
Using Neural Networks as Surrogate Models
in Differential Evolution Optimization

of Truss Structures

Tran-Hieu Nguyen(B) and Anh-Tuan Vu

National University of Civil Engineering, Hanoi, Vietnam
hieunt2@nuce.edu.vn

Abstract. In this study, Differential Evolution, a powerful metaheuristic algo-
rithm, is employed to optimize the weight of truss structures. One of the major
challenges of all metaheuristic algorithms is time-consuming where a large num-
ber of structural analyses are required. To deal with this problem, neural networks
are used to quickly evaluate the response of the structures. Firstly, a number of data
points are collected from a parametric finite element analysis, then the obtained
datasets are used to train neural network models. Secondly, the trained models are
utilized to predict the behavior of truss structures in the constraint handling step of
the optimization procedure. Neural network models are developed using Python
because this language supports many useful machine learning libraries such as
scikit-learn, tensorflow, keras. Two well-known benchmark problems are opti-
mized using the proposed approach to demonstrate its effectiveness. The results
show that using neural networks helps to greatly reduce the computation time.

Keywords: Structural optimization · Truss structure · Differential evolution ·
Machine learning · Neural network · Surrogate model

1 Introduction

Truss structures have been widely used in large-span buildings and constructions due to
their advantages as lightweight, robustness, durability. However, because truss structures
are intricate and complex with many individual elements, a good design requires a lot
of human resources. The conventional process to design truss structures is the “trial and
error”methodwhere the result strongly depends on the designer’s experience.Moreover,
for large-scale trusses with a wide list of available profiles, the number of candidates
becomes too prohibitive. For example, a simple 10-bar truss in which the cross-section
of each member must be selected from a set of 42 available profiles has totally 4210

possible options [1]. In such cases, the “trial and error” method is impossible. In order to
help a designer find the best choice, another approach called optimization-based design
method was invented and has been constantly developed.

In recent decades, many optimization algorithms have been proposed and success-
fully applied to solve structural problems. Several algorithms are designed based on
natural evolution such as Genetic Algorithm (GA) [1], Evolution Strategy (ES) [2],

© Springer Nature Switzerland AG 2020
N. T. Nguyen et al. (Eds.): ICCCI 2020, LNAI 12496, pp. 152–163, 2020.
https://doi.org/10.1007/978-3-030-63007-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63007-2_12&domain=pdf
http://orcid.org/0000-0002-1446-5859
https://doi.org/10.1007/978-3-030-63007-2_12

Using Neural Networks as Surrogate Models 153

Differential Evolution (DE) [3]. Some other algorithms are inspired by the swarm intel-
ligence like Particle Swarm Optimization (PSO) [4], Ant Colony Optimization (ACO)
[5], Artificial Bee Colony (ABC) [6], etc. These algorithms use an effective “trial and
error” method to find the minimum. In this way, the global optimum is usually found,
but it requires a huge amount of function evaluation. This is further complicated for
structural optimization problems where the function evaluation process is usually per-
formed by the finite element analysis (FEA). To demonstrate this, the duration of a
single analysis for the tied-arch bridge which consists of 259 members described in [7]
is approximately 60 s but the optimization time is nearly 133 h. In recent years, the
development of machine learning (ML) has shown a promising solution to this chal-
lenge. By building ML-based surrogate models to approximately predict the behavior
of structures, the number of FEAs is greatly reduced and the overall computation time
is consequently decreased.

The idea of using ML as surrogate models in structural optimization is not new.
Many related studies have been previously published [8–11]. However, due to the recent
development in the field of ML, this topic needs to be carefully considered. Among
these evolutionary algorithms, DE is preferred because of its advantages [12]. On the
other hand, while many ML algorithms exist, the capacity of the NN has been proved
[13]. Therefore, an optimization approach that combines NN and DE is proposed in
this study. The paper consists of five main sections. The background theory is briefly
presented in Sect. 2. Based on the integration between NN and DE, an optimization
approach is proposed in Sect. 3. Two computational experiments are performed in Sect. 4.
The obtained results are compared with those of other algorithms. Finally, some main
conclusions are pointed out in Sect. 5.

2 Background Theory

2.1 Optimization Problem Statement

The weight optimization problem of a truss structure can be stated as follows.
Find a vector of A representing the cross-sectional areas of truss members:

A = [A1,A2, . . . ,An] whereA
min
i ≤ Ai ≤ Amax

i (1)

tominimize : W (A) =
n∑

i=1
ρiAili (2)

subject to:

{
gi,s = σi

/
σ allow
i − 1 ≤ 0

gj,u = δj

/
δallowj − 1 ≤ 0

(3)

where: ρi, Ai, li are the density, the cross-sectional area and the length of the ith member,
respectively; Amin

i , Amax
i are the lower and upper bounds for the cross-sectional area of

the ith member; σ i, σ allow
i are the actual stress and the allowable stress of the ith member;

n is the number of members; δj, δallowj are the actual and the allowable displacements of

the jth node; m is the number of nodes.

154 T.-H. Nguyen and A.-T. Vu

2.2 Differential Evolution Algorithm

DEwas originally proposed by K. Price and R. Storn in 1997 [14]. Like many evolution-
ary algorithms, the DE comprises four basic operators namely initialization, mutation,
crossover, and selection. They are briefly described as follows.

Initialization: a random population of Np individuals is generated. Each individual
which is aD-dimensional vector represents a candidate of the optimization problem. Np
is the number of candidates in the population and D is the number of design variables.
The jth component of the ith vector can be generated using the following express:

x(0)
ij = xmin

j + rand [0, 1]
(
xmax
j − xmin

j

)
(4)

where: rand[0,1] is a uniformly distributed random number between 0 and 1; xminj and

xmaxj are the lower and upper bound for the jth component of the ith vector.

Mutation: amutant vector v(t)i is created by adding a scaled difference vector between
two randomly chosen vectors to a third vector. Many different mutation strategies have
been proposed like ‘DE/rand/1/’, ‘DE/rand/2’, ‘DE/best/1’, ‘DE/best/2’, etc. In this
study, a powerful mutation strategy, called ‘DE/target-to-best/1’ is employed. This vari-
ant produces the mutant vector based on the best individual of the population x(t)best and
the target individual x(t)i as follows:

v(t)
i = x(t)

i + F ×
(
x(t)
best − x(t)

i

)
+ F ×

(
x(t)
r1 − x(t)

r2

)
(5)

where: r1 �= r2 are randomly selected between 1 and Np; F is the scaling factor.
Crossover: a trial vector ui is created by getting each variable value from either the

mutant vector vi or the target vector xi according to the crossover probability.

u(t)
ij =

{
v(t)
ij if j = K or rand [0, 1] ≤ Cr

x(t)
ij otherwise

(6)

where: u(t)ij , v
(t)
ij and x(t)ij are the jth component of the trial vector, the mutant vector, and

the target vector, respectively; K is any random number in the range from 1 to D, this
condition ensures that the trial vector differs the target vector by getting at least one
mutant component; Cr is the crossover rate.

Selection: for each individual, the trial vector is chosen if it has a lower objective
function value; otherwise, the target vector is retained. The selection operator is described
as follows:

x(t+1)
i =

{
u(t)
i if f

(
u(t)
i

)
≤ f

(
x(t)
i

)

x(t)
i otherwise

(7)

where: f(uti) and f(xti) are the objective function value of the trial vector and the target
vector, respectively.

For constrained problems, themutation and crossover operators could produce infea-
sible candidates. In such case, the selection is based on three criteria: (i) any feasible

Using Neural Networks as Surrogate Models 155

candidate is preferred to any infeasible candidate; (ii) among two feasible candidates, the
one having lower objective function value is chosen; (iii) among two infeasible candi-
dates, the one having lower constraint violation is chosen [15]. For the implementation,
the objective function is replaced by the penalty function:

f ′(x) = f (x) +
n∑

i=1

ri × max(0, gi(x)) (8)

where: ri is the penalty parameter; gi is the constraint violation.
The initialization operator is performed only one time at the initial iteration while

three last operators are repeated until the termination criterion is satisfied.

2.3 Neural Networks

Neural networks (NNs) are designed based on the structure of the human brain.ManyNN
architectures have been developed, in which, the feedforward neural network (FFNN)
is commonly used in the structural engineering field. In FFNN, the information moves
through the network in a one-way direction as illustrated in Fig. 1 [16]. Neurons are
organized into multiple layers including the input layer, the hidden layers, and the output
layer. The outputs from previous neurons become the inputs of the current neuron after
scaling with the corresponding weights. All inputs are summed and then transformed by
the activation function.

Hidden layers Output layerInput layer

Input 1

Input 2

Input 3

Output 1

Output 2

Fig. 1. Typical architecture of an FFNN

It can be expressed as follows. The neuron of jth layer uj (j = 1, 2, …, J) receives
a sum of input xi (i = 1, 2, …, I) which is multiplied by the weight wji and will be
transformed into the input of the neuron in the next layer:

xj = f
(
uj

) = f

(
I∑

i=1

wjixi

)

(9)

where f(.) is the activation function. The most commonly used activation functions
are: tanh, sigmoid, softplus, and rectifier linear unit (ReLU). The nonlinear activation
function ensures that the network can simulate the complex data.

156 T.-H. Nguyen and A.-T. Vu

A NN can has more than one hidden layer, which increases the complexity of the
model and can significantly improve prediction accuracy. The loss function is used
to measure the error between predicted values and true values. The loss function is
chosen depending on the type of task. For regression tasks, the loss functions can be
Mean Squared Error (MSE), Mean Absolute Error (MAE) or Root Mean Squared Error
(RMSE). To adapts NN for better predictions, the network must be trained. The training
process is essentially finding a set of weights in order to minimize the loss function. In
other words, it is an optimization process. In the field ofmachine learning, the commonly
used optimization algorithms are stochastic gradient descent (SGD) or Adam optimizer.
An effective technique, namely “error backpropagation”, developed by Rumelhart et al.
[17] is normally used for training.

3 Proposed Surrogate-Based Optimization Approach

Initial population

St
ru

ct
ur

al
 A

na
ly

sis

Constraint
Evaluation

Mutation

Crossover

Evaluate constraints
of the trial vector

Selection

Termination
Criterion

End

Y

N

Sample Generation

Structural Analysis

Training Data

Building
NN models

Training
models

NN-based
Surrogated

Models

Initial population

Constraint Evaluation

Mutation

Crossover

Constraints evaluation
of the trial vector

Selection

Termination
Criterion

End

Y

N

(a) DE procedure (b) NN-DE procedure

Sa
m

pl
in

g
M

od
el

in
g

O
pt

im
iz

at
io

n

Fig. 2. Optimization workflows

According to theworkflow of the conventional DE optimization (Fig. 2(a)), the struc-
tural analysis must be performed for every candidate. Consequently, the total number

Using Neural Networks as Surrogate Models 157

of structural analyses is too large, leading to time-consuming. To deal with this prob-
lem, NNs are used to approximately predict the behavior of the structure instead of FEA.
The proposed optimization approach, called NN-DE, consists of three phases: sampling,
modeling, and optimization as illustrated in Fig. 2(b).

First of all, some samples are generated. All samples are then analyzed using FEA.
The second phase focuses on constructing accurate NN models. After selecting the suit-
ableNNarchitecture, themodels are trainedwith the datasets obtained from the sampling
phase. The performance of the NN models is strongly influenced by the diversity of the
training data, which also means depends on the sampling method. Therefore, a method,
called Latin Hypercube Sampling, is used to produce the sample points. The NNmodels
that are already trained will be used to evaluate the constraints in the optimization phase.

In this study, both DE and NN-DE approaches are implemented by Python language.
The DE algorithm is written based on the code published on R. Storn’s website [18]. The
structural analysis is conducted with the support of the finite element library PyNiteFEA
[19]. NN models are build using the library Keras [20].

4 Computational Experiments

4.1 10-Bar Truss

Design Data. The configuration of the truss are presented in Fig. 3. All members are
made of aluminum inwhich themodulus of elasticity isE = 10,000 ksi (68,950MPa) and
the density is ρ = 0.1 lb/in3 (2768 kg/m3). The cross-sectional areas of truss members
range from 0.1 to 35 in2 (0.6 to 228.5 cm2). Constraints include both stresses and
displacements. The stresses of all members must be lower than ±25 ksi (172.25 Mpa),
and the displacements of all nodes are limited to 2 in (50.8 mm).

P=100 kips P=100 kips

(1)(3)(5)

(2)(4)
(6)

1 2

3 4

5 6

7 9

8 10

360" (9144mm) 360" (9144mm)

360" (9144m
m

)

Fig. 3. 10-bar truss layout

158 T.-H. Nguyen and A.-T. Vu

Implementation. Firstly, the truss is optimized based on the conventional DE proce-
dure. The design variables are the cross-sectional areas of the truss members. In this
problem, each member is assigned to a different section. It means this problem has ten
design variables (D = 10). The optimization parameters are set after a parameter sensi-
tive analysis as follows: F = 0.8; Cr = 0.7, Np = 5×D = 50; maximum iterations n =
1000.

For the NN-DE approach, 1000 sample points are initially produced by LHS. Each
sample point is a 10-dimensional vector representing the cross-sectional areas of ten
corresponding members. Once the input data were generated, the outputs are determined
based on FEA. The obtained results are the internal axial forces of members and the
displacements of nodes. From the structural engineering point of view, for some sample
points, the truss structures are close to being unstable, leading to the large values of the
internal forces and the displacements. These sample points are meaningless and they can
negatively affect the accuracy of surrogate models. Therefore, the sample points having
maximum constraint violation g(x)> 1.0 are removed from the dataset. The final dataset
contains about 700 data points.

In the modeling phase, two surrogate models are developed. The first model named
‘Model-S’ will be used to predict the stresses inside themembers while the secondmodel
named ‘Model-U’ will be used to predict the displacements of the free nodes. ‘Model-S’
has the architecture (10-40-40-40-10) in which ten inputs of the network are the cross-
sectional areas of the ten truss members, ten outputs include stresses of ten members
and three hidden layers with 40 neurons per layer. ‘Model-U’ has the architecture (10-
20-20-20-4) where four outputs are vertical displacements of four free nodes (1, 2, 3, 4)
[21]. ReLU is used as the activation function in this work.

Among available loss functions, MAE is useful if the training data is corrupted with
outliers. Therefore, the loss function MAE is used in this work:

EMAE = 1

n

n∑

i=1

∣
∣
∣ytruei − ypredi

∣
∣
∣ (10)

where: n is the number of training data points; ypredi is the predicted value of the network
and ytruei is the correct value.

Models are trained for 1000 epochs with a batch size of 10. Before training, the input
data should be normalized by dividing to the maximum cross-sectional area (35 in2). To
prevent overfitting, the data is randomly split into the training and the validation subsets
with the ratio of 80/20. The loss curves of the two models during the training process
are plotted in Fig. 4. The trained models are then employed to predict the stresses and
displacements during the optimization process.

The optimization parameters for the NN-DE approach are taken the same as in the
conventional DE procedure. The computation is performed on a personal computer with
the following configuration: CPU Intel Core i5-5257 2.7 GHz, RAM 8.00 Gb.

Results. Because of the random nature of the search, the optimization is performed for
30 independent runs. The best results of both DE and NN-DE for 30 runs are presented
in Table 1 in comparison with other algorithms taken from literature.

Using Neural Networks as Surrogate Models 159

Fig. 4. Loss curves during the training process

Table 1. Comparison of optimum results for 10-bar truss

Member GA [22] PSO [22] ALSSO [22] DE NN-DE

1 (in2) 30.440 33.500 30.4397 30.5603 35.0000

2 (in2) 0.100 0.100 0.1004 0.1000 0.1000

3 (in2) 21.790 22.766 23.1599 23.1646 22.7771

4 (in2) 14.260 14.417 15.2446 15.2025 12.5917

5 (in2) 0.100 0.100 0.1003 0.1000 0.1000

6 (in2) 0.451 0.100 0.5455 0.5440 0.1000

7 (in2) 7.628 7.534 7.4660 7.4632 8.3957

8 (in2) 21.630 20.392 21.1123 21.0501 22.2952

9 (in2) 21.360 20.467 21.5191 21.5251 20.7936

10 (in2) 0.100 0.100 0.1000 0.1001 1.0312

Weight (lb) 4987.00 5024.25 5060.885 5060.8087 5217.7381

Max. constraint
violation

1.0140 1.0194 1.0000 1.0000 0.9958

4.2 25-Bar Truss

Design Data. The layout of the truss is presented in Fig. 5. The mechanical properties
are the same as in the 10-bar truss. The allowable horizontal displacement in this problem
is±0.35 in (8.89mm).Members are grouped into eight groupswith the allowable stresses
as shown in Table 2. Hence, the number of design variables in this problem D = 8. The
cross-sectional areas of the members vary between 0.01 in2 and 3.5 in2. Two loading
cases acting on the structure are given in Table 3.

160 T.-H. Nguyen and A.-T. Vu

(1)
(2)

(5)(4)
(3)

(6)

(10)

(8)

(7)

1

3 2 4 5
8 9

6 7

13

14

10
12

(9)

11

17

18

15

19

20

21
16

22

23 24
25

75"
(190.5 cm)

75"
(190.5 cm)

75"
(190.5 cm)

200"
(508 cm)200"

(508 cm)

100"
(254 cm

)
100 "

(254 cm
)

Fig. 5. 25-bar truss layout

Table 2. Allowable stresses for 25-bar truss - unit: ksi (MPa)

Group Member Allowable stress for compression Allowable stress for tension

1 1 35.092 (241.96) 40.0 (275.80)

2 2, 3, 4, 5 11.590 (79.913) 40.0 (275.80)

3 6, 7, 8, 9 17.305 (119.31) 40.0 (275.80)

4 10, 11 35.092 (241.96) 40.0 (275.80)

5 12, 13 35.092 (241.96) 40.0 (275.80)

6 14, 15, 16, 17 6.759 (46.603) 40.0 (275.80)

7 18, 19, 20, 21 6.959 (47.982) 40.0 (275.80)

8 22, 23, 24, 25 11.082 (76.410) 40.0 (275.80)

Implementation. The DE approach and the proposed NN-DE approach are also imple-
mented with the same parameters: F = 0.8; Cr = 0.7; Np = 5×D = 40; n =
500.

There are totally 5 NN models which are built in this case. Two models namely
‘Model-S-min’ and ‘Model-S-max’ with the architecture (8-50-50-50-25), are used to
predict the maximum and the minimum values of stresses inside truss members. Eight
inputs of the network are the cross-sectional areas of the eight groups while twenty-five

Using Neural Networks as Surrogate Models 161

Table 3. Loading conditions for 25-bar truss - unit: kips (kN)

Node Case 1 Case 2

PX PY PZ PX PY PZ

1 0.0 20.0 (89) −5.0 (22.25) 1.0 10.0 (44.5) −5.0 (22.25)

2 0.0 −20.0 (89) −5.0 (22.25) 0.0 10.0 (44.5) −5.0 (22.25)

3 0.0 0.0 0.0 0.5 (2.22) 0.0 0.0

6 0.0 0.0 0.0 0.6 (2.67) 0.0 0.0

outputs are the stress values of 25 members. Three remaining models, namely ‘Model-
Ux’, ‘Model-Uy’, and ‘Model-Uz’, have the architecture (8-20-20-20-6) in which six
outputs are displacements of six free nodes (1, 2, 3, 4, 5, 6) along three directions (UX,
UY, and UZ). Other parameters are completely similar to the 10-bar truss problem. The
optimization is also performed for 30 independent runs.

Results. The optimization is also performed for 30 independent runs. The best result of
DE, NN-DE, and other algorithms is presented in Table 4.

Table 4. Comparison of optimum results for 25-bar truss

Group HS [22] ABC [22] ALSSO [22] DE NN-DE

1 (in2) 0.047 0.011 0.01001 0.0100 0.0100

2 (in2) 2.022 1.979 1.983579 1.9173 2.4118

3 (in2) 2.950 3.003 2.998787 2.9793 3.2004

4 (in2) 0.010 0.01 0.010008 0.0100 0.0100

5 (in2) 0.014 0.01 0.010005 0.0100 0.0100

6 (in2) 0.688 0.69 0.683045 0.6801 0.4485

7 (in2) 1.657 1.679 1.677394 1.7217 1.6081

8 (in2) 2.663 2.652 2.66077 2.6601 2.5083

Weight (lb) 544.38 545.193 545.1057 543.7736 545.9119

Max. constraint violation 1.0238 1.0212 1.0218 1.0000 1.0697

4.3 Performance Comparisons

The performances of the DE approach and the NN-DE approach are given in Table 5.
Based on the obtained results, some observations can be summarized as follows.
First of all, it can be noted that the DE algorithm is capable of finding the global opti-

mum. The conventional DE optimization achieves the same results in comparison with

162 T.-H. Nguyen and A.-T. Vu

Table 5. Comparison of computation time

Problem Approach Number of FEA Computation time (s)

FEA Training Optimization Total

10-bar truss DE 50,050 1,757 – – 1,757

NN-DE 1,000 36 234 54 324

25-bar truss DE 20,040 4,426 – – 4,426

NN-DE 1,000 232 279 64 575

other algorithm like GA, PSO, HS, ALSSO, etc. Minor differences in results obtained
from different algorithms due to the use of different FEA codes.

Secondly, the computation times of the NN-DE approach are very small compared to
the conventional DE optimization. For the 10-bar truss, the computation times of the DE
and NN-DE approaches are 1757 s and 324 s, respectively. These values are 4426 s and
575 s for the 25-bar truss. It means the NN-DE approach is more than 5 times faster than
the conventional DE approach. It is achieved by a significant reduction in the number of
FEAs.

Furthermore, the errors of the optimum weight between DE and NN-DE for two
problems are 3.1% and 0.4%, respectively. The reason for the errors is the models’
inaccuracy in predicting structural behavior. However, the coefficient of determination
(R2) between the cross-sectional areas found by DE and NN-DE for 10-bar truss and
25-bar truss are 0.981 and 0.971, respectively. It indicates a good similarity and linear
correlation between the results of the DE and NN-DE approaches.

5 Conclusions

In this paper, a hybrid approach, called NN-DE, which is combined Neural Networks
and Differential Evolution algorithm is proposed. By using Neural Networks as surro-
gated models instead of FEA, the computation times of the evolutionary optimization is
significantly reduced. Thus, the proposed approach has a high potential for large-scale
structures. Besides, the optimum results of the proposed approach have still slightly
errors compared to the conventional procedure. Therefore, it is important to notice that
the results obtained from the proposed approach are not exact, but it can be considered
as a good suggestion in the practical design. In the future, the methods to improve the
accuracy of the Neural Network models should be studied.

Acknowledgment. This work was supported by the Domestic Ph.D. Scholarship Programme of
Vingroup Innovation Foundation.

References

1. Rajeev, S., Krishnamoorthy, C.S.: Discrete optimization of structures using genetic algo-
rithms. J. Struct. Eng. 118(5), 1233–1250 (1992)

Using Neural Networks as Surrogate Models 163

2. Beyer, H.G.: The Theory of Evolution Strategies. Springer, Heidelberg (2001). https://doi.
org/10.1007/978-3-662-04378-3s

3. Price, K.V., Storn, R.M., Lampien, J.A.: Differential Evolution: A Practical Approach to
Global Optimization. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-31306-0

4. Eberhart, R., Kennedy, J.: Particle swarm optimization. In: Proceedings of ICNN 1995-
International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

5. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
6. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical

report - TR06, vol. 200, pp. 1–10 (2005)
7. Latif, M.A., Saka, M.P.: Optimum design of tied-arch bridges under code requirements using

enhanced artificial bee colony algorithm. Adv. Eng. Softw. 135, 102685 (2019)
8. Papadrakakis, M., Lagaros, N.D., Tsompanakis, Y.: Optimization of large-scale 3-D trusses

using evolution strategies and neural networks. Int. J. Space Struct. 14(3), 211–223 (1999)
9. Kaveh, A., Gholipour, Y., Rahami, H.: Optimal design of transmission towers using genetic

algorithm and neural networks. Int. J. Space Struct. 23(1), 1–19 (2008)
10. Krempser, E., Bernardino, H.S., Barbosa, H.J., Lemonge, A.C.: Differential evolution assisted

by surrogate models for structural optimization problems. In: Proceedings of the international
conference on computational structures technology (CST), vol. 49. Civil-Comp Press (2012)

11. Penadés-Plà, V., García-Segura, T., Yepes, V.: Accelerated optimization method for low-
embodied energy concrete box-girder bridge design. Eng. Struct. 179, 556–565 (2019)

12. Vesterstrom, J., Thomsen, R.: A comparative study of differential evolution, particle swarm
optimization, and evolutionary algorithmsonnumerical benchmark problems. In: Proceedings
of the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753), Portland,
USA, vol. 2, pp. 1980–1987. IEEE (2004)

13. Hieu, N.T., Tuan, V.A.: A comparative study of machine learning algorithms in predicting the
behavior of truss structures. In: Proceeding of the 5th International Conference on Research
in Intelligent and Computing in Engineering RICE 2020. Springer (2020). (accepted for
publication)

14. Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global
optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

15. Lampinen, J.: A constraint handling approach for the differential evolution algorithm. In:
Proceedings of the 2002 Congress on Evolutionary Computation (IEEE Cat. No. 02TH8600),
Portland, USA, vol. 2, pp. 1468–1473. IEEE (2002)

16. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)
17. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating

errors. Nature 323(6088), 533–536 (1986)
18. Differential Evolution Code Homepage. https://www.icsi.berkeley.edu/~storn/code.html.

Accessed 28 Jan 2020
19. PyNiteFEA Homepage. https://pypi.org/project/PyNiteFEA/. Accessed 22 Apr 2020
20. Keras Document Homepage. https://keras.io/. Accessed 22 Apr 2020
21. Lee, S., Ha, J., Zokhirova, M., Moon, H., Lee, J.: Background information of deep learning

for structural engineering. Arch. Comput. Meth. Eng. 25(1), 121–129 (2018)
22. Du, F., Dong, Q.Y., Li, H.S.: Truss structure optimization with subset simulation and

augmented Lagrangian multiplier method. Algorithms 10(4), 128 (2017)

https://doi.org/10.1007/978-3-662-04378-3s
https://doi.org/10.1007/3-540-31306-0
https://www.icsi.berkeley.edu/%7estorn/code.html
https://pypi.org/project/PyNiteFEA/
https://keras.io/

	Using Neural Networks as Surrogate Models in Differential Evolution Optimization of Truss Structures
	1 Introduction
	2 Background Theory
	2.1 Optimization Problem Statement
	2.2 Differential Evolution Algorithm
	2.3 Neural Networks

	3 Proposed Surrogate-Based Optimization Approach
	4 Computational Experiments
	4.1 10-Bar Truss
	4.2 25-Bar Truss
	4.3 Performance Comparisons

	5 Conclusions
	References

