
Public-PEZ Cryptography

Soma Murata1 , Daiki Miyahara1,3(B) , Takaaki Mizuki2 ,
and Hideaki Sone2

1 Graduate School of Information Sciences, Tohoku University,
6-3-09 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
{soma.murata.p5,daiki.miyahara.q4}@dc.tohoku.ac.jp

2 Cyberscience Center, Tohoku University, 6-3 Aramaki-Aza-Aoba,
Aoba-ku, Sendai 980-8578, Japan

mizuki+lncs@tohoku.ac.jp
3 National Institute of Advanced Industrial Science and Technology,

2-3-26, Aomi, Koto-ku, Tokyo 135-0064, Japan

Abstract. Secure multiparty computation (MPC) is a cryptographic
technique that enables us to evaluate a predetermined function over play-
ers’ private inputs while hiding information about the inputs. MPC can
be conducted using a “private PEZ protocol,” that uses PEZ candies and
a dispenser. Specifically, in a private PEZ protocol, players first fill a pre-
determined sequence of candies in a dispenser. Then, each player in turn
privately pops out a number of candies, wherein the number depends on
their private input (without anybody else knowing how many candies
pop out). The next candy to be popped out of the dispenser indicates
the output value of the function. Thus, private PEZ protocols are fun
and useful. One drawback would be that every player must pop out can-
dies from the dispenser secretly, implying that a private PEZ protocol is
vulnerable to dishonest players, for example, a player could peep the can-
dies inside the dispenser. To overcome this drawback, we herein propose
MPC protocols that do not need private actions such as secretly popping
out candies after the setup (although each player rearranges the candies
secretly in a setup phase, any illegal actions can be caught). That is, we
construct a computational model of “public-PEZ cryptography,” where
any protocol within the model can be publicly executed. Especially, the
proposed public-PEZ AND protocol, which uses only five candies and
two dispensers, is simple and easy for conducting a secure computation
of the AND function.

Keywords: Secure multiparty computations · Recreational
cryptography · Private PEZ protocols · Card-based cryptography

1 Introduction

1.1 Background

Secure multiparty computation (MPC) is a cryptographic technique for evalu-
ating a predetermined function over players’ private inputs while hiding infor-
mation about the inputs. Interestingly, MPC can be performed using not only
c© Springer Nature Switzerland AG 2020
W. Susilo et al. (Eds.): ISC 2020, LNCS 12472, pp. 59–74, 2020.
https://doi.org/10.1007/978-3-030-62974-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62974-8_4&domain=pdf
http://orcid.org/0000-0001-6623-4000
http://orcid.org/0000-0002-5818-8937
http://orcid.org/0000-0002-8698-1043
http://orcid.org/0000-0002-9395-9987
https://doi.org/10.1007/978-3-030-62974-8_4

60 S. Murata et al.

Fig. 1. PEZ candies, packages, and a
dispenser.

Fig. 2. A deck of cards.

computers but also everyday objects. Some examples are private PEZ protocols
using PEZ candies and a dispenser (as shown in Fig. 1) and card-based protocols
using a deck of physical cards (as shown in Fig. 2). Using such physical crypto-
graphic protocols, we can visually understand what MPC is and how secure the
protocols are. Thus, they attract not only cryptographers but also non-experts,
such as high school students, and they can be effectively used as educational
tools.

Private PEZ protocols were first introduced in 2003 by Balogh et al. [2],
and their results were improved recently by Abe et al. [1] in 2019. In a private
PEZ protocol, players first fill in a dispenser with a predetermined sequence of
candies whose order depends on the function that they want to securely compute.
Subsequently, each player privately pops out a number of candies such that the
number depends on their private input. Finally, the remaining topmost candy
left in the dispenser becomes the output of the function. Thus, private PEZ
protocols are fun and useful. One drawback is that every player must take out
candies from the dispenser secretly, implying that a private PEZ protocol is
vulnerable to dishonest players. For example, when a player pops out candies
secretly, they could maliciously peep the candies inside the dispenser or replace
them with another sequence of candies as per their preference.

1.2 Contributions

In this paper, to overcome the drawback of the above-mentioned private PEZ
protocols, which require players’ private actions, we consider a new usage of
PEZ candies and dispensers by borrowing the ideas behind card-based protocols.
That is, we design novel PEZ protocols that can be publicly executed. Specif-
ically, we first propose a secure AND protocol using five PEZ candies and two
dispensers; it allows Alice and Bob to compute the AND value of their private
inputs without revealing them. Carrying the idea behind this protocol further,
we construct a computational model of public-PEZ cryptography. Following this
model, we present the formal description of our AND protocol. We also discuss
some implementation issues.

Public-PEZ Cryptography 61

1.3 Related Work

As mentioned above, we borrow the ideas and techniques from card-based pro-
tocols. The first card-based protocol was proposed by den Boer [3] in 1989; his
famous protocol called the “five-card trick” performs a secure computation of
the AND function. Our constructions are inspired by the card-based AND pro-
tocols [16,21] that use a shuffling operation called a “random bisection cut.”
In card-based protocols, all players first place a pair of cards face-down on a
table whose order depends on their private input. Subsequently, they perform
MPC by publicly shuffling and turning over the sequence of cards to obtain
the output. A formal computational model of card-based protocols was pre-
sented (and was then reviewed) in the literature [11,19,20,31]. Based on the
computational model, Koch et al. [11], Francis et al. [7], Kastner et al. [9], and
Koch et al. [10] provided tight lower bounds on the number of required cards.
In addition to simple MPCs, there are card-based protocols for zero-knowledge
proof [4,6,12,15,28,29] and secure comparison [13,14,30]. Furthermore, there
is another direction of card-based cryptography that relies on private actions
[24–27,33]. Protocols using other everyday objects have been proposed, such as
those using a dial lock [17], the 15-puzzle [18], envelopes [8], tamper-evident
seals [23], and a visual secret sharing scheme [5].

1.4 Outline

The remainder of this paper is organized as follows. In Sect. 2, we present a simple
and easy-to-implement AND protocol using five PEZ candies and two dispensers.
In Sect. 3, we define each operation appearing in public-PEZ protocols and
obtain a computational model. In Sect. 4, we formally describe the AND protocol
introduced in Sect. 2 based on the model shown in Sect. 3. In Sect. 5, we discuss
the feasibility of implementing the shuffling operations of public-PEZ protocols.
The concluding statements are presented in Sect. 6.

2 Public-PEZ AND Protocol

In this section, we present a simple and easy-to-implement AND protocol using
five PEZ candies and two dispensers.

Assume that Alice and Bob hold private input bits a ∈ {0, 1} and b ∈ {0, 1},
respectively. They want to learn a∧b, namely the AND value of their inputs, with-
out revealing the input values more than necessary. They only require two packages
of PEZ candies (of different flavors) and two identical dispensers1. We assume that
all candies are indistinguishable in terms of appearance, i.e., they have the same
color and shape; thePEZcandies sold in Japan satisfy this condition, i.e., the lemon
and orange candies appear identical, as shown in Fig. 3. We also assume that one
cannot distinguish two candies of different flavors by their smells2.
1 Two identical dispensers can be easily obtained by buying two sets of the same product.
2 This holds true at least for the authors’ sense of smell.

62 S. Murata et al.

Fig. 3. The PEZ candies sold in Japan; the lemon and orange candies are all white
and indistinguishable.

Fig. 4. How to prepare two candies of different flavors on Alice’s palm.

Let us consider how a Boolean value can be encoded by a flavor of the candy:
Let the lemon flavor be denoted by 0, and let the orange flavor be denoted by 1.
As shown in Fig. 3, candies with the same flavor are packed in the same package.
Let Alice take a lemon candy and an orange candy from the packages publicly
and place the two candies with different flavors on her palm, as shown in Fig. 4.
Next, let Alice arrange the two candies inside her hand (without Bob knowing
their order), as shown in Fig. 5, according to her input bit a ∈ {0, 1}, as follows.
If a = 0, she rearranges the two candies in the order of lemon, and then, orange,
i.e., 0 to 1; otherwise, in the order of orange to lemon, i.e., 1 to 0. Subsequently,
she takes the two candies from her palm and places them on the table so that
the order satisfies

PEZ

︸︷︷︸

a

PEZ

︸︷︷︸

a

,

Public-PEZ Cryptography 63

Fig. 5. Rearrange the two candies in Alice’s hand without Bob knowing its order.

Fig. 6. Place the candies (whose order matches Alice’s private bit) on the table without
Bob knowing the order.

as shown in Fig. 6. In this manner, Alice can prepare two candies (of different
flavors) corresponding to her private bit a ∈ {0, 1} and its negation a without
Bob knowing its value. Note that Alice and Bob face each other, and Bob watches
Alice’s behavior during the entire process. Therefore, Alice has no choice but to
place two candies of different flavors on the table; if Alice acts maliciously, such
an illegal action will be always identified.

We are now ready to present our protocol; it is based on the idea behind the
card-based AND protocol proposed in [16]. Our protocol proceeds as follows.

1. As described above, Alice prepares two candies corresponding to a and a.
Similarly, Bob prepares two candies that correspond to b and b. A sequence
of candies is arranged on a table as follows:

PEZ

︸︷︷︸

a

PEZ

︸︷︷︸

a

PEZ

︸︷︷︸

b

PEZ

︸︷︷︸

b

.

64 S. Murata et al.

Remember that the candies are indistinguishable from each other; for exam-
ple, Alice does not know how the third candy tastes (unless she bites it to
confirm its flavor).

2. Alice replaces the candy corresponding to a with a candy corresponding to 0,
i.e., she discards (or eats) the candy corresponding to a and places a candy
there corresponding to 0, which is taken from the lemon package:

PEZ

︸︷︷︸

a

PEZ

︸︷︷︸

0

PEZ

︸︷︷︸

b

PEZ

︸︷︷︸

b

.

3. Alice and Bob fill the four candies into two identical dispensers as follows.

4. Shuffle the two dispensers. The resulting state can be described as follows.

Here, r ∈ {0, 1} is a uniformly distributed random bit, and α and β are
defined as follows: if r = 0, (α, β) = (a, 0); if r = 1, (α, β) = (0, a). That
is, r = 0 indicates that the shuffle has not swapped the two dispensers, and
r = 1 means that the shuffle has swapped them. Moreover, if b ⊕ r = 0, we
have a ∧ b = a ∧ r = β because a ∧ 0 = 0 and a ∧ 1 = a; if b ⊕ r = 1, we have
a ∧ b = a ∧ r = α because a ∧ 0 = a and a ∧ 1 = 0.

5. Pop out the candy from each dispenser and then bite them3. If the candy
b ⊕ r popped out of the top dispenser corresponds to 0, the candy remaining
in the bottom dispenser β represents the output a ∧ b; if b ⊕ r corresponds to
1, the candy remaining in the top dispenser α represents the output a ∧ b.

This is our AND protocol, using five candies and two dispensers along with one
shuffle. Note that the shuffle and popping out candies can be done publicly.
It should be also noted that in Step 1, hidden operations shown in Fig. 5 are
required to prepare players’ private inputs; this is inevitable for MPC and, as
mentioned before, both players cannot place any pair of candies that deviates
from the encoding rule.
3 Alice and Bob may want to bite the candy simultaneously after splitting it for the

purpose of preventing anyone from lying about the flavor.

Public-PEZ Cryptography 65

After Step 5, the players obtain a candy corresponding to a ∧ b:

PEZ

︸︷︷︸

a∧b

.

If they bite it, they can know the value of a ∧ b. Instead, this candy can be
used as an input to another computation: that is, if Carol prepares two candies
according to her private bit c ∈ {0, 1}, starting the AND protocol again with

PEZ

︸︷︷︸

a∧b

PEZ

︸︷︷︸

0

PEZ

︸︷︷︸

c

PEZ

︸︷︷︸

c

generates a candy corresponding to a ∧ b ∧ c:

PEZ

︸︷︷︸

a∧b∧c

.

Thus, a secure AND computation of more than two inputs can be easily per-
formed.

3 Formalizing Public-PEZ Protocols

In this section, by elaborating the idea behind our AND protocol shown in
Sect. 2, we formally define each operation on PEZ candies and dispensers and
provide a computational model of public-PEZ protocols that publicly perform
MPC using PEZ candies and dispensers. We borrow the ideas and terms from
the computational model of card-based protocols [19].

3.1 Sequence of Candies

There are various flavors of PEZ candies, such as lemon and orange; however, as
assumed before, all candies have the same appearance so that they are indistin-
guishable (unless they are eaten). Considering all available candies, we denote
the multiset of them by B, which we call a box. Any element c ∈ B represents
a flavor, such as c ∈ [lemon, lemon, orange, orange, grape, · · ·]. For simplicity,
hereinafter, we consider only two flavors and denote them by 0 or 1. Therefore,
for instance, the AND protocol presented in Sect. 2 works on the box

B = [0, 0, 0, 1, 1] = [3 · 0, 2 · 1]

because it uses three lemon candies and two orange candies. Generally, if a
protocol requires k candies corresponding to 0 and � candies corresponding to 1,
the box is expressed as

B = [k · 0, � · 1].

66 S. Murata et al.

Next, we consider a “sequence” of candies. When a player takes a candy
from a package, its flavor is publicly known. For instance, if there are three
lemon candies and two orange candies taken from the packages, the order of
which is

PEZ

︸︷︷︸

0

PEZ

︸︷︷︸

1

PEZ

︸︷︷︸

0

PEZ

︸︷︷︸

1

PEZ

︸︷︷︸

0

,

we write this sequence as (0, 1, 0, 1, 0). Given such a sequence (0, 1, 0, 1, 0), let
both Alice and Bob (holding input bits a and b, respectively) rearrange two
candies inside their hand as in the AND protocol, shown in Sect. 2; then, we
have

PEZ

︸︷︷︸

a

PEZ

︸︷︷︸

a

PEZ

︸︷︷︸

b

PEZ

︸︷︷︸

b

PEZ

︸︷︷︸

0

,

where the flavors of the left-most four candies become publicly unknown. If the
flavor of candy c ∈ B is unknown to the public, we denote it by ?

c . Therefore,
for example, when a = 1 and b = 0, the sequence above can be written as

(

?
1
,
?
0
,
?
0
,
?
1
, 0

)

.

Now, consider a situation where players eat the first candy; then, the flavor,
1, becomes public while the candy has disappeared. We use expression c

ε with
c ∈ B to represent a candy whose flavor is known to the public, but the candy
itself does not exist. Therefore, the resulting sequence (from eating the left-most
candy) can be written as

(

1
ε
,
?
0
,
?
0
,
?
1
, 0

)

.

For c ∈ B, we define atom(c) = atom(?c) = atom(c
ε) = c. For example,

atom(1) = 1, atom(?0) = 0, and atom(1ε) = 1. For the box B with |B| = m, we
call Γ = (α1, α2, . . . , αm) a sequence from the box B if αi ∈ {0, 1, ?

0 , ?
1 , 0

ε , 1
ε } for

every i, 1 ≤ i ≤ m, and [atom(α1), atom(α2), . . . , atom(αm)] = B.
We define the set of all sequences from B as SeqB:

SeqB = {Γ |Γ is a sequence from B}.

3.2 Action

Next, we define four actions appearing in public-PEZ protocols. Assume that we
have a sequence Γ = (α1, α2, . . . , αm).

Public-PEZ Cryptography 67

Suppose that players want to check the flavors of some candies ?
c . In this

case, the players must bite them to determine their flavor, and the eaten candies
will disappear. We denote this action by (bite, T) for a set T ⊆ {1, 2, . . . ,m}
such that αi = ?

0 or ?
1 for every i ∈ T , where every candy in T is eaten and

disappears. That is, the resulting sequence becomes (β1, β2, . . . , βm) such that

βi =

{

atom(αi)
ε if i ∈ T

αi otherwise

for every i, 1 ≤ i ≤ m. For instance, for a sequence (?1 , ?
0 , ?

1 , ?
1 , ?

0), applying
(bite, T) with a set T = {1, 3, 5} results in (1ε , ?

0 , 1
ε , ?

1 , 0
ε).

Suppose that players want to rearrange the order of sequence Γ . We
denote this action by (permute, π) for a permutation π ∈ Sm, where Sm is
the symmetric group of degree m. That is, the resulting sequence becomes
(απ−1(1), απ−1(2), . . . , απ−1(m)).

Suppose that players want to perform a shuffling action such as shuffling the
two dispensers, seen in Sect. 2. We denote this type of action by (shuffle,Π,F)
for a subset Π ⊆ Sm and a probability distribution F on Π. That is, defining
fixed(Π) = {j | 1 ≤ j ≤ m, ∀σ ∈ Π σ(j) = j}, the resulting sequence becomes
(β1, β2, . . . , βm) such that

βi =

{

αi if i ∈ fixed(Π)
?

atom(απ−1(i))
if i /∈ fixed(Π)

for every i, 1 ≤ i ≤ m, where π is drawn from Π according to F . When F is uni-
form, we write (shuffle,Π) by omitting it. Note that when an action (shuffle,Π,F)
is applied to a sequence (α1, α2, . . . , αm), it should hold that i ∈ fixed(Π) for
every i such that αi = c

ε for some c.
Herein, we introduce two shuffles that are also often used in card-based pro-

tocols. The first one is a “random cut” that shuffles a sequence cyclically. For
instance, if a random cut is applied to a sequence of four candies, one of the
following sequences is obtained. The probability of each occurrence is 1/4.

1

PEZ

2

PEZ

3

PEZ

4

PEZ →

1

PEZ

2

PEZ

3

PEZ

4

PEZ

2

PEZ

3

PEZ

4

PEZ

1

PEZ

3

PEZ

4

PEZ

1

PEZ

2

PEZ

4

PEZ

1

PEZ

2

PEZ

3

PEZ

This shuffle is formally expressed as (shuffle, {id, (1 2 3 4), (1 2 3 4)2, (1 2 3 4)3})
where id is the identity permutation. The second one is a “random bisection

68 S. Murata et al.

cut,” which was implicitly seen in Sect. 2. Here, a sequence of candies is divided
in half and the two sub-sequences are shuffled. For instance, applying a random
bisection cut to a sequence of four candies results in

1

PEZ

2

PEZ

3

PEZ

4

PEZ →

1

PEZ

2

PEZ

3

PEZ

4

PEZ

3

PEZ

4

PEZ

1

PEZ

2

PEZ,

where each result occurs with a probability of 1/2. This shuffle is formally
expressed as (shuffle, {id, (1 3)(2 4)}).

Finally, we define an action used at the end of a protocol. We use (result, p)
for p ∈ {1, 2, · · · ,m} to represent that the protocol is terminated and its output
is the p-th candy.

3.3 Computational Model of Public-PEZ Protocols

In this subsection, we define a computational model of public-PEZ protocols via
an abstract machine.

Let B be a box. Depending on the players’ input, an initial sequence Γ0 (from
B) is determined. By U ⊆ SeqB, we denote the set of all possible input sequences.

Next, we define a visible sequence that represents all public information with
regard to the flavors of the candies. Consequently, we define top(?c) = ? and
top(c) = top(c

ε) = c for c ∈ B, which is based on the fact that when players bite
a candy, the candy will disappear but its flavor will be memorized by all players.
Then, we define vis(Γ) of a sequence Γ = (α1, α2, . . . , αm) as

vis((α1, α2, . . . , αm)) = (top(α1), top(α2), . . . , top(αm)).

For instance,

vis

((

1
ε
, 0,

?
1
,
0
ε
,
1
ε
,
?
0
, 1

))

= (1, 0, ?, 0, 1, ?, 1).

Furthermore, we define the set VisB of all visible sequences as

VisB = {vis(Γ) |Γ ∈ SeqB}.

We are now ready to formally define a public-PEZ protocol. A protocol is a
4-tuple P = (B, U,A,Q) such that

– B is a box;
– U ⊆ SeqB is a set of input sequences;
– Q is a set of states, containing the initial state q0 and final state qf ;
– A : (Q−{qf})×VisB → Q×Action is an action function, where Action is the

set of all possible actions (bite, T), (permute, π), (shuffle,Π,F), and (result, p).

A protocol P = (B, U,A,Q) proceeds as imagined; starting with an initial
sequence Γ0 ∈ U and initial state q0, it changes the sequence and state based on
the output of the action function. When the state becomes qf , the protocol P
terminates with an action (result, p) for some p.

Public-PEZ Cryptography 69

4 Formal Description of Our AND Protocol and Another
One

In this section, we formally describe our AND protocol presented in Sect. 2
based on the computational model of public-PEZ protocols defined in Sect. 3,
which can be described as follows.

The five-candy AND protocol
Box:

B = [3 · 0, 2 · 1]

Input:

U =

{
(

?
0
,
?
0
,
?
1
,
?
0
,
?
1

)

,

(

?
0
,
?
0
,
?
1
,
?
1
,
?
0

)

,

(

?
0
,
?
1
,
?
0
,
?
0
,
?
1

)

,

(

?
0
,
?
1
,
?
0
,
?
1
,
?
0

)
}

Steps:

1. (permute, (1 3))
2. (shuffle, {id, (2 3)(4 5)})
3. (bite, {4})
4. if visible seq.= (?, ?, ?, 0, ?) then (result, 3)
5. else if visible seq.= (?, ?, ?, 1, ?) then (result, 2)

Next, to display another formal protocol, we describe the XOR protocol
based on the card-based XOR protocol [22].

The XOR protocol based on [22]
Box:

B = [7 · 0, 7 · 1]

Input:

U =

{
(

?
0
,
?
1
,
?
0
,
?
1
,
?
0
,
?
1
,
?
0
,
?
1
,
?
0
,
?
1
, 0, 0, 1, 1

)

,

(

?
0
,
?
1
,
?
1
,
?
0
,
?
0
,
?
1
,
?
0
,
?
1
,
?
0
,
?
1
, 0, 0, 1, 1

)

,

(

?
1
,
?
0
,
?
0
,
?
1
,
?
0
,
?
1
,
?
0
,
?
1
,
?
0
,
?
1
, 0, 0, 1, 1

)

,

(

?
1
,
?
0
,
?
1
,
?
0
,
?
0
,
?
1
,
?
0
,
?
1
,
?
0
,
?
1
, 0, 0, 1, 1

)
}

70 S. Murata et al.

Steps:

1. (shuffle, {id, (7 8 9 10), (7 8 9 10)2, (7 8 9 10)3})
2. (shuffle, {id, (1 2 3 4), (1 2 3 4)2, (1 2 3 4)3})
3. (shuffle, {id, (5 6 7 8), (5 6 7 8)2, (5 6 7 8)3})
4. (shuffle, {id, (1 5)})
5. (bite, {1, 5})
6. if visible seq.= (0, ?, ?, ?, 0, ?, ?, ?, · · ·) then (permute, (1 11)(5 12))

go to step 2
else if visible seq.= (1, ?, ?, ?, 1, ?, ?, ?, · · ·) then (permute, (1 13)(5 14))
go to step 2
else if visible seq.= (0, ?, ?, ?, 1, ?, ?, ?, · · ·) or (1, ?, ?, ?, 0, ?, ?, ?, · · ·)
go to step 7

7. (bite, {3, 7})
8. if visible seq.= (c, ?, 0, ?, c, ?, 1, ?, · · ·) or (c, ?, 1, ?, c, ?, 0, ?, · · ·)

for some c ∈ {0, 1} then (result, 9)
else if visible seq.= (c, ?, 0, ?, c, ?, 0, ?, · · ·) or (c, ?, 1, ?, c, ?, 1, ?, · · ·)
for some c ∈ {0, 1} then (result, 10)

We describe the above XOR protocol as an example. However, we do not
intend to use this practically because it is relatively complicated, has a loop,
and is a Las Vegas algorithm. (Actually, we can obtain a simple finite-runtime
XOR protocol based on the four-card XOR protocol in [21].) Note that the
number of available candies is finite, i.e., the box B has exactly seven lemon
candies and seven orange candies. Therefore, if there is no candy available in
Step 6, the protocol fails. This is a big difference between card-based protocols
and public-PEZ protocols; the Las Vegas algorithm does not work well in public-
PEZ cryptography.

5 Implementations of Shuffles of Candies

In this section, we discuss the feasibility of shuffling actions in public-PEZ pro-
tocols. It is more difficult to shuffle a sequence of candies using the players’
hands, compared to shuffling a sequence of cards. Therefore, we consider using
the following special tools to implement a random bisection cut and random cut
on a sequence of candies.

Random Bisection Cut. As already seen in Sect. 2, we use two identical
dispensers. First, the two divided sequences of candies are packed into the two
dispensers without changing the orders. Then, we shuffle the two dispensers,
take out the candies from each of the dispensers, and arrange them.
The operation of shuffling the two dispensers must be implemented so that
nobody knows how many times they are switched. The previous research [32]

Public-PEZ Cryptography 71

proposed a secure implementation method for a random bisection cut in card-
based protocols using a Styrofoam ball. This method can be used in public-
PEZ protocols as well. Specifically, two dispensers are placed in a Styrofoam
ball (the contents of which cannot be seen from the outside). Then, the ball
is thrown up to shuffle the dispensers inside the ball.

Random cut. We consider using a hose as shown in Fig. 7. First, we place the
candies (to be shuffled) in the hose while maintaining the order, and tape its
inlet and outlet. Then, we move the candies by rotating the hose. Finally, we
take out the candies from the hose, while maintaining the order, and arrange
them. The diameter of the hose must be tight enough that the order of the
candies inside the hose does not change when it is rotated.

Fig. 7. How to implement a random cut.

6 Conclusion

In this study, we designed public-PEZ cryptography. We constructed its com-
putational model and presented a few protocols within the model. Further, we
discussed the feasibility of shuffling actions for a sequence of PEZ candies. As
public-PEZ protocols do not require private actions, players can perform MPC
more securely and easily. In particular, we believe that our AND protocol pre-
sented in Sect. 2 is practical enough to be utilized in daily activities.

People might assume that this paper would just replace “cards” in card-based
cryptography with “candies and dispensers,” i.e., public-PEZ cryptography is a
type of re-implementation of card-based cryptography, and thus, there would
not be much novelty. However, we believe that this is not the case. As already
demonstrated, unlike a deck of cards, one cannot turn a candy face down and a
candy disappears after one confirms its value; therefore, we need novel and careful
treatment to construct a rigorous model. In addition, public-PEZ cryptography
is simple, which is a virtue.

Acknowledgement. We thank the anonymous referees, whose comments have helped
us to improve the presentation of the paper. This work was supported in part by JSPS
KAKENHI Grant Number JP19J21153.

72 S. Murata et al.

References

1. Abe, Y., Iwamoto, M., Ohta, K.: Efficient private PEZ protocols for symmetric
functions. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11891, pp.
372–392. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6 15

2. Balogh, J., Csirik, J.A., Ishai, Y., Kushilevitz, E.: Private computation using a
PEZ dispenser. Theoret. Comput. Sci. 306(1), 69–84 (2003). https://doi.org/10.
1016/S0304-3975(03)00210-X. http://www.sciencedirect.com/science/article/pii/
S030439750300210X

3. Boer, B.: More efficient match-making and satisfiability the five card trick. In:
Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp.
208–217. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4 23

4. Bultel, X., et al.: Physical zero-knowledge proof for Makaro. In: Izumi, T.,
Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp. 111–125. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03232-6 8

5. D’Arco, P., Prisco, R.D.: Secure computation without computers. Theoret. Com-
put. Sci. 651, 11–36 (2016). https://doi.org/10.1016/j.tcs.2016.08.003

6. Dumas, J.-G., Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.:
Interactive physical zero-knowledge proof for Norinori. In: Du, D.-Z., Duan, Z.,
Tian, C. (eds.) COCOON 2019. LNCS, vol. 11653, pp. 166–177. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26176-4 14

7. Francis, D., Aljunid, S.R., Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Necessary
and sufficient numbers of cards for securely computing two-bit output functions.
In: Phan, R.C.-W., Yung, M. (eds.) Mycrypt 2016. LNCS, vol. 10311, pp. 193–211.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61273-7 10

8. Heather, J., Schneider, S., Teague, V.: Cryptographic protocols with everyday
objects. Formal Aspects Comput. 26(1), 37–62 (2013). https://doi.org/10.1007/
s00165-013-0274-7

9. Kastner, J., et al.: The minimum number of cards in practical card-based protocols.
In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 126–155.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 5

10. Koch, A., Schrempp, M., Kirsten, M.: Card-based cryptography meets formal ver-
ification. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol.
11921, pp. 488–517. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
34578-5 18

11. Koch, A., Walzer, S., Härtel, K.: Card-based cryptographic protocols using a min-
imal number of cards. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS,
vol. 9452, pp. 783–807. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48797-6 32

12. Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: A physical ZKP for
Slitherlink: how to perform physical topology-preserving computation. In: Heng,
S.H., Lopez, J. (eds.) Information Security Practice and Experience. Lecture Notes
in Computer Science, vol. 11653, pp. 135–151. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-34339-2 8

13. Miyahara, D., Hayashi, Y., Mizuki, T., Sone, H.: Practical and easy-to-understand
card-based implementation of yao’s millionaire protocol. In: Kim, D., Uma, R.N.,
Zelikovsky, A. (eds.) COCOA 2018. LNCS, vol. 11346, pp. 246–261. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-04651-4 17

14. Miyahara, D., Hayashi, Y., Mizuki, T., Sone, H.: Practical card-based implemen-
tations of Yao’s millionaire protocol. Theoret. Comput. Sci. 803, 207–221 (2020).
https://doi.org/10.1016/j.tcs.2019.11.005

https://doi.org/10.1007/978-3-030-36030-6_15
https://doi.org/10.1016/S0304-3975(03)00210-X
https://doi.org/10.1016/S0304-3975(03)00210-X
http://www.sciencedirect.com/science/article/pii/S030439750300210X
http://www.sciencedirect.com/science/article/pii/S030439750300210X
https://doi.org/10.1007/3-540-46885-4_23
https://doi.org/10.1007/978-3-030-03232-6_8
https://doi.org/10.1016/j.tcs.2016.08.003
https://doi.org/10.1007/978-3-030-26176-4_14
https://doi.org/10.1007/978-3-319-61273-7_10
https://doi.org/10.1007/s00165-013-0274-7
https://doi.org/10.1007/s00165-013-0274-7
https://doi.org/10.1007/978-3-319-70700-6_5
https://doi.org/10.1007/978-3-030-34578-5_18
https://doi.org/10.1007/978-3-030-34578-5_18
https://doi.org/10.1007/978-3-662-48797-6_32
https://doi.org/10.1007/978-3-662-48797-6_32
https://doi.org/10.1007/978-3-030-34339-2_8
https://doi.org/10.1007/978-3-030-34339-2_8
https://doi.org/10.1007/978-3-030-04651-4_17
https://doi.org/10.1016/j.tcs.2019.11.005

Public-PEZ Cryptography 73

15. Miyahara, D., et al.: Card-based ZKP protocols for Takuzu and Juosan. In: Farach-
Colton, M., Prencipe, G., Uehara, R. (eds.) 10th International Conference on Fun
with Algorithms (FUN 2020). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 157, pp. 1–21. Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
Dagstuhl, Germany (2020). https://drops.dagstuhl.de/opus/volltexte/2020/12781

16. Mizuki, T.: Card-based protocols for securely computing the conjunction of multi-
ple variables. Theoret. Comput. Sci. 622, 34–44 (2016). https://doi.org/10.1016/
j.tcs.2016.01.039

17. Mizuki, T., Kugimoto, Y., Sone, H.: Secure multiparty computations using a dial
lock. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS, vol. 4484, pp.
499–510. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72504-
6 45

18. Mizuki, T., Kugimoto, Y., Sone, H.: Secure multiparty computations using the 15
puzzle. In: Dress, A., Xu, Y., Zhu, B. (eds.) COCOA 2007. LNCS, vol. 4616, pp.
255–266. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73556-
4 28

19. Mizuki, T., Shizuya, H.: A formalization of card-based cryptographic protocols via
abstract machine. Int. J. Inf. Secur. 13(1), 15–23 (2013). https://doi.org/10.1007/
s10207-013-0219-4

20. Mizuki, T., Shizuya, H.: Computational model of card-based cryptographic proto-
cols and its applications. IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
E100(A(1)), 3–11 (2017). https://doi.org/10.1587/transfun.E100.A.3

21. Mizuki, T., Sone, H.: Six-card secure and and four-card secure XOR. In: Deng, X.,
Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02270-8 36

22. Mizuki, T., Uchiike, F., Sone, H.: Securely computing XOR with 10 cards. Aus-
tralas. J. Comb. 36, 279–293 (2006)

23. Moran, T., Naor, M.: Basing cryptographic protocols on tamper-evident seals.
Theoret. Comput. Sci. 411(10), 1283–1310 (2010)

24. Nakai, T., Shirouchi, S., Iwamoto, M., Ohta, K.: Four cards are sufficient for a card-
based three-input voting protocol utilizing private permutations. In: Shikata, J.
(ed.) ICITS 2017. LNCS, vol. 10681, pp. 153–165. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-72089-0 9

25. Nakai, T., Tokushige, Y., Misawa, Y., Iwamoto, M., Ohta, K.: Efficient card-based
cryptographic protocols for millionaires’ problem utilizing private permutations.
In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp. 500–517.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48965-0 30

26. Ono, H., Manabe, Y.: Efficient card-based cryptographic protocols for the mil-
lionaires’ problem using private input operations. In: 2018 13th Asia Joint
Conference on Information Security (AsiaJCIS), pp. 23–28, Aug 2018. DOIurl
https://doi.org/10.1109/AsiaJCIS.2018.00013

27. Ono, H., Manabe, Y.: Card-based cryptographic protocols with the minimum num-
ber of rounds using private operations. In: Pérez-Solà, C., Navarro-Arribas, G.,
Biryukov, A., Garcia-Alfaro, J. (eds.) DPM/CBT -2019. LNCS, vol. 11737, pp.
156–173. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31500-9 10

28. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for Numberlink. In: Farach-
Colton, M., Prencipe, G., Uehara, R. (eds.) 10th International Conference on
Fun with Algorithms (FUN 2020). Leibniz International Proceedings in Informat-
ics (LIPIcs), vol. 157, pp.1–11. Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
Dagstuhl, Germany (2020). https://drops.dagstuhl.de/opus/volltexte/2020/12783

https://drops.dagstuhl.de/opus/volltexte/2020/12781
https://doi.org/10.1016/j.tcs.2016.01.039
https://doi.org/10.1016/j.tcs.2016.01.039
https://doi.org/10.1007/978-3-540-72504-6_45
https://doi.org/10.1007/978-3-540-72504-6_45
https://doi.org/10.1007/978-3-540-73556-4_28
https://doi.org/10.1007/978-3-540-73556-4_28
https://doi.org/10.1007/s10207-013-0219-4
https://doi.org/10.1007/s10207-013-0219-4
https://doi.org/10.1587/transfun.E100.A.3
https://doi.org/10.1007/978-3-642-02270-8_36
https://doi.org/10.1007/978-3-319-72089-0_9
https://doi.org/10.1007/978-3-319-72089-0_9
https://doi.org/10.1007/978-3-319-48965-0_30
https://doi.org/10.1007/978-3-030-31500-9_10
https://drops.dagstuhl.de/opus/volltexte/2020/12783

74 S. Murata et al.

29. Sasaki, T., Miyahara, D., Mizuki, T., Sone, H.: Efficient card-based zero-knowledge
proof for Sudoku. Theoret. Comput. Sci. 839, 135–142 (2020). https://doi.org/10.
1016/j.tcs.2020.05.036

30. Takashima, K., et al.: Card-based secure ranking computations. In: Li, Y., Cardei,
M., Huang, Y. (eds.) COCOA 2019. LNCS, vol. 11949, pp. 461–472. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-36412-0 37

31. Takashima, K., Miyahara, D., Mizuki, T., Sone, H.: Card-based protocol against
actively revealing card attack. In: Mart́ın-Vide, C., Pond, G., Vega-Rodŕıguez,
M.A. (eds.) Theory and Practice of Natural Computing. Lecture Notes in Com-
puter Science, vol. 11949, pp. 95–106. Springer International Publishing, Cham
(2019)

32. Ueda, I., Miyahara, D., Nishimura, A., Hayashi, Y., Mizuki, T., Sone, H.: Secure
implementations of a random bisection cut. Int. J. Inf. Secur. 19(4), 445–452
(2019). https://doi.org/10.1007/s10207-019-00463-w

33. Yasunaga, K.: Practical card-based protocol for three-input majority. IEICE Trans-
actions on Fundamentals of Electronics, Communications and Computer Sciences
pp. 1–3 (to appear). DOI: 10.1587/transfun.2020EAL2025

https://doi.org/10.1016/j.tcs.2020.05.036
https://doi.org/10.1016/j.tcs.2020.05.036
https://doi.org/10.1007/978-3-030-36412-0_37
https://doi.org/10.1007/s10207-019-00463-w

	Public-PEZ Cryptography
	1 Introduction
	1.1 Background
	1.2 Contributions
	1.3 Related Work
	1.4 Outline

	2 Public-PEZ AND Protocol
	3 Formalizing Public-PEZ Protocols
	3.1 Sequence of Candies
	3.2 Action
	3.3 Computational Model of Public-PEZ Protocols

	4 Formal Description of Our AND Protocol and Another One
	5 Implementations of Shuffles of Candies
	6 Conclusion
	References

