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Abstract. In this paper we present a new individual measure for the
task of evocation strength prediction. The proposed solution is based on
Dijkstra’s distances calculated on the WordNet graph expanded with pol-
ysemy relations. The polysemy network was constructed using chaining
procedure executed on individual word senses of polysemous lemmas. We
show that the shape of polysemy associations between WordNet senses
has a positive impact on evocation strength prediction and the measure
itself could be successfully reused in more complex ML frameworks.
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1 Introduction

A computational linguist looking for a good description of lexico-semantic sub-
system will reach out to electronic dictionaries and thesauri. Princeton WordNet
is a prominent example of such a computational model of mental lexicon [7].
Unfortunately, the knowledge obtainable from a dictionary is not sufficient to
predict all possible sense relations, especially the associations useful in evocation
recognition. Evocations are simply associations of meanings [3]. These seman-
tic couplings go across different parts of speech and jump from one semantic
category to another [15].

The fact that probably affects evocation recognition is the absence of lexico-
semantic resources other than the ones built up mainly from taxonomic relations
(hyponymy, meronymy etc.). Polysemy is yet another type of semantic related-
ness that could facilitate noticing some hidden associations. It links distant parts
of our lexicon through lexicalised metaphor or metonymy.

Lexical polysemy is a linguistic phenomenon characterised by the coexistence
of two or more semantically related senses tied to the same lemma [14]. Some
words are monosemous and they have only one meaning, e.g. smartphone or
lexical. Polysemous words can express multiple meanings, e.g. castle (‘fortified
building’, ‘imposing old mansion’, ‘rock in chess’) or line (with dozens of mean-
ings). In the actual usage, words may slightly change their (basic) meanings
adjusting to a particular sentence context. This introduces a myriad of contex-
tually motivated meaning shades.
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In many theories semantic nets are used as models of polysemy. Especially,
relational semantics treats related polysemy senses as a kind of semantic net [10]
often called polysemy net (cf. [19]). One particular kind of lexical net is of great
importance to linguists: wordnets. Wordnets have been widely used in experi-
ments regarding polysemy, e.g. [1,9]. In this paper we focus on constructing a
high-quality lexical resource for English based on Princeton WordNet and poly-
semy links, for the needs of recognizing evocation strength. As far as we know,
earlier studies ignored the properties of polysemy nets that could be a source of
useful semantic knowledge.

2 Related Work

Evocation Data Sets. In this paper we use a gold standard evocation data set [3]
that contains a list of paired senses with manually assigned scores representing
association (evocation) strength. Around 120,000 concept pairs were randomly
selected from the set of 1,000 WordNet core synsets. As the data was annotated
by multiple annotators, we averaged the scores assigned to evocation pairs, which
is a standard procedure in the treatment of this resource (cf. [11]).

Wordnets lack the full description of polysemy. Senses are simply enlisted
within different synsets and then integrated with the whole net of paradigmatic
relations (like hyponymy or antonymy), and they remain unrelated, unless they
are linked via taxonomic relations (like auto-hyponymy). On the other hand,
wordnets do contain derivational relations. Why do they then omit polysemy
links representing semantic derivation? If one considers this problem, they imme-
diately discover that this asymmetry is unjustified [13, p. 120, 183].

This weakness of wordnets cannot be easily resolved, since it is not obvi-
ous which senses should be linked together, mainly because of the difficulty in
distinguishing between homonymous and polysemous pairs. Undoubtedly, this
situation affects evocation recognition. If we want to efficiently match associated
senses, we should have as accurate model of mental lexicon as possible.

Evocation Recognition. Evocation recognition is considered a difficult task for
NLP. It is said to be more difficult than similarity/relatedness recognition, since
something more than bare taxonomy structure is needed to sufficiently predict
the evocation strength [6]. Simple WordNet-based similarity measures are very
inefficient in recognizing the strength of evocation [3].

The recent progress in distributional modelling and knowledge-based embed-
dings allowed to design more effective approaches for many different NLP tasks,
and some of them were directly applied to the task of evocation recognition. The
model proposed by Hayashi [11] combined many different features, e.g. wordnet-
based similarity and relatedness features, lexical resource features, and distri-
butional features. Surprisingly, most of them were of the same significance. He
argued that progress in this area could be obtained only by introducing to a
computational model a new high-quality individual measure.

Researchers working on similar tasks, i.e., word associations [4,12], reported
the same conclusions. Knowledge-based similarity measures were performing
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slightly worse, and the best way to achieve higher correlations in the task was
to combine many different individual measures [4].

Polysemy Chains. Polysemy topologies were studied by Ramiro et al. [17] in
the context of English language evolution. Starting from the etymologically first
sense, the authors were able to successfully reproduce the order in which senses
appeared during the millennia of history of the English language. They studied
several net construction algorithms: inter alia – random, prototype, progenitor
and nearest-neighbor ones. In their experiments the latter one achieved the best
results.

3 Polysemy Nets in Evocation Recognition

In our approach a graph for evocation recognition combines Princeton WordNet
with polysemous links extracted from WordNet glosses (sense definitions).1 We
decided to expand the base graph with three different polysemy networks, each
of which might have been treated as a graph model of real lexical polysemy. We
tested the following structures:

– A complete polysemy graph which – for a given lemma – linked all its senses
together (“WN-g-co”). The graph was built for each polysemous lemma exist-
ing in the graph.

– An incomplete graph built by extracting polysemy links from SemCor [5]. We
constructed the second graph out of those sense pairs that closely co-occurred
in the same text (symbol “WN-g-sc”).

– The last model was more sophisticated, as we tried to predict contempo-
rary semantic relations between senses of all polysemous words/lemmas on
the basis of WordNet structure. We used here the nearest-neighbor chaining
algorithm (“WN-g-ch”, Sect. 3.1).

With the graphs we proceeded in the following way:

– We optimised edge weights for each polysemy network type and chose the
best polysemy model (Sect. 3.1).

– We tested the impact of a selected model on the evocation strength recog-
nition within a ML framework (Random Forest and Multi-layer Perception,
Sect. 3.2).

To avoid overfitting the evocation data set was divided into three parts. A
subset of 2,000 evocation pairs was devoted to setting optimal weights in each
polysemy graph (evo2k set). The next subset of 10,000 evocation instances was
used to evaluate the performance of each model in predicting evocation strength,
as well as to perform attribute selection for the Random Forest framework and for
setting the best Neural Network topology (evo10k set). The remaining 108,000
synset pairs (evo108k set) were used as a test set to evaluate our model and
compare the results with [11].
1 WordNet glosses were semi-automatically interlinked with contextually appropriate

synsets, https://wordnetcode.princeton.edu/glosstag.shtml.

https://wordnetcode.princeton.edu/glosstag.shtml
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The Complete Polysemy Graph was constructed out of the list of all WordNet
senses for each polysemous lemma. For a given m-sense lemma l we linked all
its senses, obtaining m·(m−1)

2 bidirectional sense relations.

The SemCor Polysemy Graph. SemCor is a sense annotated sub-part of the
Brown Corpus [5]. The annotations were based on WordNet. We decided to use
this language resource assuming that senses occurring in the same context must
be semantically related. This assumption allowed us to retrieve distributional
properties of word meanings and map them onto WordNet graph. As a domi-
nant direction of each link, we chose the one from the consecutive meaning to
the preceding one, hence in the sequence of sense occurrences (stl,1, s

t
l,2, s

t
l,3, ...)

of the same lemma l taken from the text t we established a polysemy relation
stl,i → stl,(i−1) between neighbouring word occurrences, with an additional con-
straint that inequality stl,i �= stl,(i−1) was fulfilled (i.e., only different senses of
the same lemma were linked).

3.1 Nearest-Neighbor Chaining Algorithm

To evaluate the impact of polysemy nets on evocation strength recognition we
decided to introduce polysemy links between WordNet senses. This task is not
trivial, since the actual shape of polysemy associations still remains mysterious
for the present day linguistics.

Let us consider three different polysemy net topologies tested in this paper.
Figure 1 presents polysemy nets for the word slaughter. A complete graph simply
links all senses together. SemCor-based polysemy net just groups such sense pairs
that co-occur in the corpus, giving rather poor completeness but probably good
precision. The chaining algorithm tries to connect senses that are the closest in
the WordNet graph. The difficulty of the task is demonstrated by a polysemy
net constructed manually on the basis of dictionary descriptions (based on three
contemporary English dictionaries, namely – Oxford Lexico2, Merriam-Webster3

and Cambridge Dictionary4, and on the etymological English dictionary5).
In this paper we adopted the nearest-neighbor approach as presented in [17]

to construct polysemy nets. Ramiro et al. [17] tried to predict the order of
appearance of different word senses in the history of English starting with one
sense given by an oracle (from a historical English dictionary). They found that
the best results were obtained with the use of the chaining algorithm. We applied
their algorithm with two main modifications:

– Since we are not aware which sense should be fixed as the first one, we try to
deduce it from vertex degrees.

– We apply an asymmetric measure of distance in the directed Word-
Net+glosses graph (WN-g).

2 https://www.lexico.com/.
3 https://www.merriam-webster.com/.
4 https://dictionary.cambridge.org/.
5 https://www.etymonline.com/.

https://www.lexico.com/
https://www.merriam-webster.com/
https://dictionary.cambridge.org/
https://www.etymonline.com/
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Fig. 1. Three polysemy net topologies for the word slaughter : complete graph WN-g-co
on the topmost left, SemCor-based WN-g-sc, and the network built with nearest neigh-
bor chaining algorithm WN-g-ch. In the bottom-right corner we present a polysemy
net extracted manually from four English dictionaries (three contemporary and an ety-
mological one), taking into account direct proximity of senses in slaughter entries of
the dictionaries. WordNet definitions are as follows: n-1 – ‘the killing of animals (as for
food)’, n-2 – ‘a sound defeat ’, n-3 – ‘the savage and excessive killing of many people’,
v-1 – ‘to kill (animals) usually for food consumption’, v-2 – ‘to kill a large number of
people indiscriminately ’.

The First Sense Choice. We start with computing the importance scores for each
node (synset) based on a vertex degree measure. To be more specific, we calculate
the vertex degree deg(v) being the harmonic mean of two different vertex degree
measures – the square root of the number of edge instances

√
degi(v) and the

number of edge types degt(v):

deg(v) =
2 × √

degi(v) × degt(v)
√

degi(v) + degt(v)
. (1)

The chaining algorithm starts from the node with the highest deg(v) measure.

Geodesics in Polysemy Nets. For each lemma we compute the shortest paths
in the directed WordNet graph (WN-g) between its senses (synsets). We treat
the length of the shortest path as an asymmetric measure of a distance between
graph vertices (synsets). We denoted this with Dist(v1, v2).

The Chaining Algorithm. Let us assume that we have an m-sense lemma. The
chaining algorithm proceeds in the following way:
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– Step 1: We start with establishing the first sense that has the highest vertex
degree value deg(v). We call such a vertex fixed, i.e., vj = vfix

j iff deg(vj) =
max[deg(vi)], where i ∈ I, I being the set of non-fixed vertices, j ∈ F , F
being the set of fixed vertices.

– Step 2: For each remaining vertex vi, i ∈ I, we check the distances
Dist(vi, v

fix
j ) to all fixed vertices vfix

j , j ∈ F , and establish the edge vl →
vfix
k , iff Dist(vl, v

fix
k ) = min[Dist(vi, v

fix
j )], i, l ∈ I, j, k ∈ F . Again, we call

the newly attached lth vertex fixed, i.e., vl = vfix
l , l ∈ F .

– We repeat Step 2 in a loop until all vertices are fixed. We call the set of edges
{vfix

i → vfix
j }i�=j the polysemy net, where i, j ∈ F = {1, 2, ...,m}. At the end

I = ∅.

Dijkstra’s Distance in Modified Nets. We use the polysemy nets to expand Word-
Net graph. On such modified graph we compute the semantic distance between
concepts (with all edge weights set as 1) using Dijkstra’s shortest path algorithm.
Out of the new distance measure distDijkstra we construct the final evocation
measure DSch:

DSch =
{ 1

distDijkstra
, when distDijkstra ≥ 1

1 , when distDijkstra < 1
(2)

For each synset in the evocation set we calculated the distDijkstra measure
and compared DSch to the evocation strength. The performance of a proposed
similarity measure was evaluated with the use of Spearman’s correlation ρ.

Optimisation. We tested the impact of different cost values of newly introduced
polysemy links on evocation strength prediction. The cost values were used as
weights for Dijkstra’s shortest path algorithm. For WN-g-co and WN-g-sc mod-
els the weights in the graphs were equal to 1.0, then they were multiplied by
optimisation parameters (marked with capital letters A or B). In the case of
WN-g-ch graph, we took the shortest path length (the geodesic) in WN-g as a
base cost (as described above), the basic cost was then multiplied by optimisa-
tion parameters. For WN-g-sc and WN-g-ch one link direction was preferred.
The chaining algorithm set the direction from the newly attached vertex to its
fixed predecessor in a polysemy chain. SemCor links were directed also in a
reversed order, i.e., from the consecutive sense to the preceding one. These link
costs were marked with As. We also inserted the oppositely directed semantic
links, marking them with Bs. All links other than polysemy relations (i.e., tax-
onomic and gloss links) were equipped with the cost of 1. The baseline model
WN-g achieved in such a setting is ρ = 0.218 (see Table 1).

For the complete graph (WN-g-co), we applied only one cost parameter A,
because the graph edges were bidirectional (B = A). The ρ = ρ(A) curve turned
to be discontinuous, which is clearly visible in Fig. 2. When the cost of polysemy
links was lower than 1 (i.e., the constant cost of WordNet taxonomic and gloss
relations), the merged network seemed to perform worse than the WN-g baseline.
Having passed the threshold of 1, the ρ(A) curve suddenly rose, and reached the



798 A. Janz and M. Maziarz

maximum value of Spearman’s correlation ρ = 0.226 for A ∈ [1.525, 1.650],
then slowly descended to get to the baseline value 0.218 at the end of inspected
area (at A = 4). The optimum was obtained in two steps: first, we checked
ρ(A) values for A = 0, 0.25, 0.5, ..., 3.75, 4, second, we concentrated on the range
A ∈ [1, 2] having thickened the mesh five times (A = 1, 1.05, 1.1, ..., 2). Finally,
we took the point Aopt = 1.6 located in the middle of the maximum region as
the approximation of the optimal point.
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Fig. 2. Spearman’s correlation ρ in the function of the cost parameter A for WordNet-
gloss graph expanded with complete lemma polysemy nets. Please note that in the case
of the WN-g-co model B = A, due to the impossibility of distinguishing the preferred
directions in such a graph.

We tested WN-g-sc and WN-g-ch models on the mesh of 11 × 11 points,
magnifying interesting regions with the denser mesh of 9 × 9 points, checking
altogether roughly 200 combinations of parameters A and B. Each net model
was optimised with a visual inspection of level plots (Figs. 3 and 4). We tested
different values of costs in Dijkstra’s algorithm, ρ = ρ(A,B).

For the SemCor-based polysemy graph (WN-g-sc), the maximum point was
thus identified to be near the point A = 0.75, B = 1. The chaining-algorithm-
based polysemy net (WN-g-ch) optimum seemed to be located close to the
(0.425, 0.425) point.

Table 1 presents polysemy network sizes together with the estimations of opti-
mal points and maximum Spearman’s ρ values. The WN-g-co is the biggest one,
but the quality of links is not so high (A = 1.6, which is greater than the basic
cost of 1 for WordNet taxonomic relations and glosses). SemCor-based optimal
graph (WN-g-sc) received lower cost for A (A = 0.875, B = 1), which is not
surprising since the net, though relatively small, is possibly almost completely
error-free. Taking into account that the discovered optimal costs for the WN-
g-ch graph were the lowest, one might argue that the relation set was the best
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Fig. 3. Spearman’s correlation ρ in the function of the cost parameters A and B for
WordNet-gloss graph expanded with polysemy links between word senses co-occurring
in the very same text in SemCor. Top: Correlations for the square [0, 2.5] × [0, 2.5].
Bottom: 2-times magnification of the optimum area.

model. The graph complements the links for all WordNet senses, while WN-g-sc
only for those that co-occurred in the corpus.

Choosing the Best Model. We optimised the parameters of the chaining algorithm
and two other models. The next step was to evaluate these findings on a larger
independent subset of the evocation data set, counting 10,000 evocation pairs,
with the optimal parameter settings (Table 1, evo10k columns). As a baseline,
we have chosen the WN-g (the gloss-expanded WordNet graph).

Table 1. Different variants of polysemy nets: WN-g-co - the complete graph of inter-
sense links, WN-g-sc – the SemCor-based graph of polysemy senses co-occurring in the
same text, WN-g-ch – the chaining algorithm model with a fixed starting point. Results
were obtained on the evo2k tuning data set and evaluated on the evo10k data set.

Polysemy
network

Size [103] Vector of costs
(wWN , wg, A, B)

ρ evo2k ρ evo10k r evo10k

WN 0.0 (1,1,-,-) 0.138 .149 .215

WN-g 0.0 (1,1,-,-) 0.218 .183 .237

WN-g-co 377.7 (1,1,1.6,1.6) 0.226 .181 .239

WN-g-sc 28.6 (1,1,0.875,1) 0.235 .195 .251

WN-g-ch 110.0 (1,1,0.425,0.425) 0.242 .198 .263
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Fig. 4. Spearman’s correlation in the function of the cost parameters A and B for
WordNet-gloss graph expanded with polysemy links between word senses obtained
through the chaining algorithm. Top: Correlations on the square [0, 2.5]× [0, 2.5]. Bot-
tom: 5-times magnification.

The comparison was performed with the use of a bootstrap percentile method
(B = 1, 000 repetitions). The evaluation setting is presented in Table 2 (m = 7
is a number of comparisons). Both the chaining algorithm (WN-g-ch) and the
SemCor-based model (WN-g-sc) turned out sufficient in beating the baseline
model WN-g and a large complete graph (WN-g-co model). Polysemy chains
were not significantly better than a smaller SemCor co-occurrence model. The
semantic network built from SemCor seemed to be incomplete, though. The cor-
pus itself missed many valuable sense associations. Having taken into account
the advantages of our chaining procedure which produced at least as good pol-
ysemy model and yet a more-complete polysemy network, we decided to choose
the WN-g-ch model for further experiments.

3.2 Chaining Algorithm in Evocation Recognition

The modified graph WN-g-ch contains semantic links introduced by applying the
chaining procedure to polysemous words. We use the new resource and our new
similarity metric to compute additional feature set for evocation strength predic-
tion. The additional features (mainly the DSch feature, but also few frequency-
based features) were used as an expansion for the feature set proposed by [11].
We mark the additional features by a cross symbol in Table 3.

The features proposed by Hayashi [11] were based on different language
resources. We implemented some of the similarity measures as described in the
original work (e.g. the cosine similarity of AutoExtend sense representations
using the same pre-trained model, symbol: cosAE ), or replaced the remaining
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Table 2. P -values of the one-sided paired bootstrap test for the difference between ρ
values (DSch measure, B = 1, 000 repetitions). Alternative hypotheses are formulated
in the following manner: ‘a row is greater than a column’, with an exception of the
WN/WN-g comparison which has the hypothesis reversed. Statistical significance was
calculated through Benjamini-Hochberg procedure at the confidence level of 95% (m =
7 comparisons). We mark statistically significant results with asterisks.

Graph WN-g WN-g-co WN-g-sc

Type ρ .183 .181 .195

WN .149 0.000* — —

WN-g-co .181 0.647 — —

WN-g-sc .195 0.014* 0.016* —

WN-g-ch .198 0.01* 0.005* 0.354

functions with equivalent measures (e.g., Wu-Palmer similarity of lexicalised
concepts was replaced by the Jaccard similarity measure, also calculated on
WordNet). To predict evocation strength we followed the same approach and
we treated the task as a regression problem. We used two different regression
models: i) a regressor based on Random Forest framework, and ii) a regressor
based on Feed-Forward Neural Network.6 The final feature set that was used to
train our models is presented in Table 3.

– Frequency index FREQsc(s) represents the frequency of a given lemma sense
s computed on the basis of the SemCor corpus.

– Frequency-based score FRANic(s) represents a fraction of the overall fre-
quency FREQic of lemma l computed for each of its senses s, where the final
score is inversely proportional to sense variant (as they were ordered in Word-
Net). The lower sense variant number V AR(s) was (e.g. 1st, 2nd, 3rd, ...), the
bigger fraction of the frequency FREQic(l) it received:

FRANic(s) =
FREQic(l)

(V AR(s) + 1)
. (3)

We used the frequencies provided by an internet corpus of English7.
– The Jaccard Index JaccSim(s, t) is the number of common neighbors divided

by the number of nodes that are the neighbors of at least one of input senses
(source or target) being considered.

– Dist(s, t) is the length of the shortest path between source and target synset
(cf. the description in the previous section).

– GlossDice(s, t) represents Dice similarity measure based on glosses. The mea-
sure is computed using all the neighbours in the vicinity of k = 3 steps from
source and target concepts. We take all of the senses appearing in the glosses

6 The experimental part was conducted in WEKA framework [8].
7 Published by Centre for Translation Studies, University of Leeds: http://corpus.

leeds.ac.uk/list.html, CC-BY licence.

http://corpus.leeds.ac.uk/list.html
http://corpus.leeds.ac.uk/list.html
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Table 3. Prediction of evocation strength (individual features): 5-fold cross-validation
on the set of 108,000 evocation pairs. Symbols: DV - corpus-based distributional vec-
tors, KB - knowledge-based measures, KV - WordNet-based vector spaces. All numbers
represent Pearson’s r correlations. Hayashi’s data are given for the whole 120,000 pair
evocation set. The features marked with an asterisk sign were implemented after [11].

NN RF

DV features:

cosFT 0.1980 0.1247

cosGV 0.2487 0.1547

FRANic 0.0663 0.0626

FREQsc 0.0510 0.0420

KB features:

Dist 0.1823 0.2476

GlossDice 0.1288 0.0403

JaccSim 0.1131 0.1178

DSch 0.2596 0.2688

KV measures:

cosAE* 0.2122 0.1239

relVecAE* 0.0341 —

posSem* 0.1428 0.1731

All features 0.4415 0.4363

Hayashi (2016) 0.4391 0.3695

of source and target entities as well as the senses from glosses of their neigh-
bours.

– The posSem(s, t) feature is inspired by the work of [11], with a minor alter-
ation – instead of 5 PoS we have 4 PoS.

– cosFT (s, t), cosGV (s, t), and cosAE(s, t) represent the cosine similarity of
vector space representations of source and target concepts s and t computed
using fastText [2], GloV e [16], and AutoExtend [18] embeddings.

– relVecAE - a 300D vector of differences between two AutoExtend vector
embeddings (each for one sense in an evocation pair).

The last feature was removed from the RF feature set after preliminary exper-
iments on the evo10k data set, since using word (or sense) embeddings directly
as feature vector did not improve the quality of the model. In the NN framework
the impact of AutoExtend vector differences was positive, though small.

Final Results. In all paired t-tests our DSch measure proved to behave bet-
ter in predicting the evocation strength than any other individual measure at
5% significance level (with Benjamini-Hochberg correction, Table 3). Without
Hayashi’s original validation folds we were unable to compare the final perfor-
mance in a direct way – for our NN model we have obtained the absolute mean
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value of Pearson’s r correlation slightly higher than that of Hayashi’s NN [11]
(see Table 3), but the one-sided one-sample t-test was inconclusive (p-value above
0.05). We were able to prove better performance of both our NN i RF models
over Hayashi’s RF model at the significance level of 0.001.8

4 Conclusions and Further Work

In this paper we presented a novel method of expanding WordNet with poly-
semy links based on the nearest-neighbor chaining algorithm. We have proven
that the new lexical resource facilitates evocation recognition, compared to com-
petitive WordNet-based graphs. We also re-used it successfully within the Neural
Network and Random Forest frameworks. We proved that the polysemy-based
Dijkstra’s distance measure was quite efficient in recognizing evocation, espe-
cially when compared to efficiencies of other knowledge-based measures.

Hayashi [11] believed that the real progress in evocation strength recogni-
tion could be obtained through merging diverse language resources representing
different aspects of human linguistic competence. In this work we focused on a
small piece of the puzzle, namely lexical polysemy links. Since we did not uti-
lize all Hayashi’s features (e.g., the LDA topic modelling measure), there is still
space for further improvements.

Applications of the polysemy expanded WordNet go beyond detecting evo-
cation strength. We plan to verify its usefulness in similarity recognition tasks
as well as Word Sense Disambiguation.
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