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Abstract. The convolutional neural networks have reached great
achievements in solving the challenging problems of computer vision
tasks, such as image classification, object detection, semantic segmen-
tation. The core element of CNNs is the convolution operation, which
gathers important features by constructing pixel relationships in a local
region. Even though CNNs are universally exploited in visual feature
understanding, they still have drawbacks due to that the receptive field
is restrained inside local neighborhoods by the physical construction of
the convolution layer. The Non-local Network introduces a novel method
for modeling long-range dependencies to remedy the local neighborhood
problem, which computing the correlations between the query position
and all positions to capture global context features and then performing a
weighted sum of the features at all positions. As a complementary part of
the Non-Local Network, the proposed method called Bidirectional Non-
local operation designs the bidirectional relationship, which the informa-
tive feature at a specific-query position is gathered and distributed to all
positions. Notably, this work relaxes the Bidirectional Non-local com-
plexity by simplifying the network based on the same attention maps for
different query positions. To evaluate the effectiveness of the proposed
method, the Bidirectional Non-local block is embedded into the back-
bone network of the detector Mask R-CNN. Without bells and whistles,
the integrated network achieves 0.9 points higher Average Precision than
Global Context Network on the major baseline.

Keywords: Bidirectional non-local networks · Non-local networks ·
Object detection

1 Introduction

Object detection is one of the most vital and challenging problems in under-
standing the visual world. Object detection consists of two tasks. The first
task is to classify what objects inside the given images. The second task is
to determine where objects locate. Object detection has been widely utilized in
many applications, such as autonomous cars, robot vision, intelligent surveillance
systems.
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Currently, the rapid development of deep learning techniques, remarkably
Convolutional Neural Networks (CNNs), has brought a bright future in the com-
puter vision task (e.g., image classification, object detection, instance segmen-
tation), as an efficient approach for automatically extracting feature representa-
tions from the visual world (e.g., images, videos).

Due to the physical design of the convolution operation, the receptive field is
constrained to the local regions. To remedy this problem, capturing long-range
dependency is helpful for extracting the global contextual feature of visual data.
In CNNs, long-range dependencies are modeled by deeply stacking many convo-
lutional layers to enlarge the receptive field. Nonetheless, repeating many con-
volutional layers is not an effective way, increasing the computational cost. Fur-
thermore, this strategy leads to the difficult optimization that is time-consuming
to converge to global points.

Fig. 1. Illustration of bidirectional information paths. They gather the features of
all key positions to form an attention map. Another information flow distributes the
information of query positions to all key locations.

The non-local network NLNet [16] introduces the non-local block inspired
by non-local operation [1], modeling the long-range dependency. A non-local
operation calculates the correlation between a query position and all positions
and then gathers the feature of all positions by weighted average (Fig. 1(a)).
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Therefore, the relationship between each pairwise is not bidirectional. As a com-
plementary of the non-local block, the proposed method, named BNL, presents
the bidirectional information paths (Fig. 1(c)) for understanding complex visual
world, not only aggregates the feature of all query position to model global
context but also distributes the important information at each position to key
positions globally.

The global context network GCNet [2] investigates the simplified version of
the non-local block based on the query-independent attention map for all posi-
tions. This simplified network dramatically reduces the number of parameters
when compared with the non-local network but still maintaining accuracy. Based
on the study of the global context network, this paper also relaxes the computa-
tion cost of the non-local block but surpasses the efficiency of the global context
network and non-local network with only a slight increase of the computational
cost.

The Bidirectional Non-local (BNL) block applies to any existing architecture
of the backbone networks. To perform the improvement of the proposed method,
this block is inserted into the residual block of the ResNet [5]. This work conducts
the experiment on the MS-COCO dataset [10] for the object detection task. As
mentioned, the proposed method achieves significant improvement, outperform-
ing the Mask R-CNN [4] + GC block, Mask R-CNN + NL block by 0.9% in
Average Precision (AP).

2 Related Work

CNNs have been one of the most popular research in the computer vision
field since acceptably designing networks guarantee a significant improvement
in image classification [5,6,14], object detection [4,7,9–13], segmentation [4,17].

With the accelerated development of deep learning, object detection has
improved both accuracy and speed. The goal of object detection is to classify
what objects inside the given images and localize where objects on. Based on
the number of networks, object detection task consists of two types, the two-
stage method, and the one-stage method. The two-stage method [4,12,13] first
creates a set of proposals by region proposal networks (i.e., uses the anchor gen-
erator on each center of sliding window) and assigns each ground-truth to each
proposal identifying negative proposals or positive proposal. Then the second
network classifies each anchor by classification networks and refines coordinates
of the proposals by learning offset. Whereas the two-stage method, one-stage
method instead of region proposal network creating anchors, they densely place
anchors with different size and aspect ratio on each position. Then the classifi-
cation network and localization network form the final detection with a specific
class and bounding boxes. Faster R-CNN [13] is the two-stage method, one of
the most popular architectures in the computer vision task related to detection.
Inspired by the Faster R-CNN method, many architectures such as Mask R-CNN
[4], Libra R-CNN [12], TridentNet [7] have introduced. Mask R-CNN adds one
branch into Faster R-CNN to predict the mask for the segmentation task. In this
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paper, the BNL inserts into the backbone ResNet [5] for object detection based
on the detector Mask R-CNN method.

Owning to the restricted receptive field of convolution operation, Non-local
network [16] proposes a new method capturing long-range dependencies based
on the attention mechanism [15] and the non-local filter [1] to extract the global
understanding of the visual world. The relationship between key-query position
and query position is not bidirectional, gathering the information at each query
position from all key-query position. Although this operation is effective, but
still a high computational cost. Global context [2] studies the query-independent
attention map for all positions. They only use one query position to form one
attention map (i.e., corresponding to one output channel of the kernel) that
represents all attention maps for other positions. From this characteristic and
inspired by SENet [6], GCNet drastically reduces the number of parameters
of the non-local block but still maintains the accuracy of non-local networks.
Different from the non-local block and global context block, the proposed method
introduces a bidirectional non-local (BNL) block that aggregates the feature
at each position from all positions vice-versus distributes the information path
at each query position to all positions (Fig. 1). Moreover, this work, inheriting
the observation of GCNet, relaxes the high computational cost but surpasses
the accuracy of the non-local network and global context network with a slight
increase of the computational cost.

3 The Proposed Method

3.1 Non-local Network

To design the BNL, this section visits the non-local block [16]. As mentioned in
Sects. 1 and 2, the non-local block gathers the feature information at each query
position from all key positions. Equation 1 expresses this relationship as

zi = xi + Wz

H∗W∑

j=1

ωi,j (Wv xj) (1)

where xi denotes the query position, xj is the key query positions. H*W is the
number of key positions in the input feature map. Wz and Wv are a 1 × 1
convolution operation. zi presents the output of this block. ωi,j is the correlation
between the query position xi and xj, presents four types, namely Gaussian
function, Embedded Gaussian, Dot product, and Concatenation. In this paper,
BNL inherits the advantage of Embedded Gaussian that forms the attention map
(i.e., highlights the important regions and suppresses the unnecessary parts). The
Embedded Gaussian is calculated as Eq. 2.

ωi,j =
exp(〈Wqxi, Wkxj〉)∑
m exp(〈Wqxi, Wkxm〉) (2)

where Wq, Wk is 1 × 1 convolution operation. The overall computation of
non-local block, as shown in Fig. 2(a). The non-local block models the global
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contextual feature, which performs a weighted sum from all key positions based
on query attention maps to each query position. Hence, the relationship at pair-
wise positions is not bidirectional. From this observation, the proposed net-
work constructs the bidirectional relationship between query positions and key
positions.

Fig. 2. (a) shows the non-local block. (b) expresses the squeeze-excitation network
[6].

⊗
denotes matrix multiplication,

⊕
denotes matrix summation and

⊙
denotes

broadcast element-wise multiplication.

3.2 Bidirectional Non-local Network

In the Eq. 2, there are many key query positions and query positions in the
feature map. It leads to a large number of the computation between xi and xj.
Hence, the non-local block is simplified by approximation strategy. The first, the
function ωi,j is converted as

ωi,j ≈ ωi =
exp(Wqxi)∑

m exp(〈Wqxi, Wkxm〉) (3)
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Fig. 3. (a) shows the global context block. (b) presents the bidirectional non-local
block, left part is ωi, right part is ωj.

⊗
denotes matrix multiplication,

⊕
denotes

matrix summation and
⊙

denotes broadcast element-wise multiplication.

In the Eq. 3, the information path from key query position j to query position
i is only related to attention map at the query location i and the correlation of
i and j. To model the attention map, the function ωi is transformed to softmax
function by ignoring Wqxi in the denominator.

ωi,j ≈ ωi =
exp(Wqxi)∑
m exp(Wkxm)

(4)

Correspondingly, the function ωi,j is simplified as

ωi,j ≈ ωj =
exp(Wkxj)∑
m exp(Wkxm)

(5)

In the Eq. 5, the information path from key query position j to query position
i is only related to attention map at the key query location j and the correlation
of i and j. Especially, the function ωj is the same formula of the global context
block [2] (Fig. 3(a)). It means that the global context block is a special case of
the proposed method named bidirectional non-local network (BNL).
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Fig. 4. Illustration of simplified bidirectional non-local block.
⊗

denotes matrix mul-
tiplication,

⊕
denotes matrix summation and

⊙
denotes broadcast element-wise

multiplication.

Finally, the bidirectional information path is formed as

zi = xi + Wz

H∗W∑

j=1

ωi (Wv xj) + Wz

H∗W∑

j=1

ωj (Wv xj) (6)

The second term shows that each query position gathers the feature from other
positions. The third term presents that each query position distributes the fea-
ture to other positions. Figure 3(b) shows the bidirectional non-local block.

Notably, the global context network [2] proposed the query-independent
attention map for all positions. The proposed method relaxes the computational
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cost by inheriting this observation of GCNet. Furthermore, the Wz is removed,
and the Wv is moved out, as showed in Fig. 4.

4 Experiment Setup

The proposed method conducts the experiments on challenging MS-COCO 2017
[10] for the object detection task. This dataset includes 115k images (80k images
of training set + 35k images of validation subset) for training, 5k validation
images for selecting the best hyper-parameters, and 20k images for testing.
Because the ground-truth annotation of the test set did not publish, the result
is submitted to the protocol system. The metrics are used through standard
Average Precision (AP) and Average Recall (AR).

All experiments are implemented with the Pytorch framework. The BNL
block is applied to stage c3, c4, c5 of the backbone network ResNet-50 [5]. The
object detector is Mask R-CNN [4] with the neck FPN [8].

The Mask R-CNN is configured by following the standard setting of the
mmdetection [3] with 12 epochs. The integrated model is trained with a batch
size of 8 on one NVIDIA Titan GPU, CUDA 10.2, and CuDNN 7.6.5. The initial
learning rate is 0.01 from 1st epochs to 8th epochs. It will decay by a factor of
10 at 9th epochs and 10th epochs. The input image is resized to 1333 × 800.

5 Results

Comparison with State-of-the-Art. The BNL block is inserted into the
architecture Mask R-CNN with the backbone ResNet-50 and the neck FPN.
The integrated model with the stronger backbone ResNet-50 + BNL evaluates
on MS-COCO test-dev set and compares the experimental results with the state-
of-the-art object detectors in Table 1. The learning schedule is 1× for training the
model with 12 epochs and 2× for training the model with 24 epochs. The ResNet-
50, ResNet-50(a) denotes pytorch-style and caffe-style backbone, respectively.

The proposed method, BNL block embedded into the backbone network
ResNet-50 (i.e., ResNet-50+BNL) of the object detectors Mask R-CNN achieves
39.3 AP, which increases 0.9% higher AP than GCNet with the backbone ResNet-
50+GC achieves 38.4 AP without bells and whistles. Especially, the integrated
method outperforms the baseline Mask R-CNN with an improvement rate of 2%.
Furthermore, the proposed method has surpassed most object detectors with the
same backbone, neck FPN, and learning schedule, e.g., AP of Faster R-CNN [13]
with ResNet-50 is 36.4, AP of RetinaNet [9] is 35.6, AP of [4] is 37.3. The per-
formance on test-dev set pointed out that the strong baselines are boosted by a
large margin when applying the GNL block to stage c3, c4, c5 of the backbone
ResNet-50. These results prove the efficiency of the proposed method.

Figure 5 visualizes the qualitative results of the proposed method on the
MS-COCO validation set with three levels of the dataset.
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Table 1. Results on test-dev set 2017.

Method Backbone Schedule AP AP 50 AP 75 APS APM APL

Faster R-CNN [13] ResNet-50 1× 36.4 58.4 39.1 21.5 40.0 46.6

Faster R-CNN ResNet-50(a) 1× 36.6 58.5 39.2 20.7 40.5 47.9

Faster R-CNN ResNet-50 2× 37.7 59.2 41.1 21.9 41.4 48.7

RetinaNet [9] ResNet-50 1× 35.6 55.5 38.3 20.0 39.6 46.8

RetinaNet ResNet-50(a) 1× 35.8 55.5 38.3 20.1 39.5 47.7

RetinaNet ResNet-50 2× 36.4 56.3 38.7 19.3 39.9 48.9

Mask R-CNN [4] ResNet-50 1× 37.3 59.0 40.2 21.9 40.9 48.1

Mask R-CNN ResNet-50(a) 1× 37.4 58.9 40.4 21.7 41.0 49.1

Mask R-CNN ResNet-50 2× 38.5 59.9 41.8 22.6 42.0 50.5

GCNet [2] ResNet-50+GC 1× 38.4 59.3 41.8 21.6 41.7 49.8

Ours ResNet-50+BNL 1× 39.3 61.6 42.7 22.8 42.0 49.2

Fig. 5. The qualitative results of the proposed method on MS-COCO validation set.

Ablation Study. This work studies the importance of each component in the
BNL block. The proposed method consists of gathered information block ωi

and distributed information block ωj. The first, the BNL module investigates
the efficiency of the gathered information block by removing the distributed
information block and otherwise.

Table 2 analyzes the impacts of each component in the BNL module. This
experiment gradually inserts the gathered block and distributed block on the
ResNet-50 Mask R-CNN baseline. The gathered component inheriting the advan-
tage of the global context block improves 1.1% higher AP than the ResNet-50
Mask R-CNN baseline. The distributed component increases 0.5% from 37.2
AP to 37.7 AP. This block is lightweight due to that this component only used
two 1 × 1 convs with a little of parameter. When combining gathered block
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and distributed components into the BNL block, the accuracy of the integrated
model is gained by a large margin of 1.9% over the baseline.

Table 2. The impacts of each component in the BNL block. The result reports on the
validation set.

Gathered Distributed AP bbox AP 50 AP 75 APmask AP 50 AP 75

37.2 59.0 40.1 34.8 55.4 35.9

� 38.1 60.0 41.2 34.9 56.5 37.2

� 37.7 59.4 40.6 34.5 56.0 36.1

� � 39.1 61.4 42.3 35.3 57.7 37.3

6 Conclusion

In this paper, the proposed Bidirectional Non-local (BNL) block studies the
effectiveness of the gathered information block and the distributed information
block. The gathered information block gathers the feature of all query position
to capture long-range dependencies. The distributed block distributes important
information at each position to key positions globally. By fusing two information
propagation flows, the proposed methods not only encodes long-range depen-
dencies by computing the correlation between each pair of query position but
also considers the relative location of it. The experimental results demonstrate
the significant improvement of the BNL block when applying to the backbone
ResNet-50 of detectors Mask R-CNN baseline. Without bells and whistles, the
integrated model brings 0.9 points higher AP than the GCNet and 2.0 points
higher AP than the Mask R-CNN baseline.
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