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Abstract. Multimodal sentiment analysis aims to learn a joint repre-
sentation of multiple features. As demonstrated by previous studies, it is
shown that the language modality may contain more semantic informa-
tion than that of other modalities. Based on this observation, we propose
a Multi-perspective Fusion Network(MPFN) focusing on Sense Atten-
tive Language for multimodal sentiment analysis. Different from previous
studies, we use the language modality as the main part of the final joint
representation, and propose a multi-stage and uni-stage fusion strat-
egy to get the fusion representation of the multiple modalities to assist
the final language-dominated multimodal representation. In our model,
a Sense-Level Attention Network is proposed to dynamically learn the
word representation which is guided by the fusion of the multiple modal-
ities. As in turn, the learned language representation can also help the
multi-stage and uni-stage fusion of the different modalities. In this way,
the model can jointly learn a well integrated final representation focus-
ing on the language and the interactions between the multiple modalities
both on multi-stage and uni-stage. Several experiments are carried on the
CMU-MOSI, the CMU-MOSEI and the YouTube public datasets. The
experiments show that our model performs better or competitive results
compared with the baseline models.

Keywords: Multimodal sentiment analysis · Multimodal fusion ·
Sense Attentive Language

1 Introduction

Multimodal sentiment analysis is a task of predicting sentiment of a video, an
image or a text based on multiple modal features. With the increase of short
videos on the internet, such as Douyin, YouTube, etc., multimoal sentiment
analysis can be used to analyze the opinions of the public based on the speaker’s
language, facial gestures and acoustic behaviors.
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Based on the successes in video, image, audio and language processing, multi-
modal sentiment analysis has been studied extensively and produced impressive
results in recent years [6–8,20,25]. The core of the multimodal sentiment anal-
ysis is to capture a better fusion of different modalities. Different methods are
proposed to fuse the multimodal features and help to capture the interactions of
the modalities. Tensor Fusion Network [22] is proposed to obtain raw unimodal
representations, bimodal interactions and tri-modal interactions in the form of
2D-tensor and 3D-tensor simultaneously. Low-rank Fusion Network [7] is then
proposed to alleviate the drawback of the large amount of parameters by low-
rank factor. Although the above methods achieved good results, they treat all
modalities equally and fuse the modalities in the same contribution. We find
that language modality always contain more semantic information for sentiment
analysis, that’s why most of ablation experiments of previous studies [8,15,22]
show that when using features from only one modality, the model using language
features performs much better than using vision features or acoustic features.

In this paper, we take the assumption that the language modality contains
more information than that of the vision and acoustic modalities. We regard
language as the major modality and hope to use other modalities to assist the
language modality to produce better performance for multimodal sentiment anal-
ysis. To this end, we propose a multi-perspective fusion network for multimodal
sentiment analysis focusing on sense attentive language. Our model focuses on
two aspects: (1) getting rich semantic language representation through the fusion
of the sense level attention of language guided by other modalities. (2) learning
comprehensive multimodal fusion from multiple perspectives, as well as keeping
the enhanced language representation.

In order to get rich semantic information of the language modality, we incor-
porate a sense-level attention network into the model to obtain a more elaborate
representation of the language. Generally speaking, there are many words which
have more than one sense and their different senses may lead to different senti-
ment of a text in different context. Previous studies try to distinguish the ambi-
guities of a word from the text modality [21,27] using HowNet [4] and LIWC
[12], while we hope the sense of a word can be distinguished not only by the con-
text of the text but also by fusion of other modalities(video and acoustic). As an
example shown in Fig. 1, we hope to predict the sentiment of the language “It
would make sense”. As can be seen, the word “sense” in the language modality
has a higher attention weight which could be guided by the “smile face of the
vision modality” and “high sound audio modality”, and also by the “common
sense” of the word “sense”, which expresses more positive sentiment.

For the effectiveness of modal fusion, the key problem is to model the gap
between different modalities and to learn a better multimodal fusion. In this
paper, we propose a multi-stage and uni-stage strategy to fuse the multiple
modalities in order to capture the interactions between multi-stage sharing infor-
mation and global information integrated from uni-stage fusion. For multi-stage
fusion, we use CNN with different window sizes to capture the multimodal fusion
of consecutive temporals within different windows respectively. As for uni-stage
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Fig. 1. The sense-level attention and word-level attention of the text “It would make
sense” learned by our model. The first line is the acoustic modality, the second line
is the video modality. The third line and the last line are the language modality, in
which the third line is the original sentence, and the last line presents the senses of
word “sense”. Darker color means greater weight.

fusion, we first perform a projection operation on the concatenation of the LSTM
outputs of three modalities, then attention mechanism is applied to learn the
different contributions of the multimodal features at each temporal and pro-
duce a summary, which is regarded as the global multimodal fusion. The main
contributions of our work are as follows:

1) To the best of our knowledge, this is the first time to use WordNet to reduce
ambiguity for the task of multimodal sentiment analysis, which dynamically
learn the different weights of the sense words to produce sense-attentive lan-
guage presentation.

2) We propose to take language as the major modality and learn multimodal
fusion from multi-stage and uni-stage perspective. Our final representation
not only contains multimodal fusion, but also keeps the language representa-
tion, which is helpful in multimodal sentiment analysis.

3) Our model outperforms the baseline models on the CMU-MOSI, the CMU-
MOSEI and the YouTube datasets and the ablation study shows the effec-
tiveness of each components in our model.

2 Related Work

Compared with conventional text-based sentiment analysis, sentiment analysis
with multiple modalities achieves significant improvements [1]. One of the most
challenging task in multimodal sentiment analysis is to learn a joint representa-
tion of multiple modalities.

Earlier work uses fusion approaches such as concatenation of multi-
modality features [5,11], while recent studies propose more sophisticated fusion
approaches. Poria et al. [15] propose a LSTM-based model to capture contex-
tual information. Zadeh et al. [22] propose a Tensor Fusion Network to explicitly
aggregate unimodal, bimodal and trimodal interactions. Liu et al. [7] propose
a Low-rank Fusion Network to alleviate the drawback of the large amount of
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parameters by low-rank factor. Chen et al. [2] propose a Gated Multimodal
Embedding model to learn an on-off switch to filter noisy or contradictory modal-
ities.

As the modalities can have interactions between different timestamps, several
models are proposed to fuse the multiple modals from different views. Zadeh et
al. [25] propose a Multi-attention Recurrent Network (MARN) to capture the
interaction between modalities at different timestamps. Zadeh et al. [23] propose
a Memory Fusion Network to learn view-specfic interactions and use an attention
mechanism called the Delta-memory Attention Network (DMAN) to identify the
cross-view interactions. Liang et al. [6] propose a Recurrent Multistage Fusion
Network (RMFN) to model cross-modal interactions using multi-stage fusion
approach, in which each stage of fusion focuses on a different subset of multi-
modal signals, learning increasingly discriminative multimodal representations.

Recently, Pham et al. [14] propose to learn joint representations based on
translations between modalities. They use a cycle consistency loss to ensure
that the joint representations retain maximal information from all modalities.
Instead of directly fusing features at holistic level, Mai et al. [8] propose a strat-
egy named ‘divide, conquer and combine’ for multimodal fusion. Their model
performs fusion hierarchically to consider both local and global interactions.
Wang et al. [20] propose a Recurrent Attended Variation Embedding Network
(RAVEN) to model expressive nonverbal representations by analyzing the ne-
grained visual and acoustic patterns. Tsai et al. [19] introduce a model that fac-
torizes representations into two sets of independent factors: multimodal discrim-
inative and modality-specic generative factors to optimize for a joint generative-
discriminative objective across multimodal data and labels.

Although previous studies propose many effective approaches, most of them
treat all modalities equally during the learning of multimodal fusion, which are
different from our approach. In our model, we propose a sense-level attention
network to learn different word representation under different senses. With the
sense-attentive word representation, we can learn enhanced language represen-
tation. In addition, we try to learn sufficient multimodal fusion through multi-
stage fusion and uni-stage fusion, as well as keeping the language representation
to form our final representation.

3 Our Model

Our model consists of three components: sense attentive language representation
which is regarded as the main representation of the multimodal fusion; multi-
stage multimodal fusion which is designed to capture the interactions between
the sharing information on the multi-stage; uni-stage multimodal fusion which
is used to capture the global fusion information. The whole architecture of our
model is shown in Fig. 2. In the following sections, we will introduce the sense-
level attention network in Sect. 3.1, and describe the multi-stage multimodal
fusion and the uni-stage multimodal fusion strategy in Sect. 3.2. Section 3.3
describes the final representation and model training.
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Fig. 2. The whole architecture of our model. The sense-level attention is used to learn
the different importance of the sense words of each word in the language modality
and produce a sense-attentive representation of language. LSTM layers are then used
to model the features from language, vision and acoustic modalities. Three blocks are
used to learn multi-stage multimodal fusion, uni-stage multimodal fusion and language
representation respectively, which are concatenated to form the final representation.

3.1 Sense-Level Attention Network

As language has rich semantic information, a word may has different senses in
different contexts, which may make the sentiment of a sentence totally differ-
ent. However, the word’s embedding representation is unique in the pretrained
embeddings. In order to let the model to better distinguish different meanings
of a same word, similar to the work of [21,27], we use WordNet to get k number
of different senses of a word into the model. If a word don’t have any sense in
WordNet, we input k number of original words into the model. If there are more
than k number of senses for the word, we take the first k number of senses in
order and pad the sense sequence with the original word if the number of senses
of the word is less than k. We denote the sense sequence of the i-th word in the
sentence as Si = {si1, si2, . . . , sik}. The word senses and the original word are
converted into embeddings to be input into the model. Then attention mecha-
nism is used to learn the importance weight of different senses of a word and the
weighted sum of the embeddings of different senses forms the new representation
li of the word, as shown in Eqs. (1–3), where Wi and ui are the trainable weights,
bi is the bias.

oij = relu (Wisij + bi) (1)
αij = softmax (uioij) (2)

li =
k∑

j=1

aijsij (3)
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3.2 Multi-stage and Uni-stage Multimodal Fusion

In order to obtain comprehensive multimodal fusion, we propose two strategies
to learn the relationship and interactive information between multiple modal
features, which are multi-stage fusion and uni-stage fusion. The two strategies
are shown in Fig. 3.

After getting the new representation of language modality and the original
features of acoustic and vision modality, denoted as L = {l1, l2, . . . , lT }, A =
{a1, a2, .., aT } and V = {v1, v2, .., vT } respectively. We use three LSTM lay-
ers for modeling the features, aiming to consider the interrelationship of the
individual modality in different timestamps. The outputs of LSTM of acoustic,
vision and language modality are denoted as HA = {ha

1 , ha
2 , . . . , h

a
T },HV =

{hv
1, hv

2, . . . , h
v
T } and HL = {hl

1, hl
2, . . . , h

l
T } respectively.

Fig. 3. The strategies of multimodal fusion proposed in our model. The multi-stage
fusion aims to capture the interactions of the shared multimodal information in different
timestamps. The uni-stage fusion aims to capture the global interactions of multimodal
features fused within the same timestamp.

Multi-stage Multimodal Fusion. First we concatenate ha
i , hv

i and hl
i, then

we use different CNN layers with different window sizes to learn the multi-stage
shared fusion. For CNN with window size 1, we aim to model the relationship
between the three modalities timestamp by timestamp, through which we can
get the fusion about the word, facial expression and speech tone of the speaker at
the same timestamp. For CNN with window size bigger than 1, we aim to model
the relationship between the three modalities within several timestamps. We
perform maxpooling operation on top of the CNNs respectively and concatenate
the results, getting the multi-stage shared multimodal fusion hmulti−stage. The
convolution operation of CNN is shown in Eq. (5–6), where Wz and bz are
trainable weights and bias respectively, w is the window size, f is activation
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function which is relu in our implementation and [ ] denotes for concatenation.

hi =
[
ha
i , h

v
i , h

l
i

]
(4)

zi = f (Wz [hi : hi+w−1] + bz) (5)
Zw = maxpooling ([z1, z2, ..., zT ]) (6)

As stated above, we use different CNN layers with different window sizes follow-
ing maxpooling operation, getting Zw representation (w = 1, 2, ...), finally Zw

are concatenated to form the multi-stage fusion hmulti−stage.

Uni-stage Multimodal Fusion. The uni-stage fusion is applied to learn the
different contributions of the multimodal feature at each temporal and produce
a summary, which is regarded as the global multimodal fusion. We use another
block to learn uni-stage multimodal fusion. Specifically, as shown in Eq. (7), we
use a non-linear projection layer to project features of three modalities into the
same space.

h
′
i = f

(
Wf

[
ha
i , h

v
i , h

l
i

]
+ bf

)
(7)

where Wf is the trainable weights, bi is the bias, f is relu activation function
and [ ] denotes for concatenation. Then we perform attention operation on the
projected results h

′
i to get a summary about of which stages the multimodal

features are most important for sentiment analysis, as shown in Eqs. (8–10).

oi = tanh
(
Wah

′
i + bi

)
(8)

αi = softmax (uaoi) (9)

huni−stage =
T∑

i=1

aih
′
i (10)

where αi is the attention weight of timestamp i. We use the attention weights to
perform weighted sum on h

′
i, getting the uni-stage multimodal fusion huni−stage.

3.3 Final Representation and Model Training

As mentioned before, we believe that language modality contains richer infor-
mation than other modalities, thus we perform attention operation on HL to
get the final language representation hl. At last we concatenate hl, the multi-
stage multimodal fusion hmulti−stage and uni-stage multimodal fusion huni−stage

to form the final representation hfinal. The final representation is input to a
fully-connected layer and a prediction layer to get the output, as shown in Eqs.
(11–12):

h
′
final = relu (W 1hfinal + b1

)
(11)

y = f(W2h
′
final + b2) (12)
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where W1 and W2 are trainable weights, b1 and b2 are biases. f is softmax
function for classification task. For regression task, we don’t need activation
function. y is the prediction.

4 Experiments

4.1 Dataset

We conduct several experiments on the CMU-MOSI [26] dataset, the CMU-
MOSEI [24] dataset and the YouTube [10] dataset. The CMU-MOSI dataset
contains 93 videos from the social media website, each of which comes from a
different speaker who is expressing his or her opinions towards a movie. The
videos in CMU-MOSI dataset are split into 2199 video clips, and each clip has
a sentiment label y ∈ [−3, 3], which represents strongly positive (labeled as +3),
positive (+2), weakly positive (+1), neutral (0), weakly negative (−1), negative
(−2), strongly negative (−3) respectively. The CMU-MOSEI dataset is a made
up of 23,043 movie review video clips taken from YouTube. Following [8], we
consider positive, negative and neutral sentiments in the paper. The YouTube
dataset is collected from YouTube which contains 269 video clips. The statistical
information of the three datasets is shown in Table 1.

Table 1. The statistical information of the experimental dataset.

Dataset CMU-MOSI CMU-MOSEI YouTube

#Train 1284 15920 173

#Valid 229 2291 36

#Test 686 4832 60

4.2 Evaluation Metrix

Following previous work, we use different evaluation metrix on different datasets.
For CMU-MOSI, we conduct experiments on binary classification task, multi-
class classification task and regression task. For binary classification, we report
accuracy and F1 score, whereas for multi-class classification we only report accu-
racy. For regression task, we report Mean Absolute Error (MAE) and Pearson’s
Correlation (Corr). For all the metrics, higher values denote better performance,
except MAE where lower values denote better performance. For CMU-MOSEI
and YouTube datasets, we conduct 3 classification task and report accuracy and
F1 score.

4.3 Experimental Details

For all datasets, 300-dimensional GloVe embeddings [13] are used to represent
the language features; Facet1 library is used to extract a set of visual features
1 https://imotions.com/biosensor/fea-facial-expression-analysis/.

https://imotions.com/biosensor/fea-facial-expression-analysis/
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and COVAREP [3] is used to extract acoustic features. We use WordNet to get
4 sense words for each word. Note that we add a constraint that the sense words
should contain the original word. Besides, in WordNet, sense may contains more
than one word, if this happen we use the average embedding of the words in the
sense as the representation of the sense. The sizes of hidden states of LSTMs
encoding language features, vision features and acoustic features are 100, 10 and
30 respectively. We use CNNs with window size 1 and 3 respectively to learn
the multi-stage multimodal fusion and the filter number of CNN is set to 50.
The batch size is set to 32, 16 and 16 for CMU-MOSI, CMU-MOSEI, YouTube
datasets respectively, and the initial learning rate is set to 0.0008, 0.0003 and
0.0001 for the three datasets respectively. For CMU-MOSI dataset, we use L1
loss as training loss, for other two datasets, we use cross entropy loss as training
loss. We report the experimental results predicted by the model which performs
best on the validation set.

4.4 Baseline Models

We use several models as our baselines to compare with our model. Firstly, we
use THMM [10] and MV-HCRF [18] as the traditional baseline models. THMM
[10] concatenates language, acoustic and vision features and then uses HMM for
classification. MV-HCRF [18] is an extension of the HCRF for Multi-view data,
explicitly capturing view-shared and view specific sub-structures. Secondly, we
use MV-LSTM [17], BC-LSTM [15], CAT-LSTM [16], GME-LSTM [2], TFN [22],
CHFusion [9], LMF [7], MFN citech26ZadehLMPCM18, RMFN [6] and MARN
[25] as the early neural network based compared models. Lastly, we use several
previous state of the art models as our baseline models. MCTN [14] learns joint
representations of multi-modalities by cyclic translations between modalities.
HFFN [8] proposes a hierarchical feature fusion network, named ‘divide, conquer
and combine’ to explore both local and global interactions in multiple stages.
MFM [19] is proposed to optimize for a joint generative-discriminative objective
across multimodal data and labels.

4.5 Experimental Results

Experimental Results on the CMU-MOSI Dataset. The results of our
model and baseline models on the CMU-MOSI dataset is shown in Table 2.
As is shown, the neural network based models outperform traditional machine
learning models with a large margin. Among all models, our model achieves
the second best performance on accuracy and F1 score of binary classification
and accuracy of 7 classification, and our model achieves the best performance
on MAE and Pearson’s correlation of regression task compared with the base-
line models. Specifically, our model achieves competitive results compared with
HFFN on binary classification task, and outperforms MCTN, which is the best
model on MAE among the baseline models by 4.5% on MAE. For Pearson’s
correlation (Corr), our model outperforms RMFN which achieves the best per-
formance on Corr among the baselines by 3.9%. As for seven classification task,
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we achieve the second best performance. The overall experimental results on the
CMU-MOSI dataset show the effectiveness of our model.

Table 2. Experimental results of different models on the CMU-MOSI dataset.

Model Binary Regression 7-class

Acc F1 MAE Corr Acc

THMM [10] 50.7 45.4 – – 17.8

MV-HCRF [18] 65.6 65.7 – – 24.6

MV-LSTM [17] 73.9 74.0 1.019 0.601 33.2

BC-LSTM [15] 73.9 73.9 1.079 0.581 28.7

GME-LSTM [2] 76.5 73.4 0.955 – –

TFN [22] 74.6 74.5 1.040 0.587 28.7

LMF [7] 76.4 75.7 0.912 0.668 32.8

RMFN[6] 78.4 78.0 0.922 0.681 38.3

MARN [25] 77.1 77.0 0.968 0.625 34.7

MFN [23] 77.4 77.3 0.965 0.632 34.1

MFM [19] 78.1 78.1 0.951 0.662 36.2

MCTN [14] 79.3 79.1 0.909 0.676 –

HFFN [8] 80.2 80.3 – – –

MPFN(Ours) 80.0 80.0 0.864 0.720 37.0

Experimental Results on the YouTube Dataset. Table 3 shows the exper-
imental results of our model and the baseline models on the YouTube dataset.
The YouTube is a very small dataset, as shown in Table 1, not all neural network
based models outperform traditional machine learning models both on accuracy
and F1 score. However, compared with the baseline models, our model achieves
the best performance on both accuracy and F1 score, which outperforms the pre-
vious state-of-the-art model MFM by 1.7% on accuracy and 3.5% on F1 score.
Although the YouTube dataset is very small, our model can achieve the best
performance among the baseline models.
Experimental Results on the CMU-MOSEI Dataset. For the CMU-
MOSEI dataset, we conduct experiments on 3 classification tasks. We present
the experimental results of different models in Table 4. As we can see, our model
achieves the best performance on both accuracy and F1 score, which outperforms
HFFN by 0.93% on accuracy and 0.6% on F1 score, and outperforms BC-LSTM
by 0.53% on accuracy and 0.63% on F1 score. Note that the CMU-MOSEI is the
largest dataset in this paper. In addition, we can see that although CAT-LSTM
and LMF achieve relative good performance on accuracy, their performance on
F1 score is much worse than that on accuracy. Our model can achieve both
good performance on accuracy and F1 score. Experimental results on the CMU-
MOSEI dataset and the YouTube dataset show that our model can adapt to
both small data and large data.
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Table 3. Experimental results of different models on the YouTube dataset

Model Acc F1

THMM [10] 42.4 27.9

MV-HCRF [18] 44.1 44.0

MV-LSTM [17] 45.8 43.3

BC-LSTM [15] 45.0 45.1

TFN[22] 45.0 41.0

MARN [25] 48.3 44.9

MFN [23] 51.7 51,6

MCTN [14] 51.7 52.4

MFM [19] 53.3 52.4

MPFN(Ours) 55.0 55.9

Table 4. Experimental results of different models on the CMU-MOSEI dataset.

Model Acc F1

BC-LSTM [15] 60.77 59.04

TFN [22] 59.40 57.33

CAT-LSTM [16] 60.72 58.83

CHFusion [9] 58.45 56.90

LMF [7] 60.27 53.87

HFFN [8] 60.37 59.07

MPFN(Ours) 61.30 59.67

4.6 Ablation Studies

In order to investigate the impact of various components in our model, we con-
duct several ablation experiments on the CMU-MOSI dataset, which are shown
in Table 5. In the experiment, we remove one kind of component of our full model
each time. Specifically, we remove the sense-level attention (denoted as MPFN-
no-sense-att), the multi-stage multimodal fusion (denoted as MPFN-no-multi-
stage-fusion), the uni-stage multimodal fusion (denoted as MPFN-no-uni-stage-
fusion) and final language representation (denoted as MPFN-no-language-final)
respectively.

As shown in Table 5, once we remove any component of our model, the
performance will decline. For example, if we remove the sense-level attention
and use the original word embedding as word representation, the performance of
our model will drop by 1.0% on accuracy, 1.4% on F1 score of binary classification
task, 3.8% on MAE, 2.5% on Corr, and 2.9% on accuracy of 7 classification task
on the CMU-MOSI dataset. This observation suggests that using WordNet and
sense-level attention to dynamically learn the word representation is effective.
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In terms of multimodal fusion, we can see that if we remove the multi-stage
fusion block or the uni-stage fusion block, the performance of our model will
also drop, which indicates that both multi-stage fusion and uni-stage fusion
are important for multimodal sentiment analysis. Furthermore, it seems that
the multi-stage multimodal fusion plays a more important role than uni-stage
multimodal fusion on the CMU-MOSI dataset.

Last but not least, we remove the final language representation which is con-
catenated with the multimodal fusion representation to see whether this oper-
ation is useful. The experimental results prove our early assumption. As we
mentioned, ablation studies of previous researches show that if only using fea-
tures of one modality as input, the model which use language modality features
as input performs best. If only using multimodal fusion representation to form
the final representation, some intra-modality information of language will be lost
during fusion process. Concatenating the final language representation with the
multimodal fusion representation to form the final representation can address
this problem.

Table 5. Ablation studies on the CMU-MOSI dataset.

Model Binary Regression 7-class

Acc F1 MAE Corr Acc

MPFN-no-sense-att 79.0 78.6 0.902 0.695 34.1

MPFN-no-multi-stage-fusion 79.0 79.0 0.882 0.698 36.9

MPFN-no-uni-stage-fusion 79.3 79.3 0.888 0.711 33.5

MPFN-no-language-final 79.3 79.3 0.899 0.714 34.4

MPFN(Ours) 80.0 80.0 0.864 0.720 37.0

4.7 Discussion

In order to investigate how each modality effects the performance of our model,
we conduct several experiments to compare the performance of our model using
unimodal, bimodal and multimodal features, as shown in Table 6.

For unimodal features, we can see that our model only using sense attentive
language representation outperforms the model that only using audio features
or video features with significant margin, which is consistent with our early
assumption that language modality is dominant. For bimodal features, we can
infer that when integrating language modality with acoustic modality or vision
modality, the performance of the model outperforms that of only using language
representation, which indicates that acoustic and vision modalities play auxiliary
roles and the multi-perspective multimodal fusion can improve the performance
of the model. However, when using audio features and video features as input, the
performance of the model is still much worse than that of only using language
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Table 6. The performance of our model using unimodal, bimodal and multimodal
features.

Modality Source Binary Regression 7-class

Acc F1 MAE Corr Acc

Unimodal Audio 57.1 56.2 1.396 0.196 16.0

Video 57.3 57.3 1.431 0.137 16.2

Sense attentive language 79.0 79.1 0.922 0.689 34.0

Bimodal Sense attentive language + Audio 79.7 79.6 0.881 0.701 34.7

Sense attentive language + Video 79.6 79.6 0.915 0.714 32.9

Audio + Video 59.0 59.0 1.391 0.176 19.7

Multimodal Sense attentive language + Audio + Video 80.0 80.0 0.864 0.720 37.0

modality, which again proves that language modality is the most important
modality in this task.

When cooperating three modalities, our full model MPFN achieves the best
performance among the different combinations, which demonstrates the effec-
tiveness of multi-perspective multimodal fusion proposed in this paper.

5 Conclusion

In this paper, we propose a novel multi-perspective fusion network focusing on
sense attentive language for multimodal sentiment analysis. Evaluations show
that using our proposed multi-stage and uni-stage fusion strategies and using
sense attentive language representation can improve performance on multimodal
sentiment analysis for the CMU-MOSI, CMU-MOSEI and YouTube data. Our
model also achieves a new state-of-the-art in the YouTube and CMU-MOSEI
dataset on accuracy and F1 measure metrics compared with the baseline mod-
els. The experimental results using different modal combinations also show that
the proposed sense attentive language modal achieves the most significant perfor-
mance improvement on the CMU-MOSI dataset, especially on the 7-classification
results, indicating that the sense attentive language modal plays an important
role in multimodal sentiment analysis task. Like most of other models, our app-
roach also focuses on the multimodal data with the same length of stamp. In
the future, we will investigate a novel fusion of multimodal data with different
length of stamp.
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