(0) = dw

dx

∣∣∣∣
x=0

= 0 (55)

M̄(L) = Q̄(L) = 0, M̃(L) = Q̃(L) = 0 (56)
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Fig. 5 a Normalized transverse deflections of a cantilever beam, with a concentrated load applied
to the beam’s middle, for e0a/L = 0.03. b Detail of an area at the free end of the beam

The maximum classic-local transverse deflection takes the following value at the
free end of the beam: wcl

max = 5P0L3/48E I .
In Figs. 5 and 6, the responses of the nonlocal integralmodels present to be flexible

in comparison with that of the classic-local model.
What is more, the transverse deflection of the nonlocal differential model is iden-

tical to that of the classic-local model at the interval (0, L/2), yet it is smaller than
that of the classic-local model at the interval (L/2, L). In other words, the beam’s
stiffness increases in the interval ranging from the load point to the free end of the
beam. It is critical to mention that the nonlocal differential and the nonlocal integral
models present totally different results.

Furthermore, the deflection of the TPNI stress model exceeds that of the model
of the modified kernel in Figs. 5 and 6. This behavior is expected by taking into
consideration Fig. 3. The difference between their values increases as the nonlocal
parameter augments (Fig. 6).

Based on Fig. 6a, the deflections of the model of the modified kernel linearly
increase when 0.01 < e0a/L < 0.03, but their increase rate reduces when 0.03 <

e0a/L < 0.04. The attenuation function widens as the nonlocal parameter increases.
Its area close to the boundary and ergo the information’s quantity decreases, yet the
intervals in which the area of the attenuation function does not approach 1 increase
(Fig. 1b). Hence, the created gap is occupied by the locality, and this is obvious in
Fig. 6a.

(b) Cantilever beam with a concentrated load at the free end of the beam

The essential BCs of a cantilever beam with a concentrated load applied to the free
end of the beam are given by Eq. (55) and the natural BCs by:

M̄(L) = M̃(L) = 0, Q̄(L) = Q̃(L) = P0 (57)

The maximum classic-local transverse deflection takes the following value at the
free end of the beam: wcl

max = P0L3/3E I .
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Fig. 6 Normalized transverse deflections of a cantilever beam, with a concentrated load applied to
the beam’s middle, for different values of e0a/L at points a 0.25L , b 0.5L , c 0.75L , d L

Based on Figs. 7 and 8, the responses of the nonlocal integral models appear
to be flexible in comparison with that of the classic-local model. The transverse
deflection of the TPNI stress model presents a monotonically increasing behavior as
the nonlocal parameter augments.

What is more, the transverse deflection of the nonlocal differential model is iden-
tical to that of the classic-local model (Figs. 7 and 8). In other words, the nonlocal
differential model is insensitive to the locality effect. It is worth mentioning that the
nonlocal integral models appear to have a qualitatively different behavior from that
of the nonlocal differential model.

Finally, the response of the model of the modified kernel of a cantilever beamwith
a concentrated load at the free end of the beam presents a similar behavior with that
of a cantilever beam subjected to a concentrated load at the beam’s middle close to
the fixed point (Fig. 8a). This behavior is more intense than that presented in Fig. 6a.

(c) Cantilever beam with a uniformly distributed load

The essential and the natural BCs of a cantilever beam subjected to a uniformly
distributed load are given by Eqs. (55) and (56).
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Fig. 7 a Normalized transverse deflections of a cantilever beam, with a concentrated load applied
to the free end of the beam, for e0a/L = 0.03. b Detail of an area at the free end of the beam

Fig. 8 Normalized transverse deflections of a cantilever beam, with a concentrated load applied to
the free end of the beam, for different values of e0a/L at points a 0.25L , b 0.5L , c 0.75L , d L
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Fig. 9 a Normalized transverse deflections of a cantilever beam, with a uniformly distributed load,
for e0a/L = 0.03. b Detail of an area at the free end of the beam

The maximum classic-local transverse deflection takes the following value at the
free end of the beam: wcl

max = q0L4/8E I .
The responses of the nonlocal integral models present to be flexible in comparison

with that of the classic-local model in Figs. 9 and 10. In Fig. 10a, the locality effect
is evident for the model of the modified kernel. On the other hand, the transverse
deflection of the TPNI stress model presents a monotonically increasing behavior as
the nonlocal parameter augments.

The responses of the model of the modified kernel appear to have an extremum
when e0a/L = 0.03, since the locality’s contribution increases as the nonlocal
parameter increases (Fig. 10a). The deflection of the model of the modified ker-
nel takes larger values than that of the classic-local model irrespective of the above
behavior.

Moreover, the deflection of the classic-local model exceeds the deflection of the
nonlocal differentialmodel. In otherwords, the nonlocal differentialmodel stimulates
the stiffness of the beam. It is noteworthy that the nonlocal integral models present
a qualitatively different behavior from that of the nonlocal differential model.

(d) Clamped-clamped beam with a concentrated load at the middle of the
beam

The essential BCs of a clamped-clamped beam with a concentrated load applied to
the middle of the beam are given by:

w(0) = dw

dx

∣∣∣∣
x=0

= 0, w(L) = dw

dx

∣∣∣∣
x=L

= 0 (58)

The maximum classic-local transverse deflection takes the following value at the
middle of the beam: wcl

max = P0L3/192E I .
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Fig. 10 Normalized transverse deflections of a cantilever beam, with a uniformly distributed load,
for different values of e0a/L at points a 0.25L , b 0.5L , c L

On the basis of Fig. 11, the responses of the nonlocal integral models appear to
be flexible in comparison with those of the classic-local and the nonlocal differential
models.

What is more, the transverse deflection of the model of the modified kernel, near
to the fixed boundaries of the beam, takes smaller values than that of the TPNI stress
model with both k1 = 0.01 and k1 = 0.1 (Fig. 11b). At the same time at the middle of
the beam, the response of the model of the modified kernel appears to have a flexible
behavior compared to the responses of the other explored models (Fig. 11c). Also,
the model of the modified kernel is intensely affected by the locality added to the
constitutive equations as the nonlocal parameter increases.

As regards the TPNI stress model, their deflections monotonically evolve with
respect to k1-parameter and when the nonlocal parameterer increases (Fig. 11b, c).

It is of importance that the nonlocal integral models do not appear to have a
qualitatively different behavior from that of the nonlocal differential model.

(e) Clamped-clamped beam with a uniformly distributed load

The essential BCs of a clamped-clamped beam subjected to a uniformly distributed
load are given by Eq. (58).
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Fig. 11 a Normalized transverse deflections of a clamped-clamped beam, with a concentrated load
applied to the beam’s middle, for e0a/L = 0.03. Normalized transverse deflections for different
values of e0a/L at points b 0.25L , c 0.5L

The maximum classic-local transverse deflection takes the following value at the
middle of the beam: wcl

max = q0L4/384E I .
In Fig. 12, the responses of the nonlocal integral models appear to have a flex-

ible behavior in comparison with that of the classic-local model. Furthermore, the
transverse deflection of the nonlocal differential model is identical to that of the
classic-localmodel. The deflections concerning theTPNI stressmodelmonotonically
evolve with respect to k1-parameter and when the nonlocal parameterer increases
(Fig. 12c, d).

Moreover, the deflections of the TPNI stress model with both k1 = 0.01 and
k1 = 0.1, close to the fixed boundaries of the beam, take larger values than that of
the model of the modified kernel (Fig. 12c). At the same time at the middle of the
beam, the response of the model of the modified kernel and the response of the
TPNI stress model with k1 = 0.1 compete with each other (Fig. 12d). By all the
investigated models, the deflection of the TPNI stress model with k1 = 0.01 takes
the largest values (Fig. 12c, d).

What ismore, themodel of themodified kernel is intensely affected by the locality,
which is added to the constitutive equations as the nonlocal parameter increases.
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Fig. 12 a Normalized transverse deflections of a clamped-clamped beam, with a uniformly dis-
tributed load, for e0a/L = 0.03.bDetail of an area at themiddle of the beam.Normalized transverse
deflections for different values of e0a/L at points c 0.25L , d 0.5L

It is critical to mention that the nonlocal integral models present a qualitatively
different behavior from that of the nonlocal differential model.

(f) Clamped-pinned beam with a concentrated load at the middle of the beam

The essential and the natural BCs of a clamped-pinned beam with a concentrated
load applied to the middle of the beam are given by:

w(0) = dw

dx

∣∣∣∣
x=0

= 0, w(L) = 0 (59)

M̄(L) = M̃(L) = 0 (60)

The maximum classic-local transverse deflection takes the following value at the

point of the beam x =
(
1 − √

5/5
)
L: wcl

max = √
5P0L3/240E I .

Based on Fig. 13, the responses of the nonlocal integral models present to be
flexible in comparison with those of the classic-local and the nonlocal differential
models. What is more, the transverse deflection of the model of the modified kernel,
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Fig. 13 a Normalized transverse deflections of a clamped-pinned beam, with a concentrated load
applied to the beam’s middle, for e0a/L = 0.03. Normalized transverse deflections for different
values of e0a/L at points b 0.25L , c 0.5L

close to the fixed boundary of the beam, takes smaller values than that of the TPNI
stress model with k1 = 0.01 and k1 = 0.1 too (Fig. 13b). At the same time at the
middle of the beam, the response of the model of the modified kernel appears to
have a flexible behavior compared to the responses of the other investigated models
(Fig. 13c). Besides, the model of the modified kernel is intensely affected by the
locality added to the constitutive equations as the nonlocal parameter increases. The
deflections regarding the TPNI stress model monotonically evolve when the nonlocal
parameter augments (Fig. 13b, c).

It is of significance that the behavior demonstrated by the nonlocal integral models
is not qualitatively different from that of the nonlocal differential model.

(g) Clamped-pinned beam with a uniformly distributed load

The essential and the natural BCs of a clamped-pinned beam subjected to a uniformly
distributed load are given by Eqs. (59) and (60).

The maximum classic-local transverse deflection takes the following value at the

point of the beam x = (15 − √
33)L/16: wcl

max = (q0L4/E I )
(
39+55

√
33

65536

)
.
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Fig. 14 a Normalized transverse deflections of a clamped-pinned beam, with a uniformly dis-
tributed load, for e0a/L = 0.03. Normalized transverse deflections for different values of e0a/L at
points b 0.25L , c 0.5L

In Fig. 14, the responses of the nonlocal integral models appear to have a flex-
ible behavior in comparison with that of the classic-local model. Furthermore, the
transverse deflection of the nonlocal differential model is identical to that of the
classic-local model. As regards the TPNI stress model, its deflections monotonically
evolve when the nonlocal parameter increases (Fig. 14b, c).

Moreover, the deflections of the TPNI stress model with both k1 = 0.01 and
k1 = 0.1, close to the fixed boundary of the beam, take larger values than that of the
model of the modified kernel (Fig. 14b). At the same time at the middle of the beam,
the response of the model of the modified kernel and the response of the TPNI stress
model with k1 = 0.1 compete with each other (Fig. 14c). By all the investigated
models, the deflection of the TPNI stress model with k1 = 0.01 takes the largest
values (Fig. 14b, c). The model of the modified kernel is also affected by the locality,
which is added to the constitutive equations as the nonlocal parameter increases.

It is critical to mention that the nonlocal integral models present a qualitatively
different behavior from that of the nonlocal differential model.
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(h) Simply supported beam with a concentrated load at the middle of the beam

The essential and the natural BCs of a simply supported beam with a concentrated
load applied to the middle of the beam are given by:

w(0) = w(L) = 0 (61)

M̄(0) = M̃(0) = 0, M̄(L) = M̃(L) = 0. (62)

The maximum classic-local transverse deflection takes the following value at the
middle of the beam: wcl

max = P0L3/48E I .
In Fig. 15, the responses of the nonlocal integral models present to be flexible in

comparison with that of the classic-local model.
Moreover, the transverse deflection of themodel of themodifiedkernel takes larger

values than those of the other models that studied. A extremum point is demonstrated
in Fig. 15c as well. The extremum point is caused by the fact that the modified kernel
adds locality to the gap created by the nonlocality on the boundary. The effect of the

Fig. 15 a Normalized transverse deflections of a simply supported beam, with a concentrated load
applied to the beam’s middle, for e0a/L = 0.03. b Detail of an area at the middle of the beam.
Normalized transverse deflections for different values of e0a/L at points c 0.25L , d 0.5L
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modified kernel is therefore greater on points close to the boundary. Similar results
are deduced for the case of a cantilever beam.

Besides, the deflections of the TPNI stress model monotonically evolve with
respect to k1-parameter and when the nonlocal parameterer increases in Fig.15c, d.
The nonlocal deflection additionally tends to that of the classic-local model because
of the augmentation of k1-parameter.

The transverse deflection of the nonlocal differential model also appears to have
a flexible response in comparison with that of the classic-local model. It is of signif-
icance that the nonlocal integral models present a qualitatively similar behavior to
that of the nonlocal differential model.

(i) Simply supported beam with a uniformly distributed load

The essential and the naturalBCsof a simply supported beamsubjected to a uniformly
distributed load are given by Eqs. (61) and (62).

The maximum classic-local transverse deflection takes the following value at the
middle of the beam: wcl

max = 5q0L4/384E I .
Based on Fig. 16, similar conclusions are drawn for the nonlocal models as in

case of a concentrated load.

Fig. 16 a Normalized transverse deflections of a simply supported beam, with a uniformly dis-
tributed load, for e0a/L = 0.03.bDetail of an area at themiddle of the beam.Normalized transverse
deflections for different values of e0a/L at points c 0.25L , d 0.5L
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The model of the modified kernel presents a flexible behavior in comparison with
the other investigated models. When e0a/L > 0.03, however, the aforementioned
model is affected by the locality more than the corresponding model in case of a
concentrated load.

In addition, the deflections of the TPNI stress model monotonically evolve with
respect to k1-parameter and when the nonlocal parameterer increases in Fig. 16c, d.
The nonlocal deflection also tends to that of the classic-local model because of the
augmentation of k1-parameter.

3.3 Dynamical Problems

3.3.1 Free Vibration Problem of a Beam

This section revolves around the dynamical response of a cantilever, a clamped-
clamped, a clamped-pinned and a simply supported nanobeam. The free vibration
problem of an EB nanobeam (Eq. (33)), in particular, is solved by means of a numer-
ical method.

The values of Sect. 3.2.1 have been taken into account for the numerical simula-
tions. The followingmaterial constant is considered for the density: ρ = 2300 kg/m3.
The selected values of e0a also range from 0.01L to 0.04L .

Each eigenfrequency is normalized as ω̄i := ωi/ω
clas
i , i = {1, 2, 3, 4}, where ωi

is the eigenfrequency of a nanobeam and ωclas
i is the eigenfrequency of the classical

EBBT of each mode for all the following investigated problems.
In the next figures, a comparison is drawn between the eigenfrequencies of the

classic-local model, the nonlocal differential model, the TPNI stress model corre-
sponding to different values of c1-parameter and the model of the modified kernel of
a nanobeam with respect to the nonlocal parameter.

The numerical eigenfrequencies concerning the nonlocal integral models are
deduced by the following FEMs [71]:

N∑
n=1

⎡
⎣ 4∑

j=1

cnj

∫ xn

xn−1

d2φn
i

dx2
(x)E Iξ(x, e0a)

d2φn
j

dx2
dx

+
∫ xn

xn−1

d2φn
i

dx2
E I

M∑
m=1

4∑
j=1

cmj

∫ sm

sm−1

A(|x − s|, e0a)
d2φm

j

ds2
dsdx

− ω2
4∑
j=1

cnj

∫ xn

xn−1

m0φ
n
i (x)φ

n
j (x)dx

⎤
⎦

= −φN
i (L)Q̄(L) + φ1

i (0)Q̄(0) + dφN
i

dx
(L)M̄(L) − dφi

i

dx
(0)M̄(0) (63)
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N∑
n=1

⎡
⎣k1

4∑
j=1

cnj

∫ xn

xn−1

d2φn
i

dx2
E I

d2φn
j

dx2
dx

+k2

∫ xn

xn−1

d2φn
i

dx2
E I

M∑
m=1

4∑
j=1

cmj

∫ sm

sm−1

A(|x − s|, e0a)
d2φm

j

ds2
dsdx

− ω2
4∑
j=1

cnj

∫ xn

xn−1

m0φ
n
i (x)φ

n
j (x)dx

⎤
⎦

= −φN
i (L)Q̃(L) + φ1

i (0)Q̃(0) + dφN
i

dx
(L)M̃(L) − dφ1

i

dx
(0)M̃(0) (64)

where the arbitrary finite elements of the beam are denoted by Vn = (xn−1, xn)
and V ′

m = (sm−1, sm) and the numbers of FEs by N and M , respectively. Hermite
shape functions are also denoted byφn

i (x) (i = 1, . . . , 4), the approximate transverse
deflection by ψ(x) = ∑4

j=1 c
n
jφ

n
j (x) as well as the generalized displacements by c j ,

respectively. Gauss quadrature rule is used for the integrals’ calculation of Eqs. (63)
and (64). ω2 (or |ω|) is then calculated by det (KNL − ω2M

) = 0. N = M = 100 is
also selected for all the below investigated problems.

(a) Cantilever beam

The essential and the natural BCs of a cantilever nanobeam are given by Eqs. (55)
and (56). In Fig. 17, the eigenfrequencies of the nonlocal models appear to have a
softening response in comparisonwith those of the classic-localmodel, apart from the
fundamental eigenfrequency of the nonlocal differential model. To be more specific,
the fundamental eigenfrequency of the differential model increases as the nonlocal
parameter augments (Fig. 17a). This remark has been obviously presented in the
literature [35] and it is regarded as the paradox of the fundamental eigenfrequency
of the nonlocal differential model of a cantilever beam.

What ismore, the fundamental eigenfrequency of themodel of themodified kernel
takes larger values than those of the TPNI stress model for each k1-parameter (Fig.
17a). However, that is not the case for the model of the modified kernel when the
eigenfrequencies ω̄2, ω̄3, ω̄4 are studied. In those cases, its eigenfrequencies take
smaller values than the eigenfrequencies of all the other investigated models (Fig.
17b–d).

Furthermore, the fundamental eigenfrequency of the TPNI stress model appears
a non-monotonic behavior with respect to k1-parameter. Perhaps an explanation of
this behavior centers on the fact that the TPNI stress model is unsuitable to suc-
cessfully handle the boundary (Fig. 17a). On the other hand, the three remaining
eigenfrequencies of the aforementioned model present a totally different behavior.
To be more specific, the corresponding eigenfrequencies of the TPNI stress model
evolve in a monotonic way and they tend to those of the classic-local model as k1-
parameter increases. Moreover, all the eigenfrequencies of the TPNI stress model
exhibit a monotonic behavior with respect to the nonlocal parameter (Fig. 17b, c).



84 C. Chr. Koutsoumaris and K. G. Eptaimeros

Fig. 17 The first four normalized eigenfrequencies of a cantilever nanobeam with respect to the
nonlocal parameter. a ω̄1, b ω̄2, c ω̄3, d ω̄4

The third and the fourth eigenfrequencies of the nonlocal differential model
demonstrate a softening response in comparison with those of the TPNI stress model
for k1 = {0.1, 0.5} as well (Fig. 17c, d).

To recap, the responses of the nonlocal integral models present a softening behav-
ior compared to those of the classic-local model. The last-mentioned results are in
accordance with the results of a structural element in the context of a lattice atomic
model [29].

(b) Clamped-clamped beam

The essential BCs of a clamped-clamped nanobeam are given by Eq. (58). The eigen-
frequencies of the nonlocalmodels appear to have a softening response in comparison
with those of the classic-local model in Fig. 18. Apart from the fundamental eigen-
frequency, all the eigenfrequencies of the model of the modified kernel take smaller
values than those of the other investigatedmodels. As regards the fundamental eigen-
frequency, the responses of the nonlocal integral models clearly differ from that of
the nonlocal differential model (Fig. 18a).
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Fig. 18 The first four normalized eigenfrequencies of a clamped-clamped nanobeam with respect
to the nonlocal parameter. a ω̄1, b ω̄2, c ω̄3, d ω̄4

What ismore, the eigenfrequencies of theTPNI stressmodelmonotonically evolve
with respect to k1-parameter. In other words, the aforementioned eigenfrequencies
tend to those of the classic-local model as k1-parameter increases. Besides, these
eigenfrequencies decrease further when the nonlocal parameter augments.

Regarding the model of the modified kernel, its fundamental eigenfrequency
diminishes up to a specific value of the nonlocal parameter (extremum), and when
the nonlocal parameter exceeds this value, the eigenfrequency’s behavior changes
and starts to augment (Fig. 18a).

For the other three investigated eigenfrequencies, the model of the modified ker-
nel and the TPNI stress model with k1 = 0.01 present a competitive behavior with
each other (Fig. 18b). The modified kernel’s model also demonstrates a monotoni-
cally decreasing behavior with respect to the nonlocal parameter (Fig. 18b–d). The
responses of the nonlocal differential model demonstrate amonotonically decreasing
behavior as well.

(c) Clamped-pinned beam

The essential and the natural BCs of a clamped-pinned nanobeam are given by Eqs.
(59) and (60). The responses of a clamped-pinned beam appear to have a similar
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Fig. 19 The first four normalized eigenfrequencies of a clamped-pinned nanobeam with respect to
the nonlocal parameter. a ω̄1, b ω̄2, c ω̄3, d ω̄4

behavior with those of a clamped-clamped beam in Fig. 19. Unlike the fundamental
eigenfrequencies of a clamped-clamped beam, the fundamental eigenfrequencies of
the nonlocal differential and the nonlocal integral models of a clamped-pinned beam
do not present such a significant difference (Fig. 19a).

(d) Simply supported beam

The essential and the natural BCs of a simply supported nanobeam are given by
Eqs. (61) and (62). The eigenfrequencies of the nonlocal models appear to have a
softening response in comparison with those of the classic-local model in Fig. 20.
Apart from the fundamental eigenfrequency when e0a/L > 0.03 (Fig. 20a), all the
eigenfrequencies of the model of the modified kernel take smaller values than those
of the other investigated models.

What ismore, the eigenfrequencies of theTPNI stressmodelmonotonically evolve
with respect to k1-parameter. In otherwords, the above eigenfrequencies tend to those
of the classic-local model as k1-parameter increases. Besides, these eigenfrequencies
decrease further when the nonlocal parameter augments.
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As regards the model of the modified kernel, the decrease rate of its fundamental
eigenfrequency reduces when the nonlocal parameter increases (Fig. 20a). It is crit-
ical to mention that the transverse deflections of the corresponding static problem
present a similar behavior with respect to the nonlocal parameter. To elucidate, the
increase of the contribution of the neighbouring particles to the nonlocal stresses
at the interior points of the body is triggered by the augmentation of the nonlocal
parameter. Nevertheless, the locality’s contribution in stresses at an area close to
the boundary is significant. The model of the modified kernel therefore suggests a
behavior according to which the local attribute is of importance when the nonlocal
parameter increases. Furthermore, the rest of the eigenfrequencies of the model of
the modified kernel appear to have a linear, decreasing behavior with respect to the
nonlocal parameter (Fig. 20b–d).

The responses of the nonlocal differential model demonstrate a monotonically
decreasing behavior as well.

Fig. 20 The first four normalized eigenfrequencies of a simply supported nanobeam with respect
to the nonlocal parameter. a ω̄1, b ω̄2, c ω̄3, d ω̄4
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4 Conclusions

This work revolves around the contemporary advances in Eringen’s nonlocal elas-
ticity theory with emphasis on solving structural engineering problems.

An overview of the literature and a discussion about the integral formulation (i.e.,
the strong form) and the differential formulation of the nonlocal elasticity theory are
presented. The correlation introduced byMindlin [29] between the nonlocal elasticity
theory and the strain gradient elasticity theory is pointed out. An attempt to explain
the above correlation is performed by following Mindlin’s rationale. An exhaustive
discussion regarding the suitability of the nonlocal modulus for the problems’ solu-
tion in a finite body is also presented. Applications for both static and dynamical
engineering problems are investigated as well.

To be more specific, the bending problem and the free vibration problem of an
EB nanobeam are explored. The strains are calculated by means of a direct approach
to the nonlocal integral model. On the other hand, the static deflections and the
eigenfrequencies are calculated by carrying out the FEM.

The following conclusions are drawn from the strain of a cantilever and a simply
supported nanobeam, respectively. On the basis of the numerical results, the strain
field exceeds the strain of the classic model at a fixed point, but that is not the case
for points not too close to the above point in all the problems that studied. How
flexible the beam’s response is, it hinges on the boundary layer of the strain and the
corresponding influence zone.

The boundary layer developed is successfully tackled by themodel of themodified
kernel for the case of a cantilever and a simply supported beam, respectively. It is
critical to mention that the model of the modified kernel and the TPNI stress model
appear to have a similar behavior except for points too close to the boundary.Owing to
the boundary layer, the inadequacy of the TPNI stress model relating to the violation
of the normalization condition in a finite domain is highlighted.

By all the investigated static problems, the responses of the nonlocal integral
models appear to have a flexible behavior in comparison with that of the classic-
local model.

The beam problems studied are successfully tackled by the nonlocal integral
models (i.e., the model of the modified kernel and the TPNI stress model) and the
FEM.We note that the model of the modified kernel almost counteracts the boundary
layer appearing in the strain, unlike the TPNI stress model.

The results of the transverse deflections associated with the model of the modified
kernel demonstrate aworthmentioning behavior as the nonlocal parameter increases.
In particular in the investigated problems, the increase rate of the deflection is slower
for points found close to the boundaries andwhen e0a/L > 0.03. There are also cases
wherein the deflection of the model of the modified kernel approaches its greatest
value when e0a/L = 0.03. This behavior can be explained by the constitutive equa-
tion. Owing to the fact that the body is finite and the nonlocal parameter increases, the
information added by the attenuation function to the constitutive equation reduces.
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Locality is then added to the created gap, and this triggers the nonlocal deflection to
tend to the classic-local deflection.

However, that is not the case for the TPNI stress model, since its deflections
monotonically evolvewith respect to the nonlocal parameter in all the above explored
problems. It is also critical to mention that the responses of the discrete lattice atomic
models of a nanobeam appear to have a flexible behavior in comparison with the
classical ones [82], unlike the responses of the strain gradient elasticity theory in
one-dimensional problems [83–86].

As regards the free vibrationproblem, the eigenfrequencies of the nonlocal integral
models appear to have a softening response in comparison with those of the classic-
local model when the nonlocal parameter increases. Unlike the nonlocal differential
model, no paradoxes are raised for the fundamental eigenfrequencies of the nonlocal
integral models of a cantilever beam.

The responses of the nonlocal integral models differ from that of the nonlocal
differential model as well. To be more specific, the eigenfrequencies of the TPNI
stress model with k1 = 0.01 and those of the model of the modified kernel generally
take smaller values than the eigenfrequencies of the nonlocal differential model.

By all the investigated models, the eigenfrequencies of the model of the modified
kernel generally take the smallest valueswith respect to the nonlocal parameter.Need-
less to say, the behavior of the fundamental eigenfrequency is noteworthy as well.
The aforementioned behavior is particularly affected by the equilibrium between
the locality and the nonlocality, imposed by the model of the modified kernel on
each problem that studied. Why is the fundamental eigenfrequency more sensitive
to this phenomenon than the other eigenfrequencies? It still remains an unanswered
question.

A kind of convergence of the numerical solutions, accomplished by successively
finer meshes, also suggests that the FEM is stable for all the problems that studied.

As regards the static and the dynamical problems, the use of themodified kernel in
a finite domain can be regarded the optimal selection for a mixed-type local/nonlocal
model applied to the nanodevice’s design.

The overall conclusions drawn from this chapter are encouraging of triggering the
study of complicated nanostructural problems such as nanoframes, nanoplates and
nanoshells.
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Nonlocal Mechanics in the Framework
of the General Nonlocal Theory

Mohamed Shaat and Esmaeal Ghavanloo

Abstract A continuum is stable if and only if its body and inertia forces are bal-
anced globally with surface tractions acting on it. The global balance requirement
automatically postulates a local balance if a material particle interacts with its direct
neighbors. However, when the interaction of the particle is nonlocal and extended
to interactions between all particles of the continuum, the local balance is violated,
and the material is still stable only if the restrictive global balance is satisfied. The
latter continuum behavior can be described by a nonlocal theory. The nonlocal the-
ory developed by Eringen postulates the global balance requirement by representing
the stress field depends on the properties of the whole continuum. Eringen assumed
a single nonlocal kernel function for all the material coefficients. Here, we show
that utilizing a single attenuation function puts limits to the nonlocal model where it
would break down when applied to materials operate at high frequency ranges. We
also show that Eringen’s nonlocal model is limited for slowly varying acoustic waves
and low frequencies. To exceed this limit, the general nonlocal theory is presented.
The general nonlocal theory outweighs Eringen’s nonlocal theory for considering
different nonlocal kernels for the different material coefficients. The mechanics of
particles, the mechanics of linear elastic continua, and the materials dispersion are
discussed in the framework of the general nonlocal theory. In addition, the reduction
of the general nonlocal theory to the strain gradient theory is interpreted. In addition,
we indicate that the strain gradient theory can capture the same phenomena as the
general nonlocal theory as long as various strain gradients are considered.
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1 Introduction

Classical models of continuum mechanics have been well-established to describe
the mechanics of various types of materials. In these models, it is assumed that the
material’s internal energy is only dependent on a strain field, which is generated upon
local interactions of a material point with its direct neighbors. Thus, information on
non-neighbor interactions of the material point with other points of the continuum
is disregarded. The classical continuum mechanics is invariant with respect to time
and length scales, and more notably size effects cannot be captured by these models
[1]. With the recent advancement of advanced materials, these classical models have
shown clear failure to capture the non-classical phenomena of these materials. To
overcome this limitation, a series of size-dependent continuum approaches, such as
micromorphic theory [2–5], microstretch theory [5], micropolar theory [5], first and
second strain gradients theories [2, 6], couple-stress theories [7–9], and nonlocal the-
ories [10, 11], have been proposed, which are usually pertinent to study phenomena
at small scales. To model the mechanics of materials with independent microstruc-
tures, the micromorphic theories were developed. In the micromorphic theories, the
material’s internal energy depends on non-classical kinematical variables, which are
independent of the conventional strain field. In the strain gradient theories, the inter-
nal energy depends on the strain and its gradients. The couple stress theories were
developed to represent the material’s internal energy as a function of the strain and
the gradients of the rotation tensor.

The first attempt to model elastic continua with long-range cohesive forces was
made by Kröner [12]. Then, Eringen and Edelen [10, 11] proposed a systematic rep-
resentation of the nonlocal continuum field theories. In the original nonlocal model,
the stress field was obtained from the integral of the strain field over the whole body.
In 1983, Eringen [13] proposed a differential form of the nonlocal model, which
is equivalent to the nonlocal integral model over unbounded continuous domains.
The peridynamics theory was introduced by Silling [14] as a computational tool
of nonlocal mechanics. The peridynamics nonlocal theory is integral-type nonlocal
continuum theory which can account for both short-range and long-range interaction
forces. A strain-difference based nonlocal elasticity model was proposed by Poliz-
zotto et al. [15]. Among several nonlocal approaches, both integral and differential
Eringen’s nonlocal models have been extensively used to accommodate the influence
of the small-scale on the mechanics of nanomaterials with various morphologies
[16, 17].

By the end of the 2016, it seemed that the research on the nonlocal elasticity
theories have reached a saturation point, while there exist several open questions
and crucial understanding of the physics behind one of them. One important lin-
gering question is the identification of the nonlocal parameters and length scales.
Another unclarified issue in current literatures is how the nonlocal effect influences
the equivalent stiffness of the nanostructures. Some researchers assert that the non-
local models can capture the softening mechanisms in the material while some other
references predict the hardening behavior. To overcome these obstacles in describing
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the physics of the nonlocal theories, the general nonlocal theory has been recently
proposed by Shaat [18]. This theory has shed light on many aspects of nonlocal
mechanics, especially when it has been used for several engineering applications
[19, 20].

In this chapter, we present the general nonlocal theory and provide enough details
in order to use it in future research. The theory expounded in this chapter follows the
work by Shaat [18]. In the first section (Sect. 2), the concepts of nonlocal mechanics
of particles and elastic continua are explained. In addition, the fundamental model
early proposed by Eringen is interpreted showing its limitations. In Sect. 3, the
general nonlocal theory is developed and compared to Eringen’s nonlocal theory.
In Sect. 4, we show that the general nonlocal theory can be reduced to the strain
gradient and the couple stress theories. In Sect. 5, an approach is presented to identify
the nonlocal parameters of the nonlocal theory and the material coefficients of the
strain and couple stress theories. Along with these aspects, a critical assessment of
the ability of the nonlocal theory to capture both hardening and softening behaviors
of materials is provided.

2 Eringen’s Nonlocal Theory

The nonlocal theory has been developed with the flavor of accounting for the effects
of the long-range interatomic interactions on the material mechanics. Some nonlocal
models were early developed [10–12]. The currently used model of the nonlocal
theory is the one that has been developed by Eringen [10, 11]. In this section, the
nonlocal mechanics of particles and the nonlocal mechanics of linear elastic continua
are reformulated in the framework of the nonlocal theory. The dispersion relations
are then derived on the basis of Eringen’s nonlocal theory.

2.1 Nonlocal Mechanics of Particles

Let us consider a systemof particles as shown in Fig. 1.According to the conventional
mechanics of particles, a particle A only interacts with its neighbor particles within
the local region. Using Newton’s second law of motion, the equations of motion of
the particle A can be written as:

∑
Fl = mAüA (1)

∑
xA × Fl = xA × mAüA (2)

where Fl denotes the local force vector, üA is the particle’s acceleration, and xA is
the particle’s position vector. In addition, mA denotes the mass of the particle.
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Fig. 1 Mechanics of particles in the context of a the classical mechanics and b the nonlocal
mechanics

Some cases would require modeling the particle mechanics considering both
neighbor and non-neighbor interactions. Accounting for the non-neighbor interac-
tions, the dynamic equilibrium of particle A is conditional by its balance with all
surrounding particles. A non-neighbor interaction depends on the distance between
the particle and a non-neighbor particle. A weight function, w

(∣∣xA − x′∣∣), can be
introduced to define the intensity of the non-neighbor interaction between particle
A and a particle at point x′, where xA is the position of particle A. Accordingly, the
equations of motion for particle A can be rewritten as [18]:
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w0

∑
Fnl
0 + w1

∑
Fnl
1 + w2

∑
Fnl
2 + · · · = mAüA (3)

w0

∑
xA × Fnl

0 + w1

∑
xA × Fnl

1 + w2

∑
xA × Fnl

2 + · · · = xA × mAüA (4)

where Fnl
0 denotes the local force vector and, Fnl

1 and Fnl
2 are the nonlocal force

vectors due to the interactions between particle A and the particles in the first and
the second non-neighboring regions, respectively (Fig. 1b). In addition, wi are the
values of the weight function which satisfy the condition, i.e.,

∑
wi = 1 (5)

According to Eqs. (3) and (4), the force and moment equilibriums are globally
satisfied in the context of the nonlocal mechanics of particles. This means that the
local balance is violated when the interactions of the particles are nonlocal [10, 21].

2.2 Nonlocal Continuum Mechanics

Consider an elastic material with volume V and surface S. In the extreme limit,
the material is a composition of an infinite number of infinitesimal particles. The
physical properties of these particles and all the forces of interactions between them
are described by smooth functions of space and time in the context of the theory of
continuum mechanics [10]. Thus, the dynamic equilibrium of the material can be
obtained based on the nonlocal theory integrating Eqs. (3) and (4) over the material
volume, i.e.,

∫

V

[
∫

V

w(
∣∣x − x′∣∣)F(x′)dV (x′)]dV (x) +

∫

S

T(n)(x)dS(x) =
∫

V

ρü(x)dV (x) (6)

∫

V

[
∫

V

w(
∣∣x − x′∣∣)(X × F(x′))dV (x′)]dV (x) +

∫

S

(X × T
(n)

(x))dS(x)

=
∫

V

ρ(X × ü(x))dV (x) (7)

where ρ is the material’s mass density, and T(n) denotes the surface tractions, such
that

T (n)
i = t ji n j (8)
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where ti j is a nonlocal stress tensor, which is formed accounting for the nonlocal
interactions between the different material particles. n j are components of the unit
normal vector. Using the Green-Gauss theorem, we have

t ji, j + fi = ρüi (9)

where fi denotes the body forces and ui are theCartesian components of the infinites-
imal displacement.

2.3 Eringen’s Constitutive Equations

According to Eringen’s nonlocal theory, equations of motion of a local particle are
obtained from the global interaction of the particles with all other particles of the
elastic body. These global interactions are considered in the constitutive equations,
which gave the stress-based equations of motion identical to the one of the classical
elasticity (Eq. (9)). To collect global interactions, the constitutive equations were
expressed as follows (for homogeneous-isotropic linear elastic materials) [11, 16]:

ti j (x, t) =
∫

V

α(
∣∣x − x′∣∣)

[
λεqq(x′, t)δi j + 2μεi j (x′, t)

]
dV (x′) (10)

where εi j is the infinitesimal strain tensor,

εi j (x) = 1

2
[ui, j (x) + u j,i (x)] (11)

and λ and μ are the Lamé constants. δi j is the Kronecker delta and α(
∣∣x − x′∣∣) is a

nonlocal modulus. The basic features of the nonlocal kernel were discussed in Refs.
[22, 23].

2.4 Nonlocal Field Equation

The nonlocal field equation can be obtained by substituting Eqs. (10) and (11) into
Eq. (9), as follows:

⎛

⎝
∫

V

α(
∣∣x − x′∣∣)

(
λuq,q(x′, t)δi j + μ

(
ui, j (x′, t) + u j,i (x′, t)

))
dV

(
x′)

⎞

⎠

, j

+ fi (x, t) = ρüi (x, t) (12)



Nonlocal Mechanics in the Framework of the General Nonlocal Theory 101

Equation (12) is an integro-partial differential equation. Complications of solving
the nonlocal field Eq. (12) have been early addressed in Ref. [13]. To avoid the dif-
ficulties of solving the integro-partial differential field equation, Eringen developed
an equivalent model that gives the field equation in a differential form, as follows
[13]:

(λ + μ)u j,i j + μui, j j + ( fi − ρüi ) − �2( fi, j j − ρüi, j j ) = 0 (13)

where � is a nonlocal parameter. The differential form of the nonlocal theory is
equivalent to the nonlocal integral form only over unbounded elastic domains.

2.5 Dispersion Relations

Phonon dispersion is one of the fundamental properties of materials. Here, the propa-
gation of a harmonic wave along [100] direction is modeled based on Eringen’s non-
local theory.By assuming a high-symmetric direction, the followingone-dimensional
harmonic functions can be considered:

ur (x, t) = Ur exp(i(kx − ωt)) (14)

where ur is the vibration of a lattice site about its equilibrium position, k and ω are
wave number and wave frequency, respectively. Substituting Eq. (14) into Eq. (13)
and setting fi = 0, we obtain the frequency-wavenumber relations as

ω2
L = (λ + 2μ)k2

ρ(1 + k2�2)
(15)

ω2
T = μk2

ρ(1 + k2�2)
(16)

where ωL and ωT are the frequencies of longitudinal and transverse acoustic waves.

2.6 Limitations of Eringen’s Nonlocal Theory

In this subsection, limitations of Eringen’s nonlocal theory are addressed. It follows
from Eq. (12) that Eringen’s nonlocal theory assumes the same attenuation function
for all the material coefficients. According to this theory, the nonlocal-dependence
of the normal strain is identical to the nonlocal-dependence of the shear strain. How-
ever, this is not true for many materials. For example, the experimental dispersion
curves of Si, Au, and Pt indicated that the decay of the longitudinal frequencies with
the wavenumber is different from the decay of the transverse frequencies with the
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Fig. 2 Dispersion curves of
Ag [100] based on Eringen’s
nonlocal theory (ENT)

wavenumber. For these materials, Eringen’s nonlocal theory is inapplicable where it
cannot properly fit their longitudinal and transverse dispersion curves [18, 19].

Figure 2 shows the applicability of Eringen’s nonlocal theory tomodel the acoustic
dispersion phonons of a material with nearly similar nonlocal characters in both
the longitudinal and transverse directions. In this figure, the dispersion curves of
Ag [100] predicted by Eringen’s nonlocal model are plotted and compared with
experimental results reported by Kamitakahara and Brcckhouse [24]. It is observed
that the frequencies of both longitudinal and transverse acoustic waves are perfectly
predicted by the nonlocal model for �2 = 0.028a2. Figure 3 shows the limitation of
Eringen’s nonlocal theory to model the acoustic dispersion phonons of a material
with different nonlocal characters in the longitudinal and transverse directions. This
figure shows the dispersion curves of Au [100] obtained from the nonlocal model
and the experimental data given in Ref. [25]. These results indicate that Eringen’s
nonlocal theory has limitations to model Au. For Au [100], it can only predict one
of the acoustic dispersion curves for specific value of the nonlocal parameter. For
a detailed discussion about this topic, we refer the interested readers to Ref. [19].
The physical and material parameters used in the generation of these results based
on Eringen’s nonlocal theory are taken from Ref. [18] and listed in Table 1.

In addition to its limitations tomodel the dispersion curves of somematerials, Erin-
gen’s nonlocal theory has limitations to reveal the nonlocal effects on the material’s
Poisson’s ratio. It has been demonstrated that, due to nonlocal interatomic interac-
tions, the Poisson’s ratio ν of the material is generally non-constant and depend on
the material dispersion [25], i.e.,

ν = 1 − 2R2

2
(
1 − R2

) (17)
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Fig. 3 Dispersion curves of
Au [100] based on Eringen’s
nonlocal theory (ENT)

Table 1 Physical and material properties of Ag and Au

Material Elastic moduli Lattice constant Density

λ (GPa) μ (GPa) a (nm) ρ (kg/m3)

Silver (Ag) 18 45 0.4079 10490

Gold (Au) 154 48 0.4065 19300

where R = ωT (k) /ωL (k). The substitution of the frequency-wavenumber relations
(Eqs. (15) and (16)) into Eq. (17) gives Poisson’s ratio with the form:

ν = λ

2 (λ + μ)
(18)

which is the same Poisson’s ratio as defined based on the classical theory of linear
elasticity. This indicates that Poisson’s ratio is independent of the nonlocal field in
the context of Eringen’s nonlocal theory. This, however, contradicts with the recent
observations on the size-dependence of Poisson’s ratio [26–29] and the microstruc-
tural topology-dependence of Poisson’s ratio of metamaterials [26, 30–32].

3 General Nonlocal Theory

The general nonlocal theory [18, 19]was developed to remedy the drawbacks of Erin-
gen’s nonlocal theory. The general nonlocal theory considers independent nonlocal
fields for the different material coefficients. This theory permits the simultaneous
fitting of both the longitudinal and transverse acoustic dispersion curves of vari-
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ous materials [18, 19]. In addition, it effectively models the nonlocal character of
Poisson’s ratio of auxetic and non-auxetic materials [33, 34]. Here, the governing
equations of the general nonlocal theory are presented. In addition, the superiority
of the general nonlocal theory over Eringen’s nonlocal theory is demonstrated.

3.1 Equilibrium and Constitutive Equations

In the context of the general nonlocal theory, an elastic solid consists of an infinite
number of particles each of which is a mass point. The dynamic equilibrium of the
solid is conditional by the global balance of its body forces, external surface tractions,
and inertia forces.

The global balance (Eq. (9)) depends on a nonlocal stress tensor ti j , which is
expressed as a functional of the deformation gradients of all points of the elastic
solid. According to the general nonlocal theory, the components of the nonlocal
stress tensor are expressible as follows:

t ji (x) = ti j (x) =
∫

V

Ci jkl(
∣∣x′ − x

∣∣ , �)εkl(x′)dV
(
x′) (19)

InEq. (19), thematerial coefficientsCi jkl(
∣∣x′ − x

∣∣ , �) are functions of the distance∣∣x′ − x
∣∣ between a reference point x and any other point x′ of the elastic solid. These

material coefficients depend on the nonlocal character of the solid part, which is
measured by a nonlocal parameter �. The nonlocal parameter, �, defines the intensity
of the nonlocal field. According to the general nonlocal theory, for isotropic-linear
elastic materials, Ci jkl(

∣∣x′ − x
∣∣ , �) can be expressed as follows:

Ci jkl
(∣∣x′ − x

∣∣ , �
) = λ̄

(∣∣x′ − x
∣∣ , �λ

)
δi jδkl

+ μ̄
(∣∣x′ − x

∣∣ , �μ

) (
δikδ jl + δilδ jk

)
(20)

where λ̄ and μ̄ are material coefficients, which are functions of the distance
∣∣x′ − x

∣∣.
These material coefficients are defined in terms of the conventional Lame constants,
λ and μ, as follows:

λ̄
(∣∣x′ − x

∣∣ , �λ

) = λβλ

(∣∣x′ − x
∣∣ , �λ

)
(21a)

μ̄
(∣∣x′ − x

∣∣ , �μ

) = μβμ

(∣∣x′ − x
∣∣ , �μ

)
(21b)

where βλ

(∣∣x′ − x
∣∣ , �λ

)
and βμ

(∣∣x′ − x
∣∣ , �μ

)
are two independent nonlocal moduli,

which are continuous functions that express the change of the nonlocal field with the
distance

∣∣x′ − x
∣∣. According to Eqs. (20)–(21), the nonlocal stress can be rewritten

as:
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t ji (x) = ti j (x) =
∫

V

λβλ

(∣∣x′ − x
∣∣ , �λ

)
εrr

(
x′) δi j dV

(
x′)

+
∫

V

2μβμ

(∣∣x′ − x
∣∣ , �μ

)
εi j

(
x′) dV

(
x′) (22)

It is clear that the general nonlocal theory assumes two independent nonlocal
fields for the different material coefficients. Two nonlocal parameters, �λ and �μ,
are introduced as measures of the intensity of the nonlocal fields associated with the
normal and shear strains. For the case, �λ = �μ, the constitutive Eq. (22) reduces to
the one of Eringen’s nonlocal theory (Eq. (10)).

3.2 Nonlocal Moduli

Various continuous functions can be considered to express the variation of the nonlo-
cal field with the distance

∣∣x′ − x
∣∣. Eringen introduced the nonlocal mechanics using

decaying (or attenuating) nonlocal moduli [13]. A nonlocal modulus as defined by
Eringen is a continuous-attenuation function that satisfies the following conditions:

lim
�λ,�μ→0

(
βλ (|x| , �λ) , βμ

(|x| , �μ

)) = (δ (x) , δ (x)) (23a)

lim|x′−x|→∞
(
βλ

(∣∣x′ − x
∣∣ , �λ

)
, βμ

(∣∣x′ − x
∣∣ , �μ

)) = 0 (23b)

where δ is the Dirac-delta function. These functions attenuate as
∣∣x′ − x

∣∣ increases.
In addition, these attenuation functions satisfy the condition that their integrals over
the elastic domain give unity. In addition, when �λ, �μ → 0, the attenuation functions
become the Dirac delta functions indicating the transformation of the nonlocal model
to the local-classical model.

Examples of the nonlocal attenuation functions that have been applied are [13,
35]:

β (|x| , �) = 1

2�
exp

(
−|x|

�

)
(24a)

β (|x| , �) = 5

4�
ξ (|x| , �) (24b)

with

ξ (|x| , �) =
{
1 − 6

(
|x|
�

)2 + 8
(

|x|
�

)3 − 3
(

|x|
�

)4 |x| ≤ �

0 |x| > �
(25)
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Attenuating nonlocal moduli reveal softening behaviors due to the nonlocal fields.
These attenuation functions have been used tomodel the wave dispersions by various
materials, the softening in structures’ stiffnesses, and the decrease in the elastic
moduli of the nanomaterials. For instance, Young’s modulus of single crystalline
silicon cantilever was observed monotonically decreasing from 169 to 53 GPa with
a decrease in the cantilever’s thickness from 300 to 12nm [36].

Nonetheless, many cases would require non-attenuating nonlocal moduli, and
instead augmenting nonlocal moduli would be required. One such a case is the
increasing fringe frequency of a nondispersive interferometer and a synthetic quartz
Wollaston prism spectrometer [37]. In addition, Young’s modulus of ZnO films was
increased by 22% upon decreasing the thickness from 8 to 1nm [38]. Furthermore,
Young’s modulus of Al2O3 nano-films was intensively increased to∼776 GPa due to
a decrease in the film thickness lower than 5nm [39]. Therefore, nonlocal augmen-
tation functions would be introduced to model the hardening behaviors of nanoscale
structures, to explain the increase in the elastic moduli of some nanomaterials, and
to predict the propagation of non-dispersive waves. Utilizing these augmentation
functions, the nonlocal theory becomes more general and can capture both softening
and hardening behaviors.

Here, we use a complex nonlocal parameter to obtain an augmenting nonlocal
modulus. This augmenting nonlocal modulus satisfies the following conditions:

lim
�λ,�μ→0

(
βλ (|x| , �λ) , βμ

(|x| , �μ

)) = (δ (x) , δ (x)) (26a)

lim|x′−x|→∞
(
βλ

(∣∣x′ − x
∣∣ , �λ

)
, βμ

(∣∣x′ − x
∣∣ , �μ

)) = (Rλ (x) ,Rμ (x)
)

(26b)

where Rλ (x) and Rμ (x) are non-zero functions with values are higher than unity.
These functions represent nonlocal sources that impose residual nonlocal interactions
over the local interactions. In the next subsection, the variations of the wave frequen-
cies of dispersive and aggregative waves with the wavenumber are determined.

3.3 Propagation of Dispersive and Aggregative Waves

When awave propagates in amedium, it either extends or aggregates as it travels. The
extension of the wave is common and known as wave dispersion, which is accom-
panied with a reduction in the wave frequency [40, 41]. The dispersion of waves
in materials would be due to microstructural defects, heterogeneities, deformations,
or friction. A non-neighbor interaction is another factor that would cause a wave
extension, and hence a wave frequency reduction. On the other hand, waves would
be aggregative in some special media and wave frequencies would rather increase as
it travels.

The reduction or increase of the wave frequency can be effectively modeled by the
general nonlocal theory. Here, the propagation of a harmonic wave along [100] direc-
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tion is modeled based on the general nonlocal theory. Therefore, the one-dimensional
harmonic functions defined in Eq. (14) are substituted into Eq. (11) gives the follow-
ing non-zero strain components:

εxx = ikUx exp (i (kx − ωt))

εxy = 1

2
ikUy exp (i (kx − ωt))

εxz = 1

2
ikUz exp (i (kx − ωt)) (27)

Using the nonlocal modulus defined in Eq. (25), the non-zero components of the
nonlocal stress can be written as follows:

txx (x) =
(
5ikλUx

4�λ

)∫

x

(
ξλ

(∣∣x ′ − x
∣∣ , �λ

)
exp

(
i
(
kx ′ − ωt

)))
dx ′

+
(
5ikμUx

2�μ

)∫

x

(
ξμ

(∣∣x ′ − x
∣∣ , �μ

)
exp

(
i
(
kx ′ − ωt

)))
dx ′

txy (x) =
(
5ikμUy

4�μ

)∫

x

(
ξμ

(∣∣x ′ − x
∣∣ , �μ

)
exp

(
i
(
kx ′ − ωt

)))
dx ′

txz (x) =
(
5ikμUz

4�μ

) ∫

x

(
ξμ

(∣∣x ′ − x
∣∣ , �μ

)
exp

(
i
(
kx ′ − ωt

)))
dx ′ (28)

where

ξλ =
{
1 − 6

( |x ′−x|
�λ

)2 + 8
( |x ′−x|

�λ

)3 − 3
( |x ′−x|

�λ

)4 ∣∣x ′ − x
∣∣ ≤ �λ

0
∣∣x ′ − x

∣∣ > �λ

ξμ =
{
1 − 6

( |x ′−x|
�μ

)2 + 8
( |x ′−x|

�μ

)3 − 3
( |x ′−x|

�μ

)4 ∣∣x ′ − x
∣∣ ≤ �μ

0
∣∣x ′ − x

∣∣ > �μ

(29)

Performing the integrations in Eq. (28), the components of the nonlocal stress are
obtained in the form:

txx = ik

((
5λ

4�λ

)
FλUx +

(
5μ

2�μ

)
FμUx

)
exp (i (kx − ωt))

txy = ik

(
5μ

4�μ

)
FμUy exp (i (kx − ωt))

txz = ik

(
5μ

4�μ

)
FμUz exp (i (kx − ωt)) (30)
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where

Fλ = 48 (2k�λ + k�λ cos (k�λ) − 3 sin (k�λ))

k5�4λ

Fμ = 48
(
2k�μ + k�μ cos

(
k�μ

) − 3 sin
(
k�μ

))

k5�4μ
(31)

By substituting Eq. (30) into Eq. (9) and solving the obtained characteristic equa-
tions, the frequency-wavenumber relations are derived, i.e.,

ω2
L =

((
5λ
4�λ

)
Fλ +

(
5μ
2�μ

)
Fμ

)
k2

ρ
(32)

ω2
T =

(
5μ
4�μ

)
Fμk2

ρ
(33)

It should be noted that real positive nonlocal parameters, �λ > 0 and �μ > 0,
give attenuation nonlocal moduli. These attenuating nonlocal moduli give the wave
frequency lower than that of the classical theory. On the other hand, complex non-
local parameters give augmentation nonlocal moduli and the wave frequency higher
than that of the classical theory. Using a complex nonlocal parameter gives the dis-
persion relations in the complex plane, and the real part of the frequency shows an
increasewith thewavenumber increase. Frequencies in the complex plan is one of the
approaches and features of topological insulators and quantum matters [42]. Thus,
the implementation of the complex nonlocal parameters gives the nonlocal theory a
new trend to capture analogies with quantum matters.

Figure 4 shows the ability of the general nonlocal theory to reveal the softening
of materials (Fig. 4a) and the hardening of materials (Fig. 4b). Using attenuating
nonlocal moduli, the wave frequency of the nonlocal model is lower than that of the
classical model, as shown in Fig. 4a. It is observed that, for a specific wavenumber,
the wave frequency decreases with an increase in nonlocal parameters. This physi-
cally means that the general nonlocal model can predict the softening behavior when
attenuating nonlocal moduli with real nonlocal parameters are used. In Fig. 4b, how-
ever, augmentation nonlocal moduli are used. It is observed that the wave frequency
of the nonlocal model increases higher than the frequency of the classical model.
This is mainly due to the nonlocal effects, which increases as the nonlocal parameter
increases. Thus, the general nonlocal model can also predict the hardening behavior
when complex nonlocal parameters are used.
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Fig. 4 Softening and hardening behaviors based the general nonlocal theory. a The variation of
the longitudinal and transverse acoustic frequencies, ω (rad/s), as functions of the wave number,
k, lower than the frequencies of the classical mechanic (λ = 0.5, μ = 1, ρ = 1, �λ/2π = 0.2, and
�μ/2π = 0.2 → 1.0). b The variation of the longitudinal and transverse acoustic frequencies, ω

(rad/s), as functions of the wave number, k, higher than the frequencies of the classical mechanics
(λ = 0.5, μ = 1, ρ = 1, �λ/2π = i0.2, and �μ/2π = i0.2 → i1.0)

3.4 Comparison to Eringen’s Nonlocal Theory

The wave frequency equations of the general nonlocal theory (Eqs. (32) and (33))
reduce to the ones of Eringen’s nonlocal theory by setting �λ = �μ = �:

ω2
L = 5 (λ + 2μ)Fk2

4�ρ
(34)

ω2
T = 5μFk2

4�ρ
(35)

where

F = 48 (2k� + k� cos (k�) − 3 sin (k�))

k5�4
(36)

In addition, the wave frequency equations of the general nonlocal theory (Eqs.
(32) and (33)) reduce to the ones of the classical theory of linear elasticity by setting
�λ → 0 and �μ → 0:

ω2
L = (λ + 2μ) k2

ρ
(37)

ω2
T = μk2

ρ
(38)
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We have detected the limitations of Eringen’s nonlocal theory in modeling the
dispersion of many materials, e.g., Au (Fig. 3). Eringen’s nonlocal theory assumes
the same nonlocal character for both the longitudinal and transverse acoustic waves.
However, the general nonlocal theory outweighs Eringen’s nonlocal theory by the
ability to model the contrast between the nonlocal characters of the longitudinal and
transverse acoustic waves. As shown in Eqs. (32) and (33), the transverse wave fre-
quency depends on the nonlocal parameter, �μ, while the longitudinalwave frequency
depends on two independent nonlocal parameters, �λ and �μ. With this new flavor,
the general nonlocal theory can simultaneously fit the longitudinal and transverse
dispersion curves of various materials [18, 19].

Unlike Eringen’s nonlocal theory, the general nonlocal theory gives Poisson’s
ratio dependent on the nonlocal and the dispersion characteristics of the material.
The substitution of Eqs. (32) and (33) into Eq. (17) gives Poisson’s ratio based on
the general nonlocal theory, as follows:

ν =
λ

(
Fλ

�λ

)

2λ
(
Fλ

�λ

)
+ 2μ

(Fμ

�μ

) (39)

InEq. (18), Eringen’s nonlocal theory gave the Poisson’s ratio constant as assumed
by the classical theory of elasticity. However, the general nonlocal theory gives the
Poisson’s ratio dependent on the material’s nonlocal character, as shown in Eq. (39).

In comparison to the classical theory of elasticity, the general nonlocal theory
models the distortion of the envelope of acoustic waves. The classical dispersion
relations in Eqs. (37) and (38) indicate a constant phase velocity vp, i.e., ∂ω/∂k = vp
and ∂2ω/∂k2 = 0. Thus, according to the classical theory, acoustic dispersion curves
are non-varying, and the envelope of an acoustic wave steadily varies in space as
fast as its wavelength [18]. This is not true for all materials when operate at high
frequencies. The envelope of an acoustic wave depends on the wavelength and is
distorted as the wave travels. This can be revealed by the general nonlocal theory
where the dispersion relations (Eqs. (32) and (33)) give the group velocity a function
of the wave number, i.e., ∂ω/∂k = vg (k) and ∂2ω/∂k2 �= 0.

4 Relation to Strain Gradient and Couple Stress Theories

Because the general nonlocal theory satisfies, both the force and the moment global
balance conditions, the nonlocal stress tensor is a symmetric tensor with six indepen-
dent components. The skew-symmetric part of the nonlocal stress tensor vanishes
upon achieving the moment balance globally. However, if the moment balance is
considered locally and is violated globally, the skew-symmetric part of the nonlocal
stress tensor shall be non-vanishing. Given this observation, the balance equations
of the general nonlocal theory can be written in three different forms, as follows:
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Form I:

t ji, j + fi = ρüi
ei jk t jk = 0 (40)

Form II:

σ j i, j + fi = ρüi
ei jk t jk = 0 (41)

Form II:

t ji, j + fi = ρüi
ei jkσ jk = 0 (42)

where σi j and ti j are the local and the nonlocal stress tensors, respectively. The stress
tensors, σi j and ti j , in Eqs. (40)–(42) are general tensors each of which has nine
independent components. These tensors are defined by:

σi j (x) = C̄i jkluk,l (x) (43)

ti j (x) =
∫

V

Ci jkl
(∣∣x ′ − x

∣∣ , �
)
uk,l

(
x ′) dV

(
x ′) (44)

where C̄i jkl and Ci jkl are local and nonlocal stiffnesses, respectively. Form I (Eq.
(40)) is a general form of the nonlocal theory, which achieves the force and the
moment global balance requirements. This form is an equivalent form of the balance
Eq. (9). According to the first equation of Eq. (40), the resultant force at a point is
calculated as the sum of the local interaction of this point with its neighbors and
the nonlocal interactions with all other points of the elastic domain. On the other
hand, the second equation of Eq. (40) indicates that the resultant moment at a point
is calculated as the sum of the moments of the local interaction of the point with its
neighbors and the moments of the nonlocal interactions with all other points of the
elastic domain.

Forms II and III are reduced versions of the general nonlocal theory (Form I).
Form II achieves the force balance locally but violates it globally. In Form III, the
moment balance is achieved locally, but it is violated globally. These different forms
would lead to different versions of the nonlocal theory.

In the following, we show that Form I of the nonlocal theory can be reduced to
the strain gradient theory. In addition, we show that Form II can be reduced to the
couple stress theory.
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4.1 Strain Gradient Theory

For weak nonlocal fields (i.e., weak nonlocality), the general nonlocal theory can be
reduced to a strain gradient theory in which the deformation energy is a function of
the strain and its gradients. The simplification of the general nonlocal theory to a
strain gradient theory is achieved by considering Form I of the nonlocal model and
expanding the strain field, ε

(
x′), about point x as follows [18]:

ε
(
x′) = ε (x) + (

x′ − x
)
.∇ε (x) + 1

2

[(
x′ − x

)
.∇]2

ε (x)

+ 1

6

[(
x′ − x

)
.∇]3

ε (x) + 1

24

[(
x′ − x

)
.∇]4

ε (x) + . . . (45)

By the substitution of Eq. (45) into Eq. (22), the nonlocal stress is formed depend-
ing on the strain and its gradients, as follows:

t ji = t ji = (
λεrr + a3εrr,ll + a5εrr,llmm + . . .

)
δi j

+ (
2μεi j + b3εi j,ll + b5εi j,llmm + . . .

)
(46)

where

an = λ∏
(n − 1)

∫

V

[(
x′ − x

)]n−1
βλ

(∣∣x′ − x
∣∣ , �λ

)
dV

(
x′)

for n = 3, 5, ...

bn = 2μ∏
(n − 1)

∫

V

[(
x′ − x

)]n−1
βμ

(∣∣x′ − x
∣∣ , �μ

)
dV

(
x′)

for n = 3, 5, ... (47)

Substituting Eq. (46) into Eq. (40) gives the equation of motion in the form:

(
λεrr, j + a3εrr,ll j + a5εrr,llmmj + . . .

)
δi j

+ (
2μεi j, j + b3εi j,ll j + b5εi j,llmmj + . . .

) + fi = ρüi (48)

The strain can be expressed in terms of the displacement vector, u, as follows:

ε = ∇u − 1

2
∇ × u (49)

which gives the field equation with the form:
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⎡

⎣λ + 2μ +
∞∑

n=3, 5,...

(an + bn)∇(n−1)

⎤

⎦ (∇∇.u)

−1

2

⎡

⎣2μ +
∞∑

n=3,5, ...

bn∇(n−1)

⎤

⎦ (∇ × ∇ × u) + F = ρü (50)

4.2 Couple Stress Theory

Form II of the nonlocal theory can be reduced to a couple stress theory. Form II
indicates that the force resultant at a point is locally balanced while the moment
resultant at a point is globally balanced. According to Eqs. (41) and (43), the skew-
symmetric part of the nonlocal stress tensor ti j is obtained for isotropic-linear elastic
materials with the form:

ei jk t jk (x) =
∫

V

2μβμ

(∣∣x′ − x
∣∣ , �μ

)
θmn

(
x′) dV

(
x′) (51)

where θmn is the rotation tensor that expresses the rigid rotation of the elastic body.
For a weak nonlocal moment field (i.e., weak nonlocality), Form II of the nonlocal
theory can be reduced to the couple stress theory by expanding the rigid-rotation
field θ

(
x′) about point x as follows [18]:

θ
(
x′) = θ (x) + (

x′ − x
)
.∇θ (x) + 1

2

[(
x′ − x

)
.∇]2

θ (x)

+ 1

6

[(
x′ − x

)
.∇]3

θ (x) + 1

24

[(
x′ − x

)
.∇]4

θ (x) + . . . (52)

The substitution of Eq. (52) into Eq. (51) yields:

ei jk t jk (x) = 2μθ jk (x) + b3θ jk,ll (x) + b5θ jk,llmm (x) + . . . (53)

where bn are defined in Eq. (47). Equation (53) can be rewritten in terms of a rotation
gradient tensor, Ri j , i.e.,

ei jk t jk (x) = e jki
(
2μθi (x) + b3Rli,l (x) + b5Rli,lmm (x) + . . .

)
(54)

where

R ji = θi, j (55)

where θi = (ei jkθk j )/2 and θi j = ei jkθk .
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According to Eq. (41), the skew-symmetric part of the general nonlocal stress
is zero, i.e., ei jk t jk(x) = 0. This gives the skew-symmetric part of the local stress
tensor, σ[i j] = −e jik(μθk), with the form:

σ[i j] = 1

2
e jik

(
b3Rlk,l (x) + b5Rlk,lmm (x) + . . .

)
(56)

In light of the preceding equations, the balance equation of the couple stress theory
is obtained in the following form by the substitution of Eq. (56) into the first equation
of Eq. (41):

σ( j i), j + 1

2
e jik

(
b3Rlk,l j + b5Rlk,lmmj + . . .

) + fi = ρüi (57)

whereσ( j i) = λεrrδi j + 2μεi j is the classical symmetric-stress tensor. Thefield equa-
tion can be obtained by substituting R = (∇∇ × u) /2 into Eq. (57):

(λ + 2μ) (∇∇.u) − 1

2

⎡

⎣2μ + 1

2

∞∑

n=3,5,...

bn∇(n−1)

⎤

⎦ (∇ × ∇ × u) + F = ρü (58)

4.3 Relation to Mindlin’s Strain Gradient Theories

In the framework of Mindlin’s strain gradient theory, the total strain energy is a
function of the strain and its first and second gradients [2, 5, 43]. According to this
theory, the field equation is expressed with the form [2]:

(λ + 2μ)
[
1 − l21∇2 + l42∇4

]
(∇∇.u)

−μ
[
1 − l23∇2 + l44∇4] (∇ × ∇ × u) + F = ρü (59)

where l1, l2, l3, and l4 are different length scales. By comparing Eqs. (59) to (50),
the length scales, l1, l2, l3, and l4, can be related to the material coefficients, λ, an ,
μ, and bn , as follows:

l21 = −a3 + b3
λ + 2μ

, l42 = a5 + b5
λ + 2μ

, l23 = − b3
2μ

, l44 = b5
2μ

(60)

The preceding discussion indicates that Mindlin’s strain gradient is a nonlocal
theory but for weak nonlocality. The strain gradient theory can model long-range
interatomic/intermolecular interactions up to a certain number of neighbors depend-
ing on the gradients of the strain considered.
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4.4 Relation to Couple Stress Theory

The couple stress theory [7, 8] was originally developed on the basis of the first-order
gradient of the rotation tensor. This theory was then extended to the second rotation
gradient theory [9] in which the internal energy depends on the strain and the first
and the second gradients of the rotation. According to the couple stress theory, the
field equation is expressed as follows [9]:

(λ + 2μ) (∇∇.u) − μ
[
1 − l25∇2 + l46∇4

]
(∇ × ∇ × u) + F = ρü (61)

where l5 and l6 are length scales. According to Eqs. (61) and (58), the length scales,
l5 and l6, can be related to the material coefficients μ, and bn , as follows:

l25 = − b3
4μ

, l46 = b5
4μ

(62)

It is clear that the couple stress theory, like the strain gradient theory, is a nonlocal
theory but with weak nonlocality. The couple stress theory can model long-range
interatomic/intermolecular interactions up to a certain number of neighbors depend-
ing on the considered gradients of the rotation tensor.

4.5 Wave Propagation

To derive the dispersion relations along [100] direction in the context of the strain
gradient and couple stress theories, Eq. (14) is used. Equation (14) is substituted
into the field Eq. (50), which gives the dispersion relations according to the strain
gradient theory with the form:

ω2
L =

⎛

⎝(λ + 2μ) k2 +
∞∑

n=3,5,....

− (i)n+1 (an + bn) k
n+1

⎞

⎠ /ρ (63)

ω2
T =

⎛

⎝μk2 + 1

2

∞∑

n=3,5,...

− (i)n+1bnk
n+1

⎞

⎠ /ρ (64)

Similarly, the dispersion relations according to the couple stress theory are derived
in the following form by substituting Eq. (14) into Eq. (58):
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ω2
L = (

(λ + 2μ) k2
)
/ρ (65)

ω2
T =

⎛

⎝μk2 + 1

4

∞∑

n=3,5,...

− (i)n+1bnk
n+1

⎞

⎠ /ρ (66)

5 Infeasibility of Nonlocal Strain Gradient Theory

An incorrect statement that circulates among investigators of the nonlocal mechanics
is that the nonlocal theory only reveals the softening behaviors.However, the nonlocal
theory can capture both softening and hardening behaviors. We demonstrated in
Fig. 4 that the nonlocal theory can predict both the increase and the decrease in
the wave frequency with the wavenumber. The softening behavior is captured using
real nonlocal parameters while complex nonlocal parameters are used to capture the
hardening behavior.

Another misunderstanding of the nonlocal mechanics is the claim that the strain
gradient theory and couple stress theory onlymodel the hardening behaviors of mate-
rials. It was claimed that the nonlocal theory and strain gradient/couple stress theory
describe different material characteristics [44]. This motivated some researchers to
combine the nonlocal theory with the strain gradient and/or the couple stress theory
in a unifiedmodel, e.g., nonlocal strain gradient theory [44]. It was claimed that these
unified models can give the flavor of combining the softening and hardening mecha-
nisms. Here, these attempts are revisited and discussed according to their feasibility
demonstrating the following facts:

• The general nonlocal theory can model both softening and hardening behaviors of
materials.

• The strain gradient and couple stress theories can model both softening and hard-
ening behaviors of materials.

• Neither the strain gradient theory nor the couple stress theory can be merged with
the nonlocal theory in a unified model.

• The strain gradient theory is a nonlocal theory that can exactly emulate the nonlocal
theory if more gradients of the strain are considered.

• The couple stress theory has a nonlocal character, which is promoted by consid-
ering more gradients of the rotation tensor.

• The newly claimed nonlocal strain gradient theory [44] is physically infeasible.

We demonstrate in Fig. 5 that each of the general nonlocal theory, the strain gradi-
ent theory, and the couple stress theory can model both the softening and hardening
behaviors of materials. The wave frequency-wavenumber curves as obtained based
on these three theories are depicted for different nonlocal parameters and length
scales. In Fig. 5a, real positive nonlocal parameters, �λ > 0 and �μ > 0, and com-
plex length scales, l21 < 0, l22 > 0, l23 < 0, l24 > 0, l25 < 0, and l26 > 0, are defined to
give the wave frequency decreasing lower than that of the classical theory with the
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Fig. 5 Hardening and softening behaviors of nonlocal, strain gradient, and couple stress theories.
a The variation of the longitudinal and transverse acoustic frequencies, ω (rad/s), as functions of
the wavenumber, k, lower than the frequencies of the classical model. The results are represented
based on the general nonlocal theory (�λ = 1.6π and �μ = 1.6π ), Mindlin’s strain gradient theory
(l1 = i1.1, l2 = 0.89, l3 = i1.1, and l4 = 0.91), strain gradient theory up to 4th strain gradient
(a3 = 0.6, a5 = 0.32, a7 = 0.1, a9 = 0.02, b3 = 2.4, b5 = 1.67, b7 = 0.39, b9 = 0.08), and the
couple stress theory (l5 = i0.77, and l6 = 0.65). b The variation of the longitudinal and transverse
acoustic frequencies, ω (rad/s), as functions of the wavenumber, k, higher than the frequencies of
the classical model. The results are represented based on the general nonlocal theory (�λ = i1.6π
and �μ = i1.6π ), Mindlin’s strain gradient theory (l1 = 1.1, l2 = 0.89, l3 = 1.1, and l4 = 0.91),
strain gradient theory up to 4th strain gradient (a3 = −0.6, a5 = 0.32, a7 = −0.1, a9 = 0.02, b3 =
−2.4, b5 = 1.67, b7 = −0.39, b9 = 0.08), and the couple stress theory (l5 = 0.77, and l6 = 0.65).
(λ = 0.5, μ = 1, and ρ = 1)

increase in the wavenumber. The decrease in the wave frequency indicates a material
softening (or wave dispersion). Thus, with the nonlocal parameters and length scales
as defined in Fig. 5a, the general nonlocal theory, Mindlin’s strain gradient theory,
and the couple stress theory can capture the softening behaviors of materials. In
Fig. 5b, complex nonlocal parameters, �2λ < 0 and �2μ < 0, and real positive length
scales, l21 > 0, l22 > 0, l23 > 0, l24 > 0, l25 > 0, and l26 > 0, are used to demonstrate
the ability of the general nonlocal theory, Mindlin’s strain gradient theory, and the
couple stress theory to capture materials’ stiffness hardening. For the latter case, the
wave frequency is obtained increasing higher than that of the classical theory with
the increase in the wavenumber.

It follows from Fig. 5 that the strain gradient theory can perfectly emulate the
nonlocal theory, and its nonlocal character is enhanced by consideringmore gradients
of the strain. Mindlin’s strain gradient theory, which accounts for up to second-order
gradients of the strain, gives the same results of the general nonlocal theory for
k < 0.6. However, discrepancies between the results of the two theories are seen for
k > 0.6. When more gradients were considered (up to 4th-order gradient), the strain
gradient theory gave the exact same results of the general nonlocal theory. Thus, in
general, the strain gradient theory can reveal nonlocal effects similar to the nonlocal
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theory but within certain limits of applicability. The limit of applicability of the strain
gradient theory depends on the number of the considered higher-order gradients of
the strain.

The couple stress theory exhibits some nonlocal capabilities when modeling the
transverse acoustic waves. Nonetheless, the couple stress theory gives the longitu-
dinal acoustic waves identical to the ones of the classical theory. This demonstrates
that the strain gradient theory would be preferred over the couple stress theory.

6 Identification of Nonlocal Parameters and Length Scales
of Strain Gradient and Couple Stress Theories

Many material properties can be revealed by non-destructive tests. In a non-
destructive test, the material is exposed into a wave and the velocity of the wave
propagation through the material is measured. When a wave propagates in a mate-
rial, it excites atomic/molecular vibrations. Phonons are the description of the modes
of vibration of atoms/molecules at their equilibrium position. Thus, the prediction of
these phonons is a nondestructive method of material characterization [18, 45–48].
Therefore, we propose identifying the nonlocal parameters along with the elastic
properties of various materials by means of nondestructive testing of the material
phonons, e.g., inelastic neutron scattering. The dispersion relations based on the
nonlocal theory are determined and fitted to the experimentally measured phonon
dispersions.

Acoustic phonons represent the translational modes of vibration. These phonons
depend on neighbor and non-neighbor interactions. In metals, delocalized electrons
connect atoms/molecules together and promote non-neighbor interactions. Because
of the delocalized electrons, the stress at a point is generally nonlocal and functional
of the deformation gradients of all points of the elastic solid. Therefore, the general
nonlocal theory is used here to effectively model acoustic phonons of different mate-
rials. The longitudinal acoustic (LA) and transverse acoustic (TA) phonons according
to the general nonlocal theory are determined in Eqs. (32) and (33). According to
these equations, TA phonons only depend on the shear nonlocal effect while the
LA phonons depend on both the dilatation and shear nonlocal effects. The acous-
tic dispersion relations of the general nonlocal theory are compared and fitted to
the experimental acoustic phonons of different materials with the aim of determin-
ing their dilatation and shear nonlocal characteristics. The fitting is carried out for
acoustic phonons along [100] direction of diamond, graphite, silicon (Si), silver
(Ag), gold (Au), copper (Cu), and platinum (Pt) in Fig. 6. The experimental acoustic
phonons of these materials are obtained from [25, 49–53]. The determined nonlocal
parameters, �λ and �μ, are summarized in Table 2.

Upon identifying the nonlocal parameters, �λ and �μ, the length scales of the
strain gradient and couple stress theories, li , can be determined based on Eqs. (60)
and (62). The determined length scales of the strain gradient and couple stress theories
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Fig. 6 Identification of nonlocal parameters, �λ and �μ. The general nonlocal theory (curves) fits
the experimental acoustic phonons along [100] direction (closed circles) of Ag, Au, Cu, diamond,
Si, Pt, and graphite

Table 2 Identification of nonlocal parameters, �λ and �μ for Ag, Au, Cu, diamond, Si, Pt, and
graphite

Parameters Diamond Graphite Si Ag Au Cu Pt

Elastic Moduli (λ and μ), Mass Density (ρ), and Lattice Parameter (a)

λ (GPa) 87.463 30 74.672 18 154 25 140

μ (GPa) 537.4 160 63.624 45 48 78 95

ρ (kg/m3) 3400 2266 2330 10490 19300 8960 21450

a (nm) 0.3567 0.246 0.543 0.4079 0.4065 0.3597 0.3912

Determined Nonlocal Parameters

�λ (nm) 0.214 ∼0 ∼0 0.253 0.427 0.378 0.430

�μ (nm) 0.214 0.145 0.489 0.253 0.224 0.241 0.215
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Table 3 Identification of the length scales (l1 → l4) of the strain gradient theory using Eq. (60),
and the length scales of the couple stress theory (l5 and l6) using Eq. (62) for Ag, Au, Cu, diamond,
Si, Pt, and graphite

Parameters Diamond Graphite Si Ag Au Cu Pt

Calculated Length Scales of the Strain Gradient Theory

l1 (m) ×10(−11) i4.67 i3.028 i8.4658 i5.518 7 i7.9107 i5.7636 i7.0782

l2 (m) ×10(−11) 3.798 2.5188 7.7276 4.4883 6.7883 4.8803 6.2903

l3 (m) ×10(−11) i4.67 i3.167 i10.664 i5.5187 i4.8788 i5.259 i4.6952

l4 (m) ×10(−11) 3.798 2.575 8.6732 4.4883 3.9679 4.2771 3.8185

Calculated Length Scales of the Couple Stress Theory

l5 (m) ×10(−11) i3.3022 i2.2396 i7.5408 i3.9023 i3.4498 i3.7187 i3.32

l6 (m) ×10(−11) 3.1938 2.166 7.2932 3.7742 3.3366 3.5966 3.211

are given in Table 3. It is clear that the strain gradient and the couple stress theories
can capture the reduction of the wave frequency with the wave number and softening
behaviors like the nonlocal theory. Some of the length scales are of complex values,
which reflected a softening behavior. According toMindlin, the strain energy density
function is real-positive definite when the length scales are either real positive or
complex [2, 7, 8]. The use of the length scales of the strain and couple stress theories
was confined only for real positive values in the literature. These real length scales
revealed hardening behaviors. However, complex length scales can be used to capture
softening behaviors of materials.

7 Conclusions

In this chapter, the general nonlocal theorywas interpreted. The limits of applicability
of Eringen’s nonlocal were discussed extending the assumptions of this theory to
the general nonlocal theory. In addition, it was shown that, for weak nonlocality,
the general nonlocal theory can be reduced to the strain gradient theory and the
couple stress theory. Furthermore, we demonstrated that the general nonlocal theory
can reflect both the softening and the hardening behaviors of materials. Finally, the
nonlocal parameters of the general nonlocal theory and thematerial coefficients of the
strain gradient and the couple stress theories were determined for diamond, graphite,
silicon, silver, gold, copper, and platinum.
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Displacement Based Nonlocal Models for
Size Effect Simulation in Nanomechanics

Gioacchino Alotta, Francesco P. Pinnola, and Marzia S. Vaccaro

Abstract The increasing number of nano and microscopic structural devices and
their importance in several technological fields have pushed the research towards the
formulation of mathematical models suitable for capturing mechanical small-scale
effects. Usually, in these cases, an accurate modeling requires the simulation of the
microstructure, the reproduction of intermolecular interactions and heterogeneity
at the micro/nanoscale. Therefore, for this kind of mechanical modeling, classical
local continuum theories fail in reproducing the real behavior at small-scale due to
the inability to reproduce these scale-dependent effects. For this reason, an advanced
theory is developed in the recent decades. Such formulation is known as nonlocal
theory and it is able to take into account nonlocal effects. Among these nonlocal
effects, there are long-range interactions, size-effects and heterogeneity of the mate-
rial, strain localizations, and so on. Usually, in these advanced models, the nonlocal
effects are reproduced bymeans of some additional terms in the governing equations.
There are several kind of nonlocal models provided in literature. Among these var-
ious models, this chapter considers the displacement based nonlocal models which
belong to the mechanically based nonlocality. Following this approach, the nonlocal
effects are modeled as additional body forces acting on material volumes depending
on their relative displacements. An overview of the main results of this theory and
a summary of the other nonlocal models are reported in this chapter showing their
differences and likeness.
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1 Introduction

In its first formulation, continuum mechanics theory was based on the idea that the
matter mechanically interacts through local force interactions [1–3]. Following this
approach, under certain assumptions, the solid continuum matter can be approxima-
tively modeled as a set of discrete elements connected by elastic springs in which the
parameters depend on themechanical properties of thematerial which constitutes the
matter. This approach allows to well describe the mechanical and thermodynamical
behavior of several structures and materials providing well-posed formulations and
accurate results. However, the local continuum mechanics fails in describing some
structures at small-scale where size-effects, long range interactions and non-elastic
forces influence the mechanical phenomena. Moreover, some mechanical effects,
also at macro-scale, derive from micro- and nano-scale phenomena, such as stress-
tip concentrations, dispersion of elastic waves, edge effects, shear bands. In this
context, the local continuum theory may be inadequate in modeling these phenom-
ena. For this reason, a new model able to take into account other mechanical effects
was born in the last century. Pursuing this purpose the nonlocalmodelwas formulated
recently.

From the first formulations and the pioneering works [4–8], nonlocal theory is
based on the idea that the stress at a given point of the continuum matter depends
of on the entire local stress field of the domain. Nonlocal elasticity models provide
the definition of an enriched continuum as compared to classical theories contin-
uum definition. Such models are able to capture small-scale phenomena avoiding
computational expensive procedures [9, 10].

Nonlocal approaches introduce a constitutive relation where long distance inter-
actions exchangedwithin the body are described by internal parameters. Specifically,
in many formulations of this kind, the long-range interaction is described by a con-
volution integral in the stress-strain relation. One of the first formulation has been
provided by Eringen [11, 12]. In this model, the nonlocal stress is the output of a
convolution integral between the entire elastic strain field and a particular attenu-
ation function depending on an internal length-scale parameter. Since the input in
the Eringen constitutive law is the strain field, this model is also called strain-driven
approach. Substantially, this nonlocal theory provides a constitutive relation which
is not pointwise but it is based on an integral average. Eringen’s approach provides
an accurate tool able to provide good results for screw dislocation and surface waves
in unbounded domain. However, some issues appear when this model is applied to
real structural problems in which, usually, the continuum domainmust be considered
bounded.

These issues are related to some meaningless boundary conditions which appear
in a nonlocal Eringen finite domain. Specifically, from the integral formulation, it
is possible to obtain the corresponding differential stress-strain relation by selecting
a proper kernel. This relation is equal to the integral one only if proper boundary
conditions are selected. By using the classical Eringen’s approach, the integral for-
mulation leads to an ill-posed differential problem in terms of meaningless elastic
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boundary conditions [13–16]. Several ways have been developed to overcome the
ill-posedness of Eringen’s nonlocal model for finite domain.

Specifically, in literature, there are some integral nonlocal formulations able to
overcome this drawback, e.g. the two-phase local/nonlocal models [17–20], the
strain-difference nonlocal elasticity [21–24], the stress-driven approach [15, 25].
Among these integral approaches, the latter still provides an integral formulation as
in Eringen’s approach but the nonlocal problem is set in a different way. Specifically,
the output in the constitutive law is the nonlocal strain which is obtained as a con-
volution between an attenuation kernel and the entire stress field. In this way, the
corresponding differential formulation avoids the boundary condition issues of Erin-
gen’s strain-driven one. By following this stress-driven approaches, several applica-
tions are performed [26–28] and other models are developed, such as local-nonlocal
mixture stress-driven models [29] and two-phase models [30].

The aforementioned formulations provide an integral equation in the stress-strain
relation. These approach are also known as strong nonlocality [31]. However, other
nonlocal models exist and they are obtained following another approach known as
weak nonlocality. In this context, we remember the gradient models proposed in
Refs. [32–35]. Another class of nonlocal models which involves all the previous
ones are the fractional-order models [36–38]. However, some of these formulations
can not be considered a different approach but a kind of generalization. Specifically,
as it has been shown in Refs. [39, 40], in all the integral nonlocal approaches if
the convolution kernel is of power-law kind fractional-order operators may appear
in the stress-strain relation. Moreover, such operators are characterized by a strong
nonlocality due to their power-law kernels [41] and this peculiarity may be useful in
several continuum mechanics applications [42, 43].

The aforementioned formulations are based on the assumption that the stress-
strain relation of the nonlocal continuum is enriched by the introduction of additional
contributions in terms of gradients or integrals of the strain and or stress fields. These
other terms are able to take into account the presence of the effects of microstructures
at small-scale. Some of the cited formulations presents some drawbacks. Specifically,
in the strong nonlocality the selected kernel, that is the decaying function, must
respects some geometrical constraints, whereas the weak nonlocality lack of an
evident mechanical description. However, another class of different approach to
take into account these effects exists, which avoid the restrictions of the previous
approaches. This formulation is known as mechanically based nonlocal model and
introduces nonlocal interactions among different locations of the body in terms of
central long-range elastic [31, 36, 44] and/or viscoelastic body forces [45–47]. Such
forces are proportional to the interactive volumes or masses of the solid. In other
words, in comparison with the local continuum this model provides an enriched
domain with nonlocal forces defined as dependent from the relative displacements
between the volumeelements and all the other volumeelements in the domain [44, 48,
49]. For this reason this class of mechanically based model is known as displacement
based nonlocal models. The model belongs to the class of integral or strong nonlocal
models, and it can be seen as a modification of the peridynamic formulation provided
by Silling [50].
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This kind of model has some advantages. First of all, the nonlocal interactions
are defined from a correspondent mechanical description, involving the presence of
long-range springs connecting non-adjacent volume elements. For this reason, it is
also known asmechanically based nonlocalmodel.Moreover, in presence of bounded
domains, the nonlocal contributions to boundary conditions vanishes and this allows
to enforce them as in a local continuum without any mathematical inconsistency.
The displacement based nonlocal model has been successfully specialized to beam
elements. In this context a finite element formulation with a closed formulation of
non-local stiffness matrix elements has been obtained [44]. This approach is also
suitable for modelling beams with viscoelastic long-range interactions both in quasi-
static and dynamic conditions [46, 47].

Moreover, an analogous approach has been successfully developed in order to
simulate non-local effects in themicromechanics of fluid flow,with the specific appli-
cation of blood flowing along micro arterial vessels [51]. To this aim, the non-local
forces are defined as dependent on the relative velocity instead of relative displace-
ment. In this chapter, the mechanically based non-local model is introduced and its
particularization to rods and beams are developed. Specifically, after an overview of
the main nonlocal models in the Sect. 2, the Sect. 3 is devoted to the displacement
based nonlocal model. In the latter nonlocal rod and beam models are derived and
some applications in both static and dynamic conditions are provided.

2 An Overview on the Nonlocal Models

Considering the large number of contributions which have been published on nonlo-
cal elasticity in the last decades, the present section aims to provide a synthesis of the
main nonlocal formulations. Starting from Eringen’s model in its strain-driven for-
mulation, we recall the stress-driven approach, the gradient models and the mixture
models.

2.1 Integral Models

Eringen’s nonlocal integral formulation has been conceived to solve wave dispersion
problems in unlimited domains [11, 12]. It is based on the idea that the stress σ

at a point x of a nonlocal body B is the output of a convolution between the local
response to the elastic strain field ε and a scalar kernel �λ depending on a positive
parameter λ. That is,

σ (x) =
∫
B

�λ(x, x̄)E(x̄)ε(x̄)d x̄ (1)

where E is the elastic stiffness tensor and x, x̄ are position vectors. The integral
law in Eq. (1) for the Bernoulli-Euler beam of length L leads to an integral nonlocal
constitutive relation between the bending moment M and the elastic curvature χ ,
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M(x) =
∫ L

0
�λ(x, x̄)k f (x̄)χ(x̄)dx̄ (2)

where the beam axis coincides with the x-axis and k f (x) is the elastic bending
stiffness. The attenuation kernel �λ can be selected among exponential, Gaussian or
power-law type functions and must satisfy the properties of symmetry, positivity and
limit impulsivity. A frequent choice is the bi-exponential function defined as follows

�λ(x, x̄) = 1

2λL
exp

(
−|x − x̄ |

λL

)
(3)

where λL is a characteristic length.
By choosing the kernel in Eq. (3), it can be proved [15] that the integral model

expressed by Eq. (2) is equivalent to the second-order differential equation

∂2
x M(x) − 1

(λL)2
M(x) = − E I

(λL)2
χ(x) (4)

with the following constitutive boundary conditions (BCs)

∂x M(0) = 1

λL
M(0)

∂x M(L) = − 1

λL
M(L) (5)

being k f (x) = E I , where E is the elastic modulus and I is the cross-sectional
moment of inertia around the bending axis. Equations (5) are clearly in contrast with
the static boundary conditions of most structural schemes. Therefore, the incom-
patibility between the equilibrium requirements and the constitutive nonlocal law
reveals that applying the strain-driven model to bounded domains leads to ill-posed
mechanical problems.

An efficient strategy to overcome the limits of Eringen’s formulation has been
developed in Refs. [15, 25]. It consists in a new nonlocal law, the stress-driven
model, formally obtained by swapping the roles of stress and strain fields. Hence,
the elastic strain tensor at a point x of the continuous body B is the output of the
convolution integral between the local elastic strain field ε and the scalar kernel �λ.
That is,

ε(x) =
∫
B

�λ(x, x̄)C(x̄)σ (x̄)d x̄ (6)

where C is the elastic compliance C = E−1.
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Applied to a one-dimensionalmodel, such as theBernoulli-Euler beam introduced
before, the stress-driven model gives

χ(x) =
∫ L

0
�λ(x, x̄)

M(z̄)

k f (x̄)
dx̄ (7)

The equivalent differential problem, obtained by assuming the attenuation func-
tion of Eq. (3) is expressed by a second-order differential equation

∂2
xχ(x) − 1

(λL)2
χ(x) = − 1

E I (λL)2
M(x) (8)

with the following constitutive BCs

∂xχ(0) = 1

λL
χ(0)

∂xχ(L) = − 1

λL
χ(L) (9)

where the signs in Eq. (9) are consequence of the fact that the first derivative of the
special kernel is an odd function.

Unlike Eringen’s formulation, the stress driven model provides exact solutions to
nonlocal continuous problems and it is able to describe the actual behavior of micro-
and nano-structures.

2.2 Gradient Models

Another nonlocal theory is the gradient model proposed in Ref. [35]. Such model
overcomes the ill-posedness of the strain-driven model and it is able to simulate
dispersion andwavepropagation at atomic-scale [52, 53]. The approach combines the
nonlocal strain-driven model by Eringen with the theory of strain gradient elasticity
formulated by Mindlin [54, 55]. Nonlocal strain gradient model for a slender micro-
or nano-beam is formulated by expressing the bending moment in terms of elastic
flexural curvature χ and of its derivative ∂xχ . That is,

M(x) =
∫ L

0
α0(x, x̄, λ0) k f (x̄)χ(x̄)dx̄

− l2 ∂x

∫ L

0
α1(x, x̄, λ1) k f (x̄)∂x̄χ(x̄)dx̄ (10)

The characteristic length l is introduced tomake the two terms dimensionally com-
patible. The kernels α0 and α1 are attenuation functions depending on two nonlocal
parameters λ0, λ1.
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Following the treatment in Refs. [35] and [56], the attenuation kernels can be
assumed to be coincident and equal to the bi-exponential function. Implicitly, it is also
assumed the coincidence of nonlocal parameters λ0 = λ1 = λ. A second parameter,
λl = l/L , may be associated with the characteristic length l of the strain gradient
term.

As shown in Ref. [57], with the choice of the bi-exponential attenuation function,
Eq. (10) is equivalent to the differential equation

(k f χ)(x) − l2∂2
x (kχ f )(x) = M(x) − (λL)2∂2

x M(x) (11)

equipped with the constitutive boundary conditions

∂x M(0) = 1

λL
M(0) + l2

(λL)2
∂x (k f χ)(0)

∂x M(L) = − 1

λL
M(L) + l2

(λL)2
∂x (k f χ)(L) (12)

Hence, the nonlocal strain gradient model is based on two parameters, λ and
λl . As proved in Ref. [57], displacement solutions exhibit softening and stiffening
responses for increasing nonlocal and gradient parameters, respectively. Thus, the
nonlocal strain gradient law is able to model a wide class of small scale problems.

It has to be noted that for λ → 0 and from Eq. (10), we recover the pure strain
gradient law, by virtue of the kernel impulsivity property. When the characteristic
length l approaches to zero, from the same equation, we get the fully nonlocal strain-
driven model, which is ill-posed.

A stress gradient nonlocal model can be obtained by formally swapping the roles
of stress and strain in Eq. (10). That is,

χ(x) =
∫ L

0
φλ(x, x̄)

M(x̄)

k f (x̄)
dx̄ − l2 ∂x

∫ L

0
φλ(x, x̄)

∂x̄ M(x̄)

k f (x̄)
dx̄ (13)

By selecting the bi-exponential attenuation function, the integral formulation Eq.
(13) reverts to the differential equation

χ(x) − (λL)2∂2
xχ(x) = (k−1

f M)(x) − l2∂2
x (k

−1
f M)(x) (14)

equipped with the constitutive boundary conditions

∂xχ(0) = 1

λL
χ(0) + l2

(λL)2
∂x (k

−1
f M)(0)

∂xχ(L) = − 1

λL
χ(L) + l2

(λL)2
∂x (k

−1
f M)(L) (15)
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2.3 Mixture Models

Another strategy to formulate awell-posed nonlocalmodel is based on the two phases
approach. It consists of a convex combination between local and nonlocal responses
expressed as follows

M(x) = α (k f χ)(x) + (1 − α)

∫ L

0
�λ(x, x̄)(k f χ)(x̄)dx̄ (16)

where α ∈ [0, 1] and the nonlocal term is expressed by following the strain-driven
approach. As shown in Ref. [30], for a fixed α, the response exhibits a softening
behavior for increasing nonlocal parameter λ. When α approaches to zero, from
Eq. (16), we recover the purely nonlocal strain-driven model, which is ill-posed. In
Ref. [30], it has been shown that by choosing the kernel (3), it can be proved that the
integral model expressed by Eq. (16) is equivalent to the second-order differential
equation

∂2
x M(x) − 1

(λL)2
M(x) = − k f

(λL)2
χ(x) + αk f ∂2

xχ(x) (17)

with the following constitutive boundary conditions (BCs)

∂x M(0) = 1

λL
M(0) + αk f ∂xχ(0) − 1

λL
k f χ(0)

∂x M(L) = − 1

λL
M(L) + αk f ∂xχ(L) + 1

λL
k f χ(L) (18)

A two phasesmixturemodel can be also formulated by following the stress-driven
approach, as shown below

χ(x) = α

(
M

k f

)
(x) + (1 − α)

∫ L

0
�λ(x, x̄)

(
M

k f

)
(x̄)dx̄ (19)

In this case, for a fixed α, the response exhibits a stiffening behavior for increasing
the nonlocal parameter λ and for any α ∈ [0, 1] the model is always well-posed.

The equivalent differential problem is expressed by the second-order differential
equation as follow

∂2
xχ(x) − 1

(λL)2
χ(x) = − 1

k f (λL)2
M(z) + α

k f
∂2
x M(x) (20)

with the following constitutive BCs
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∂xχ(0) = 1

λL
χ(0) + α

k f
∂x M(0) − α

k f λL
M(0)

∂xχ(L) = − 1

λL
χ(L) + α

k f
∂x M(L) + α

k f λL
M(L) (21)

3 Displacement Based Nonlocal Model

A mechanically based approach to nonlocal elasticity is introduced in this section
[31]. Specifically,we recall the displacement basedmodel considered inRefs. [36, 45,
48, 49]. This formulation follows an alternative approach compared to the previous
one. The local continuum is enriched by physically consistent long-range interactions
depending on the relative displacements between non-adjacent volume elements.
According to this model, the continuous domain is divided into volume elements
exchanging contact and long distance interactions. Specifically, adjacent elements
exchange classical contact forces while non-adjacent elements interact by means of
long range forces. These nonlocal interactions depend on the relative displacements
between two volume elements, on a distance-decaying function and on volumes
product. Following this approach, the long-range force mutually exerted by two non
adjacent infinitesimal volume elements is written as

d f (x, ξ) = q (x, ξ) dV (x)dV (ξ) = [
u(ξ) − u(x)

]
g (x, ξ) dV (x)dV (ξ) (22)

where g (x, ξ) is an attenuation function that rules the decaying of the long-range
interactions. For the thermodynamics consistency, themodel requires that g (x, ξ) �
0 and g (x, ξ) = g (ξ, x) [31, 48]. Considering the long-range interaction in Eq. (22)
into the equilibrium equations, the nonlocal effects are captured. As it is shown in
the following, the equilibrium problem is ruled by integro-differential equations in
terms of the displacement field.

3.1 Nonlocal Rod

Now, a displacement based approach is applied with reference to a one-dimensional
continuum for sake of simplicity. We consider the elastic nonlocal rod depicted in
Fig. 1, and, as first step, we focus on unbounded domains by considering infinite
length L → ∞.

The bar is discretized into an infinite number of volume elements Vj = A�x ,
j = −∞ ... ∞, where the x−axis coincides with the bar axis and A denotes the
section area.
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Nj Nj+1Qj

b(xj)

Δx

Fig. 1 Nonlocal elastic rod

Considering the Fig. 1, the equilibrium equation of the arbitrary volume element
Vj is expressed as follows

�N j + Q j + b(x j )A�x = 0 (23)

where b(x j ) is the axial volume force, �N j is the difference between the contact
forces and Q j is the resultant of long-range interactions applied to the centroid of
volume element Vj . That is,

Q j =
∞∑

h=−∞,h �= j

Q(h, j) =
∞∑

h=−∞,h �= j

q(h, j) Vh Vj (24)

where q(h, j) represents the specific long-range interaction between the volume ele-
ments Vh and Vj shown in Fig. 2. This force is expressed as

q(h, j) = (uh − u j ) g(xh, x j ) (25)

where u is the axial displacement of the rod and g(xh, x j ) is a positive and symmetric
attenuation function. In virtue of Eq. (24), the equilibrium in Eq. (23) can be rewritten
as

�N j +
∞∑

h=−∞,h �= j

q(h, j) (A�x)2 + b(x j ) �x = 0 (26)

Dividing Eq. (26) by �x and taking the limit �x → 0 lead to the following
integro-differential equation

A∂xσl(x) + A2
∫ ∞

−∞
q(x, ξ) dξ = −b(x) (27)
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Fig. 2 Elastic long-range
interaction qxqx

η

where σl denotes the local Cauchy stress while the second term at the left-hand side
is related to the nonlocal interactions.

In Eq. (27), q(x, ξ) is the long-rang force exerted by the volume at abscissa ξ on
the element located at x . That is,

q(x, ξ) = [u(ξ) − u(x)] g(x, ξ) (28)

which represents the nonlocal constitutive relation. By taking into account equa-
tion (28), the classical local stress-strain law and the strain-displacement relation
ε(x) = du

dx , it is possible to rewrite the equilibrium equation (27) in terms of axial
displacement u. That is,

E A ∂2
x u(x) + A2

∫ ∞

−∞
[u(ξ) − u(x)] g(x, ξ) dξ = −b(x) (29)

If a rod of finite length L , divided into m volume elements Vj = A�x = AL/m,
is considered, the equilibrium equation (23) for �x → 0 takes the form

E A ∂2
x u(x) + A2

∫ L

0
[u(ξ) − u(x)] g(x, ξ) dξ = −b(x) (30)

3.1.1 Discrete Model of the Nonlocal Rod

An equivalent discrete mechanical model of the displacement based nonlocal rod is
introduced in this section. The idea is that contact forces can be modeled by springs
of stiffness Kl = E A/�x = E Am/L , while the nonlocal forces can be represented
by springs with distance-decaying stiffness. That is,

Knl
jh = (A�x)2 g(x j , xh) (31)

Hence, the equilibrium equations of the point-springmodel in Fig. 3 are expressed
as follows

(Kl + Knl)u = f (32)

where Kl is the following symmetric tridiagonal matrix.
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Fig. 3 Discrete elastic
scheme of the local and
nonlocal interactions

Knl
13

Knl
24

Knl
14

K l + Knl
12 K l + Knl

23 K l + Knl
34F1 F4

1 2 3 4

Kl =

⎡
⎢⎢⎢⎢⎣

Kl −Kl 0 0 ... 0
2Kl −Kl 0 ... 0

... ... ... ...

2Kl −Kl

K l

⎤
⎥⎥⎥⎥⎦ (33)

while Knl is a symmetric and full matrix. That is,

Knl =

⎡
⎢⎢⎢⎢⎣

Knl
11 −Knl

12 −Knl
13 ... ... −Knl

1m
Knl

22 −Knl
23 ... ... −Knl

2m
... ... ... ...

Knl
m−1m−1 −Knl

m−1m
Knl

mm

⎤
⎥⎥⎥⎥⎦ (34)

and fT = �x[F1 ... Fm] is the load vector in which Fj = Ab(x j ) are the external
nodal forces per unit length.

Kinematic and/or static boundary conditions can be imposed by assigning the first
and last components of the displacement and load vectors.

By taking the limit �x → 0, Eq. (30) can be obtained from Eq. (32), that repre-
sents a discretized version of the previous model.

3.1.2 Differential Formulation of the Nonlocal Problem

In order to obtain an equivalent differential formulation of the integro-differential
model of the nonlocal rod, Eq. (30) is firstly rewritten as

E A ∂2
x u(x) + A2

∫ L

0
u(ξ) g(x, ξ) dξ − A2u(x)γ (x) = −b(x) (35)

where

γ (x) =
∫ L

0
g(x, ξ) dξ (36)

Now, by selecting the bi-exponential attenuation function of the type of Eq. (3),
the corresponding differential formulation of the Eq. (35) can be found in a similar
way to the previous section [15]. Specifically, by assuming that
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g(x, ξ) = Enl

2λL5
exp

(
−|x − ξ |

λL

)
(37)

the following differential equation

− E A∂4
x u(x) −

[
E A

(λL)2
+ A2γ (x)

]
∂2
x u(x) + 2A2∂xγ (x)∂xu(x) +

+
[

1

(λL)2

(
E A2

L4
− A2γ (x)

)
+ A2γ (x)

]
u(x) = − b(x)

(λL)2
(38)

with the following BCs

E A∂3
x u(0) − A2 [

γ (0)∂xu(0) + ∂xγ (0)u(0)
] =

1

λL

[
E A∂2

x u(0) − A2γ (0)u(0) + b(0)
]

E A∂3
x u(L) − A2

[
γ (L)∂xu(L) + ∂4

x γ (L)u(L)
] =

− 1

λL

[
E A∂2

x u(L) − A2γ (L)u(L) + b(L)
]

(39)

is equivalent to the integro-differential equation in Eq. (35).
The integro-differential equation in Eq. (35) requires some specific numerical

algorithms for its solution [58]. On the contrary, Eq. (38) with the BCs in Eq. (39)
provides an alternative formulation of the displacement based nonlocal problem that
can be readily solved. For example, consider a micro-rod constrained at x = 0 with
length L = 300μm, rectangular cross section with width b = 60μm and thickness
h = 25μm, elastic modulus E = 2.80 GPa, Enl = 28 TPa, and forced at x = L by
a point load force F = 20 N.

The effect of the nonlocal parameter λ on the mechanical response of the rod is
investigated. Figure 4 shows the normalized axial displacement for different values
of the nonlocal parameter. Each displacement function is normalized with respect to
the related maximum value at x = L .

Numerical results show that the increasing of nonlocal parameter yields an incre-
ment in terms of rod stiffness. Specifically, Fig. 5 shows the maximum displacement
unl(L) normalized respect to the local one ul(L) for different values of nonlocal
parameter. We can observe that the displacement decreases if the nonlocal parameter
grows up. This behavior may be easily explained by focusing on the attenuation
function (37). The nonlocal parameter λ plays a double role, it scales the whole
attenuation function and at the same time modifies the velocity of decaying with the
distance. An increase in the value of λ results in a larger scaling of the function,
i.e. with lower peak, and in a slower decaying with the distance. From the numer-
ical application of Figs. 4 and 5, it may be asserted that the influence of λ in the
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Fig. 4 Normalized
displacement of nonlocal rod
for different values of λ

Fig. 5 Maximum
normalized displacement for
different values of λ

velocity of the attenuation function decaying is predominant and, as expected, the
rod stiffness increases with λ. Further, a strain localization effect at the rod ends
occurs. This effect is more significant for larger values of λ, and is due to the fact
that volume elements in the neighborhood of the rod ends are involved in a smaller
amount of nonlocal interactions compared with volume elements in the central part
of the rod. The behavior of the nonlocal rod may be further manipulated by varying
also the nonlocal modulus Enl and/or introducing coefficients weighting the local
and nonlocal contributions (similarly to Eq. (16)), resulting in a very flexible model.

3.2 Dynamical Problem of Nonlocal Beam Model

As shown in the previous section, long-range interactions can be modeled with a dis-
placement based approach. With this approach, the nonlocal rod is readily obtained,
but this mechanically based model can be applied also to more complex structural
systems. In this section, we consider the dynamics of the nonlocal Timoshenko
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Fig. 6 Nonlocal elastic Timoshenko beam

(TM) beam model, derived below. The problem formulation is obtained following
the previous approach, that is by introducing long-range interactions. However, to
avoid that long-distance forces arise from relative displacements induced by a rigid
motion, pure deformation modes are introduced.

We consider an isotropic and linearly elastic TMbeam of length L , with centroidal
axis x as depicted in Fig. 6.

In this case, two arbitrary volume elements �V (xi ) and �V (xk) interact each
other according to the pure deformation modes [59]. For the TM beam, the modes
are expressed in terms of pure axial, pure bending and pure shear deformations. That
is,

η(xi , xk) = u(xk) − u(xi )

θ(xi , xk) = ϕ(xk) − ϕ(xi )

ψ(xi , xk) =
[
v(xk) − v(xi )

xk − xi
− ϕ(xk)

]
+

[
v(xk) − v(xi )

xk − xi
− ϕ(xi )

]
(40)

where u denotes the axial displacement, ϕ is the rotation and v is the transverse
displacement. The time dependence of the previous functions has been omitted for
brevity. The axial mode is related to the rod and has been depicted in Fig. 2, while
the other two are reported in Fig. 7.

According to the displacement based nonlocal model, the long-range forces and
momentsmutually exertedbyunitary volumeelements�V (xi ) = 1and�V (xk) = 1
are expressed by

q(i,k)
x = gx(xi , xk) η(xi , xk) (41)

which represents the volume axial forces due to the pure axial deformation,

q(i,k)
ϕ,ϕ = gϕ(xi , xk) θ(xi , xk) (42)
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Fig. 7 Pure deformation modes for Timoshenko beam

representing the volume moments due to the pure bending mode, and finally

q(i,k)
ϕ,z = gz(xi , xk) ψ(xi , xk)

q(i,k)
z = 2

xk − xi
gz(xi , xk) ψ(xi , xk) (43)

which are the long-range moments and transverse forces related to pure shear mode.
The functions gx (xi , xk) �= gϕ(xi , xk) �= gz(xi , xk) are independent attenuation func-
tions governing the distance decay of the nonlocal interactions.

Let us consider a discretization of the TM beam into n volumes V (xi ) = A�x ,
where xi = i�x for i = 0, ...n − 1. We introduce external forces per unit length
Fx (x, t), Fz(x, t) and denote with Qx (x, t), Qz(x, t), Qϕ(x, t) the resultants of the
long-range forces and moments. The dynamic equilibrium equations of the arbitrary
volume element V (xi ) are expressed as follows

N (xi + �x, t) − N (xi , t) + Qx (xi , t) + Fx (xi , t) �x − m(xi )∂
2
t u(xi , t)�x = 0

(44a)
T (xi + �x, t) − T (xi , t) + Qz(xi , t) + Fz(xi , t) �x − m(xi )∂

2
t v(xi , t)�x = 0

(44b)
M(xi + �x, t) − M(xi , t) − T (xi )�x − Qϕ(xi , t) + Ip(xi )∂

2
t ϕ(xi , t)�x = 0

(44c)

where m(x) is the mass per unit length and Ip(x) is the rotational inertia per unit
length. By performing simplemanipulation of Eqs. (44) and taking the limit�x → 0
we get

E A ∂2
x u(x, t) + Fx (x, t) + A2

∫ L

0
gx(x, ξ)η(x, ξ, t)dξ − m(x)∂2

t u(x, t) = 0

(45a)
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KSGA[∂2
x v(x, t) − ∂xϕ(x, t)] + Fz(x, t)

+ A2
∫ L

0

2

ξ − x)
gz(x, ξ)ψ(x, ξ, t)dξ − m(x)∂2

t v(x, t) = 0

(45b)

KSGA[∂xv(x, t) − ϕ(x, t)] + E I∂2
xϕ(x, t) + A2

∫ L

0
gz(x, ξ)ψ(x, ξ, t)dξ

+A2
∫ L

0
gϕ(x, ξ)θ(x, ξ, t)dξ − Ip(x)∂

2
t ϕ(x, t) = 0

(45c)

where the mechanical boundary conditions hold the classical form of local theory
[36]. Obviously, in order to evaluate the solution of the problem in Eq. (45), a numer-
ical procedure must be adopted. For this reason, next section shows a way to apply
the finite element method to this kind of nonlocal problem.

3.2.1 Finite Element Formulations

Let us consider a beam subdivided in amesh of n finite elements. The nodes of the i-th
element are denoted as xi and xi+1 anddi is the vector of nodal displacements/rotation
of the element. The displacement field along the finite element is expressed by the
following vector

ui (x, t) = Ni (x)d i (t) i = 1, ..., n (46)

where ui (x, t) = [u(x, t), v(x, t), ϕ(x, t)]T , d i (t) is the vector collecting the nodal
displacements of the i-th element and Ni (x) is the matrix of shape functions, taken
as the standard first-order (axial problem) and third-order (bending problem) poly-
nomial expressions. NT

i (x) is given by

NT
i (x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xi+1−x
l 0 0

0 (l−yi )(l2(1+12�)+(l−2yi )yi )
l3(1+12�)

6yi (−l+yi )
l3(1+12�)

0 (l−yi )(l+6l�−yi )yi
l2(1+12�)

(l+12l�−3yi )(l−yi )
l2(1+12�)

x−xi
l 0 0

0 yi (12l2�+3lyi−2y2i )
l3(1+12�)

6(l−yi )yi
l3(1+12�)

0 − (l−yi )(6l�+yi )yi
l2(1+12�)

2l(−1+6�)+3yi )yi
l2(1+12�)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(47)
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where yi = x − xi , l is the length of the finite elements and � = E I/GAl2. Fur-
thermore, di can be expressed as

d i (t) = Ci d(t) (48)

whereCi is the connectivity matrix and d(t) denotes the nodal displacements vector
of the whole beam.

With the standard Galerkin approach, we get the equation of motion in the form

M∂2
t d(t) + [Kl + Knl]d(t) = F(t) (49)

where M is 3(n + 1) × 3(n + 1) mass matrix and F(t) is the nodal load vector.
Kl + Knl is 3(n + 1) × 3(n + 1) global stiffness matrix, i.e.:

Kl + Knl =
n∑

i=1

Kl
i +

n∑
i=1

Knl
i (50)

In particular, Kl
i is the classical local stiffness matrix, given by

Kl
i =

∫ xi+1

xi

[Bi (x)Ci ]T D Bi (x)Ci dx (51)

where D = Diag[E A E I GKs A] and BT
i (x) is the following matrix

BT
i (x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
l 0 0

0 6(−2l2�−lyi+y2i )
l3(1+12�)

− 6(l−2yi )
l3(1+12�)

0 l2(1+6�)−4(l+3l�)yi+3y2i
l2(1+12�)

−4(l+3l�)+6yi
l2(1+12�)

1
l 0 0

0 6(2l2�+(l−yi )yi )
l3(1+12�)

6(l−2yi )
l3(1+12�)

0 −6l2�+2l(−1+6�)yi+3y2i
l2(1+12�)

2(l(−1+6�)+3yi )
l2(1+12�)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(52)

In addition,Knl
i is the nonlocal stiffness matrix, depending on three contributions

related to the corresponding pure modes, i.e.: Knl,η
i , Knl,θ

i , Knl,ψ
i . That is,

Knl
i = Knl,η

i + Knl,θ
i + Knl,ψ

i = ∑n
j=1 K

nl,η
i j + ∑n

j=1 K
nl,θ
i j + ∑n

j=1 K
nl,ψ
i j (53)

where the nonlocal matrices Knl,η
i j , Knl,θ

i j , Knl,ψ
i j are given as
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Knl,η
i j = A2

2

∫ xi+1

xi

∫ x j+1

x j

[N(u)
j (ξ)C j − N(u)

i (x)Ci ]T gx(x, ξ)

×[N(u)
j (ξ)C j − N(u)

i (x)Ci ]dxdξ

(54a)

Knl,θ
i j = A2

2

∫ xi+1

xi

∫ x j+1

x j

[N(ϕ)

j (ξ)C j − N(ϕ)

i (x)Ci ]T gϕ(x, ξ)

×[N(ϕ)

j (ξ)C j − N(ϕ)

i (x)Ci ]dxdξ

(54b)

Knl,ψ
i j = A2

2

∫ xi+1

xi

∫ x j+1

x j

[
2
N(v)

j (ξ)C j − N(v)
i (x)Ci

ξ − x
− N(ϕ)

j (ξ)C j − N(ϕ)

i (x)Ci

]T

gz(x, ξ)

[
2
N(v)

j (ξ)C j − N(v)
i (x)Ci

ξ − x
− N(ϕ)

j (ξ)C j − N(ϕ)

i (x)Ci

]
dxdξ

(54c)
In Eqs. (54),N(u)

i ,N(v)
i ,N(ϕ)

j are the row vectors of the matrixNi of shape functions.

Hence, the nonlocal matrices Knl,η
i j , Knl,θ

i j , Knl,ψ
i j express the contributions due to

the long-range interactions between the differential volumes dV (x) inside the i-th
element, xi � x � xi+1, and the differential volumes dV (ξ) inside the j-th element,
x j � ξ � x j+1.

Finally, it is important to remark that unlike the local stiffness matrix, the nonlocal
one is fully-populated and each element of Knl can be obtained in closed-form
by choosing an appropriate attenuation function such as exponential or power-law
functions [44].

3.2.2 Dynamical Analysis of Nonlocal Beams

In this section, the dynamics of the nonlocal beam in bending is investigated. The
quasi-static behavior of the nonlocal beam in bending mirrors the axial behavior
described in Sect. 3.2.1 and is not analyzed for brevity. Numerical simulation are
performed in order to the obtain the natural frequencies and the modal shapes of the
displacement based beam model described above. The finite element formulation
described in Sect. 3.2.1 has been adopted to model the beam, discretized with 40
elements. The consistent mass matrix is adopted, derived assuming the third order
kinematicmodel of Eq. (47) and density equal to ρ = 1000 kg/m3. Natural frequency
and modal shape are evaluated by means of a standard eigen-analysis.

The geometry and parameters of the beam are equal to those of the rod consid-
ered in the numerical application of Figs. 4 and 5. Two boundary conditions are
considered: clamped-free beam and simply-supported beam. Natural frequencies
and modal shapes are evaluated for different values of the nonlocal parameter, that
is λ = 0, 0.05, 0.10, 0.15, 0.20.

In Fig. 8, the first four modal frequencies for the clamped-free beam are plotted
as functions of the nonlocal parameter λ. It is shown that all the natural frequencies
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considered increase with λ. Further, the behavior of all frequencies with λ is non-
linear and characterized by a decreasing rate with increasing λ. These results are
in agreement with the mechanics of the model described in this work, since the
introduction of long-range springs generates an increase in the stiffness of the beam.
As expected, this stiffening effect is more evident for higher values of λ.

Fig. 8 First four natural
frequencies of the
clamped-free beam versus λ

In Fig. 9, the first two modal shapes for the clamped-free beam are plotted for
various values of λ. From this figure, it may be asserted that the general features
of modal shapes are not drastically modified by the nonlocal interactions. However,
close inspection of Fig. 9 reveals that as λ increases a deformation concentration
in the neighborhood of the clamped end of the beam is observed. This is due to
the fact that the volume elements in the central part of the beam are stiffened by a
larger amount of nonlocal interactions than those in the neighborhood of the beam
ends. Similar comments hold for the second modal shape in Fig. 9. Nevertheless,
the global effect of increasing λ is a stiffening effect, as evidenced by analyzing the
natural frequency trend in Fig. 8.

Figure 10 shows the first four natural frequencies of a simply supported beam as
a function of the nonlocal parameter λ. As expected also in this case, the nonlocal
parameter λ governs the stiffening effect of the nonlocal interactions on the beam.
In Fig. 11, the first two modal shapes for the simply supported beam are depicted
for various values of λ. Similar to the case of clamped-free beam, the modal shapes
are not drastically modified, but a deformation concentration is observed close to the
beam ends.

From the numerical results of Figs. 8, 9, 10 and 11, it may be concluded that the
displacement based approach to nonlocal elasticity analyzed in this chapter has a
predictable behavior also in dynamical conditions. Moreover, it has to be noted that
in this numerical applications only the influence of the nonlocal parameter λ on the
response has been investigated. Indeed, varying also the nonlocal modulus Enl and/or
the local elastic modulus allows for a wide range of nonlocal behaviors, making
the displacement based nonlocal models a flexible tool in various nanomechanics
applications.
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Fig. 9 Clamped-free beam:
modal shapes for various
values of λ

Fig. 10 First four natural
frequencies of the simply
supported beam versus λ
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Fig. 11 Simply supported
beam: modal shapes for
various values of λ

4 Concluding Remarks

In this chapter, the so-called displacement based nonlocal model has been discussed.
Differently from the other integral approaches to nonlocality, this formulation is
based on a clear mechanical representation of nonlocal forces. More specifically,
the nonlocal forces mutually exerted between two non-adjacent volume elements
are thought as linearly depending on the product between the volumes, the relative
displacement and an attenuation function accounting for the distance between the
volume elements. The discussion about the model has been specialized to axial and
bending behavior of a Timoshenko beam model. In this context it is shown that the
model is suitable for dynamical problem formulation of nonlocal beams, as well as
for a finite element formulation with closed form of the elements of the nonlocal
stiffness matrices. Finally, it has been shown that the integro-differential equation
ruling the elasto-static problem for a displacement based rod may be reverted to an
equivalent differential equation with additional constitutive boundary conditions.
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One-Dimensional Well-Posed Nonlocal
Elasticity Models for Finite Domains

Mohammad Ali Maneshi, Esmaeal Ghavanloo, and S. Ahmad Fazelzadeh

Abstract Nonlocal modeling of physical phenomena is a very long history.
Researchers in scientific and engineering communities increasingly recognize that
the nonlocality is essential in realistic mathematical models of physical phenomena.
Eringen’s nonlocal elasticity is one of the most well-known nonlocal continuum the-
ories. Eringen proposed two distinct forms of the nonlocal elasticity theory, namely
the nonlocal integral form and the nonlocal differential form. In recent years, several
inconsistencies and paradoxical results in the existing solutions of the nonlocal elas-
ticity approaches have been revealed and they are not completely understood.To solve
some paradoxical results, in this chapter, a well-posed nonlocal differential model
for finite domains is developed and its applicability to predict the static behaviour of
nanorods and nanobeams is investigated. We indicate that the proposed integral and
differential nonlocal models are equivalent to each other over bounded continuous
domains and the corresponding elastic problems are well-posed. In addition, some
static problems are solved and we show that the paradoxical results disappear by
using the present model.
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1 Introduction

Eringen’s nonlocal elasticity theory is one of the most computationally efficient
approaches for modeling nanoscopic structures [1]. Theory of nonlocal elasticity has
been proposed with two different approaches [2, 3]: nonlocal integral approach and
nonlocal differential approach. Compared to the integral approach, the differential
one ismostly utilized tomodel themechanical characteristic of nanoscopic structures
due to its simplicity [1].

In recent years, several inconsistencies and paradoxical results in the existing
solutions of the nonlocal elasticity approaches have been revealed. In year 2003, the
first attempt to solve the bending problem of beams on the basis of Eringen’s nonlocal
differentialmodelwas carried out byPeddieson et al. [4]. Their results showed that the
nonlocal transvers deflections of clamped-free beam under a concentrated force are
identical to the local ones. It is the first paradoxical results reported in the literature.
The similar results were reported and discussed by Challamel and Wang [5] and Li
et al. [6]. In addition, it was shown in the literature [3, 7, 8] that the local and the
nonlocal solutions are identical for the following problems: clamped-clamped beams
subjected to uniform or linear distributed loads, fixed-fixed rods subjected to uniform
and/or linear distributed axial loads, fixed-free rods subjected to constant distributed
axial loads.

The second paradox in differential-based nonlocal models appears when the free
vibration of clamped-free beams is investigated. It was shown in several studies
[9–11] that the fundamental frequency of a cantilever beam increases due to the
nonlocal field while the other higher-mode frequencies decrease due to the nonlocal
field. Another paradoxes is observed when the nonlocal integral form and the nonlo-
cal differential form are compared to each other. Fernández-Sáez et al. [12] showed
discrepancies between the nonlocal differential and the nonlocal integral beammod-
els for various boundary conditions. They also claimed that these nonlocal models
are not equivalent.

Various attempts have been made during the last decade to overcome the men-
tioned paradoxes. As the first strategy, application of the nonlocal integral type is a
feasible option. However, in this case, there is only trivial solution and so the prob-
lem is not well-posed [13, 14]. To eliminate the ill-posedness of the fully nonlocal
integral model, hybrid local-nonlocal model or two-phase nonlocal model has been
used in the literature [5, 15–17]. Romano et al. [18] demonstrated that the hybrid
local-nonlocal model may also be converted to ill-posed model when it is near to
the pure nonlocal component. In another attempt, Challamel and co-workers [19,
20] developed lattice-based nonlocal model to overcome the paradoxes. In addition,
Khodabakhshi and Reddy [21] suggested a general finite element formulation in con-
junction with a two-phase integro-differential nonlocal model to solve the nonlocal
paradoxes. Their model did not fully overcome the cantilever paradoxes and they
also introduced the simply supported beam paradox. Shaat [22] demonstrated that
the paradoxes associated with nonlocal differential models are eliminated using the
iterative nonlocal residual approach.
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Challamel et al. [23] attributed the nonlocal paradoxes to the fact that it is impos-
sible to construct the underlying quadratic energy functional for such nonlocal beam
models, as noticed first by Reddy [24]. Benvenuti and Simone [7] proved that the
one-dimensional nonlocal differential model is not equivalent to the nonlocal inte-
gral model over the finite domain. Furthermore, Romano et al. [18] have introduced
the concept of constitutive boundary conditions. They demonstrated that the trans-
formation of the nonlocal integral form to its differential counterpart is ill-posed
unless the extra constitutive boundary conditions (the constitutive boundary condi-
tions were first represented by Benvenuti and Simone [7]) are fulfilled. In addition,
they indicated that the inconsistency between the equilibrium conditions and the
constitutive boundary conditions leads to the existing paradoxes between the inte-
gral and differential forms of the nonlocal theory. Furthermore, Koutsoumaris et al.
[25] and Challamel [26] pointed out that many nonlocal strain measures developed
in the literature violate the nonlocal invariance of the uniform strain field (normaliza-
tion condition) and the paradoxical results are due to the violation of normalization
condition of nonlocal kernel.

By reviewing the mentioned studies, it can be concluded that one of the most
sources for the nonlocal paradoxical results is unsuitable selection of the nonlocal
kernel. Motivated by this fact, in this chapter, we developed a one-dimensional well-
posed nonlocal elasticity models by using a normalized kernel in a finite domain
and proper transformation of the integral problem to the differential one. In addition,
the applicability of the proposed model for static behavior of rods and beams is
investigated.

2 One-Dimensional Well-Posed Nonlocal Elasticity Theory
for Finite Domains

2.1 Nonlocal Integral Constitutive Equation

According toEringen’s nonlocal elasticity theory, one-dimensional constitutive equa-
tion for homogeneous-isotropic linear materials is expressed as follows [27]

σ (x) =
∫ b

a
α(|x − χ | , e0li )Eε (χ) dχ (1)

where σ denotes the nonlocal stress, ε is strain, E is Young’s modulus, α is known
as nonlocal kernel and a and b are end-points of domain. In addition, e0 and li are
the nonlocal parameter and internal characteristic length, respectively. The following
conditions must be satisfied by the nonlocal kernel [3]:

(a) The kernel function must reach a maximum at x = χ and kernel’s value
decreases monotonically to zero at large distances as well.

(b) The nonlocal kernel assume to be symmetric function with respect to x and χ .
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(c) The kernel must converted to the Dirac delta function, δ, when the nonlocal
parameter approaches zero.

(d) In order to preserve the uniform local strain field would produce a uniform
nonlocal stress field, the kernel function must satisfy the normalization condition:

∫ b

a
α(|x − χ | , e0li )dχ = 1 (2)

Polizzotto [28] and Borino et al. [29] proposed a nonlocal kernel function which
satisfies all the mentioned conditions in a finite domain. The proposed kernel is

α mod (|x − χ | , e0li ) = [1−
∫ b

a
α(|x − κ| , e0li )dκ]δ(|x − χ |)

+ α(|x − χ | , e0li ) (3)

where α(|x − χ | , e0li ) is a kernel which satisfies all the properties of the nonlo-
cal kernel in an infinite domain. Equation (3) has received scant attention and has
only been employed by limited number of research groups. In this chapter, the bi-
exponential kernel function, which is one of the most famous kernels in the infinite
domains, is employed. This kernel is defined as follows.

α(|x − χ | , e0li ) = 1

2e0li
exp(−|x − χ |

e0li
) (4)

Thus, the substitution of Eqs. (3) and (4) into Eq. (1), we have

σ(x) = g(x)Eε(x) + 1

2e0li

∫ b

a
exp(−|x − χ |

e0li
)Eε(χ)dχ (5)

where

g (x) = 1

2

(
exp(

a − x

e0li
) + exp(

x − b

e0li
)

)
(6)

2.2 Differential Constitutive Equation and Its Boundary
Conditions

In this subsection,we transform the nonlocal integral equation,Eq. (5), into a nonlocal
differential equation and corresponding boundary conditions. For this purpose, Eq.
(5) is rewritten as
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σ(x) = g(x)Eε(x) + 1

2e0li

∫ x

a
exp(

χ − x

e0li
)Eε(χ)dχ

+ 1

2e0li

∫ b

x
exp(

x − χ

e0li
)Eε(χ)dχ (7)

Differentiating Eq. (7) with respect to x yields

dσ(x)

dx
= E

(
dg(x)

dx
ε(x) + g(x)

dε(x)

dx

)
− 1

2e20l
2
i

∫ x

a
exp(

χ − x

e0li
)Eε(χ)dχ

+ 1

2e20l
2
i

∫ b

x
exp(

x − χ

e0li
)Eε(χ)dχ (8)

In order to simplify Eq. (8), we can again apply differentiation with respect to x .
The resultant equation can be written in the form:

d2σ(x)

dx2
= E

(
d2g(x)

dx2
ε(x) + 2

dg(x)

dx

dε(x)

dx
+ g(x)

d2ε(x)

dx2

)
− 1

e20l
2
i

Eε(x)

+ 1

2e30l
3
i

(∫ x

a
exp(

χ − x

e0li
)Eε(χ)dχ +

∫ b

x
exp(

x − χ

e0li
)Eε(χ)dχ

)
(9)

Using Eqs. (5) and (6), we obtain

d2σ(x)

dx2
− 1

e20l
2
i

σ(x) = Eg(x)
d2ε(x)

dx2
+ 2E

dg(x)

dx

dε(x)

dx

+ E

(
d2g(x)

dx2
− g(x)

e20l
2
i

− 1

e20l
2
i

)
ε(x) (10)

In addition, differentiating Eq. (6) with respect to x twice yields

d2g (x)

dx2
= 1

e20l
2
i

g(x) (11)

Substituting Eq. (11) into Eq. (10) and multiplying the resultant equation by e20l
2
i ,

we obtain the nonlocal differential constitutive equation

σ(x) − e20l
2
i

d2σ(x)

dx2
= Eε(x)

− 2e20l
2
i E

dg(x)

dx

dε(x)

dx
− e20l

2
i Eg(x)

d2ε(x)

dx2
(12)

which must be supplemented by the following boundary conditions
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dσ(a)

dx
= E

(
dg(a)

dx
ε(a) + g(a)

dε(a)

dx

)

+ 1

2e20l
2
i

∫ b

a
exp(

a − χ

e0li
)Eε(χ)dχ (13)

dσ(b)

dx
= E

(
dg(b)

dx
ε(b) + g(b)

dε(b)

dx

)

− 1

2e20l
2
i

∫ b

a
exp(

χ − b

e0li
)Eε(χ)dχ (14)

Now, let us eliminate the integral terms from Eqs. (13) and (14). Therefore, the
boundary conditions are rewritten as

σ(a) − e0li
dσ(a)

dx
= E

(
ε(a) − e0li g (a)

dε(a)

dx

)
(15)

σ(b) + e0li
dσ(b)

dx
= E

(
ε(b) + e0li g (b)

dε(b)

dx

)
(16)

It should be noted that the same equations can be derived in Ref. [26]. Equations
(15) and (16) are higher-order boundary conditions which known as constitutive
boundary conditions [18, 30]. Note that the nonlocal differential constitutive equa-
tion (Eq. (12)) with boundary conditions (Eqs. (15) and (16)) is equivalent to the
nonlocal integral constitutive equation (Eq. (5)) in the finite domain. Furthermore,
since the constitutive boundary conditions, do not contrast with equilibrium require-
ments, the present nonlocal model leads to well-posed elastostatic problems [30].
Generally, a mathematical problem is well-posed if it satisfies two conditions: (1) the
problem has unique solution for a specific boundary condition and (2) the solution
depends continuously on its parameters including the boundary conditions.

3 Equilibrium Equation and Boundary Conditions

3.1 Governing Equation of a Nanorod

Consider a uniform rod of length L and cross-section A which is subjected to axial
distributed force p(x), and boundary forces F0 and FL (Fig. 1). The governing equa-
tion for longitudinal deformation of the rod is given by
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Fig. 1 Schematic
illustration of a rod

∂N (x)

∂x
+ p(x) = 0 (17)

where N is stress resultant which can be defined as

N =
∫

A

σd A (18)

For small longitudinal deformation of the rod, the strain component is

ε(x) = ∂U (x)

∂x
(19)

where U denotes the longitudinal displacement. Using Eqs. (18) and (19) and upon
integrating Eqs. (12), (15) and (16) over the rod cross section, we have

N (x) − e20l
2
i

d2N (x)

dx2
= E A

dU (x)

dx

− 2e20l
2
i E A

dg(x)

dx

d2U (x)

dx2
− e20l

2
i E Ag(x)

d3U (x)

dx3
(20)

N (0) − e0li
dN (0)

dx
= E A

(
dU (0)

dx
− e0li g(0)

d2U (0)

dx2

)
(21)

N (L) + e0li
dN (L)

dx
= E A

(
dU (L)

dx
+ e0li g (L)

d2U (L)

dx2

)
(22)

Here we set a = 0 and b = L . In addition, differentiating both sides of Eq. (17)
with respect to x and substituting the resultant equation into Eq. (20) yields

N (x) = E A

(
dU (x)

dx
− 2e20l

2
i

dg(x)

dx

d2U (x)

dx2
− e20l

2
i g(x)

d3U (x)

dx3

)

− e20l
2
i

dp(x)

dx
(23)

Now, substituting Eq. (23) into Eq. (17), we obtain
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e20l
2
i g(x)

d4U (x)

dx4
+ 3e20l

2
i

dg(x)

dx

d3U (x)

dx3
+ (2g(x) − 1)

d2U (x)

dx2

+ e20l
2
i

E A

d2 p(x)

dx2
− p(x)

E A
= 0 (24)

Furthermore, using Eqs. (21–22), the higher-order boundary conditions are
obtained in terms of the displacement, i.e.,

E A

(
(e0li g(0) − 2e20l

2
i

dg(0)

dx
)
d2U (0)

dx2
− e20l

2
i g(0)

d3U (0)

dx3

)

−e20l
2
i

dp(0)

dx
+ e0li p(0) = 0 (25)

−E A

(
(e0li g (L) + 2e20l

2
i

dg(L)

dx
)
d2U (L)

dx2
+ e20l

2
i g(L)

d3U (L)

dx3

)

−e20l
2
i

dp(L)

dx
− e0li p(L) = 0 (26)

Furthermore, we have two classical boundary conditions. For the case of the
fixed-free rod, the classical boundary conditions are

U (0) = 0 (27)

N (L) = E A(
dU (L)

dx
− 2e20l

2
i

dg(L)

dx

d2U (L)

dx2

− e20l
2
i g(L)

d3U (L)

dx3
) − e20l

2
i

dp(L)

dx
= FL (28)

Introducing the dimensionless parameters

λ = e0li
L

, ξ = x

L
, u = U

L
, p̄ = pL

E A
,

f1 = FL

E A
, ḡ (ξ) = 1

2

(
exp(

−ξ

λ
) + exp(

ξ − 1

λ
)

)
(29)

the dimensionless governing equation is

λ2ḡ
∂4u

∂ξ 4
+ 3λ2 dḡ

dξ

∂3u

∂ξ 3
+ (2ḡ − 1)

∂2u

∂2ξ
+ λ2 ∂2 p̄

∂ξ 2
− p̄ = 0 (30)

and the dimensionless boundary conditions are

u(0) = 0 (31)
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(λḡ(0) − 2λ2 dḡ(0)

dξ
)
d2u(0)

dξ 2
− λ2ḡ(0)

d3u(0)

dξ 3
− λ2 d p̄(0)

dξ
+ λ p̄(0) = 0 (32)

(λḡ (1) + 2λ2 dḡ(1)

dξ
)
d2u(1)

dξ 2
+ λ2ḡ(1)

d3u(1)

dξ 3
+ λ2 d p̄(1)

dξ
+ λ p̄(1) = 0 (33)

du(1)

dξ
− 2λ2 dḡ(1)

dξ

d2u(1)

dξ 2
− λ2ḡ(1)

d3u(1)

dξ 3
− λ2 d p̄(1)

dξ
= f1 (34)

It should be noted that Eqs. (30)–(34) are reduced to the nonlocal differential
model if the function ḡ(ξ) = 0. In addition, for the case λ = 0 and ḡ(ξ) = 0, Eqs.
(30)–(34) correspond to the local differential model. Since it is difficult to obtain
closed-form solutions for the static problems, in this chapter, the differential equation
along with the boundary conditions are solved numerically using the Bvp4c Matlab
solver.

3.2 Governing Equation of a Nanobeam

Here we consider a straight homogeneous isotropic nanobeam of length L , cross-
section A, area moment of inertia I and Young’s modulus E . It is assumed that
the beam is subjected to a transverse distributed load q(x), axial force F , boundary
forces V0 and VL , and boundary moments M0 and ML (Fig. 2). On the basis of the
Euler-Bernoulli beam theory, the equilibrium equation of the beam is

d2M(x)

dx2
+ F

d2W (x)

dx2
+ q(x) = 0 (35)

where M is moment resultant which can be defined as

M =
∫

A

σ zd A (36)

where z is the distance of any point of the cross section of the beam to the neutral
axis. Since the deformations of the beam take place in the xz plane, the displacement
field can be written as

Ux (x, z) = −z
dW

dx
Uz(x, z) = W (x) (37)

where Ux and Uz denote respectively the axial and transverse displacements of a
typical point of the beam and W is the transverse displacement of the reference line
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Fig. 2 Schematic illustration of a beam under various load conditions

of the beam (i.e., z = 0). Assuming small deformations, the nonzero component of
strain is

ε = ∂Ux

∂x
= −z

∂2W

∂x2
(38)

Using Eqs. (36) and (38), multiplying Eqs. (12), (15) and (16) by z and then
integrating the resultant equations over the cross section of the beam, we obtain

M(x) − e0
2li

2 d
2M(x)

dx2
= E Ie0

2li
2g (x)

d4W (x)

dx4

+ 2E Ie0
2li

2 dg (x)

dx

d3W (x)

dx3
− E I

d2W (x)

dx2
(39)

M(0) − e0li
dM(0)

dx
= E Ie0li g(0)

d3W (0)

∂x3
− E I

d2W (0)

dx2
(40)

M(L) + e0li
dM(L)

dx
= −E Ie0li g(L)

d3W (L)

dx3
− E I

d2W (L)

dx2
(41)

Furthermore, using Eqs. (35) and (39), the moment resultant is obtained as

M(x) = E I

(
e0

2li
2g(x)

d4W (x)

dx4
+ 2e0

2li
2 dg(x)

dx

d3W (x)

dx3
− d2W (x)

dx2

)

− e0
2li

2

(
F
d2W (x)

dx2
+ q(x)

)
(42)
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Now, by two times differentiating Eq. (42) with respect to x and substituting the
resultant equation into Eq. (35) the governing equation of the beam is obtained as

e0
2li

2E Ig (x)
d6W (x)

dx6
+ 4e0

2li
2E I

dg (x)

dx

d5W (x)

dx5

+E I (5g (x) − 1)
d4W (x)

dx4
+ 2E I

dg (x)

dx

d3W (x)

dx3
+ F

d2W (x)

dx2

−e0
2li

2(F
d4W (x)

dx4
+ d2q(x)

dx2
) + q(x) = 0 (43)

Furthermore, using Eqs. (40–42), the higher-order boundary conditions are
derived as

e0
2li

2E Ig(0)
d4W (0)

dx4
+ 2e0

2li
2E I

dg(0)

dx

d3W (0)

dx3
− E I

d2W (0)

dx2

−e0
2li

2g(0)E I
d5W (0)

dx5
− 3e0

2li
2E I

dg(0)

dx

d4W (0)

dx4

−2E Ig(0)
d3W (0)

dx3
+ E I

d3W (0)

dx3
− e0

2li
2

(
F
d2W (0)

dx2
+ q(0)

)

+e0
3li

3

(
F
d3W (0)

dx3
+ dq(0)

dx

)

= E Ie0li g(0)
d3W (0)

∂x3
− E I

d2W (0)

dx2
(44)

e0
2li

2E Ig(L)
d4W (L)

dx4
+ 2e0

2li
2E I

dg(L)

dx

d3W (L)

dx3
− E I

d2W (L)

dx2

+e0
2li

2E Ig(L)
d5W (L)

dx5
+ 3e0

2li
2E I

dg(L)

dx

d4W (L)

dx4

+2E Ig(L)
d3W (L)

dx3
− E I

d3W (L)

dx3
− e0

2li
2

(
F
d2W (L)

dx2
+ q(L)

)

−e0
3li

3

(
F
d3W (L)

dx3
+ dq(L)

dx

)

= −E Ie0li g(L)
d3W (L)

dx3
− E I

d2W (L)

dx2
(45)

In addition, there are four classical boundary conditions. For the case of the
clamped-free beam, the classical boundary conditions are

W (0) = 0 (46)

dW (0)

dx
= 0 (47)
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VL − F
dW (L)

dx
+ e0

2li
2(F

d3W (L)

dx3
+ dq(L)

dx
) − e0

2li
2E Ig (L)

d5W (L)

dx5

−3e0
2li

2E I
dg(L)

dx

d4W (L)

dx4
− E I (2g(L) − 1)

d3W (L)

dx3
= 0 (48)

ML − e0
2li

2(F
d2W (L)

dx2
+ q(L)) + e0

2li
2E Ig(L)

d4W (L)

dx4

+2e0
2li

2E I
dg(L)

dx

d3W (L)

dx3
− E I

d2W (L)

dx2
= 0 (49)

The foregoing four conditions together with Eqs. (44) and (45) complete the
boundary conditions needed to solve the sixth-order differential equation (43). To
simplify the analysis, the following dimensionless parameters are defined.

λ = e0li
L

, ξ = x

L
, w = W

L

ḡ (ξ) = 1

2

(
exp(

−ξ

λ
) + exp(

ξ − 1

λ
)

)
, q̄ = qL

E I
, f = FL2

E I

v1 = VL L2

E I
, m1 = MLL

E I
(50)

Substitution of Eq. (50) into Eq. (43) gives

λ2ḡ
d6w

dξ 6
+ 4λ2 dḡ

dξ

d5w

dξ 5
+ (

5ḡ − λ2 f − 1
) d4w

dξ 4
+ 2

dḡ

dξ

d3w(ξ)

dξ 3

+ f
d2w

dξ 2
− λ2 d

2q̄

dξ 2
+ q̄(ξ) = 0 (51)

Furthermore, the dimensionless boundary conditions are

w(0) = 0 (52)

dw(0)

dξ
= 0 (53)

λ2ḡ(1)
d5w(1)

dξ 5
+ 3λ2 dḡ(1)

dξ

d4w(1)

dξ 4
+ (2ḡ(1) − 1− λ2 f )

d3w(1)

dξ 3

+ f
dw(1)

dξ
− λ2 dq̄(1)

dξ
− v1 = 0 (54)

λ2ḡ(1)
d4w(1)

dξ 4
+ 2λ2 dḡ(1)

dξ

d3w(1)

dξ 3

−(λ2 f + 1)
d2w(1)

dξ 2
− λ2q̄ (1) + m1 = 0 (55)
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λ3ḡ(0)
d5w(0)

dξ 5
+

(
3λ3 dḡ(0)

dξ
− λ2 ḡ(0)

)
d4w(0)

dξ 4

−
(
2λ2 dḡ(0)

dξ
− 3λḡ(0) + f λ3 + λ

)
d3w(0)

dξ 3

+ f λ2 d
2w(0)

dξ 2
+ λ2q̄(0) − λ3 dq̄(0)

dξ
= 0 (56)

λ3ḡ(1)
d5w(1)

dξ 5
+

(
3λ3 dḡ(1)

dξ
+ λ2ḡ(1)

)
d4w(1)

dξ 4

+
(
2λ2 dḡ(1)

dξ
+ 3λḡ(1) − f λ3 − λ

)
d3w(1)

dξ 3

− f λ2 d
2w(1)

dξ 2
− λ2q̄(1) − λ3 dq̄(1)

dξ
= 0 (57)

It is obvious that it is difficult to obtain closed-form solutions for above boundary
value differential equations. As a result, the problem must be solved numerically.
By setting the axial force parameter f = 0, Eqs. (51)–(57) reduce to the governing
equation and boundary conditions for the bending of the well-posed nonlocal Euler
beam under distributed transverse load q̄ . In addition, the equilibrium equation of
buckling can be obtained by neglecting the transverse load term q̄ in Eqs. (51)–(57).

4 Numerical Results

This section presents numerical results of static deformation of the nanorods and the
nanobeams under different loading conditions. The numerical results are obtained
by using the present model and are compared with the local and nonlocal differential
models.

4.1 Static Deformation of Nanorods

In order to elucidate the effectiveness of the well-posed nonlocal elasticity model for
predicting the static behavior of the nanorods, three problems which have technical
interest in nanotechnology have been studied. In the first case, a nanorod is only
subjected to end-point load f1 = 1. The variations of strain along the axis of the
nanorod is shown inFig. 3. It is seen from this figure that the strain obtained from three
models is uniform along the rod. This finding is not paradoxical and is correct from
both physical and mathematical point of views because uniform straining generates
a uniform stress at the domain and its boundaries.
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Fig. 3 The variation of strain along the rod axis for load condition f1 = 1

Fig. 4 Nanorod under uniform axial load p̄ = 1

As the second case, we consider a nanorod under a uniform axial load p̄ = 1
(Fig. 4). Figure 5 shows the variations of the strain and the deformation along the
axis of the nanorod for several values of nonlocal parameter. It can be seen from the
figure that the results of the nonlocal differential and local models are identical to
each other and the nonlocal effect is not present in the nonlocal differential solutions.
These paradoxical results were previously reported by Barretta et al. [8]. In addition,
it is observed that the displacements predicted by the present model are greater
than the local one except at the boundary points, and therefore, the model displays
a softening behavior in term of the nonlocal parameter λ. It is of interest that the
maximum displacement u(1) of the rod is independent of the nonlocal parameter
and the maximum axial displacement is identical to the one of the classical local.
This finding is consistent with those reported in the literature [31]. One of the main
advantage of the present model is that it avoids giving rise to paradoxical results for
all values of the nonlocal parameter.

As the third case, the results obtained from the local, the nonlocal differential and
the present model, for the nanorod subjected to linear distributed load (Fig. 6) are
compared. The results of this comparison is shown in Fig. 7 that shows the variations
of the axial deformation along the axis of the nanorod for different values of nonlocal
parameter.
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Fig. 5 Fixed- free nanorod subjected to uniform load; a Strain and b Displacement

Fig. 6 Nanorod subjected to linear axial load
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Fig. 7 Axial deformation of
fixed-free rod loaded by a
linear distributed load

Figure 7 shows that the axial displacements of nanorod obtained from the present
and the nonlocal differential models are greater than the local ones. This physically
implies that the well-posed model presents a softening behavior in term of the non-
local parameter λ. It should be noted that the maximum displacement u(1) of the
nanorod does not depend on the nonlocal parameter.

4.2 Bending of Nanobeams

In this subsection, several bending problems, including the cantilever beam under
end-point load, the cantilever beam loaded by uniform transverse load and the can-
tilever beamunder linear distributed force, are considered. The cantilever beamunder
a point load is a paradigmatic static case. The effect of the nonlocal parameter on the
transverse deflection of the nanobeam is depicted in Fig. 8.

Fig. 8 Displacements of
cantilever beam subjected to
concentrated transverse force
at the free end
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Fig. 9 Cantilever beam
loaded by a uniform
transverse load q̄ = 1

Fig. 10 Transverse
deflection of a cantilever
nanobeam subjected to a
uniform distributed load

As expected, a paradox is observed where the bending solutions of the nonlo-
cal differential model are identical to the local solutions. However, the deflections
obtained from the present model are larger than those of the local one. Furthermore,
it is observed that the deflections increase with an increase in the nonlocal coefficient
λ. This means physically that the present model exhibits a softening behavior. As
seen from Fig. 8, the paradox is resolved by the well-posed nonlocal model presented
in this chapter.

Next, a nonlocal cantilever beam loaded by uniform transverse load is considered,
as shown by Fig. 9. Variations of the deflection of the beam are obtained from the
local, the nonlocal differential and the present models and plotted in Fig. 10. As can
be seen in Fig. 10, the present nonlocal model shows that the stiffness of the beam
decreases whereas in the differential nonlocal one the stiffness increases.

Finally, a comparison ismade between the results obtained from the local, the non-
local differential and the present models, for the beam subjected to linear distributed
load (Fig. 11) and two different values of the nonlocal parameter. The deflection and
slope of the beam shown in Fig. 12. The results indicate that the deflections obtained
from the present are greater than the local one, whereas the deflections obtained from
the nonlocal differential model are smaller than the local. One interesting result is
that the slope of the end of the beam, according to the well-posed nonlocal model,
does not depend on the nonlocal parameter and is identical to the slope of the local
model.
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Fig. 11 Transverse
deflection of a cantilever
nanobeam subjected to a
uniform distributed load

Fig. 12 Response of
cantilever beam under linear
distributed load; a
Displacement and b Slope

4.3 Buckling of Nanobeams

In this subsection, the dimensionless buckling loads of the cantilever beam will be
given for different models and nonlocal parameters. Table1 lists the critical buckling
loads for different values of nonlocal parameters from zero to 0.25. As can be inferred
from this table, the nonlocal parameter decreases the buckling loads in comparison
with those of the local results. Furthermore, the buckling loads of the nonlocal dif-
ferential model are smaller than ones predicted by the present model. It should be
noted that the negative sign shows the dimensionless load f is compressive.
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Table 1 The buckling loads of the cantilever beam

λ Local model Nonlocal differential
model

Present model

0.00 −2.4674 −2.4674 −2.4674

0.05 −2.4674 −2.4523 −2.4540

0.10 −2.4674 −2.4080 −2.4213

0.15 −2.4674 −2.3376 −2.3803

0.20 −2.4674 −2.2458 −2.3401

0.25 −2.4674 −2.1377 −2.3065

5 Conclusions

In this chapter, we developed a modified strain-based integral model for finite
domains and utilize it to predict the static deformation of nanorods and the static
behavior of nanobeams (bending and buckling). Numerical results for several static
problems were solved and compared with the local and nonlocal differential models.
The main conclusions of this chapter are as follows:

• The developed models obey the locality recovery condition, which implies that
the classical Hooke’s law is recovered in the presence of a uniform strain field, no
matter the value of the length scale parameter.

• Using the well-posed nonlocal elastic models, the nonlocal paradoxical results are
resolved.

• Elastic displacement solutions of the studied nanorods and nanobeams, formulated
according to the well-posed models, indicate the softening behavior when the
nonlocal parameter is increased.
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31. Barretta R, ČanadijaM,Marotti de Sciarra F (2019)Modified nonlocal strain gradient elasticity

for nano-rods and application to carbon nanotubes. Appl Sci 9:514



Iterative Nonlocal Residual Elasticity

Mohamed Shaat

Abstract Motivated by the existing complications of finding solutions of Eringen’s
nonlocal model, an alternative model is developed here. The new formulation of the
nonlocal elasticity is centered upon expressing the dynamic equilibrium requirements
based on a nonlocal residual stress field. This new nonlocal elasticity is explained
from the lattice mechanics and continuummechanics points of view. Boundary value
problems obtained based on the new nonlocal elasticity are solved following a pro-
posed iterative procedure. This iterative procedure is centered upon correcting the
solution of the classical field problem for the nonlocal residual field of the elastic
domain. Convergence analyses are presented to show the convergence of the iterative
procedure to the solution of the nonlocal field problem. The iterative procedure is an
integrated part of the proposed nonlocal elasticity. Therefore, the newly developed
nonlocal elasticity is given the name “iterative nonlocal residual elasticity”.

1 Introduction

In classical mechanics, a body consists of an infinite number of particles each of
which is a mass point. Each particle undergoes interactions only with the nearest
particles (neighbor particles). Whereas the interactions between non-neighbor par-
ticles are weaker than interactions between neighbor particles, these non-neighbor
interactions are exist andmay contribute to the continuummechanics in certain occa-
sions. Therefore, the nonlocal theory was developed to propose a generalized theory,
whichmodels the particle exhibits interactions with its neighbors and non-neighbors.

According to Eringen [1, 2], the dynamic equilibrium of a solid elastic body is
conditional by the global balance of its body forces, external surface tractions, and
inertia forces. The nonlocal theory, as early proposed by Eringen, postulates the
condition of the global balance, thus [2]:
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tji,j + Fi + Fi = ρ
∂2ui
∂t2

(1)

where ρ is the mass density, ui is the displacement field of a material particle, and t
is the time. Fi is a local-type body force, which is conjugate to neighbor interactions.
Fi is a nonlocal body force. The nonlocal body force (Fi) is a residual field, which is
generated due to non-neighbor interactions. This nonlocal residual body force yields
to the condition [1, 2]:

∫

V

FidV = 0 (2)

whereV is the volume of the elastic body. For a homogeneous-isotropic-linear elastic
material, Fi = 0 [1,2].

The balance laws of nonlocal continua (Eq. (1)) depend on a total stress field
(tij), which sums neighbor interactions and non-neighbor interactions at a specific
point x belongs to the elastic body. This total stress field (tij) was expressed as a
functional of the deformation gradients of all points of the elastic body [1, 2]. Thus,
for a homogeneous-isotropic-linear elastic material, the constitutive equations were
determined based on some invariance and thermodynamics requirements with the
form [1, 2]:

tij (x) =
∫

V

λ′ (∣∣x′ − x
∣∣) εrr

(
x′) δij + 2μ′ (∣∣x′ − x

∣∣) εij
(
x′) dV (

x′) (3)

where εij is the infinitesimal strain. λ′ andμ′ are Lamemoduli, which are functionals
of

∣∣x′ − x
∣∣. The integration over the elastic domain, V , was involved to collect all

non-neighbor interactions.
With Eringen’s manipulation of the nonlocal theory, the balance laws are identical

to those of the classical continuum mechanics [1, 2]. However, the constitutive law
is different where the total stress field (tij) was introduced to model neighbor and
non-neighbor interactions via integral operators (Eq. (3)). This total stress field is
commonly known as “nonlocal stress field”.

Complications of finding solutions of nonlocal elasticity problems have been
early discussed [3]. According to Eq. (3), the field equation of the nonlocal problem
is an integro-partial differential equation. Analytical solutions for integro-partial
differential equations are difficult to be determined, especially for mixed boundary
value problems [3]. This motivated Eringen [3] to formulate the nonlocal elasticity in
terms of singular differential equations. By assuming that (i) the Lamemoduli exhibit
the same attenuation with the distance

∣∣x′ − x
∣∣ according to (ii) a Green’s function

of a differential operator with constant coefficients, the nonlocal field problem was
formulated as the following partial differential equation [3]:
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σji,j + L
(
Fi − ρ

∂2ui
∂t2

)
= 0 (4)

where L is the differential operator as defined by Eringen [3], i.e. Ltij = σij. σij is
the local stress of the classical elasticity.

Mathematically speaking, solutions can be easily obtained using the differential
form of the nonlocal elasticity (Eq. (4)). Nonetheless, the ability of this form to
secret exact solutions, which should be consistent with the solutions of the integral
nonlocal model is controversial. Discrepancies were observed between solutions of
the differential nonlocal field problems and integral nonlocal field problems [4–7].
Details on the paradoxes of the differential nonlocal elasticity can be found in Ref.
[4–15]. Therefore, the current focus of research on nonlocal mechanics depends on
the integral nonlocal model [16–18].

Moreover, the “ill-posedness” of Eringen’s nonlocal elasticity was discussed in
Ref. [15]. It was revealed that the transformation of the integral constitutive law
(Eq. (3)) into a differential nonlocal constitutive law secretes inconsistencies between
the natural boundary conditions of the nonlocal equilibrium and the boundary con-
ditions of the constitutive model generated upon the transformation [15].

An example of the paradox and inconsistency of the differential nonlocal elasticity
can be exhibited by considering a nonlocal problem of an elastic body under a body
force equals its inertia force, in particular Fi − ρ∂2ui/∂t2 = 0. An example of the
latter case is a nonlocal static problem with a zero body force. For this case, Eq. (4)
reduces to:

σji,j = 0 (5)

which gives the stress field identical to that of the classical elasticity with no depen-
dency on the nonlocal character of the body. This is a clear violation of the concept
of the nonlocal mechanics.

The illustrated example and the paradoxes and inconsistencies expressed in pre-
vious studies imply that the transformation of the integral nonlocal constitutive law
(Eq. (3)) into a differential nonlocal constitutive law as proposed by Eringen [3]
may be not convenient to express nonlocal boundary value problems, especially in
bounded domains [15]. Thus, the transformation of the integral nonlocal constitutive
law into a differential nonlocal constitutive law is an injective process in infinite
domains, yet it is not in finite domains [16]. However, with the deep inspection of
the situation, one can realize the fact that the transformation into the differential
constitutive law proposed in Ref. [3] is mathematically consistent. So, the question
is: what are the reasons behind the paradoxes of Eringen’s nonlocal elasticity?

Motivated by the aforementioned complications and debates regarding Eringen’s
nonlocal elasticity presented in Eqs. (1)–(4), an alternative form of the nonlocal
theory is developed in this chapter. This new form of the nonlocal elasticity depends
on splitting the total nonlocal stress field (tij) into a local stress (σij) and a nonlocal
residual stress (τij), i.e. tij = σij + τij. The local stress (σij) is a stress field that models
thematerial stiffness due to neighbor (local) interactions. The nonlocal residual stress
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(τij) models the material stiffness due to non-neighbor (nonlocal) interactions. In the
context of the new nonlocal elasticity, the balance laws are similar to those of the
classical elasticity of an elastic continuum with a residual stress field. The proposed
nonlocal theory is centered upon modifying the classical elasticity for an inherited
nonlocal residual field. At the boundary of the elastic body, the surface tractions
depend on both the local stress and the nonlocal residual stress.

The newmanipulation of the nonlocal theory proposed here permits implementing
an iterative procedure to extract solutions of nonlocal field problems. This iterative
procedure is centered upon correcting the solution of the classical field problem
for the nonlocal residual field of the elastic domain. In the context of the proposed
approach, the classical field problem of an elastic domain with a pre-formed nonlocal
residual stress is solved.Convergence analyses are presented to show the convergence
of the iterative procedure to the solution of the nonlocal field problem formed based
on the proposed nonlocal theory. It should bementioned that the iterative procedure is
an integrated part of the theory. Therefore, the newly developed form of the nonlocal
theory will be give the name “iterative nonlocal residual elasticity”.

2 Nonlocal Residual Elasticity

In the classical mechanics, a balance law is valid not only for the entire elastic
body but also for each point belongs to the elastic domain [2]. However, in the
nonlocal mechanics, the balance is achieved globally for the entire body. Thus, a
nonlocal balance law is violated at a local point while satisfied globally because
of the nonlocal interactions [2]. The nonlocal mechanics distinguishes between a
local-type field and a nonlocal-type field. A nonlocal field (e.g., nonlocal stress field)
is the sum of a local field, which accounts for the direct-neighbor interactions, and
a nonlocal residual field. The nonlocal residual field is the sum of all the nonlocal
interactions at a point, as shown in Fig. 1.

Fig. 1 Nonlocal lattice
mechanics. Dark interactions
are direct-neighbor
interactions while the green
ones are non-neighbor
interactions only up to the
next-nearest interaction
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2.1 Nonlocal Mechanics of Particles

To give more insights into the nonlocal elasticity developed here, the system of
particles presented in Fig. 1 is considered. As shown in the figure, a set of interaction
forces is generated between a particle (n) and its neighbor particles. In the classical
mechanics, these direct interactions are exist. Each one of these interactions forms
a local force between two neighbors. From lattice mechanics, the local force field
Fnm, between two neighbor particles (n and m) can be defined as follows:

Fnm = K · (un − um) (6)

where K is an equivalent stiffness of an interaction between two neighbors. u is
the displacement field expressing the translational motion of the particle. (·) is the
single-dot operator of the dot production of the tensor K and the vector (un − um).

In addition to the direct neighbor interactions, interactions are generated between
a particle (n) and all other non-neighbor particles. A non-neighbor interaction, F ,
depends on the distance between the two particles. Thus, the non-neighbor interaction
between two non-neighbors (n and j) is a functional of the distance between them∣∣xn − xj

∣∣, as follows:
Fnj = kr

(∣∣xn − xj
∣∣) .

(
un − uj

)
(7)

where kr
(∣∣xn − xj

∣∣) is a stiffness that is equivalent to the interaction between two
non-neighbor particles.

Under the influence of the neighbor and non-neighbor interactions, the condition
of the dynamic equilibrium of a particle (n) secretes the following balance equations:

Nm∑
m=1

Fnm +
Nj∑
j=1

Fnj = ∂2

∂t2
(m̄u)

Nm∑
m=1

(X × Fnm) +
Nj∑
j=1

(
X × Fnj

) = ∂2

∂t2
(X × m̄u) (8)

where X × Fnm and X × Fnj are moment fields. Nm is the number of neighbors of
particle (n) while Nj is the number of its non-neighbor particles. m̄ is the particle’s
mass.

We introduce in Eqs. (6)–(8) a new form of the nonlocal theory in which the
nonlocal model is formulated depending on the nonlocal residual field (

∑Nj

j=1 Fnj),
which is the sum of all the non-neighbor (nonlocal) interactions of the particle under
consideration. As a crucial requirement of nonlocal mechanics, the balance Eqs. (8)
are obtained from the global statement of equilibrium.

In Eringen’s form of the nonlocal theory, the balance equations were formed
depending on a total field that merges the nonlocal residual field with the local field.
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However, in the context of the proposed nonlocal elasticity, the nonlocal residual
field is formed separately, and it is not merged with the local field. In addition, two
types of constitutive equations are needed. In addition to the local-type constitutive
equations (which are used to form the local field), constitutive equations are used to
form the nonlocal residual field.

2.2 Nonlocal Continuum Mechanics: Balance Laws

The global balance laws of a nonlocal continuum with a volume V and bounded by
a surface S can be derived according to Eq. (8), as follows:

∫

V

FdV +
∫

V

FdV +
∫

S

TdS =
∫

V

ρüdV (9)

∫

V

(X × F)dV +
∫

V

(X × F)dV +
∫

S

(X × T )dS =
∫

V

(X × ρü)dV (10)

where ρ is the mass density. F denotes the local body force.F is a nonlocal residual
body force. T denotes a surface traction. A local body force F generates due to
external forces acting on the system of particles form the elastic domain. However,
the nonlocal body force F generates due to non-neighbor interactions that act on the
system of particles form the elastic domain. The nonlocal body force is internal and
satisfy the condition (Eq. (2)).

Like the classical mechanics, the external surface traction (T) is balanced with
the body forces and the inertia of the elastic domain (Eqs. (9) and (10)). However, in
the proposed nonlocal elasticity, the surface traction T is formed depending on two
tractions:

T = n · σ + n · τ (11)

where n is the unit normal vector. σ is the local stress, and τ is a nonlocal residual
stress. The local stress (σ ) is conjugate to the direct neighbor interactions while the
nonlocal residual stress (τ ) is conjugate to the non-neighbor interactions. It should be
observed that the stress tensors, σ and τ , are general tensors, which have symmetric
and skew-symmetric parts.

According to Eq. (11) and the divergence theorem, Eqs. (9) and (10) can be
rewritten as follows:

F + F + ∇ · σ + ∇ · τ = ρü (12)
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� : (σ + τ ) = 0 (13)

where � is the permutation tensor, and (:) is the operator of the double-dot product.
Equation (13) indicates that the skew-symmetric parts of the local stress tensor, σ ,
and the nonlocal residual stress tensor, τ , vanish. Therefore, the balance equations
can be written in the form:

F + F + ∇ · σ sym + ∇ · τ sym = ρü (14)

where the balance equations depend on the symmetric parts of the stress tensors, σ sym

and τ sym. In the rest of the chapter, the superscript“sym” is omitted for convenient
writing.

2.3 Nonlocal Continuum Mechanics: Constitutive Model

The balance laws of Eringen’smodel of the nonlocal linear elasticity depend on a total
stress field that merges the local stress with the nonlocal residual stress. This total-
nonlocal stress fieldwas formed as a functional depending on themotions histories of
all points of the body. However, the balance laws of the proposed nonlocal elasticity
(Eq. (14)) depend on a nonlocal residual stress field, which is not merged with the
local stress field. In this section, constitutive equations are derived for the nonlocal
residual stress field.

Eringen expressed a postulation [1] that states, “For the linear theory of nonlo-
cal elastic materials, whose natural state is free of nonlocal effects, the nonlocal
body force vanishes.”, i.e. F = 0. In light of this postulation, the balance laws of a
homogeneous-isotropic-linear elastic solid material can be written in the form:

σji,j + τji,j + Fi = ρü i (15)

where σij = σji and τij = τji, which are the components of the local stress tensor
and the nonlocal residual stress tensor, respectively. For a linear elastic material, the
infinitesimal strain is the fundamental measure of deformation:

εij = 1

2

(
ui,j + uj,i

)
(16)

The local stress,σij, has the same formas the stress field of the classicalmechanics:

σji = λ0εrrδij + 2μ0εij (17)

where λ0 and μ0 are the Lamé constants as defined in the classical mechanics.
Following Eringen’s definition of nonlocal fields, the following constitutive equation
can be proposed for the nonlocal residual stress (τij):
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τij (x) =
∫

V

λr
(∣∣x′ − x

∣∣) εrr
(
x′) δij + 2μr

(∣∣x′ − x
∣∣) εij

(
x′) dV (

x′) (18)

where λr and μr are Lamé moduli, which model the stiffness of a non-neighbor
interaction. The magnitudes of these Lamé moduli depend of the distance between
two non-neighbor particles within the elastic domain (|x′ − x|).

2.4 Boundary Value Problem and Solution Procedure:
Iterative Nonlocal Residual Elasticity

The boundary value problem of the homogeneous-isotropic-linear elastic material
based on the proposed nonlocal elasticity constitutes the following system of equa-
tions:

1. Equation of Motion:

σji,j (x) + τji,j (x) + Fi (x) = ρü i (x) ∀x ∈ V

2. Boundary Conditions:

σji (x) nj + τji (x) nj = Ti (x) or ui (x) = Ui (x) ∀x ∈ S

3. Constitutive Equations:

σji (x) = λ0εrr (x) δij + 2μ0εij (x) ∀x ∈ V

4. Constitutive Equations of the Residual Nonlocal Field:

τij (x) =
∫

V

λr
(∣∣x′ − x

∣∣) εrr
(
x′) δijdV

(
x′)

+
∫

V

2μr
(∣∣x′ − x

∣∣) εij
(
x′) dV (

x′) ∀x ∈ V

5. Kinematical Variables:

εij (x) = 1

2

(
ui,j (x) + uj,i (x)

) ∀x ∈ V (19)

where Ui (x) is a prescribed displacement field at the boundary.
It should be mentioned that the boundary value problem (Eq. (19)) is similar to

the one represented based on Eringen’s nonlocal elasticity [1, 2, 19]. However, the
new form of the nonlocal boundary value problem presented in Eq. (19) depends on
splitting the total nonlocal stress field into a local stress field and a nonlocal residual
stress field.

In this section, an iterative procedure is proposed to solve the nonlocal boundary
value problem (Eq. (19)). With the implementation of the iterative procedure pro-
posed here, the nonlocal field equation is converted into a local-type field equation
with an imposed nonlocal residual field. In each iteration, the nonlocal residual stress



Iterative Nonlocal Residual Elasticity 177

is known. This nonlocal residual stress is formed based on the stress field obtained
in a previous iteration. Thus, the implementation of this iterative procedure gives the
merit of forming the nonlocal residual stress iteratively based on a pre-determined
local-type field. In the context of this iterative procedure, a local-type boundary value
problem is corrected for the nonlocal field and then solved.

The iterative procedure implemented in this chapter is pioneered from an iterative-
finite element-based model of nonlocal elasticity proposed in Ref. [19] and imple-
mented in Refs. [20, 21] for beams and plates. In this chapter, a new iterative pro-
cedure is implemented to extract solutions of the proposed boundary value problem
(Eq. (19)).

In an iteration (k), the nonlocal boundary value problem (19) is converted into a
local boundary value problem of an elastic body exposed to a residual stress field, as
follows:

1. Equation of Motion:

σ
(k)
ji,j (x) + τ

(k)
ji,j (x) + Fi (x) = ρü(k)

i (x) ∀x ∈ V

2. Boundary Conditions:

σ
(k)
ji (x) nj = Ti (x) − τ

(k)
ji (x) nj or u(k)

i (x) = Ui (x) ∀x ∈ S

3. Constitutive Equations:

σ
(k)
ji (x) = λ0ε

(k)
rr (x) δij + 2μ0ε

(k)
ij (x) ∀x ∈ V

4. Constitutive Equations of the Residual Nonlocal Field:

τ
(k)
ij (x) =

∫

V

λr
(∣∣x′ − x

∣∣) ε(k−1)
rr

(
x′) δijdV

(
x′)

+
∫

V

2μr
(∣∣x′ − x

∣∣) ε
(k−1)
ij

(
x′) dV (

x′) ∀x ∈ V

5. Kinematical Variables:

ε
(k)
ij (x) = 1

2

(
u(k)
i,j (x) + u(k)

j,i (x)
)

∀x ∈ V (20)

Equations (20) form a local boundary value problem of an elastic domain exposed
to a pre-defined residual stress field, τij. A procedure to derive a solution of the
nonlocal boundary value problem (Eq. (20)) is shown in Fig. 2.

The proposed PROCEDURE presents a simple but effective approach to deter-
mine the solution of a nonlocal field problem formed based on the proposed iterative
nonlocal residual elasticity. In an iteration k, the determined fields of a previous iter-
ation k − 1 (σ (k−1)

ji (x) and ε
(k−1)
ij (x)) are used to form the nonlocal residual stress,

τ
(k)
ji (x), according to Eq. (20)4. Then, the determined nonlocal residual stress is sub-
stituted into the local boundary value problem (20)1 and (20)2. This local boundary
value problem is then solved for the fields σ

(k)
ji (x) and ε

(k)
ij (x). The procedure is then

repeated where the solution converges to the nonlocal solution with the iterations.
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Fig. 2 Procedure to determine a solution of the nonlocal boundary value problem Eq. (20)

It follows from the presented PROCEDURE that a solution is guaranteed in each
iteration where the local boundary value problem is the one that is solved (a local
boundary value problem is well-posed and admits a unique solution). The conver-
gence of the iterative procedure to the nonlocal solution is conditional by the correct
formation of the nonlocal residual stress. Indeed, with the new form of the nonlocal
elasticity proposed here, the paradoxes and the inconsistencies associated with Erin-
gen’s nonlocal elasticity are effectively resolved. Examples of different boundary
value problems are considered in the next section to demonstrate this fact.

3 Application to Euler-Bernoulli Beams

In this section, a set of nonlocal elasticity problems of the Euler-Bernoulli beams is
solved using the proposed iterative nonlocal residual elasticity.

Because the nonlocal residual stress only models non-neighbor interactions, its
Lame moduli (λr and μr) can be considered as follows:

λr (|x|) = λ0 (βλ (|x|) − δ (|x|))
μr (|x|) = μ0

(
βμ (|x|) − δ (|x|)) (21)

with
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βλ (|x|) = 1

2
λ

exp

(
−|x|


λ

)

βμ (|x|) = 1

2
μ

exp

(
−|x|


μ

)
(22)

where δ (|x|) is the Dirac-delta function. The substitution of Eqs. (21) and (22) into
Eq. (18) yields:

τij (x) =
∫

V

λ0βλ

(∣∣x′ − x
∣∣) εrr

(
x′) δijdV

(
x′)

+
∫

V

2μ0βμ

(∣∣x′ − x
∣∣) εij

(
x′) dV (

x′)

− λ0εrr (x) δij − 2μ0εij (x) (23)

which is an explicit form of the nonlocal residual stress (τij). This constitutive law
depends on βλ

(∣∣x′ − x
∣∣) and βμ

(∣∣x′ − x
∣∣), which are two independent kernels that

define nonlocal effects. These kernels depend on two independent nonlocal param-
eters 
λ and 
μ. As previously demonstrated by the author, a general form of the
nonlocal theory with expanded applicability is the one that considers different non-
local kernels for the different material coefficients [22].

According to Eqs. (20) and (23), the boundary value problem of the elastostatic
equilibrium of the bending of a beam subjected to a transverse load distribution q(x)
is derived as follows:

1. Equilibrium Equation:

d2M (k) (x)

dx2
+ d2M(k) (x)

dx2
= q (x) ∀x ∈ [0,L]

2. Boundary Conditions:

dM (k)

dx
= V̄ − dM(k)

dx
or w = w̄ at x = 0 or L

M (k) = M̄ − M(k) or w,x = w̄,x at x = 0 or L

3. Constitutive Equations:

M (k) (x) = − (λ0 + 2μ0)
bh3

12

d2w(k) (x)

dx2
∀x ∈ [0,L]

4. Constitutive Equations of the Residual Nonlocal Field:

M(k) (x) =
L∫

0

ξλβλ

(∣∣x′ − x
∣∣)M (k−1)

(
x′) dx′

+
L∫

0

ξμβμ

(∣∣x′ − x
∣∣)M (k−1)

(
x′) dx′ − M (k−1) (x) ∀x ∈ [0,L]
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5. Kinematical Variables:

ε(k)
xx (x) = −z

d2w(k) (x)

dx2
∀x ∈ [0,L]

where

ξλ = λ0

λ0 + 2μ0
, ξμ = 2μ0

λ0 + 2μ0

βλ

(∣∣x′ − x
∣∣) = 1

2
λ

exp

(
−

∣∣x′ − x
∣∣


λ

)

βμ

(∣∣x′ − x
∣∣) = 1

2
μ

exp

(
−

∣∣x′ − x
∣∣


μ

)
(24)

where M (x) is the local-type bending moment, and M (x) is the nonlocal residual
bending moment. w (x) is the beam deflection. L, b and h are the beam length, width
and height, respectively. V̄ , M̄ , w̄, and w̄,x are, respectively, prescribed shear force,
bending moment, deflection, and slope at the boundary.

The proposed PROCEDURE is used to obtain the solution of the nonlocal bound-
ary value problem (Eq. (24)). The procedure starts such that the nonlocal residual
stress M (x) is zero. In this case, a solution of the boundary value problem (Eqs.
(24)1 and (24)2) gives the local solution of the bending fieldM (x). Then, the obtained
bending field (M (x)) is substituted into the constitutive law (24)4 to form the nonlo-
cal residual stress (M (x)). Afterwards,M (x) is substituted into the boundary value
problem (Eqs. (24)1 and (24)2), which is then solved for the bending field M (x).
This process, when repeated, secretes the bending fieldM (x) updated in each itera-
tion. After a few iterations, both, the bending field M (x) and the nonlocal residual
bending field M (x) converge to their targeted solutions.

It should be mentioned that the bending field M (x) is a local-type field, which
accounts for the direct-neighbor interactions. This local-type field is adapted for the
inclusion of the nonlocal residual fields of the elastic domain. The bending field
M (x) when added to the nonlocal residual bending M (x) forms a total bending
field, which forms the constitutive law of Eringen’s nonlocal elasticity, i.e.,

Mtotal (x) = M (x) + M (x) (25)

It should also be mentioned that the total bending field Mtotal (x) formed by the
sum of the bending fields M (x) and M (x) is exactly the same as the one obtained
from the equilibrium equation of Eringen’s nonlocal elasticity. This total bending
satisfies the requirement of the global balance.

Figures 3, 4 and 5 show the nonlocal residual bending momentM (x), the curva-
ture, and the deflection of cantilever, simply supported, and clamped-clamped beams.
The boundary conditions for the different beam configurations are defined in each
iteration (k), as follows:
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Fig. 3 Cantilever beam under a point load (F = 1): a The nonlocal residual moment (M (x)), b
the curvature (d2w/dx2 = 12M /(λ0 + 2μ0) bh3), and c the deflection (w) at each iteration (k).
The broken curves represent the local solutions. ξλ = 1/3, ξμ = 2/3, 
λ = 
μ = 0.5, L = 1

Fig. 4 Simply supported beam under a uniform load (q = 1): a The nonlocal residual moment
(M (x)), b the curvature (d2w/dx2 = 12M /(λ0 + 2μ0) bh3), and c the deflection (w) at each
iteration (k). The broken curves represent the local solutions. ξλ = 1/3, ξμ = 2/3, 
λ = 
μ = 0.4,
L = 1

Fig. 5 Clamped-clamped beam under a uniform load (q): a The nonlocal residual moment (M (x)),
b the curvature (d2w/dx2 = 12M /(λ0 + 2μ0) bh3), and c the deflection (w) at each iteration (k).
The broken curves represent the local solutions. ξλ = 1/3, ξμ = 2/3, 
λ = 
μ = 0.1, L = 1
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Cantilever beam with a point load (F) at its free-end:

dM (k) (L)

dx
= −F − dM(k) (L)

dx
M (k) (L) = −M(k) (L)

w (0) = 0
dw (0)

dx
= 0 (26)

Simply supported beam under a uniform load (q):

M (k) (0) = −M(k) (0)

M (k) (L) = −M(k) (L)

w (0) = 0

w (L) = 0 (27)

Clamped-clamped beam under a uniform load (q):

M (k) (0) = qL2

12
− M(k) (0)

M (k) (L) = qL2

12
− M(k) (L)

w (0) = 0

w (L) = 0 (28)

As one of the main drawbacks of Eringen’s nonlocal elasticity, it secretes stress
fields identical to those of the classical elasticity. This is because it only forms the
total stress field, which is always identical to the stress field of the classical elasticity
due to the equilibrium requirements. Thus, Eringen’s nonlocal elasticity totally hides
the role of the nonlocal residual field and gives no information about it. This leads
to the paradoxes and inconsistencies previously discussed.

The proposed iterative nonlocal residual elasticity outweighs Eringen’s nonlocal
elasticity where it distinguishes between nonlocal residual fields, local-type fields,
and total nonlocal fields. The proposed nonlocal elasticity can effectively form non-
local residual fields (this is for the first time). In addition, it secretes a stress field
dependent on the nonlocal character of the elastic domain. This stress field is the
local-type stress field (M (x)).

Figures 3, 4 and5 show the effectiveness of the proposed iterative nonlocal residual
elasticity tomodel nonlocal problems. In the first iteration, a local solution is obtained
(the local solution is represented by broken-blue curves in Figs. 3, 4 and 5). After
a few iterations, the solution converges to the targeted solution. The convergence
is evident in Figs. 3, 4 and 5. For a detailed convergence analysis of the iterative
nonlocal residual elasticity, readers can refer to Ref. [21].
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Fig. 6 Fulfillment of the global balance requirements: The total nonlocal bending Mtotal (x)
(Eq. (25)), the shear force dMtotal (x) /dx, and the loading d2Mtotal (x) /dx2 fields of a cantilever
under a unit point load, b simply supported beam under a unit-uniform load, and c clamped-clamped
beam under a unit-uniform load. (L = 1)

The nonlocal residual moment (M (x)) is zero in the first iteration to give the
local solution. With the iterations, the nonlocal moment grows and converges to its
complete value. This nonlocal residual moment adapt the boundary value problem to
give updated solutions of the different fields of the beam. For the first time, nonlocal
residual fields can be obtained by the proposed iterative nonlocal residual elasticity.

The obtained results in Figs. 3 , 4 and 5 are consistent. All fields represented in
these figures for the different beam configurations reflect the inherited softness of
the nonlocal elasticity. The nonlocal curvatures and deflections are obtained larger
than those of the local elasticity.

In addition, the obtained solutions fulfill the requirement of the global balance.
The proposed iterative approach is operated based on fulfilling the equilibrium
requirements globally in each iteration. This can be demonstrated by depicting the
total nonlocal bending Mtotal (x) (Eq. (25)), shear force dMtotal (x) /dx, and loading
d2Mtotal (x) /dx2 fields in Fig. 6 for the different beamconfigurations. For a cantilever
beam with a length L and under a point load of F , the global elastostatic equilibrium
requires the total moment Mtotal is zero at the free-end and increases linearly to FL
at the fixed end, and a constant shear force distribution over the beam. It is clear
that the depicted results in Fig. 6a perfectly match these requirements. In addition to
the cantilever beam, the equilibrium requirements of the other beams are effectively
fulfilled, as shown in Fig. 6b, c. Furthermore, the external loading distribution is
obtained when differentiating the total moment twice (d2Mtotal (x) /dx2), as shown
in Fig. 6. These observations demonstrate the effectiveness of the proposed iterative
nonlocal residual elasticity.
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4 Conclusions

In this chapter, a new nonlocal elasticity, which completely forms the nonlocal resid-
ual fields, was developed. This formulation was motivated by the existing complica-
tions of finding solutions of the conventional model of the nonlocal elasticity early
proposed by Eringen. The new nonlocal elasticity was given the name “iterative non-
local residual elasticity”. This new nonlocal elasticity is centered upon expressing
the dynamic equilibrium requirements based on a nonlocal residual stress field. The
nonlocal residual stress was formulated to model the material stiffness due to non-
neighbor interactions. Solutions of the boundary value problems formed based on the
new nonlocal elasticity are determined using an iterative procedure. When the iter-
ative procedure is implemented, the nonlocal boundary value problem is converted
into a local boundary value problem of an elastic domain exposed to a residual field.
This residual field is a nonlocal-type field, which grows with the iterations and is
used to correct the local field problem for the nonlocal fields of the elastic domain.
This iterative procedure is an integrated part of the new nonlocal elasticity.

The iterative nonlocal residual elasticity was applied to Euler-Bernoulli beams
to verify the convergence to the targeted nonlocal solution and the fulfillment of
the global balance requirements. It was shown that the iterative nonlocal residual
elasticity decomposes the total nonlocal stress field into a local-type stress field and
a nonlocal residual stress field. Thus, for the first time, information about nonlocal
residual stress fields can be obtained using the proposed nonlocal elasticity. Findings
presented in this study came to demonstrate that the complications of Eringen’s
nonlocal elasticity are effectively resolved when using the iterative nonlocal residual
elasticity.
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nano-structures, such as modified nonlocal strain gradient and strain- and stress-
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1 Introduction

Nano-engineered materials are nowadays widely exploited as fundamental con-
stituents of modern Nano-Electro-Mechanical-Systems (NEMS) due to their out-
standing physical features [1–5]. Nano-structures arewell-recognized to demonstrate
size-dependent mechanical responses at small-scales which cannot be technically
modeled by the local elasticity theory. The thematic concerning with the analysis of
size-effects in advanced materials and structures has stimulated a great deal of inter-
est in the current literature, such as nonlocal elasticity [6–12], local/nonlocal mixture
[13–15], strain gradient elasticity [16–19], nonlocal strain gradient theory [20–22]
and variational nonlocal gradient elasticity [23, 24]. Recent reviewon size-dependent
elasticity models can be found in Ref. [25].

Nonlocal constitutive law associated with the strain-driven nonlocal elasticity,
originally exploited by Eringen [26], is extensively applied for the investigation
of size-effects in nano-structures [27, 28]. Inapplicability of strain-driven nonlocal
integral elasticity to nano-beams of technical interest, involving bounded structural
domains has been discussed and acknowledged in the recent literature [29]. On the
contrary, the stress-driven nonlocal elasticity, conceived in [30], leads to mathe-
matically well-posed nonlocal problems. Pure and two-phase stress-driven nonlo-
cal models have been effectively utilized to capture size-effects in nano-structures
subject to both static and dynamic phenomena, see e.g. [31, 32]. Nonlocal strain
gradient model [33, 34] is also widely utilized to tackle small-scale effects in nano-
continua while employing unnecessary higher-order boundary conditions. There is,
however, a dispute in the literature on the suitable choice of non-standard boundary
conditions required to close the nonlocal strain gradient problem [20, 21, 35, 36].
The constitutive boundary conditions, naturally stemmed from the nonlocal integral
constitutive law, have been recently addressed in the framework of modified nonlo-
cal strain gradient elasticity [35]. The consistent variational scheme, with suitably
selected functional spaces describing test fields, is lately conceived for nonlocal gra-
dient inflected beams [36]. The well-posed strain- and stress-driven approaches of
nonlocal gradient elasticity are able to efficiently demonstrate both softening and
stiffening nonlocal responses in the flexure of elastic nano-beams [23, 36].

In view of the importance of examining scale phenomena in torsional elements of
modern NEMS, the motivation of the present chapter is to generalize the variational
nonlocal gradient approach to the torsion of elastic nano-beams. The outline of the
present chapter is as follows. Preliminary notions of kinematics and equilibrium of
elastic beams under torsion are briefly recalled in Sect. 2. Nonlocal strain- and stress-
driven gradient formulations of elasticity for torsion of nano-beams are developed in
Sect. 3. Section 4 is devoted to the elasto-static and -dynamic analysis of the torsional
behavior of nano-beams where numerical results are also provided and commented
upon. Concluding remarks are drawn in Sect. 5.
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2 Local Elastic Beams

A straight beam of length L subject to torsion, with circular cross-section �, is
considered. The abscissa x is taken along the beam axis, orthogonal to the cross-
sectional plane including the axes y and z. Motivated by the Saint-Venant’s problem
solution [37, 38], the displacement field u of the beam, up to an inessential additional
rigid body motion, writes as

u (r, x) = θ (x)Rr (1)

with θ : [0,L] �→ � torsional cross-sectional rotation function. The tensor R is the
rotation by π/2 counter clock-wise in � and position vector of a cross-sectional
point with respect to the centroid is represented by r = (y, z). The shear strain vector
γ = (

γyx, γzx
)
, kinematically compatible with the displacement field u, is detected as

γ (r, x) = χ (x)Rr = ∂xθ (x)Rr (2)

with the geometric torsional curvature χ : [0,L] �→ � being the first derivative of
the torsional rotation along the axial abscissa x. Furthermore, introducing the mass
polar moment of inertia Jρ and torsional stiffness JG is useful in the formulation of
the torsional problem

Jρ =
∫∫

�

ρ (r · r) dA

JG =
∫∫

�

G (r · r) dA (3)

with ρ and G material density and shear elastic modulus, respectively. The dot into
the integrals stands for inner product between vectors.

The loading systemon the beam is assumed to consist of distributed torque per unit
lengthm : [0,L] �→ � and concentrated couples T0 and TL at the end cross-sections.
The principle of virtual work can be applied to prescribe the dynamic equilibrium
condition as

∫ L

0

(
m − Jρ∂ttθ

)
δθdx + [T0δθ (0) + TLδθ (L)] =

∫ L

0
Tδχdx (4)

for any virtual torsional rotation field δθ : [0,L] �→ � fulfilling homogeneous kine-
matic boundary conditions. The twisting resultant moment T is defined by

T =
∫∫

�

τ · (Rr) dA (5)

with τ = (
τyx, τzx

)
shear stress vector field.
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As a result of employing a standard localization procedure based on the integration
by parts, differential and standard boundary conditions associatedwith the variational
formulation Eq. (4) are expressed by

∂xT + m = Jρ∂ttθ (6)

(T + T0) δθ|x=0 = (T − TL) δθ|x=L = 0 (7)

3 Nonlocal Gradient Elastic Beams

The nonlocal gradient model introduced in Ref. [36] for elastic inflected nano-beams
is extended in this section to formulate nonlocal gradient nano-beams under tor-
sion. A consistent variational formulation for both Nonlocal strain-driven Gradi-
ent (NstrainG) and Nonlocal stress-driven Gradient (NstressG) models of elasticity
is introduced. The conceived NstrainG and NstressG elasticity theories are shown
to result in well-posed nonlocal problems in bounded structural domains of nano-
engineering interest.

The definition of integral convolution between a smoothing kernel ϕc and a scalar
field f is preliminarily recalled for conciseness sake

(ϕc ∗ f ) (x) :=
∫ L

0
ϕc (x − x̄) f (x̄)dx̄ (8)

with x and x̄ being the points of the structural interval [0,L]. The length-scale param-
eter demonstrating nonlocal effects is denoted by c ∈ ]0,∞[. The smoothing kernel
ϕc is selected to meet positivity, symmetry, normalization and impulsivity proper-
ties [29].

3.1 Nonlocal Strain-Driven Gradient (NstrainG) Elasticity

The abstract formulation of nonlocal gradient beams under torsion consistent with
NstrainG is governed by the following elastic energy, �NstrainG,

�NstrainG (χ) := 1

2
JG

∫ L

0

[
αχ2 + (1 − α) (ϕc ∗ χ)χ + �2 (ϕc ∗ ∂xχ) ∂xχ

]
dx (9)

with α ∈ [0, 1] mixture parameter and � ∈ [0,∞[ gradient length-scale parameter.
The relevant nonlocal gradient twisting moment T is provided by the variational
condition
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〈T , δχ〉 :=
∫ L

0
T (x)δχ (x) dx = 〈d�NstrainG (χ) , δχ〉 (10)

for any virtual torsional curvature field δχ ∈ C1
0 ([0,L] ; �) having compact support

in the structural domain. To determine the NstrainG constitutive law defining the
twisting moment T in terms of torsional curvature χ, the directional derivative of the
elastic energy �NstrainG is evaluated while integrating by parts

〈d�NstrainG (χ) , δχ〉 = JG

∫ L

0
[αχδχ + (1 − α) (ϕc ∗ χ) δχ] dx

+JG

∫ L

0

[
�2 (ϕc ∗ ∂xχ) (∂xδχ)

]
dx

= JG

∫ L

0

[
αχ + (1 − α) (ϕc ∗ χ) − �2∂x (ϕc ∗ ∂xχ)

]
δχdx

+JG�2
[
(ϕc ∗ ∂xχ) δχ|x=L − (ϕc ∗ ∂xχ) δχ|x=0

]
(11)

The choice of assuming virtual torsional curvature fields to have compact supports
leads to vanishing boundary values δχ|x=0 and δχ|x=L. As a result of implementing
a standard localization procedure, the sought nonlocal gradient constitutive law is
detected via prescription of the variational condition Eq. (10) as

T (x) = JG
[
αχ (x) + (1 − α) (ϕc ∗ χ) (x) − �2∂x (ϕc ∗ ∂xχ) (x)

]
(12)

Helmholtz bi-exponential kernel, fulfilling positivity, symmetry, normalization
and impulsivity conditions, is a well-accepted choice for the special smoothing ker-
nel ϕc

ϕc (x) := 1

2c
exp

(
−|x|

c

)
(13)

Following the proposition 3.1 of [36], the NstrainG integro-differential law can
be demonstrated to be equivalent to an appropriate differential constitutive problem
equipped with suitable constitutive boundary conditions.

Proposition 7.1. Constitutive equivalency for NstrainG

The nonlocal gradient constitutive law Eq. (12), on a bounded structural interval
[0,L], with bi-exponential kernel Eq. (13) for nano-beams subject to torsion is equiv-
alent to the differential constitutive equation

1

c2
T (x) − ∂xxT (x) = 1

c2
JGχ (x) − JG

(
α + �2

c2

)
∂xxχ (x) (14)

subject to two constitutive boundary conditions (CBCs)
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∂xT (0) − 1

c
T (0) = −JG

α

c
χ (0) + JG

(
α + �2

c2

)
∂xχ (0)

∂xT (L) + 1

c
T (L) = JG

α

c
χ (L) + JG

(
α + �2

c2

)
∂xχ (L) (15)

The general formulation of nonlocal gradient elasticity comprises some well-
established special models adopted in mechanics of nano-structures. The nonlocal
strain gradient constitutive law equipped with suitable CBCs [24] can be recovered
via vanishing the mixture parameter α → 0 as

1

c2
T (x) − ∂xxT (x) = 1

c2
JGχ (x) − JG

�2

c2
∂xxχ (x)

∂xT (0) − 1

c
T (0) = JG

�2

c2
∂xχ (0)

∂xT (L) + 1

c
T (L) = JG

�2

c2
∂xχ (L) (16)

The two-phase local/nonlocal strain-driven model and associated CBCs can be
also obtained as the gradient characteristic length approaches zero � → 0 [32]

1

c2
T (x) − ∂xxT (x) = 1

c2
JGχ (x) − JGα∂xxχ (x)

∂xT (0) − 1

c
T (0) = −JG

α

c
χ (0) + JGα∂xχ (0)

∂xT (L) + 1

c
T (L) = JG

α

c
χ (L) + JGα∂xχ (L) (17)

3.2 Nonlocal Stress-Driven Gradient (NstressG) Elasticity

While the roles of stress and strain fields can be readily swapped in the framework
of local elasticity, two distinct nonlocal gradient formulations should be prescribed
based on the physical interpretation of source and output elastic fields. NstressG can
be introduced by converting the source and output fields of the integral convolution
with respect to NstrainG model. Accordingly, the elastic potential of nano-beams
under torsion �NstressG associated with NstressG is defined by

�NstressG (T ) : = 1

2

1

JG

∫ L

0

[
αT 2 + (1 − α) (ϕc ∗ T ) T

]
dx

+ 1

2

1

JG

∫ L

0

[
�2 (ϕc ∗ ∂xT ) ∂xT

]
dx (18)
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The torsional curvatureχ of NstressG is established by the variational constitutive
condition

〈χ, δT 〉 :=
∫ L

0
χ (x)δT (x) dx = 〈d�NstressG (T ) , δT 〉 (19)

for any virtual twisting moment field δT ∈ C1
0 ([0,L] ; �) having compact support

in the structural domain. The directional derivative of the elastic potential along a
virtual twistingmoment can be determined by introducing the expression of�NstressG

and integrating by parts

〈d�NstressG (T ) , δT 〉 = 1

JG

∫ L

0
[αTδT + (1 − α) (ϕc ∗ T ) δT ] dx

+ 1

JG

∫ L

0

[
�2 (ϕc ∗ ∂xT ) (∂xδT )

]
dx

= 1

JG

∫ L

0

[
αT + (1 − α) (ϕc ∗ T ) − �2∂x (ϕc ∗ ∂xT )

]
δTdx

+ 1

JG
�2

[
(ϕc ∗ ∂xT ) δT |x=L − (ϕc ∗ ∂xT ) δT |x=0

]
(20)

The boundary terms in Eq. (20) are disappeared due to assuming virtual test fields
to have compact supports in the structural domain. A standard localization procedure
then provides theNstressG torsional curvatureχ in terms of twistingmomentT while
applying the variational condition Eq. (19)

χ (x) = 1

JG

[
αT (x) + (1 − α) (ϕc ∗ T ) (x) − �2∂x (ϕc ∗ ∂xT ) (x)

]
(21)

The equivalent differential constitutive problemwith the correspondingnewCBCs
in the framework of NstressG is similarly determined by assuming the smoothing
kernel to be the Helmholtz bi-exponential function.

Proposition 7.2. Constitutive equivalency for NstressG

The nonlocal gradient constitutive relation Eq. (21), endowed with the Helmholtz
bi-exponential kernel Eq. (13), is equivalent to the differential constitutive equation

1

c2
χ (x) − ∂xxχ (x) = 1

c2
1

JG
T (x) − 1

JG

(
α + �2

c2

)
∂xxT (x) (22)

equipped with the constitutive boundary conditions
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∂xχ (0) − 1

c
χ (0) = − 1

JG

α

c
T (0) + 1

JG

(
α + �2

c2

)
∂xT (0)

∂xχ (L) + 1

c
χ (L) = 1

JG

α

c
T (L) + 1

JG

(
α + �2

c2

)
∂xT (L) (23)

The stress-driven type formulation of NstressG includes well-known particular
elasticity models of nano-mechanics. Setting the gradient characteristic length zero
� → 0, the two-phase local/nonlocal stress-driven model and associated CBCs can
be recovered [32]

1

c2
χ (x) − ∂xxχ (x) = 1

c2
1

JG
T (x) − 1

JG
α∂xxT (x)

∂xχ (0) − 1

c
χ (0) = − 1

JG

α

c
T (0) + 1

JG
α∂xT (0)

∂xχ (L) + 1

c
χ (L) = 1

JG

α

c
T (L) + 1

JG
α∂xT (L) (24)

As expected, the stress-driven purely nonlocal formulation of elastic torsion can be
obtained via vanishing the mixture parameter α → 0 and the gradient characteristic
length � → 0 as [32]

1

c2
χ (x) − ∂xxχ (x) = 1

c2
1

JG
T (x)

∂xχ (0) − 1

c
χ (0) = 0

∂xχ (L) + 1

c
χ (L) = 0 (25)

4 Nonlocal Gradient Nano-Structures Under Torsion

The established variationally consistent nonlocal strain- and stress-driven gradient
models of elasticity are exploited in this section to examine size-dependent torsional
responses of structural schemes of nano-mechanical interest: cantilever and fully-
clamped nano-beams. In elasto-static torsional analysis, a nano-beam of length L
is assumed to be subjected to uniformly distributed couples m̄ per unit length. The
non-dimensional parameters: axial abscissa x̄, nonlocal characteristic parameter λ,
gradient characteristic parameter μ, torsional rotation θ̄ and fundamental torsional
frequency ω̄ are introduced as

x̄ = x

L
, λ = c

L
, μ = �

L
, θ̄ (x̄) = θ (x)

JG
m̄L2

, ω̄2 =
(
L2Jρ

π2JG

)
ω2 (26)
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4.1 Elastostatic Torsion

Inertia terms are absent in the elasto-static analysis, and thus, the differential con-
dition of equilibrium Eq. (6) can be integrated to detect the twisting moment T in
terms of an integration constant �1 as

T (x) = −
∫ x

0
m (ζ) dζ + �1 (27)

The torsional curvature χ is subsequently determined via solving the constitutive
differential equation ofNstrainGEq. (14) in terms of integration constants�2 and�3

χ (x) = �2exp

(
− x√

αc2 + �2

)
+ �3exp

(
x√

αc2 + �2

)

+ 1

2JG
√

αc2 + �2
exp

(
− x√

αc2 + �2

)

·
∫ x

0
exp

(
ξ√

αc2 + �2

) (
T (ξ) − c2∂ξξT (ξ)

)
dξ

− 1

2JG
√

αc2 + �2
exp

(
x√

αc2 + �2

)

·
∫ x

0
exp

(
− η√

αc2 + �2

) (
T (η) − c2∂ηηT (η)

)
dη (28)

Similarly, the constitutive differential equation of NstressG Eq. (22) can be solved
to determine the torsional curvature field in terms of integration constants�2 and�3

χ (x) = �2exp
(
−x

c

)
+ �3exp

(x
c

)

+ 1

2cJG
exp

(
−x

c

) ∫ x

0
exp

(
ξ

c

) (
T (ξ) − (

αc2 + �2
)
∂ξξT (ξ)

)
dξ

− 1

2cJG
exp

(x
c

) ∫ x

0
exp

(
−η

c

) (
T (η) − (

αc2 + �2
)
∂ηηT (η)

)
dη (29)

Lastly, the torsional rotation field θ can be evaluated integrating the differential
condition of kinematic compatibility χ = ∂xθ in terms of the integration constant�4

as

θ (x) =
∫ x

0
χ (ζ)dζ + �4 (30)

The integration constants �k (k = 1,…,4) can be detected by prescribing two
Constitutive Boundary Conditions of NstrainG Eq. (15) or NstressG Eq. (23), which
are independent of the considered boundary kinematic constraints, in addition to two
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standard kinematic and static boundary conditions (BCs) specialized here for the
examined case-studies.

In case of the cantilever nano-beam subject to uniformly distributed couples, the
torsional solution field has to fulfill the (standard) classical boundary conditions

θ (0) = 0, T (L) = 0 (31)

The (standard) essential kinematic boundary conditions in case of a fully-clamped
nano-beam subject to uniformly distributed couples are also given by

θ (0) = 0, θ(L) = 0 (32)

The proposed analytical approach provides exact analytical solutions in conse-
quenceof integratingdifferential equations of lower order. In the sequel, the acronyms
LOC, NstrainG and NstressG, respectively, denote the local beam model, nonlocal
strain-driven gradient model and nonlocal stress-driven gradient model.

To visibly demonstrate the effects of the gradient characteristic parameter on the
torsional responses of cantilever nano-beams, numerical values of torsional rotations
are evaluated in the mid-span. The normalized torsional rotations at the mid-span of
the cantilever nano-beam associated with NstrainG and NstressG under uniformly
distributed couples are exhibited in Figs. 1 and 2.

Likewise, the normalized maximum torsional rotations of fully-clamped nano-
beams consistent with NstrainG and NstressG under uniformly distributed couples
are illustrated in Figs. 3 and 4. Detected torsional rotation fields are also normal-
ized exploiting the corresponding torsional rotation of the local beam model θ̄LOC.
In Figs. 1, 2, 3 and 4, while the nonlocal characteristic parameter λ is ranging in
the interval ]0, 1[, the gradient characteristic parameter μ is ranging in the set of

Fig. 1 Cantilever NstrainG nano-beams under uniform couples: normalized mid-span torsional
rotation
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Fig. 2 Cantilever NstressG nano-beams under uniform couples: normalized mid-span torsional
rotation

{0, 0.1, 0.3, 0.5, 0.7, 1.0} and two values of the mixture parameter as α = 0 and
α = 0.5 are prescribed. It is deduced from Figs. 1, 2, 3 and 4 that the size-dependent
NstrainG model exhibits a softening behavior in terms of nonlocal characteristic
parameter λ, that is a larger λ involves a larger torsional rotation for given gradi-
ent and mixture parameters. The torsional rotation of elastic nano-beams decreases
as the gradient or the mixture parameters increase, and accordingly, NstrainG the-
ory demonstrates a stiffening behavior in terms of gradient and mixture parameters
for a given value of λ. Effects of characteristic parameters are more pronounced
in NstrainG beams with fully-clamped ends. On the contrary, a softening response
is demonstrated in the framework of NstressG for increasing gradient or mixture

Fig. 3 Fully-clamped NstrainG nano-beams under uniform couples: normalized maximum tor-
sional rotation
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Fig. 4 Fully-clamped NstressG nano-beams under uniform couples: normalized maximum tor-
sional rotation

parameters and a stiffening behavior is detected for increasing nonlocal character-
istic parameter. In the framework of NstressG model, size-dependent elastostatic
responses of fully-clamped beams are more affected by characteristic parameters.

As expected, the size-dependent elastic torsional rotation of nano-beams in accor-
dance with either of the NstrainG or NstressG models coincides with the local
response for vanishing small-scale characteristic and mixture parameters. Addition-
ally, size-dependent effects of nonlocal and gradient parameters are less noticeable
in the presence of non-vanishing mixture parameter α �= 0. Notably, NstrainG and
NstressG theories demonstrate different softening and stiffening structural responses
in terms of characteristic parameters due to profound differences in the fundamental
assumptions of the models to capture scale phenomena.

4.2 Torsional Free Vibrations

In order to examine torsional free vibrations of nano-beams, the relevant elasto-
dynamic problems associated with NstrainG and NstressG are formulated in terms
of the torsional rotation field. The distributed couple is allowed to vanish, and con-
sequently, twisting moment field T can be determined by prescribing the differential
condition of equilibrium Eq. (6) to the constitutive differential law of NstrainG Eq.
(14) or NstressG Eq. (22) as
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1

c2
TNstrainG (x, t) = Jρ∂ttχ (x, t)

+ 1

c2
JGχ (x, t) − JG

(
α + �2

c2

)
∂xxχ (x, t)

1

c2
TNstressG (x, t) =

(
α + �2

c2

)
Jρ∂ttχ (x, t)

+ 1

c2
JGχ (x, t) − JG∂xxχ (x, t) (33)

The differential condition of dynamic equilibrium governing torsional vibrations
of nano-beams can be expressed in terms of torsional rotation field by applying kine-
matic compatibility. Accordingly, the differential condition of dynamic equilibrium
consistent with the NstrainG is

Jρ∂ttxxθ (x, t) + 1

c2
JG∂xxθ (x, t) − JG

(
α + �2

c2

)
∂xxxxθ (x, t)

= 1

c2
Jρ∂ttθ (x, t) (34)

and NstressG writes as

(
α + �2

c2

)
Jρ∂ttxxθ (x, t) + 1

c2
JG∂xxθ (x, t) − JG∂xxxxθ (x, t)

= 1

c2
Jρ∂ttθ (x, t) (35)

equippedwith the classical (standard) boundary conditions Eq. (7) and corresponding
constitutive boundary conditions associated with NstrainG Eq. (15) or NstressG Eq.
(23). A standard procedure of separating spatial and time variables is subsequently
employed to study torsional free vibrations

θ (x, t) = �(x) exp (iωt) (36)

with i = √−1, � and ω denoting the spatial mode shapes and natural frequency of
torsional vibrations. Imposing the separation of variables Eq. (36) on the differen-
tial conditions of dynamic equilibrium Eqs. (34)–(35), the differential condition of
torsional coordinate functions for NstrainG is

− JG

(
α + �2

c2

)
d4�

dx4
(x) +

(
1

c2
JG − Jρω

2

)
d2�

dx2
(x) + 1

c2
Jρω

2�(x) = 0 (37)

and for NstressG is obtained as

− JG
d4�

dx4
(x) +

(
1

c2
JG −

(
α + �2

c2

)
Jρω

2

)
d2�

dx2
(x) + 1

c2
Jρω

2�(x) = 0 (38)
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The torsional coordinate function can be analytically detected as

�(x) = ϒ1 exp (β1x) + ϒ2 exp (β2x) + ϒ3 exp (β3x) + ϒ4 exp (β4x) (39)

where unknown integration constants ϒk (k = 1, 2, 3, 4) have yet to be determined
alongwith βk (k = 1, 2, 3, 4) being the roots of the characteristic equation associated
with the differential equations of Eq. (37) or Eq. (38).

For the NstrainG cantilever nano-beam, a homogeneous fourth-order algebraic
system in terms of the unknown integration constants ϒk ( k = 1, 2, 3, 4) is estab-
lished as a result of imposing (standard) classical BCs Eq. (31) along with CBCs
Eq. (15) to the closed form solution of the torsional coordinate function Eq. (39). In
the same way, homogeneous fourth-order algebraic systems can be determined for
nano-beamsassociatedwith either ofNstrainGorNstressGmodels. Todetect the non-
trivial solution of torsional free vibrations, the system of algebraic equations has to be
singular. Accordingly, a highly nonlinear characteristic equation is obtained for nano-
beams consistent with either of nonlocal gradient models that is numerically solved.

Fundamental torsional frequencies of cantilever and fully-clamped nano-beams
associatedwithNstrainG andNstressG theories are numerically detected and demon-
strated in Figs. 5, 6, 7 and 8. The detected torsional frequencies are also normalized
employing their corresponding local natural frequencies ω̄LOC. The characteristic
and mixture parameters are assumed to have the same ranging set as the elasto-static
torsional response exhibited in Figs. 1 through 4.

It is inferred from the illustrative results associated with the NstrainG model
that the nonlocal characteristic parameter λ has the effect of decreasing the funda-
mental torsional frequencies, that is a larger λ involves a smaller natural torsional
frequency. The natural torsional frequencies consistent with the NstrainG model,
therefore, demonstrate a softening structural response in terms of nonlocal character-
istic parameter λ. Furthermore, the natural frequencies associated with the NstrainG
model increase by increasing the gradient characteristic or themixture parameter, and

Fig. 5 Normalized torsional fundamental frequency of NstrainG cantilever nano-beams
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Fig. 6 Normalized torsional fundamental frequency of NstressG cantilever nano-beams

Fig. 7 Normalized torsional fundamental frequency of NstrainG fully-clamped nano-beams

accordingly, demonstrating a stiffening structural response in terms of gradient and
mixture parameters. Conversely, a softening behavior is detected for torsional fre-
quencies consistent with NstressG for increasing gradient or mixture parameters and
a stiffening response is demonstrated for increasing nonlocal characteristic parame-
ter. In bothNstrainG andNstressGmodels, the effects of characteristic parameters are
more noticeable in nano-beams with fully-clamped ends. For non-vanishing mixture
parameterα �= 0, the fundamental torsional frequency of nano-beams is less affected
by the nonlocal and gradient characteristic parameters. Fundamental torsional fre-
quencies of the local elastic beam model can be recovered as the small-scale char-
acteristic and mixture parameters approach zero. NstrainG and NstressG models
are founded on different theoretical bases, and thus, exhibit different softening and
stiffening structural responses in terms of characteristic parameters.
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Fig. 8 Normalized torsional fundamental frequency of NstressG fully-clamped nano-beams

5 Conclusions

The nonlocal gradient elasticity theory of inflected nano-beams is extended in this
chapter to the mechanics of elastic nano-beams under torsion. Size-dependent tor-
sional response of the elastic beams is investigated bymaking recourse to a consistent
variational constitutive formulation equipped with appropriately selected test fields.
The convolution integrals of the constitutive law are transformed into equivalent dif-
ferential conditions subject to non-standard boundary conditions of nonlocal type.
A consistent unified theory of nonlocal gradient elasticity is established for the elas-
tic torsion problem comprising both strain- and stress-driven nonlocal approaches.
The well-established elasticity theories adopted in the mechanics of nano-structures
including purely nonlocal stress-driven model, two-phase local/nonlocal strain- and
stress-driven models as well as modified nonlocal strain gradient model are recov-
ered as special cases. The novel NstrainG and NstressG theories of elasticity are
applied to advantageously investigate the size-dependent torsional response of struc-
tural schemes of nano-technology applications. Elasto-static and -dynamic torsional
responses of nano-beams are examined applying an efficient analytical solution pro-
cedure. The variational nonlocal gradient theory is demonstrated to lead to mathe-
matically well-posed problems of mechanics of nano-structures, generally defined
in bounded domains. The nonlocal strain- and stress-driven gradient models of elas-
ticity can effectively simulate both stiffening and softening structural responses, and
accordingly, provide an innovative viable approach for design and optimization of
nano-engineered structures exploited in ground-breaking NEMS.
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Reformulation of the Boundary Value
Problems of Nonlocal Type Elasticity:
Application to Beams

Xiao-Jian Xu

Abstract Nonlocal elasticity has been widely used in studying the mechanical
behavior of nanostructures. However, when one deals with the boundary value prob-
lems (BVPs) of mechanical models subject to clamped-free boundary conditions,
the paradox that the stiffening phenomena is observed. The purpose of this chapter is
concerned with the reformulation of the newly BVPs of nanostructures. To this end,
the weighted residual method is used. The asymptotic theory for nonlocal elasticity
is established as well as the illustrating examples of the reformulation of the BVPs
of several widely used beammodels. In comparison with the corresponding nonlocal
integral type, the present BVPs are relatively more convenient for the analysis.

1 Introduction

When the characteristic size of structures reduces to micro- to nano-scale, the obvi-
ously size-effects may be observed. As a result, several elastic theories have been
established for capturing such size-effects. Among these theories, the nonlocal elas-
ticity has now being a widely used theory, especially for capturing the materi-
als/structures exhibiting softening phenomena [1]. However, when one uses this
theory to develop elastic models of engineering structures, such as beams and plates,
the paradox may be encountered, as evidence by several authors [2, 3]. In order to
solve the paradox, several attempts have been conducted [4–9].

The first way is to utilize the corresponding nonlocal integral type, and use the
mathematical transformation method. The central idea is to convert the origin nonlo-
cal integral BVPs to the equivalent differential ones [7–11]. This method, however,
may naturally increase the differential order(s), and the extra boundary conditions.
As a result, the mathematical challenge may be encountered when one attempts to
solve the corresponding equivalent higher-order BVPs.
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The second way, widely used decades ago, is to directly use the BVPs of nonlocal
differential equations. However, this method has been found to be failed when one
deals with the structures with clamped-free boundary conditions, as evidenced by
the paradox reported in the literature [2, 3]. We now comes to a question, if is it
possible to use the differential BVPs to capture the softening phenomena, and at the
same time, to avoid the solution challenges encountered when one solves the BVPs
of the corresponding integral ones? The purpose of this chapter is to give a positive
answer to this problem.

2 Problem Formulation

In order to answer the above question in a theoretical aspect, it is neces-sary to
firstly develop an asymptotic theory of nonlocal elasticity. To begin and provide
a preliminary for readers, we now summarize the main concept of the nonlocal
elasticity.

2.1 Nonlocal Elasticity

In accord with atomic theory of lattice dynamics and experimental observations on
phonon dispersions, Eringen [12] developed a nonlocal elasticity theory by the use
of an integral-type nonlocality, where the non-local stress σ non

i j at point x is related
to the associated local stress σi j by

σ non
i j (x) =

∫
V

α (s) σi j (x + s) dV (1)

with V is material domain, α (s) denotes the nonlocal weight function that is non-
negative and increasing for decreasing values of s.

However, for elastic bodies, the linear theory results into a set of integro-
differential equations for the displacement field, which is generally difficult to solve.
For infinite domain, Eringen provided the following differential constitutive equa-
tion as

σ non
i j − η2σ non

i j,kk = σi j = Ci jklεkl (2)

where η = e0a is the nonlocal parameter, Ci jkl is the elastic constant, εkl is strain
related to the displacement ui by

εi j = 1

2

(
ui, j + u j,i

)
(3)
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In the absence of the body force, the equilibrium equation between the nonlocal
stress and the inertia is given by

σ non
i j, j = ρüi (4)

where ρ is mass density of the body, and the dot over a symbol denotes partial
differential with respect to time t .

Upon combiningEqs. (2) and (4), one can easily arrive at the following equilibrium
equation

σi j, j = ρüi − ρη2üi, j j (5)

For a homogeneous isotropic linearly elasticmedia, the local constitutive equation
reads

σi j = λuk,kδi j + μ
(
ui, j + u j,i

)
(6)

where λ and μ are the Lamé coefficients and δi j is the Kronecker delta.
Further after the substitution of Eq. (6) into Eq. (5) gives the following displace-

ment equation

μ
(
ui, j j + u j,i j

) + λuk,k jδi j = ρüi − ρη2üi, j j (7)

Thepartial differential equation inEq. (7) shouldbe solved in combinationwith the
boundary conditions. The higher-order boundary conditions involved are not properly
given, until Polizzotto [13–15] who published a sequence of papers attempting to
address the gradient-induced higher-order boundary conditions. Our next step is to
present the corresponding boundary conditions for the nonlocal elasticity theory in
the weak form.

As is well-known, the virtual displacement principle for the classical elasticity
theory is widely used in the literature. Normally, this principle is used to generate
boundary-value problems in weak forms. In this subsection, we extend this principle
to determine the boundary conditions of the nonlocal elasticity.

We consider a linear elasticity continuum of occupying domain V and boundary
surface A, which is subjected to the inertia within V and prescribed displacement
ui on the constrained boundary surface Ac. With a view toward determining the
boundary conditions of the nonlocal elasticity theory from the weighted residual
method, we firstly multiply a virtual displacement δui on both side of Eq. (5), and
then integrate the resulting equation over the body domain V and time interval t0 and
t1 to yield

∫
V

∫ t1

t0

σi j, jδui dV dt =
∫
V

∫ t1

t0

(
ρui,t t − ρη2ui, j j t t

)
δui dV dt (8)
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which, after integration by parts, becomes

−
∫
V

∫ t1

t0

(
σi jδεi j − ρu̇iδu̇i − ρη2u̇i, jδu̇i, j

)
dV dt

−
∫
V

(
ρu̇iδui + ρη2u̇i, jδui

) ∣∣t1
t0 dV

+
∫
A

∫ t1

t0

(
σi j n j + ρη2üi, j n j

)
δui dAdt = 0 (9)

where n j is the unit outward normal vector to A.
The important consequences of Eq. (9) immediately provide us the following

initial/final conditions:

ui (x, t0) = ūi1 (x) , u̇i (x, t0) + η2u̇i, j (x, t0) = ūi2 (x)
ui (x, t1) = ūi3 (x) , u̇i (x, t1) + η2u̇i, j (x, t1) = ūi4 (x)

}
in V (10)

and the higher-order boundary conditions:

σi j n j + ρη2üi, j n j = 0 or ui = ūi for arbitrary time t (11)

Noteworthy, we can decompose the traction into two parts such that the first part
is linked to the local stress σi j by the Cauchy theorem, and the other part is due to the
inertia of the elastic body. For convenience of the illustration, we omit the body force
below. To fix ideas, we first consider a nonlocal elastic body featuring a nonlocal
stress tensor σ non

i j , the first variation of Hamilton-type functional is given by

δHnon =
∫ t1

t0

∫
V

(
ρu̇iδu̇i − σ non

i j δεi j
)
dV dt = 0 (12)

which, by Eq. (3), results in

δHnon =
∫ t1

t0

∫
V

(
σ non
i j, j − ρüi

)
δui dV dt

−
∫ t1

t0

∫
A
σ non
i j n jδui dAdt +

∫
V
[ρu̇iδui ]

∣∣t1
t0 dV = 0 (13)

Note that the integrand of the last term of Eq. (13) vanishes for the elastic body
whose configurations at t = t0 and t1 are prescribed. Then, for the arbitrariness of
δui , we obtain the balance equation (4), and the boundary condition

σ non
i j n j = 0 (14)

It is emphasized that Eq. (14) is equivalent to, by combining Eqs. (2) and (4), the
boundary condition (11)1.
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Analogously, we can directlywrite down the following first variation ofHamilton-
type functional:

δH =
∫ t1

t0

∫
V

(
ρu̇iδu̇i + ρη2u̇i, jδu̇i, j − σi jδεi j

)
dV dt = 0 (15)

which, after integration by parts, reads

δH =
∫ t1

t0

∫
V

(
σi j, j − ρüi + ρη2üi, j j

)
δui dV dt

−
∫ t1

t0

∫
A

(
σi j n j + ρη2üi, j n j

)
δui dAdt

+
∫
V

[(
ρu̇i − ρη2u̇i, j j

)
δui

] ∣∣t1
t0 dV

+
∫
A

[
ρη2u̇i, j n jδui

] ∣∣t1
t0 dA = 0 (16)

Note again that the integrand of the last line of Eq. (13) vanishes for an elastic body
whose configurations at t = t0 and t1 are prescribed. Then, for the arbitrariness of
δui , we obtain the balance equation (5) and the weak-form boundary condition (11)1.

2.2 Asymptotic Theory for Nonlocal Elasticity

It is shown in Sect. 2.1 that the solutions of the boundary-value problems in Eqs.
(7) and (11) are a challenging task with respect to the classical problems. Therefore,
developing an asymptotic theory that is related to the small length parameter is
preferable. The objective of the present subsection is to establish an asymptotic
theory in the nonlocal elasticity theory, and later to illustrate the results for one-
dimensional problems. The exact solutions of the boundary-value problems will be
ap-proximately replaced by a sequent of asymptotic ones truncated at different orders
of the small length parameter.

We consider a small harmonicmotionwith frequencyω in which the displacement
ui (x, t) can be decomposed into

ui (x, t) = ui (x) exp
(√−1ωt

)
(17)

Substitution of Eq. (17) into the equilibrium equation in (5) yields

σi j, j = −ρω2ui + ρω2η2ui, j j (18)

Analogously, recalling Eqs. (17) and (11), the boundary conditions read

σi j n j − ρη2ω2ui, j n j = 0 or ui = ūi (19)
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where the stress σi j is given by Eq. (6).
Our next step is to establish an asymptotic theory of nonlocal elasticity theory on

the basis of the boundary condition (19)1. We here are concerned with the frequency
of a nonlocal body with the emphasis of developing an asymptotic theory. The key
feature of our asymptotic theory is to introduce a small parameter ε which is related
to the small length parameter by ε = η2.

Equations (18) and (19) allow us to write the displacement field and fre-quency
in the following form:

ui (x) =
∞∑

m=0

εmu(m)
i (x), ω =

∞∑
m=0

εmωm (20)

Inserting Eq. (20) into Eq. (18), and equating to zero the like powers of ε, we
arrive at a hierarchy of equations to be solved order by order for u(m)

i and ωm with
the associated orders of boundary conditions.

At the leading order, we get an eigenvalue problem

o
(
ε0

) : σ
(0)
i j, j + ρω2

0u
(0)
i = 0 (21)

subjected, remembering Eq. (11), to the leading order boundary condition:

σ
(0)
i j n j = 0 (22)

whereσ
(m)
i j = λu(m)

k,k δi j + μ
[
u(m)
i, j + u(m)

j,i

]
. As expected, this leading order boundary-

value problem is exactly the same as that for the classical ones. Therefore, we can
solve this boundary-value problem for u(0)

i without any difficulty.
To this end, we can integrate over the domain V the product of Eq. (21) and u(0)

i ,
and then, apply integration by parts, to obtain

∫
A
σ

(0)
i j n j u

(0)
i dA =

∫
V

[
σ

(0)
i j u(0)

i, j − ρω2
0u

(0)
i

2
]
dV (23)

which, by Eq. (22), results in
∫
V

[
σ

(0)
i j u(0)

i, j − ρω2
0u

(0)
i

2
]
dV = 0.Then, the frequency

ω0 can be easily obtained as

ω2
0 =

∫
V σ

(0)
i j u(0)

i, j dV∫
V ρu(0)

i

2
dV

(24)

In order to obtain the next order asymptotic frequency parameter, we now proceed
to the next order to obtain the frequency ω1. At the next order, the equation is

o
(
ε1

) : σ
(1)
i j, j + ρ

[
ω2
0u

(1)
i + 2ω0ω1u

(0)
i − ω2

0u
(0)
i, j j

]
= 0 (25)
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subjected, by Eq. (11), to the next order boundary condition:

σ
(1)
i j n j − ρω2

0u
(0)
i, j n j = 0 (26)

To solve the next order boundary-value problem, we can multiply Eq. (25) by u(0)
i

on the both hand side, and then, integrate over the domain V . The final result is

∫
V

{
σ

(1)
i j, j + ρ

[
ω2
0u

(1)
i + 2ω0ω1u

(0)
i − ω2

0u
(0)
i, j j

]}
u(0)
i dV = 0 (27)

Using the divergence theorem for the first and the fourth integrals, Eq. (27)
becomes ∫

V

{
ρ

[
ω2
0u

(1)
i + 2ω0ω1u

(0)
i

]}
u(0)
i dV

+
∫
V

[
ρω2

0u
(0)
i, j

2 − σ
(1)
i j u(0)

i, j

]
dV

+
∫
A

[
σ

(1)
i j n j − ρω2

0u
(0)
i, j n j

]
u(0)
i dA = 0 (28)

Then, we have the following expression by using the Eq. (26)

∫
V

{
ρ

[
ω2
0u

(1)
i + 2ω0ω1u

(0)
i

]}
u(0)
i dV

+
∫
V

[
ρω2

0u
(0)
i, j

2 − σ
(1)
i j u(0)

i, j

]
dV = 0 (29)

We now subtract the integral of Eq. (21), multiplied by u(1)
i , over the domain V ,

from Eq. (29), which results in∫
V

[
2ρω0ω1u

(0)
i

]
u(0)
i dV

+
∫
V

[
ρω2

0u
(0)
i, j

2 − σ
(1)
i j u(0)

i, j − σ
(0)
i j, j u

(1)
i

]
dV = 0 (30)

Using the divergence theorem for the last term of Eq. (30), and by Eq. (22) and
Betti’s reciprocal theorem, we have∫

V

[
2ρω0ω1u

(0)
i u(0)

i + ρω2
0u

(0)
i, j

2
]
dV = 0 (31)

As a result, the only unknown frequency ω1 can be determined by solving Eq.
(31) as

ω1 = −1

2

∫
V ω0u

(0)
i, j

2
dV∫

V u(0)
i

2
dV

< 0 (32)
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Importantly, we observe that the frequency ω0 and the displacement u(0)
i play

an important role on the first order frequency parameter ω1. Furthermore, it is also
observed that is independent upon the other ordered displacement parameters.

The second order equation for u(2)
2 is

o
(
ε2

) : σ
(2)
i j, j + ρ

(
2ω0ω2 + ω2

1

)
u(0)
i − 2ρω0ω1u

(0)
i, j j − ρω2

0u
(1)
i, j j

+ 2ρω0ω1u
(1)
i + ρω2

0u
(2)
i = 0 (33)

subjected to the second order boundary condition:

σ
(2)
i j n j − 2ρω0ω1u

(0)
i, j − ρω2

0u
(1)
i, j = 0 (34)

Analogously, we integrate over the body domain V the product of Eq. (33) and
u(0)
i minus the product of Eq. (21) and u(2)

i . The final result, after using the divergence
theorem for the terms with σ

(2)
i j, j , u

(0)
i, j j , u

(1)
i, j j and σ

(0)
i j, j , is

∫
A

[
σ

(2)
i j u(0)

i − σ
(0)
i j u(2)

i − 2ρω0ω1u
(0)
i, j u

(0)
i − ρω2

0

(
u(1)
i, j u

(0)
i − u(0)

i, j u
(1)
i

)]
n j dA

+
∫
V

(
σ

(0)
i j u(2)

i, j − σ
(2)
i j u(0)

i, j

)
dV +

∫
V

[
ρ

(
2ω0ω2 + ω2

1

)
u(0)
i

2 + 2ρω0ω1u
(0)
i, j

2
]
dV

+
∫
V

[
2ρω0ω1u

(0)
i − ρω2

0u
(0)
i, j j

]
u(1)
i dV = 0 (35)

The last line of Eq. (35) involves the knowledge of u(1)
i , which motivates us to

multiply u(1)
i in Eq. (25) and to integrate over the body domain V . After integrating

by parts with respect to σ
(1)
i j, j , we have

∫
V

[
2ρω0ω1u

(0)
i − ρω2

0u
(0)
i, j j

]
u(1)
i dV =

∫
V

[
σ

(1)
i j u(1)

i, j − ρω2
0u

(1)
i

2
]
dV −

∫
A
σ

(1)
i j u(1)

i n j dA (36)

Substituting Eq. (36) into Eq. (35), and after some re-arrangements, we arrive at

∫
A

(
σ

(2)
i j n j − 2ρω0ω1u

(0)
i, j − ρω2

0u
(1)
i, j

)
u(0)
i dA

+
∫
V

[
σ

(1)
i j u(1)

i, j − ρω2
0u

(1)
i

2 + ρ
(
2ω0ω2 + ω2

1

)
u(0)
i

2 + 2ρω0ω1u
(0)
i, j

2
]
dV

−
∫
A
σ

(0)
i j n j u

(2)
i +

(
σ

(1)
i j n j − ρω2

0u
(0)
i, j n j

)
u(1)
i dA

+
∫
V

(
σ

(0)
i j u(2)

i, j − σ
(2)
i j u(0)

i, j

)
dV = 0 (37)
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Inserting the ordered boundary conditions from Eqs. (22), (26) and (34) into the
first line of Eq. (37) and recalling the Betti’s reciprocal theorem, we can observe that
the first two lines of Eq. (37) vanish. Therefore, it further enables us to obtain the
second order frequency ω2 as

ω2 = −
∫
V

[
σ

(1)
i j u(1)

i, j − ρω2
0u

(1)
i

2 + ρω2
1u

(0)
i

2 + 2ρω0ω1u
(0)
i, j

2
]
dV

2ρω0
∫
V u(0)

i

2
dV

(38)

Noteworthy, we can see that the second order frequency ω2 is closely related to
the displacements u(0)

i , u(1)
i and frequency parameters ω0 and ω1.

To summary, given a boundary-value problem in the nonlocal elasticity theory, we
are able to solve the leading order equation (21) associated with boundary condition
(22) to determine both the frequency parameter ω0 and the displacement u(0)

i . Then,
substitution of u(0)

i into Eq. (32) yields the frequency parameter ω1. Finally, solving
Eq. (25) with boundary condition (26) enables us to obtain displacement u(1)

i ; the
known values of the first two displacements and the frequency parameters admit us
to determine the frequency parameter ω2 from Eq. (38). Finally, it is emphasized
that the above asymptotic procedure is formulated without considering any stress-
strain relation that is independent on the specific constitutivematerial behaviors. As a
result, the above relations are expected to apply in both the isotropic and anisotropic
materials within the framework of the nonlocal type elasticity theory.

3 BVPs for Euler–Bernoulli Beam Model

The BVPs for the Euler–Bernoulli type beam models may be found in numerous
works. The remarkable feature is that they transformed the original integral equa-
tion into the equivalent differential equation with introducing the extra constitutive
boundary conditions [11, 16, 17]. Due to the mathematical challenge encountered,
we here present the BVPs for the Euler–Bernoulli type beam models by using the
weighted residual method.

3.1 Reformulation

Let u and w be axial and transverse displacements, and let l be the strain gradient
parameter. We now consider a beam with length L subject to the axial force f and
transverse distributed force q. The governing equations of motion of the Euler–
Bernoulli beams within the framework of nonlocal strain gradient elastic theory are
given by [18]
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(
1 − l2

∂2

∂x2

) (
Axxu

′′ − Bxxw
′′′) −

(
1 − η2 ∂2

∂x2

) (
m0ü − m1ẅ′ + f

) = 0

(
1 − l2

∂2

∂x2

) (
Dxxw

′′′′ − Bxxu
′′′)

+
(
1 − η2 ∂2

∂x2

) (
m1ü

′ − m2ẅ
′′ + m0ẅ + q

) = 0 (39)

where Axx , Bxx and Dxx are the axial, axial-transverse coupling and bending stiffness
of the beam, m0, m1 and m2 are the mass inertia of the beam; the expressions can be
found in Li et al. [18].

The weak form of Eq. (39) may be given by

∫ t

0

∫ L

0

[
Ncl,x − l2Ncl,xxx − Bxxw

′′′ + Bxxw
′′′′′ + f,xx − f

]
δu dxdt

+
∫ t

0

∫ L

0

[
m0

(
η2ü,xx − ü

) + m1ẅ′ − m1η
2ẅ′′′] δu dxdt

+
∫ t

0

∫ L

0

[
Mcl,xx − l2M ′′′′

cl − q + η2q,xx
]
δw dxdt

−
∫ t

0

∫ L

0

[(
1 − η2 ∂2

∂x2

) (
m0ẅ + m1ü

′ − m2ẅ,xx
)]

δw dxdt = 0 (40)

where the classical stress resultants are introduced as

Ncl = Axxu
′, Mcl = Bxxu

′ − Dxxw
′′ (41)

Then, integratingEq. (40) by partswith respect to the higher-order derivatives, and
after somemathematical manipulations, we have the following boundary conditions:

Nxx = Ncl − l2N ′′
cl + m0η

2ü′ − m1η
2ẅ′′ or u

N (1)
xx = l2N ′

cl or u′

Qxz = M ′
cl − l2M ′′′

cl + (
m2 + m0η

2
)
ẅ′ − m2η

2ẅ′′′ + m1η
2ü′′ or w

M = Mcl − l2M ′′
cl − m2η

2ẅ′′ + m1η
2ü′ or w′

M (1) = −l2M ′
cl or w′′ (42)

It is noted from Eq. (42) that the higher-order static or kinematic boundary con-
ditions are found. In practice, the procedure to choose these boundary conditions is
determined by several possible selections; See for example Refs. [11, 19, 20].

The above boundary conditions can be degenerated as special cases to those
of strain gradient Euler–Bernoulli models [21, 22] and those of nonlocal Euler–
Bernoulli models [6]. In addition, if the strain gradient effect is omit (e.g., l = 0),
the higher order mass inertia is ignored, and the axial-transverse coupling effect
is neglect, the boundary conditions of a homogenous beam may be reduced to the
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Table 1 Various stress resultants used for the Euler–Bernoulli (EBT) and Timoshenko beam theory
(TBT)

Beam Resultant Lu [2] Reddy and Pang
[23]

Present work

EBT M −E Iw′′ +
ρAη2ẅ

−E Iw′′ +
ρAη2ẅ

−E Iw′′

Q −E Iw′′′ +
ρAη2ẅ′

−E Iw′′′ +
ρAη2ẅ′

−E Iw′′′ +
ρAη2ẅ′

TBT M – −E Iφ′ + ρAη2ẅ −E Iφ′ − ρ Iη2φ̈′

Qxz – KGA
(
φ − w′) −

ρAη2ẅ′
KGA

(
φ − w′) −

ρAη2ẅ′

nonlocal type

Qxz = −Dxxw
′′′ + m0η

2ẅ′ or w

M = −Dxxw
′′ or w′ (43)

The differences of the stress resultants for the Euler–Bernoulli beams can be found
in Table 1.

3.2 Dynamic Behavior of Nonlocal Cantilevers:
Euler–Bernoulli Beam

As illustrated in the introduction, the paradoxmay be foundwhen one solve the BVPs
for nonlocal cantilevers. We here attempt to use the present boundary conditions (see
Eq. (43)) to solve the BVPs for nonlocal cantilevers. It is stated that we only use the
weighted residual method to the BVPs. Without loss of the generality, we assume
that the left end is fixed and the right end is free, and the natural frequency is ω.

Firstly, we obtain according to Eq. (39)2 the equation of motion of the following
form:

E Iw′′′′ +
(
1 − η2 ∂2

∂x2

)
ρAẅ = 0 (44)

and the boundary conditions of the form:

w (0) = w′ (0) = 0

Qxz (L) = −Dxxw
′′′ (L) + m0η

2ẅ′ (L) = 0

M (L) = −Dxxw
′′ (L) = 0 (45)
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Fig. 1 The fundamental
frequency versus the
nonlocal parameter for
Euler–Bernoulli beam
models and Timoshenko
beams. Lines: Euler type by
Eq. (46); Red circles: Euler
type data from Lu [2];
rectangular: Euler type data
from Tuna and Kirca [8];
Open circles: Timoshenko
type by Eq. (59)

The characteristic equation for BVPs of Eqs. (44) and (45) reads [6]

2b2 + (
b4e4 + 2b2

)
cosαcoshβ − b3e2sinαsinhβ = 0 (46)

where

(
α

β

)
=

√(
±b2e2 + b

√
b2e4 + 4

)
/2, e = η/L , b = ω

√
ρAL4

E I
(47)

By numerically solving Eq. (46), the fundamental frequency versus nonlocal
parameter is depicted in Fig. 1. It is observed that the frequency decreases with
increasing the nonlocal parameter, indicating that the present numerical result cap-
ture the anticipated softening phenomena. To highlight the present result, we also add
the numerical results presented by Lu [2] and Tuna and Kirca [8]. It can be seen that
the integral nonlocal elasticity can also capture the expected softening phenomena.
Interestingly, the difference between the present result and that of Tuna and Kirca [8]
is that the latter integral nonlocal elasticity predicts a more softening phenomena.

4 BVPs for Timoshenko Beam Model

The BVPs for the Euler–Bernoulli beam model have been formulated in Sect. 3. We
here directly extend the Euler–Bernoulli model to the Timoshenko beam.

4.1 Reformulation

Let φ and ks be the rotation and shear correction factor. The governing equations of
motion of the Timoshenko beams within the framework of nonlocal strain gradient
elastic theory are given by [18]
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(
1 − l2

∂2

∂x2

) (
Axxu

′′ − Bxxφ
′′) −

(
1 − η2 ∂2

∂x2

) (
m0ü − m1φ̈ + f

) = 0

(
1 − l2

∂2

∂x2

) (
ks Axzw

′ − ks Axzφ − Bxxu
′′ + Dxxφ

′′)

+
(
1 − η2 ∂2

∂x2

) (
m1ü − m2φ̈

) = 0

ks Axz

(
1 − l2

∂2

∂x2

) (
w′′ − φ′) −

(
1 − η2 ∂2

∂x2

)
(m0ẅ + q) = 0 (48)

It is noted that Eq. (48) is derived based on Reddy’s beam model. Analogously,
Eq. (48) may be written in the weak form as

∫ t0

0

∫ L

0

(
1 − l2

∂2

∂x2

) (
Axxu

′′ − Bxxφ
′′) δu dxdt

−
∫ t0

0

∫ L

0

(
1 − η2 ∂2

∂x2

) (
m0ü − m1φ̈ + f

)
δu dxdt

+
∫ t0

0

∫ L

0

(
1 − l2

∂2

∂x2

) (
ks Axzw

′ − ks Axzφ − Bxxu
′′ + Dxxφ

′′) δφ dxdt

+
∫ t0

0

∫ L

0

(
1 − η2 ∂2

∂x2

) (
m1ü − m2φ̈

)
δφ dxdt

+
∫ t0

0

∫ L

0
ks Axz

(
1 − l2

∂2

∂x2

) (
w′′ − φ′) δw dxdt

−
∫ t0

0

∫ L

0

(
1 − η2 ∂2

∂x2

)
(m0ẅ + q) δw dxdt = 0 (49)

Then, integrating Eq. (49) by parts with respect to the higher-order derivatives,
we have

δ

∫ t

0
(T −U + V ) dt +

∫ t

0

(
[Nxxδu]

L
0 + [

N (1)
xx δu′]L

0 + [
Qxzδw

]L
0

)
dt

+
∫ t

0

(
− [Mδφ]L0 + [

Q(1)
xz δw′]L

0 + [
M (1)δφ′]L

0

)
dt = 0 (50)

where

T =
∫ L

0

[
ρA

(
u̇1δu̇1 + η2u̇′

1δu̇
′
1

) + ρA
(
u̇3δu̇3 + η2u̇′

3δu̇
′
3

)]
dx (51)
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U =
∫ L

0

[
Nclδu

′ + l2N ′
clδu

′′ − Mclδφ
′ − l2M ′

clδφ
′′] dx

+
∫ L

0

[−l2Q′
clδφ

′ − Qclδφ + Qclδw
′ + l2Q′

clδw
′′] dx (52)

V = −
∫ L

0

[(
1 − η2 ∂2

∂x2

)
( f δu + qδw)

]
dx (53)

In Eqs. (49)–(51), T , U and V are the kinetic energy, strain energy and work
done by the external forces, respectively. In Eqs. (50) and (52), we have defined the
following classical stress resultants:

Ncl = Axxu
′ − Bxxφ

′

Qcl = ks Axz
(
w′ − φ

)
Mcl = Bxxu

′ − Dxxφ
′ (54)

In addition, the other stress resultants are given by

Nxx = Ncl − l2N ′′
cl + m0η

2ü′ − m1η
2φ̈′

N (1)
xx = l2N ′

cl

Qxz = Qcl − l2Q′′
cl + m0η

2ẅ′

M = Mcl + l2Q′
cl − l2M ′′

cl − m2η
2φ̈′ + m1η

2ü′

Q(1)
xz = l2Q′

cl

M (1) = −l2M ′
cl (55)

Interestingly, it is found thatwhen u andw are decoupled and the nonlocal parame-
ter is not considered, the boundary conditions expressed by Eqs. (50) and (55) reduce
to the results of Nojoumian and Salarieh [24]. On the other hand, if one only consider
a nonlocal beam, Eqs. (50) and (55) reduces to Xu et al. [6] without including any
non-classical boundary conditions. Noteworthy, the corresponding boundary condi-
tions by Li et al. [18] can not be recovered to those given by Xu et al. [6]. Similarly,
the above boundary conditions can be reduced as special cases to those of nonlocal
Timoshenkomodels. How to choose the above higher-order boundary conditions, the
interested readers may refer to Refs. [20, 25] where several possible boundary-value
problems were extensively studied to assess the boundary effects.

In addition, if the strain gradient effect is omit (e.g., l = 0), the higher order mass
inertia is ignored, and the axial-transverse coupling effect is neglect, the boundary
conditions of a homogenous beam may be reduced to the nonlocal type:

Qxz = Qcl + m0η
2ẅ′ or w

M = Mcl or φ (56)



Reformulation of the Boundary Value Problems ... 219

For clarity, the differences of the stress resultants for nonlocal Timoshenko beams
are highlighted in Table 1.

4.2 Dynamic Behavior of Nonlocal Cantilevers: Timoshenko
Type

We here attempt to solve the paradox encountered in the literature by modifying
the boundary conditions (see Eqs. (50) and (55)) and solve the BVPs for nonlocal
cantilevers using Timoshenko beam theory. Firstly, according to Eqs. (48)2 and (48)3,
the equation of motion of nonlocal Timoshenko beams can be obtained as

ksGA
(
w′′ − φ′) − P

(
1 − η2 ∂2

∂2x

)
w′′ − ρA

(
1 − η2 ∂2

∂2x

)
ẅ = 0

E Iφ′′ + ksGA
(
w′ − φ

) − ρ I

(
1 − η2 ∂2

∂2x

)
φ̈ = 0 (57)

Analogously, the corresponding boundary conditions of Eq. (57) are given by

w (0) = φ (0) = 0

Qxz (L) = ksGA
[
φ (L) − w′ (L)

] − ρAη2ẅ′ (L) = 0

M (L) = −E Iφ′ (L) − ρ Iη2φ̈′ (L) = 0 (58)

If onedefines slender ratio effect r=√
I/AL2 and shear effect s = √

E I/ksGAL2,
the characteristic equation for BVPs of Eqs. (57) and (58) obtains from [6]

�α�β

(
β2 − α2) sinα sinhβ + (

α2�2
α + β2�2

β

)
cosα coshβ

+ 2αβ�α�β = 0 (59)

where

�α = α2 − b2e2s2α2 − b2s2

α
, �β = β2 − b2e2s2β2 + b2s2

β

(
α

β

)
=

⎡
⎣±A2 +

√
A2
2 − 4A0A4

2A4

⎤
⎦

1/2

, A4 = 1 + b2e2
(
e2r2s2b2 − r2 − s2

)

A2 = b2
(
e2 + r2 + s2 − 2e2r2s2b2

)
, A0 = b2

(
r2s2b2 − 1

)
(60)

Noteworthy, the other dimensionless parameters are the samewith those of Euler–
Bernoulli ones.Normally, the numerical results can be easily obtained by numerically
solving Eq. (59). The fundamental frequency calculated by Eq. (59) as a function of



220 X.-J. Xu

Fig. 2 The first five frequency parameters versus the nonlocal parameter for Timoshenko beams.
Numerical results are obtained by solving Eq. (59)

the nonlocal parameter is also added in Fig. 1. Interestingly, the softening phenomena
for nonlocal Timoshenko cantilevers is also captured by the present work. Moreover,
it can also be seen from Fig. 1 that the frequencies calculated by the Euler–Bernoulli
beam theory are larger than those by the corresponding Timoshenko beam theory.
The differences may be more prominent for small values of nonlocal parameter.
For the calculation of the frequency of the Timoshenko type, we take the following
parameters for carbon nanotubes [3]: E = 5.5 TPa, ν = 0.19, D = 0.678 nm, h =
0.066 nm and ks = 0.563. D, h and ks are the diameter, thickness and shear factor
of the beam, respectively.

For a sufficiently thin walled carbon nanotube, the area and the second moment
of inertia of the beam are approximately calculated based on A = πDh and I =
πD3h/8, respectively.We also take the aspect ratio L/D = 10 until otherwise stated,
where L is the length of the beam.

Figure 2 shows the first five frequency parameters as a function of the nonlo-
cal parameter. It is observed that the frequency parameter decrease as the nonlocal
parameter increases. It means that the nonlocal parameter may reveal a stiffness-
softening effect for nonlocal beams. Moreover, it can also be seen that the softening
effect may be remarkable for higher-order mode frequencies.

As is well-known, the Timoshenko beammodel involves the effect of shear defor-
mation and rotary inertia. In order to see these two effects, Fig. 3 displays the first
four frequency parameters against the aspect ratio L/D for Timoshenko beams. As
expected, the frequency parameters increase as aspect ratio increases. Moreover, the
present Timoshenko beam model will reduce to the corresponding Euler–Bernoulli
beam model when the aspect ratio is sufficiently large. On the other hand, the non-
local parameter will play a prominent effect on the dynamic behavior of beams for
higher-order mode numbers when one compares with these figures.
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Fig. 3 The frequency parameters versus the aspect ratio L/D for Timoshenko beams: a n = 1,
b n = 2, c n = 3, d n = 4. Numerical results are obtained by solving Eq. (59). Symbols are the
corresponding Euler–Bernoulli results based on Eq. (46)

5 Conclusions

By using the weighted residual method, we established an asymptotic theory for
the nonlocal elasticity, from which the frequencies for different order of magnitude
were obtained as functions of the nonlocal parameter. Then, we used this method
to reformulate the BVPs of Euler–Bernoulli and Timoshenko beam models within
the framework of the newly developed nonlocal strain gradient elasticity theory.
In case studies, we presented the closed-form solutions for characteristic frequency
equations for both nonlocal Euler–Bernoulli beams and nonlocal Timoshenko beams
based on the nonlocal elasticity. Our numerical results showed that the softening
phenomena can be captured by the present formulations. In addition, our numerical
results for differential type nonlocal elasticity showed a stiffening effect when they
were compared with the corresponding nonlocal integral ones.
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Application of Combined Nonlocal
and Surface Elasticity Theories
to Vibration Response of a Graded
Nanobeam

Sami El-Borgi, Prakash Rajendran, and Mohamed Trabelssi

Abstract This chapter investigates the combined nonlocal and surface effects on
the free and forced vibration response of a graded nanobeam resting on a nonlin-
ear elastic foundation. Material gradation is assumed to be through the beam depth
according to a power-law model. Instead of adopting the customary choice of the
geometrical central axis, this study uses instead the physical neutral axis to eliminate
the stretching-bending coupling effect due to the unsymmetrical material variation.
It is also shown that the choice of the physical neutral axis leads to the elimina-
tion of the quadratic nonlinearity from the equation of motion. The Euler–Bernoulli
beam theory along with the von Kármán geometric nonlinearity is formulated while
accounting for Eringen’s nonlocal elasticity differential model, determined neutral
axis and surface effects. Under certain assumptions, a nonlinear fourth-order par-
tial differential equation is derived and the Garlerkin technique with a single-mode
approximation is used to obtain a second-order ordinary equation in the time domain
with cubic nonlinearity. The Method of Multiple Scales (MMS) is used initially to
derive the expression of the nonlinear natural frequency for the graded nanobeam
accounting for both nonlocal and surface effects. Then, MMS is utilized to study the
primary resonance of an externally forced nanobeam after obtaining its frequency
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response curve. The primary objective of this work is to investigate the effects of the
nonlocal and surface effects parameters, power-law index and boundary conditions
on the free and forced vibration response of the nanobeam.

1 Introduction

Miniature beams are used in several electromechanical systems such as micro-
actuators, micro-switches, bio-sensors, nano-wires, ultra-thin films, MEMS and
NEMS as the basic structural elements [1–4]. Because the beam lengths are in the
nanoscale dimension, the effect of material length scale has to be considered, which
is not described by a classical continuum model. Several models have been devel-
oped over the past decade to incorporate for the size dependency such as Eringen’s
nonlocal elastic theory [5–7], Modified Coupled Stress theory [8, 9], strain gradient
theory [10, 11] and a combination of nonlocal and strain gradient theory [12–14].

The nonlocal elasticity theory postulates that the stress in a continuum at a given
location depends not only on the strain at that location but also on the strains at all
points of the body. This dependency on the nonlocal strain is captured by a size effect
parameter called the nonlocal parameter. The nonlocal elasticity theorywas proposed
by Eringen and co-workers [5–7]. Initially, the nonlocal elasticity was formulated
using an integral form. Later on, a differential form was developed [6] based on a
specific kernel function. This simplified the implementation of the theory in practical
problems. However, Fernandez-Saez et al. [15] and Romano et al. [16], and the
references therein, highlighted a paradox in the transformation from the integral
form of the nonlocal model to the differential form for beam bending problems
with an exponential nonlocal kernel. They showed that the transformation implied a
relationship between the bending moment and the spatial derivative of the bending
moment at the boundaries that must be satisfied. The bending moment obtained
from the solution of the differential equation should be checked to ensure the obtained
solution is also a solution to the integral form of the equation. This is readily done for
problems with displacement type boundary conditions, since the bending moment
will be the solution of a second order differential equation, and the constants of
integration can be used to satisfy the bendingmoment boundary conditions.However,
it should also be recognized that the nonlocal model in integral form is unable to
model detailed local effects at boundaries, and hence there are always likely to be
discrepancies between the actual and simulated bending moment at the boundary.
Given that these discrepancies at the boundaries are always likely to be present
whichever model used, here the differential form of the equations is used.

Functionally Graded Materials (FGMs) are novel heterogeneous composites in
which the volume fraction of the constituentmaterials varies fromone face to another.
This enables gradual change in properties along a given direction. Furthermore, small
changes in the composition make FGMs less prone to stress concentration and con-
sequently to fracture [17]. As technology develops in the demand for nanostructures,
FGMs are being used in several applications at the micro/nano scale in the form of
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micro-switches [18], shape memory alloy thin films [19], atomic force microscopes
[20] and electrically actuated actuators [21].

Several researchers have studied the free and forced linear vibration response
of a graded nanobeam using Eringen’s nonlocal model. Free vibration of nonlo-
cal nanobeam was modeled by Eltaher et al. [22] using the Finite Element Method
(FEM). Uymaz [23] studied the free and forced vibration of a Functionally Graded
(FG) nanobeam using Navier’s method, while Rahmani and Pedram [24] used
the same method to study the behavior of a graded Timoshenko beam. Nejad
and Hadi [25] performed the free vibration analysis of a bi-directional FG Euler
Bernoulli nanobeam using Hamilton’s principle and Generalized differential quadra-
ture method (GDQM).

The nonlinear vibration response of nanobeams has been investigated by several
authors who included the von Kármán geometric nonlinearity in their formulation.
Simsek [26] utilized He’s variational method to model the nonlinear free vibration
of a FG Euler-Bernoulli nanobeam. Niknam and Aghdam [27] used He’s variational
method for analyzing the large amplitude free vibration and buckling load of a FG
Euler-Bernoulli nanobeam resting on a nonlinear elastic foundation. Nazemnezhad
and Hosseini-Hashemi [28] studied the nonlinear free vibration of a functionally
graded nanobeam while incorporating surface effects using the method of multiple
scales. Finally, El-Borgi et al. [29] studied the free and forced vibration of a FG
nanobeam resting on an elastic foundation using the Method of Multiple Scales
(MMS), whereas Trablessi et al. [30] studied the same problem using the so-called
Locally adaptive Differential Quadrature Method (LaDQM).

Recently researchers have been focusing on the investigation of surface effects in
nanomaterials. These effects can be predominant in the behavior of nanostructures
due to sudden increasing ratio of surface area to volume at nanoscale. In general, it
is expected that surface stress or surface tension and surface elasticity properties can
affect the size-dependent mechanical properties at nanoscale [31–35]. The analytical
studies on the nonlinear free vibration of functionally graded nanobeams incorpo-
rating surface effects have been demonstrated in [36–38]. The effects of nonlocal
parameter, residual surface stress and surface elasticity modulus on the nonlinear
vibrational frequencies of Timoshenko beam have been studied in [39, 40]. Hosseini-
Hashemi et al. [41] investigated the coupling between nonlocal and surface stress
effects for the nonlinear vibration response of nanobeams.

In the above studies, the undeformed plane of the beam was assumed to coincide
with the midplane of the section which in turn does not overlap with the neutral
axis because of the material property gradation through the beam thickness. This
assumption has led to an error in predicting the response of graded beams such as
frequencies which can reach as much as 10% [42]. Therefore, instead of adopting the
geometrical central axis, few investigators have recently used the physical neutral axis
in their studies on graded beams [42–48]. This has also simplified their formulation by
eliminating the stretching-bending coupling effect due to the unsymmetrical material
variation.

Based on the above review and to the authors best knowledge, it can be con-
cluded that few investigators have focused on studying the nonlinear free vibration
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of functionally graded nanobeams incorporating a combination of nonlocal and sur-
face effects [33] or surface effects only [34–36]. In addition, the combination of
nonlocal and surface effects as well as the physical neutral axis for studying the
vibration response of graded beams has not been solved in the published literature
to-date. Also, a limited number of researchers have used analytical methods such as
MMS [28, 29], He’s variational method [49, 50] and Navier’s method [23, 24, 51]
to study the free and forced vibration size-dependent response of homogenous and
functionally graded nanobeams.

To fill the above gaps, this study is proposed to account for surface and nonlocal
effects in addition to using the physical neutral axis to investigate the nonlinear,
free and forced vibration response of a Euler-Bernoulli nanobeam using MMS. This
chapter is arranged as follows. Following this introduction, Sects. 2 and 3 provide
the governing equations for classical and nonlocal graded Euler-Bernoulli beam
theory accounting for surface effects. The solutions for the free and forced vibrations
obtained using MMS are presented in Sects. 4 and 5, respectively. Numerical results
are provided and discussed in Sect. 6. Finally, concluding remarks are outlined in
Sect. 7.

2 Classical Euler–Bernoulli Beam Theory with Surface
Effects

This section uses the dynamic version of the principle of virtual displacements [52] to
derive the equations of motion of the Euler–Bernoulli beam theory while considering
the modified von Kármán nonlinearity as well as surface effects. This study focuses
on a functionally graded straight nanobeam of length L , width b and height h, which
is resting on a nonlinear elastic foundation and subjected to a distributed loading fz
as shown in Fig. 1. Due to the nature of graded material, the neutral axis of the beam
does not coincide with the beam’s mid-plane, thus two frames are introduced in this
study:

• (xm, ym, zm) is a frame located at the mid-plane of the beam as shown in Fig. 1,
where xm, ym and zm are coordinates taken along the length, width and thickness
of the beam respectively.

• (x, y, z) is another reference frame located at the neutral axis of the beam, where
x = xm, y = ym and z = zm − h0, as depicted in Fig. 1. Here, h0 is the distance
from themidplane to the neutral axis and whose expression will be computed later.

All displacements (u, v,w) along (x, y, z) are functions of the x and z coordinates
and time t . The bending is further assumed to be in the xz-plane, hence the displace-
ment v is identically set to zero. The material properties such as elastic modulus, E ,
mass density, ρ are assumed to vary based on the following power law function:

P(zm) = (Pu − PL)

(
zm
h

+ 1

2

)n

+ PL (1)
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L

h0

zm
z

xm
Geometrical central axis 

Physical neutral axis 

xm

x

Fig. 1 Schematic of simply supported FG beam on nonlinear elastic foundation

where Pu and PL are, respectively, the values of the material property P at the upper
and lower surface of the nanobeam and n gives the variation profile of the material
properties across the thickness of the nanobeam. The case of n = 0 corresponds to
an isotropic beam with bulk properties of the upper surface. The displacement field
according to the Euler-Bernoulli beam theory (EBT) can be expressed as follows:

u(x, t) = [u(x, t) + zθx ] êx + w(x, t)êz, θx ≡ −∂w

∂x
(2)

where (u,w) are the axial and transverse displacements of the point (x, 0) on the
neutral axis of the beam, i.e., z = 0, and (êx , êz) are unit vectors along the (x, z)
coordinates. The Lagrangian strain tensor is of the form

E ≈ ε =
[

∂u

∂x
+ z

∂θx

∂x
+ 1

2

(
∂w

∂x

)2
]
êx êx (3)

where the term 1/2 (∂w/∂x)2 in the above equation represents the Von Kármán
nonlinear strain. The following isotropic stress-strain relations is adopted:

σxx (x, z) = E (z) (ε(0)
xx (x) + zε(1)

xx (x)) (4)

where

ε(0)
xx = ∂u

∂x
+ 1

2

(
∂w

∂x

)2

, ε(1)
xx = ∂θx

∂x
(5)

and E is Young’s modulus and the beam’s constitutive relations are based on uniaxial
stress strain relations. The surface elasticity effects in the beam can be modeled as
follows [33]:

σ s = Es (z) εxx (6)

where Es is the surface elastic modulus through thickness direction of the beam.
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The principle of virtual displacements for the problem at hand has the form

0 =
∫ T

0

∫ L

0

[
m0

(
∂u

∂t

∂δu

∂t
+ ∂w

∂t

∂δw

∂t

)
+ m2

∂2w

∂x∂t

∂2δw

∂x∂t
+ cw

∂δw

∂t

− M (0)
xx δε(0)

xx − M (1)
xx δε(1)

xx + fz δw

]
dx dt (7)

Integration by parts the above equation and separation into transverse and axial
displacements yield the equations of motion below

∂M (0)
xx

∂x
= m0

∂2u

∂t2
(8a)

∂2M (1)
xx

∂x2
+ ∂

∂x

[
M (0)

xx

∂w

∂x

]
+ fz = m0

∂2w

∂t2
− m2

∂4w

∂t2∂x2
+ c

∂w

∂t
(8b)

where (M (i)
xx , i = 0, 1) are the stress resultants and (m0,m2) are the mass inertias

which can be written as

M (i)
xx =

∫
A
(z)iσxxd A +

∮
�

(z)iσ sds, (i = 0, 1) (9a)

m0 =
∫
A
ρ d A, m2 =

∫
A
ρz2 d A (9b)

where A = bh is the cross sectional area and � is the boundary of the cross sectional
area. The geometric and force boundary conditions are given by

Geometric: u, w, θx

Force: M (0)
xx , Vx ≡ M (0)

xx

∂w

∂x
+ ∂M (1)

xx

∂x
, M (1)

xx (10)

Using Eqs. (2)–(6), the local stress resultants (M (0)
xx and M (1)

xx ) can be expressed
in terms of displacements

M (0)
xx =

∫
A
E (z) (ε(0)

xx (x) + zε(1)
xx (x))d A +

∮
�

Es(z)(ε(0)
xx (x) + zε(1)

xx (x))ds

= Ã

[
∂u

∂x
+ 1

2

(
∂w

∂x

)2
]

− B̃

(
∂2w

∂x2

)
(11a)
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M (1)
xx =

∫
A
zE (z) (ε(0)

xx (x) + zε(1)
xx (x))d A +

∮
�

zEs(z)(ε(0)
xx (x) + zε(1)

xx (x))ds

= B̃

[
∂u

∂x
+ 1

2

(
∂w

∂x

)2
]

− D̃

(
∂2w

∂x2

)
(11b)

where

Ã =
∫
A
E(z) d A +

∮
�

Es(z)ds, B̃ =
∫
A
E(z)z d A +

∮
�

Es(z)zds,

D̃ =
∫
A
E(z)z2 d A +

∮
�

Es(z)z2ds (12)

The substitution of Eqs. (11a) and (11b) for M (0)
xx and M (1)

xx into Eqs. (8a) and (8b)
yields the equations of motion and boundary conditions being represented using the
displacement components u and w; similarly, the boundary conditions can also be
expressed in terms of the displacements.

At this point, the position of the neutral axis is obtained by requiring that the total
axial resultant is zero along this axis. Hence, Eq. (11a) becomes

M (0)
xx = Ã

[
∂u

∂x
+ 1

2

(
∂w

∂x

)2
]

− B̃

(
∂2w

∂x2

)
= 0 (13)

In determining the neutral axis position, the effect of axial displacement (u) is
neglected and higher-order terms are assumed to be small (i.e., small deformation
theory requires that (∂w/∂x)2 is negligible). Hence, the above equation becomes

B̃

(
∂2w

∂x2

)
= 0 ⇔ B̃ = 0 (14)

For the remainder of this chapter, B̃ will be set to zero but the main equations
corresponding to a non-neutral axis B̃ �= 0 will be summarized in Appendix to show
the effect of B̃ in the formulation. Simplifying Eq. (14) leads to

b
∫ h

2 −h0

−h
2 −h0

E(z)z dz + b

[
Es
U

(
h

2
− h0

)
+ Es

L

(
−h

2
− h0

)]

+ 2
∫ h

2 −h0

−h
2 −h0

Es(z)z dz = 0 (15)

where Es
U and Es

L are, respectively, the surface elastic moduli along the upper and
lower faces of the beam. Making the following change of variable z = zm − h0, the
above equation becomes
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b
∫ h

2
−h
2
E(zm)(zm − h0) dzm + b

[
Es
U

(
h
2 − h0

) + Es
L

(− h
2 − h0

)]

+2
∫ h

2
−h
2
Es(zm)(zm − h0) dzm = 0 (16)

The above equation can be further simplified to yield the expression of the neutral
axis position

h0 =
[
b

∫ h
2

−h
2

E(zm)zm dzm + h

2
b

[
Es
U − Es

L

] + 2
∫ h

2

−h
2

Es(zm)zm dzm

]
/

[
b

∫ h
2

−h
2

E(zm) dzm + b
[
Es
U + Es

L

] + 2
∫ h

2

−h
2

Es(zm) dzm

]
(17)

which can be simplified to

h0 = [−h
[(
b

(
n2 + 3n + 2

) + 2 hn
) (

Es
L − Es

U

) + bhn(EL − EU )
]]

/[
2(n + 2)

(
bnEs

L + bEs
L + bnEs

U + bEs
U + 2 hnEs

L + 2 hEs
U + bhnEL + bhEU

)]
(18)

The expressions of Ã and D̃ given by Eq. (12) can be further simplified given the
fact that the neutral axis position is determined

Ã = b
∫ h

2

− h
2

E(zm) dzm + 2
∫ h

2

− h
2

Es(zm)dzm + b
[
Es
U + Es

L

]

= bh (nEL + EU )

n + 1
+ b

(
Es
L + Es

U

) + 2 h
(
nEs

L + Es
L

)
n + 1

,

D̃ = b
∫ h

2

− h
2

E(zm) (zm − h0)
2 dzm + 2

∫ h
2

− h
2

Es(zm) (zm − h0)
2 dzm

x = 1

12
h

(
h2 + 12 h20

) (
bEL + 2Es

L

) + 1

4
b

(
(h + 2 h0)

2Es
L + (h − 2 h0)

2Es
U

)

+
(

− h3

n + 3
+ (h + 2 h0) h2

n + 2
− (h + 2 h0) 2 h

4(n + 1)

)

× (
b(EL − EU ) + 2(Es

L − Es
U )

)
(19)

Due to the Von Kármán non-linearity which appeared in Eq. (3) and thereafter
defined, the equations ofmotionEqs. (8a) and (8b) governing the axial displacementu
and the transverse displacementw become coupled. A strategy is applied to eliminate
the axial displacement u from the equations of motion and approximation of the von
Kármán nonlinear term by a constant [53]. The strategy assumes the following: (1)
the longitudinal frequency of a slender beam is much greater than the transverse
frequency, hence, the inertia term (mü) can be neglected; (2) The nanobeam is fixed
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at its ends in the longitudinal direction, i.e. u(0, t) = 0 and u(L , t) = 0. The first
assumption along with Eq. (8a) yields M (0)

xx as a constant. Thus, we obtain

∂u

∂x
+ 1

2

(
∂w

∂x

)2

= c1(t) (20)

Integrating Eq. (20) yields

u(x, t) = −
∫ x

0

1

2

(
∂w(s, t)

∂s

)2

ds + c1(t)x + c2(t) (21)

where c1 and c2 are obtained from the boundary conditions from assumption 2.

c1(t) = 1

L

∫ L

0

1

2

(
∂w

∂x

)2

dx and c2(t) = 0 (22)

Consequently, Eqs. (11a) and (11b) are reduced, respectively, to the following
equations:

M (0)
xx = Ãc1(t) (23a)

M (1)
xx = −D̃

∂2w

∂x2
(23b)

where c1 is given by Eq. (22). Substituting M (0)
xx and M (1)

xx from Eqs. (23a) and (23b)
into the transverse equation of motion (8b) gives

m0ẅ − m2ẅ
′′ + cẇ + D̃w′′′′ − Ãc1w

′′ = fz (24)

To make the above partial differential equation more compact, it was decided to
use the dot (.) notation to denote differentiation with respect to t and and the prime (′)
notation to indicate differentiation with respect to x . Both the distributed harmonic
force and the reaction force of the elastic foundation constitute fz in Eq. (24), which
can be represented as [54]:

fz = −kLw − kNLw
3 + ksw

′′ + F cos(θ t) (25)

where kL , kNL and ks are the linear, nonlinear and shear coefficients of the elastic
foundation respectively and F is the amplitude of the driving harmonic force.

Substitution of fz fromEq. (25) into Eq. (24) yields the following classical fourth-
order partial differential equation governing motion of the beam in the transverse
direction:

m0ẅ − m2ẅ
′′ + cẇ + D̃w′′′′ − [ Ãc1 + ks]w′′

+ kLw + kNLw
3 = F cos(θ t) (26)
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The following non-dimensional variables are introduced to simplify the subsequent
parametric analysis:

x̂ = x

L
, t̂ = t

τ
, ŵ = w

r
(27)

where r =
√

I
A is the radius of gyration of the cross section. The equation of motion

in dimensionless form is derived using Eq. (26) and non-dimensional parameters
defined in Eq. (27) as

¨̂w − α̂ ¨̂w′′ + ĉ ˙̂w + ŵ′′′′ − ŵ′′
∫ 1

0
[κ0(ŵ′)2]d̂x − ksŵ

′′ + k̂L ŵ + k̂N Lŵ
3 = F̂ cos(θ̂ t̂)

(28)
where

α̂ = m2/(m0L2), τ = L2
√
m0/D̃, ĉ = cτ/m0, k̂s = ksτ 2/(m0L2),

k̂L = kLτ 2/m0, k̂N L = kNLr2τ 2/m0, F̂ = Fτ 2/(m0r),

θ̂ = θτ, κ0 = Ãr2τ 2/(2m0L4) (29)

3 Nonlocal Euler–Bernoulli Beam Theory with Surface
Effects

According to Eringen [5, 6], in an elastic continuum, the state of stress σ at a point x
in depends not just on the strain field ε at the point, but on the strains at all other points
of the body. The atomic theory of lattice dynamics and experimental observations on
phonon dispersion were used to show the above theory. Hence, the nonlocal stress
tensor σ̄ at point x is expressed as

σ̄ =
∫

�

K (|x′ − x|, τ ) σ (x′) dx′ (30)

where σ (x′) is the classical, macroscopic, second order Piola–Kirchoff stress tensor.
The nonlocal modulus is represented using the kernel function K (|x′ − x|). The
distance between points x and x′ (in Euclidean norm) is given by |x′ − x| and τ is a
material parameter that depends on internal and external characteristic lengths. In a
Hookean solid, the macroscopic stress at a point σ at point x is related to the local
strain ε by generalized Hooke’s law

σ (x) = C(x) : ε(x) (31)
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where C is the fourth-order elasticity tensor and : denotes the ‘double-dot product’.
Due to the inconvenient form of the constitutive relation as an integral, the following
differential equation model was preferred by Eringen [6]

(
1 − μ2

0∇2)σ̄ = σ , μ0 = τ 22 = e20a
2 (32)

where ∇2 is the Laplacian operator, e0 is a material constant, a and  are the internal
and external characteristic lengths, respectively and μ0 is the so-called nonlocal
parameter. Furthermore, it is presumed that the size-dependency is present in the
longitudinal direction only, for a beam shape. If x is chosen as the longitudinal
direction of the nanobeam, Eq. (32) can be reduced to

σ̄xx − μ0
d2σ̄xx

dx2
= E (z) εxx (33)

where σ̄xx is the nonlocal stress.
The nonlocal stress resultants in terms of the nonlocal strain are obtained by

integrating the above equation over the beam cross-sectional area as

M̄ (0)
xx = μ0

∂2M̄ (0)
xx

∂x2
+ Ã ε(0)

xx (34a)

M̄ (1)
xx = μ0

∂2M̄ (1)
xx

∂x2
+ D̃ ε(1)

xx (34b)

Substituting Eqs. (2) and (5) into Eqs. (34a) and (34b), the above quantities can
be written in terms of displacements as

M̄ (0)
xx = μ0

∂2M̄ (0)
xx

∂x2
+ Ã

[
∂u

∂x
+ 1

2

(
∂w

∂x

)2
]

(35a)

M̄ (1)
xx = μ0

∂2M̄ (1)
xx

∂x2
− D̃

(
∂2w

∂x2

)
(35b)

The non-classical equations of motion are derived from the dynamic principle of
virtual displacements (7) as

∂ M̄ (0)
xx

∂x
= m0

∂2u

∂t2
(36a)

∂2M̄ (1)
xx

∂x2
+ ∂

∂x

[
M̄ (0)

xx

∂w

∂x

]
+ fz = m0

∂2w

∂t2
− m2

∂4w

∂t2∂x2
+ c

∂w

∂t
(36b)

Differentiating Eq. (36a) once and substitution of the values of ∂2M̄ (0)
xx /∂x2 and

∂2M̄ (1)
xx /∂x2 from Eq. (36b) into Eqs. (35a) and (35b), we obtain
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M̄(0)
xx = Ã

[
∂u

∂x
+ 1

2

(
∂w

∂x

)2
]

+ μ0

(
m0

∂3u

∂x∂t2

)
(37a)

M̄(1)
xx = − D̃

(
∂2w

∂x2

)
+ μ0

(
m0

∂2w

∂t2
− m2

∂4w

∂t2∂x2
+ c

∂w

∂t
− ∂

∂x

[
M̄(0)

xx
∂w

∂x

]
− fz

)

(37b)

The assumptions used in Sect. 2 are employed to eliminate the axial displacement
u in equations Eqs. (37a), (35b), and (37b) and derive expressions of the stress
resultants in terms of the transverse displacement w. Thus,

M̄ (0)
xx = Ãc1(t) (38a)

M̄ (1)
xx = −D̃

∂2w

∂x2
+ μ0

(
m0

∂2w

∂t2
− m2

∂4w

∂t2∂x2
+ c

∂w

∂t
− ∂

∂x

[
M̄ (0)

xx

∂w

∂x

]
− fz

)

(38b)

where c1(t) is defined in Eq. (22). After substituting M̄ (0)
xx from Eq. (38a) into

Eq. (38b), M̄ (1)
xx can be further expressed as

M̄ (1)
xx = μ0

(
m0

∂2w

∂t2
− m2

∂4w

∂t2∂x2
+ c

∂w

∂t
− ∂

∂x
( Ãc1)

∂w

∂x
− fz

)
(39)

Substituting Eqs. (38a), (38b) and (39) into Eq. (36b) gives the nonlocal equa-
tion of motion of the nanobeam, which after substituting for the external load from
Eq. (25), takes the following form:

m0(ẅ − μ0ẅ
′′) − m2(ẅ

′′ − μ0ẅ
′′′′) + c(ẇ − μ0ẇ

′′) + D̃w′′′′

−(w′′ − μ0w
′′′′)

∫ 1

0
[κ0(w′)2]dx + kL

(
w − μ0w

′′) − ks
(
w′′ − μ0w

′′′′)

+kNL

(
w3 − μ0

(
6w

(
w′)2 + 3w2w′′

))
= F cos(θ t) (40)

The non-dimensional parameters used in Eq. (27) are introduced here as well to
simplify the parametric analysis. Thus, the normalized equation of motion becomes

¨̂w − μ̂0
¨̂w′′ − α̂

( ¨̂w′′ − μ̂0
¨̂w′′′′

)
+ ĉ

( ˙̂w − μ̂0
˙̂w′′

)
+ ŵ′′′′

− (
w′′ − μ̂0w

′′′′) ∫ 1

0
[κ0(ŵ′)2]d̂x + k̂L

(
ŵ − μ̂0ŵ

′′) − k̂s
(
ŵ′′ − μ̂0ŵ

′′′′)

+k̂N L

(
ŵ3 − μ̂0

(
6ŵ

(
ŵ′)2 + 3ŵ2ŵ′′

))
= F̂ cos(θ̂ t̂) (41)
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where μ̂0 = μ0/L2 is the non-dimensional nonlocal parameter and the rest have been
defined in Eq. (29). Setting μ̂0 = 0, the classical equation of motion of the nanobeam
(28) can be recovered.

4 Free Vibration Analysis

4.1 Problem Formulation

Two terms from Eq. (41) are dropped for studying a free vibration case, the damping
term ĉ and the external harmonic function F̂ cos(θ̂ t̂). The resulting equation becomes

¨̄̂w − μ̂0
¨̄̂w′′ − α̂

( ¨̄̂w′′ − μ̂0
¨̄̂w′′′′

)
+ ĉ

( ˙̄̂w − μ̂0
˙̄̂w′′

)
+ ˆ̄w′′′′

−
( ˆ̄w′′ − μ̂0 ˆ̄w′′′′) ∫ 1

0 [κ0
( ˆ̄w′

)2]d̂x + k̂L
( ˆ̄w − μ̂0 ˆ̄w′′

)

+k̂N L

(
ˆ̄w3 − μ̂0

(
6 ˆ̄w

( ˆ̄w′
)2 + 3 ˆ̄w2 ˆ̄w′′

))
− k̂s

( ¯̂w′′ − μ0
¯̂w′′′′

)
= 0 (42)

Equation (42) can be converted to a time-dependent ordinary differential equation
by employingGalerkinApproximation,whereby the assumption ˆ̄w(x̂, t̂) = φ(x̂)q(t̂)
is used. The term φ(x̂) is obtained from the linearized mode shapes of vibration of
the beam as in Table 1 for different boundary conditions used in this study (S-S:
simply supported at both ends; C-C: clamped at both ends).

To obtain the ordinary differential equation, the aforementioned assumption and
linear mode shapes are substituted into Eq. (42). Finally, the equation is integrated
from 0 to 1, giving:

d2q

dt̂2
+ β1 q + β3 q

3 = 0 (43a)

q(0) = A, q̇(0) = 0 (43b)

where the coefficients β1 and β3 are defined as

Table 1 Normalized mode shape functions of a uniform beam for different boundary conditions

B.C. Mode shape, φ(x̂)

S-S sin(π x̂)

C-C cosh(qx̂) − cos(qx̂) − cosh(q)−cos(q)
sinh(q)−sin(q)

(sinh(qx̂) − sin(qx̂));
q = 4.7300
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β1 = 1

�

∫ 1

0

{
φ′′′′ + k̂L

(
φ − μ̂0φ

′′) − k̂s(φ
′′ − μ̂0φ

′′′′)
}
φ dx̂ (44a)

β3 = 1

�

∫ 1

0
k̂N L

(
−3μ0φ

2φ′′ − 6μ0φ
(
φ′)2 + φ3

)
φ dx̂

+ 1

�

∫ 1

0
[κ̂0(μ̂0φ

′′′′ − φ′′)
∫ 1

0

(
φ′)2 dx̂]φ dx̂

(44b)

in which � =
∫ 1

0

{
φ − μ̂0φ

′′ − α̂
(
φ′′ − μ̂0φ

′′′′)}φ dx̂ (44c)

and A is the amplitude. It is clear from Eq. (43a) that only cubic nonlinearity exists.
In Eq. (43a),

√
β1 is the non-dimensional linear natural frequency.

4.2 Analysis Using the Method of Multiple Scales

Using a non-dimensionalization strategy, the non-dimensional linear frequency is set
to unity which enables comparison of results with other authors

q = Aq̄, t̂ = t̄√
β1

(45)

Equation (45) is used in Eqs. (43a) and (43b), the coefficient of q̂ is made unity
and the hat symbols over q and t are dropped. This gives the following equations

d2q̄

dt̄2
+ q̄ + α2q̄

3 = 0 (46a)

q̄(0) = 1, ˙̄q(0) = 0 (46b)

where α2 = β3A2/β1.
The solution for the above equation is obtained through the method of multiple

scales [55]. This method represents the solution in terms of multiple independent
variables (time scales) in place of a single variable, through an n-th order uniform
expansion. The solution is expressed using the expansion

q̄(t̄; ε) = εq̄1(T0, T1, T2) + ε2q̄2(T0, T1, T2) + .... (47)

where ε is a small parameter measuring the amplitude of oscillation. The fast time
scale T0 = t is defined as the one onwhichmain oscillatory behavior occurs, whereas
the slow timescale Tn = εnt, n ≥ 1 is defined as the one for which the amplitude and
phase modulation take place. The time differentiation operation is expanded as
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d

dt̄
= D0 + εD1 + ε2D2 + ε3D3 + ... (48)

d2

dt̄2
= D2

0 + 2εD0D1 + ε2(D2
1 + 2D0D2) + ε3(2D1D2 + 2D0D3) + ... (49)

where Di = ∂/∂Ti . One then substitutes these equations into the time-dependent
ODE to obtain a system of linear differential equations based on the range of expan-
sion of terms.

Equation (42) is solved using a third-order uniform expansion. Hence, three
timescales are used, namely, T0, T1 and T2 and the solution is of the form

q̄(t̄) = εq̄1 + ε2q̄2 + ε3q̄3 (50)

The following system of equations are obtained by substituting Eq. (50) into
Eq. (46a). Each equation is representative of a different order or power of ε

ε1 : D2
0 q̄1 + q̄1 = 0 (51a)

ε2 : D2
0 q̄2 + q̄2 = −2D0D1q̄1 (51b)

ε3 : D2
0 q̄3 + q̄3 = −(D2

1 + 2D2D0)q1 − α2q̄
3
1 − 2D0D1q̄2 (51c)

The solution for Eq. (51a) may be conveniently be written in the following form

q̄1 = A(T1, T2)e
iT0 + A(T1, T2)e

−iT0 (52)

where i is
√−1, A is an unknown complex function and A is its complex conju-

gate. Substitution of Eq. (52) into Eq. (51b) yields

D2
0 q̄2 + q̄2 = −2 i D1Ae

iT0 + cc (53)

where cc is the complex conjugate of the preceding terms on the right hand side. In
order to remove secular terms from the above expression, this requires selecting the
coefficients of eiT0 and setting them to zero

−2i D1A =0 ⇒ D1A = 0

−2i D1A =0 ⇒ D1A = 0 (54)

This suggests that A is independent of the time scale T1 and is entirely a function of
T2. Substituting this simplification into Eq. (53) and solving the resulting differential
equation yields the following solution:

q̄2 = 0 (55)
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The solutions q1 from Eq. (52) and q2 from Eq. (55) are then substituted into
Eq. (51c) while also taking into account the simplification obtained from Eq. (54)
leading to

D2
0 q̄3 + q̄3 = (−2i D2A − 3α2A

2A
)
eiT0 − α2A

3e3iT0 + cc (56)

Similarly as before, secular terms are eliminated from the above equation by
setting to zero the coefficient that multiplies eiT0 . Therefore,

− 2i D2A − 3α2A
2A = 0 (57)

The solution of the above equation may be written conveniently in polar form as
follows [55]:

A = 1

2
aeiψ (58)

where a and ψ are real functions of T2. Substituting Eq. (58) into Eq. (57) and sep-
arating the real and imaginary parts, one obtains the amplitude and phase equations
respectively as follows:

da

dT2
= 0 (59a)

a
dψ

dT2
− 3

8
α2a

3 = 0 (59b)

This indicates that a(T2) is a constant. Also the ODE for ψ can be solved as

a(T2) = constant (60a)

ψ = 3

8
α2a

2T2 + ψ0 (60b)

whereψ0 is a constant and T2 = ε2 t̄ . Substituting a andψ fromEq. (60) into Eq. (58),
it can be concluded that

A(T2) = 1

2
aei(

3
8 α2a2ε2t+ψ0) (61)

Substituting for q̄1 and q̄2 from equations Eqs. (52) and (55) into Eq. (50) and
dropping ε3 then the expression of q̄ becomes

q̄ = εq̄1 = εa cos
(
�t̄ + ψ0

)
(62)

where � is the nonlinear nonlocal frequency which can be written as [55]
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� = 1 + 3

8
α2a

2ε2 (63)

For this solution to satisfy the initial conditions given byEq. (46b), a trigonometric
manipulation is introducedwhereby the error associated with a third-order expansion
is accounted for as follows [28]:

q̄ = εa cos
(
�t̄ + ψ0

) + ε2b cos(t̄ + ρ) (64)

The values of constants in Eq. (60) are attained by substituting the initial conditions
in Eq. (46b) into Eq. (64) as

ψ0 = 0, a = 1

ε
, ρ = 0, b = 0 (65)

A simplified version of the nonlinear nonlocal frequency can be obtained by substi-
tuting the variables in Eq. (65) into Eq. (63)

� = 1 + 3

8
α2 (66)

Further, Eq. (66) is multiplied by
√

β1 to give a non-dimensional form for the
nonlinear nonlocal frequencywhichwill be employed in the validation anddiscussion
of results (Sect. 6).

5 Forced Vibration Analysis

5.1 Problem Formulation

In the study of forced vibration, the entire equation of motion given by Eq. (41) is
considered as it includes the damping coefficient as well as the external harmonic
forcing function that excites the nanobeam. A Galerkin discretization with a one-
mode approximation is employed to obtain an ordinary differential equation (ODE)
from the partial differential equation (41). The entire equation is then multiplied by
the mode shape function φ(x̂) as indicated in Table 1 and integrated from 0 to 1. As
a result, the resulting ODE is obtained

d2q

dt̂2
+ 2βd

dq

dt̂
+ ω2q + β3q

3 = F0 cos(θ̂ t̂) (67)
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where

βd = 1

2�

∫ 1

0

(
φ − μ̂0φ

′′) ĉφ dx̂ (68)

F0 = 1

�

∫ 1

0
φ F̂d x̂ (69)

and ω2 = β1, β3 and � have been defined in equations Eqs. (44a)–(44c).

5.2 Analysis Using Method of Multiple Scales

For the primary resonance, the linear frequency of the system ω and frequency of
excitation, θ̂ are assumed to be nearly identical, i.e. θ̂ ≈ ω. By assuming a solution
of third order expansion, the damping and forcing terms are magnified to ensure they
appear in the third order expansion.

F0 = ε3F0, βd = ε2βd (70)

The magnified coefficients in Eq. (70) and the solution of initial expansion in
Eq. (50) are subsequently substituted in Eq. (67), to obtain the following set of linear
equations:

ε1 : D2
0q1 + ω2q1 =0 (71a)

ε2 : D2
0q2 + ω2q2 = − 2D0D1q1 (71b)

ε3 : D2
0q3 + ω2q3 = − (D2

1 + 2D0D2)q1 − βd D0q1 − β3q
3
1 − 2D0D1q2

+ F0

(
1

2
ei θ̂T0 + 1

2
e−i θ̂T0

)
(71c)

The solution for Eq. (71a) is assumed as

q1 = A(T1, T2)e
iωT0 + A(T1, T2)e

−iωT0 (72)

where A is an unknown complex function and A is its complex conjugate.
Substitution of Eq. (72) into Eq. (71b) yields

D2
0q2 + ω2q2 = − 2i D1AωeiωT0 + 2i D1Aωe−iωT0 (73)

In order to remove secular terms from the above expression, this requires selecting
the coefficients of eiωT0 and setting them to zero
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− 2i D1Aω = 0 ⇒ D1A = 0 (74a)

− 2i D1Aω = 0 ⇒ D1A = 0 (74b)

This suggests that A is independent of the time scale T1 and is entirely a function of
T2. Substituting this simplification into Eq. (73) and solving the partial differential
equation, yields the solution of Eq. (71b) as:

q2 = 0 (75)

The solutions q1 from Eq. (72) and q2 from Eq. (75) are then substituted into
Eq. (73) while also taking into account the simplification obtained from Eq. (74)

D2
0q3 + q3 = (−2i D2Aω − 3β3A

2A − iβd Aω
)
eiωT0

− β3A
3e3iT0 + 1

2
F0e

i θ̂T0 + cc (76)

Adetuning parameterσ is introducedwhich shows the nearness of θ̂ , the excitation
frequency to the linear natural frequency ω

θ̂ = ω + ε2σ (77)

Secular terms are eliminated from q3 in Eq. (76) by collecting the coefficients of
eiωT0 . Keeping in mind that ε2 = T2

T0
, one obtains

− 2i D2Aω − 3β3A
2A − iβd Aω + 1

2
F0e

iT2σ = 0 (78)

which gives us the second expression for the secular term. A is now expressed in its
polar form by

A = 1

2
aeiψ (79)

where a and ψ are real functions of T2. Substituting Eq. (79) into Eq. (78) and sep-
arating the real and imaginary parts, one obtains the amplitude and phase equations
respectively

− ω
da

dT2
− βdaω + 1

2
F0 sin (−ψ + T2σ) = 0 (80a)

aω
dψ

dT2
− 3

8
β3a

3 + 1

2
F0 cos(−ψ + T2σ) = 0 (80b)

The amplitude and phase equations can be transformed into an autonomous system
(i.e. one in which T2 does not appear explicitly) by setting:
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γ = −ψ + σT2 (81)

And can be rewritten as

− ω
da

dT2
− βdaω + 1

2
F0 sin (γ ) = 0 (82a)

− aω
dγ

dT2
+ ωaσ − 3

8
β3a

3 + 1

2
F0 cos(γ ) = 0 (82b)

Steady-state motion occurs when a′ = γ ′ = 0 [55]. This corresponds to the sin-
gular points of Eq. (82), i.e, they correspond to the solutions of

sin (γ ) = 2βdaω

F0

cos (γ ) = 1

4

(
3β3a3 − 8ωaσ

F0

)
(83)

Squaring and adding these equations, the frequency-response equation can be
determined for the case of primary resonance

a2
[(

3

8

β3a2

ω
− σ

)2

+ β2
d

]
=

(
1

2

F0

ω

)2

(84)

MMS is well proven in developing frequency-response equations in the analysis
of forced vibrations with cubic nonlinearity [55] and therefore it has been employed
in this study.

6 Numerical Results and Discussion

6.1 Validation Studies

The first validation consists of computing the nonlocal linear frequency for different
values of the nonlocal parameter μ̂0 and comparing the results with those obtained by
Kasirajan et al. [33], Reddy [56] and Thai [57]. The beam aspect ratio is L/h = 100
and the material properties are E = 70 GPa and the density ρ = 2700 kg/m3. The
length of the beam is L = 10 nm and breadth and height of the beam are considered to
be b = h = 0.01L . No surface effects are considered in this first validation study. The
values of the non-dimensional natural frequency for different cases of the nonlocal
parameter μ̂0 are reported in Table 2.
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Table 2 Variation of the non-dimensional natural frequency ratio obtained from linear analysis for
the simply supported (S-S) case with various values of the nonlocal parameter μ̂0 (L/h = 100)

μ̂0 Present work Reference [33] Reference [56] Reference [57]

0 9.8691 9.8677 9.8683 9.8679

0.01 9.4154 9.4141 9.4147 9.4143

0.02 9.0190 9.0179 9.0183 9.0180

0.03 8.6688 8.6676 8.6682 8.6678

0.04 8.3565 8.3553 8.3558 8.3555

Table 3 Variation of frequency parameter (ωnonlinear/ωlinear ) with various amplitudes for the C-C
case

A Present work Reference [58] Reference [59]

1 1.0217 1.0222 1.0222

2 1.0868 1.0858 1.0858

3 1.1953 1.1833 1.1833

It can be seen that increasing the nonlocal parameter results in a decrease of the
natural frequency indicating a softening of the nanobeam and that the obtained results
are in agreement with other authors.

The second validation study is the nonlinear frequency parameter defined as the
ratio of the nonlinear natural frequency to the linear natural frequency for various
amplitude ratios obtained from a nonlinear analysis. The geometrical and material
properties are same as those considered in the first validation study. The mode shape
of C-C case is normalized such that the maximum amplitude is equal to 1. Results of
the present study are reported in Table 3 and compared with those obtained from ref-
erences [58] and [59]. The obtained results are in good agreement with the published
data and indicate an increase in the frequency parameter as the amplitude increases.

The third validation study is conducted to study the effect of the nonlocal frequency
ratio, which is defined as the ratio of nonlocal nonlinear natural frequency to classical
nonlinear natural frequency and is given by

Nonlocal frequency ratio = Nonlocal nonlinear natural frequency

Classical nonlinear natural frequency
(85)

The obtained results are reported in Table 4 for the S-S case along with results
published by [60] and [61] for different values of the amplitude A and the gradation
index n. The length of the beam is L = 10nm and the breadth and height of the
beam are taken to be b = h = 0.1L . The material properties of the beam are taken
from [60]. No elastic foundation effects are considered in this validation study. It is
observed that nonlocal frequency ratio increases substantially when the amplitude
and beam length increases, but it decreases slightly as the power index increases.
Again, excellent agreementwas obtained between the obtained and published results.
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Table 4 Variation of nonlocal nonlinear frequency ratio for the S-S case, with μ0 = 2 nm and no
elastic foundation (k̂L = 0, k̂N L = 0, k̂s = 0)

A n L(nm) μ̂0 Present
work

Reference
[60]

Reference
[61]

0 3 10 0.02 0.9139 0.9139 0.9139

20 0.005 0.9762 0.9762 0.9762

1 0 10 0.02 0.9293 0.9293 0.9280

20 0.005 0.9803 0.9803 0.9800

3 10 0.02 0.9291 0.9221 0.9139

20 0.005 0.9803 0.9785 0.9762

2 0 10 0.02 0.9631 0.9631 0.9517

20 0.005 0.9893 0.9893 0.9865

3 10 0.02 0.9626 0.9413 0.9526

20 0.005 0.9892 0.9840 0.9867

In the last three validations, the midplane axis and the physical neutral axis of the
beam are the same. The fourth validation study is conducted to verify the accuracy of
the non-dimensional linear natural frequency obtained from the assumption that the
undeformed plane coincides with the physical neutral axis rather than the midplane
axis. The frequency was computed for material homogeneity index n = 0 and 4 and
for different values of elastic modulus ratios EU/EL . The material properties of the
beam are selected to be the same as those used in the work by Eltaher et al. [42]:
EL = 210 GPa and density ρL = 7800 kg/m3. The length L, breadth b and height
h of the beam are chosen as 100 nm, 10 nm and 1 nm, respectively. The obtained
results are tabulated in Table 5 along with those published by Eltaher et al. [42] and
are found to be in good agreement. In this table, the third column corresponds to
the eigenvalue λ normalized by Eltaher et al. [42] while the fourth column reports
the frequency ω̂ computed using the normalization used in this study (ie, Eqs. (27)
and (29)). The relationship between λ and ω̂ is given in the caption of Table 5. The
obtained and published results indicate that the frequency (or eigenvalue) increases
substantially as the elastic modulus ratio increases and the h0/h remains zero for all
n = 0 cases indicating that the neutral and midplane axes coincide in this case. On
the other hand, a slight increase in the frequency for n = 4 case is witnessed along
with an increase of h0/h indicating a further shifting of the neutral axis from the
midplane axis.
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Table 5 Effect of elastic modulus ratios on the first non-dimensional natural frequency obtained
from the linear analysis for the simply supported (S-S) beam with shifted neutral axis (μ̂0 = 0,

L/h = 100, ρU /ρL = 1 and λ =
√

ω̂
τ
L 4
√

ρL A
EL I

)

EU /EL n = 0 Present Reference [42]

λ ω̂ h0/h λ ω̂ h0/h

1 3.1415 9.8691 0 3.1417 9.8702 0

2 3.7359 9.8691 0 3.7361 9.8701 0

4 4.4427 9.8691 0 4.4430 9.8701 0

8 5.2833 9.8691 0 5.2836 9.8699 0

10 5.5865 9.8691 0 5.5867 9.8698 0

EU /EL n = 4 λ ω̂ h0/h λ ω̂ h0/h

1 3.1415 9.8691 0 3.1417 9.8702 0

2 3.3348 9.8691 0.0555 3.3350 9.8699 0.0556

4 3.5566 9.8691 0.1250 3.5570 9.8711 0.1250

8 3.7867 9.8690 0.1944 3.7869 9.8698 0.1944

10 3.8627 9.8689 0.2142 3.8629 9.8699 0.2143

6.2 Parametric Study

6.2.1 Free Vibration Response

The free vibration response is quantified using three measures, namely, (a) frequency
ratio; (b) surface frequency ratio and (c) non-dimensional frequency. The frequency
and surface frequency ratios are respectively, defined as follows:

Frequency ratio = Nonlinear natural frequency with nonlocal effect

Nonlinear natural frequency without nonlocal effect
(86a)

Surface Frequency ratio = Nonlinear natural frequency with surface effect

Nonlinear natural frequency without surface effect
(86b)

Parametric study, it was decided to vary the nonlocal parameter μ̂0 from 0 to 0.04
and to fix the elastic modulus ratio EU/EL = 10 as the critical cases selected to
study the effect of the frequency ratio over the aspect ratio of the beam as shown in
Fig. 2a–b for S-S and C-C cases respectively. It can be seen that increasing μ̂0 tends
to decreases the hardening effect for both S-S and C-C graded beams. For the S-S
case, the aspect ratio does not seem to affect the frequency ratio for a given value of
μ̂0. However, for the C-C case, a slight increase in the frequency ratio is observed
up to a value of L/h equal to about 20 and then remains constant.

The second part of this section provides the effect of the surface modulus ratio
Es
U/Es

L on the variation of the surface frequency ratio with respect to various ampli-
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Fig. 2 Frequency ratio versus aspect ratio L/H for a S-S beam b C-C beam (ρU /ρL = 1, Es = 0,
EU /EL = 10, n = 0, A = 1, L = 10 nm, k̂L = 0, k̂N L = 0, k̂s = 0)
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Fig. 3 Surface frequency ratio versus amplitude for a–b S-S beam c–d C-C beam (ρU /ρL = 1,
n = 1, A = 1, L/h = 10, L = 10 nm, k̂L = 0, k̂N L = 0, k̂s = 0)

tudes for both S-S and C-C cases. The critical values of the nonlocal parameter and
elastic modulus ratio are chosen as similar to the frequency ratio analysis mentioned
in the previous paragraph. Figure 3a–d show the trend of decrease in the surface
frequency ratio with an increase of amplitudes for both S-S and C-C graded beams,
respectively. It is clear that softening effect is observed when increasing the nonlocal
parameter for the S-S and C-C cases. On the other hand, increasing the amplitude
causes softening effect for both S-S and C-C cases. Overall, the effect of nonlocal
parameter dominates the surface elasticity effects.

In the last part of this section, the effects of various parameters such as nonlo-
cal, material inhomogeneity, elastic modulus ratio, surface elastic modulus ratio and
stiffness coefficients of the elastic foundation on the non-dimensional natural fre-
quency of nanobeam with physical neutral axis for different boundary conditions are
examined using MMS method. The parametric analysis is performed by modelling
the graded nanobeam with a square cross-section (b = h = 0.1L) and the length of
the beam is 10 nm. In the graded nanobeam, the bottom surface (z = −h/2) is rich
with Aluminum properties and grading varies through thickness based on the power
law as given in Eq. (1). The material properties at the bottom surface are E = 70
GPa, density ρ = 2700 kg/m3 and Es = 5.1882 N/m. The mode shape functions from
Table 2 are used to obtain the results.
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Table 6 The effect of elastic modulus ratios on the non-dimensional frequency (�) with physical
neutral axis including surface elasticity effects for a nonlocal S-S graded nanobeam (ρU /ρL = 1,
A = 1, k̂L = 0, k̂N L = 0, k̂s = 0)

n μ̂0 Es
U /Es

L EU /EL = 1 EU /EL = 4 EU /EL = 10

ω̂NL h0/h ω̂NL h0/h ω̂NL h0/h

1 0 1 10.5793 0.0000 10.7373 0.0893 10.9041 0.1294

2 10.5409 0.0342 10.7211 0.1016 10.8939 0.1345

4 10.5139 0.0851 10.7011 0.1228 10.8772 0.1439

8 10.5224 0.1482 10.6875 0.1554 10.8549 0.1604

10 10.5362 0.1691 10.6877 0.1681 10.8477 0.1675

0.04 1 9.2085 0.0000 9.3965 0.0893 9.5949 0.1293

2 9.1634 0.0342 9.3778 0.1016 9.5830 0.1344

4 9.1325 0.0851 9.3548 0.1228 9.5637 0.1439

8 9.1449 0.1481 9.3403 0.1554 9.5382 0.1603

10 9.1622 0.1690 9.3411 0.1681 9.5300 0.1675

4 0 1 10.5793 0.0000 10.5891 0.1054 10.7524 0.1937

2 10.5288 0.0335 10.5771 0.1234 10.7526 0.2021

4 10.4833 0.0875 10.5673 0.1543 10.7572 0.2173

8 10.4732 0.1624 10.5780 0.2015 10.7774 0.2429

10 10.4840 0.1894 10.5914 0.2199 10.7912 0.2536

0.04 1 9.2085 0.0000 9.2219 0.1054 9.4190 0.1937

2 9.1491 0.0335 9.2084 0.1234 9.4198 0.2021

4 9.0964 0.0875 9.1982 0.1543 9.4263 0.2173

8 9.0876 0.1624 9.2135 0.2015 9.4520 0.2429

10 9.1018 0.1894 9.2305 0.2199 9.4691 0.2536

It is noticed from Table 6 that the trend of the nonlinear frequency decreases and
increases on increasing the values of surface modulus ratio for the initial elastic mod-
ulus cases. However, for higher elastic modulus ratio, only a decreasing behavior of
frequency is observed. Thus, the surface modulus effects are dominated in high elas-
tic modulus ratio cases. A substantial decrease in a nonlinear frequency is observed
when increasing the nonlocal parameter. However, the effect of material inhomo-
geneity index is insignificant. On the other hand, it can be seen that the value of h0/h
increases while increasing all the parameters which indicates that the physical neutral
axis of the graded beam shifts from the geometrical central axis. It is also observed
from Table 7 that the effect of elastic foundation significantly increases the natural
frequency, but a more pronounced decrease in a nonlinear frequency is predicted on
increasing the nonlocal parameter and maintains consistency in the results as com-
pared to the Table 6. For the C-C case, it is seen from Table 8 a substantial increase in
the frequency due to the rigidity of this boundary condition. Also, a decreasing and
increasing trend of frequency is observed as the surface modulus ratio increases, for
the higher elastic modulus ratio and the rest of the frequency behavior is similar to
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Table 7 The effect of elastic modulus ratios on the non-dimensional frequency (�) with physical
neutral axis including surface elasticity without elastic foundation effects for a nonlocal S-S graded
nanobeam (ρU /ρL = 1, A = 1, k̂L = 100, k̂N L = 50, k̂s = 15)

n μ̂0 Es
U /Es

L EU /EL = 1 EU /EL = 4 EU /EL = 10

ω̂NL h0/h ω̂NL h0/h ω̂NL h0/h

1 0 1 19.6622 0.0000 19.7406 0.0894 19.8232 0.1294

2 19.6410 0.0342 19.7304 0.1017 19.8168 0.1345

4 19.6225 0.0851 19.7165 0.1229 19.8062 0.1439

8 19.6169 0.1482 19.7031 0.1554 19.7909 0.1604

10 19.6197 0.1691 19.7003 0.1682 19.7854 0.1675

0.04 1 18.9571 0.0000 19.0394 0.0894 19.1262 0.1293

2 18.9351 0.0342 19.0290 0.1017 19.1196 0.1344

4 18.9162 0.0851 19.0148 0.1229 19.0932 0.1439

8 18.9115 0.1481 19.0015 0.1554 19.0932 0.1603

10 18.9149 0.1690 18.9990 0.1682 19.0877 0.1675

4 0 1 19.6622 0.0000 19.6597 0.1054 19.7284 0.1937

2 19.6346 0.0335 19.6506 0.1234 19.7262 0.2021

4 19.6059 0.0875 19.6395 0.1543 19.7243 0.2173

8 19.5878 0.1624 19.6336 0.2015 19.7270 0.2429

10 19.5870 0.1894 19.6355 0.2199 19.7307 0.2536

0.04 1 18.9571 0.0000 18.9554 0.1054 19.0289 0.1937

2 18.9284 0.0335 18.9461 0.1234 19.0269 0.2021

4 18.8990 0.8758 18.9352 0.1543 19.0254 0.2173

8 18.8815 0.1624 18.9304 0.2015 19.0291 0.2429

10 18.8814 0.1894 18.9328 0.2199 19.0333 0.2536

that of S-S case. From Table 9, it is observed that the behavior of frequency decreases
as the values of surface modulus and nonlocal parameter increases which reflect the
softening effects in the graded beam. However, the frequency increases as the elastic
modulus increases which indicates the hardening effect of the graded beam.

6.2.2 Forced Vibration Response

In the parametric study related to forced vibration, the effect of nonlocal parameter,
material inhomogeneity, linear, nonlinear and shear coefficients of the elastic foun-
dation in addition to surface elasticity effects on the frequency response of graded
beam are investigated. Here the damping coefficient is assumed as ĉ = 0.1 and the
external harmonic force amplitude is chosen as F̂0 = 1 for the S-S case. However, for
the C-C case, the harmonic force is set as F̂0 = 2 to demonstrate a clearer nonlinear
frequency response.
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Table 8 The effect of elastic modulus ratios on the non-dimensional frequency (�) with physical
neutral axis including surface elasticity without elastic foundation effects for a nonlocal C-C graded
nanobeam (ρU /ρL = 1, A = 1, k̂L = 0, k̂N L = 0, k̂s = 0)

n μ̂0 Es
U /Es

L EU /EL = 1 EU /EL = 4 EU /EL = 10

ω̂NL h0/h ω̂NL h0/h ω̂NL h0/h

1 0 1 22.6663 0.0000 22.7434 0.0894 22.8243 0.1294

2 22.6442 0.0342 22.7320 0.1016 22.8173 0.1344

4 22.6229 0.0851 22.7159 0.1228 22.8053 0.1439

8 22.6114 0.1481 22.6986 0.1554 22.7877 0.1603

10 22.6116 0.1690 22.6942 0.1681 22.7812 0.1675

0.04 1 19.0252 0.0000 19.1976 0.0893 19.3790 0.1293

2 18.9789 0.0342 19.1755 0.1016 19.3652 0.1344

4 18.9388 0.0851 19.1453 0.1228 19.3420 0.1439

8 18.9280 0.1481 19.1168 0.1554 19.3090 0.1603

10 18.9347 0.1690 19.1111 0.1681 19.2972 0.1675

4 0 1 22.6663 0.0000 22.6594 0.1054 22.7191 0.1937

2 22.6377 0.3352 22.6484 0.1234 22.7157 0.2021

4 22.6058 0.0875 22.6337 0.1543 22.7112 0.2173

8 22.5798 0.1624 22.6211 0.2015 22.7093 0.2429

10 22.5753 0.1894 22.6200 0.2199 22.7110 0.2536

0.04 1 19.0252 0.0000 19.0208 0.1054 19.1731 0.1937

2 18.9649 0.0335 19.0011 0.1234 19.1687 0.2021

4 18.9027 0.0875 18.9775 0.1543 19.1650 0.2173

8 18.8647 0.1624 18.9663 0.2015 19.1719 0.2429

10 18.8639 0.1894 18.9710 0.2199 19.1804 0.2536

Figure 4 depict the effect of material inhomogeneity n on the frequency response
of the beam without and with surface effects for (a)–(b) S-S beam (c)–(d) C-C
beam respectively. For high elastic modulus ratio EU/EL = 10, it is observed that
increasing the power law index results in a decrease in hardening effect of the beam
as can be seen from Fig. 4a. However, a little discrepancy is noticed as the power
law index varies from 1 to 4 due to the surface elasticity effect (see Fig. 4b). It is
understood from Fig. 4c–d that the C-C beam produces narrow frequency responses
and surface elasticity effects are barely noticed when increasing power law index.

Figure 5a–b illustrate the effect of nonlocal parameter on the frequency response of
S-S case.A decreasing trend in the amplitude of frequency response is observed as the
nonlocal parameter increases thereby displaying a hardening effect. However, hardly
no changes due to surface elasticity effects are noticed. On the other hand, despite
the high amplitude response of the C-C beam, less hardening effect is observed as
shown in Fig. 5c–d.
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Table 9 The effect of elastic modulus ratios on the non-dimensional frequency (�) with physical
neutral axis including surface elasticitywith elastic foundation effects (�) for a nonlocal C-C graded
nanobeam (ρU /ρL = 1, A = 1, k̂L = 100, k̂N L = 50, k̂s = 15)

n μ̂0 Es
U /Es

L EU /EL = 1 EU /EL = 4 EU /EL = 10

ω̂NL h0/h ω̂NL h0/h ω̂NL h0/h

1 0 1 28.6908 0.0000 28.7472 0.0894 28.8062 0.1294

2 28.6724 0.0342 28.7366 0.1017 28.7997 0.1345

4 28.6514 0.0851 28.7206 0.1229 28.7885 0.1439

8 28.6328 0.1482 28.7010 0.1554 28.7712 0.1604

10 28.6287 0.1691 28.6948 0.1682 28.7645 0.1675

0.04 1 28.4434 0.0000 28.5445 0.0894 28.6503 0.1294

2 28.4107 0.0342 28.5259 0.1017 28.6389 0.1345

4 28.3739 0.0851 28.4979 0.1229 28.6191 0.1439

8 28.3421 0.1482 28.4637 0.1554 28.5888 0.1604

10 28.3354 0.1691 28.4531 0.1682 28.5771 0.1675

4 0 1 28.6908 0.0000 28.6781 0.1054 28.7088 0.1937

2 28.6672 0.3352 28.6667 0.1234 28.7039 0.2021

4 28.6375 0.0875 28.6494 0.1543 28.6963 0.2173

8 28.6048 0.1624 28.6286 0.2015 28.6873 0.2429

10 28.5951 0.1894 28.6227 0.2199 28.6852 0.2536

0.04 1 28.4434 0.0000 28.4218 0.1054 28.4789 0.1937

2 28.4014 0.0335 28.4018 0.1234 28.4704 0.2021

4 28.3491 0.08758 28.3718 0.1543 28.4574 0.2173

8 28.2926 0.1624 28.3364 0.2015 28.4425 0.2429

10 28.2763 0.1894 28.3267 0.2199 28.4393 0.2536

Figure 6a–d show the effect of the foundation linear coefficient k̂L on the frequency
response without and with surface effects for (a)–(b) S-S beam (c)–(d) C-C beam
respectively. According to Fig. 6a, it can be concluded that upon increasing the linear
coefficient leads to a decrease in the hardening effect of the graded beam. This effect
can be understood from the expression β1 which contains the square of the linear
frequency and also depends on linear and shear coefficients. Figure 6c shows narrow
curves and the linear coefficient effect is insignificant in the C-C case. However,
there are no changes observed due to surface elasticity effects as can seen from
Fig. 6b, d. Figure 7a–d depict the effect of the foundation nonlinear coefficient k̂N L

on the frequency response without and with surface effects for (a)–(b) S-S beam and
(c)–(d) C-C beam respectively. It can be observed from Fig. 7a that increasing the
nonlinear stiffness coefficient substantially improves the hardening effect in the S-S
beam while a little hardening is noticed in the C-C beam as illustrated in Fig. 7c.
This effect is due to the constant β3 which is dependent on the nonlinear coefficient.
Figure 8a–d illustrate the effect of the foundation shear coefficient k̂S on the frequency
response without and with surface effects for (a)–(b) S-S beam (c)–(d) C-C beam
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Fig. 4 Effect of material inhomogeneity n on frequency response of FG beam without and with
surface effects for a–b S-S beam c–d C-C beam respectively (ρU /ρL = 1, μ̂0 = 0.02, k̂L = 10, k̂N L
= 50, k̂s = 5)

respectively. It can be concluded that increasing the shear coefficient provides a
softening effect in the S-S beam, as shown in Fig.8a. However, the effect of the shear
coefficient is less dominant in the C-C beam as clearly evident from Fig. 8c. Finally,
the overall effect of shear coefficient is greater than that of the linear coefficient on
the frequency response. It is observed that the nonlocal effect has more impact than
the surface elasticity effect and power law index on the free and vibration studies.
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Fig. 5 Effect of nonlocal parameter μ̂0 on frequency response of FG beam without and with
surface effects for a–b S-S beam c–d C-C beam respectively (ρU /ρL = 1, n = 2, k̂L = 10, k̂N L =
50, k̂s = 5)

7 Conclusions

In this study the effects of surface elasticity on the nonlocal nonlinear, free and
forced response of a graded Euler-Bernoulli beam resting on a nonlinear elastic
foundation were investigated. The geometric nonlinearity of the beam was mod-
eled using von Kármán nonlinearity and the length-scale effect was modeled using
Eringen’s nonlocal elasticity model. Instead of adopting the usual choice of the geo-
metrical central axis, this study uses instead the physical neutral axis to eliminate the
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Fig. 6 Effect of linear coefficient of elastic foundation k̂L on frequency response of FG beam
without and with surface effects for a–b S-S beam c–d C-C beam respectively (ρU /ρL = 1, n = 2,
μ̂0 = 0.02, k̂N L = 50, k̂s = 5)

stretching-bending coupling effect due to the unsymmetricalmaterial variationwhich
was shown to eliminate the quadratic nonlinearity from the equation ofmotion. These
equations were obtained using the principle of virtual displacements while account-
ing for surface effects. A first-order Galerkin approximation was utilized to obtain
the second-order nonlinear ordinary differential equation which was solved using
the MMS to obtain the nonlinear natural frequency and the frequency response of
the graded nanobeam. The results obtained from the present study were validated
with preliminary cases in the existing literature and close agreements were obtained.
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Fig. 7 Effect of nonlinear coefficient of elastic foundation k̂N L on frequency response of FG beam
without and with surface effects for a–b S-S beam c–d C-C beam respectively (ρU /ρL = 1, n = 2,
μ̂0 = 0.02, k̂L = 10, k̂s = 5)

A parametric study was conducted to investigate the effect of the inhomogeneity
index, the nonlocal parameter, the surface modulus ratio, the elastic modulus ratio,
the foundation coefficients of elastic and different boundary conditions on the free
and forced vibration responses of the graded nanobeam. The essential conclusions
of this study can be summarized as follows:

• The nonlocal effect tends to decrease the natural frequency and this decreasing
effect is more visible in the C-C nanobeam than the S-S nanobeam. However, the
material length scale effect is insignificant on the frequency ratio.
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Fig. 8 Effect of shear coefficient of elastic foundation k̂S on frequency response of FG beam
without and with surface effects for a–b S-S beam c–d C-C beam respectively (ρU /ρL = 1, n = 2,
μ̂0 = 0.02, k̂L = 10, k̂N L = 50)

• Inclusion of surface elasticity also reduces the natural frequency on increasing the
vibration amplitude in the graded beam. Yet, the surface elasticity effect has less
impact than the nonlocal effect.

• A decrease in a natural frequency is observed when the nonlocal parameter
increases and it contributes more than the power law index, surface modulus,
elastic modulus. However, the nonlinear frequency is significantly influenced by
the coefficients of elastic foundation.
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• An increase in the power law index provides a softening effect on the system,
whereas introduction of nonlocal parameter increases a hardening effect on the
frequency response of the graded beam.

• The increase in the nonlinear coefficient of the elastic foundation provides a hard-
ening effect in the frequency response of the graded nanobeam, however the
increase in the linear and shear coefficients yield the opposite effect.

• The influence of the surface elasticity has only a subtle effect on the frequency
response of the S-S and C-C graded nanobeams.

• The authors also showed that the choice of the physical neutral axis leads to the
elimination of the quadratic nonlinearity from the equation of motion.
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Appendix

Midplane axis equation of motion to be compared with Eq. (28) (surface effects
only):

¨̂w − α̂ ¨̂w′′ + ĉ ˙̂w + ŵ′′′′ − ŵ′′
∫ 1

0

[
κ0

(
ŵ′)2 − κ1ŵ

′′
]
dx̂ − ksw

′′

+k̂L ŵ + k̂N Lŵ
3 = F̂ cos(θ̂ t̂) (87)

Midplane axis equation of motion to be compared with Eq. (41 ) (both nonlocal
and surface effects):

¨̂w − μ̂0
¨̂w′′ − α̂

( ¨̂w′′ − μ̂0
¨̂w′′′′

)
+ ĉ

( ˙̂w − μ̂0
˙̂w′′

)
+ ŵ′′′′

− (
ŵ′′ − μ̂0ŵ′′′′) ∫ 1

0

[
κ0

(
ŵ′)2 − κ1ŵ′′

]
dx̂ + k̂L

(
ŵ − μ̂0ŵ′′)

+k̂N L

(
ŵ3 − μ̂0

(
6ŵ

(
ŵ′)2 + 3ŵ2ŵ′′

))
− k̂s

(
w′′ − μ0w′′′′) = F̂ cos(θ̂ t̂) (88)

Midplane axis discretized forced vibration equation of motion to be compared
with Eq. (68 ) (both nonlocal and surface effects):

1
d2q

dt̂2
+ 2βd

dq

dt̂
+ β1 q + β2 q

2 + β3 q
3 = F̂ cos(θ̂ t̂) (89a)

q(0) = A, q̇(0) = 0 (89b)

where the coefficients βi (i = 1, 2, 3) are defined as
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β1 = 1

�

∫ 1

0

{
φ(4) + k̂L

(
φ − μ̂0φ

′′) − k̂S
(
φ′′ − μ̂0φ

(4))} φ dx (90a)

β2 = 1

�

∫ 1

0

{(
φ′′ − μ̂0φ

(4)
) ∫ 1

0
−κ1φ

′′ dx
}
φ dx̂ (90b)

β3 = 1

�

∫ 1

0
k̂N L

(
−3μ̂0φφ′′ − 6μ̂0

(
φ′)2 + φ2

)
φ dx̂

+ 1

�

∫ 1

0
[κ0(μ̂0φ

′′′′ − φ′′)
∫ 1

0

(
φ′)2 dx̂]φ dx̂

(90c)

βd = 1

2�

∫ 1

0

(
φ − μ̂0φ

′′) ĉφ dx̂ (90d)

F0 = 1

�

∫ 1

0
φ F̂d x̂ (90e)

in which � = ∫ 1
0

{
φ − μ̂0φ

′′ − α̂
(
φ′′ − μ̂0φ

′′′′)}φ dx̂ , κ0 = Ãr2τ 2/2m0L4, κ1 =
B̃rτ 2/m0L4.
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Finite Element Nonlocal Integral
Elasticity Approach

Maysam Naghinejad, Hamid Reza Ovesy, Mohsen Taghizadeh,
and Seyyed Amir Mahdi Ghannadpour

Abstract In the current chapter, a finite element theory has been developed based
on the nonlocal integral elasticity using Hamilton’s principle. Formulations have
been derived using Euler-Bernoulli beam theory and classical plate theory in order
to study the bending, buckling and vibration behavior of nanostructures. The cur-
rent method is capable of modelling complex geometries and boundary conditions.
Besides, effects of nonlocal parameter, geometrical parameters, boundary condi-
tions and viscoelastic parameter on the mechanical behavior of nano-scaled beams
and plates have been studied.

1 Introduction

There are several fields, which cannot be examined thoroughly using classical theo-
ries. Solid fracture, stress field on the dislocation core and crack tip, singularities at
points where loads are applied, sharp corners and discontinuities in the body, elastic
short-wavelength behavior prediction, and viscosity increase of fluid flows in micro-
scopic channels are some weaknesses of the classical theories. Besides, polaritons,
gyrotropic effects and superconductivity cannot be investigated using the classical
field theories. Also, classical continuum field theories are unable to predict the cor-
rect behavior of materials in micro and nano-scale. So, for studying the mechanical
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behavior ofmaterials in small-scale and phenomena that inherently happens in small-
scale, atomic or nonlocal theories, which can consider the long-range interatomic
force effects, should be employed. Atomic theories have relatively higher computa-
tional cost than nonlocal theories.

In summary, in nonlocal theories, the behavior of the material at one point is a
function of the state of all points. One of the most popular non-local theories for
studying nano-scale structures is Eringen’s nonlocal theory [1]. In Eringen’s nonlo-
cal theory, stress at a point is a function of strains at all points of the material [1].
Under certain conditions, the nonlocal differential form could be extracted from the
more general nonlocal integral theory. Despite the relative simplicity of nonlocal
differential elasticity theory, it has some restrictions, e.g., some individual kernels
must be considered for nonlocal differential elasticity to be derived, applying the
natural boundary conditions for nano-plates are somehow ambiguous, investigating
the complex geometries are intricate. Therefore, it is more reasonable to use the
nonlocal integral theory for the accuracy of some applications and problems. Some
researchers have conducted some investigations using the nonlocal integral elastic-
ity theory. Finite element nonlocal integral elasticity theory, which first have been
prepared by Polizzotto [2], is one of the best-known methods, that have advantages
of both the nonlocal integral theory and finite element method. Also, Marotti de
Sciarra [3, 4] has proved the complete family of variational principles, developed a
consistent nonlocal finite element procedure based on a suitable definition of weight
function and provided some numerical applications for a bar in tension. The nonlo-
cal FE method has been then further developed by Pisano et al. [5] (for analyzing a
nano-plates under tension), Taghizadeh et al. [6, 7] (for analyzing the bending and
buckling of nano-beams and nano-plates), Koutsoumaris et al. [8–10] (for investi-
gating the bending and dynamic response of nano-beams considering the modified
kernel type), Norouzzadeh and Ansari [11] (for Bending of nanobeams), Tuna and
Kirca [12] (for analyzing the bending, buckling and vibration of nano-beams) and
Naghinejad and Ovesy [13–16] (for considering the viscoelastic effects and studying
the vibrations and buckling of nano-beams and nano-plates).

For accuracy of analyzing the nanostructures in some applications, the viscoelas-
tic properties have been taken into account, in some studies. For example, the proper
functioning of oscillators depends on considering their damping characteristics [17].
Also, by assuming the viscoelastic characteristics in the nano-scale mass sensors,
which works by measuring the shift in the vibration frequency, more accurate detec-
tions can be achievable. Also, considering these properties leads to the excellent
image quality of atomic force microscopes (AFM) [18]. Knowing the importance of
considering viscoelasticity in some applications of nanostructures, recently some
researchers have combined the nonlocal theory with viscoelastic properties. For
instance, Ghavanloo and Fazalzadeh [19] have studied the flexural vibration of vis-
coelastic carbon nanotubes conveying fluid and embedded in viscous fluid. They con-
sidered the nonlocalTimoshenkobeammodel andusedHamilton’s principle to derive
the formulations. Lei et al. [20, 21] have investigated the free vibration of nano-beams
based on nonlocal differential elasticity theory by considering viscoelastic properties.
They obtained complex frequencies by the transfer function method. Pouresmaeeli



Finite Element Nonlocal Integral Elasticity Approach 263

et al. [22] have investigated the vibration behavior of viscoelastic orthotropic nano-
plates using the nonlocal differential theory and the Kelvin-Voigt viscoelastic model.
They have studied the effects of nonlocal parameter, structural damping, stiffness
and damping coefficient of the foundation on the vibration frequency. Free vibra-
tion of multi-nanoplate system embedded in viscoelastic medium have been studied
by Karlicic et al. [23] using nonlocal differential theory. Governing equations have
been derived using D’Alamberts principle and Kirchhoff-Love plate theory. Nagh-
inejad and Ovesy [15] have developed a non-local integral finite element method to
investigate the free vibration of viscoelastic Euler-Bernoulli nano-scaled beam. The
formulations have been obtained using Hamilton’s principle, and effects of different
parameters and boundary conditions on the free vibration behavior have been dis-
cussed. They have also studied the viscoelastic buckling of nano-scaled beams using
the nonlocal differential theory and the Kelvin-Voigt viscoelastic model [14].

In the current chapter, firstly, the constitutive equations of nonlocal elasticity and
viscoelasticity theories are derived, then the aforementioned finite element nonlocal
integral elasticity theory is developed using Hamilton’s principle and the formula-
tions are explained. Besides, applying the boundary conditions for beams and plates
in the current method and the governing formulations of bending, buckling, and
vibration are discussed. Finally, bending, buckling, and vibration of nano-scaled
beams and plates are investigated through numerical examples, and the effects of
different parameters on the mechanical behavior are studied.

2 Nonlocal Integral Theory

2.1 Elastic Constitutive Equations

In classical elasticity theory, the stress-strain relations are stated only for a single
material point. Whereas, weighted averages of a material state-variable over a region
should be taken into account for defining the constitutive law at a point, in an integral-
type nonlocal theory. Eringen and Edelen [24, 25] developed the theories of nonlocal
elasticity in which the nonlocal characteristics have been attached to many fields,
includingmass, entropy, internal energy, and body forces. Because of their ambiguity,
yet to be verified and be used in real problems, simplifications have been considered
later. After that, equilibrium and kinematic equations have been used as a standard
form, and only the nonlocal form of the constitutive equations have been considered
[26, 27]. Thus, in mentioned non-local theory, stress at any point of the material is
a function of all strains at the vicinity. For a linear isotropic elastic continuum, the
constitutive equation is given by Eq. (1)

t (x) =
∫

V

α
(∣∣x′ − x

∣∣ , τ
)
σ

(
x′) dV, ∀x ∈ V (1)



264 M. Naghinejad et al.

in which t, α and σ are nonlocal stress tensor, nonlocal kernel function, and local
stress tensor respectively. The local stress tensor is written as σ (x) = D : ε (x) in
whichD is the fourth-order elasticmoduli tensor, and ε is a strain tensor. The nonlocal
kernel is a function of distance, between any point in the domain and reference point,
and τ = e0a/ l in which a and l are the internal (e.g. lattice parameter or granular
distance) and external (e.g. wavelength or crack length) characteristic lengths. e0
is a constant for any material which can be calibrated by comparing the results
with different methods such as molecular dynamics or lattice dynamics according to
various parameters, e.g. geometry, mode shapes and boundary conditions [13]. As a
result, the nonlocal stress is expressed as a weighted value of the strain field:

t (x) =
∫

V

α
(∣∣x′ − x

∣∣ , τ
)
D : ε

(
x′) dV ′, ∀x ∈ V (2)

It is known that, if the nonlocal kernel was taken as the Dirac delta function, the
nonlocal constitutive equation reduces to that of the local theory. It is worth noting
that the nonlocal constitutive equation can be considered as two-phase [2, 5]. The
first phase corresponds to the local part (local fraction ζ1) and the second phase to the
nonlocal part (non-local fraction ζ2). It is evident that ζ1 + ζ2 = 1 and ζ1, ζ2 > 0. ζ1
and ζ2 can be obtained using different methods. An approach to calculate values of
ζ1 and ζ2 can be determining the contribution of reference point and all points in the
region (except the reference point) on the stiffness [13, 15, 28, 29]. For example, in
the current study, for determining the values of ζ1 and ζ2 on each element, nonlocal
kernel is integrated on the whole domain (the value is called I1). Then kernel is
integrated on the element containing the reference point (namely I2). Obviously the
remaining portion is named I3 = I1 − I2. So, the ratio of I2 to I1 corresponds to ζ1
and the ratio of I3 to I1 corresponds to ζ2. The two-phase model mathematically
handles the constitutive equation. In particular, the two-phase model transforms the
first kind Fredholm integral equation into a second kind one. In applications in a finite
domain, the first kindFredholm integral equation leads to an ill-posed problem,which
is difficult to deal with [30]. Assuming the kernel function as follows:

α
(∣∣x′ − x

∣∣ , τ) = ζ1δ
(
x′ − x

) + ζ2ᾱ
(∣∣x′ − x

∣∣ , τ)
(3)

in which, ᾱ is the typical nonlocal kernel function, Eq. (2) could be written as the
two-phase nonlocal constitutive equation:

t (x) = ζ1σ (x) + ζ2

∫

V

ᾱ
(∣∣x′ − x

∣∣ , τ
)
D : ε

(
x′) dV ∀x ∈ V (4)

The better performance of the latter form in some applications has led to the usage
of this form over the original form in some recent articles [13, 15, 16, 31].
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2.2 Viscoelastic Constitutive Equations

For a nonlocal viscoelastic material, Eq. (1) can be written as follows [15, 20]

tve (x) =
∫

V

α
(∣∣x′ − x

∣∣ , τ
)
σ ve

(
x′) dV ∀x ∈ V (5)

in which, tve and σ ve are the nonlocal and local viscoelastic stress tensors, respec-
tively [15, 20]. It is known that the viscoelastic constitutive equation for a linear
homogeneous solid is as follows.

σ ve = G (t) ε (0) +
t∫

0

G (t − T )
∂ε (T )

∂T
dT (6)

whereG is the stress relaxation tensor and ε is the strain tensor. Substituting Eq. (6)
into Eq. (5) gives

tve (x) =
∫

V

α
(∣∣x′ − x

∣∣ , τ
)
G (t) ε

(
x′, 0

)
dV

+
∫

V

α
(∣∣x′ − x

∣∣ , τ
)
⎛
⎝

t∫

0

G (t − T )
∂ε

(
x′, T

)
∂T

dT

⎞
⎠ dV ∀x ∈ V (7)

Equation (7) is the constitutive equation of a nano-material considering nonlo-
cal integral theory and viscoelastic properties. The relaxation tensor of a general
viscoelastic model (see Fig. 1) could be stated as

G (t) = G0 −
N∑

n=1

Gn

(
1 − e−tTn

−1
)

= G∞ +
N∑

n=1

Gne
−tTn

−1
(8)

in which, G0 = G∞ +�Gn is the initial relaxation tensor and Tn = Gn
−1ηn are the

relaxation times (in which Tn and ηn are diagonal). Using the Boltzmann super-
position principle and substituting Eq. (8) into Eq. (7), the nonlocal viscoelastic
constitutive equation is obtained as (due to the fact that, as time passes the values of
tTn

−1 and strain increases, and the value of Tn is relatively small, we can neglect∑
Gne−tT−1

n ε (0) compared to other terms)
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Fig. 1 General viscoelastic
model schematic according
to relaxation modulus

tve (x) =
∫

V

α
(∣∣x′ − x

∣∣ , τ
)
G∞ε

(
x′, t

)
dV

+
∫

V

α
(∣∣x′ − x

∣∣ , τ
)
⎛
⎝

t∫

0

N∑
n=1

Gne
−(t−T )Tn

−1 ∂ε
(
x′, T

)
∂T

dT

⎞
⎠ dV (9)

Different viscoelastic models are assumed by considering different values for
parameters of Eq. (9). For example, by taking N = 1 and G1 → ∞ Kelvin-Voigt
model is given, and by considering N = 1, the three-parameter standard viscoelastic
model can be yielded [20]. By considering the above parameters the Kelvin-Voigt
and the three-parameter standard model are respectively obtained as follows. For the
Kelvin-Voigt model the derivation process is as follows

tve (x) =
∫

V

α
(∣∣x′ − x

∣∣ , τ
)
G∞ε

(
x′, t

)
dV

+
∫

V

α
(∣∣x′ − x

∣∣ , τ
) (

G1e
−(t−T )T1

−1 ∂ε
(
x′, T

)
∂T

dT

)
dV (10)

By carrying out the integration, considering the Kelvin-Voigt assumptions,

tve (x) =
∫

V

α
(∣∣x′ − x

∣∣ , τ
) (

G∞ε
(
x′, t

) + ∂ε
(
x′, t

)
∂t

G1T1

)
dV (11)

So,

tve (x) =
∫

V

α
(∣∣x′ − x

∣∣ , τ
) (

G∞ε
(
x′, t

) + ∂ε
(
x′, t

)
∂t

η1

)
dV (12)

and by introducing Td = G∞−1η1, finally we have
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tve (x) =
∫

V

α
(∣∣x′ − x

∣∣ , τ
)
G∞

(
ε

(
x′, t

) + Td
∂ε

(
x′, t

)
∂t

)
dV (13)

It is noted that the classical form of the above constitutive equation is as follows:

σ ve = G∞
(

ε + Td
∂ε

∂t

)
(14)

Also considering the three-parameter viscoelastic model, Eq. (9) can be simply
written as

tve (x) =
∫

V

α
(∣∣x′ − x

∣∣ , τ
)
G∞ε

(
x′, t

)
dV

+
∫

V

α
(∣∣x′ − x

∣∣ , τ
) (

G1e
−(t−T )T1

−1 ∂ε
(
x′, T

)
∂T

dT

)
dV (15)

For a two-phase nonlocal theory, using Eqs. (4) and (9) the constitutive equation
will be obtained as

tve (x) = ζ1

⎛
⎝G∞ε (x, t) +

t∫

0

N∑
n=1

Gne
−(t−T )T−1

n
∂ε (x, T )

∂T
dT

⎞
⎠

+ζ2

∫

V

ᾱ
(∣∣x′ − x

∣∣ , τ
)
G∞ε

(
x′, t

)
dV

+ζ2

∫

V

ᾱ
(∣∣x′ − x

∣∣ , τ
)
⎛
⎝

t∫

0

N∑
n=1

Gne
−(t−T )T−1

n
∂ε

(
x′, T

)
∂T

dT

⎞
⎠ dV (16)

2.3 Notes on the Kernel Type

Looking at the constitutive Eq. (1), the three dimensional nonlocal kernel
ᾱ

(∣∣x′ − x
∣∣ , τ)

has the (length)−3 dimension. Besides, it is known that ᾱ is a function
of the characteristic length ratio (a/ l). Also, the nonlocal kernel has some notable
specifications. For example, as it has been expressed by Eringen [1]:

(i) Nonlocal kernels maximum value happens at the reference point (i.e., x′ = x).
(ii) ᾱ converts to Dirac-delta whenever τ → 0, i.e., the classical theory must be

extracted when τ → 0.
(iii) ᾱ can be determined for a certain material by curve-fitting the plane waves

dispersion-curves with those of experiments or atomic lattice dynamics.
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Fig. 2 Modifications of kernel function near the boundaries

It is noted that because of defining the kernel function on the infinite domain, for
using it in the finite domain it must be normalized and, in the current approach,
truncated at the boundaries [5, 7, 13] (e.g., see Fig. 2). The normalization process is
carried out since the nonlocal kernel should satisfy the following condition

∫

V∞

α
(∣∣x′ − x

∣∣ , τ)
dV = 1 (17)

where V∞ is an infinite domain, inwhich theworking domain is embedded [2, 5]. The
condition (17) also guarantees that for an infinite domain, when the strain is uniform,
the related stress will also be uniform [2]. For this purpose in the current study the
kernel function, which may violate the condition (17) considering a finite length or
truncating near the boundaries, is normalized by dividing it by the normalization
parameter. The normalization parameter is obtained by integrating the kernel value
in the finite domain of the problem.

Some examples of kernel function are [1]:

• One-dimensional form:

α
(∣∣x ′ − x

∣∣ , e0a
l

)
=

{
1
e0a

(
1 − |x ′−x|

e0a

) ∣∣x ′ − x
∣∣ ≤ e0a

0
∣∣x ′ − x

∣∣ > e0a
(18)

α
(∣∣x ′ − x

∣∣ , e0a
l

)
= 1

2e0a
exp

(− ∣∣x ′ − x
∣∣ /e0a)

(19)

α
(∣∣x ′ − x

∣∣ , e0a
l

)
= 1√

πe0al
exp

(
−(

x ′ − x
)2

/e0al
)

(20)

• Two-dimensional form:

α
(∣∣x′ − x

∣∣ , e0a
l

)
= 1

2π(e0a)2
K0(

∣∣x′ − x
∣∣ /e0a) (21)
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in which K0 is the modified Bessel function of the second kind.

α
(∣∣x′ − x

∣∣ , e0a
l

)
= 1

πe0al
exp

(− (
x′ − x

)
.
(
x′ − x

)
/e0al

)
(22)

• Three-dimensional form

α
(∣∣x′ − x

∣∣ , t) = 1

8(π t)
3
2

exp

(
−

(
x′ − x

)
.
(
x′ − x

)
4t

)
(23)

where t = e0al/4.

α
(∣∣x′ − x

∣∣ , e0a
l

)
= 1

4π(e0a)2

× 1√
(x′ − x) . (x′ − x)

exp

(
−

√
(x′ − x) . (x′ − x)

e0a

)
(24)

In addition to the above solution to deal with the normalization problem, Kout-
soumaris et al. [9, 30] have used the so-calledmodified kernel which has been defined
by Bazant and Jirasek [32]. This modified kernel preserves symmetry with respect to
x, satisfies the normalization condition at each point of a finite domain V and satis-
fies all the properties of a nonlocal kernel [9]. In addition it is seen that the modified
kernel recalls the locality only when the normalization condition is violated [9] (i.e.
near the boundaries).

αmod
(∣∣x − x′∣∣ , τ

) =
⎛
⎝1 −

∫

V

α
(∣∣x′ − x

∣∣ , τ)
dV

⎞
⎠ δ

(∣∣x − x′∣∣)

+ α
(∣∣x − x′∣∣ , τ)

(25)

3 Nonlocal Integral Finite Element Method

3.1 Variational Equations

In this section, the finite element nonlocal integral method is developed considering
viscoelastic properties as it has been proposed by Polizzotto [2] for elastic materi-
als. The finite element formulations are derived using Hamilton’s principle based
on nonlocal integral theory. These formulations are then extended in the following
sections to study the bending, buckling, and vibration of nanostructures. Considering
the two-phase non-local theory using Eqs. (4) and (5), and taking into account the
inertia effects, the total potential energy can be written as follows
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 = 1

2
ζ1

∫

V

ε (x) : σ ve (x) dV

+ 1

2
ζ2

∫

V

∫

V ′

α
(∣∣x′ − x

∣∣ , τ
)
ε (x) : σ ve

(
x′) dV ′dV

− Winrt − Wext − Wg (26)

where Winrt is the work done by inertia forces, Wext is the work done by external
forces, andWg shows the energy due to geometric stiffness. Considering the Kelvin-
Voigt model (Eqs. (13)), (26) can be written as [15]


 = 1

2
ζ1

∫

V

ε (x) : D :
(

ε (x, t) + Td
∂ε (x, t)

∂t

)
dV

+ 1

2
ζ2

∫

V

∫

V ′

α
(∣∣x′ − x

∣∣ , τ
)
ε (x) : D : ε

(
x′) dV ′dV

+ 1

2
ζ2

∫

V

∫

V ′

α
(∣∣x′ − x

∣∣ , τ
)
ε (x) : D :

(
Td

∂ε
(
x′, t

)
∂t

)
dV ′dV

− Winrt − Wext − Wg (27)

in which D = G∞ is the fourth rank elastic moduli tensor. It is noted that the above
statement can be extended for other viscoelastic models by using the explained
procedure. Now, applying the variations, the total potential energy (Eq. (27)) is
minimized as

δ
 = ζ1

∫

V

δε (x) : D :
(

ε (x, t) + Td
∂ε (x, t)

∂t

)
dV

+ ζ2

∫

V

∫

V ′

α
(∣∣x′ − x

∣∣ , τ
)
δε (x) : D : ε

(
x′) dV ′dV

+ ζ2

∫

V

∫

V ′

α
(∣∣x′ − x

∣∣ , τ
)
δε (x) : D :

(
Td

∂ε
(
x′, t

)
∂t

)
dV ′dV

− δWinrt − δWext − δWg = 0 (28)

By substituting the corresponding terms of Winrt , Wext and Wg , we have

δ
 = ζ1

∫

V

δε (x) : D :
(

ε (x, t) + Td
∂ε (x, t)

∂t

)
dV

+ ζ2

∫

V

∫

V ′

α
(∣∣x′ − x

∣∣ , τ
)
δε (x) : D : ε

(
x′) dV ′dV
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+ ζ2

∫

V

∫

V ′

α
(∣∣x′ − x

∣∣ , τ
)
δε (x) : D :

(
Td

∂ε
(
x′, t

)
∂t

)
dV ′dV

−
∫

V

δu · (−ρü) dV −
∫

V

b̄ · δudV

−
∫

St

t̄ · δu dS −
∫

V

σ 0mδεnl (x) dV = 0 (29)

where εnl is the nonlinear strain tensor, σ 0m is the external compressive stress, ρ

is the mass density, t̄ and b̄ are respectively the surface force on the surface St and
body force in volume V and u is the displacement field. It is seen that Eq. (29) is
of a general form that can be used for analyzing the various mechanical behavior
of nanostructures. For example, it can be used for extracting the formulations for
studying the bending, buckling, and vibration.

3.2 Finite Element Formulations

In this section, the foundation of finite element formulation is to be established. For
developing the finite element nonlocal integral theory Eq. (29) should be discretized.
So, domain V will be partitioned to N subdomains, and displacement field u(x) and
strain tensor ε(x) of the n-th element can be written as

u (x) = Nn (x) dn, n = 1, . . . , N (30)

ε (x) = Bn (x) dn, n = 1, . . . , N (31)

MatricesNn (x),Bn (x) anddn (x) include the shape functions, corresponding par-
tial derivatives, and node degrees of freedom, respectively. Applying the discretizing
process and using Eqs. (30) and (31), then Eq. (29) can be written as

δ
 = ζ1

N∑
n=1

δdT
n

⎛
⎝

∫

Vn

BT
n : D : BndV

⎞
⎠dn

+ζ1

N∑
n=1

δdT
n

⎛
⎝

∫

Vn

TdBT
n : D : BndV

⎞
⎠ ḋn
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+ζ2

N∑
n=1

N∑
m=1

δdT
n

⎛
⎝

∫

Vn

∫

Vm

α
(∣∣x′ − x

∣∣ , τ)
BT
n : D : B′

mdV
′dV

⎞
⎠dm

+ζ2

N∑
n=1

N∑
m=1

δdT
n

⎛
⎝

∫

Vn

∫

Vm

Tdα
(∣∣x′ − x

∣∣ , τ)
BT
n : D : B′

mdV
′dV

⎞
⎠ ḋm

−
N∑

n=1

⎛
⎝δdT

n

∫

Vn

NT
n .b̄ dV

⎞
⎠ −

N∑
n=1

⎛
⎜⎝δdT

n

∫

Stn

NT
n .t̄ dS

⎞
⎟⎠

−
N∑

n=1

⎛
⎝δdT

n

⎛
⎝

∫

Vn

NT
n . (−ρNn) dV

⎞
⎠ d̈n

⎞
⎠

−
N∑

n=1

(
δdT

n

(∫
Vn
Bg
n
T : σ 0 : Bg

ndV
)
dn

)
= 0 (32)

It is noted that matrix Bg
n is related to nonlinear strains and ḋn = ∂dn/∂t . More-

over, as it has been defined ζ1 and ζ2 correspond to the local and nonlocal fractions
(ζ1 + ζ2 = 1, ζ1, ζ2 > 0). Using the Boolean matrix Qn the degrees of freedom of
the n-th element (dn) is connected to the structural DOF matrix (U)

dn = QnU (33)

Substituting Eq. (33) into Eq. (32) gives

δ
 = ζ1

N∑
n=1

δUTQT
n

⎛
⎝

∫

Vn

BT
n : D : BndV

⎞
⎠QnU

+ζ1

N∑
n=1

δUTQT
n

⎛
⎝

∫

Vn

TdBT
n : D : BndV

⎞
⎠QnU̇

+ζ2

N∑
n=1

N∑
m=1

δUTQT
n

⎛
⎝

∫

Vn

∫

Vm

α
(∣∣x′ − x

∣∣ , τ)
BT
n : D : B′

mdV
′dV

⎞
⎠QmU

+ζ2

N∑
n=1

N∑
m=1

δUTQT
n

⎛
⎝

∫

Vn

∫

Vm

Tdα
(∣∣x′ − x

∣∣ , τ)
BT
n : D : B′

mdV
′dV

⎞
⎠QmU̇

−
N∑

n=1

⎛
⎝δUTQT

n

∫

Vn

NT
n .b dV

⎞
⎠ −

N∑
n=1

⎛
⎜⎝δUTQT

n

∫

Stn

NT
n .t dS

⎞
⎟⎠
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−
N∑

n=1

⎛
⎝δUTQT

n

⎛
⎝

∫

Vn

NT
n . (−ρNn) dV

⎞
⎠QnÜ

⎞
⎠

−
N∑

n=1

(
δUTQT

n

(∫
Vn
BgT

n : σ 0 : Bg
ndV

)
QnU

)
= 0 (34)

Equation (34) is the governing finite element equation based on the nonlocal
integral theory considering the Kelvin-Voigt viscoelastic model. Mechanical behav-
ior of nanostructures (e.g., bending, vibration, and buckling) can be analyzed by
considering the related terms of the current equation.

3.3 Element Types

Noting that the proposed method has a finite element base, various types of elements
can be used for analyzing different problems. For example, to analyze the simple
tension problem of a plate (for axial behavior), elements of the C0 continuity class
will suffice, however, for analyzing the bending, buckling or vibration assuming
the classical beam theory elements of the C1 continuity class is usually needed. C0

continuity means that the displacements between the elements are continuous, but
their first derivatives are not (Lagrange elements). However, in C1 continuity, both
the displacements and their first derivatives are continuous (Hermite elements). In
this section, some of the sample elements that have relatively more applications are
introduced.

Hermite beam element (Fig. 3) is used later in this chapter for analyzing the
mechanical behavior of Euler-Bernoulli beam elements. These elements include two
nodes with two degrees of freedom for each node, i.e. displacement and rotation.
The displacement matrix and shape functions of Hermite beam elements in the local
coordinate system are considered as

Fig. 3 Hermite beam element
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Fig. 4 Local and general
coordinates of the beam

dn =

⎧⎪⎪⎨
⎪⎪⎩

w1(
∂w
∂x

)
1

w2(
∂w
∂x

)
2

⎫⎪⎪⎬
⎪⎪⎭

(35)

NT
n (ξ) = 1

8

⎧⎪⎪⎨
⎪⎪⎩

2(1 − ξ)2 (2 + ξ)

le(1 − ξ)2 (1 + ξ)

2(1 + ξ)2 (2 − ξ)

le(1 + ξ)2 (ξ − 1)

⎫⎪⎪⎬
⎪⎪⎭

(36)

The general coordinates can be converted to local ones using (see Fig. 4)

ξ = 2x

le
− 1; 0 ≤ x ≤ le, − 1 ≤ ξ ≤ 1 (37)

in which le is the element length.
Conforming elements (displacements are always continuous between adjacent

elements) are mostly based on higher degree polynomials and need relatively high
computational cost for producing the correspondingmatrices.Moreover, the nonlocal
integral finite elementmethod hasmore computational cost in comparison to the local
method. Therefore, it is more efficient to use elements with polynomials of lower
degree (e.g. non-conforming elements) for modelling the nonlocal plate problems.
If the assumed elements pass the “patch test”, the results will converge [33]. The
original patch test, developed by Irons et al. [34] is a check that determines whether
a patch of elements subject to a constant strain reproduced the constitutive behavior
of the material and resulted in correct stresses when it became infinitesimally small
[35]. In other words, patch test is a sufficient requirement for convergence.

The Adini-Clough quadrilateral element (Fig. 5) is a non-conforming element,
which despite being unable to pass the patch test, is known to give good convergent
results for bending and buckling of thin plates, i.e. it is a generalized conforming
element [36]. These elements consist of four nodes with three degrees of freedom
for each. Matrix dn for the n-th element is expressed as
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Fig. 5 Adini-Clough
quadrilateral plate element

dn = [w1 w1,x w1,y w2 w2,x w2,y . . .

. . . w3 w3,x w3,y w4 w4,x w4,y]T (38)

Also, the shape functions of the Adini-Clough elements are as (−1 < ξ < 1, −
1 < η < 1)

NT
n (ξ, η) = 1

8

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e (a − ξ − η)

e
(
1 − ξ 2

)
e
(
1 − η2

)
f (a + ξ − η)

− f
(
1 − ξ 2

)
f
(
1 − η2

)
g (a + ξ + η)

−g
(
1 − ξ 2

)
−g

(
1 − η2

)
h (a − ξ + η)

h
(
1 − ξ 2

)
−h

(
1 − η2

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(39)

where

a = 2 − ξ 2 − η2, e = (1 − ξ) (1 − η) , f = (1 + ξ) (1 − η) ,

g = (1 + ξ) (1 + η) , h = (1 − ξ) (1 + η) (40)

The 8-node C0-quadratic isoparametric Serendipity elements with 2 degrees of
freedom per node can be used for analyzing the beam in 3-dimensions [6] or tension
of a plate [5]. dn and Nn matrices are as
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dn = [u1 v1 u2 v2 u3 v3 u4 v4 . . .

. . . u5 v5 u6 v6 u7 v7 u8 v8]T (41)

NT u (or) v

n (ξ, η) = 1

4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− (ξ + η + 1) (ξ − 1) (η − 1)
2 (ξ − 1) (ξ + 1) (η − 1)

(−ξ + η + 1) (ξ + 1) (η − 1)
− 2 (η − 1) (ξ + 1) (η + 1)
(ξ + η − 1) (ξ + 1) (η + 1)
−2 (ξ − 1) (ξ + 1) (η + 1)

− (−ξ + η − 1) (ξ − 1) (η + 1)
2 (ξ − 1) (η + 1) (η − 1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(42)

where NT u (or) v

n includes the shape functions of the element corresponding to both u
and v degrees of freedom.

3.4 Notes on the Boundary Conditions

In this section, by considering a sample case, it is attempted to demonstrate the inca-
pability of nonlocal differential elasticity theory for efficiently applying the natural
boundary conditions on a plate. Consider a plate of length andwidth lx and ly , respec-
tively. The boundary conditions of the mentioned plate are simply-supported on all
four edges. Using the nonlocal differential constitutive equation, the following set
of equations can be obtained [37]

Mxx − l2τ 2∇2Mxx = −D11
∂2w

∂x2
− D12

∂2w

∂ y2
(43a)

Myy − l2τ 2∇2Myy = −D12
∂2w

∂x2
− D22

∂2w

∂ y2
(43b)

Mxy − l2τ 2∇2Mxy = −2D66
∂2w

∂x∂y
(43c)

Assuming the bottom left corner of the plate as the center of the coordinate system,
the boundary condition at x = 0 would be like Mxx = 0. So the Eq. (43) becomes

∂2w

∂x2
= l2τ 2

D11

∂2Mxx

∂x2
− D12

D11

∂2w

∂ y2
(44)

It is noted that the equilibrium equations for a plate are as [37]
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∂2Mxx

∂x2
+ 2

∂2Mxy

∂x∂y
+ ∂2Myy

∂ y2
+ ∂

∂x

(
Nx
0
∂w

∂x

)
+ ∂

∂y

(
N y
0

∂w

∂y

)

+ ∂

∂x

(
Nxy
0

∂w

∂y

)
+ ∂

∂y

(
Nxy
0

∂w

∂x

)
− m0

∂2w

∂t2
+ q = 0 (45a)

Qx − ∂Mxx

∂x
− ∂Mxy

∂y
− Nx

0
∂w

∂x
− Nxy

0

∂w

∂y
= 0 (45b)

Qy − ∂Mxy

∂x
− ∂Myy

∂y
− N y

0

∂w

∂y
− Nxy

0

∂w

∂x
= 0 (45c)

Now the Navier solution can only be applied when ∂2w/∂n2 is zero across the
boundary of the plate. It means that, for considering the Navier solution, according
to Eq. (44) (l2τ 2/D11 )[(∂2Mxx/∂x2) − (D12/D11)(∂

2w/∂ y2)] should be zero at
x = 0, but it is not. Even for a free boundary condition, the mentioned problem
arises for a plate. It is where the finite element nonlocal integral method comes in
and makes things easier! No such complexity is seen in the FEM based method, and
various kinds of rather complex boundary conditions can be dealt with.

4 Nano-Scaled Beams

The finite element formulations for bending, vibration, and buckling of nano-scaled
beams are prepared in the following sections. It is noted that various beam theories
can be included in the formulation, but for the sake of brevity only Euler-Bernoulli
beam theory is assumed here.

4.1 Applying Boundary Conditions for Nano-Scaled Beams

The boundary conditions can be applied rather quickly in the currently proposed
method. For instance, some of the common boundary conditions are as follow (see
Fig. 6)

Both-ends simply supported beam:

w (x) = 0 at x = 0

w (x) = 0 at x = l (46)

Both-ends clamped beam:

w (x) = w,x (x) = 0 at x = 0

w (x) = w,x (x) = 0 at x = l (47)
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Fig. 6 The geometry of a beam

Clamped-free beam:

w (x) = w,x (x) = 0 at x = 0 (48)

Simply supported-clamped beam:

w (x) = 0 at x = 0

w (x) = w,x (x) = 0 at x = l (49)

4.2 Bending of Elastic Nano-Scaled Beams

The bending formulations are given for an Euler-Bernoulli nano-scaled beam. It is
noted that this method can be extended for other beam theories. Considering the
classical beam theory, the displacement field is given as

u (x, z) = u0 (x) − z
∂w0

∂x
(50)

w (x, z) = w0 (x) (51)

in which u and w are longitudinal and transverse displacements of the beam, respec-
tively. Also, u0 and w0 are the displacement components at the mid-axis. Also,
neglecting the higher-order terms, the strain can be expressed as

ε = εx = ∂u

∂x
= ∂u0

∂x
− z

∂2w0

∂x2
(52)

For an Euler-Bernoulli beam, if the pure bending condition is assumed, Eq. (52)
might be written as
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ε = εx = −z
∂2w0

∂x2
= Bndn = zBb

ndn (53)

whereBb
n consists of the partial derivatives of the shape functions of the subject beam.

Substituting Eq. (53) into Eq. (34) and only considering the terms corresponding to
elastic bending, the local and nonlocal stiffness matrices and external force matrix
can be obtained as

KL
n = ζ1

⎛
⎝Iyy

1∫

−1

Bb
n
T

(ξ) EBb
n (ξ) det (J (ξ)) dξ

⎞
⎠ (54)

KNL
nm = ζ2[bh Iyy

1∫

−1

1∫

−1

α
(∣∣x ′ (ξ) − x (ξ)

∣∣ , τ)
Bb
n
T

(ξ) EBb
m

(
ξ ′)

× det(J
(
ξ ′)) det (J (ξ)) dξ ′dξ ] (55)

Fn = bh

1∫

−1

NT
n .b̄ det (J (ξ)) dξ + b

1∫

−1

NT
n .t̄ det (J (ξ)) dξ (56)

where KNL
nm shows the nonlocal effect of the m-th element on the n-th one. J is the

Jacobian matrix, and Iyy is the second moment of area. Also, total matrices can be
written as

KL
total =

N∑
n=1

QT
n

(
KL

n

)
Qn (57)

KNL
total =

N∑
n=1

N∑
m=1

QT
n

(
KNL

nm

)
Qm (58)

Ftotal =
N∑

n=1

QT
n (Fn) Qn (59)

It is noted that for carrying out the corresponding integration, numerical integra-
tion schemes can be used. Substituting Eqs. (54)–(58) into Eq. (34) and assuming
bending related terms, the corresponding governing bending equation of the elastic
beam is developed as follows
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(
KL

total + KNL
total

)
U = Ftotal (60)

By solving Eq. (60), displacement matrix U can be calculated as

U = (
KL

total + KNL
total

)−1
Ftotal (61)

4.3 Vibration of Nano-Scaled Beams

For analyzing the vibration of the beam, mass (inertia effects) and stiffness of the
beam should be considered. It is noted that for a viscoelastic beam, the damping
matrix should also be taken into account. So, Eq. (34) can be written as

δ
 = ζ1

N∑
n=1

δUTQT
n

⎛
⎝

∫

Vn

BT
n : D : BndV

⎞
⎠QnU

+ζ1

N∑
n=1

δUTQT
n

⎛
⎝

∫

Vn

TdBT
n : D : BndV

⎞
⎠QnU̇

+ζ2

N∑
n=1

N∑
m=1

δUTQT
n

⎛
⎝

∫

Vn

∫

Vm

α
(∣∣x′ − x

∣∣ , τ)
BT
n : D : B′

mdV
′dV

⎞
⎠QmU

+ζ2

N∑
n=1

N∑
m=1

δUTQT
n

⎛
⎝

∫

Vn

∫

Vm

Tdα
(∣∣x′ − x

∣∣ , τ)
BT
n : D : B′

mdV
′dV

⎞
⎠QmU̇

−
N∑

n=1

⎛
⎝δUTQT

n

∫

Vn

NT
n .b dV

⎞
⎠ −

N∑
n=1

⎛
⎜⎝δUTQT

n

∫

Stn

NT
n .t dS

⎞
⎟⎠

−
N∑

n=1

⎛
⎝δUTQT

n

⎛
⎝

∫

Vn

NT
n . (−ρNn) dV

⎞
⎠QnÜ

⎞
⎠ = 0 (62)

Local and nonlocal stiffnessmatrices are expressed asEqs. (54)–(58).Massmatrix
(Mn) and damping matrices (CL

n and CNL
nm ) might be extracted for elements by sub-

stituting Eqs. (50)–(53) into Eq. (62).

Mn =
⎛
⎝bh

1∫

−1

NT
n (ξ) ρNn (ξ) det (J (ξ)) dξ

⎞
⎠ (63)
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CL
n = ζ1

⎛
⎝Iyy

1∫

−1

BbT
n (ξ) ETdBb

n (ξ) det (J (ξ)) dξ

⎞
⎠ (64)

CNL
nm = ζ2[bh Iyy

1∫

−1

1∫

−1

α
(∣∣x ′ (ξ) − x (ξ)

∣∣ , τ)
Bb
n
T

(ξ) ETdBb
m

(
ξ ′)

× det
(
J

(
ξ ′)) det (J (ξ)) dξ ′dξ ] (65)

Besides, the total mass and damping matrices are as follows

Mtotal =
N∑

n=1

QT
n (Mn) Qn (66)

CL
total =

N∑
n=1

QT
n

(
CL

n

)
Qn (67)

CNL
total =

N∑
n=1

N∑
m=1

QT
n

(
CNL

nm

)
Qm (68)

Substituting Eqs. (54)–(58) and (63)–(68) into Eq. (62), the following equation is
obtained for viscoelastic vibration of nonlocal Euler-Bernoulli nano-scaled beam.

MtotalÜ + (
CL

total + CNL
total

)
U̇ + (

KL
total + KNL

total

)
U = 0 (69)

Free vibration frequencies and mode shapes are the eigenvalues and eigenfunc-
tions of Eq. (69), respectively. For solving the eigenvalue problem of Eq. (69), the
following parameters are first defined.

V =
[
U̇
U

]
(70)

M∗=
[
Mtotal 0
0 I

]
(71)
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C∗=
[
CL

total+CNL
total K

L
total+KNL

total
−I 0

]
(72)

Assuming Eqs. (70)–(72), (69) becomes

M∗V̇ + C∗V = 0 (73)

For calculating the complex eigenvalues of the free vibration, the solution of the
following form is assumed

V = φ (x) eiωt (74)

Now substituting Eq. (74) in Eq. (73), the following relation has resulted.

(
iωM∗ + C∗) φ = 0 (75)

For obtaining the eigenvalues of Eq. (75), the determinant of the coefficient matrix
should be set to zero as

∣∣iωM∗ + C∗∣∣ = 0 (76)

By solving Eq. (76), the values of ω are calculated and by substituting them into
Eq. (75) mode shapes can be obtained. It is noted that for an elastic beam, Eq. (69)
becomes

MtotalÜ + (
KL

total + KNL
total

)
U = 0 (77)

By considering matrix U as

U = φ (x) eiωt (78)

Equation (77) can be written as

((
KL

total + KNL
total

) − ω2Mtotal
)
φ (x) = 0 (79)

By equating the determinant of coefficient matrix of Eq. (79)to zero, natural
frequencies and mode shapes can be calculated.

∣∣(KL
total + KNL

total

) − ω2Mtotal

∣∣ = 0 (80)
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4.4 Buckling of Nano-Scaled Beams

For analyzing the viscoelastic buckling of structures (relaxation or creep model), an
imperfection (initial displacement) is needed to be assumed. So, for deriving more
general relations, imperfection effects are taken into account. Retaining the buckling
related terms and the imperfection effects, Eq. (34) takes the form

δ
 = ζ1

N∑
n=1

δUTQT
n

⎛
⎝

∫

Vn

BT
n : D : BndV

⎞
⎠QnU

+ζ1

N∑
n=1

δUTQT
n

⎛
⎝

∫

Vn

TdBT
n : D : BndV

⎞
⎠QnU̇

−ζ1

N∑
n=1

(
δUTQT

n

(∫
Vn
B0T

n : D : B0
ndV

)
QnU0

)

+ζ2

N∑
n=1

N∑
m=1

δUTQT
n

⎛
⎝

∫

Vn

∫

Vm

α
(∣∣x′ − x

∣∣ , τ)
BT
n : D : B′

mdV
′dV

⎞
⎠QmU

+ζ2

N∑
n=1

N∑
m=1

δUTQT
n

⎛
⎝

∫

Vn

∫

Vm

Tdα
(∣∣x′ − x

∣∣ , τ)
BT
n : D : B′

mdV
′dV

⎞
⎠QmU̇

−ζ2

N∑
n=1

N∑
m=1

(
δUTQT

n

(∫
Vn

∫
Vm

α
(∣∣x′ − x

∣∣ , τ)
B0T

n : D : B0
m

′
dV ′dV

)
QmU0

)

−
N∑

n=1

(
δUTQT

n

(∫
Vn
BgT

n : σ 0 : Bg
ndV

)
QnU

)
= 0 (81)

In addition to Eqs. (54)–(58) and (64), (65), (67) and (68), initial stiffness matrix
and geometric stiffness matrix are defined as follows

KL0

n = ζ1

⎛
⎝Iyy

1∫

−1

B0b
n
T

(ξ) EB0b
n (ξ) det J (ξ) dξ

⎞
⎠ (82)

KNL0

nm = ζ2[bh Iyy

1∫

−1

1∫

−1

α
(∣∣x ′ (ξ) − x (ξ)

∣∣ , τ)
B0bT

n (ξ) EB0b
m

(
ξ ′)

× det
(
J

(
ξ ′)) det (J (ξ)) dξ ′dξ (83)
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Kg
n =

⎛
⎝bh

1∫

−1

Bg
n
T

(ξ) σ0Bg
n (ξ) det (J (ξ)) dξ

⎞
⎠ (84)

It is known that, for an Euler-Bernoulli beam, the nonlinear strain can be assumed
as

εnl = 1

2

(
∂w

∂x

)2

(85)

Bg
n is consistent with the nonlinear strain form. Taking into account the defined

parameters, the governing viscoelastic buckling equation becomes

(
CL

total + CNL
total

)
U̇ + (

KL
total + KNL

total

)
U

−
(
KL0

total + KNL0

total

)
U0 − Kg

totalU = 0 (86)

By numerically solving Eq. (86), the viscoelastic buckling solutions can be
acquired. By viscoelastic buckling solution, we mean the condition in which the
compressive load is kept constant and as time passes, the displacements increase.
There comes a time in which the displacements exceed the assumed buckling con-
dition. This time is called the viscoelastic buckling time. Also, by keeping out the
time-related terms and imperfections in Eq. (86) the eigenvalue problem for the
elastic buckling of perfect beam would result.

(
KL

total + KNL
total

)
U − Kg

totalU = 0 (87)

5 Nano-Scaled Plates

The appropriate formulations are to be introduced for analyzing the bending, vibra-
tion, and buckling of nano-scaled plates. As it has been assumed with respect to the
beams, in the plate case also the classical plate theory is only taken into account, and
other theories can be added to the formulation by following a similar procedure.

5.1 Applying Boundary Conditions for Nano-Scaled Plates

One of the main advantages of finite element integral elasticity approach is the
straightforwardness of applying the boundary conditions for a plate (Fig. 7). It is
noted that the boundary conditions are applied as they are imposed in conventional
finite element methods of classical elasticity. For example, the following commonly
used boundary conditions are outlined.
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Fig. 7 Plate dimensions

All-sides simply supported plate:

w(x, y) = 0 at x = 0, lx
w(x, y) = 0 at x = 0, ly (88)

All-sides clamped plate:

w (x, y) = w,x (x, y) = 0 at x = 0, lx
w (x, y) = w,x (x, y) = 0 at x = 0, ly (89)

Two-sides clamped, two-sides free (opposite sides):

w (x, y) = w,x (x, y) = 0 at x = 0, lx (90)

Two-sides simply supported, two-sides clamped (opposite sides):

w (x, y) == 0 at x = 0, lx
w (x, y) = w,x (x, y) = 0 at x = 0, ly (91)

Interestingly enough, the partial boundary conditions can also be applied fairly
easily and with little effort using the current method, for instance, some partial
boundary conditions are expressed below.

Two-sides clamped, the other two sides each partially simply supported:

w (x, y) = w,x (x, y) = 0 at x = 0, lx
w (x, y) = 0 at y = 0, x = 0 − lx1
w (x, y) = 0 at y = ly, x = 0 − lx2 (92)

Two-sides simply supported, the other two sides each partially clamped:
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w (x, y) = 0 at x = 0, lx
w (x, y) = w,x (x, y) = 0 at y = 0, x = 0 − lx1
w (x, y) = w,x (x, y) = 0 at y = ly, x = 0 − lx2 (93)

5.2 Bending of Nano-Scaled Plates

Bending formulations considering the nonlocal integral theory and classical plate
theory are presented in the current section. Through the classical plate theory, the
following relation is assumed for the strain field of a plate.

ε (x) =
⎧⎨
⎩

εx
εy
γxy

⎫⎬
⎭ =

⎧⎨
⎩

u0,x
v0,y

u0,x + v0,y

⎫⎬
⎭ − z

⎧⎨
⎩

w,xx

w,yy

2w,xy

⎫⎬
⎭ (94)

in which, εx , εy , and γxy are the longitudinal strain, transverse strain, and in-plane
shear strain, respectively. Also, u0, v0, and w are the displacements of mid-plane
in the x-, y-, and z-directions. By considering the pure bending condition, Eq. (94)
becomes

ε (x) =
⎧⎨
⎩

εx
εy
γxy

⎫⎬
⎭ = −z

⎧⎨
⎩

w,xx

w,yy

2w,xy

⎫⎬
⎭ = Bn (x) dn = zBp

n (x) dn (95)

Substituting Eq. (95) into Eq. (34), using Eq. (33) and considering the bending-
related terms, for an elastic case, Eq. (34) becomes

δ
 = ζ1

N∑
n=1

δUTQT
n

⎛
⎝

∫

Vn

BT
n : D : BndV

⎞
⎠QnU

+ζ2

N∑
n=1

N∑
m=1

δUTQT
n

⎛
⎝

∫

Vn

∫

Vm

α
(∣∣x′ − x

∣∣ , τ)
BT
n : D : B′

mdV
′dV

⎞
⎠QmU

−
N∑

n=1

⎛
⎝δUTQT

n

∫

Vn

NT
n .b̄ dV

⎞
⎠ −

N∑
n=1

⎛
⎜⎝δUTQT

n

∫

Stn

NT
n .t̄ dS

⎞
⎟⎠ = 0 (96)
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Substituting the last term of Eq. (95) into Eq. (96) the following relations are defined
for local and nonlocal stiffness matrices of the n-th element.

KL
n = ζ1

⎛
⎝

∫

Aelem

∫

h

Bp
n
T : D : Bp

n det (J) z
2dz d Aelem

⎞
⎠ (97)

KNL
nm = ζ2[

∫

Aelem

∫

h

∫

A
′
elem

∫

h′

α
(∣∣x′ (ξ, η) − x (ξ, η)

∣∣ , τ)
z′2 Bp

n
T : D : Bp′

m

× det (J) det
(
J′) dz′ d A

′
elemdz d Aelem] (98)

The total stiffness matrices are also given as Eqs. (57) and (58). Also, the bending
governing equations (similar to Eq. (60)) can be solved by the same procedure as
that explained in Sect. 4.2.

5.3 Vibration of Nano-Scaled Plates

For analyzing the vibration of nano-scaled plates, the general form of Eq. (62) could
be used. For a nano-scaled plate, the local and nonlocal stiffness matrices can be
expressed as Eqs. (97) and (98). Also, noting Eq. (62) the element mass matrix and
damping matrices can be obtained as

Mn =
∫

Aelem

∫

h

NT
n . (ρNn) det (J) dzd Aelem (99)

CL
n = ζ1

⎛
⎝

∫

Aelem

∫

h

TdBp
n
T : D : Bp

n det (J) z
2dz d Aelem

⎞
⎠ (100)

CNL
nm = ζ2[

∫

Aelem

∫

h

∫

A
′
elem

∫

h′

α
(∣∣x′ (ξ, η) − x (ξ, η)

∣∣ , τ)
Td z′2Bp

n
T : D : Bp′

m

× det (J) det
(
J′) dz′ d A

′
elemdz d Aelem] (101)
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The total structural matrices can also be calculated by Eqs. (66)–(68). Also, the
eigenvalues and eigenfunctions of vibration might also be given by applying the
same procedure as that explained in Sect. 4.3.

5.4 Buckling of Nano-Scaled Plates

Buckling analysis of nano-scaled plates can also be carried out by considering the
buckling form of general variational Eq. (34) as Eq. (81). The nonlinear strain for a
plate is assumed as

εnl = 1

2

⎧⎨
⎩

w2
,x

w2
,y

2w,xw,y

⎫⎬
⎭ (102)

It is seen that the stiffness matrices are given by Eqs. (97) and (98), and geometric
stiffness matrix and initial stiffness matrices are given as follow

KL0

n = ζ1

⎛
⎝

∫

Aelem

∫

h

B0 p
n
T : D : B0 p

n det (J) z
2dz d Aelem

⎞
⎠ (103)

K NL0

nm = ζ2[
∫

Aelem

∫

h

∫

A
′
elem

∫

h′

α
(∣∣x′ (ξ, η) − x (ξ, η)

∣∣ , τ)
z′2 B0 p

n
T : D : B0 p

′
m

× det (J) det
(
J′) dz′ d A

′
elemdz d Aelem] (104)

Kg
n =

∫

Aelem

∫

h

BgT
n : σ 0 : Bg

ndz d Aelem (105)

in which, σ 0 is the initial stress which has the following form

σ 0 =
[
σ 0
xx σ 0

xy

σ 0
yx σ 0

yy

]
(106)

Considering the mentioned equations, Eqs. (86) and/or (87) are used for nano-
scaled plates to solve the viscoelastic/elastic buckling problems.
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6 Numerical Examples and Discussions

In this section, the bending, buckling, and vibration of nano-scaled beams and plates
are studiedusing thepresentedfinite element nonlocal integralmethod.Due to abetter
correlation between current results with those of nonlocal differential elasticity, the
Bessel kernel is used in the following analysis. The assumed kernel is [6, 13]

ᾱ
(∣∣x − x′∣∣ , τ

) = 2π(e0a)2K0

(∣∣x − x′∣∣
e0a

)
(107)

6.1 Elastic Beam and Plate Bending

In this section, the bending of nano-beams and nano-plates are analyzed using some
examples. It is noted that in the current section, the constitutive equation (2) (one-
phase nonlocal integral elasticity theory) has been adopted for implementing the
finite element nonlocal integral elasticity method.

6.1.1 Bending of Nano-Scaled Beams

The bending of nonlocal Euler-Bernoulli nano-scaled beams is investigated. Results
are obtained using the approach explained in Sect. 4.2. The Hermite element (see
Sect. 3.3) is assumed in the analysis, and for the numerical integration, the Gauss-
Legendre quadrature rule is used by considering three Gauss points.

Figure 8 shows the non-dimensional maximum deflection (w/wL ) for two-sides
simply supported beam, under k̄ = 1 and q̄ = 1 loading. k̄ = Fl2/E I is the non-
dimensional central point load parameter, and q̄ = ql3/E I is the non-dimensional

Fig. 8 Variations of
non-dimensional deflection
with the nonlocal parameter
for both-sides simply
supported Euler-Bernoulli
nano-scale beam [6] (l =
10nm and h =0.1nm)
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Fig. 9 Variations of
non-dimensional deflection
with the nonlocal parameter
for both-sides clamped
Euler-Bernoulli nano-scale
beam [6] (l = 10nm and
h =0.1nm)

uniformly-distributed load parameter. The results of the finite element nonlocal inte-
gral elasticity (nonlocal integral elasticity theory NLIET) are compared with those
of Wang et al. [38] (for distributed load) and Wang and Liew [39] (for point load)
based on the nonlocal differential elasticity theory (NLDET). It is observed that for
a beam with simply supported boundary conditions subjected to a point load, the
nonlocal differential elasticity theory could not predict the bending deflection prop-
erly. However, both the differential and integral theories show a rise in deflection by
increasing the nonlocal parameter for uniformly-distributed load case.

Figure 9 shows the variation of maximum deflection with the nonlocal parameter
for two-sides clamped boundary condition (k̄ = 1, q̄ = 1). It is seen that in this
case the nonlocal differential elasticity has not captured the effect of nonlocality by
considering distributed load. However, the nonlocal integral theory shows an increase
in deflection by considering the nonlocal parameter, for both loading conditions.

6.1.2 Bending of Nano-Scaled Plates

Figure 10 show the variations of deflection for the midpoint of a nano-scaled simply
supported plate under the uniformly-distributed loading q0 = 1 nN/nm. The assumed
plate have properties of l = 10nm, E = 30 × 103 nN/nm2, and ν = 0.3. The Adini-
clough element type is used for modeling the plate and for numerical integration,
the Gauss-Legendre quadrature method assuming three integration points in each
direction is considered. Also, the results of the current study have been compared
with those of Aghababaei and Reddy [40] based on the nonlocal differential elastic-
ity theory. As it is seen, by increasing the nonlocal parameter, both the integral and
differential theories predict the decrease in the stiffness of the plate. However, the
increase in deflection is more pronounced for the nonlocal integral elasticity method.
It might have occurred because the nonlocal differential elasticity theory has been
extracted from the general integral form and cannot satisfy the force boundary con-
ditions properly [6].
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Fig. 10 Variations of
non-dimensional deflection
with the nonlocal parameter
for all-sides simply
supported nano-scale plate
(l/b = 1) under distributed
load

Fig. 11 Variations of
non-dimensional deflection
with the nonlocal parameter
for all-sides simply
supported nano-scale plate
under point load

Figure 11 shows the variation of midpoint deflection of the all-sides simply sup-
ported nano-scaled plate with nonlocal parameter under point load F0 = 1 nN. It
is seen that the increase in deflection is more pronounced for nonlocal differential
elasticity case in comparison with the nonlocal integral elasticity.

6.2 Elastic Beam and Plate Vibration

Free vibration of nano-beams and nano-plates are studied using the finite element
nonlocal integral elasticity method and considering the two-phase nonlocal consti-
tutive equation (Eq. (4)). The convergence study is carried out for obtaining the
optimum number of elements. The results are then compared with those available in
the literature, and finally, the effects of various parameters are investigated on free
vibration behavior. For the subject beam E = 1 TPa and ρ = 2000 kg/m3, and for
the plate E = 1 TPa, ν = 0.16 and ρ = 2250 kg/m3.
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Table 1 Convergence study of natural frequency (ω̄ = l
√

ω/C0, C0 = √
E I/ρA) by nonlocal

Euler-Bernoulli beam theory [13]

Number Simply supported beam Clamped beam

of
elements

τ = 0 τ = 0.01 τ = 0.1 τ = 0.2 τ = 0 τ = 0.01 τ = 0.1 τ = 0.2

10 3.1417 3.1897 3.1772 3.1642 4.7301 4.8198 4.7956 4.7642

20 3.1416 3.1388 3.1351 3.0801 4.7300 4.7258 4.7139 4.6050

50 3.1416 3.1103 3.0482 2.9695 4.7300 4.6826 4.5685 4.3934

100 3.1416 3.0421 2.9561 2.8154 4.7300 4.5786 4.4126 4.2259

200 3.1416 2.9532 2.8738 2.7956 4.7300 4.4789 4.2661 4.0938

300 3.1416 2.9315 2.8339 2.7857 4.7300 4.4026 4.2053 4.0350

400 3.1416 2.9259 2.8332 2.7851 4.7300 4.4002 4.2018 4.0303

6.2.1 Free Vibration of Nano-Scaled Beams

The free vibration of nano-scaled beams is investigated through the assumption of
Euler-Bernoulli beam theory. Thus, the procedure of Sect. 4.3 has been adopted for
elastic beams, and Hermite beam elements have been considered (see Sect. 3.3).
For the numerical integration, three integration points are used for Gauss-Legendre
quadraturemethod. Dimensions of the beam are as l = 10 nm, h = 1 nm and b = 0.5
nm.

Table 1 shows the convergence study for free vibration of nano-scaled Euler-
Bernoulli beam considering two types of boundary conditions. It is seen that the
convergence rate for the local case (τ = 0) is faster than the nonlocal case. This
behavior can be explained by further investigation of the nonlocal kernel function
characteristics. For a given reference point, the value of kernel function is maximum,
i.e.g.oes to infinity, on that point and it decreases by moving further from it. So, for
accurately capturing the nonlocal effects near the reference point, several elements
are needed. Besides, by decreasing the size of elements the accuracy of numerical
integrations increases.

Table 2 shows the comparison of the natural frequencies based on the nonlocal
integral theory with those of differential elasticity theory which have been reported
by Lu et al. [41], Reddy [42] and Ghannadpour [43]. It is seen that the nonlocal
differential theory cannot predict the softening effect of the nonlocal parameter for
the cantilever beam (considering the fundamental natural frequency). As it has been
said, the current discrepancy might have been caused by the fact that the nonlocal
differential theory is extracted from the integral one under certain assumptions and
in the region far from the boundaries. However, there has been a generally good
agreement between the results.

Figure 12 shows the variations of the fundamental natural frequency with the non-
local parameter considering different length to thickness ratio for cantilever boundary
conditions. It is seen that, by increasing the nonlocal parameter value, natural fre-
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Table 2 Comparison of non-dimensional natural frequencies (ω̄ = l
√

ω/C0, C0 = √
E I/ρA) for

nonlocal Euler-Bernoulli beam

Ref. τ Simply
supported beam

Clamped beam Cantilever beam

Present 0 3.14 4.73 1.88

0.1 2.83 4.2 1.67

0.2 2.78 4.03 1.63

0.5 2.56 3.65 1.49

0.7 2.49 3.55 1.45

Lu et al. [41] 0 3.14 4.73 1.88

0.1 3.07 4.59 1.88

0.2 2.89 4.28 1.89

0.5 2.30 3.31 2.02

0.7 2.02 2.89 –

Reddy [42] 0 3.14 – –

0.1 3.00 – –

0.2 2.87 – –

Ghannadpour et
al. [43]

0 3.14 4.73 1.88

0.5 2.30 3.31 2.02

0.7 2.02 2.89 –

Fig. 12 Fundamental
frequency variations with the
nonlocal parameter
considering different length
to thickness ratios for
cantilever nano-scaled beam
[13]

quency decreases. Also, it is observed that for larger values of l/h, the sensitivity of
frequency to e0a decreases. This might be due to the fact that, the effects of nonlo-
cality are more pronounced near the boundaries, so for shorter beams these effects
can increase.
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Fig. 13 Variations of the
fundamental natural
frequency with length to
thickness ratio for
nano-scaled beams [13]

Figure 13 shows the effect of length to thickness ratio on the natural frequency
considering different nonlocal parameters and various boundary conditions. It is seen
that regardless of local/nonlocal effects, the increase in l/h has led to the reduction of
natural frequencies. The highest reduction belongs to both-sides clamped boundary
condition and the lowest to cantilever.

6.2.2 Free Vibration of Nano-Scaled Plates

The classical plate theory is used to investigate the free vibration of nano-scaled
plates [16]. The procedure of Sect. 5.3, in conjunction with Adini-Clough element
types (3.3), have been adopted. Three points in each direction have been assumed
for numerical integration. It is noted that the length and thickness of the square plate
are 10nm and 0.34nm, respectively.

Convergence study of a square plate considering e0a = 1 nm and all-sides simply
supported boundary condition are shown in Table 3. Equal size square elements
have been used for mesh allocation. It is seen that the results converge for 45 × 45
elements.
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Table 3 Convergence study of free vibration considering a simply-supported square nano-scaled
plate (e0a = 1 nm)

Number of square elements Fundamental natural frequency [GHz]

3 × 3 71.5887

7 × 7 59.9211

11 × 11 55.953

15 × 15 54.1543

19 × 19 53.1874

23 × 23 52.6066

27 × 27 52.2302

31 × 31 51.9721

33 × 33 51.8128

37 × 37 51.789

41 × 41 51.788

45 × 45 51.788

Table 4 Comparison of the results for free vibration of a square nano-scaled plate (ωND =
ωl2

√
ρh/D)

Boundary
conditions

Present
(e0a = 1
nm)

Reference
[44]

Reference
[45]

Reference
[46]

Reference
[46] MD
(zigzag)

Reference
[46] MD
(armchair)

Simply
supported

15.52 18.02 18.01 18.88 7.62 17.84

Clamped 28.16 – – 33.78 34.36 34.84

Table 4 shows the comparison of non-dimensional fundamental natural frequency
based on finite element integral nonlocal elasticity with those of nonlocal differential
theory.Results of Pradhan andPhadikar [44] are obtainedbyusing theNavier solution
and nonlocal classical plate theory.Murmu and Pradhan [45] have also used nonlocal
classical plate theory whereas Ansari et al. [46] have implemented nonlocal first-
order shear deformation theory. Besides, the results of molecular dynamics have
been included in the table. As it is predictable, considering the non-locality leads to
some discrepancies between the results which are relatively more pronounced for
all-sides simply supported boundary condition. By comparing the results of current
study with those of molecular dynamics, it can be concluded that for the subject case
the value of nonlocal parameter lies between 0 and 1nm.

Figure 14 shows the effect of nonlocal parameter on thenatural frequencyof square
nano-scaled plate considering different length to thickness ratios. As observed, by
increasing the nonlocal parameter natural frequency decrease. This softening effect
is more pronounced for the lower values of the plate length to thickness ratio, i.e.,
the variation of natural frequency with l/h is less noticeable for larger plates. This
might be due to the importance of nonlocal effects near the boundaries, that is to say,
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Fig. 14 Effect of the nonlocal parameter on the natural frequency of square plate with all-sides
simply supported, all-sides clamped and cantilever boundary condition (h = 0.34 nm) [16]

for the smaller plates, the boundary conditions play an important role in nonlocal
characteristics of the structure. It is noted that by increasing the length of the structure
the e0a/ l value diminishes for a given value of e0a.

Figure 15 shows the variations of the natural frequency with the length of the
square plate for different boundary conditions considering e0a = 1 nm. It is seen that,
by increasing the length the natural frequency decreases. Also, decrease in natural
frequency is more steep for all-sides clamped boundary condition in comparison
with all-sides simply supported and clamped free conditions.

Figure 16 shows the effect of aspect ratio on free vibration of rectangular nano-
scaled plate considering all-sides simply supported boundary condition. As it is seen,
by increasing the aspect ratio, the natural frequencies decrease.
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Fig. 15 Effect of the length
of the square plate on the
natural frequency for
e0a = 1 nm and h = 0.34
nm

Fig. 16 Effect of the aspect
ratio of the rectangular plate
on the natural frequency
considering all-sides simply
supported boundary
condition [16]

6.3 Elastic Beam and Plate Buckling

The buckling of nano-beams and nano-plates are investigated employing the finite
element nonlocal integral elasticity method and considering the single-phase nonlo-
cal constitutive equation (Eq. (2)).

6.3.1 Buckling of Nano-Scaled Beams

The procedure of Sect. 4.4 has been employed for the buckling analysis of Euler-
Bernoulli nano-scaled beams. Hermite beam elements (see Sect. 3.3 ) are used and
the beam properties are E = 1 TPa, l = 20 nm, b = t = 1 nm. Table 5 shows the
convergence study for a two-sides clamped beam considering e0a = 1 nm and 2nm.

Figures17 and 18 show the variations of buckling load ratio with the nonlo-
cal parameter for both-sides simply supported and clamped boundary conditions,
respectively. Also, the results of the current study have been compared with those
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Table 5 Convergence study for buckling of nonlocal Euler-Bernoulli beam considering two-sides
clamped boundary condition

Number of elements e0a = 1 nm e0a = 2 nm

10 12.3789 7.4291

20 9.2301 6.6915

30 8.4526 6.5072

50 7.9771 6.3892

100 7.7294 6.3213

200 7.6488 6.2952

300 7.6296 6.2879

400 7.6214 6.2845

Fig. 17 Variations of
buckling load ratio with the
nonlocal parameter for both
sides simply supported
Euler-Bernoulli beam [7]

based on the nonlocal differential elasticity [7] considering the Timoshenko beam
theory. It is seen that, by increasing the nonlocal parameter buckling load decreases.

Figures19 and 20 show the variations of buckling load with length to thickness
ratio for different boundary conditions considering e0a = 1 nm. It is observed that,
by increasing the length to thickness ratio, the discrepancy between the results of
the current method with those of local elasticity and differential elasticity theory
decreases.Also, it is seen that the effect of the nonlocal parameter ismore pronounced
for shorter beams.

6.3.2 Buckling of Nano-Scaled Plates

The buckling of classical plates are analyzed using the finite element nonlocal integral
method, and the results are compared with those of nonlocal differential elasticity
theory. The Adini-Clough element has been used for the analysis (see Sect. 3.3).



Finite Element Nonlocal Integral Elasticity Approach 299

Fig. 18 Variations of
buckling load ratio with the
nonlocal parameter for both
sides clamped
Euler-Bernoulli beam [7]

Fig. 19 Variations of
buckling load with length to
thickness ratio for e0a = 1
nm considering both sides
simply supported beam [7]

Fig. 20 Variations of
buckling load with length to
thickness ratio for e0a = 1
nm considering both sides
clamped beam [7]
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Fig. 21 Variations of
non-dimensional buckling
load with the length of the
square plate considering
all-sides simply supported
boundary conditions

Fig. 22 Variations of
non-dimensional buckling
load with the length of the
plate for different values of
aspect ratio considering
all-sides simply supported
boundary condition

Figure 21 shows the variations of buckling load ratio with the length of square
plate for all-sides simply supported boundary condition considering e0a = 1 nm
and e0a = 2 nm. The results of the current study have been compared with those
obtained by Levy method based on nonlocal differential elasticity theory [47]. It is
seen that by increasing the length of the plate, the nonlocal effects decrease. These
effects in smaller dimensions result in more reduction of buckling loads. In other
hands, by increasing the e0a discrepancy between the results of the current study
with those of nonlocal differential elasticity increase. This might be due to the fact
that by increasing the value of e0a, the effects of boundary conditions can play a
more important part.

Figure 22 shows the variations of buckling load ratio with the length of the plate
for lx/ly = 1 and lx/ly = 2 considering e0a = 1 nm and all-sides simply supported
boundary conditions.

Figure 23 shows the effect of nonlocal parameter on the buckling ratio of nano-
scaled plate considering all sides simply supported, and all sides clamped boundary
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Fig. 23 Effect of the
nonlocal parameter on the
buckling load ratio for
all-sides clamped and
all-sides simply supported
nano-scaled plate
(lx = ly = 1.5 nm)

conditions. It is seen that for all sides clamped boundary condition, the reduction in
buckling load is more pronounced in comparison with the all sides simply supported
boundary conditions. It is due to the fact that, stronger boundary conditions lead to
more pronounced nonlocal effects near the boundaries.

6.4 Viscoelastic Free Vibration

The free vibration of nano-scaled beams and plates are studied using the finite ele-
ment nonlocal integral elasticity approach considering the Kelvin-Voigt viscoelastic
model. Properties of the beam are E = 1 TPa and ρ = 2000 kg/m3, and for the plate
E = 1 TPa, ν = 0.16 and ρ = 2250 kg/m3.

6.4.1 Free Vibration of Viscoelastic Nano-Scaled Beams

For obtaining the results of the viscoelastic free vibration of nano-scaled beams, the
procedure explained in Sect. 4.3 have been adopted. Hermite type elements have
been used for meshing the beam (see Sect. 3.3). The complex eigenvalues of the
current study based on the finite element nonlocal integral method are compared
with those of Lu et al. [41] and Lei et al. [20] based on the nonlocal differential
elasticity theory and those obtained by Abaqus/CAE commercial software (local
viscoelasticity) in Table6 [15]. The results have been extracted for different values of
nonlocal and viscoelastic parameters considering various boundary conditions. The
complex eigenvalues obtained by the finite element integral nonlocal method is lower
than those of the nonlocal differential theory. Also, both the real and imaginary parts
of the eigenvalue decrease by increasing the nonlocal parameter for both methods,
except in the case of cantilever boundary condition for the nonlocal differential
theory.
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Fig. 24 Variations of the real part of the frequency with viscoelastic parameter for Euler-Bernoulli
nano-scaled beam for e0a = 0 nm and e0a = 1 nm [15]

Fig. 25 Variations of the imaginary part of the frequency with viscoelastic parameter for Euler-
Bernoulli nano-scaled beam for e0a = 0 nm and e0a = 1 nm [15]

Figures 24 and 25 show the variations of real and imaginary parts of non-
dimensional eigenvalues, (non-dimensionalized by local elastic natural frequency
ωLE ) with the viscoelastic parameter considering different values of nonlocal param-
eter and various boundary conditions. It is seen that by increasing the viscoelastic
parameter the real part of complex eigenvalues decreases and the imaginary part
increases. Also, it is observed that for the both-sides clamped boundary condition, in
comparison with other boundary conditions, the effect of the viscoelastic parameter
is more noticeable. However, by increasing the nonlocal parameter the change in
eigenvalues due to viscoelastic parameter decreases.

Figure 26 shows the effect of nonlocal parameter on the real and imaginary parts
of eigenvalues for viscoelastic nonlocal Euler-Bernoulli beam considering both sides
simply supported boundary condition and various viscoelastic parameters and beam
lengths. It is seen that by increasing the value both the real and imaginary parts of
frequency decrease. For shorter beams, the variations of the eigenvalues are rela-
tively more pronounced, because by decreasing the length of the beam, the effects
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Fig. 26 Effects of the nonlocal parameter on the complex eigenvalues for both sides simply sup-
ported Euler-Bernoulli beam [15]

of boundary conditions become more important and nonlocality effects are stronger
near the boundaries. Besides, for shorter beams, the effects of viscoelastic parameter
on the imaginary part become more noticeable.

6.4.2 Free Vibration of Viscoelastic Nano-Scaled Plates

For analyzing the free vibration behavior of viscoelastic square nano-scaled plates,
the procedure explained in Sect. 5.3 is followed. The plate has been meshed by
Adini-Clough type elements (see Sect.3.3), and it has length and thickness of 10
and 0.34nm, respectively. Also, in the current section terms of diagonal matrix Td

(viscoelastic parameters) are assumed to be equal and shown by Td .
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Table 7 Comparison between the fundamental natural frequency (GHz) of nano-scaled plates based
on nonlocal integral theory and nonlocal differential theory considering all sides simply supported
boundary condition

References τ Undamped
elastic plate
(Td = 0 [ns])

Kelvin-Voigt
viscoelastic plate
(Td = 0.5 × 10−4

[ns])

Kelvin-Voigt
viscoelastic plate
(Td = 10−4 [ns])

Pang et al.
[48]

0.0 65.7909 65.7873 + 0.6799i 65.7768 + 1.3598i

0.5 64.2253 64.2220 + 0.6479i 64.2122 + 1.2959i

1.0 60.1240 60.1213 + 0.5678i 60.1132 + 1.1356i

1.5 54.7472 54.7452 + 0.4708i 54.7391 + 0.9416i

2.0 49.1803 49.1789 + 0.3799i 49.1745 + 0.7599i

Present study 0.0 65.7909 65.7873 + 0.6799i 65.7768 + 1.3598i

0.5 57.5403 57.5380 + 0.5201i 57.5309 + 1.0401i

1.0 51.788 51.7845 + 0.4243i 51.7810 + 0.8486i

1.5 45.5904 45.5892 + 0.3265i 45.5857 + 0.6530i

2.0 38.1002 38.0995 + 0.2280i 38.0974 + 0.4560i

Comparison between the fundamental eigenvalues based on the nonlocal integral
theory with those of nonlocal differential theory [48] considering all sides simply
supported boundary condition is shown in Table 7. It is seen that for a local case
(τ = 0), the agreement between the results is excellent. By increasing the nonlocal
parameter, the results start to differentiate.

Figure 27 shows the effect of nonlocal parameter on the free vibration behavior of
viscoelastic classical nano-scaled plate for different viscoelastic and length param-
eters considering all sides simply supported boundary condition. It is seen that by
increasing the value of e0a, both the real and imaginary parts of eigenvalues decrease
and this effect is more pronounced for smaller plates. Also, the decrease in the imag-
inary part due to increase in nonlocal parameter is more pronounced for larger values
of Td .

Figure 28 shows the variations of real and imaginary parts of non-dimensional
eigenvalues (non-dimensionalized by the natural frequency of local elastic plate)with
the viscoelastic parameter considering different boundary conditions for e0a = 1 nm.
It is observed that by increasing the value of Td , the real part of eigenvalues decrease
and imaginary part increase. Besides, this variation is more pronounced for all-sides
clamped boundary condition.
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Fig. 27 Variations of the complex eigenvalues with nonlocal parameter for all-sides simply sup-
ported plate considering different viscoelastic parameters

7 Conclusions

In this chapter, a finite element method based on the nonlocal integral theory has
been developed to study the mechanical behavior of nano-scaled beams and plates.
The constitutive equation has been obtained considering the nonlocal integral theory
and viscoelastic properties. Then, Hamilton’s principle has been adopted for deriving
the formulations and preparing the finite element foundation. Despite the simplicity
of non-local differential theory in some aspects, it has been extracted from the more
general nonlocal integral theory under certain conditions, thus it can only manage
some limited problems (e.g. simple geometries, boundary conditions, and certain
kernel types). However, the method presented in the current chapter can be used
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Fig. 28 Variations of the
complex eigenvalues for a
nano-scaled plate with the
viscoelastic parameter for
different boundary
conditions

for modeling a broad range of problems, including complex geometries, various
boundary conditions, and different kernel types. For instance, by using the finite
element nonlocal theory the force boundary conditions can be analyzed properly
for nano-scaled plates. In addition, the paradox, which has been seen in some cases
considering the nonlocal differential theory, does not arise in the current method.

In previous sections, the formulations for studying bending, buckling, and vibra-
tion of nano-scaled beams and plates have been presented, and some examples have
been discussed for understanding the effects of non-local parameters, geometri-
cal parameters, boundary conditions and viscoelastic effects on the corresponding
mechanical behavior.

Acknowledgements Maysam Naghinejad is grateful to Iran National Elites Foundation for the
post-doctorate fellowship awarded to him.
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‘Explicit’ and ‘Implicit’ Non-local
Continuum Descriptions: Plate with
Circular Hole

Meral Tuna, Lorenzo Leonetti, Patrizia Trovalusci, and Mesut Kirca

Abstract Classical theory of elasticity fails to reflect the true behaviour of solids
with internal material organization when internal and external length scales are
of comparable orders. This drawback leads to emergence of non-classical con-
tinuum theories which are offered to be distinguished as ‘implicit’/‘weak’ and
‘explicit’/‘strong’ non-local models according to different interpretations of the
incorporation of characteristic length scales. As an extension of recent works of
authors, the presented chapter is focused on the correspondence between ‘implicit’
type Cosserat (micropolar) and ‘explicit’ type Eringen’s two-phase local/non-local
models, in terms of characteristic quantities. To this end, an example problem of
practical importance; a plate with a circular hole, is studied by employing standard
displacement based finite element method. The non-locality of Eringen’s model is
optimized regarding stress concentration factors reported for infinite Cosserat plates.
The analysis of Eringen’s model is repeated by adopting both Euclidean and geodeti-
cal distance during incorporation of long range interactions. According to the results,
stress fields of explicitly and implicitly non-local models seem to be in a very good
agreement considering plates with large scale ratios, as the missing neighbour rela-
tions appeared at domain boundaries of Eringen’s model are not effective at the
vicinity of the hole. Yet, obtaining different ‘explicit’ material parameters for each
sample problem reveals that it is unlikely to have a unified relationship between
characteristic quantities of Cosserat’s and Eringen’s models.
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1 Introduction

It is well-known that when internal (atomic/granular distance, size of heterogeneities,
etc.) and external (sample length, wavelength, etc.) scales become comparable (e.g.
L/ l ∼ 1), the discrete and heterogeneous nature of underlying material organization
starts to play a fundamental role on its gross mechanical behaviour. Although, such
structures can be reduced toCauchy continua in certain limits (L/ l � 1), they cannot
be describedwithin the scope of classical elasticity [1, 2]. Hence, in such cases, either
discrete modelling techniques [3–6] or non-classical continuummodels that account
for size effects [7–13] must be resorted depending on the specificity of the problem.

In discrete modelling, the structure is assumed as an assembly of explicitly mod-
elled rigid bodies connected by inter-particle potentials. Despite their capabilities of
representing the actual behaviour of the media, direct discrete modelling techniques
(e.g. limit analysis, molecular dynamics simulations, etc.) are not very practical
due to their computational expense, which rapidly increases with total number of
degrees of freedom (DOFs). Therefore, when a coarse modelling is to be preferred,
it is useful to resort equivalent continua formulations to satisfactorily replicate the
overall mechanical behaviour of discrete assembly.1 Indeed, discrete to continuum
approaches dates back to 19th century to the works of French scientists Navier [15],
Cauchy [16], Poisson [17, 18], who tried to derive the constitutive equations of a
classical continua starting from the description of lattice systems, later abandoned
in the favour of energetic-continuum approach proposed by Green [19, 20]. Among
them, contributions by Voigt [21, 22] and [23] who introduced particle rotations,
couple interactions, and multi-body connections should be quoted.2 On the track of
Voigt’s approach, systematic treatise of the Cosserat brothers [27] on the deformable
bodies with both the translational and rotational degrees of freedom appeared to be
the basis of historically first enriched non-classical continuum model followed by
emergence of many other non-local theories.

Although any continua with presence of internal lengths and spatial disper-
sion properties are referred as non-local [28, 29], the theories offered to represent
their behaviour are distinguished as ‘implicit’/‘weak’ or ‘explicit’/‘strong’ models
depending on the mathematical interpretation of non-locality [10, 12, 14, 28]. In the
so-called implicit non-local models (e.g. micromorphic theory, microstretch theory,
micropolar theory, couple stress theory), also known as multifield continua, the body
is treated as a collection of deformable or rigid particles that are endowed with addi-
tional degrees of freedom [12, 30–32]. As a result of newly introduced kinematical
descriptors, which are used for representation of material microstructure, advanced
strain and stress measures are emerged. Since size effects are incorporated through
those non-standard primal fields, the theories belong to family of ‘implicit’ non-local
models possess a ‘weak’ non-local character. On the other hand, in ‘explicit’/‘strong’
non-local models, the primal kinematic and work-conjugated dynamic descriptor of
classical theoryof elasticity are preserved,while equations contain different operators

1These approaches are explained in detail in Ref. [14].
2A general survey about the original molecular models can be found in Refs. [24–26].
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in spatial field [13].As non-local parameter that includes information aboutmaterial’s
internal length is directly linked to the bulk properties, this kind of theories possess
a ‘strong’ non-local character. Among many different models of both classes, the
focus of the present chapter will be on implicit type Cosserat [9, 12, 33, 34] and
explicit type Eringen’s non-local [13, 35] models.

Micropolar theory, which was first developed by Cosserat brothers [27], and fur-
ther improved by many others as Nowacki [33] and Eringen [12, 36], corresponds
to an assembly of rigid particles that are subjected to independent displacements
and rotations, and interact through forces and couples. The theory has been widely
employed in describing heterogeneous materials with microstructures, in particular
block assemblies; granular rock, masonry, particle composites, etc. [1, 37, 38]. Due
to the presence of relative rotation between micro (rotation of individual material
points) and macro (local rigid) rotations, it is specifically suitable to investigate the
behaviour of anisotropic/orthotropic media [1, 39–41]. The theory can be reduced to
the couple stress in casemicro rotations are forced to follow themacro rotation, while
via further statical restriction on couples, the classical theory of elasticity should be
recovered [37].

On the other hand, Eringen’s non-local theory, which was first introduced in [42–
45] and further improved by Eringen and Edelen [35], and Eringen [13, 46–51], is
concerned with the physics of material bodies whose behaviour at a material point
is influenced by the state of all points of the body. The theory covers long-range
interactions by relating stress at a point to the strain of entire domain through an
attenuation-type kernel function. Hence, it has been widely employed in investi-
gation of the mechanical behaviour of nano/micro sized structures such as; carbon
nanotubes, graphene sheets, atomic chains/arrays, etc. [52, 53].

Although constitutive relation in Eringen’s theory is originally introduced in an
integral form [13, 35], for specific kernel functions, it is later transformed to a
differential form leading to easier handling of the problem mathematically [50].
Shortly after, bymixture of local and non-local constitutive relations through aweight
regulating coefficient, another version of constitutive equation, also known as two-
phase local/non-local form is proposed [51, 54].

All these forms of Eringen’s non-local model with their enhanced versions have
been constructed on mathematical and physical grounds, and employed by many
researchers over the years [55–78]3; yet, they may also have some drawbacks, espe-
cially in computational terms. For instance, differential form of constitutive equation
has been shown to fail in representing actual mechanical response of bounded struc-
tures for some boundary conditions, such as cantilevered beams [79–85] while the
original integral form may lead to ill-posed mathematical description that induces
existence and uniqueness issues for some boundary conditions. [71, 86–88]. How-
ever, it has also been shown that the effect of ill-posedness is limited, even vanishes
practically for physically reasonable (small) values of non-local parameter (κ/L).

3It should be noted that beyond this limited number of cited research, and researchers, there is an
excessive literature.
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This may also be pointed out by comparison of solutions of pure non-local model to
those of two-phase model provided by [71] which is not ill-posed [88].

Although the application fields of Cosserat (micropolar) and Eringen’s theories
seem to be quite different due to distinct kinematic and dynamic descriptors they
possess, comparison between various non-classical theories has the utmost signifi-
cance in increasing the accuracy and precision of the modelling and design studies.
Following the previous works of authors [89, 90], the possible correspondences and
differences between ‘implicit’ type Cosserat and ‘explicit’ type Eringen’s non-local
models are investigated through a different example problem of pratical importance;
a plate with a circular hole subjected to tensile loads. The results are obtained by
employing standard displacement based finite element method (FEM) within the lin-
earised kinematical framework. To study scale effects on solutions, the dimension
of circular hole is fixed while the edge length of plates vary. The material parame-
ters related to size effects are assumed to be known for ‘implicit’ model, while the
non-locality of ‘explicit’ model is optimized with using an evolutionary optimization
algorithm so that stress concentration factor (SCF) obtained for infinite plates will
be coincide for both non-local models regarding the current problem under inves-
tigation. As tailoring non-locality through fraction coefficient is quite convenient
computationally, two-phase local/non-local form of Eringen’s constitutive relation
is employed in the present work, while a bi-exponential type kernel function is pre-
ferred due to its wide range application in literature and its ease on implementation
to FE algorithm. Moreover, since in the vicinity of voids (hole, crack, etc.), the
geodetical distance, which is defined as the length of shortest path connecting two
points without intersecting the boundaries [55], does not equal to Euclidean distance,
the analysis of Eringen’s model is performed adopting both distances. At last, the
stress fields of both ‘implicit’ and ‘explicit’ type non-local models are compared
with discussing possible improvements.

2 Materials and Methods

In this section, the continuum theories presented in the study are briefly explained for
isotropic, homogeneous and linear elastic bodies, and corresponding displacement-
based finite element (FE) formulations are derived regarding two-dimensional plane-
strain problems within the linearised kinematical framework. A special attention has
devoted on corresponding integration scheme, which is particularly challenging for
Eringen’s theory of elasticity due to its convolution type constitutive equation. For
Eringen’s model, FE formulation is implemented with developing an in-house Wol-
fram Mathematica code, while Cosserat model is implemented within the environ-
ment of the software COMSOLMultiphysics. The superscripts E and M that refer to
Eringen’s and Cosserat models, respectively, are used to distinguish the parameters
appearing in both theories, and possessing different interpretations.

In two-dimensional framework the body under investigation can be assumed as a
set of material points in 2D Euclidean space, occupying a domain � ∈ {x, y} with a
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uniform thickening of h, enclosed with a boundary, � which is subjected to traction
vector, t̄, and couple traction vector, m̄ (considered for Cosserat media only).

The FE formulation is derived using the principle of minimum total potential
energy, where for the static analysis, total potential energy functional, �, which is
written in terms of total elastic strain energy, U , and external work potential, W , as
in the form; � = U + W must be minimum for equilibrium.

∂� [d]
∂di

= 0, i = 1, 2, . . . , Ntotal (1)

where

� [d] =
Ntotal∑

i=1

�i (2)

with Ntotal being the total number of elements, and di and d respectively referring to
nodal unknowns vector of an element i , and the whole model. One can see that, as a
result of ‘weak’ non-local character of constitutive equation for micropolar model,
total potential energy of an element i depends only on its own displacement/rotation
field:

�M
i = �M

i

[
dM
i

]
, i = 1, 2, . . . , Ntotal (3)

which resulting Eq. (1) to be simplified into following form,

∂�M
1

∂dM
1

= ∂�M
2

∂dM
2

= . . . = ∂�M
Ntotal

∂dM
Ntotal

= 0 (4)

with the remaining terms (i.e. ∂�M
i

/
∂dM

j for i �= j) vanish.

On the other hand, due to ‘strong’ non-local character of Eringen’s model, which
accounts for long range interactions, total potential energy of an element i depends
not only on its displacement field, but also to displacement fields of all other elements.

�E
i = �E

i

[
dE
1 ,dE

2 , . . . ,dE
Ntotal

]
, i = 1, 2, . . . , Ntotal (5)

Hence all derivatives in Eq. (1) are recovered:

∂�E
i

∂dE
1

= ∂�E
i

∂dE
2

= . . . = ∂�E
i

∂dE
Ntotal

= 0, i = 1, 2, . . . , Ntotal (6)
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2.1 Micropolar Model

Micropolar theory belongs to a class of generalized continua, that, using the definition
Kunin [28], Maugin [10], Eringen [12], Trovalusci [14], called as ‘implicit’ non-
local model. As the material particles that constitute the continuum are described in
terms of both their positions and orientations, in 2D media each particle possess two
in-plane displacement components along x and y directions (ux , uy), and one out-
of-plane micro-rotation component along z direction (φz) [9, 12, 33], which leads
to following linearised kinematic relations:

εMi j = ui, j + ei jkφk, χk j = φk, j (7)

with i, j = x, y and k = z. Here, comma symbol in the subscript stands for partial
derivative operations, and εi j and χk j denote the components of strain and curvature
tensors, respectively, while ei jk is the usual third order permutation tensor. In case
the micro-rotations are constrained to follow the local rigid (macro) rotations, the
classical kinematic relations, i.e., εi j = (ui, j + u j,i )/2, are recovered and the theory
becomes couple stress [30, 37, 91].

From balance considerations, each component of surface traction, t Mi , and sur-
face couple-traction, mk , are described in terms of non-symmetric stress tensor, σM

i j ,
couple stress tensor, μk j , and unit outward normal vector, n j , as follows:

t Mi = σM
i j n j , mk = μk j n j (8)

with subscripts referring to their components. If body forces and body couples are
neglected, the equilibrium equations take the following form.

σM
i j, j = 0, μk j, j − ei jkσ

M
i j = 0 (9)

Considering linear elasticity, the stress-strain relation of an isotropic micropolar
continua can be represented as:

σM
i j = λεMkkδi j + (μ + χ)εMi j + μεMji ,

μk j = αχi iδk j + βχ jk + γχk j

(10)

which requires, six independent elastic material constants for the complete descrip-
tion. Here λ and μ refer to Lame’s constants, while α, β, γ and χ are constants
related to micropolar theory. Note that, although for first Lame’s constant the well-
known relationship; λ = Eν/((1 + ν)(1 − 2ν)) is valid, second Lamé’s constants,
μ, is not equal to shearmodulus,G, as in the classical convention, but holds following
relation:

μ = G − χ

2
(11)

while Poisson’s ratio, ν, is described as follows.
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ν = λ

2(λ + G)
= λ

2λ + 2μ + χ
(12)

Equation (10) can be rewritten in matrix form as following

σM = DM
ε εM , μ = DM

χ χ (13)

with elasticity matrices being

DM
ε =

⎡

⎢⎢⎣

λ + 2G λ 0 0
λ λ + 2G 0 0
0 0 G + χ

/
2 G − χ

/
2

0 0 G − χ
/
2 G + χ

/
2

⎤

⎥⎥⎦ , DM
χ =

[
γ 0
0 γ

]
(14)

Since size effects and relative rotations are incorporated through an internal char-
acteristic length, lc, and a coupling number, N , with following relations hold [92]:

l2c = γ

2(2μ + χ)
, N 2 = χ

2(μ + χ)
(15)

constants appearing inDM
ε do not retain the memory of internal lengths, while bend-

ing moduli DM
χ is responsible for scale effects. In case, lc and N are taken small

enough, the Cosserat effects become negligible, and the body behaves as Cauchy
continua only if the material under investigation belongs at least to orthotetragonal
symmetry class as in the presented study [1, 37].

2.1.1 Finite Element Formulation

For FE modelling, the field variables within an element e (ue, φe) are approximated
considering a natural coordinate system, ζ, η, and using related interpolation function
matrices:

ue = NM
u dM

eε, φe = Nφ dM
eφ (16)

Here,NM
u is employed for interpolation of nodal in-plane displacements and con-

sists of quadratic interpolation functions,whileNφ is employed for nodal out-of-plane
micro-rotations, and includes linear type shape functions

NM
u =

[
N 1
u 0

0 N 1
u

· · · N 9
u 0

0 N 9
u

]
, Nφ = [

N 1
φ . . . N 4

φ

]
(17)

with considering following representation of nodal unknowns vectors for nine-node
Lagrange element.

dM
eε = {

ũ1x ũ1y . . . ũ9x ũ9y
}T
e

, dM
eφ = {

φ̃1
z · · · φ̃4

z

}T
e

(18)
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Fig. 1 For micropolar
model, a 9-node Lagrange, b
4-node quadrilateral element
in natural coordinate system

The over tilde symbol is used to indicate the nodal values and the superscripts
refer to node numbers in an element.

As clearly seen from Fig. 1a and Eqs. (17) and (18), all the nodes of the nine-node
Lagrange element possess displacement-type DOFs, whereas micro-rotation DOFs
are attached only to the four corner nodes.

> Important

Considering nine-node Lagrange element, the use of a lower interpolation order for micro-
rotations (as depicted in Fig. 1a) allows an optimal compromise between numerical accuracy
and computational efficiency to be achieved. In other words, the adoption of the same inter-
polation functions for both displacements and micro-rotations usually leads to negligible
accuracy improvements against a notable increase in the number of DOFs [93].

In case a four-node linear element is considered for discretization, then both
displacement and rotation DOFs are attached to same (corner) nodes as illustrated
in Fig. 1b while Nu includes linear interpolation functions.

Nu =
[
N 1
u 0

0 N 1
u

· · · N 4
u 0

0 N 4
u

]
(19)

According strain and curvature fields that are ordered in vectors;

εM
e = [

εMxx εMyy εMxy εMyx
]T
e

, χe = [
χzx χzy

]T
e (20)

are obtained as follows for nine-node Lagrange element

εM
e = LMNM

u dM
eε + MNφdM

eφ = [
LMNM

u MNφ

] { dM
eε

dM
eφ

}
= BM

eεd
M
e ,

χe = ∇
(
NφdM

eφ

)
= [

0 ∇Nφ

] { dM
eε

dM
eφ

}
= BM

eχd
M
e

(21)
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with dM
e =

{
ũ1x ũ1y . . . ũ9x ũ9y φ̃1

z . . . φ̃4
z

}T

e
, and LM , M, ∇ respectively being the

differential matrix operator, permutation vector and gradient operator:

LM =

⎡

⎢⎢⎣

∂
∂x 0
0 ∂

∂y
∂
∂y 0
0 ∂

∂x

⎤

⎥⎥⎦ , M =

⎡

⎢⎢⎣

0
0

+1
−1

⎤

⎥⎥⎦ , ∇ =
[ ∂

∂x
∂
∂y

]
(22)

Hence for a FE model, Eq. (13) takes the following form

σM
e = DM

eεB
M
eεd

M
e , μe = DM

eχB
M
eχd

M
e (23)

where σM
e and μe vectors are described as;

σM
e = [

σM
xx σM

yy σM
xy σM

yx

]T
e

, μe = [
μzx μzy

]T
e (24)

Note that, the derivations inBM
eε andB

M
eχ matrices should be performed using chain

rule and inverse Jacobianmatrix of corresponding element e, J−1
e , as the interpolation

function matrices are represented in terms of natural coordinate system.
Finally, formulation of mth element is derived as below according to principle of

minimum total potential energy given in Eq. (4).

fMm =
⎛

⎝h

1∫

−1

1∫

−1

(
BM
mε

)T
DM

mε B
M
mε det |Jm | dζ dη

⎞

⎠

︸ ︷︷ ︸
kM
mε

dM
m

+
⎛

⎝h

1∫

−1

1∫

−1

(
BM
mχ

)T
DM

mχ B
M
mχ det |Jm | dζ dη

⎞

⎠

︸ ︷︷ ︸
kM
mχ

dM
m

fMm = (
kM
mε + kM

mχ

)
dM
m

(25)

By performing proper assemblage operations, the well-known linear equation
system is achieved:

KM dM = fM (26)

where KM refers to global stiffness matrix and fM is the global nodal force vector
of discretized 2D micropolar media.
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! Attention

The integration operations in Eq. (25) can be performed either analytically or using a numer-
ical integration scheme. Here Gauss Quadrature (GQ) method is employed. For first order
elements with linear shape functions, 2 × 2, for second order elements with quadratic shape
function, 3 × 3 Gauss sampling points are adequate to capture the exact value of correspond-
ing integral. Hence, stiffness matrix of nine-node Lagrange element illustrated in Fig. 1a can
be calculated as;

kMm = h

NGQ3∑

j=1

NGQ3∑

i=1

wiw j

(
BM
mε

(
ζi , η j

))T
DM
mε B

M
mε(ζi , η j ) det

∣∣Jm(ζi , η j )
∣∣

+h

NGQ2∑

s=1

NGQ2∑

r=1

wrws

(
BM
mχ (ζr , ηs)

)T
DM
mχ BM

mχ (ζr , ηs) det |Jm (ζr , ηs)|
(27)

where NGQ2 and NGQ3 refer to number of Gauss sampling points (GP) in an element, and
equal to 2 and 3, respectively. Since DOFs related to micro-rotations are attached only to
corner nodeswith a curvature field approximated using linear shape functions, it is convenient
to calculate the integration of kMmχ using 2 × 2 GP, while kMmε requires 3 × 3 GQ due to

existence of quadratic shape functions inBM
mε.Here ζi , η j , ζr , ηs stand for natural coordinates

with wi , w j , wr , ws being the Gauss weights of the corresponding GP.

2.2 Eringen’s Non-local Model

Eringen’s theory of elasticity is considered as an ‘explicit’ non-local model [10,
12, 14, 28], where stress is calculated by integrating the multiplication of strain
field with an attenuation-type kernel function, which contains information about
underlying discrete material organization, over the entire domain [13]. This theory
is built upon eight fundamental axioms of constitutive equations which makes it one
of the best candidates to explain the true nature of the matter among others, at least,
at continuum level. This is the main reason why Eringen’s theory will be utilized
in this chapter. In this theory, primal fields of classical elasticity are conversed and
following kinematical relations are obtained within the linearised framework:

εEi j = 1

2

(
ui, j + u j,i

)
(28)

with i, j = x, y for a 2D media. Correspondingly, each point contains two DOFs:
in-plane displacement components ux and uy along x and y directions. Here εEi j refers
to components of the symmetric strain tensor.
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For the continuum to be in balance, interactions between material points, that are
characterized through traction forces only, tE , can be described in terms of symmetric
stress tensor, σE , and unit normal vector, n, as follows:

t Ei = σE
i j n j (29)

Since the axiom of objectivity provides the vanishing of non-local body force
residuals, while strain-rate dependent non-local energy residual dies out under the
quasi-static condition [13, 59, 94], in the absence of body forces, following equilib-
rium equation is carried out, similar to classical (local) elasticity theory.

σE
i j, j = 0 (30)

Stress-strain relation of two phase local/non-local model is then written as follows
for a linear elastic and isotropic 2D body [51, 54]:

σE = ξDEεE + (1 − ξ)

∫

A

τ (r(x̄, x),κ)DEεE (x̄) d A(x̄) (31)

with elasticity matrix being

DE =
⎡

⎣
λ + 2G λ 0

λ λ + 2G 0
0 0 G

⎤

⎦ (32)

Here x (or x̄) refers to xi = {xi , yi } which represents the coordinates of any point
i . As one can see, two additional parameters, ξ and κ, both of which attribute to non-
local character of the structure, are introduced with Eringen’s two phase local/non-
local theory. Here ξ refers to fraction coefficient and controls the weight of local
and non-local parts in the constitutive equation. As decreasing values imply more
pronounced non-locality, assuming ξ equal to unity yields full local model while 0
corresponds to full non-local case, inwhichproblems regarding existence andunique-
ness of solution may arise. Meanwhile, non-local parameter κ, includes information
about material’s internal structure and defines the intensity of the kernel function
(τ ), according to which, the link between source point x and remaining points x̄ are
identified. Although for a 2D domain, many different types of kernel function (e.g.
error function, bell shape, conical shape, bi-exponential) exist [50, 55, 95], all of
them have to fulfil the following requirements [50]:

1. Kernel function should be a positive decaying function with a maximum value at
x̄ = x.

2. Considering regions sufficiently away from boundaries, kernel function should
return to Dirac delta function for κ → 0, in which case the classical theory of
elasticity must be recovered.
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Fig. 2 Plots of attenuation functions

3. Eringen’s non-local theory should approximate to lattice dynamics when
κ/L → 1.

4. Kernel function should satisfy the following normalization condition on V∞.

∫

V∞

τ (r(x̄, x),κ) dV = 1 (33)

Due to the decaying nature of kernel function, the effects of long range interactions
practically vanish beyond a certain limit. This limit is called as influence zone, and
defined with a radius (RI ) since the projection of any isotropic kernel function on
2D domain is circular. In Fig. 2, the cross section views of different attenuation
functions are plotted for a non-local parameter κ = 0.05L , where RI is determined
as; τ |r→RI

= 0.0065τ |r→0. Here L refers to external length of the 2D structure.
In accordance with literature [66], a bi-exponential type kernel function (τ3 in

Fig. 2) is used for calculations due to following reasons. First, the implementation
of partitioned type kernel functions (e.g. bell shape, canonical shape, etc.) would
require an additional loop in the algorithm, and increases the computational burden.
Second, kernel functions with relatively narrow influence zone have a rapid decaying
character, which drastically increases the number of Gauss sampling points for a
good approximation of integration operations. Although the proper choice of kernel
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function is discussed in terms of computational expense only, it actually must be
selected based on experimental data.

> Important

Distance measure r appeared in kernel functions is generally defined as the length of a
straight line that connects source point, x, and all other points, x̄ such that; r = |x̄ − x|, while
Polizzotto [55] proposed a more refined model that considers the existence of cracks and/or
holes in the body. Accordingly, it was suggested that, the distance r of any pair (x, x̄) ∈ V
should depend on geodetic path, r (x, x̄), not to Euclidean distance, |x̄ − x|. Here geodetic
distance is submitted as theminimum length that connects two points without intersecting the
boundary surface of the body. Hence, it is clear that, for domains without voids the geodetical
distance equals to Euclidean one (r (x, x̄) = |x̄ − x|), while r (x, x̄) ≥ |x̄ − x| relation holds
for any domain.4

Considering our example problem possessing a hole (see Fig. 3b), the effect of
geodetical distance on stress field should be studied. To this end, the analysis of
Eringen’s model is performed adopting both Euclidean and geodetical distances.
Here, the geodetical path between two points is determined by following the steps
listed below:

1. Tangents of corresponding points are obtained.
2. Among each pair of tangent lines, the ones that are closer to the other point are

detected.
3. The intersection points of corresponding tangent lines are found.
4. The arc in between interaction points are identified.

According distances illustrated at Fig. 3b are calculated as following:

Euclidean : |xA − xD| =
√

(xA − xD)2 + (yA − yD)2

Geodetical : r (xA, xD) = |xA − xB| + aθBC + |xC − xD| (34)

where a refers to radius of hole and θBC denotes the angle between intersection points
(B and C) of each tangent line.

2.2.1 Finite Element Formulation

For FE modelling of 2D non-local media, the domain is discretized using stan-
dard four-node linear elements where displacement field within an element e (ue)
is approximated using nodal displacement vector, dE

e , and interpolation matrix, Nu ,
(see Eq. (19)) such that; ue = NudE

e .

4It is important to note that, although the geodetical distance between two points is unique, the
geodetical path may sometimes be nonunique [55].
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Fig. 3 a Illustration of influence zone ofmth element (Elements that fall within the zone are shown
in grey). b Geodetical path and Euclidean distance between source and neighbour points

> Important

Even though second-order elements clearly suppress the first-order ones in problems with
high gradients (e.g. stress concentration), it is not preferred herein as the integration of
multiplication of quadratic shape functions and exponential type attenuation function would
drastically increase the computational burden.

Corresponding strain field within an element e, i.e., εE
e = [

εExx εEyy 2ε
E
xy

]T
e
, is

then defined as:
εE
e = LENudE

e = BE
e dE

e

LE =

⎡

⎢⎢⎢⎢⎢⎣

∂

∂x
0

0
∂

∂y
∂

∂x

∂

∂y

⎤

⎥⎥⎥⎥⎥⎦

dE
e = {

ũ1x ũ1y ũ
2
x ũ2y ũ

3
x ũ3y ũ

4
x ũ4y

}T
e

(35)

with LE being the differential matrix operator. As previously mentioned, the deriva-
tions inBE

e is performed using chain rule and inverse Jacobian matrix of correspond-
ing element e, J−1

e , as the interpolation functions are represented in terms of natural
coordinate system.

The constitutive relation given in Eq. (31) is then transformed to following for an
element e:



‘Explicit’ and ‘Implicit’ Non-local Continuum Descriptions … 325

σE
e = ξe DE

e B
E
e d

E
e + (1 − ξe)

Ntotal∑

i=1

1∫

−1

1∫

−1

e− r
κ

2πκ2
DE

i B̄
E
i d

E
i det

∣∣J̄i
∣∣ dζ̄ dη̄ (36)

while stress tensor, σE
e , is described as below:

σE
e = [

σE
xx σE

yy σE
xy

]T
e

(37)

Here the over bar denotes that, the related matrix is written in terms of ζ̄, η̄ as a
requirement of Eringen’s constitutive relation, hence, should not be confused with
overbars in prescribed surface traction and surface couple-traction.

According to principle of minimum total potential energy given in Eq. (6), for-
mulation of mth element is derived as below.

f Em = ξmkE
md

E
m + (1 − ξm)

⎛

⎝kE
mmd

E
m +

Ntotal∑

n=1, n �=m

kE
mnd

E
n

⎞

⎠

+ (1 − ξn)

Ntotal∑

n=1, n �=m

(
kE
nm

)T
dE
n

(38)

where

kE
m = h

1∫

−1

1∫

−1

(
BE
m

)T
DE

m BE
m det |Jm | dζ dη

kE
mm = h

1∫

−1

1∫

−1

1∫

−1

1∫

−1

e− r
κ

2πκ2

(
BE
m

)T
DE

m B̄E
m det

∣∣J̄m
∣∣ det |Jm | dζ̄ dη̄dζ dη

kE
mn = h

2

1∫

−1

1∫

−1

1∫

−1

1∫

−1

e− r
κ

2πκ2

(
BE
m

)T
DE

n B̄
E
n det

∣∣J̄n
∣∣ det |Jm | dζ̄ dη̄dζ dη

(39)

The term with coefficient ξ represents the local part of two-phase model, while
the terms with coefficient 1 − ξ correspond to the non-local part.5 In the non-local
part, the first term stands for the contribution of the mth element to its own energy,
while second and third terms account for the influence exerted on the mth element
by the remaining elements, and the influence exerted by the mth element to other
elements, respectively. Second and third terms in the non-local part, which expand
element stiffness matrix to overall dimension and called as cross-stiffness matri-
ces, are equal to each other only for homogenous material properties such that;
kE
mn = (

kE
nm

)T
for DE

n = DE
m .

5One can see that, Eqs. (38) and (39) have the same nature with the corresponding ones reported in
[60].
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To reduce the computational burden, only the elements inside the influence zone
(see Fig. 3a) are assumed to contribute to cross-stiffness matrices kE

mn and kE
nm ,

while the effect of others practically vanish due to the decaying nature of attenuation
function, as previously described.

Here we designate the influence zone of an element by setting the corner nodes as
centre points of the corresponding circle. Even if a very limited part of neighbouring
elements reside to that zone, its contribution is included into the calculations. With
this way, the zone has been extended as much as possible without compromising
from computational efficiency. Please note that, after this point, the Ntotal expression
in Eqs. (36) and (38) is replaced with total number of elements reside in the influ-
ence zone of corresponding element, Ntotalm . The above mentioned simplification
inherently leads to some sort of banding of the global stiffness matrix, KE during
assemblage operations.

Finally, linear equation system is obtained:

KE dE = f E (40)

with f E being the global nodal force vector of discretized 2D Eringen media.

! Attention

The integration operations given in Eq. (39) are performed using GQ method. Although
for local part (kEm ), 2 × 2 Gauss sampling points (GP) are sufficient regarding 4-node ele-
ments, for non-local part, the number of GP varies depending on the ratio between non-local
parameter and element length as well as calculated part of stiffness matrix. As the κ/ le ratio
decreases, more Gauss points are needed in order to capture the trend of exponential func-
tion in integration, while cross stiffness matrices (kEmn , k

E
nm ) requires less GP than kEmm .

Accordingly, the number of GP is arranged such that the relative difference between stiffness
matrices obtained via GQ method and other numerical integration schemes embedded in
commercial programs (e.g. Mathematica) remains below a prescribed limit (2%).
Below calculation of kEmn matrix of mth element is given.

kEmn = h

2

NGQb∑

s

NGQb∑

r

NGQa∑

i

NGQa∑

j

wswrwiw j
e− r

κ

2πκ2

(
BE
m (ζr , ηs)

)T
DE
m B̄

E
n
(
ζ̄i , η̄ j

)
det

∣∣J̄n
(
ζ̄i , η̄ j

)∣∣ det |Jm (ζr , ηs)|
(41)

As previously mentioned, NGQb and NGQa refer to number of GP in mth and nth elements,
respectively. Accordingly, ζ̄i , η̄ j stand for natural coordinates of nth element with wi , w j
being theGaussweights of the correspondingGP.A similar description holds formth element,
and ζr , ηs , wr , ws .
If r is considered as Euclidean distance following relation holds

r =
√(

Xm (ζr , ηs) − X̄n
(
ζ̄i , η̄ j

))2 + (
Ym (ζr , ηs) − Ȳn

(
ζ̄i , η̄ j

))2 (42)
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where Xm(n) = {
Xm(n)(ζ, η), Ym(n)(ζ, η)

}
defines coordinate mapping between physical

and natural coordinate system of mth element. However, in case the Euclidean path between
GPs of mth and nth elements transits through the hole as illustrated in Fig. 3b, geodetical
distance defined in Eq. (34)2 should be used to account for long-range interactions.

3 Differential Evolution Method

Differential Evolution method (DEM) was proposed in 1997 by Storn and Price [96]
as a heuristic numerical optimization approach. It ensures good convergence prop-
erties with requiring only a few control parameters. Each iteration of the algorithm
consists of three steps; mutation, crossover and selection. Below, these steps are
briefly explained for a function with N0 parameters to be optimized.6

First of all, an initial vector population, p, is created. This population can be
chosen either randomly or uniformly, and must cover the entire parameter space.

pJ
i = [

pJ
i,1 pJ

i,2 . . . pJ
i,N0

]T
, i = 1, 2, . . . , NP (43)

Here superscript J stands for generation number while NP refers to number of
vectors at each population, and is one of the control parameters. According to Storn
and Price [96] a reasonable choice for NP is between 5 × N0 and 10 × N0 which
cannot be altered during the optimization process.7

After formation of initial vector population, the generation of mutant vectors,m,
takes place. To this end, the weighted difference between randomly selected two
target vectors are added to a third one, and as a result, a mutant vector is created for
each target vector:

mJ+1
i = pJ

r1 + F
(
pJ
r2 − pJ

r3

)
, i = 1, 2, . . . , NP (44)

with r1, r2, r3 ∈ {1, 2, . . . , NP} and r1 �= r2 �= r3 �= i being hold. F is another con-
trol parameter, and regulates the amplification of differential variation. Its value
varies between 0 and 2, while 0.5 is suggested as a good initial choice. If the popula-
tion converges too soon F should be increased with keeping in mind that the values
greater than 1 are occasionally effective.

In order to increase the diversity of parameter vectors, the crossover step is intro-
duced. The crossover (trial) vector;

cJ+1
i = [

cJ+1
i,1 cJ+1

i,2 . . . cJ+1
i,N0

]T
, i = 1, 2, . . . , NP (45)

6For more information about the algorithm, the readers are referred to [96].
7NP must be taken at least 4 to fulfil the requirement in mutation step.
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is determined by comparing each term of target and mutation vectors according to
following criteria:

cJ+1
i, j =

{
mJ+1

i, j → rand ( j) ≤ CR
pJ
i, j → rand ( j) > CR

}
, j = 1, 2, . . . , N0 (46)

where rand( j) indicates the j th evaluation of a uniform randomnumber generator that
has an outcome between 0 and 1, while CR corresponds to third control parameter
and ∈ [0, 1]. Accordingly large values of CR accelerates the convergence, yet 0.1 is
suggested as a good first choice by [96].

In the last step, the trial vector, cJ+1
i , is compared with the target vector, pJ

i , to
decide whether or not it is suited to become a member of generation J + 1. This is
achieved by comparing the objective functions, OF, which is aimed to be minimized.

pJ+1
i =

{
cJ+1
i → OF

(
cJ+1
i

) ≤ OF
(
pJ
i

)

pJ
i → OF

(
cJ+1
i

)
> OF

(
pJ
i

)
}

, i = 1, 2, . . . , NP (47)

The convergence is assumed to be fulfilled either the total number of stall iterations
exceeds 50, or the objective function is minimized up to 0.001%.

4 Numerical Simulations

This section is concerned with the comparison of ‘implicit’ Cosserat and ‘explicit’
two-phase local/non-local Eringen’smodels through numerical examination of linear
elastic plate with a circular hole, under uniform tensile stress (Fig. 4).

Fig. 4 Geometry, boundary
and loading conditions of
example problem
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As loading condition, a constant stress of σ0 = 100 (MPa) is applied to left and
right vertical boundary edges, while boundary conditions are imposed by constrain-
ing the horizontal and vertical displacements of vertical and horizontal axes located
in the middle, respectively. All the analyses are performed regarding the full domain
since in the context of Eringen’s non-local theory, imposing symmetry is much more
complicated than only considering the symmetric part of the model as a result of the
missing neighbour elements that should have contributed to cross stiffness matrices
[65, 97].

In accordancewith authors’ previous publication [89], the simulations are repeated
considering two different mesh configurations of different refinement (see Fig. 5),
both characterized by three different scale ratios: L/a = 3.0 (Model 1), L/a = 10.0
(Model 2) and L/a = 20.0 (Model 3). The radius of hole, a, equals to 0.05 (m), while
thewidth of the plate (structural/macro length), L , is modified in size to consider both
finite and infinite domains. To study the effect of non-locality on solutions and to
examine the correspondences and differences between ‘implicit’ and ‘explicit’ non-
local continuum models, the analysis are repeated by modelling the plate as Cauchy,
Cosserat and Eringen continua. For simulations, the non-locality of Eringen’s model
is optimized by tailoring the fraction coefficient ξ, while non-local parameter κ/a

Fig. 5 Mesh configuration (top: coarse, bottom: fine) of models with a circular hole
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equals to 0.2 in accordance with [66]. For this value of κ/a, the radius of influence
zone (RI ) is taken as 0.05 (m). For optimization, Differential Evolution Method [96]
is used with the following objective function (OF) to be minimized, while trial and
error method could also be preferred:

OF =
∣∣∣∣
SCFE (ξ)

SCFC
− 1

∣∣∣∣
L/a→∞

(48)

where 0.0 < ξ ≤ 1.0 and SCF = œmax/œ0 = œA/œ0. According to Eq. (48), the
numerical value of fraction coefficient is arranged such that, the stress concentration
factor (SCF) obtained for Eringen’s non-local theory based FE model (for L/a =
20.0) should be in accordance with the one reported for infinite Cosserat plates [98].
With regard to latter convergence criteria described in previous section, the optimum
fraction coefficient is obtained as ξopt = 0.3315 with a convergence rate illustrated
at Fig. 6.

> Important

In post processing, nodal stresses are attained by using direct evolution method, in which
case, stress components of each node is calculated by substituting its physical coordinates
to stress field equation of corresponding element (Eq. (23) for Cosserat model, Eq. (36) for
Eringen’s model). For nodes that are shared by multiple elements, a single stress value is
obtained by averaging contribution of surrounding elements.

After non-local material parameters of Eringen’s model are fixed, the FE analysis
are performed for all theories, scale ratios and discretization. The numerical values
of parameters used for calculations can be found in Table 1, while corresponding
SCFs are listed in Table 2.

Fig. 6 Rate of convergence during optimization of fraction coefficient
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Table 1 Numerical values of material properties

G
(GPa)

ν κ/a ξ μ (GPa) lc (m) N χ (GPa) γ (kN)

Local 1.0 1/3 – – – – – – –

Cosserat 1.0 1/3 – – −3.263 0.05 0.9 8.5263 104

Eringen 1.0 1/3 0.2 0.3315 – – – – –

Table 2 Stress concentration factors and sensitivity analysis

Models
(L/a)

Theories Analytical
results

4-node element 9-node element

Coarse Fine �m (%) Coarse Fine �m (%)

3 Local – 4.37129 4.50118 2.89 4.38496 4.26706 2.76

Cosserat – 2.49640 2.48677 0.39 2.42046 2.42384 0.14

Eringen – 3.13088 3.16843 1.19 – – –

Eringen* – 3.13043 3.16812 1.19 – – –

10 Local – 3.27776 3.35637 2.34 3.30622 3.26048 1.40

Cosserat – 2.28474 2.29861 0.60 2.22525 2.22562 0.02

Eringen – 2.20737 2.23867 1.40 – – –

Eringen* – 2.20700 2.23831 1.40 – – –

20 Local 3.00000 3.09164 3.30288 6.40 3.30066 3.15742 4.54

Cosserat 2.16544 2.27173 2.26422 0.33 2.22491 2.20055 1.11

Eringen – 2.10095 2.16544 2.98 – – –

Eringen* – 2.10036 2.16507 2.99 – – –

The effect of discretization is studied by calculating the relative differences
between both mesh configuration (�m = |SCFcoarse/SCF f ine − 1|), while super-
script * in Table 2 is used to indicate the results obtained by adopting geodetical
distance.

According to the results, following interferences can be made. Even though for
models with high non-locality, the correction of r through determining geodetical
path will become indispensable, for the presented κ/a ratio and example problem,
solutions are practically not altered, as the SCFs reported for both cases suggest (i.e.
Euclidean (Eringen) vs geodetical (Eringen*) path).

For all scale ratios, the presence of internal lengths leads to a decrease in stress
concentration factor, which features the importance of using non-classical theories
for cases with accountable size effects. This is also evident from comparative contour
plots of normal stresses depicted in Fig. 7,8 and 3D plots illustrated in Fig. 8, where
the maximum stress reduces at least about %28.

8To achieve smooth and physically meaningful stress fields, the discontinuity of stress among linear
elements are averaged by performing linear interpolation.
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Fig. 7 Zoom-in looks of contour plots of normal stress field for 4-node, finemeshedLocal, Cosserat
and two-phase local/non-local Eringen’s models

Similar to ones reported in [89], the dependence of SCFs on spatial discretiza-
tion is weakened for models with size effects, especially for Cosserat continuum.
Although, the results of second order elements are less dependent on discretization,
and also closer to the analytical expressions, adopting first order elements still seems
to provide a good approximation.

Aside similar diffusive character of ‘explicit’ two-phase local/non-local Eringen’s
and ‘implicit’ Cosserat non-local models, the variation of L/a ratio seems to have
different effects on SCFs. This discrepancy can be attributed to the missing long
range interactions around domain boundaries of Eringen’s model (boundary effects),
the effect of which is extended to around the hole for L/a = 3.0. As one can clearly
see from the first rows of Figs. 8 and 9a, the reduction of stress close to upper and
lower boundaries acts as an additional source of stress concentration for ‘explicitly’
non-local Eringen’s model.

As the last point, it should be mentioned that, the results in the interior domain,
sufficiently away from boundaries and hole, expected to be close to that of local elas-
ticity as κ/L (or lc/L) ratios are indeed small, while κ/a = 0.2 provides relatively
high value of non-local parameter, evidenced by the discrepancy in stress distribution
around the hole.
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Fig. 8 Zoom-in looks of 3D plots of normal stress field for 4-node, fine meshed Local (green),
Cosserat (orange) and Eringen (yellow) models

5 Conclusion

Employing non-classical continuum theories that are able to retain the memory of
internal material organization with particular reference to the material’s character-
istic length is favourable for structures with accountable size effects. According to
the works Kunin [28], Maugin [10], Eringen [12], Trovalusci [14], these theories
can be distinguished as ‘implicit’/‘weak’ and ‘explicit’/‘strong’ non-local models
depending on the interpretation of internal scale parameters. As understanding their
capabilities has the utmost significance in increasing the accuracy and precision of
the modelling and design studies, the present chapter focused on the comparison of
two popular non-local theories; the ‘implicit’ Cosserat (micropolar) and ‘explicit’
Eringen’s models through an example problem of practical importance. The calcula-
tions are performed by employing standard finite element method, while the domains
are discretized using quadrilateral elements.

The material parameters of ‘implicit’ model are assumed to be known while the
non-locality of ‘explicit’ model is modified to attain a stress concentration factor
that is in accordance with infinite Cosserat plate. Although for larger scale ratios,
the results of both non-local models are in a very good agreement, the stress field
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Fig. 9 a Zoom-in and b zoom-out looks of contour plots of normal stress field for 4-node, fine
meshed Cosserat’s and Eringen’s models

at the vicinity of the hole is disturbed for L/a = 3.0, in which case the boundary
effects of Eringen’s model are evident in the entire domain. This indicates that when
pores, voids or any other defects are close to boundaries, Eringen’s model estimates
a higher stress concentration factor than Cosserat model. Nevertheless, the critical
decrease in SCFs with respect to Cauchy model features the importance of adopt-
ing a non-local theory for problems with accountable size effects. Yet, obtaining
a different optimum fraction coefficient than the one reported in matrix inclusion
problem [89] indicates the fact that for each sample problem the non-locality must
be tailored to have some kind of equivalency between ‘implicit’ and ‘explicit’ non-
local models. For considered non-local parameter, adopting Euclidean or geodetical
distance during formation of the cross stiffness matrices does not change the results
considerably. However, for larger RI /a ratios, the correction of distance measure
through determining the geodetical path may become very significant.

In terms of computational efficiency, the coding and implementation of Eringen’s
theory is relatively challenging with respect to Cauchy and Cosserat models. The
necessity of accounting for the contribution of elements to each other due to Eringen’s
cumulative type constitutive relation intensively extends the calculations. Moreover,
a special attention must be paid for numerical integration.
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Although, in this study, a single parameter turns out to be suggestive enough to
look for possible hints on equivalencies of both non-local models, other strategies
considering global behaviour are possible, such as minimizing the differences of
strain energy.
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Micromorphic Continuum Theory:
Finite Element Analysis of 3D Elasticity
with Applications in Beam- and
Plate-Type Structures

Reza Ansari, Amir Norouzzadeh, and Hessam Rouhi

Abstract Due to the failure of classical elasticity to correctly model the behav-
ior of small-scale structures as well as inhomogeneous media, a non-classical
three-dimensional (3D) finite element formulation is developed on the basis of the
micromorphic theory (MMT). Possessing micro-scale rotation, shear and stretch
degrees of freedom (DOFs), MMT is an appropriate candidate to take the size- and
microstructural-effects into consideration in mechanical problems. First, a general
3D formulation is proposed for the micromorphic solid continua which includes
three stress and strain fields with 18 elastic constants. Then, the relations are writ-
ten in matricized form which is advantageous for computational aims. Using the
matrix-vector MMT formulation, a 3D micromorphic element with 12 DOFs (3
classical and 9 non-classical) is developed. Also, a robust scheme is used to deter-
mine the material parameters in terms of two classical constants in such a way that
the positive-definiteness of the stored energy would be guaranteed. In the next step,
the static deformations of micromorphic beams and plates with various kinds of edge
supports are computed to reveal the efficiency of themethod. The influences of length
scale parameter on the bending responses of micromorphic structures with various
geometrical properties are also analyzed. From comparing the results obtained from
the classical andmicromorphic elasticity theories, it is indicated thatMMT results do
not completely converge to those of the classical elasticity theory where the size does
not matter. This is because of considering the micro-deformation DOFs inMMT and
shows the microstructural-effects.
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1 Introduction

Based on experimental studies, the behaviours of microscopic and molecular struc-
tures are different from those of macro-scale structures, and it is not possible to
properly predict their size-dependent behaviours based on the conventional contin-
uum theories (e.g. see Refs. [1] and [2]). So, a number of non-classical theories were
proposed which can capture the small-scale influences [3–7].

The micromorphic theory (MMT) is a size-dependent theory with unique fea-
tures appropriate for taking the microstructure influences into account. Based on
this theory, a material body is assumed to be a continuous set of deformable par-
ticles with finite size and inner structure which have 9 DOFs, in addition to the
three standard DOFs of their centroid. In other words, each material particle has an
extra micro-motion considered by “director” which has 9 independent components,
associated with 6 DOFs for micro-deformations (shear and stretch) and 3 DOFs for
micro-rotations.

There are several papers in which MMT and its micropolar counterpart (MPT)
have been used in the field of solid mechanics. For example, Zhang et al. [8] pro-
posed a finite element (FE) formulation in order to investigate the multi-body contact
based on MPT. Also, Aganović et al. [9] presented the models of micropolar rods
and plates. They mathematically justified their models according to the equations
of linearized MPT. Pompei and Rigano [10] studied the bending response of vis-
coelastic plates in the context of MPT. Moreover, Jeong and Neff [11] investigated
uniqueness, existence and stability of the weakest possible stress-strain equations
for a linear elastic, static and isotropic micropolar model. Pietraszkiewicza and Ere-
meyev [12] described the strain measures in the nonlinear micropolar theory based
on three approaches. Sansour et al. [13] proposed amicromorphic model for inelastic
formulations at large strains in addition to for scale influences in specimen experi-
encing homogenous deformation. Ieşan [14] analyzed micromorphic elastic solids
containing initial stresses and initial heat flux. Kumar and Kansal [15] solved the sys-
tem of differential equations in the theory of micropolar thermoelastic diffusion with
voids. Dos Reis and Ganghoffer [16] used homogenization techniques for discrete
lattice structures and calculated the effective elastic micropolar properties. Zhang
et al. [17] investigated the mechanical properties of a bimaterial strip subjected to
simple shear based upon MMT. Also, using this theory, Cordero et al. [18] studied
grain size influences on metal polycrystals. Altenbach and Eremeyev [19] discussed
the constitutive equations of the nonlinear micropolar continuum using strain rates.
Chowdhury et al. [20] proposed a state-based micropolar peridynamic theory for lin-
ear elastic solids with introducing additional micro-rotational DOFs to each material
point.

Recently, developing size-dependent elements and non-classical FE approaches
within the framework of MPT and MMT has attracted the attention of some
researchers. For example, readers can follow the papers of Ansari and co-workers.
By developing a prism element containing themicro-rotation andmicro-deformation
DOFs, Ansari et al. [21] presented a 3D finite element analysis (FEA) of micromor-
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phic materials. They investigated the mechanical behavior of micromorphic plate-
type structures on the basis of the Mindlin–Reissner plate theory [22]. In the frame-
work of the geometrically nonlinear micropolar theory of Eringen, the bending char-
acteristics ofmicropolar plateswere studied inRef. [23]. They also introduced a novel
three-dimensional micropolar element and examined its efficiency in a wide range of
applications [24]. Recently, Norouzzadeh et al. [25, 26] utilized the micromorphic
continua to analyze the large deformations of small-scale shell-type structures. Also,
based upon the original integral from and the differential formulation of Eringen’s
nonlocal elasticity combined with the micromorphic and micropolar theories, the
simultaneous effects of stress-strain nonlocality and micro-scale deformations were
captured in Refs. [27] and [28], respectively.

In the current work, a 3D size-dependent element is proposed based on MMT.
To this end, first, MMT is generally formulated based on a new approach. Then, the
obtained relations are matricized so as to develop the finite element formulations.
The micromorphic beams and plates are chosen and their static bending response
is studied using the proposed 3D micromorphic element. Selected numerical results
are given to show the performance of element in predicting the bending response of
micromorphic beams and plates under different types of boundary conditions and
with various geometries. The influence of length scale parameter is illustrated, and
the results calculated based on the classical elasticity theories are compared with the
ones obtained based upon MMT.

2 Micromorphic Elasticity Theory

2.1 Kinematics

Based on MMT, a number of micro-elements are assumed in each macro-element
whose positions are described in the current configuration using the following vector
[29]

x′ = x + ξ (1)

where x is the position vector of macro-element’s centroid, and ξ shows the position
of micro-element concerning macro-element’s centroid. By denoting x and ξ as X
and � in the reference configuration, respectively, the position of micro-element in
that configuration becomes

X ′ = X + � (2)

The deformation relation of body is thus expressed as follows using functions ϕ
and ψ
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x = ϕ (X, t) , ξ = ψ (�, X, t) (3)

Since the values of� are very small,ψ (�, X, t) is considered as a linear function
of � [29]. Hence

ξ = ψ (�, X, t) = χ (X, t)� = χi I�I ei (4)

in which the second-order tensor χ is called the micro-deformation tensor. Now, in
order to obtain dx′, it is required to compute dx and dξ. To this end, using Eqs. (3)
and (4) one can write

dx = ϕ (X + dX, t) − ϕ (X, t) = ∂ϕ (X, t)

∂X
dX = FdX = Fi I dX I ei (5a)

F = ∂ϕ (X, t)

∂X
= ∂x

∂X
(5b)

dξ = dχ (X, t) � + χ (X, t) d� = ∂χ

∂X
: (� ⊗ dX) + χ (X, t) d�

= (
χi K ,I�K dX I + χi I d�I

)
ei (6)

where F stands for the deformation gradient tensor. Therefore, using Eq. (1) one has

dx′ = dx + dξ = FdX + ∂χ

∂X
: (� ⊗ dX) + χ (X, t) d�

= ((
χi K ,I�K + Fi I

)
dX I + χi I d�I

)
ei (7)

Accordingly,

dx ′2 = dx′ · dx′ = dx
′
i dx

′
i

= (
Fi I Fi J + 2Fi Iχi K ,J�K + χi K ,Iχi L ,J�K�L

)
dX I dX J

+ 2
(
Fi Iχi J + χi Jχi K ,I�K

)
dX I d�J + χi Iχi J d�I d�J

= (
CI J + 2�I K J�K + χi K ,Iχi L ,J�K�L

)
dX I dX J

+ 2
(
�I J + χi Jχi K ,I�K

)
dX I d�J + χi Iχi J d�I d�J (8)

where

CI J = Fi I Fi J , �I J = Fi Iχi J , �I K J = Fi Iχi K ,J (9)

In these relations, CI J denotes the right Cauchy-Green deformation tensor; also,
�I J and�I K J are new kinematic quantities which have been made in the micromor-
phic theory.
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Using Eq. (2), dX ′ is expressed as

dX ′ = dX + d� = (dX I + d�I ) E I (10)

which results in

dX ′2 = dX ′ · dX ′ = dX
′
I d X

′
I = dX I dX I + 2dX I d�I + d�I d�I (11)

Thus,

dx ′2 − dX ′2 = (
CI J + 2�I K J�K + χi K ,Iχi L ,J�K�L − δI J

)
dX I dX J

+2
(
�I J + χi Jχi K ,I�K − δI J

)
dX I d�J + (χi Iχi J − δI J ) d�I d�J

= 2

(
EI J +�I K J�K + 1

2
χi K ,Iχi L ,J�K�L

)
dX I dX J

+2
(EI J + χi Jχi K ,I�K

)
dX I d�J + (χi Iχi J − δI J ) d�I d�J (12)

in which EI J and EI J are defined as

EI J = 1

2
(CI J − δI J ) = 1

2
(Fi I Fi J − δI J ) ,

EI J = �I J − δI J = Fi Iχi J − δI J (13)

Ignoring the second-order terms in Eq. (12) with respect to the components of
vector � leads to

dx ′2 − dX ′2 = 2EI J dX I dX J + 2EI J d X I d�J + 2�I K J�K dX I dX J (14)

If U = x − X denotes the displacement vector, dU can be formulated as

dU = dx − dX = (F − I) dX (15)

The deformation gradient tensor is thus written as

F = I + ∂U
∂X

(16)

In addition, by introducing the micro–displacement tensor, �̃, the
micro–deformation tensor can be given as [29]

χ = I + �̃ (17)

As a result, the strain tensors are written in terms of displacement vector and
micro-displacement tensor as follows
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CI J = δI J + uJ,I + uI,J + uK ,I uK ,J

⇒ Ẽ I J = 1

2

(
uJ,I + uI,J + uK ,I uK ,J

)
(18)

�I J = δI J + uJ,I + φI J + uK ,IφK J

⇒ ẼI J = uJ,I + φI J + uK ,IφK J (19)

�̃I J K = φI J,K + uL ,IφL J,K (20)

in which Ẽ I J , ẼI J and �̃I J K are given by

Ẽ = 1

2

(∇U + ∇TU + ∇TU∇U
)

(21)

Ẽ = ∇TU + �̃ + ∇TU� (22)

�̃ = ∇�̃ + ∇TU∇�̃ (23)

Within the framework of linear micromorphic theory, the above relations are
rewritten as [21, 22]

ẽ = 1

2

(∇U + ∇TU
)

(24)

ε̃ = ∇TU + �̃ (25)

γ̃ = ∇�̃ (26)

2.2 Equation of Motion

According to MMT, the balance of momentum and moment of momentum in tensor
and index forms are as follows [29]

div
(
σ̃

) + ρ f = ρü, σ̃ − s̃ + div
(
m̃

) + ρl = ρ j φ̈

σi j, j + ρ fi = ρüi , σi j − si j + mi j,k + ρli j = ρ jik φ̈k j (27)

where σ̃ and s̃ are non-symmetric and symmetric stress tensors; is third-order couple
stress tensor; f and l are body force vector and body couple tensor; u and φ are
displacement vector andmicro-rotation tensors and ρ is mass density. Also, j signals
micro-inertia tensor that can be stated as jik = jδik for a micro-isotropic material.
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2.3 Elasticity

According to Eq. (14), the strain energy density is considered as a function of Ẽ, Ẽ
and �̃. Subsequently, to write a constitutive equation between stresses and strains,
the strain energy density must be stated in a quadratic form with respect to strains.
Hence, it is given in the following form [25, 26]

Ŵ
(
ẽ, ε̃, γ̃

) = 1

2
γ̃
... Ã

...γ̃ + 1

2
ε̃ : B̃ : ε̃ + 1

2
ẽ : C̃ : ẽ + ε̃ : D̃ : ẽ

+ ẽ : F̃...γ̃ + ε̃ : G̃...γ̃ (28)

by which the material stresses of MMT can be introduced as

σ̃ = ∂Ŵ

∂ ẽ
+ ∂Ŵ

∂ε̃
= B̃ : ε̃ + C̃ : ẽ + ε̃ : D̃ + G̃

...γ̃ (29)

s̃ = ∂Ŵ

∂ ẽ
+ ∂Ŵ

∂ε̃
+ ∂Ŵ

∂ε̃T = B̃ : ε̃ + ẽ : D̃ + F̃
...γ̃ (30)

m̃ = ∂Ŵ

∂γ̃
= Ã

...γ̃ + ε̃ : F̃ + ẽ : G̃ (31)

In these relations, Ã, B̃, C̃, D̃, F̃ and G̃ are the elastic constants of material. On
the basis of Eq. (28), the following symmetries are present

AI J K LMN = ALMN I J K , BI J K L = BKL I J ,

CI JK L = CJ I K L = CI J LK = CKLI J , DI JK L = DJ I K L ,

GI JK LM = GJ I K LM (32)

For an isotropic solid, F̃ and G̃, which are odd-order tensors, become equal to
0. Moreover, other elastic constants should be homogenous and linear functions of
Kronecker delta. So one has [29]

AI J K LMN = a1 (δI J δK LδMN + δI NδJ K δLM)

+ a2 (δI J δKMδLN + δI K δJ NδLM)

+ a3δI JδK NδLM + a4δI LδJ K δMN

+ a5 (δI K δJ LδMN + δI MδJ K δLN )

+ a6δI K δJMδLN + a7δI LδJMδK N

+ a8 (δI MδJ NδK L + δI NδJ LδKM)

+ a9δI LδJ NδKM + a10δI MδJ LδK N

+ a11δI NδJMδK L (33a)



346 R. Ansari et al.

BI J K L = (η − τ ) δI J δK L + (κ − σ) δI K δJ L + (χ − σ) δI LδJ K (33b)

CI JK L = λδI J δK L + μ (δI K δJ L + δI LδJ K ) (33c)

DI JK L = τδI J δK L + σ (δI K δJ L + δI LδJ K ) (33d)

FI J K LM = GI JK LM = 0 (33e)

It can be shown that [25, 26] only tensor Ã consists of length-scale parameters
and there is no size-dependency in the non-classical tensors B̃ and D̃. So, the energy
of MMT material is different from the CT counterpart even where the length-scale
is negligible.

2.4 Conditions of Elastic Parameters

Clearly, the stored energy of structure must be positive. In case of the micromorphic
theory with non-classical parameters, Smith [30] proposed the required conditions
on elastic constants to satisfy the positive-definiteness of energy. The following
constraints holds for the fourth-order elastic tensors

μ > 0, κ + χ > 2σ, κ − χ > 0, 3λ + 2μ > 0,

(κ + χ − 2σ)μ > 2σ2, κ + χ + 3η > 3τ + 2σ,

(κ + χ + 3η − 3τ − 2σ) (3λ + 2μ) > (3τ + 2σ)2 (34)

Also, one should consider the following conditions for the sixth-order tensor

a4 + 2a11 > |a5 + a6 + a7| ,
a4 − a11 >

√
(a5 − a6)

2 + (a6 − a7)
2 + (a7 − a5)

2/
√
2 (35)

where

a = [
ai j

]
3×3,

a11 = 3a1 + a4 + a6 + a8 + a9,

a12 = a3 + a7 + 3a8 + a10 + a11, a13 = a2 + a5 + 3a9 + a10 + a11,

a21 = a1 + a7 + 3a8 + a9 + a11, a22 = 3a3 + a4 + a5 + a8 + a10,

a23 = a2 + a6 + a9 + 3a10 + a11, a31 = a1 + a5 + a8 + 3a9 + a11,

a32 = a3 + a6 + a8 + 3a10 + a11, a33 = 3a2 + a4 + a7 + a9 + a10 (36)

and Ca is the cofactor of a.
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In this stage, by selecting several coefficients, the inequality conditions are con-
verted to a set of equality constraints. For determined values ofλ,μ and κ, one arrives
at

χ = āκ,

σ =
(
ā + 1

2

)
b̄κ,

η = c̄

3

(
1 − d̄

d̄2
(3λ + 2μ) − (ā + 1) κ

)
,

τ = 1

3

(
(ā + 1)

(
d̄ (1 − c̄) − b̄

)
κ + c̄d̄

1 − d̄

d̄2
(3λ + 2μ)

)
(37)

in which ā, b̄, c̄ and d̄ are coefficients in the interval [0, 1] for positive values of all
parameters. In addition, if κ = αμ, then α < 2

(
1 − b̄

)
/ (ā + 1) b̄2.

3 Matrix-Vector Representation

In this section, the strain energy density is restated via matrix relations for the com-
putational purposes. It can be written as

Ŵ = 1

2

(
γTAγ + εTBε + eTCe + eTDε + εTDTe

)
(38)

where

e = [
e11 e22 e33 2e23 2e31 2e12

]T
(39)

ε = [
ε11 ε22 ε33 ε23 ε32 ε31 ε13 ε12 ε21

]T
(40)

γ =

⎡

⎢⎢
⎣

γ1
γ2
γ3
γ4

⎤

⎥⎥
⎦

27×1

where γ1 = [
γ111 γ221 γ122 γ212 γ331 γ133 γ313

]T
,

γ2 = [
γ222 γ112 γ211 γ121 γ332 γ233 γ323

]T
,

γ3 = [
γ333 γ113 γ311 γ131 γ223 γ322 γ232

]T
,

γ4 = [
γ231 γ321 γ312 γ132 γ123 γ213

]T
(41)
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The matrices A, B, C and D are expressed in Appendix A. Using the following
displacement vector

U = [
u1 u2 u3

]T
(42)

and the following micro-displacement vector

� = [
φ11 φ22 φ33 φ23 φ32 φ31 φ13 φ12 φ21

]T
(43)

the vectors e, ε and γ are expressed as

e = E1U (44)

ε = � + E2U (45)

γ = E3� (46)

The differential operators of the preceding relations are presented in Appendix B.
The variations of Eqs. (44)–(46) are written as

δe = E1δU (47)

δε = δ� + E2δU (48)

δγ = E3δ� (49)

The strain energy density given in Eq. (38) becomes

Ŵ = 1

2

(
γTAγ + εTBε + eTCe + eTDε + εTDTe

)
(50)

whose variation is

δŴ = δγTAγ + δεTBε + δeTCe + δeTDε + δεTDTe (51)

and can be stated as

δŴ = δ�TET
3 AE3� + (

δ�T + δUET
2

)
B (� + E2U)

+ δUTET
1CE1U + δUTE1D (� + E2U)

+ (
δ�T + δUET

2

)
DTE1U (52)

The variation of strain energy is finally written as

δW =
∫

V

δŴdV (53)
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4 Finite Element Formulation

In this section, the relations of the 3D micromorphic element shown in Fig. 1 are
derived. With considering the shape functions of N and N̄ , the vectors U and � can
be interpolated as

U = Nd1, � = N̄d2 (54)

By defining

Bi = EiN, B̄i = Ei N̄ (55)

δŴe in each element is

Fig. 1 Schematic view of the 3D micromorphic element
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δŴe = δdT
2 B̄

T
3 AB3d2 + (

δdT
2 N̄ + δd1BT

2

)
B

(
N̄d2 + B2d1

) + δdT
1 B

T
1CB1d1

+ δdT
1 B1D

(
N̄d2 + B2d1

) + (
δdT

2 N̄ + δd1BT
2

)
DTB1d1 (56)

Also, for the strain energy one can write

δWe =
∫

Ve

δŴe JdV = δdT
1 (K 11d1 + K 12d2) + δdT

2 (K 21d1 + K 22d2)

= δdTKd (57)

where

d =
[
d1

d2

]
, K =

[
K 11 K 12

K 21 K 22

]
(58)

and the components of the stiffness matrix is given by

K 11 =
∫

Ve

(
BT

1CB1 + BT
2 BB2 + BT

1 DB2 + BT
2 D

TB1
)
dV (59)

K 12;s =
∫

Ve

(
BT

2 AN̄ + BT
1 DN̄

)
dV (60)

K 21;s = (
K l

12;s
)T

(61)

K 22;s =
∫

Ve

(
N̄

T
AN̄ + B̄

T
3 H B̄3

)
dV (62)

If one denotes the force vector of element by F, the final algebraic equations of
the finite element micromorphic formulation is written as follows

Kd = F (63)

Performing the assemblage process over elements (e)

K =
e∑

K , F =
e∑

F (64)

one has

Kd = F (65)

and the vector of nodal variables d is obtained.
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5 Results and Discussion

Here, the proposed 3D element is utilized to investigate the bending behaviour of
micromorphic beams and plates. The schematic views of discretized beam and plate
are shown in Fig. 2. The CC, CF, CS and SS boundary conditions for beams; and
CCCC, CCSS, CSCS and SSSS boundary conditions for plates are considered. Note
that C, S and F denote clamped, simply-supported and free, respectively. The set
of essential boundary conditions for beams and plates are respectively defined as
follows [22]

C : x = 0, a u1, u2, u3,φi j = 0

S : x = 0, a u2, u3,φi j = 0 (66)

C :
{
x = 0, a u1, u2, u3,φi j = 0
y = 0, b u1, u2, u3,φi j = 0

S :
{
x = 0, a u2, u3,φi j = 0
y = 0, b u1, u3,φi j = 0

(67)

It should be mentioned that no constraint should be considered for the free ends
or edges.

Fig. 2 Schematic view of discretized 3D micromorphic a beam and b plate
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From Sect. 2, it was found that by choosing appropriate values for the coefficients
ā, b̄, c̄ and d̄ , elastic constants ofMMTcanbe specifiedwith guaranteeing compliance
with the conditions. By considering [31]

G = 2μ + κ

2
, ν = λ

2λ + 2μ + κ
, N 2 = κ

2 (μ + κ)
(68)

the following relations are given

λ = 2Gν

1 − 2ν
, μ = G

(
1 − 2N 2

)

1 − N 2
, κ = 2GN 2

1 − N 2
(69)

In the following, the set of coefficients are selected as ā = 0.1, b̄ = 0.5, c̄ = 0.1
and d̄ = 0.1. The polyurethane foam is assumed in this study with [31] G = 104
MPa, ν = 0.44, N 2 = 0.04.

Also, in case of the six-order elastic tensor, it is considered that ai = 0, i = 1 : 11,
i �= 7 and a4 = γ, where γ = 4Gl2 and l is the characteristic bending length equal
to 0.327 mm.

The side length dimensions for plates are assumed to be a = b = L , and a = L ,
b = h for beams. Besides, the transverse uniform distributed load is considered as
P = 1

L N/m3.
The convergence study of the proposed 3D finite element analysis of beam- and

plate-type micromorphic structures are respectively given in Tables 1 and 2. The
maximum deflections are reported for different types of boundary conditions as
well as different number of nodes in three dimensions. As a result, an appropriate
convergence behaviour can be seen in all MMT beams and plates.

InFigs. 3 and4, the non-dimensionalmaximumdeflection ofmicromorphic beams
and plates is plotted versus h/ l (non-dimensional length scale parameter) based on
both micromorphic and classical elasticity theories. The results of these figures are
given for three values of a/h. The considerable effect of size on the bending of
beams and plates is clearly seen especially for small values of h/ l. An important

Table 1 Non-dimensional maximum deflection ((λ + 2μ + κ)w/PL4 × 102) of beams

Boundary
conditions

Number of nodes in each direction

[17, 3, 5] [21, 5, 7] [25, 5, 7] [27, 7, 7]

CC 0.6167 0.7380 0.7614 0.7638

CF 21.3853 26.9330 29.2844 30.5710

CS 1.2349 1.3839 1.4394 1.4479

SS 3.1704 3.2466 3.2772 3.2885
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Table 2 Non-dimensional maximum deflection ((λ + 2μ + κ)w/PL4 × 103) of plates

Boundary
conditions

Number of nodes in each direction

[13, 13, 5] [15, 15, 7] [15, 15, 9] [17, 17, 9]

CCCC 3.0028 3.2871 3.3617 3.3702

CCSS 4.5750 4.8112 4.8873 4.8916

CSCS 5.1448 5.3209 5.4014 5.4189

SSSS 9.0337 9.1794 9.2236 9.2340

observation here is that the predictions of MMT do not completely converge to the
results of CT at large values of h/ l, although the discrepancy between two sets of
results diminishes significantly. It can be explained by the fact that in MMT, the
director is considered to be deformable, i.e. it includes micro-stretches and micro-
shears in addition to micro-rotations. Accordingly, the energy of material particles
obtained fromMMT differs from that calculated based on CT. It should be noted that
the results of MPT should converge to those of CT at large scales since the director
is considered to be rigid in that theory.

Figures 5 and 6 show the effect of dimensionless length scale parameter on the
deflection of micromorphic beams and plates. In these figures, the dimensionless
deflection is plotted along the length of beams/plates for different values of h/ l. The
classical results are also presented for the comparison purpose. It is observed that
there is a large difference between the prediction ofMMTand its classical counterpart
when the thickness of structure becomes equal to the characteristic bending length.
As the thickness increases, the difference tends to decrease. Again, it is seen that
the difference between two theories does not completely disappear at large sizes.
According to Figs. 5 and 6, the dimensionless deflection of structure increases with
increasing h/ l.

As the last set of numerical results, graphically presented in Figs. 7 and 8 is
the variation of dimensionless maximum deflection of micromorphic beams and
plates with the length-to-thickness ratio corresponding to three values of h/ l. Again,
for comparison purpose, the results of the classical continuum theory are given in
addition to the MMT predicted values. Corresponding to the four types of boundary
conditions of the beam- and plate-type structures, one can find that as the length-
to-thickness ratio increases, the dimensionless maximum deflection decreases. This
reduction is more prominent as a smaller value for h/ l is selected.
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Fig. 3 Effect of h/ l on the
non-dimensional maximum
deflection of beams for
various values of a/h
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Fig. 4 Effect of h/ l on the
non-dimensional maximum
deflection of plates for
various values of a/h
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Fig. 5 Variation of
non-dimensional deflection
of beams with
non-dimensional length for
different values of h/ l
(a/h = 10)
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Fig. 6 Variation of
non-dimensional deflection
of plates with
non-dimensional length for
different values h/ l
(a/h = 10)
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Fig. 7 Effect of a/h on the
non-dimensional maximum
deflection of beams for
various values of h/ l
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Fig. 8 Effect of a/h on the
non-dimensional maximum
deflection of plates for
various values of h/ l
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6 Conclusions

With the aim of investigating the mechanical behavior of small-scale engineering
structures, a new 12-DOF three-dimensional size-dependent micromorphic element
was introduced in this research. Based onMMT, the element takesmicro-rotation and
micro-deformation DOFs of material particles into account. To derive the governing
equations, a new and general formulation was developed for MMT which can be
easily used in the finite element analyses. In order to show the reliability of the
approach, it was used in the bending problems of micromorphic beams and plates.
Numerical examples were provided for various boundary conditions, h/ l and a/h.
It was found that there is a considerable difference between the results of MMT and
the ones obtained based on CT at small scales. Moreover, it was observed that as the
dimensionless length scale parameter increases, the difference decreases, but does
not completely vanish. The reason is that in MMT, the director is deformable which
contains micro-stretches as well as micro-shears, and hence the associated energy in
material particles differs from that of CT. It was also seen that the structure becomes
stiffer when the dimensionless length scale parameter decreases.

Appendix A: Elastic Matrices of MMT

A =
[
A11 0
0 A22

]

27×27

A11 = I3 ⊗
⎡

⎢
⎣

a a a

Ā11

�

A11

sym. Ā11

⎤

⎥
⎦

a = 2 (a1 + a2 + a5 + a8) + a3 + a4 + a6 + a7 + a9 + a10 + a11
a = [

a1 + a2 + a3 a1 + a4 + a5 a2 + a5 + a6
]

Ā11 =
⎡

⎣
a3 + a7 + a10 a1 + a8 + a11 a2 + a8 + a9

a4 + a7 + a9 a5 + a8 + a10
sym. a6 + a7 + a11

⎤

⎦

�

A11 =
⎡

⎣
a3 a1 a2

a4 a5
sym. a6

⎤

⎦

A22 =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

a7 a10 a8 a11 a8 a9
a7 a9 a8 a11 a8

a7 a10 a8 a11
a7 a9 a8

a7 a10
sym. a7

⎤

⎥⎥⎥⎥
⎥⎥
⎦

(70)



Micromorphic Continuum Theory: Finite Element Analysis … 361

B =
[
B11 0
0 B22

]

B11 =
⎡

⎣
b1 + b2 + b3 b1 b1

b1 + b2 + b3 b1
sym. b1 + b2 + b3

⎤

⎦

B22 = I3 ⊗
[
b2 b3
b3 b2

]
(71)

C =
[
C11 0
0 C22

]
, C11 =

⎡

⎣
c1 + 2c2 c1 c1

c1 + 2c2 c1
sym. c1 + 2c2

⎤

⎦ , C22 = c2 I3 (72)

D =
[
D11 0
0 D22

]
, D11 =

⎡

⎣
d1 + 2d2 d1 d1

d1 + 2d2 d1
sym. d1 + 2d2

⎤

⎦ , D22 = d2 I3 ⊗ [
1 1

]
(73)

where 0 denotes zero matrix, In is the n-th order identity matrix, ⊗ is the symbol of
the Kronecker product and

c1 = λ, c2 = μ, b1 = η − τ , b2 = κ − σ, b3 = χ − σ, d1 = τ , d2 = σ (74)

Appendix B: Differential Operators

By introducing

∂i = ∂

∂xi

ei = [
δi1 δi2 δi3

]
, δi j =

{
1 i = j
0 i �= j

(75)

one has

E1 =

⎡

⎢
⎢⎢⎢⎢⎢
⎣

∂1 0 0
0 ∂2 0
0 0 ∂3

0 ∂3 ∂2

∂3 0 ∂1

∂2 ∂1 0

⎤

⎥
⎥⎥⎥⎥⎥
⎦

, E2 =

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

∂1 0 0
0 ∂2 0
0 0 ∂3

0 0 ∂2

0 ∂3 0
∂3 0 0
0 0 ∂1

0 ∂1 0
∂2 0 0

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

, E3 =

⎡

⎢⎢
⎣

E1;3
E2;3
E3;3
E4;3

⎤

⎥⎥
⎦ (76)
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E1;3 =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

∂1 0 0 0 0 0 0 0 0
0 ∂1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ∂2 0
0 0 0 0 0 0 0 0 ∂2

0 0 ∂1 0 0 0 0 0 0
0 0 0 0 0 0 ∂3 0 0
0 0 0 0 0 ∂3 0 0 0

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

(77)

E2;3 =

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

0 ∂2 0 0 0 0 0 0 0
∂2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ∂1

0 0 0 0 0 0 0 ∂1 0
0 0 ∂2 0 0 0 0 0 0
0 0 0 ∂3 0 0 0 0 0
0 0 0 0 ∂3 0 0 0 0

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

(78)

E3;3 =

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

0 0 ∂3 0 0 0 0 0 0
∂3 0 0 0 0 0 0 0 0
0 0 0 0 0 ∂1 0 0 0
0 0 0 0 0 0 ∂1 0 0
0 ∂3 0 0 0 0 0 0 0
0 0 0 0 ∂2 0 0 0 0
0 0 0 ∂2 0 0 0 0 0

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

(79)

E4;3 =

⎡

⎢
⎢⎢⎢⎢⎢
⎣

0 0 0 ∂1 0 0 0 0 0
0 0 0 0 ∂1 0 0 0 0
0 0 0 0 0 ∂2 0 0 0
0 0 0 0 0 0 ∂2 0 0
0 0 0 0 0 0 0 ∂3 0
0 0 0 0 0 0 0 0 ∂3

⎤

⎥
⎥⎥⎥⎥⎥
⎦

(80)
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Peridynamic Modeling of Laminated
Composites

Erdogan Madenci and Mehmet Dorduncu

Abstract Damage growth in composites involves complex and progressive failure
modes. Current computational tools are incapable of predicting failure in composite
materials in a unified manner mainly due to their mathematical structure. However,
the peridynamic (PD) theory removes these obstacles by taking into account nonlocal
interactions betweenmaterial points. ThePD theory simply replaces the displacement
derivatives in the equilibrium equations. The PD enables the modeling of progressive
failure during deformation through the removal of nonlocal PD interactions (bonds).
These bonds enable the interaction of material points within each ply as well as their
interaction with other material points in the adjacent plies. The solution continues
by using standard explicit time integration techniques until final failure. This chapter
presents PDmodeling approaches namely bond-based, ordinary state-based, and PD
differential operator for predicting progressive damage in fiber-reinforced composite
materials under general loading conditions. The predictions from the PD models
agree with the experimental observations published in the literature.

1 Introduction

Composites exhibit distinct strength properties along different orientations. There-
fore, they are extensively used in many engineering fields, especially in the commer-
cial and military aerospace structures due to their load-carrying capability and light
weights. However, their numerical modeling for failure prediction is still a challeng-
ing task due to their complex damage patterns and heterogeneous nature. Depending
on the fiber orientation, loading, and boundary conditions, the damage may occur
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in the form of matrix cracking, fiber breakage, fiber kinking, and delamination.
Therefore, accurate modeling and evaluation of damage initiation and progression in
composite structures under complex loading conditions is a primary design concern.

Although the finite element method (FEM) is commonly employed for predicting
progressive failure in composite, it faces difficulties when predicting all possible
failuremodes in a unifiedmanner. This difficulty arises due the presence of undefined
derivatives of the displacement fields along crack surfaces or at crack tips in the
governing equation of the FEM. The virtual crack closure technique (VCCT) [1–3]
and cohesive zone model (CZM) [4–6] were developed to improve the shortcomings
of the FEM for predicting failures in composites. Rybicki andKanninen [7] proposed
the virtual crack closure technique (VCCT) for predicting delamination growth.
However, the VCCT requires a pre-defined location of a crack and is dependent on
the mesh near the crack tip. Therefore, it becomes challenging to predict the crack
initiation and its exact location and size a priori [2, 3, 11–13].

The CZM introduced by Dugdale [8] and Barenblatt [9] is widely used for failure
predictions in composites. In the CZM, material interfaces are modeled through a
cohesive traction-displacement relation. The tractions become zerowhen the opening
displacement (separation) reaches a critical value. The cohesive zone elements are
placed along the element boundaries; hence, crack growth occurs only between the
elements. Therefore, the material response exhibits characteristics of both traditional
and cohesive zone elements; the cohesive elements are only introduced to produce
fracture behavior. The concept of eXtended Finite Element Method (XFEM) intro-
duced for modeling cracks and crack growth eliminates remeshing process as in the
traditional FE analysis [10, 11]. Unlike the CZM, it permits the cracks to propagate
on any surfacewithin an element. Although theXFEM is one of the robust techniques
for fracture problems, it depends on external criteria for injection of discontinuous
displacement enrichment functions.

The peridynamic (PD) theory [12–14] eliminates the shortcomings of the exist-
ing methods, in particular the difficulties associated with modeling initiation and
growth of multiple discontinuities (cracks) in solids. The equilibrium equation of
PD theory consists of an integral expression rather than its differential form. Thus,
these equations exist in the domain even in the presence of cracks. The damage in
the PD theory is introduced through the removal of interactions between material
points, so that their corresponding contributions in the integral representation are
simply removed. The PD theory is suitable for modeling fracture mechanism for
composite structures under general dynamic and static loading conditions because it
is capable of capturing all failure modes without simplifying assumptions. The PD
equations are classified as “Bond-based (BB)”, “Ordinary State-Based (OSB)” and
“Nonordinary State-Based (NOSB)” PD. The BB PD does not distinguish between
dilatation and distortional parts of deformation with a constraint on the Poisson’s
ratio (1/3 for 2D and 1/4 for 3D) [15, 16]. The pairwise interaction of points in BB
PD is located in the same domain of interaction. In the OSB PD, the two interacting
points have their own domains of interaction without this constraint. The NOSB PD
considers a more general representation of the continuum mechanics by employing
the stress-strain relations. Therefore, the material constitutive matrix can be used
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rather than determining the material parameters for the bonds between the material
points as in BB and OSB PD.

The PD theory was successfully applied to simulate crack propagation in compos-
ites. Askari et al. [17] and Xu et al. [18, 19] predicted damages in notched laminated
composites subjected to low-velocity impact and quasi-static in-plane loads. Xu et
al. [18] distinguished the bonds as fiber and matrix bonds and aligned the grid of a
lamina with the fiber orientation. Kilic and Madenci [20] proposed a PD model for
composites by identifying the material points as fiber and matrix. They predicted
the fiber, matrix, and delamination failures in various laminates with a pre-existing
central crack under tension. Oterkus and Madenci [14, 21] presented a study on
the damage response of fiber-reinforced composite materials under mechanical and
thermal loading conditions by using the BB PD theory. They specified four differ-
ent types of bonds between the material points: fiber, matrix, inter-lamina normal
and shear bonds and considered both lamina and laminate with/without pre-existing
crack under uniaxial tension and uniform temperature change. Hu et al. [22] devel-
oped a homogenization-based PD model for modeling damage in fiber-reinforced
composites. They investigated the response of a lamina with a pre-existing crack
under tension due to dynamic loading. Oterkus et al. [23] coupled PD with FEM
to predict the failure loads in a curved, stiffened composite panel with a central slit
subjected to uniaxial loading and an internal pressure. Ghajari et al. [24] developed
an orthotropic elastic material model in the framework of BB PD. Hu et al. [25]
proposed a BB PD model for progressive failure damages of fiber-reinforced com-
posite laminate by introducing fiber bond and matrix bonds as well as longitudinal
and transverse interlayer bonds. They assigned distinct micro-elastic moduli to these
bonds to describe the anisotropy, and determined their values based on the concepts
frommechanics of laminated composites. Hu andMadenci [26] presented a different
BB PD approach for modeling composite laminates with arbitrary fiber orientation
and stacking sequence. Their approach enabled the evaluation of stress and strain
fields in each ply of the laminate. Therefore, it permits the use of existing stress-
or strain-based failure criteria for damage prediction. They intrdouced in-plane nor-
mal, in-plane shear, transverse normal and transverse shear PD bonds to achieve
the orthotropic material behavior. Diyaroglu et al. [27] used BB PD for the failure
analysis of composite laminates under explosive loading. Sadowski and Pankowski
[28] proposed a PD model to investigate nano indentation of ceramic composites.
Ren et al. [29] presented a discontinuous Galerkin weak form for BB PD models to
predict the damage of fiber-reinforced composite laminates. Diana and Casolo [30]
proposed a 2D orthotropic BB PD model for linearly elastic solids. They used four
independent elastic moduli for modeling non-isotropic and orthotropic materials.
Also, they obtained the stiffness of each bond by using continuous functions of bond
orientation in the principal material axes.

Madenci and Oterkus [14] introduced the PD laminate theory within the realm of
theOSBPD for a fiber-reinforced laminates with explicit expressions for PDmaterial
parameters. Colavito et al. [31] investigated the applicability of OSB PD in predict-
ing the residual strength of notched composite laminates under different loadings.
They compared the PD predictions for peak failure loads and damage patterns with
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those fromexperimental observations. Jiang andWang [32, 33] extended theOSBPD
model byMadenci and Oterkus [14] to predict the tensile strength of fiber-reinforced
composite laminates with an open-hole. Zhang and Qiao [34] developed the OSB PD
model for elastic and fracture analysis of 2D orthotropic materials. This approach
was verified for an orthotropic lamina under stress load and the compact tension and
single edge-notched tension (SENT) tests. Gao and Oterkus [35] extended the OSB
PD approach introduced by Madenci and Oterkus [14] for fully coupled thermo-
mechanical analysis of composite laminates. They examined the failure behavior of
single layer and multi-layer models with pre-existing cracks. Radel et al. [36] used
the OSB PD for failure analysis of cementitious composites and ceramics. They
also used a novel energy-based failure criterion for linear peridynamic solid (LPS)
materials.

Hattori et al. [37] introduced another NOSB PD formulation for modeling gen-
eral anisotropic materials. They used the constitutive matrix for the material prop-
erties of each material point. Yaghoobi and Chorzepa [38] applied the NOSB PD to
model damage in fibre-reinforced concrete. Shang et al. [39] employed theNOSBPD
approach to determine damage due to machining of carbon-fiber-reinforced polymer
(CFRP) composites. They used both the maximum stress failure criteria and Hashin
failure criteria to describe failure characteristic of composites. Madenci et al. [40]
combined the PeriDynamic Differential Operator (PDDO) and Classical Laminate
Theory (CLT) to predict damage in laminated composite structures.

This chapter provides a general perspective the PD theory and its applications to
composite laminates. It presents the basic concept of PD theory and the derivation
of governing equations for BB, OSB and NOSB PD. Subsequently, it describes
the derivation of the force density vectors for composite laminates. The numerical
results concern the applications of BB, OSB and NOSB PD for predicting damage
in composite structures.

2 Fundamentals of Peridynamics

As introduced by Silling [12, 13], the PD theory is a reformulation of the classi-
cal continuum equations of motion. It replaces the partial differential equations of
motion with integro-differential equations. The equations of motion from classical
continuum theory can be expressed as

ρ (x) ü (x, t) = L(x, t) + b (x, t) (1)

in which ρ is the mass density, u(x, t) is the displacement vector, L(x, t) is the
internal force vector, and b(x, t) is the body force density vector. The internal force
vector, L(x, t) is defined as

L(x, t) = ∇ · σ (x, t) (2)
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Fig. 1 Interaction between
material points x and x′ in
the undeformed
configuration

where · is dot product and σ (x, t) is Cauchy’s stress tensor at point x. The position
vector x defines the location of each point with respect to the reference configuration
at time t .

In the PD theory, the divergence of the stress tensor in Eq. (2) is replaced with
an integral that accounts for all the nonlocal force interactions that exists between
a material point and all the material points within its horizon. The PD equations of
motion can be expressed in terms of the force density vector, t, that exists between
material points, as

ρ (x) ü (x, t) =
∫

Hx

(
t
(
u′ − u, x′ − x, t

) − t′
(
u − u′, x − x′, t

))
dHx′

+ b (x, t) (3)

where the material point x interacts with material point x′ within its domain of
interaction (family) of material points, Hx as shown in Fig. 1. The interaction domain
Hx of material point x is defined by its horizon, δ. Material points x′, located within
the interaction domain Hx are called the family members of x. The initial distance
between the material points x and x′ is ξ = x′ − x.

The interaction force or peridynamic force between material points x and x′ can
be expressed as t(x′ − x,u′ − u), and it is a function of the relative position vector,
x′ − x, and relative displacement vector, u′ − u. They must satisfy the balance of
angular momentum expressed as
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Fig. 2 PD material points x
and x′ influenced by the
collective deformation of
others in their families

∫

Hx

(y′ − y) × t dHx′ = 0 (4)

As shown in Fig. 2, the force density vectors, t and t′ can be parallel to the relative
position vector in the deformed state with unequal magnitudes, and automatically
satisfy the balance of linear and angular momentum. This particular form of the force
density vectors is referred to as Ordinary State-Based (OSB) PD.

The force density vectors t(x′ − x,u′ − u, t) and t′(x′ − x,u′ − u, t) can be
related to the strain energy density function, W . Considering the requirement on
their direction in order to satisfy the balance of angular momentum, Eq. (4), they can
be expressed as

t
(
u′ − u, x′ − x, t

) = ∂W (x)
∂ (|y′ − y|)

y′ − y
|y′ − y| (5a)

t′
(
u − u′, x − x′, t

) = ∂W (x′)
∂ (|y − y′|)

y′ − y
|y′ − y| (5b)

where y and y′ are the position vector of points x and x′ in the deformed configuration,
respectively. However, the explicit determination of the force density vectors requires
the PD representation of the strain energy density function.

As a special case, shown in Fig. 3, the force density vectors in Eq. (3) can be equal
and in opposite directions, and the PD equilibrium equation reduces to
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Fig. 3 Deformation of PD
material points x and x′, and
developing equal and
opposite pairwise force
densities in the deformed
state

ρ (x) ü (x, t) =
∫

Hx

f
(
x′ − x,u′ − u

)
dHx + b (x, t) (6)

This form of the PD equilibrium equation is referred to as the Bond-Based (BB)
PD model. Although it is rather simple, it suffers from the reduction of independent
engineering material constants.

As a general case, shown in Fig. 4, the force density vectors, t(x, t) and t(x′, t),
acting on the material points can be in arbitrary directions with unequal magnitudes.
This form of the force density vectors is referred to as Non-Ordinary State-Based
(NOSB) PD. It is a more generalized approach and the force density vector at a
point x can be associated with the first Piola-Kirchhoff stress, P(x), and shape,
K(x), tensors. Therefore, it invokes the material constitutive matrix from classical
continuum mechanics. As derived by Silling et al. [13], the force density vector can
be expressed as

t(x, t) = w
(|x′ − x|)P(x)K−1(x) (7a)

P = det (F) σF-T = FS (7b)

K(x) =
∫

Hx

w
(|x′ − x|) (

(x′ − x) ⊗ (x′ − x)
)
dVx′ (7c)
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Fig. 4 Deformation of PD
material points x and x′, and
developing force densities in
arbitrary directions

wherew
(|x′ − x|) is theweight function specifying the degree of interaction between

the material points, S is the second Piola-Kirchhoff stress tensor and σ is the Cauchy
stress tensor, and the symbol ⊗ denotes the dyadic product of two vectors. The PD
form of the deformation gradient tensor, F can be derived as [13]

F(x) =
⎛
⎝

∫

Hx

w
(|x′ − x|) (

y′ − y
) ⊗ (

x′ − x
)
dVx′

⎞
⎠K−1(x) (8)

Material damage in PD is introduced through elimination of interactions (microp-
otentials) among the material points. Damage is reflected in the equations of motion
by removing the force density vectors between the material points in an irreversible
manner. As a result, the load is redistributed among the material points in the body,
leading to progressive damage growth in an autonomous fashion.

In order to include damage initiation in the material response, the material con-
stants are modified through the failure (status) parameter μ as [41]

μ
(
x′ − x, t

) =
{
1 if s

(
x′ − x, t ′

)
< sc for all 0 < t ′ < t

0 otherwise
(9)

where sc is the critical stretch value related to the energy release rate, G. The total
stretch, s between two material points, x and x′ can be defined
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s =
∣∣y′ − y

∣∣ − ∣∣x′ − x
∣∣

|x′ − x| (10)

During the solution process, the displacements of each material point, as well as
the stretch, s, between pairs of material points, x and x′, are computed andmonitored.
When the stretch between these material points exceeds its critical stretch, failure
occurs; thus, the history-dependent scalar-valued function μ is zero, rendering the
associated part of the force density vector to be zero.

As suggested by Silling and Askari [41], and later extended by Madenci and
Oterkus [14], the critical stretch can be determined by equating the strain energy
required to eliminate all interactions across a new crack surface to the mode-I critical
energy release rate GIc. Local damage at a point is defined as the weighted ratio of
the number of eliminated interactions to the total number of initial interactions of a
material point with its family members. The local damage at a point can be quantified
as [41]

ϕ (x, t) = 1 −

∫
Hx

μ(x′ − x, t)dHx′

∫
Hx

dHx′
(11)

The local damage ranges from zero to one. When the local damage is one, all the
interactions initially associated with the point have been eliminated, while a local
damage of zero means that all interactions are intact. The measure of local damage
is an indicator of possible crack formation within a body.

3 Peridynamic Modeling of a Laminate

Each fiber-reinforced composite lamina of a laminate shown in Fig. 5 is idealized
as a two-dimensional structure with the directional dependency of the interactions
between the PDmaterial points. As shown in Fig. 6, the material point (q) represents
material points that interact with material point (k) only along the fiber direction
with an orientation angle of θ in reference to the x-axis. Similarly, material point
(r) represents material points that interact with material point (k) only along the
transverse direction. However, the material point (p) represents material points that
interact with material point (k) in any direction, including the fiber and transverse
directions. The orientation of a PD interaction between the material point (k) and the
material point (p) is defined by the angle φ with respect to the x-axis. The domain of
integration, H(k) shown in Fig. 6 is a disk with radius δ and thickness h. The material
points in a particular lamina interact with the other material points of immediate
neighboring laminae above and below it.

As shown in Fig. 5, the reference coordinate system (x, y, z) is located on the
mid-plane of the laminate. The laminate thickness, h is given by
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Fig. 5 Elevation of each lamina in laminate and PD material points

Fig. 6 PD horizon for a
family of material points and
their interactions in a lamina

h =
N∑

n=1

hn (12)

where N is the total number of lamina in the stacking sequence, and hn is the thickness
of nth lamina.With respect to themid-plane, the position of each lamina, zn is defined
as

zn = −h

2
+

n−1∑
m=1

hm + 1

2
hn (13)

As derived by Madenci and Oterkus [14], the equation of motion for material
point xn(k) located on the nth layer of a laminate with N layers can be expressed as
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ρn
(k)ü

n
(k) =

∑
j=1

[
tn(k)( j)

(
un

( j) − un
(k), x

n
( j) − xn(k), t

)]
V n

( j)

−
∑
j=1

[
tn( j)(k)

(
un

(k) − un
( j), x

n
(k) − xn( j), t

)]
V n

( j)

+
∑

m=n+1,n−1

p(n)(m)

(k) Vm
(k) +

∑
m=n+1,n−1

∑
j=1

q(n)(m)

(k)( j) V
m
( j) + bn(k) (14)

where the material point, xn(k) on the nth layer is associated with an incremental
volume, V n

(k) and a mass density of ρn
(k). With respect to a Cartesian coordinate

system, the material point xn(k) experiences displacement, un
(k), and its location is

described by the position vector, y(k) in the deformed state. The displacement and
body load vectors at material point, xn(k), are represented by u

n
(k) and b

n
(k), respectively.

The motion of a material point conforms to the Lagrangian description of motion.
Arising from in-plane deformation, tn(k)( j) represents the force density that mate-

rial point, xn( j) exerts up on material point, xn(k). The force density vectors, p
(n)(m)

(k) and

q(n)(m)

(k)( j) with m = (n + 1), (n − 1) develop due to the transverse normal and trans-
verse shear deformations, respectively, between the material points xn(k) and x

m
(k). The

explicit form of the force density vectors, tn(k)( j), p
(n)(m)

(k) and q(n)(m)

(k)( j) associated with
in-plane and transverse deformations, respectively, are explicitly derived byMadenci
and Oterkus [14] in the form

t(n)

(k)( j) = 2δad

n

(k)( j)∣∣∣xn( j) − xn(k)

∣∣∣
θn
(k)

yn( j) − yn(k)∣∣∣yn( j) − yn(k)

∣∣∣
+ 2δ (μFbF + bFT + μT bT ) s(n)

(k)( j)

yn( j) − yn(k)∣∣∣yn( j) − yn(k)

∣∣∣
(15)

p(n)(m)

(k) = 2bN
(∣∣ym(k) − yn(k)

∣∣ − ∣∣xm(k) − xn(k)
∣∣) ym(k) − yn(k)∣∣∣ym(k) − yn(k)

∣∣∣
(16)

q(n)(m)

(k)( j) = 2bS
(∣∣ym( j) − yn(k)

∣∣ − ∣∣xm( j) − xn(k)
∣∣) ym( j) − yn(k)∣∣∣ym( j) − yn(k)

∣∣∣
− 2bS

(∣∣ym(k) − yn( j)
∣∣ − ∣∣xm(k) − xn( j)

∣∣) ym( j) − yn(k)∣∣∣ym( j) − yn(k)

∣∣∣
(17)
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s(n)

(k)( j) =
∣∣∣yn( j) − yn(k)

∣∣∣ −
∣∣∣xn( j) − xn(k)

∣∣∣∣∣∣xn( j) − xn(k)

∣∣∣
(18)

in which a, d, bF , bT and bFT are the PD material parameters, and μF and μT are
defined as

μF =
{
1 (x( j) − x(k)) || fiber direction
0 otherwise

(19)

and

μT =
{
1 (x( j) − x(k))⊥fiber direction
0 otherwise

(20)

The parameter θ(k) at material point xn(k) is defined as

θn
(k) = d

∞∑
j=1

δ∣∣∣xn( j) − xn(k)

∣∣∣
(∣∣yn( j) − yn(k)

∣∣ − ∣∣xn( j) − xn(k)
∣∣)
n

(k)( j)V
n
( j) (21)

The parameter 
n
(k)( j) is defined as


n
(k)( j) = y( j) − y(k)∣∣y( j) − y(k)

∣∣ · x( j) − x(k)∣∣x( j) − x(k)

∣∣ (22)

It is 
n
(k)( j) ≈ 1 for small deformation. The PD material parameters can then be

obtained in terms of engineering material constants by considering simple loading
conditions and equating the PD strain energy density to the strain energy density from
the classical continuum mechanics. The PD material parameters, a, d, bF , bT and
bFT , related to in-plane deformations can be obtained by considering four different
loading conditions: simple shear, uniaxial stretch in fiber direction, uniaxial stretch
in transverse direction, and biaxial stretch. As derived by Madenci and Oterkus [14],
the parameters can be related to the four independent material constants of elastic
modulus in the fiber direction, E11, elastic modulus in the transverse direction, E22,
in-plane shear modulus, G12, and in-plane Poisson’s ratio, ν12, as

a = 1

2
(Q12 − Q66) (23a)

d = 2

πhδ3
(23b)
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bF = (Q11 − Q12 − 2Q66)

2δ

(
J∑

j=1

∣∣∣xn( j) − xn(k)

∣∣∣ V( j)

) (23c)

bT = (Q22 − Q12 − 2Q66)

2δ

(
N∑
j=1

∣∣∣xn( j) − xn(k)

∣∣∣ V( j)

) (23d)

bFT = 6Q66

πhδ4
(23e)

where

Q11 = E11

1 − ν12ν21
, Q12 = ν12E22

1 − ν12ν21
, Q22 = E22

1 − ν12ν21
, Q66 = G12 (24)

The fiber and transverse interactions exist only in the directions parallel and trans-
verse to the fiber, and therefore, are limited to j = 1, J with J indicating the number
of interactions. The arbitrary interactions exist in all directions with N number of
interactions.

The PD material parameters, bN and bS , associated with transverse deformations
can be obtained by considering two different loading conditions: transverse normal
stretch and simple transverse shear. As derived by Madenci and Oterkus [14], these
parameters can be determined as

bN = Em

δ̂
[
(hn+1 + hn) V

n+1
(k) + (hn−1 + hn) V

n−1
(k)

] (25a)

bS = Gm

8πδ̃ (1 + 2)
(25b)

1 =
(
hn+1 + hn

2

)3

⎛
⎜⎜⎝

δ2 + 2
(
hn+1+hn

2

)2

√
δ2 +

(
hn+1+hn

2

)2
− (hn+1 + hn)

⎞
⎟⎟⎠ (25c)

2 =
(
hn−1 + hn

2

)3

⎛
⎜⎜⎝

δ2 + 2
(
hn−1+hn

2

)2

√
δ2 +

(
hn−1+hn

2

)2
− (hn−1 + hn)

⎞
⎟⎟⎠ (25d)
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where Em and Gm represent the Young’s modulus and shear modulus of the matrix
material. The parameter, δ̂ represents the horizon in the thickness direction, and δ̃ is

defined as δ̃ =
√

δ2 + δ̂2.
As the force density vectors must be equal in magnitude for BB PD, the parameter

a and the parameter bT should both vanish. This requirement leads to the constraint
equations, previously derivedbyOterkus andMadenci [21], asQ12 = Q66 andQ22 =
3Q12.

The non-vanishing PD parameters, bF and bFT in the fiber and remaining direc-
tions, respectively, also recover the expressions derived byOterkus andMadenci [21]
as

bF = (Q11 − Q22)

2δ

(
N∑
j=1

∣∣∣xn( j) − xn(k)

∣∣∣ V( j)

) (26a)

bFT = 6Q66

πhδ4
(26b)

Therefore, the force density vector, fn(k)( j)between material points, xn( j) and xn(k)
can be defined as

f (n)

(k)( j) = δbs(n)

(k)( j)

yn( j) − yn(k)∣∣∣yn( j) − yn(k)

∣∣∣ (27)

where b represents a PD material parameter and can be defined as

b =
{
bF + bFT φ = θ

bFT φ �= θ
(28)

in which the material parameter bF concerns the interaction of material points only
in the fiber direction. The interaction of material points in all other directions within
a lamina is governed by the material parameter, bFT . As shown in Fig. 7, the material
point (k) represents material points that interact with material point (q) only along
the fiber direction. However, the material point (p) represents material points that
interact with material point (k) in any direction, including the fiber direction. The
orientation of a PD bond between the material point (k) and the material point (p)
is defined by the angle φ with respect to the x-axis.

In the case of NOSB PD, the force density vector under small strain assumptions
can be expressed as

t(x, t) = w
(|x′ − x|)Cε(x)K−1(x) (29a)

ε(x) = 1

2

(
F(x) + FT (x)

) − I (29b)
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Fig. 7 PD horizon for a
lamina with a fiber
orientation of θ and PD
bonds between material
point (k) and other material
points within its horizon

where C is the orthotropic material property matrix, and I represents the identity
tensor [37, 39].

The damage is introduced through the removal of a PD bond between material
points. Failure prediction in BB and OSB requires the critical stretch values for fiber
breakage andmatrix cracking associatedwith in-plane deformation and delamination
associated with transverse deformations. Their critical values can be determined
based on the experimental measurements. Determination of these critical stretch
parameters are explained in Oterkus and Madenci [21] and Colavito [42]. In the case
NOSB PD, the stress state in a bond can be defined as the average stress or strain
between the material points x and x′. When the average stress exceeds its threshold,
the bond between material points x and x′ is removed [37, 39].

4 Numerical Results

This section presents numerical results concerning composite structures under dif-
ferent boundary and loading conditions for BB, OSB, and NOSB PD models.

4.1 Bond-Based PD

4.1.1 Failure in a Laminate with a Crack Under Tension

This model previously considered by Kilic et al. [20] is shown in Fig. 8. The laminate
has a length of l = 10.16 mm and a width of w = 5.08 mm. The pre-existing crack
is located at the center along y-axis with a length of a0 = 1.27mm. The crack is
introduced by breaking all the interactions passing through crack surfaces at the start
of the simulation. The laminate has a stacking sequence of [0◦/45◦/0◦]. The thickness
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Fig. 8 Geometry and velocity boundary conditions in a laminate with a center crack

of each lamina is assumed to be 0.1651mm. Each lamina is assumed to possess the
elastic properties of T800/3900-2 pre-preg tape reported by Satyanarayana et al.
[43]. The critical stretches for fiber and matrix are taken to be 0.004 and 0.005,
respectively, Colavito et al. [44, 45].

Uniform tension is applied gradually by using velocity boundary conditions, v,
along both vertical ends over the volumes, with length l1 = 0.097mm as shown in
Fig. 7. The boundaries parallel to the x-axis at y = −l/2 and y = l/2 are free of any
constraints.

Figure 9 shows the damage on the outer surface of the first ply, the damage along
the interfaces between the first and second plies and between the second and third
plies, in addition to the damage pattern on the outer surface of the third ply. The
damage pattern displays some delamination at the interfaces due to different ply
orientations, as presented in Fig. 9b, c. Similar to the experimental observations
[20], the delamination pattern is asymmetric because of the presence of a [45◦]
ply. Mathematically expected but physically unrealistic symmetry of the damage
propagation in the top and bottom plies does not emerge in the simulations due to
the random distribution of fibers, as shown in Fig. 9a, d. Furthermore, the multiple
splitting around the crack tip is consistent with the experimental observation.

4.1.2 Failure in a Lamina with a Hole Under Tension

This model previously considered by Hu and Madenci [26] is shown in Fig. 10. The
length and width of the lamina are defined by L = 138.43mm and W = 38.1mm,
respectively, with thickness h = 1.0mm. The hole diameter is d = 6.35mm. Four
different fiber orientations of 0◦, 30◦, 60◦ and 90◦ are considered in the simulation.
The lamina is made of IM-7/977-3 carbon fiber composite with Young’s moduli of
E1 = 164.3 GPa, E2 = E3 = 8.977 GPa, and shear moduli of G12 = G13 = 5.02
GPa andG23 = 3.126 GPa, and Poisson’s ratio of ν12 = ν13 = 0.32 and υ23 = 0.436.
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Fig. 9 Local damage in a [0◦/45◦/0◦] laminate: a outer surface of first lamina; b interface between
first and second laminae; c interface between second and third laminae; d outer surface of third
lamina

Fig. 10 Computational model of a lamina with a hole under tension

Its density is ρ = 1603 kg/m3. The strength properties are specified as 2.9 GPa 1.68
GPa, 100 MPa, 247 MPa, and 80 MPa for XT , XC ,Y T ,YC , and S, respectively.
The critical energy release rates are specified as GIc = 0.256N/mm and GI Ic =
0.6499N/mm. Both the stress- and energy-based failure criteria are employed to
evaluate fiber, matrix and delamination damage in composite laminates.

The PD simulations are achieved by using a combined implicit and explicit solu-
tion schemes. Implicit solver is employed until the first bond breakage. During
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Fig. 11 PD predictions of matrix cracking and displacement discontinuities in laminae with a hole
under tension

the implicit simulation, incremental step size is specified as u = 0.001mm. The
analysis continues with the explicit solver until complete failure. A constant speed
u̇ = 500mm/s and time step size t = 1.0 × 10−7s are specified in the explicit
simulation.

Figure 11 shows PD predictions of matrix damage pattern and the correspond-
ing displacement field for each fiber orientation. It is apparent that matrix cracking
initiates from the edge of the hole and propagates along the fiber orientation. The
discontinuities in displacement field present the expected splitting of material along
the fibers.

4.2 Ordinary State-Based PD

4.2.1 Notched Quasi-Isotropic AS4/3501-6 Laminates Under Tension

This model previously considered by Colavito et al. [31] is shown in Fig. 12. The
layup for all of the composite panels is [45◦/0◦/ − 45◦/90◦]2S . Each laminate spec-
imen is L = 118.5mm by W = 38.1mm and h = 2.08m with a central through
thickness hole. Four different diameters d = 2.00, 3.81,6.35 and 9.55mm of central
holes are considered. The material properties of AS4/3501-6 carbon/epoxy lamina
are E11 = 142 GPa, E22 = 10.3 GPa, G12 = 4.5 GPa, and ν12 = 0.27. The strength
properties of the lamina are σ1t = 2280 MPa, σ1c = −1440 MPa, σ2t = 57 MPa,
σ2c = −228 MPa, and τ12 = 100 MPa.
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Fig. 12 Dimension and
loading conditions for
notched quasi-isotropic
AS4/3501-6 laminates

Each laminate is discretized into a grid with 156 material points in the length
direction, 50 material points in the width direction, and 16 material points in the
thickness direction. The in-plane material point spacing isx = L/156 = 0.76mm.
The nominal ply thickness is tk = 0.13mm resulting in a total laminate thickness of
h = 2.08m. The horizon radius is specified as δ = 3.015x . The loading is applied
by specifying an end displacement u0 to a volumetric region of length b = 10mm at
both the top and bottom edge of the model in incremental steps of 0.5mm. A no-fail
region is enforced in the volumetric region of length n = 24mm. Convergence for
each step is ensured to enforce the quasi-static loading conditions.



384 E. Madenci and M. Dorduncu

Fig. 13 Failure patterns in each ply of a [45◦/0◦/ − 45◦/90◦]2S laminate with a central hole of
diameter a 2.00mm, b 3.81mm, c 6.35mm, and d 9.55mm subjected to tensile loading

The critical stretch parameters are obtained through the inverse approach by cali-
brating the experimentally observed peak failure loads to those obtained from the PD
simulation. The critical stretch values obtained using the inverse approach are scmt =
0.0176, scmc = −0.0528, sc f t = 0.01882, and sc f c = −0.01189. A PD simulation of
a laminate with a 6.35mm diameter central hole subjected to tensile loading is used
to test the ability of these values to capture the failure load. The simulation predicted
the initiation of failure at the central hole followed closely by an accumulation of
damage throughout the entire laminate. The predicted failure load is 13651N, which
is significantly lower than that of the experimentally observed value.

Figure 13 shows the final damage patterns for each ply in the laminate composite
subjected to a tensile load for the four different diameter central hole sizes. The
damage pattern transitions from one that is aligned with the 45◦ angle with respect
to the principle coordinate system for the small diameter hole, to one aligned with
the 90◦ angle for the larger hole sizes. The specimen fracture pattern can be obtained
by plotting the minimum damage at each material point in the thickness direction.
The fracture for each of the specimens is plotted in Fig. 14. The resulting fracture
patterns transition from a slant to a flat failure mode as the hole size increases.
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Fig. 14 Failure patterns for a [45◦/0◦/ − 45◦/90◦]2S laminate with a central hole of diameter a
2.00mm, b 3.81mm, c 6.35mm, and d 9.55mm subjected to tensile loading

4.3 Non-ordinary State-Based PD

4.3.1 Edge Crack in an Anisotropic Plate with Inclusion and Hole

This model previously considered by Hattori et al. [37] is a rectangular anisotropic
plate with dimensions w = h = 20mm and an edge crack of length a = 4mm as
shown in Fig. 15. The plate has a circular inclusion and an open hole with radius
r = 4.5mm. They are located at b = 8mm from above and below the center of the
plate. The plate is subjected to two different initial velocities defined across the plate,
and given by v = 25y/(2h) m/s and v = 50y/(2h) m/s. The density of the plate is
ρp = 1600kg/m3 and the density of the inclusion is ρi = 5670kg/m3. The fibers
in the plate are rotated by an angle θ1 with respect to the horizontal axis, while
the inclusion represents an orthotropic material (θ2 = 0◦). The tensile strength in
the fiber, matrix and shear direction of the inclusion are specified as σLu = 2100
MPa, σTu = 120 MPa and τLTu = 135 MPa, respectively. The interface strength
parameters between the plate and the inclusion are the same as that of the tensile
strength parameters of the plate.

Figures 16, 17, 18 show the crack propagation for θ1 = 0◦, 45◦, 90◦, respectively.
The different orientation of the material properties provides different crack propa-
gation paths. Also, the loading conditions affect the crack pattern. For the case of
θ1 = 0◦, Fig. 16 illustrates the damage in the inclusion, and a pair of parallel cracks
originate from the hole. For the case of θ1 = 45◦, limited damage develops at the
interface of the plate and inclusion. Crack propagations from the edge crack and the
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Fig. 15 Edge crack in an anisotropic plate with inclusion and hole

Fig. 16 Crack propagation for θ1 = 0◦ with v = 50m/s [37]
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Fig. 17 Crack propagation for θ1 = 45◦ with v = 25m/s [37]

Fig. 18 Crack propagation for θ1 = 90◦ with v = 50m/s [37]

hole are along the fiber orientation as shown in Fig. 17. For the case of θ1 = 90◦,
Fig. 18 shows almost vertical crack propagation, reaching both the inclusion and the
hole. Also, significant damage develops in the inclusion due to a sufficiently high
applied velocity.
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4.3.2 Laminates with a Pre-existing Crack Under Uniform Stretch

This model previously considered by Madenci et al. [40] is based on the Classi-
cal Laminate Theory (CLT) in conjunction with Peridynamic Differential Operator
(PDDO) introduced by Madenci et al. [46]. As shown in Fig. 19, the unidirectional
laminates and a symmetric cross-ply laminate with a through-the-thickness crack
subjected to a displacement constraint of u0 = 1.0 × 10−3 m in the x-direction along
its left and right edges. The length and width of the laminates are L = W = 1m.
The ply thickness for the unidirectional and non-symmetric laminates is specified as
tk = 0.0025m, whereas the ply thickness is tk = 0.0033m for the symmetric lami-
nate. The pre-existing crack has a length 2a = 0.2m. The unidirectional and sym-
metric laminates are made of IM-7/977-3 carbon fiber composite whose properties
are specified in Sect. 4.2.1.The non-symmetric laminate is made of Gr/Epoxy with
orthotropic material properties specified as E1 = 157.9GPa, E2 = E3 = 9.584GPa,
G12 = G13 = 5.93GPa, G23 = 3.227GPa, ν12 = 0.32, ν23 = 0.49, and ν13 = 0.32.

The laminate is discretized by using a uniform grid spacing of x = y =  =
L/100m resulting in 30,000 degrees of freedom.The familymember of eachmaterial
point is constructed by the horizon size of δ = 4. The corresponding crack growth
patterns from the pre-existing crack are shown in Fig. 20. The lamina with a α = 0◦
fiber orientation fails due to splitting arising from shear stress in the matrix. As
expected, the crack propagates co-linearly with the initial crack for a lamina with
α = 90◦ fiber orientation. In the case of a lamina with α = 45◦ fiber orientation, the
crack grows along the fiber direction, creating a α = 45◦ kink angle. In all cases, the
crack propagates parallel to the fiber direction.

Figure 21 shows the PD predictions of matrix damage pattern in the symmetric
laminate of [0◦/90◦/0◦]. The matrix cracking initiates from the crack tips and propa-
gates along the fiber orientation. As expected, the splitting occurs around the crack
tip in the top and bottom layers.

Fig. 19 Laminates under uniform stretch: a unidirectional, and b cross-ply
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Fig. 20 Damage propagation in unidirectional laminates a α = 0◦, b α = 45◦, and c α = 90◦

Fig. 21 Damage
propagation in a [0◦/90◦/0◦]
laminate with a pre-existing
crack

5 Conclusions

This chapter provides an overview of PDmodeling of composite laminates with spe-
cific applications highlighting the differences in BB, OSB, and NOSB PD. The PD
models successfully predicts the damage growth patterns in fiber-reinforced lami-
nates while considering the distinct properties of the fiber and matrix, as well as of
the interlayer material between the plies. The predictions capture the correct failure
mechanisms of matrix cracking, fiber breakage, and delamination without resorting
to any special treatments, and agree with the experimental observations published
in the literature. The PD models offer a reliable model for progressive failure and
strength prediction of composite laminates with arbitrary layup under complex load-
ing conditions.
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Nonlocal Approaches to the Dynamics
of Metamaterials

Giuseppe Failla and Esmaeal Ghavanloo

Abstract A metamaterial is a broad concept of engineered material with outstand-
ing properties not existing in conventional materials. Research on metamaterials
is strongly interdisciplinary and includes materials science, physics, vibration and
acoustic engineering, optics. In the last decades, a considerable number of studies
focused on design, experimental characterization and computational modelling of
metamaterials and, among others, nonlocal theories soon revealed a great potential
of capturing essential behaviour at relatively-low computational costs. This Chapter
aims to provide a concise review of nonlocal theories as applied to metamaterials,
with special consideration given to vibrations and dynamics.

1 Introduction

The concept of metamaterial represents an emerging and challenging frontier in
materials science, with a remarkable number of potential applications in vibration
mitigation and isolation, impact absorption and wave guides. The term “metamateri-
als” is attributed to artificially-structured materials, typically inhomogeneous elastic
media composed of periodic arrays of inclusions embedded in a matrix; different
matrices and inclusions are studied in solid–solid composite systems but also in
mixed solid–fluid and fluid–fluid ones [1].

The microstructure of metamaterials can be tailored to provide unique proper-
ties as band-stop filtering, redirection, channelling and multiplexing, which cannot
be usually obtained by conventional materials [2, 3]. Acoustic metamaterials are
a special class of composites that exhibit remarkable acoustic properties ranging
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from near zero transmissibility [4], enhanced absorption [5], negative dynamic mass
density/bulk modulus [6, 7], negative refractive index [8, 9], super anisotropy, zero
rigidity [10] etc. These exotic phenomena have numerous potential applications such
as low frequencynoise attenuation [5], isolationof civil structures fromseismicwaves
[11], super lenses with a resolution beyond the Rayleigh limit [9, 12], wave guides
that can be used to channel acoustic waves, etc. Optical metamaterials are a novel
class of materials, typically featuring a spatially distributed permittivity that is peri-
odic in space, which prove capable of controlling the propagation of light in a way
inaccessible by natural materials [13–16].

Wave propagation inmetamaterials exhibits remarkable properties that are typical
of periodic media such as heterogeneous layered structures or crystals. Essentially,
these properties arise from dispersion effects attributable to wave reflection and
refraction from micro-constituent interfaces, which become significant when the
microstructural size is comparable to the length of the travelling wave. Successive
reflections and refractions of the waves at the component interfaces result in the
formation of a complicated sequence of pass and stop frequency bands [17]. In this
context, the most outstanding properties of metamaterials are related essentially to
Bragg scattering and local resonance phenomena [18], with the first depending on
the perfect medium periodicity and the latter on the dynamics of the embedded
inclusions [3]. Bragg scattering is dominant for wavelengths of the propagating
wave of the same order as the size of microstructural phases and local resonance
prevails at larger wavelengths [3]; that is, local resonance occurs at lower frequency
regime. For instance, a typical unit cell microstructure of a locally-resonant acoustic
metamaterial may consist of a matrix with an embedded inclusion or a substructure
[18]. The inclusions/substructures consist of two parts, a central region with high
mass density supported by a surrounding highly compliant region (e.g. rubber coated
lead inclusions) [4]. This enables the unit cell to exhibit low frequency localized
vibration modes that strongly couple to the long wavelength propagating wave in
the matrix at the resonance frequency. The strong coupling around this frequency is
what is responsible for the local resonance phenomena [4, 6].

Bragg scattering and local resonance produce the band-stop filtering typical of
metamaterials; this phenomenon is nonlocal in nature, as it stems from strong inter-
actions between waves and microstructure [19, 20]. Here lies a typical difference
between natural materials and metamaterials: while the critical dimensions of natu-
ral materials may be of a fraction of one nanometer and the disparate length scales
between critical feature size and operational wavelength for natural materials sub-
stantiates their treatment by local constitutive relations, the critical length scale of
metamaterials may be comparable with the wavelength of the travelling signal and,
for this reason, the assumption of local medium is not applicable and nonlocal effects
can no longer be neglected.

As for wave propagation in metamaterials, the term “nonlocal” means coupling
between the responses at non-neighbouring points induced by the travelling waves.
This coupling is translated into a corresponding analytical/computational model in
different ways. Among others, the most established approaches involve phenomeno-
logical models, high-order homogenization methods or averaging techniques. Non-
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local coupling may be introduced explicitly, for instance in terms of constitutive
relations, or may result from mathematical models adopted for response variables at
the microstructural level, typically the displacement field. The nonlocal formulations
proposed in the literature exhibit different frequency ranges of validity and different
capabilities in capturing wave dispersion phenomena of metamaterials. Although
several review articles [21–23] on the modelling of metamaterials may be found in
the literature, reviews that extensively deal with the nonlocal models of metama-
terials have not been presented so far. In this Chapter, we will survey the various
nonlocal approaches concerning the mechanical behaviour of the metamaterials. As
the literature on the metamaterials is rich and continuously growing, here we review
only some instances with focus on vibrations and dynamics.

2 Phenomenological Models

Classical continuummechanics is one of the most important and widely used tools to
describe the mechanical behaviour of materials. However, it is now well understood
that it cannot always predict well experimentally-observed phenomena in natural
as well as engineered materials. In order to overcome the limitations of classi-
cal continuum mechanics, various types of enriched continuum approaches have
been proposed, which can be divided into three main categories. In the first cate-
gory, the medium is treated as a collection of deformable or rigid particles that are
endowed with additional degrees of freedom. Microcontinuum theories like microp-
olar, microstretch and micromorphic elasticity are the most well-known approaches
of the first category. In the second category, the classical continuum mechanics is
enriched with higher-order gradients of the displacement, strain and velocity. Two
well-known approaches in this context are strain gradient and couple stress theo-
ries. The third category includes those theories based on long-range interactions
(e.g., Peridynamics nonlocal theories). The three categories offer a phenomenologi-
cal description of the microstructure effects on wave propagation in metamaterials.
That is, the models are usually formulated at the macroscale, while the parame-
ters describing wave propagation have a phenomenological character and shall be
calibrated experimentally.

The micromorphic theory was introduced by Eringen [24, 25] and is considered
one of the pioneering top-down microscale model [26]. This theory can be also sim-
plified to the micropolar theory and microstretch theory. The classical micromorphic
theory can be seen as a penalty formulation of gradient elasticity, see e.g. Refs. [27,
28]. Its constitutive equations may involve more than 1000 material coefficients in
the general anisotropic case and, even for isotropic materials, the constitutive equa-
tions contain 18 material coefficients [29]. This, indeed, limited the applicability
of the original micromorphic theory. In recent years, various simplified versions
of the classical micromorphic theory were developed. Neff et al. [29] developed a
relaxed version of the classical micromorphic model, named relaxed micromorphic
model, which involves a drastically reduced numbers of constitutive coefficients with
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respect to the classical micromorphic theory. The relaxed micromorphic model may
be thought as a subset of the classical model where the curvature depends only on
the micro-dislocation tensor, the local response depends on the symmetric part of the
elastic distortion, while full kinematical degrees of freedom are retained, namely the
displacement field of the macroscopic material points and micro-distortion (plastic
distortion) accounting for deformations associatedwith themicrostructure of the con-
tinuum itself. On this basis, a proper decomposition of the strain energy density was
introduced, where only the curl of the microstrain tensor is considered instead of the
whole gradient, as is typically done in classical micromorphic models. This assump-
tion was explicitly made in order to account for microstructures inside the considered
continuum which form weaker connections at the microscopic level, thus allowing
for the description of band gaps. Nonlocal effects were introduced via including
higher-order derivatives of the micro-distortion tensor in the strain energy density.
Specifically, a six-parameter model was derived, which was capable of capturing the
presence of band gaps inmicrostructuredmaterials [30]. Experimental-based estima-
tion of the model parameters was pursued in a subsequent publication [31]. Madeo
et al. [32] also proposed a comprehensive and rigorous treatment of the jump condi-
tions to be enforced at surfaces of discontinuity in relaxed micromorphic continua,
which could serve as a basis to set jump conditions at internal surfaces embedded
in these media. In-depth investigations on the relaxed micromorphic model were
carried out until very recently, on both formulation and identification of the model
parameters [33–35]. Furthermore, Shaat [36] developed the reduced micromorphic
model which is a dynamic formulation of Forest’s microstrain continuum [28]. The
reduced micromorphic model can capture all microstructural deformation patterns
but with lower number of microstructural degrees of freedom. Now, several studies
have shown that the microcontinuum formulations based on micropolar [37, 38],
relaxed micromorphic [39–41], reduced micromorphic [42–44] and micro-dilatation
theories [45, 46] can effectively model the mechanics of metamaterials. In this con-
text, it is noteworthy that Bigoni and Drugan [47] provided a general methodology to
determine the moduli of homogeneous micropolar elastic materials that best approx-
imate heterogeneous Cauchy-elastic materials; the methodology was based on the
Taylor-series expansion of the applied load and applications were proposed to inves-
tigate the three-dimensional deformations of a dilute suspension of Cauchy, linear
and isotropic elastic spherical inclusions, as well as the two-dimensional deforma-
tions of circular cylindrical inclusions in a Cauchy, linear and isotropic elasticmatrix.
A final note regarding micromorphic theories concerns a recent study investigating
the topological characteristics of a micromorphic model of metamaterials, providing
evidence for the formation of band gaps [48].

Certainly, an early and seminal contribution in the field was given by Mindlin
in 1964 [49], who established a linear elastic theory with microstructure. The work
revealed the key role played by the microstructure in dispersive behaviour of elastic
waves in heterogeneous materials and set the bases for the formulation of several
generalized continuummodels describingwave dispersion in suchmaterials [50, 51].
Specifically, the Mindlin microstructure model is equivalent to Eringen’s micromor-
phic model in the linear case. Further, Mindlin [52] developed a second-order strain
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gradient theory in which the strain energy is a function of the strain and its first and
second gradients. Then, Mindlin and Eshel [53] reduced this theory to a first-order
strain gradient theory in which the strain energy is a function of the strain and its
first gradient only. Later on, a simplified version of the first strain gradient theory
was developed [54]. Another version–called the modified strain gradient theory–
was developed by Lam et al. [55]; it is also known as modified couple stress theory
and, in this respect, see Ref. [56]. The fourth-order gradient elasticity model (with
fourth-order spatial, fourth-order temporal and mixed spatial–temporal derivative
terms) was investigated by Askes et al. [57], Metrikine [58], Pichugin et al. [59].
In the following, we will briefly review some of the most representative works on
applications of the gradient theory to metamaterials.

The use of higher-order gradient continuum models to simulate wave dispersion
in periodic lattice materials was investigated by Lombardo and Askes [60]. Dontsov
et al. [61] provided an insight into the capability of a gradient elastic approach to
predict the dispersion relation of one-dimensional elastic layered composites up to
the second pass band, provided that the length-scale parameters associated with the
higher-order gradients are appropriately calibrated. Anisotropic and dispersive wave
propagation in hexagonal and hexachiral lattices was investigated by Rosi and Auf-
fray [62] in the framework of linear strain gradient elasticity. Rosi et al. [63] revealed
that the validity domain of the strain gradient elasticity theory is sufficiently large and
that this theory is useful in practical applications. Khakalo and coworkers [64, 65]
indicated that the strain gradient theories are applicable for the homogenization of the
microstructure of various lattice metamaterials. In another study, a novel approach
for the identification of equivalent second-gradient Mindlin solids was proposed for
higher-order elastic material equivalent to a heterogeneous (periodic) Cauchy elastic
composite [66]. Indeed, the identification of the length-scale parameters in multidi-
mensional problems poses several challenges and various approaches were proposed
to this aim [67].

In addition to the microcontinuum and strain gradient theories, other enriched
continuum models were proposed and used to predict wave propagation in the meta-
materials.Huang and coworkers [68, 69] developed andutilized amulti-displacement
continuum model and showed that the model is capable of describing the dispersive
behaviour of metamaterials. In another study, Liu et al. [70] developed a new multi-
displacement microstructure continuum by introducing both multi-displacement
variables and micro-deformation variables. They used the proposed model to inves-
tigate wave propagation in two-dimensional anisotropic elastic metamaterials. Zhou
and coworkers [71–73] derived and compared three kinds of enriched continuum
models, namely the multi-displacement continuum model, the gradient continuum
model and the nonlocal gradient continuum model for wave propagation in one-
and two-dimensional metamaterials. Recently, the bi-Helmholtz nonlocal contin-
uum model with effective mass density was proposed to predict the wave dispersion
relations of one-dimensional infinite acoustic metamaterials with long-range inter-
actions [74].

As for optical metamaterials, effective material parameters were obtained to
describe the propagation of light through optical metamaterials by nonlocal con-
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stitutive models. They describe the material at an effective level, avoiding the almost
prohibitive computational costs required by a fine description of the material at the
unit cell level.Mnasri et al. [19, 75] proposed a nonlocal constitutive approach to cap-
ture light propagation (reflection and transmission) through optical metamaterials,
which involves a frequency-domain, fourth-order differential model relating electric
displacement field D and electric field E. Frequency-dependent nonlocal parameters
associated with the fourth-order terms were obtained by a fitting procedure targeting
reflection and transmission coefficients. Focusing on two examples of metamaterial
slabs, made by dielectric spheres on a cubic lattice surrounded by vacuum or by
a fishnet rectangular structure, the nonlocal model exhibited good agreement with
full-wave simulation data obtained by Fourier modal method, showing strong spa-
tial dispersion. For the approach to be meaningful, the authors pointed out that the
period of the metamaterial shall be smaller than half the operational wavelength, i.e.
the metamaterial shall be subwavelength.

3 High-Order Homogenization Methods

A well-established approach to capture wave propagation dispersive phenomena in
metamaterials is homogenization, whose aim is to replace an actual heterogeneous
medium by a continuous equivalent one giving the average behaviour of the medium.
Research in this field moved from the observation that first-order homogenization
methods are typically limited to low frequencies or long wavelengths but are not
suitable to capture dispersion phenomena that generally occur for high-frequency
waves. Indeed, the fundamental characteristics of wave propagation inmetamaterials
arise fromdispersion effects attributable towave reflection and refraction frommicro-
constituent interfaces, which become significant when the microstructural size is
comparable to the length of the travelling wave. These phenomena generally occur
for high-frequency waves which go beyond the long wavelength tackled by first-
order homogenization methods. It is well understood that first-order homogenization
methods and resulting effective media cannot predict reflection and refraction of
stress waves causing wave dispersion and attenuation with a material microstructure
[76, 77].

Typical high-order homogenization approaches of metamaterials are multi-scale
approaches where scales are identified by asymptotic expansion or additive decom-
position. Alternatively, there exist high-order homogenization methods producing
macroscopic equivalent continua endowed with nonlocal terms, such as spatial high-
order differential operators or nonlocal time-dependent terms modelling memory
effects. As compared with phenomenological models, the key feature of nonlocal
models derived by high-order homogenization methods is that the nonlocal parame-
ters are identified, in general, in the homogenization process itself. The most relevant
high-order homogenization methods are summarized below.
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3.1 Asymptotic Expansions

A most straightforward high-order homogenization approach relies on asymptotic
expansions. Making the key hypothesis of scale separation or long wavelengths and
adopting a number of additional assumptions, asymptotic elastodynamic homoge-
nization approaches consist in first expanding and computing the relevant local (or
microscopic) fields term by term up to, theoretically speaking, getting an arbitrarily
high accuracy and, next, constructing the macroscopic fields and the effective con-
stitutive properties by carrying out appropriate volume averages over a unit cell [78].
Building on the first studies proving the asymptotic approach as a valuable tool to
capture local elastic resonance mechanics [79–81], various formulations were devel-
oped for the asymptotic elastodynamic homogenization of metamaterials and, more
generally, periodically inhomogeneous media.

Asymptotic expansions rely on the assumption of separation of scales that, gen-
erally speaking, holds true in the long wavelength regime. The frequency ranges
of validity of the asymptotic approaches proposed in the literature, however, vary
depending on the specific formulation adopted, as briefly detailed below.

Boutin [82] and Triantafyllidis and Bardenhagen [83] developed a formal asymp-
totic approach to derive higher-order strain gradient stress-strain relations for homog-
enizedmedia. An infinite-order stress-strain relationwas derived in terms of the small
parameter ε giving the ratio of the scale of the microstructure (e.g. the size of the
periodicity cell) to the outer length scale (e.g. the size of the deformed domain)
and involved averaged terms over the periodicity cell; specifically, the stress-strain
relation mirrors the typical displacement solution built by a two-scale asymptotic
approach in terms of a rapid (oscillating) variable and a slow (modulating) variable.
The work by Boutin [82] and Triantafyllidis and Bardenhagen [83] inspired further
developments by Smyshlyaev and Cherednichenko [84], who rigorously derived
higher-order, strain gradient constitutive equations for homogenized media via a
combination of variational and asymptotic techniques for an infinitely extended peri-
odic elastic medium, with periodicity cell of a small size and in the presence of a
fixed body force. The coefficients of these equations are explicitly related to solutions
of higher-order unit cell problems. The structure of the variationally derived higher-
order homogenized constitutive relations was found to be in agreement with those
proposed by phenomenological strain gradient theories (see, e.g., Refs. [52, 85, 86]).
With respect to the purely asymptotic approach by Boutin [82] and Triantafyllidis
and Bardenhagen [83], the combined variational-asymptotic approach ensured bet-
ter approximation to the actual solution when the small parameter characterising the
separation of scales is “small but not too small”, which is exactly the case when the
scale effects are observed for the “larger” and “smaller” scales becoming comparable.
Also, it guarantees that the associated “truncated” higher-order constitutive relations
are elliptic, i.e. that the related higher-order effective tensor derived from this asymp-
totic analysis is positive definite, with considerable advantages when implementing
a direct numerical solution of the higher-order equations, for example using finite
elements. A combined asymptotic-variational approach was pursued also by Baci-
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galupo and Gambarotta [87] to build a second-order strain homogenized model. The
key ideawas to describe themulti-scale kinematics by suitablemicroscale fluctuation
functions of the displacement field depending on the material microstructure, to be
obtained from the solution of a recurrent sequence of cell boundary value problems
derived through the asymptotic procedure. Themicroscale fluctuation functionswere
obtained as the superposition of static and dynamic contributions, the first depending
on the elastic properties of the phases and the latter on the elastic and mass properties
of the phases. Specifically, the dynamic contribution was found to be proportional to
even powers of the phase velocity, which made the microscale fluctuation functions
to depend on the direction of propagation, namely angular frequency and wave vec-
tor. The equation of motion at the macroscale were obtained by Hamilton’s principle,
with higher-order elastic moduli and inertial terms depending on dynamic correctors.
The model was implemented for bi-material periodically-layered composites with
orthotropic phases, featuring an orthotropy axis parallel to the layering direction,
providing provided accurate approximations of the lowest acoustic branch of the
dispersion curve.

Andrianov et al. [17] developed a classical high-order asymptotic approach lead-
ing to an effective high-order strain gradient medium, which can model well dis-
persive behaviours and size effects near the acoustic branches, independently of the
order of the asymptotic approximations used. The approach relied on the assumption
that stiffness and mass parameters of the components are of the same asymptotic
order.

Some asymptotic approaches were proposed for high-contrast elastic composites.
For instance, Aurialt and co-workers [88, 89] proposed an asymptotic approach to
build the equivalent macroscopic models of high-contrast two-and three-constituent
elastic composites, the former made of high-rigidity connected solid and soft inclu-
sion, the latter of hard inclusions coated with a soft material and embedded in a
connected stiff material. They showed that, if the stiffness contrast between soft and
connected stiff materials is of the order of the squared scale-separation parameter,
the propagation of long waves induces local resonance within the soft medium (in
the two-constituent case) and within the hard inclusions/soft material system (in the
three-constituent case). Specifically, the high-rigidity solid acts as carrying structure
for the long wavelength, provided that is connected and the wavelength is large with
respect to the period size; within this frequency range, the soft inclusion (possibly
containing hard unconnected inclusions) acts as a resonant system. Therefore, the
macroscopic model exhibits a series of inner-resonance cut-off frequencies and each
band gap is associated with an eigenvalue problem of the resonating system with
homogeneous Dirichlet condition along the boundary with the carrying medium.
The effective mass density was found to depend nonlinearly on the frequency and,
as a result, the governing equations at the macroscopic scale were nonlocal in time.
Numerical applications were presented for a high-contrast stratified composite made
of isotropic elastic plates proving the existence of band gaps. In this respect, results
agreed with previous findings on high-contrast composites existing in the litera-
ture, made of epoxy matrix-duralumin cylinders [90] or epoxy matrix embedding
lead spheres coated by silicon rubber [4, 91, 92]. An asymptotic approach for high-
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contrast periodic elastic composites was proposed also by Smyshlyaev [93], focusing
on highly-contrasting and possibly highly anisotropic stiffness and moderately con-
trasting density of the phases. In particular, Smyshlyaev [93] showed that anisotropy
allows to vary the number of propagating modes with the direction and achieve,
in this manner, a directional localization if the inclusion phase is inter-connected.
Two-scale effective elastodynamic equations were obtained with coupled micro and
macro components, which were nonlocal in both time and space. Approaches devel-
oped in these studies [88, 89, 93] capture frequency band gaps resulting from local
resonance phenomena in the limit of the long wavelength assumption, i.e. for long
wavelengths at which the scale separation holds true. By these approaches, therefore,
high-frequency diffraction phenomena typical of periodic elastic composites cannot
be handled as, e.g., Rayleigh scattering where wavelengths are not very large com-
pared to the characteristic period of the composite, as well as Bragg scattering, which
appears in high-frequency phononic crystals when wavelengths are comparable with
the period size. Still under the assumption of scale separation, a rigorous demonstra-
tion of nonlocality inherent to the homogenization of high-contrast composites was
provided by Cherednichenko et al. [94], who focused on a composite consisting of
a matrix of a certain main material, which is assumed to be connected, and highly
anisotropic fibres included periodically into the matrix, with large contrast between
the conductivity along the fibres and the conductivities in the transverse directions.
They provided mathematical evidence that the homogenized equation is an integro-
differential one, displaying nonlocality along the fibres. Specifically, the kernel of
the emerging integral operator was expressed explicitly in terms of the Green func-
tion on the fibre, while the local part was determined as in classical homogenization
theory. Further evidence on spatial and time nonlocal effects may be found in various
works [95–100].

Fish and coworkers proposed a mathematical homogenization theory with multi-
ple spatial and temporal scales [101–103] for media with periodicmicrostructure. An
asymptotic expansion was used for the displacement field while fast spatial scale and
a slow temporal scale were introduced to account for the rapid spatial fluctuations
as well as to capture the long-term behaviour of the homogenized solution. By this
approach, the authors successfully addressed the issue of conventional homogeniza-
tion approaches where, as the observation timewindow increases, higher-order terms
may become close to or even larger than the leading-order term, causing the asymp-
totic expansion to be no longer valid. Using the averaging process over the period of
the medium to eliminate the multiple temporal scales, the formulation led to spatial
nonlocal equations [101, 102], for which a C0-continuous fnite element formula-
tion was proposed with stabilization for all frequency excitations, independently of
either the unit cell size or the fnite element discretization [103]; specifically, the finite
element formulation relied on a three-field Hamilton variational principle involving
displacements as well as nonlocal stress and strain. In this context, the mass matrix
consists of the classical mass matrix (consistent or lumped), as well as a dispersion-
induced mass, which depends on the microstructural properties and the relative size
of the microstructure compared to the component size. While for low strain rates the
second term is negligible, the addedmass term gives rise to lower deformation energy
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absorption at high strain rates, in agreement with experimental observation in crash
tests on composite structures [103]. Issues of stability and mathematical consistency
of the proposed approach were addressed by Fish and coworkers in various publica-
tions [104], e.g. starting from weak forms of homogenized macroscopic equations at
different scales, the authors identified boundary conditions and secularity constrains
ensuring the uniform validity of asymptotic expansions. On this basis, they used
a finite-element semi-discretization in space along with an analytical solution for
slow time scales and Padé approximation for the fast time scale to investigate wave
propagation problems in semi-infinite and finite domains [104].

Hu and Oskay [105] proposed a spatial-temporal nonlocal homogenization model
based on asymptotic expansion of the displacement field up to the eight order to
address transient anti-plane shear wave propagation in viscoelastic composites. The
displacement field at each order was expressed in terms of a macroscopically con-
stant displacement field and a series of locally varying fields with zero average over
the unit cell, which depend on lower-order macroscopic strain [106]. Operating in
the Laplace domain, macroscale momentum balance equations were obtained in the
macroscopic displacement at various orders by averaging over the unit cell. Time-
nonlocalitywas introduced by furthermanipulations on the homogenized constitutive
tensors, involving a Laplace variable dependent scalar term to be identified under
stability constraints on the solution. Linear superposition of the macroscale momen-
tum balance equations provided a single momentum balance equation; on neglect-
ing terms higher than four for practical purposes a fourth-order partial differential
equation was derived formally equivalent to gradient elasticity ones, spatial nonlo-
cal, temporal nonlocal and mixed spatial-temporal nonlocal terms [57–59, 61]. The
unique feature of the proposed approach is that all model parameters were directly
computed from the microstructure equilibrium. In view of the difficulties in setting
high-order boundary conditions, a reduced-ordermodel in the form of a second-order
partial differential equation is then proposed for efficient transient wave propagation
analysis, retaining the dispersive character of the original nonlocal model through
the effective stiffness tensor. Transient shear wave propagation in two-dimensional
domain with periodic elastic and viscoelastic microstructure was investigated and
the proposed models were verified against direct numerical simulations using finite
element modelling of the cells. Numerical results were presented for an elastic bi-
material layered microstructure composed of aluminium and steel and viscoelastic
composite with the microstructure that has elastic circular inclusion embedded in
viscoelastic matrix. The spatial-temporal nonlocal homogenization model proved to
accurately capture shear wave dispersion in the first pass band and attenuation within
the first stop band. Higher-order asymptotic expansions and temporal nonlocal term
are found to be critical in extending the applicability of the asymptotic homoge-
nization to shorter wavelength regime; specifically, the temporal nonlocal term is
demonstrated to be important in accurately capturing the initiation of the first stop
band. Applications were proposed by the same authors for one-dimensional propaga-
tion in elastic and viscoelastic periodic layered media [107]. The model proposed by
Hu andOskay [105, 107] improved the results previously obtained using lower-order
expansions of the displacement field and no temporal nonlocal term [108, 109].
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Finally, it is noteworthy that a two-scale asymptotic procedure was developed by
Craster and co-workers [110] for wave propagation in a doubly periodic inhomo-
geneous medium, with focus on standing waves, periodic with the period or double
period of the cell. As the frequencies of these standing waves do not belong to the
low-frequency range of validity covered by the classical homogenization theory, the
procedure was termed as “high-frequency homogenization” . On adopting an asymp-
totic representation of the displacement field where variations at the microscale and
macroscale are accounted for also in the leading term, a hierarchy of separate second-
order differential equations was obtained at various orders and associated boundary
conditions were derived from the cell periodicity. While the eigenvalue problem at
the leading order provides the standing wave solutions, the next-order differential
equations involve coefficients given as integrals of the standing wave solutions. The
procedure proved successful in capturing dispersion phenomena at frequencies in
the vicinity of the standing waves and the final form of the effective model exhibited
similarities to high-frequency long-wave equations in asymptotic theories, for elastic
and acoustic waveguides, which are valid in the vicinity of thickness resonances in
homogeneous plates or shells. Various applications of high-frequency asymptotic
approaches were proposed by Craster and co-workers [111, 112]. In this context,
the work by Boutin et al. [113] is also relevant, which focuses on the modelling of
large scale modulations of high frequency mechanical waves propagating in periodic
elastic composite media.

3.2 Other Higher-Order Homogenization Techniques

As any asymptotic expansion approach relies on the principle of scale separation,
which holds true forwavelengths longer than the typicalmicrostructural size, alterna-
tive higher-order homogenization techniques were developed for those applications
where the separation of scales is no longer applicable, as is typically the case for
wave propagation with wavelength of the order of inclusions dimensions. Some of
the relevant techniques in this context are described below.

For heterogeneous materials with periodic microstructure, Yvonnet and Bonnet
[114] introduced a consistent nonlocal homogenization, which involves the concept
of mesoscopic strain and stress fields defined by integral operators acting as low-pass
filters on the fine scale fluctuations and calculated over the whole medium. Here, a
mesoscopicmodel is intended as halfway between a fullymicroscopic representation
and a fully macroscopic homogenized one using effective tensors and is expressively
meant to address behaviours where scales cannot be separated. On assuming that the
(total) microscopic strain at the local scale is the superposition of mesoscopic strain
and fine scale fluctuations, the formulation involves a nonlocal constitutive relation
at the mesoscopic scale, which is obtained from a localization problem over a unit
cell where the strain at the local scale is expressed in terms of the mesoscopic strain
by an integral nonlocal operator. In other terms, the proposed approach extends
the classical linear homogenization by replacing averaging operators with integral
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operators (the low-pass filters) and localization tensors by nonlocal operators. A
Gaussian function and least-square polynomials were used as low-pass filters defin-
ing the mesoscopic fields; specifically, the least-square polynomials were used to
address boundary effects induced by the Gaussian convolution when applied to finite
domains for non-periodic mesoscopic strain fields defined over the unit cell [115].
For a known mesoscopic strain field, the theory was implemented approximating the
mesoscopic strain as a linear combination of basis functions, so that the response at
the local scale is evaluated by means of a finite number of transformation tensors
computed over the unit cell [114, 115]. Later on, the authors adapted the theory to a
classical displacement-based finite element formulations of elasticity, to overcome
the disadvantages of the original formulation directly based on nodal strains. In this
context, the nonlocal constitutive law at the mesoscopic scale is expressed by a dis-
crete displacement-based scheme, while the microscopic local fields at all points
are reconstructed from the nodal response at the mesoscale coarse grid using appro-
priate localization operators [116]. If compared with phenomenological nonlocal
continuum formulations, the theory represents a systematic approach to construct
nonlocal relations for the homogenized medium that is consistent with the actual
microstructural constituents.

Filonova et al. [117] proposed a dispersive computational continuum inspired by
the C2 formulation [118], which employs an additive decomposition of the displace-
ment field into a coarse-scale displacement and a fine-scale perturbation, with the
former being approximated by a quadratic function over the unit cell domain. The
coarse-scale problem is formulated in a weak form over the material domain a non-
local quadrature approach is used to approximate the integrals of the weak form over
coarse-scale elements defined as disjoint union of computational unit cells. Strong
and weak forms were derived also for the fine-scale problem. The dispersion analysis
was conducted analytically and numerically on an elastic periodic medium. The ana-
lytical solution was obtained based on the Floquet-Bloch wave solution, solving the
fine scale problem in closed form and assuming the coarse-scale solution in Floquet-
Bloch form. The numerical solution, instead, was obtained by modal analysis of the
discretized coupled fine-coarse scale problems. Comparison with the reference solu-
tion obtained by Floquet-Bloch theory revealed remarkable accuracy of the proposed
approach, especially in the case of unit cell sizes being either half or equal to the size
of the coarse-scale element. The advantage of the approach is that is free of scale
separation and accounts for finite-size microstructure by the nonlocal quadrature.

Extensive work to overcome inherent limitations in the scale-separation based
approaches was carried out by Geers and co-workers [119–121]. Sridhar et al.
[119] developed a multi-scale computational homogenization approach. The method
may be cast within the general first-order computational homogenization framework
establishing the coupling between microscale and macroscale problems [120, 121].
The key feature is a Craig-Bampton mode decomposition [122], according to which
the dynamic response of a representative volume element is decomposed into two
parts, the quasi-static response giving the instantaneous response and internal dynam-
ics representing the inertial response due to local resonance of the heterogeneities;
specifically, the internal dynamics is obtained by an optimum eigen-mode basis. The
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solution decomposition relies on the relaxed scale separation principle, i.e. that the
shortest characteristic wavelengths pertinent to core matrix and heterogeneities are,
respectively, much larger and just larger than the size of the microstructural phases
constituting the corematrix and heterogeneities; since themicrostructural lengths can
scale with the wavelengths associated with heterogeneities, possible micro-inertia
effects can be incorporated in the model. Upon using the Craig-Bampton approach
to derive the governing equations of the representative volume element, typical scale-
transition relations were applied to transform the reduced balance of momentum into
homogenized macroscopic continuum equations, enriched by additional kinematic
degrees of freedom representing the internal dynamics of the microstructure; indeed,
these kinematic degrees of freedom are the generalized amplitudes associated to
the local resonance modes. The eigen-mode problem is solved off-line, eliminating
the expensive solution of the microscale problems at each time step, which is typ-
ically used in a computational homogenization approach. The macroscale on-line
solution procedure therefore reduces to a single-scale enriched problem accounting
for the effect of microscale dynamics. The proposed approach was combined with
infinite-element-method techniques for multiscale problems, thus allowing complex
microstructure topologies to be incorporated within infinite macrostructure geome-
tries, considering arbitrary transient excitation and sophisticated boundary condi-
tions. The approach was validated against direct numerical simulation with infinite
element method; considering a one-dimensional compressional wave propagation
test on epoxy matrix with an embedded lead inclusion coated with soft rubber,
the authors demonstrated the strong influence of local resonance on the macro-
scopic dynamics beyond the low frequency (longwavelength) quasi-static regime.As
pointed out by the authors, the formulation is appealing as lends itself to incorporate
moderate nonlinearities, damping as well as material nonlocality of second-order
gradient type. Further insight into the formulation was provided in a successive work
by Sridhar et al. [123]; using a plane wave transform to obtain the dispersion eigen-
value problem of the enriched continuum, the authors investigated the influence of
the inclusion symmetry on the dispersion characteristics and, based on the obtained
dispersion spectrum, proposed a procedure to assess the homogenizability of the
problem in the frequency range of analysis. Further, the suitability of the formu-
lation to describe negative stiffness and double negative effects (i.e. simultaneous
negative effective mass density and stiffness) was also demonstrated [3].

Recently, a great deal of attention was devoted to periodic material microstruc-
tures featuring a rigid phase with dominant volumetric fraction and a soft phase with
a vanishing volume fraction, as is typically the case of granular materials, masonry-
like biological and nacreous bioinspired heterogeneous composites; the interest is
motivated by studies showing the interesting phononic properties of these materi-
als, in particular the existence of band gaps [124–126] and the possibility to obtain
devices for vibration reduction and isolation [127]. Although a rigorous treatment
of wave propagation through these materials may be made using the infinite element
Bloch approach, approximate models are appealing for control and optimization of
the acoustic performances. On modelling the material as an ensemble of rigid blocks
(rigid phase) each equipped with in-plane translation and rotation, interconnected by
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elastic interfaces of vanishing thickness (soft phase), a Lagrangian approach provides
the motion equations. Further, if the characteristic size of the blocks is negligible
with respect to the size of the whole body, the discrete system may be approximated
by a homogeneous equivalent nonlocal continuum; specifically, nonlocal constitutive
models including geometric and material length scales were proposed to account for
the influence of the block size on wave propagation and, in this context, the presence
of rotational degrees of freedom of the blocks resulted in Cosserat micropolar equiv-
alent continua. Dispersive propagation of harmonic waves in granular materials was
studied by Suiker et al. [128], Suiker and de Borst [129], who derived a second-order
micropolar continuum and compared the results with those from the Lagrangian
model. Bacigalupo and Gambarotta [130] developed the micropolar equivalent con-
tinuum of a two-dimensional blocky material with periodic microstructure, consist-
ing of equal rigid blocks of polygonal centro-symmetric shape with mass and gyro-
scopic inertia, connected to each other by homogeneous linearly-elastic interfaces.
The micropolar model was obtained by two different approaches, namely by a con-
tinualization of the Lagrangian discrete motion equations in which the generalized
displacements of the blocks are represented by a second-order Taylor expansion of
the generalizedmacro-displacement field and, alternatively, by an alternative homog-
enization approach based on an extended Hamiltonian principle, the latter being
based on a proper representation of the elastic potential energy that is related to the
Hill-Mandelmacro homogeneity condition and involves a second-order expansion of
the generalized displacement field, as suggested by Bazant and Christensen [131] for
rectangular frames. The two homogenization approaches provided the sameCosserat
model where, as a result of the assumption of centro-symmetric blocks, the consti-
tutive equations of the equivalent micropolar continuum were derived in a general
form with uncoupled strain and curvature. While the fourth-order elasticity tensor
associated with the micropolar strains is positive defined, the positive definiteness of
the second-order symmetric tensor associated with the curvature vector was not guar-
anteed but was found to depend both on the ratio of the tangent to the normal local
stiffness and on the block shape. From the results obtained on blocky materials with
rhombic and hexagonal tilings, the micropolar model turned out to be particularly
accurate to describe dispersive functions for wavelengths greater than 3-4 times the
characteristic dimension of the block and proved capable of capturing rather complex
dispersive functions, due to the interaction between optical and acoustic branches.
Despite the major issue that the positive definiteness of the second-order tensor can-
not be guaranteed, existence and uniqueness of the solution for the dynamic problems
under studywas verified through the ellipticity condition of Legendre-Hadamard, i.e.
assessing that the wave phase velocity is real in the elastic micropolar continuum.
Further examples of continualization approaches to derive micropolar equivalent
continua for lattice metamaterials may be found in other works by Bacigalupo and
Gambarotta [132, 133].

Among the high-order homogenization approaches, Torrent et al. [134] and Ponge
et al. [135] developed a homogenization theory based on the Plane Wave Expansion
(PWE) method, which defines a set of nonlocal generalized effective parameters for
periodic acoustic composites. The theory extracts the average fields from the gener-
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alized eigenvalue equation, and defines a set of generalized constitutive parameters.
Specifically, the authors demonstrated frequency dependence and nonlocality of both
the effective mass density and bulk modulus, with the additional complexity that the
mass density was also found to be anisotropic. A nonlocal, PWE-based homoge-
nization approach to the dynamics of metamaterials was formulated also by Flores
Méndez et al. [136, 137].

4 Averaging Techniques

Nonlocal effective constitutive relations for metamaterials were derived by Willis
[138, 139]. The concept of effective constitutive relations stems from early seminal
works on the dynamics of media with microstructure below the scale of measure-
ment [140–142], where a volume ensemble averaging approach led to an effective
mass density and an effective modulus given by nonlocal operators in space and time.
Willis pointed out that, in general, the ensemble averaged stress is related to ensemble
averaged strain and ensemble averaged velocity, as the ensemble averaged momen-
tum density is related not only to ensemble averaged velocity but also to ensemble
averaged strain. Specifically, the effective mass density was obtained as a second-
order tensor operator reducing to mean scalar mass density only in the quasi-static
limit. For electrodynamics and elastodynamics of metamaterials, nonlocal effective
constitutive relations were obtained in two forms [138, 139] and, in both, ensem-
ble averaged effective variables were introduced as weighted averages of the local
response fields. This is a particularly desirable feature for metamaterials where, e.g.,
effective strain and velocity may be related to weighted mean of the displacement
u through a weighing function of position reflecting some appropriate aspect of the
microstructure: for example, it could be uniform over the matrix phase of a matrix-
inclusion composite, and zero over the regions occupied by inclusions. Willis com-
pared the two effective constitutive relations with focus on one-dimensional wave
propagation in a periodic medium, whose effective properties were derived using
Green’s function of the motion equation [143]. He discussed the issue of obtaining
a unique response when the effective constitutive relations are formulated in terms
of weighted averages and showed that uniqueness can be obtained introducing an
additional term in the constitutive equation, which takes the meaning of an inelastic
strain [139]. For periodicmedia he showed that the proposed ensemble averaging can
be implemented exploiting the Floquet-Bloch structure of the wave fields, meaning
that the fields have only to be constructed from a single realization of the medium;
this is particularly suitable for metamaterials, as they are generally designed to fea-
ture a periodic microstructure [139]. Another considerable aspect is that the effective
medium formulation is self-adjoint if the original problem is self-adjoint [139]; in
the case of self-adjointness, variational characterizations of the effective response
are feasible [144]. Willis’ theory was suitable for elastic and viscoelastic media,
periodically or randomly inhomogeneous media.
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Since its publication,Willis’ theory inspired a great deal of work on elastodynam-
ics homogenization [145–150]. Nassar et al. [151] revisitedWillis’ theory suggesting
a few necessary conditions for physically meaningful applications and, moreover, to
make the effective constitutive parameters computable by the finite-element method;
specifically, this was made by expressing the effective constitutive parameters in
terms of localization tensors expressed in terms of the relevant Green’s functions,
for a given pair of frequency/wave number. The work was complemented by the
analytical study of a simple one-dimensional, periodic discrete system which pro-
vided physical insight into Willis’ theory. In a subsequent work, the same authors
unveiled the strong connections between Willis’ theory and a number of asymptotic
elastodynamic homogenization approaches [78]. A relation between Willis’ theory
and asymptotic homogenization was discussed by Meng and Guzina [152]. For this
purpose, the authors built an asymptotic homogenization of Willis’ model itself and
showed that, under the assumption of long wavelength-low frequency waves, the
second-order impedance functions obtained by the so-approximated Willis’ model
and the standard asymptotic approach differ by a modulation factor expressible as a
polynomial in the wavenumber-frequency domain. The inconsistency was attributed
to the fact that the standard asymptotic approach is generally restricted to the free-
wave solution and, as such, does not account for a body-source term that, instead, is
generally involved in Willis’ homogenization approach.

A generalization of Willis’ theory was later proposed by Nassar et al. [153], with
the purpose of improving the quality of and reducing the error committed during the
upscaling process, especially at high frequencies. New kinematical degrees of free-
dom were taken into account so as to describe some short-wavelength components
of the microscopic displacement field which become dominant at high frequencies.
The new degrees of freedom were introduced in conjunction with rapidly oscillating
body forces asmicroscopic andmacroscopic loadings.Consistency in termsof energy
was established by an energy equivalency principle, which is a balance between the
microscopic andmacroscopic virtual works and proves to yield a generalized version
of the well-known Hill–Mandel lemma. For a one-dimensional two-phase string, an
analytical long wavelength-low frequency asymptotic approximation to the effective
motion equation proved to capture simultaneously the acoustic and the first optical
branch of the microscopic dispersion curve.

Still within the general context of averaging techniques, a general multiscale
framework was developed by Srdihar et al. [154]. The key concept here is to use the
Floquet-Bloch transform [155, 156] to perform a spectral decomposition in micro
(-fast) andmacro (-slow) scales of any function defined on a coordinate space with an
underlying lattice. The Floquet-Bloch transform decomposition is fully general and
does not require any assumption of reasonably large scale separation that, instead, is
typical of a standard homogenization approach based on additive scale decomposi-
tion. The multiscale framework involves homogenization and localization. Homog-
enization is performed via a Floquet-Bloch average that combines Floquet-Bloch
transform, volume average over the unit cell domain and inverse Floquet-Bloch
transform. The volume average is defined with respect to a family of particular pro-
jection functions that, for a linearly-elastic periodic microstructure, are taken as the
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Floquet-Bloch eigenvectors computed via dispersion analysis of the unit cell [157];
specifically, the optimal choice is to include the Floquet-Bloch eigenvectors at high
symmetry points of the Brillouin zone in the desired frequency range [158]. Power
consistency between homogenized and full scale model is ensured by a generalized
Hill-Mandel condition. The essential result of the homogenization is to average out
the fast-scale contributions returning a corresponding slow-scale function in real
space. Next, the problem is localized to a single unit cell by assuming a higher-order
spatial-temporal gradient expansion to express the full scale displacements in terms
of macroscale displacements. This provides a series of recursive unit cell problems
giving appropriatemicromechanical corrections to the homogenizedmacroscale gov-
erning equations, which are finally derived as a set of high-order partial differential
equations with constant coefficients, solvable by a finite-element approach. The pro-
posed multiscale framework was validated against numerical Bloch analysis of dis-
persion spectra in two-dimensional unit cell designs proving capable of capturing
multiple high-order branches generated by local resonance and/or Bragg scattering,
using a fourth-order spatial and second-order temporal expansion and a relatively
small homogenization basis.

5 Concluding Remarks

Phenomenological models, high-order homogenization methods and averaging tech-
niques are most typical nonlocal approaches to capture wave propagation phenom-
ena in metamaterials. The brief overview of this Chapter cannot be exhaustive but is
meant to describe relevant achievements and stimulate further investigations in this
emerging field. Indeed, it is believed that nonlocal models may play a crucial role in
promoting metamaterials to the engineering community, providing valuable insight
into fundamental mechanics at a relatively-low computational costs.
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Abstract The various mathematical models developed in the past to interpret the
behavior of natural and manmade materials were based on observations and exper-
iments made at that time. Classical laws (such as Newton’s for gravity, Hooke’s
for elasticity, Navier-Stokes for fluidity, Fick’s/Fourier’s for diffusion/heat transfer,
Coulomb’s for electricity, as well as Maxwell’s for electromagnetism and Einstein’s
for relativity) formed the basis for shaping our current technology and civilization.
The discovery of new phenomena with the aid of recently developed experimental
probes have led to various modifications of these laws across disciplines and scales:
from subatomic and elementary particle physics to cosmology and from atomistic
and nano/micro to macro/giga scales. The emergence of nanotechnology and the
further advancement of space technology are ultimately connected with the design
of novel tools for observation and measurements, as well as with the development
of new methods and approaches for quantification and understanding. This chapter
first reviews the author’s previously developed weakly nonlocal or gradient models
for elasticity, diffusion and plasticity within a unifying internal length gradient (ILG)
framework. It then proposes a similar extension for fluids and Maxwell’s equations
of electromagnetism. Finally, it ventures a gradient modification of Newton’s law
of gravity and examines its implications to some problems of elementary particle
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physics, also relevant to cosmology. Along similar lines, it suggests an analogous
extension of London’s quantum mechanical potential to include both an “attractive”
and a “repulsive” branch. It concludes with some comments on a fractional general-
ization of the ILG framework.

1 Introduction

In a recent chapter in Advances of Applied Mechanics [1], a detailed account is
presented of the author’s internal length gradient (ILG) mechanics framework. It is
based on the assignment of internal lengths (ILs) (associated with the local geome-
try/topology of material substructure) as scalar multipliers of extra Laplacian terms
that are introduced to account for heterogeneity effects andweak nonlocality. Related
background work for this framework can be found in the references quoted therein,
as well as in earlier published articles by the author and his coworkers [2–10].

Themotivation for the development of the initial continuummechanics-based ILG
framework was the need for describing deformation pattern-forming instabilities that
emerge when an externally applied stress reaches a certain threshold. Beyond that
threshold, the evolution equations governing the system’s homogeneous response
were becoming ill-posed and further analysis was not possible. The method pro-
posed earlier by the author to overcome the difficulty for macroscopic deforma-
tion and fracture instabilities, was to introduce higher-order gradients (in the form
of Laplacians) in the constitutive equations and corresponding ILs accounting for
the heterogeneity of the underlying micro/nano structures. The resulting differential
equations eliminate ill-posedness, estimate the width/spacings of deformation bands,
dispense with the mesh-size dependence in finite element calculations, and remove
stress/strain singularities at crack tips. A similar approach has been employed by
the author for higher-order diffusion and heat conduction theories, as well as for
phase transitions by revisiting van der Waals theory of liquid-vapor interfaces and
Cahn-Hilliard theory of spinodal decomposition [11–16] through the introduction of
chemical ILs. In these works, mechanical and chemical ILs were treated separately
as phenomenological parameters, depending on the material local configuration and
scale of observation. Their calibration and/or estimation was left to numerical and/or
laboratory experiments. Moreover, statistical features emerging at sub-macroscopic
scales were not considered. A preliminary effort to address these issues has been out-
lined in [1], and is further elaborated upon herein. In particular, the powerful multi-
scale technique proposed by Kevrekidis and co-workers [17, 18]—the equation-free
method (EFM)—can be utilized for the hierarchical calibration of mechanical ILs.
Their experimental estimation, usually inferred from “indirect” measurements of
spatio-temporal features (width/spacing/velocity of deformation bands) and related
size effects, can be based on “direct” measurements through novel nanoindentation
(NI) tests by monitoring the local strain gradients at various indentation depths.

The enhancement of the above deterministic ILG considerations to include
stochastic effects associated with internal stress fluctuations that manifest as stress
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drops/strain bursts in micro/nanopillar experiments and popins/popouts in nanoin-
dentation tests, may be pursued along the lines also outlined in [1]. Corresponding
gradient-stochastic models can be derived to capture intermittent plasticity and ser-
rated stress-strain graphs, as well as to determine statistical features such as fractal
dimensions (FDs) and probability density functions (PDFs). This task can be carried
out by employing Tsallis q-statistics [19–21]—based on “nonextensive entropy” (as
opposed to Boltzmann-Gibbs (B-G) “extensive thermodynamics” )—resulting to q-
dependent multifractal spectra and q-dependent PDFs, as well as q-generalization
of B-G universal power laws. Novel NI tests may be conducted on multiple speci-
men sites and at different penetration depths for the determination of q-distributions
by recording the observed popins/popouts and comparing them with corresponding
determinations from micro/nanopillar serrated stress-strain curves. Such a statistical
mechanics enhanced ILG frameworkmay also be conveniently employed to consider
the Portevin Le Chatelier (PLC) and persistent slip band (PSB) plastic instabilities,
along with related size effects, as outlined below.

At very small scales, mechanical and chemical effects are often equipresent, and
an extended chemomechanical ILG framework is necessary in order to consider
higher-order IL couplings, as suggested in [1]. In view of the fact that mechanical
and chemical ILs are introduced as scalar multipliers of corresponding Laplacian
terms, it turns out that such coupled chemomechanical formulation is appealing and
robust. Since in mathematical biology models cells are represented by scalar con-
centration fields (i.e. in the same way as chemical species), the formulation could
be easily adapted for the description of higher-order couplings between mechanical
and biochemical ILs. Such an extended ILGmechanics framework, including syner-
gistic effects between mechanical and chemical or biological ILs, can be employed
to consider chemomechanical instabilities in Lithium ion Battery (LiB) anodes and
biomechanical instabilities in brain tumors, as also outlined below.

As mentioned above, we conclude this introductory section by summarizing main
results of the ILG framework and its potential to be employed for considering a variety
of problems of current or emerging interest as follows:

• Plastic Instabilities and Size Effects: Recent experiments at micro/nano scales [22]
have revealed a strong dependence on specimen size. Ongoing work in several
Labs has revealed, in particular, that PLC and PSB instabilities may be suppressed
when the ratio of the specimen size over the internal length is reduced below
a certain threshold. The previous deterministic ILG models earlier advanced by
the author and collaborators for these instabilities at macro/meso scales can be
revisited and evaluated for “small-volumes” and strain localization phenomena
observed in nanocrystalline (NC) and ultrafine-grain (UFG) polycrystals. New
combined gradient-stochastic ILG models for both PLC and PSB instabilities
can be employed to capture spatio-temporal periodicity, fractality, and transition
to chaos. FDs for the observed deformation bands and PDFs for the recorded
serrations in stress-strain curves can be determined through Tsallis q-statistics.

• Chemomechanical Instabilities & Lithiation Fronts in LiB Anodes: A determinis-
tic version of our coupled chemomechanical ILG framework can be employed to
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address chemostress damage instabilities in nanostructured LiB anodes leading to
cracking and capacity fade during Li insertion/de-insertion under electrochemical
cycling. This is due to the huge local volume expansions (up to 400%) and asso-
ciated internal stress generation occurring in Si active particles during lithiation
[23–26]. A related issue is to understand the size/stress dependence of lithiation,
as well as the propagation of stress-assisted lithiated fronts which controls battery
efficiency. The interplay between higher-order mechanical and chemical ILs has
not yet been sufficiently considered to address these chemomechanical instabili-
ties in LiB, despite of their wide use in microelectronics, laptops and electric car
technologies.

• Biomechanical Instabilities & Cancer Growth/Metastasis in Human Brain: A
striking analogy1 exists between the Walgraef-Aifantis (W-A) model [27–29] of
dislocation patterning in PSBs and the Go or Grow (GoG) model for glioblastoma
cancer cells [30, 31]. Both processes are described by similar reaction-diffusion
(R-D) type equations for mobile-immobile dislocations in the W-A model (under
the action of applied stress) and themotile-immotile cancer cells in the GoGmodel
(under the action of internally generated stress). Such internal stress effects have
not been explicitly accounted for in the GoG model, despite of the fact that Mur-
ray [32, 33]—the father ofmodernmathematical biology—had already introduced
cell-tractions and corresponding strain gradients (in the form of Laplacians, as in
author’s work; see, for example, the related discussions in [1]) to revisit Turing’s
seminal R-Dwork ofmorphogenesis. The interplay between higher-ordermechan-
ical and biochemical ILs in the GoG model can be studied, and the role of internal
stress can thus be evaluated. The results can provide new insight on brain cancer
progression and potential therapeutic procedures.

2 State-of-the Art: Previous Literature & Current State
of Affairs

An extensive bibliography on gradient theories has already been mentioned that can
be found in [1]. Specific aspects pertaining to the present review and related work
on continuum mechanics models at micro/meso/macro scales are discussed in this
section. For the convenience of the reader, we present this section in two parts. In
the first part, we provide background on relatively recent phenomenological strain
gradient models that have been developed to capture mechanically-induced plastic
instabilities and size effects under the action of applied loads. In the second part, we
provide a brief account of earlier, more fundamental work on phase transitions which
was a direct motivation for the author’s initial ILG deterministic models, as well as

1An elaboration of this analogy is given in a forthcoming article by H. Hatzikirou and E.C. Aifantis:
On the similarities between the W-A model for dislocations and the GoG model for cancer cells (in
preparation).
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for the development of coupled chemomechanical/ biomechanical ILG models to be
used for addressing instabilities in LiBs and brain tumors.

2.1 Plastic Instabilities & Size Effects

The terms “material instabilities” and “dislocation patterning” were quoted by the
author in the mid 1980s [2–5, 34–37] to denote the self-organization of local-
ized strain bands and dislocations in deforming solids. Various gradient dislocation
dynamics and gradient plasticity models were generated to deal with dislocation pat-
tern formation and shear band thickness/spacing evolution, as well as for interpreting
size effects [38–44]. Soon afterwards, in the beginning of the 1990s and later on [2–5,
7, 9, 34–36, 45–47], the author incorporated the Laplacian of the Hookean stress
into the standard constitutive equation of linear elasticity, to remove the singularities
from dislocation lines and crack tips. Some of the aforementioned author’s early
work on gradient theory is reviewed in a number of specific book chapters [38–44]
by leading authors in the field.

Subsequently, or in parallel to the above developments, other types of gradient
models have been developed such as the Fleck-Hutchinson and the Gao-Nix-Huang
strain gradient theories, as well as improved gradient theories taking into account
surface effects. As an outgrowth of the initial W-A phenomenological model for
dislocation patterning, a substantial effort has been devoted to discrete dislocation
dynamics (DDD) modeling. Due to computational limitations of DDD for obtaining
dislocation patterns and motivated by the initial W-A model, alternative dislocation
density basedmethods or continuumdislocation dynamics (CDD)have beenpursued.
Related references connected to the above named authors and works can be found in
the bibliography listed in [38–43, 48–53]. In this connection, it is pointed out that our
gradient elasticity model has recently been successfully utilized by Ghoniem’s group
in UCLA to dispense with near-core singularities causing code-malfunctioning in 3D
discrete dislocation dynamics simulations [54]. Moreover, our related non-singular
strain/stress crack tip solutions have been successfully used by Isaksson’s group
in Uppsala to interpret experimental measurements on crack-tip profiles in micro-
heterogeneous materials such as solid foams and bone tissue [55, 56].

With the exception of author’s preliminary efforts described in [1], all the above
works on gradient models for addressing plastic instabilities and size effects do
not account for internal stress/structural defect fluctuations and synergistic gradient-
stochastic effects. There are no attempts for a hierarchical IL calibration through
EFMmultiscale simulations and novel NI tests. The same holds for the use of Tsallis
q-statistics to determine FDs and PDFs. All these are open inter-dependent issues
that need to be addressed. It is also pointed out that none of the above gradient elastic-
ity/plasticity models incorporate diffusion and chemical reaction effects. An excep-
tion can again be found in [1] where higher-order chemomechanical IL couplings
are discussed. This issue needs further be addressed to consider chemomechanical
and biomechanical instabilities as described below.
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2.2 Chemomechanical Instabilities in LiBs & Biomechanical
Instabilities in Brain

Themain reason that the author’s Laplacian-based ILGmodels can easily be extended
to include chemical and biochemical ILs is due to the fact that their motivation stems
from his earlier treatment (with Serrin [11, 12]) of van der Waals theory [13] of fluid
interfaces, which was also the predecessor of Ginzburg-Landau theory [14] of phase
transitions and the Cahn-Hilliard theory [15, 16] of spinodal decomposition. This
is in contrast to the aforementioned Fleck-Hutchinson and related strain gradient
models which were motivated by Cosserat-type generalized continuum mechanics
theories that do not contain explicitly the Laplacian and, thus, they do not exhibit
the corresponding mathematical and physical properties that this operator implies.
On the other hand, chemical reactions and phase transformations have traditionally
been treated with R-D equations involving the Laplace operator. The fact that both
mechanical and chemical or biochemical ILs can be treated on the same footing,
through the introduction of the corresponding Laplacians, allows for a robust for-
mulation of a chemomechanical and biomechanical ILG framework that can be used
to consider corresponding instability phenomena in LiB anodes and brain glioblas-
tomas, respectively.

There is a large number of recent articles on LiB capacity fade due to colos-
sal volume changes in anodes (up to 400% for Li-Si based anodes) during lithi-
ation/delithiation [23–26]. While in some of these works diffusion and coupled
deformation-diffusion effects have been accounted for, higher-order strain gradi-
ents and corresponding mechanical ILs have not been considered. An exception is
the recent article by the author and coworkers [57] employing strain gradients and
mechanical ILs to model size effects in LiB anodes, as well as in [58] employing
both mechanical and chemical ILs to model the propagation of lithation fronts. This
work can be used as a guide to develop criteria for the most optimum nanocompos-
ite configuration (size/spacing of active Si-nanoparticles) for LiB anodes to prevent
cracking and/or accelerate lithtiation/delithiation.

Similarly to the case of LiBs, there is an abundance of mathematical models for
brain cancer. However, related ILG models accounting for internal stress gradient
effects due to tumor growth and cancer cell migration/proliferation are missing. This
is also true for the aforementioned GoG [30, 31] phenotypic plasticity model of
cancer cell migration and its impact on tumor progression. It was found that low-
grade tumormicro-ecology potentially exhibits an emergentAllee effect, i.e. a critical
tumor cell density implying tumor growth or control. The precise quantification
of this critical tumor cell density could be a relevant prognostic criterion for the
tumor fate through biopsy measurements. It was shown that the GoG mechanism
explains the fast tumor recurrence time of high-grade brain tumors after resection.
These findings can be re-evaluated by transferring the stability analysis results earlier
derived for the W-A model (of mobile-immobile dislocations) to the GoG model (of
motile-immotile cells), by also considering stochastic heterogeneity and internal
stress gradient effects.
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3 ILG Formulation Through Continuum
& Statistical Mechanics

In this section we briefly review the formulation of ILG framework by using ingre-
dients of generalized continuum and statistical mechanics.

• ILs in Elasticity/Plasticity & Diffusion/Gradient Dislocation Dynamics: For elas-
tic deformations, the term �2ε∇2[λεmmδi j + 2Gεi j ]—where �ε denotes elastic IL,
εi j is the elastic strain (εi j = 1/2[ui, j + u j,i ] ; ui designates displacement), and
(λ,G) are the Lamé constants—is incorporated into classical Hooke’s law. Previ-
ous results of the author and his coworkers (see [1] and references quoted therein)
show that the resulting ILG model can eliminate stress/strain singularities from
dislocation/disclination lines and crack tips, as well as interpret elastic size effects.
Similarly, the term �2p∇2γ p—where �p denotes plastic IL and γ p = ∫

γ̇ pdt

(γ̇ p =
√
2ε̇ p

i j ε̇
p
i j ) is the equivalent plastic strain with ε

p
i j denoting the plastic strain

tensor—is introduced in the classical von-Mises yield condition or the flow rule to
derive differential equations that remain well-posed in the unstable flow regime.
Previous results of the author and his coworkers (e.g. [1] and references therein)
show that the resulting ILG model can determine shear band widths and spacings,
as well as interpret plasticity induced size effects in micro-torsion/bending and
micro/nano indentation experiments. For elastic deformations at the atomic scale
(near dislocation lines in crystals), �ε relates to the subatomic configuration and
electronic state (e.g. through DFT calculations), while at the microscale �ε relates
to particle size/spacing (e.g. through MD simulations). For plastic deformations
at micro/meso scales (deformation bands, dislocation cells), �p relates to disloca-
tion source distance/pileup length/grain size (e.g. through DDD simulations). This
suggests that our earlier practice of treating the ILs as “fitting” constants needs to
be revised and consider them as evolving parameters in the course of deformation.
This point of view can be adopted for exploring the IL-dependence on the current
state of deformation and underlying micro/nanostructural configuration, also in
relation to the size of the volume considered.
For diffusion problems, the ILs enter through the additional term �2d∇2 ji which
generalizes the classical Fick’s law (�d is a diffusional internal length and ji denotes
the diffusion flux) in a manner similar to the Cahn-Hilliard theory for spinodal
decomposition. For collective dislocation phenomena, the IL enters through the
extra Laplacian term D∇2ρ, where ρ denotes dislocation density and D is an
“effective” diffusion-like transport coefficient. Unlike in random diffusion pro-
cesses however, D here is a strain rate driven parameter. Since the strain rate
depends (through Orowan’s equation) linearly to the average dislocation velocity
(which, in turn, relates to the local stress), the coefficient D is treated as a stress-
dependent parameter that relates to individual dislocation interactions. It is noted,
in this connection, that the originalW-Amodel for dislocation patterning, which is
based on such type of D∇2ρ terms for the mobile and immobile dislocation den-
sities, was initially criticized for the phenomenological nature of these Laplacian
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terms. However, recent work on continuum dislocation density based dynamics
(CDD)—in contrast to discrete dislocation based dynamics (DDD) simulations
which were unable to produce dislocation patterns—generate such type of Lapla-
cian terms which are necessary for dislocation pattern formation interpretations.

• Stochasticity and Tsallis q-Statistics: The enhancement of the above discussed ILG
deterministic models through the incorporation of stochastic terms is necessary in
order to account for the heterogeneity and fluctuations of internal stresses, as well
as deformation-induced random micro/nanostructures. The resulting combined
gradient-stochasticmodels can capture the observed behavior atmicro/nano scales,
including size dependent serrated stress-strain graphs and intermittent plasticity
phenomena. Some initial results along this direction have recently been reported
by the author and his coworkers [59, 60] by resorting to empirical Weibull distri-
bution functions, as also reviewed in [1]. This approach can be adopted to describe
existing experimental data on stress drops/strain jumps routinely observed inmicro
tension/compression and nanoindentation laboratory tests. An additional issue that
can be explored here is to employ time-dependent probability distributions guided
by our earlier [61, 62] and most recent [63, 64] works based on the formalism of
stochastic differential equations.
A convenient way to consider the competition between deterministic
gradient and random effects is to introduce (in analogy to Wiener processes
in statistical mechanics) an additive stochastic term of the form h(γ )g(x);〈
g(x)g(x ′)

〉 = lcorrδ(x − x ′)—with lcorr denoting a correlation length, and δ being
the usual Dirac delta function—into the gradient expression of the flow stress. This
is not an arbitrary assumption but emerges generically if one aims at a description
above the scale of the discrete substructure which defines the correlation length—
i.e. within a continuummodel. The delta function then simply emerges because the
individual volume elements of the continuum theory are effectively uncorrelated.
The function h (γ ) also covers the limiting case where only the material param-
eters fluctuate while the evolution is deterministic (e.g. in the case of flow stress
fluctuations due to fluctuating grain orientation or in the presence of a chemical
environment).
Standard deterministic ILG models cannot provide any information on measured
statistical aspects of plastic deformation, such as fractal dimensions for defor-
mation patterns; power-law exponents for dislocation avalanches [65, 66]; and
strain bursts recorded during nanoindentation [67] or micro/nanopillar compres-
sion tests [22, 59, 60]. When differential equations cannot be invented to interpret
experimental data and simulations, system characterization is left to statistical
analyses for investigating, among other things, fractality and universal power-
laws. In many cases, however, the usual power-laws based on Boltzmann-Gibbs
statistics exclude the regime of low intensity-high probability events. Tsallis q-
statistics [19–21] based on nonextensive entropy thermodynamics remove this
difficulty and can be employed here to analyze intermittent plasticity and defor-
mation patterned images obtained experimentally. This information can also allow
the construction of appropriate PDFs to be used in the aforementioned com-
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bined gradient-stochastic models. Tsallis nonextensive (non-additive) q-entropy
reads Sq = k

(
1 −∑

i p
q
i

)
/(q − 1) and by letting q → 1 recovers the familiar

Boltzmann-Gibbs extensive entropy. Corresponding q-distribution functions (q-
Gaussian, q-exponential, q-Weibull) can thus be obtained, which for q → 1 reduce
to their standard counterparts.

4 ILG Applications: Mechanics, ChemoMechanics,
and BioChemoMechanics

In this section, we discuss applications of the ILG framework to describe deforma-
tion instabilities and intermittent plasticity phenomena, as well as chemomechanical
instabilities in lithium-ion battery anodes and tumor glioblastomas.

4.1 Mechanical Deformation Instabilities & Intermittent
Plasticity

In this subsection we briefly discuss earlier developed ILG deformation models
that were used to capture two types of propagating and stationary instabilities in
metallic specimens under monotonic or cyclic applied loads. As the specimen size
decreases these instabilities may be suppressed or manifest in a more complex non-
deterministic manner when stochastic effects appear on equal footing with deter-
ministic ones. This is the case for micro/nano pillar deformation where intermittent
plasticity prevails and combined gradient-stochastic models are needed for interpret-
ing size-dependent serrated stress-strain curves.

• Propagating Portevin Le Chatelier Bands/PLC: In order to provide insight on the
applicability of ILG framework to capture propagating plastic deformation bands
routinely observed inAl-Mg alloy specimens under tension, we list below an initial
strain gradient model equation used by the author and coworkers for that purpose.
It reads

σ = hε + f (ε̇) + cε,xx (1)

where σ denotes stress, ε denotes strain, h is a hardening modulus, f (ε̇) is a
non-monotone function with a branch of negative slope modeling strain rate soft-
ening, and the gradient coefficient c (units [m]2×[sec]) is a phenomenological
parameter. For constant stress rate tests (σ = σ̇0 = h ε̇s) and travelling wave solu-
tions ε̇ = z(x − V t)—where x denotes the spatial coordinate, t time, and V the
deformation band propagation velocity—we obtain the following Lienard type
nonlinear equation
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Zηη − μ f ′(Z)Zη + (Z − Zs) = 0 (2)

where η = √
h/c (x − V t) andμ = V/

√
ch. This equation exhibits periodic solu-

tions for propagating strain rate bands traveling through the specimen with con-
stant velocity. It also leads to the staircase stress-strain graphs [3]. This model,
which may be considered as a predecessor of later developed more elaborate PLC
models, can be revisited for a strain-dependent gradient coefficient c to account
for the observed increase of the strain jumps in the course of deformation. In
addition, it can be used for applied constant strain-rate conditions to interpret ser-
rated stress-strain curves exhibiting stress drops (instead of strain jumps). Internal
stress fluctuations can be accounted for by introducing a stochastic term in Eq.
(1) for the constitutive expression of the gradient-dependent stress. The resulting
combined gradient-stochastic model can be evaluated according to themethod dis-
cussed below to interpret non-deterministic serrations and intermittent plasticity
phenomena in micro/nanopillar tests. Statistical characteristics for the serrations
and corresponding PDFs can be obtained through Tsallis nonextensive q-entropy
procedures. Additional typical experimental results for PLC bands and serrations
in NC and UFG polycrystals can be analyzed in a similar way, as in the recent
work of the author and coworkers [68, 69].

• Stationary Persistent Slip Bands/PSBs: Next, we briefly discuss the model equa-
tions describing the periodic ladder structure of stationary PSBs. The initial W-A
model for the densities of immobile (ρi ) and mobile (ρm) dislocations reads

ρ̇i = g(ρi ) + Di∇2
xxρi − h(ρi , ρm) (3a)

ρ̇m = Dm∇2
xxρm + h(ρi , ρm) (3b)

where (Di , Dm) denote transport stress-dependent gradient coefficients for the two
dislocation populations; h(ρi , ρm) is an exchange term modeling dislocation reac-
tions of the form h(ρi , ρm) = βρi − γ ρmρ2

i ; and g(ρi ) is a generation term for
immobile dislocations. The coefficients (β, γ ) depend on stress with β measuring
the rate of production of mobile dislocations at the expense of immobile, and γ

measuring the rate of immobilization of mobile dislocations by immobile dipoles.
Since the stress remains constant during PSB formation, all these model coeffi-
cientsmaybe assumed as constants. Then, linear stability analysis ofEq. (3) around
an equilibrium homogeneous state

(
ρ0
i , ρ

0
m

)
results to a Turing instability for a

critical value of the bifurcation parameter β = βc = [√
α + ρ0

i

√
γ (Di/Dm )

]2
,

where α = −g′(ρ0
i ). The critical wave number qc is given by the expression

qc = [
αγρ2

i /Di Dm
]1/4

and the corresponding critical wavelength λc = 2π/qc
turns out to be of the same order of magnitude as in the experiments (see, for
example, [3] and references quoted therein).
The above linear stability results were obtained for infinite domains, i.e. for spec-
imen sizes much larger than the internal length. For finite size specimens, corre-
sponding linear and nonlinear stability results were obtained recently by the author
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and coworkers [29]. The periodic ladder structure of PSBs is revealed again but it
now turns out that below a critical specimen size comparable to the internal length,
the PSB instability is suppressed. This size-dependence is consistent with recently
obtained experimental results [70, 71]. Stochasticity can also be introduced in Eq.
(3) and the implication of a corresponding gradient-stochastic W-A model can
readily be investigated.
An additional issue that can be considered is the coupling of the W-A model with
an equation for the local stress τ related to the macroscopic stress σ through the
gradient expression

τ − l2τ ∇2τ = σ (4)

where now the model parameters in Eq. (3) depend on τ rather than σ . This could
offer an alternative simpler way to arrive at the result of the plateau stress during
PSB formation than the method followed earlier by the author and coworkers
[61, 62].

• Intermittent Plasticity: We conclude this section with some preliminary results
on intermittent plastic instabilities by elaborating on a one dimensional combined
gradient-stochastic model and Tsallis q-statistics, as an illustrative example. The
combined gradient-stochastic expression for the flow stress σ reads

σ = σ ys + hε − �2p
(
∂2ε/∂x2

)
(5)

where the yield stress σ ys contains both an average and a fluctuating part given
by σ ys = (1 + δ) σ̄ ys– where σ̄ ys denotes mean value and δ follows a Weibull
distribution fitted to experimental data. The rest of the quantities have their usual
meanings; ε is the strain; h is a linear hardening modulus, and �p is a deterministic
internal length.
When this model is incorporated into a cellular automaton (CA) grid, it results to
serrated stress-strain curves and power-law interpretations of the corresponding
statistical events. Appropriate expressions for the stochastic component of the flow
stress can be more fundamentally deduced by employing the formalism of random
processes and stochastic differential equations [61–64]. Another possibility is to
resort to a class of Tsallis q-distributions that are used in many non-equilibrium
physics problemswhere the usual power-laws based onBoltzmann-Gibbs statistics
fail to predict observed behavior. An expression used for interpreting intermittent
deformation behavior ofMomicropillar compression is Tsallis q-exponential PDF
of the form P (s) = A[1 + (q − 1)Bs]1/(1−q) : (A, B) are constants and the q-
index is a measure of the system fractality, whereas s denotes the burst size. A
power-law relationship between the internal length �p and the entropic index q
seems to hold, but this needs to be examined further (this issue is also reviewed in
[1]).
Further elaboration along the above lines on combined gradient-stochastic models
for the interpretation of size dependent serrated stress-strain graphs by employ-
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ing Tsallis q-statistics and the relationship of these findings to corresponding
image observations on deformation patterns, is a challenging task that needs to
be addressed in the future. In this connection, it is pointed out that the needed
experimental information on appropriate PDF forms for the stochastic component
of the flow stress can be deduced frommultiple nanoindentation/NI tests and asso-
ciated measurements of strain burst events. The PDF of the strain bursts would
be related to a corresponding PDF for the flow stress on the assumption that a
strain burst of a certain magnitude is the outcome of a number of material points
yielding simultaneously. NI measurements at different locations and penetration
depths can be conducted to deduce the statistical properties (mean, variance) for
the local hardness which, in turn, can be used to extract information on the form of
the stochastic component of the flow stress. From these multiple NI measurements
one can extract direct information for both the deterministic ILs and the form of
the stochastic contribution to the gradient-dependent flow stress.

4.2 Chemomechanical Instabilities in LiB Anodes

In this subsection, we provide elements of the ILG formulation that can be used
to address chemomechanical instabilities in LiB anodes. In particular, we briefly
present the basics of the stress-assisted diffusion and coupled ILG chemoelasticity
theory that can be employed to consider local volume expansion in lithiated anodes
and propagation of lithiation fronts.

• Size Dependent Stress-Assisted Diffusion: The standard equations that are usually
employed to model coupled elasto-diffusion processes are of the form

σi j = λεmmδi j + 2Gμεi j − αρδi j (6a)

j = −D∇ρ + Mρ∇σi i (6b)

for the chemostress σi j and the diffusive flux jwhere the coefficients (α, M) denote
chemomechanical coupling constants and D is the diffusivity. The fields (ρ, εi j )
denote concentration of the diffusing chemical agent and mechanical strain, while
(λ,G) are the Lamé constants. Since these constitutive equations do not contain
higher-order ILs, related chemomechanical size effects may not be captured.
Within our Laplacian-based ILG formulation, it turns out that the above consti-
tutive equations are generalized by replacing σi j with σi j − �2σ∇2σi j ; εi j with
εi j − �2ε∇2εi j ; and ρ with ρ − �2ρ∇2ρ, with (�σ , �ε, �ρ) denoting stress, strain
and diffusional ILs. Under suitable assumptions, it is possible to uncouple the
deformation and chemical fields by first computing a “ground” hydrostatic stress
component σ 0

h = σ 0
i i

(
or σ 0

i i/3
)
from a conventional or gradient elasticity theory,

and then derive the concentration ρ from a stress-assisted diffusion equation of
the form
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∂ρ/∂t = (
D + Nσ 0

h

)∇2
[
ρ − �2ρ∇2ρ

]− M∇σ 0
h · ∇ [ρ − �2ρ∇2ρ

]
(7)

where N is a new phenomenological constant accounting for the effect of hydro-
static stress on diffusivity. This model with �ρ = 0 has been used extensively to
model hydrogen embrittlement and stress corrosion cracking in metals [72]. It can
be adapted here, to consider chemomechanical damage and failure in LiB anodes.

• Size-Dependent Lithiation Fronts: To consider the propagation of lithiation fronts
one may start with an expression for the free energy density ψ of the form

ψ (ε,∇e, ρ,∇ρ) = f (ρ) + 1

2
κ ∇ρ · ∇ρ + 1

2
ε · Cε + 1

2
c∇e · ∇e (8)

where (κ, c) are respectively chemical and mechanical gradient coefficients, C
denotes elasticity tensor, ε is the strain tensor and e its hydrostatic part, while
ρ denotes concentration as before. In this case, both chemical ILs (through κ)
and mechanical ILs (through c) enter into the formulation. Minimization of a
corresponding energy functional yields field equations (and associated boundary
conditions) for the local stress/strain and concentration of Li species, including
the synergistic effect or interplay between higher-order mechanical and chemical
ILs. The resulting governing coupled chemoelasticity equations for the stress and
chemical potential read

σ = 2Gε + λ(tr ε)1 − �2ε∇2[2Gε + λ(tr ε)1] − (2G + 3λ)Mρ 1 (9)

μ = μ0 + RT

[

ln

(
ρ

1 − ρ

)

+ α(1 − 2ρ)

]

− κ∇2ρ − �Liσh (10)

where R is the universal gas constant, T is the absolute temperature,μ0 a reference
value of the chemical potential, σh = trσ/3 the hydrostatic stress, and �Li =
3M/ρmax is the partial molar volume of the diffusing species. [It should be noted
that the coefficients (α, M) in Eq. (6) have different meaning than those in Eqs.
(9) and (10).]

4.3 Glioblastoma Instabilities in Brain

In this final subsection, we present some details on the GoG model, along with its
mathematical similarities to the W-A model, and outline the potential new results
to be expected from this comparison. Recent evidence in glioblastoma shows that
one-size-fits-all vaso-modulatory interventions usually fail because control of glioma
invasion characteristics, such as tumor front speed and infiltration width, vary widely
and may require more personalized therapeutic interventions, in contrast to existing
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GoG models, which assume that all glioma cells have an identical GoG mechanism.
In reality, each cell may have an idiosyncratic migration and proliferation regulation
due to internal stress dependence and associated intrinsic heterogeneity. The rele-
vant question is “how can we model and analyze the impact of such internal stress
dependence and intrinsic heterogeneity of a tumor cell population, where migration
and proliferation are regulated by the GoG mechanism”.

This question can be addressed by incorporating internal stress effects in the D
terms of the GoGmodel in analogy to theW-Amodel discussed earlier for structural
defects. The GoG model as formulated by Hatzikirou and coworkers [30, 31] reads

∂ρm/∂t = Dm�ρm + E(ρm, ρi ) (11a)

∂ρi/∂t = Di�ρi − E(ρm, ρi ) + g(ρi ) (11b)

where (ρm, ρi ) denote respectively the motile and immotile glioma cell densities,
with (Dm, Di ) being the corresponding diffusion coefficients. The term E(ρm, ρi )

signifies the switching between the two different phenotypes. Finally, the function
g(ρi ) denotes the cell proliferation of the immotile population. The phenomenolog-
ical resemblance of the GoG model for motile-immotile cells to the W-A model for
mobile-immobile dislocations is striking. The results obtained from the earlier study
of the W-A model to consider heterogeneity, stochasticity and local stress depen-
dence can be used to improve predictions of the GoGmodel. It is expected that these
predictive results can enable to understand the impact of intratumoral heterogeneity
in glioma progression: in particular, the persistence and size dependence of the Allee
effect under different heterogeneity and internal stress distributions, as well as the
role of the pertinent spatio-temporal instabilities on potential therapeutic failures.

5 ILG and Rheology: Newtonian and Complex Fluids

In this section, we suggest possibilities for a gradient enhancement of constitutive
equations used in fluid mechanics and rheology. In this connection, it is pointed out
that following the author’s work on gradient theory, a number of such generalizations
have been proposed in these communities. ForNewtonian fluids, such generalizations
have been proposed by Silber and coworkers [73], as well as in more rigor and detail
by Fried and Gurtin [74]. For complex fluids, such generalizations can be found in
the pioneering articles by Olmsted and coworkers (e.g. [75] and references quoted
therein), as well as in the enlightening review by Cates and Fielding [76]; see also
an earlier one by Dhont and Briels [77].

In the spirit of the ILG formulation such type of generalizations can be readily
deduced by replacing the local fields for the fluid density ρ, stretching tensor D =
1/2 [grad v + (grad v)T ], and vorticity tensor W = 1/2 [grad v − (grad v)T ] with
their gradient-dependent counterparts ρ − �2ρ∇2ρ, D − �2D∇2D,W − �2W∇2W.
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Another possibility is to include the Laplacian of the viscoelastic stress � as
proposed in the diffusive Johnson-Segalman (DJS) model employed to study shear
banding flows of wormlike micelles or polymer solutions. In such wormlike micellar
systems, it is assumed [75] that the total stress T is separated into contributions
from the Newtonian solvent and a viscoelastic stress � from the micelles, so that for
creeping flow we have

T = −p1 + 2μD + � (12a)

divT = 0 (12b)

with p denoting the pressure, μ being the solvent’s shear viscosity, and the sec-
ond equation standing for quasi-static equilibrium. It is further assumed that the
viscoelastic stress � obeys the following evolution equation

o
� + 1

τ
� = 2μ∗

τ
D + D∇2� (13)

where τ denotes relaxation time, μ∗ is the micelle polymer-like viscosity and D

is a diffusion-like coefficient. The corotational time derivative
o
� may assumed to

take various forms depending on the local micelle microstructural configuration.
The above model and variants of it have been used extensively to address shear
banding in complex fluids. The introduction of the Laplacian is needed to deal with
ill- posedness in the negative slope regime of the shear stress—shear strain rate
graph, i.e. the nonmonotonicity of the flow curve that also requires the introduction
of Laplacians in the author’s gradient plasticity theory used to address shear banding
in the deformation softening regime [3].

On returning to the topic of an appropriate generalization of the Navier-Stokes
(N-S) equations for incompressible fluids, i.e. of the constitutive equation T =
−p1 + 2μD, we can propose, in analogy to the author’s gradient elasticity theory
[7], the following gradient model

T − �2T∇2T = −p1 + 2μ(D − �2D∇2D) (14)

where �T and �D denote internal lengths associated with stress and strain rate inho-
mogeneities. On assuming that �T can be neglected and introducing Eq. (14) in the
equation of momentum balance ρv̇ = divT (ρ is now the constant fluid density
and v̇ its acceleration), we obtain the following gradient generalization of the N-S
equations

ρv̇ = −∇ p + μ(�v − �2D�2v) (15)

where � = ∇2 and �2 = ∇4 denote the Laplacian and biharmonic or bi-Laplacian
operators respectively. It is noted that Eq. (15) is identical to the equation used by
Fried and Gurtin [74] to discuss plane Poiseuille liquid flow at small-length scales. A
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slightly generalized model was also used by the same authors to consider turbulence.
The governing differential equations for this model read (in their notation)

ρv̇ = −∇ p + μ(1 − α2�)�v + 2ρα2div
∇
D (16)

where the parameter α denotes a statistical correlation length and
∇
D = •

D + DW −
WD denotes the usual corotational Jaumann rate.

Steady-state solutions of Eq. (16) with α = 0, may be determined by employing
the operator splitmethod (or the use ofRu-Aifantis theorem [78]) utilized to eliminate
singularities from dislocation lines and crack tips in the theory of gradient elasticity
(see also [1]). This same procedure leads to the cancelation of singularities in typical
fluid flow calculations involving immersed objects. It turns out, for example, that the
resulting gradient Oseen tensor OG

i j , which generalizes its classical counterpart Oi j

Oi j = 1

8πμ r

(
δi j + rir j

r2

)
(17)

where ri denotes the position vector and r its magnitude, reads

OG
i j = 1

8πμ r

[

1 − 2e−r/� − 2�

r
e−r/� + 2�2

r2
(1 − e−r/�)

]

δi j

+ 1

8πμ r

[

1 + 2e−r/� + 6�

r
e−r/� − 6�2

r2
(1 − e−r/�)

]
rir j
r2

(18)

which resembles the exponential regularization of Green’s tensor in gradient elas-
ticity, resulting to nonsingular gradient expressions for the stresses and strains in
dislocation lines and crack tips. More details can be found in [79] where the authors
seemed to be unaware of analogous developments in gradient elasticity.

6 ILG in Other Disciplines & Scales

In this section we summarize the applicability of the ILG framework to other disci-
plines and scales ranging from earth scales to quantum scales.

• ILG in Geology: Some initial work on introducing internal lengths and Laplacians
of strain has been published by the author and coworkers to model shear banding
and related instability phenomena in geomaterials including granular materials,
soils, rocks and snow/ice (see, for example, [80–91]). Various types of gradient-
dependent constitutive equations for such classes of geomaterials have also been
proposed and elaborated upon in detail by many other authors. This was mainly
due to the fact that the Laplacian was regularizing unstable behavior in the geoma-
terial’s softening regime and allowed for the determination of shear band thickness
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and convergence of corresponding finite element calculations. The popularization
of the approach in the geomechanics community is mainly due to the follow-up
works by Vardoulakis and collaborators for soils, as well as de Borst and col-
laborators for concrete. These are too many to mention and can be found in the
web.
In connection with the above, it is worth noting that theW-Amodel for dislocation
patterning has recently been used by Ord and Hobbs [92] to interpret fracture pat-
terns in frictional, cohesive, granular materials. Their article was one contribution
of seventeen to a Theme Issue “Patterns in our planet: applications of multi-scale
non-equilibrium thermodynamics to Earth-system science”.

• ILG in Electrodynamics: The inclusion of higher-order gradients in deforming
materials under the action of electromagnetic fields has also become very popular
in recent years due to emerging applications and design of piezoelectric (induction
of electricity due to applied stress) and flexoelectric (induction of electricity due
to strain gradients) components. The large number of published articles on these
topics makes it prohibitive to mention them here and we only refer to few recent
ones by the author and coworkers [93–95], as well as the bibliography listed there
for related literature on size effects in electromechanical components.
In relation to the issue of eliminating singularities and introducing screening effects
(e.g. Debye screening) in the electric and magnetic fields, the following gradi-
ent modification of Coulomb’s law of electrostatics has been proposed (see, for
example, [96] where a fractional generalization of Debye screening is also dis-
cussed)

��(r) − 1

r2D
�(r) = − 1

ε0
ρ(r) (19)

where� is the electrostatic potential [E(r) = −∇�(r) ; E(r) is the electric field],
ρ(r) denotes now the charge density, ε0 is the vacuum permittivity, rD is the
Debye screening distance, and r denotes as usual the position vector. The classical
Coulomb’s potential for spherical symmetry at a point charge of strength Q has
the form �(r) = Q/4πε0r , while its Debye screened counterpart obtained from
Eq. (19) (which is identical in form to the reducedRu-Aifantis equation for gradient
elasticity [78]) reads

�(r) = 1

4πε0

Q

r
e−r/rD (20)

In concluding this discussion on gradient electrodynamics, reference is made to
an author’s unpublished work where MacCullagh’s 1850 proposal for an inter-
esting formal analogy between elasticity and electromagnetism [97] is extended
to include rotational gradients of the elastic aether. On assuming that the aether
behaves as an elastic medium with its stress T depending linearly on rotations
(instead of strains), we have
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T = 2kω , ω = 1/2 [ ∇u − (∇u)T ], divT = ρü (21)

where u denotes displacement, ρ is density and k is an elastic constant. These lead
to the equation k curl curl u + ρü = 0 and by setting the terms k curl u and ρu̇
to be proportional to the electric (E) andmagnetic (B) fields respectively, we arrive
at Maxwell’s equations

∂B
∂t

+ curl E = 0, divB = 0,
∂E
∂t

− 1

μ0ε0
curl B = 0, divE = 0 (22)

where the identities div curl u = 0 and curl (∂u/∂t) − ∂(curl u)/∂t = 0, along
with the following identification of the various coefficients (β = kε0, μ0= ρ/β ;
with β being an arbitrary constant), were used. By adopting the above procedure,
but replacing Eq. (21) for aether’s elastic stress with its gradient counterpart

T = 2k(ω − �2∇2ω) (23)

we arrive at the following generalization of Maxwell’s equations

∂B
∂t

+ curl
[
(1 − �2∇2)E

] = 0, divB = 0

∂E
∂t

− 1

μ0ε0
curl B = 0, divE = 0 (24)

It is noted that for electrostatics under the assumption that the electric fieldE is pro-
portional to a potential gradient ∇�, Podolsky’s non-quantum electromagnetics
equation �

[
(1 − �2�)

]
� = 0 is obtained.2

• ILG in Atomistics and Quantum Mechanics: We conclude this section on applica-
bility of the ILG framework to various disciplines and scales by focusing on two
specific topics: A possible gradient generalization of the microscopic or molecular
dynamics (MD) stress, and an analogous generalization of the quantum mechani-
cal (QM) stress. In this connection, it is noted that the following expressions were
proposed for these stresses [98, 99]:

〈σ 〉 = 1

V

[〈
1

2

∑

i

fi j ⊗ (
ri − r j

)
〉

−
〈
∑

i

miυ i ⊗ υ i

〉]

(25)

and

2Podolsky [B. Podolsky, A generalized electrodynamics Part I” Non-quantum. Phys. Rev. 62, 68–
71 (1942); B. Podolsky, P. Schwed, Review of a generalized electrodynamics. Rev. Mod. Phys.
20, 40–50(1948)] has derived a generalization of Maxwell’s equations through a variational prin-
ciple, leading to the appearance of ∇2B in addition to ∇2E. This is also possible through the
aforementioned analogy by replacing u with u − �2∇2u.
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σαβ = − 1

V

∑

i

〈
piα piβ
mi

〉

− 1

2V

∑

i, j
( j 
=i)

〈(
ri − r j

)
α

(
ri − r j

)
β∣

∣ri − r j
∣
∣ U

′
i j

(∣∣ri − r j
∣
∣)
〉

(26)

where the various symbols have their usual meaning [98, 99]. The striking formal
similarity between these two expressions and their resemblance with the virial stress
and other statistical stress measures is noted. However, the problem to connect such
discrete “microscopic” stress measures with the continuum “macroscopic” measure
of Cauchy stress in a “seamless”way is a challenging issue. A gradient generalization
of the force fields fi j in Eq. (25) and the interaction potential U

′
i j in Eq. (26) may be

appropriate which, among other things, could naturally introduce screening distances
and eliminate associated singularities.

The effect of strain ε on the electronic structure has been described [100] through
the equations

(Ec − �
2

2m∗ ∇2) ψ(r) + actr(ε) ψ(r) = Eψ(r)

ε = ε0; σ = [C] ε ; div σ = 0 (27)

where ψ(r) denotes the wavefunction, C is the Hookean elasticity matrix, ac the
so-called deformation potential constant, and the rest of the symbols have their usual
quantum mechanical meaning [100]. This is an uncoupled framework where strain
can affect the electronic state but not vice-versa. A generalization to also account
for the inverse effect on strain due to changes in the quantum field through the
wavefunction ψ(r), has already proposed as follows [101]:

(Ec − �
2

2m∗ ∇2) ψ(r) + actr(ε) ψ(r) = Eψ(r)

ε = ε0 − ac
3K

|ψ(r)|21; σ = [C] ε ; div σ = 0 (28)

where K is the isotropic bulk elasticmodulus.Apossible gradientmodification is then
to replace ε with its gradient counterpart ε − �2ε∇2ε, and this formal generalization
may be of interest to further explore.

7 ILG Modification of Newton’s Gravitational Law

In this section, we venture a gradient generalization of Newton’s Law which allows
for the corresponding gravitational force to attain values larger than the electromag-
netic force and even reach the levels of the nuclear and strong force which keeps
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matter together. The proposed modification is analogous to that earlier adopted by
the author for gradient elasticity through the introduction of a Laplacian and a cor-
responding internal length.3

We begin with the following integral generalization of the gravitational force f in
its component form ( fi ):

fi (r) =
∫

Gi j (r − r′) Fj (r′) d3r′ (29)

where Gi j (r − r′) is a nonlocal interaction kernel and Fj is the classical Newton’s
force. By assuming spherical symmetry/isotropy, Fourier transforming Eq. (29),
Taylor series expanding up to the second order term, and inverting, we arrive at
the following differential equation

(
1 − �2∇2

)
f = F (30a)

�2δi j = 1

2

∣
∣
∣
∣
∣
d2G̃i j (0)

dk2

∣
∣
∣
∣
∣

(30b)

where k = |k| denotes wave vector, G̃i j is the Fourier transform of Gi j and � is
an internal length, with δi j appearing due to the assumed isotropy/spherical sym-
metry. In general, the sign in front of the Laplacian term of Eq. (30a) may be
positive or negative depending on the sign of d2G̃i j (0)/dk2 of the second order
term in the Taylor expansion. In other words, for Gi j (0) = δi jG(0) and �2 = | l | =∣
∣
∣d2G̃ (k) /dk2

∣
∣
∣
k=0

, the term in the parenthesis of Eq. (30a) becomes
(
1 − �2∇2

)

for l > 0 and
(
1 − sgn[l] �2∇2

)
for l < 0. Stability and related arguments may be

employed to decide on the sign of l in a particular application.
Such a formal derivation can also be established by considering the two point

masses M0 and M in the classical Newton’s Law, as being distributed and bounded
by spheres of finite radii. By considering, for example, the mass M0 (M0 = ∑

i mi )
being distributed within a sphere of radius R0, summing up the interactions of each
point massmi (located at distance ri from the center of the sphere where ri = 0) with
the point massM , and expanding in Taylor series the density ρ(ri ) around ρ0 = ρ(0)
keeping terms up to the second order we obtain the following relationship

f = −GMV

R2
(ρ0 + �2∇2ρ0)eR with �2 = R2

0

10
(31)

3In fact, the question of exploring the consequences of such generalization to gravitation emerged
during initial discussions with my daughter K.E. Aifantis during my visit in February 2019 to
the University of to Florida at Gainesville and follow-up discussions with my former classmate
C. Vayenas of the Academy of Athens during his visit in June 2019 to Thessaloniki. The initial
numerical calculations reported herein started with the help of KEA’s students in Gainesville and
completed with the assistance of my Ph.D. student K. Parisis in Thessaloniki. The same holds for
the results on gradient interatomic potentials listed in Sect. 8.
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where eR = R/R denotes the unit vector along the line connecting the center of M0

with the point mass M . On setting
∫
V ρ0dV = M0, we then have f = (1 + �2∇2)F

which by inversion leads to (1 − �2∇2)f = F. This simplified and rather intuitive
calculation is similar to that earlier adopted by the author and coworkers (e.g. [10,
82]) to produce a corresponding gradient-dependent plastic strain.

Onassuming a radial dependenceof f andF {f = − f (r)er ,F = −Fer , F = A/r2

with A(= GMM0) and G denoting now Newton’s classical gravitational constant,
where we have also adopted the notation eR ≡ er}, we can readily solve the radial
scalar counterpart of (1 − �2∇2)f = F, i.e.

f − �2(
∂2 f

∂r2
+ 2

r

∂ f

∂r
− 2 f

r2
) = A

r2
(32)

by also requiring that f → 0 as r → ∞. The result is

f = A

r2
[1 + Be−r/�(1 + r

�
)] (33)

where B is a new parameter to evaluate in connection with experiments. It is noted
that the above expression of Eq. (33) reduces to Newton’s classical force FN = A/r2

as r → ∞ and to the expression FSF = AB/r2 as r → 0. By adjusting the value of
the new parameter B (B >> 1) we can attain values of the nuclear and strong force.

The internal length parameter can be identified with the de Broglie relativis-
tic length, the Compton length, the Planck length or the Schwarzschild distance,
according to the configuration at hand, i.e.

– De Broglie: � = �/γm0c ................ 6.309 × 10−16 m
– Compton: � = �/mpc .................... 2.10 × 10−16 m
– Planck: � = √

�G/c3 ..................... 1.616 × 10−35 m
– Schwarzschild: � = 2GmBH/c2 ...... 1010 − 1013 m

where � denotes the Planck constant, c is the speed of light; and (m0,mp,mBH )

denote rest masses for neutrino, proton, and black hole, respectively; whereas G in
the above, as in Eq. (31), denotes the classical Newton’s gravitational constant (not
to be confused with the same symbol earlier used for the shear modulus), and γ is
the Lorentz factor (γ = 1/

√
1 − (v/c)2; with v denoting particle speed), not to be

confused with a similar symbol used in earlier sections for the strain.
On adopting the Vayenas and coworkers Rotating Neutrino model (RNM) for the

nucleus [102, 103] we now utilize the above expression for the gravitational force
given by Eq. (33), in conjunction with the centrifugal force FC = γm0c2/r , where
r denotes the radius of the nucleus modeled by the three rotating neutrinos whose
total relativistic mass is mN = 3γm0. An estimate of γ can be obtained by equating
the proton energy mpc2 with the relativistic neutrino mass. This gives the value of
γ = mp/mN which, according to experimental measurements for mp and m0 turns
out to be equal to 7.818 × 109.
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Having such a value of γ available, we can make effective use of the aforemen-
tioned equality between gravitational and centrifugal forces in Vayenas’ RNM to
deduce the relationship

FR = A√
3r2

[1 + Be−√
3r/�(1 +

√
3r

�
)] = FC = γm0c2

r
(34)

where the factor
√
3 rises by considering the resultant gravitational force FR = f/

√
3

due to the interaction of the 3 symmetrically placed (at angles 120◦) rotated neutri-
nos. One possibility for the constant A is to set it equal to A = Gm2

0γ
2, to account

for relativistic effects during the interaction of each pair of neutrinos in the assumed
RNM configuration. The above relationship (for � identified with de Broglie’s rel-
ativistic length � = �/γm0c = 6.31 × 10−16 m) gives the following value for the
coefficient B

B =
√
3e

√
3
�c

(
1 + √

3
)
Gm2

0γ
2

= 5.47 × 1039 (35)

and a corresponding value of FR

FR = 7.92 × 104 N (36)

i.e. the value of the strong force obtained for the RNM configuration [102, 103]
by using an entirely different approach. In that approach Eq. (34) with B = 0 was
usedwith A = Gm2

0γ
6 giving avalue forγ = 31/12m1/3

pl m
−1/3
0 = 7.167 × 109,where

mpl is the Planck mass (mpl = √
�c/G), and the value of m0 was taken as m0 =

0.0436 eV/c2. And since γ = mp/3m0, this gives mp = 9.38 × 108 eV/c2, i.e. the
same value as the one used in the previous paragraph by properly adjusting the
parameters (A, B), as well as by identifying the internal length parameter � with
de Broglie relativistic length. Other choices of (A, B, � ) are possible not only for
the RNM configuration at hand, but also other more complex geometric models
for elementary particles represented by several neutrinos where the aforementioned
gradient enhanced gravitational potential can be used.

8 Gradient Interatomic Potentials

Motivated by the above extension of Newton’s gravitational potential, we consider
in this section a similar gradient generalization of London’s quantum mechanical
potential. Based on exact quantum mechanical calculations London [104, 105] has
arrived at the following forms of the interatomic force F (= −dw/dr) and inter-
atomic potential w
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w = w(r) =
{

− 3α2
0hv

4(4πε0)
2
1
r6 = − C

r6 ; r ≥ σ

∞; r < σ
(37)

where C = 3α2
0hv/4(4πε0)

2, α0 is the atomic polarizability and ε0 the vacuum
dielectric permittivity. The quantities (h, v) denote respectively the Planck constant
(h = 2π�) and the electron orbital frequency. It is noted that the above form provides
an explicit expression for the attractive interaction until a critical distance σ below
which the model breaks down as the interaction becomes repulsive going to infinity
as r → 0. To describe quantitatively “repulsive” interactions for distances r < σ ,
Lennard-Jones [106] suggested the following modification of London’s potential

wL−J (r) = − A

r6
+ B

r12
(38)

where A and B are determined by fitting them to obtain through atomistic simu-
lations the measured experimental values of macroscopic properties. Other type of
interaction potentials can be found in [107].

The gradient modification of London’s quantummechanical potential, denoted as
wG

L , is obtained in terms of its classical counterpart w through the inhomogeneous
Helmholtz equation

(
1 − �2∇2

)
wG

L = w(r) = −C

r6
(39)

The solution of Eq. (39) for (wG
L → 0, r → ∞) is given by the expression

wG
L (r) = A�

e−r/�

r

+ C

48�6

{
4�4

r4
+ 2�2

r2
+ �

r

[
er/� Ei(−r

�
) − e−r/� Ei(

r

�
)
]}

(40)

where A is a new integration constant, � is an internal length parameter, andEi denotes
the exponential integral Ei(x) = − ∫∞

−x (e−t/t )dt . Near the origin (r → 0), it turns
out that wG

L (r) → (C/12�2r4), while at large distances (r → ∞) it approaches the
classical London’s potential, i.e. wG

L (r) → −(C/r6) for r >> �.
As an example application of the newly derived gradient potential, we consider

the case of Argon (Ar). It has been shown that the Lennard-Jones potential is able
to describe accurately the simulated liquid argon properties in agreement with the
experiment. Numerical/experimental values can be utilized by the data provided in
[108] (see also Table6.1 of [107]). Among these data, of particular interest are the
minimum of the potential function, designated by ε (in units of Joules or eV), as
well as its location rm (in Å). Their estimated values are ε = 1.95 × 10−21 J and
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rm = 0.37 nm respectively. The Lennard-Jones potential can be uniquely deter-
mined from these parameters. For this purpose, Eq. (38) is written in the form
wL−J (r) = ε((rm/r)12 − 2(rm/r)6), where it is evident that the minimum occurs
at rm with wL−J (rm) = −ε and dwL−J (rm)/dr = 0. This point determines the tran-
sition from “attractive” to “repulsive” branch for distances r < rm . Additionally,
the Lennard-Jones potential is zero at r = σ = 2−1/6rm = 0.89 rm = 0.32 nm. The
parameters (ε, rm) are related with (A, B) of Eq. (38) through the relationships
A = εr12m = 4εσ 12 and B = 2εr6m = 4εσ 6. The fitted London’s constant is C =
50 × 10−79 J· m6, which was determined such as the classical London’s potential
passes through the experimentally determined potential minimum exactly at rm .

Next, and in order to demonstrate the ability of the gradient modification of Lon-
don’s potential to recover the behavior of the Lennard-Jones potential for the Ar-Ar
interaction case, we adjust the gradient parameters (A, �,C), such as the position of
the minimum of the potential occurs at rm , i.e. wG

L (rm) = −ε, and the corresponding
potential curves are as close as possible by minimizing their mean square error. The
obtained parameter values are A = 1.392 × 10−17 J, � = 0.57Å, andC= 90 × 10−79

J·m6, with the estimated value for the internal length being consistent with the atom-
istic simulations.As shown in Fig. 1a, the gradientmodification of London’s potential
curve fits nicely the Lennard-Jones curve, with both having their minima at distance
rm . It is noted that the gradient potential has the same asymptotic behavior O

(
r−6
)

at distances r > rm , in agreement with both Lennard-Jones and London’s potential.
Finally, as expected, the gradient modified London’s potential becomes “repulsive”
for r < rm , where the change of slope occurs, in contrast to London’s original 1/r6

monotonic potential.
Another indicative example of the applicability of the newly derived gradient

potential is the Stillinger-Weber potential, which is broadly used to model the inter-
atomic interactions of materials with diamond structure, such as crystalline semi-
conductors (Si, Ge). The analytical expression of the two-body Stillinger-Weber
potential reads [109]

wS−W (r) =
{

εA
[
B σ 4

r4 − 1
]
exp

(
1

r/σ−a

)
; r < a σ

0; r ≥ a σ
(41)

in a most simplified form, excluding anisotropy effects.
The appropriate fitted values for the Stillinger-Weber potential when applied to

Si semiconductor read A = 7.04955627, B = 0.602224558, ε = 50kcal×mol−1 =
3.4723 × 10−19J, σ = 2.0951 Å, and a = 1.8 [109]. The Stillinger-Weber potential
has a cutoff at distance r = aσ , confining the interatomic interaction within that
range, while for short distances it has a “repulsive” branch with asymptotic behavior
wS−W (r) → εe−1/a ABσ 4/r4.

The estimated values for the gradient potential are A = 5.702 × 10−17 J, � =
0.974 Å, and C= 1.333 × 10−78J · m6 respectively. They are adjusted such as the
fitted minimum of wG

L coincides with the corresponding one of the Stillinger-Weber
potential, which satisfies wS−W (rm) = −ε at rm = 1.118σ = 2.34 Å. In Fig. 1b, it
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Fig. 1 Quantitative plots of the gradient London potential fitting to a Lennard-Jones (Ar-Ar) and
b Stillinger-Weber (Si) potential

is illustrated how a suitable choice of the parameters (A, �,C) can describe with
desired accuracy the behavior of wS−W for small distances. This is due to the fact
that wG

L (r) → (C/12�2r4 ) as r → 0, which is in agreement with the asymptotic
behavior of wS−W at the origin.

Another possible generalization of the gradient approach for constructing new
interatomic potentials is through the introduction of an additional bi-Laplacian term
in London’s potential. Motivated by the 4th order GradEla extension used earlier by
the author and co-workers [110–112], we can further generalize Eq. (39) to read

(
1 − �̃21∇2 + �̃42∇4

)
wG

L = wL (r) (42)

where
(
�̃1, �̃2

)
now denote two internal lengths. In passing, it is noted that such a

fourth-order equation for the elastic fields, derived within a second strain gradient
elasticity/GradEla theory [46, 110–112], leads to the elimination of singularities of
the dislocation density tensor, which remains singular in first strain GradEla. [The
signs in front of the higher order terms in Eq. (42) may alter according to dynamic
stability and related requirements–a subject partially addressed in [110] and further
to be discussed elsewhere.]

Equation (42) can be factored as the product of two Helmholtz operators as(
1 − �21∇2

) (
1 − �22∇2

)
wG

L = wL (r) where the internal lengths
(
�1, �2

)
are given

by the expression �21,2 = (�̃21/2)(1 ±
√
1 − 4(�̃42/�̃

4
1)). The solution of Eq. (42) is

obtained by applying the operator split approach of Ru-Aifantis theorem, arriving at
the equation

(
1 − �22∇2

)
wG

L = wG,1
L

(
r; �1

)
where wG,1

L

(
r; �1

)
is the gradient Lon-

don’s potential of Eq. (40) with internal length �1. It is given by the expression
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wG
L (r) = B �32

�22 − �21

e−r/�2

r
+ A �31

�21 − �22

e−r/�1

r

− C

48�31�
3
2

�32(
�21 − �22

)
r

[

er/�1 Ei(− r

�1
) − e−r/�1 Ei(

r

�1
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]
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3
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er/�2 Ei(− r
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) − e−r/�2 Ei(

r

�2
)

]

(43)

where B is a new integration constant and (�1, �2) have been defined above, while C
is London’s constant and A the integration constant of Eq. (40). It is noted that the
first two exponential terms in Eq. (43), which are related to the homogeneous part of
the corresponding Helmholtz equation, are formally similar to expressions derived
earlier for nuclear potentials in quantum electrodynamics based on an extension of
Yukawa-type interactions. A quantitative elaboration for specific material types will
be a subject of a future study.4

9 Fractional Considerations

In this final section, an extension of the ILG framework to incorporate fractional
derivatives is presented. A fractional generalization of GradEla can be established
by replacing the standard (integer) Laplacian � ≡ ∇2 with a fractional one of
the Riesz form (−�)α/2 (or the Caputo form C�α

W ) in the constitutive expression
σi j = λεkkδi j + 2Gεi j − �2∇2[ λεkkδi j + 2Gεi j ]. An example of such a fractional
generalization reads [113–117]

σi j = (λεkkδi j + 2Gεi j ) + �α(−�)α/2[λεkkδi j + 2Gεi j ] (44)

where (−�)α/2 is the fractional generalization of the Laplacian in the Riesz form,
defined in terms of the Fourier transform F by

(
(−�)α/2εi j

)
(r) = F−1

( |k|αε̃i j (k)
)
(r) (45)

wherek denotes thewave vector, and ε̃i j (k) = F (εi j (r)
)
(k) is the Fourier transform

of εi j (r). On introducing the fractionalGradEla constitutive relation given byEq. (44)
into the equilibrium relation divσ = 0, we obtain

4For completeness, however, wemay refer to the paper byReid (R.V. Reid, Local phenomenological
nucleon–nucleon potentials, Annal. Phys. 50, 411–448 (1968)), where the following expression,
among others, is proposed VC = h

[
e−x/3 − 13.8 e−3x + 138 e−6x

]
/x , with h = 10.463 MeV and

x = μr, μ = mc/� ≈ 0.7 fm−1.
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(1 + �α(−�)α/2)(λ∇tr ε + 2G div ε) = 0 (46)

where, as in Eq.(44), the notation �α is adopted for the corresponding fractional
internal length. Noting the fact that the spatial operators commute and that the second
bracket in Eq. (46) is also zero by replacing ε with ε0, where ε0 denotes the solution
of the corresponding equation for classical elasticity, (i.e.λ∇tr ε0 + 2G div ε0 = 0),
we can easily deduce that a solution of Eq. (46) satisfies the reduced fractional partial
differential equation5

(1 + �α(−�)α/2)ε = ε0 (47)

which for the case α = 2 reduces to the inhomogeneous Helmholtz equation. It is
then useful to derive fundamental solutions for Eq. (47); i.e. for the equation

(1 + �α(−�)α/2)Gα(r) = δ(r) (48)

where Gα(r) denotes the fundamental solution, δ(r) denotes the delta function and
r is the radial coordinate in a 3D space. To obtain the fundamental solution of
Eq. (48) with the natural boundary condition Gα(r) → 0 as r → ∞, we employ
the method of Fourier transforms. Using the properties of the Fourier transform of
the Riesz fractional Laplacian as defined by Eq. (45), along with the well-known
transform of the delta function F{δ(r)} (k) = 1, we obtain the algebraic equation
(1 + �α|k|α)Gα(k) = 1 which gives for the fundamental solution in Fourier space
Gα(k) = (1 + �α|k|α)

−1. Consequently, the fundamental solution of Eq. (48) in the
physical space is obtained through inversion as

Gα(r) = 1

(2π)3

∫
1

1 + �α|k|α e
ik·rd3k (49)

The inversion of Eq. (49) is performed through application of the convolution
property of the Mellin transform, along with a corresponding Mellin-Barnes integral
representation, which yields the following corresponding Fox-H function expression
[115]

Gα(r) = 1

2α π3/2�|r|2 H
2,1
1,3

⎡

⎣ |r|
2�

;
(1 − 1

α
, 1

α
)

(1 − 1
α
, 1

α
) (1, 1

2 ) ( 12 ,
1
2 )

⎤

⎦ (50)

For more details concerning the definition, properties and applications of the
Fox-H function in fractional analysis, the reader can consult [118–120]. A corre-
sponding series expansion of Eq. (50) is also provided in [115]. It is noted that as

5The fact that solutions of Eq. (46) can be obtained in terms of solutions of Eq. (47)was first observed
in [78] for the non-fractional GradEla and was extended later for more general fractional/fractal
elastic materials in [114]
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α → 2, we obtain the Green’s function of the integer order Helmholtz equation, i.e.
Gα(r)|α→2 = (1/4π�2r) e−r/�.

Motivated by the above analysis of the fractional Helmholtz equation, as well as
by noticing that Eq. (49) reduces to a Yukawa-like potential in the classical limit
α → 2, a fractional treatment of Eq. (29), listed below again for convenience,

fi (r) =
∫

Ki j (r − r′) Fj (r′) d3r′ (51)

is undertaken, where now Ki j denotes a fractional interaction kernel, and the forces
fi and Fj have been defined in Sect. 7. Such type of integral expressions have been
previously introduced to model nonlocal constitutive relations in electrodynamics
leading to fractional Debye screening effects [96]. Similar arguments have been
recently applied to model fractional nonlocality in GradEla [116]. Through a Taylor
series expansion (up to second order) of the fractional kernel Ki j in Fourier space
involving non-integer powers of the wave vector |k|α , and subsequent inversion
through Eq. (45), the corresponding fractional counterpart of Eq. (30) is obtained as

(
1 + �α(−�)α/2

)
f = F; �αδi j = 1

� (α + 1)

∣
∣
∣
(
C
0 D

α
k K̃i j

)
(0)
∣
∣
∣ (52)

where C
0 D

α
k K̃i j is the Caputo fractional derivative of order α with respect to k [118–

120]. In the limitα → 2 the solution of Eq. (52) coincides with the one obtained from
Eq. (30), since the fractional Laplacian and corresponding derivatives reduce to their
classical counterparts. The solution of Eq. (52) can be obtained through convolution
of the corresponding Green’s function of Eq. (49) with the classical field F, i.e.
fi = Gα ∗ Fi , resulting to the expression

f = A

r2
[1 + B Kα(r/�)] (53)

where A and B are the constants, defined in Sect. 7, and Kα is the fractional
generalization of the modified (fractional-like) Bessel function Kα (r) ≡ (1/2π2r)∫∞
0 [(k2 cos(k r))/(k2−α (1 + �αkα))] dk. An analogous result can be obtained by
further generalizing Eqs. (30) and (52) to include bi-Laplacian terms of the type
appearing in Eq. (42) for both the integer and non-integer case. This will be a sub-
ject of future publication. However, for the completeness of this review, we list the
corresponding formulas below:

f = A

r2
[1 + B1e

−r/�1(1 + r

�1
) + B2e

−r/�2(1 + r

�2
)]; Integer case (54)

f = A

r2
[1 + B1 Kα(r/�1) + B2 Kα(r/�2)]; Non-integer case (55)
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where B1 and B2 are dimensionless constants,
(
�1, �2

)
are two internal lengths, while

the function Kα (r) has been defined above.

10 Conclusions

A concise review of gradient models (across scales, materials, and processes) was
provided based on the author’s ILG approach. As a result, earlier references on
generalized continuum mechanics and recent contributions on gradient and non-
local theories were not discussed due to space limitation. For solids, one should
single out the contributions of Eringen [121], Fleck and Hutchinson [122, 123]
Gurtin and Anand [124], Gao et al. [125], Nix and Gao [126], de Borst et al. [127,
128], Geers et al. [129], Peerlings et al. [130],Willis [131], Aifantis andWillis [132],
and Polizzotto [133, 134]. Many more are included in a most recent and detailed
article by Voyiadjis and Song [135] focusing on gradient plasticity. Gradients in
fluid and granular flows were considered most recently by Goddard [136, 137]. For
additional recent developments on granular flow, one may also consult references
[138–142], while for internal length interpretations based on kinetic theory, one may
consult [143]. However, the intention of the article was not to elaborate on and review
the various important classical-like gradient models for solids and fluids, as well as
for rheology and electrodynamics. Its main purpose was to explore the applicability
of gradient theory for scales and processes not considered before, and point out its
potential usefulness for atomistic simulations and elementary particles, as well as for
earth and planetary processes. In this connection, it is noted that while completing
this article, it came to the attention of the author that an expression similar to that
derived herein and given by Eq. (33) was also proposed on rather intuitive grounds
by Fischbach et al. [144] in an effort to re-interpret existing measurements on earth’s
gravity (see also [145]). The values of their constants were entirely different than
ours, as they used it for a reanalysis of the Eötvös experiment on Earth’s gravitational
field. There has been a vast literature on this expression, subsequently referred to
as the “fifth force,” which we will discuss in a forthcoming publication, as this is
beyond the scope of the present review. In concluding, the reader is referred to another
review-like article [146] where nonlocal and gradient models with applications to
biophysics are discussed. Forthcoming work on elementary particle physics is in
progress by using the gradient Newton’s gravitational force instead of the classical
one and adjusting the new phenomenological parameter B to describe a variety of
internuclear potentials. The same holds for gradient interatomic potentials by using
both classical and fractional/fractal Laplacians6.

6In fact, two preprints (by C. G. Vayenas, D. Tsousis, D. Grigoriou, K. Parisis and E. C. Aifantis)
on Kaons and Deuteron are available and scheduled for arXiv and journal publication. Two more
articels on gradient London’s potential (byK. Parisis, F. Shuang, B.Wang, P. Hu,A.Glannakoudakis
and A. Konstantinidis: J. Appl. Math. Phys.) and its fractional extension (by K. Parisis and E. C.
Aifantis: TMS Proc. 2021) are forthcoming
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Note added in proof: A few words are due on “why” the dedication under the title
of this chapter. Jim Serrin – formerly a Regents Professor of Mathematics at the
University of Minnesota and member of the US Academy of Sciences – was a strong
advocate of gradient theory andmywork with him on revisiting van derWaals theory
on vapor-liquid transitions and relocating Maxwell’s equal area rule within a purely
mechanical framework without assuming the existence of a free energy function,
was the predecessor of gradient plasticity. Hussein Zbib – my graduate student at
Michigan Tech and later Chair at the Washington State University – was the first,
in his PhD Thesis, to illustrate the need of gradient plasticity theory for deriving
breakthrough results on shear band widths and spacings. The recent work (based
on Newton’s classical gravitational law and Einstein’s special relativity) of Costas
Vayenas – my undergraduate classmate at the National University of Athens, later a
faculty member at MIT and the University of Patras and currently a member of the
Academy of Athens and the US Academy of Engineering – was an additional moti-
vation for extending gradient theory to the field of elementary particles and revisiting
Newton’s gravitational law, thus stimulating a challenging area of research after my
retirement. Finally, my daughter Katerina – born the same year of writing first pub-
lication on gradient theory – was the first to enhance gradient plasticity with surface
effects and guide me through recent advances on intermolecular potentials, lithium-
ion batteries, and biomedical research, thus opening-up new paths for scientific and
personal endeavors for the rest of my life.
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