
Autonomous Hybridization
of Agent-Based Computing

Mateusz Godzik(B) , Micha�l Idzik , Kamil Pietak , Aleksander Byrski ,
and Marek Kisiel-Dorohinicki

AGH University of Science and Technology,
Al. Mickiewicza 30, 30-059 Krakow, Poland

{godzik,miidzik,kpietak,olekb,doroh}@agh.edu.pl

Abstract. Using agent-based systems for computing purposes, where
agent becomes not only driver for realizing computing task, but a part
of the computing itself is an interesting paradigm allowing for easy
yet robust design of metaheuristics, making possible easy paralleliza-
tion and developing new efficient computing methods. Such methods as
Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO)
or Evolutionary Multi Agent-System (EMAS) are examples of such algo-
rithms. In the paper novel approach to hybridization of such computing
systems is presented. A number of agents doing their computing task can
agree to run other algorithm (similarly to high level hybrid proposed by
Talbi). The paper focuses on presenting the background and the idea of
such algorithm along with firm experimental results.

Keywords: Agent-based computing · Hybrid metaheuristics ·
Nature-inspired algorithms.

1 Introduction

Wolpert and MacReady have confirmed [30] the necessity for tuning the existing
metaheuristics in order to solve the difficult computing problems. Such tun-
ing usually comprises of choosing the parameters, following different well-known
methodologies to make sure the chosen values make the algorithm run really
efficacious (cf. iRace [19]). However, adaptation of the algorithms to a greater
extent, following e.g. hybridization (cf. Talbi [27]) may allow not only for finding
better metaheuristics, but also creating algorithms which will be easily paral-
lelized or run in hybrid environments. In particular, well-researched computing
methods, for which particular formal proofs were conducted (e.g. simple genetic
algorithm [29] or EMAS [2]), may become a good basis for further hybridizations.

EMAS is present in the state of the art since 1996 [6] and since then many
different versions and hybrids of this algorithm were proposed, yielding interest-
ing results [4]. This computing method consists in putting together evolutionary
and agent-based computing paradigm, creating a system where agent becomes a

c© Springer Nature Switzerland AG 2020
N. T. Nguyen et al. (Eds.): ICCCI 2020, LNAI 12496, pp. 139–151, 2020.
https://doi.org/10.1007/978-3-030-63007-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63007-2_11&domain=pdf
http://orcid.org/0000-0002-3411-7675
http://orcid.org/0000-0002-8446-4966
http://orcid.org/0000-0002-7062-261X
http://orcid.org/0000-0001-6317-7012
http://orcid.org/0000-0002-8459-1877
https://doi.org/10.1007/978-3-030-63007-2_11


140 M. Godzik et al.

part of the computing process and undergoes such processes as death and repro-
duction in order to participate in decentralized selection and produce offspring
that will be used for exploring and exploiting the search space. Minding that
EMAS was thoroughly analyzed from the theoretical point of view [2], it may
be viewed a good starting point for introducing hybrid versions.

Recently new hybrids of EMAS were proposed, comprising the already
researched, agent- and evolution-based synergetic metaheuristic with swarm
algorithm [21] and Differential Evolution (DE) [13]. Based on the experi-
ences gathered during conducting of this research, a more general approach to
hybridization of EMAS was proposed, making the agents responsible for choos-
ing a new metaheuristic, using it for improvement of their solution. Such an
autonomous approach for hybridization of metaheuristics is a main contribution
of this paper.

In the following sections, after presenting the basic structure and principles
of EMAS and related hybrid metaheuristics, the concept of autonomous hybrid
agent-based metaheuristic is presented, supported by experimental results and
their discussion. Finally the conclusion is given and the future work is sketched
out.

2 Evolutionary Multi Agent-Systems

EMAS [7] is metaheuristic which accurateness was proven with a proper for-
mal background, moreover can be treated as interesting and quite effective [2].
Therefore, this algorithm was chosen to solve the problem presented in this
article.

Because evolutionary processes are by their very nature decentralized, they
can easily be implemented in a multi-agent process at the population level. This
means that agents can reproduce - in cooperation with other agents or be killed
(die) as a result of rivalry between agents (selection). A congruous model with
narrow autonomy of agents deployed in the planned positions on some lattice (as
in a model built from cellular of parallel evolutionary algorithms) was developed
by Zhong et al. [33]. However, the decentralized model of evolution in EMAS
[15] was created to ensure to give agents full independence.

Such a system is built of a big number of simple and homogeneous agents,
each of whom is trying to develop his solution to a common problem. The low
computational complexity and the ability to create separate subsystems (sub-
populations) means that such systems can be efficiently used in large-scale dis-
tributed environments (see, e.g. [3]).

Each agent in EMAS can be seen as a representation of a single solution
to a given problem, while the islands on which the agents are located repre-
sent a distributed computational structure. The island is a local environment in
which agents can interact with each other. However, agents are not trapped on
the island - they can change location so that information and resources can be
exchanged throughout the entire system [15].

In EMAS, the main evolutionary factors - inheritance and selection - are
implemented through agents’ activities related to death and reproduction (see



Autonomous Hybridization of Agent-Based Computing 141

Fig. 1). Inheritance is the result of a properly defined reproduction - similar to
classic evolutionary algorithms. The agent’s basic features are recorded in its
genotype, which inherits from the parent(s) as a result of mutation and recom-
bination (variation operators). An agent can also gain knowledge (phenotype)
during his existence. Such knowledge is not inherited by his descendants, but
along with the genotype affects the behavior of the agent. It is worth noting
here that it is relatively easy to influence the increase of diversity in EMAS
by introducing algorithms such as allotropic speciation (cf. [5]). It introduces
the population distribution and allows the agent to move from one evolutionary
island to another (migration) (see Fig. 1). Assuming the lack of public knowledge
and the automation of agents, a selection mechanism was introduced, which is
based on the acquisition and exchange of non-renewable raw materials [7]. As a
result, the quality of the solution presented by the agent can be expressed by
the number of non-renewable resources owned by it. In other words, the agent
gains resources as a result of effective (“good”) actions or loses them as a result
of wrong decisions (“bad actions”). “Bad” or “good” actions can be understood
here as an attempt to find a good enough solution. Based on the amount of
resources, selection is carried out - agents with more resources have a better
chance to reproduce, while those who have gained little will increase their likeli-
hood of death. Following the classic taxonomy of Franklin and Graesser - EMAS
agents can be qualified as Artificial Life Agents (this is a kind of Computational
Agents) [12].

Fig. 1. Evolutionary multi-agent system (EMAS)

Many of the optimization problems that have been solved using EMAS and
its versions have yielded better results than some classic approaches. They con-



142 M. Godzik et al.

cern, for example, financial optimization, optimization of multiple goals and
optimization of the neural network architecture. In this way, it was proved that
in practice EMAS is applicable as a comprehensive optimization tool.

A summary of EMAS-related review has is given in [4]. EMAS can serve as
an example of a cultural algorithm in which evolution is possible thanks to the
interaction between agents and cultural knowledge is obtained from information
related to non-renewable resources (energy). This approach makes it possible to
determine which agent is better and which is worse, thus justifying decisions
on which genes should remain in the pool. Therefore, knowledge about energy
(non-renewable resources) is situational knowledge. Adding an appropriate local-
search method to operators, EMAS easily change to memetic version.

3 Hybrid Agent-Based Computing Methods

PSO can be referred as agent-based systems. Their results are obtained by a
cooperation of particles (agents), which form a population. There are also many
examples of PSO and Genetic Algorithm (GA) hybridization. Basic GA-PSO
approach was proposed in [14], where part of population is processed with evolu-
tionary operators and then PSO method is used to adjust output set of individu-
als. Other GA/PSO solutions include hybrid for solving combinatorial problems,
e.g. MPSO [1] (designed to solve Traveling Salesman Problem) or the algorithm
for combinatorial vehicle routing optimization problem (VRP) [31]. An overview
of PSO hybridizations is presented in [28]. It shows capabilities of PSO combined
with multiple approaches like DE, evolutionary programming, ACO, tabu search,
simulated annealing, sequential quadratic programming, gradient descend, etc.

PSO hybridization is also present in multi-objective optimization. Standard
GA is replaced with MOEA (Multi-Objective Evolutionary Algorithm) and fur-
ther adjustments are performed. OMOPSO [25] algorithm combines PSO tech-
nique, two-layered archive and Pareto dominance relation. Its results are com-
petitive to other classical MOEA approaches. Improvements of this method were
proposed in SMPSO [20], including better control of particles’ velocity and incor-
porating polynomial mutation as turbulence factor. There were also attempts
to combine PSO and many-objective solutions in order to solve problems with
large set of objectives, where classical MOEA approaches are not sufficient. An
example of such hybridization is MaOPSO [11], an algorithm using core ideas of
well-known many-objective methods, such as NSGAIII.

Another set of agent-based computing methods is ACO. These methods are
also very often combined with GA. In [23] an ACO algorithm is used to create an
initial population for the subsequent phase, which uses EA operators to develop
a solution (HRH). A hybrid incorporating both an ACO and a DE algorithm
was proposed in [32]. DE is being run between ACO iterations, optimizing the
pheromone trail deposited into the environment (LRH). ACO-EA hybrids for
continuous optimization problems have also been designed. As an example, [8]
proposes such an algorithm, where ACOR and CGAR (Conditionally Breeding
Genetic Algorithm) execute their iterations and generations interchangeably,
whilst sharing a population.



Autonomous Hybridization of Agent-Based Computing 143

More generic GA hybridization can be achieved with multi-deme meta-
heruristics. Hierarchical Genetic Strategy (HGS) introduced in [24] is an example
of such model. HGS can be used to divide calculations into tree-like structure.
Nodes closer to the tree root are responsible for more general calculations, while
leaves evaluate detailed aspects of most promising search space areas. Sprout
nodes are added to the tree when satisfactory results are found on parent node.
Meanwhile, old or redundant nodes are cut and removed from the tree. HGS was
combined with classical multi-objective algorithms (MOHGS [9]). This promis-
ing direction was further investigated in [17]. MO-mHGS, improved meta-model
is able to connect with any single-deme MOEA algorithm as its d̈river̈. New
nodes are created basing on progress ratio of popular MOEA quality indicator
– hypervolume. In addition, fitness function can be adjusted to speed up cal-
culations on lower tree levels. It was shown that MO-mHGS can significantly
improve single-deme algorithm performance. Moreover, HGS model has natural
capabilities to be treated as agent-based system and run in parallel environment.

EMAS was hybridized many times and different directions of such endeav-
ors were undertaken. E.g. one of first EMAS hybrids were immunological-EMAS
(proposed by Byrski) where the notion of immunological cells introduced among
the evolutionary agents was used to remove non-promising individuals, speeding
up the whole computing process. Other significant directions of hybridizing emas
were co-evolutionary MAS (developed by Drezewski, introducing many sexes,
niching and speciation mechanisms, aiming at improving the diversity and solv-
ing multi-modal optimiation problems). Elitist-EMAS was proposed by Siwik
and was aimed at solving multi-criteria optimization problems by using a notion
of elitist evolutionary island inside regular multi-deme population structure of
EMAS. Those hybrids were summarized in [4].

Korczynski worked on memetic version EMAS where a dedicated buffering
mechanism for fitness evaluation was constructed [16], so high-dimensional opti-
mization problems could be addressed.

Finally, Godzik et al. worked on hybrids of evolutionary algorithms, in partic-
ular EMAS with PSO [21] and DE [13]. After abstracting of the mechanism uses
for hybridizations in those papers, the higher-level hybridization was considered
and a relevant algorithm is a main contribution of this paper.

4 Autonomous Hybrid Agent-Based Metaheuristic

Autonomous hybrid agent-based metaheuristic is a type of modified EMAS algo-
rithm. It consists of the same steps as the base algorithm, except for one addi-
tional step. As shown in Fig. 2, an additional hybrid step is placed as the last step
of the algorithm loop. In this step, three stages can be distinguished: checking
the start condition, running support algorithms (e.g. PSO, DE) and adjusting
the energy level of agents using redistribution. The steps are described in detail
below.



144 M. Godzik et al.

Fig. 2. Hybrid Evolutionary multi-agent system

4.1 Conditions for Running the Optimization

Agents can decide autonomously which optimization they would like to take
part in. They may also decide not to participate in any of the optimizations.
The terms of these decisions can be any and different for each optimization
method and different for each agent. They may depend on the value of energy
(e.g. agents with low energy scared to die; agents with average energy wanting to
look for another area of solutions; agents with high energy wanting to improve
their solution before reproduction). The decision may also depend on the random
factor, the agent’s life span or calculation time. During their life, agents can freely
change their decisions about the desire to optimize.

Because running optimization algorithms is expensive (it consumes both a
lot of computation time and calls to the evaluation function), hybrids are not
run every algorithm cycle. Sometimes also running a given algorithm does not
make sense because of the properties of the algorithm itself. Very often it is not
correct to run the algorithm with only one or more willing agents. Therefore, at
this stage it is checked if the remaining stages of this step will be started. Launch
conditions include the number of cycles since the last launch, variety of solutions
or the aforementioned condition of the minimum number of willing agents for a
given hybrid. These are just examples, you can try others. Conditions can also
be combined with each other (both by conjunction and alternative).

If the start condition is met, the next stage follows (Optimization algorithms).
If not, the algorithm goes to the next step (checking the end of the algorithm).
In both cases, the agents’ decisions are not changed, and if agents do not change
them themselves, they will again be considered in the next hybridization step.



Autonomous Hybridization of Agent-Based Computing 145

4.2 Optimization Algorithms

If the algorithm requires creating new solutions (agents) and killing existing ones,
it is worth considering when including such an algorithm. It is recommended to
modify the steps of such an algorithm so as not to create/delete agents, but
only to replace their solutions. Thanks to this, we will not lose energy and other
parameters belonging to agents.

In our article we present the concept of the EMAS algorithm combined with
PSO and DE. Previous attempts have already been made to improve EMASA
by each of these algorithms separately. The results were promising, which is
why we continued this direction of research and combined both ideas into one
algorithm in which EMAS agents can choose between many algorithms. For
the purposes of this paper, we used two algorithms to be able to examine the
impact of this solution on results more easily. In further studies, you can try to
use more algorithms. You can also try different algorithms or parameters, e.g.
startup frequency or length of operation.

4.3 Redistribution Operator

The algorithms used in the hybrid step do not use agent energy. Therefore, after
leaving these algorithms, agents have an energy level inadequate to the quality
of the solution. To repair this condition, agents leave the energy redistribution
operator after leaving the algorithms. You can use different redistribution oper-
ators. This article uses the proportional redistribution operator. It sets energy
in proportion to agent solutions. Example: we have agent A and B. Agent A has
twice the solution than agent B. As a result of the operator’s action, agent A
will have twice as much energy as agent B. The sum of the agents’ energy before
and after redistribution is constant.

5 Experimental Results

In this section, the experimental results obtained for EMAS and the proposed
hybrid algorithm are presented and discussed.

All experiments were realized using a laptop with Intel i7-6700HQ 2.60 GHz
processor and 32 GB of RAM. 64-bit Ubuntu system (ver. 18.04). For exper-
iments, the jMetal platform1 was used. This platform has been modified and
improved by dr Leszek Siwik. On this platform a lot of calculations have been
made such as [22] and [26]. All algorithms, problem definitions and other com-
ponents come from this platform and can be found here: https://bitbucket.org/
lesiwik/modelowaniesymulacja2018. The tests were realized using jMetal version
5.6 and Java 11.0.4.

1 jMetal [10] is an object-oriented Java-based framework aimed at the development,
experimentation, and study of metaheuristics for solving optimization problems.
http://jmetal.github.io/jMetal/.

https://bitbucket.org/lesiwik/modelowaniesymulacja2018
https://bitbucket.org/lesiwik/modelowaniesymulacja2018
http://jmetal.github.io/jMetal/


146 M. Godzik et al.

(a) 1000-dimensional Ackley function (b) 1000-dimensional Griewank function

Fig. 3. Best fitness values for the selected benchmark functions.

(a) 1000-dimensional Ackley function

(b) 1000-dimensional Griewank function

Fig. 4. Best fitness values in the time domain for the selected benchmark functions.



Autonomous Hybridization of Agent-Based Computing 147

5.1 Benchmarks

In order to compare basic algorithm and hybrid was used implementation of
problems from jmetal (Ackley, Griewank, Rastrigin) in two sizes (500D and
1000D) [10].

5.2 Configuration

The most important parameters set for the compared systems are bellow:

– EMAS parameters: Population size: 50; Initial energy: 10; Reproduction pred-
icate: energy above 20; Death predicate: energy equal to 0; Crossover operator:
SBXCrossover; Mutation operator: PolynomialMutation; Mutation probabil-
ity: 0.01; Reproduction energy transfer: 10; Fight energy transfer: 1;

– Hybrid parameters: Hybrid predicate: algorithm calls frequency - every 500
EMAS cycles; Redistribution operator: Proportional redistribute operator;

– PSO parameters: Max iterations: 3; Optymalization predicate: energy below
3; Minimal population size: 20;

– DE parameters: Max iterations: 3; Optimilization predicate: energy more than
17; Minimal population size: 20;

For each variant of dimension and algorithm (EMAS or hybrid), optimization
tests were carried out 10 times, and the stopping conditions were related to the
number of calls of the evaluation function. Namely each experiment could cause
a maximum of 100 * size of the problem (for 500 D it was 50,000) calls.

5.3 Discussion of the Results

Each of the charts presented in Fig. 3 consists a box plot describing the best
values of an objective function obtained for all individuals in the population
after calculations. On both charts left boxplot is for EMAS and right boxplot
is from Hybrid algorith results. For both the 1000 dimensional Ackley function
and the 1000 dimensional Griewank function the results of the Hybrid algorithm
are better than the results of EMAS.

Figure 4 shows the successive stages of obtaining these results. Red color
is the results of EMAS, blue of Hybrid algorithm. It can be seen that at the
very beginning the values of the drawn solutions are comparable. Differences,
however, appear from further stages. Two more things follow from this chart.
The first is greater repeatability of hybrid results relative to EMAS. The hybrid
achieves a significant improvement at the very beginning of the search, and then
systematically improves the result. The quality of the solution can be controlled
by extending or shortening the calculation time. The results of given stages and
the shape of the function they make up are different for different problems. It
depends on the problem and its difficulties.

Results of all problems and median, mean, standard deviation, maximum
and minimum of results can be found in Table 1. From the value it contains,
it can be seen that for each of the problems presented and its size, the hybrid
algorithm finds better solutions. Often it is even an order of magnitude better
solution.



148 M. Godzik et al.

Table 1. Results of EMAS and Hybrid algorithm for tested problems.

EMAS

Mean Median SD Minimum Maximum

Griewank 500 36,53959 36,47595 2,465202 32,42908 40,19382

Griewank 1000 77,72416 77,59668 6,799436 67,00974 86,30626

Rastrigin 500 1230,133 1234,579 53,72975 1140,196 1312,001

Rastrigin 1000 2623,715 2624,648 80,49499 2497,007 2739,022

Ackley 500 13,58948 13,70353 2,301543 9,254563 17,67479

Ackley 1000 15,99848 16,05875 1,130237 13,47086 17,46292

Hybrid

Mean Median SD Minimum Maximum

Griewank 500 24,43789 2,52E + 01 2,637139 21,17531 29,13334

Griewank 1000 38,32668 38,94534 2,002169 34,87153 40,72877

Rastrigin 500 879,7538 893,0913 73,14583 715,2792 972,8848

Rastrigin 1000 1622,948 1647,153 73,70861 1497,864 1741,93

Ackley 500 4,636582 4,611668 0,163013 4,330747 4,90088

Ackley 1000 4,240177 4,221788 0,075062 4,160407 4,42008

6 Conclusion

In this paper a concept of autonomous, agent-based hybrid metaheuristic algo-
rithm rooted in EMAS was presented. The agents decide in an autonomous way,
in which possible hybridization they would like to participate, and depending
on their choice (e.g. based on the level of their energy) their solutions undergo
optimization by one of possible hybrid algorithms. In this paper PSO and DE
algorithms were used, while it is possible to extend this list so the proposed con-
cept of hybridization is open. One has to remember that after completion of this
hybrid step, the computing continues inside EMAS, therefore proper redistribu-
tion of energy is required, depending on the quality of the improved solutions.

The experiments conducted, presented in this paper, tackled selected bench-
mark problems and tested the efficacy of the introduced hybridizations. For
three difficult benchmarks (Griewank, Rastrigin and Ackley) set in 500 and
1000 dimensions the experiments showed that the hybrid versions improve sig-
nificantly the results obtained by classic, non-hybrid ones. This encourages us
to further research the proposed metaheuristics and broaden the experiments
and delve into detailed testing of different hybridization intrincacies, e.g. the
mechanism of redistribution of energy or the mechanism of autonomous decision
undertaken by the agents, whether to participate (or not) in a hybrid step.

The proposed metaheuristic can be further investigated by extending research
area to multiobjective optimization problems. Standard, EMAS and PSO algo-
rithms can be replaced with MOEA solutions and hybrids. Incorporating MO-



Autonomous Hybridization of Agent-Based Computing 149

mHGS [18] multi-deme model into multi-agent system environment is also worth
considering.

Acknowledgments. The work presented in this paper was supported by Polish
National Science Centre PRELUDIUM project no. 2017/25/N/ST6/02841.

References

1. Borna, K., Khezri, R.: A combination of genetic algorithm and particle swarm
optimization method for solving traveling salesman problem. Cogent Math. 2(1)
(2015). http://doi.org/10.1080/23311835.2015.1048581

2. Byrski, A., Schaefer, R., Smo�lka, M.: Asymptotic guarantee of success for multi-
agent memetic systems. Bull. Pol. Acad. Sci. Tech. Sci. 61(1), 257–278 (2013)

3. Byrski, A., Debski, R., Kisiel-Dorohinicki, M.: Agent-based computing in an aug-
mented cloud environment. Comput. Syst. Sci. Eng. 27(1), 7–18 (2012)

4. Byrski, A., Dreżewski, R., Siwik, L., Kisiel-Dorohinicki, M.: Evolutionary multi-
agent systems. Knowl. Eng. Rev. 30(2), 171–186 (2015). https://doi.org/10.1017/
S0269888914000289

5. Cantú-Paz, E.: A summary of research on parallel genetic algorithms. IlliGAL
Report No. 95007. University of Illinois (1995)

6. Cetnarowicz, K., Kisiel-Dorohinicki, M., Nawarecki, E.: The application of evolu-
tion process in multi-agent world (MAW) to the prediction system. In: Tokoro,
M. (ed.) Proceedings of the 2nd International Conference on Multi-Agent Systems
(ICMAS 1996). AAAI Press (1996)

7. Cetnarowicz, K., Kisiel-Dorohinicki, M., Nawarecki, E.: The application of evolu-
tion process in multi-agent world (MAW) to the prediction system. In: Tokoro,
M. (ed.) Proceedings of the 2nd International Conference on Multi-Agent Systems
(ICMAS 1996), pp. 26–32. AAAI Press (1996)

8. Chen, Z., Wang, R.: GA and ACO-based hybrid approach for continuous opti-
mization. In: 2015 International Conference on Modeling, Simulation and Applied
Mathematics. Atlantis Press (2015). https://doi.org/10.2991/msam-15.2015.81

9. Ciepiela, E., Kocot, J., Siwik, L., Dreżewski, R.: Hierarchical approach to evolu-
tionary multi-objective optimization. In: Bubak, M., van Albada, G.D., Dongarra,
J., Sloot, P.M.A. (eds.) ICCS 2008. LNCS, vol. 5103, pp. 740–749. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-69389-5 82

10. Durillo, J.J., Nebro, A.J.: jMetal: a Java framework for multi-objective optimiza-
tion. Adv. Eng. Softw. 42, 760–771 (2011). http://www.sciencedirect.com/science/
article/pii/S0965997811001219. https://doi.org/10.1016/j.advengsoft.2011.05.014

11. Figueiredo, E.M., Ludermir, T.B., Bastos-Filho, C.J.: Many objective particle
swarm optimization. Inf. Sci. 374, 115–134 (2016)

12. Franklin, S., Graesser, A.: Is It an agent, or just a program?: a taxonomy for
autonomous agents. In: Müller, J.P., Wooldridge, M.J., Jennings, N.R. (eds.) ATAL
1996. LNCS, vol. 1193, pp. 21–35. Springer, Heidelberg (1997). https://doi.org/10.
1007/BFb0013570. http://dl.acm.org/citation.cfm?id=648203.749270

13. Godzik, M., Grochal, B., Piekarz, J., Sieniawski, M., Byrski, A., Kisiel-Dorohinicki,
M.: Differential evolution in agent-based computing. In: Nguyen, N.T., Gaol, F.L.,
Hong, T.-P., Trawiński, B. (eds.) ACIIDS 2019. LNCS (LNAI), vol. 11432, pp.
228–241. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14802-7 20

http://doi.org/10.1080/23311835.2015.1048581
https://doi.org/10.1017/S0269888914000289
https://doi.org/10.1017/S0269888914000289
https://doi.org/10.2991/msam-15.2015.81
https://doi.org/10.1007/978-3-540-69389-5_82
http://www.sciencedirect.com/science/article/pii/S0965997811001219
http://www.sciencedirect.com/science/article/pii/S0965997811001219
https://doi.org/10.1016/j.advengsoft.2011.05.014
https://doi.org/10.1007/BFb0013570
https://doi.org/10.1007/BFb0013570
http://dl.acm.org/citation.cfm?id=648203.749270
https://doi.org/10.1007/978-3-030-14802-7_20


150 M. Godzik et al.

14. Kao, Y.T., Zahara, E.: A hybrid genetic algorithm and particle swarm optimization
for multimodal functions. Appl. Soft Comput. 8(2), 849–857 (2008). http://dx.doi.
org/10.1016/j.asoc.2007.07.002

15. Kisiel-Dorohinicki, M.: Agent-oriented model of simulated evolution. In: Grosky,
W.I., Plášil, F. (eds.) SOFSEM 2002. LNCS, vol. 2540, pp. 253–261. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-36137-5 19

16. Korczynski, W., Byrski, A., Kisiel-Dorohinicki, M.: Buffered local search for effi-
cient memetic agent-based continuous optimization. J. Comput. Sci. 20, 112–117
(2017). https://doi.org/10.1016/j.jocs.2017.02.001

17. Lazarz, R., Idzik, M., Gadek, K., Gajda-Zagorska, E.: Hierarchic genetic strategy
with maturing as a generic tool for multiobjective optimization. J. Comput. Sci.
17, 249–260 (2016)

18. Lazarz, R., Idzik, M., Gadek, K., Gajda-Zagórska, E.: Hierarchic genetic strategy
with maturing as a generic tool for multiobjective optimization. J. Comput. Science
17, 249–260 (2016). https://doi.org/10.1016/j.jocs.2016.03.004

19. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.:
The irace package: Iterated racing for automatic algorithm configuration. Oper.
Res. Perspect. 3, 43–58 (2016). https://doi.org/10.1016/j.orp.2016.09.002. http://
www.sciencedirect.com/science/article/pii/S2214716015300270

20. Nebro, A.J., Durillo, J.J., Garcia-Nieto, J., Coello, C.C., Luna, F., Alba, E.:
SMPSO: a new PSO-based metaheuristic for multi-objective optimization. In:
IEEE symposium on Computational Intelligence in Multi-Criteria Decision-
Making, 2009. MCDM 2009, pp. 66–73. IEEE (2009)

21. Placzkiewicz, L., et al.: Hybrid swarm and agent-based evolutionary optimization.
In: Shi, Y., et al. (eds.) ICCS 2018. LNCS, vol. 10861, pp. 89–102. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-93701-4 7

22. Podsiad�lo, K., �Loś, M., Siwik, L., Woźniak, M.: An algorithm for tensor product
approximation of three-dimensional material data for implicit dynamics simula-
tions. In: Shi, Y., et al. (eds.) Computational Science - ICCS 2018, pp. 156–168.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93701-4 12

23. Rajappa, G.P.: Solving combinatorial optimization problems using genetic algo-
rithms and ant colony optimization. Ph.D. thesis, University of Tennessee (2012).
https://trace.tennessee.edu/utk graddiss/1478

24. Schaefer, R., Kolodziej, J.: Genetic search reinforced by the population hierarchy.
Found. Genet. Algorithms 7, 383–401 (2002)

25. Sierra, M., Coello, C.: Improving PSO-based multi-objective optimization using
crowding, mutation and e-dominance. In: Evolutionary Multi-Criterion Optimiza-
tion, pp. 505–519 (2005)

26. Siwik, L., Los, M., Kisiel-Dorohinicki, M., Byrski, A.: Hybridization of iso-
geometric finite element method and evolutionary multi-agent system as a
tool-set for multiobjective optimization of liquid fossil fuel reserves exploita-
tion with minimizing groundwater contamination. Procedia Comput. Sci.
80, 792–803 (2016). https://doi.org/10.1016/j.procs.2016.05.369. http://www.
sciencedirect.com/science/article/pii/S1877050916308444. International Confer-
ence on Computational Science 2016, ICCS 2016, 6–8 June 2016, San Diego, Cali-
fornia, USA

27. Talbi, E.G.: A taxonomy of hybrid metaheuristics. J. Heuristics 8, 541–564 (2002)
28. Thangaraj, R., Pant, M., Abraham, A., Bouvry, P.: Particle swarm optimization:

Hybridization perspectives and experimental illustrations. Appl. Math. Comput.
217(12), 5208–5226 (2011). https://doi.org/10.1016/j.amc.2010.12.053. http://
www.sciencedirect.com/science/article/pii/S0096300310012555

http://dx.doi.org/10.1016/j.asoc.2007.07.002
http://dx.doi.org/10.1016/j.asoc.2007.07.002
https://doi.org/10.1007/3-540-36137-5_19
https://doi.org/10.1016/j.jocs.2017.02.001
https://doi.org/10.1016/j.jocs.2016.03.004
https://doi.org/10.1016/j.orp.2016.09.002
http://www.sciencedirect.com/science/article/pii/S2214716015300270
http://www.sciencedirect.com/science/article/pii/S2214716015300270
https://doi.org/10.1007/978-3-319-93701-4_7
https://doi.org/10.1007/978-3-319-93701-4_12
https://trace.tennessee.edu/utk_graddiss/1478
https://doi.org/10.1016/j.procs.2016.05.369
http://www.sciencedirect.com/science/article/pii/S1877050916308444
http://www.sciencedirect.com/science/article/pii/S1877050916308444
https://doi.org/10.1016/j.amc.2010.12.053
http://www.sciencedirect.com/science/article/pii/S0096300310012555
http://www.sciencedirect.com/science/article/pii/S0096300310012555


Autonomous Hybridization of Agent-Based Computing 151

29. Vose, M.: The Simple Genetic Algorithm: Foundations and Theory. MIT Press,
Cambridge, MA, USA (1998)

30. Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Trans.
Evol. Comput. 67(1), 67–82 (1997)

31. Xu, S.H., Liu, J.P., Zhang, F.H., Wang, L., Sun, L.J.: A combination of genetic
algorithm and particle swarm optimization for vehicle routing problem with time
windows. Sensors 15(9), 21033–21053 (2015). https://doi.org/10.3390/s150921033.
http://www.mdpi.com/1424-8220/15/9/21033

32. Zhang, X., Duan, H., Jin, J.: DEACO: hybrid ant colony optimization with differ-
ential evolution. In: Proceedings of the IEEE Congress on Evolutionary Computa-
tion, CEC 2008, 1–6 June 2008, Hong Kong, China, pp. 921–927 (2008). https://
doi.org/10.1109/CEC.2008.4630906

33. Zhong, W., Liu, J., Xue, M., Jiao, L.: A multiagent genetic algorithm for global
numerical optimization. IEEE Trans. Syst. Man Cybern. Part B Cybern. 34(2),
1128–1141 (2004)

https://doi.org/10.3390/s150921033
http://www.mdpi.com/1424-8220/15/9/21033
https://doi.org/10.1109/CEC.2008.4630906
https://doi.org/10.1109/CEC.2008.4630906

	Autonomous Hybridization of Agent-Based Computing
	1 Introduction
	2 Evolutionary Multi Agent-Systems
	3 Hybrid Agent-Based Computing Methods
	4 Autonomous Hybrid Agent-Based Metaheuristic
	4.1 Conditions for Running the Optimization
	4.2 Optimization Algorithms
	4.3 Redistribution Operator

	5 Experimental Results
	5.1 Benchmarks
	5.2 Configuration
	5.3 Discussion of the Results

	6 Conclusion
	References




