
Entity Relative Position Representation
Based Multi-head Selection for Joint

Entity and Relation Extraction

Tianyang Zhao1(B) , Zhao Yan2, Yunbo Cao2, and Zhoujun Li1

1 State Key Lab of Software Development Environment,
Beihang University, Beijing, China

{tyzhao,lizj}@buaa.edu.cn
2 Tencent Cloud Xiaowei, Beijing, China

{zhaoyan,yunbocao}@tencent.com

Abstract. Joint entity and relation extraction has received increas-
ing interests recently, due to the capability of utilizing the interactions
between both steps. Among existing studies, the Multi-Head Selection
(MHS) framework is efficient in extracting entities and relations simul-
taneously. However, the method is weak for its limited performance. In
this paper, we propose several effective insights to address this prob-
lem. First, we propose an entity-specific Relative Position Representa-
tion (eRPR) to allow the model to fully leverage the distance information
between entities and context tokens. Second, we introduce an auxiliary
Global Relation Classification (GRC) to enhance the learning of local
contextual features. Moreover, we improve the semantic representation
by adopting a pre-trained language model BERT as the feature encoder.
Finally, these new keypoints are closely integrated with the multi-head
selection framework and optimized jointly. Extensive experiments on two
benchmark datasets demonstrate that our approach overwhelmingly out-
performs previous works in terms of all evaluation metrics, achieving
significant improvements for relation F1 by +2.40% on CoNLL04 and
+1.90% on ACE05, respectively.

1 Introduction

The entity-relation extraction task aims to recognize the entity spans from a
sentence and detect the relations holds between two entities. Generally, it can
be formed as extracting triplets (e1, r, e2), which denotes that the relation r holds
between the head entity e1 and the tail entity e2, i.e., (John Smith, Live-In,
Atlanta). It plays a vital role in the information extraction area and has attracted
increasing attention in recent years.

Traditional pipelined methods divide the task into two phases, named entity
recognition (NER) and relation extraction (RE) [3,15,18]. As such methods
neglect the underlying correlations between the two phases and suffer from the
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error propagation issue, recent works propose to extract entities and relations
jointly. These joint models fall into two paradigms. The first paradigm can be
denoted as (e1, e2) → r, which first recognizes all entities in the sentence, then
classifies the relation depend on each extracted entity pairs. However, these
methods require enumerating all possible entity pairs and the relation classifica-
tion may be affected by the redundant ones. While another paradigm is referred
as e1 → (r, e2), which detects head entities first and then predicts the corre-
sponding relations and tail entities [2,14,26]. Comparing with the first paradigm,
the second one can jointly identify entities and all the possible relations between
them at once. A typical approach is the Multi-Head Selection (MHS) frame-
work [2]. It first recognizes head entities using the BiLSTM-CRF structure and
then performs tail entity extraction and relation extraction in one pass based on
multiclass classification. The advantage of the MHS framework is obvious - it is
efficient to work with the scenario, that one entity can involve several relational
triplets, making this solution suitable for large scale practical applications. In
this paper, we focus on the second paradigm of the joint models, especially on
the MHS framework.

Fig. 1. An example to show the impact of entity-specific relative position.

Despite the efficiency of the MHS framework, it is weak for the limited perfor-
mance compared with other complex models. Intuitively, the distance between
entities and other context tokens provide important evidence for entity and rela-
tion extraction. Meanwhile, the distance information of non-entity words is less
important. As shown in the sentence of Fig. 1, the “Louis Vuitton” that is far
from the word “Inc.” is a person entity, while the one adjacent to “Inc.” denotes
an organization. Such an entity-specific relative position can be a useful indica-
tor to differentiate entity tokens and non-entity tokens and enhance interactions
between entities. While the existing model pays equal attention to each context
tokens and ignores the relative distance information of entities. As a result, the
entity-specific features may become less obscure and mislead the relation selec-
tion. Second, the existing model predicts the relations and tail entities merely
based on the local contextual features of the head entity, and the incomplete
local information may confuse the predictor. While the semantic of the whole
sentence always has a significant impact on relation prediction. For example,
in Fig. 1, the relation between “Louis Vuitton” and “1854” may easily be mis-
labeled as “Born-In” without considering the meaning of the whole sentence.
Therefore, the global semantics should also be taken into account.
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To address the aforementioned limitations, we present several new key points
to improve the existing multi-head selection framework. First, we propose an
entity-specific Relative Position Representation (eRPR) to leverage the distance
information between entities and their contextual tokens, which provides impor-
tant positional information for each entity. Then, in order to better consider
the sentence-level semantic during relation prediction, we add up an auxiliary
Global Relational Classification (GRC) to guide the optimization of local context
features. In addition, different from the original MHS structure, we adopt the
pre-trained transformer-based encoder (BERT) to enhance the ability of seman-
tic representations. Notably, the proposed method can address the entity and
multiple-relation extraction simultaneously and without relying on any external
parsing tools or hand-crafted features. We conduct extensive experiments on two
widely-used datasets CoNLL04 and ACE05, and demonstrate the effectiveness
of the proposed framework.

To summarize, the contributions of this paper are as follows:

– We propose an entity-specific relative position representation to allow the
model aware of the distance information of entities, which provides the model
with richer semantics and handles the issue of obscure entity features.

– We introduce a global relation classifier to integrate the essential sentence-
level semantics with the token-level ones, which can remedy the problem
caused by incompleted local information.

– Experiments on the CoNLL04 and ACE05 datasets demonstrate that the
proposed framework significantly outperforms the previous work, achieving
+2.40% and +1.90% improvements in F1-score on the two datasets.

2 Related Work

In this section, we introduce the related studies for this work, entity and relation
extraction as well as the positional representation.

Entity and Relation Extracion. As a crucial content of information extraction,
the entity-relation extraction task has always been widely concerned. Previous
studies [3,15,18] mainly focus on pipelined structure, which divides the task into
two independent phases, all entities are extracted first by an entity recognizer,
and then relations between every entity pairs are predicted by a relation classifier.
The pipelined methods suffer from error propagation issue and they ignore the
interactions between the two phrases. To ease these problems, many joint models
have been proposed to extract the relational triplets (e1, r, e2), simultaneously.
According to different extraction order, the joint models can be categorized into
two paradigms. The first paradigm identifies all entities in the sentence first, then
traverses each pair of entities and determines their potential relation. Various
models have achieved promising results by exploiting recurrent neural network
[16,17], graph convolutional network [9,23] and transformer-based structure [7,
25]. Though effective, these models need to examine every possible entity pairs,
which inevitably contains a lot of redundant pairs. In the second paradigm, the
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head entities are detected first and the corresponding relations and tail entities
are extracted later. Bekoulis et al. [2] present the multi-head selection framework
to automatically extract multiple entities and relations at once. Huang et al. [12]
improve the MHS framework by using NER pretraining and soft label embedding
features. Recently, Li et al. [14] cast the task as a question answering problem
and identify entities based on a machine reading comprehension model. Different
from the first one, the second paradigm is able to extract entities and all the
relations at once without enumerating every entity pair each time, which reduces
redundant prediction and improves work efficiency.

Positional Representation. Many works design representations to encode posi-
tional information for non-recurrent models, which can fall into three categories.
The first one designs the position encodings as a deterministic function of posi-
tion or learned parameters [10,22]. These encodings are combined with input
elements to expose position information to the model. For example, the convo-
lutional neural networks inherently capture the relative positions within each
convolutional kernels. The second category is the absolute position representa-
tion. The Transformer structure [24] contains neither recurrence nor convolution,
in order to inject the positional information to the model, it defines the sine and
consine functions of different frequencies to encode absolute positions. How-
ever, such absolute positions cannot model the interaction information between
any two input tokens explicitly. Therefore, the third category extends the self-
attention mechanism to consider the relative positions between sequential ele-
ments [4,21]. Differently, we propose the relative positions especially for entities
to enhance the interactions between them. While we do not consider the relative
positions for non-entity tokens to alleviate the unnecessary noise.

Our work is inspired by the multi-head selection framework but enjoys new
points as follows. 1) We propose an entity-specific relative position representa-
tion to better encode the distance between entities and context tokens. 2) We
incorporate the sentence-level information for relation classification to revise the
learning of local features. 3) We enhance the original MHS framework with a
pre-trained self-attentive encoder. Together these improvements contribute to
the extraction performance remarkably.

3 Method

In this section, we briefly present the details of the relative position represen-
tation based multi-head selection framework. The concept of multi-head means
that any head entity may be relevant to multiple relations and tail entities [2].

Formally, denote E and R as the set of pre-defined entity types and rela-
tion categories, respectively. Given an input sentence with N tokens s =
{s1, s2, . . . , sN}, the entity-relation extraction task aims at extracting a set of
named entities e = {e1, e2, . . . , eM} with specific types y = {y1, y2, . . . , yM}, and
predict the relation rij for each entity pair (ei, ej), where yi ∈ E and rij ∈ R.
Triplets such as (ei, rij , ej) are formulated as the output, where ei is the head
entity and ej is the tail entity, e.g., (John Smith, Live-In, Atlanta).
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Fig. 2. The overview of the relative position representation based multi-head selec-
tion framework. We take a sentence from CoNLL04 dataset as an example. In this
sentence, the golden relational triplets are: (John Smith, Live-In, Atlanta), (John
Smith, Work-For, Disease Control Center) and (Disease Control Center, Located-In,
Atlanta). The NULL label denotes a case of no relation.

As illustrated in Fig. 2, our framework consists of four modules as follows: the
encoder module, the CRF module, the context fusion module and the multi-head
selection module. The token sequence is taken as the input of the framework and
is fed into the BERT encoder to capture contextual representations. The CRF
module is applied afterward to extract potential head entities (i.e., boundaries
and types). Then, the hidden states of BERT and the entity information are
fed into the context fusion module to encoder the entity position-based features.
Finally, a multi-head selection module is employed to simultaneously extract
tuples of relation and tail entity for the input token (e.g., (Work-For, Center)
and (Live-In, Atlanta) for the head entity Simth). Additionally, we present the
strategy of global relation classification. We will elaborate on each of the modules
in the following subsections.

3.1 Encoder Module

The encoder module aims at mapping discrete tokens into distributed seman-
tic representations. Bidirectioal Encoder Representations from Transformers
(BERT) [5] is a pre-trained language representations built on the bidirectional
self-attentive models. It is known for its powerful feature representative ability
and recently breaks through the leaderboards of a wide range of natural language
processing tasks, such as named entity recognition, word segmentation and ques-
tion answering. Different from the previous work [2] which uses the BiLSTM as
the feature encoder, we use the BERT instead to better represent contextual
features.

As illustrated in Fig. 2, given a N -token sentence s = {s1, s2, . . . , sN}, a
special classification token ([CLS]) is introduced as the first token of the input
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sequence as {[CLS], s1, s2, . . . , sN}. The sequence is encoded by the multi-layer
bidirectional attention structure. The output of the BERT layer is the contextual
representation of each token as h = {h0, h1, . . . , hN} where hi ∈ R

dh , where dh

denotes the dimension of the hidden state of BERT.

3.2 CRF Module

The conditional random field is a probabilistic method that jointly models inter-
actions between entity labels, which is widely used in named Entity recognition
task. Similarly, we employ a linear-chain CRF over the BERT layer to obtain
the most possible entity label for each token, e.g., B-PER.

Given the BERT outputs h = {h0, h1, . . . , hN}, the corresponding entity
label sequence is denoted as y = {y0, y1, . . . , yN}. Specifically, we use the BIO
(Begin, Inside, Non-Entity) tagging scheme. For example, B-PER denotes the
beginning token of a person entity. The probability of using y as the label pre-
diction for the input context is calculated as

p(y|h) =
∏N

i=1 φi(yi−1, yi,h)
∑

y′∈Y(h)

∏N
i=1 φi(y′

i−1, y
′
i,h)

. (1)

Y(h) is the set of all possible label predictions. And φi(yi−1, yi,h) =
exp(Wyi

CRFhi +byi−1→yi

CRF ), where WCRF ∈ R
dh×dl ,bCRF ∈ R

dl×dl with dl denot-
ing the size of the entity label set. Wyi

CRF is the column corresponding to label
yi, and byi−1→yi

CRF is the transition probability from label yi−1 to yi.
During training, the NER loss function is defined as the negative log-

likelihood:
LNER = −

∑

h
log p(y|h). (2)

During decoding, the most possible label sequence y∗ is the sequence with
maximal likelihood of the prediction probability:

y∗ = arg maxy∈Y(h) p(y|h). (3)

The final labels can be efficiently addressed by the Viterbi algorithm [8].

3.3 Context Fusion Module

The context fusion module focuses on injecting the entity-specific relative posi-
tion representation into the semantic feature of entities to capture the distance
information between entities and other context tokens. The self-attention struc-
ture in BERT introduces sine and cosine functions of varying frequency to repre-
sent the absolute position representation (APR) of tokens. However, such abso-
lute position representation neglects the relative distance information between
entities and other tokens, while such distance plays a crucial role in entity-
relation prediction. Hence, we introduce an entity-specific relative position rep-
resentation to efficiently encode the relative distance.
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Formally, for the output states of BERT encoder h = {h0, h1, . . . , hN}
where hi ∈ R

dh , the relative position layer outputs a transformed sequence
p = {p0, p1, . . . , pN} where pi ∈ dp with dp as the hidden dimension of self-
attention structure.

Consider two input states hi and hj , where hi denotes an entity and hj

denotes a contextual token, i, j ∈ 0, 1, . . . , N . In order to inject the relative
position information into xi, we define aK

ij ∈ dp, a
V
ij ∈ dp as two different relative

distances between hi and hj . Suppose that the impacts of tokens beyond a
maximum distance on the current token are negligible. Therefore, we clip the
relative position within a maximum distance δ and only consider the position
information of δ tokens on the left and δ tokens on the right. We define ωK =
(ωK

−δ, . . . , ω
K
δ ) and ωV = (ωV

−δ, . . . , ω
V
δ ) as two relative position representations,

where ωK
i , ωV

i ∈ R
dp are initialized randomly and will be learned during training.

Figure 3 illustrates an example of the relative position representations. Then,
aK

ij and aV
ij are assigned as:

aK
ij = ωK

clip(j−i,δ)

aV
ij = ωV

clip(j−i,δ)

clip(x, δ) = max(−δ,min(x, δ)).

(4)

Fig. 3. An example to illustrate the entity relative position representation. x4 is con-
sidered as an entity, we show the eRPR between x4 and the context tokens within the
clipped distance δ. Assuming 3 <= δ <= n − 4 in this example.

Based on the relative position representations aK
ij , aV

ij , the attention matrix
between hi and hj is calculated as:

αij = softmax(
(hiW

Q)(hjW
K + aK

ij )T

√
dp

), (5)

where WQ ∈ R
dh×dp ,WK ∈ R

dh×dp are parameter matrices for multi-head
projections. The attentional output of hi is the weighted sum of hj which also
consider the relative position:

pi =
n∑

j=1

αij(hjW
V + aV

ij). (6)
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Specifically, we only consider the relative position of named entities rather
than every tokens in the sentence. So ωK and ωV are set as 0 for non-entity
tokens. the This entity-only RPR approach comes with the following key advan-
tages: 1) it encodes unique features for entities and thus can better differentiate
entities from other plain tokens; 2) it provides entity-specific information and
helps the relation and tail entity prediction.

3.4 Multi-head Selection Module

The multi-head selection module aims to predict the possible relations and tail
entities simultaneously for each head entity [2]. Given a sequence of entity labels
y = {y0, y1, . . . , yN} predicted by the CRF module, we map each label to a
distributed label embedding as l = {l0, l1, . . . , lN}, li ∈ R

dl , where dl is the label
embedding size. The mapping dictionary is randomly initialized and fine-tuned
during training. During training, we use the golden entity labels.

As shown in Fig. 2, the input to the multi-head selection layer are the con-
catenation of label embedding and the outputs of relative position layer as:

zi = [li; pi], i = 0, 1, . . . , N. (7)

For each input state zi, we compute the score between zi and zj given a relation
rk, rk ∈ R as:

g(zi, zj , rk) = V rf(Urzj + W rzi + br), (8)

where V r ∈ R
dr , Ur,W r ∈ R

dr×(dh+dl), br ∈ R
dr , f(·) is the element-wise RELU

function. The most probable tail entity sj with the relation rk corresponding to
the head entity si is predicted as:

Pr(tail = sj , relation = rk|head = si) = σ(g(zi, zj , rk)), (9)

where σ(·) denotes the sigmoid function.
During training, we optimize the cross-entropy loss LMHS for the candidate

tail entity sij and relation rij given the head entity si as:

LMHS =
N∑

i=0

M∑

j=0

−log Pr(tail = sj , relation = rj |head = si), (10)

where M is the number of golden relations for si. During testing, we select the
tuple of the relation and tail entity (r̂k, ŝj) with a score exceeding the confidence
threshold η. In this way, multiple tail entities and relations for the head entity
si can be predicted simultaneously.

3.5 Global Relation Classification

Generally, detecting the relation between entities needs to consider the theme of
the sentence. The previous work only use the local context information for rela-
tion and entity prediction, which may lead to the deviation of global semantics.
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We introduce the global relation classification strategy to guide the training of
local semantic features. As illustrated in Fig. 2, the first output of the relative
position layer corresponding to the hidden state of [CLS] token p0, which can
be considered as the aggregate representation of the sentence. Therefore, we use
the [CLS] token to predict the relations relevant to the whole sentence s as:

Pr(relation = r|s) = σ(W gp0 + bg), (11)

where r ⊆ R, W g ∈ R
dh×|R|, br ∈ R

|R|, σ(·) is the sigmoid function. During
training, we minimize the binary cross-entropy loss for the global classification
as:

LGRC =
T∑

i=0

Pr(relation = r|s), (12)

where T denotes the number of golden relations in the sentence.

3.6 Joint Training

To train the model jointly, we optimize the final combined objective function as:

L = LNER + λLGRC + LMHS, (13)

where LNER, LGRC, and LMHS denote the loss function for head entity recogni-
tion, global relation classification and multi-head selection, respectively (Eq. 2,
12, 10), λ ∈ [0, 1] is the weight controlling the trade-off of the global relation
classification. L is averaged over samples for each batch.

4 Experiment

In this section, we conduct extensive experiments to verify the effectiveness of
our framework, and make detailed analyses to show its advantages.

4.1 Dataset

We conduct evaluation on two widely-used benchmarks for entity and relation
extraction: CoNLL04 and ACE05.

CoNLL04 [20] defines 4 entity types as Location (LOC), Organization (ORG),
Person (PER) and Other and 5 relation categories as Located-In, OrgBased-In,
Live-In, Kill and Work-For. It consists of news articles from the Wall Street
Journal and Associated Press. We use the data split by Gupta et al. [11] (910
instances for training, 243 for validation and 288 for testing).

ACE05 [6] provides 7 entity types: Location (LOC), Organization (ORG), Per-
son (PER), Geopolitical Entity (GPE), Vehicle (VEH), Facility (FAC), Weapon (WEA)
and 6 relation types: ORG-AFF, PER-SOC, ART, PART-WHOLE, GEN-AFF, PHYS. It
contains documents from different domains such as newswire and online forums.
We adopt the same data splits as the previous work [17] (351 documents for
training, 80 for validation and 80 for testing).
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4.2 Implemental Details

Following previous works, we use the standard precision (P), recall (R), and
micro-F1 score (F1) as the evaluation metrics. A relation is correct if the argu-
ments of triplet (e1, r, e2) are correct. Other experimental settings are as follows.
We initialize the BERT encoder layer using the pre-trained BERT-Base-Cased
checkpoint1 which has 12 layers, a hidden size of 768. We use Adam optimizer
with an initial learning rate of 5×10−5. During training, we do warm-up startup
first and employ a linearly decrease with 0.05 as the decay rate. For the model
structure, we adopt 2-layer eRPR-based self-attention after the BERT encoder
layer. The self-attention layer has an identical structure as the layer in BERT.
The relative position representations ωK ,ωV are initiaized randomly with a
uniform distribution. The maximum relative distance is set as δ = 4. The GRC
loss weight is set as λ = 1. The size of entity label embedding is set as dl = 50.
The threshold for multi-head selection η = 0.5.

Specifically, we use both the relaxed and the strict evaluation settings for
comparison. In the relaxed setting, a multi-token entity is correct if at least one
of its comprising token types is correct; a relation is correct if the two argument
entities are correct and the relation type is correct. In the strict setting, we
consider an entity is correct if the entity type and the boundaries are both
correct; a relation is correct if the relation type and the argument entities are
both correct.

4.3 Results and Analyses

Comparison Baseline. As shown in Table 1, we list the following baselines for
comparison. Gupta et al. [11] propose a table-filling based method that relies on
hand-crafted features and external NLP tools. Adel and Schütze [1] use a global
normalized convolutional neural networks to extract entities and relations. Miwa
and Bansal [1] adopt a BiLSTM to extract entities and a Tree-LSTM to model
the dependency relations between entities. Bekoulis et al. [2] propose the multi-
head selection structure, which adopts BiLSTM as the feature encoder and uses
CRF for entity recognition and can extract the relational triplet simultaneously.
The results on CoNLL04 and ACE05 are directly copied from the published
paper.

Main Results. Table 1 presents the performance comparisons on CoNLL04 and
ACE05 datasets. eRPR MHS is the proposed full model, which uses the BERT
at encoder module, and follows by two eRPR self-attention layers and adopts the
GRC strategy. As we can see, our eRPR MHS overwhelmingly outperforms all
the baseline models in terms of all three evaluation metrics on the two datasets.
by a large margin for both entity and relation extraction. Especially, comparing
with the model by Bekoulis et al. [2], our model achieves significant boosts by
2.40% and 1.90% for relation F1 on CoNLL04 and ACE05, respectively. These

1 BERT checkpoints are available at https://github.com/google-research/bert.

https://github.com/google-research/bert
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Table 1. Performance comparison with baselines on CoNLL04 and ACE05. eRPR
denotes models adopt the self-attention with entity-specific relative position represen-
tation at the context fusion module. The ✓ and ✗ marks stand for whether or not the
model builds on hand-crafted features or NLP tools. eRPR MHS is the proposed full
model.

Model Pre-calculated
features

Evaluation Entity Relation

P R F1 P R F1

CoNLL04

Gupta et al. [11] ✓ relaxed 92.50 92.10 92.40 78.50 63.00 69.90

Gupta et al. [11] ✗ relaxed 88.50 88.90 88.80 64.60 53.10 58.30

Adel and Schütze [1] ✗ relaxed - - 82.10 - - 62.50

Bekoulis et al. [2] ✗ relaxed 93.41 93.15 93.26 72.99 63.37 67.01

eRPR MHS ✗ relaxed 94.32 93.81 94.06 73.85 64.41 68.81

Miwa and Sasaki [19] ✓ strict 81.20 80.20 80.70 76.00 50.90 61.00

Bekoulis et al. [2] ✗ strict 83.75 84.06 83.90 63.75 60.43 62.04

eRPR MHS ✗ strict 86.85 85.62 86.23 64.20 64.69 64.44

ACE05

Miwa and Bansal [17] ✓ strict 80.80 82.90 81.80 48.70 48.10 48.40

Katiyar and Cardie [13] ✗ strict 81.20 78.10 79.60 46.40 45.53 45.70

eRPR MHS ✗ strict 86.26 84.66 85.45 60.60 60.84 60.72

results show that, with our enhanced components, i.e., the eRPR layers, the
global relation classification and the BERT encoder, the model performance can
be significantly improved. Such improvements highlight the effectiveness of our
proposed framework.

Ablation Study. As shown in Table 2, we list variant models (Model 1–5) for
each component in our framework. Model 1 stands for the original MHS frame-
work proposed by Bekoulis et al. [2]. By comparison, we come to the following
conclusions. 1) Replacing the BiLSTM with pre-trained BERT can improve the
performance obviously (Model 2 v.s. Model 1). 2) Adding the context fusion mod-
ule after the encoder module can enhance the semantic representation, leading
to higher results (Model 3 v.s. Model 2). 3) Comparing Model 4 with the above
variations, incorporating eRPR into the self-attention structure can significantly
increase the precision of models and thus contribute to better overall F1 scores.
For example, it increases the relation F1 from 63.96% to 64.21% on CoNLL04. We
attribute it to that, the eRPR injects distance information into entity features,
which can provide useful information to the multi-head selection. 4) Comparing
Model 5 and Model 4, the GRC strategy can further improve model performance.
Therefore, global information is instructive for learning local features. Finally,
combining all these components, we achieve significant improvements over the
original MHS.
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Table 2. Ablation study on CoNLL04 and ACE05. APR denotes models adopt the
general self-attention with absolute position representation at the context fusion mod-
ule. eRPR denotes models adopt the self-attention with entity-specific relative position
representation at the context fusion module. The ✓mark refers to the model including
the global relation classification. We use the strict evaluation setting here.

Model Encoder Context fusion GRC Entity Relation

P R F1 P R F1

CoNLL04

1 BiLSTM - - 83.75 84.06 83.90 63.75 60.43 62.04

2 BERT - - 85.75 86.28 86.00 65.15 62.56 63.83

3 BERT APR Layer ×2 - 86.32 85.68 86.00 64.53 63.40 63.96

4 BERT eRPR Layer ×2 - 86.75 85.56 86.15 63.93 64.50 64.21

5 BERT APR Layer ×2 ✓ 86.78 85.66 86.22 64.18 64.30 64.24

6 BERT eRPR Layer ×2 ✓ 86.85 85.62 86.23 64.20 64.69 64.44

ACE05

1 BiLSTM - - 84.88 84.10 84.49 57.40 60.32 58.82

2 BERT - - 85.70 84.25 84.96 59.92 60.06 59.99

3 BERT APR Layer ×2 - 86.18 84.55 85.36 60.23 60.82 60.52

4 BERT eRPR Layer ×2 - 86.24 84.60 85.41 60.57 60.76 60.66

5 BERT APR Layer ×2 ✓ 86.22 84.57 85.39 60.46 60.76 60.61

6 BERT eRPR Layer ×2 ✓ 86.26 84.66 85.45 60.60 60.84 60.72

4.4 Effect of the Maximum Relative Distance

In this subsection, we evaluate the effect of varying the maximum relative dis-
tance δ. Following previous studies [21], we conduct experiments on CoNLL04
with different maximum relative distance δ, increases exponentially from 0 to
64. Figure 4a shows the experimental results. We observe that when δ = 8, the
entity F1 has the best result, and when δ = 4, the relation F1 has the best result.
Meanwhile, the larger value of δ (i.e., δ = 64) is meaningless for both entity and
relation extraction, which verifies that the impacts of tokens beyond a maximum
distance can be negligible. Therefore, to ensure a better performance for relation
extraction, we set δ = 4 for all the experiments.

4.5 Effect of the GRC Loss Weight

In this subsection, we evaluate the effect of different GRC loss weight λ to the
model performance. We keep the maximum relative distance δ as 4 and conduct
the experiments on the CoNLL04 dataset with λ from 0 to 1 at the interval of
0.2. As shown in Fig. 4a, the setting with λ = 0 denotes the GRC is not used in
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Fig. 4. Results for varying the GRC loss weight δ and the maximum relative distance λ.

the framework and its performance is much lower than settings with larger λ In
addition, with the growth of λ, both entity and relation F1 scores are increased
continuously. As such, we keep λ = 1 for all the above experiments. These
comparison results further demonstrate the effectiveness of GRC. Therefore, the
sentence-level information can be utilized fruitfully for multi-head selection and
helps improve the overall performance.

5 Conclusion

In this paper, we propose a relative position representation based multi-head
selection framework for joint entity and relation extraction. Different with the
existing multi-head selection method, we introduce the relative position repre-
sentation to capture the distance information of entities. We then propose a
global relation classification to guide the learning of local features. Additionally,
BERT is incorporated in the framework for semantic representation. Exper-
imental results on CoNLL04 and ACE05 datasets show that our framework
significantly outperforms all the baseline models for both entity and relation
extraction.
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