
Fundamentals of Generalized and
Extended Graph-Based Structural

Modeling

Marcin Jodłowiec(B) , Marek Krótkiewicz , and Piotr Zabawa

Department of Applied Informatics, Wrocław University of Science and Technology,
Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland

{marcin.jodlowiec,marek.krotkiewicz,piotr.zabawa}@pwr.edu.pl

Abstract. The subject of the paper is connected to defining data struc-
tures, which are or can be used in metamodeling and modeling disci-
plines. A new and general notion of Extended Graph Generalization has
been introduced. This notion enables to represent arbitrarily complex
such the structures. A way of introducing constraints, which allows to
reduce this general form to any well known structure has been introduced
as well. As the result of the extension and generalization mechanisms
applied to the original graph definition any form of graph generalization
exceeding well-known structures can be defined. Moreover, the way of
associating any form of data to each such structure has been defined.
Notions introduced in the paper are intended to be used while defining
novel family of metamodels.

Keywords: Graph ⋅ Hypergraph ⋅ Multigraph ⋅ Data modeling ⋅
Graph generalization ⋅ Graph extension ⋅ Metamodeling

1 Introduction

The paper is dedicated to the subject of defining abstract structures in the
context of data modeling. These structures are or may be apllied in the disci-
plines of data modeling, knowledge representation as well as defining modeling
languages and models in these languages. The last area is applied in software
engineering and can be used for the model-driven automated generating of soft-
ware systems [9]. In the software engineering domain there are some commonly
known standards, which are continuously developed by the Object Management
Group (OMG), like the Meta-Object Facility (MOF), Unified Modeling Lan-
guage (UML) and the remaining standards, which support the approach to the
software development processes contained in the concept of the Model-Driven
Architecture (MDA) [11]. The approaches and standards mentioned above are
based on the graph notion in its basic version, which limits the full use of the
complete potential of the modeling as long as the basic data structures are used.

A graph is composed of the two fundamental semantic categories: Vertex – a
connected element and Edge – a connecting element. The Vertex type elements
c© Springer Nature Switzerland AG 2020
N. T. Nguyen et al. (Eds.): ICCCI 2020, LNAI 12496, pp. 27–41, 2020.
https://doi.org/10.1007/978-3-030-63007-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63007-2_3&domain=pdf
http://orcid.org/0000-0001-7387-9210
http://orcid.org/0000-0002-3512-739X
http://orcid.org/0000-0002-5078-9869
https://doi.org/10.1007/978-3-030-63007-2_3

28 M. Jodłowiec et al.

have the only ability to be connected, while the Edge type elements have the
only ability to connect the Vertex type elements. In the case of the classical, pri-
mal graph an Edge may connect exactly two Vertex type elements. This concept
has been developed and reached many solutions. There are many concepts of
structural world representations, which are known from the scientific literature
like graphs and hypergraphs [3,13] and scientific research dedicated to the more
general structures, like ubergraphs [6] is carried out. These structures are needed
for modeling phenomena not only in the field of information systems but also
in many different areas (see e.g. [10]). This research forms a deep groundwork
for elaborating tools and standards used for data modeling [4]. The structures,
which are more general than graphs are also applicable for the problems con-
nected to data modeling like e.g. constructing intermediate models used for the
transformations of data models expressed in different metamodels [2].

In contrast to the approaches, which just adapt existing formalisms or extend
them, in this work it was decided to make a systematization of the extensions
and generalizations needed at modeling through the proposing a new approach
to the graph-based modeling. As the result of observations made when defin-
ing own metamodels the authors came into conclusion that the graph notion is
too simple (in the semantic sense) and it should be generalized to reduce some
important limitations as well as extend to some extra elements, which allow for
enriching the graph semantics. The graph notion is however a very good start-
ing point for developing generalizations and extensions mentioned above. An
extended and generalized structure, which is common for many concepts cited
above is presented in the paper. It may form a basis for constructing arbitrary
data structures applicable in the computer science. A decomposition of the iden-
tified features of the proposed structure into generalizations and extensions is
also introduced in the paper. The introduced concept assumes a far-reaching
flexibiliy with regard to configuring meta-structures through the flexible choice
of particular generalizations and extensions. With this approach it is possible to
create the whole family of meta-structures adapted to the specific needs. The
defined solution covers also the known concepts like graph, mutligraph, hyper-
graph, ubergraph reducing them to the one, coherent, complementary, universal
form, which in turn has important additional features.

The required general graph structure named Extended Graph Generaliza-
tion (EGG) is introduced and defined in the paper, first with the help of a set
theory based formal definition contrasted with analogical graph definition and
then - with the abstract syntax expressed in the UML together with the con-
straints specified in both natural language and in the Object Constraint Lan-
guage (OCL). The semantics of abstract syntax elements is also specified in
natural language. Moreover, the concrete syntax is introduced to allow defining
EGG in a graphical form. The EGG application is presented on the example of
interrelationships in a social network.

Fundamentals of Generalized and Extended Graph-Based 29

2 Formal Definitions

The following section shows formal definition of a graph and extended and gen-
eralized Extended Graph Generalization structure proposed hereby. A graph has
been defined in a standard way, focusing on its two fundamental sets: Vertex,
Edge.

Definition 1. A graph G is an ordered pair of a set V of vertices and a set E
of edges. It is written as:

G = (V,E), (1)

where
∣V ∣ = n, n ∈ N+, ∣E∣ =m, m ∈ N. (2)

Each edge e ∈ N
e = {va, vb}, ∣e∣ = 2 (3)

is such the multiset of vertices

va, vb ∈ V, 1 ≤ a, b ≤ n. (4)

Analogously to graph, a multi-graph is defined as an ordered pair of a set V
of vertices and a multiset E of edges.

The EGG structure comprise all the extensions and generalizations proposed
for a Graph. The EGG definition has been supplemented by a unique identifier
id. It is essential for distinguishing Vertex, Edge and EGG instances.

Definition 2. An Extended Graph Generalization EGG is an id, tuple of a set
V of vertices, a set E of edges, set of nested Extended Graph Generalizations
EGGN , and set D of data. It is written as:

EGG = (id, V,E,EGGN ,D), (5)

where id is a unique identifier,

∣V ∣ = nV , nV ∈ N, (6)

∣E∣ = nE , nE ∈ N, (7)

∣EGGN
∣ = nEGG, nEGG ∈ N, (8)

nV + nE + nEGG ≥ 0. (9)

Each vertex v ∈ V is a tuple of an id, and a set of data Dv:

v = (id,Dv). (10)

Each edge e ∈ E is a tuple of an id, a multiset Ce of connection tuples, and a
set of data De:

e = (id,Ce,De), (11)

30 M. Jodłowiec et al.

where
Ce = {(μa, θa), (μb, θb), (μc, θc), . . .}, ∣Ce∣ ≥ 0, (12)

where

μa, μb, μc, . . . ∈ V ∪E ∪EGGN , (13)

θa, θb, θc, . . . ∈ {EdgeToElement,ElementToEdge,Bidirectional}. (14)

EdgeToElement, ElementToEdge, Bidirectional represent direction of naviga-
tion i.e. possibility of traversing from one EGG element to another. μa, μb, μc, . . .
represent elements of EGG i.e. vertices, edges and nested Extended Graph Gen-
eralizations. For the sake of brevity, it was assumed that: EdgeToElement ≡ →,
ElementToEdge ≡ ← and Bidirectional ≡ ↔.

Set D of data:
D = {dx, dy, dz, . . .}, ∣D∣ ≥ 0. (15)

Each of dx, dy, dz, . . . is an abstract concept which represents data with any
internal structure.

3 Extended Graph Generalization Abstract Syntax

The abstract syntax of Extended Graph Generalization expressed in UML 2.5.1
and OCL 2.4 is presented on Fig. 1. The fact that Extended Graph Generalization
is the set of entities of Element abstract type belongs to its most important
features. According to the polymorphism concept each Element type entity is of
exactly one type: Vertex, Edge or EGG. Moreover, each Element type entity may
contain a set of an arbitrary number of abstract Data type entities.

Generalization-related constraints:

– not hyper [nH] – the connection arity limit, which must be = 2; the multi-
plicity constraint 2 for the connection property belonging to Edge
context Edge inv: self.connection -> size() = 2

– not ultra [nU] – connecting other connections excluded; no generalization
between Edge and abstract category Element

– not multi [nM] – the elements cannot be multiply connected by the same
connecting element; the uniqueness of connection property elements in the
Edge
context Edge inv: self.connection -> isUnique(e : Element | e.id)

– not shared aggregation [nS] – Element type entities may belong to
exactly one EGG; the shared aggregation end in the association between Graph
and Element has the multiplicity constraint equal to 1

context Element inv: self.graph -> size() = 1

The EGG is presented formally in Sect. 2, while in Sect. 3 the Extended Graph
Generalizations abstract syntax is shown. In both cases a convention based on
the complete EGG form that is the one having all generalizations and exten-
sions is assumed. As the result, both approaches are possible: adding particular
generalizations and extensions to the fundamental Graph structure like shared

Fundamentals of Generalized and Extended Graph-Based 31

Fig. 1. Extended Graph Generalization abstract syntax expressed in UML 2.5.1 and
OCL 2.4

aggregation or adding their negations marking the exclusions of a particular
generalization or extension from the complete EGG like not shared aggrega-
tion.

EGG constitutes a set of the Element abstract type entities. The set may be
empty, which means that an EGG having no elements may exist. It is also
important that each Element entity must belong to at least one EGG entity
and it may belong to many EGG entities as well. It guaranties realization of
the shared aggregation feature. The EGG itself is an Element specializa-
tion, which provides the possibility of nesting the Graph type entities. In the
consequence, the EGG constitutes the first class semantic category (first
class citizen) [12] in the EGG, which in turn means that EGG as well as Vertex
and Edge can be connected using Edge.

Vertex is the Element abstract type specialization. Vertex is a first class category
in EGG and Vertex, EGG, and Edge can be connected using Edge.

Edge is the Element abstract type specialization, which guaranties realization
of the ultra feature. According to [1] the Edge is of the same importance in
representing data structures as the Vertex is. It has the connection property,
which joins Element abstract type entities. Edge may contain any number
of elements, which provides the realization of hyper feature. The case in
which Edge does not join any Element type entity is also allowed. There is no
limit for joining the same elements many times by the connection property,
which in turn corresponds to the fature specified as multi. In other words,

32 M. Jodłowiec et al.

each Element type entity may be connected with the help of the connection
property by any number of Edge type entities.

Data has the abstract type, that is it requires a concretization by concrete data
structures. The Data type entities are contained also in abstract type entity
Element. It means that Data type entities are contained in such entities like
EGG, Vertex or Edge. It should be remarked that being a part of Data type
entity does not have exclusive character, that is thay may be shared between
other entities. This category provides data feature.

Element has abstract character and requires a concretization by one of the
following structures: EGG, Vertex or Edge. The Element type entities are con-
tained in EGG type entities. This association does not have exclusive charac-
ter, that is Element type entities may belong to many EGG type entities while
they should belong to at least one of them. The Element type entities may be
connected by any number of Edge type entities through the connection prop-
erty belonging to Edge. The Element type contains the id attribute, which is
the unique text chain.

connection is the property contained in Edge type. The association class, which
joins Edge with Element contains the Navigability type navigation attribute.
It provides the navigable feature.

4 Extended Graph Generalization Features

The basic, classical graph (1) has connected element and connecting element and
for the purpose of discussion in the paper it constitutes the basic structure, the
basis and fundament for other generalizations and extensions. A set of general-
izations and extensions being the essence of the Extended Graph Generalization
is presented below.

Generalization is a removal of constrains existing in Graph while extension
is an addition of new elements to the Graph, i.e. the EGG as a new semantic
category, Data and Navigability.
Generalizations:

– hyper (H): the lack of the limit on the connection arity, which may be
≥ 0. Realized by the 0..∗ multiplicity constraint for the connection property
belonging to the Edge.

– ultra (U): the possibility of joining different connections. Realized by the
generalization between the Edge and the Element abstract category. It is
related to the 12, 13 i 14 expressions in the formal definition.

– multi (M): the elements may be connected multiple times by the same con-
necting element. Realized by the lack of the constraint to the uniqueness of
the connection property elements in the Edge. It is related to the statement
that E is a multiset.

– shared aggregation (S): the Element entities may belong to more than one
EGG. This feature is represented by the shared aggregation end of the asso-
ciation between the EGG and the Element having the multiplicity constraint
defined as 1..∗.

Fundamentals of Generalized and Extended Graph-Based 33

Extensions:

– first class (F): EGG becomes the first-class semantic category that is it
exists as an independent entity and it may be a connected element anologically
to the Vertex and Edge type elements.

– data (D): the EGG type elements, Vertex and Edge may contain data sets
represented by the Data abstract semantic category. In the formal definition
the Extended Graph Generalization is related to the (5, 10, 11, 15) expressions.

– navigable (N): the connecting elements have the navigability property,
which makes it possible to add extra constraints in the scope of the possibility
of traversing from one EGG element to another. This feature is realized by the
association class between the Edge and the Element. In the formal definition
of EGG it is related to the (11) and (12) expressions.

Constraints:

– acycled (A): acyclic – the constraint, which makes the structure acyclic,
– planar (P): planar – the constraint, which makes the structure planar.

Many constrains may be defined, but they do not constitute the basis for mod-
ifying the basic EGG structure, as they only put additional constraints on the
chosen form of the EGG.

5 Extended Graph Generalization Semantics

Element it is the abstract structure, which represents one of the following ele-
ments: EGG, Vertex, Edge. It has the id attribute, which is responsible for
the uniqueness of the identifiers of the mentioned above semantic categories.
Moreover, the Data element is associated to this category, which means that
each element inheriting from the Element category may have a set of data.

EGG it is a recursive structure, i.e. the EGG may be composed of other EGG
type structures. This is a first-class element, i.e. it may exist as an independent
entity, including the possibility of containing other elements and it may be
joined by the Edge on a pair with the Vertex and the Edge. The EGG itself does
not have any defined semantics, because it is a universal structure dedicated
to constructing the data models.

Vertex it is an element, which may be independent, but always in an EGG as
well as in the connection realized by the Edge. From the semantic point of
view the Vertex is a connected element and it is its only responsibility.

Edge is a connecting element and it is its main responsibility. But it may also
have the responsibility of the connected element.

Data is an abstract element responsible for representing data. Data may have
a simple form, e.g labels or simple values or a more complicated form. Data
has abstract character and the definition of the data structure inside Data is
out of the scope of the Extended Graph Generalization definition. Data is not
independent entity, i.e. it has supplementary role for EGG, Vertex and Edge.
Data may be shared between different elements.

34 M. Jodłowiec et al.

connection constitutes a property of the association between the Edge and the
abstract Element entity. It groups the Element type entities within a concrete
Edge type entity. From the semantic point of view it joins elements, which
are in an association represented by the Edge.

6 Extended Graph Generalization Concrete Syntax

Vertex is represented by a circle with the id placed inside or close to it (Fig. 2).
The ◯ id lub id ∶ V ertex symbols are introduced to unify formal notation.

Fig. 2. Graphical representation of Vertex

Edge is represented by a diamond with the id placed inside or close to it (Fig. 3).
The ◇id lub id ∶ Edge symbols are introduced to unify formal notation.

Fig. 3. Graphical representation of Edge

connection of diagram elements, that is a particular Edge with other element
or with itself is represented by a solid line joining a particular Edge with a
joined element. The small filled dot is placed at the end which is at Edge side.
In the case of navigability its direction is determined by an arrow or arrows
(Fig. 4). The � symbol and symbols taking into account navigability �→, �←,
�↔ are introduced to unify formal notation.

Fig. 4. Graphical representation of connection

Figure 5 illustrates three EGG elements, namely Edge, connection and
Vertex and it shows the following examples of joining Edge with Vertex:
◇edge�→◯vertex as well as two Edge type elements: ◇edge�→◇ edge.

Fundamentals of Generalized and Extended Graph-Based 35

Fig. 5. Graphical representation of Edge, connection and Vertex

EGG is represented by a rectangle with the corners rounded. An EGG g0 and
three nested EGGs: g1, g2, g3 are depicted on Fig. 6. EGGs are independent
each of other. EGG g1 i g2 share with g3 some area. As the result, the situation
where some Edge and Vertex are shared by these EGGs can be illustrated.

Fig. 6. Graphical representation of EGGs

Data is represented by a rectangle. The Data d1 is shown on Fig. 7.

Fig. 7. Graphical representation of Data Fig. 8. Graphical representation of con-
nected Data

Data is associated to to EGG, Edge or Vertex with the help of a dotted line
(Fig. 8).

Both color and character format do not have any meaning for the grammar.

6.1 Extended Graph Generalization Diagram Example

An example EGGHUMS
FDN symbolized by g0 and expressed in the graphical concrete

syntax is presented on Fig. 9.
The diagram from Fig. 9 is also presented in the form of formal symbolic

notation.

36 M. Jodłowiec et al.

Fig. 9. Extended Graph Generalization diagram example

g0 = (“g0”,∅,∅,{g1, g2, g3},∅);
g1 = (“g1”,{v1},∅,{g4},∅);
g2 = (“g2”,{v2, v3, v4},{e1, e3},∅,{d3});
g3 = (“g3”,{v3, v4, v5},{e6},∅,∅);
g4 = (“g4”,∅,{e2, e4, e5},∅,∅).

v1 = (“v1”,∅);
v2 = (“v2”,∅);
v3 = (“v3”,∅);
v4 = (“v4”,{d1});
v5 = (“v5”,{d1, d3}).

e1 = (“e1”,{(v1,→), (v2,→), (v2,→), (v3,→), (v4,→), (e2,→), (e3,↔)},∅);
e2 = (“e2”,{(v1,→), (e4,→)},∅);
e3 = (“e3”,{(v4,→), (e1,←), (e3,→)},∅);
e4 = (“e4”,{(g2,→)},∅);
e5 = (“e5”,{(v1,→), (e4,→)},{d2}).

7 A Social Network Model Example Expressed in the
EGG Categories

A domain example of the EGG structures usage for representing social networks
is shown in order to present the concept introduced in the paper. The way
the examples are presented illustrates how the addition of subsequent features
(generalizations and extensions) allows to represent the subsequent relationship
kinds. The role of vertices is played in the examples by persons, while the role
of edges – the connections between them. Figure 10 shows EGG, which is seman-
tically equivalent to the graph structure. A structure, which represents mutual
bi-directed inter-personal relationships is friend of is shown on the diagram.

Fundamentals of Generalized and Extended Graph-Based 37

The chats with relationship between persons, which talk between each other is
shown on Fig. 11. The EGGH structure was applied to express this information.

Paul

JackJohn

is friend of

Annais friend of

is friend of is friend of

Adam

Fig. 10. Exemplary EGG depicting is
friend of relationship in social network

Paul

JackJohn

chats
with

Anna
chats
with

chats
with

chats
with

Adam

Fig. 11. Exemplary EGGH depicting
chats with relationship in social network

Figure 12 shows a social network, which takes into account the persons group-
ing aspect. The subgroups can be identified inside the groups as well. In order
to realize this kind of relationships the connections between connections (group
– subgroup) must be applied. The EGGHU structure is used for this purpose. In
order to enrich this structure by data annotations, the EGGHU

D structure with
both verticeas and edges annotations is used in the way shown on Fig. 13.

Paul

JackJohn

subgroup

Annasubgroup

subgroup group

Adam

Fig. 12. Exemplary EGGHU depicting
group and subgroup relationship in social
network

Paul

JackJohn

subgroup

Annasubgroup

subgroup group

Adam
 age: 34,
 nickname:
 "jo34"

 age: 16,
 nickname:
 "pa16"

 founded:
 2020

Fig. 13. Exemplary EGGHU
D depicting

group and subgroup relationship in social
network and data annotation of nodes
and vertices

Some connections require the ability of connecting the same element multi-
ple times. The follows relationship is an example of such the case. It is used to
express that a person is interested in the events initiated by other person. How-
ever, there is no need to forbid the option of following updates to own events.
Figure 14 shows how this requirement is achieved with the application of the

38 M. Jodłowiec et al.

Paul follows

Fig. 14. Exemplary EGGM
N depicting fol-

lows relationship in social network

Paul Annamessage

content : "Hello"

Fig. 15. Exemplary EGGDN depicting
message relationship with data annota-
tion in social network

EGGM
N structure. This example, together with the one from Fig. 15 illustrates

connections navigability as well.
Figure 16 presents the EGGHU

F structure. It shows the relationship between
a person named Jack in the follows updates of connection with EGG, which
represents the network of relations followed by Jack. The example is extended
according to the Fig. 17 to involve the EGGHUS

F structure. It models the sharing
some elements by persons named Sally and Jack within their followed networks.

Fig. 16. Exemplary EGGHU
F depicting fol-

lows updates of relationship between
node and EGG in social network

Jack
follows
updates

of

Paul

John

subgroup

subgroup group

Adam subgroup

Anna

Sally

follows
updates

of

Fig. 17. Exemplary EGGHUS
F depicting

follows updates of relationship between
node and EGG in social network with
shared sub-EGG

8 Conclusions

The concept, which constitutes the basis for defining contemporary known data
structures has been revisited in the paper. As the analysis result, the connected

Fundamentals of Generalized and Extended Graph-Based 39

element (Vertex) and the connecting element (Edge) as well as data representa-
tion element (Data) have been identified. Then, the set theory based definition
(Definition 2) being a generalization of the fundamental set theory based graph
definition (Definition 1) has been introduced. This generalization has been named
Extended Graph Generalization (EGG). The notion is compliant to all known
data structures. As the result of introduction of the general EGG definition all
possible data structures definitions have been caught in one place. A kind of
standardization has been proposed this way, which is expected to be helpful for
future research work in the metamodeling and modeling domains.

Then, the abstract syntax of EGG (Definition 2) has been introduced and it
has been enriched by syntactical elements semantics description. The abstract
syntax and the Definition 2 are equally general. The EGG abstract syntax enables
defining features like Generalizations, Extensions and Constraints. It is worth
noticing that two kinds of constraints may be introduced to the abstract syntax.
The first group of constraints constitutes negation of Generalizations and Exten-
sions features and introduces structural changes to the EGG, while the second
one (Constraints) has the form, which does not modify the EGG structure.

The EGG structure constitutes both generalization and extension of classical
graphs and it is not possible to express it in the form of the graph without a modi-
fication of graph elements semantics. For example the ultra feature consisting in
that the edge may also play the role of a connected element can be expressed with
the help of a classical graph only if the Vertex semantics is changed - it should
take the edge functions. Analogically, in the case of hyper feature, where the
Edge arity is greater than 2 the Edge element should be represented by nodes,
which again would change the original semantics of classical graph elements.
That is why the EGG is actual generalization and extension of the graph concept
and not just a typical construction of more complex structures based on the
graph definition. As the result, the new general EGG structure has been defined,
which, together with the mentioned features, constitutes a form convenient for
defining more expressive and semantically rich metamodels and models than
the graph ones. The examples of such metamodels are the Association-Oriented
Metamodel (AOM) [5,7] and the Context-Driven Meta-Modeling (CDMM) lan-
guage [8,14,15]. Their definitions based on the EGG structure will be presented
in succeeding publications.

The introduced EGG abstract syntax with semantics constitutes the basis
for defining EGG concrete syntax. The semantics of its syntactical elements is
identical to the semantics of their counterparts from the EGG abstract syntax.
The EGG concrete syntax is general enough to apply it for representing arbitraly
complex EGG structures as well as their any constraints in the uniform way. It
is also universal enough for constructing EGG graphs or their particular special
forms in any metamodel, including AOM and CDMM.

40 M. Jodłowiec et al.

The need for defining own symbolic language has been shown in the paper.
The graphical language introduced in the paper as a concrete syntax corresponds
to the symbolic language. As the result of the possible introducing concrete
syntaxes based on common abstract syntax the languages application fields can
be differentiated.

A very important element of the paper is that both in the Definition 2 and in
the EGG abstract syntax the clear separation between data and the structure has
been introduced. Since now, the structure can be named the data carrier while
data can be told to be spread on the structure. The data (Data) itself may have
any form. Particularly, Data may have the EGG structure as one possible form.
It is, at the same time the most general data form. This fact was not shown in
the EGG abstract syntax due to the need of underlying the arbitrariness of Data
and the possibility of the use of Data for representing Constraints in the EGG.
As the result, Data can play two roles in the EGG. It could represent domain-
specific data and/or represent information about the EGG itself, which are in
turn used in Constraints. The arbitrariness of the forms and roles that could be
associated to Data in the EGG abstract syntax has been underlined by making
this syntactical element abstract.

References

1. Bildhauer, D.: Associations as first-class elements. In: Proceedings of the 2011
Conference on Databases and Information Systems VI: Selected Papers from the
Ninth International Baltic Conference, DB&IS 2010, pp. 108–121. IOS Press, NLD
(2011)

2. Boyd, M., McBrien, P.: Comparing and transforming between data models via an
intermediate hypergraph data model. In: Spaccapietra, S. (ed.) Journal on Data
Semantics IV. LNCS, vol. 3730, pp. 69–109. Springer, Heidelberg (2005). https://
doi.org/10.1007/11603412_3

3. Bretto, A.: Hypergraph Theory: An Introduction. Mathematical Engineering.
Springer, Cham (2013). https://doi.org/10.1007/978-3-319-00080-0

4. Ebert, J., Winter, A., Dahm, P., Franzke, A., Süttenbach, R.: Graph based mod-
eling and implementation with EER/GRAL. In: Thalheim, B. (ed.) ER 1996.
LNCS, vol. 1157, pp. 163–178. Springer, Heidelberg (1996). https://doi.org/10.
1007/BFb0019922

5. Jodłowiec, M.: Complex relationships modeling in association-oriented database
metamodel. In: Nguyen, N.T., Hoang, D.H., Hong, T.-P., Pham, H., Trawiński, B.
(eds.) ACIIDS 2018. LNCS (LNAI), vol. 10752, pp. 46–56. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-75420-8_5

6. Joslyn, C., Nowak, K.: Ubergraphs: A definition of a recursive hypergraph struc-
ture. arXiv preprint arXiv:1704.05547 (2017)

7. Krótkiewicz, M.: A novel inheritance mechanism for modeling knowledge represen-
tation systems. Comput. Sci. Inf. Syst. 15(1), 51–78 (2018)

8. Krótkiewicz, M., Zabawa, P.: AODB and CDMM modeling – comparative case-
study. In: Nguyen, N.T., Hoang, D.H., Hong, T.-P., Pham, H., Trawiński, B.
(eds.) ACIIDS 2018. LNCS (LNAI), vol. 10752, pp. 57–68. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-75420-8_6

https://doi.org/10.1007/11603412_3
https://doi.org/10.1007/11603412_3
https://doi.org/10.1007/978-3-319-00080-0
https://doi.org/10.1007/BFb0019922
https://doi.org/10.1007/BFb0019922
https://doi.org/10.1007/978-3-319-75420-8_5
http://arxiv.org/abs/1704.05547
https://doi.org/10.1007/978-3-319-75420-8_6

Fundamentals of Generalized and Extended Graph-Based 41

9. Luoma, J., Kelly, S., Tolvanen, J.P.: Defining domain-specific modeling languages:
collected experiences. In: 4th Workshop on Domain-Specific Modeling (2004)

10. McQuade, S.T., Merrill, N.J., Piccoli, B.: Metabolic graphs, life method and
the modeling of drug action on mycobacterium tuberculosis. arXiv preprint
arXiv:2003.12400 (2020)

11. Mellor, S.J., Scott, K., Uhl, A., Weise, D.: MDA Distilled: Principles of Model-
Driven Architecture. Addison-Wesley Professional, Boston (2004)

12. Strachey, C.: Fundamental concepts in programming languages. Higher-Order
Symb. Comput. 13(1–2), 11–49 (2000)

13. Voloshin, V.I.: Introduction to Graph and Hypergraph Theory. Nova Science Pub-
lisher, New York (2009)

14. Zabawa, P.: Meta-modeling. In: Nguyen, N.T., Hoang, D.H., Hong, T.-P., Pham,
H., Trawiński, B. (eds.) ACIIDS 2018. LNCS (LNAI), vol. 10752, pp. 91–101.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75420-8_9

15. Zabawa, P., Hnatkowska, B.: CDMM-F – domain languages framework. In:
Świątek, J., Borzemski, L., Wilimowska, Z. (eds.) ISAT 2017. AISC, vol. 656, pp.
263–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67229-8_24

http://arxiv.org/abs/2003.12400
https://doi.org/10.1007/978-3-319-75420-8_9
https://doi.org/10.1007/978-3-319-67229-8_24

	Fundamentals of Generalized and Extended Graph-Based Structural Modeling
	1 Introduction
	2 Formal Definitions
	3 Extended Graph Generalization Abstract Syntax
	4 Extended Graph Generalization Features
	5 Extended Graph Generalization Semantics
	6 Extended Graph Generalization Concrete Syntax
	6.1 Extended Graph Generalization Diagram Example

	7 A Social Network Model Example Expressed in the EGG Categories
	8 Conclusions
	References

