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Abstract. In this paper, we study the problem of dynamically routing Unmanned
AerialVehicles (UAVs) taking into account not only the known requests, their type,
pick-up, and delivery locations, and time windows, but also considering traffic,
i.e., collision avoidance, and changing weather conditions as well as the arrival
of new customer requests or request cancellation by impatient consumers and
emergency departures caused by low battery. This problem can be viewed as the
dynamic version of the well-knownVehicle Routing Problemwith TimeWindows
(VRRTW), where current routings are subject to change at any time. Its NP-hard
character following the vehicle routing and deadlock-avoidance problems implies
the need to use a constraint programming based framework that has proven to
be effective in various contexts, especially related to the nonlinearity of system
characteristics. The approach has been tested on several examples, analyzing cus-
tomer satisfaction, i.e., service level, throughput (number of serviced requests).
Revenuemaximization is influenced by different values of themission parameters,
such as the fleet size, travel distance, wind direction, and wind speed. Computa-
tional experiments show the results that allow assessing alternative strategies of
UAV mission planning.

Keywords: UAV mission planning · Declarative modeling · Robust planning

1 Introduction

Fleet mission planning for Unmanned Aerial Vehicles (UAVs) creates flight plans for
the specific sets of service times and travel times, typically over some time. However,
there are often situations where not all information about the problem instance is known
in advance. Such cases occur in situations related to the ordering of services carried out
at strictly defined intervals, i.e., remaining active for a certain deterministic amount of
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time and then expire, which is the case with impatient customers [9]. In other words, in
such cases where the fulfillment of an active service request enables one of the UAVs to
visit the location of a new request [4, 5]. Dynamism is mostly considered for customer
requests. Since the most common source of dynamism in UAVs routing is the online
arrival of customer requests during the operation, i.e., the current routing is subject to
change at any time. Hence, vehicles do not know their next destination until they finish
serviced requests.

The UAVs mission planning problem specified above belongs to the class of Vehi-
cle Routing Problems (VRP). Because possible occurrences are dynamically changing
demands, service, and travel times, i.e., the input data revealing during the execution
of the plan, is also referred to as online VRP or the dynamic VRP (DVRP) [4, 6, 12].
Because part or all of the inputs are unknown and revealed dynamically during the design
or execution of the fleet mission plan, the UAV routes are redefined in an ongoing fashion
that correspond to rapidly evolving problem constraints.

The DVRP and its related problems have been studied since the late eighties of the
last century [1, 5]. The issues extensively studied in the literature cover various issues of
modeling and planning mobile vehicle fleets in flying ones [3, 7, 8]. Excellent reviews
on DVRPs and their taxonomy, are given in [2, 10, 12].

This research addresses the existing gap in the state-of-the-art of UAVs fleet mission
planning concerning the changing weather conditions, and it allows generating alter-
native robust mission plans. Assuming limited battery capacity, any change in weather
conditions results in a range change for a drone. In this context, it can be seen as the con-
tinuation of our previous works [11, 14] by assessing the possibility of using declarative
modelingmethods in order to provide a strategy for determining theminimumnumber of
UAVs needed to ensure that a certain fraction of service requests is fulfilled in assumed
time horizon. Our main contributions to considered dynamic and energy-dependent
multi-route VRP with time windows problem can be summarized as follows:

1. The proposed approach considers multiple factors that influence the UAVs’ ability to
complete the missions, such as changing weather conditions, different UAVs energy
consumption, and the possibility of an emergency interruption of the UAV’smission,
that forces him to return to the depot.

2. The declarativemodeling-driven approach is formulated,which allows for the assess-
ment of alternative UAVs fleet routing and scheduling variants. The proposed Con-
straint Satisfaction Problem (CSP) based framework enables for predictive (i.e., con-
sidering forecasted weather conditions) and reactive (i.e., enabling UAVs emergency
departure) planning of missions aimed at impatient customers service.

3. The proposed approach enables us to replace the usually used computer simulation
methods of routes prototyping and UAVs scheduling by employing a constraint
programming environment. Since CSP based framework allows us to search for
the answer to the opposite question: what conditions do guarantee the success of a
mission? In this context, the proposed solution can be recognized as an outperforming
solution approach concerning those usually used for UAV mission planning.

The rest of the paper is organized as follows. In Sect. 2, using the illustrative example,
the UAVs fleet mission planning problem was introduced. A dynamic programming
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approach, including the detailed description of the solution method adopted, is given in
Sect. 3. Section 4 reports the computational experiments to assess the model behavior
and evaluate the impact of some key input parameters. Concluding remarks are provided
in Sect. 5.

2 Problem Formulation

As an example, let us consider a company that provides air transport services using a
fleet of UAVs. In a case in point, the fleet U = {U1,U2,U3} consists of three UAVs with
identical technical parameters (Fig. 1). The UAVs deliver goods to 19 customers located
in an area covering 100 km2 – the network of connections is shown in Fig. 1. Node N1
represents the location of the company (the depot which the UAVs take off from/land
at), and nodes N2 − N20 represent the individual customers.

Technical 
parameters of UAVs Value Unit

Payload 
capacity 25 kg

Battery 
capacity 7500 kJ 

Flight speed 20 m/s
Drag coefficient - 
Surface of front 

UAV 1.2 m2

UAV width 8.7 m

Legend:

Depot
Customer

m/s
≥

-vector of wind 

-velocity of wind 
-directory of wind [°]

[m]

-UAV
[m]

Time window

Fig. 1. Transportation network

Known is the demand zi of the individual customers, they are respectively: z2 =
z3 = z4 = z5 = z6 = 5 [kg], z7 = 10 [kg], z8 = 15 [kg], z9 = 15 [kg], z10 =
z11 = . . . = z16 = 5 [kg], z17 = 10 [kg], z18 = z19 = 15 [kg], z20 = 5 [kg]. It
is also assumed that time windows twi are known in which the i-th consumers make
the deliveries they have ordered. The considered time horizon for deliveries does not
exceed 1.5 h (tmax = 5400 [s]). The problem under consideration boils down to seeking
the answer to the following question: Is the available fleet U able to guarantee the
delivery of the required amount of goods {z2, . . . , z20}, to the customers {N2, . . . ,N20
}, in a given time horizon (tmax)? The answer to this question allows one to designate
flight mission S carried out by the UAVs fleet, and more specifically, to designate the
routes Π of individual UAV and the associated delivery schedules Y . The assessment
of the feasibility of carrying out the planned mission takes into account the forecast
of weather conditions. Weather conditions accompanying the mission are determined
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based on forecasts (Fig. 2a), enabling the determination of the so-called set of allowed
weather conditions Z (Fig. 2b). Z is a set of forecasted weather conditions represented
by the pairs: (wind’s direction θ , a wind’s speed vw), that may occur during the mission:
Z = {(θ, vw)|θ ∈ [0◦, 360◦), vw ≤ Z(θ)}. The set Z is determined by the function Z(θ)

where: θ ∈ [0◦, 360◦) whose values determine the maximum forecasted wind speed for
given direction θ . It is assumed that the function Z(θ) is known and determined based
on available weather forecasts (e.g., see Fig. 2b).

Forecasted weather conditions
Wind direction Wind speed

E east 0 … 8 0° 8
ENE east northeast 0 … 8.5 22°30' 8.5
NE northeast 0 … 9 45° 9

NNE north northeast 0 … 9 67°30' 9
N north 0 … 9 90° 9

NNW north northwest 0 … 9.5 112°30' 9.5
NW northwest 0 … 10 135° 10

WNW west-northwest 0 … 10 157°30' 10
W west 0 … 10 180° 10

WSW west southwest 0 … 9.5 202°30' 9.5
SW southwest 0 … 9 225° 9

SSW south-southwest 0 … 9 247°30' 9
S south 0 … 9 270° 9

SSE south southeast 0 … 8.5 292°30' 8.5
SE southeast 0 … 8 315° 8

ESE east southeast 0 … 8 337°30' 8

Fig. 2. Sample weather forecast a) and the corresponding function Z(�) b)

The variability of weather conditions (as part of the adopted set Z) significantly
affects the level of battery consumption [11, 13, 14] of UAVs carrying out the planned
mission S and thus determines the possibility of its completion. In practice, there are
situations when, when thewind is too strong. It is impossible to perform the plannedmis-
sion within a given time horizon. This concept introduces the concept of the robustness
of the mission plan S to the weather conditions Z.

Let the set YUSG determine the set of weather conditions (pairs (θ, vw)), for which
the plan of mission S by fleet U in the distribution network U is feasible: YUSG =
{(θ, vw)|θ ∈ [0◦, 360◦), vw ≤ ϒUSG(θ)}, where:ϒUSG(θ) – is the function determining
the boundary weather conditions the exceeding of which would result in a situation that
the battery of at least oneUAVfrom thefleetU would be empty.Under these assumptions,
it is assumed that a plan of mission S to be executed by fleet U in distribution network
G is robust to forecasted weather conditions Z only when, Z ⊆ YUSG.

According to the above definition, it possible to formulate a new class problem of
searching for proactive plans of missions robust to given changes in weather conditions,
i.e., the robust plans of mission (Fig. 3). It is assumed that a given set of forecast weather
conditionsZ is given, for fleetU and distribution networkG. The answer to the following
question is sought:Does there exist a plan of mission S guaranteeing robustness to given
weather (ΥUSG(θ) ≥ Z(θ))? Such a form for the plan for mission S is sought (routes
Π and related flight schedules Y ) for fleet U , which guarantees timely delivery (within
a given time horizon) to all recipients in the G network. That is resistant to forecasted
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weather conditions Z. Therefore, such a form for of plan of mission S, for which the
condition is met Z ⊆ YUSG that means: ∀θ∈[0◦,360◦)ϒUSG(θ) ≥ Z(θ) and it is stated that
for each direction θ the wind speed value ϒUSG(θ) for which the plan of the mission is
achievable exceeds the maximum forecast wind speed Z(θ) for the given direction. The
problem considered assumes that:

Does  a plan for mission exist that guarantees robustness given to the weather changing conditions?

Forecast weather conditions Flying mission Robustness

?
Function Function 

Fig. 3. Illustration of UAVs fleet robust mission planning

• the set of forecasted weather conditions Z is known and constant,
• the structure G of the goods distribution network is known (Fig. 1),
• the goods are transported by the fleet U of the same UAVs (Fig. 1),
• all missions should be completed in the given time horizon (tmax),
• all UAVs are in the depot (N1) before the start of the delivery mission,
• after returning to the depot and replacing the battery, the UAV is ready for the next
flight,

• the same type of freight is delivered to all customers (demands zi),
• during the flight, the total weight of the UAV is constant (67 kg),
• the UAVs ground speed are constant speed (vgi,j = 20m/s),
• a safe energy level (reserve) is known at the points served.

Due to the limitations related to the size of the available fleet and the constraints related to
the limited capacity of the battery, i.e., the flight range, as well as the possibility of order
cancellations and the occurrence of weather changes exceeding previously forecasted
arrangements the DVRP based approach has been adopted. This approach implies that
a plan of flying mission S is designated as a composition of successively designated
sub-missions αS. In other words, it means that the decision to designate (a safe and
collision-free mission) a new sub-mission αS takes place in the distinguished states of
the delivery process (see Fig. 4):

• during the UAV’s stay in the depot (N1): decision on a new mission plan,
• at delivery points: the decision to discontinue the mission and return to depot.

An example of a dynamic process of planning (determining) the flying mission S for a
fleet of two UAVs are shown in Fig. 4. In the first step (moment t1), a sub-mission was
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Legend:

- depot

- planned route  

- planned route 

- completed route 

- completed route 

State: and in the depot
Decision: plan routes for ,

State: during the mission; in the depot 
Decision: plan route for 

State: during the mission; low battery
Decision: plan a return route for

State: and in the depot 
Decision: plan route for 

State: and in the depot
Decision: no-decision  

Weather is higher 
than admissible 

conditions

Weather:

Function for 

Function for 

Fig. 4. Example of UAV mission accomplishment

set 1S, under which UAVs make deliveries following routes: π1 = (N1,N2,N4,N6,N1),
π2 = (N1,N3,N7,N1). After U2 return to the depot (moment t2), a decision was made
to start a new sub-mission 2S for this UAV (planned route: π2 = (N1,N5,N8,N9,N1)).
At t3, it turned out that the weather conditions exceeded the allowable value (11 m/s),
which resulted in the decision to discontinue the mission and return U2 to the depot.
Deliveries toN8 andN9 were carried out byU1 (sub-mission 3S:π1 = (N1,N8,N9,N1)).
Adopting the above approach to mission planning, S is conditioned by the possibility of
effectively determining safe and collision-free (robust to forecasted weather conditions)
sub-missions αS, at every stage of decisionmaking. To this end, declarative programming
techniques implementing the model proposed in the next section were used.
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3 Dynamic Programming Approach

3.1 Declarative Model

The mathematical formulation of the model dedicated to the robust mission planning
employs the following parameters, variables, sets, and constraints:

Parameters

αG graph of a distribution network: αG = (N ,E) for sub-mission αS, where N =
{1 . . . n} is a set of nodes, E = {{i, j}|i, j ∈ N , i �= j} is a set of edges

zi demand at node i ∈ N , z1 = 0
twi the time window in which goods should be delivered to node i ∈ N , tw1 = ∅
di,j travel distance from node i to node j
ti,j travel time from node i to node j
w time spent on take-off and landing of a UAV
ts the time interval at which UAVs can take off from the base
αU set (fleet) of UAVs: αU = {U1, . . . ,Uk , . . . ,UK }which can be used to execute

the flying sub-mission αS, where Uk is a k-th UAV
K size of the fleet of UAVs
αϒUSG

αU fleet resistance to changes in weather conditions during the execution of
the plan of mission αS in distribution network αG

Q maximum loading capacity of a UAV
CD the aerodynamic drag coefficient of a UAV
A front-facing area of a UAV
ep the empty weight of a UAV
D air density
g gravitational acceleration
b width of a UAV
CAP the maximum energy capacity of a UAV
H time horizon H = [0, tmax]
Z(Θ) function determining the upper value of wind speed for wind direction θ

vai,j airspeed of a UAV traveling from node i to node j
ϕi,j heading angle, angle of the airspeed vector when the UAV travels from node i

to node j
vgi,j ground speed of a UAV traveling from node i to node j
ϑi,j course angle, angle of the ground speed vector when the UAV travels from node

i to nodej

Decision Variables

xki,j the binary variable used to indicate if Uk travels from node i to node j

xki,j =
{
1 if Uk travels from node i to node j
0 otherwise.

yki time at which Uk arrives at node i
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cki weight of freight delivered to node i by Uk

f ki,j weight of freight carried from node i to node j by Uk

Pk
i,j energy per unit of time, consumed by Uk during a flight from node i to j

batk total energy consumed by Uk
sk take-off time of Uk
cpi total weight of freight delivered to node i
πk route of Uk , πk = (

v1, . . . , vi, vi+1, . . . , vμ

)
, vi ∈ N , xkvi,vi+1

= 1

Sets

Y k set of times yki , schedule of Uk
αY family of Y k , schedule of fleet αU
Ck set of cki , payload weight delivered by Uk
αC family of Ck

αΠ set of UAV routes πk
m,l

αS plan of sub-mission: αS = (
αΠ, αY , αC

)

Constraints

1. Routes. Relationships between the variables describing drone take-off times/mission
start times and task order:

sk ≥ 0; k = 1 . . .K (1)

(∣∣∣sk − sq
∣∣∣ ≥ ts

)
; k, q = 1 . . .K; k �= q (2)

∑n

j=1
xk1,j = 1; k = 1 . . .K (3)

(
xk1,j = 1

)
⇒

(
ykj = sk + t1,j

)
; j = 1 . . . n; k = 1 . . .K (4)

(
yki �= 0 ∧ yqi �= 0

)
⇒

(∣∣∣yki − yqi

∣∣∣ ≥ w
)
; i = 1 . . . n; k, q = 1 . . .K; k �= q (5)

(
xki,j = 1

)
⇒

(
ykj = yki + ti,j + w

)
; j = 1 . . . n; i = 2 . . . n; k = 1 . . .K (6)

(
xki,j = 1

)
⇒

(
ykj ∈ twj

)
; j = 1 . . . n; i = 2 . . . n; k = 1 . . .K (7)

yki ≥ 0; i = 1 . . . n; k = 1 . . .K (8)

∑n

j=1
xki,j =

∑n

j=1
xkj,i; i = 1 . . . n; k = 1 . . .K, (9)

yki ≤ tmax ×
∑n

j=1
xki,j, i = 1 . . . n; k = 1 . . .K, (10)

xki,i = 0; i = 1 . . . n; k = 1 . . .K . (11)
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2. Delivery of freight. Relationships between the variables describing the amount of
freight delivered to nodes by UAVs and the demand for goods at a given node:

cki ≥ 0; i = 1 . . . n; k = 1 . . .K (12)

cki ≤ Q ×
∑n

j=1
xki,j; i = 1 . . . n; k = 1 . . .K (13)

∑n

i=1
cki ≤ Q; k = 1 . . .K (14)

(
xki,j = 1

)
⇒ ckj ≥ 1; k = 1 . . .K; i = 1 . . . n; j = 2 . . . n (15)

∑K

k=1
cki = cpi; i = 1 . . . n (16)

cpi ≤ zi; i = 1 . . . n (17)

∑n

i=1
cki = csk; k = 1 . . .K (18)

(
xk1,j = 1

)
⇒

(
fckj = csk

)
; j = 1 . . . n; k = 1 . . .K (19)

(
xki,j = 1

)
⇒

(
fckj = fcki − cki

)
; i, j = 1 . . . n; k = 1 . . .K (20)

(
xk1,j = 1

)
⇒

(
f k1,j = csk

)
; j = 1 . . . n; k = 1 . . .K (21)

(
xki,j = 1

)
⇒

(
f ki,j = fckj

)
; i, j = 1 . . . n; k = 1 . . .K (22)

3. Energy consumption. The plan of sub-mission αS is robust to weather conditions
Z(θ). That means the amount of energy needed to complete tasks performed by an
UAV cannot exceed the maximum capacity of its battery.

αϒUSG(θ) ≥ Z(θ); ∀θ ∈ [
0◦, 360◦) (23)

αϒUSG(θ) = max�(θ) (24)

�(θ) =
{
vw|vw ∈ R0+ ∧ ∀k∈{1...K}batk(θ, vw) ≤ CAP

}
(25)

batk(θ, vw) =
∑n

i=1

∑n

j=1
xki,j × ti,j × Pk

i,j(θ, vw) (26)

Pk
i,j(θ, vw) = 1

2
CD × A × D ×

(
vai,j(θ, vw)

)3 +
((

ep + f ki,j

)
× g

)2
D × b2 × vai,j(θ, vw)

(27)
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where vai,j(θ, vw) and ti,j depend on the assumed strategy for goods delivering. If
the ground speed vgi,j is constant, then the air speed vai,j is calculated from:

vai,j(θ, vw) =
√(

vgi,j × cosϑi,j − vw × cosθ
)2 +

(
vgi,j × sinϑi,j − vw × sinθ

)2
(28)

ti,j = di,j
vgi,j

. (29)

4. Customer’s satisfaction. For modeling purposes, we assume that the equitable aid
distribution is measured by customer’s satisfaction CSL expressing a percentage of
the expected amount of goods delivered to the recipients:

∑n
i=1 cpi∑n
i=1 zi

× 100% ≥ CSL. (30)

3.2 Method

The adopted approach assumes that mission S consists of successively designated sub-
missions: 1S … αS … LS. The decision to designate the next α-submission is made
after the UAV returns to the depot, or the mission is discontinued because of the pre-
vailing weather conditions. Determining the submission αS boils down to solving the
following problem. Consider a fleet αU servicing customers allocated in the supply dis-
tribution network αG.Does there exist a plan of sub-mission αS (determined by variables
αΠ, αY , αC) guaranteeing robustness to given weather (ΥUSG(θ) ≥ Z(θ) (constraints
(24)–(30)) while following customer’s satisfaction level CSL (30)? This kind of prob-
lem can be seen as recursive Constraint Satisfaction Problem (CSP) [14] given by the
following formula (31):

αCP
(

(α−1)Π, (α−1)Y , (α−1)C
)

=
(

αV, αD, αC
(

(α−1)Π, (α−1)Y , (α−1)C
))

(31)

where:

αV = {
αΠ, αY , αC, αG

}
- a set of decision variables determining a plan of sub-

mission αS: αΠ - a set ofUAV routes, αY - a schedule of
a UAV fleet, αC - a set of payload weights delivered by
the UAVs, αG – graph of a distributed network updated
by completed deliveries.

αD - a finite set of decision variable domain descriptions,
αC(

(α−1)Π, (α−1)Y , (α−1)C,
)
- a set of constraints (1)–(30) parameterized by the

solution of problem (α−1)CP

To solve the αCP defined in formula (31), one must determine the values of the decision
variables for which all the constraints are satisfied. By implementing αCP in a constraint
programming environment, such as IBM ILOG, it is possible to obtain the sub-mission
αS guaranteeing robustness to given weather conditions.
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A dynamic mission S = (
1S . . . αS . . . LS

)
algorithm based on the proposed concept

αCP is shown in Fig. 5. Mission S is determined in an iterative way wherein subsequent
iterations (corresponding to the stages of deciding on a new route) the problem αCP
is solved (solve function). The existence of an acceptable solution (i.e.

(
αΠ �= ∅) ∧(

αY �= ∅)∧(
αC �= ∅)

),means that there is a sub-mission αS ensuring delivery to selected
points in the network αG. Subsequent sub-missions are set up until the demands of each
customer zi are met. In the absence of an admissible solution to the problem αCP, an
increase in the UAVs fleet should be considered. If this is not possible (

∣∣αU ∣∣ ≥ LU ,
where: LU – maximum fleet size), no solution is returned. The proposed algorithm has
been implemented in the IBM ILOG environment.

Start

Input data:

;
;

Do all customers’ requests 
are met?

Solution: 

Stop

If
?

YES

YES

If ? 

YES

Increase fleet size 

Stop

NO

NO

No solution: 

NO

Fig. 5. Algorithm of dynamic flight mission S planning

4 Computational Experiments

Consider the case of UAVs fleet mission planning presented on Fig. 1. A plan of flight
mission is sought such that it guarantees the completion of planned deliveries within a
given time horizon (5400 s) in the given range of changing weather conditions. Parame-
ters of the threeUAVs forming the fleet are summarized in Fig. 1. In particular, the answer
to the question is sought: Is there a plan of mission S for fleet U that would guarantee
timely delivery of expected essential goods in order to fulfill basic needs (CSL = 100%)
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if weather conditions would change to: vw = 0m
s −9m

s ;Θ = 0◦ −360◦? In order to find
the answer to the stated research question, the proposed algorithm (Fig. 5) was used.
Due to the algorithm from Fig. 5 the plan sought was obtained within three iterations
(28 s: 16 s for 1st iteration, 6 s for the 2nd iteration, 6 s for 3rd iteration) in the declara-
tive programming environment IBM ILOG (Intel Core i7-M4800MQ 2.7 GHz, 32 GB
RAM). Figure 6 shows the computed flight routes:

• first iteration (α = 1): 1π1 = (N1,N14,N20,N6,N3,N12,N1), 1π2 =
(N1,N5,N4,N11,N17,N1), 1π3 = (N1,N13,N10,N15,N2,N16,N1);

• second iteration (α = 2): 2π2 = (N1,N7,N18,N1);
• third iteration (α = 3): 3π1 = (N1,N19,N8,N9,N1), 3π3 = (N1,N9,N8,N1);
guaranteeing that the demanded quantity of goods is delivered to customers under

the given weather conditions and given horizon (5400 s).

[m]

[m]

-  routes of 1st flight 

-  routes of 2nd flight 

Fig. 6. Obtained routes

As can be seen, each UAV executes two flights (Fig. 6 and 7), robust to the given
range of weather conditions (vw ∈ [

0m
s , 9m

s

]
; θ ∈ [0◦, 360◦]). Until the wind exceeds

the permissible value of vw > 9 m/s, the implementation of the mission following the
schedule in Fig. 7 is not threatened. The robustness of execution plans of individual
UAVs is different and changes over time. Missions carried out by U2 are characterized
by the highest robustness level (see 1

2ϒUSG and 2
2ϒUSG), in turn, missions carried out

by U1 have a lower level of robustness (see 1
1ϒUSG and 2

1ϒUSG). In addition, the first
part of the mission of each UAV covering routes 1π1,

1π2,
1π3 carried out in the period

t ∈ [0, 3000) [s] have less robustness level than the second part of the mission cowering
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routes 3π1,
2π2,

3π3) carried out in the period t ∈ [3000, 5400) [s]. Therefore, the charts
presented (see Fig. 7) show that UAV U1, is the most exposed to changes in weather
conditions in the period t ∈ [0, 3000) [s].

Robustness execution of 
in period 

Robustness executions of 
in period 

Unload operation of 
at node 16  

Battery  
swapping  operation

Transport operation of 
linking nodes 16 and

Forecasted weather con-
ditions 

Forecasted weather con-
ditions 

Fig. 7. Gantt chart for the mission S from Fig. 6 a) and robustness of mission plan in periods:
t ∈ [0, 3000) [s] b) and t ∈ [3000, 5400)[s] c)

5 Conclusions

The dynamic vehicle routing approach presented in this paper provides a new way of
studying the fleet mission planning of UAVs in dynamically changing environments.
Indeed, we presented the DVRP driven approach to the design of reactive flight mission
planning, resulting in dynamic routing strategies for networks allowing the presence of
impatient consumers awhile used in conditions of weather changes exceeding previously
forecasted ones, i.e., forcing the emergence of emergency departures. It is worth noting
that this approach extends reactive planning models (including weather forecasts) with



Declarative UAVs Fleet Mission Planning: A Dynamic VRP Approach 201

elements of reactive planning (considering dynamically occurring changes of different
nature).

The results of the conducted experiments were not compared with the results of other
studies. Because there is currently no reference benchmark for DVRPs as well as there
is a lack of work on the taxonomy of these problems [6, 10].

The conducted review of the existing literature revealed that a significant fraction
of work done in the area of dynamic routing does not consider stochastic aspects. We
are convinced that developing algorithms that make use of stochastic information will
improve the fleet performance and reduce operating costs. Of course, many other key
problems in UAVs systems implementation could benefit from being studied from the
perspective of proactive-reactive fleet mission planning models presented in this paper.
Some examples include search and rescue missions, force protection, map maintenance,
and pursuit-evasion [6, 10]. Thus this line of research taking into account the specificity
of these applications should become a priority in the near future.
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