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Abstract. Mining high-utility itemsets (HUIs) based on high-average utilitymea-
sure is an important task in the data mining field. However, many of the existing
algorithms are performing the mining process sequentially and do not utilize the
widely available multi-core processors, thus requiring long execution times. To
address this issue, we propose an extended version of the HAUI-Miner algo-
rithm, namely pHAUI-Miner. The algorithm applies multi-thread parallel process-
ing to significantly reduce the mining time. Experimental evaluations on standard
databases have shown the effectiveness of the proposed algorithm over the original
and sequential method.

Keywords: High-average utility itemset · Data mining · Parallel computing ·
Multi-thread

1 Introduction

To discover the associations and the relations among the items within a transactional
database, frequent itemset mining (FIM) [1] methods were applied. Companies have
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incorporated FIM onto their available databases to boost the executive performance.
The analysis of the transactions helps put forth effective strategies in their business,
such as catalog designing, marketing, customer behavior’s analysis or basket analysis.
FIM analyzes the customer’s shopping habit, and then discover the associations among
the items that were selected by the customer. Retailers use the discovered knowledge to
develop effective strategies to boost their sales.

Some algorithms to perform this task are Apriori [1], AprioriTid [1], Eclat [2], FP-
Growth [3], etc. Of them, the FP-Growth only requires two database scans to construct
the FP-tree and directly extracts frequent itemsets from the tree. Thus, discovering the
complete set of frequent itemsets (FIs). FIM only considers the existence of the items
within transactions and treats all items equally. It completely ignores other important
information such as the purchase quantity of items, item’s profit, etc. In real-word appli-
cations, every item has its own value (unit profit), and in most cases, frequent patterns
might not be the ones that yield high profit, or the usefulness to the users. Briefly, the
generated profit of an item when purchased, called utility, is the product of the purchase
quantity and its unit profit. Patterns or itemsets that generate high profit and satisfy a
user-specified threshold are called high-utility patterns (HUPs) or itemsets (HUIs).

In HUIM, utility of an item or itemset is the sum of its utility in the database.
This traditional utility calculation has a major drawback: it ignores the length of the
itemset and thus the longest itemsets has higher utility value. Thus, it is not fair when
applying this utility calculation on to all itemsets. To address this drawback, a new
utility measure, called average utility (au) measure [4], was proposed to better assess
the utility of itemsets. It is defined as the sum of the utilities of the itemset in transactions
that contain it, divided by its length or the number of items in that itemset. If an itemset
has its au value no less than a user-specified threshold, called theminimumaverage utility
threshold (minAU ), then it’s called high-average utility itemset (HAUI). However, the
downward closure property does not hold for this new utility measure. An itemset whose
au value does not satisfy the threshold may be combined with one or more items to form
a HAUI. This might generate a large number of candidates and the process of checking
all the generated candidates is time consuming. A new upper-bound was proposed to
address this issue and called average utility upper-bound (auub). Lan et al. has applied
this new upper-bound to prune candidates [5, 6]. Lan et al. also proposed new index-table
structure to speed up the mining process [7].

The rest of the paper is organized as follows: Sect. 2 surveys related works on HUIs
and average utility itemsets mining. Section 3 describes definitions and proposemethods
on averageutility itemsetsmining.Experimental resultswill be showed inSect. 4. Finally,
Sect. 5 presents conclusion and future improvements.

2 Related Work

Extending from FIM, the task of mining the complete set of HUIs is called high-utility
itemset mining (HUIM). The problem of mining HUIs was first proposed in Yao et al.
2004 [8]. The authors presented the concepts of utility and high-utility measure. HUIM
is considered a challenging task since the utility measure does not satisfies the downward
closure property [1], which original states in FIM that all subsets of a frequent itemset
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must also be frequent. In 2005, Liu et al. presented an algorithm to mine HUIs in two
phases [9], namely Two-Phase. In the first phase, the algorithm computes the downward
closure on utility of itemsets in transactions to prune the search space. This novel upper-
bounds on utility is called TransactionWeighted Utility (TWU). Second phase scans the
database again to calculate the exact utility value of itemsets to determine which one is
HUI. However, TWU is not tight enough to effectively prune the search space, leaving
a huge number of candidates for the algorithms to check. Thus, to reduce further the
generated candidates and database scans, Lin et al. proposed a tree structure, calledHUP-
tree [10], to effectively mine HUIs. It first calculates the utility values for 1-itemsets and
uses them to construct the HUP-tree. Then the algorithm recursively traverses the tree
to extract HUIs based on a header table. The algorithm requires only two database scans
to discover the complete set of HUIs in a database. In 2016, Zida et al. proposed a single
phase for effectively mining HUIs, namely EFIM [11]. The algorithm using new and
tighter upper-bounds to prune a large number of candidates, thus significantly reduce the
mining time. To achieve better performance and to utilize the full power of the modern
processors, Nguyen et al. has proposed a parallel version of EFIM, named pEFIM [12].
The algorithm partitions the search space in to separated sub-spaces and assigned each
execution thread to a sub-space, thus dramatically reduce time needed to mine HUIs.

Lan et al. proposed an algorithmwhich incorporated index-table and the average util-
ity upper-bound (aub) to mine HAUIs in 2012 [7]. The algorithm presented an effective
pruning strategy using indices to reduce the execution time and memory consumption.
Lin et al. proposed a single phase algorithm to efficiently mine HAUIs, named HAUI-
Miner [13]. Also in 2016, Lu et al. proposed an algorithm and a tree structured, named
HAUI-tree to quickly generate candidates and mine HAUIs [14]. The algorithm consists
of two steps: (i) calculates the utility values of 1-itemsets in transactions to identify the
maximum utility value for each transaction, then calculates the aub for each item. (ii)
From the list of all 1-itemsets that satisfied the threshold, construct the list of 2-itemsets
using the downward closure property based on the HAUI-tree. The process repeats until
no new candidates generated. To mine HAUIs using multiple minAU thresholds, Lin
et al. proposed the algorithm HAUIM-MMAU with two pruning strategies, known as
the improved EUCP strategy (IEUCP) and Prune Before Calculation strategy (PBCS)
[15]. However, the HAUIM-MMAU uses the generate-and-test approach, which is time
consuming. In 2018, Lin et al. proposed another algorithm named MEMU [16] and
three pruning strategies to increase the performance of the mining process. Experiments
show MEMU has better performance compare to HAUIM-MMAU in terms of runtime,
memory usage, candidates and scalability.

3 Proposed Algorithm

This section presents preliminary concepts and problem statement. Many of the
definitions and theorems were given in detail and proved in [13].
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3.1 Preliminaries

Let I = {i1, i2, . . . , im} is the finite set of m distinct items. A transaction database D
is a set of transactions D = {T1,T2, . . . ,Tn}. In which, each transaction Tq ∈ D and
Tq ⊆ I (1 ≤ q ≤ n). Each transaction Tq has a unique identifier q, called its TID.

Definition 1. The utility of an item ij in a transaction Tq is the product of its purchase
quantity and its unit profit, denoted as u

(
ij,Tq

)
[13].

u
(
ij,Tq

) = q
(
ij,Tq

) × p
(
ij
)

(1)

Whereas, q
(
ij,Tq

)
is the purchase quantity of item ij in transaction Tq; positive

integer p
(
ij
)
is the unit profit of item ij, which is given in the unit profit table PT .

Given set of k distinct items X = {i1, i2, . . . , ik}, X ⊆ I and is called k-itemset
where k is the length of X , k = |X |.
Definition 2. The average utility of a k-itemset X in a transaction Tq, denoted as
au

(
X ,Tq

)
, is defined as follows [13].

au
(
X ,Tq

) =
∑

ij∈X∧X⊆Tq q
(
ij,Tq

) × p
(
ij
)

k
(2)

When k = 1, X becomes a single item ij ∈ I, and thus the average utility of this
1-itemset in transaction Tq can be calculated as follows [13].

au
(
ij,Tq

) = q
(
ij,Tq

) × p
(
ij
)

1
= u

(
ij,Tq

)
(3)

Definition 3. Average utility of itemset X in database D, denoted as au(X ), is defined
as follows [13].

au(X ) =
∑

X⊆Tq∧Tq∈D au
(
X ,Tq

)
(4)

Definition 4. Utility of transaction Tq, denoted as tu
(
Tq

)
, is defined as follows [13].

tu
(
Tq

) =
∑

ij∈Tq
u
(
ij,Tq

)
(5)

Definition 5. Total utility of databaseD, denoted as TU , and is defined as follows [13].

TU =
∑

Tq∈D tu
(
Tq

)
(6)

Definition 6. The transaction-maximum utility of transaction Tq, denoted as tmu
(
Tq

)
,

is defined as follows. [13].

tmu
(
Tq

) = max
{
u
(
ij,Tq

)|ij ∈ Tq
}

(7)
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Definition 7. Average-utility upper-bound of an itemset X , denoted as auub(X ), is the
sum of all the transaction-maximum utilities of transactions containing X [13].

auub(X ) =
∑

X⊆Tq∧Tq∈D tmu
(
Tq

)
(8)

Definition 8. An itemsetX is called a high average-utility upper-bound itemset, denoted
as HAUUBI(X ), if its average-utility upper-bound is no less than minAU . HAUUBI(X )

is defined as follows [13].

HAUUBI(X ) = {X | auub(X ) ≥ TU × minAU } (9)

Theorem 1. The auub measure is downward closed. The transaction-maximum-utility
downward closure (TMUDC) property holds for any HAUUBIs [13].

The proof of this theorem is given in detail in [13]. From Theorem 1, we have two
corollaries as follows:

Corollary 1. Given a k-itemset X k , if X k is a HAUUBI , then all subsets of X k are also
HAUUBIs.

Corollary 2. If an itemset X k is not a HAUUBI, then all supersets of X k are not
HAUUBIs.

Theorem 2. The TMUDC property ensures that HAUUBIs ⊆ HAUIs. Thus, if an item-
set is not aHAUUBI , then none of its supersets areHAUIs. If an itemset is not aHAUUBI ,
it is also not a HAUI [13].

By using Theorem 2, we can prune a large number of unpromising candidates from
the search space and thus, reduce the mining time.

3.2 Problem Statement

Given a user-specifiedminimum average-utility threshold (minAU ),minAU is a positive
integer. The problem of mining high-average utility itemsets in databaseD is the task of
discovering the complete set of HAUIs. An itemset X is a HAUI if and only if its utility
is no less than minAU . The problem can be defined as follows.

HAUIs = {X | au(X ) ≥ TU × minAU } (10)

3.3 The Revised Database

The original algorithmHAUI-Miner [13] requires two database scans. The first scan dis-
covers the set of high average-utility upper-bound 1-itemsets (1-HAUUBIs). The sec-
ond scan constructs the average-utility list (AU-list) of 1-itemsets. In this second scan,
all 1-itemsets that are non-HAUUBIs will be removed from the database. The database
obtained after removing all these non-HAUUBIs is called revised database D′. The
pseudo-code of the construction ofD′ (InitRevisedDatabase) is given in Algorithm 1.
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3.4 The Average-Utility List (AU-List) Structure

The AU-list of an item or an itemset X is a list of elements, such that each element
represents a transaction Tq ∈ D′ and X ⊆ Tq. Each element consists of three fields, as
follows:

– The tid field indicates the transaction Tq.
– The iu field indicates the utility of X in Tq, u

(
X ,Tq

)
.

– The tmu field indicates the transaction-maximum-utility of X in Tq, tmu
(
X ,Tq

)
.

To construct the AU-list for k-itemset with k ≥ 2, it is not necessary to rescan the
database. They can be constructed by intersecting the AU-list of smaller itemsets. By
using the AU-list, the search space of the whole algorithm can be modelled as a set-
enumeration tree. In which, each node represents an itemset. The HAUI-Miner explores
the tree using depth-first search and prune the unpromising child nodes early using
Theorem 3. This can be done by using the sum of iu and tmu field in the designed
AU-list.
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Theorem 3. Given an itemset X , if the sum of it’s tmu in all transactions containing X ,
using the AU-list, is less than minAU , all extensions of X are not HAUIs [13].

The pseudo-code of the AU-list construction (Construct) is given in Algorithm 2,
the pseudo-code of the DFS based search process (Search) is given in Algorithm 3.

3.5 The PHAUI-Miner Algorithm

The original algorithm HAUI-Miner, obtained from the SPMF open-source package
[17], perform several database scans when processing each item in the set of all 1-
HAUUBIs, which is not efficient. To relieve the algorithm from this bottleneck, parallel
processing should be considered. Modern processors are now containing multiple cores
to handlemany tasks simultaneously. To speed-up the process ofminingHAUIs, increase
the response time and to utilize widely available multi-core processors, we apply multi-
thread parallel processing into this phase. The load balance strategy used in our proposed
algorithm is Task Parallelism. In detail, we partition the search space into separated sub-
search spaces and assign to them a DFS-based search thread using divide and conquer
strategy.Each thread in turnwill recursively explore down its sub-search space in parallel.
Consider the search space of the algorithm as shown in Fig. 1, the search space is
partitioned at the level of all items contained in the 1-HAUUBIs. Thus, significantly
reduce the time needed to discover the complete set of HAUIs.
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Fig. 1. Partition search space of the pHAUI-Miner algorithm

The pseudo-code of the Algorithms 1 to 3 remains unchanged as in the sequential
version. We incorporated them in to a parallel version and name it pHAUI-Miner, whose
pseudo-code is shown in Algorithm 4. In which, the parallel processing of each item in
the 1-HAUUBIs is given from line #4 to #6. Each call of the Search function in line #6
operates in its own sub-search space with respect to an item i.

4 Experimental Studies

This section presents the experiments of the proposed algorithm on the standard
databases to evaluate its performance and effectiveness. All the experiments were con-
ducted on a workstation equipped with an Intel® Xeon® E5-2678 v3 processor (12-
core/24-thread) clocked at 2.5 Ghz, 32 GB DDR4 ECC of internal memory and running
Windows 10 Pro Workstation. All the algorithms used in the experiments were devel-
oped using the Java programming language (JDK8). The HAUI-Miner source code can
be obtained from the SPMF package [17].

The databases used in the experiments are standard databases which are used in
many data mining researches [17], and can be downloaded at https://bit.ly/2vixvH0.
Their characteristics are given in Table 1.

Table 1. Database characteristics

Database #Transactions #Items

Mushroom 8,124 119

Retail 88,163 16,470

Kosarak 990,003 41,270

Chainstore 1,112,949 46,086

We compare the runtime of the proposed algorithm, pHAUI-Miner, using 4 threads
and 24 threads against the original and sequential algorithm HAUI-Miner on all the

https://bit.ly/2vixvH0
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test databases. Runtime comparison on the Mushroom, Retail, Kosarak and Chainstore
database are given from Fig. 2a to Fig. 2d, respectively. Furthermore, the average speed-
up factors of the pHAUI-Miner algorithm over the original HAUI-Miner algorithm on
all the databases are also provided in Fig. 3.

Fig. 2. Runtime comparisons on four databases for various minAU thresholds

Fig. 3. Average speed-up factor on all test databases

It can be seen in Fig. 2 that the parallel versions pHAUI-Miner dominate all the tests.
With the speed-up factor using 4 threads is up to 4 times faster, and with 24 threads, the
factor is over 6 to 8 times faster. It can be observed from Fig. 3 that by using 4 threads
on the test system, the speed-up factor is the most ideal since the speed-up factor is up
to 4 times, while using 24 threads, the speed-up factor is only over 8 times. Considering
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4 threads, the highest factor is observed on the Chainstore database, the largest one, and
the lowest factor is on the Retail database. There are several factors that could affect the
speed-up when using more processing cores. First, it can be seen in line #5 of Algorithm
4 each thread performs a full scan of the revised databaseD′, thus using more processing
threads would cause excessive scans onD′ and reduce the effectiveness of the algorithm.
Next, to discover the complete set of HAUIs while using parallelism, synchronization
between threads is required to maintain the processing order of items in the 1-HAUUBIs,
thus increased the overhead of the algorithm.

5 Conclusions

In this work, we identified and analyzed the issues of the original algorithmHAUI-Miner
when mining high-average utility itemsets. Based on this, we proposed an extended
version of the original algorithm, named pHAUI-Miner, which address all these issues
to improve the effectiveness and performance of the mining process. The proposed
algorithm handles effectively all the test databases and has much better performance
in terms of runtime than the original one. In the future, we want to improve further the
algorithm to further reduce cost of database scans; apply new utility calculations to make
it work on dynamic profits databases; applied distributed computing framework such as
Apache Spark to allow mining from large-scale databases.
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