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Preface

On behalf of the Program Committee, it is our pleasure to present the proceedings
of the 23rd Information Security Conference (ISC 2020), which was held online during
December 16–18, 2020. There was no physical conference due to the COVID-19
global pandemic. ISC is an annual international conference covering research in theory
and applications of information security. Both academic research with high relevance
to real-world problems, as well as developments in industrial and technical frontiers fall
within the scope of the conference.

The 23rd edition of ISC was organized by the Petra Christian University, Surabaya,
Indonesia, and was held online. Professor Rolly Intan (Petra Christian University,
Indonesia) served as the general chair, and Professor Willy Susilo (University of
Wollongong, Australia) and Professor Robert H. Deng (Singapore Management
University, Singapore) served as the program co-chairs. The Program Committee
comprised 40 members from top institutions around the world. Out of 87 submissions,
the Program Committee eventually selected 23 papers (2 of which were accepted after a
shepherding process) for presentation in the conference and publication in the pro-
ceedings, resulting in an acceptance rate of 26.4%. The submission process was
double-blind, and the review process was organized and managed through the Easy-
chair online reviewing system, with all papers receiving at least three reviews. To
manage the final version of the papers, we used the Springer’s Online Conference
Service (OCS). The final program was quite balanced in terms of topics, containing
both theoretical/cryptography papers, as well as more practical/systems security papers.
The Best Paper Award was selected based on the highest mark received during the
review. The program co-chairs decided to present the Best Paper Award to “ELD:
Adaptive Detection of Malicious Nodes under Mix-Energy-Depleting-Attacks Using
Edge Learning in IoT Networks” by Zuchao Ma, Liang Liu, and Weizhi Meng. Beyond
the research papers, the conference program also included five insightful keynote talks
by Professor Reihaneh Safavi-Naini (University of Calgary, Canada), Dr. Melissa
Chase (Microsoft Research Redmond, USA), Professor Dr.-Ing. Tibor Jager (Bergische
Universität Wuppertal, Germany), Professor Yingjiu Li (University of Oregon, USA),
and Dr. Tieyan Li (Huawei Technologies Co. Ltd., Singapore).

A successful conference is the result of the joint effort of many people. We would
like to express our appreciation to the Program Committee members and external
reviewers for the time spent reviewing papers, participating in the online discussion,
and shepherding some of the papers to ensure the highest quality possible. We also
deeply thank our invited speakers for their willingness to participate in the conference,
especially during the difficult time in the middle of the global pandemic. We also
express our appreciation to the publication chairs: Dr. Fuchun Guo (University of
Wollongong, Australia), Dr. Yannan Li (University of Wollongong, Australia), and Dr.
Henry Novianus Palit (Petra Christian University, Indonesia), and the financial chair
Leo Willyanto Santoso (Petra Christian University, Indonesia). We would particularly



like to express our gratitude to Dr. Yannan Li who managed the OCS system and
handled all the issues with regards to the production of the final proceedings. Finally,
we also thank Springer for publishing these proceedings as part of their LNCS series
and allowing us to use their OCS system, and the ISC Steering Committee for their
continuous support and assistance.

Finally, ISC 2020 would not have been possible without the authors who submitted
their work and presented their contributions, as well as the attendees who came to the
conference. We would like to thank them all, and we look forward to their future
contributions to ISC.

December 2020 Willy Susilo
Robert H. Deng
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Anonymous IBE from Quadratic
Residuosity with Fast Encryption

Xiaopeng Zhao1, Zhenfu Cao1,2(B), Xiaolei Dong1, and Jinwen Zheng1

1 Shanghai Key Laboratory of Trustworthy Computing, East China Normal
University, Shanghai, China

52164500025@stu.ecnu.edu.cn, {zfcao,dongxiaolei}@sei.ecnu.edu.cn,
jinwen.zheng@foxmail.com

2 Cyberspace Security Research Center, Peng Cheng Laboratory, Shenzhen and
Shanghai Institute of Intelligent Science and Technology, Tongji University,

Shanghai, China

Abstract. We develop two variants of Cocks’ identity-based encryp-
tion. One variant has faster encryption, where the most time-consuming
part only requires several modular multiplications. The other variant
makes the first variant anonymous under suitable complexity assump-
tions, while its decryption efficiency is about twice lower than the first
one. Both the variants have ciphertext expansion twice more extensive
than the original Cocks’ identity-based encryption. To alleviate the issue
of the second variant’s large ciphertext expansion, we consider using it
to construct a public-key encryption with keyword search scheme with a
fast encryption algorithm by means of the transform in [1].

Keywords: Public-key cryptography · Quadratic residuosity ·
Identity-based encryption · Cocks’ scheme · Anonymous encryption ·
Public-key encryption with keyword search

1 Introduction

The notion of identity-based cryptography was first proposed by Shamir [19] in
1984. This new paradigm of cryptography aims at solving the issue of managing
and recovering the public-key certificate by simplifying the key management.
For example, users’ identification information such as email addresses or names
rather than digital certificates can be used as their public key to encrypt or
verify digital signature. Shamir constructed an identity-based signature scheme
using the RSA function, but developing identity-based encryption (IBE) schemes
turns out to be much harder. Until the year 2001, Shamir’s open problem was
solved by Boneh and Franklin [5] and Cocks [13] independently. Recently, lattice
was considered as an emergent system for constructing IBE schemes (e.g., as in
[15]). The Boneh-Franklin IBE scheme makes use of bilinear maps and is truly
practical. Therefore, this work has attracted tons of attention from researchers
over the years. However, Cocks’ IBE scheme received less attention because of
c© Springer Nature Switzerland AG 2020
W. Susilo et al. (Eds.): ISC 2020, LNCS 12472, pp. 3–19, 2020.
https://doi.org/10.1007/978-3-030-62974-8_1
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4 X. Zhao et al.

the lack of algebraic structure. Although Cocks’ IBE scheme is inefficient for
large messages, it is simple, elegant, and secure under the standard quadratic
residuosity (QR) assumption in the random oracle model. It can be used to
encrypt short session keys in practice, e.g., a 128-bit symmetric key. Thus, the
scheme was followed up by some researchers [2,6,7,10–12,14,17,20].

In 2016, Joye [17] made Cocks’ scheme amenable to applications including
electronic voting, auction systems, private information retrieval, or cloud com-
puting; Joye proved that Cocks’ scheme is homomorphic by considering Cocks’
ciphertext as elements of a certain algebraic group. A similar conclusion can
also be reached by considering Cocks’ scheme over the polynomial quotient ring
ZN [x]/(x2 − Rid) for which N is an RSA modulus and Rid is the IBE public key
of an identity id [10,11]. Our two variants are based on the latter structure.

It is well-known that Cocks’ scheme is not anonymous due to Galbraith’s
test [4]. The test has been well studied by several researchers [2,20]. Despite the
test, some researchers [2,6,12,14,17] managed to propose anonymous variants
of Cocks’ scheme. In [14], the anonymization of Cocks’ scheme was achieved for
the first time, and a public-key encryption with keyword search (PEKS) scheme
was proposed based on a variant of the quadratic residuosity problem. In this
work, we mainly follow the approach of Joye in [17], which does not increase
Cocks’ ciphertext size or sacrifice its security.

In this work, we use the time-space tradeoff method to propose two variants
of Cocks’ IBE scheme [13] in the following two aspects:

1. Our first variant omits the computation of the Jacobi symbol
(

a
b

)
for κ-bit

integers a and b, which has O (M(κ) log κ)1 time complexity [8], and the
modular multiplicative inverse in Cocks’ encryption. In detail, the ciphertext
extension is increased by a factor of 2, but the most time-consuming part of
the encryption in our variant only requires several modular multiplications
of time complexity O (M(κ)) (see [9, Section 2.4]). The variant can also be
proved semantic secure under a complexity assumption slightly stronger than
the QR assumption, moreover, this improvement hardly affects the decryption
speed.

2. Inspired by the anonymous variant of Cocks’ scheme, without ciphertext
expansion, proposed in [17, Section 6.2], our second variant makes the first
variant anonymous under suitable complexity assumptions. This improvement
does not affect the ciphertext expansion either. To alleviate the issue of the
second variant’s large ciphertext expansion, we consider using this variant to
construct a PEKS scheme with a fast PEKS-encryption algorithm by means
of the transform in [1].

The rest of the paper is organized as follows. In Sect. 2, we review the notion
of semantic secure and the notion of anonymity. In Sect. 3, we describe our
first variant and prove that it is semantic secure. In Sect. 4, we describe our
second variant and prove that it is anonymous under reasonable complexity

1 M(κ) is the time to multiply κ-bit numbers.
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assumptions. In AppendixA, we give a suitable application of our second variant.
Concluding remarks are given in Sect. 5.

2 Preliminaries

We write x
R← X for sampling at random an element x from the set X. If A

is an algorithm, then we write x ← A(y) to mean: “run A on input y and the
output is assigned to x”.

2.1 Identity-Based Encryption

An identity-based encryption (IBE) scheme is defined as a tuple of probabilistic
polynomial time (PPT) algorithms (Setup,KeyGen,Enc,Dec):

Setup(1κ) The setup algorithm Setup is a randomized algorithm that takes a
security parameter 1κ as input, and returns a tuple (mpk,msk), where mpk
denotes the public parameters and msk denotes the master secret key. The
message space is denoted by M.

KeyGen(msk, id) The key generation algorithm KeyGen takes msk and an identity
id as inputs, and returns a decryption key skid associated with the identity id.

Enc(mpk, id,m) The encryption algorithm Enc is a randomized algorithm that
takes the public parameters mpk, an identity id and a message m ∈ M as
inputs, and returns a ciphertext C.

Dec(mpk, skid, C) The decryption algorithm Dec takes the public parameters
mpk, a secret key skid (corresponding to the identity id) and a ciphertext C as
inputs, and returns a message m if C is a valid ciphertext, and ⊥ otherwise.

For any identity id and all messages m ∈ M, the correctness property requires
that

Dec (mpk, skid, C ← Enc(mpk, id,m)) = m.

2.2 Security Notions

The following notions are consistent with the notions described in [17,
Section 2.2].

Semantic Security. The semantic security property [16] states that it is infeasi-
ble for any adversary with the limited computation ability to get any information
of a message given the corresponding ciphertext. The behaviors of an adversary
A can be simulated by a pair of probabilistic PPT algorithms (A1,A2). The
adversary is allowed to adaptively make private key extraction queries to the
key-extraction oracle Extract(mpk,msk, ·). The game between an adversary and
a challenger contains the following five successive phases:

Initialization phase: The challenger takes a security parameter κ as input
and runs the algorithm Setup. It then gives the public parameters mpk to the
adversary A while keeping the master secret key msk to itself.
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The first query phase: After receiving mpk, A1 adaptively chooses an iden-
tity subspace ID1 in the identity space ID, and issues the key generation
queries to Extract(mpk,msk, ·) and obtains the private key corresponding to
each identity in ID1.

Challenge phase: A1 fixes a challenge identity id∗ /∈ ID1 and two different
messages m0, m1 ∈ M of equal length. It then returns them along with some
state information s. The challenger chooses uniformly at random a bit b and
encrypts mb with mpk and id∗. It then returns the corresponding ciphertext
C as the challenge ciphertext to A2.

The second query phase: Just like The first query phase, A2 can adap-
tively issue more key generation queries in the identity space ID2 ⊆ ID which
does not contain id∗.

Guess phase: The goal of A2 is to guess the bit b from C and s. It outputs a
guess b′ of b.

Formally, an IBE scheme is said to be semantically secure if the advantage

AdvIND-ID-CPA
A (1κ)

=

∣
∣
∣
∣
∣
∣
∣
Pr

⎡

⎢
⎣

(mpk,msk) R← Setup(1κ),
(id∗,m0,m1, s) ← AExtract(mpk,msk,·)

1 , : AExtract(mpk,msk,·)
2 (C, s) = b

b
R← {0, 1} , C ← Enc(mpk, id∗,mb)

⎤

⎥
⎦ − 1

2

∣
∣
∣
∣
∣
∣
∣

is negligible in the security parameter κ for any PPT adversary A. The semantic
security can also be called indistinguishable, chosen–identity, chosen–plaintext
(IND-ID-CPA) security.

Anonymity. The notion of anonymity [3] is a strong requirement of privacy:
it is infeasible for any adversary with the limited computation ability to get
the identity of the recipient from the ciphertext. Anonymous IBE can be used
for searchable encryption [1,4]. The behaviors of an adversary A can also be
simulated by a pair of probabilistic PPT algorithms (A1,A2). The game between
an adversary and a challenger contains the following five successive phases:

Initialization phase: The same as that in Sect. 2.2.
The first query phase: The same as that in Sect. 2.2.
Challenge phase: The adversary chooses two distinct challenge identities

id∗
0, id

∗
1 /∈ ID1 and a message m ∈ M. It then returns them along with some

state information s. The challenger chooses a random bit b and encrypts m
with mpk and id∗

b . It then sends the corresponding ciphertext C to A2.
The second query phase: Just like The first query phase, A2 can issue

more key generation queries in the identity space ID2 ⊆ ID which does not
contain id∗

0 and id∗
1.

Guess phase: The same as that in Sect. 2.2.
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Formally, an IBE scheme is said to be anonymous if the advantage

AdvANO-ID-CPA
A (κ)

=

∣
∣
∣
∣
∣
∣
∣
Pr

⎡

⎢
⎣

(mpk,msk) R← Setup(1κ),
(id∗

0, id
∗
1,m, s) ← AExtract(mpk,msk,·)

1 , : AExtract(mpk,msk,·)
2 (s, C) = b

b
R← {0, 1} , C ← Enc(mpk, id∗

b ,m)

⎤

⎥
⎦ − 1

2

∣
∣
∣
∣
∣
∣
∣

is negligible in the security parameter κ for any PPT adversary A.

2.3 Complexity Assumption

Let N be a product of two RSA primes p and q. Let JN =
{

x ∈ Z
∗
N

∣
∣
∣

(
x
N

)
= 1

}
,

i.e., the set of integers whose Jacobi symbols are 1. Let QRN = {x | ∃y ∈
Z

∗
N , x ≡ y2 (mod N)}. The following complexity assumption slightly modifies

the QR assumption.

Definition 1 (Strong Quadratic Residuosity (SQR) Assumption). Given
a security parameter κ. A PPT algorithm RSAGen (1κ) generates two RSA primes
p and q such that p ≡ −q mod 4 and their product N = pq. RSAGen (κ) also
chooses u

R← JN \QRN . The strong quadratic residuosity assumption with respect
to RSAGen (κ) asserts that the advantage AdvSQR

A,RSAGen (κ) defined as

∣
∣
∣Pr

[
A (N,u, x) = 1

∣
∣
∣ x

R← QRN

]
− Pr

[
A (N,u, x) = 1

∣
∣
∣ x

R← JN \ QRN

]∣∣
∣

is negligible for any PPT adversary A; the probabilities are taken over the exper-
iment of running (N, p, q, u) ← RSAGen (κ) and choosing at random x ∈ QRN

and x ∈ JN \ QRN .

Remark 1. The only difference between the SQR assumption and the assumption
on which Cocks’ scheme relies is the choice of p and q. In the latter assumption,
N = pq where p ≡ q ≡ 3 (mod 4), and −1 ∈ JN \ QRN is public. Hence, we
believe that breaking one is as intractable as breaking the other.

3 A Variant of Cocks’ IBE Scheme with Fast Encryption

Our first scheme can be viewed as a variant of the classical Cocks’ scheme. Define
the function

JN (x) =

{
⊥, if gcd(x,N) �= 1;
i, if gcd(x,N) = 1 and

(
x
N

)
= (−1)i.

Our first scheme proceeds as follows.
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Setup(1κ) Given a security parameter κ, Setup generates two RSA primes p and
q such that p ≡ −q mod 4 and their product N = pq. Setup also samples
an element u

R← JN \QRN . The public parameters is mpk = {N,u,H} where
H is a publicly available cryptographic hash function mapping an arbitrary
binary string to JN . The master secret key is msk = {p, q}.

KeyGen(mpk,msk, id) Using mpk and msk, KeyGen sets Rid = H(id). If Rid ∈
QRN , KeyGen computes rid = R

1/2
id mod N ; otherwise it computes rid =

(uRid)
1/2 mod N . Finally, KeyGen returns skid = {rid} as user’s private key.

Enc(mpk, id,m) On inputting mpk, an identity id and a message m ∈ {0, 1},
Enc derives the hash value Rid = H(id). Enc then chooses at random two
polynomials f(x), f(x) of degree 1 from ZN [x] and calculates

g(x) = f(x)2 mod (x2 − Rid) and g(x) = f(x)2 mod (x2 − uRid).

The returned ciphertext is C = ((−1)m · g(x), (−1)m · g(x)).
Dec(mpk, skid, C) On inputting mpk, a secret key skid = {rid} and a ciphertext

C = (c(x), c(x)), Dec computes

m′ =

⎧
⎨

⎩

(
c(rid)

N

)
if r2id ≡ H(id) (mod N);

(
c(rid)

N

)
otherwise.

and recovers the message m as JN (m′).

Correctness. The correctness of the decryption follows by noticing that when
r2id ≡ H(id) (mod N) we have

m′ =
(

c(rid)
N

)
=

(
(−1)mf(rid)2

N

)
= (−1)m,

and thus we can recover the message m by the function JN . When r2id ≡ uH(id)
(mod N), we can proceed similarly.

Remark 2. In the encryption, if we set f(x) = ax + b, we have

g(x) = f(x)2 = (ax + b)2 ≡ a2Rid + b2 + 2abx (mod x2 − Rid).

Thus, calculating g(x) needs two squares, two general multiplications and one
addition modulo N . In the decryption, we need one more modular multiplica-
tion than Cocks’ decryption. However, this hardly affects the decryption speed
because computing one general 1024-bit Jacobi symbol is about 27 times slower
than calculating one general 1024-bit modular multiplication according to the
running times in [6, Table 1].

Before proving that the above scheme is semantic secure, we need the following
theorem.
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Theorem 1. Let t ∈ Z
∗
N and R an element in JN \ QRN . If c(x) = f(x)2

t mod
(x2 − R) for some f(x) ∈ ZN [x] is a polynomial of degree 1, then the sets

Ωk =
{

g(x) ∈ ZN [x]
∣
∣
∣
∣ deg g(x) = 1,

g(x)2

k
mod (x2 − R) = c(x)

}

are of the same size for each k ∈ Z
∗
N .

Proof. Consider the two sets Ωt, Ωt, to prove the theorem, it suffices to prove
that #Ωt = #Ωt for fixed t and any t ∈ Z

∗
N . Suppose that

(
t−1t

p

)
= (−1)it and

(
t−1t

q

)
= (−1)jt for it, jt ∈ {0, 1}. Since

(
Rit

p

)
=

(
t−1t

p

)
and

(
Rjt

q

)
=

(
t−1t

q

)
,

there exist Wp ∈ Z
∗
p and Wq ∈ Z

∗
q such that

W 2
p Rit ≡ t−1t (mod p)

W 2
q Rjt ≡ t−1t (mod q).

According to the Chinese Remainder Theorem, we have

Z[x]/(N,x2 − R) ∼= Z[x]/(p, x2 − R) ⊕ Z[x]/(q, x2 − R).

Therefore, the map φ : Ωt → Ωt given by h(x) �→ g(x) where h(x) ∈ Ωt, g(x) ∈
Ωt and

g(x) ≡ Wpx
ith(x) (mod (p, x2 − R))

g(x) ≡ Wqx
jth(x) (mod (q, x2 − R))

is well defined. In the other direction, the inverse map ψ : Ωt → Ωt is given by
g(x) �→ h(x) where

h(x) ≡ W−1
p

(
R−1x

)it
g(x) (mod (p, x2 − R))

h(x) ≡ W−1
q

(
R−1x

)jt
g(x) (mod (q, x2 − R))

It is straightforward to verify that the composite map ψ◦φ = 1Ωt
and φ◦ψ = 1Ωt

where 1Ωt
and 1Ωt

denote the identity maps on Ωt and Ωt respectively. This
establishes the bijection and completes the proof. ��

Theorem 2. Let A = (A1,A2) be an adversary against the IND-ID-CPA secu-
rity of the scheme in Sect. 3, making qH queries to the random oracle H that are
not followed by (private key) extraction queries before the Challenge phase.
Then, there exists an adversary B against the SQR assumption such that

AdvIND-ID-CPA
A (κ) =

qH
2

· AdvSQR
B,RSAGen(κ)
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The security proof is obtained by following the proof of [17, Appendix A].

Proof. Suppose that B is given a tuple (N,u) ← RSAGen(κ) and a random
element w ∈ JN , and is asked to determine whether w ∈ JN \ QRN . B sets
mpk = {N,u,H} and gives it to A1, who has oracle access to hash queries and
extraction queries, i.e., asking the private key corresponding to each identity in
the chosen set ID1. B answers the oracle queries as follows:

Hash queries. Initially, B maintains a counter ctr initialized to 0 and a list
SH ← ∅ whose entry is in the form (id, Rid, rid). In addition, B selects i∗ R←
{1, 2, . . . , qH}.
When A queries oracle H on an identity id, B increments ctr and checks
whether there is an entry whose first component is id. If so, it returns Rid;
otherwise,
1. If ctr = i∗, it returns w and appends the entry (id, w,⊥) to SH;
2. Otherwise, it returns h = u−jr2 mod N for which r

R← ZN and j
R← {0, 1},

and appends the entry (id, h, r) to SH.
Extraction queries. When A queries the secret key on id, B first checks

whether there is an entry whose first component is id. If not, it invokes H(id)
to generate such an entry (id, Rid, rid). Finally, if rid =⊥, it aborts; otherwise,
it returns rid.

Afterwards, A1 selects a challenge identity id∗ /∈ ID1. If H(id∗) �= w, B returns
b

R← {0, 1}; otherwise, B does the following process:

1. Choose at random two polynomials f(x), f(x) of degree 1 from ZN [x] and
b

R← {0, 1}. Calculate

g(x) = f(x)2 mod (x2 − w)

g(x) = f(x)2 mod (x2 − uw)

The corresponding ciphertext is

Cb =

{
(g(x), −g(x)) , if b = 0;
(−g(x), g(x)) , otherwise.

2. Give Cb to A2. A2 may issue more hash queries and extraction queries on
identities except for id∗. Finally, A2 returns a bit b′.

3. If b = b′ return 1; otherwise return 0.

We first analyze the subcase that w �= H(id∗). In this case B returns a ran-
dom bit, regardless of what w is. Therefore, we have Pr[B (N,u,w) = 1 | w ∈
QRN ∧ w �= H(id∗)] = Pr

[
B (N,u,w) = 1

∣
∣ w ∈ JN \ QRN ∧ w �= H(id∗)

]
= 1/2.

We now consider the subcase that w = H(id∗). If w ∈ QRN , according to the fact
that uw ∈ JN \ QRN and Theorem 1, we conclude that Cb is a valid ciphertext
for b. For the same reason, if w ∈ JN \ QRN , we conclude that Cb is a valid
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ciphertext for 1 − b; in this case, B returns 1 if and only if A loses the IND-
ID-CPA game. Let ε = Pr

[
B (N,u,w) = 1

∣
∣ w ∈ QRN ∧ w = H(id∗)

]
, and hence

Pr
[
B (N,u,w) = 1

∣
∣ w ∈ JN \ QRN ∧ w = H(id∗)

]
= 1 − ε. We have

Pr
[
B (N,u,w) = 1

∣
∣ w ∈ QRN

]

= Pr [w = H(id∗)] · Pr
[
B (N,u,w) = 1

∣
∣ w ∈ QRN ∧ w = H(id∗)

]

+ Pr [w �= H(id∗)] · Pr
[
B (N,u,w) = 1

∣
∣ w ∈ QRN ∧ w �= H(id∗)

]

=
ε

qH
+

(
1 − 1

qH

)
· 1
2

and similarly,

Pr
[
B (N,u,w) = 1

∣
∣ w ∈ JN \ QRN

]

= Pr [w = H(id∗)] · Pr
[
B (N,u,w) = 1

∣
∣ w ∈ JN \ QRN ∧ w = H(id∗)

]

+ Pr [w �= H(id∗)] · Pr
[
B (N,u,w) = 1

∣
∣ w ∈ JN \ QRN ∧ w �= H(id∗)

]

=
1 − ε

qH
+

(
1 − 1

qH

)
· 1
2

Consequently, we have

AdvSQR
B,RSAGen(κ)

=
∣
∣Pr

[
B (N,u,w) = 1

∣
∣ w ∈ QRN

]
− Pr

[
B (N,u,w) = 1

∣
∣ w ∈ JN \ QRN

]∣∣

=
∣
∣
∣
∣

ε

qH
+

(
1 − 1

qH

)
· 1
2

−
(

1 − ε

qH
+

(
1 − 1

qH

)
· 1
2

)∣
∣
∣
∣

=
2
qH

·
∣
∣
∣
∣ε − 1

2

∣
∣
∣
∣

=
2
qH

AdvIND-ID-CPA
A (κ).

This completes the proof. ��

4 An Anonymous Variant of Cocks’ IBE Scheme
with Fast Encryption

Galbraith developed a test which shows that Cocks’ scheme is not anonymous.
It was rigorously proved in [2,20] that the test can distinguish the identity of the
recipient from the ciphertext with overwhelming probability. It is not difficult
to see that the scheme in Sect. 3 is also not anonymous when we simply modify
Galbraith’s test as:

GT N (Rid, Ci(x)) =
(

c2i0 − c2i1αiRid

N

)
, i = 1, 2.

where α1 = 1, α2 = u, and C = (C1(x), C2(x)) = (c10 + c11x, c20 + c21x) repre-
sents the ciphertext (we still call it Galbraith’s test in what follows). We should
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generate two types of ciphertexts whose Galbraith’s tests are −1 and +1 sep-
arately to avoid this attack. Multiplying the ciphertext polynomial by a scalar
does not work since the corresponding Galbraith’s tests do not change. What
about multiplying a polynomial? A polynomial x is feasible since

GT N (Rid, C
′
i(x) = xCi(x)) = −GT N (Rid, Ci(x)), i = 1, 2.

Therefore, inspired by the anonymous variant of Cocks’ scheme, without cipher-
text expansion in [17, Section 6.2], we can construct the following anonymous
variant of the scheme in Sect. 3, without ciphertext expansion. Our second
scheme proceeds as follows.

Setup(1κ) Given a security parameter κ, Setup generates two RSA primes p and
q such that p ≡ −q mod 4 and their product N = pq. Setup samples an
element u

R← JN \ QRN . The public parameters is mpk = {N,u,H} where
H is a publicly available cryptographic hash function mapping an arbitrary
binary string to JN . The master secret key is msk = {p, q}.

KeyGen(mpk,msk, id) Using mpk and msk, KeyGen sets Rid = H(id). If Rid ∈
QRN , KeyGen computes rid = R

1/2
id mod N ; otherwise it computes rid =

(uRid)
1/2 mod N . Finally, KeyGen returns skid = {rid} as user’s private key.

Enc(mpk, id,m) On inputting mpk, an identity id and a message m ∈ {0, 1},
Enc derives the hash value Rid = H(id). Enc then chooses at random two
polynomials f1, f2 of degree 1 from ZN [x] and two bits β1, β2

R← {0, 1}. Set

g
(0)
1 (x) = (−1)mf1(x)2 mod (x2 − Rid)

g
(1)
1 (x) = (−1)mx · f1(x)2 mod (x2 − Rid)

g
(0)
2 (x) = (−1)mf2(x)2 mod (x2 − uRid)

g
(1)
2 (x) = (−1)mx · f2(x)2 mod (x2 − uRid)

The returned ciphertext is

C =
(
g
(β1)
1 (x), g(β2)

2 (x)
)

.

Dec(mpk, skid, C) On inputting mpk, a secret key skid = {rid} and a ciphertext
polynomial set C = (C1(x), C2(x)), if r2id ≡ Rid (mod N), Dec sets h(x) =
C1(x) and computes σ = GT N (Rid, C1(x)); otherwise it sets h(x) = C2(x)
and computes σ = GT N (Rid, C2(x)). Finally, Dec computes

m′ =

⎧
⎨

⎩

(
h(rid)

N

)
, if σ = 1;

(
ridh(rid)

N

)
, otherwise.

and recovers the message m as JN (m′).
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Correctness. According to the correctness proof of the scheme in Sect. 3, it
is enough to show that the decryption is correct when σ = −1 and r2id ≡ Rid

(mod N). In this case, we have C1(x) = g
(1)
1 (x) and

m′ =
(

ridC1(rid)
N

)
=

(
(−1)mr2idf1(rid)

2

N

)
= (−1)m.

Thus, the decryption works correctly.

Remark 3. The computation amount in the decryption is about twice times
larger than that of the scheme in Sect. 3. However, the efficiency of the encryption
and the size of the ciphertext expansion do not change.

It is easy to see that the above scheme is also IND-ID-CPA secure by comparing
the ciphertexts between it and the scheme in Sect. 3: the ciphertext polynomials
for the two schemes differ at most by a polynomial x. Therefore, assuming that
there exists an IND-ID-CPA adversary A against the above scheme, we can con-
struct an adversary B which can break the IND-ID-CPA security of the scheme
in Sect. 3; given the ciphertext of the above scheme, B finds the original two
polynomials f1(x) and f2(x) using Galbraith’s test. Then B gives the ciphertext
C = (f1(x), f2(x)) to A. Finally, B returns whatever A returns.

The following theorem estimates the size of the first component of the
scheme’s ciphertext space when its encryption selects β1 = 0.

Theorem 3. With the notations in the above scheme, if we fix N and m, and
assume without loss that Rid = H(id) ∈ QRN , then the set

ZN,m,Rid =
{

Ca,b(x) = (−1)m(ax + b)2 mod (x2 − Rid) : a, b
R← Z

∗
N

∣∣∣ arid ± b ∈ Z
∗
N

}

has size at least ϕ(N)(p−3)(q−3)
16 (ϕ denotes the Euler’s totient function). There-

fore, the set of the first component of the scheme’s ciphertext has size at least
ϕ(N)(p−3)(q−3)

8 when its encryption selects β1 = 0.

Proof. We have by a simple calculation that

Ca,b(x) = (−1)m(ax + b)2 ≡ (−1)m
(
a2Rid + b2 + 2abx

)
(mod x2 − Rid).

Suppose that Ca1,b1(x) = Ca2,b2(x), we have

a2
1Rid + b21 ≡ a2

2Rid + b22 (mod N)
2a1b1 ≡ 2a2b2 (mod N)

This is equivalent to

(a1rid + b1)
2 ≡ (a2rid + b2)

2 (mod N)

(a1rid − b1)
2 ≡ (a2rid − b2)

2 (mod N)
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Fixing a1 and b1, if a1rid + b1 ∈ Z
∗
N and a1rid − b1 ∈ Z

∗
N (the latter means that

GT N (Rid, Ca1,b1(x)) = 1), then there are at most 16 choices of a2 ∈ Z
∗
N and

b2 ∈ Z
∗
N for which Ca1,b1(x) = Ca2,b2(x). The number of cases of a1rid ± b1 ∈ Z

∗
N

for a1, b1 ∈ Z
∗
N is exactly ϕ(N)(p − 3)(q − 3). This proves the first assertion.

It is then clear that ZN,0,Rid
∩ ZN,1,Rid

= ∅ since the decryption algorithm can
recover the original message. This proves the remaining assertion. ��
Given an RSA modulus N = pq and Δ ∈ Z

∗
N , define the following sets:

– SN,Δ =
{
u ∈ Z

∗
N

∣
∣ gcd(u2 − Δ,N) = 1

}

– S
[−1]
N,Δ =

{
u ∈ Z

∗
N

∣
∣
∣

(
u2−Δ

N

)
= −1

}

– S
[+1]
N,Δ =

{
u ∈ Z

∗
N

∣
∣
∣

(
u2−Δ

N

)
= 1

}

– (SN,Δ)2 =
{

u ∈ Z
∗
N

∣
∣
∣

(
u2−Δ

p

)
=

(
u2−Δ

q

)
= 1

}

For a prime p, let QRp be the set of quadratic residues modulo p containing 02.
Perron [18] proved that any r relatively prime to p the set r + QRp contains
k quadratic residues and k quadratic non-residues when p = 4k − 1, or k + 1
quadratic residues and k quadratic non-residues when p = 4k + 1 and r ∈ QRp.
Now, we take r = −Δ = −Rid and assume without loss that p ≡ 3 (mod 4),
q ≡ 1 (mod 4) and Rid ∈ QRN . There are

(
p+1
4 − 1

)
× 2 = p−3

2 elements u ∈ Z
∗
p

for which
(

u2−Δ
p

)
= 1. Similarly, there are

(
q+3
4 − 2

)
×2 = q−5

2 elements u ∈ Z
∗
q

for which
(

u2−Δ
q

)
= 1. Thus the size of (SN,Δ)2 equals (p−3)(q−5)

4 and the size

of S[+1]
N,Δ equals (p−3)(q−5)

4 + (p−3)(q−1)
4 = (p−3)(q−3)

2 (See also [20, Corollary 3.4]).
Consequently, the set

S
[+1]
N,Δ =

{
a + bx : a, b

R← Z
∗
N

∣
∣
∣

a

b
∈ S

[+1]
N,Δ

}

has size ϕ(N)(p−3)(q−3)
2 . We have proved that the set of the first component of

the scheme’s ciphertext has size at least ϕ(N)(p−3)(q−3)
8 when β1 = 0. Since this

set can not cover the set S
[+1]
N,Δ, to prove that the scheme achieves anonymity, we

need to make the following complexity assumption:

Assumption 1. Given an identity id, the set
{

(f, g)
∣
∣
∣ f ∈ S

[+1]
N,Rid

, g ∈ S
[+1]
N,uRid

}

is computationally equivalent to the scheme’s ciphertext space when the identity
of the recipient is id, and Enc(PP, id, ·) selects β1 = β2 = 0.

When Enc(PP, id, ·) selects β1 = β2 = 1, it is clear that each component of the
ciphertext space has size at least ϕ(N)(p−3)(q−3)

8 . However, the set

S
[−1]
N,Δ =

{
c + dx : c, d

R← Z
∗
N

∣
∣
∣

c

d
∈ S

[−1]
N,Δ

}

also has size ϕ(N)(p−3)(q−3)
2 . Again, we shall make another assumption:

2 Perron considered the integer 0 as a quadratic residue. We should deal with it care-
fully.
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Assumption 2. Given an identity id, the set
{

(f, g)
∣
∣
∣ f ∈ S

[−1]
N,Rid

, g ∈ S
[−1]
N,uRid

}

is computationally equivalent to the scheme’s ciphertext space when the identity
of the recipient is id, and Enc(PP, id, ·) selects β1 = β2 = 1.

Theorem 4. If Assumption 1 and 2 hold, the above scheme is anonymous.

Proof. Let id∗
0 and id∗

1 be two distinct challenge identities. Without loss of gen-
erality, we assume that both H(id∗

0) and H(id∗
1) are in QRN . Letting Δ = Rid∗

r
=

H(id∗
r) for some r ∈ {0, 1}, consider the following two distributions:

D0,r =
{

{g
(β1)
1 (x), g(β2)

2 (x)} ← Enc (mpk, id∗
r ,m) : m,β1, β2 ∈ {0, 1}

}

D1,r =
{

{a + bx, c + dx} : a, b, c, d
R← Z

∗
N ,

a

b
∈ SN,Δ,

c

d
∈ SN,Δ

}

We claim that D0,r and D1,r are computationally indistinguishable with over-
whelming probability. The first component of an element in D0,r can be written
as {

a1 + b1x : a1
b1

∈ (SN,Δ)2 , if β1 = 0;
a2 + b2x : a2

b2
∈ S

[−1]
N,Δ, otherwise.

If Assumption 1 holds, since S
[+1]
N,Δ ∪S

[−1]
N,Δ =

{
a + bx : a, b ∈ Z

∗
N

∣
∣
∣ a

b ∈ SN,Δ

}

and β1 is chosen at random, we deduce that the first component of an element
in D0,r are computationally indistinguishable from that in D1,r. If Assumption 2
holds, the similar arguments are valid for the second component, and hence we
have proved the claim. Since D1,0 and D1,1 are also computationally indistin-
guishable with overwhelming probability, this proves that D0,0 and D0,1 are
computationally indistinguishable with overwhelming probability, and hence the
scheme is anonymous. ��

5 Conclusion

The encryptions in known variants of Cocks’ scheme are much slower than the
corresponding decryptions, i.e., the scheme by Clear et al. [12] needs about 79
ms and 27 ms for encrypting a 128-bit message with a 1024-bit RSA modulus N .
Our second variant features both anonymity and the best encryption compared
with other variants (i.e., nearly 10 times faster than those in the same setting
according to the running times in [6, Table 1]). Furthermore, they inherit the
homomorphic property. These make schemes from quadratic residuosity more
competitive in the fields of IBE.
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A A Public-Key Encryption with Keyword Search
Scheme from Quadratic Residuosity

Boneh et al. introduced the notion of public-key encryption with keyword search
(PEKS) and gave a proper security model and a construction methodology in
[4]. PEKS is a form of “searchable encryption” that performs a keyword search
on data encrypted using a public-key system. A promising application of PEKS
is that of intelligent email routing. One may consider that mails come through
a gateway which tests whether a keyword (e.g., “urgent”) exists in an email.
Of course, any other information about the email can not be revealed. A PEKS
scheme consists of four PPT algorithms (KeyGen,PEKS,Trapdoor,Test).

KeyGen(1κ) The key generation algorithm KeyGen is a randomized algorithm
that takes as input a security parameter 1κ and generates a public/private
key pair (pk, sk).

PEKS(pk,W ) Given a public key pk and a keyword W , PEKS returns a searchable
ciphertext S for W .

Trapdoor(sk,W ) Given a private key sk and a keyword W , the trapdoor algo-
rithm Trapdoor produces a trapdoor TW for keyword W .

Test(pk, S, TW ) Given a public key pk, a searchable ciphertext S ←
PEKS (pk,W ′) and a trapdoor TW ← Trapdoor(sk,W ), the test algorithm
Test returns a bit b with 1 meaning “accept” or “yes” and 0 meaning “reject”
or “no”. It is required that b = 1 when W = W ′.

In [1], the authors presented a new transform called new-ibe-2-peks that trans-
forms any IND-ID-CPA-secure and anonymous IBE scheme into a PEKS-IND-
CPA-secure and computationally consistent PEKS scheme. The resulting PEKS-
encryption algorithm picks and encrypts a random message X and appends X
to the ciphertext. We can naturally apply new-ibe-2-peks to the scheme of Sect. 4
and obtain the following PEKS scheme from quadratic residuosity.

KeyGen(1κ) Given a security parameter κ, KeyGen defines a parameter k and
generates two RSA primes p and q such that p ≡ −q mod 4 and their product
N = pq. KeyGen also samples an element u

R← JN \ QRN . The public key is
pk = {N, k, u,H} where H is a publicly available cryptographic hash function
mapping an arbitrary binary string to JN . The secret key is sk = {p, q}.

PEKS(pk,W ) Given a public key pk and a keyword W , PEKS selects a k-bit mes-
sage X = [xk−1, xk−2, . . . , x0] (with xi ∈ {0, 1}) and computes R = H(W ).
For each i = 0, 1, . . . k − 1, it chooses at random two polynomials fi,1, fi,2 of

degree 1 from ZN [x], and two bits βi,1, βi,2
R← {0, 1}. Set

g
(0)
i,1 (x) = (−1)xifi,1(x)2 mod (x2 − R)

g
(1)
i,1 (x) = (−1)xix · fi,1(x)2 mod (x2 − R)

g
(0)
i,2 (x) = (−1)xifi,2(x)2 mod (x2 − uR)

g
(1)
i,2 (x) = (−1)xix · fi,2(x)2 mod (x2 − uR)
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PEKS returns the searchable ciphertext

S =
(
g
(β0,1)
0,1 (x), g

(β0,2)
0,2 (x), g

(β1,1)
1,1 (x), g

(β1,2)
1,2 (x), . . . , g

(βk−1,1)

k−1,1 (x), g
(βk−1,2)

k−1,2 (x), X
)
.

Trapdoor(sk,W ) Given a private key sk and a keyword W , the trapdoor algo-
rithm Trapdoor computes R = H(W ). If R ∈ QRN , it computes TW =
R1/2 mod N ; otherwise it computes TW = (uR)1/2 mod N . Trapdoor returns
TW .

Test(pk, S, TW ) Given a public key pk, a searchable ciphertext

S = (C0,1(x), C0,2(x), C1,1(x), C1,2(x), . . . , Ck−1,1(x), Ck−1,2(x),X)

where Ci,j(x) = ci,j,0 + ci,j,1x,∀0 ≤ i < k,∀1 ≤ j ≤ 2, and a trapdoor
TW ← Trapdoor(sk,W ), the test algorithm Test computes R = H(W ). If

T 2
W ≡ R (mod N), Test computes σi =

(
c2i,1,0−c2i,1,1R

N

)
and sets hi(x) =

Ci,1(x),∀0 ≤ i < k; otherwise it computes σi =
(

c2i,2,0−c2i,2,1uR

N

)
and sets

hi(x) = Ci,2(x),∀0 ≤ i < k. Finally, Test computes

x′
i =

⎧
⎨

⎩

(
hi(TW )

N

)
, if σi = 1;

(
TW hi(TW )

N

)
, otherwise.

and recovers X ′ = [JN (x′
k−1),JN (x′

k−2), . . . ,JN (x′
0)]. Test returns 1 if X =

X ′; and 0 otherwise.

For encrypting a message m with n keywords W1,W2, . . . , Wn with user’s public
key upk, Boneh et al. in [4] suggested that the sender computes and sends the
ciphertext

C = (Enc (upk,m) ,PEKS (upk,W1) ,PEKS (upk,W2) , . . . ,PEKS (upk,Wn))

to a proxy given the trapdoor TWi
for each keyword Wi. Then the proxy can

test whether m contains some keyword Wi, but it learns nothing more about
any other information about m.
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Time-Specific Signatures
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Abstract. In Time-Specific Signatures (TSS) parameterized by an integer T ∈ N,
a signer with a secret-key associated with a numerical value t ∈ [0,T − 1] can
anonymously, i.e., without revealing t, sign a message under a numerical range
[L,R] such that 0 ≤ L ≤ t ≤ R ≤ T −1. A direct application of TSS is anonymous
questionnaire, where each user associated with a numerical value such as age,
date, salary, geographical position (represented by longitude and latitude), etc.,
can anonymously fill in a questionnaire in an efficient manner.

In this paper, we propose two polylogarithmically efficient TSS constructions
based on an asymmetric pairing with groups of prime order, which achieve dif-
ferent characteristics in efficiency. In the first one based on a forward-secure sig-
natures scheme concretely obtained from a hierarchical identity-based signatures
scheme proposed by Chutterjee and Sarker (IJACT’13), size of the master public-
key, size of a secret-key and size of a signature are asymptotically O(logT ),
and size of the master secret-key is O(1). In the second one based on a wild-
carded identity-based ring signatures scheme obtained as an instantiation of an
attribute-based signatures scheme proposed by Sakai, Attrapadung and Hanaoka
(PKC’16), the sizes are O(logT ), O(1), O(log2 T ) and O(log T ), respectively.

Keywords: Time-specific signatures · Forward-secure signatures ·Wildcarded
identity-based ring signatures · Co-computational Diffie-Hellman assumption ·
Symmetric external Diffie-Hellman assumption

1 Introduction

Time-Specific Encryption [17]. In a Time-Specific Encryption (TSE) system with total
time periods T ∈ T, each secret-key is associated with a time period t ∈ [0,T − 1] and
a plaintext is encrypted under a time interval [L,R] such that 0 ≤ L ≤ R ≤ T − 1.
A user who has a secret-key for t can correctly decrypt any ciphertext under [L,R]
if t ∈ [L,R]. Paterson and Quaglia [17] showed that a TSE scheme can be generically
constructed from an identity-based encryption (IBE) [19] scheme or a broadcast encryp-
tion (BE) scheme [11]. Kasamatsu et al. [14] proposed a (direct) construction based on
Boneh-Boyen-Goh hierarchical identity-based encryption (HIBE) scheme [7]. Ishizaka
and Kiyomoto [13] proposed a generic construction from wildcarded identity-based
encryption (WIBE) [1,5] w/o hierarchical key-delegatability.

TSE is less functional compared to functional encryption [8], (ciphertext-policy)
attribute-based encryption [4] and etc. Because of that, we require a TSE scheme to be
highly efficient. Specifically, in previous works [13,14,17], polylogarithmic efficiency
c© Springer Nature Switzerland AG 2020
W. Susilo et al. (Eds.): ISC 2020, LNCS 12472, pp. 20–38, 2020.
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is required. For instance, by instantiating the IBE-based generic TSE construction by
Waters IBE scheme [20], they obtain a TSE scheme, whose size of the master public-
key |mpk|, that of a secret-key |skt | for t and that of a ciphertext |c[L,R]| under [L,R] are
asymptotically O(log T ). [14] proposed a direct construction with (|mpk|, |skt |, |c[L,R]|) =
(O(logT ),O(log2 T ),O(1)). By instantiating the WIBE-based generic construction [13]
by their original WIBE scheme based on [20], they obtained a TSE scheme with (|mpk|,
|skt |, |c[L,R]|) = (O(log T ),O(1),O(log2 T )).
Time-Specific Signatures. In [17], the authors left as an open problem an approach
to realize Time-Specific Signatures (TSS), which are the digital signature analogue of
TSE. In TSS system, a signer with a secret-key associated with a numerical value t ∈
[0,T − 1] can correctly sign a message under a numerical range [L,R] s.t. 0 ≤ L ≤
t ≤ R ≤ T − 1. As attribute-based signatures (ABS) [6,16,18], we require TSS to be
existentially unforgeable and perfectly private.

One typical application example of TSS is anonymous questionnaire. For instance,
a company might need opinions from consumers in an age group which are useful to
invent a product whose main target is the age group. In a situation where a city plans
a development at a location point represented by longitude and latitude, the city might
need to efficiently collect opinions from citizens living near the developed point1.

Our Contributions. In this paper, we propose two polylogarithmically efficient TSS
schemes, which have different characteristics in efficiency.

There has existed a folklore to obtain a time-specific cryptosystem from a forward-
secure cryptosytem, which has actually contributed to realize TSE [14]. We attempt
applying it to TSS. Let us introduce backward-secure signatures (BSS). In the forward-
secure signatures (FSS) [2,3], there exists a polynomial time one-way algorithm to
evolve a secret-key for a time period t ∈ [0,T − 1] into one for a future t′ > t. On
the other hand, in the BSS, we can evolve a secret-key for t into one for a past t′ < t.
It is possible to obtain a TSS scheme from FSS and BSS schemes since if we give a
secret-key for a time period t, which is composed of secret-keys of the FSS and BSS
schemes for the time period t, to a signer, the signer can generate a signature under
a range [L,R] s.t. L ≤ t ≤ R by firstly generating a signature under the time period
R from the FSS secret-key for t, secondly generating a signature under L from the
BSS secret-key for t and finally combining the signatures in a proper manner. It has
not been rigorously proven that this approach properly works in a general manner. We
show that the approach actually works to the concrete FSS scheme obtained by applying
the tree-based Canetti-Helevi-Katz transformation [9] to a HIBS scheme proposed by
Chutterjee&Sarker [10]. As a result, we obtain a TSS scheme with a well-balanced
efficiency. Specifically, its size of the master public-key, that of the master secret-key,
that of a secret-key for t and that of a signature under [L,R] are (2 log T +N+3)(|g|+ |g̃|),
|g|, O(log T )|g| and (2 log T + 2)|g|, respectively, where N ∈ N denotes bit length of a
(signed-)message, and |g| (resp. |g̃|) denotes bit length of an element in a bilinear group
G (resp. G̃) of prime order relative to an asymmetric pairing e : G × G̃→ GT .

1 Precisely, this is an application of two-dimensional TSS. It has been unknown whether one-
dimensional TSS implies two-dimensional TSS. Two-dimensional TSS, or (more generally)
multi-dimensional TSS, has still been left as an open problem.
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[13] showed that there exists a generic approach to construct a TSE scheme with
time periods T from a WIBE scheme whose length of a (wildcarded) identity is logT
such that each secret-key for a time period t ∈ [0,T − 1] consists of only one secret-
key for identity t ∈ {0, 1}log T . Thus, we can obtain a TSE scheme with constant size
secret-keys from a WIBE scheme with constant size secret-keys. We show that such an
approach also works for TSS. We introduce wildcarded identity-based ring signatures
(WIBRS)2 scheme and show that a concrete scheme with constant size secret-keys is
obtained as an instantiation of an ABS scheme (whose signer-policy is represented as
a circuit) proposed in [18]. As a result, we obtain a TSS scheme such that size of the
master public-key, that of the master secret-key, that of a secret-key for t and that of a
signature under [L,R] are O(log T )|g̃|, O(log T )|g|, O(1)(|g|+ |g̃|) and O(log2 T )(|g|+ |g̃|),
respectively. A drawback is that size of a signature can be large. Precisely, we prove
that the size is loosely upper-bounded by (120 log2 T − 94 log T − 34)(|g| + |g̃|).

Paper Organization. Section 2 is a section for preliminaries. In Sect. 3, we provide
syntax and security definitions of TSS. In Sect. 4 and Sect. 5, we propose the FSS-
based TSS scheme and the WIBRS-based TSS scheme, respectively. Section 6 is the
concluding section.

2 Preliminaries

Notations. For λ ∈ N, 1λ denotes a security parameter. PPTλ denotes a set of all prob-
abilistic algorithms whose running time is polynomial in λ. A function f : N → R is
negligible if for every c ∈ N, there exists x0 ∈ N such that for every x ≥ x0, f (x) ≤ x−c.
NGLλ denotes a set of all functions negligible in λ. Given a bit string x ∈ {0, 1}L, for
every i ∈ [0, L − 1], let x[i] ∈ {0, 1} denote its i-th bit. For wID ∈ {0, 1, ∗}L, |wID|∗ ∈
[0, L] denotes number of wildcard symbol ∗ in wID, formally

∑
i∈[0,L−1] s.t. wID[i]=∗ 1.

Asymmetric Bilinear Groups of Prime Order. GBG generates bilinear groups of prime
order. Let λ ∈ N.GBG takes 1λ and randomly generates (p,G, G̃,GT , e, g, g̃). p is a prime
with bit length λ. (G, G̃,GT ) are multiplicative groups of order p. (g, g̃) are generators of
G and G̃, respectively. e : G × G̃→ GT is an asymmetric function which is computable
in polynomial time and satisfies the following conditions: (1) Bilinearity: For every
a, b ∈ Zp, e(ga, g̃b) = e(g, g̃)ab, (2) Non-degeneracy: e(g, g̃) � 1GT , where 1GT denotes
the unit element of GT .

Definition 1. Co-Computational Diffie-Hellman (Co-CDH) assumption holds if ∀λ ∈
N, ∀A ∈ PPTλ, ∃ε ∈ NGLλ s.t. AdvCo-CDHA (λ) � Pr[gαβ ← A(p,G, G̃, g, g̃, gα, gβ, g̃β)] <
ε, where (p,G, G̃, g, g̃)← G(1λ) and α, β U←− Zp.

Definition 2. Computational Diffie-Hellman (CDH) assumption onG (resp. G̃) holds if
∀λ ∈ N, ∀A ∈ PPTλ, ∃ε ∈ NGLλ s.t. AdvCDHA (λ) � Pr[gαβ ← A(p,G, G̃, g, g̃, hα, hβ)] <
ε, where (p,G, G̃, g, g̃)← G(1λ), α, β U←− Zp and h � g (resp. h � g̃).

2 In WIBRS, a signer (with an identity) chooses multiple wildcarded identities, (at least) one of
which is satisfied by the identity of the signer.
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Fig. 1. Top: Experiment for (adaptive) existential unforgeability w.r.t. a TSS scheme ΣTSS. Bot-
tom: Experiments for perfect privacy w.r.t. ΣTSS. Note: ι ∈ [1, qr] and θ ∈ [1, qs] for qr, qs ∈ N.

Definition 3. Symmetric External (Computational) Diffie-Hellman (SXDH) assump-
tion holds if the CDH assumption holds on both G and G̃ hold.

3 Time-Specific Signatures (TSS)

Syntax. Time-specific signatures (TSS) consist of following 4 polynomial time algo-
rithms, where Ver is deterministic and the others are probabilistic. Let T ∈ N denote
total number of numerical values, which means that [0,T − 1] is the space of numerical
values. Setup algorithm Setup takes (1λ,T ) as input then outputs a master public-key
mpk and a master secret-key msk. Concisely, we write (mpk,msk) ← Setup(1λ,T ).
Note that all the other three algorithms implicitly take mpk as input. Key-generation
algorithm KGen takes msk and a numerical value t ∈ [0,T −1], then outputs a secret-key
skt for the time period. Concisely, skt ← KGen(msk, t). Signing algorithm Sig takes a
secret-key skt for t ∈ [0,T − 1], a message m ∈ {0, 1}∗, and a numerical range [L,R]
s.t. 0 ≤ L ≤ R ≤ T − 1, then outputs a signature σ. Concisely, σ ← Sig(skt,m, [L,R]).
Verifying algorithm Ver takes σ, m ∈ {0, 1}∗, and [L,R] s.t. 0 ≤ L ≤ R ≤ T − 1, then
outputs 1 or 0. Concisely, 1/0← Ver(σ,m, [L,R]).

We require every TSS scheme to be correct. A TSS scheme ΣTSS = {Setup, KGen,
Sig, Ver} is correct, if ∀λ ∈ N, ∀T ∈ N, ∀(mpk,msk)← Setup(1λ,T ), ∀t ∈ [0,T − 1],
∀skt ← KGen(msk, t), ∀m ∈ {0, 1}∗, ∀L ∈ [0,T − 1] s.t. L ≤ t, ∀R ∈ [0,T − 1] s.t. t ≤ R,
∀σ← Sig(skt,m, [L,R]), 1← Ver(σ,m, [L,R]).

Existential Unforgeability [16,18]. For a TSS scheme ΣTSS and a probabilistic algo-
rithmA, we consider an experiment for (adaptive) existential unforgeability in Fig. 1.

Definition 4. A TSS scheme ΣTSS is (adaptively) existentially unforgeable, if ∀λ ∈ N,
∀T ∈ N, ∀A ∈ PPTλ, ∃ε ∈ NGLλ, AdvEUF-CMAΣTSS,A,T (λ) � Pr[1← ExptEUF-CMAΣTSS,A (1λ,T )] < ε.
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Perfect (Signer) Privacy [6]. For a TSS scheme ΣTSS and a probabilistic algorithm A,
we consider experiments for perfect privacy in Fig. 1.

Definition 5. ΣTSS is perfectly private, if for every λ,T ∈ N and every probabilistic
algorithmA, there exist probabilistic polynomial time algorithms {Setup′, KGen′, Sig′}
s.t. AdvPPΣTSS,A,T (λ) � |

∑1
b=0(−1)b Pr[1← ExptPPΣTSS,A,b(1

λ,T )]| = 0.

4 TSS Based on Forward-Secure Signatures

We propose a TSS scheme w. well-balanced efficiency from forward-secure signatures.
It is easy for us to suggest an intuitive idea to obtain a TSS scheme from a forward-

secure signatures (FSS) scheme. As we might have already known, in a FSS system,
there exists a one-way algorithm which transforms a secret-key for a time period t
into one for a future one t′ > t. As a related primitive, we consider backward-secure
signatures (BSS), where there exists a one-way algorithm which transforms a secret-key
for t into one for a past t′ < t. A secret-key for t ∈ [0,T −1] consists of (skF , skB), where
skF (resp. skB) is a secret-key for t generated under the pair of keys (mpkF ,mskF) (resp.
(mpkB,mskB)) on the FSS (resp. BSS) scheme. A secret-key skt = (skF , skB) generates
a signature under [L,R] s.t. 0 ≤ L ≤ t ≤ R ≤ T − 1 by firstly generating a signature
under time period R ≥ t by using the secret-key skF , secondly generating a signature
under L ≤ t by using skB, then adequately combining the signatures.

As far as we know, there has not existed a generic approach to obtain a TSS scheme
from FSS and BSS schemes3 whose security is guaranteed by a rigorous proof. In this
section, we show that the approach actually works on the concrete FSS scheme obtained
by applying the Canetti-Halevi-Katz transformation [9] to a hierarchical identity-based
signatures (HIBS) scheme in [10].

4.1 Construction

We consider the second HIBS scheme proposed in [10]. It adopts an asymmetric
bilinear pairing e : G × G̃ → GT , where order of the groups is a prime p. Let g
(resp. g̃) denote a generator of G (resp. G̃). Let h − 1 (for h ∈ N) denote the max-
imum hierarchical length of an identity. Let H : {0, 1}∗ → {0, 1}N (with N ∈ N)
denote a collision-resistant hash function. At the setup phase, h + N + 2 integers

α, α0, · · · , αh, β0, · · · , βN−1 U←− Zp are randomly chosen. The master public-key is set as

(g, g̃, g1, g2, {ui, ũi | i ∈ [0, h]}, {vi, ṽi | i ∈ [0,N−1]}), where g1 U←− G, g2 � g̃α, ui � gαi ,
ũi � g̃αi , vi � gβi and ṽi � g̃βi . The master secret-key is set as gα1 . A secret-key for an
identity ID0|| · · · ||IDi with hierarchical length i ∈ [0, h − 1], where ID0, · · · , IDi ∈
{0, 1}∗, is set as (gα1

∏
j∈[0,i](u j

∏
k∈[0,N−1] v

di[k]
k )r j , gr0 , · · · , gri ), where r j

U←− Zp and
d j[0]|| · · · ||d j[N − 1] ← H(0||IDj). Obviously, we can transform a secret-key for an
identity into a secret-key for any descendant identity of the identity. By the secret-key,
a signature on a message m is generated as (gα1

∏
j∈[0,i+1](u j

∏
k∈[0,N−1] v

di[k]
k )r j , gr0 , · · · ,

gri ), where ri+1
U←− Zp and di+1[0]|| · · · ||di+1[N − 1]← H(1||m).

3 Or, only a FSS scheme, since a BSS scheme is obtained from a FSS scheme.
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Let us apply the CHK transformation [9] to the HIBS scheme with the maximum
hierarchical length h = logT ∈ N to obtain a FSS scheme with total time periods T ∈ N.
We consider a (complete) binary tree with depth log T ∈ N. The master secret-key and
the master public-key are described as gα1 and (g, g̃, g1, g2, {ui, ũi | i ∈ [0, log T ]}, {vi, ṽi |
i ∈ [0,N − 1]}), respectively. A secret-key for a time period t ∈ [0,T − 1] is described
as (skt[0]||···||t[log T−1], {skt[0]||···||t[i−1]||1 | i ∈ [0, logT − 1] s.t. t[i] = 0}), where skx (with
x ∈ {0, 1}≤log T ) is a randomly-generated secret-key for an identity x by using the secret-
key generation algorithm of the HIBS scheme. By the secret-key for t, a signature
for a time period t′ ≥ t on a message m is generated as a signature for an identity
t′[0]|| · · · ||t′[log T − 1] on m by using the signing algorithm of the HIBS scheme. Note
that t ≤ t′ implies that a secret-key for t certainly includes a secret-key for an ancestral
identity of the identity t′, thus, the signature generation always succeeds.

Based on the approach to obtain a TSS scheme from FSS and BSS schemes
explained earlier, we construct a TSS scheme ΠTSS as shown in Fig. 2.

The master secret-key and the master public-key for the FSS scheme part is nor-
mally generated. Thus, they are gα1 and (g, g̃, g1, g2, {ui, ũi | i ∈ [0, logT ]}, {vi, ṽi | i ∈
[0,N − 1]}), respectively. The variables prepared for the BSS scheme part are {wi, w̃i |
i ∈ [0, logT − 1]} (whose roles are analogous to those of {ui, ũi | i ∈ [0, log T − 1]} for
the FSS scheme part), and the other variables are shared by both parts.

A secret-key skt for a numerical value t ∈ [0,T − 1] consists of the FSS part skr
and the BSS part skl, and they are expressed as (skt[0]||···||t[log T−1], {skt[0]||···||t[i−1]||1 | i ∈
[0, logT − 1] s.t. t[i] = 0}) and (skt′[0]||···||t′[log T−1], {skt′[0]||···||t′[i−1]||1 | i ∈ [0, log T −
1] s.t. t′[i] = 0}), respectively, where t′ � T − 1 − t. Each element in skr and each ele-
ment in skl are generated from the pseudo master secret-key gα1g

δ and g−δ, respectively,
where δ ∈ Zp is a randomly chosen integer. skt[0]||···||t[log T−1] (resp. skt′[0]||···||t′[log T−1])
which includes log T random variables is normally generated by choosing log T fresh
random variables then using them and the pseudo master secret-key gα1g

δ (resp. g−δ).
On the other hand, each element skt[0]||···||t[i−1]||1 for i ∈ [0, logT − 1] s.t. t[i] = 0 which
includes i + 1 random variables is generated by choosing only one fresh random vari-
able (for depth i) then using the variable, already chosen i − 1 random variables (for
depth 0, · · · , i − 1) in skt[0]||···||t[log T−1] and the pseudo master secret-key. Likewise, each
element in skl is generated. The reason why we have introduced such a technique is to
reduce size of a secret-key from O(log2 T )|g| to O(log T )|g|.

A secret-key skt for t ∈ [0,T − 1] signs a message m under a range [L,R]
s.t. t ∈ [L,R] as follows. Let L′ � T − 1 − L. Note that t ∈ [L,R] implies
t ≤ R

∧
t′ ≤ L′, which implies ∃ir, il ∈ [0, logT ] s.t.

∧
i∈[0,ir−1][t[i] = R[i]]

∧
[ir �

logT =⇒ t[ir] = 0
∧

R[ir] = 1]
∧

i∈[0,il−1][t
′[i] = L′[i]]

∧
[il � logT =⇒ t′[il] =

0
∧

L′[il] = 1]. The key-generation algorithm guarantees that secret-key for the iden-
tity R[0]|| · · · ||R[ir] (or R[0]|| · · · ||R[log T − 1] if ir = logT ) (resp. L′[0]|| · · · ||L′[il]
(or L′[0]|| · · · ||L′[log T − 1] if il = logT )) exists in skr (resp. skl) in skt. Obvi-
ously, the secret-key derives a secret-key for the identity R[0]|| · · · ||R[log T − 1]
(resp. L′[0]|| · · · ||L′[logT − 1]), which is expressed as (gα1g

δ∏
i∈[0,log T−1](uiv

R[i]
0 )ri , gr0 ,

· · · , grlog T−1 ) (resp. (g−δ∏i∈[0,log T−1](wiv
L′[i]
0 )si , gs0 , · · · , gslog T−1 )) with r0, · · · , rlog T−1 ∈

Zp (resp. s0, · · · , slog T−1 ∈ Zp). From the two secret-keys, we obtain a sig-
nature (gα1

∏
i∈[0,log T−1](uiv

R[i]
0 )ri (wiv

L′[i]
0 )si(ulog T

∏
i∈[0,N−1] v

m[i]
i )rlogT , gr0 , · · · , grlogT−1 , gs0 ,
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· · · , gslog T−1 , grlog T ) with rlog T ∈ Zp. As shown in Fig. 2, we actually re-randomize the
ir + il + 1 random variables r0, · · · , rir , s0, · · · , sil to make the TSS scheme achieve per-
fect privacy under Definition 5.

4.2 Unforgeability

Existential unforgeability of the scheme ΠTSS in Fig. 2 is guaranteed by Theorem 1.

Theorem 1. ΠTSS is existentially unforgeable under the co-CDH assumption.

Proof. Let A ∈ PPTλ denote a PPT algorithm which behaves as an adversary in exis-
tential unforgeability experiment for our TSS scheme ΠTSS. Let tA ∈ N denote running
time ofA (which is polynomial in λ). We prove that there exists another PPT algorithm
B ∈ PPTλ which usesA as a black-box and breaks the co-CDH assumption with

Advco-CDHB (λ) ≥ 1

2
{
2
(
log T · qr + qs) (N + 1)}2 log T+1

· AdvEUF-CMAΠTSS,A,N,T (λ). (1)

B behaves as follows. B is given (g, g̃, gβ, gα, g̃α) as an instance of the co-CDH
assumption. B sets g1 � gβ and g2 � g̃α. B chooses an integer n s.t. n(N + 1) < p.

B randomly chooses: {ki, si U←− [0,N], xi, zi
U←− Zn, x′i , z

′
i

U←− Zp | i ∈ [0, logT − 1]},
klog T

U←− [0,N], xlog T
U←− Zn, x′log T

U←− Zp, and {yi U←− Zn, y′i
U←− Zp | i ∈ [0,N − 1]}.

B sets: {ui � (gα)p−nki+xi ·gx′i , ũi � (g̃α)p−nki+xi ·g̃x′i | i ∈ [0, logT ]}, {wi � (gα)p−nsi+zi ·
gz
′
i , w̃i � (g̃α)p−nsi+zi · g̃z′i | i ∈ [0, logT − 1]}, and {vi � (gα)yi · gy′i , ṽi � (g̃α)yi · g̃y′i | i ∈

[0,N − 1]}.
B gives mpk �

(
p,G, G̃,GT , e, g, g̃, g1, g2,

{
ui, ũi,wi, w̃i | i ∈ [0, logT − 1]} , ulog T ,

ũlog T , {vi, ṽi | i ∈ [0,N − 1]}
)
to A. Before defining how B behaves when A issues a

query to Reveal or Sign, we define some functions as follows.
For a bit b ∈ {0, 1} and an integer i ∈ [0, logT ],

Fi(b) � p − nki + xi + y0b, Ji(b) � x′i + y
′
0b, Li(b) � xi + y0b mod n,

Hi(b) � p − nsi + zi + y0b, Qi(b) � z′i + y
′
0b, Ri(b) � zi + y0b mod n,

Ki(b) �

⎧
⎪⎪⎨
⎪⎪⎩

0 if Li(b) = 0,

1 otherwise.
, Ui(b) �

⎧
⎪⎪⎨
⎪⎪⎩

0 if Ri(b) = 0,

1 otherwise.

For m ∈ {0, 1}N ,
Flog T (m) � p − nklog T + xlog T +

∑

i∈[0,N−1]
yim[i], Jlog T (m) � x′log T +

∑

i∈[0,N−1]
y′im[i],

Llog T (m) � xlog T +
∑

i∈[0,N−1]
yim[i] mod n, Klog T (m) �

⎧
⎪⎪⎨
⎪⎪⎩

0 if Llog T (m) = 0,

1 otherwise.
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Fig. 2. Our TSS scheme ΠTSS, where N,T ∈ N.
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When A issues tι ∈ [0,T − 1], where ι ∈ [1, qr], as a query to Reveal, B takes
different actions in the following three cases:

(R1)
∨

i∈[0,log T−1] s.t. tι[i]=1

⎡
⎢⎢⎢⎢⎢⎢⎣Ki(1) = 1

∧
⎡
⎢⎢⎢⎢⎢⎢⎣i � 0 =⇒

∧

j∈[0,i−1] s.t. tι[ j]=0
K j(1) = 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

(R2)
∨

i∈[0,log T−1] s.t. t̃ι[i]=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
Ui(1) = 1

∧
⎡
⎢⎢⎢⎢⎢⎢⎢⎣
i � 0 =⇒

∧

j∈[0,i−1] s.t. t̃ι[ j]=0
U j(1) = 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

(R3) Otherwise,

where t̃ι � T − 1 − tι. Specifically, B behaves as follows in each case.

B’s behaviour for the case R1: Let k ∈ [0, log T − 1] denote the integer i which
satisfies the condition which appeared in the definition of the case R1. Note that it is
implied that tι[k] = 1

∧
Fk(1) � 0

∧
[k � 0 =⇒ ∧

j∈[0,k−1] s.t. tι[ j]=0 F j(1) � 0].

Let δ
U←− Zp. For i ∈ [0, k], let ri U←− Zp. B computes: dk � g−1/Fk(1)

1 grk , di � gri (for
i ∈ [0, k − 1]), Δk � g−Jk(1)/Fk(1)

1 (gα)rkFk(1)grkJk(1), and Δi � (uiv
tι[i]
0 )ri (for i ∈ [0, k − 1]).

For every i ∈ [k + 1, logT − 1], ri U←− Zp and di � gri . Let Dlog T � gδ ·∏i∈[0,k] Δi ·∏
i∈[k+1,log T−1](uiv0)ri . Note that (Dlog T , d0, · · · , dlog T−1) correctly distribute since dk =

grk−β/Fk(1) � gr̃k , where r̃k � rk − β/Fk(1), and

Δk = gα1g
−αFk(1)/Fk(1)
1 g−Jk(1)/Fk(1)

1 grk(αFk(1)+Jk(1)) = gα1g
− β

Fk (1)
(αFk(1)+Jk(1))grk(αFk(1)+Jk(1))

= gα1g
(rk− β

Fk (1)
)(αFk(1)+Jk(1)) = gα1g

r̃k(αFk(1)+Jk(1)) = gα1g
r̃k(α(p−nkk+xk+y0)+x′k+y′0)

= gα1
(
(gα)p−nkk+xkgx

′
k (gα)y0gy

′
0

)r̃k
= gα1 (ukv0)

r̃k .

For every i ∈ [k + 1, log T − 1] s.t. tι[i] = 0, B chooses r′i
U←− Zp and computes

d′i � gr
′
i and D′i � gδ

∏
j∈[0,k] Δ j

∏
j∈[k+1,i−1](u jv

tι[ j]
0 )r j (uiv0)r

′
i .

If k � 0
∧∃i ∈ [0, k − 1] s.t. tι[i] = 0 is logically true, then for every j ∈ [0, k −

1] s.t. tι[ j] = 0, B behaves as follows. We remind us that F j(1) � 0. B computes:

d′j � g
−1/F j(1)
1 gr

′
j and Dj � g

−J j(1)/F j(1)
1 (gα)r

′
jF j(1)gr

′
jJ j(1)gδ

∏
i∈[0, j−1](uiv

tι[i]
0 )ri .

Note that for every i ∈ [0, j − 1], ri ∈ Zp has already been chosen and known by
B. The fact that d′j and Dj correctly distribute can be verified in the same manner as
(dk, Δk).
B sets skr to (Dlog T , d0, · · · , dlog T−1, {Di, d′i | i ∈ [0, log T − 1] s.t. tι[i] = 0}).
Next, B generates skl as follows. For every i ∈ [0, logT − 1], si

U←− Zp. For every

i ∈ [0, log T − 1] s.t. t̃ι[i] = 0, s′i
U←− Zp. skl is set as (ElogT , e0, · · · , elog T−1, {Ei, e′i |

i ∈ [0, log T − 1] s.t. t̃ι[i] = 0}), where Elog T � g−δ
∏

i∈[0,log T−1](wiv
t̃ι[i]
0 )si , ei � gsi

(for i ∈ [0, logT − 1]), Ei � g−δ
∏

j∈[0,i−1](wjv
t̃ι[ j]
0 )s j(wiv0)s

′
i (for i ∈ [0, log T − 1] s.t.

t̃ι[i] = 0), and e′i � gs
′
i (for i ∈ [0, log T − 1] s.t. t̃ι[i] = 0).

Finally, B returns skι � (skl, skr) toA.
R2: B’s behaviour in this case is analogous to the one in the case R1.
R3: B aborts the simulation.
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When A issues (tθ, Lθ,Rθ,mθ), where θ ∈ [1, qs], as a query to Sign, B acts dif-
ferently in the 4 cases: (S1)

∨
i∈[0,log T−1] Ki(Rθ[i]) = 1, (S2)

∨
i∈[0,log T−1] Ui(L̃θ[i]) = 1,

(S3) Klog T (mθ) = 1 and (S4) Otherwise, where L̃θ � T − 1 − Lθ.

B’s behaviour for the case S1: Let iθ denote the integer i ∈ [0, log T − 1] satisfying
Ki(Rθ[i]) = 1. Note that Kiθ (Rθ[iθ]) = 1 implies that Fiθ (Rθ[iθ]) � 0.

For every i ∈ [0, logT − 1], ri, si U←− Zp. rlog T
U←− Zp. B computes:

U � g
−Jiθ (Rθ[iθ])/Fiθ (Rθ[iθ])
1 (gα)riθFiθ (Rθ[iθ])griθ Jiθ (Rθ[iθ])

∏
i∈[0,log T−1]\{iθ}

(
uiv

Rθ[i]
0

)ri

∏
i∈[0,log T−1]

(
wiv

L̃θ[i]
0

)si (
ulog T

∏
i∈[0,N−1] v

mθ[i]
i

)rlog T
, Vi � gri (for i ∈ [logT − 1] \ {iθ}),

Viθ � g
−1/Fiθ (Rθ[iθ])
1 griθ , V ′i � gsi (for i ∈ [logT − 1]), and Vlog T � grlogT .

B sets σθ � (U,V0, · · · ,Vlog T−1,V ′0, · · · ,V ′log T−1,Vlog T ) and returns it toA. We can
verify that it correctly distributes as we did in the case R1.

S2: This is analogous to the case S1.

S3: Note that Klog T (mθ) = 1 implies Flog T (mθ) � 0.

Let rlog T
U←− Zp. B computes: dlog T � g

−1/FlogT (mθ)
1 grlogT , and Δlog T �

g
−JlogT (mθ)/FlogT (mθ)
1 (gα)rlogTFlogT (mθ)grlog T JlogT (mθ).

For every i ∈ [0, logT − 1], ri, si
U←− Zp. B computes: U � Δlog T ·

∏
i∈[0,log T−1]

(
uiv

Rθ[i]
0

)ri ∏
i∈[0,log T−1]

(
wiv

L̃θ[i]
0

)si
, Vi � gri (for i ∈ [logT − 1]), V ′i � gsi

(for i ∈ [log T − 1]), Vlog T � dlog T .B sets σθ � (U,V0, · · · ,Vlog T−1,V ′0, · · · ,V ′log T−1,Vlog T ) and returns it to A. It
correctly distributes since dlog T = grlog T−β/FlogT (mθ) � gr̃log T , where r̃log T � rlog T −
β/Flog T (mθ), and

ΔlogT = gα1g
−α FlogT (mθ )

FlogT (mθ )

1 g
− JlogT (mθ )

FlogT (mθ )

1 grlogT (αFlogT (mθ)+JlogT (mθ))

= gα1g
− β

FlogT (mθ )
(αFlogT (mθ)+JlogT (mθ))

grlogT (αFlogT (mθ)+JlogT (mθ))

= gα1g
(rlogT− β

FlogT (mθ )
)(αFlogT (mθ)+JlogT (mθ))

= gα1g
r̃logT (αFlogT (mθ)+JlogT (mθ))

= gα1g
r̃logT {α(p−nklogT+xlogT+∑i∈[0,N−1] yimθ[i])+x′logT+

∑
i∈[0,N−1] y′imθ[i]}

= gα1 {(gα)p−nklogT+xlogT gx
′
logT

∏

i∈[0,N−1]
(gα)yimθ[i]gy

′
imθ[i]}r̃log T = gα1 (ulogT

∏

i∈[0,N−1]
vmθ[i]i )r̃logT .

S4: B aborts the simulation.

When A finally outputs a forged signature σ∗ for (m∗, L∗,R∗), B takes
different actions in the following two cases: (F1)

∧
i∈[0,log T−1] Fi(R∗[i]) =

0
∧

i∈[0,log T−1] Hi(L̃∗[i]) = 0
∧

Flog T (m∗) = 0 and (F2) Otherwise, where L̃∗ � T−1−L∗.
B’s behaviour for the case F1: If σ∗ is a correct signature, it is described as

(gα1
∏

i∈[0,log T−1](uiv
R∗[i]
0 )ri

∏
i∈[0,log T−1](wiv

L̃∗[i]
0 )si (ulog T

∏
i∈[0,N−1] v

m∗[i]
i )rlogT , gr0 , · · · ,

grlogT−1 , gs0 , · · · , gslog T−1 , grlog T ), where r0, · · · , rlog T−1, s0, · · · , slog T−1, rlog T ∈ Zp. Let σ∗
be denoted by (U,V0, · · · ,Vlog T−1,V ′0, · · · ,V ′log T−1,Vlog T ).

F1 implies that
∧

i∈[0,log T−1] uiv
R∗[i]
0 = gαFi(R∗[i])+Ji(R∗[i]) = gJi(R

∗[i]),
∧

i∈[0,log T−1]
wiv

L̃∗[i]
0 = gαHi(L̃∗[i])+Qi(L̃∗[i]) = gQi(L̃∗[i]), and ulog T

∏
i∈[0,N−1] v

m∗[i]
i = gαFlog T (m∗)+JlogT (m∗) =

gJlogT (m
∗).
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B outputs U/W, where W � V
Jlog T (m∗)
log T

∏
i∈[0,log T−1] V

Ji(R∗[i])
i V ′i

Qi(L̃∗[i]), as an answer

for the co-CDH problem. If σ∗ is a correct signature, U/W = gα1 = gαβ.

F2: B aborts the simulation.

B behaves as above. Let Abort denote the event where B aborts. Let ¬Abort
denote the event where B does not abort. We obtain Advco-CDHB (λ) = Pr[gαβ ←
B∧Abort] + Pr[gαβ ← B∧¬Abort] ≥ Pr[gαβ ← B∧¬Abort] = Pr[gαβ ←
B | ¬Abort] Pr[¬Abort]. Since, in the case where B does not abort the simula-
tion, B perfectly simulates the existential unforgeability experiment for A, and B cor-
rectly answers if (and only if) A behaves to make the experiment output 1, the last
term is equal to Pr[1 ← ExptEUF-CMAΠTSS,A (1λ,N,T )] Pr[¬Abort]. Hence, Abortco-CDHB (λ) ≤
AdvEUF-CMAΠTSS,A,N,T (λ) · Pr[¬Abort].

Finally, we analyse Pr[¬Abort]. Let H denote the event where B has not aborted
the simulation until A outputs the forged signature. Let F denote the event where B
does not abort after A outputs the forged signature. Obviously, it holds Pr[¬Abort] =
Pr[H] Pr[F | H] = Pr[F] Pr[H | F].

Let Rι denote the event where, on the ι-th query to Reveal, B does not abort. Like-
wise, let Sθ denote the event where, on the θ-th query to Sign, B does not abort. For
X ∈ {H,Rι,Sθ}, let ¬X denote the negation of X. We present three Lemmata 1, 2,
3. Proofs for them are omitted because of the strict page limitation, but described in
the full paper. The proofs for Lemmata 1, 2 are analogous to one for Proposition 5 in
[10]. The proof for Lemma 3 is analogous to one for Proposition 1 in [10]. Finally,
we obtain Pr[¬Abort] = (1 − Pr[¬H | F]) Pr[F] = (1 − Pr[

∨
ι∈[1,qr] ¬Rι

∨
θ∈[1,qs] ¬Sθ |

F]) Pr[F] ≥ (1−∑ι∈[1,qr] Pr[¬Rι | F]−
∑
θ∈[1,qs] Pr[¬Sθ | F]) Pr[F]. The last term is equal

to Pr[¬Abort] ≥ {1− 1
n (logT ·qr+qs)} 1

{n(N+1)}2 log T+1 , because of Lemmata 1, 2, 3. Hence,

we obtain Pr[¬Abort] ≥ 1
2

1
{2(log T ·qr+qs)(N+1)}2 log T+1 , because of n � 2(logT · qr + qs).

By the above inequalities for Abortco-CDHB (λ) and Pr[¬Abort], we obtain (1). �
Lemma 1. For every ι ∈ [1, qr], Pr[¬Rι | F] ≤ (log T )/n.

Lemma 2. For every θ ∈ [1, qs], Pr[¬Sθ | F] ≤ 1/n.

Lemma 3. Pr[F] ≥ 1/{n(N + 1)}2 log T+1.

4.3 Perfect Privacy

Let us prove that our TSS scheme ΠTSS is perfectly private. We define
(Setup′, KGen′, Sig′) used in ExptPPΠTSS,A,1 as follows. The first two are the same as
the original ones of ΠTSS. Sig′ directly generates a signature under [L,R] from msk.
FromA’s view point, the two experiments identically distribute. Thus, we obtain

Theorem 2. Our TSS scheme ΠTSS is perfectly private under Definition 5.

4.4 Efficiency Analysis

mpk has 2 log T + N + 3 elements from G and the same number of elements from
G̃

4. Thus, |mpk| = (2 log T + N + 3)(|g| + |g̃|). Size of msk is |msk| = |g|. Size of a

4 We have ignored information about the pairing (i.e., p,G, G̃ and e) included in mpk.
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signature under any [L,R] is |σ[L,R]| = (2 log T +2)|g|. For size |skt |, let us independently
analyse the first part skr and the second part skl of skt. The maximum size of skr is
((logT + 1) + 2 log T )|g| = (3 log T + 1)|g| when t = 0. The maximum size of skl is also
(3 log T+1)|g|when t = T−1. Thus, |skt | is at most (6 log T+2)|g|. Thus, asymptotically,
|skt | = O(log T )|g|. Table 1 in Sect. 6 compares our two TSS schemes.

5 TSS Based on Wildcarded Identity-Based Ring Signatures

We propose another TSS scheme with constant-size secret-keys based on wildcarded
identity-based ring signatures.

IBE-based TSE [17]. In [17], the authors generically constructed a TSE scheme from
an IBE scheme. For the TSS scheme, a (complete) binary tree with T leaf nodes is
introduced. Each leaf node corresponds to each time period t ∈ [0,T − 1]. Let anc(t)
denote a set composed of ancestor nodes of t and the node t itself. Let skID=str denote
a (randomly-generated) secret-key for a bit string str ∈ {0, 1}∗ (as an identity) on the
underlying IBE scheme. The secret-key for t ∈ [0,T−1] is skt = {skID=str | str ∈ anc(t)}.

To encrypt a message m under [L,R], a set of nodes T[L,R] which covers the
range is chosen. For a node str ∈ {0, 1}≤log T , let dec(str) denote a set of leaf
nodes any one of which is descendant of the node. The set T[L,R] is chosen to
satisfy that [

⋃
str∈T[L,R]

dec(str) = [L,R]]
∧

str,str′∈T[L,R] s.t. str�str′ [dec(str)
⋂

dec(str′) =
∅]∧[The cardinality |T[L,R]| is the minimum]. For the formal algorithm (denoted by
Cover in this paper) where we choose T[L,R], refer to Algorithm 1 in [17]. Then, a
ciphertext for m under [L,R] is set as a set of ciphertexts {ctID=str | str ∈ T[L,R]}, where
ctID=str denotes a (randomly-generated) ciphertext for the message m under str (as an
identity) on the underlying IBE scheme. A secret-key skt for t ∈ [0,T − 1] can correctly
decrypt a ciphertext ct[L,R] under [L,R] s.t. t ∈ [L,R] since t ∈ [L,R] implies that there
must exist only one node str ∈ {0, 1}≤log T which is included in both anc(t) and T[L,R],
i.e., anc(t)

⋃
T[L,R] = {str}.

WIBE-based TSE [13]. One disadvantage of the IBE-based TSE construction is that
size of secret-keys is linearly dependent on log T , thus cannot be constant. The authors
in [13] showed that by using wildcarded identity-based encryption (WIBE) [1,5] (w/o
hierarchical key-delegatability) instead of the IBE in the IBE-based TSE, we can obtain
a TSE scheme with contant-size secret-keys. In the WIBE-based TSE, each node str ∈
{0, 1}≤log T in the binary tree with T leafs is added logT − |str| wildcarded symbols
∗log T−|str| from right, thus it is changed into str||∗log T−|str| ∈ {0, 1, ∗}log T . The set of
identities T[L,R] is wildcarded, which means T

∗
[L,R] � {str||∗log T−|str| | str ∈ T[L,R]}.

A secret-key for t ∈ {0, 1}log T can correctly decrypt a ciphertext under [L,R] since
t ∈ [L,R] implies that there must exist only one wildcarded identity wID ∈ {0, 1, ∗}log T
in T

∗
[L,R] which is satisfied by t. Each secret-key for t ∈ [0,T − 1] consists of a single

secret-key for t ∈ {0, 1}log T on the underlying WIBE scheme, which implies that if the
WIBE scheme is with constant-size secret-keys, the obtained TSS scheme is also with.
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Our Approach. Analogously, we consider WIBS-based TSS. From the standardWIBS5

scheme, we cannot (or at least need a sophisticated methodology to) obtain an expected
result. We introduce wildcarded identity-based ring signatures (WIBRS). Its syntax and
security definition are in Subsect. 5.1. It is parameterized by n ∈ N. It makes each signer
choose l ≤ n number of wildcarded identities wID1, · · · ,wIDl ∈ {0, 1, ∗}L such that the
signer’s identity ID ∈ {0, 1}L satisfies at least one wID among the l wIDs. We show
that a TSS scheme can be generically constructed by a WIBRS scheme with L = logT
and n = 2 log T − 2 in Subsect. 5.2. We instantiate an attribute-based signatures (ABS)
scheme [18] to obtain a WIBRS scheme with constant-size secret-keys in Subsect. 5.3.
We rigorously evaluate the efficiency of the TSS scheme instantiated by the WIBRS
scheme in Subsect. 5.4.

Remark. In [13], another sophisticated TSE construction fromWIBE (w. ciphertexts of
smaller size) was also proposed. We can analogously consider a sophisticated WIBRS-
based TSS construction, which can shorten size of a signature. However, we only con-
sider the simple WIBRS-based TSS construction because of its simplicity.

5.1 Wildcarded Identity-Based Ring Signatures (WIBRS)

Syntax. Wildcarded Identity-Based Ring Signatures (WIBRS) consist of following 4
polynomial time algorithms, where Ver is deterministic and the others are probabilis-
tic. Let n ∈ N denote the maximum cardinality of a ring of wildcarded identities. Setup
algorithm Setup takes (1λ, L, n) as input, then outputs a master public-key mpk and
a master secret-key msk. Concisely, we write (mpk,msk) ← Setup(1λ, L, n). Key-
generation algorithm KGen takes msk and an identity ID ∈ {0, 1}L, then outputs a
secret-key sk for the identity. Concisely, we write sk ← KGen(msk, ID). Signing algo-
rithm Sig takes a secret-key sk for ID ∈ {0, 1}L, a message m ∈ {0, 1}∗, and wildcarded
identities (wID1, · · · ,wIDl) s.t. l ≤ n

∧l
i=1 wIDi ∈ {0, 1, ∗}L, then outputs a signature

σ. Concisely, we write σ ← Sig(sk,m,wID1, · · · ,wIDl). Verifying algorithm Ver

takes σ, m ∈ {0, 1}∗, and (wID1, · · · ,wIDl), then outputs a bit 1/0. Concisely, we write
1/0← Ver(σ,m,wID1, · · · ,wIDl).

We introduce a deterministic polynomial-time Boolean algorithm verifying whether
an ID satisfies a wildcarded ID. The algorithm MatchL takes ID ∈ {0, 1}L and wID ∈
{0, 1, ∗}L, and outputs 1 iff ∀i ∈ [0, L − 1] s.t. wID[i] � ∗, ID[i] = wID[i].

We require every WIBRS scheme to be correct. A scheme ΣWIBRS = {Setup, KGen,
Sig, Ver} is correct, if ∀λ, L, n ∈ N, ∀(mpk,msk) ← Setup(1λ, L, n), ∀ID ∈ {0, 1}L,
∀sk ← KGen(msk, ID), ∀m ∈ {0, 1}∗, ∀l ∈ N s.t. l ≤ n, ∀(wID1, · · · ,wIDl) s.t.
∧l

i=1 wIDi ∈ {0, 1, ∗}L∧∨l
j=1 1 ← MatchL(ID,wIDj), ∀σ ← Sig(sk,m,wID1, · · · ,

wIDl), 1← Ver(σ,m,wID1, · · · ,wIDl).

Existential Unforgeability and Perfect Privacy. For a WIBRS scheme ΣWIBRS and a
probabilistic algorithmA, we consider experiments in Fig. 3.

Definition 6. ΣWIBRS is existentially unforgeable, if ∀λ ∈ N, ∀L ∈ N, ∀n ∈ N, ∀A ∈
PPTλ, ∃ε ∈ NGLλ, AdvEUF-CMAΣWIBRS,A,L,n(λ) � Pr[1← ExptEUF-CMAΣWIBRS,A(1

λ, L, n)] < ε.

5 The digital signature analogue of the WIBE.
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Fig. 3. Top: Experiment for (adaptive) existential unforgeability w.r.t. a WIBRS scheme ΣWIBRS.
Bottom: Experiments for perfect privacy w.r.t. a WIBRS scheme ΣWIBRS

Fig. 4. A generic TSS construction from a WIBRS scheme ΣWIBRS = {Setup′, KGen′, Sig′, Ver′}

Definition 7. ΣWIBRS is perfectly private, if for every λ, L, n ∈ N and every probabilistic
algorithmA, there exist probabilistic polynomial time algorithms {Setup′, KGen′, Sig′}
s.t. AdvPPΣWIBRS,A,L,n(λ) � |

∑1
b=0(−1)b Pr[1← ExptPPΣWIBRS,A,b(1

λ, L, n)]| = 0.

5.2 A TSS Scheme from WIBRS Scheme with L = log T and n = 2 log T − 2

A TSS scheme is generically constructed from a WIBRS scheme parameterized by
L = logT and n = 2 log T −2 as described in Fig. 4. Theorem 3 guarantees that security
of the TSS scheme is reduced to that of the underlying WIBRS scheme. We omit a
proof for the theorem since it is almost obvious.

Theorem 3. If the underlying WIBRS scheme is existentially unforgeable (resp. per-
fectly private), then the TSS scheme is existentially unforgeable (resp. perfectly private).

5.3 A WIBRS Scheme as an Instantiation of ABS Scheme [18]

ABS with a Signer-Policy Represented as a Circuit. In [18], an ABS scheme, where
signer-policy is described as a circuit φ : {0, 1}L → {0, 1}, is proposed. Each secret-key
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Fig. 5. A circuit representing a disjunctive
signer-policy defined on l(≤ n) wildcarded
identities wID1, · · · ,wIDl ∈ {0, 1, ∗}L.

Fig. 6. A circuit representing a disjunc-
tive signer-policy defined on n (non-
)wildcarded identities wID1, · · · ,wIDn s.t.
∧n

i=1 wIDi = ∗L.

is associated with an attribute x ∈ {0, 1}L. A signer with a secret-key for x, who chooses
a circuit φ as a signer-policy, can correctly sign a message if the attribute satisfies the
circuit, i.e., φ(x) = 1. Each circuit is assumed to be constructed by only NAND gates
with fan-in 2. Their ABS scheme is built by a structure-preserving signatures (SPS)
scheme [15], a non-interactive witness-indistinguishable (NIWI) proof system [12] and
a collision-resistant hash function. A secret-key for an attribute x ∈ {0, 1}L is a signature
θx of the SPS scheme on a message (g0, gx[0], · · · , gx[L−1]), where g is a generator of G
of an asymmetric pairing e : G × G̃ → GT with prime order. A signer with x ∈ {0, 1}L
signs a message m under a circuit φ by proving on NIWI proof system that x satisfies φ
and θx is a correct signature on (g0, gx[0], · · · , gx[L−1]), where the message m is inserted
into the circuit φ in an adequate way.

A circuit representing a disjunctive signer-policy defined on l ≤ n wildcarded iden-
tities wID1, · · · ,wIDl ∈ {0, 1, ∗}L is described as shown in Fig. 5.

Universality of NAND Gates with Fan-in 2. We commonly know that an
AND gate with fan-in 2 (resp. an OR gate with fan-in 2, a NOT gate) can
be constructed by two (resp. three, two) NAND gates with fan-in 2. Thus,
AND(A, B) = NAND(NAND(A, B), NAND(A, B)), OR(A, B) = NAND(NAND(A, A), NAND(B, B))
and NOT(A) = NAND(A, A).

We can easily prove that an AND (resp. OR) gate with fan-in L ∈ N can be con-
structed by L − 1 AND (resp. OR) gates with fan-in 2, which implies that it can be
constructed by 2(L − 1) (resp. 3(L − 1)) NAND gates with fan-in 2.

Efficiency and Security of the WIBRS Scheme. mpk has a common reference string
crs on NIWI proof system [12], a verification key vk on structure-preserving signature
scheme [15] and a hash key hk of a collision-resistant hash function. vk includes L + 7
elements in G̃, and crs and hk are independent of L. Thus, |mpk| = O(L)|g̃|. msk is the
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signing key on the signature scheme [15] itself. It includes 2L+ 8 elements in G, which
means |msk| = O(L)|g|. A secret-key for ID ∈ {0, 1}L is a signature on the signature
scheme [15]. The signature is generated by considering the ID as a message. Thus,
|skID| = 6|g| + 2|g̃|, which is asymptotically O(1)(|g| + |g̃|).

As we explain below, size of a signature for a ring (wID1, · · · ,wIDl) (where l ≤ n)
is asymptotically |σ| = O(nL)(|g|+|g̃|). According to [18], size of a signature for a circuit
is determined by total number of input wires Nin of the circuit and that of NAND-gates
Nga in the circuit. Precisely, it is described as |σ| = (6Nin + 10Nga + 16)(|g| + |g̃|). For
the WIBRS scheme, it is (almost) obvious that both Nin and Nga are maximized when
the signer-policy is a disjunctive policy defined on n number of wildcarded identities
wID1, · · · ,wIDn, every one of which is ∗L 6. The signer-policy is described as a circuit
shown in Fig. 6. The circuit takes Nin = L input wires. The circuit includes nL NOT
gates, nL OR gates with fan-in 2, n AND gates with fan-in L, and one OR gate with
fan-in n. Hence, the circuit includes Nga = 6nL + n − 3 NAND gates with fan-in 2. We
conclude that size of a signature is loosely upper-bounded by (6Nin + 10Nga + 16)(|g| +
|g̃|) = (60nL + 6L + 10n − 14)(|g| + |g̃|). Asymptotically, O(nL).

Its security is reduced to that of the original [18].

Theorem 4. If the ABS scheme [18] is existentially unforgeable (resp. perfectly pri-
vate) under Definition 8 (resp. Definition 9 7), then the WIBRS scheme is existentially
unforgeable (resp. perfectly private) under Definition 6 (resp. Definition 7).

5.4 Analyzing Efficiency of the TSS Scheme

Our TSS scheme is obtained from the WIBRS scheme in the last subsection param-
eterized by L = logT and n = 2 log T − 2. The reason why n = 2 log T − 2 is that
among every range [L,R], the maximum number of wildcarded identities for the range
is |T[L,R]| = 2 log T − 2 when [L,R] = [1,T − 2].

Spatial efficiency of the TSS scheme is rigolously analyzed as follows. mpk, msk
and skt are unchanged from the WIBRS scheme. Thus, |mpk| = O(log T )|g̃|, |msk| =
O(log T )|g| and |skt | = 6|g| + 2|g̃| = O(1)(|g| + |g̃|). In the last subsection, we explained
that a loose upper bound for the size of a signature of the WIBRS scheme is (60nL +
6L + 10n − 14)(|g|+ |g̃|). By substituting logT and 2 log T − 2 for L and n, respectively,
we obtain (120 log2 T − 94 log T − 34)(|g| + |g̃|) as a loose upper bound for the size of a
signature of the TSS scheme. Asymptotically, it is O(log2 T )(|g| + |g̃|).

6 Conclusion

In this paper, we proposed two TSS schemes, each of which is polylogarithmically
efficient, based on an asymmetric bilinear pairing with prime order, and secure, i.e.,
existentially unforgeable and perfectly private, under standard assumption. Their char-
acteristics are summarized in Table 1. The first one achieves a well-balanced efficiency.
The second one has secret-keys of constant size, but has signatures of large size.
6 In other words, for every possible signer-policy (or ring of wildcarded identities), Nin and Nga

are smaller than or equal to the largest Nin and Nga, respectively.
7 Although the definition of perfect privacy used in [18] is different from Definition 9, it has been
shown by Blömer et al. [6] that the ABS scheme [18] is perfectly private under Definition 9.
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Table 1. Comparison of Our TSS Schemes

TSS Scheme |mpk| |msk| |skt | |σ[L,R] | Assumpt.

FSS-based (2 log T + N + 3)(|g| + |g̃|) |g| O(logT )|g| (2 log T + 2)|g| co-CDH

WIBRS-based O(logT )|g̃| O(logT )|g| O(1)(|g| + |g̃|) O(log2 T )(|g| + |g̃|) SXDH
For a data a, |a| denotes its bit length. For FSS-based TSS scheme, N ∈ N denotes bit length of an message.
|g| (resp. |g̃|) denotes bit length of an element in bilinear group G (resp. G̃).

A Attribute-Based Signatures (ABS) for Circuits

Syntax. Attribute-based signatures (ABS) for circuits [18] consist of following 4 poly-
nomial time algorithms, where Ver is deterministic and the others are probabilistic. Let
L ∈ N denote length of an attribute. Setup takes (1λ, L) as input then outputs mpk and
msk. We write (mpk,msk)← Setup(1λ, L). KGen takes msk and an attribute x ∈ {0, 1}L,
then outputs a skx for the attribute. We write skx ← KGen(msk, x). Sig takes a skx for
x ∈ {0, 1}L, a message m ∈ {0, 1}∗, and a signer-policy φ : {0, 1}L → {0, 1} s.t. 1← φ(x),
then outputs a signature σ. We write σ← Sig(skx,m, φ). Ver takes σ, m ∈ {0, 1}∗, and
φ, then outputs a bit 1/0. We write 1/0← Ver(σ,m, φ).

We require every ABS scheme to be correct. A scheme ΣABS = {Setup, KGen, Sig,
Ver} is correct, if ∀λ ∈ N, ∀L ∈ N, ∀(mpk,msk)← Setup(1λ, L), ∀x ∈ {0, 1}L, ∀skx ←
KGen(msk, x), ∀m ∈ {0, 1}∗, ∀φ s.t. 1← φ(x), ∀σ← Sig(skx,m, φ), 1← Ver(σ,m, φ).

Existential Unforgeability and Perfect Privacy. For an ABS scheme ΣABS and a proba-
bilistic algorithmA, we consider experiments in Fig. 7.

Fig. 7. Top: Experiment for (adaptive) existential unforgeability w.r.t. an ABS scheme ΣABS. Bot-
tom: Experiments for perfect privacy w.r.t. an ABS scheme ΣABS.

Definition 8. ΣABS is existentially unforgeable, if ∀λ ∈ N, L ∈ N, ∀A ∈ PPTλ, ∃ε ∈
NGLλ, AdvEUF-CMAΣABS,A,L(λ) � Pr[1← ExptEUF-CMAΣABS,A (1λ, L)] < ε.
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Definition 9. ΣABS is perfectly private, if for every λ, L ∈ N and every probabilistic
algorithmA, there exist probabilistic polynomial time algorithms {Setup′, KGen′, Sig′}
s.t. AdvPPΣABS,A,L(λ) � |

∑1
b=0(−1)b Pr[1← ExptPPΣABS,A,b(1

λ, L)]| = 0.
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Abstract. Certificates ensure the authenticity of users’ public keys,
however their overhead (e.g., certificate chains) might be too costly for
some IoT systems like aerial drones. Certificate-free cryptosystems, like
identity-based and certificateless systems, lift the burden of certificates
and could be a suitable alternative for such IoTs. However, despite their
merits, there is a research gap in achieving compatible identity-based and
certificateless systems to allow users from different domains (identity-
based or certificateless) to communicate seamlessly. Moreover, more effi-
cient constructions can enable their adoption in resource-limited IoTs.

In this work, we propose new identity-based and certificateless cryp-
tosystems that provide such compatibility and efficiency. This feature is
beneficial for heterogeneous IoT settings (e.g., commercial aerial drones),
where different levels of trust/control is assumed on the trusted third
party. Our schemes are more communication efficient than their public
key based counterparts, as they do not need certificate processing. Our
experimental analysis on both commodity and embedded IoT devices
show that, only with the cost of having a larger system public key, our
cryptosystems are more computation and communication efficient than
their certificate-free counterparts. We prove the security of our schemes
(in the random oracle model) and open-source our cryptographic frame-
work for public testing/adoption.

Keywords: Identity-based cryptography · Certificateless
cryptography · IoT systems · Lightweight cryptography

1 Introduction

Mobile and heterogeneous IoT applications harbor large quantities of resource-
limited and non-stationary IoT devices, each with different capabilities, con-
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figurations, and user domains. For instance, emerging commercial aerial drone
network protocols1 need a near real-time communication and processing over
a bandwidth-limited network. There are multiple hurdles of relying on tradi-
tional PKI for such systems: (i) The maintenance of PKI for such IoT networks
demands a substantial infrastructure investment [25]. (ii) PKI requires trans-
mission and verification of certificate chains at the sender’s/verifier’s side. This
communication and computation overhead could create a major bottleneck for
mobile IoT devices (e.g., aerial drones [21]) that potentially need to interact
with a number of devices. In certain cases, these certificate chains might be
larger than the actual measurements/commands being transmitted and there-
fore, might be the dominating cost for these applications. Figure 1-a depicts a
high-level illustration of traditional PKI for mobile IoT applications.

Identity-based (IDB) and certificateless (CL) cryptosystems offer implicit
certification [1,9,25], and therefore can mitigate the aforementioned hurdles. In
IDB, the user’s public key is derived from their identifying information, and
the system relies on a fully-trusted third party (TTP), called the private key
generator (PKG), to issue users’ private keys. The top portion of Fig. 1-b depicts
IDB encryption, wherein the user authenticates itself to the PKG and receives
a private key corresponding to its identity D1. The sender can use D1 as the
public key to run encryption. IDB is potentially suitable for applications where
the system setup is done and managed by a trusted centralized entity. In CL
systems [1] the trust on the TTP is lowered by allowing the private key of the
user to consist of two parts. One is computed by the user and the other is by the
TTP (called the KGC). The bottom portion of Fig. 1-b outlines CL encryption,
where the user computes its key pair and then works as in IDB to receive the
other part of the private key from the KGC. CL cryptosystems are suitable for
architectures that might not assume a fully trusted third party where the trust
level on the KGC is similar to traditional certification authorities.

IDB and CL cryptosystems have their own merits and drawbacks, and there-
fore might be used in different IoT applications. Hence, it is expected that there
will be different user groups who rely on IDB and CL cryptosystems initiated
in different domains/systems. For example, Amazon’s Prime Air2 would require
drones, under the complete control of Amazon, to interact with other drones
(e.g., personal) to ensure safe operation. By employing IDB cryptography on its
drones, Amazon can have complete control over the operations of its delivery
drones while avoiding the overheads of traditional PKI. However, it is a strong
assumption that other drones, outside Amazon’s network, will adopt a similar
cryptographic setting to ensure safe and secure operations. For instance, per-
sonal users rarely trust any third party to have complete control and knowledge
of their drones’ activity. To the best of our knowledge, there is a significant
research gap in enabling a seamless communication between users who are regis-
tered under different domains (e.g., IDB and CL). This is a potential obstacle to
widely deploy efficient certificate-free solutions in heterogeneous environments.

1 https://github.com/mavlink/mavlink.
2 https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011.

https://github.com/mavlink/mavlink
https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011
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Fig. 1. Proposed IDB and CL cryptosystems and alternatives (high-level)

This limitation is mentioned in Fig. 1-b. Moreover, it is important to further
improve the computational efficiency of IDB and CL techniques to offer a low
end-to-end delay that is needed by delay-aware IoT applications.

Our Contribution. We propose a new series of public key encryption, digital
signature, and key exchange schemes that permit users from different domains
(IDB or CL) to communicate seamlessly. To our knowledge, this is the first set of
certificate-free cryptosystems that achieve such compatibility and efficiency, and
therefore a suitable alternative for resource-limited IoT systems such as com-
mercial aerial drones. The idea behind our constructions is to create special key
generation algorithms that harness the additive homomorphic property of the
exponents and cover-free functions to enable the users to incorporate their pri-
vate keys into the one provided by the TTP without falsifying it. As detailed in
Sect. 4, this special design is applicable across our IDB and CL algorithms, and
therefore it permits a seamless communication between our IDB and CL cryp-
tosystems. This strategy also reduces the cost of online operations and enables
our schemes to achieve a lower end-to-end delay compared to their counterparts.
We elaborate on some desirable properties of our schemes as below.

• Compatible IDB and CL Schemes: Figure 1.c outlines the concept of compat-
ible IDB and CL schemes where the users from different domains (and trust-
levels) can use identical encryption, signature, and key exchange algorithms
to communicate without any additional overhead.
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• Computation & Communication Efficiency: Based on our analysis, new
schemes offer performance advantages over their counterparts: (i) Similar
to other IDB/CL cryptosystems, our schemes lift the hurdle of certificate
transmission and verification, and therefore offer significant communication
efficiency over some of the most efficient PKI-based schemes. This advantage
grows proportional to the size of the certificate chain. (ii) Our schemes out-
perform their certificate-free counterparts on the vast majority of the perfor-
mance metrics. For instance, the end-to-end delay in our IDB/CL encryption
schemes is ≈25% lower than our most efficient counterpart in [29]. Our sig-
nature schemes achieve up to %52 faster end-to-end delay as compared to
our counterparts. We also achieve a 65% lower end-to-end delay for our key
exchange schemes.

• Open-Sourced Implementation: We implemented our schemes on a commodity
hardware and an 8-bit AVR microprocessor, and compared their performance
with a variety of their counterparts capturing some of the most efficient tradi-
tional PKI, IDB and CL schemes (see Sect. 6 for details). We open-source our
implementations for broad testing, benchmarking, and adoption purposes.

2 Preliminaries

Notation. Given two primes p and q, we define a finite field Fp and a group
Zq. We work on E(Fp) as an elliptic curve (EC) over Fp, where P ∈ E(Fp) is
the generator of the points on the curve. We denote a scalar and a point on
a curve with small and capital letters, respectively. x

$← S denotes a random
uniform selection of x from a set S. We define the bit-length of a variable as |x|
(i.e., |x| = log2 x). EC scalar multiplication is denoted as xP , and all EC opera-
tions use an additive notation. Hash functions are H1: E(Fp)×E(Fp) → {0, 1}γ ,
H2: {0, 1}n × {0, 1}∗ → Zq, H3: E(Fp) → {0, 1}n H4: {0, 1}n → {0, 1}n and H5:
{0, 1}n × E(Fp) → Zq, where all hash functions are random oracles [6]. FourQ
[12] is a special EC that is defined by the complete twisted Edwards equation
E/Fp2 : −x2 + y2 = 1 + dx2y2. FourQ is known to be one of the fastest elliptic
curves that admits 128-bit security level [12]. Moreover, with extended twisted
Edwards coordinates, FourQ offers the fastest EC addition algorithms [12], that
is extensively used in our optimizations. All of our schemes are realized on FourQ.

Definitions. We first give our intractability assumptions followed by the defi-
nitions of identity-based and certificateless encryption and signature schemes.

Definition 1. Given points P,Q ∈ E(Fp), the Elliptic Curve Discrete Loga-
rithm Problem (ECDLP) asks to find a, if it exists, such that aP (mod p) = Q.

Definition 2. Given P, aP, bP ∈ E(Fp), the Computational Diffie-Hellman
(CDH) problem asks to compute abP .

Definition 3. An identity-based encryption scheme is consisted of four algo-
rithms IBE = {Setup, Extract, Enc, Dec}.
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(msk, params) ← IBE.Setup(1κ): Given the security parameterκ, the PKG
selects master secret key msk, computes master public key mpk and system
parameters params (an implicit input to all the following algorithms).
(skID, QID) ← IBE.Extract(ID,msk): Given an identity ID and msk, the
PKG computes the commitment value QID and the private key skID.
c ← IBE.Enc(m, ID,QID): Given a message m and (ID,QID), the sender com-
putes the ciphertext c.
m ← IBE.Dec(skID, c): Given the ciphertext c and the private key of the receiver
skID, the receiver returns either the corresponding plaintext m or ⊥ (invalid).

Definition 4. An identity-based signature scheme is defined by four algorithms
IBS = {Setup, Extract, Sig, Ver}.
(msk,mpk, params) ← IBS.Setup(1κ): As in IBE.Setup in Definition 3.
(skID, QID) ← IBS.Extract(ID,msk): As in IBE.Extract in Definition 3.
σ ← IBS.Sign(m, sk ID): Given a message m and sk ID, returns a signature σ.
d ← IBS.Verify(m, ID,QID, σ): Given m, σ and (ID,QID) as input, if the
signature is valid, it returns d = 1, else d = 0.

Definition 5. A certificateless encryption scheme is defined by six algorithms
CLE = {KGCSetup, UserSetup, PartKeyGen, UserKeyGen, Enc, Dec}.
(msk,mpk, params) ← CLE.KGCSetup(1κ): Give the security parameter κ, the
KGC generates master secret key msk, master public key mpk and the system
parameters params (an implicit input to all the following algorithms).
(α,U) ← CLE.UserSetup(·): The user ID computes her secret value α and its
corresponding commitment U.
(w,QID) ← CLE.PartKeyGen(ID,U,msk): Given ID, U , and msk, the KGC
computes partial private key w and its corresponding public commitment QID.
xID ← CLE.UserKeyGen(w,α): Given (w,α), the user ID computes xID.
c ← CLE.Enc(m, ID,QID): Given (m, ID,QID), sender computes ciphertext c.
m′ ← CLE.Dec(xID, c): Given the ciphertext c and the private key of the receiver
xID, the receiver returns either corresponding plaintext m or ⊥ (invalid).

Definition 6. A certificateless signature scheme is defined by six algorithms
CLS = {KGCSetup, UserSetup, PartKeyGen, UserKeyGen, Sig, Ver}. The defini-
tion of algorithms are as in Definition 5 except for (CLS.Sig,CLS.Ver).
σ ← CLS.Sig(m,xID): Given a message m, and the signer’s private key xID, it
returns a signature σ.
d ← CLS.Ver(m, ID,QID, σ): Given m, σ and (ID,QID) as input, if the signa-
ture is valid, it returns d = 1, else d = 0.

3 Security Model

The security model of identity-based schemes is slightly stronger than those for
traditional PKI based schemes. More specifically, the adversary can query for
the private key of any user ID, except for the target user ID∗. In this paper,
we constructed our schemes by following the security model of Identity-based
systems proposed in [9]. In certificateless systems, the private key of the users
consists of two parts: (i) user secret key α, which is selected by the user, and
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(ii) partial private key w, which is supplied to the user by the KGC. Therefore,
following [1], it is natural to consider two types of adversaries for such systems.

A Type-I adversary AI does not have access to msk or the user’s partial
private key w but is able to replace any user’s public key U with public key
of its choice U ′. However, in our security model, since we adopt the binding
method [1], replacing the public key will result in falsifying the partial private
key (and evidently the private key). Therefore, following [2], we allow AI to
query for the secret key of the user via α ← OSecKey(ID). Note that our model
can also be extended to allow AI to replace the public key of the user (see
Sect. 5). A Type-II adversary AII is assumed to be a malicious KGC. Having
knowledge on msk, AII can query the partial private key of the user via w ←
OPartKey(ID). Following [1], we allow the adversary A ∈ {AI ,AII} to extract
private key of users’ private keys via the xID ← OCorrupt(ID). We note that
inspired by [3], many improvements on the security models of certificateless
systems have been suggested (e.g., [2,3,17]). In this paper, we provide our proof
in the original model proposed in [1,3], but note that many of those stronger
security requirements can be enforced if needed.

Definition 7. The indistinguishability of a CLE under chosen ciphertext attack
(IND-CLE-CCA) experiment ExptIND-CLE-CCA

A is defined as follows.

– C runs CLE.KGCSetup(1κ) and returns mpk and params to A.
– (ID∗,m0,m1) ← AOPartKey,OSecKey,OCorrupt,ODec(mpk, params)
– C picks b

$← {0, 1}, cb ← CLE.Enc(mb, ID∗, params) and returns cb to A.
– A performs the second series of queries, with a restriction of querying ID∗

or cb to Corrupt(·) or CLE.Dec(·), respectively. Finally, A outputs a bit b′.

A wins the above experiment if b = b′ and the following conditions hold: (i)
ID∗ was never submitted to OCorrupt. (ii) If A = AI , ID∗ was never submitted
to OPartKey. (iii) If A = AII , ID∗ was never submitted to OSecKey. The IND-
CLE-CCA advantage of A is Pr[b = b′] ≤ 1

2 + ε, for a negligible ε.

Definition 8. The existential unforgeability under chosen message attack (EU-
CLS-CMA) experiment ExptEU-CLS-CMA

A for a certificateless signature CLS is
defined as follows.

– C runs CLS.KGCSetup(1κ) and returns mpk and params to A.
– (ID∗,m∗, σ∗) ← AOPartKey,OSecKey,OCorrupt,OSign(mpk, params)

A wins the above experiment if 1 ← CLS.Ver(m∗, σ∗, ID), and the following
conditions hold: (i) ID∗ was never submitted to OCorrupt. (ii) If A = AI , ID∗

was never submitted to OPartKey. (iii) If A = AII , ID∗ was never submitted to
OSecKey. The EU-CLS-CMA advantage of A is Pr[ExptEU-CLS-CMA

A = 1]

4 Proposed Schemes

4.1 Proposed Identity-Based Cryptosystem

Most of pairing-free IDB schemes rely on the classical signatures (e.g., [24]) in
their key generation to provide implicit certification. The use of such signatures
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Algorithm 1. Identity-Based Encryption

(msk, params) ← IBE.Setup(1κ):
1: Select primes p and q and (t, k) ∈ N

where t >> k.
2: for i = 1, . . . , t do
3: vi

$← Zq, Vi ← viP mod p

4: return msk ← (v1, . . . , vt),
mpk ← (V1, . . . , Vt) and params ←
(H1, H2, H3, H4, p, q, k, t, mpk)

(w, Q) ←IBE.Extract(ID, U, msk):

1: β
$← Zq, Q ← βP mod p

2: (j1, . . . , jk) ← H1(ID, Q) where for
all i = 1, . . . , t, 1 < ji < |t|

3: y ← ∑k
i=1 vji mod q

4: x ← y + β mod q
5: return (x, Q)

c ← IBE.Enc(m, IDa, Qa): Bob
encrypts message m ∈ {0, 1}n.

1: σ
$←− {0, 1}n, r ← H2(σ, m), R ←

rP mod p
2: (j1, . . . , jk) ← H1(IDa, Qa), Ya ←∑k

i=1 Vji mod p
3: u ← H3(r(Ya + Qa) mod p) ⊕ σ,

v ← H4(σ) ⊕ m
4: return c = (R, u, v)

m ← IBE.Dec(xa, c): Alice
decrypts the ciphertext c.

1: σ′ ← H3(xaR mod p) ⊕ u
2: m′ ← v ⊕ H4(σ′),r′ ← H2(σ′, m)
3: if r′P (mod p) = R then

return m′

4: else return ⊥

to construct IDB schemes usually require several expensive operations (e.g.,
scalar multiplication), and therefore may incur a non-negligible computation
overhead. To reduce this cost, we exploit the message encoding technique and
subset resilient functions (similar to [23]) along with the exponent product of
powers property to generate keys. This permits an improved efficiency for both
the PKG and user since it only requires a hash call and a few point additions.

Our IDB schemes use similar IBE.Setup and IBE.Extract functions whose
key steps are outlined as follows. In the IBE.Setup, the PKG selects t values
vi ← Zq, and computes their commitments as Vi ← viP mod p, for i = 1, . . . , t,
it then sets the master secret key msk ← (v1, . . . , vt) and the system-wide public
key mpk ← (V1, . . . , Vt). This is similar to the scheme in [23], where EC scalar
multiplication is used as the one-way function. In IBE.Extract, the PKG picks a
nonce β ← Zq and computes its commitments Q ← βP mod p. The PKG then
derives indexes (j1, . . . , jk) ← H1(ID,Q), which select k-out-of-t elements from
the master secret key vji

for i = 1, . . . , k. Note that Q is implicitly authenticated
by being included in input of H1(·), this is similar to the technique used in
other pairing-free identity-based and certificateless systems [3,15]. In Steps 3–4,
unlike the scheme in [23], where secret keys are exposed, we use the additive
homomorphic property in the exponent to mask the one-time signature y (Step
3) via the nonce β (in line with [4,5]). The PKG will then sends (x,Q) to the
user via a secure channel.

Identity-Based Encryption Scheme: In IBE.Enc (Algorithm 1, Step 2),
the indexes obtained from H1 are used to retrieve the components Vji

from
the system-wide public key mpk. The input of H3 is the ephemeral key, which
given the ciphertext c = (R, u, v), can be recomputed by the receiver in the
IBE.Dec algorithm. σ and r are computed in-line with the transformation pro-
posed in [14].
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Algorithm 2. Identity-Based Signature

(msk, params) ← IBS.Setup (1κ):
Description identical to IBE.Setup
in Algorithm 1, except that only
the description of H1 and H5 is
included in params.

(w, Q) ← IBS.Extract(ID, U, msk):
As in IBE.Extract in Algorithm 1.

(s, e) ← IBS.Sign(m, xa): Alice
IDa signs message m.

1: r
$←− Zq, R ← rP mod p

2: e ← H5(m, R)
3: s ← r − e · xa mod q
4: return (s, e)

{0, 1} ← IBS.Verify(m, IDa, Qa, 〈s, e〉):
Bob verifies the signature (s, e).

1: (j1, . . . , jk) ← H1(IDa, Qa)
2: Ya ← ∑k

i=1 Vji mod p
3: R′ ← sP + e(Ya + Qa) mod p
4: if e = H5(m, R′) then return 1
5: else return 0

Identity-Based Signature Scheme: In IBS.Verify, the public key of the user
Ya is computed from Vji

∈ mpk via the indexes retrieved from the output of H1.
The key generation is as in Algorithm 1. The rest of the signing and verification
steps are akin to Schnorr signatures [24].

Identity-Based Key Exchange Scheme: For the key exchange scheme, we
run IBE.Setup and then let both parties, Alice and Bob, obtain (xA, QA) and
(xB , QB) via the IBE.Extract algorithm, respectively. Alice then picks zA

$← Zq,
computes its commitment MA ← zAP mod p, and sends (MA, QA) to Bob. Bob
does the same and sends (MB , QB) to Alice. Alice then computes (j1, . . . , jk) ←
H1(IDb, Qb) and Yb ← ∑k

i=1 Vji
mod p and outputs the shared secret key as

Ka ← xa(Yb + Qb) + zaMb mod p. Bob works similarly, and outputs the shared
key as Kb ← xb(Ya + Qa) + zbMa mod p.

4.2 Proposed Certificateless Cryptosystem

For our CL schemes to achieve the same trust level (Level 3) [16] on the third
party (KGC), as in traditional PKI, we use the binding method [1] in the
CLE.PartKeyGen and CLS.PartKeyGen algorithms. Note that the same secure
channel which is used for user authentication (e.g., SSL/TLS), can be used to
send the user commitment U to the KGC. This permits an implicit certification
of U, and therefore any changes of U, will falsify the private key.

The CLE.KGCSetup algorithm is as in IBE.Setup in Algorithm 1. The
CLE.PartKeyGen algorithm is similar to the IBE.Extract in Algorithm 1,
with the difference that the user commitment U is used to compute Q. In
CLE.UserKeyGen, the correctness of the partial private key is checked first before
the private key x is computed.

CertificatelessEncryptionScheme:Note that the CLE.Enc and CLE.Dec algo-
rithms are identical to IBE.Enc and IBE.Dec algorithms in Algorithm 1.

Certificateless Signature Scheme: The setup and key generation algorithms
are as in Algorithm 3, and the CLS.Sign and CLS.Verify algorithms are as in
IBS.Sign and IBS.Verify in Algorithm 2, respectively.
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Algorithm 3. Certificateless Encryption

(msk, params) ← CLE.KGCSetup(1κ):
As in IBE.Setup in Alg. 1.

(α, U) ←CLE.UserSetup(·):
1: α

$← Zq, U ← αP mod p
2: return (α, U)

(w, Q) ←CLE.PartKeyGen(ID, U, msk):

1: β
$← Zq, W ← βP mod p

2: Q = U + W mod p
3: (j1, . . . , jk) ← H1(ID, Q) where for

all i = 1, . . . , t, 1 < ji < |t|
4: y ← ∑k

i=1 vji mod q
5: w ← y + β mod q
6: return (w, Q)

x ← CLE.UserKeyGen(w, α):
1: (j1, . . . , jk) ← H1(ID, Q), Y ←∑k

i=1 Vji mod p
2: W ′ ← Q−U mod p, W ′′ := wP −

Y mod p

3: if W ′ = W ′′ then return x ←
w + α mod q else return ⊥

c ← CLE.Enc(m, IDa, Qa): Bob
encrypts message m ∈ {0, 1}n.

1: σ
$←− {0, 1}n, r ← H2(σ, m), R ←

rP mod p
2: (j1, . . . , jk) ← H1(IDa, Qa), Ya ←∑k

i=1 Vji mod p
3: u ← H3(r(Ya + Qa) mod p) ⊕ σ,

v ← H4(σ) ⊕ m
4: return c = (R, u, v)

m ← CLE.Dec(xa, c): Alice
decrypts the ciphertext c.

1: σ′ ← H3(xaR mod p) ⊕ u
2: m′ ← v ⊕ H4(σ′),r′ ← H2(σ′, m)
3: if r′P (mod p) = R then

return m′

4: else return ⊥

Algorithm 4. Certificateless Digital Signature

(msk, params) ← CLS.KGCSetup(1κ):
As in CLE.KGCSetup in Alg. 3,
except that H1 and H5 are in
params.

(α, U) ←CLS.UserSetup(params):
As in CLE.UserSetup in Alg. 3.

(w, Q) ←CLS.PartKeyGen(ID, U, msk):
As in CLE.PartKeyGen in Alg. 3.

x ← CLS.UserKeyGen(params, α, w):
As in CLE.UserKeyGen in Alg. 3.

(s, e) ← CLS.Sign(m, xa): Alice
IDa signs message m.

1: r
$←− Zq, R ← rP mod p

2: e ← H5(m, R)
3: s ← r − e · xa mod q
4: return (s, e)

{0, 1} ← CLS.Verify(m, Qa, 〈s, e〉):
Bob verifies the signature (s, e).

1: (j1, . . . , jk) ← H1(IDa, Qa)
2: Ya ← ∑k

i=1 Vji mod p
3: R′ ← sP + e(Ya + Qa) mod p
4: if e = H5(m, R′) then return 1
5: else return 0

Certificateless Key Exchange Scheme: Given the compatibility of our IDB
and CL schemes, after the initial algorithms (system setup and key generation)
take place as in Algorithm 3, the CL key exchange will be identical to the one
proposed in the identity-based key exchange scheme above.

4.3 Compatibility of Identity-Based and Certificateless Schemes

In our CL schemes, we utilize the additive homomorphic property of the expo-
nents (i.e., w) when the KGC includes the addition of commitments (Wand
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U) in the H1. After receiving w, the user exploits the homomorphic property to
modify the key without falsifying it and obtain x. For instance, we observed that
our counterparts (e.g., [1,9]) do not offer such a compatibility, since the partial
private key is the KGC’s commitment to the (hash of) user identity, without a
homomorphic property. Moreover, the KGC does not output any auxiliary value
to incorporate the user commitment with it.

As shown above, our IDB and CL schemes are compatible, thanks to the spe-
cial design of their key generation algorithms (i.e., Extract in IDB, UserSetup
and PartKeyGen in CL). Therefore, after the users computed/obtained their keys
from the third party, the interface of the main cryptographic functions (e.g.,
encrypt, decrypt, sign, etc.) are identical in both systems, therefore, the users
can communicate with uses in different domains seamlessly. For instance, cipher-
text c = (R, u, v) outputted by the CLE.Enc in Algorithm 1, can be decrypted
by a user in the identity-based setting by the IBE.Dec algorithm in Algorithm1.
This also applies to the signature and the key exchange schemes proposed above.

5 Security Analysis

Theorem 1. If an adversary AI can break the IND-CLE-CCA security of the
encryption scheme proposed in Algorithm 3 after qHi

queries to random oracles Hi

for i ∈ {1, 2, 3, 4}, qD queries to the decryption oracle and qsk to the private key
extraction oracle with probability ε. There exists another algorithm C that runs
AI as subroutine and breaks a random instance of the CDH problem (P, aP, bP )
with probability ε′ where: ε′ > 1

qH3

(
2ε

e(qsk+1) − qH2
2n − qD(qH2+1)

2n − 2qD

p

)
.

Proof. Our proof technique is similar to the one in [3]. C simulates the real
environment for AI . It knows the t secret values v′

is in the scheme, and tries to
embed a random instance of the CDH problem (P, aP, bP ). C sets aP as a part
of the target user’s (ID∗) public key (i.e., QID∗ ← aP ) and bP as a part of the
challenge ciphertext (i.e., R∗ ← bP ). C uses four lists, namely ListH1 , ListH2 ,
ListH3 , and ListH4 , to keep track of the random oracle responses and following
the IND-CLE-CCA experiment ExptIND-CLE-CCA

A (Definition 7), C responds to
AI queries as follows.
Queries to H1(IDi, Qi): If the entry (〈IDi, Qi〉, h1,i) exists in ListH1 , C returns

h1,i, otherwise, it chooses h1,i
$← γ, and inserts (〈IDi, Qi〉, h1,i) in ListH1 .

Queries to H2(σi,mi): If the entry (〈σi,mi〉, h2,i) exists in ListH2 , C returns h2,i,

otherwise, it chooses h2,i
$← Zq, and inserts (〈σi,mi〉, h2,i) in ListH2 .

Queries to H3(Ki): If the entry (Ki, h3,i) exists in ListH3 , C returns h3,i, other-

wise, it chooses h3,i
$← {0, 1}n, and inserts (Ki, h3,i) in ListH3 .

Queries to H4(σi): If the entry (σi, h4,i) exists in ListH4 , C returns h4,i, otherwise,

it chooses h4,i
$← {0, 1}n, and inserts (σi, h4,i) in ListH4 .

Public key request : Upon receiving a public key request on IDi, C works as
follows. If (〈IDi, Ui, Qi〉, ζi) exists in ListPK , then it returns (IDi, Ui, Qi). Else,
it flips a fair coin where Pr[ζ = 0] = δ, and works as follows (δ will be determined
later in the proof). If ζ = 0, it runs the partial key extraction oracle below first,



Compatible Certificateless and Identity-Based Cryptosystems for IoT 49

update ListPK and then output (IDi, Ui, Qi). If ζ = 1, pick t
$← Zq, set Qi ←

aP mod p, adds (IDi, Ui, 〈⊥, Qi〉) to ListPartialSK and adds (〈IDi, Ui, Qi〉, ζi)
to ListPK , before outputting (IDi, Ui, Qi).

Partial Key Extraction: Upon receiving a partial key extraction query on
(IDi, Ui), C works as follow:

– If (IDi, Ui, 〈wi, Qi〉) ∈ ListPartialSK, return (wi, Qi).
– Else,

• wi
$← Zq, Zi ← wiP mod p, (j1, . . . , jk)

$← [1, . . . , t], Qi ← Zi −
∑k

i=1 Vji
+ Ui mod p.

• If (IDi, Qi, . . . ) ∈ ListH1 , aborts. Else, adds (〈IDi, Qi〉, h1,i) to ListH1 ,
where h1,i ← (j1, . . . , jk) and output the partial private key as (wi, Ui, Qi)
after adding it to ListPartialSK.

Secret Key Request: Upon receiving a secret key request on IDi, C checks if
there exists a pair (IDi, ui, Ui) ∈ ListSecretKey, it returns ui. Otherwise, selects

ui
$← Zq, computes Ui ← uiP mod p and inserts (IDi, ui, Ui) in ListSecretKey.

Private Key Request: To answer a private key request on (IDi, Ui), C runs the
public key request oracle above to get (〈IDi, Ui, Qi〉, ζi) ∈ ListPK and finds
(IDi, ui, Ui) in ListSecretKey . If ζ = 0, finds ((IDi, Ui, 〈wi, Qi〉) ∈ ListPartialSK
and returns wi + ui as the response. Otherwise, it aborts.

Decryption Query: Upon receiving a decryption query on (IDi, Qi, ci =
〈Ri, ui, vi〉), C works as follows.

– Searches ListPK for an entry (〈IDi, Ui, Qi〉, ζi). If ζ = 0, works as follows.
• Searches ListPartialSK for a tuple (IDi, Ui, 〈wi, Qi〉) and searches for

(ID, 〈w,Q〉) in ListPartialSK, set σ′ ← H3((w + α)R mod p) ⊕ u, m′ =
v ⊕ H4(σ′), r′ := H2(σ′,m).

• Checks if R = r′P mod p holds, outputs m′
– Else, if ζ = 1, works as follows.

• Runs the oracle for H1 to get h1,i (to compute the public key Yi) and
checks lists ListH2 , ListH3and ListH4 for tuples (〈σi,mi〉, h2,i), (Ki, h3,i),
and (σi, h4,i), such that Ri = h2,iP mod p, u = h3,i ⊕σi and v = h4,i ⊕mi

exists. Checks if Ki = ri(Yi + Qi) holds, outputs mi, else, aborts.

After the first round of queries, AI outputs ID∗ and two messages m0 and
m1 on which it wishes to be challenged on. We assume that ID∗ has been
already queried to H1 and was not submitted to the private key request oracle.
C checks (〈ID∗, U∗, Q∗〉, ζ) ∈ ListPK if ζ = 0, it aborts. Otherwise, it computes
the challenge ciphertext as follows. β∗ $← {0, 1}, σ∗ $← {0, 1}∗, u∗ ← {0, 1}n,
b

$← {0, 1}. R∗ ← aP (this implicitly implies that a = H2(σ∗,mb)), H3(KID∗) ←
u∗ ⊕ σ∗ and v∗ ← H4(σ∗) ⊕ mb. Return (R∗, u∗, v∗).

AI initiates the second round of queries similar as above, with the restrictions
defined in Definition 5. When AI outputs its decision bit b′, C returns a set
Λ = {Ki − Ryi

i ,where Kis are the input queries to H3}.
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Notice that if Cdoes not abort, and AI outputs its decision bit b′, then the
public key must have the QID∗ = aP , and given how the challenge ciphertext
is formed (e.g., R∗ = bP ), KID∗ = yID∗abP should hold, where yID∗ is known
to C. Hence, the answer to a random instance of the CDH problem (P, aP, bP ),
can be derived from examining the AI ’s choice of public key and H3 queries.

Here, we provide an indistinguishability argument for the above simulation.
First we look at the simulation of the decryption algorithm. If ζ = 0, we can
see that the simulation is perfect. For ζ = 1, an error might occur in the event
that ci is valid, but (σi,mi), Ki, and σi were never queried to H2, H3, and H4,
respectively. For the first two hash functions, the probability that the ci is valid,
given a query to H3 was never made, considers the query to H2 as well (not
considering the checking phase in the simulation). Therefore, the probability
that this could occur is qH2

2n + 1
p . When considering H4, this probability is 1

2n + 1
p .

Given the number of decryption queries qD, we have the probability of decryption
error qD(qH2+1)

2n + 2qD

p .
C will also fail in simulation during the partial key extraction queries if the

entry (IDi, Qi, . . . ) already exists in ListH1 . This will happen with probability
qH1
2γ .

The probability that C does not abort in the simulation is δqsk (1 − δ) which
is maximized at δ = 1 − 1

qsk+1 . Therefore, the probability that C does not abort
is 1

e(qsk+1) , where e is the base of natural logarithm. Given the argument above,
we know that if (σ∗,mb), (K∗) were never queried to H2 and H3 oracles, then
AI cannot gain any distinguishing advantage more than 1

2 . Given all the above
arguments, the probability that KID∗ has been queried to H3 is ≥ 2ε

e(qsk+1) −
qH2
2n − qD(qH2+1)

2n − 2qD

p .
Therefore, if the above probability occurs, C can solve the CDH problem

by finding and computing KID∗ = yID∗abP from the list Λ. Given the size of
the list Λ (i.e., qH3), the probability for Cto be successful in solving CDH is:
ε′ > 1

qH3

(
2ε

e(qsk+1) − qH2
2n − qD(qH2+1)

2n − 2qD

p

)
.

Theorem 2. If an adversary AII can break the IND-CLE-CCA security of the
encryption scheme proposed in Algorithm 3 after qHi

queries to random oracles
Hi for i ∈ {1, 2, 3, 4}, qD queries to the decryption oracle and qsk to the secret key
extraction oracle with probability ε. There exists another algorithm C that runs
AII as subroutine and breaks a random instance of the CDH problem (P, aP, bP )
with probability ε′ where: ε′ > 1

qH3

(
2ε

e(qsk+1) − qH2
2n − qD(qH2+1)

2n − 2qD

p

)
.

Proof (Sketch). Having access to random oracles, and by keeping lists similar
to above, the challenger C can simulate an indistinguishable environment for
AII and respond to its queries similar to the above proof. Note that following
Definition 7, AII can query for the secret key of all the users, except for the
target user ID∗.

C knows the t private values v′
is in the scheme, and tries to embed a random

instance of the CDH problem (P, aP, bP ). By flipping a fair coin, as in the public
key request query above, C defines the probability to embed aP in the target
UID∗ value. C sets bP as a part of the challenge ciphertext (i.e., R∗ ← bP ).
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After the AIIoutputs a forgery, C can extract the solution to the CDH prob-
lem since it has knowledge over the t secret values and β∗.

Lemma 1. A public key replacement attack by AI is not practical since it will
falsify the private key.

Proof. Note that if AI replaces U with a new value U ′ (which it might know the
corresponding secret key), then the existing Q will be falsified since Q = U +W
and this will also falsify the current partial private key component y since it is
computed based on the indexes that are obtained by computing H1(ID,Q). Also
note that, if AI can obtain the original (α,U), given Q is public, it can compute
W , however, W is merely the commitment of β and it does not disclose any
information about β. The public key replacement attack in our security proof is
possible if AI requests a new partial private key for each new U ′ .

Lemma 2. If an adversary AI can break the EU-CMA security of the signature
scheme proposed in Algorithm 4 , then one can build another algorithm Cthat
runs AI as subroutine and breaks a random instance of the ECDLP (P, aP ).

Proof. Due to the space constraint, here we give the high level idea of our proof.
We let AIbe as in Definition 8, then we can build another algorithm C that uses
AIas a subroutine, and upon AI ’s successful forgery, solves a random instance of
the ECDLP (P, aP ). C knows the t secret values vi’s and, similar to the proof of
Theorem 1, it sets aP as a part of the target user’s public key (i.e., QID∗ ← aP ).
Most of the simulation steps are like the ones in the proof of Theorem 1. At the
end of the simulation phase, AIoutputs a forgery signature (s∗

1, e
∗
1), the proof

then uses the forking lemma [22] to run the adversary again to obtain a second
forgery (s∗

2, e
∗
2), using the same random tape. Our proof will follow the same

approach as in [15] which is very similar to the proof in [24]. Given two forgeries
and the knowledge of C on the v′

is and α∗
ID, C can compute a and solve the

ECDLP. Note that similar to Schnorr [24] the security of the scheme will be
non-tight due to the forking lemma.

Parameters Selection for (t, k). Parameters (t, k) should be selected such
that the probability qH1 ·k!

2γ is negligible. Considering that γ = k log2 t (since k
indexes that are log2 t-bit long are selected with the hash output), this gives us
qH1 ·k!
2k|t| . We further elaborate on some choices of (t, k) along with their performance
implications in Sect. 6.

6 Performance Analysis and Comparison

We first present the analytical and then experimental performance analysis and
comparison of our schemes with their counterparts. We focus on the online oper-
ations (e.g., encryption, signing, key exchange) for which both our IDB and CL
schemes have the same algorithms, rather than one-time (offline) processes like
setup and key generation. Since the online operations are identical in IDB and
CL systems in our case, we refer to them as “Our Schemes” in the following
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Table 1. Analytical comparison of public key encryption schemes

Scheme sk Enc Comm. Dec PK mpk System
Type

κ†

ECIES [26] |q| 2 mEC + dmEC 2|p| + b + d + CF mEC |p| – TD 128

BF [9] |p| bp + mEC + ex |p| + b + |M| bp + mEC |p| |p| IB 80

AP [1] |p| 3 bp + mEC + ex |p| + b + |M| bp + mEC 2|p| |p| CL 80

BSS [3] 2 |q| 4 ex + m |p| + b + |M| 3 ex 2|p| |p| CL 128

WSB [29] |p| + |q| 3 mEC + 2 aEC 2|q| + |c| 2 mEC 2|p| |p| CL 128

Our Schemes |p| 2 mEC + k aEC |p| + b + |M| 2 mEC |p| t |p| IB/CL 128
†Denotes the security bit. Enc, Dec, and Comm. represent encryption, decryption, and commu-
nication load (bi-directional), respectively. mEC , aEC , and dmEC denote the costs of EC scalar
multiplication, EC addition, and double scalar multiplication over modulus p, respectively. m, ex and
bp denote multiplication, exponentiation and pairing operation, respectively. k is the BPV parame-
ter that shows how many precomputed pairs are selected in the online phase. b, d and CF denote
block/key size for symmetric key encryption, message digest (i.e., MAC) size and size of the certifi-
cate, respectively. M denotes message space size. TD, IDB, and CL represent traditional public key
cryptography, identity-based cryptography, and certificateless cryptography, respectively.

Table 2. Analytical comparison of digital signature schemes

Scheme sk Sign Comm. Verify PK mpk System
Type

κ

Schnorr [24] |q| mEC 2|q| + CF 2dmEC |p| – TD 128
GG [15] |q| mEC 2|p| + |q| 2 dmEC |p| |p| IDB 128
AP [1] |p| 2mEC + aEC + bp |q| + |p| 4 bp + ex 2|p| |p| CL 80
KIB [18] |q| mEC |q| + |p| 3mEC 3 |p| 2 |p| CL 128
Our Schemes |q| mEC 2|q| dmEC + k aEC |p| t |p| IDB/CL128

tables/discussions. We consider the cost of certificate verification for schemes in
traditional PKI. We only consider the cost of verifying and communicating the
cost of one certificate, which is highly conservative since in practice (i.e., X.509)
there are at minimum two certificates in a certificate chain. This number could
be as high as ten certificates in some scenarios.

Analytical Performance Analysis and Comparison We present a detailed
analytical performance comparison of our schemes with their counterparts
for public key encryption/decryption, digital signature and key exchange in
Table 1, Table 2 and Table 3, respectively.

Our schemes have significantly lower communication overhead than their
PKI-based counterpart in all cryptosystems as they do not require the trans-
mission of certificates. As discussed above and also elaborated in Sect. 6, this
translates into substantial bandwidth gain as well as computational efficiency
since the certification verification overhead is also lifted. Moreover, in almost
all instances, our schemes also offer a lower end-to-end computational overhead
compared to their PKI-based counterparts. Our schemes also offer a lower end-
to-end computational delay than that of all of their IDB and CL counterparts
in all cryptosystems, with generally equal private and public key sizes. However,
the master public key size of our scheme is larger than all of their counterparts.
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Table 3. Analytical comparison of key exchange schemes

Scheme sk User Comp. Comm. PK mpkSystem
Type

Ephemeral ECDH [13]|q| 2mEC 2|p| + CF |p| – TD
ECHMQV [19] |q| 3mEC 2|p| + CF |p| – TD
TFNS [28] |p| bp + 5mEC |p| |p| |p| IDB
AP [1] |p| 4 bp + ex 3|p| 2|p| |p| CL
YT [30] 2|q| + |p| + |s|†3 dmEC + 5mEC 3|p| + |s| 2|p| + |s|2 |p| CL
Our Scheme |q| 3mEC + (k + 1) aEC 2|p| |p| t |p| IDB/CL
User Comp. denotes user computation.
†|s| denotes the output of a signature scheme that the authors in [30] use in their scheme

Table 4. Public key encryption schemes on commodity hardware

Scheme sk Enc Comm. Dec PK mpk E2E Delay

ECIES [26] 32 55 690† + |M | 21 32 – 76

BF [9] 32 ≈2000 48 + |M | ≈2000 32 32 ≈4000
AP [1] 32 ≈6000 48 + |M | ≈2000 64 32 ≈8000
BSS [3] 64 73 64 + |M | 53 64 32 126

WSB [29] 64 53 64 + |M | 41 64 32 94

Our Schemes 32 39 48 + |M | 33 32 32K 72

All sizes are in Bytes, and all computations are in microseconds.
†We assume the certificate size is 578 Bytes, the size is given in RFC 5280
[11].

Table 5. Digital signature schemes on commodity hardware

Scheme sk Sign Comm. Verify PK mpk E2E Delay

Schnorr [24] 32 12 642 44 32 – 56

GG [15] 32 12 96 44 32 32 56

AP [1] 32 ≈2000 64 ≈8000 64 32 ≈10000
KIB [18] 32 20 64 61 96 64 81

Our Schemes 32 12 64 27 32 32K 39

All sizes are in Bytes, and all computations are in microseconds.

Experimental Performance Analysis and Comparison: We now further
elaborate on the details of our performance analysis and comparison with exper-
imental results. We conduct experiments on both commodity hardware and low-
end embedded devices that are typically found in IoT systems to objectively
assess the performance of our schemes as well as their counterparts. Our open-
sourced implementation is available via the following link.

https://github.com/Rbehnia/CertFreeSystems

https://github.com/Rbehnia/CertFreeSystems
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Table 6. Key exchange schemes on commodity hardware

Scheme sk User Comp. Comm. PK mpk E2E Delay

Ephemeral ECDH [13] 32 55 642 32 – 110

ECHMQV [19] 32 74 642 32 – 148

TFNS [28] 32 ≈2000 32 32 32 ≈4000
AP [1] 32 ≈8000 96 64 32 ≈16000
YT† [30] 160 157 160 128 64 314

Our Scheme 32 57 64 32 32K 114

All sizes are in Bytes, and all computations are in microseconds.
†The signature size is considered as 64 bytes.

Table 7. Public key encryption schemes on 8-bit AVR processor

Scheme sk Enc Comm. Dec PK mpk

ECIES [26] 32 17 950 967 610 + |c| 6 875 861 32 –
BF [9] 32 60 802 555 48 + |c| 56 278 012 32 32
AP [1] 32 166 213 087 48 + |c| 58 912 609 64 32
BSS [3] 64 22 791 835 64 + |M | 16 590 321 64 32
WSB [29] 64 17 091 636 64 + |c| 13 631 755 64 32
Our Schemes 32 11 789 632 48 + |c| 9 883 161 32 32K
All sizes are in Bytes, and all computations are in CPU Cycles.

• Experiments on Commodity Hardware: We used an i7 Skylake laptop equipped
with a 2.6GHz CPU and 12GB RAM in our experiments. We implemented our
schemes on the FourQ curve [12] which offers fast elliptic curve operations for κ =
128-bit security. We instantiated our random oracles with blake2 hash function3,
which offers high efficiency and security. For our parameters, we selected k = 18
and t = 1024. We conservatively estimated the costs of our counterparts based
on the microbenchmarks on our evaluation setup of (i) FourQ curve for schemes
that do not require pairing and (ii) PBC library4 on a curve with κ = 80-bit
security (we used the most efficient alternative for them) for schemes that require
pairing.

As depicted in Table 4, the encryption and decryption algorithms of our
schemes are more efficient than their counterparts in the identity-based and
certificateless settings. More specifically, the end-to-end delay of our schemes is
≈25% lower than that in [29], which is specifically suitable for aerial drones. One
could also notice how the communication overhead is lower in certificateless and
identity-based schemes since there is no need for certificate transmission.

As shown in Table 5, our schemes enjoy from the fastest verification algo-
rithms among all its counterparts. This is again due to the novel way the user

3 http://131002.net/blake/blake.pdf.
4 https://crypto.stanford.edu/pbc/.

http://131002.net/blake/blake.pdf
https://crypto.stanford.edu/pbc/
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Table 8. Digital signature schemes on 8-bit AVR processor

Scheme sk Sign Comm. Verify PK mpk

Schnorr [24] 32 4 263 298 642 17 902 958 32 –
GG [15] 32 4 263 298 96 17 902 958 32 32
AP [1] 32 62 487 032 64 221 226 015 64 32
KIB [18] 32 7 025 861 64 20 617 583 96 64
Our Schemes 32 4 263 298 64 10 955 369 32 32K
All sizes are in Bytes, and all computations are in CPU Cycles.

keys are derived and results in 30% and 52% faster end-to-end delay as com-
pared to its most efficient identity-based [15] and certificateless [18] counterparts,
respectively. One may notice that although schemes in [15,18,24], along with
our schemes, all require a scalar multiplication in their signature generation (see
Table 2), their experimental costs differ. The reason for this discrepancy is the
fact that the cost of scalar multiplication over the generator P is faster than the
scalar multiplication over any curve points, and these differences are considered
in the experimental evaluations.

As shown in Table 6, our schemes’ performance is similar to that in their
counterparts in traditional PKI setting [13,19]. However, they outperform the
most efficient counterpart in certificateless setting [30] by having 65% lower end-
to-end delay and 60% smaller load for communication.

• Experiments on Low-End Device: We used an 8-bit AVR ATmega 2560 micro-
processor to evaluate the costs of our schemes on an IoT device. AVR ATmega
2560 is a low-power microprocessor with 256KB flash, 8 KB SRAM, 4 KB EEP-
ROM, and operates at 16MHz frequency. We used the 8-bit AVR library of the
FourQ curve presented in [20]. For our counterparts, we again conservatively
estimated their costs based on microbenchmarks in (i) FourQ curve 8-bit AVR
implementation [20], and (ii) NanoECC [27], that implements a curve that sup-
ports pairings on 8-bit AVR microprocessors and offers κ = 80-bit security.

As depicted in Table 7, our schemes outperform all of their identity-based
and certificateless counterparts and have a more efficient encryption algorithm
than [26]. Our decryption algorithms, while being more efficient than all of their
identity-based and certificateless counterparts, are slightly less efficient than the
one in [26]. Similar to the trend in the analytical performance, our signature
schemes outperform their counterparts. As Table 8 shows, our schemes’ signing
algorithm are amongst the most efficient ones, while the verification algorithm
outperforms all the counterparts with similar communication overhead.

Limitations: The main limitation of our schemes is the size of the master
public key. Note that if there are different TTP in different domains and users
often communicate with the users in those domains, it would make sense to
store different mpk. Otherwise, the users only need to store mpk for their own
systems. We can reduce the size of the mpk in exchange for a small performance
loss. For instance, with k = 32, we can reduce the size of the mpk by four times.
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7 Related Work

There is a comprehensive literature covering different aspects of IDB and CL
systems. Remark that most of the closely related works have been discussed in
Sect. 3 and 5 in terms of security models and performance metrics. Overall, the
main difference in our work is to focus on the achievement of inter-compatibility
between IDB and CL with a high efficiency, with respect to existing alternatives.

The idea of IDB cryptography was proposed by Shamir [25]. However, the
first practical instance of such schemes was proposed later by Boneh and Franklin
[9] using bilinear pairing. To get the full adaptive-identity, chosen-ciphertext
security guarantees without sacrificing performance, Boyen [10] described an aug-
mented versions of the scheme in [8] in the random-oracle model. However, the
augmented version also requires multiple pairing computations in the decryption
algorithm. Following [7], several pairing-free signature scheme were proposed.
Galindo and Garcia [15] proposed a lightweight IDB signature scheme based on
[24] with reduction to the discrete logarithm problem (Table 9).

Table 9. Key exchange schemes on 8-bit AVR processor

Scheme sk User Comp. Comm. PK mpk

Ephemeral ECDH [13] 32 18 039 710 642 32 –
ECHMQV [19] 32 24 601 857 642 32 –
TFNS [28] 32 82 356 781 32 32 32
AP [1] 32 221 226 015 96 64 32
YT [30] 160 54 212 824 160 128 64
Our Scheme 32 18 015 493 64 32 32K
All sizes are in Bytes, and all computations are in CPU Cycles.

CL cryptography [1] was proposed to address the private key escrow problem
in IDB systems. In the same paper, the authors proposed an IND-CCA encryp-
tion scheme along with a signature and key exchange schemes. Following their
work, Baek et al. [3] proposed the first IND-CCA secure certificateless encryption
scheme without pairing. The scheme is constructed using Schnorr-like signatures
in partial private key generation algorithm. Recently Won et al. [29] proposed
another efficient IND-CCA encryption scheme that is specifically used for key
encapsulation mechanisms. There has been a number of works that focus on the
security models of certificateless systems. In most of the proposed models (e.g.,
[1]) a Type-II adversary is assumed to generate the keys honestly, and initiate
the attacks only after the setup phase.

Acknowledgments. This work is supported by the Department of Energy Award
DE-OE0000780 and NSF Award #1652389.
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Abstract. Secure multiparty computation (MPC) is a cryptographic
technique that enables us to evaluate a predetermined function over play-
ers’ private inputs while hiding information about the inputs. MPC can
be conducted using a “private PEZ protocol,” that uses PEZ candies and
a dispenser. Specifically, in a private PEZ protocol, players first fill a pre-
determined sequence of candies in a dispenser. Then, each player in turn
privately pops out a number of candies, wherein the number depends on
their private input (without anybody else knowing how many candies
pop out). The next candy to be popped out of the dispenser indicates
the output value of the function. Thus, private PEZ protocols are fun
and useful. One drawback would be that every player must pop out can-
dies from the dispenser secretly, implying that a private PEZ protocol is
vulnerable to dishonest players, for example, a player could peep the can-
dies inside the dispenser. To overcome this drawback, we herein propose
MPC protocols that do not need private actions such as secretly popping
out candies after the setup (although each player rearranges the candies
secretly in a setup phase, any illegal actions can be caught). That is, we
construct a computational model of “public-PEZ cryptography,” where
any protocol within the model can be publicly executed. Especially, the
proposed public-PEZ AND protocol, which uses only five candies and
two dispensers, is simple and easy for conducting a secure computation
of the AND function.

Keywords: Secure multiparty computations · Recreational
cryptography · Private PEZ protocols · Card-based cryptography

1 Introduction

1.1 Background

Secure multiparty computation (MPC) is a cryptographic technique for evalu-
ating a predetermined function over players’ private inputs while hiding infor-
mation about the inputs. Interestingly, MPC can be performed using not only
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Fig. 1. PEZ candies, packages, and a
dispenser.

Fig. 2. A deck of cards.

computers but also everyday objects. Some examples are private PEZ protocols
using PEZ candies and a dispenser (as shown in Fig. 1) and card-based protocols
using a deck of physical cards (as shown in Fig. 2). Using such physical crypto-
graphic protocols, we can visually understand what MPC is and how secure the
protocols are. Thus, they attract not only cryptographers but also non-experts,
such as high school students, and they can be effectively used as educational
tools.

Private PEZ protocols were first introduced in 2003 by Balogh et al. [2],
and their results were improved recently by Abe et al. [1] in 2019. In a private
PEZ protocol, players first fill in a dispenser with a predetermined sequence of
candies whose order depends on the function that they want to securely compute.
Subsequently, each player privately pops out a number of candies such that the
number depends on their private input. Finally, the remaining topmost candy
left in the dispenser becomes the output of the function. Thus, private PEZ
protocols are fun and useful. One drawback is that every player must take out
candies from the dispenser secretly, implying that a private PEZ protocol is
vulnerable to dishonest players. For example, when a player pops out candies
secretly, they could maliciously peep the candies inside the dispenser or replace
them with another sequence of candies as per their preference.

1.2 Contributions

In this paper, to overcome the drawback of the above-mentioned private PEZ
protocols, which require players’ private actions, we consider a new usage of
PEZ candies and dispensers by borrowing the ideas behind card-based protocols.
That is, we design novel PEZ protocols that can be publicly executed. Specif-
ically, we first propose a secure AND protocol using five PEZ candies and two
dispensers; it allows Alice and Bob to compute the AND value of their private
inputs without revealing them. Carrying the idea behind this protocol further,
we construct a computational model of public-PEZ cryptography. Following this
model, we present the formal description of our AND protocol. We also discuss
some implementation issues.
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1.3 Related Work

As mentioned above, we borrow the ideas and techniques from card-based pro-
tocols. The first card-based protocol was proposed by den Boer [3] in 1989; his
famous protocol called the “five-card trick” performs a secure computation of
the AND function. Our constructions are inspired by the card-based AND pro-
tocols [16,21] that use a shuffling operation called a “random bisection cut.”
In card-based protocols, all players first place a pair of cards face-down on a
table whose order depends on their private input. Subsequently, they perform
MPC by publicly shuffling and turning over the sequence of cards to obtain
the output. A formal computational model of card-based protocols was pre-
sented (and was then reviewed) in the literature [11,19,20,31]. Based on the
computational model, Koch et al. [11], Francis et al. [7], Kastner et al. [9], and
Koch et al. [10] provided tight lower bounds on the number of required cards.
In addition to simple MPCs, there are card-based protocols for zero-knowledge
proof [4,6,12,15,28,29] and secure comparison [13,14,30]. Furthermore, there
is another direction of card-based cryptography that relies on private actions
[24–27,33]. Protocols using other everyday objects have been proposed, such as
those using a dial lock [17], the 15-puzzle [18], envelopes [8], tamper-evident
seals [23], and a visual secret sharing scheme [5].

1.4 Outline

The remainder of this paper is organized as follows. In Sect. 2, we present a simple
and easy-to-implement AND protocol using five PEZ candies and two dispensers.
In Sect. 3, we define each operation appearing in public-PEZ protocols and
obtain a computational model. In Sect. 4, we formally describe the AND protocol
introduced in Sect. 2 based on the model shown in Sect. 3. In Sect. 5, we discuss
the feasibility of implementing the shuffling operations of public-PEZ protocols.
The concluding statements are presented in Sect. 6.

2 Public-PEZ AND Protocol

In this section, we present a simple and easy-to-implement AND protocol using
five PEZ candies and two dispensers.

Assume that Alice and Bob hold private input bits a ∈ {0, 1} and b ∈ {0, 1},
respectively. They want to learn a∧b, namely the AND value of their inputs, with-
out revealing the input values more than necessary. They only require two packages
of PEZ candies (of different flavors) and two identical dispensers1. We assume that
all candies are indistinguishable in terms of appearance, i.e., they have the same
color and shape; thePEZcandies sold in Japan satisfy this condition, i.e., the lemon
and orange candies appear identical, as shown in Fig. 3. We also assume that one
cannot distinguish two candies of different flavors by their smells2.
1 Two identical dispensers can be easily obtained by buying two sets of the same product.
2 This holds true at least for the authors’ sense of smell.
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Fig. 3. The PEZ candies sold in Japan; the lemon and orange candies are all white
and indistinguishable.

Fig. 4. How to prepare two candies of different flavors on Alice’s palm.

Let us consider how a Boolean value can be encoded by a flavor of the candy:
Let the lemon flavor be denoted by 0, and let the orange flavor be denoted by 1.
As shown in Fig. 3, candies with the same flavor are packed in the same package.
Let Alice take a lemon candy and an orange candy from the packages publicly
and place the two candies with different flavors on her palm, as shown in Fig. 4.
Next, let Alice arrange the two candies inside her hand (without Bob knowing
their order), as shown in Fig. 5, according to her input bit a ∈ {0, 1}, as follows.
If a = 0, she rearranges the two candies in the order of lemon, and then, orange,
i.e., 0 to 1; otherwise, in the order of orange to lemon, i.e., 1 to 0. Subsequently,
she takes the two candies from her palm and places them on the table so that
the order satisfies

PEZ

︸︷︷︸

a

PEZ

︸︷︷︸

a

,
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Fig. 5. Rearrange the two candies in Alice’s hand without Bob knowing its order.

Fig. 6. Place the candies (whose order matches Alice’s private bit) on the table without
Bob knowing the order.

as shown in Fig. 6. In this manner, Alice can prepare two candies (of different
flavors) corresponding to her private bit a ∈ {0, 1} and its negation a without
Bob knowing its value. Note that Alice and Bob face each other, and Bob watches
Alice’s behavior during the entire process. Therefore, Alice has no choice but to
place two candies of different flavors on the table; if Alice acts maliciously, such
an illegal action will be always identified.

We are now ready to present our protocol; it is based on the idea behind the
card-based AND protocol proposed in [16]. Our protocol proceeds as follows.

1. As described above, Alice prepares two candies corresponding to a and a.
Similarly, Bob prepares two candies that correspond to b and b. A sequence
of candies is arranged on a table as follows:

PEZ

︸︷︷︸

a

PEZ

︸︷︷︸

a

PEZ

︸︷︷︸

b

PEZ

︸︷︷︸

b

.
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Remember that the candies are indistinguishable from each other; for exam-
ple, Alice does not know how the third candy tastes (unless she bites it to
confirm its flavor).

2. Alice replaces the candy corresponding to a with a candy corresponding to 0,
i.e., she discards (or eats) the candy corresponding to a and places a candy
there corresponding to 0, which is taken from the lemon package:

PEZ

︸︷︷︸

a

PEZ

︸︷︷︸

0

PEZ

︸︷︷︸

b

PEZ

︸︷︷︸

b

.

3. Alice and Bob fill the four candies into two identical dispensers as follows.

4. Shuffle the two dispensers. The resulting state can be described as follows.

Here, r ∈ {0, 1} is a uniformly distributed random bit, and α and β are
defined as follows: if r = 0, (α, β) = (a, 0); if r = 1, (α, β) = (0, a). That
is, r = 0 indicates that the shuffle has not swapped the two dispensers, and
r = 1 means that the shuffle has swapped them. Moreover, if b ⊕ r = 0, we
have a ∧ b = a ∧ r = β because a ∧ 0 = 0 and a ∧ 1 = a; if b ⊕ r = 1, we have
a ∧ b = a ∧ r = α because a ∧ 0 = a and a ∧ 1 = 0.

5. Pop out the candy from each dispenser and then bite them3. If the candy
b ⊕ r popped out of the top dispenser corresponds to 0, the candy remaining
in the bottom dispenser β represents the output a ∧ b; if b ⊕ r corresponds to
1, the candy remaining in the top dispenser α represents the output a ∧ b.

This is our AND protocol, using five candies and two dispensers along with one
shuffle. Note that the shuffle and popping out candies can be done publicly.
It should be also noted that in Step 1, hidden operations shown in Fig. 5 are
required to prepare players’ private inputs; this is inevitable for MPC and, as
mentioned before, both players cannot place any pair of candies that deviates
from the encoding rule.
3 Alice and Bob may want to bite the candy simultaneously after splitting it for the

purpose of preventing anyone from lying about the flavor.
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After Step 5, the players obtain a candy corresponding to a ∧ b:

PEZ

︸︷︷︸

a∧b

.

If they bite it, they can know the value of a ∧ b. Instead, this candy can be
used as an input to another computation: that is, if Carol prepares two candies
according to her private bit c ∈ {0, 1}, starting the AND protocol again with

PEZ

︸︷︷︸

a∧b

PEZ

︸︷︷︸

0

PEZ

︸︷︷︸

c

PEZ

︸︷︷︸

c

generates a candy corresponding to a ∧ b ∧ c:

PEZ

︸︷︷︸

a∧b∧c

.

Thus, a secure AND computation of more than two inputs can be easily per-
formed.

3 Formalizing Public-PEZ Protocols

In this section, by elaborating the idea behind our AND protocol shown in
Sect. 2, we formally define each operation on PEZ candies and dispensers and
provide a computational model of public-PEZ protocols that publicly perform
MPC using PEZ candies and dispensers. We borrow the ideas and terms from
the computational model of card-based protocols [19].

3.1 Sequence of Candies

There are various flavors of PEZ candies, such as lemon and orange; however, as
assumed before, all candies have the same appearance so that they are indistin-
guishable (unless they are eaten). Considering all available candies, we denote
the multiset of them by B, which we call a box. Any element c ∈ B represents
a flavor, such as c ∈ [lemon, lemon, orange, orange, grape, · · · ]. For simplicity,
hereinafter, we consider only two flavors and denote them by 0 or 1. Therefore,
for instance, the AND protocol presented in Sect. 2 works on the box

B = [ 0, 0, 0, 1, 1 ] = [ 3 · 0, 2 · 1 ]

because it uses three lemon candies and two orange candies. Generally, if a
protocol requires k candies corresponding to 0 and � candies corresponding to 1,
the box is expressed as

B = [ k · 0, � · 1 ].
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Next, we consider a “sequence” of candies. When a player takes a candy
from a package, its flavor is publicly known. For instance, if there are three
lemon candies and two orange candies taken from the packages, the order of
which is

PEZ

︸︷︷︸

0

PEZ

︸︷︷︸

1

PEZ

︸︷︷︸

0

PEZ

︸︷︷︸

1

PEZ

︸︷︷︸

0

,

we write this sequence as (0, 1, 0, 1, 0). Given such a sequence (0, 1, 0, 1, 0), let
both Alice and Bob (holding input bits a and b, respectively) rearrange two
candies inside their hand as in the AND protocol, shown in Sect. 2; then, we
have

PEZ

︸︷︷︸

a

PEZ

︸︷︷︸

a

PEZ

︸︷︷︸

b

PEZ

︸︷︷︸

b

PEZ

︸︷︷︸

0

,

where the flavors of the left-most four candies become publicly unknown. If the
flavor of candy c ∈ B is unknown to the public, we denote it by ?

c . Therefore,
for example, when a = 1 and b = 0, the sequence above can be written as

(

?
1
,
?
0
,
?
0
,
?
1
, 0

)

.

Now, consider a situation where players eat the first candy; then, the flavor,
1, becomes public while the candy has disappeared. We use expression c

ε with
c ∈ B to represent a candy whose flavor is known to the public, but the candy
itself does not exist. Therefore, the resulting sequence (from eating the left-most
candy) can be written as

(

1
ε
,
?
0
,
?
0
,
?
1
, 0

)

.

For c ∈ B, we define atom(c) = atom( ?c ) = atom( c
ε ) = c. For example,

atom(1) = 1, atom( ?0 ) = 0, and atom( 1ε ) = 1. For the box B with |B| = m, we
call Γ = (α1, α2, . . . , αm) a sequence from the box B if αi ∈ {0, 1, ?

0 , ?
1 , 0

ε , 1
ε } for

every i, 1 ≤ i ≤ m, and [atom(α1), atom(α2), . . . , atom(αm)] = B.
We define the set of all sequences from B as SeqB:

SeqB = {Γ |Γ is a sequence from B}.

3.2 Action

Next, we define four actions appearing in public-PEZ protocols. Assume that we
have a sequence Γ = (α1, α2, . . . , αm).
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Suppose that players want to check the flavors of some candies ?
c . In this

case, the players must bite them to determine their flavor, and the eaten candies
will disappear. We denote this action by (bite, T ) for a set T ⊆ {1, 2, . . . ,m}
such that αi = ?

0 or ?
1 for every i ∈ T , where every candy in T is eaten and

disappears. That is, the resulting sequence becomes (β1, β2, . . . , βm) such that

βi =

{

atom(αi)
ε if i ∈ T

αi otherwise

for every i, 1 ≤ i ≤ m. For instance, for a sequence ( ?1 , ?
0 , ?

1 , ?
1 , ?

0 ), applying
(bite, T ) with a set T = {1, 3, 5} results in (1ε , ?

0 , 1
ε , ?

1 , 0
ε ).

Suppose that players want to rearrange the order of sequence Γ . We
denote this action by (permute, π) for a permutation π ∈ Sm, where Sm is
the symmetric group of degree m. That is, the resulting sequence becomes
(απ−1(1), απ−1(2), . . . , απ−1(m)).

Suppose that players want to perform a shuffling action such as shuffling the
two dispensers, seen in Sect. 2. We denote this type of action by (shuffle,Π,F)
for a subset Π ⊆ Sm and a probability distribution F on Π. That is, defining
fixed(Π) = {j | 1 ≤ j ≤ m, ∀σ ∈ Π σ(j) = j}, the resulting sequence becomes
(β1, β2, . . . , βm) such that

βi =

{

αi if i ∈ fixed(Π)
?

atom(απ−1(i))
if i /∈ fixed(Π)

for every i, 1 ≤ i ≤ m, where π is drawn from Π according to F . When F is uni-
form, we write (shuffle,Π) by omitting it. Note that when an action (shuffle,Π,F)
is applied to a sequence (α1, α2, . . . , αm), it should hold that i ∈ fixed(Π) for
every i such that αi = c

ε for some c.
Herein, we introduce two shuffles that are also often used in card-based pro-

tocols. The first one is a “random cut” that shuffles a sequence cyclically. For
instance, if a random cut is applied to a sequence of four candies, one of the
following sequences is obtained. The probability of each occurrence is 1/4.

1

PEZ

2

PEZ

3

PEZ

4

PEZ →

1

PEZ

2

PEZ

3

PEZ

4

PEZ

2

PEZ

3

PEZ

4

PEZ

1

PEZ

3

PEZ

4

PEZ

1

PEZ

2

PEZ

4

PEZ

1

PEZ

2

PEZ

3

PEZ

This shuffle is formally expressed as (shuffle, {id, (1 2 3 4), (1 2 3 4)2, (1 2 3 4)3})
where id is the identity permutation. The second one is a “random bisection
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cut,” which was implicitly seen in Sect. 2. Here, a sequence of candies is divided
in half and the two sub-sequences are shuffled. For instance, applying a random
bisection cut to a sequence of four candies results in

1

PEZ

2

PEZ

3

PEZ

4

PEZ →

1

PEZ

2

PEZ

3

PEZ

4

PEZ

3

PEZ

4

PEZ

1

PEZ

2

PEZ,

where each result occurs with a probability of 1/2. This shuffle is formally
expressed as (shuffle, {id, (1 3)(2 4)}).

Finally, we define an action used at the end of a protocol. We use (result, p)
for p ∈ {1, 2, · · · ,m} to represent that the protocol is terminated and its output
is the p-th candy.

3.3 Computational Model of Public-PEZ Protocols

In this subsection, we define a computational model of public-PEZ protocols via
an abstract machine.

Let B be a box. Depending on the players’ input, an initial sequence Γ0 (from
B) is determined. By U ⊆ SeqB, we denote the set of all possible input sequences.

Next, we define a visible sequence that represents all public information with
regard to the flavors of the candies. Consequently, we define top( ?c ) = ? and
top(c) = top( c

ε ) = c for c ∈ B, which is based on the fact that when players bite
a candy, the candy will disappear but its flavor will be memorized by all players.
Then, we define vis(Γ ) of a sequence Γ = (α1, α2, . . . , αm) as

vis((α1, α2, . . . , αm)) = (top(α1), top(α2), . . . , top(αm)).

For instance,

vis

((

1
ε
, 0,

?
1
,
0
ε
,
1
ε
,
?
0
, 1

))

= (1, 0, ?, 0, 1, ?, 1).

Furthermore, we define the set VisB of all visible sequences as

VisB = {vis(Γ ) |Γ ∈ SeqB}.

We are now ready to formally define a public-PEZ protocol. A protocol is a
4-tuple P = (B, U,A,Q) such that

– B is a box;
– U ⊆ SeqB is a set of input sequences;
– Q is a set of states, containing the initial state q0 and final state qf ;
– A : (Q−{qf})×VisB → Q×Action is an action function, where Action is the

set of all possible actions (bite, T ), (permute, π), (shuffle,Π,F), and (result, p).

A protocol P = (B, U,A,Q) proceeds as imagined; starting with an initial
sequence Γ0 ∈ U and initial state q0, it changes the sequence and state based on
the output of the action function. When the state becomes qf , the protocol P
terminates with an action (result, p) for some p.
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4 Formal Description of Our AND Protocol and Another
One

In this section, we formally describe our AND protocol presented in Sect. 2
based on the computational model of public-PEZ protocols defined in Sect. 3,
which can be described as follows.

The five-candy AND protocol
Box:

B = [ 3 · 0, 2 · 1 ]

Input:

U =

{
(

?
0
,
?
0
,
?
1
,
?
0
,
?
1

)

,

(

?
0
,
?
0
,
?
1
,
?
1
,
?
0

)

,

(

?
0
,
?
1
,
?
0
,
?
0
,
?
1

)

,

(

?
0
,
?
1
,
?
0
,
?
1
,
?
0

)
}

Steps:

1. (permute, (1 3))
2. (shuffle, {id, (2 3)(4 5)})
3. (bite, {4})
4. if visible seq.= (?, ?, ?, 0, ?) then (result, 3)
5. else if visible seq.= (?, ?, ?, 1, ?) then (result, 2)

Next, to display another formal protocol, we describe the XOR protocol
based on the card-based XOR protocol [22].

The XOR protocol based on [22]
Box:

B = [ 7 · 0, 7 · 1 ]

Input:

U =

{
(

?
0
,
?
1
,
?
0
,
?
1
,
?
0
,
?
1
,
?
0
,
?
1
,
?
0
,
?
1
, 0, 0, 1, 1

)

,

(

?
0
,
?
1
,
?
1
,
?
0
,
?
0
,
?
1
,
?
0
,
?
1
,
?
0
,
?
1
, 0, 0, 1, 1

)

,

(

?
1
,
?
0
,
?
0
,
?
1
,
?
0
,
?
1
,
?
0
,
?
1
,
?
0
,
?
1
, 0, 0, 1, 1

)

,

(

?
1
,
?
0
,
?
1
,
?
0
,
?
0
,
?
1
,
?
0
,
?
1
,
?
0
,
?
1
, 0, 0, 1, 1

)
}
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Steps:

1. (shuffle, {id, (7 8 9 10), (7 8 9 10)2, (7 8 9 10)3})
2. (shuffle, {id, (1 2 3 4), (1 2 3 4)2, (1 2 3 4)3})
3. (shuffle, {id, (5 6 7 8), (5 6 7 8)2, (5 6 7 8)3})
4. (shuffle, {id, (1 5)})
5. (bite, {1, 5})
6. if visible seq.= (0, ?, ?, ?, 0, ?, ?, ?, · · · ) then (permute, (1 11)(5 12))

go to step 2
else if visible seq.= (1, ?, ?, ?, 1, ?, ?, ?, · · · ) then (permute, (1 13)(5 14))
go to step 2
else if visible seq.= (0, ?, ?, ?, 1, ?, ?, ?, · · · ) or (1, ?, ?, ?, 0, ?, ?, ?, · · · )
go to step 7

7. (bite, {3, 7})
8. if visible seq.= (c, ?, 0, ?, c, ?, 1, ?, · · · ) or (c, ?, 1, ?, c, ?, 0, ?, · · · )

for some c ∈ {0, 1} then (result, 9)
else if visible seq.= (c, ?, 0, ?, c, ?, 0, ?, · · · ) or (c, ?, 1, ?, c, ?, 1, ?, · · · )
for some c ∈ {0, 1} then (result, 10)

We describe the above XOR protocol as an example. However, we do not
intend to use this practically because it is relatively complicated, has a loop,
and is a Las Vegas algorithm. (Actually, we can obtain a simple finite-runtime
XOR protocol based on the four-card XOR protocol in [21].) Note that the
number of available candies is finite, i.e., the box B has exactly seven lemon
candies and seven orange candies. Therefore, if there is no candy available in
Step 6, the protocol fails. This is a big difference between card-based protocols
and public-PEZ protocols; the Las Vegas algorithm does not work well in public-
PEZ cryptography.

5 Implementations of Shuffles of Candies

In this section, we discuss the feasibility of shuffling actions in public-PEZ pro-
tocols. It is more difficult to shuffle a sequence of candies using the players’
hands, compared to shuffling a sequence of cards. Therefore, we consider using
the following special tools to implement a random bisection cut and random cut
on a sequence of candies.

Random Bisection Cut. As already seen in Sect. 2, we use two identical
dispensers. First, the two divided sequences of candies are packed into the two
dispensers without changing the orders. Then, we shuffle the two dispensers,
take out the candies from each of the dispensers, and arrange them.
The operation of shuffling the two dispensers must be implemented so that
nobody knows how many times they are switched. The previous research [32]
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proposed a secure implementation method for a random bisection cut in card-
based protocols using a Styrofoam ball. This method can be used in public-
PEZ protocols as well. Specifically, two dispensers are placed in a Styrofoam
ball (the contents of which cannot be seen from the outside). Then, the ball
is thrown up to shuffle the dispensers inside the ball.

Random cut. We consider using a hose as shown in Fig. 7. First, we place the
candies (to be shuffled) in the hose while maintaining the order, and tape its
inlet and outlet. Then, we move the candies by rotating the hose. Finally, we
take out the candies from the hose, while maintaining the order, and arrange
them. The diameter of the hose must be tight enough that the order of the
candies inside the hose does not change when it is rotated.

Fig. 7. How to implement a random cut.

6 Conclusion

In this study, we designed public-PEZ cryptography. We constructed its com-
putational model and presented a few protocols within the model. Further, we
discussed the feasibility of shuffling actions for a sequence of PEZ candies. As
public-PEZ protocols do not require private actions, players can perform MPC
more securely and easily. In particular, we believe that our AND protocol pre-
sented in Sect. 2 is practical enough to be utilized in daily activities.

People might assume that this paper would just replace “cards” in card-based
cryptography with “candies and dispensers,” i.e., public-PEZ cryptography is a
type of re-implementation of card-based cryptography, and thus, there would
not be much novelty. However, we believe that this is not the case. As already
demonstrated, unlike a deck of cards, one cannot turn a candy face down and a
candy disappears after one confirms its value; therefore, we need novel and careful
treatment to construct a rigorous model. In addition, public-PEZ cryptography
is simple, which is a virtue.
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KAKENHI Grant Number JP19J21153.
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Abstract. Homomorphic secret sharing (HSS) allows multiple input
clients to secret-share their data among multiple servers such that each
server is able to locally compute a function on its shares to obtain a par-
tial result and all partial results enable the reconstruction of the func-
tion’s value on the outsourced data by an output client. The existing
HSS schemes for high-degree polynomials either require a large number
of servers or lack verifiability, which is essential for ensuring the cor-
rectness of the outsourced computations. In this paper, we propose a
two-server verifiable HSS (VHSS) model and construct a scheme that
supports the computation of high-degree polynomials. The degree of the
outsourced polynomials can be as high as a polynomial in the system’s
security parameter. Despite of using only 2 servers, our VHSS ensures
that each single server learns no information about the outsourced data
and no single server is able to persuade the client to output a wrong
function value. Our VHSS is significantly more efficient. When comput-
ing degree-7 polynomials, our scheme could be 3–10 times faster than
the previously best construction.

Keywords: Homomorphic secret sharing · Verifiable computation ·
Nearly linear decryption

1 Introduction

In the context of outsourcing computations, the outsourced data may be leaked
and the servers may be hijacked or return incorrect results for economic reasons
(such as saving the computing resources). How to ensure the privacy of the
outsourced data and the integrity of the outsourced computations are two top
security issues.

A general method of protecting the privacy of the data in outsourcing com-
putation is by using the homomorphic encryption (HE), which allows the cloud
c© Springer Nature Switzerland AG 2020
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servers to compute a function f on the ciphertexts Enc(x1), . . . , Enc(xn) to get
a ciphertext of the function value y = f(x1, . . . , xn). The early HE schemes
[19,26] only support degree-1 computations on the encrypted data. Gentry [18]
proposed the first fully homomorphic encryption (FHE) scheme that allows the
computation of any boolean circuits on encrypted data. Although the efficiency
of FHE has been significantly improved in [7,11] during the past years, FHE is
still impractical from the performance perspective [25]. As a multi-server coun-
terpart of HE that is more efficient, the HSS of Boyle et al. [6] allows the input
clients to secret-share their data among multiple servers such that upon request
each server is able to compute a partial result and all partial results suffice to
reconstruct the correct function value by an output client. Most of the existing
HSS schemes are designed for computing specific functions, such as the affine
functions [2], the point functions [5], the selection functions [15,17], and the
depth-2 boolean circuits [8]. Recent works [4,9,13,16,21] have focused on the
construction of HSS schemes that support high-degree polynomial computations.

While HE and HSS provide easy solutions to the data privacy problem in
outsourcing of computations, they cannot help the output client verify whether
the servers have done their computations correctly. Tsaloli et al. [29] proposed
the notion of verifiable HSS (VHSS) which additionally add verifiability of the
servers’ results to the HSS schemes. Unfortunately, their construction only sup-
ports the product computations over a multiplicative Abelian group and has
been proved to be insecure [20]. Yoshida and Obana [30] constructed verifiably
multiplicative secret sharing schemes that enable the computation of polyno-
mials over the shared data. However, the degrees of their polynomials cannot
exceed the number of servers.

Therefore, if we restrict our attention to HSS schemes for high-degree poly-
nomial computations, the state of the art offers either the construction [9] that
has no verifiability or the constructions [30] that require a very large number of
servers. In this paper, we shall focus on the construction of two-server verifiable
HSS schemes that allow high-degree polynomial computations.

1.1 Our Contributions

In this paper, we propose a two-server verifiable homomorphic secret sharing
(2SVHSS) model. Our model involves three kinds of parties: a set of input
clients, a set of servers, and an output client. Each input client uses a public
key to encrypt its data as shares to the servers; upon the request of computing a
function on the outsourced data, each server performs a computation on its own
shares and produces a partial result; finally, the output client reconstructs the
function value from all partial results. A 2SVHSS scheme in our model should sat-
isfy the properties of correctness, semantic security, verifiability, context hiding
and compactness. The correctness property requires that whenever the scheme
is correctly executed, the output client will always reconstruct the correct func-
tion value. The semantic security requires that each server learns no information
about the outsourced data. The verifiability requires that no malicious server is
able to persuade the output client to reconstruct a wrong function value. The
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context hiding property requires that the output client learns no more infor-
mation about the outsourced data than what is implied by the function value.
This property is specifically interesting when the output client is not one of
the input clients. The compactness property requires that the output client’s
workload in a protocol execution should be substantially less than that required
by the native computation of the function. This property is essential for HSS’s
applications in outsourcing computation. In the proposed model we construct a
2SVHSS scheme that allows the computation of polynomials over the outsourced
data. The degrees of these polynomials can be as high as a polynomial in the
system’s security parameter. Achieving verifiability in two-server HSS for high-
degree polynomials allows us to distinguish between this work and the existing
ones.

1.2 Our Techniques

Our construction is based on the HSS of [9]. The core technique of the HSS
scheme of [9] is a public-key encryption scheme supporting nearly linear decryp-
tion (PKE-NLD). Let R = Z[X]/(xN + 1), where p, q ∈ N, p|q and 1 � p � q.
Informally, a public-key encryption scheme supports nearly linear decryption
for a message x ∈ Rp if the secret key is s = (s1, s2) = (1, s) ∈ R2

p, and for
any ciphertext c ∈ R2

q encrypting x, 〈s, c〉 = (q/p) · x + e mod q for some
“small” noise e ∈ R. The input clients use PKE-NLD and the public key pk to
encrypt x · s as Cx = (cx·1, cx·s) ∈ R2×2

q , without knowing the secret key s. In
order to implement homomorphic computation on the ciphertext, they randomly
split the secret key s into a pair of evaluation keys (ek1, ek2) ∈ R2×2

q such that
s = (ek1 + ek2) mod q. For every b ∈ {1, 2}, the server b uses ekb to compute a
share tx

b of x · s, and returns it to the output client. It is clear that for i ∈ {1, 2},
〈tx

0 , cx′·si〉 + 〈tx
1 , cx′·si〉 = 〈x · s, cx′·si〉 ≈ (q/p) · xx′ · si over Rq.

The HSS of [9] supports the computation of restricted multiplication straight-
line programs [6,14]. To enable the computation of polynomials, we added homo-
morphic multiplication by known constants to [9] as follows. For every b ∈ {1, 2},
the server b computes the secret share tc·x

b (in fact, tc·x
b = c · tx

b ) of c ·x · s (where
c ∈ Rp) by using c ·ekb. The correctness of the computation can be established as
follows: tc·x

1 +tc·x
2 = c ·(tx

1 +tx
2) = (cx ·1, cx ·s). To achieve verifiability, we add a

verification key and a pair of additional evaluation keys. More precisely, the veri-
fication key vk = (ŝ, ŝ·s) is obtained by multiplying the secret key s = (1, s) with
a randomly chosen value ŝ ∈ Rp; and the additional evaluations keys ( ˆek1, ˆek2)
are additive shares of vk, i.e., vk = ( ˆek1+ ˆek2) mod q. With the additional evalu-
ation keys, the servers can manage to compute τ = ŝ ·f(x1, . . . , xn). The output
client can decide whether f(x1, . . . , xn) is computed correctly by verifying the
equation τ = ŝ · f . A successful attack of the verifiability by a malicious server
requires that server to guess ŝ correctly. However, that will happen with at most
a negligible probability, because ŝ is randomly split into two additive shares and
sent to two servers respectively, a single server cannot obtain effective informa-
tion about ŝ. Our verification process only needs to perform a fixed number of
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additions and multiplications on R and does not need to perform decryption
(including modular exponentiation) like [4,13,21]. Therefore, our verification
process consumes few resources which is very friendly to the output clients with
limited computing power.

1.3 Applications

Our scheme has interesting applications in many scenarios such as secure com-
putation [3,6], private manipulation of remote databases [12], and generating
correlated random variables [3]. In addition, it can be used in industry.

Deep Neural Networks: The scheme of [31] has been using uses FHE to enable
the evaluation of deep neural networks over the private data. Our scheme can
provide an efficient alternative to FHE, and our scheme is verifiable and ensures
the users to get the correct results from untrusted servers.

Smart Grid Network: Smart grid networks are envisioned to be the next gen-
eration power supply networks. The smart grid deploys sensors on the consumers
to collect real-time data which will be uploaded to the servers. The control center
requires the servers to perform some computations on the collected data for fur-
ther analysis, such as regulating the supply of power. Khurana et al. [23] pointed
out that the data stored on the servers will reveal their private information. A
more serious problem is that the servers may be hijacked which will cause the
control center to make a wrong judgment and cause catastrophic consequences.
Such security problems can be solved by our scheme, which can preserve the
privacy of the consumers by encrypting the collected data and allow the control
center to verify the result.

Our scheme can be used to provide both data privacy, results verification and
efficient computation in many other systems such as the healthcare systems [27]
and the industrial control systems [28].

1.4 Related Work

Recent works [4,13,21] are to transform the level-k HE scheme to support the
computation of high-degree polynomials. Informally, if an HE scheme can sup-
port computations of degree ≤ k, we call it a level-k HE scheme. Although
[4,13,21] achieve the purpose of computing polynomials through level-k HE,
their constructions do not support verification and are only effective for low-
degree polynomials. Some works [16,30] constructed multi-server schemes with
verifiability. However, the degree of their polynomials can not exceed the number
of servers.

Table 1 shows the comparisons between our scheme and some existing rep-
resentative schemes for n input clients, m servers, and degree-d polynomials,
where “n = ∗” means that the number of allowed input clients is unbounded.
Compared with these representative works, our scheme satisfies all properties in
comparison and supports polynomials of highest degree.
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Table 1. Comparisons with Existing HSS Schemes

n m d Semantic
security

Verifiability Context
hiding

Compactness

[13] * 2 2k � × � �
[4] 1 1 2k � × � ×
[21] * m (k + 1)m − 1 � × � �
[30] * m < m � � � �
[16] 1 m m � � � ×

Ours * 2 poly(λ) � � � �

1.5 Organization

In Sect. 2 we introduce the techniques that will be used in our construction.
In Sect. 3 we formally define 2SVHSS. In Sect. 4 we give both construction and
analysis of our 2SVHSS. In Sect. 5 we implement our scheme and compare with
the best existing schemes in terms of efficiency. Finally, Sect. 6 contains our
concluding remarks.

2 Preliminaries

We denote with λ ∈ N a security parameter, and use poly(λ) to denote any
function bounded by a polynomial in λ. We say that a function is negligible in
λ if it vanishes faster than the inverse of any polynomial in λ, and denote a
negligible function by negl. We use PPT for probabilistic polynomial-time. For
a positive integer n, we denote by [n] the set {1, 2, . . . , n}. For a real number
x ∈ R, by 	x
 ∈ Z we denote the integer closest to x. Let R = Z[X]/(XN + 1),
where N ∈ N with N ≤ poly(λ) is a power of 2. For x ∈ R with coefficients
x1, . . . , xN , the infinity norm of x is defined as ‖x‖∞ := maxN

i=1|xi|. For p ∈ N,
by Rp we denote R/pR. We agree that the coefficients of any element in Rp are in
the interval (−	p/2
, . . . , 	(p − 1)/2
]. We define the size of a polynomial as the
total number of multiplication and addition operations it contains. The size of
the polynomial f is denoted as size(f). Let X,Y be two probability distributions
over the same sample space U . We define the statistical distance between X and
Y as SD[X,Y ] := 1

2

∑
u∈U |Pr[X = u] − Pr[Y = u]|.

2.1 Public-Key Encryption with Nearly Linear Decryption

Boyle et al. [9] gave an instantiation of PKE-NLD that satisfies the following
properties: First, it allows anyone to encrypt certain key-dependent messages
without the secret key. Second, it allows distributed decryption of ciphertexts.

The PKE-NLD of [9] was instantiated with Ring-LWE [10,22] and
parametriz-ed by modulus values p, q ∈ N, and bounds Bsk, Bct ∈ N, where
p|q, p ≥ λω(1), q/p ≥ λω(1) and Bsk, Bct ≤ poly(λ), as well as a ring R =
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Z[X]/(XN + 1), where N is a power of 2. The secret key s satisfies ‖s‖∞ ≤ Bsk.
The error e satisfies ‖e‖∞ ≤ Bct.

In the PKE-NLD instantiation of [9], Dsk is a secret-key distribution such that
each coefficient of the secret key s is uniformly distributed over {0,±1}, subject
to the constraint that hsk out of the coefficients of s are non-zero. Derr is an error
distribution where each coefficient is a rounded Gaussian with a parameter σ,
which gives Berr = 8σ as a high-probability bound on the l∞ norm of samples
from Dsk, with failure probability about 2−49. The instantiation of PKE-NLD
can be described as follows:

– PKE.Gen(1λ) : Sample a ← Rq, s ← Dsk, e ← Derr and compute b = a · s + e
in Rq. Let s = (1, s) and output pk = (a, b), sk = s.

– PKE.Enc(pk,m) : To encrypt m ∈ Rp, sample v ← Dsk, e0, e1 ← Derr. Output
the ciphertext (c0, c1) ∈ R2

q , where c1 = −av+e0 and c0 = bv+e1 +(q/p) ·m.
– PKE.OKDM(pk,m) : Compute c0 = PKE.Enc(0) and cm = PKE.Enc(m).

Output the tuple (cm, c0 + (0, (q/p) · m)) as an encryption of m · s.
– PKE.DDec(b, tb, cx) : Given b ∈ [2], a ciphertext cx = (c0, c1) and a share
tb = (tb,0, tb,1) of m · s. Output db = (	(p/q) · (c0 · tb,0 + c1 · tb,1)
 mod p)
mod q.

Without accessing the secret key, anyone can compute the encryption of any
linear function of the secret key through key-dependent message (KDM) oracle.

Nearly Linear Decryption to the Message x · sj : for any λ ∈ N, for any
(pk, s) ← PKE.Gen(1λ), and for any cj ← PKE.OKDM(pk, x, j), it holds 〈s, cj〉 =
(q/p) · (x · sj) + e mod q for some e ∈ R with ‖e‖∞ ≤ Bct, where j ∈ [2].

Security: for any λ ∈ N and any PPT adversary A, Advkdm−ind
A,PKE.OKDM(λ) :=

∣
∣
∣Pr

[
Expkdm−ind

A,PKE.OKDM(λ) = 1
]

− 1/2
∣
∣
∣ ≤ negl(λ), where Expkdm−ind

A,PKE.OKDM(λ) is
defined as follows:

Expkdm−ind
A,PKE.OKDM(λ) : OKDM(x, j) :

(pk, sk) ← PKE.Gen(1λ) If β = 0 return PKE.OKDM(pk, x, j).
β ← {0, 1} Else return PKE.Enc(pk, 0).
β′ ← AOKDM(·,·)(1λ, pk)
If β = β′ return 1.
Else return 0.

By PKE.OKDM(pk, x) we denote the KDM oracle that returns a componentwise
encryption of x · s, i.e. the matrix (PKE.OKDM(pk, x, 1), PKE.OKDM(pk, x, 2))
∈ R2×2

q .
The second property that PKE-NLD needs to satisfy is that it allows two

non-communicating servers to perform decryption distributively.

Distributed Decryption of Sums of Ciphertexts: Let Badd ∈ N be a
polynomial in λ. Then there exists a deterministic polynomial time decryp-
tion procedure PKE.DDec with the following properties: for all x ∈ Rp with
p/‖x‖∞ ≥ λω(1) and q/(p · ‖x‖∞) ≥ λω(1), for all (pk, s), for all messages
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m1, . . . ,mBadd
∈ Rp, for all encryption ci of mi that are either output of PKE.Enc

or PKE.OKDM (in that case we have mi = xi·sj for some xi ∈ Rp and j ∈ [2]), for
the shares t1, t2 ∈ R2

q that were randomly chosen subject to t1+t2 = x·s mod q,
for c :=

∑Badd

i=1 ci and m :=
∑Badd

i=1 mi, PKE.DDec(1, t1, c)+PKE.DDec(2, t2, c) =
x · m mod q with probability at least

1 − N · (N · Badd · ‖x‖∞ · Bct · p/q + ‖x · m‖∞/p + p/q + 1/p) ≥ 1 − λ−ω(1)

over the randomly choice of the shares t1, t2. For C = (c1|c2) ∈ R2×2
p by

m ← PKE.DDec(b, tb,C), we denote the componentwise decryption m ←
(PKE.DDec(b, tb, c1),PKE.DDec(b, tb, c2)) ∈ R2

p.

3 Two-Server Verifiable Homomorphic Secret Sharing

A two-server verifiable homomorphic secret sharing (2SVHSS) scheme involves
three kinds of parties: multiple input clients, two non-communicating servers
and an output client. In a 2SVHSS scheme, any client that gets the public key
can encrypt input value as ciphertexts and share between the two servers. The
output client asks servers to compute the result and uses the verification key to
verify the result.

Definition 1 (Two-server verifiable homomorphic secret sharing). A
2S-VHSS scheme 2SVHSS for a function family F over a ring R with input
space I ⊆ R consists of four PPT algorithms (2SVHSS.Gen, 2SVHSS.Enc,
2SVHSS.Eval, 2SVHSS.Ver) with the following syntax:

– 2SVHSS.Gen(1λ): On input a security parameter 1λ, the key generation algo-
rithm outputs a public key pk, a verification key vk and a pair of evaluation
keys (ek1, ek2).

– 2SVHSS.Enc(pk, x): On input a public key pk and an input value x ∈ I, the
encryption algorithm outputs a ciphertext ct ∈ C, where C is the cipher space.

– 2SVHSS.Eval(b, ekb, (ct(1), . . . , ct(n)), f): On input a server index b ∈ [2], an
evaluation key ekb, a vector of n ciphertexts, a function f ∈ F with n input
values, the homomorphic evaluation algorithm outputs a partial result yb.

– 2SVHSS.Ver(vk, (y1, y2)): On input a verification key vk, a pair of partial
results (y1, y2), the verification algorithm outputs a result y (which is believed
to be the correct computation result) or an error symbol ⊥ (to indicate that
one of the servers is cheating).

All parties run the 2SVHSS scheme as follows. First, the output client runs
2SVHSS.Gen(1λ) to generate (pk, vk, (ek1, ek2)). Next, the input clients will run
2SVHSS.Enc(pk, xi) to generate ciphertext ct(i) of xi and upload ct(i) to all
servers. Then, in order to evaluate a function f(x1, . . . , xn), the output client
simply sends f to all servers, and the server b runs 2SVHSS.Eval(b, ekb, (ct(i))i, f)
to generate a partial result yb and returns it to the output client. Finally, the
output client runs 2SVHSS.Ver(vk, (y1, y2)) to reconstruct and verify the value
of f(x1, . . . , xn).
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A 2SVHSS scheme should satisfy the following properties: correctness, seman-
tic security, verifiablility, context hiding and compactness.

Definition 2 (Correctness). The scheme 2SVHSS is said to correctly evalu-
ate a function family F if for all honestly generated keys (pk, vk, (ek1, ek2)) ←
2SVHSS.Gen(1λ), for all x1, . . . , xn ∈ I, for all ciphertexts ct(1), . . . , ct(n) ∈ C,
where ct(i) ← 2SVHSS.Enc(pk, xi) for i ∈ [n], for any function f ∈ F ,
Prcor2SVHSS,(xi)i,f (λ) := Pr[2SVHSS.Ver(vk, (y1, y2)) = f(x1, . . . , xn)] ≥ 1 − λ−ω(1),

where yb ← 2SVHSS.Eval(b, ekb, (ct(i))i, f) for b ∈ [2] and the probability is taken
over all the algorithms’ random choices.

Definition 3 (Semantic Security). We define the experiment ExpSS
A,2SVHSS(1

λ)
with a security parameter λ ∈ N and a PPT adversary A as follows:

ExpSS
A,2SVHSS(1

λ) :

(b, x0, x1, state) ← A(1λ); β ← {0, 1}
(pk, vk, (ek1, ek2)) ← 2SVHSS.Gen(1λ)
ct ← 2SVHSS.Enc(pk, xβ)
inputb := (state, pk, ekb, ct)
β′ ← A(inputb)
If β′ = β return 1. Else return 0.

We define the advantage of A as AdvSS
A,2SVHSS(λ) := Pr[ExpSS

A,2SVHSS(1
λ) = 1]. Then

we say that 2SVHSS is semantically secure if for all PPT adversary A it holds
AdvSS

A,2SVHSS(λ) ≤ negl(λ).

Definition 4 (Verifiability). We define the experiment ExpVer
A,2SVHSS(1

λ) with
a security parameter λ ∈ N and a PPT adversary A as follows:

– Setup. The challenger runs the 2SVHSS.Gen(1λ) to generate a public key pk,
a verification key vk, a pair of evaluation keys (ek1, ek2), and gives pk to A.
If A plays the role of a malicious server b the challenger gives ekb to A.

– VerificationQueries. A adaptively issues verification queries. Let (f, (xi)i,
(ct(i))i, y

′
b) be a query from A, where y′

b is a modified partial result and ct(i) ←
2SVHSS.Enc(pk, xi) for all i ∈ [n]. Given the verification query, the chal-
lenger proceeds as follows: for each i ∈ [n] compute y3−b ← 2SVHSS.Eval(3 −
b, ek3−b, (ct(i))i, f); compute and respond with y′ ← 2SVHSS.Ver(vk, (y′

b,
y3−b)). In the process of verification queries, if the event y′ /∈ {f(x1, . . . ,
xn),⊥} occurs, A terminates the queries and the experiment outputs 1. If the
event never occurs, the experiment outputs 0.

We define the advantage of A as AdvVer
A,2SVHSS(λ) := Pr[ExpVer

A,2SVHSS(1
λ) = 1].

We say that 2SVHSS is verifiable under adaptive chosen message and query ver-
ification attack, if for all PPT adversary A it holds AdvVer

A,2SVHSS(λ) ≤ negl(λ).

Definition 5 (Context Hiding). We say that the scheme 2SVHSS satis-
fies context hiding for a function family F if there exists a PPT simulator
Sim such that the following holds: for any λ ∈ N, any (pk, vk, (ek1, ek2)) ←
2SVHSS.Gen(1λ), any function f ∈ F , any input values x1, . . . , xn ∈ I,
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any ciphertexts ct(1), . . . , ct(n) ∈ C, where ct(i) ← 2SVHSS.Enc(pk, xi) for
i ∈ [n], and yb ← 2SVHSS.Eval(b, ekb, (ct(i))i, f) for b ∈ [2], it holds
SD[(y1, y2),Sim(1λ, vk, pk, f(x1, . . . , xn))] ≤ negl(λ).

Definition 6 (Compactness). We say that the scheme 2SVHSS compactly
evaluates a function family F if the running time of 2SVHSS.Ver is bounded by
a fixed polynomial in λ.

4 A Construction of 2SVHSS

In this section, we present a construction of 2SVHSS scheme, which allows
the clients to outsource the computation of any polynomials f(x1, . . . , xn) with
poly(λ) degree, where λ is the security parameter. We use the PKE-NLD instanti-
ation in Sect. 2 to encrypt input values and perform homomorphic computation.

In our construction, an evaluation key consists of two parts: one part is the
additive share of the secret key sk, and the other part is the additive share of
the verification key vk = ŝ · sk (where ŝ is randomly choose from the secret key
distribution). The evaluation algorithm uses the additive share of sk to compute
the additive share of the output y, and uses the additive share of vk to compute
the additive share of the authentication tag τ of the output y. The verification
algorithm uses these additive shares to reconstruct the output y and its tag τ ,
and then use ŝ to verify the output y by checking the equation τ = ŝ · y.

In our construction, the evaluation algorithm consists of 6 subroutines: Load,
Add1, Add2, cMult, Mult, Output. To compute f the servers need to execute these
subroutines poly(λ) times, and each time these subroutines are executed, there
is a unique identifier id ∈ N corresponding to this execution.

Our scheme 2SVHSS = (2SVHSS.Gen, 2SVHSS.Enc, 2SVHSS.Eval, 2SVHSS.Ver)

can be described as follows:

– 2SVHSS.Gen(1λ): Generate a key pair (pk, sk) ← PKE.Gen(1λ) for encryption
where sk = s = (1, s) ∈ R2

q . Randomly choose ŝ ← Dsk and let verification
key vk = ŝ · s = (ŝ, ŝ · s). Randomly choose s1,1←R2

q and s1,2←R2
q . Define

s2,1 = sk − s1,1 mod q, s2,2 = vk − s1,2 mod q. Draw two keys K1,K2←K2

for a pseudorandom function PRF : K×N → R2
q . Output pk, vk and (ek1, ek2),

where ekb = (K1,K2, sb,1, sb,2) for b = 1, 2.
– 2SVHSS.Enc(1λ, pk, x): Compute and output Cx ← PKE.OKDM(pk, x).
– 2SVHSS.Eval(b, ekb, (Cx1 , . . . ,Cxn), f):

• Load: On input (id,Cx) compute tx
b ← PKE.DDec(b, sb,1,Cx)+ (3−2b) ·

PRF(K1, id) mod q, τx
b ← PKE.DDec(b, sb,2,Cx)+(3−2b) ·PRF(K2, id)

mod q, and return Tx
b = (tx

b , τx
b ) ∈ R2×2

q .
• Add1: On input (id,Tx

b ,Tx′
b ) compute tx+x′

b ← tx
b + tx′

b + (3 − 2b) ·
PRF(K1, id) mod q, τx+x′

b ← τx
b + τx′

b + (3 − 2b) · PRF(K2, id) mod q,
and return Tx+x′

b = (tx+x′
b , τx+x′

b ).
• Add2: On input (id,Cx,Cx′

) compute Cx+x′ ← Cx + Cx′
mod q, and

return Cx+x′
.
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• cMult: On input (id, c,Cx) compute tc·x
b ← PKE.DDec(b, c · sb,1,Cx) +

(3−2b) ·PRF(K1, id) mod q, τ c·x
b ← PKE.DDec(b, c ·sb,2,Cx)+(3−2b) ·

PRF(K2, id) mod q, and return Tc·x
b = (tc·x

b , τ c·x
b ).

• Mult: On input (id,Tx
b ,Cx′

) compute tx·x′
b ← PKE.DDec(b, tx

b ,Cx′
) +

(3 − 2b) · PRF(K1, id) mod q, τx·x′
b ← PKE.DDec(b, τx

b ,Cx′
) + (3 − 2b) ·

PRF(K2, id) mod q, and return Tx·x′
b = (tx·x′

b , τx·x′
b ).

• Output: On input (id,Tx
b ) parses Tx

b = (tx
b , τx

b ) = ((tb, t̂b), (τb, τ̂b)) for
some tb, t̂b, τb, τ̂b ∈ Rq and output partial result yb = (tb, τb) mod r.

– 2SVHSS.Ver(vk, (y0, y1)): On input verification key vk = (ŝ, ŝ · s) and two
partial results (y1, y2), compute y = t1 + t2 mod r and τ = τ1 + τ2 mod r.
If τ = ŝ · y, output y, otherwise, output ⊥.

Theorem 1. For all λ ∈ N, for all inputs x1, . . . , xn ∈ Rr, for all polynomials
f which satisfy: f is of size size(f) ≤ poly(λ); the plaintexts upper bound Bmax

with Bmax ≥ r, p/Bmax ≥ λω(1) and q/(Bmax ·p) ≥ λω(1); f has maximum number
of input addition instructions Pinp+ , for (pk, vk, (ek1, ek2)) ← 2SVHSS.Gen(1λ),
for Cxi ← 2SVHSS.Enc(1λ, pk, xi), there exists a PPT adversary B on the pseu-
dorandom function PRF such that Prcor2SVHSS,(xi)i,f (λ) ≥ 1 − Advprf

PRF,B(λ) − N ·
(Bmax+1)/q−4·size(f)·N2·Pinp+·Bmax·(Bct·p/q+B2

sk/p)−4·size(f)·N ·(p/q+1/p).

Proof. First, let ε0 = Prcor2SVHSS,(xi)i,f (λ). Our goal is to prove that for all inputs
x1, . . . , xn ∈ Rr and for all polynomials f , the probability |1 − ε0| ≤ negl(λ).
And, let ε1 = Pr12SVHSS,(xi)i,f (λ) denote the probability that evaluation yields the
correct output, where we replace every evaluation of the PRF by inserting a value
r ← R2

q chosen at random. Boyle et al. [9] proved that |ε0−ε1| ≤ AdvPRF,Bprf(λ).
Next, we give a lower bound of the probability ε1. It is for this reason that

we prove that with overwhelming probability over the choice of r ← R2
q all

shares (Tx
1 ,Tx

2) computed during homomorphic evaluation of f satisfy tx
1 +tx

2 =
x · s = (x, x · s) mod q (1), τx

1 + τx
2 = x · ŝ · s = (x · ŝ, x · ŝ · s) mod q (2).

For m ∈ R and z1, z2 ∈ Rq be random, z1 + z2 = m over Rr with probability
at least 1 − N · (Bmax + 1)/q ≥ 1 − λ−ω(1), which has proved in [9]. Therefore
assuming (1) and (2) are true, t1 + t2 = x and τ1 + τ2 = x · ŝ over Rr with
probability at least 1 − N · (Bmax + 1)/q. It is left to prove that indeed (1) and
(2) hold true during homomorphic evaluation of f . PKE.DDec is the procedure
for distributed decryption. Under the assumption that distributed decryption
is always successful, we prove that the subroutines of evaluation algorithm and
verification algorithm preserves correctness. Because addition of input values
and the output of a memory value does not affect share, we ignore them.

– Consider input (id,Cx) for b ∈ [2]. We have tx
1 + tx

2 = PKE.DDec(1, s1,1,
Cx)+r+PKE.DDec(2, s2,1,Cx) − r mod q = x · s mod q, τx

1 +τx
2 = PKE.

DDec(1, s1,2,Cx) + r+PKE.DDec(2, s2,2,Cx)− r mod q = x · ŝ · s mod q.
– Consider input (id,Tx

b ,Tx′
b ) for b ∈ [2]. We have tx+x′

1 +tx+x′
2 = tx

1 +tx′
1 +r+

tx
2 +tx′

2 −r mod q = x ·s+x′ ·s mod q = (x+x′) ·s mod q, τx+x′
1 +τx+x′

2 =
τx
1 + τx′

1 + r+ τx
2 + τx′

2 − r mod q = x · ŝ · s+x′ · ŝ · s mod q = (x+x′) · ŝ · s
mod q.
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– Consider input (id, c,Cx) for b ∈ [2]. We have tc·x
1 + tc·x

2 = PKE.DDec(1, c ·
s1,1,Cx)+r+PKE.DDec(2, c·s2,1,Cx)−r mod q = (c·s)·x mod q = (c·x)·s
mod q, τ c·x

1 +τ c·x
2 = PKE.DDec(1, c·s1,2,Cx)+r+PKE.DDec(2, c·s2,2,Cx)−

r mod q = (c · ŝ · s) · x mod q = (c · x) · ŝ · s mod q.
– Consider input (id,Tx

b ,Cx′
) for b ∈ [2]. Assuming correctness holds for shares

(Tx
1 ,T

x
2) and distributed decryption it holds tx·x′

1 + tx·x′
2 = PKE.DDec(1, tx

1 ,
Cx′

) + r+PKE.DDec(2, t2,Cx′
) − r mod q = (x · s) · x′ mod q = (x · x′) · s

mod q, τx·x′
1 +τx·x′

2 = PKE.DDec(1, τx
1 ,Cx′

)+r+PKE.DDec(2, τ2,Cx′
)−r

mod q = (x · ŝ · s) · x′ mod q = (x · x′) · ŝ · s mod q.

From above all, for verification algorithm output yb = (tb, τb) mod r (b ∈ [2]) it
holds τ = τ1 + τ2 = ŝ · t1 + ŝ · t2 = ŝ · (t1 + t2) = ŝ · y. As the equality τ = ŝ · y
is always satisfied, the verification algorithm will output y = f(x1, . . . , xn) with
probability 1.

Last, we need to bound the probability that distributed decryption fails. By
Sect. 2.1, the distributed decryption fails with probability at most N2 · Pinp+ ·
‖x‖∞ · Bct · p/q + N · ‖x · m‖∞/p + N · (p/q + 1/p). Throughout the evaluation
of f we are guaranteed ‖x‖ ≤ Bmax for all intermediary values x ∈ R. We need
to give the upper bound of ‖x · m‖∞. For the messages mi = xi · sji we have
‖x · ∑Pinp+

i=1 xi · sji‖∞ ≤ ∑Pinp+
i=1 ‖x · xi · sji‖∞ ≤ Pinp+ · N · Bmax · Bsk. For the

messages mi = xi ·ŝ·sji we have ‖x·∑Pinp+
i=1 xi ·ŝ·sji‖∞ ≤ ∑Pinp+

i=1 ‖x·xi ·ŝ·sji‖∞ ≤
Pinp+ · N · Bmax · B2

sk.
Finally, applying a union bound over all 4 · size(f) decryptions (one homo-

morphic multiplication corresponds to 4 decryptions) yields ε1 ≥ 1−N · (Bmax +
1)/q −4 · size(f) ·N2 ·Pinp+ ·Bmax · (Bct ·p/q +B2

sk/p)−4 · size(f) ·N · (p/q +1/p).
��
Theorem 2. The scheme 2SVHSS is semantically secure.

The proof for the semantic security of our 2SVHSS is quite similar to that of [9].
In order to avoid duplication we only provide a proof sketch.

Proof Sketch. We prove that for every PPT adversary A on the seman-
tic security of 2SVHSS there exists a PPT adversary B on the security of
PKE.OKDM such that Advss

A,2SVHSS(λ) ≤ Advkdm−ind
B,PKE.OKDM(λ). Boyle et al. [9]

have proved Advss
A,HSS(λ) ≤ Advkdm−ind

B,PKE.OKDM(λ). Next we will explain that
Advss

A,2SVHSS(λ) = Advss
A,HSS(λ). The ciphertexts of 2SVHSS are generated in

the same way as HSS of [9]. But the information obtained by the adversary
A in 2SVHSS is different from HSS, because the evaluation key in 2SVHSS is
not exactly the same as the evaluation key in HSS, more specifically, the lat-
ter has more random numbers than the former. But the extra random num-
bers in the evaluation key of 2SVHSS does not provide any additional infor-
mation about the input value to the adversary A, therefore we have that
Advss

A,2SVHSS(λ) = Advss
A,HSS(λ) ≤ Advkdm−ind

B,PKE.OKDM(λ). ��
Theorem 3. The scheme 2SVHSS is verifiable.
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Proof. Let A be the event that ExpVer
A,2SVHSS(1

λ) outputs 1. Let Aj be the event
that the ExpVer

A,2SVHSS(1
λ) outputs 1 after j verification queries. Let Q be the

upper bound on the number of verification queries requested by the adversary.
To prove the theorem we only need to prove Pr[A] ≤ negl(λ).

We first give the probability of event Aj happening. In the j-th verifica-
tion query, the adversary A sends (f, (xi)i, (ct(i))i, y

′
b) (where b ∈ [2], if A

plays the role of a malicious first server b = 1, otherwise b = 2) to the chal-
lenger, where y′

b = (t′b, τ
′
b). The challenger computes y3−b ← 2SVHSS.Eval(3 −

b, ek3−b, (ct(i))i, f) for all i ∈ [n], where y3−b = (t3−b, τ3−b). Next, the challenger
runs 2SVHSS.Ver(vk, (y1, y2)) to compute y′ = t′b + t3−b and τ ′ = τ ′

b + τ3−b.
Denote y and τ as the correct value when all participants honestly evaluate

f , and let Δy = y′ − y and Δτ = τ ′ − τ . Then the event Ai occurs if Δy �= 0
and τ ′ = ŝ · y′, that is, ŝ · Δy = Δτ . A can choose Δy and Δτ by modifying
y′

b = (t′b, τ
′
b). Hence, the only way for A to let the challenger accept a wrong

result is to guess ŝ. Since ŝ is a polynomial of degree N and its coefficients are
uniform in {0,±1}, subject to the constraint that only hsk = N/2 coefficients are

non-zero, then there are P = 2hsk
(

N
hsk

)
= 2hsk

∏hsk−1
i=0 (N−i)

hsk!
= 2hsk

∏hsk−1
i=0

N−i
hsk−i ≥

2hsk
∏hsk−1

i=0
N
hsk

= 2N possible values for ŝ. After j − 1 queries A can exclude
j − 1 impossible values of ŝ, which means the number of possible values for ŝ is
P − (j − 1). So Pr[Ai] = 1

P−(j−1) = 1
P−j+1 .

From above all, we have Pr[A] = Pr[
⋃Q

j=1 Ai] ≤ ∑Q
j=1 Pr[Ai] =

∑Q
j=1

1
P−j+1

≤ ∑Q
j=1

1
P−Q+1 ≤ Q

P−Q . Because N > λ when choosing parameters (see Table 2
for more information), P ≥ 2N > 2λ, and Q = poly(λ), Q

P−Q ≤ negl(λ). ��
Theorem 4. The scheme 2SVHSS satisfies context hiding.

Proof. We show how to construct a simulator Sim that can generate (y′
1, y

′
2) with

negligible statistical distance from (y1, y2), where yb = (tb, τb) for b ∈ [2].
We give the description of simulator Sim: on input the security parameter 1λ,

the verification key vk = (ŝ, ŝ·s), the public key pk and the y = f(x1, . . . , xn), the
simulator Sim chooses t′1←Rq and τ ′

1←Rq at random, and let t′2 = y−t′1 mod q,
τ ′
2 = ŝ · y − τ ′

1 mod q. The simulator Sim outputs (y′
1, y

′
2), where y′

b = (t′b, τ
′
b)

for b ∈ [2]. It is straightforward to see that (y1, y2) is indistinguishable from the
(y′

1, y
′
2). ��

5 Performance Analysis

In this section, we implemented our scheme and got the running time of our
scheme, and compared our scheme with the LMS scheme [21] in terms of effi-
ciency.

5.1 Evaluating 2SVHSS

We have implemented the scheme 2SVHSS in a Ubuntu 18.04.2LTS 64-bit oper-
ating system with Intel� Xeon(R) Gold 5218 2.30 GHZ × 64 processors and
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160 GB RAM. We choose the PRF as the standard AES with 128-bit secret key
from the library OpenSSL 1.0.2g and realize all large integer related mathemat-
ical computations based on the C libraries GMP 6.1.2 and FLINT 2.5.2.

According to the method of selecting parameters provided by [9], we first
choose the plaintexts upper bound Bmax and let r = Bmax. r can take any integer
in [2, Bmax], in order to maximize the input space I = Rr we let r = Bmax. Next
we choose Berr = 8σ, σ = 8 for the noise distribution, a statistical security
parameter κ = 40, the number non-zero entries in the secret key hsk = N/2,
the number of homomorphic additions of inputs Pinp+ = 1, and Bsk = 1. We
choose the parameters so that each multiplication has a failure probability no
more than 2−κ. To ensure this holds we set p = N · Bmax · hsk · 2κ+2 and q ≥
2−κ+3 · p · N2 · Bmax · Bct, where Bct = Berr(2hsk + 1) proved by [9]. The security
parameters are obtained through the LWE estimator tool [32] by Albrecht et al.
[1]. The parameters corresponding to different Bmax and the running time of 6
subroutines in 2SVHSS.Eval algorithm are listed in Table 2.

Table 2. The Running Time(in milliseconds) of 6 Subroutines in 2SVHSS.Eval

Bmax N lg p lg q Security Load Add1 Add2 cMult Mult Output

2 4096 66 153 117.1 106 13 <1 105 105 <1

216 4096 81 183 86.5 114 13 <1 115 114 <1

232 8192 99 220 198.7 276 29 <1 275 274 <1

264 8192 131 284 128.9 315 29 <1 320 318 <1

2128 16384 197 417 214.0 1623 67 <1 1633 1630 <1

2256 16384 325 673 96.7 2049 69 <1 2016 2012 <1

5.2 Comparisons with LMS [21]

We compare the efficiency of the scheme 2SVHSS with the LMS scheme [21]
which supports polynomials of highest degree among all existing works, when the
same number of servers are used. Because LMS is based on the k-HE assumption,
we choose the homomorphic encryption scheme SH [10] to implement LMS. The
reason for choosing the scheme SH is to achieve a fair comparison, because the
scheme PKE in 2SVHSS is also based on SH. Under different Bmax and the degree
of the polynomials to be computed, the parameters N , q and security parameters
of LMS are different. We set those parameters according to the method of [24],
and use the LWE estimator tool [1,32] to estimate the corresponding security
parameters. The parameters of 2SVHSS and LMS [21] are shown in Table 3. It
is fair to compare the two schemes under the same security parameters. But
in the case of using LWE estimator tool to estimate the safety parameters, it
is difficult to ensure that the safety parameters are exactly the same. To avoid
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Table 3. The Parameters of LMS and 2SVHSS

Bmax N lg q Security Bmax N lg q Security

232 LMS deg-5 4096 151 119.5 2128 LMS deg-5 8192 441 62.8

LMS deg-7 4096 202 73.5 LMS deg-7 8192 589 42.3

LMS deg-9 8192 258 151.9 LMS deg-9 16384 742 82.6

LMS deg-11 8192 311 111 LMS deg-11 16384 892 62

2SVHSS 8192 220 198.7 2SVHSS 16384 417 214.0

264 LMS deg-5 4096 246 53.6 2256 LMS deg-5 16384 827 69.5

LMS deg-7 8192 334 99 LMS deg-7 16384 1104 46.1

LMS deg-9 8192 417 69.6 LMS deg-9 32768 1387 92.2

LMS deg-11 8192 502 51.5 LMS deg-11 32768 1665 69.5

2SVHSS 8192 284 128.9 2SVHSS 16384 673 96.7

Table 4. The Running Time (in seconds) of LMS and 2SVHSS

Server-Side

The degree deg-5 deg-7 deg-9 deg-11

Bmax LMS 2SVHSS LMS 2SVHSS LMS 2SVHSS LMS 2SVHSS

232 0.458 1.145 6.230 1.710 124.592 2.295 1016.660 2.831

264 0.588 1.152 19.230 1.849 159.609 2.700 1618.510 3.256

2128 2.288 2.931 58.317 4.559 874.877 5.683 7620.583 6.905

2256 14.941 10.761 214.354 14.392 3787.569 18.532 31097.442 22.527

Client-Side

2256 0.129 0.0024 0.427 0.0024 1.497 0.0024 2.134 0.0024

the suspicion of deliberately exaggerating the efficiency of 2SVHSS we let the
security parameters of 2SVHSS larger than those of LMS under the same Bmax.

Theoretical Analysis. On the server-side, to compute a degree-d term, LMS
needs two servers to compute 2d−1 degree-d terms respectively, which will cause
LMS to be very slow when computing high degree polynomials. 2SVHSS does
not have this problem. On the client-side, for LMS, as the polynomial degree
increases, the ciphertext size will also become larger (Table 3 shows this intu-
itively), which makes the time spent by LMS in decryption will increase as the
degree of polynomials increases. 2SVHSS does not have the problem of ciphertext
size increase, so the time spent by 2SVHSS is fixed.

Experimental Results. Table 4 shows the server-side and client-side running
time of LMS and 2SVHSS computing one degree-d term for d ∈ {5, 7, 9, 11},
where server-side time is the average running time of the two servers to execute
the evaluation algorithm.

It is easy to find out from Table 4 that when computing low-degree polyno-
mials with a small Bmax, LMS has trivial advantage on server-side. But 2SVHSS
has a enormous advantage when computing polynomials higher than degree-7.
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A large amount of server-side running time of LMS causes the client to wait a
long time to obtain the result, which makes LMS difficult to apply in practice.

The advantage of 2SVHSS on the client-side is obvious. The cost of computing
the degree-5 term LMS scheme is about 54 times that of 2SVHSS. And as the
degree of polynomial increases, this advantage becomes more obvious, which
consistent with our theoretical analysis.

6 Concluding Remarks

In order to solve the problem that the clients cannot compute and verify high-
degree polynomial functions over outsourced data on a small number of servers,
we proposed a two-server verifiable secret sharing model and constructed a
scheme in this model. Our scheme allows the clients to efficient compute and
verify the value of polynomials that may have a degree as high as a polynomial
in the security parameter. In addition, 2SVHSS can protect outsourced data from
leaking to the servers and the output client. In practical applications, 2SVHSS is
better than the current best scheme LMS in computing high-degree polynomial
functions.
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Abstract. Substitution boxes (S-boxes) are one of the most crucial
primitives in the field of block ciphers. Recently, differential power anal-
ysis (DPA), a very powerful technique which targets implementations of
block ciphers, causes the modern block ciphers to be much more vul-
nerable than ever before. Up to now, the revised transparency order
is one of the best metrics to assess the resistance of S-boxes against
DPA attacks. In this paper, we present an efficient algorithm to search
for cryptographically significant S-boxes with improved DPA-Resistance.
Applying our developed algorithm, we generate an 8 × 8 balanced S-box
with algebraic degree 7, nonlinearity 112, differential uniformity 4, abso-
lute indicator 32, revised transparency order 6.8820 (whereas the Rijn-
dael S-box has revised transparency order 6.9161) and thereby improved
resistance towards DPA attacks. Moreover, many other balanced S-boxes
with a much better trade-off of cryptographic characteristics than pre-
vious works (e.g. S-boxes given by B. Mazumdar and D. Mukhopadhyay
in IEEE Trans. Computers 2017) are also captured. The comparison
between ours and previous results manifests that our S-boxes are more
secure and robust.

Keywords: Differential power analysis · S-boxes · Nonlinearity ·
Revised transparency order · Differential uniformity.

1 Introduction

S-boxes, also called vectorial Boolean functions, play an extremely important
role in the symmetric-key cryptography, since the S-boxes are the only nonlinear
components of block ciphers. Therefore the security and the strength of these
cryptosystems deeply relies on the cryptographic characteristics of the S-boxes,
such as nonlinearity, differential uniformity, algebraic degree. Ideally, it is fun-
damental for a practical S-box to be balanced. Generally, a practical S-boxes
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must possess high nonlinearity, low differential uniformity, and not low algebraic
degree in order to protect S-boxes against linear cryptanalysis [14], differential
attacks [1] and high order algebraic attacks [10], respectively. Besides, to provide
good diffusion properties, a low absolute indicator of S-boxes will be regarded
to be good.

Recently, there are a large number of literature exploring the side-channel
attacks (SCA), which was firstly introduced by Kocher [11]. In this class of the
side-channel attacks, differential power analysis [12] is one of the most power-
ful and efficient attacks. The side-channel attacks including DPA attacks cause
the cryptosystems to become much more vulnerable than ever before. Some
countermeasures thereby have been proposed to resist DPA attacks, for exam-
ple, masking and hiding schemes[13]. However, these countermeasures integrated
into the hardware implementation are impractical for those areas constrained
device. Thus, researchers have been making an effort to design DPA-resistant
algorithms by selecting pertinent S-boxes, as updating the cryptographic prop-
erties of S-boxes can reduce the complexity to improve the resistance to DPA
attacks.

Signal-to-Noise Ratio, an attempt to assess the behaviour of S-boxes against
side-channel attacks was firstly investigated in 2004 [8]. Prouff then exhibited
some properties of S-boxes on which DPA attacks depended and presented the
notion of transparency order to quantify the resistance of S-boxes to DPA attacks
[23]. Since then, a lot of works referring to the original transparency order have
been explored. Next, Fei introduced confusion coefficient[6,7]. Very recently,
Chakraborty et al. [4] found that the original definition has inadequacies, and
contributed a refined definition of the transparency order. Moreover, [4] has
verified practically that the revised transparency order has a marked impact
on the resistance of the S-boxes against side-channel attacks. Specifically, low
transparency order and low signal-to-noise ratio can be regarded as good.

The transparency order is one of the most significant properties and has
received a lot of interest. In this paper, we mainly consider the notion of the
revised transparency order as the cryptographic criteria to quantify the resilience
of S-boxes against DPA attacks. In general, these criteria to evaluate S-box
resistance towards DPA attacks cannot be good with the nonlinearity at the same
time. Therefore, finding highly nonlinear balanced S-boxes with low differential
uniformity, relatively low revised transparency order is a challenging problem.

1.1 Related Work

After the transparency order was provided, Carlet showed that some highly non-
linear S-boxes constructed using power maps have very bad transparency orders
and hence low DPA resistance [2]. Since 2013, some constructed S-boxes with
lower transparency order than AES S-box have been obtained using searching
algorithm, such as [5,15–17,21,22,24]. However, the nonlinearity of those S-
boxes in [5,15–17,21,22,24] is not very high, and the differential uniformity is
incompetent. Hence, the security of those S-boxes is not adequate. In addition,
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the transparency order for Boolean functions has been explored recently, e.g.
[9,20,25,26].

Many explorations have investigated the transparency order on S-boxes and
Boolean functions, and have obtained some cryptographically interesting results.
However, there are still few results on the revised transparency order of S-boxes,
in which cross-correlation is taken into consideration and thereby the better
metric for assessing the resistance of S-boxes to DPA attacks is provided.

1.2 Our Contribution

In this paper, we take the revised transparency order into the primary account,
and develop an efficient algorithm. We then apply our algorithm to search S-
boxes with relatively good cryptographic properties. As a result, some S-boxes
with very high nonlinearity, low differential uniformity, relatively good abso-
lute indicator, lower signal-to-noise ratio and much better revised transparency
order are captured. In addition, we make a comparison in terms of the revised
transparency order of ours and previous works, which manifests our proposed S-
boxes have a much better trade-off between important cryptographic properties
of S-boxes.

We organize the rest of this paper as follows. In Sect. 2, we introduce the
notations and preliminaries on cryptographic properties of S-boxes. Section 3
presents the search strategy. We then exhibit some cryptographically significant
S-boxes we constructed, and give some comparisons in Sect. 4. Finally, Sect. 5
briefly summarizes the findings of this paper.

2 Preliminaries

Let n,m be two positive integers. We denote by F
n
2 the n-dimensional vector

space over F2, where F2 is the Galois field with two elements. The addition in F2

will be denoted by ⊕. For any vector v ∈ F
n
2 , the Hamming weight of v denoted

by wH(v), is the number to the non-zero positions in the vector.
Any n × m S-box is a function from F

n
2 into F

m
2 . The form of S-box F can

be described as F (x) = (f1(x), f2(x) . . . , fm(x)), which is a combination of m
Boolean functions fi : Fn

2 → F2 for i = {1, 2, . . . ,m}. These Boolean functions
are called coordinate functions of F .

Here we briefly review some important cryptographic properties of the S-
boxes. Any n×m S-box F has a unique representation of multivariate polynomial
over F

m
2 , called algebraic normal form (ANF), that is,

F (x1, x2, . . . , xn) =
∑

u∈F
n
2

au

n∏

i=1

xi
ui ,

where au ∈ F
m
2 . The algebraic degree deg(F ) of F equals the maximum Hamming

weight of u such that au �= 0.
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An S-box F is said to be balanced if it takes every value of Fm
2 the same value

2n−m of times. Particularly, an n × n S-box is balanced if it is a permutation on
F

n
2 .

The Walsh spectrum of an n×m S-box F with respect to two vectors u, v ∈ F
n
2

is defined by
WF (u, v) =

∑

x∈F
n
2

(−1)u·F (x)⊕x·v,

where u · F for all u ∈ F
n∗
2 are called component functions and “·” is an inner

product over F2, for instance, u · F (x) = u1f1(x) ⊕ u2f2(x)⊕, . . . ,⊕umfm(x).
The nonlinearity of an n × m S-box is defined as the minimum Hamming

distance between all non-zero component functions of F and all n-variable affine
Boolean functions [3], which can be determined in terms of the Walsh spectrum,
that is,

NF = 2n−1 − 1
2

max
u∈F

n
2 ,v∈F

m∗
2

|WF (u, v)| .

Here, the hamming distance between two Boolean function f, g equals wH(f⊕g).
Ideally, a cryptographically significant S-box should have high nonlinearity to
possess good confusion characteristics.

The derivative of S-box F with regard to vector a ∈ F
n
2 is the function

DF (x, a) = F (x ⊕ a) ⊕ F (x). Let δF (a, b) denote the number of the solutions to
the equation DF (x, a) = F (x ⊕ a) ⊕ F (x) = b, namely,

δF (a, b) = |{x ∈ F
n
2 |F (x) ⊕ F (x ⊕ a) = b}| .

An n × m S-box F is called differentially δF -uniform [19], if there exist at most
δF solutions to the equation for every non-zero a ∈ F

n
2 and every b ∈ F

m
2 , i.e.,

δF = max
a∈F

n∗
2 ,b∈F

m
2

δF (a, b).

The autocorrelation function of S-box F is defined as

ΔF (u,w) =
∑

x∈F
n
2

(−1)u·(F (x)⊕F (x⊕w),

where w ∈ F
n
2 . The maximum absolute value in the autocorrelation spectra,

except that w, u = (0, 0, . . . , 0), of an n × m F is referred to as the absolute
indicator of the global avalanche characteristics (GAC) [27], and is expressed as,

ΔF = max
u∈F

n∗
2 ,w∈F

n∗
2

|ΔF (u,w)| .

The signal-to-noise ratio of an n × m S-box F is formulated in terms of the
Walsh spectrum as below [8]. In a way, a low signal-to-noise ratio suggests that
S-boxes have good resistance towards DPA.

SNR(F ) = m2n

⎛

⎜⎝
∑

u∈F
n
2

⎛

⎝
∑

v∈F
m
2 ,wH(v)=1

WF (u, v)

⎞

⎠
4
⎞

⎟⎠

− 1
2

.
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The revised transparency order of S-boxes was given by [4], and has been con-
firmed experimentally that S-boxes with low revised transparency order indeed
have much better DPA resistance than those with high revised transparency
order. The revised transparency order is depicted as below.

τF = max
β∈F

m
2

(
m − 1

22n − 2n

∑

α∈F
∗
2

m∑

j=1

∣∣∣∣∣

m∑

i=1

(−1)βi⊕βjCfi,fj
(α)

∣∣∣∣∣

)
,

where Cfi,fj
(α) =

∑
x∈F

n
2
(−1)fi(x)⊕fj(x⊕α) is the crosscorrelation function

between the coordinate functions fi and fj of F .

3 Search Strategy

It is observed that altering a few bits of a given S-box, the cryptographic proper-
ties, such as nonlinearity, differential uniformity, and revised transparency order,
of the given S-box would change only a little. Based on this fact, we develop an
efficient algorithm to construct S-boxes with very high nonlinearity, low differ-
ential uniformity and low revised transparency order.

3.1 Search Algorithm

The search algorithm our developed is described roughly as Algorithm1 shows.
We are concerned with not all of the bits in the truth table of a given S-box
can be altered. Thus, we first generate a candidate pool (denoted as PF ), which
consists of optional bits to yield new S-boxes corresponding to the given S-box.
The addition of such a pool can narrow the search space, and enhance the search
algorithm efficiency.

At each iteration, we select some bits in the candidate pool. It is worth
noting that all bits in the pool belong to the same coordinate functions. Plus
the number of altered bits, denoted as b, must be even. The hamming weight of
vector vb must be 2b−1, where vb is constructed by bits of these b outputs. The
reason that why we set these restrictions is that we want to restrict the search
space to the balanced S-boxes classes. Technically, 0 ≤ b ≤ 2n. It is clear that
the value of b has a direct effect on the search space, i.e., the greater the value
of b is, the larger the search space is. Hence, the value of b should be set to be a
pertinent value. In our experiment, we set b to be 2 as the initial one. It is noted
that the value of b may be changed in a restrained way, if the search algorithm
gets stuck in a local optimum.

The algorithm accordingly yields one new S-box (denoted by F ′) by altering b
bits of the original S-box (denoted by F ). In our experiment, the algorithm aims
to find the S-boxes with the minimum value of the cost functions. We calculate a
cost function associated with the F ′ and thereafter put F ′ and its corresponding
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Algorithm 1. Developed algorithm to search for highly-nonlinear S-boxes with
improved DPA-resistance
Require: An n × n balanced S-box (F0), MAX ITER
Ensure: generated n × n balanced S-boxes with the best desired cryptographic char-

acteristics (Fbest)
1: F ← F0

2: maxwalsh ← CALwalsh(F )
3: mintof ← CALtof (F )
4: mindu ← CALdu(F )
5: Insert F into the set Sinput

6: for i → 1 toMAX ITER do
7: costmin = MIN COST
8: Generate a pool (PF ) of altered positions corresponding to F
9: for j → 1 to PF .size do

10: Select b bits in the candidate pool
11: Generate a new S-box F ′ by altering selected bits while holding F ′ balanced
12: maxwalsh = CAL new walsh(F ′)
13: NF (F ′) = 2n−1 − 1

2
maxwalsh

14: if NF (F ′) ≥ NL then
15: τF = CAL new tof(F ′)
16: δF = CAL new du(F ′)
17: cost = C2(F

′)
18: else
19: cost = C1(F

′)
20: end if
21: Insert F ′ and its corresponding value of cost into the Hash Map HF

22: if cost ≤ costmin then
23: costmin = cost
24: end if
25: end for
26: Sort the Hash Map HF by its cost in non-increasing order
27: while Sinput.find(HF .last()) equals TRUE do
28: HF .remove(HF .last())
29: end while
30: if HF .empty() equals TRUE then
31: Return Fbest

32: �Algorithm terminates
33: else
34: F = HF .last()
35: end if
36: Insert F into Set Sinput

37: if F ′ has better cryptographic properties than Fbest then
38: Fbest = F ′

39: end if
40: end for
41: Return Fbest
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value of cost function into a data structure (denoted as HF ). When the candidate
pool PF associated with F yields all possible S-boxes, we choose one generated
S-box, which minimizes the cost functions, as the input of the next iteration. In
order to prevent the algorithm from resulting in a bad loop, we also provide a set
(denote as Sinput) to store the input that has been selected. If current selected
S-box has been in set Sinput, we remove it from HF . Subsequently, we rechoose
one S-box with the minimum value of the cost function in HF , and repeat the
process mentioned above until the selected S-box is a unique one. Otherwise, the
algorithm will terminate.

3.2 Cost Function

A low algebraic degree of balanced S-boxes can be easily transformed to be high.
Hence, we do not take the algebraic degree as the main component of designing
the cost functions. The essential components of the cost functions are mainly
nonlinearity, differential uniformity, and revised transparency order. The lower
value of cost implies the better cryptographic properties in terms of nonlinearity,
differential uniformity and DPA resistance. In our experiment, the cost functions
are defined as follows.

C1(F ) =
∑

u∈F
n∗
2

( ∑

v∈F
n
2

(W2
F (u, v) − 2n

)R
)

+
1

22n − 2n

∑

a∈F
n∗
2 ,b∈F

n
2

Ng4(δF (a, b)) +
1
n

τF .

It’s easily observed that,

– the first term of the cost function C1(F ) is to restrict all component functions
of the given S-box F the squared distance to Bent functions with respect to
Walsh spectra. Therefore, this term can improve the nonlinearity of S-boxes
to be closed to that of Bent functions. The parameter R is a small positive
number, and is set to be 3–5 in our experiment

– the second term
∑

a∈F
n∗
2 ,b∈F

n
2

Ng4(δF (a, b)) is to restrict the spread of differen-
tial spectra of the given S-box F , where Ng4(δF (a, b)) represents the number
of δF (a, b) > 4. This term aims to find S-boxes having more potential to be
converted to S-boxes with differential uniformity 4

– the third term of the cost function C1(F ) is designed for searching S-boxes
with lower revised transparency order. In our experiment, we investigate that
the higher value of the third term is, the higher revised transparency order
will be. This term plays a slightly important and necessary role in the cost
function C1(F )

In addition, the second cost function will be employed, if nonlinearity of gener-
ated S-boxes accords with the requirement, and is defined as

C2(F ) = α × τF + δF ,
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where α is a parameter to balance the differential uniformity and revised trans-
parency order.

Table 1. Comparison of cryptographic properties between our proposed S-boxes and
those of the AES S-box and the known S-boxes in the literatures

NF δF τF deg(F ) ΔF SNR

AES Rijndael 112 4 6.9160 7 32 9.6000

Proposed S-box #1 112 4 6.8820 7 32 9.1092

Proposed S-box #2 110 4 6.8754 7 40 9.0664

Proposed S-box #3 108 4 6.8711 7 48 8.8466

Proposed S-box #4 106 4 6.8662 7 48 8.8421

Proposed S-box #5 104 6 6.7636 7 48 7.2775

Proposed S-box #6 104 8 6.7414 7 64 7.4703

Ref.[17] 102 8 6.6898 7 98 7.4181

102 10 6.7627 7 64 5.5173

102 12 6.8466 7 64 7.1316

Proposed S-box #7 102 8 6.3784 7 64 5.8804

Ref.[22] 100 10 6.815 7 104 −
98 14 6.67 7 96 −
92 12 6.869 7 96 −

4 Experimental Results

We define the profile of an S-box as its nonlinearity, differential uniformity, alge-
braic degree, revised transparency order, signal-to-noise ratio, and absolute indi-
cator. In Table 1, we exhibit the profiles of the major proposed S-boxes using our
devloped algorithm. We first employ the reverse function as the initial input of
our search algorithm. As a result, the algorithm generates an 8×8 balanced S-box
with the profile (112, 4, 7, 6.8820, 9.1092, 32), which is much better than AES
S-box with revised transparency order 6.9161 and signal-to-noise ratio 9.6000.
This noticeable improvement can provide S-boxes much more DPA-resistance
than AES S-box. The S-box with the profile (112, 4, 7, 6.8820, 9.1092, 32) is
the proposed S-box in Table 1, and its truth table is given below (in decimal
format):

[69, 133, 252, 61, 136, 19, 155, 145, 88, 120, 172, 123, 103, 54, 43, 144, 27, 72,
161, 142, 113, 112, 151, 210, 231, 81, 165, 163, 10, 202, 92, 63, 143, 206, 158,
247, 119, 208, 253, 99, 108, 170, 106, 164, 236, 194, 159, 127, 140, 153, 39, 132,
101, 110, 73, 86, 241, 177, 16, 18, 60, 117, 149, 20, 40, 128, 240, 118, 135, 204,
93, 7, 116, 89, 179, 239, 4, 70, 152, 31, 48, 176, 0, 71, 147, 100, 137, 34, 28, 97,
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9, 134, 214, 173, 209, 201, 53, 250, 76, 59, 189, 190, 69, 1, 230, 192, 162, 180, 58,
229, 167, 114, 55, 29, 249, 216, 83, 25, 215, 233, 24, 105, 80, 238, 111, 183, 218,
227, 222, 181, 50, 44, 37, 67, 237, 32, 90, 47, 255, 21, 51, 139, 141, 244, 64, 157,
13, 197, 196, 3, 219, 213, 95, 166, 96, 154, 87, 251, 198, 188, 45, 5, 33, 207, 12,
182, 195, 6, 248, 11, 148, 191, 168, 35, 221, 184, 171, 175, 121, 160, 17, 205, 187,
224, 23, 107, 232, 62, 178, 85, 156, 125, 203, 57, 46, 102, 146, 56, 91, 79, 199,
169, 245, 109, 211, 8, 217, 226, 186, 52, 26, 84, 94, 124, 2, 104, 98, 82, 235, 246,
49, 174, 223, 78, 234, 38, 22, 64, 228, 75, 36, 150, 77, 185, 122, 14, 66, 242, 74,
131, 42, 220, 15, 30, 130, 138, 254, 129, 212, 41, 200, 193, 243, 225, 115, 126]

We also generate some cryptographically significant S-boxes with nonlinear-
ity level of 104–110 and good revised transparency order (there is no known
S-box of this nonlinearity level with good revised transparency order). More-
over, the developed algorithm captures some noteworthy improved results based
on recent work of B. Mazumdar and D. Mukhopadhyay [17]. The best achieved
nonlinear S-boxes given by [17] have the nonlinearity 102, whose profiles are
(102, 8, 7, 6.6898, 7.4181, 98), (102, 10, 7, 6.7627, 7.4181, 64), and (102, 12,
6.8466, 7.1316, 64), respectively. As a comparison, our proposed S-box #7 has
much better revised transparency order 6.3784, signal-to-noise ratio 5.8804 and
absolute indicator 64, while possessing the same nonlinearity, differential unifor-
mity and algebraic degree. The proposed S-boxes has a substantial enhancement
in terms of DPA-resistance. We give the truth table of proposed S-box #7 as
below. In addition, more other proposed S-boxes can be found in the Appendix
section.

[255, 73, 146, 195, 5, 217, 148, 205, 74, 67, 194, 154, 9, 107, 27, 82, 148, 137, 132,
233, 71, 213, 103, 3, 66, 245, 210, 234, 54, 147, 44, 249, 41, 104, 51, 159, 13, 36,
219, 147, 142, 129, 251, 18, 107, 103, 2, 22, 53, 222, 225, 116, 173, 199, 213, 85,
108, 156, 38, 178, 88, 60, 243, 112, 82, 116, 144, 218, 98, 125, 191, 204, 18, 10,
144, 217, 167, 241, 39, 14, 29, 95, 128, 124, 247, 26, 4, 110, 214, 48, 206, 169,
4, 184, 44, 188, 104, 95, 29, 93, 211, 64, 136, 70, 91, 59, 143, 39, 171, 128, 138,
55, 216, 48, 121, 84, 220, 226, 100, 119, 184, 60, 112, 25, 231, 178, 224, 190, 166,
160, 184, 198, 33, 109, 180, 41, 76, 244, 254, 129, 126, 116, 25, 252, 48, 207, 4,
203, 32, 1, 179, 11, 79, 35, 98, 160, 94, 25, 28, 56, 58, 46, 191, 103, 133, 76, 250,
39, 239, 62, 247, 39, 8, 95, 92, 90, 169, 172, 32, 35, 157, 242, 127, 155, 8, 42, 113,
187, 88, 220, 105, 159, 146, 99, 246, 212, 123, 64, 170, 252, 229, 228, 129, 133,
213, 113, 140, 28, 150, 49, 78, 195, 31, 171, 203, 47, 87, 145, 73, 197, 21, 253, 46,
175, 177, 234, 96, 63, 242, 194, 234, 78, 157, 193, 205, 151, 160, 230, 238, 199,
101, 156, 33, 7, 240, 10, 115, 251, 239, 129, 165, 245, 195, 158, 79, 16]

Since some known S-boxes, e.g., [5,15,16,21,24], do not provide the revised trans-
parency order of S-boxes they attained, we cannot make a direct comparison.
But the nonlinearity of those work is not high, the differential uniformity is too
high. From Table 1, it is clear to see that our S-boxes have the best trade-off
between all the important cryptographic criteria, among all currently known
S-boxes of [5,15–17,21,22,24].
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5 Conclusion

In this paper, we propose a novel and efficient algorithm to search for S-boxes
with very high nonlinearity, low differential uniformity, and improved resistance
against DPA attacks. Some resitrictions are employed to restrict the search
space of the balanced S-boxes classes. We also apply some approaches to nar-
row the search space. As a result, we generate a balanced S-box with profile
(112, 4, 7, 6.8820, 9.1092) using our devloped algorithm. The proposed S-boxes
possess much better revised transparency order and signal-to-noise ratio, which
are the best guidance (up to now) to quantify the resistance of S-boxes against
DPA attacks. We list some of the best constructed S-boxes and give a com-
prehensive comparison, which shows that our proposed S-boxes have the best
trade-off than those of previous works.

Appendices

Proposed S-box #2: nlf = 110, τF = 6.8754
[69, 82, 172, 84, 3, 4, 188, 93, 88, 52, 252, 246, 251, 135, 213, 152, 27, 169, 165,
102, 67, 214, 244, 137, 231, 57, 161, 109, 139, 147, 32, 209, 125, 69, 205, 58, 106,
30, 143, 41, 224, 167, 85, 189, 158, 193, 108, 220, 184, 215, 182, 111, 16, 64, 140,
185, 6, 218, 35, 83, 39, 14, 241, 38, 116, 157, 240, 154, 174, 136, 104, 43, 40, 166,
179, 197, 124, 103, 78, 155, 28, 181, 0, 21, 8, 113, 79, 92, 48, 47, 9, 44, 56, 10,
226, 151, 129, 159, 225, 119, 76, 62, 230, 175, 126, 253, 138, 236, 162, 160, 53,
107, 150, 149, 242, 101, 249, 191, 24, 5, 131, 73, 75, 60, 80, 207, 55, 11, 21, 248,
238, 33, 228, 117, 74, 86, 105, 45, 216, 148, 66, 110, 36, 20, 250, 23, 180, 121,
130, 194, 115, 99, 192, 171, 59, 232, 243, 208, 254, 127, 217, 210, 146, 202, 134,
50, 176, 90, 91, 63, 91, 112, 71, 255, 97, 222, 223, 145, 94, 54, 239, 13, 128, 95,
2, 144, 49, 19, 118, 96, 217, 64, 177, 234, 132, 122, 168, 25, 195, 227, 153, 77, 18,
22, 12, 183, 221, 233, 170, 42, 247, 200, 178, 190, 187, 114, 206, 212, 164, 15, 17,
229, 156, 1, 237, 201, 51, 100, 142, 245, 81, 203, 141, 34, 37, 173, 163, 46, 72,
199, 219, 31, 87, 204, 61, 235, 120, 186, 198, 7, 196, 70, 123, 26, 133, 98]

Proposed S-box #3: nlf = 108, τF = 6.8711

[ 69, 82, 172, 84, 3, 4, 188, 93, 88, 52, 252, 246, 251, 135, 213, 152, 27, 169, 165,
102, 67, 214, 244, 137, 231, 49, 161, 109, 139, 147, 32, 209, 125, 73, 205, 58, 106,
30, 143, 41, 224, 163, 85, 189, 158, 193, 108, 220, 184, 215, 182, 111, 16, 64, 140,
185, 6, 218, 35, 87, 39, 14, 241, 38, 116, 157, 240, 154, 174, 136, 104, 43, 40, 166,
179, 197, 124, 103, 78, 155, 28, 181, 0, 21, 8, 113, 79, 92, 48, 47, 9, 44, 56, 10,
226, 151, 129, 159, 225, 119, 76, 62, 230, 175, 126, 253, 138, 236, 162, 160, 53,
107, 150, 149, 242, 101, 249, 191, 24, 5, 131, 73, 75, 60, 80, 207, 55, 11, 29, 248,
238, 33, 228, 117, 74, 86, 105, 45, 216, 148, 66, 110, 36, 20, 250, 23, 180, 121,
130, 194, 119, 99, 192, 171, 59, 232, 243, 208, 254, 127, 217, 210, 146, 202, 134,
50, 176, 90, 91, 63, 211, 112, 67, 255, 97, 222, 223, 145, 94, 54, 239, 13, 128, 95,
2, 144, 49, 19, 118, 96, 89, 64, 177, 234, 132, 122, 168, 25, 195, 227, 153, 77, 18,
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22, 12, 183, 221, 233, 170, 42, 247, 200, 178, 190, 187, 114, 206, 212, 164, 15, 17,
229, 156, 1, 237, 201, 51, 100, 142, 245, 81, 203, 141, 34, 37, 173, 167, 46, 72,
199, 219, 31, 87, 204, 61, 235, 120, 186, 198, 7, 196, 70, 123, 26, 133, 98]
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Abstract. We propose a new technique for implementing an arbitrary
1-variable function during a bootstrapping procedure based on an inte-
gerwise variant of the fully homomorphic encryption scheme TFHE. The
integerwise TFHE was implicit in the original TFHE paper (Asiacrypt’
2016), and Bourse et al. provided an explicit form (CRYPTO’ 2018).
However, the modified integerwise TFHE scheme can perform only the
homomorphic evaluations of the integer addition and the sign function,
and thus, the application of the scheme is restricted.

Our scheme has diverse functionalities of the integerwise TFHE
scheme. Based on our bootstrapping procedure, we propose several useful
basic functions: homomorphic equality testing, multiplication by a binary
number and a division algorithm. We also derive empirical results that
show that our division algorithm is approximately 3.4x faster than the
fastest division algorithm in the literature based on fully homomorphic
encryption schemes, with a runtime less than 1 s for each 4-bit integer
division task.

Keywords: Fully homomorphic encryption · Secure computation ·
Secure division · LWE · TFHE

1 Introduction

Fully homomorphic encryption (FHE) provides a method for performing com-
putations on encrypted data without the requirement of decryption. The first
construction of FHE was introduced by Gentry in 2009 [19,20], with numerous
improvements [4–6,15–17,21,22,31–33] having been proposed since, resulting in
a variety of new features and underlying hardness assumptions. The applica-
tions of FHE are widespread, and one of the most remarkable applications is
privacy-preserving delegated computation, such as privacy-preserving machine
learning as a service (MLaaS) [2,23]. Users of such a service require that their
sensitive data to be hidden from the server, and the server may not want to send
their cognitive models to users. FHE enables this scenario elegantly, with non-
interactivity; methods based on secure multi-party computation (MPC) require
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more interactions, and often, users need to be online during the computation.
However, because of the inefficiency of the existing FHE schemes, most applica-
tions are constructed by avoiding operations considered to be non-FHE friendly,
such as comparison, division, and various nonlinear functions.

FHE schemes feature integerwise or bitwise encryption. In bitwise encryption
the plaintext space is Z2, and in integerwise encryption the plaintext space is
Zp for some p > 2. Several studies [11,12,34] have been performed on basic inte-
ger arithmetic. The proposed algorithms are primarily for bitwise encryption,
and they simply leverage the classical algorithms for logical circuits, such as the
full adder, long multiplication, and nonrestoring division methods. Although
the bitwise integer comparison algorithm is efficient [9], bitwise integer addi-
tion and multiplication are not practical. In the case of integer addition, for
example, a full adder needs to perform homomorphic multiplication l times
for an l-bit integer. Since integer multiplication calls integer addition approx-
imately l times, homomorphic multiplication must be performed approximately
l2 times [34]. In contrast, integerwise FHE schemes can perform integer addi-
tion and multiplication efficiently, since the implementation of homomorphic
addition (multiplication) is merely integer addition (multiplication). Based on
this fact, recent works [1,2,23,25] on privacy-preserving MLaaS have used inte-
gerwise homomorphic encryption. However, the typical algorithms considered in
these applications avoid arithmetic operations such as division and comparison,
which are considered to be inefficient. Although concrete algorithms for secure
integerwise comparison [27] and integerwise division [29] have recently been pro-
posed, they are still not efficient enough to be considered practical. Efficient
algorithms for basic arithmetic operations are required to increase the overall
efficiency of higher-level applications.

There are many open source implementations for homomorphic encryption,
e.g., HELib [24], HEAAN [13], PALISADE [28], SEAL [10] and TFHE [15–17].
For the purposes of our work, we consider the TFHE scheme and its associ-
ated library. TFHE is an improved variant of the FHEW scheme [18], which
can perform the bootstrapping procedure in less than 0.1 s. The bootstrapping
procedure is the bottleneck of FHE constructions, and thus, the TFHE scheme
has attracted attention from researchers and implementers as one of the fastest
FHE schemes. However, TFHE does not (explicitly) support integerwise arith-
metic. As noted above, although bitwise integer addition and multiplication are
not practical since they need to perform bootstrapping as many times as the
number of bits, integerwise addition and multiplication only need to perform
bootstrapping once. Although Bourse et al. [2] modified TFHE to enable inte-
gerwise encryption, the modified scheme can only perform integer addition and
the sign function.

1.1 Our Contribution

The modified TFHE scheme from Bourse et al. [2] enables integerwise encryp-
tion, but can only perform integer addition and the sign function. In this paper,
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we propose a technique to perform an arbitrary function of one variable dur-
ing a bootstrap procedure on the integerwise TFHE scheme. The technique is,
basically, the generalization of the constant variable “testvector” in TFHE boot-
strapping.

We apply our modified bootstrapping procedure to several homomorphic
evaluations of fundamental arithmetic by showing the specific setting of the value
of the testvector. We propose, on integerwise TFHE bootstrapping, a homomor-
phic equality test (Eq, Algorithm 4), a homomorphic equality test between a
ciphertext and a plaintext (ConstEq, Algorithm 5), homomorphic multiplication
with a binary number (MultbyBin, Algorithm 6), and homomorphic division with
a constant plaintext (DivbyConst, Algorithm 7). Using these algorithms as build-
ing blocks, we also construct a homomorphic division algorithm on integerwise
TFHE (Div, Algorithm 8). We derive empirical results that show that our divi-
sion algorithm is approximately 3.4x faster than the current state-of-the-art
division algorithms. We also show that our homomorphic division algorithm can
be generalized to a homomorphic calculation of an arbitrary 2-variable function.

2 Preliminaries

2.1 Background on TFHE

Notations. We denote the security parameter as λ. The torus of real num-
bers modulo 1 R/Z is denoted by T. For any ring R, R[X] denotes poly-
nomials of the variable X with coefficients in R. We denote R[X]/(XN + 1)
by RN [X], and Z[X]/(XN + 1) by ZN [X], and we write their quotient as
TN [X] = RN [X]/ZN [X], which is the ring of polynomials in X with quotient
XN + 1 and real coefficients modulo 1. We write the set {0, 1} as B. We write
vectors in bold. We use s U←− S to denote the process of sampling s uniformly at
random over S, and e ← χ denotes the process of sampling e according to the
probability distribution χ.

Learning with Errors. The learning with errors (LWE) problem was introduced
by Regev [30]. In this work we define LWE over the torus, as in [14,15]. Let n
be a positive integer and χ be a probability distribution over R. For a secret
vector s ∈ B

n, we define the LWE distribution as LWEn,s,χ := {(a, b) | a U←−
T

n, e ← χ, b = a · s + e ∈ T}. Search-LWE is the problem of recovering the
vector s from a collection {(ai,ai · s + ei)}m

i=1 of the samples drawn according
to LWEn,s,χ. Decision-LWE is the problem of distinguishing whether samples
{(ai, s · ai + ei)}m

i=1 are drawn from the LWE distribution LWEn,s,χ or uniformly
from T

n+1.
For the distribution of the error, the sub-Gaussian distribution is used in

the TFHE. A distribution χσ over R is σ-sub-Gaussian if and only if it satisfies
∀t ∈ R, E(etX) ≤ eσ2t2/2. Let χ and χ′ be two independent σ- and σ′-sub-
Gaussian stochastic variables. Then, for all k, l ∈ R, kχ + lχ′ is

√
k2σ2 + l2σ′2-

sub-Gaussian.
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Encryption from LWE. We outline Regev’s bitwise encryption scheme [30], which
is used in TFHE. Let m ∈ B be a plaintext. Then, the scheme is described as
follows: On inputting the security parameter λ, the public parameters are fixed
as n = n(λ), σ = σ(λ), and the setup algorithm Setup(λ) samples s U←− B

n

and outputs s. The encryption algorithm Enc(s,m) samples a U←− T
n and e ←

DTN [X],σ, which is a Gaussian distribution with noise parameter σ, then outputs
(a, b), where b = a ·s+e+m/2. The decryption algorithm Dec(s, (a, b)) returns
�2(b − a · s)�. Under the condition that the noise e is bounded as

|e| < 1/4, (1)

decryption works by multiplying by 2 and rounding because 2(b−a ·s) = 2e+m,
and |2e| < 1

2 ; therefore �2(b−a·s)� = m. This scheme can be extended to encrypt
nonbinary values as we will explain in Sect. 2.3.

TLWE. TLWE is a generalization of LWE and ring-LWE [26], which is the analog
on the torus of the general-LWE problem of [3]. Let k ≥ 1 be an integer, N
is a power of 2 and χ is an error distribution over RN [X]. A TLWE secret key
s ∈ BN [X]k is a vector of k polynomials over ZN [X] with binary coefficients.
Given a message encoded as a polynomial μ ∈ TN [X], a fresh TLWE encryption
of μ under the key s is a sample (a, b) ∈ TN [X]k × TN [X], with a ← TN [X]k

and b = s · a + μ + e, where e ← χ.
From a TLWE encryption (a, b) of a polynomial μ ∈ TN [X] under a TLWE

key s ∈ BN [X]k, we can extract an LWE encryption of the constant term of μ
with SampleExtract, which is a simple procedure of extracting the coefficients
of the TLWE sample. We denote the extracted LWE encryption by (a′, b′) :=
SampleExtract((a, b)), where a′ = (coefs(a1(1/X)), . . . , coefs(ak(1/X))) and
b′ is the constant term of b, under an extracted key s′ = KeyExtract(s)
:= (coefs(s1(X)), . . . , coefs(sk(X))) ∈ Z

kN , and coefs(a(X)) denotes a vector
of coefficients of a ∈ TN (X).

Choosing a large N and k = 1 corresponds to the classical (binary) ring-
LWE. When N = 1 and k is large, TLWE is simply binary LWE. In the TFHE
library [7], N and k are set to N = 1024 and k = 1 as default parameters; TLWE
is used as ring-LWE in the library, i.e., the TLWE samples are simply ring-LWE
samples (a, b) ∈ TN [X] × TN [X].

TGSW. TGSW is a generalized version of the GSW FHE scheme [22]. TGSW
can be seen as the matrix equivalent of TLWE, as GSW can be seen as the
matrix equivalent of LWE. Each row in the TGSW sample is a TLWE sample.
Following [15], we also define an external product �, that performs the mapping
� : TGSW × TLWE → TLWE. Basically, the external product of the TGSW
encryption of a polynomial μ1 ∈ TN [X] and a TLWE encryption of a polynomial
μ2 ∈ TN [X] is a TLWE encryption of (μ1 · μ2) ∈ TN [X]. More details can be
found in [15].
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2.2 Overview of TFHE Bootstrapping

This section revisits the TFHE bootstrapping proposed in [15] to introduce the
rest of the paper. Algorithm 1 shows the bootstrapping algorithm.

As already stated, in the default setting of the TFHE library [7], the dimen-
sion of the TLWE sample k is set to k = 1. In this setting, TLWE samples are
simply ring-LWE samples (a, b) ∈ TN [X]×TN [X]. Thus, in the rest of this paper,
we assume that k = 1, and we consider a TLWE sample (a, b) ∈ TN [X]×TN [X],
for simplicity.

Input. The input of the bootstrapping procedure is an LWE sample (a, b) ∈
T

n × T, where b = a · s + e + min
2 . Here, the required condition to ensure that

decryption of LWE encryption succeeds is |e| < 1
4 .

Rounding (line 2). After line 2 of rounding, we obtain an LWE sample over
integers (a, b) ∈ Z

n
2N × Z2N , which satisfies

b − a · s = �2Nb� −
n∑

i=1

�2Nai�si = 2Nb + ξ0 −
n∑

i=1

(2Nai + ξi)si

= 2N (e + min/2) + eACC, (2)

where eACC := ξ0−∑n
i=1 ξisi and ξ0, . . . ξn are rounding errors that are uniformly

distributed in (− 1
2 , 1

2 ). Please note that eACC = 0 if the coefficients (a, b) ∈
1

2N Z/Z, and thus we can ignore eACC in the TFHE library when we use its
default parameter N = 1024.

BlindRotate (line 4 and line 5). At the beginning of iteration i = 1, ACC is a
trivial TLWE ciphertext (0,Xb · testv) ∈ TN [X] ×TN [X], so ‖Err(ACC1)‖∞ = 0.
At the end of rotation, from Theorem 4.6 in [15] we obtain

‖Err(ACCn)‖∞ ≤ 2n(k + 1)lNβαBK + n(1 + kN)ε, (3)
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where β = Bg/2 and ε = 1/2Bl
g are precision parameters of the gadget decom-

position and l ∈ N and Bg ∈ N. αBK is a noise parameter of the bootstrapping
key BK. After the iteration, the message of ACC is a polynomial Xb−as · testv.
From (2) and eACC = 0, we obtain ϕ((a, b)) := b − a · s = 2N (e + min/2) .

Recall that Xb−a·s · testv = Xb−a·s+N
2 · (1 + X−1 + · · · + X−(N−1)) · μ′. Here,

b − a · s + N
2 = 2Ne + N

2 + Nmin, and from (1) we obtain 0 < 2Ne + N
2 < N .

Thus, b−a · s+ N
2 ∈ (0, N) if min = 0, b−a · s+ N

2 ∈ (N, 2N) if min = 1. Then,
we obtain that the constant term of Xb−a·s · testv is μ′ and if min = 0, −μ′ if
min = 1. (Recall that XN + 1 ≡ 0, and X−i ≡ −XN+i.)

Extract (line 6). SampleExtract simply extracts the coefficients of the TLWE
sample. After SampleExtract, we obtain an LWE sample over the torus (a′, b′) :=
(coefs(a′′(X)), b′′

0) ∈ T
N × T, where coefs(a′′(X)) is a vector of coefficients of

a′′ ∈ TN (X) and b′′
0 ∈ T is a constant term of b′′ ∈ TN (X). The message of the

extracted sample msg((a′, b′)) is the constant term of (Xb−a·s · testv), which is
μ′ if min = 0 and −μ′ if min = 1. Thus, msg(u) = μ′ +msg(SampleExtract(ACC)
is 2μ′ if min = 0 and 0 if min = 1; i.e., msg(u) = μ · min. Since Extract adds no
extra noise, the size of the error of (a′, b′) remains to be ‖Err(ACC)‖∞.

KeySwitch (line 7). After KeySwitch, we obtain a TLWE ciphertext (a, b) ∈
T

n ×T under the secret key s, whose message is mout
2 ∈ T. We denote this TLWE

ciphertext by LWEs(mout) for simplicity. We use the same KeySwitch procedure
as in [15]. Here, KSs′→s,γ,t is a keyswitching key, where KSi,j ∈ LWEs,γ(s′

i ·
2−j) for i ∈ [1, N ] and j ∈ [1, t]. γ ∈ R is a noise parameter that satisfies
‖Err(KSi,j)‖∞ ≤ γ, and t ∈ N is a precision parameter. From Lemma 4.3 in
[15], we obtain ϕs(a, b) = ϕs(0, b′) − ∑N

i=1

∑t
j=1 a′

i,jϕs(KSi,j),= ϕs′(a′, b′) −
∑N

i=1

∑t
j=1 a′

i,jErr(KSi,j) +
∑N

i=1(a
′
i − a′

i)s
′
i. Thus, we obtain the bound on the

noise as ‖Err(a, b)‖∞ ≤ ‖Err(ACC)‖∞ + Ntγ + N2−(t+1) ≤ 2n(k + 1)lNβαBK +
n(1 + kN)ε + Ntγ + N2−(t+1), where a second inequality is derived by using
(3). We can ensure that the output of the bootstrapping procedure is a “fresh”
LWE sample by selecting the parameters that satisfy the upper bound from (1)
as follows:

2n(k + 1)lNβαBK + n(1 + kN)ε + Ntγ + N2−(t+1) < 1/4. (4)

2.3 Integerwise LWE Encryption

As in [2], we use a variant of the Regev encryption scheme that supports a
nonbinary message space. Let B ∈ N, and let plaintext min ∈ {−B, . . . , B − 1}.
Then, the integerwise LWE encryption scheme is described as follows:

Setup(λ): for a security parameter λ, fix n = n(λ) and σ = σ(λ); return s U←− B
n.

Enc(s,m): samples a U←− T
n and e ← DTN [X],σ, which is a Gaussian distribution

with noise parameter σ, and return (a, b), where b = a · s + e + m
2B .

Dec(s, (a, b)): return �(b − a · s) · 2B�.
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Under the condition that the noise e is bounded as

|e| < 1/4B, (5)

decryption works by multiplying by 2B and rounding because (b − a · s) · 2B =(
e + m

2B

) · 2B = m + 2Be and |2Be| < 1
2 holds from (5).

3 Integerwise General Functional Bootstrapping

We propose a modified variant of TFHE that encrypts integer plaintext and can
perform arbitrary functions during bootstrapping. On top of the integerwise LWE
encryption Sect. 2.3, we propose a general functional bootstrapping procedure
in Sect. 3.1. We discuss the security of our scheme in Sect. 3.2.

3.1 General Functional Bootstrapping

We propose a general functional bootstrapping procedure in Algorithm2. The
difference from Algorithm 1 is the test vector, which is used in BlindRotate.
In addition, the input of the bootstrapping procedure is the ciphertext of the
integer, which enables integerwise homomorphic evaluation.

Input. The input of the bootstrapping procedure is an LWE sample (a, b) ∈
T

n × T, where b = a · s + e + min/2B. Here, the required condition to ensure
that the decryption of the LWE encryption succeeds is (5).

Rounding (line 1). After rounding, we obtain an LWE sample over integers
(a, b) ∈ Z

n
2N × Z2N . Similar to (2), we obtain

b − as = 2N (e + min/2B) + eACC, (7)

and when N = 1024 we also obtain eACC = 0 as explained in Sect. 2.2.
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Fig. 1. Illustration of the slices for plaintext and bootstrapping (when B = 5)

BlindRotate (lines 3 and 4). At the beginning of the iteration i = 1, ACC is a
trivial TLWE ciphertext (0,Xb · testv) ∈ TN [X] × TN [X], As with the original
TFHE bootstrapping procedure, after the iteration, the message of ACC is a
polynomial Xb−as · testv. From (7) and eACC = 0, we obtain ϕ((a, b)) := b−as =
2N

(
e + min

2B

)
, and from (5), we obtain − N

2B < 2Ne < N
2B . Moreover, note that

the value of testv is different from that in the original TFHE bootstrapping. The
test vector is defined as testv := μ0 + μ1X

−1 + · · · + μN−1X
−(N−1) ∈ TN [X] in

our scheme. In the rest of this paragraph, we explain how to homomorphically
evaluate the input constant function f during bootstrapping by setting the value
of the coefficients of testv. See also Fig. 1, which illustrates our setting.

When min = 0, we obtain ϕ((a, b)) = 2Ne, thus (a, b) ∈ {− N
2B �, . . . ,  N

2B �}.
Then, the constant term of

Xϕ((a,b)) · testv = Xϕ((a,b)) · (μ0 + μ1X
−1 + · · · + μN−1X

−(N−1))

= Xϕ((a,b)) · (· · · − μN−1X
1 + μ0 + μ1X

−1 . . . )

is in {−μN−� N
2B �, . . . ,−μN−1, μ0, μ1, . . . , μ� N

2B �} := M0. For all μ ∈ M0, we

define its value as μ := f(0)
2B ∈ T. Note that now we have XN + 1 ≡ 0 ⇔ X−i ≡

−XN−i ⇔ Xi ≡ −X−(N−i).
When min = −B, similar to the case when min = 0, the constant term of

Xϕ((a,b)) · testv is in {μN−� N
2B �, . . . , μN−1, −μ0, −μ1, . . . , −μ� N

2B �} := M−B ,
elements of which are the sign inversions of those of M0. Thus, note that all
values of μ ∈ M−B are already defined as μ := −f(0)

2B ∈ T.
When min ∈ {1, . . . , B−1}, we obtain ϕ((a, b)) = 2N

(
e + min

2B

)
. Since − N

2B <

2Ne < N
2B holds from (5), we have N

2B < (min − 1
2 )N

B < ϕ((a, b)) < (min + 1
2 )N

B

< N . Thus, we obtain ϕ((a, b)) ∈ {⌈
(min − 1

2 )N
B

⌉
, . . . ,

⌊
(min + 1

2 )N
B

⌋}
, and the
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constant term of Xϕ((a,b)) ·testv is in {μ�(min− 1
2 )

N
B �, . . . , μ(min+

1
2 )

N
B �} := Mmin .

For all μ ∈ Mmin , we define its value as μ := f(min)
2B ∈ T.

When min ∈ {−(B − 1), . . . ,−1}, we have −N < (min − 1
2 )N

B <

ϕ((a, b)) < (min + 1
2 )N

B < − N
2B . Therefore, ϕ((a, b)) ∈ {⌈

(min − 1
2 )N

B

⌉
,

. . . ,
⌊
(min + 1

2 )N
B

⌋}
, then the constant term of Xϕ((a,b)) · testv is in

{−μN+�(min− 1
2 )

N
B �, . . . , −μN+(min+

1
2 )

N
B �}. Note that these values are the sign

inversions of the previously defined μ ∈ Mmin , for min ∈ {1, . . . , B − 1}.

Extract (line 5). The message of the extracted sample msg((a′, b′)) is the con-
stant term of (Xb−as · testv). By our construction of BlindRotate, its value
becomes μ = mout

2B = f ′(min)
2B ∈ T, where f ′ is defined in (6).

KeySwitch (line 7). After KeySwitch, we obtain a TLWE ciphertext (a, b) ∈
T

n ×T under the secret key s, whose message is mout
2B ∈ T. We denote this TLWE

ciphertext by LWEs(mout) for simplicity. Similar to (4), we can ensure that the
output of the bootstrapping procedure is a “fresh” LWE sample by selecting the
parameters that satisfy the upper bound from (5) as follows:

2n(k + 1)lNβαBK + n(1 + kN)ε + Ntγ + N2−(t+1) < 1/4B. (8)

3.2 Security

The security of the scheme basically relies on the original TFHE scheme since
our modification is performed only on the setting of the testvector, except for
the change in the bound of the noise given in (8). While the bound of TFHE
is fixed as 1/4 as shown in (4), it is 1/4B in our scheme. Thus, the larger the
plaintext we use is, the lower the bound becomes, which leads to the need to
use smaller noise in the TLWE sample if (8) does not hold. Conversely, after we
fix the security parameters and noise size, if we select B that satisfies (8), then
the security of our scheme solely relies on the original TFHE scheme. We use
the same security parameters and noise as the original TFHE scheme and set
the value of B that satisfies (8) in our experiments later in Sect. 5. Additionally,
note that the bound given in (8) does not depend on the function f ; thus, we
can perform arbitrary functions at the same cost.

4 Applications

In this section, we introduce several applications of our general TFHE boot-
strapping scheme (Algorithm 2):
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– Csign(a) = Sign(Ca): Sign function (Algorithm3)
– C(a=b) = Eq(Ca, Cb): Equality test (Algorithm4)
– C(a=b) = ConstEq(Ca, b): Equality test with a plaintext (Algorithm5)
– Ca·b = MultbyBin(Ca, Cb): Multiplication with a binary number (Algorithm6)
– C�a/d� = DivbyConst(Ca, d): Division by a plaintext (Algorithm7)
– C�a/d� = Div(Ca, Cd): Division (Algorithm 8)

Sign() is the homomorphic evaluation of the sign, which was proposed in [2]. We
show how to perform Sign() in our scheme, to clarify that our general framework
includes the homomorphic function. Note that the original integerwise TFHE
proposed in [2] can perform only sign() bootstrapping, and it cannot perform
multiplication of the integer ciphertexts.

We propose Eq and ConstEq in Sect. 4.2, MultbyBin in Sect. 4.3, and Divby-
Const in Sect. 4.4; then, based on these functions, we propose Div in Sect. 4.5.

4.1 Homomorphic Evaluation of Sign()

We show our homomorphic evaluation of the sign function in Algorithm3. This
algorithm is constructed by using Bootstrap as sign bootstrapping with an
input function sign. Specifically, we express fsign by defining the coefficients
μ0, . . . , μN−1 ∈ T of the testvector as follows:

⎧
⎪⎨

⎪⎩

μ0, . . . , μ� N
2B � := 0,

μ� N
2B �+1, . . . , μN−� N

2B �−1 := 1
2B ,

μN−� N
2B �, . . . , μN−1 := 0.

We can confirm, from (6), that mout = f ′(min) = fsign(min) = 1 for min ∈
{1, . . . , B − 1}, mout = f ′(min) = −fsign(B + min) = −1 for min ∈ {−B +
1, . . . ,−1}, mout = f ′(min) = 0 for min = 0, and mout = f ′(min) = −fsign(B +
min) = 0 for min = −B. Note that the output of the function is tricky in the case
of min = −B. The plaintext of the output with min = −B becomes the same
as that of min = 0 by construction. If needed, it is easy to avoid this feature by
restricting the input plaintext space as m ∈ {−B + 1, . . . , B − 1}.

4.2 Homomorphic Equality Test

We show that our general bootstrapping framework includes the homomorphic
evaluation of the equality test. Also, note that for our equality tests (Algorithms 4
and 5), we require that the input plaintexts m1 and m2 to be in {0, . . . , B − 1}
(or in {−B, . . . ,−1}). The restriction is needed because if m2 = B + m1, then
m2 − m1 = B and the output becomes true although m1 �= m2.
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In other FHE schemes, such as HElib, the integerwise homomorphic equality
test is typically performed based on Fermat’s little theorem [8]. For example,
in HElib (i.e., in the BGV FHE scheme [3]), the plaintext space is Zp for some
prime number p, and the homomorphic equality test is constructed based on the
fact that (x − y)p−1 ≡ 1 mod p if x − y �≡ 0, and 0 if x − y ≡ 0. However, this
algorithm is inefficient since it needs to perform homomorphic multiplication for
approximately log(p) times, and some bootstrapping is required to deal with the
noise growth caused by multiplication. Our equality test bootstrapping on inte-
gerwise TFHE is efficient since it can be performed with only one bootstrapping
procedure.

We show an equality test of two ciphertexts in Algorithm 4. This algo-
rithm is constructed by using Bootstrap as a “zero test” bootstrapping with the
input function fztest. Specifically, we express fztest by defining the coefficients
μ0, . . . , μN−1 ∈ T of the testvector as follows:

⎧
⎪⎨

⎪⎩

μ0, . . . , μ� N
2B � := B

2B = 1
2 ,

μ� N
2B �+1, . . . , μN−� N

2B �−1 := 0,

μN−� N
2B �, . . . , μN−1 := −B

2B = − 1
2 .

The equality test can also be performed between a ciphertext and a plaintext.
We show the algorithm in Algorithm5. The only difference is that the second
argument is a plaintext m1, and it is encoded as a trivial (0, νm1) LWE sample.

4.3 Homomorphic Multiplication with a Binary Number

We propose homomorphic multiplication with a binary number (MultbyBin) in
Algorithm 6. As we stated earlier, integerwise TFHE cannot perform a very
basic calculation: the multiplication of integer ciphertexts. MultbyBin enables us
to homomorphically multiply a ciphertext of an integer message by a ciphertext
of a binary message. This algorithm is called later in the homomorphic division
algorithm Div (Algorithm 8). We illustrate how the MultbyBin algorithm works in
Fig. 2. Note that this algorithm requires B to be an odd number, and we restrict
min ∈ {0, . . . , B − 1}, the details of which are explained later in this subsection.
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Fig. 2. Illustration of MultbyBin when (mint, mbin) = (1, 0). Left: line 1. Right: line 2.

To construct MultbyBin, we define 2 functions fid and fhalf to be used as an
argument of Bootstrap. The function fid : {0, . . . , B − 1} → {0, . . . , B − 1} is
defined as fid(x) := x. For fid, we define the coefficients μ0, . . . , μN−1 ∈ T of the
testvector as follows:

⎧
⎪⎪⎨

⎪⎪⎩

μ0, . . . , μ� N
2B � := fid(0)

2B = 0,

μ� (2i−1)N
2B �+1

, . . . , μ� (2i+1)N
2B � := fid(i)

2B = i
2B , for i = 1, · · · , B − 1,

μN−� N
2B �, . . . , μN−1 := −fid(0)

2B = 0.

The function fhalf is defined as fhalf(x) := x
2 if x is even, −x+1

2 − B−1
2 otherwise.

For fhalf , we define the coefficients μ0, . . . , μN−1 ∈ T of the testvector as follows:
⎧
⎪⎪⎨

⎪⎪⎩

μ0, . . . , μ� N
2B � := fhalf(0)

2B = 0,

μ� (2i−1)N
2B �+1

, . . . , μ� (2i+1)N
2B � := fhalf(i)

2B , for i = 1, · · · , B − 1,

μN−� N
2B �, . . . , μN−1 := −fhalf(0)

2B = 0.

Now, we explain how Algorithm6 works. In line 1, we homomorphically add
Cmbin , which is a ciphertext of a binary value in {B, 0}, and a trivial (noiseless)
ciphertext (0, B

2B ) to Cmint and the output of the bootstrapping procedure with
fid is stored as Ctmp. If Cmbin is a ciphertext of 0 (false), then Cmbin + (0, B

2B ) is
CB (a ciphertext of B), so the phase of Cmint is rotated to a position symmetrical
about the origin, as illustrated by the dashed arrow in the left image of Fig. 2.
Then, the phase of the ciphertext is rotated to the position symmetrical about
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the x-axis after the bootstrapping with fid; Ctmp becomes a ciphertext of −mint.
If Cmbin is a ciphertext of B (true), then Cmbin + (0, B

2B ) is C0 (a ciphertext
of 0), so Ctmp remains as a ciphertext of mint. Thus, in line 2, Cmint + Ctmp =
Cmint + Cmint when mbin = B, and Cmint + Ctmp = C0 when mbin = 0. After
bootstrapping with fhalf , Cmint + Cmint is converted to Cmint , and C0 remains
as C0, as illustrated in Fig. 2. Finally, we obtain Cmout = Cmint when mbin = B,
and C0 when mbin = 0.

As we noted before, we restrict that B must be odd. If B is even, when
mint = B

2 and mbin = B, the ciphertext in line 2 Cmint +Ctmp = Cmint +Cmint is
converted to C0, but we want it to remains as CB

2
. Thus, the restriction is needed

to perform bootstrapping with fhalf as we intended. In addition, we restrict the
input mint to be in {0, . . . , B − 1}, because we cannot1 perform multiplication
with binary on negative inputs mint ∈ {−B + 1, . . . ,−1} with MultbyBin. In
the case of mint ∈ {−B + 1, . . . ,−1}, if mbin is B (true), the plaintext of Ctmp

in line 1 becomes −(B + mint), and then the output becomes mout = 0 since
Ctmp + Cmbin = CB for all mint ∈ {−B + 1, . . . ,−1}, while mbin is true. If mbin

is 0, in line 1 the plaintext of Ctmp is B − mint, and then the output becomes
mout = −B +mint. Thus, the outputs of MultbyBin for mint ∈ {−B +1, . . . ,−1}
are not those of multiplication with binary and we need the restriction.

4.4 Homomorphic Division by a Constant

We propose an algorithm for homomorphic division by a constant (DivbyConst)
in Algorithm 7. The inputs of this algorithm are a ciphertext Cmin and a plaintext
md, and the output is a ciphertext of C�min/md�. Note that we restrict the input
as min ∈ {0, . . . , B − 1} and md ∈ {1, . . . , B − 1}.

Bitwise integer division by 2 on TFHE was proposed in [16]. However,
the algorithm corresponds to a right shift over the bits; thus, the dividend is
restricted to be a power of two. In [29], homomorphic division by a constant
was proposed based on HElib, i.e., the BGV FHE scheme [3]. This algorithm is
based on polynomial interpolation, which needs to calculate the list powers of
the ciphertexts {Ca, C2

a , C3
a , . . . , Cp−1

a }, where p is the modulo of the plaintext
space Zp. Thus, homomorphic multiplication needs to be performed p− 1 times,
which is not efficient. In contrast, our algorithm for homomorphic division by a
constant on integerwise TFHE is efficient since it can be performed with only
one bootstrapping procedure.
1 Precisely, although we can perform binary multiplication on mint = −B or B, which

is equivalent to mint = 0, we omit −B from the space of input mint for simplicity.
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The function fdiv,d : {0, . . . , B − 1} → {0, . . . , B − 1} is defined as fdiv,d(x)
:= x/d� for d ∈ {1, . . . , B − 1}, i.e., the output is the quotient of the integer
division (x/d). For fdiv,d, we define the coefficients μ0, . . . , μN−1 ∈ T of the
testvector as follows:

⎧
⎪⎪⎨

⎪⎪⎩

μ0, . . . , μ� N
2B � := fdiv,d(0)

2B = 0,

μ� (2i−1)N
2B �+1

, . . . , μ� (2i+1)N
2B � := fdiv,d(i)

2B = �i/d�
2B , for i = 1, · · · , B − 1,

μN−� N
2B �, . . . , μN−1 := −fdiv,d(0)

2B = 0.

(9)

Note that we need to store a set of {μ0, . . . , μN−1} for each d ∈ {0, . . . , B − 1}.
Thus we need to store NB values in T as precomputed constants. We need to
restrict the input min to be in {0, . . . , B − 1} since we cannot perform division
for min ∈ {−B, . . . ,−1} as the output mout becomes −(B − min)/md�.

4.5 Homomorphic Division

Finally, we present a homomorphic division algorithm Div in Algorithm 7. This
algorithm calls DivbyConst, ConstEq and MultbyBin. Since the subalgorithms
need the input min to be in {0, . . . , B − 1}, Div also follows this restriction.

Now, we explain how Div works. In line 1, we initialize a ciphertext Csum = C0

as a trivial TLWE sample with a message of 0, i.e., (0, 0). While in the for loop
in lines 2–6, we first calculate a ciphertext of �a/i�, C�a/i� with DivbyConst.
Then, we homomorphically check if the iteration index i equals d, which is the
plaintext of the input ciphertext Cd with ConstEq, and output the ciphertext of
the Boolean value C(d=i). In line 5, we obtain MultbyBin(C�a/i�, C(i=d)) = C�a/d�
if i = d, C0 otherwise. Thus, at the end of this loop, Csum = C0 + · · · + C�a/d� +
· · · + C0 = C�a/d�.
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Generalization to the 2-variable function. We show that the homomorphic divi-
sion algorithm can be generalized to a homomorphic evaluation of the arbi-
trary 2-variable function Func(Cm1 , Cm2) in Algorithm 9. The algorithm takes
two ciphertexts Cm1 and Cm2 , a 2-variable function f(x, y) and sets of coef-
ficients {μ0,y, . . . , μN−1,y} of the testvector, which corresponds to a 1-variable
function fy(x) := f(x, y) for all fixed y ∈ {0, . . . , B − 1}. Then, the algorithm
outputs Cf(m1,m2). This algorithm generalizes Div by replacing DivbyConst with
Bootstrap(Cmin , fy), which homomorphically evaluates the 1-variable function
fy(x) := f(x, y) over a ciphertext Cx.

5 Results of Homomorphic Division

We implemented our homomorphic division algorithm based on the TFHE
library [7]. Our parameters settings follow the default values given in the library,
which are as follows:

– The degree of the polynomials in the ring: N = 1024.
– The dimension of the LWE and TLWE sample: n = 500 and k = 1.
– Decomposition basis and length for TGSW ciphertexts: Bg = 210 and l = 2.
– Decomposition basis and length for KeySwitch: 2l and t = 8.
– Standard deviation of the noise in the keyswitching keys: σKS = 2.44 · 10−5.
– Standard deviation of the noise in the bootstrapping keys: σBK = 7.18 · 10−9.

As discussed in [15], these choices of parameters achieve a minimum security
level of 128 bits. Our single bootstrapping procedure takes approximately 10 ms
with a 3.4-GHz Intel Core i5 CPU. We implemented homomorphic division to
calculate a 4-bit integer, which is the same target as that of existing works on
homomorphic division algorithms [11,12,29,34]. To encrypt the 4-bit integer in
our scheme, we set B = 17.

In Table 1, we show our results and refer to the values given in the existing
works on homomorphic division. We ran Div (Algorithm 8) 1000 times and cal-
culated the average. Our method is approximately 3.4x faster than the fastest
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Table 1. Results: comparison with existing homomorphic division implementations.

Method FHE lib Type Bits Time [sec] Security λ [bits]

[12] HElib Bitwise 4 67.94 >128

[34] HElib Bitwise 4 14.63 >128

[11] HElib Bitwise 4 7.74 >80

[29] HElib Integerwise 4 3.15 >80

Ours (Div) TFHE Integerwise 4 0.93 >128

Nonrestoring division TFHE Bitwise 4 2.05 >128

Table 2. A breakdown of the running time of our Div (Algorithm 8)

Functions # of bootstrap Time [msec] # Of calls Mean [msec]

MultbyBin (line 5) 2 346.0 (37.2%) B − 1 = 16 21.6

ConstEq (line 4) 1 174.8 (18.8%) B − 1 = 16 10.9

DivbyConst (line 3) 1 175.8 (18.9%) B − 1 = 16 11.0

Bootstrap(·, fid) (line 5) 1 173.9 (18.7%) B − 1 = 16 10.9

method given in the table, despite achieving a higher level of security (λ > 128)
than that of the existing methods. To make a fair comparison, we also imple-
mented the nonrestoring division algorithm on the original (bitwise) TFHE
library with the same parameters that we used in our algorithm. The nonrestor-
ing division algorithm is a classic bitwise algorithm for integer division, which
is used in the existing works on integer division [11,12,34]. We can confirm
in Table 1 that our method is approximately 2.2x faster than the nonrestoring
division.

As a reference, in Table 2, we show the breakdown of the running time of our
Div, which was performed in 0.93 s. We show the running time cost for each of
MultbyBin, ConstEq, DivbyConst, and Bootstrap(·, fid) in line 5 of Algorithm 8.
We can confirm that the costs of these functions accounts for almost the whole
running time. Moreover, since the single bootstrapping procedure takes approx-
imately 10 ms with our PC, we can also confirm that the running time of these
functions is dominated by the cost of bootstrapping. Our functions can be per-
formed without extra costs over single bootstrapping.

Limitation in the Correctness. In the parameter setting showed in the beginning
of this section, the standard deviation of the final error after bootstrapping is
σ = 0.00961 as described in [15]. The probability that the noise amplitude after
the bootstrapping is larger than 1/16, i.e., the probability of the decryption
error, is upper bounded by erf(1/16

√
2σ) < 2−32. This condition is enough for

the original bitwise TFHE scheme. However, for our scheme, decryption fails if
the noise amplitude after the bootstrapping is larger than 1/4B, as shown in (8).
The probability of decryption error is upper-bounded by erf(1/4B

√
2σ) < 2−4.06

for our scheme. This upper-bound seems large, but we actually observed in our
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experiment that the decryption error rate is approximately 0.08% (4 decryption
errors in 5000 bootstrapping). In other words, our scheme has a trade-off between
the size of the plaintext space B and the decryption error rate. For 5-bit integers,
i.e., for B = 33, the upper bound of the probability of decryption error becomes
rapidly higher, to approximately 30%. Thus, our scheme is practical for ≤ 4 bit
integers input, for this parameter setting of the original TFHE. Please note that,
although decryption error rate of our scheme becomes higher as B grows, it does
not affect the security of the scheme, since the size of B does not change the size
of noise σ [2].

6 Conclusion

In this paper, we proposed a technique for realizing general functional bootstrap-
ping on the integerwise variant of TFHE by generalizing the test vector used in
bootstrapping and showing the concrete setting of the value of the test vector.
Based on our general functional bootstrapping, we extended the functionality
of the integerwise TFHE scheme to construct several useful functions on our
scheme, such as homomorphic equality testing, multiplication by a binary num-
ber and a division algorithm. As an example of the improvements derived from
our FHE scheme, we implemented our division algorithm and showed that its
runtime is less than 1 s, and is approximately 3.4x faster than the fastest division
algorithm. Efficient algorithms for basic arithmetic operations will undoubtedly
be needed to increase options for optimizing high-level applications of secure
computations, and we believe that our bootstrapping method can be used to
develop a diversity of homomorphic calculation algorithms.

Acknowledgements. We would like to thank Benjamin Curtis and Rachel Player for
their comments on early versions of the paper.
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Abstract. This paper presents rotational cryptanalysis of the Salsa core
function, and warns designers of symmetric-key primitives not to incorpo-
rate the Salsa core function into other encryption schemes. The core func-
tions of Serpent, ChaCha, and AES are actually incorporated into SOSE-
MANUK, BLAKE2, and SNOW-V, respectively. We first construct a toy
model of the Salsa core function, and observe the rotational characteris-
tics in the toy model by conducting an experiment. Since our experimen-
tal observations differ from the theoretical results presented by Khovra-
tovich et al. at FSE 2010 and FSE 2015, we provide their proofs. In addi-
tion, we then demonstrate the rotational distinguishers for the Salsa and
ChaCha permutations, and compare their results. While the rotational
distinguisher for the ChaCha permutation performs properly only up to 8
rounds with a probability of approximately 2−489.6, the rotational distin-
guisher for the Salsa permutation performs properly up to 32 rounds with
a probability of approximately 2−506.752. Consequently, our study clarifies
how weak the Salsa permutation is to rotational cryptanalysis. Finally, we
remark that our results do not affect the security of Salsa.

Keywords: ARX · Stream cipher · Salsa · Rotational cryptanalysis

1 Introduction

The Addition-Rotation-XOR (ARX) construction is becoming the mainstream of
design for symmetric-key primitives. Actually, numerous ARX-based primitives
have been proposed, such as stream ciphers Salsa and ChaCha, block ciphers
SPECK and CHAM, hash functions BLAKE2 and Skein, message authentication
code (MAC) algorithm Chaskey, and submissions for the National Institute of
Standards and Technology’s (NIST) lightweight cryptography standardization
SNEIK and SPARKLE. This is because the ARX-based primitives can achieve
good confusion, diffusion, and performance with only the following three simple
operations: modular addition, left/right rotation, and XOR.

Consequently, one can infer that the ARX-based primitives have become hot
cryptanalysis targets. In particular, differential and linear cryptanalysis, which
are the two most powerful generic attacks for symmetric-key primitives, have
been applied to numerous ARX-based primitives [4,5,7,9,16,20]. In addition,
c© Springer Nature Switzerland AG 2020
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a specific cryptanalysis, which is called rotational cryptanalysis, for the ARX-
based primitives has also been proposed [1,8,10–14,17–19].

Related Works. The beginning of rotational cryptanalysis can be traced back
to the Ph.D. thesis of Daum submitted in 2005 [6]. The author analyzed the
relationship between modular addition and bit rotation in details, and proved
that one modular addition preserves the propagation of the so-called rotational
pair with a probability of up to 2−1.415.

Khovratovich and Nikolić [10] applied the propagation characteristic of a
rotational pair (so-called rotational characteristic) in modular addition to the
rotational cryptanalysis for the ARX-based primitives. The authors established
a new technique of a generic attack. Additionally, they focused on the rotational
characteristics in both rotation and XOR, which are preserved with a probability
of one, and demonstrated that the rotational cryptanalysis for the ARX-based
primitives performs properly based on the Markov cipher assumption, which is
often utilized in differential cryptanalysis. In particular, by simply counting the
number of modular additions, we can obtain rotational characteristics through-
out the ARX-based primitives. Rotational cryptanalysis mainly performed with
hash functions, such as Keccak [19], BLAKE2 [8], and Skein [12,13].

Khovratovich et al. [11] demonstrated that not all the ARX-based primitives
can be assumed to be Markov ciphers. When the output of a modular addition
becomes the input of another, rotational characteristic in the latter differs from
that presented in [10]. They refer to the structure, where modular addition is
connected like a chain, as a chained modular addition. After verifying the above
fact using two toy models with the same number of modular additions but dif-
ferent rotational characteristics, they proved the rotational characteristic of a
chained modular addition and applied it to BLAKE2 and Skein, which have the
structure of a chained modular addition.

Afterward, several applications of rotational cryptanalysis for the ARX-based
block ciphers and MAC algorithm Chaskey have been reported in [1,14,17,18].

Motivations. This paper discusses the rotational cryptanalysis of the Salsa core
function, which is also called the round function in general. Salsa is an ARX-
based stream cipher designed by Bernstein in 2005 and has been accepted as
one of the finalists for the eSTREAM software portfolio [3]. Although differential
cryptanalysis for Salsa has been reported to attack only up to 8 rounds (out of 20
rounds in the original version of Salsa) [5], no study has yet applied rotational
cryptanalysis to ARX-based stream ciphers including ChaCha [2], which is a
variant of Salsa.

As discussed in [10, Section 3], it is noteworthy that all inputs to the ARX-
based primitive must be a rotational pair for the rotational cryptanalysis to per-
form well. Since both Salsa and ChaCha utilize constants as one of their inputs,
it is practically difficult for adversaries to obtain a rotational pair of constants.
Therefore, we cannot apply rotational cryptanalysis to the ARX-based stream
cipher.
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From a different viewpoint, it is often the case that the core function of one
encryption scheme is implemented in another to design symmetric-key primi-
tives. The core functions of Serpent, ChaCha, and AES are actually implemented
in SOSEMANUK, BLAKE2, and SNOW-V, respectively. If there exists a fatal
weakness in the core function, then the encryption scheme that implemented
its core function may also have weakness. It is undeniable that the Salsa core
function may be implemented in another encryption scheme in the future. There-
fore, it is important to clarify whether the Salsa core function has a weakness to
rotational cryptanalysis.

Our Contributions. We first construct a toy model of the Salsa core function,
and observe rotational characteristics in the toy model by conducting an experi-
ment. Our experimental observation demonstrates that the rotational pair in the
toy model propagates with a higher probability than the theoretical value pre-
sented in [10,11]. Additionally, we analyze the toy model in details, and clarify
that its structure in Salsa, where one of the inputs to two consecutive modular
additions has the same value, affects the rotational characteristics in the toy
model. The details of our contributions can be summarized as follows.

– Lemma 3 presents a rotational characteristic in the toy model including the
first two consecutive modular additions. While the rotational pair in the toy
model propagates with a probability of 2−2.246, the theoretical values studied
in [10] and [11] are 2−2.8 and 2−3.6, respectively.

– Lemma 4 analyzes a rotational characteristic in the toy model including the
first three consecutive modular additions. While the rotational pair in the
toy model propagates with a probability of 2−3.247, the theoretical values
explored in [10] and [11] are 2−4.2 and 2−6.3, respectively.

– Theorem 2 examines the rotational characteristic in the toy model includ-
ing the first four consecutive modular additions, that is, the full Salsa core
function. While the rotational pair in the toy model propagates with a prob-
ability of 2−4.248, the theoretical values considered in [10] and [11] are 2−5.6

and 2−9.3, respectively.

Furthermore, we predict that the Salsa-type ARX primitive is a Markov
cipher in the Salsa core function units. By simply counting the number of the
Salsa core functions, this prediction facilitates our rough estimation of rotational
characteristics for the Salsa-type ARX primitives.

Based on our theorem and prediction, we demonstrate that rotational dis-
tinguisher for the Salsa permutation, which has the same construction as the
original version and allows us to set the arbitrary input values, performs prop-
erly up to 32 rounds with a probability of approximately 2−506.752 although the
number of rounds in the original version of Salsa is 20. According to the the-
oretical value explored in [11], we similarly demonstrate that a rotational dis-
tinguisher for the ChaCha permutation performs properly only up to 8 rounds
with a probability of approximately 2−489.6.

Therefore, it is clear from these results that the Salsa permutation is weaker
to the rotational cryptanalysis than the ChaCha permutation. Consequently, we
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do not recommend incorporating the Salsa core function into the design of new
encryption schemes. Finally, we remark that our results do not affect the security
of Salsa.

Organization of This Paper. The rest of this paper is organized as follows.
Section 2 briefly describes Salsa, and it also describes some useful theorem and
lemmas, which are used in our cryptanalysis and discussion, introduced in some
previously conducted studies. Section 3 analyzes our experimental observations
for rotational characteristics in the toy model, provides new results and their
proofs, and demonstrates the accuracy of our results through experiments. In
Sect. 4, we compare the rotational characteristics between the Salsa and ChaCha
permutations; we show that the Salsa permutation is weak to rotational crypt-
analysis. Section 5 concludes this paper.

2 Preliminaries

2.1 Description of Salsa

The ARX-based stream cipher Salsa [3] involves three steps to generate a
keystream block of 16 words, where each word size is 32 bits.

The first step is to initialize the internal state matrix of order 4 × 4 from
a 256-bit secret key k = (k0, k1, . . . , k7), a 64-bit nonce v = (v0, v1), a 64-bit
block counter t = (t0, t1), and four 32-bit constants, c0 = 0x61707865, c1 =
0x3320646e, c2 = 0x79622d32, and c3 = 0x6b206574. After the initialization, we
have the following initial state matrix:

X(0) =

⎛
⎜⎜⎜⎝

x
(0)
0 x

(0)
1 x

(0)
2 x

(0)
3

x
(0)
4 x

(0)
5 x

(0)
6 x

(0)
7

x
(0)
8 x

(0)
9 x

(0)
10 x

(0)
11

x
(0)
12 x

(0)
13 x

(0)
14 x

(0)
15

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

c0 k0 k1 k2
k3 c1 v0 v1
t0 t1 c2 k4
k5 k6 k7 c3

⎞
⎟⎟⎠ .

Then, the next step is to execute the core function, which is called quarter-

round function in Salsa, and update a vector (x(r)
a , x

(r)
b , x

(r)
c , x

(r)
d ) by sequentially

computing ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x
(r+1)
b = ((x(r)

a + x
(r)
d ) ≪ 7) ⊕ x

(r)
b ,

x
(r+1)
c = ((x(r+1)

b + x
(r)
a ) ≪ 9) ⊕ x

(r)
c ,

x
(r+1)
d = ((x(r+1)

c + x
(r+1)
b ) ≪ 13) ⊕ x

(r)
d ,

x
(r+1)
a = ((x(r+1)

d + x
(r+1)
c ) ≪ 18) ⊕ x

(r)
a ,

where the symbols ‘+’, ‘≪’, and ‘⊕’ represent word-wise modular addi-
tion, bit-wise left rotation, and bit-wise XOR, respectively. In odd number
rounds, which are called columnrounds, the quarterround function is applied
to the following four column vectors: (x(r)

0 , x
(r)
4 , x

(r)
8 , x

(r)
12 ), (x(r)

5 , x
(r)
9 , x

(r)
13 , x

(r)
1 ),

(x(r)
10 , x

(r)
14 , x

(r)
2 , x

(r)
6 ), and (x(r)

15 , x
(r)
3 , x

(r)
7 , x

(r)
11 ). In even number rounds, which
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are called rowrounds, the quarterround function is applied to the following four
row vectors: (x(r)

0 , x
(r)
1 , x

(r)
2 , x

(r)
3 ), (x(r)

5 , x
(r)
6 , x

(r)
7 , x

(r)
4 ), (x(r)

10 , x
(r)
11 , x

(r)
8 , x

(r)
9 ), and

(x(r)
15 , x

(r)
12 , x

(r)
13 , x

(r)
14 ).

Besides, the final round is denoted by R, where the original version of Salsa
is R = 20 rounds. After the final round, we have the following final state matrix:

X(R) =

⎛
⎜⎜⎜⎝

x
(R)
0 x

(R)
1 x

(R)
2 x

(R)
3

x
(R)
4 x

(R)
5 x

(R)
6 x

(R)
7

x
(R)
8 x

(R)
9 x

(R)
10 x

(R)
11

x
(R)
12 x

(R)
13 x

(R)
14 x

(R)
15

⎞
⎟⎟⎟⎠ .

The final step is to obtain a keystream block Z by computing the following
equation:

Z = X(0) + X(R).

2.2 Rotational Cryptanalysis

Khovratovich and Nikolić [10] investigated the propagation of a rotational pair
(X,X ≪ r) throughout the ARX-based primitives, and designed a new tech-
nique called rotational cryptanalysis. As described in Lemma 1, the technique of
rotational cryptanalysis is based on the rotational probability of modular addition
presented in the Ph.D. thesis of Daum [6].

Lemma 1 ( [6, Corollary 4.12]).

1. If we suppose an n-bit word A to be fixed and an n-bit word B to be chosen
uniformly at random, then we obtain

Pr[(A + B) ≪ r = (A ≪ r) + (B ≪ r)] = 2−n(2n−r − AR)(2r − AL),

where AL = (an−1, . . . , an−r) and AR = (an−r−1, . . . , a0) for A.
2. If we suppose two n-bit words A and B to be chosen uniformly at random,

then we obtain

Pr[(A + B) ≪ r = (A ≪ r) + (B ≪ r)] =
1
4
(1 + 2r−n + 2−r + 2−n).

For n = 8 and r = 1, we obtain the rotational probabilities of the first and
second types of modular addition in Lemma1 as 2−1.245 and 2−1.404, respectively.
Moreover, we obtain the rotational probabilities of rotation and XOR as

Pr[(x ≪ r1) ≪ r2 = (x ≪ r2) ≪ r1] = 1, (1)
Pr[(x ⊕ y) ≪ r = (x ≪ r) ⊕ (y ≪ r)] = 1. (2)

Since only modular addition has a rotational probability of less than one, Khovra-
tovich and Nikolić described that a rotational probability throughout the ARX-
based ciphers can be obtained by simply counting the number of the second type
of modular addition in Lemma 1, as described in the following theorem.
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Theorem 1 ( [10, Theorem 2]. Let q be the number of modular additions in an
ARX-based primitive that has an arbitrary number of rotations and XORs. Then,
the rotational probability of the ARX-based primitive is pq

+, where p+ denotes the
rotational probability of modular addition depending on the word size n and the
rotation amount r.

They observed that all inputs to the ARX-based primitive must be rotational
pair for the rotational cryptanalysis to perform well.

Theorem 1 holds based on the assumption that an ARX-based primitive is a
Markov cipher (refer to [15, Section 3] for details). However, when the output of
modular addition becomes the input of another, Khovratovich et al. [11] demon-
strated that the rotational probability of the second modular addition cannot be
obtained from Theorem1. The authors referred to the structure, where modular
addition is connected like a chain, as a chained modular addition. As described in
Lemma 2, they provided a rotational probability of the chained modular addition.

Lemma 2 ([11, Lemma 2]. Let a1, . . . , ak be n-bit words chosen at random and
let r be a positive integer such that 0 < r < n. Then, we have

Pr([(a1 + a2) ≪ r = (a1 ≪ r) + (a2 ≪ r)]
∧ [(a1 + a2 + a3) ≪ r = (a1 ≪ r) + (a2 ≪ r) + (a3 ≪ r)]
∧ . . .

∧ [(a1 + a2 + · · · + ak) ≪ r = (a1 ≪ r) + (a2 ≪ r) + . . . (ak ≪ r)]

=
1

2nk

(
k + 2r − 1

2r − 1

)(
k + 2n−r − 1

2n−r − 1

)
.

Khovratovich et al. applied rotational cryptanalysis to BLAKE2 and Skein,
which are the ARX-based hash functions that include chained modular addi-
tions. Consequently, rotational distinguishers for the permutation of BLAKE2
and Skein perform properly up to 7 (out of 12) rounds with a rotational prob-
ability of approximately 2−1015.2 and 28 (out of 72) rounds with a rotational
probability of approximately 2−507.6, respectively.

3 Rotational Cryptanalysis of the Salsa Core Function

3.1 Experimental Observations

To investigate the accurate rotational probability of the Salsa core function, we
construct a toy model of the Salsa core function with a word size of eight bits, as
illustrated in Fig. 1. This is because the rotational probability of the toy model
can be obtained from all the input/output rotational pairs with 232 trials, which
is the number of trails that can execute an exhaustive search.

The function family fi is defined by fi(a, b, c, r) = ((a + b) ≪ r) ⊕ c, where
i denotes a sequential number. Then, the toy model updates a vector (a, b, c, d)
by sequentially computing



Rotational Cryptanalysis of Salsa Core Function 135

Fig. 1. A toy model of the Salsa core function.

Table 1. A comparison between the rotational probabilities (log2) of the toy model
obtained by the conducted experiments (experimental observations) and those obtained
based on the assumption that the toy model is a Markov cipher (Markov assumption).

Rotational probabilities # of modular additions

1 2 3 4

Experimental observation −1.404 −2.246 −3.241 −4.197

Markov assumption −1.404 −2.808 −4.212 −5.616

⎧⎪⎪⎨
⎪⎪⎩

b = f1(a, d, b, 7) = ((a + d) ≪ 7) ⊕ b,
c = f2(b, a, c, 5) = ((b + a) ≪ 5) ⊕ c,
d = f3(c, b, d, 3) = ((c + b) ≪ 3) ⊕ d,
a = f4(d, c, a, 1) = ((d + c) ≪ 1) ⊕ a.

From the above sequential computation of the function family fi, we further
define the function family Fi as follows:

F1 = f1, F2 = f2 ◦ f1, F3 = f3 ◦ f2 ◦ f1, F4 = f4 ◦ f3 ◦ f2 ◦ f1,

where i denotes the sequential number (the number of modular additions in the
function). Now, we obtain the following four rotational probabilities of the toy
model through our conducted experiment:

Pr[
←−−−−−−−−
F1(a, b, c, d) = F1(←−a ,

←−
b ,←−c ,

←−
d )], (3)

Pr[
←−−−−−−−−
F2(a, b, c, d) = F2(←−a ,

←−
b ,←−c ,

←−
d )], (4)

Pr[
←−−−−−−−−
F3(a, b, c, d) = F3(←−a ,

←−
b ,←−c ,

←−
d )], (5)

Pr[
←−−−−−−−−
F4(a, b, c, d) = F4(←−a ,

←−
b ,←−c ,

←−
d )], (6)

where symbol ‘←−’ represents the left rotation by one bit.
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Fig. 2. Function F2 of the toy model. (Color figure online)

Table 1 shows a comparison between the rotational probabilities of the toy
model obtained by conducting the experiment and those obtained based on the
assumption that the toy model is a Markov cipher (hence, we can refer to The-
orem 1). It is noteworthy that we obtain a rotational probability of the second
type of modular addition in Lemma1 as 2−1.404 for n = 8 and r = 1. Thus,
we can observe from the table that the rotational probabilities of the toy model
obtained by the conducted experiment are higher than those obtained based
on Theorem 1. To the best of our knowledge, no study has analyzed such rota-
tional probabilities in details. Therefore, it is important to clarify the rotational
characteristic of the Salsa core function.

In the sequel, we analyze the rotational probabilities of the toy model in
detail, and provide their proofs in Sect. 3.2. Afterword, Sect. 3.3 presents the
experimental verifications to confirm the accuracy of the theoretical results.

3.2 Proofs

Rotational Probability of Function. F2. We first analyze function F2 of the
toy model in details, and then explain the following two characteristics of the
Salsa core function.

1. One variable remains the same and becomes the input of the two consecutive
modular additions. In the case of function F2, variable a corresponds to it
(see red arrows shown in Fig. 2).

2. The rotational probability throughout the function matches the one after the
output of the last modular addition. This is clear from Eqs. (1) and (2). In
the case of function F2, Eq. (4) can be rewritten as follows:

Pr[
←−−−−−−−−−−−−−−−−−
(((a + d) ≪ 7) ⊕ b) + a = (((←−a +

←−
d ) ≪ 7) ⊕ ←−

b ) + ←−a ]. (7)

Based on the above characteristics of the Salsa core function, we discuss the
rotational probability of function F2 in Lemma 3, and prove this lemma.

Lemma 3. Let P (·, n, r) be a rotational probability of the first type of modular
addition in Lemma 1, that is, P (A,n, r) = 2−n(2n−r − AR)(2r − AL). Then, the
rotational probability of function F2 is given as follows:
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Pr[
←−−−−−−−−
F2(a, b, c, d) = F2(←−a ,

←−
b ,←−c ,

←−
d )] = 2−n

∑
a∈{0,1}n

P (a, n, 1) · P (a, n, 1),

where symbol ’←−’ represents the left rotation by one bit, and thus the rotation
amount is r = 1.

Proof. As mentioned in Sect. 2.2, all the inputs to the ARX-based primitive
must be a rotational pair for the rotational cryptanalysis to perform properly.
Besides, the inputs to the second modular addition in function F2, which are ‘a’
and “((a + d) ≪ 7) ⊕ b”, must be rotational pairs. Since variable a is always
a rotational pair, we should consider only whether the following equation is
satisfied: ←−−−−−−−−−−−−−

((a + d) ≪ 7) ⊕ b = ((←−a +
←−
d ) ≪ 7) ⊕ ←−

b . (8)

If Eq. (8) holds, then Eq. (7) can be further rewritten as follows:

Pr[
←−−−−−−−−−−−−−−−−−
(((a + d) ≪ 7) ⊕ b) + a =

←−−−−−−−−−−−−−−
(((a + d) ≪ 7) ⊕ b) + ←−a ]. (9)

Based on the condition that Eq. (8) holds, Eq. (9) implies that the rotational
probability of function F2 can be obtained by utilizing Lemma1.

It is noteworthy that variable a remains the same and becomes the inputs of
the two consecutive modular additions. Thus, variable a should not be considered
to be uniform at random in terms of the same input of the two consecutive
modular additions. Therefore, to obtain the rotational probability of function
F2, we cannot employ the rotational probability of the second type of modular
addition in Lemma1.

Now, we assume that variable a is fixed. Once the value of variable a is
naturally determined, the input value of the first and second modular additions
corresponding to variable a is always constant. Therefore, we can consider the
assumption to be correct. To obtain the rotational probability of function F2, we
follow the rotational probability of the first type of modular addition in Lemma1.
This implies that the probability that Eq. (8) holds, and the probability that
Eq. (9) holds under the condition that Eq. (8) holds can be obtained based on
the rotational probability of the first type of modular addition in Lemma1.

Let P (·, n, r) be the rotational probability of the first type of modular addi-
tion in Lemma 1, that is, P (A,n, r) = 2−n(2n−r − AR)(2r − AL). Let E1 and E2

be the events represented by Eqs. (8) and (9), respectively. Then, we have the
following equations:

Pr[E1] = 2−n
∑

a∈{0,1}n

P (a, n, r), (10)

Pr[E2 | E1] = 2−n
∑

a∈{0,1}n

P (a, n, r), (11)

where variable a is chosen uniformly at random from 0 to 2n − 1. We note the
following two points.
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Fig. 3. Function F3 of the toy model.

1. Eq. (10) is valid only when considering the event E2. When the event E2 is not
considered, the probability of the event E1 follows the rotational probability
of the second type of modular addition in Lemma1.

2. The events E1 and [E2 | E1] should be considered to occur simultaneously
since one of the inputs to the first and second modular additions is the same.

In conclusion, we have the rotational probability of function F2 as follows:

Pr[
←−−−−−−−−
F2(a, b, c, d) = F2(←−a ,

←−
b ,←−c ,

←−
d )] = Pr[E2 | E1] · Pr[E1]

= 2−n
∑

a∈{0,1}n

P (a, n, 1) · P (a, n, 1),

where symbol ‘←−’ represents the left rotation by one bit. Thus, the rotation
amount is r = 1. ��

Rotational Probability of Functions. F3 and F4. We next analyze function
F3 of the toy model in details, and then explain the following three characteristics
of the Salsa core function:

1. The output value of a function remains the same and becomes the input
of two consecutive modular additions. In the case of function F3, function
f1(a, d, b, 7) corresponds to it (see red arrows shown in Fig. 3).

2. A difference between functions F2 and F3 is whether or not to execute function
f3. Similarly, a difference between functions F1 and F2 is whether or not to
execute function f2.

3. The function family fi has various parameters, but the calculation procedure
is the same. Thus, we can observe that the above two differences have a
common relationship whether or not to execute function fi.

Based on the above characteristics of the Salsa core function, we present the
rotational probability of function F3 as Lemma 4, and prove this lemma.

In the following lemma and its proof, we utilize the following six events as
notations:
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E3:
←−−−−−−−−
f1(a, d, b, 7) = f1(←−a ,

←−
d ,

←−
b , 7)

E4:
←−−−−−−−−
f2(b, a, c, 5) = f2(

←−
b ,←−a ,←−c , 5)

E5:
←−−−−−−−−
f3(c, b, d, 3) = f3(←−c ,

←−
b ,

←−
d , 3)

E6:
←−−−−−−−−
F1(a, b, c, d) = F1(←−a ,

←−
b ,←−c ,

←−
d )

E7:
←−−−−−−−−
F2(a, b, c, d) = F2(←−a ,

←−
b ,←−c ,

←−
d )

E8:
←−−−−−−−−
F3(a, b, c, d) = F3(←−a ,

←−
b ,←−c ,

←−
d )

It is noteworthy that the event E3 is the same as the event E1 in the proof of
Lemma 3.

Lemma 4. The rotational probability of function F3 is given by

Pr[E8] =
Pr[E7]
Pr[E3]

· Pr[E7],

where Pr[E7] is given by Lemma 3 and Pr[E3] is given by Pr[E1] in the proof of
Lemma 3.

Proof. As mentioned in Sect. 2.2, all the inputs to the ARX-based primitive
must be a rotational pair for the rotational cryptanalysis to perform properly.
Therefore, based on the proof of Lemma 3, the rotational probability of function
F3 can be calculated as follows:

Pr[E8] = Pr[E5 ∧ E4 ∧ E3] = Pr[E5 | E4 ∧ E3] · Pr[E4 ∧ E3], (12)

where Pr[E7] = Pr[E4∧E3] is given by Lemma 3. It is easy to calculate Pr[E4∧E3]
according to Lemma 3, whereas it is difficult to calculate Pr[E5 | E4 ∧ E3]. We
note that the following equation holds:

Pr[E8 ∧ E7] = Pr[E5 ∧ E4 ∧ E3 ∧ E4 ∧ E3] = Pr[E5 ∧ E4 ∧ E3] = Pr[E8]. (13)

Since Eq. (13) always holds, Eq. (12) can be rewritten as follows:

Pr[E8] = Pr[E8 ∧ E7] = Pr[E8 | E7] · Pr[E7]. (14)

Now, we calculate Pr[E8 | E7] as the target. As mentioned concerning the char-
acteristics of the Salsa core function, we can consider that the two differences,
which are (F1, F2) and (F2, F3) pairs, have a common relationship whether or
not to execute function fi. Consequently, we observe that the following equation
holds:

Pr[E8 | E7] = Pr[E7 | E6]. (15)

The fact that the event E8 occurs based on the condition that the event E7 occurs
essentially means that the event E5 occurs. Similarly, the fact that the event E7

occurs based on the condition that the event E6 occurs basically means that the
event E4 occurs. The difference is whether the event E5 or E4 occurs. The events
E5 and E4 have different parameters, but the calculation procedure is the same.
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Therefore, when each precondition is satisfied, the probabilities of the event E5

and E4 can be considered to be the same, and thus Eq. (15) holds.
Now, we calculate Pr[E7 | E6] as the target; then, we have

Pr[E7 | E6] =
Pr[E7 ∧ E6]

Pr[E6]
=

Pr[E4 ∧ E3 ∧ E3]
Pr[E3]

=
Pr[E4 ∧ E3]

Pr[E3]
=

Pr[E7]
Pr[E3]

, (16)

where Pr[E7] is given by Lemma 3, and Pr[E3] is given by Pr[E1] in the proof of
Lemma 3.

In conclusion, we have the rotational probability of function F2 as follows:

Pr[E8] = Pr[E8 | E7] · Pr[E7] = Pr[E7 | E6] · Pr[E7] =
Pr[E7]
Pr[E3]

· Pr[E7].

��
In a similar way as in the proof of Lemma4, we present the rotational probability
of function F4 as Theorem 2, and therefore the proof is omitted.

In the Theorem 2, we employ the following event as notation:

E9:
←−−−−−−−−
F4(a, b, c, d) = F4(←−a ,

←−
b ,←−c ,

←−
d )

Theorem 2. The rotational probability of function F4 is given by

Pr[E9] =
Pr[E7]
Pr[E3]

· Pr[E8],

where Pr[E8] is given by Lemma 4, Pr[E7] is given by Lemma 3, and Pr[E3] is
given by Pr[E1] in the proof of Lemma 3.

3.3 Experimental Verifications

We have conducted an experiment to confirm the accuracy of the theoretical
values in our lemmas and theorem. Our experimental environment is given as
follows: Intel(R) Core(TM) i7-7567U CPU with 3.50 GHz, 16.0 GB memory, gcc
9.3.0 compiler, and C language.

We apply the toy model designed in Sect. 3.1. As mentioned in Sect. 3.1, the
rotational probability of the toy model can be obtained from all the input/output
rotational pairs with 232 trials, which is the number of trails that can execute
an exhaustive search.

Further, we utilize the percentage of the relative error ε of the theoretical
values compared with the experimental values:

ε =
|experimental value − theoretical value|

experimental value
× 100(%).

Table 2 shows a comparison between the experimental and theoretical values for
the toy model. It can be observed that ε is sufficiently small when the number of
modular additions is both two and three. Therefore, we can confirm the accuracy
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Table 2. A comparison between the experimental and theoretical values (log2) for the
toy model when the rotation amount is r = 1. The value in parentheses is the predicted
value based on Prediction 1.

# of modular additions 1 2 3 4 5 6

Experimental value −1.404 −2.246 −3.241 −4.197 −5.309 −6.510

Theoretical value −1.404 −2.246 −3.247 −4.248 – –

ε (%) 0.000 0.000 0.446 3.463 – –

# of modular additions 7 8 9 10 11 12

Experimental value −7.528 −8.486 −9.618 −10.820 −11.851 −12.807

Theoretical value – (−8.496) – – – (−12.744)

ε (%) – (0.668) – – – (4.454)

# of modular additions 13 14 15 16 17 18

Experimental value −13.943 −15.150 −16.187 −17.142 −18.286 −19.482

Theoretical value – – – (−16.992) – –

ε (%) – – – (10.945) – –

# of modular additions 19 20 21 22 23 24

Experimental value −20.566 −21.518 −22.703 −23.860 −24.945 −26.046

Theoretical value – (−21.240) – – – (−25.488)

ε (%) – (21.249) – – – (51.782)

of the theoretical values in Lemmas 3 and 4. Moreover, when the number of
modular additions is four, it can be also observed that ε is slightly large such as
ε = 3.463 (%). Although we can reduce the relative error by analyzing function
F4 of the toy model in details (we have not actually analyzed it), we can consider
it to be sufficiently accurate as a rough estimation. Therefore, we can confirm
the accuracy of the theoretical values in Theorem 2 as a rough estimation.

As described in Prediction 1, we then predict the rotational probabilities
when the number of modular additions is greater than four.

Prediction 1 Let q be the number of the Salsa core functions that has four mod-
ular additions. Then, the rotational probability of the Salsa-type ARX primitive
is pq

+, where p+ denotes the rotational probability of the Salsa core function that
depends on the word size n and the rotational amount r.

Besides, we assume that the Salsa-type ARX primitive is a Markov cipher in the
Salsa core function units. If our prediction is correct, we can easily analyze the
rotational characteristics of the Salsa-type ARX primitive.

In Table 2, we substitute the predicted theoretical values in parentheses based
on Prediction 1; then, we also substitute the percentage of the relative error ε
in parentheses corresponding to the predicted values. According to Prediction 1,
we can observe from this table that most of ε obtained are large, but they are
also considered to be sufficiently accurate as rough estimations. Therefore, our
prediction can be considered to be correct in terms of a rough estimation.

Finally, we have conducted an experiment with 232 trials to obtain the rota-
tional probability of the original version of the Salsa core function, which has a



142 R. Ito

Table 3. A comparison between the experimental and theoretical values (log2) for the
original version of the Salsa core function when the rotation amount is r = 1. The
value in parentheses is the predicted value based on Prediction 1.

# of modular additions 1 2 3 4 5 6

Experimental value −1.415 −2.263 −3.263 −4.206 −5.169 −6.126

Theoretical value −1.415 −2.263 −3.111 −3.959 – –

ε (%) 0.000 0.000 11.111 18.713 – –

# of modular additions 7 8 9 10 11 12

Experimental value −7.086 −8.043 −9.000 −9.959 −10.918 −11.875

Theoretical value – (−7.918) – – – (−11.877)

ε (%) – (9.056) – – – (0.132)

# of modular additions 13 14 15 16 17 18

Experimental value −12.831 −13.790 −14.753 −15.712 −16.669 −17.634

Theoretical value – – – (−15.836) – –

ε (%) – – – (8.206) – –

# of modular additions 19 20 21 22 23 24

Experimental value −18.580 −19.530 −20.495 −21.446 −22.417 −23.415

Theoretical value – (−19.795) – – – (−23.754)

ε (%) – (16.784) – – – (20.578)

word size of 32 bits. Table 3 illustrates a comparison between the experimental
and theoretical values for the original version of the Salsa core function based
on our lemmas, theorem, and prediction. According to our lemmas, theorem,
and prediction, it can be observed that most of the relative errors ε obtained
are large. It is noteworthy that the experimental values are not always correct
because we could not execute an exhaustive search. Therefore, they are also con-
sidered to be sufficiently accurate as rough estimations. We apply this result in
the next section.

4 A Weakness of the Salsa Permutation

As mentioned in Sect. 2.2, all the inputs to the ARX-based primitive must be
a rotational pair for the rotational cryptanalysis to perform properly. Since the
input values of Salsa use a 256-bit secret key, a 64-bit nonce, a 64-bit block
counter, and four 32-bit constants, it is impossible to make all the input values
into a rotational pair. Therefore, the rotational cryptanalysis of Salsa does not
perform properly.

It is often the case that the core function of one encryption scheme is imple-
mented in another. The core functions of Serpent, ChaCha, and AES are actually
implemented in SOSEMANUK, BLAKE2, and SNOW-V, respectively. If there
exists a fatal weakness in the core function, the encryption scheme that imple-
mented this core function might also have this weakness. Particularly, since Salsa
itself is a highly secure encryption scheme for which only up to 8 rounds (out
of the 20 rounds in the original version) can be attacked [5], its core function
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Table 4. A comparison of the rotational probabilities (log2) of the Salsa and ChaCha
permutations when the rotation amount is r = 1. The rotational probability of the Salsa
permutation is based on our lemmas, theorem, and prediction, while the rotational
probability of the ChaCha permutation is based on Lemma 2.

# of rounds 1 2 3 4 5 6

Salsa permutation −15.836 −31.672 −47.508 −63.344 −79.180 −95.016

ChaCha permutation −28.800 −74.400 −130.400 −192.800 −261.600 −333.600

# of rounds 7 8 9 10 11 12

Salsa permutation −110.852 −126.688 −142.524 −158.630 −174.196 −190.032

ChaCha permutation −410.400 −489.600 −571.200 −656.000 −743.200 −832.000

may be incorporated into the design of new encryption schemes (since ChaCha
is considered to be a more secure encryption scheme than Salsa, we believe that
it is more likely to incorporate the ChaCha core function instead of the Salsa
core function into the design of new encryption schemes). Now, we argue that
there can be weakness to incorporate the Salsa core function into the design of
new encryption schemes.

To confirm the weakness in the Salsa permutation, which has the same con-
struction as the original version of Salsa that can allow us to set the arbitrary
input values (the ChaCha permutation is also similar), we compare the rota-
tional probabilities of the Salsa and ChaCha permutations. Table 4 demonstrates
a comparison of the rotational probabilities of the Salsa and ChaCha permuta-
tions when the rotational amount is r = 1. From Theorem 2 and Prediction 1, the
rotational probability of the Salsa permutation can be obtained as a rough esti-
mation. Specifically, by simply counting the number of the Salsa core functions,
the rotational probability of the Salsa permutation can be calculated based on
Prediction 1 since p+ = 2−3.959 from Theorem 2. It is noteworthy that the Salsa
permutation comprises four Salsa core functions in each round; therefore, we
obtain the rotational probability of the Salsa permutation as listed in Table 4. In
addition, the rotational probability of the ChaCha permutation can be obtained
from Lemma 2. Particularly, since the ChaCha core function is implimented in
BLAKE2, the rotational probability of the ChaCha permutation can be similarly
calculated as the rotational cryptanalysis of BLAKE2 permutation proposed by
Khovratovich et al. in [11]. According to the study in [11], the ChaCha permuta-
tion has exactly 8 chains of 2R modular additions in each chain over R rounds.
Consequently, as demonstrated in Table 4, we obtain the rotational probability
of the ChaCha permutation.

From Table 4, it can be observed that the rotational distinguisher for the
ChaCha permutation performs properly only up to 8 rounds (out of the 20
rounds in the original version of ChaCha) since 9-round ChaCha permutation
(with 8 chains of 18 modular additions each) has a rotational probability of
(2−71.4)8 = 2−571.2 < 2−512.0. Moreover, the rotational distinguisher for the
Salsa permutation performs properly up to 32 rounds (although the number of
rounds in the original version of Salsa is 20) since 32-round Salsa permutation
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(with 128 Salsa core functions) has a rotational probability of (2−3.959)128 =
2−506.752 > 2−512.0.

In conclusion, it is clear from the above discussion that the Salsa permutation
is weaker to the rotational cryptanalysis than the ChaCha permutation. There-
fore, we do not recommend incorporating the Salsa core function into the design
of new encryption schemes. Finally, we remark that the rotational cryptanalysis
of the Salsa permutation does not affect the security of Salsa.

5 Conclusion

This study has provided some theoretical results of rotational characteristics in
the Salsa core function. Although the rotational probability of the Salsa core
function is 2−5.6 based on the theoretical values presented in [10], we proved
herein that it is actually 2−4.248. Furthermore, we clarified how the weakness
of the Salsa permutation is to rotational cryptanalysis. Since the rotational dis-
tinguisher for the Salsa permutation performs properly up to 32 rounds with a
probability of approximately 2−506.752, we do not recommend incorporating the
Salsa core function into the design of new encryption schemes from the perspec-
tive of efficiency.

As mentioned in Sect. 1, since both Salsa and ChaCha use constants as one of
their inputs, it is practically difficult for adversaries to obtain a rotational pair
of constants. Additionally, Ashur and Liu [1] investigated how the rotational
cryptanalysis is affected when constants are injected into the internal state. by
investigating how rotational cryptanalysis is affected when constants are used
as the inputs, we may similarly apply the rotational cryptanalysis to the ARX-
based stream ciphers including Salsa and ChaCha. In the future, we hope to
extend this study in the above direction.
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Abstract. This paper provides a chain of trust model in line with the
TCG trust concepts. This model gives a formal definition and proof
of trust state, trust root and trust measurement and chain of trust by
the concept of Smith’s entity dependence and the assumption that the
authenticity can measure the entity’s conduct with accuracy. The model
is universal, which can provide a theoretical basis for assessing the exist-
ing trusted computing platform, and provide theoretical support for the
future research on how to build a more reasonable chain of trust.

Keywords: Trusted computing · Logic of secure system · Chain of
trust · Entity dependence · LVMM

1 Introduction

Building a trusted computing environment which meets the definition of TCG
needs the support of software and hardware. Trusted Computing Platform
(TCP) is the term the community has used for the implementation of the trusted
components based on the TCG’s specifications. Trusted computing platform is
the hardware foundation of building a trusted computing environment. There are
two ways to accomplish the trusted computing platform; one is only to depend
on the hardware protection, for example, IBM4758 platform and smart card, the
other is based on trusted hardware, extended by the software, for example, the
computing platform that is based on AMD or Intel dynamic root of trust for
measurement (DRTM). The main difference between the two implementations
is that their computing platforms have a different division of labour on their
required software and hardware in accordance with the security protection and
resource consumption. Therefore, each trusted computing environment is made
up of a series of interactive entities and modules. The core idea of construc-
tion and transitivity of chain of trust is that the whole system is decomposed
into a series of related entities, allowing some entities to measure other enti-
ties. However, how to decompose the configuration, how to measure the entity,
which one entity is to measure another, and why we need to trust these entities
are still some of the issues associated with the software and hardware architec-
ture of trusted computing platform. Different trusted computing platforms have
different implementations.
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At present, in the field of trusted computing, the development of advanced
technology is ahead of its theoretical research. The existing main theoreti-
cal research is the trustworthy computing, trust management and formalized
description of the specific trusted computing environment. The existing main
theoretical researches have several differences and therefore cannot serve as the
basis of building trusted computing environment. In case of formalized descrip-
tion of the specific trusted computing environment, its theory has great limita-
tions, so it’s difficult to be widely used in the current trusted computing field.

To solve above problems, this paper proposes a new chain of trust model
with general emphasis on entity dependence and logic of secure system [8]. This
model solves problems of: how to decompose the configuration, how to measure
an entity, which entity is to measure the other, and why we need to trust these
entities? This model gives a formal definition and proof of trust state, trust root
and trust measurement by the assumption that the authenticity can measure
the entity’s conduct with accuracy.

The rest of the document is organized as follows; Section 2 discusses the
recent research related to this paper. Section 3 discusses the status and chain
of trust. We talk about the analysis of the existing chain of trust of trusted
computing platform in section 4. Section 5 discusses the new mechanism and
prototype of building chain of trust. Finally, Sect. 6 gives the conclusion.

2 Related Work

2.1 Model Based on Trustworthy Computing Context

Trustworthy computing originated from fault-tolerant computing, which was
mainly used to resolve availability, reliability and survivability [3,10,20] of the
entire life cycle of a computer hardware and software system from development
to use. LIN et al. [15,16] proposed trustworthy research based on network, as well
as trustworthy study based on virtualization technology and SOA. The former
mainly researches service failure model and fault model of the stochastic Petri
net system, the latter mainly is trustworthy research of virtualized SOV system
of service-oriented. Because their theory and theory of trusted computing are
quite different in content, their theory is difficult to be widely used in current
field of trusted computing.

2.2 Trusted and Trusted Measurement Model Based on Trusted
Management Context

Blaze et al. [5] who first proposed the idea of trusted management, and Jøsang et
al. [12–14] first put forward trusted measurement mode based on subjective logic.
They defined the concept of the proof space and concept space in detail, and
described how to measure trusted relationship. Trusted is divided into two cat-
egories by Beth [4]: one is the recommended trusted, the other is direct trusted.
He proposed a method to calculate the probability of an entity being trusted or
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not, and assumed that the probability value is proportional to the credibility of
the entity, in addition, his paper describes the constraint rules and the way of
trusted deduction and calculation. Wu et al. [21] proposed P2P trusted system
evaluation model based on probability theory, which utilizes subjective experi-
ence and feedback information to control the strategic deception and dishonest
recommendation. Xu et al. [9] proposed a new P2P network trusted model based
on probability statistics, which mainly utilizes some methods of probability and
statistics to calculate the credibility of node, and improves the success rate of
network transactions. Its theory is used in the permissions management and
access control of network transactions. Therefore, they cannot serve as theoreti-
cal guidance of building a trusted computing environment, and it is very difficult
to be widely used in the field of trusted computing.

2.3 Specific Trusted Computing Platform Model

Chen et al. [7] formally described the process of security startup based on pred-
icate logic. On the basis of IBM’s secure coprocessor, Smith [23] put forward
authentication model, which gives the formalization definition of trusted based
on the dependent relationship between the entities and trusted set, and proved
the completeness and reliability of the model. Zhou et al. [24] proposed a VM
trusted measurement model under the cloud computing environment. The mea-
surement process was separated into management domain measurement and user
domain measurement, and it improves the scalability of measurement model.
Chang et al. [6] put forward a kind of trust chain analysis based on the extended
trusted virtual platform, which mainly deals with the analysis issue of chain of
trust of trusted virtual platform. For specific trusted computing platform mod-
els, they only formally described some trusted characteristics of the platform,
which don’t have general meaning. Therefore, it is difficult to be widely used in
the construction of trusted computing environment.

In the existing research literature, the research of this paper is similar in
content to Smith’s external authentication model, but Smith’s external authen-
tication model still has a lot of limitations. The external authentication model
is based on the security coprocessor of IBM4758, and the trusted computing
environment built is located within the scope of physical protection. However,
current trusted computing platforms require that the built trusted computing
environment extends to the outside of the physical protection platform. For
example, the trusted computing platform that is on the basis of TCG/TPM or
DRTM. So Smith’s model leaves a lot desired to meet the requirements of the
trusted computing platform.

3 Status and Chain of Trust

3.1 The Dependence Relationship Between Entities

This paper assumes that there is only one area of memory used to store software
in the trusted computing environment system, and the software stored in the
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memory will not be changed by external sources outside the trusted computing
environment system.

Described in this paper, the trusted computing environment is not limited to
a specific trusted computing platform. The trusted computing platform is based
on secure coprocessor of IBM4758 and the TCG/TPM or DRTM, both of which
conform to the above assumptions.

Definition 1. Let p̂(t) denote a program p in a trusted computing environment,
at some time t, loaded into system and running. We call p̂(t) an entity.

Note 1. Program p refers to the code that has computing power in the trusted
computing environment system, or the encapsulation of its associated storage
data, or a random sequence, operating system, or even a particular module, etc.

Note 2. Entity as defined herein and program are two different concepts. Entity
is associated with the time the program and its container are loaded into system;
if the program is loaded into the system at different times or is contained in
different containers, and then it is considered to be a different entity.

At time t, the status of a trusted computing environment St is associated with
the thread set {I1, I2, · · · , In} executing at the moment in the trusted computing
environment and the entity’s action sequence seq (p̂ (t1) , p̂ (t2) , · · · , p̂ (tn)). This
paper assumes that the operation of the loader is atomic; meaning that only one
thread at a time can load a program.

Definition 2. At time t , with the encapsulation of all the entities in the trusted
system to represent the state of system at time t, we let St denote it, where
seq (p̂ (t1) , p̂ (t2) , · · · , p̂ (tn)).

Note 1. The formula Mem (m, p̂ (t1) , p̂ (t2) , · · · , p̂ (tn)) @t denotes that there
is an entity sequence p̂ (t1) , p̂ (t2) , · · · , p̂ (tn) in the system memory at time t.

Note 2. When the system starts a thread to load a new entity, the state of
the system will change accordingly. At some time, the state of the system is
determined by the status of system of previous time and new entity loaded by
thread at that time.

There are different interactions between the different entities, wherein some
entities can control or read and write other entities, there is dependency between
the entities.

Definition 3. (Dependency)For entity p̂ (t1) , p̂ (t2), if the entity p̂ (t1) can read
or write or control related data or program of the entity p̂ (t2), then the entity
p̂ (t2) depends on the entity p̂ (t1).We let p̂ (t2)Dep p̂ (t1) denote it.

Note 1. Typically, new loaded entity depends on the existing entity.

Note 2. Entity dependency can be further divided into data dependency and
control dependency, they are collectively known as rely-on in this paper, there
is no further discussion of the distinction, but readers who are interested in it
can refer to [4].
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Corollary 1. According to Definition 3, the following properties hold:

1) Idempotence p̂ (t1)Dep p̂ (t1);
2) Transitivity If p̂ (t2)Dep p̂ (t1) and p̂ (t3)Dep p̂ (t2), then p̂ (t3)Dep p̂ (t1).

Note 1. Let → denote the transitive closure of dependency, Dep p̂(t) = {q̂(t) :
(p̂(t) → q̂(t))@t} denotes the set of all entities which can affect the correctness
of behavior of the entity p̂ (t) at time t.

3.2 Trusted Set

Definition 4. Relier R refers to an external entity of trusted computing envi-
ronment or a platform user, let Tset(R) denote it.

Theorem 1. The trusted computing environment loads an entity p̂ (t) at time
t, if (Dep p̂(t) ⊆ Tset(R))@t holds, then the relier R confirms that the entity
p̂ (t) is trusted at time t.

Proof. From Corollary 1 we can confirm the credibility of the entity p̂ (t) within
the trusted computing environment depending on Dep p̂(t), at time t. Therefore,
the relier R confirms the credibility of the entity p̂ (t) basing on the credibility
of all entities, so the above theorem can be proved by the known condition
(Dep p̂(t) ⊆ Tset(R))@t and Definition 4.

Corollary 2. Suppose relier R confirms that one entity p̂(t−1) of trusted com-
puting environment is trusted at time t−1, if (Dep p̂(t−1) = Dep p̂(t))@t holds,
then the relier R also confirms that the entity p̂(t) is trusted at time t.

Corollary 3. At time t, ∀p̂(ts) and (p̂(ts) ∈ St)@t, then (Dep p̂(ts) ⊆ Tset(R))
@t holds, which is the necessary and sufficient condition that the state St of the
trusted computing environment is trusted.

Note 1. Corollary 3 can be used as a gist of confirming the credibility of the
state of the trusted computing environment.

3.3 Root of Trust and Trusted Measurement

Definition 5. Trusted record refers to the evidence set of proving the credibility
of the entity p̂(t) behavior; the relier R trusts any evidence of the set and confirms
that the entity p̂(t) is trusted. Let Tproof(p̂(t)) denote it in this paper.

Theorem 2. If for entity p̂(t) within a trusted computing environment,
(Dep p̂(t) − {p̂(t)} ⊆ Tset(R)@t) ∧ ∃p̂(t′) ∈ St−1, (Dep p̂(t′) ⊆ Tset(R))@t ∧
(v(p̂(t′), p̂(t)) ⊂ Tproof(p̂(t)))@t holds, and then the relier R confirms that the
entity p̂(t) is trusted.
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Proof. Since at time t, ∃p̂(t′) ∈ St−1, (Dep p̂(t′) ⊆ Tset(R)@t)∧(v(p̂(t′), p̂(t)) ⊂
Tproof(p̂(t)))@t combined with Definition 4 and Definition 5, we can confirm
that (p̂(t) ∈ Tset(R))@t holds. At the same time, due to (Dep p̂(t) − {p̂(t)} ⊆
Tset(R)@t, we can confirm that (Dep p̂(t) ⊆ Tset(R))@t holds. Therefore, the
Theorem 2 can be proved by above condition and Theorem 1.

Corollary 4. For entity p̂(t) within trusted computing environment, (p̂(t) ∈
Tset(R))@(t−1) holds. If (St−St−1 = {p̂(t′)})@t∧∃p̂(t′′) ∈ St−1, (Dep p̂(t′′) ⊆
Tset(R))@t∧(v(p̂(t′′), p̂(t′)) ⊂ Tproof(p̂(t′)))@t, then (p̂(t) ∈ Tset(R))@t holds.

Definition 6. In a trusted system, ∀R, t, if (r̂(t0) ∈ Tset(R))@t ∧(Dep r̂(t0) =
{r̂(t0)})@t holds, then we denote r̂(t0) as the root of trust.

Note 1. r̂(t0) refers to a root of trust entity; for any relier at any time, r̂(t0) is
trusted. That is, its credibility is objective and not subject to conditions.

Theorem 3. r̂(t0) is a root of trust entity of trusted computing environment,
for any reliers, if system state satisfies the following two conditions:

(1) S1 	 Mem(m, r̂(t0))@t0;
(2) For 1 < k < t, Sk+1 − Sk 	 Mem(m, p̂(tk))@tk ∧ ∃p̂(t′) ∈ Sk,

(v(p̂(t′), p̂(tk)) ⊂ Tproof(p̂(tk)))@tk, then the system state is trusted at
time t.

Proof. For the system state sequence S1, S2, · · · , St−1, St:
When N = 1, S1 	 Mem(m, r̂(t0))@t0. Since r is the root of trust, the system

state S1 can be proved to be trusted by (r̂(t0) ∈ Tset(R))@t ∧ (Dep r̂(t0) =
{r̂(t0)})@t and Definition 6;

When N = k, we suppose that Sk is trusted;
When N = k+ 1, Sk+1 −Sk 	 Mem(m, p̂(tk))@tk holds. Since Sk is trusted,

according to the condition (2) and Corollary 4, ∀p̂(t′) ∈ Sk, (p̂(t′) ∈ Tset(R))@t′

holds, such that Sk+1 is trusted by Corollary 4.
In summary, the conclusion is proved.

3.4 Chain of Trust Model

Definition 7. In the trusted system, if there is an entity set P̂ = {p̂(t1), p̂(t2),
· · · , p̂(tk)} ⊆ St at time t, where 0 < t0 < · · · < tk < t, then

Dep p̂ (tk) − {p̂ (tk)} = Dep p̂ (tk−1)
∧Dep p̂ (tk−1) − {p̂ (tk−1)} = Dep p̂ (tk−2)
∧Dep p̂ (tk−2) − {p̂ (tk−2)} = Dep p̂ (tk−3)

. . .
∧Dep p̂ (t1) − {p̂ (t1)} = Dep p̂ (t0) ,

and ∀p̂(t′) ∈ P̂ − {r̂(t0)}, ∃p̂(t′′) ∈ P̂ , (Dep(p̂(t′′)) ⊆ Tset(R))@t ∧
(v(p̂(t′), p̂(t′′)) ∈ Tproof(p̂(t′′)))@t holds, we conclude that there is a chain of
trust in the system from the root of trust r̂(t0) to the entity r̂(tk).
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Theorem 4. Let 0 ≤ t0 < tn < t, if there is a chain of trust from the root of
trust entity r̂(t0) to the entity p̂(tn) at time t, then the relier R confirms that
the entity p̂(tn) is trusted at time t.

Proof. we can know by the Definition 7, if there is a chain of trust from the root
of trust entity r̂(t0) to the entity p̂(tn) at time t, then

Dep p̂ (tk) − {p̂ (tk)} = Dep p̂ (tk−1)
∧Dep p̂ (tk−1) − {p̂ (tk−1)} = Dep p̂ (tk−2)
∧Dep p̂ (tk−2) − {p̂ (tk−2)} = Dep p̂ (tk−3)

. . .
∧Dep p̂ (t1) − {p̂ (t1)} = {r̂(t0)},

where 0 < t0 < · · · < tk < t, so Dep p̂(tn) ⊆ P̂ holds, where P̂ =
{p̂(t1), p̂(t2), · · · , p̂(tn)}.

∀p̂(t′),∃p̂(t′′) ∈ P̂ : (v(p̂(t′), p̂(t′′)) ∈ Tproof(R))@t holds, so (Dep p̂(tn) ⊆
P̂ ⊆ Tset(R))@t can be proved by the Theorem 2.

Finally, the conclusion is proved by Theorem 1.

4 Analysis of the Existing Chain of Trust of Trusted
Computing Platform

4.1 SRTM-Based Trusted Computing Platform

TCG has developed a set of trusted boot standards that describe how to build
and transfer the chain of trust based on integrity measurement and proof. First,
trusted measurement of TCG starts from the time the system is powered on,
and transfers the control to a piece of code of BIOS. Secondly, the root of trust
uses the same method to measure the remaining portion of BIOS, then control
is transferred to the measured program or module and so on; this process will
continue until the operating system boots. Measurements produced during the
process are stored in platform configuration register (PCR) of TPM.

Theorem 3 of this paper describes a kind of method of building and trans-
ferring chain of trust. The trusted boot, defined by TCG, is a special case of
the theorem. So this theorem can be used to prove the credibility of building
and transferring the chain of trust during the process of trusted boot defined
by TCG. The trusted boot defined by TCG starts with root of trust. One level
measures and certifies another, a layer trusts another, and this type of credibility
is extended to the whole system of the computer. However, the method of build-
ing and transferring chain of trust during the process of trusted boot defined by
TCG constrains condition 2 of Theorem 3 about how to select an entity.

Similarly, Theorem 3 can also prove the credibility of building and trans-
ferring chain of trust of the IBM’s IMA [22] and the BEAR [17,18] system of
Dartmouth University. First, for building and transferring chain of trust, these
systems are based on the method of trusted boot defined by TCG, which is
extended to the whole operating system. Then, the control is transferred to the



Analyzing the Chain of Trust Model Based on Entity Dependence 153

operating system. The operating system will measure the next entity. As shown
in Fig. 1, the user can load the follow-up entity on the basis of their needs,
which is different from the trusted boot defined by TCG whose entity must be
loaded according to a fixed sequence. However, Theorem 3 does not require that
an entity to be loaded according to a fixed sequence. So the above two systems
in building and transferring chain of trust both are in line with condition of
Theorem 3.

Fig. 1. IMA’s SRTM-based chain of trust

4.2 DRTM-Based Trusted Computing Platform

DRTM-based trusted computing platform does not require system reboot, which
allows the system to build a chain of trust at any untrusted moment as a starting
point, but DRTM requires the support of CPU. AMD and Intel have proposed
DRTM technology independently. They are AMD’s Secure Virtual Machine
(SVM) and Intel’s Trusted eXecution Technology (TXT).

Theorem 3 is also a special case of Theorem 4, that is to say, on power-up of
the system, the root of trust for measurement is loaded, and from r̂(t0) to p̂(tn),
there is a chain of trust consisting of all entities loaded. Theorem 4 shows that
the relier is only concerned about the credibility of interaction entities, without
the need to ensure that trusted computing environment system is trusted. This
is due to the fact that Definition 7 gives a method of building dynamic chain of
trust. We can select a true subset that contains DRTM from entities of trusted
computing environment, and build a chain of trust based on the true subset.
DRTM does not need to start at time t0 = 0, it can load at any time where
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0 ≤ t0 < tn < t. However, it requires that the entity of true subset selected is
not affected by any entity outside trusted computing platform.

Theorem 4 can be used to confirm the credibility of chain of trust which
is based on DRTM in the trusted computing environment. For example, the
Flicker [19] system, due to the newly added DRTM extended command can
provide isolation with the system. The system utilizes extended command to
execute a piece of code. In this system, it is assumed that DRTM entity was
loaded at time t0 and the entity p̂(t1) of executed codes was loaded at time t1,
and another entity was not loaded between t0 and t1. In this system, extended
commands of supporting DRTM can take advantage of the way of suspending
the original system to ensure that the entity p̂(t1) does not depend on other
entity which was loaded before time t0. In addition, the system will delete the
entity p̂(t1) before time tn when operating system begins to restart, which can
ensure that the entity p̂(t1) does not depend on other entity which was loaded
after the time tn. The credibility of building and transfer chain of trust of this
system can be proved by Definition 7 and Theorem 4.

Flicker achieves its secure execution environment by suspending the original
operating system and application software which are running on it. However, the
security architecture of Intel’s TXT [1] and the security architecture of Flicker
are different. The security architecture of Intel’s TXT is a type of architecture of
trusted computing environment based on enhanced security coprocessor, which
allows the protected code and unsafe code to simultaneously run on the trusted
computing platform. In order to prevent other programs to access or modify
data of protected programs, the security architecture of Intel’s TXT provides a
secure execution environment. When the processor is transferred to safe mode,
the enhanced security coprocessor that has a safe mode utilizes a method of
encrypting data to achieve the isolation between other entities and itself. But,
Intel TXT does not have a safe mode. Through the Theorem 4, when DRTM
is loaded, in order to ensure safe programs and unsafe programs to run simul-
taneously on the trusted computing platform, we need some software to isolate
them. The isolation provided by virtualization technology can achieve this pur-
pose, and most of processors that support DRTM also support hardware-assisted
virtualization technology. Figure 2 is security architecture of Intel’s TXT. Virtual
Machine Monitor (VMM) can isolate operation environments that have different
needs to different virtual domains. It is similar to Terrer architecture, but the
difference between the two is: According to the building of Intel’s TXT, VMM
can dynamically load without restarting operating system based on its protec-
tion needs, and TPM1.2 can provide the proof to chain of trust from DRTM
of Intel’s TXT to VMM. Microsoft’s Next-Generation Secure Computing Base
(NGSCB) [2] is a particular implementation of security architecture of Intel’s
TXT. VMM divides hardware resources into two parts, where the remaining
original operating system runs on the left and the right is a Micro Secure Kernel
called nexus. Agent refers to an application that runs on the nexus, which runs
in isolated address space and uses certified primitives. Nexus and VMM provide
agent with a secure running architecture that is consistent with architecture of
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Intel’s TXT. The secure architecture of Intel’s TXT and the design of Microsoft’s
NGSCB both satisfy condition of Definition 7. Assuming the DRTM entity r̂(t0)
is loaded at time t0 and the VMM entity p̂(t1) is loaded at time t1, and there is
no other entity to be loaded between t0 and t1, DRTM can ensure the isolation
between the entity r̂(t0) and the entity p̂(t1) from t0 to tn, so that it ensures that
the above entity does not depend on the entity that was loaded before the time
t0. Virtualization technology provides the isolation between running-state VMM
and trusted domain, which ensures that these entities do not rely on the entity
that was loaded after the time tn. The built chain of trust meets Definition 7.

Fig. 2. The security architecture of Intel’s TXT

5 New Mechanism and Prototype of Building Chain
of Trust

From Fig. 1 and Theorem 3, we can appreciate that building a chain of trust
of SRTM-based requires all entities that were loaded into trusted computing
environment are trusted during the period from the time when the system loads
root of chain to confirmation time in the process of building a chain of trust,
which makes it very difficult to build a trusted computing environment through
static chain of trust. For example, to build a trusted computing environment
of a windows-based machine, we need to measure the whole operating system
and all procedures that run on it. Moreover, there are a lot of measurements
of trusted software that are generated during the process, and they need to be
stored and managed. However, even without considering the performance issue
of measuring in the process, it is very difficult to achieve.

Flicker takes the DRTM as a trusted base that has a shorter chain of trust.
However, to achieve this, Flicker needs to pause the operating system and all
software running on it. We can deduce that the method of building a chain of
trust of Flicker system is correct basing on Theorem 4. But the isolated running
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Fig. 3. Building the chain of trust

environment provided by the method of suspending the operating system must
modify the existing program method. The security architecture of Flicker pro-
vides users with an approximate unlocking programming environment, the codes
of security architecture of Flicker cannot call system call of operating system and
library function, moreover cannot invoke programs that do not belong to cur-
rent session, which largely limits the application range of Flicker. Microsoft’s
NGSCB and Intel’s TXT both achieve dynamic virtualization through DRTM,
but their trusted computing environment was built on the isolated domains that
are similar to running environment of operating system. According to Theo-
rem 4, although Microsoft’s NGSCB and Intel’s TXT are able to utilize DRTM
and hardware-assisted virtualization technology to exclude the host operation
system outside trusted base, the chain of trust built on the isolated domain is
similar to the traditional static chain of trust, which cannot solve the problem
of managing a large number of hash values. This paper introduces a lightweight
virtual machine monitor (LVMM) to implement a new mechanism of building
chain of trust. That is to say, in the running operating system environment, this
paper utilizes hardware virtualization technology and DRTM to load a trusted
LVMM. LVMM creates and maintains the protected execution environment for
objective programs, and monitors the access to memory pages of objective pro-
grams located in PEX. LVMM ensures that one can operate sensitive resources
only in the PEX.

As shown in Fig. 3. Cherub [11] takes advantage of extended instructions
provided by hardware virtualization technology in the running operating system
to load LVMM and moves the operating system to a VM. Dynamic DRTM
technology can make the LVMM start with a kind of trusted way. TPM provides
integrity proof of lightweight virtual machine that can measure the integrity of
protected code and data of PEX.
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In the running phase, Cherub utilizes shadow page mechanism to hidden
LVMM and page table of safety function module from operating system and
protects them from malicious DMA’s attack by I/O hardware virtualization
technology. It marks protected codes and data of the target program in the
shadow page table of LVMM so that LVMM can check the legitimacy of access
to these memory pages. Meanwhile, when the control of the processor is trans-
ferred to the code outside PEX, LVMM will encrypt the page where the codes
and data of PEX are located. When the control returns to PEX, LVMM will
decrypt these pages. LVMM also depends on the I/O hardware virtualization
to protect PEX against DMA’s malicious attacks. When system does not need
the defensive function provided by LVMM, Cherub can easily uninstall LVMM.
Then operating system will consequently control all system resources. Dynam-
ically loading and unloading LVMM and Cherub are more flexible than other
all-purpose security architectures that are based on VM monitor software, which
have significant performance disadvantage.

TPM and DRTM can ensure the credibility and integrity of safety function
module and LVMM from the time DRTM is loaded to the time the operating
system is restated, which ensures that above-mentioned entities do not depend
on any entity that was loaded by trusted computing platform before the initial
time. The integrity protection of the safety function module and LVMM is able
to ensure that these entities do not rely on any entity that was loaded after the
time when operating system restarted. Therefore, the built chain of trust model
conforms to Definition 7 and the condition of Theorem 4.

6 Conclusion

At present, the existing theoretical study of trusted computing lacks theoreti-
cal content on building trusted computing environment. Moreover, some related
theory is difficult to be widely used in the construction of trusted computing envi-
ronment. To solve these problems, this paper gives the formalisation description
of chain of trust model defined by TCG based on entity dependence and safety
logic system. The model has universal significance, and this paper utilizes it to
assess existing trusted computing platforms that are based on SRTM or DRTM.
At the same time, the theory of the model can provide other scholars to fur-
ther study chain of trust and trusted computing environment with theoretical
reference.
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Abstract. With the increasing adoption of the container mechanism in
the industrial community, cloud vendors begin to provide cloud container
services. Unfortunately, it lacks a concrete method to evaluate the secu-
rity of cloud containers, whose security heavily depends on the security
policies enforced by the cloud providers. In this paper, we first derive
a metric checklist that identifies the critical factors associated with the
security of cloud container services against the two most severe threats,
i.e., the privilege escalation and container escaping attacks. Specifically,
we identify the metrics which directly reflect the working conditions of
the attacker. We also extract the metrics essential to achieve privilege
escalation and container escaping attacks by investigating the feasible
methods for breaking the security measures, including KASLR, SMEP
and SMAP, etc. Since memory corruption vulnerabilities are frequently
adopted in the privilege escalation attacks, we collect a dataset of the
publicly released memory corruption vulnerabilities to assist the evalu-
ation. Then, we develop a tool to collect the metric data listed in the
checklist from inside the cloud containers and perform security inspection
on five in-service commercial cloud container services. The results show
that some containers are enforced with weak protection mechanisms (e.g.,
with the Seccomp mechanism being disabled), and the KASLR could
be bypassed on all five cloud containers. However, even after obtaining
ROOT privilege in a container, attackers still can hardly escape from
the container on the public cloud platforms, since the necessary files for
crafting or compiling a loadable kernel module for the host OS are inac-
cessible to the container. Finally, we provide some suggestions to improve
the security of the cloud container services.
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1 Introduction

Container technology is increasingly adopted by the industrial community [38].
The primary reason is the flexibility introduced by the container orchestration
tools such as Docker [11] and Kubernetes [15], which facilitate the deployment,
scaling, and management of the containerized applications. The cloud vendors
also begin to provide container services, e.g., Amazon Fargate [7], Google GKE
(Google Kubernetes Engine) [12], etc. As a lightweight alternative to the tradi-
tional virtual-machine based cloud service, the cloud container service allows the
container instances from different tenants to be executed on the same physical
or virtual server.

As an OS-level virtualization technology implemented in the Linux kernel, all
containers running on one host share the same Linux kernel. There is a consensus
that the container mechanism is less secure than the traditional virtualization
technology like Xen [17] and KVM [35], etc., due to its kernel-sharing feature.
However, it lacks a concrete method to evaluate the security of the cloud con-
tainer services. Existing studies mainly focus on analyzing the security of the
containers running on the local platforms [16,19,27,37]. For example, XinLin
et al. [27] provide a measurement study on the security of local Docker container
systems, where the processes inside the container are granted with default Docker
container permissions. Also, it assumes the attackers could configure portions of
the underlying execution environment (e.g., they can select to install a vulner-
able kernel system and obtain the image file and the source code of the kernel
system). However, execution environment of the remote cloud containers is con-
figured by the service providers and uncontrollable to the attackers. Therefore,
security evaluation on the local container platforms could not completely reflect
the security of various remote cloud containers, which are deployed with a ded-
icated kernel system and protection policies.

In this paper, we provide a metric-based method to evaluate the security of
cloud container services against the privilege escalation attack (i.e., obtaining
ROOT privilege from inside the container) and the container escaping attack,
which will seriously damage or even invalid the isolation provided by container
mechanism. We first investigate the critical factors associated with the secu-
rity of a cloud container service and derive a metric checklist to facilitate the
security inspection. Specifically, we identify the essential metrics associated with
the cloud containers’ execution environment, which directly reflect the working
conditions of the attackers, including version and updating time of the underly-
ing kernel system (they partially illustrate vulnerability of the underlying kernel
system), permissions assigned to the container tenants, and the protection poli-
cies configured by the service provider (e.g., whether security measures including
Seccomp [10], MAC, KASLR [21], SMEP [4] and SMAP [20] are enabled). We
also extract the metrics critical to achieve privilege escalation by investigating
the feasible methods for breaking the security measures, which are commonly
adopted to defend against privilege escalation [27]. To aid our analysis, we collect
a dataset of publicly released memory corruption vulnerabilities, which are nec-



162 Y. Wu et al.

essary for the privilege escalation attacks. Meanwhile, we analyze the procedure
to achieve container escaping and identify the related critical metrics.

Then, we develop a tool to examine the identified metrics listed in the check-
list and perform a detailed evaluation on the security of five popular cloud
container services1. We first explore the execution environment of the cloud
container services, and the results show that kernel systems of four container
services are last updated in 2019. However, we find two cloud container services
have assigned ROOT privilege to the container tenants (i.e., ccs4 and ccs5 in
Table 1). The CPU mechanisms (i.e., SMEP and SMAP) are enabled by almost
all container services, while the kernel protection mechanisms (i.e., MAC, Sec-
comp, and KASLR) are not effectively leveraged. For example, Seccomp and
MAC are both enabled by only one service, and the KASLR is enabled by two
services.

Investigation on the possibility of privilege escalation attack is performed on
the containers that are not assigned ROOT privilege (i.e., containers provided
by cloud services ccs1, ccs2 and cc3 in Table 1). The results show that KASLR
could be successfully bypassed on all services. However, since the underlying
kernel system of the three cloud containers was updated recently, we fail to find
feasible memory corruption vulnerabilities (and exploits) to bypass SMEP and
SMAP on ccs1, cc2 and ccs3. Experiments on the container escaping attacks
show that container escaping is difficult on the public cloud platforms even after
the attackers obtain ROOT privilege. Since there are no user-space APIs (e.g.,
system calls) for a process to transfer from one container to another container,
container escaping should be achieved by modifying the kernel data. The most
generic method to get into the kernel is through a kernel module. However, the
Linux system only allows a matching kernel module (e.g., the module compiled
with the same header files and symbol table as the running system) to be loaded.
In our experiments, container escaping fails on the cloud containers, since the
necessary files for crafting or compiling a loadable kernel module are inaccessible
to the attackers inside the containers.

We have reported our findings to five cloud service providers, and received
responses from most of the providers. After our suggestion, cp2 disabled the
Intel TSX (Transactional Synchronization Extensions) [13] mechanism on the
ccs2 service to prevent the bypassing of KASLR, and cp5 replied that they
would constrain the tenant’s capability and enable the KASLR to enhance the
security of ccs5.

In summary, we make the following contributions:

– We present a metric-based method and design a tool to evaluate the secu-
rity of cloud container services against the privilege escalation and container
escaping attacks.

1 As per requirement of some service providers, we use cp1, cp2, cp3, cp4, cp5 to
represent the five cloud providers, and ccs1, ccs2, ccs3, ccs4, ccs5 to represent the
five cloud container services in the evaluation results.
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– We construct a dataset of memory corruption vulnerabilities which are usually
necessary when achieving privilege escalation from inside the container to
support the work of our evaluation tool.

– We evaluate the security of five in-service cloud container services in detail,
and identify the major obstacles for the attackers to escape from public cloud
containers. We also provide the suggestions to improve the security of the
cloud container services based on our evaluation.

2 Background

2.1 Container Mechanism

Container [28] is a lightweight OS-level virtualization technology implemented in
Linux kernel, which provides isolation for one or more Linux processes. The pro-
cesses running inside a container feel like they own the entire system, although
containers running on the same host share the same Linux kernel. Isolation
between the containers is achieved through two kernel mechanisms, i.e., Names-
pace [9] and Cgroup [6]. There are seven types of namespaces, i.e., user, uts, net,
pid, mnt, ipc and cgroup. Each namespace isolates a specific kernel resource for
one container. For example, the mnt namespace provides an isolated file system
for a container through isolating the file system mount points. After isolation,
the files in different mnt namespaces are not visible to each other and cannot
affect each other. Compared to the Namespace mechanism that concerns kernel
data isolation, the Cgroup mechanism focuses more on performance isolation
by limiting the amount of resources (e.g., CPU, memory, devices, etc.) that
a container can use. Docker [32] is a pervasively used container engine that
facilitates the management of the containers, such as container creating, delet-
ing, starting and stopping, etc. Popular cloud providers also begin to provide
the multi-tenancy cloud container services, such as Amazon Fargate [7], Google
GKE (Google Kubernetes Engine) [12], etc. The underlying technology of these
services is the container mechanism. Therefore, several tenants might share the
same Linux kernel.

2.2 Linux Kernel Security Mechanisms

Isolation enforced by the container mechanism is invalid, if a process inside
the container compromises the kernel or escapes the container boundary to
enter another container. Therefore, several Linux kernel security mechanisms
are adopted to constrain the capability of the processes inside the containers,
such as Kernel Address Space Layout Randomization (KASLR) [21], Capabil-
ity [8], Seccomp [10] and Mandatory Access Control (MAC) mechanisms. The
KASLR mechanism makes the Linux kernel boot up at a random base address
rather than at a fixed base address. As such, the attackers could not obtain
addresses of critical kernel functions, which are usually necessary to compro-
mise the kernel. Capability is a privilege decentralized mechanism, which divides
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the superuser privilege (i.e., ROOT privilege) into 38 units, known as capabil-
ities. Each capability represents a permission to operate some specific kernel
resources. The Seccomp mechanism constrains the system calls a process can
invoke. SELinux [30], AppArmor [1] are two MAC mechanisms frequently used
to enforce mandatory access control on the kernel resources.

2.3 CPU Protection Mechanisms

Two CPU protection mechanisms are also frequently used to protect the Linux
kernel, i.e., Supervisor Mode Access Prevention (SMAP) and Supervisor Mode
Execution Prevention (SMEP) [4]. SMAP prevents supervisor mode programs
from accessing user-space memory, while SMEP prevents supervisor mode pro-
grams from executing user-space code. SMAP and SMEP could be enabled by
setting the 21st and 20th bits of the CR4 register, respectively.

3 Metric Checklist for Container Security Evaluation

Before performing the security evaluation, we first derive a metric checklist that
identifies the critical factors associated with the security of cloud container ser-
vices. As a technology implemented in the Linux kernel, isolation introduced
by container will be seriously damaged or even invalid, if the processes inside
a container could obtain the ROOT privilege or escape the container bound-
ary. Therefore, we focus on investigating the security of cloud container services
against these two most severe threats, i.e., the possibility to achieve privilege
escalation and container escaping from inside the container. Specifically, we first
identify the metrics which directly reflect the cloud container’s execution envi-
ronment. Then, we investigate and summarize the feasible methods for breaking
the security measures including KASLR, SMEP and SMAP, which are com-
monly adopted to defend against privilege escalation [27]. Finally, we extract
the metrics essential to achieve container escaping.

3.1 Execution Environment Related Metrics

Security of the container services heavily depends on the execution environment,
including version and updating time of the underlying kernel system, permissions
assigned to the container tenants, and the protection policies configured by the
service providers. Version and updating time of the underlying kernel system
impact not only the probability of finding feasible memory corruption vulner-
abilities, but also the possibility to obtain a matching kernel image, both of
which are frequently leveraged in privilege escalation attacks [27]. Thus they are
very important to the security of container services. The permission information
directly reflects the ability of an attacker, which means the capabilities assigned
to container processes on Linux platforms. The protection policies signify the
difficulty of launching the attacks, which includes the configuration of both the
Linux kernel (see Sect. 2.2) and CPU protection (see Sect. 2.3) mechanisms,
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i.e., Seccomp, MAC, KASLR, SMEP and SMAP. As such, we introduce eight
execution-environment-related metrics into the checklist, i.e., kernel version and
updating time; capabilities assigned to a container tenant; and the policies of
Seccomp, MAC, KASLR, SMEP and SMAP.

3.2 Privilege Escalation Related Metrics

The key security mechanisms against privilege escalation are KASLR, SMEP
and SMAP [27]. KASLR prevents the attackers from guessing the kernel func-
tions addresses (e.g., commit creds() and prepare kernel cred() are two kernel
functions frequently used in privilege escalation attacks). SMAP and SMEP can
prevent the hijacked control flow from accessing the user-space data and execut-
ing the user-space code (shellcode). An attacker must bypass these mechanisms
to achieve privilege escalation from inside the container [27]. In the following,
we summarize the methods which could be used to bypass the KASLR, SMEP
and SMAP, and extract the critical factors for achieving the bypassing.

1) Bypassing KASLR. The KASLR mechanism has been introduced since
Linux kernel 3.14, which makes the kernel image decompress itself at a ran-
dom location during the booting time. It can be enabled by setting the CON-
FIG RANDOMIZE BASE option when compiling the kernel, and it has been
enabled by default since kernel 4.12. Without KASLR, the base address of the
kernel code will be configured at 0 × FFFFFFFF81000000. In theory, the number
of slots available to the KASLR mechanism for achieving base address random-
ization is 256 on the × 86-32 platforms and 512 on the × 86-64 platforms [21].
In general, there are mainly two approaches to achieve KASLR bypassing, i.e.,
reading sensitive files and launching cache-based side-channel attacks.

a) Bypassing KASLR through Reading Sensitive File. Two types of files might
be used to bypass KASLR. First, the dmesg file under the directory of
/var/log may contain kernel-address related sensitive information (e.g., the
kernel’s base address might be obtained by searching the keywords such as
“Freeing SMP” or “Freeing unused” in the dmesg file). However, we might
not be able to obtain exact addresses of the critical kernel functions (e.g.,
native write cr4()) with only the kernel’s base address, since the offsets of
the kernel functions (to the base address) vary when the kernel images are
compiled with different compilers (e.g., the gcc compilers of different ver-
sions) or different compiling options (e.g., the options defined in the .config
file). Therefore, in order to obtain the exact addresses, kernel images of the
running systems are also necessary. Second, the address of each kernel func-
tion could be obtained directly from the /proc/kallsyms file, if it is set as
readable to the user.

b) Bypassing KASLR through Cache-based Side-channel Attacks. Since the low
entropy of the KASLR’s implementation, cache-based side-channel attacks are
also frequently used to bypass KASLR. Basically, the attacks are launched
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based on the observation that it takes less time to access a content residing
in the cache than the one in the memory. And the most effective cache-based
side-channel attack for bypassing KASLR is called TLB-cache-based [23,24]
side-channel attack.

TLB-cache-based side-channel attacks are also known as double-page fault
attacks [23,24], and they are accomplished based on a feature of some Intel
CPUs. When a user program accesses a privileged kernel address, the processing
procedure will be slightly different for the mapped and unmapped addresses. As
illustrated in Fig. 1, when a mapped address is accessed, a TLB entry will be
created in the TLB cache before the kernel delivers a segment fault signal to
the user program (since the privilege check fails). But for an unmapped address,
no TLB entry will be created. Therefore, the attackers can deduce whether
a kernel address is mapped or not, by accessing the same address twice and
comparing the time duration of receiving the segment fault signal. As such,
the base address of the kernel image could be obtained by probing the whole
region of the kernel space. However, the time to execute segment fault handler
function is also counted into the duration (i.e., t1 and t2), and it is usually
far longer than the difference caused by TLB hit or miss. For obtaining stable
results, it is better to reduce the noise caused by the segment fault handler as far
as possible. Yeongjin Jang et al. [24] proposed a highly stable solution (named
DrK) by leveraging the Intel TSX (Transactional Synchronization Extensions)
instructions. With TSX, the CPU will directly inform the segment fault to the
user program without the attendance of Linux kernel, as such the noise caused
by segment fault handler is omitted.

Fig. 1. TLB-cache based side-channel attack to bypass KASLR. 1© Access a kernel
address p; 2© Receive a segment fault signal (since the privileged check fails) and
record the time duration for obtaining the signal (t1); 3© Access p again; 4© Record
the time duration for the second access (t2). When accessing a mapped address, a TLB
entry will be created in step 2©, and t2 will be smaller than t1 (since the TLB hit).
Or else, no TLB entry will be created, then t2 and t1 will be almost the same.
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2) Bypassing SMEP and SMAP. SMEP and SMAP are introduced into
the Linux kernel since version 3.0 and 3.7, respectively. In general, the attack-
ers can disable SMEP and SMAP by redirecting a corrupted kernel pointer to
the native write cr4() function through memory corruption vulnerabilities. For
example, with parameter 0x407f0, native write cr4() will set the 20th and 21st
bits of the CR4 register as zero (i.e., disabling the SMEP and SMAP). How-
ever, this method requires to leverage a memory corruption vulnerability in
Linux kernel, i.e., seeking out (and overwriting) a corrupted kernel pointer that
points to a function taking one and only one parameter. SMAP is sometimes
disabled by default, then the SMEP could be disabled similarly but with loosen
requirement of the corrupted kernel pointer (i.e., no additional requirement on
the parameters). Specifically, the attackers can craft a malicious Return Oriented
Programming (ROP) chain by concatenating exploitable kernel gadgets, and the
chain realizes the similar function of native write cr4() (i.e., setting CR4 regis-
ter). Then, they store the ROP chain as user-space data and redirect a corrupted
kernel pointer to execute a “stack pivot” instruction, which will put the address
of the ROP chain to the esp (Extended Stack Pointer) register and thereby make
the ROP chain being executed. Although stored as user-space data, the chain
could be read from kernel since SMAP is disabled. Also, the chain could be suc-
cessfully executed since it is constructed by concatenating exploitable gadgets
in the kernel space. However, the attackers need to bypass KASLR and obtain
the kernel image of the running system (which is necessary for obtaining the
accurate addresses of the exploitable kernel gadgets), before crafting a usable
ROP chain.

On the whole, five factors are critical in compromising KASLR, SMEP and
SMAP, which are the accessibility of dmesg and /proc/kallsyms, availability
of the TSX instructions, and the possibility to find feasible memory corruption
exploits and matching kernel images for the underlying Linux kernel system.
These privilege-escalation-associated metrics are also introduced into the check-
list.

3.3 Container Escaping Related Metrics

Although container escaping is easy on the local platforms after the attackers
obtain the ROOT privilege, it is not an easy task on the public cloud plat-
forms. There are no user-space APIs (e.g., system calls) for transferring a process
from one container to another container, and a process’ container attribute is
defined through the data field (i.e., nsproxy) of the kernel data structure (i.e.,
task struct). Therefore, container escaping could be achieved by modifying the
kernel data. In general, there are two ways to get into the kernel from user-space
after obtaining the ROOT privilege, i.e., finding and exploiting a feasible kernel
memory corruption vulnerability, and crafting a loadable kernel module. The for-
mer needs a feasible vulnerability. The later needs a compiling environment for
a kernel module or needs to bypass the verification of loading a kernel module.

Two verification will be performed before loading a kernel module, i.e., wheth-
er the module contains a Vermagic value matching the running kernel system,
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and whether the kernel functions and structures utilized in the module are
attached with correct CRC (Cyclic Redundancy Check) values [40]. Vermagic
is a unique string that identifies the version of the kernel system on which the
module is compiled. A kernel module could be successfully loaded when both
checks pass. Therefore, the attackers can craft a loadable kernel module by either
compiling it on the running systems (corresponding files such as kernel symbol
table and kernel header files, etc. should be accessible), or compiling an incor-
rect kernel module and substituting the Vermagic and CRCs values with the
correct ones. And kernel address of the memory accommodating each kernel
function’s (or structure’s) CRC value usually could be obtained by reading the
/proc/kallsyms file. For example, the address of kernel function A’s CRC value
is marked as kcrctab A in the /proc/kallsyms file. And the Vermagic value
could be derived from an existing loadable kernel module. As such, the attackers
could craft a loadable kernel module if they can find an existing loadable kernel
module and obtain the kcrctab * values.

Based on the analysis above, we introduce three container-escaping-
associated metrics into the checklist, which are the availability of the header
files, Vermagic value and CRC value associated with the underlying Linux ker-
nel system.

3.4 Memory Corruption Vulnerabilities

As illustrated in Sect. 3.2, when performing privilege escalation attack, the
attackers need to overwrite certain kernel memory through memory corruption
vulnerabilities in the Linux kernel, such as UAF (Use-After-Free), race condi-
tion, improper verification, buffer overflow, etc. It is pretty unlikely to patch all
vulnerabilities considering the large code size of the Linux kernel. Distribution
of memory corruption vulnerabilities partially reflects the possibility to achieve
privilege escalation from inside the containers. Therefore, we provide a statistic
analysis on the emerging and fixing pattern of the memory corruption vulnera-
bilities in this section.

1) Dataset. We collect a memory corruption vulnerability dataset by manually
analyzing the vulnerabilities published on the National Vulnerability Database
(NVD) between 2008 and 2018 [3]. NVD is the U.S. government repository of
standards based vulnerability management data. Each vulnerability is assigned
with a Common Vulnerabilities and Exposures (CVE) ID. First, we pick out all
vulnerabilities used to compromise Linux kernel by investigating the vulnerabil-
ity description on the NVD website. Then, we further find out the vulnerabilities
which could be exploited to corrupt kernel memory. On one way, we will include
all vulnerabilities which are explicitly stated the consequences of overwriting
kernel memory or gaining privileges (through memory corruption), e.g., the vul-
nerabilities which use vulnerable system calls to generate UAF (Use-After-Free),
race condition, buffer overflow, integer overflow, etc.

For the vulnerabilities without explicit statements of overwriting kernel mem-
ory, we analyze the work principles of the vulnerabilities to check whether they
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could be exploited to corrupt kernel memory. For example, the descriptions of
the vulnerabilities with ID CVE-2011-0709 and CVE-2017-8890 only state that
they will cause DoS (Denial of Service) attacks through NULL pointer derefer-
ence and DF (double free), respectively. Since dereferencing of a NULL kernel
pointer and double freeing of kernel memory have a high possibility of being
exploited to cause kernel memory corruption [5], so they are also counted. To
achieve a more accurate analysis, besides the descriptions on the NVD website,
we also refer to the reports associated with the vulnerabilities on other websites,
such as “SecurityFocus” [39] and “Red Hat Bugzilla” [14] (both websites are
utilized by the technical communities to track bugs and discuss the details of
the bugs).

Since our goal is to evaluate the possibility of launching attacks from inside
containers, we exclude those vulnerabilities which are difficult to be exploited
inside the container. For example, the vulnerabilities requiring the capabilities
(e.g.,CAP SYS ADMIN) or system calls (e.g., ptrace(), bpf(), keyctl(), clone(),
etc.) or operations (e.g., mounting a file system or image files) which are not
available in the containers.

2) Number of Memory Corruption Vulnerabilities. In total, we find 374
kernel memory corruption vulnerabilities, and the number of each year is illus-
trated in Fig. 2. 54% (202) of vulnerabilities are explicitly stated that they could
be exploited to corrupt kernel memory, while other 172 are identified by ana-
lyzing the vulnerabilities’ work principle. On average, there are 34 memory cor-
ruption vulnerabilities each year. In addition, target kernel versions of the vul-
nerabilities change synchronously along with the updating of the Linux kernel.
For example, the vulnerabilities published between 2012 and 2014 mainly target
at Linux kernel 3.x, while the ones published in 2018 mainly focus on Linux
kernel whose version is higher than 4.14. This shows that the memory corrup-
tion vulnerabilities are hardly to be cleared up even Linux kernel is continually

Fig. 2. Number of the memory corruption vulnerabilities
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updated. Therefore, there is always a possibility to achieve kernel memory over-
writing through kernel vulnerabilities.

As shown in Fig. 2, the number in 2017 is higher than others, and it is about
twice of the average value. It is possible due to the dramatic increase of the
total reported vulnerabilities in 2017 [31]. After further analysis, we find the
reasons for the surge of the vulnerabilities in 2017 are mainly two-fold. First,
the assignment process of CVE numbers was improved in 2017, where the CVE
numbers could be assigned in a matter of hours or days through filling a web
form. But before 2017, the assigning process is more tedious, and it takes far more
time. Therefore, the higher number of vulnerabilities in 2017 does not necessarily
mean that more vulnerabilities are discovered this year, but more researchers
apply for and get CVE numbers successfully. Second, with the popularization of
cloud computing, mobile Internet, and IoT devices in 2017, the generalization of
cyberspace attacks and the lack of security awareness lead to an increase in the
number of vulnerabilities [41].

3) Release Time of the Patches. Besides the vulnerability number, the time
duration for an exposed vulnerability to be patched is also critical to the attack-
ers. Therefore, we also analyze the patch release time for the 374 kernel memory
corruption vulnerabilities identified. Normally, the patch for each vulnerability is
also published on the NVD website, along with the vulnerability. In the situation
when more than one patches are released for a vulnerability, the earliest release
time will be utilized. Figure 3 depicts the statistics results of the patch release
time, which shows more than 97% of vulnerabilities are patched within 5 months
after the CVE numbers are assigned. And we are not able to find patches for 4
vulnerabilities, i.e., the ones labeled as “Unknown” in Fig. 3. We find patches of
about 52% of vulnerabilities are released before the CVE numbers are assigned.
The reasons might be two-fold. First, it takes a long time for the CVE number
to be reviewed and assigned, so there is a lag. The researchers who discover

Fig. 3. Statistics on the patch release time since the CVE assignment
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the vulnerability (or those who are aware of the vulnerability) have developed
and published a patch before the CVE number is assigned. Second, the CVE
assignment is intentionally delayed, as such the attackers could not utilize the
published vulnerability to launch zero-day attacks.

4 Evaluation and Analysis

In this section, we perform an evaluation on five popular cloud container services,
which are increasingly utilized to deploy industrial applications [36]. Particularly,
we develop a tool to facilitate the collection of metric data listed in the checklist
from inside the cloud containers. Most metric data could be obtained through
existing Linux commands, e.g., the capabilities assigned to a container process
could be fetc.hed through the getpcaps command, the kernel version could
be obtained through the uname -a command. We investigate the availability
of memory corruption vulnerability by checking the underlying kernel version
against the dataset collected from NVD (see Sect. 3.4). To explore whether the
kernel image and header files of the underlying kernel system are available, we
collect a repository which includes kernel image files and header files downloaded
both from the virtual machines of these cloud service providers and the Linux
Kernel Archives [2].

All container services have the concept of regions, i.e., the containers might
be deployed on servers located at different physical regions. For example, ccs5
allows a user to apply for a container from one of the three regions. As such, we
randomly select three regions for each container service and investigate whether
the configuration varies for the containers deployed on servers located at different
physical regions. The results show that containers deployed in different regions
share the same configuration. Therefore, we evaluate one representative container
for each service. All data associated with the container services were collected
in August 2019.

4.1 Container Execution Environment Detection

Table 1. Execution Environment of the Cloud Containers

Cloud
container
service

Kernel version Permissions Protection mechanisms

Version Update date No of Caps Seccomp MAC KASLR SMEP SMAP

ccs1 4.14 2019/06 14
√ × × √ ×

ccs2 4.14 2019/06 14 × √ √ √ √

ccs3 4.15 2019/05 14 × × √ √ √
ccs4 3.10∗ 2018/04 37† × × × √ √
ccs5 4.1.51 2019/02 38 × × × √ √

√
represents the protection mechanism is enabled, and × means it is disabled.

* The underlying kernel system is Red Hat.
† Since CAP AUDIT READ is not supported in this kernel system, 37 capabilities represent
ROOT privilege.
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Execution environments of the cloud containers are illustrated in Table 1.
First, kernel systems of all container services except ccs4 are last updated in
2019. However, we find ccs4 and ccs5 have already assigned ROOT privilege to
the container tenants. The CPU mechanisms (i.e., SMEP&SMAP) are enabled
by almost all container services, while the kernel protection mechanisms are not
effectively leveraged. For example, Seccomp and MAC are both enabled by only
one service, and the KASLR is enabled by two services. A study of the privilege
escalation vulnerabilities [27] shows that 11 exploits are blocked by Seccomp
and MAC. Furthermore, KASLR is a necessary step for privilege escalation.
Improperly setting of these mechanisms might let pass a series of exploits.

4.2 Privilege Escalation Evaluation

Table 2 depicts the possibility to achieve privilege escalation from inside the
cloud containers. Since ROOT privilege has already been assigned to the con-
tainer tenants of ccs4 and ccs5 as illustrated in Table 1, we investigate the possi-
bility of privilege escalation attacks on the other three cloud container services.
As illustrated before, the essential problems for achieving privilege escalation
are bypassing KASLR, SMEP and SMAP. From Table 2 we can see that the
KASLR could be successfully bypassed on all services through either reading
the /proc/kallsyms file or conducting TLB-cache based side-channel attacks
with the help of Intel TSX mechanism (The /proc/kallsyms file is also accessi-
ble on the containers provided by ccs4 and ccs5). As for the bypassing of SMEP
and SMAP, we can obtain the feasible kernel images to craft an ROP chain for
the containers provided by ccs1 and ccs2, since both services utilize the same
kernel images for the virtual machines and containers. However, since kernel sys-
tems of the three container services were updated recently, we fail to find feasible
memory corruption vulnerabilities (and exploits) to bypass SMEP and SMAP.

Table 2. Results of Privilege Escalation Attacks on the Cloud Containers∗

Cloud
Container
Service

Bypassing KASLR Bypassing SMEP&SMAP

dmesg /proc/kallsyms TSX Success Feasible
Exploits

Kernel
Image

Success

ccs1
√ √ × Y × √

N

ccs2
√ × √

Y × √
N

ccs3
√ × √

Y × × N√
represents the item is accessible (or available) to the attackers, and × means it is

inaccessible (or unavailable).
* “ccs4” and “ccs5” are not illustrated, since the containers of these two services have
already been assigned ROOT privilege.
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4.3 Container Escaping Evaluation

Table 3. Results of Container Escaping on the Cloud Containers∗

Cloud Container Service Compiling Environment Bypassing Verification

header files Vermagic(loadable module) CRC( kcrctab *)

ccs4 × √ ×
ccs5 × × √

√
represents the item is accessible (or available) to the attackers, and × means it is inaccessible (or

unavailable).
* “ccs1” , “ccs2” and “ccs3” are not illustrated, since lacks of feasible vulnerability for the containers
of these three services.

The results of container escaping are shown in Table 3. Due to the lacking of
feasible vulnerability, we use the second method to get into the kernel. Because
ccs4 and ccs5 have already assigned the container tenants ROOT privilege, we
have the capability to load module. We find the kernel header files are inaccessible
to the containers for both services, so we could not directly compile a loadable
kernel module. Meanwhile, we find the kcrctab * values are absent on the
containers of ccs4 (although the /proc/kallsyms file is accessible), while no
existing loadable kernel modules could be found in the containers provided by
ccs5.

5 Discussion and Future Work

We give some suggestions to enhance the security of cloud container services from
the following aspects. First, the kernel mechanisms including Seccomp, Capabili-
ties and MAC should be enabled and set with as strict policies as possible, which
might block a series of exploits. For example, in the study performed by XinLin
et al. [27], 67.57% of exploits are blocked by these kernel mechanisms. Second,
the KASLR mechanism should be effectively utilized by not only being enabled,
but also with the sensitive files (including dmesg, and /proc/kallsyms etc.) set
as inaccessible for the container tenants. Third, vulnerabilities in the underlying
kernel system should be patched as soon as possible, which will increase the
difficulty for the attackers to seek out a usable exploit. Fourth, it is better to use
the kernel images of different versions in the virtual machines from the ones in
the containers, if the service provider allows the tenants to apply for both virtual
machines and containers. This can prevent the attackers from crafting a feasi-
ble ROP chain for bypassing SMEP, and also raise the bar to achieve container
escape. We have supplied these suggestions to the cloud service providers.

It is more challenging to achieve privilege escalation on the public cloud
platforms than on local Docker platforms, since the lack of available exploits
on the specific underlying kernel systems. However, according to our research,
tens of memory corruption vulnerabilities are published each year, and there is
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a lag for the vulnerabilities to be patched. Therefore, by continuously collecting
the emerging exploits and tracking the updating states of the cloud container
services’ underlying kernel systems, it is possible for attackers to obtain ROOT
privilege from inside the containers. Security of the cloud container services heav-
ily depends on whether a vulnerable kernel system is updated in time and how
long is the lag. However, the problem has not been well studied yet. Also, more
persuasive evaluation could be obtained if the memory corruption vulnerability
dataset could be greatly enlarged. We leave them as our future work.

6 Related Work

There are a line of research works on the security of the container mechanism.
For example, M. Ali Babar et al. [16] compared the security between the contain-
ers based on different OS-level virtualization implementations, i.e., Rkt, Docker
and LXD. Thanh Bui et al. [19] compared the architecture between hypervisor-
based virtualization and container-based virtualization briefly, and they mainly
analyzed the docker internal security. XinLin et al. [27] used the vulnerabilities
to measure the security of the local container, and they analyzed the influence of
different capabilities on container vulnerability exploitation. Reshetova et al. [37]
theoretically analyzed the security of different OS-level virtualization implemen-
tations, i.e., FreeBSD Jails, Linux-VServer, Solaris Zones, OpenVZ, LxC and
Cells. Z Jian et al. [25] summarized two approaches to achieve container escape
and evaluated the proposed defense tool with 11 CVE vulnerabilities. A. Martin
et al. [29] classified the vulnerabilities of the container to five categories and
performed a vulnerability assessment based on the security architecture and use
cases of Docker. A. Mouat et al. [33] provided an overview of some container
vulnerabilities, such as kernel exploits, container breakouts and secret leakage.
Different from these works, we focus more on the security of the remote cloud
containers, which is more complicated and varies on different cloud container
platforms.

Many researchers also investigate the security of cloud container orchestra-
tion tools [18,34]. Alexander et al. proposed a method to detect the container
environment [26], i.e., comparing the number of processes returned by the sys-
info() system call and the “ps -ef” command. Xing Gao et al. [22] proposed
that the leaked host information will seriously threaten the security of the cloud
server. They also introduced a leakage channel detection method based on the
context and listed the leakage channels.

7 Conclusion

Cloud container service is widely used, so its security is particularly impor-
tant. In this paper, we provide a concrete method to evaluate the security of
cloud container services. We also perform a detailed evaluation of five in-service
cloud container services, i.e., whether the user can achieve privilege escalation
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from inside the cloud containers, and the possibility to achieve the cloud con-
tainer escaping. We find some incorrect configurations in them (e.g., two cloud
container services have assigned ROOT privilege to their container tenants by
default). Moreover, the KASLR mechanism could be successfully bypassed on all
five cloud containers. However, even after obtaining ROOT privilege in a con-
tainer, attackers still can hardly escape from the container on the public cloud
platforms. Finally, we give some suggestions to improve the security of the cloud
container services.
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Abstract. Graphics Processing Units (GPUs) are now playing a vital
role in many devices and systems including computing devices, data cen-
ters, and clouds, making them the next target of side-channel attacks.
Unlike those targeting CPUs, existing side-channel attacks on GPUs
exploited vulnerabilities exposed by application interfaces like OpenGL
and CUDA, which can be easily mitigated with software patches. In this
paper, we investigate the lower-level and native interface between GPUs
and CPUs, i.e., the graphics interrupts, and evaluate the side channel
they expose. Being an intrinsic profile in the communication between
a GPU and a CPU, the pattern of graphics interrupts typically differs
from one GPU workload to another, allowing a spy process to monitor
interrupt statistics as a robust side channel to infer behavior of other pro-
cesses. We demonstrate the practicality of such side-channel exploitations
in a variety of attacking scenarios ranging from previously explored tasks
of fingerprinting the document opened and the application launched, to
distinguishing processes that generate seemingly identical displays. Our
attack relies on system-level footprints rather than API-level ones and
does not require injecting any payload into the GPU resource space to
cause contentions. We evaluate our attacks and demonstrate that they
could achieve high accuracy in the assumed attack scenarios. We also
present in-depth studies to further analyze the low-level rationale behind
such effectiveness.

Keywords: Side-channel attacks · GPU · Graphics interrupts ·
Machine learning

1 Introduction

Graphics Processing Units (GPUs) have become increasingly important compo-
nents for today’s computing devices, not only because applications may involve
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heavy graphics and multi-media workloads, but also because of the capabil-
ity of GPUs in accelerating applications in domains such as security, computa-
tional finance, and bio-informatics [9]. Such development naturally makes GPUs
a tempting target to attacks aiming to leak user privacy.

Several vulnerabilities have already been demonstrated in GPU security
[13,15,18,19,23,32], most of which focused on vulnerabilities caused by defec-
tive memory management and privacy-leaking APIs from GPU-related frame-
works OpenGL, OpenCL, and CUDA. This includes the latest work on GPU
side channel attacks [19] which demonstrated the practicability of exploiting
resource tracking APIs provided by the aforementioned frameworks to leak user
privacy. These previous attacks typically require injecting an attack process into
the same GPU where the victim process resides, and running it in parallel with
the victim process in order to capture any footprints it leaves. Although not
having been explicitly admitted in existing work, such an attack strategy is not
subtle enough considering that a defense opponent could potentially be able to
detect the attacks by identifying the existence of their co-residing attack pro-
cesses. In addition, with the GPU side-channel attacks drawing people’s atten-
tion, corresponding defense approaches against GPU memory leakage were also
proposed [21,29]. Manufacturers like Nvidia were also reported to be taking
actions to mitigate the resource tracking vulnerability [20].

In this paper, we consider a less demanding threat model and identify the
statistics of graphics interrupts as another source for side-channel attacks on
GPUs. Graphics interrupt statistics are available to non-privileged processes on
Linux-based systems, which are typically readable at /proc/interrupt. The key
insight is that footprints of the graphics stack exist not only within the GPU
resource space (exploited by existing work) but also at the interface between a
CPU and a GPU (interrupts as exploited in this paper). Specifically, a GPU
sends interrupt requests (IRQs) to signal key events like completion of a graph-
ics command or reporting a GPU error. Consequently, when handling different
GPU workloads, it is likely for the CPU to capture relevant IRQs in different
temporal patterns. As modern operating systems provide statistics of interrupts
captured at runtime, a malicious party may use the graphics interrupt statistics
as signatures to infer the exact workload that is being processed by the GPU.
Such an attack, unlike the existing ones, operates completely in a passive man-
ner, i.e., it does not require any payload to be co-resident with the victim process
inside the GPU resource space to cause contentions of any kind.

To demonstrate that graphics interrupts are indeed exploitable, we imple-
mented several side-channel attacks under various attacking scenarios, includ-
ing webpage fingerprinting, application inferencing, and distinguishing processes
that output seemingly identical displays, on two common graphics adapters of
Nvidia’s and Intel’s. Our attack periodically samples counts of graphics inter-
rupts and uses the pattern of increments as a time-series signature to identify the
target workloads with a machine learning model. Evaluations showed that our
attacks demonstrated comparable accuracy with the latest GPU side-channel
attacks based on memory APIs and performance counters [19] in webpage fin-
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Fig. 1. Conventional GPU-related attacks and our attack strategy.

gerprinting. Experiments also demonstrated accuracy as high as 99.8% in GUI-
application fingerprinting. Last but not least, we found our application finger-
printing attack being capable of identifying different types of graphics workloads
which present the same visual perception. Experiments on this aspect demon-
strated a high accuracy in distinguishing different video players when playing
the same video, or detecting differences in playing the same video encoded with
different codec.

2 Related Work

GPU-Based Side Channels. Existing GPU side-channel attacks focused
on disclosing the webpage loaded and sensitive workload on cryptographic
algorithms [13,15,18,19,23,32]. Most of them exploited GPU vulnerabilities
related to insecure memory management, e.g., not initializing newly allocated
blocks [13,32] and vulnerabilities in the CUDA driver [23]. Recently, Naghibi-
jouybari et al. [19] studied the practicability of exploiting GPU resource tracking
APIs.

These existing GPU side-channel attacks work according to an intrusive
model in which contentions are introduced inside the GPU resource space.
Figure 1 demonstrates this attacking strategy with the payload being deployed
in the GPU memory. This strategy is not only intrusive to the victim process but
also easy to defeat by simple countermeasures of software patching. For exam-
ple, most browsers have now reduced the timer resolution and thus eliminated
the timing signal used by the attacks. GPU manufacturers have also noticed the
potential vulnerability caused by the resource tracking APIs and expressed plans
to fix the problem with updates to OpenGL and CUDA. In this paper, we pro-
pose a novel GPU side-channel attack which works by collecting graphics-related
interrupt footprints. Our approach operates passively rather than being intru-
sive to its victims, making it more stealthy than the existing attack strategies
while being able to achieve similar effectiveness.
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Interrupts. Interrupts have been exploited in privacy leakage scenarios. Diao
et al. [3] reported using interrupts to infer unlock patterns on Android devices.
Tang et al. [25] further suggested that patterns of interrupt increment could
be exploited to identify hardware related sensitive behaviors of Android apps.
Another study demonstrated inferencing of instruction-granular execution states
from hardware-enforced enclaves by measuring the latency of carefully timed
interrupts [26]. There were also researches suggesting that attackers could estab-
lish covert channels based on the CPU time used for handling interrupts [6,16].
In this paper, we focus specifically on using statistics of graphics interrupts as
a side channel to infer GPU related activities, and study the potential risk of
privacy leakage that can be caused by such an attack.

Webpage Fingerprinting. Early approaches for webpage fingerprinting
include measuring web access time to exploit browser caching [5], measur-
ing memory footprints [11], and analyzing network traffic [7,22]. The relation-
ship between webpage loading and graphics displaying behaviors was also pro-
posed for webpage fingerprinting. For example, previous researches had pro-
posed using display-related features of browsers to construct cross-origin timing
attacks [12,27]. Kotcher et al. [12] found that after applying CSS filters to a
framed document, its rendering time becomes dependent on its content.

Proc Filesystem. The proc filesystem on Linux-based systems is another leak-
age vector that was used by side-channel attacks for inferring application UI
status [2], keystrokes [30], TCP sequence numbers [24], and user identities [31].

3 Our Idea

3.1 Graphics Interrupts

Communication between CPUs and GPUs is critical to a computer’s graph-
ics pipeline; see Fig. 1. Important components of such communication include
DMA requests and acknowledgment to enable buffer sharing, the command FIFO
between CPUs and GPUs, as well as interrupts from the GPU to CPU when cer-
tain events need to be processed immediately (IRQs as shown in Fig. 1). These
IRQs are reflections of the corresponding workload being processed.

Table 1 lists all IRQs defined in a popular open-source graphics driver on
Linux, namely the drm/i915 Intel GFX Driver. Each of these interrupt types
is either about a specific engine of the GPU, including the RCS (rendering),
BCS (blitter copy), VCS (video en/decoding), and VECS (video enhancement)
engine, or about basic events (such as vertical blanking). For example, displaying
a PNG picture only involves rendering static frames which will be done by the
RCS engine, while playing an MKV video may require the VCS engine to perform
decoding throughout the process. This suggests that graphics interrupts are good
reflections of content of the document being displayed. By the same token, the
user interface of an application needs to be rendered and refreshed, which could
be reflected on the corresponding graphics interrupts.
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Table 1. Interrupt Request Definitions in drm/i915 Driver.

Name of IRQ Description

GEN8 DE MISC IRQ Miscellaneous interrupt raised by graphics system

events (GSE) and panel self refresh events (PSR)

GEN8 DE PORT IRQ The display engine port interrupt, related to AUX DDI

A done event and hotplug events

GEN8 PIPE VBLANK Related to vertical blanking events

GEN8 PIPE CDCLK CRC DONE This displays core clock (CDCLK)

GEN8 PIPE FIFO UNDERRUN Related to GPU’s command FIFO when running into a

buffer underrun

GEN8 DE PCH IRQ The south display engine interrupt, also deals with

hotplug interruption and ambus events

GEN8 GT RCS IRQ Interrupt of the RCS engine which performs computing

and rendering

GEN8 GT BCS IRQ Interrupt of the Blitter COPY engine

GEN8 GT VCS0 IRQ Interrupt of the VCS engine used in processing videos

where it performs encoding and decoding

GEN8 GT VCS1 IRQ Same as the previous one

GEN8 GT VECS IRQ Interrupt of the video enhancement engine

GEN8 GT PM IRQ Related to power management events

GEN8 GT GUC IRQ Related to microprocess interruptions of the graphics

microcontroller (GuC)

3.2 Threat Model and Our Idea

Different from existing side-channel attacks on GPUs, our proposal considers a
lower level interface which works completely in a passive manner by capturing
only statistical interrupt information provided by the OS kernel. As illustrated
in Fig. 1, unlike existing attacks which intrusively cause contentions in the GPU
resource space (as highlighted by ① in the figure), our attack does not access
GPU resources but instead reads interrupt statistics from the OS (as highlighted
by ②). Although such a spy process could potentially exploit other system side
channels (e.g., CPU cache and network related ones) to launch data-driven leak-
age attacks, our investigation here focuses on the leakage of GUI-related private
information, which is more directly reflected over graphics interrupts.

Specifically, our threat model assumes a (non-privileged) spy process which
periodically reads the aggregated graphics interrupt counts reported by the oper-
ating system, and uses a sliding window to extract subsequences of the collected
time series of interrupt statistics. We then use a trained machine learning model
to determine the task being processed by the GPU.

3.3 Challenges and Experiments

Although modern operating systems like Linux report graphics interrupt statis-
tics to any unprivileged user process via the proc filesystem (procfs), the specific
types of graphics interrupts (e.g., those reported in Table 1) are aggregated in the
report. It is therefore not clear whether such coarse grained reporting of graph-
ics interrupt reveals GUI-related private information. In this paper, we evaluate
the extent to which such aggregated graphics interrupt information masks or
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reveals workloads on the GPU, and the extent to which such masking/revealing
of workload leaks private information of victim processes.

We experimented with the graphics interrupts on two different microarchi-
tectures, namely an Nvidia GeForce GTX 760M (with Nvidia driver version
340.107) and an Intel HD Graphics 520 GT2 (with drm/i915 driver integrated in
Linux kernel 5.4.2). The Nvidia unit is chosen due to its popularity and poten-
tial use in general-purpose computing. The Intel unit is chosen because it is
controlled by an open-source driver integrated in the Linux kernel, which allows
us to observe the low-level details of the collected graphics interrupt patterns to
make our experimental results explainable. The experiments were conducted on
an Ubuntu 18.04 machine with an Intel i7-4700MQ Processor and 8 GB RAM,
where interrupt statistics are obtained by reading /proc/interrupt. Note that
in case of Windows, information of IRQs are managed by the interrupt descrip-
tor table (IDT). Although there had not been software (via legitimate APIs or
hacking techniques) reported specifically designed for extracting interrupt statis-
tics on Windows, documentations suggest that it can be done in a similar way
in which system call information is extracted with a kernel driver overwriting
the system service descriptor table (SSDT) [10,14].

4 Attack Scenario I: Webpage Fingerprinting

Our first attack implements webpage fingerprinting as it has been targets of
many existing attack strategies (see Sect. 2). We make a comparative study with
one of the latest attacks using GPU side channels [19]. To this end, we tested
our attack on the same Alexa top 200 websites [1] with the Chrome browser
and used the same basic machine learning models as in Naghibijouybari et al.
for our classification, namely Gaussian Naive Bayes (NB), K-Nearest Neighbor
with 3 neighbors (KNN-3), and Random Forest with 100 estimators (RF). We
additionally included a state-of-the-art deep learning model on time series classi-
fication, the Residual Neural Network (ResNet) [8,28]. This is because a previous
research on time series classification [4] suggested that deep learning methods
typically outperform conventional statistics-based models because they do not
require pre-processing the input data to extract feature vectors. Our ResNet
model used the same hyperparameters as in the original proposal [28] with 3
residual blocks each built by stacking 3 convolutional blocks consisting of a con-
volutional layer followed by a batch normalization layer and a ReLU activation
layer. The number of filters in the residual blocks are, respectively, set to 64,
128, and 128, with the convolution operation fulfilled by three 1-D filters of sizes
9, 5, and 3 without striding.

We automatically load each webpages 100 times with a script while having
the timestamp of each events logged. Upon each webpage loading, we pick up
100 continuous samples of (aggregated) graphics interrupt counts collected by
our spy process to form a time series corresponding to the event, with the value
of each sample indicating the increment of graphics interrupts since the previous
sampling. We use a sampling interval of 50 ms for negligible performance over-
head. Note that in such a side-channel attack, data sampling of the spy process
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and the targeted sensitive events are supposed to be asynchronous for mimicking
a practical attacking scenario. Therefore, we start establishing a time series using
the last interrupt count collected before the timestamp of its corresponding web-
page loading event as its first sample. Finally, we used 10 fold cross validation
to measure the accuracy of the corresponding machine learning models.

Result and Analysis: As shown in Table 2, conventional machine learning
models could no longer provide effective classification on side-channel leakage of
graphics interrupts. Out of the three such learning methods tested, only ran-
dom forest could maintain a precision of around 85% and 79%, respectively, on
the Intel and Nvidia GPU. However, the state-of-the-art deep learning model
on time series classification, namely ResNet, demonstrated much better accu-
racy on the Nvidia GPU (88.2% F-measure) and even better on the Intel GPU
(92.0% F-measure). Although our results are not as good as those reported by
Naghibijouybari et al. [19] when using the same conventional machine learning
classifiers, we remind readers that our results are achieved without injecting
GPU payload or causing contention in the GPU resource space, unlike those in
Naghibijouybari et al. [19]. Such results suggest that graphics interrupts provide
a valid privacy leakage vector to support side-channel attacks in the scenario of
website fingerprinting, with an unprivileged spy process reading only aggregated
graphics interrupts from /proc/interrupt.

Table 2. Performance of webpage fingerprinting: average and standard deviation.

F-Measure Precision Recall

Graphics Interrupt (on Intel) NB 46.3% (7.51) 48.7% (10.6) 49.7% (8.26)

KNN-3 32.4% (6.12) 36.5% (8.72) 34.1% (5.12)

RF 83.1% (7.02) 85.5% (5.78) 83.9% (5.47)

ResNet 92.0% (1.35) 93.4% (1.27) 92.2% (1.31)

Graphics Interrupt (on Nvidia) NB 46.7% (1.76) 49.0% (2.96) 50.1% (2.02)

KNN-3 29.3% (1.12) 31.9% (1.26) 30.5% (1.41)

RF 76.5% (0.56) 79.3% (0.65) 77.2% (0.66)

ResNet 88.2% (0.51) 89.9% (0.31) 88.3% (0.44)

Naghibijouybari et al. [19] (on Nvidia) NB 83.1% (13.5) 86.7% (20.0) 81.4% (13.5)

KNN-3 84.6% (14.6) 85.7% (15.7) 84.6% (14.6)

RF 89.9% (11.1) 90.4% (11.4) 90.0% (12.5)

To better understand the results, we dive into the low-level details of the
interrupt handling process by hooking the IRQ handlers of the drm/i915 driver
to gain more detailed logs on the graphics interrupts captured, which enabled us
to investigate the interrupt counts for each IRQ listed in Table 1 Note that an
unprivileged attacker (main threat model used in our paper) could not obtain
such information. We do this solely for the purpose of better understanding
our attacking capability behind the scene. Figure 2 demonstrates such detailed
interrupt patterns on opening four webpages (homepages of Google, Facebook,
Amazon, and Tencent) using three browsers (Chrome, Falkon, and Firefox).
Our analysis reveals two interesting observations.
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Fig. 2. Interrupt patterns (Intel) of different webpages (and the corresponding
browser). Missing lines correspond to zero readings of IRQ types.

First, Google’s homepage has the simplest layout and correspondingly, the
GEN8 GT RCS IRQ interrupt boost (indicating events signaled by the rendering
engine) of its loading was the shortest among the four webpages (for around
1.2 s, while those for Amazon and Facebook were respectively around 2.0 s and
3.7 s). In addition, all the tested webpages are static except that of Tencent
which contains animation effects. As a result, we can see that the RCS interrupt
pattern of Tencent’s corresponds to continuous refreshing of the webpage, unlike
what happened to the other tested webpages. These confirm our intuition (see
Sect. 3) that graphics interrupts reflect layouts and objects of the display.
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Second, we found that on opening the same webpage, different browsers
resulted in distinct graphics interrupt patterns (see Fig. 2.d, 2.e and 2.f). This
suggests that the detailed implementation of GPU acceleration in different
browser engines also has a significant impact on our side-channel attacks. At
this moment, we did not dig deeper into source code of the browsers to find
out the decisive answer on how the implementation of different engines affects
website-related graphics interrupt patterns. A reasonable guess on this is that
each browser has a unique strategy with regard to the type and amount of data
to be submitted to the GPU for processing, which will translate to different num-
ber of GEN8 GT RCS IRQ interrupts per sampling. We believe this is why browsing
with Firefox causes significantly smaller amount of rendering-related interrupts
on average compared with Falkon and Chrome. This also suggests that graphics
interrupts could not only be used to fingerprint data (e.g., webpages) processed,
but also for fingerprinting applications; see Sect. 5.

We also note that modern web browsers utilize the GPU to accelerate their
rendering processes. Many webpages now contain optimized frontend/backend
code to take advantage of it [17]. As a result, it is likely for different webpages to
have adopted different acceleration techniques including server- and client-side
rendering, rehydration, and prerendering, which also leads to differences in their
resulting graphics interrupt patterns. To confirm this intuition, we used an open-
source prerendering tool, pre-render1, to convert a simple Vue webpage into its
pre-rendered variant2, and recorded the corresponding graphics interrupts when
the two pages were loaded and displayed in Chrome. Figure 3 showed noticeable
differences between the interrupt patterns on the two instances.

Fig. 3. Interrupt patterns (Intel) of two versions of a same Vue webpage, with and
without pre-rendering.

1 https://github.com/kriasoft/pre-render.
2 The tested webpage can be accessed via http://pay.his.cat/app.html (original ver-

sion) and http://pay.his.cat/index.html (prerendered version).

https://github.com/kriasoft/pre-render
http://pay.his.cat/app.html
http://pay.his.cat/index.html
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5 Attack Scenario II: GUI Application Fingerprinting

Our second attack attempts to fingerprint GUI applications with the same spy
process monitoring graphics interrupts. Application fingerprinting has impli-
cations not only on revealing end user activities (e.g., which application is
launched), but also on picking the best machine learning model for webpage
fingerprinting. This is especially important since different browsers result in dif-
ferent graphics interrupt patterns even for the same webpages (see Sect. 4). With
an effective application fingerprinting, it could then be possible to first identify
the specific web browser being used and then pick the suitable machine learning
model for webpage fingerprinting to achieve optimized accuracy.

We downloaded 20 popular applications on Ubuntu as test subjects (see
Table 3 for the list of selected applications), and launched each of them 100
times with our scripts. Note that to demonstrate the connection between this
attack and webpage fingerprinting, we included two web browsers, Firefox and
Brave, into the test set. Since the goal of this attack is to infer the application
launched, we did not further use them to process any input. Again, each time a
subject application is launched, 100 samples (with sampling interval at 50 ms)
of interrupt count were collected to form the corresponding time series.

Table 3. Subjects for our application fingerprinting attack.

Application Category Application Category

Inkscape graphics editor libreoffice text editor

GIMP Notepadqq

Krita ClamTk antivirus

atril doc viewer Deluge download

Thunderbird e-mail Audacity multimedia

Geary Clementine

Pidgin social Kdenlive

Corebird VLC

Neofetc.h system management Firefox web browser

Synaptic Brave

Result: Our attack on application fingerprinting demonstrated very high accu-
racy with all tested machine learning models on both Nvidia and Intel GPUs (as
shown in Table 4). This suggests that graphics interrupts could effectively leak
information about the running desktop applications, indicating good generality
of our application fingerprinting attack. We believe that this is due to the higher
degree of flexibility in the design of GUI of desktop applications, compared to
the design of webpages which is governed by the html protocol.
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Table 4. Results of application fingerprinting, average and standard deviation.

F-Measure Precision Recall

Intel NB 98.7% (0.26) 98.8% (0.19) 98.7% (0.26)

KNN-3 91.4% (3.53) 91.9% (2.99) 91.5% (3.51)

RF 99.6% (0.07) 99.7% (0.06) 99.7% (0.07)

ResNet 99.5% (1.09) 99.5% (0.91) 99.6% (1.11)

Nvidia NB 97.9% (3.09) 98.2% (1.91) 97.9% (3.31)

KNN-3 95.4% (3.62) 95.6% (2.89) 95.5% (3.51)

RF 99.3% (1.58) 99.4% (1.17) 99.3% (1.71)

ResNet 99.8% (0.08) 99.8% (0.07) 99.8% (0.08)

6 Attack Scenario III: Beyond Visual Perception

In our attack scenarios I and II, webpage and application fingerprinting are both
targeting objects that present unique visual perception to human users. The idea
is that each unique GUI or view of the webpages correspond to unique work-
load on the GPU, resulting in classifiable graphics interrupts. In this section, we
investigate a more challenging problem in using aggregated graphics interrupt
to differentiate objects with the same visual perception, i.e., can we differentiate
something even a human being cannot differentiate with visual inspection? Such
a capability has a strong implication on the research of human factors in secu-
rity, e.g., in assisting human to detect phishing websites, to detect re-packaged
applications, and in digital forensics.

As a first step in evaluating such a capability, we take video playback as an
example. Specifically, we consider the following two experimental settings:

– Same video clip encoded with the same codec, played back with different
video players, in which we played back a video clip in FLV format using four
different video players (VLC, SMPlayer, TOTEM, and MPV);

– Same video clip encoded with different codec and played back with the same
video player, in which we encoded a video using four codec (H264, MPEG4,
WMV2, and XIVD) and had them played back using the VLC player.

Time series of graphics interrupt counts in this experiment were collected
from the 2nd to the 6th seconds into the subject video3 to avoid potential noise
from setting up GUI of the video players. We repeated the experiment 100 times
and performed a 10 fold validation over the collected data as usual. Unlike the
previous experiments, here we only used ResNet as the classifier since it outper-
formed the other tested models (especially in webpage fingerprinting).

Result and Analysis: Table 5 shows the performance of our attack in the two
settings listed above. We found that in the scenario of distinguishing different
3 The video used can be found at https://www.dropbox.com/sh/vqd8ffi7eer8urd/

AAAU9MYDg1bKkTtsSzjkpUp5a.

https://www.dropbox.com/sh/vqd8ffi7eer8urd/AAAU9MYDg1bKkTtsSzjkpUp5a
https://www.dropbox.com/sh/vqd8ffi7eer8urd/AAAU9MYDg1bKkTtsSzjkpUp5a
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video players, our attack worked accurately without a single misclassification.
While in the scenario of distinguishing different codec, the attack on the Nvidia
GPU outperformed that on the Intel (86.3% vs. 70.2%).

Table 5. Distinguishing video playback events with ResNet: average and standard
deviation.

F-Measure Precision Recall

Diff players Intel 100% (0) 100% (0) 100% (0)

Nvidia 100% (0) 100% (0) 100% (0)

Diff codecs Intel 70.2% (37.0) 76.0% (46.8) 72.0% (31.0)

Nvidia 86.3% (24.4) 90.0% (19.4) 87.0% (21.0)

To further understand the low-level details behind such results, we again
leveraged the hooked drm/i915 driver to demonstrate the IRQ-specific patterns
of the tested events (as was done in Sect. 4). Figure 4 demonstrates such detailed
patterns for six tested events (three for each setting). We can see that all demon-
strated interrupt patterns show typical features of stream displaying, making
different patterns appear to be similar to a certain extent. We believe this is the
main contribution to the relatively low accuracy of our attack on the Intel GPU.
On top of this, there are still two observations worth noting.

First, we found that different video player engines use different rendering
techniques. Figure 4.a, 4.b, and 4.c show that when playing the same FLV video,
VLC, SMPlayer, and TOTEM used different GPU engines. Specifically, SMPlayer
relied purely on the basic RCS engine, while both VLC and TOTEM used the
VCS engine (VCS engine is for video encoding and decoding). This means that
SMPlayer resorts to a pure software solution while VLC and TOTEM utilized hard-
ware acceleration. Furthermore, we observed that TOTEM additionally leveraged
the BCS engine, i.e., the blitter engine, to accelerate 2D rendering. We believe
that such differences on the implementation details are the main factors that
make the tested video players distinguishable from one another.

Secondly, the same video player also behaves differently when decoding videos
of different codec. In the case of VLC playing the H264 videos, patterns of
GEN8 GT VCS1 IRQ interrupts can be observed, indicating that hardware accel-
erated decoding were leveraged. However, the other cases, i.e., VLC playing the
XVID, MPEG4 and WMV videos, only involved the RCS engine, indicating pure
software-level decoding. To demonstrate how such implementation details affect
effectiveness of our attack, we present the heatmap for classification results of
distinguishing the aforementioned 4 types of codec on the Intel GPU in Fig. 5,
where we can see that our attack never misclassified any event of playing back the
H264 video—unlike the playback of other clips where a certain level of ambiguity
existed.
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7 Additional Experiments, Discussion, and Limitation

7.1 Tradeoff Between Accuracy and Timeliness

When considering an attack scenario with on-the-fly monitoring of GPU usage,
classifications are expected to be made in real time. As discussed in Sect. 3, our
spy process uses a sliding window to feed its machine learning model subse-
quences of the interrupt time series. Intuitively, a larger sliding window (corre-
sponding to longer inputs to our deep learning model and better accuracy) will
result in longer latencies, given that classification only happens after the subse-

Fig. 4. Interrupt patterns (Intel) of playing the same video using different video players
and codec. Missing lines correspond to zero readings of the IRQ types.
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Fig. 5. Classifying (using ResNet) video playback of different codec using the same
video player.

quences are collected. Therefore, in this subsection, we investigate the impact of
reducing the length of such subsequences on the effectiveness of our attack.

We changed the length of subsequences with 10 different settings to train
new machine learning models and observe the accuracy of them. Note that the
sampling rate remains at 50 ms to minimize workload of our spy process. As
presented in Fig. 6, the shortest interrupt time series length for reaching 99%
accuracy in application fingerprinting was 50 samples, while that for reaching
80% accuracy in webpage fingerprinting was 60 (or 80 if we wish to reach 85%
accuracy). This difference implies that launching applications splashes differently
from the very beginning while loading webpages with the same browser splashes
differently within a slightly longer period. Also, such result suggests that using
time series of 60 to 80 samples, which translates to 3 to 4 s, would be good
hyperparameter configurations to optimize the accuracy and timeliness tradeoff.

7.2 Robustness Against Noise

Since interrupt statistics is a fine-grained measurement, attacks based on such
information could be interfered by other events which trigger screen refreshing
or redrawing. The most typical example of such noise source is the movement of
mouse cursor, in which areas at the past and present locations of the cursor have
to be redrawn. Another possible scenario is when a multitasking user is conduct-
ing more than one screen redrawing activities at the same time, e.g., reading a
document while playing a video simultaneously. We tested the robustness of our
webpage fingerprinting attacks by collecting a group of new interrupt time series
from the Nvidia GPU, in which the experiments involved manually moving the
mouse cursor during the process of webpage loading, or having a random movie
being played throughout the experiment. The test was conducted on the top
50 websites (given by Alexa) and repeated 100 times for each webpage. Two
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Fig. 6. Webpage and application fingerprinting with shorter interrupt time series.

classification strategies were tested: the first to train two ResNet models for the
“noisy” and “clean” (free of noise) data, respectively, under an assumption that
the two environments could be effectively differentiated (e.g., by observing mouse
movement interrupts or by monitoring other side channels like CPU utilization),
while the second to train only one model with both types of data mixed.

From Table 6 we can see that when classifying noisy data with mouse clicks as
the noise source, F-measure of both strategies only slightly exceeded 54%. These
strategies performed better in classifying data with video playing as the noise
source, but the resulted F-measures were still only around 68%. Meanwhile, when
using one model to classify both types of data, F-measure of classifying clean
data is 3% less than that with two different models. Therefore, we consider the
robustness against noise a limitation of our attack, which could also be pointing
toward a potential mitigation against GPU side-channel attacks.

Table 6. Webpage fingerprinting with/without noise: average F-measure.

clean data noisy data

mouse induced noise video induced noise

Dual models 88.2% 54.2% 67.9%

Mixed model 85.2% 54.6% 67.8%
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8 Conclusion

This paper systematically studied the possibility of utilizing graphics interrupts
as a leakage vector to drive GPU side-channel attacks. We introduced a series of
attack scenarios in which graphics interrupt patterns were leveraged to respec-
tively infer webpage opening, GUI application starting, and GUI tasks with the
same graphics perception. Being a passive attack strategy, our attacks demon-
strated high accuracy in the tested attack scenarios, suggesting that graphics
interrupts could indeed leak sensitive information related to user activities.
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Abstract. The frequent use of basic statistical techniques to detect
ransomware is a popular and intuitive strategy; statistical tests can be
used to identify randomness, which in turn can indicate the presence of
encryption and, by extension, a ransomware attack. However, common
file formats such as images and compressed data can look random from
the perspective of some of these tests. In this work, we investigate the
current frequent use of statistical tests in the context of ransomware
detection, primarily focusing on false positive rates. The main aim of
our work is to show that the current over-dependence on simple statisti-
cal tests within anti-ransomware tools can cause serious issues with the
reliability and consistency of ransomware detection in the form of fre-
quent false classifications. We determined thresholds for five key statis-
tics frequently used in detecting randomness, namely Shannon entropy,
chi-square, arithmetic mean, Monte Carlo estimation for Pi and serial
correlation coefficient. We obtained a large dataset of 84,327 files com-
prising of images, compressed data and encrypted data. We then tested
these thresholds (taken from a variety of previous publications in the
literature where possible) against our dataset, showing that the rate of
false positives is far beyond what could be considered acceptable. False
positive rates were often above 50% and even above 90% on several
occasions. False negative rates were also generally between 5% and 20%,
numbers which are also far too high. As a direct result of these experi-
ments, we determine that relying on these simple statistical approaches is
not good enough to detect ransomware attacks consistently. We instead
recommend the exploration of higher-order statistics such as skewness
and kurtosis for future ransomware detection techniques.

Keywords: Ransomware · Anti-ransomware · Statistical tests ·
Randomness · Entropy · Chi-square

1 Introduction

Ransomware is a strain of malware which, upon compromising a victim’s
machine, denies access to a user’s resources. Typically, this is achieved through
the use of a hybrid cryptosystem, where user data is encrypted using symmetric
keys. These keys are then encrypted using asymmetric cryptography, such as
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RSA, and the private key is held by the attacker on their Command & Control
(C&C) infrastructure [12]. In this scenario, the attacker would hold the encrypted
data for ‘ransom’, demanding a payment (typically via a cryptocurrency such as
Bitcoin) from the victim in order to restore their data. This type of ransomware
is known as Crypto-Ransomware [16], and is the main scope of this analysis.

Ransomware is an ever-growing threat and continually causing widespread
disruption. Alarmingly, we have recently observed more targeted attacks, i.e.
ransomware attacks aimed at specific organisations with the intention of causing
maximum damage [2]. For example, the Spanish company Everis was hit by the
BitPaymer ransomware in 2019. It was shown that the ransom note deployed
was specifically aimed at Everis, and the extension used for encrypted files was
.3v3r1s [5]. Additionally, Norsk Hydro was hit by ransomware in 2019 and
despite huge disruption to their production lines, they refused to pay the ran-
som. They were able to recover from the attack through use of trusted backup
servers, whilst consulting paper documentation to continue business throughout
the recovery process. This manual recovery process cost Norsk Hydro £45 million
[24], but the company correctly refused to fund the cybercriminal economy.

Thankfully, we have also witnessed an increase in anti-ransomware research.
One such avenue of research covers the development of techniques and tools
aimed at the early detection and recovery from ransomware attacks. A recurring
approach to detecting ransomware is the use of statistical tests for randomness,
because properly encrypted data should appear completely random to anyone
not in possession of the key. Therefore, the problem of detecting ransomware can
be (somewhat simplistically) reduced to the problem of detecting random data
being written to the filesystem. However, this assumption can be problematic.

Motivation. Whilst the use of statistical tests to detect ransomware has shown
promise in the literature, it also raises issues. Most notably, the processing of
random data on a machine does not automatically imply that it is under attack
by ransomware. It is common for perfectly benign data on the filesystem to
appear random and this happens with various image formats (e.g. JPEG and
PNG), as well as frequently after the use of compression tools. Additionally,
even if the presence of randomness is the result of encryption taking place, that
does not necessarily imply that the encryption is malicious (i.e. the result of a
ransomware attack).

In this work, we explore the former of these issues by investigating both
popular image formats and types of compression commonly in use today. After
collecting a representative dataset of JPEG, PNG and WebP images, and com-
pressing and encrypting files from the Govdocs corpus [4], we ran them through
Ent [26], a battery of statistical tests for randomness. We compared their output
to various thresholds in use by current state-of-the-art anti-ransomware tools,
and show our findings in Sect. 5. We show that the thresholds in use by these
tools often result in too many false positives, which leads to unencrypted data in
the filesystem being incorrectly labelled as encrypted by a ransomware attack.

Contributions. Firstly, we highlight the issue that one of the most popu-
lar approaches to detecting ransomware is potentially flawed. This weakness
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could present a serious problem to many anti-ransomware tools. We also pro-
vide insights into statistics beyond those that are currently used in this context,
in order to illustrate the fact that the approach of using statistics to detect
ransomware needs improving in general. We would like to stress that this does
not mean that there are underlying problems with the statistical tests them-
selves. The problem is with using the tests in this context (i.e. for ransomware
detection).

Secondly, we provide a number of recommendations for future work in light
of our results. We highlight that the statistics which show the most promise in
this context are chi-square and serial byte correlation. However, we believe that
the research community should also look more carefully to alternatives such as
variance, standard deviation, skewness and kurtosis. Finally, in the interests of
scientific reproducibility, we have made all of the code we used freely available
and open-source, as well as the datasets we used in our analysis.

The rest of the paper is structured as follows. In Sect. 2, we discuss some of
the major uses of statistics to identify ransomware, as well as previous works
which analyse this approach. In Sect. 3, we provide some intuition as to why
these tests are used in ransomware detection. Section 4 explains the methodol-
ogy we followed in our experiments, and Sect. 5 presents and analyses our results.
In Sect. 6, we discuss what these results mean for anti-ransomware development,
and we provide some recommendations for ransomware detection moving for-
wards. Finally, in Sect. 7, we conclude our work.

2 Related Work

The use of statistical approaches to detect ransomware was the second most
common approach to detecting ransomware in 2019, according to an analysis
of the academic anti-ransomware landscape [20]. Genç et al. classify measuring
entropy inflation as one of the main behavioural analysis approaches to defending
against ransomware [7], and Al-Rimy et al. highlight the use of entropy in their
analysis of ransomware research [1]. There are some potential reasons as to why
statistical approaches may be so popular in this context. For example, it is quite
logical to consider using randomness tests to detect encryption (since the process
of encryption results in data that is effectively random). The relative ease with
which these randomness tests can be implemented may also be a contributing
factor. We expand more on this in Sect. 3.

Several anti-ransomware tools use a statistical approach. ShieldFS calculates
the entropy of data written to the filesystem and uses this as a machine learning
feature to help detect ransomware attacks [3]. ShieldFS implemented a Windows
Filesystem Minifilter Driver [17] to observe filesystem write operations, including
the data buffer over which the entropy could be calculated. In fact, the approach
of computing the entropy over filesystem write operations is a popular approach.
To evaluate the validity of a detection, UNVEIL calculates the entropy value over
the data buffer of both read and write operations [10]. If there is a significant
increase in entropy between a read and a write, random data has likely been
written and so a ransomware attack may have occurred.
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Similarly, Redemption looks at the difference in entropy between a read and
its subsequent write [11]. If there was an increase, the “malice score” of the
associated process is increased, highlighting that there is a greater chance that
this is a ransomware process.

CryptoDrop also uses entropy to help with ransomware detection [21]. This
tool relies on the fact that ransomware will continually make highly-entropic
writes to the filesystem, and takes weighted entropy averages to ensure that
the low-entropy writes resulting from writing ransom notes do not confuse the
system. CryptoDrop also looks at the delta between a read and its subsequent
write to determine the change in entropy to a specific file. Furthermore, a small
delta (0.1) is used as the threshold, to help cater for the small entropy increase
that occurs when a file that is already highly-entropic (such as compressed data)
is encrypted by ransomware. RWGuard also measures entropy as an indicator of
a ransomware attack; if the entropy of a write request to the filesystem results
in a value greater than 6, the metrics recorded for the specific file are analysed
further due to the increased possibility of a ransomware attack [15].

To the best of our knowledge, Data Aware Defence (DaD) is the only ran-
somware detection tool that uses chi-square, rather than entropy, as its detection
method [19]. In fact, detection is solely achieved using chi-square. Similarly to
the above-mentioned tools, this statistic is computed over the data buffer of
filesystem write operations, and a sliding median over the last 50 writes is used
as a basis for this calculation.

Other work has explored the robustness of using statistical approaches to
detecting ransomware. McIntosh et al. conclude that the use of entropy to detect
ransomware should be stopped altogether in future anti-ransomware work [14].
Two methods by which ransomware could implement encryption in such a way
as to avoid entropy-based detection measures are presented, using techniques
including Base64 encoding and partial encryption. Interestingly, the work pre-
sented tackles the same problem explored in this paper, although primarily from
the perspective of false negatives rather than false positives.

3 Randomness for Anti-Ransomware

To provide some explanation of the applicability of using randomness tests to
detect ransomware, consider data (such as writes made to the filesystem, as well
as the content of files) purely as streams of bytes (i.e. values between 0 and 255).
Random (or encrypted) data should comprise of an approximately equal number
of each byte, distributed across the data in an unpredictable way. Therefore, it is
possible to apply widely-used tests for randomness across these byte distributions
to identify the presence of random data. This may then indicate the presence of
encryption, and possibly a ransomware attack.

However, some filetypes are comprised of data which, from the perspective
of statistical tests such as entropy, actually appears random. Calculating the
entropy of a JPEG typically results in values of 7.8 and higher. Considering
the highest possible value is 8 bits per byte (i.e. completely uniform), it is clear
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Fig. 1. Entropy values of 3,004 images found in the wild

that an unencrypted file can look as if it has been encrypted. Figure 1 shows
the entropy values of 1,004 JPEG files, 1,000 PNG files and 1,000 WebP files
that we found in the wild (discussed in more detail in Sect. 4) compared with a
threshold of 7.8 (shown as a red horizontal line). This shows the consistency with
which these types of files contain highly entropic data, which raises an issue: files
like these will frequently cause false positives in anti-ransomware tools heavily
reliant on this statistic. We explore this in more detail in Sect. 5.

Below, we expand on some of the main statistical tests used to detect the
presence of a ransomware attack. Entropy and chi-square are currently used
by the academic state-of-the-art in ransomware detection. However, we analyse
three additional tests. Whilst these are not currently used by anti-ransomware
tools, the ease with which they can be implemented may make them the next log-
ical step for anti-ransomware developers so we felt it important to preemptively
examine their accuracy in this context.

3.1 Shannon Entropy

In the context of ransomware detection, entropy can be seen as a measure of
a given input’s level of uncertainty. In this case, the input would be a series
of bytes typically representing either a file’s contents or the contents of a write
request made to the filesystem. The equation for Shannon Entropy (H(X)) can
be seen below for a random variable X [22]:

H(X) = −
255∑

i=0

P (xi)logbP (xi)

In this case, the summation is between 0 and 255 as there are 256 possible values.
Additionally, b = 2 allows the representation of bits, and P (xi) is Fi

totalbytes where
Fi is the observed frequency of byte i. This equation returns a value between 0
and 8, where 0 represents totally predictable data and 8 highly uncertain data.
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3.2 Chi-Square

The chi-square (χ2) test is a popular statistical test generally used to determine
if an observed distribution is statistically similar to an expected distribution [6].
In the case of perfectly random data on the filesystem, we would expect an equal
occurrence of each byte value. Therefore, for ransomware detection, we use equal
frequencies of byte values for the expected distribution, and use the following
formula to check if the observed distribution is similar:

χ2 =
255∑

i=0

(Fi − fi)2

fi

Here, there are again 256 possible values for a given byte. Fi and fi represent
the observed and expected frequency of byte i, respectively.

As there are 256 possible categories that a given byte could be, the degrees
of freedom for our chi-square test is set to 255 (i.e. number of categories − 1).
This allows us to refer to a chi-square distribution table and find what results
we should expect at a given significance level. Researchers often use significance
levels of 1%, 5% or 10% [23], and 5% is used in Data Aware Defence [19]. We
state as the null hypothesis that our observed input is random. After computing
the chi-square, we compare it with a distribution table at a 5% significance level.
If our value is higher than the value in the table, this situation would only occur
5% of the time for a perfectly random distribution. Our observed distribution is
therefore unlikely to be random, so we reject the null hypothesis.

3.3 Other Statistical Tests

In our experiments we used Ent, a Pseudorandom Number Sequence Test Pro-
gram [26] which quickly calculates various statistics. In addition to entropy and
chi-square, Ent provides the following statistics which we have not yet seen used
to detect ransomware:

– Arithmetic Mean. This metric is calculated by summing all of the indi-
vidual byte values and dividing by the total number of bytes. In the event
of random data, or a ransomware attack, we would expect a result close to
127.5, i.e. halfway between 0 and 255.

– Monte Carlo value for Pi. For this statistic, every sequence of six bytes is
used to calculate X and Y coordinates inside a square. For a circle inscribed
within this square, the percentage of generated points that fall within the
circle can be used to calculate the value of Pi. With sufficiently long and
random data streams (for example due to a ransomware attack), the result
will be close to the value of Pi.

– Serial Correlation Coefficient. Considering a byte stream of length n, it
is possible to compare byte 0 with byte 1, byte 1 with byte 2 and so on up
until byte n in order to calculate the correlation coefficient of this data. This
is typically measured as a value between –1 and 1. The closer the value is
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to one of the extremes (i.e. –1 or 1), the stronger that type of correlation
is. Random data (for example from a ransomware attack) should be highly
uncorrelated. This approach was explored by Pont et al. [20] as a potential
ransomware detection technique.

4 Methodology

In the following section, we first detail our data collection process. This covers the
collection of JPEGs, WebPs, PNGs, compressed and encrypted data. Following
this, we detail how we prepared our dataset for graph generation, and finally
discuss the creation of our threshold values.

4.1 Dataset Creation

After noticing the popularity of statistical tests to detect ransomware [20], we
began by collecting a large dataset on which we could calculate these statis-
tics for ourselves. Other works have noted that in the case of some filetypes,
such as images and compressed data, their data is naturally highly entropic
[11,13,21]. We therefore focused on these filetypes as we believed they would
cause false positives in state-of-the-art anti-ransomware tools. Most of our data
came from Digital Corpora’s Govdocs [4]. This is a large corpus of real files
from .gov domains that are freely available for research purposes. We first down-
loaded the entire JPEG image corpus, containing 109,282 JPEG images. This
was downloaded as a single compressed directory approximately 36.8 GB in size
(about 37.5 GB when decompressed). Within this directory were 961 subdirecto-
ries, each containing a number of JPEGs. In order to build a dataset of around
1,000 JPEGs in a way that is easily reproducible, we selected the first 15 of these
subdirectories, providing us with a dataset of 1,004 JPEGs (about 145.4 MB).

We then used ImageAssisstant Batch Image Downloader (a Firefox addon
which unfortunately seems to have been removed from the addon marketplace)
to collect 1,000 WebP images using the Google search engine. Hurley-Smith et
al. show that WebP files are frequently reported as random by Ent and the
FIPS 140-2 randomness tests [9], so we felt it an important filetype to include
in our experiments. We have yet to come across an anti-ransomware tool that
includes this filetype as part of their dataset, which is concerning due to its rising
popularity. In fact, WebP is in use by approximately 20,000 of all websites on
Alexa website rankings, with uptake steadily on the increase [25].

We obtained these files by searching for a keyword followed by the filetype:
operator. As an example, we searched for mountains filetype:webp, then used
the Firefox addon to download a selection of the results in bulk. After repeating
this process for 15 arbitrarily chosen keywords, we completed our collection
of 1,000 WebP images (at approximately 77.1 MB in size). We include these
keywords (along with the images themselves) in our dataset, although using
different keywords for future experiments may be a good way to corroborate our
findings. We repeated this process to collect 1,000 PNG images (at approximately
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Table 1. The breakdown of our image files dataset

Filetype Quantity Size (MB)

JPEG 1,004 145.4

WebP 25,048 6100.1

PNG 1,000 778.0

LZMA 19,750 5,772.0

Gzip 17,775 5,527.0

Bzip2 17,775 5,351.0

AES Encrypted 1,975 951.7

Total 84,327 Files 24,625.2 MB

Table 2. Statistical thresholds to identify randomness

Statistic Randomness threshold

Entropy ≥ 7.99

Chi-square ≤ 293.25

Arithmetic Mean 126.23 ≤ value ≤ 128.78

Monte carlo value for pi 3.11 ≤ value ≤ 3.17

Serial correlation coefficient −0.01 ≤ value ≤ 0.01

778 MB in size). This time, only 14 keyword searches were required to reach the
desired quantity of 1,000 images. These two lists of keywords were kept mutually
exclusive to ensure as diverse a dataset as possible.

To complete our image collection, we took our JPEGs and PNGs and used the
command line utility cwebp to convert them to WebP at various quality levels.
This was achieved using a bash script which takes every JPEG and PNG, runs
cwebp at quality levels 0, 25, 50, 75, 80 (the typical quality level used according
to the tool itself) and 100, and stores the output in our WebP directory. We
repeated this process with the -lossless option to include lossless WebPs.

We then moved towards compressed data, whose tendency to generate false
positives has been noted in the literature [7,15]. We compressed data from the
Govdocs threads, which are mutually exclusive sets of approximately 1,000 files.
We chose Thread 4 and Thread 5 due to their larger size (containing 986 files
(311 MB) and 989 files (295 MB) respectively). We used a bash script to call the
Gzip, BZip2 and LZMA command line utilities to compress each file separately
at each compression level (0 through 9 for LZMA, otherwise 1 through 9). A
detailed breakdown of our dataset is presented in Table 1.

Baseline Dataset. In order to provide an idea of the statistics we would expect
for data that really has been encrypted, we encrypted each file in Thread 4 and
Thread 5 separately using openssl, a command line utility on Linux allowing
the use of encryption algorithms [18]. We used the AES symmetric encryption
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algorithm with a 256-bit key and the CBC mode, as ransomware variants typ-
ically implement a hybrid encryption model where user data is encrypted with
symmetric encryption (such as AES), and the symmetric keys are encrypted
with asymmetric encryption (such as RSA) [16].

4.2 Dataset Preparation

To calculate the statistics described in Sect. 3, we wrote a Python script to call
ent on the command line for each file in our dataset. Using the terse mode (-t)
option, we were able to generate output in .csv format for easy processing. These
steps provided us with the five statistics we needed for each file. We acknowledge
that anti-ransomware tools often process individual filesystem operation buffers
[3,10], however by processing entire files we are providing the tests with more
data in order to increase accuracy. We then created the graphs in this work using
Matplotlib [8], a data visualisation library for Python.

4.3 Threshold Creation

Of the five statistics we have looked at in this paper, to the best of our knowledge,
only two (entropy and chi-square) are actively being used by anti-ransomware
tools. Whilst, for entropy, the absolute threshold values used by the current
state-of-the-art in anti-ransomware do not seem to be widely reported, an overall
indication is given as to what can be considered as highly entropic data. For
example, in ShieldFS, an entropy value of 0.948 (recorded on a scale between 0
and 1 – when scaled up to a scale of 0 to 8, this becomes 7.584) is considered
as “very high” [3]. We set our entropy threshold as 7.99 to ensure that only the
most uncertain of data is considered as encrypted. The threshold for chi-square
was taken based on consulting a chi-square value table at 255 degrees of freedom
with a significance level of 5%, as discussed in Sect. 3. This gives us a threshold
of 293.25, the same value that was used in Data Aware Defence [19].

For the three remaining tests (arithmetic mean, Monte Carlo value for Pi, and
serial correlation coefficient), we defined thresholds based on a 1% error margin.
We consider any values calculated that fall within 1% of the baseline values to
be random. The baseline values for arithmetic mean, Monte Carlo value for Pi
and serial correlation coefficient are: 127.5, 3.14 and 0.00, respectively. Values
within this range are treated as cases that would be detected as ransomware (i.e.
a false positive for our images and compressed data, and a true positive for our
encrypted data). Table 2 summarises the thresholds we used in our experiments.

5 Results and Analysis

We break the analysis of our results down into two main parts: an analysis of
‘false classifications’, and general observations. Many academic anti-ransomware
tools are not open-source or available for use, so in our experiments we were
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unable to determine false classification rates of the tools themselves. Self-
reported results of these anti-ransomware tools are summarised in [20], although
interestingly this work highlights that many false positive rates (FPRs) are not
reported. Below, we investigate the statistics introduced in Sect. 3.

Minimal FPRs are vitally important for real-time ransomware detection tools
that always run in the background to prevent a user from instinctively dismissing
alerts (putting them at risk of dismissing a real attack) or stopping using the
tool altogether. Where the thresholds are not made available, we set our own, as
described in Sect. 4. We analyse the percentage of our dataset that falls above
and below these thresholds, providing an indication into the FPRs summarised
in Table 3 and Table 4.

We also included an analysis of false negative rates (FNRs), as shown in
Table 5. This would mean truly encrypted data that is incorrectly classified as
being unencrypted. We acknowledge that these are devastating to a user, however
minimising FNRs is beyond the scope of this paper – it is something that the
authors of the respective tools themselves aim to minimise.

5.1 False Classification Analysis

False Positives Rates (FPRs). Table 3 and Table 4 summarise the FPRs we
saw in our experiments across our images and compressed data, respectively. For
each quality level used (shown as a percentage on the left), we include the number
of files detected as a false positive, alongside the percentage of our dataset that
this number equates to (i.e. the FPR). We also highlight the highest FPRs from
our experiments in bold. We note that in Table 4, we only show the results
for the three compression algorithms (BZip2, GZip and LZMA) at three levels
of compression rate (1, 5 and 9). This was in the interest of creating a more
succinct and readable table. Our complete set of results and graphs are available
on GitHub (https://github.com/anti-ransomware/stats-tools-research).

Focusing first on the entropy and chi-square of our image dataset, we see
a range in FPRs from 0% with chi-square to 83.90% using entropy. At first
glance, this reinforces the idea that chi-square is better at distinguishing between
encryption and JPEG compression [13]. However, analysing further, it quickly
becomes clear that using chi-square is not necessarily the complete solution to
the problem. For example, we see FPRs in the range of 43.13% to 76.69% when
analysing lossy WebP files which have been converted from JPEGs at various
quality levels. To top this off, when analysing WebPs found in the wild, we still
see an FPR of 45.40%, indicating that almost half of this part of our dataset
would cause a false positive. We believe this is a serious issue due to the rising
popularity of WebP images in the wild [25].

Looking at entropy and chi-square overall, it does appear, however, to be
the case that chi-square is in general a better indicator of ransomware (at least
for images). Chi-square outperformed entropy (i.e. achieved a lower FPR) in
almost all of our batches of data. Interestingly, however, entropy outperformed
chi-square for the case of Lossy WebPs which had been converted from JPEGs.

https://github.com/anti-ransomware/stats-tools-research
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Table 3. False positive analysis for images

Data
False Positives

Entropy Chi-Square Mean Pi Correlation
Count % Count % Count % Count % Count %

JPEG 3 0.30% 0 0% 178 17.73% 231 23.01% 92 9.16%
PNG 468 46.80% 2 0.20% 519 51.90% 478 47.80% 74 7.40%
WebP 677 67.70% 454 45.40% 839 83.90% 726 72.60% 668 66.80%
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0% 193 19.22% 0 0% 241 24.00% 342 34.06% 4 0.40%
25% 187 18.63% 0 0% 226 22.51% 312 31.08% 5 0.50%
50% 397 39.54% 3 0.30% 396 39.44% 483 48.11% 9 0.90%
75% 403 40.14% 5 0.50% 391 38.94% 477 47.51% 8 0.80%
80% 411 40.94% 5 0.50% 398 39.64% 481 47.91% 8 0.80%
100% 417 41.53% 3 0.30% 389 38.75% 484 48.21% 4 0.40%

L
os

sy

0% 18 1.79% 433 43.13% 373 37.15% 300 29.88% 286 28.49%
25% 267 26.59% 759 75.60% 736 73.31% 505 50.30% 582 57.97%
50% 383 38.15% 764 76.10% 839 83.57% 583 58.07% 669 66.63%
75% 458 45.62% 770 76.69% 878 87.45% 641 63.84% 729 72.61%
80% 505 50.30% 749 74.60% 873 86.95% 654 65.14% 782 77.89%
100% 798 79.48% 569 56.67% 916 91.24% 742 73.90% 895 89.14%
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0% 335 33.50% 2 0.20% 450 45.00% 474 47.40% 25 2.50%
25% 357 35.70% 5 0.50% 424 42.40% 482 48.20% 34 3.40%
50% 546 54.60% 21 2.10% 555 55.50% 586 58.60% 84 8.40%
75% 569 56.90% 18 1.80% 566 56.60% 605 60.50% 96 9.60%
80% 571 57.10% 18 1.80% 559 55.90% 593 59.30% 96 9.60%
100% 609 60.90% 25 2.50% 619 61.90% 644 64.40% 93 9.30%

L
os

sy

0% 39 3.90% 202 20.20% 392 39.20% 374 37.40% 294 29.40%
25% 408 40.80% 501 50.10% 761 76.10% 600 60.00% 586 58.60%
50% 543 54.30% 546 54.60% 839 83.90% 671 67.10% 659 65.90%
75% 620 62.00% 515 51.50% 863 86.30% 732 73.20% 696 69.60%
80% 665 66.50% 507 50.70% 884 88.40% 737 73.70% 710 71.00%
100% 839 83.90% 417 41.70% 928 92.80% 826 82.60% 850 85.00%

Table 4. False positive analysis for compressed data

Data
False Positives

Entropy Chi-Square Mean Pi Correlation
Count % Count % Count % Count % Count %

BZip2
1 373 37.83% 56 5.68% 395 40.06% 377 38.24% 113 11.46%
5 382 38.74% 62 6.29% 394 39.96% 405 41.08% 143 14.50%
9 384 38.95% 63 6.39% 395 40.06% 403 40.87% 142 14.40%

GZip
1 418 42.39% 235 23.83% 446 45.23% 348 35.29% 409 41.48%
5 401 40.67% 250 25.35% 464 47.06% 356 36.11% 428 43.41%
9 400 40.57% 259 26.27% 471 47.77% 377 38.24% 446 45.23%

LZMA
1 526 53.35% 913 92.60% 868 88.03% 667 67.65% 731 74.14%
5 511 51.83% 910 92.29% 863 87.53% 664 67.34% 730 74.04%
9 509 51.62% 907 91.99% 853 86.51% 663 67.24% 726 73.63%

The remaining FPRs were calculated based on our own thresholds, as dis-
cussed in Sect. 4. Arithmetic mean in general seems to be a poor indicator based
on the fact that at its best, it still had an FPR of 17.73% and at its worst it
had an FPR of 92.80%. This FPR level would be absolutely unacceptable in any
context. The situation is similar for the value of Pi, which at its best achieved
an FPR of 23.01% and at its worst, 82.60%. Interestingly, for both arithmetic
mean and Pi, the best cases were achieved for JPEG, and the worst cases were
on Lossy WebPs converted from PNGs at 100% quality.



210 J. Pont et al.

Serial correlation coefficient, at its best, achieved an FPR of just 0.40%. This
was for lossless WebPs converted from JPEGs at 0% quality. We believe this
kind of FPR would be more palatable to the average end user. However, at its
worst, it had an FPR of 89.14%, higher than the worst case of Pi.

Figure 2a and b show the chi-square distributions of our image and com-
pressed dataset, respectively. The threshold of 293.25 is also included for refer-
ence (shown as a red horizontal line). For clarification, we have divided the graph
into each of the major sub-divisions of our dataset. Within these sub-divisions
are further divisions represented by a change in the corresponding point’s colour.
These separations represent the different quality levels used in the conversion
process (0%, 25%, 50%, 75%, 80% and 100%, respectively). The same is true
for the graphs representing the other statistics we calculated, for example those
which can be found on GitHub.

(a) Chi-square of 27,052 images

(b) Chi-square of 55,300 compressed files

Fig. 2. Chi-square of our dataset (Color figure online)
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Table 5. False negative analysis for encrypted data

Data
False Negatives

Entropy Chi-Square Mean Pi Correlation
Count % Count % Count % Count % Count %

A
E
S Thread4 230 23.33% 48 4.87% 51 5.17% 184 18.66% 115 11.66%

Thread5 241 24.37% 49 4.95% 50 5.06% 174 17.59% 133 13.45%

We consider data points that fall below this line as false positives. We also
note that some points are not visible on the graph due to chi-square values much
higher than our axis limits. The only data type to achieve zero false positives
is JPEG. The false positive count of PNG is low (i.e. 2), but all other data
types have a high number of false positives. An interesting point to note is
the huge number of false positives received for WebP when lossy compression
is used. Our experiments show much lower FPRs when lossless compression is
used. However, the FPR of our WebPs “from the wild” (i.e. 45.40%) suggest
that the most common type of WebP compression in use is lossy. In fact, when
cross-referencing the FPR of all WebPs from Table 3, it seems the most common
type of WebP are those from PNGs and using lossy conversion.

Shifting to look at the compressed data, FPRs for both entropy and chi-
square unfortunately do not look very promising. As discussed in Sect. 4, com-
pressed data is often highlighted as a potential cause of false positives, so we
hope our results reaffirm this serious issue. Looking at Table 4, the FPR for
entropy is consistently within the range of 37.83% and 53.35%. Whilst these
rates are generally more promising than those of our image dataset, we still
deem them to be far beyond the realms of acceptability. Kharraz et al. conduct
usability testing in [11], which may be a crucial step going forward to identify an
acceptable FPR from a user’s perspective. Interestingly, the range of FPRs for
chi-square is much larger. At its best, chi-square had an FPR of 5.68%, which
is closer (although still not satisfyingly enough) to what could be considered
acceptable. However, at its worst, we observe an FPR of 92.60%. This is almost
the highest FPR observed across all of our experiments, topped only by using
arithmetic mean on lossy WebPs from PNGs at 100% quality.

Moving on to the three remaining statistics, FPRs are again far too high to
be considered acceptable. The best performance we see is for BZip2 at a level 1
compression rate. Using correlation, we see an FPR of 11.46%. However, FPRs
for these statistics are generally in the range of 40 to 60%, even reaching 88.03%
in the case of using arithmetic mean for data compressed using LZMA at level
1 compression rate.

False Negative Rates (FNRs). Table 5 summarises the FNRs we saw in our
experiments for the individual statistics. As with the above tables, we provide
the number of files detected as a false negative, alongside the FNRs, whilst
highlighting the highest FNR in bold. In this context, this represents data that
has been encrypted but has incorrectly been classified as not encrypted. In a real
life scenario, this would represent ransomware encrypting a user’s files without
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any active protection mechanisms alerting the user to some form of malicious
activity.

Whilst this is not the focus of our paper, we thought it would still be relevant
to report our findings. The best case we saw was an FNR of 4.87% when using
the chi-square statistic over Thread 4. Conversely, the worst case we saw was an
FNR of 24.37% when using entropy over Thread 5. Thankfully, we recorded no
FNR higher than this, although we still believe that these rates are too high to
be acceptable. In this case, almost a quarter of encrypted files go undetected.

An important point we would like to mention is that it was our choice to
consider this encryption as malicious. We wanted to include this data to repre-
sent what data would look like from a statistical point of view if it had been
encrypted by ransomware. However, the presence of encryption on a system
does not automatically imply that a ransomware attack is underway. For exam-
ple, benign applications may use encryption for communication, or a user may
wish to encrypt their files for privacy.

Fig. 3. Entropy of 27,052 images

5.2 General Observations

Figure 3 shows the entropy values calculated for our image dataset, which accu-
rately summaries the patterns we saw for the majority of our other statistics.
Within each major sub-division of the dataset, it is clear how – as we progress
from left to right through the different conversion quality levels – the dispersion
of entropy decreases. In other words, as both JPEGs and PNGs are converted to
WebPs at higher quality levels, the resulting entropy of the data is increased. For
this reason and that a similar pattern can be observed for the other statistics, we
believe investigating the variance, standard deviation and higher-order statistics
such as skewness and kurtosis could be a step towards detecting consistently
random data, but this would require more experimentation.
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Due to the uncertainty as to which filetypes any given user may have on their
computer, we do not believe the solution is as simple as picking the statistics
that achieve the lowest FPR and FNR. It may be the case that whilst this works
well for some users, it does not work at all for others. For example, the obvious
choice would be using chi-square or serial correlation coefficient due to their
lower FPRs and FNRs in general, but they don’t always perform well.

We believe that these results highlight a serious flaw in the current state-
of-the-art in ransomware detection. Whilst the tools are generally excellent at
detecting ransomware, more effort needs to be put into reducing FPRs. We
acknowledge that these tools often use statistics as part of a wider detection
mechanism, for example behavioural analysis such as in ShieldFS [3]. Despite
this, it is very common for these tools to place heavy reliance on the results of
statistical tests. We believe this is worrying due to their susceptibility to errors,
as shown by our results. We would again like to stress that this does not mean
that there are underlying problems with these tests; the problem is with using
them for ransomware detection.

6 Recommendations and Future Work

As discussed in Sect. 2, McIntosh et al. recommended that future research should
avoid the use of entropy for ransomware detection [14]. This was due to the rel-
ative ease by which ransomware could implement encryption without triggering
any entropy thresholds in place. We come to a similar conclusion from the per-
spective of false positives rather than false negatives. The immediately obvious
recommendation would be to avoid the sole use of entropy to reliably and consis-
tently detect a ransomware attack. The frequency of false positives in our results
show that an average user would be plagued by false alarms, ending in a prac-
tically unusable system. However, our results also show that the problem is not
just with entropy but for all of the statistics we tested. Whilst some statistics
(entropy, chi-square and serial correlation coefficient) performed extremely well
in certain cases (e.g. FPRs of around 0% to 0.5%), they did not perform this
well consistently across our experiments. We are therefore unable to recommend
a single statistic as the optimal way of detecting ransomware reliably.

Due to their lower FPRs whilst still achieving the lowest FNRs, we believe
chi-square and serial correlation coefficient deserve the most attention going
forwards. To the best of our knowledge, Data Aware Defence is the only tool so
far that has used chi-square for ransomware detection [19].

The statistics we calculated were for single files at any one given time. An
improved approach would be to identify deltas in these statistical values over
time for a given set of files. This idea has been explored by Redemption [11] and
CryptoLock [21]. It should be immediately obvious when ransomware writes to
a file by identifying a significant change in (for example) the entropy value of the
read, followed by the subsequent write. This approach may still be susceptible
to false positives, for example if a file is highly structured before the encryption
takes place (like much of the data used in our dataset).
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As discussed in Sect. 5.2, we believe it would be worthwhile for the anti-
ransomware community to investigate variance and standard deviation of the
previously discussed statistics. We would expect highly random data to be writ-
ten to the filesystem consistently during a ransomware attack. By calculating
the statistics of these writes for a given time window, the variance and standard
deviation could be calculated in order to determine spread and dispersion from
central tendency. We expect a low variance and standard deviation in the case
of consistent highly random writes to the filesystem, but a high variance and
standard deviation in the case of normal system usage. It may also be possible to
apply this technique using higher-order statistics such as skewness and kurtosis,
although this would require further experimentation.

7 Conclusion

In this paper, we have highlighted the very serious issue that in the context of
ransomware detection, popular file formats in use by typical computer users can
cause frequent false positive alerts when analysed with various statistical tests
for randomness. We analysed a dataset of 84,327 files (at 24.6 GB) consisting of
JPEG images, PNG images, WebP images, compressed data (using BZip2, GZip
and LZMA), and encrypted data (using AES in CBC mode with a 256-bit key).
On this dataset, we calculated values for entropy, chi-square, arithmetic mean,
Monte Carlo value for Pi and serial correlation coefficient (using the command
line tool Ent). We compared these values against thresholds that were both found
in and based on the literature (using a 1% error margin where no thresholds were
available) to determine their false classification rates.

We observed FPRs of up to 92.80%, with a large proportion of our dataset
attaining FPRs of over 80%. Only an extremely small proportion achieved rates
that could be considered acceptable (i.e. below 0.5%). In addition, the lowest
FNR we saw was still 5.06%, with the highest being 24.37%. This shows that
even in the best case for our dataset, approximately five out of 100 files could
be maliciously encrypted without being recognised by these tests.

Some of these tests are in use by many of the state-of-the-art tools in ran-
somware detection. We believe our results indicate that testing of these anti-
ransomware tools has not been sufficient. We therefore believe future anti-
ransomware tools should be tested on much larger and representative datasets,
particularly including lots of images (especially WebP files) and compressed
data, to ensure FPRs and FNRs are as accurate and realistic as possible. This,
combined with a detailed analysis and visualisation of these results, would help
to highlight the true accuracy of these tools. Finally, experimenting with the use
of variance, standard deviation and higher-order statistics such as skewness and
kurtosis may help to classify ransomware attacks more accurately and consis-
tently.
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7. Genç, Z.A., Lenzini, G., Ryan, P.Y.A.: Next generation cryptographic ransomware.
In: Gruschka, N. (ed.) NordSec 2018. LNCS, vol. 11252, pp. 385–401. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03638-6 24

8. Hunter, J.D.: Matplotlib: a 2d graphics environment. Comput. Sci. Eng. 9(3), 90–
95 (2007). https://doi.org/10.1109/MCSE.2007.55

9. Hurley-Smith, D., Patsakis, C., Hernandez-Castro, J.: On the unbearable lightness
of FIPS 140–2 randomness tests. IEEE Trans. Inf. Forensics Secur. (2020)

10. Kharraz, A., Arshad, S., Mulliner, C., Robertson, W., Kirda, E.: UNVEIL: a large-
scale, automated approach to detecting ransomware. In: 25th USENIX Security
Symposium (USENIX Security 16), pp. 757–772 (2016)

11. Kharraz, A., Kirda, E.: Redemption: real-time protection against ransomware at
end-hosts. In: Dacier, M., Bailey, M., Polychronakis, M., Antonakakis, M. (eds.)
RAID 2017. LNCS, vol. 10453, pp. 98–119. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66332-6 5

12. Kharraz, A., Robertson, W., Balzarotti, D., Bilge, L., Kirda, E.: Cutting the gor-
dian knot: a look under the hood of ransomware attacks. In: Almgren, M., Gulisano,
V., Maggi, F. (eds.) DIMVA 2015. LNCS, vol. 9148, pp. 3–24. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-20550-2 1

13. Mbol, F., Robert, J.-M., Sadighian, A.: An efficient approach to detect Torrent-
Locker ransomware in computer systems. In: Foresti, S., Persiano, G. (eds.) CANS
2016. LNCS, vol. 10052, pp. 532–541. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-48965-0 32

14. McIntosh, T., Jang-Jaccard, J., Watters, P., Susnjak, T.: The inadequacy of
entropy-based ransomware detection. In: Gedeon, T., Wong, K.W., Lee, M. (eds.)
ICONIP 2019. CCIS, vol. 1143, pp. 181–189. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-36802-9 20

15. Mehnaz, S., Mudgerikar, A., Bertino, E.: RWGuard: a real-time detection system
against cryptographic ransomware. In: Bailey, M., Holz, T., Stamatogiannakis, M.,
Ioannidis, S. (eds.) RAID 2018. LNCS, vol. 11050, pp. 114–136. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-00470-5 6

https://www.csoonline.com/article/3518864/more-targeted-sophisticated-and-costly-why-ransomware-might-be-your-biggest-threat.html
https://www.csoonline.com/article/3518864/more-targeted-sophisticated-and-costly-why-ransomware-might-be-your-biggest-threat.html
https://www.csoonline.com/article/3518864/more-targeted-sophisticated-and-costly-why-ransomware-might-be-your-biggest-threat.html
https://digitalcorpora.org
https://www.blueliv.com/cyber-security-and-cyber-threat-intelligence-blog-blueliv/research/everis-bitpaymer-ransomware-attack-analysis-dridex/
https://www.blueliv.com/cyber-security-and-cyber-threat-intelligence-blog-blueliv/research/everis-bitpaymer-ransomware-attack-analysis-dridex/
https://www.blueliv.com/cyber-security-and-cyber-threat-intelligence-blog-blueliv/research/everis-bitpaymer-ransomware-attack-analysis-dridex/
https://doi.org/10.1080/14786440009463897
https://doi.org/10.1007/978-3-030-03638-6_24
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1007/978-3-319-66332-6_5
https://doi.org/10.1007/978-3-319-66332-6_5
https://doi.org/10.1007/978-3-319-20550-2_1
https://doi.org/10.1007/978-3-319-48965-0_32
https://doi.org/10.1007/978-3-319-48965-0_32
https://doi.org/10.1007/978-3-030-36802-9_20
https://doi.org/10.1007/978-3-030-36802-9_20
https://doi.org/10.1007/978-3-030-00470-5_6


216 J. Pont et al.

16. Micro, T.: Ransomware (September 2016). https://www.trendmicro.com/vinfo/
us/security/definition/ransomware

17. Microsoft: kernel-mode driver architecture design guide (June 2017). https://docs.
microsoft.com/en-gb/windows-hardware/drivers/kernel/

18. OpenSSL Software Foundation: Openssl. https://www.openssl.org
19. Palisse, A., Durand, A., Le Bouder, H., Le Guernic, C., Lanet, J.-L.: Data aware

defense (DaD): towards a generic and practical ransomware countermeasure. In:
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Abstract. With the rapidly growing popularity of smart mobile devices,
the number of mobile applications available has surged in the past few
years. Such mobile applications collect a treasure trove of Personally
Identifiable Information (PII) attributes (such as age, gender, location,
and fingerprints). Mobile applications, however, are many and often not
well understood, especially for their privacy-related activities and func-
tions. To fill this critical gap, we recommend providing an automated
yet effective assessment of the privacy risk score of each application. The
design goal is that the higher the score, the higher the potential pri-
vacy risk of this mobile application. Specifically, we consider excessive
data access permissions and risky privacy policies. We first calculate the
privacy risk of over 600 PII attributes through a longitudinal study of
over 20 years of identity theft and fraud news reporting. Then, we map
the access rights and privacy policies of each smart application to our
dataset of PII to analyze what PII the application collects, and then cal-
culate the privacy risk score of each smart application. Finally, we report
our extensive experiments of 100 open source applications collected from
Google Play to evaluate our method. The experimental results clearly
prove the effectiveness of our method.

Keywords: Mobile applications · Privacy · Privacy policy ·
Permissions · Natural language processing

1 Introduction

In recent years, portable smart devices have rapidly spread, bringing a large
number of mobile applications to various users. For example, as of May 2020,
Google Play has more than 3 million Apps, which is three times the number in
2013, and these numbers are still growing rapidly. Due to the prosperous devel-
opment of the smart application industry, the functions of smart devices have
been extensively expanded and innovated to meet the needs of diverse users.
However, the types of mobile applications are ever-changing, and their contents
and architecture are often difficult to understand. Questions about their activ-
ities and functions related to privacy and security are endless. In fact, in order
to improve the user experience, more and more advanced mobile applications
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are inclined to gather user data to provide personalized service. These services
usually involve access to sensitive personal information such as location.

However, such intelligent mobile Apps may result in potential security and
privacy risks for users. So much Personally Identifiable Information (PII) is hid-
den in a smartphone, such as What We Are (e.g., fingerprints), What We Have
(e.g., credit card information), What We Know (e.g., email password), and What
We Do (e.g., location history) [29]. We call these PII attributes identity assets.
In addition, emerging technologies of IoT (Internet of Things) bring new forms
of user interfaces, such as wearable devices, which also pose greater challenges to
user privacy. Therefore, it is important to study what identity assets are collected
by these mobile applications.

A privacy policy is one of the most common methods of providing user noti-
fications and choices. The purpose of a privacy policy is to inform users how the
application collects, stores and discloses users’ identity assets. Although some
service providers have improved the intelligibility and readability of their pri-
vacy policies, not everyone reads them. As of 2019, only 24% of people read the
privacy policy [15].

Another potential privacy risk for mobile applications is basically caused by
excessive data access permissions of mobile applications. As mentioned earlier,
the current mobile applications provide a variety of innovative services, and these
services involve various data access permissions. Sometimes these permissions are
necessary, sometimes not. Therefore, in this paper we propose to leverage the
requested permissions and privacy policies for detecting the potential privacy
risk of each mobile App.

To create a comprehensive list of PII, we utilize our longitudinal study of
6,000 identity theft and fraud news stories reported over the past 20 years. This
database–named Identity Threat Assessment and Prediction or ITAP [30,31]–
is a structured model of PII, manually extracted by a team of modelers from
identity theft and fraud reports in the online news media. We take advantage of
ITAP to evaluate the risk score of each identity asset in order to estimate the
privacy risk score of the set of identity assets that a mobile App collects.

This paper makes the following contributions:

1. We map an independently built, comprehensive list of identity assets to pri-
vacy polices and data access permissions in order to evaluate the privacy risk
score of mobile apps.

2. We use Natural Language Processing (NLP) methods to automatically parse
privacy policies to find the identity assets mentioned in them.

3. Having access to UT CID probabilistic models and Bayesian inference tool
Ecosystem [21], we take advantage of Bayesian inference to help calculate
privacy risk score of mobile apps.

4. We demonstrate how our approaches can work on 100 popular open-source
Android mobile Apps in Google Play and compare our results to other
researchers’ work.
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2 Data and Methodology

In this section, we briefly introduce the dataset that we are using and also the
details of our privacy risk measurements.

2.1 UT CID ITAP Dataset

The Identity Threat Assessment and Prediction (ITAP) [30,31] is a research
project at the Center for Identity at the University of Texas at Austin that
enhances fundamental understanding of identity processes, valuation, and vul-
nerabilities. The purpose of ITAP is to identify mechanisms and resources that
are actually used to implement identity breach. ITAP cares about the exploited
vulnerabilities, types of identity attributes exposed, and the impact of these
events on the victims.

Between years 2000 and 2019, about 6,000 incidents have been captured [3].
ITAP gathers details of media news stories (e.g., the identity assets exposed,
the location and date of the event, the age and annual income of the victims,
and the perpetrators’ methods) about identity theft with two methods. First, it
monitored a number of Web sites that report on cases of identity theft. Second, it
created a Google Alert to provide notifications when any new report of identity
theft appears. By analyzing these cases, ITAP has generated a list of identity
attributes with each of them being assigned identity-related vulnerabilities, val-
ues, risk of exposure, and other characteristics depending on their properties,
such as, whether or not an attribute is unique to a person, whether or not an
attribute is widely used, how accurately it can be verified, etc. To date, ITAP
has generated a list including over 600 identity assets, which is the list of identity
assets we are referring to in this research.

Each identity asset in the UT CID ITAP dataset has a group of properties,
including, but not limited to the following properties:

Risk: indicates the probability of this identity asset being misused in identity
theft and fraud incidents.

Value: indicates the monetary value of this identity asset when misused in
identity theft and fraud incidents.

2.2 Identity Assets Collection from Apps

Privacy risks are essentially caused by the data collections of Apps. Thus, an
intuitive approach for measuring the privacy risks of Apps is to directly check
each of the identity asset they collect/request. In this work, we divide data
collection into two parts: (1) the privacy policy of each apps and (2) the Android
manifest XML file of each apps.

Privacy Policy. Privacy policies help users understand what portion of their
sensitive data would be collected and used or shared by a specific mobile applica-
tion. By reading the privacy policy of an app, we should know what information
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this application collects, how this app uses the information, and what infor-
mation this app shares. A privacy policy discloses all the information an app
actively and passively collects, for example, information actively entered when
registering for an account or passive HTTP logs and Internet usage.

The bag-of-words (BoW) model is a simplifying representation used in natural
language processing and information retrieval. We construct a BoW model and
take the privacy policy as input to generate a list of words and map it to the ITAP
dataset to see what identity assets this privacy policy collects. In our model, we
manually map each word to different identity assets so that after feeding our
model with the privacy policy, we can generate a set of identity assets that this
app collects. Table 1 shows some example of BoW mapping. We define the set
of identity assets of app S that includes N identity assets as

SetBoW (S) = {xi}i=1:N (1)

where xi denotes the identity asset in UT CID ITAP dataset.

Table 1. Examples of privacy policies mapping to ITAP dataset.

Words Correlated identity assets

Email Email Address

Name User Name

Phone Phone Number

Location GPS Location

XML File. To access the personal data in users’ Android mobile devices, the
permission system will convey users to grant corresponding data access per-
missions for each mobile app. Actually, these data access permissions may enter
some sensitive resources in mobile users’ personal data, such as their locations or
contact lists. Table 2 shows some example of permissions. We can see that these
listed permissions contain potential security risks. For example, an App, which
requests READ CALENDAR permission, may access users’ personal calendar
which could make users like businesspersons feel uncomfortable due to leaking
their schedules. In this work, we construct a program in which we manually map
each Android permission to identity assets in UT CID ITAP dataset. This pro-
gram takes Android manifest file as input and generate a set of identity assets
that this app collects. Table 3 shows some mapping example of permissions. We
define the set of identity assets of app S that includes N identity assets as

SetXML(S) = {xi}i=1:N (2)

where xi denotes the identity asset in UT CID ITAP dataset.
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Therefore, we can define a dataset of identity assets for app S as

IDS = SetBoW (S) ∪ SetXML(S) (3)

Table 2. Examples of Android permissions.

Type Permission name Description

String ACCESS BACKGROUND LOCATION Allows an app to access
location in the background

String NFC TRANSACTION EVENT Allows applications to receive
NFC transaction events

String READ CALENDAR Allows an application to read
the user’s calendar data

String READ CALL LOG Allows an application to read
the user’s call log

Table 3. Examples of Android permissions mapping to ITAP dataset.

Permission name Correlated identity assets

ACCESS BACKGROUND LOCATION GPS Location

NFC TRANSACTION EVENT Transaction Records

READ CALENDAR Calendar Information

READ CALL LOG Call History

2.3 Estimating Risk Scores for Identity Assets

Generally speaking, the risk score should reflect the security level of an identity
asset. The higher the score is, the more dangerous when the identity asset is
exposed. Dangerous here means the danger of monetary loss one could have
encountered when the identity asset of this person is exposed. Recall that ITAP
associates monetary values to identity assets.

We have two approaches to calculate the risk score of identity assets. Among
those properties, we first choose risk and value for measuring the risk score of
each identity asset.

Basic Measurement. Given N identity assets in UT CID ITAP dataset, each
identity asset Ai is labeled with a monetary value V (Ai) and a prior probability
P (Ai) of it getting exposed on its own. We define the expected loss of an identity
asset Ai as

Exp(Ai) = P (Ai) · V (Ai) (4)

such that 1 ≤ i ≤ N .
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Dynamic Measurement. We have another way for calculating expected loss.
Instead of using only intrinsic values of identity assets in UT CID ITAP dataset,
we leverage two more parameters which we introduced in previous work [6] to
refine risk and value of identity assets.

We first provide a high level introduction to our UT CID Identity Ecosys-
tem [6–8,18,21,24]. The UT CID Identity Ecosystem developed at the Center
for Identity at the University of Texas at Austin is a tool that models identity
relationships, analyzes identity thefts and breaches, and answers several ques-
tions about identity management. It takes UT CID ITAP dataset as input and
transforms them into identity assets and relationships, and performs Bayesian
network-based inference to calculate the posterior effects on each attribute. We
represent UT CID Identity Ecosystem as a graph G(V,E) consisting of N iden-
tity assets A1, ..., AN and a set of directed edges as a tuple eij = <i, j> where
Ai is the originating node and Aj is the target node such that 1 ≤ i, j ≤ N .
Each edge eij represents a possible path by which Aj can be breached given that
Ai is breached.

The first parameter we reuse from our previous work is called Accessibility. In
the calculation of a respective identity asset’s accessibility, we analyzed its ances-
tors (in the UT CID Identity Ecosystem graph) to assess the probability and
likelihood of discovering this node from other nodes. These “discovery” probabil-
ities on edges in the UT CID Identity Ecosystem graph are calculated using UT
CID ITAP dataset representing how criminals discovered identity assets using
a respective identity asset. Low values of accessibility indicate that it is more
difficult to discover to this attribute from others. An identity asset with low
accessibility is harder to breach or discover (discoverability). Since accessibility
is the change in risk of exposure, we can calculate new risk of an identity asset
Ai as

P ′(Ai) = P (Ai) + AC(Ai) (5)

where AC(Ai) denotes the accessibility of Ai.
The second parameter we obtain from our previous work is called Post Effect.

For a target identity asset, we analyze its descendants in the UT CID Identity
Ecosystem graph. If an identity asset is breached, the post effect measure gages
how much the respective identity asset would influence others. The low value of
post effect of an attribute indicates that the damage or loss one would encounter
is smaller after this identity asset is accessed by fraudsters. Since post effect is
also the monetary value, we can calculate new value of an identity assets Ai as

V ′(Ai) = V (Ai) + PE(Ai) (6)

where PE(Ai) denotes the post effect of Ai.
Hence, for dynamic measurement, we define expected loss of identity asset

Ai as
Exp(Ai) = P ′(Ai) · V ′(Ai) (7)

Since the range of the expected loss in UT CID ITAP dataset is from 0 to
107, which is quite wide, in order to rank each identity asset based on expected
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loss, we apply natural logarithm on each identity asset’s expected loss which can
be shown as ln(Exp(Ai)). As we mentioned at the beginning of this section, the
higher the score is, the more dangerous when the identity asset is exposed. To
achieve this goal, we find the maximum value of expected loss after applying
natural logarithm and use it to calculate the risk score of each identity asset.
Thus, we define the risk score of an identity asset Ai as

scorerisk(Ai) =
ln(Exp(Ai))

Max
(8)

where Max denotes the maximum value of expected loss after applying natural
logarithm. Hence, the risk score becomes a value that is normalized between 0
and 1.

2.4 Ranking for Mobile Apps

Then, we can compute risk scores of mobile apps with risk scores of identity
assets. Given an app S that collects N identity assets, by our data collection
approach, we can derive an identity asset dataset IDS = {xi}i=1:N . For all of the
members of app S, we can estimate the total risk score of the collected dataset:

Privacys =
1

Total

N∑

i=1

scorerisk(Ai) (9)

where Total denotes the sum of risk score of the entire UT CID ITAP dataset.
Thus, the privacy risk score becomes a value that is also normalized between 0
and 1.

Therefore, we can also calculate the privacy risk score of one’s mobile devices
by adding up privacy risk scores of apps that one’s device have installed.

3 Experimental Results

In this section, we empirically evaluate our app privacy ranking approaches with
real-world Android apps.

3.1 Experimental Apps

In order to perform data collection analysis on manifest XML files, we target
Android apps that are open-source. We found 100 Android apps that have pri-
vacy policies on Google Play and the source code of each of them is available
on GitHub. Most of them are still actively maintained. Figure 1 illustrates some
statistics of the application dataset. It shows the number of Apps and the aver-
age number of requested permissions by each App in different categories. In this
figure, we can observe that Apps in categories “Communication”, “Business”
and “Travel & Local” request more permissions and that we have more Apps in
categories “Tools” and “Productivity” in this dataset.
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Fig. 1. The number of Apps and the average number of requested permissions by each
App in different categories.

Fig. 2. The value of each rank and the number of identity assets with that rank.
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Fig. 3. The ranking distribution of basic and dynamic measurements on Android Apps.

3.2 Evaluation of App Privacy Risk Scores

Here, we evaluate the effectiveness of estimating App risk scores and compare
our methodologies with previous work.

General Results. Figure 2 shows the histogram of how many identity assets
have a given rank value, according to both basic and dynamic methods of calcu-
lation. There are many identity assets that have the monetary value 0 reported
from ITAP, because the monetary loss of the identity asset’s exposure was not
reported in the ITAP news stories. As a result, the number of identity assets in
the lowest rank is relatively higher than the rest of ranks. As we mentioned in
the methodology section, we apply the dynamic method in order to refine value
and risk of identity assets. The dynamic measurement has reduced around 10%
(50 identity assets) of the number of identity assets in the lowest rank and those
10% of identity assets have spread into different ranks due to their accessibility
and post effect.

Figure 3 shows the score distribution of the experimental Apps. In this figure,
we observe that it has lots of numbers concentrated in the middle of the range,
with the remaining numbers trailing off on both sides which is close to a normal
distribution. The average risk score of the experimental dataset is 0.4469 or
44.69%. The identity asset that has highest risk score (which means it is most
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dangerous in the ITAP dataset) according to both approaches is “Social Security
Number”.

Like what we did in Fig. 1, we also analyze risk score with different App
categories. Figure 4 shows the average score of different categories of basic and
dynamic measurements. From Fig. 1 we know that category of “Communica-
tion”, “Business” and “Travel & Local” request more permissions and these cat-
egories also have the highest average scores in Fig. 4. Also, category of “Weather”
and “Food & Drink” do not request many permissions but are still in the higher
tier of average score. On the other hand, in Fig. 5, it shows the correlation
between risk score of apps and number of permissions they request. Even though
not dramatically, according to the regression lines, when the number of permis-
sions increases, the value of privacy risk score slightly increase as well.

Last but not least, we map identity assets in ITAP dataset to both privacy
policy and XML file. Overall, the entire experimental dataset collects 70% of
identity assets in the ITAP dataset while privacy policies collect 67% of identity
assets and XML files only have 10% of identity assets which makes sense since
we parse the entire privacy policy to map identity assets and meanwhile the
maximum number of permissions that an app would request is only 32.

Fig. 4. The average score of different categories of basic and dynamic methods.

Evaluation of Ranking App Risk. We adopt two baselines to evaluate the
effectiveness of our approaches in terms of ranking App risks. The first work was
introduced in 2019 by O’Loughlin et al. [22]. They evaluated the presence and
quality of a privacy policy of apps with questions that aim to assess compre-
hensiveness of an app’s documentation in describing data collection and storage
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practices and policies. By answering their questions in their work, they divided
the score of the privacy policy into three ranks: “Acceptable”, “Questionable”,
and “Unacceptable”. In this section, we denote this approach as “OLoughlin”.

Fig. 5. The scatter diagram of number of permissions and risk score.

The other tool that we use in this comparison as baseline is the
ImmuniWeb R©Mobile App Scanner [2] (short for ImmuniWeb). It is a tool that
develops Machine Learning and Artificial Intelligence technologies for Applica-
tion Security Testing and Attack Surface Management. Their automated tests
reveal several security risk flaws and weaknesses that may impact the applica-
tion. We pick tests that are related to privacy and data access like Exposure
of potentially sensitive data. The level of each risk that has been detected can
be divided into four ranks: “High”, “Medium”, “Low”, and “Warning”. “High”
denotes the red light which indicates that this App has higher risk with respect
to the according weakness or flaw.

We pick the most popular apps in our experimental dataset to compare our
dynamic approach to different measurements. Each of the popular apps has over
5 million downloads in Google Play [1]. Table 4 shows the value of each popular
App returned by each approach. The table is sorted by the value of our dynamic
approach. We can see that almost every app in the first half of the table are being
labeled as “Low” in ImmuniWeb. First 5 apps also have higher risk scores than
others in the table. Therefore, we can see that our measurement is promising.
The interesting thing is that in OLoughlin, as long as the privacy policy of this
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app does not mention whether its server encrypts users’ information or not, this
app is labeled as “Unacceptable”. Duckduckgo and OpenVPN, which are located
in the middle of the table, are the only two apps that are labeled as “Acceptable”
in OLoughlin.

Table 4. The popular open-source Apps.

App Dynamics(%) ImmuniWeb OLoughlin

Wiki 43.63 Low Unacceptable

Firefox Focus 47.99 Low Questionable

Kodi 48.79 Low Unacceptable

QsmAnd 54.51 Low Questionable

Duckduckgo 67.39 Medium Acceptable

OpenVPN 68.92 Medium Acceptable

Signal Private Messenger 69.32 Medium Questionable

Ted 71.82 Low Questionable

Blockchain Wallet 73.67 Medium Questionable

Telegram 73.99 Medium Questionable

4 Related Work

Generally speaking, research on mobile privacy risk can be divided into three cat-
egories: mobile App’s permission analysis, mobile App’s privacy policy analysis,
and mobile security and privacy framework.

For the first category, mobile App’s permission analysis, several works have
been published. More and more mobile applications are providing novel ser-
vices by requesting bunch of access permissions of user’s sensitive information.
To understand this, for example, Au et al. [5] surveyed the permission systems
of several popular smartphone operating systems and taxonomize them by the
amount of control and information they provide users and the level of interac-
tivity they require from users. Felt et al. [11] built a tool to determine the set of
API calls that an application uses and then map those API calls to permissions.
It generates the maximum set of permissions needed for an application and they
compared them to the set of permissions actually requested.

However, these approaches are very hard to implement in practice. On the
other hand, some researchers have dug into this area by constructing machine-
learning-based researches. Wijesekera et al. [26] built a classifier to make privacy
decisions on the user’s behalf by detecting when context has changed and, when
necessary, inferring privacy preferences based on the user’s past decisions and
behavior. It grants appropriate resource permission requests without further user
intervention, denies inappropriate requests, and only prompts the user when the
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system is uncertain of the user’s preferences. Li et al. [17] introduced Significant
Permission IDentification (SigPID), a malware detection system based on per-
mission usage analysis to cope with the rapid increase in the number of Android
malware. They used several levels of pruning by mining the permission data
to identify the most significant permissions. Then, they constructed machine-
learning-based classifiers to classify different families of malware and benign
apps.

Even so, users often do not fond of security software that frequently scan
their devices. Therefore, Zhu et al. [32] introduced the techniques to automat-
ically detect the potential security risk for each mobile App by exploiting the
requested permissions. Then, they designed a mobile App recommendation sys-
tem with privacy and security awareness which can provide App recommenda-
tions by considering both the Apps’ popularity and the users’ security prefer-
ences. However, these approaches do not take the identity assets that Apps col-
lect. Privacy risk exists because of insecure data access. Therefore, in this work
we map each permission requested by mobile Apps to several identity assets and
build our own privacy risk score software.

The other category is about mobile App’s privacy policy. Privacy policies
help users understand what portion of their sensitive data would be collected and
used or shared by a specific mobile application. However, not every application
has a privacy policy. For example, Dehling et al. [9] surveyed popular medical
health Apps in Apple iTunes Store and Google Play to assess the quality of
medical health App’s privacy policies. They found out that of the 600 most
commonly used apps, only 183 had privacy policies. Liu et al. [19] examined web
sites of the Fortune 500 and showed that only slightly more than 50 percent
of Fortune 500 web sites provide privacy policies on their home pages. With
the lack of taking user’s privacy into concern, some works provide guidelines for
building software and privacy policies. Harris [14] issued recommendations for
mobile application developers and the mobile industry to safeguard consumer’s
privacy. This work provided guidance on developing strong privacy practices,
translating these practices into mobile-friendly policies, and coordinating with
mobile industry actors to promote comprehensive transparency.

Researchers have also begun to explore techniques for mitigating digital pri-
vacy risk. Zaeem et al. [20,27,28] proposed a technique that parses privacy poli-
cies and automatically generating summaries. They used data mining models
to analyze the text of privacy policies, train their model with 400 privacy poli-
cies, and answer 10 basic questions concerning the privacy and security of user
data. O’Loughlin et al. [22] reviewed data security and privacy policies of 116
mobile apps for depression. They constructed a list of questions and answer them
by reviewing privacy policies. They showed that only 4% of privacy policies of
mobile Apps are acceptable. Harkous et al. [13] proposed an automated frame-
work for privacy policy analysis (Polisis). They built it with a novel hierarchy
of neural-network classifiers and trained their model with 130k privacy poli-
cies. They provided PriBot which is a program that can answer users questions
related to those privacy polices they have. Within 700 participants, PriBot’s top-
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3 answers is relevant to users for 89% of the test questions. Nevertheless, these
works do not look up what sets of identity assets are being collected by those
privacy policies. Our work not only map permissions but also privacy policies to
identity assets.

The last category is about security and privacy frameworks for mobile Apps.
People have proposed scoring framework on social media. Petkos et al. [23] pro-
posed a privacy scoring framework for Online Social Network (OSN) users with
respect to the information about them that is disclosed and that can be inferred
by OSN service operators and third parties. It took into account user’s per-
sonal preferences, different types of information, and inferred information. To
fight against malwares, many works have been published to address data leak-
age problem. Rao et al. [25] presented Meddle, a platform that leverages virtual
private networks (VPNs) and software middleboxes to improve transparency and
control for Internet traffic from mobile systems. By controlling privacy leaks and
detecting ISP interference with Internet traffic they found identity assets leaked
from popular Apps and by malwares. Enck et al. [10] proposed a malware detec-
tion system named TaintDroid. “Taint” values can be assigned to sensitive data
and their flow can be continuously tracked through each app execution, raising
alerts when they flow to the network interface. Hornyack et al. [16] introduced
AppFence. They implemented data shadowing, to prevent applications from
accessing sensitive information that is not required to provide user-desired func-
tionality, and exfiltration blocking, to block outgoing communications tainted
by sensitive data. Gibler et al. [12] presented AndroidLeaks, a static analysis
framework for automatically finding potential leaks of sensitive information in
Android applications on a massive scale. AndroidLeaks drastically reduces the
number of applications and the number of traces that a security auditor has to
verify manually.

Indeed, breaches of personal sensitive information can lead to gigantic dam-
age to uses. To understand why such significant data leakage has occurred, Zuo et
al. [33] designed tools for obfuscation-resilient cloud API identification and string
value analysis, and implemented them in a tool called LeakScope to identify the
potential data leakage vulnerabilities from mobile apps based on how the cloud
APIs are used. On the other hand, Agarwal et al. [4] proposed ProtectMyPrivacy
(PMP), a crowd sourced recommendation engine, to analyze manual protection
decisions, and use them to provide iOS App privacy recommendations. It detects
access to private information and protects users by substituting anonymized data
based on user decisions. However, all the above recommendation approaches do
not take consideration of the potential identity assets collected by mobile Apps,
which motivates our novel work with awareness of permissions and privacy poli-
cies, which actually covers first and second categories.

5 Conclusion

In this paper, we sought to understand the privacy risk of the set of Personally
Identifiable Information (PII), or identity assets, collected, used and shared by
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mobile applications. Each mobile App has a set of data access permissions and
a privacy policy. Therefore, we sought to estimate the privacy risk score of each
mobile App by investigating the set of identity assets that each mobile App
collects, according to its privacy policy and data access permissions.

Our approaches leveraged the identity assets collected from these mobile apps
and cross-referenced these PII to a list of over 600 identity assets collected in
the Identity Theft Assessment and Prediction (ITAP) project at The University
of Texas at Austin. The ITAP project investigates theft and fraud user stories
to assess how identity asset is monetized and the risk (likelihood) of respective
identity assets to be stolen and/or fraudulently used. From these mobile apps,
our results indicate that 67% of the over 600 reference identity assets were being
collected by our sample dataset of 100 Android apps.

In this work, we proposed two approaches to estimate the privacy risk score
of each mobile App. First approach is called Basic Measurement. It utilized
the intrinsic characteristics of each identity asset to calculate the privacy risk
score of each identity asset. The second approach is called Dynamic Measure-
ment. It utilized two parameters that resulted from UT CID probabilistic models
and Bayesian inference tool to refine the original risk of exposure and value of
monetary loss. Our comparison with other researchers’ work showed that our
approaches are promising.

This work was the first to study privacy policies and permissions of mobile
apps in terms of the identity assets collected, used and shared. We further studied
those identity assets in the context of a personal data reference model built by
the UT CID Identity Ecosystem and ITAP projects. This research provided a
program to generate privacy risk score of each open-source mobile App and gave
an empirical study of 100 open-source mobile Apps in different categories.
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identity.utexas.edu/strategic-partners.
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Abstract. The growing shift from private to public transportation and
the increasing use of smartphones have lead to the development of dig-
ital transport ticketing systems. Such systems allow transport opera-
tors to enhance their services and income, therefore are important assets
that require secure implementation and protocols. This paper uncovers a
range of vulnerabilities in the m-tickets app used by Lothian Buses, one
of the leading transport operators in the United Kingdom (UK). The vul-
nerabilities identified enable attackers to predict, reactivate and modify
tickets, all of which can have damaging consequences to the operator’s
business. We further reveal poor implementation of encryption mecha-
nisms, which can lead to information leakage, as well as how adversaries
could harness the operator’s infrastructure to launch Denial of Service
attacks. We propose several improvements to mitigate the weaknesses
identified, in particular an alternative digital ticketing system, which
can serve as a blueprint for increasing the robustness of similar apps.

Keywords: Mobile app security · Reverse-engineering · Information
leakage

1 Introduction

As of 2020, 3.5 billion smartphones have been produced [12], equivalent to 45.1%
of the world population. The transportation industry is catching up with this
trend and transitioning from cash-based ticketing systems to digital tickets. In
a market that was estimated to be worth $500 billion in 2017 [13], the economic
impact of public transport ticketing apps is ever-growing. As these systems
become more widespread, it is vital that their operation cannot be tampered
with for illicit purposes and user data remain protected.

This paper investigates the security and robustness of m-tickets, a popular
local transport ticketing app deployed among others by Lothian Buses. Lothian
Buses manages the majority of public transport operations in Edinburgh, UK,
and the Lothian region; it is also the biggest public municipal bus company in the
UK, serving approximately 2.3 million passengers per week with a fleet of over
840 buses, and has a daily revenue of approximately £440,000 [9]. We use this as
a case study to reveal multiple weaknesses public transport ticketing apps suffer
c© Springer Nature Switzerland AG 2020
W. Susilo et al. (Eds.): ISC 2020, LNCS 12472, pp. 234–252, 2020.
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from, including the prediction of tickets and availability issues. Additionally, we
propose solutions to the problems identified, in order to improve the security of
such systems, whilst maintaining the intended functionality of the official apps.

Prior Work. One of the most notable vulnerabilities in the UK public transport
ticketing system was discovered by two Dutch security researchers in 2008 [15].
By exploiting the fact that the older version of the London transport system’s
Oyster card used Mifare 1k chips, the researchers were able to extract an Oyster
card’s encryption key and use this to clone and modify other cards as desired.
This led to a swap of all Oyster cards in circulation with newly developed,
encrypted cards, despite the massive cost incurred.

In terms of transport apps, get me there, which can be used for purchasing
tickets valid in the Greater Manchester Metrolink tram system, was recently
compromised, allowing hackers to create free tickets and defraud operators [14],
while posting the methodology used on Reddit [11]. The group explained how
they were able to extract the private keys used to build the ticket QR codes
directly from the source code, making the findings public without responsible
disclosure. The app was developed by Corethree, the same company that devel-
oped the app in used by Lothian Buses, which we scrutinise in this study.

Contributions. To the best of our knowledge, there are no scientific papers
undertaking a formal security analysis on public transportation apps. This paper
aims to fill this important gap and stimulate further research on this topic. As
such, we make the following key contributions:

1. We reverse-engineer the m-tickets app, revealing an exploit that enables to
predict valid tickets for any future date; additionally, we devise a method to
modify the characteristics of any given ticket.

2. We design a simple app that works side by side with the official one, to re-
activate old, expired tickets, thereby converting a single ticket purchase into
an unlimited source of tickets.

3. We propose an alternative system to fix all the vulnerabilities identified and
preserve the intended app functionality.

Responsible Disclosure. Prior to the submission of this manuscript, we con-
tacted both the transport operator using this app and the company developing
the app, to disclose the vulnerabilities found. The developers are now aware of
the problems we discovered and are working towards fixing these vulnerabilities.

2 The M-Tickets App

Lothian Buses is a company primarily owned by The City of Edinburgh Coun-
cil (91% ownership), which operates the majority of bus services that run in
Edinburgh and some throughout the surrounding Midlothian, East Lothian and
West Lothian counties. The so called Lothian City division provides the local
bus operations with an extensive network of routes that are active 24 h/day, 365
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(a) Main screen (b) Buying different tickets (c) Sharing a ticket

Fig. 1. Screenshots of the functionality of the m-tickets app.

days/year. In addition, the company owns four other divisions with a focus on
sightseeing, private services, and commuter routes.

Given the size of its customer base and the rapid uptake of mobile technology,
the company has adopted a mobile app to offer a ticket purchasing and storage
service to users. The m-tickets app is developed by Corethree, an award winning
company [1] specialised in solving the ticketing challenges faced by public and
private transport companies. Some of the apps in the company’s portfolio serve
Transport for Greater Manchester, Transport of London, Northern Link Ferries,
Translink, and many more. The m-tickets app is compiled from the same source
code for both Android and iOS platforms, has over 200,000 downloads, and we
estimate 20%–35% of these correspond to active users [16]. Using the number of
weekly customers, we expect the Lothian Buses app accounts for 12.2%–21.3%
of the tickets purchased on a daily basis, generating between £19.5 and £34.2
million in revenue per year. Even though this is clearly an important asset for
the company, the app was known to have several connectivity and availability
problems [6], which we investigate in depth in this paper.

In this work, we focus on the Android version of the app, specifically ver-
sion 9.7 released on the 17th of July 2019, which at the time of writing is the
latest version. Once the app is opened, the user is greeted with a screen dis-
playing the number of tickets available or active (see Fig. 1a). The user has the
option to buy (Fig. 1b) or share (Fig. 1c) tickets displayed next to the available
ones. Ticket sharing is performed by asking the user for the recipient’s email
address. The recipient will receive an email containing a hyperlink that, once
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clicked, adds the sent tickets to their respective list of available tickets. Both
sharing and buying of tickets are not available without Internet access.

3 Adversary Model

We expect an attacker to already have a copy of the Android app and have
basic understanding of the Android app ecosystem. Additionally, we expect the
adversary to have some reverse-engineering knowledge and the appropriate tools
to intercept traffic from and to the app. Lastly, the attacker would have basic
networking and programming knowledge, enough to identify vulnerable code.

Parts of the app that may be prone to attacks and possible scenarios include:

1. Financial Interest. The app’s main purpose is to provide tickets to users;
however, this has an implied given cost. An attacker may attempt to exploit
this application to overcome the financial burden, by figuring out a way of
obtaining valid tickets without paying.

2. Denial of Service. Attackers may attempt to take control of the resources
used by the transport operator and seek to disrupt the standard behavior of
the app or servers. This may involve flooding target victims with unsolicited
messages, which in the process can also harm the reputation of the operator,
as the source of the hijacked resources would be attributed to them.

3. Reputation Damage. In addition, hacktivists may seek to publish on dedi-
cated platformed (e.g. Pastebin) information about how to obtain free tickets,
simply due to a certain ideology.

4. Privacy Breach. Attackers may also seek to leak databases or files contain-
ing information about the users of the m-tickets app. This would be done for
financial gains or, again, to harm the company’s reputation.

4 Methodology

4.1 Vulnerability Analysis

To study the app, we employ both Static Analysis, reverse-engineering and
code auditing whilst the app is not running, and Dynamic Analysis, which
covers any activity and tests done whilst the app is running.

Static Analysis: We first reverse-engineer the Android application package
(APK) of m-ticket by using dex2jar1 and jd-gui.2 dex2jar is a tool that decom-
piles the .dex file inside the APK to a .jar file, which is a combination of Java

1 dex2jar Github, https://github.com/pxb1988/dex2jar.
2 Java Decompiler, http://java-decompiler.github.io/.

https://github.com/pxb1988/dex2jar
http://java-decompiler.github.io/
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classes aggregated as a single file; jd-gui further unpacks a .jar file into separate
.class files. Some degree of obfuscation is inherently implemented during the
compilation of the APK, which means our reverse-engineered code loses all the
method and property names. However, given the fact that Java is a static strong
typed language, class names are still well preserved, which can reveal sufficient
information for subsequent analysis.

A careful analysis reveals that no functionality is implemented in Java per se.
Instead a NOTICE file indicates that the core functionality is implemented using
the Xamarin cross-platform C# application development tool,3 which allows
creating a single application in C# that can be compiled into Android, iOS, and
Windows apps. Indeed, C# code was compiled with MonoVM to shared objects
and the Java code is responsible for linking the classes in the shared objects and
constructing the overall functionality of the app.

Knowing that the overall functionality lies in the shared objects, we extract
the C# code from these objects, seeking to understand the functionality of the
app and reverse-engineer its features. Shared objects built with Xamarin act as
wrappers of Dynamic-Link Libraries (DLLs), which hold the actual functional-
ity of the app. We extract these DLLs using a small script [2]. Lastly, we use
JetBrains dotPeek4 to decompile DLLs and retrieve the original source code.

Overall, the app consists of 88 DLLs with a total of 9,990 classes. However,
the main functionality of the app is within the Core DLL, with 282 classes.

Dynamic Analysis: We split the dynamic analysis into two different phases:
one concerning the communications between the app and the server, and the
second focusing on analysing the internals of the app and what is stored in the
phone once the app is installed.

Phone Internals: Android is a mobile operating system based on the Linux
kernel. The default installation restricts the access to multiple files, in order
to prevent novice users from deleting/modifying critical functionality. However,
this also means that the default version of Android does not allow a user to
view the files any app uses/creates. Therefore, in order to further analyse the
behaviour of the app, we use a rooted Android phone. Rooting is the process of
allowing Android smartphone users to attain privileged control of the operating
system; this can be done by asking the manufacturer of the phone to provide
a code to de-activate the smartphone’s protections. With a rooted phone, we
can see what files our target m-tickets app would use upon execution. All the
app-related information is stored in the /data/data folder as shown below:

3 Xamarin, https://dotnet.microsoft.com/apps/xamarin.
4 dotPeek – Free .NET Decompiler and Assembly Browser, https://www.jetbrains.
com/decompiler/.

https://dotnet.microsoft.com/apps/xamarin
https://www.jetbrains.com/decompiler/
https://www.jetbrains.com/decompiler/
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net.corethree.lothianbuses

cache

code cache

com.android.opengl.shaders cache

databases

com.microsoft.appcenter.persistence

corethree

google app measurement.db

files

.config

activated tickets.xml

alert notifications.xml

data.json

ticket last opened

ticket open dts

.local

share

appcenter

database large payloads

shared prefs

AppCenter.xml

net.corethree.lothianbuses preferences.xml

We are now able to read and analyse all information the app saves and how
information storage is handled. Nevertheless, to be able to modify this informa-
tion, we first need to disable Security-Enhanced Linux, a kernel security module
that provides a mechanism for supporting access-control security policies. In this
case, it would not allow the execution of any program, if there was any tamper-
ing of the files by an external process. This avoids malicious apps from stealing
data from other apps. In order to disable SE-Linux, it is sufficient to obtain a
root shell via the Android Debug Bridge (adb), and type setenforce 0.

Additionally, there are occasions where the behaviour of the app may be
unexpected, therefore we also use Frida5 to trace events. Frida is a dynamic
code instrumentation toolkit that allows the injection of snippets of JavaScript
or own library into native Android apps. We use this tool to trace the files being
opened at certain points or which functions were triggered at certain times.

Communications: Modern day apps consist of two main parts: the app itself
and the server with which it communicates. On the app side, we perform static
analysis and examine the phone internals. However, the extraction of information
from the server is not straightforward and we can only attempt “black box”
penetration testing. This consists of performing a vulnerability analysis without
access to any of the server’s source code. As such, we can observe what messages
go to and come from the server, but not the server’s inner logic, which makes it
hard to identify flaws.

5 Fida analyzer, https://frida.re/docs/android/.

https://frida.re/docs/android/
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For this part, we built a man-in-the-middle (MITM) setup, using an Alfa
Atheros AR9271 Wi-Fi adaptor to set up a controlled hot spot on a laptop, to
which the phone connects. We then route the traffic from the adaptor to Burp,6

an integrated platform for performing security testing of web applications. Addi-
tionally, we install Burp certificates on the phone, so that the phone would trust
the communications. Finally, the laptop connects to the Internet using its inte-
grated Wi-Fi adopter, thereby allowing to intercept and modify whatever the
app running on the phone sends and receives from the server.

We notice the phone compresses requests prior to transmission, hence we
load a dedicated module into Burp to decompress requests for inspection.

4.2 Connectivity and Availability Analysis

A key concern for Lothian Buses app users is the app’s availability. It has been
reported that in some cases the app would stop working and require Internet
connection in order to start, or would take too long to launch even when a con-
nection is available [7]. Therefore, we analyse the minimum Internet connection
speed required and the amount of bandwidth consumed when the app launches.

To this end, we use BradyBound,7 an app that throttles the phone’s
Internet connection speed down to a user-defined value. Furthermore, we
track the amount of data consumed by simply accessing Settings>Apps>m-
tickets>Data usage before and after starting the application, and calculating
the difference. We execute all tests with a Motorola Moto G (3rd Generation)
running Android v6.0.1.

5 Security Analysis

In this section we describe in detail the vulnerabilities found using the method-
ology described previously. Most weaknesses are exploited when the phone is
off-line, taking advantage of the fact that the app can work without Internet
access. We reveal how to predict, duplicate, and modify tickets as explained
next. We also describe several functionality problems encountered in the app.

5.1 Generation of Tickets

One of the main goals of our study is to assess how securely ticket generation is
handled and how difficult it would be for an attacker to craft valid tickets while
evading payment. In order to accomplish this, we first need to understand how
the app generates a legitimate ticket.

Once a ticket is purchased, the user has the option to activate it whenever
they board the bus. An activated ticket has a certain expiration time, which
depends on ticket type (e.g. single ticket, day ticket, etc.), which bus drivers can
check when presented with a view of the running app, as exemplified in Fig. 2.
The ticket comprises several distinctive elements:
6 Burp analyzer, https://portswigger.net/burp.
7 BradyBound, https://m.apkpure.com/bradybound/com.oxplot.bradybound.

https://portswigger.net/burp
https://m.apkpure.com/bradybound/com.oxplot.bradybound
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(a) Ticket time view. (b) Ticket token view.

Fig. 2. Screenshots of an active ticket, alternating between a view of the current time
(left) and the daily token (right).

– Top Title – Describes the ticket type at the top of the ticket.
– Watermark – Visible in the central part of the ticket, comprising the m-tickets

logo and a dynamic text block showing the current time and a numeric token
on a changing background, in an alternating fashion. The numeric token is
the same for all tickets activated during the same day, i.e. it is not unique to
a ticket.

– Remaining time – Small countdown in the centre showing the remaining time
until the ticket becomes invalid.

– Lower body – Shows information including ticket type, ticket provider, date
of purchase, and passenger’s name.

One implementation decisions made by the app developer is the activation
and generation of tickets without Internet connectivity. The downside to this
is that the app itself is in charge of generating the ticket, and not the server.
This means an attacker with access to the source code could attempt to under-
stand and replicate the process of generating tickets. Clearly, the numeric token is
what bus drivers check in order to decide whether a ticket is valid. Hence, under-
standing how valid numeric tokens are obtained can compromise the underlying
mechanism.

Analysing the source-code, one particular function stands out, namely
Gener- ateWatermark(), located inside the Core.Utilities module. This func-
tion will be called whenever a ticket is activated, performing the following com-
putation:
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token =
⌊

(x − c)2

seed
× 104 mod 104

⌋
, (1)

where �·� : R → Z denotes the floor function, c is a date constant with value
01/01/1990 and x represent the current date. The app uses this formula to
create the numeric tokens, which are displayed to drivers for validation when
the passenger is boarding the bus.

To accurately predict a token, it is necessary to understand how the seed vari-
able is obtained. By performing a text pattern search through all of the app’s
files, we identify a particularly interesting string, namely ‘‘Ticket.Seed’’:
‘‘71473’’, located in files/.config/data.json. Creating numeric tokens
with the logic shown above and this seed value across different days, and com-
paring against tokens for the same days embedded in legitimate tickets, the
values match perfectly. This means that the alleged seed is nothing but a hidden
hard-coded value, rather than an actual seed of a pseudo-random sequence.

Besides, although the existence of the modulo and the floor operations in
Eq. 1 makes this computation irreversible, we show in Fig. 3 that this function
exhibits obvious periodic patterns, meaning that it does not qualify as a one-way
function.

Fig. 3. Graphical illustration of token values, as the time since 01/01/1990 grows.

As shown in Fig. 3, the mapping between current date x and the token
value presents a period-like relation, and the period gradually becomes longer as
more time elapses from the fixed referenced date c. Thus an attacker can simply
modify the system date and collect some data to recover the underlying function
through trial and error.

Finding: An attacker can retrieve the procedure and relevant variables (which
are unfortunately hard-coded) from the app source code, easily generate a valid
numeric token for the current day, and embed that into a Graphics Interchange
Format (GIF) image that resembles a genuine ticket, thereby evading payment.
We also conclude that reverse-engineering of the application is not necessar-
ily needed to predict the token of any future date, since the token generation
algorithm reveals naive periodic patterns.
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5.2 Re-activation of Expired Tickets

If one can already predict tickets, what would be the purpose of reactivating
expired tickets? Predicting a ticket is one thing, but generating animated images
on a phone is not straightforward. An attacker may need to replicate the layout
of the official app to perfection and build a new app from scratch in order to
exploit the vulnerability discussed in the previous subsection.

Therefore, we investigate whether it may be possible to reactivate an expired
ticket, by analysing how the app saves the state of tickets. To this end, we
examine the changes made on the app whenever a ticket is activated, first saving
all the files in the home directory of the app prior to the activation of a ticket,
then comparing them against those changed after the ticket expired.

Fig. 4. Source code of demo app exploiting ticket re-activation vulnerability uncovered.

Most files seem to be modified, however the app would not make any
requests over the Internet connection. All of the modified files are inside the
net.corethree.lothianbuses folder, except for a small /.storage/atl.txt
file created after the activation of the first ticket. After analysing the decompiled
app code, it is clear that this file is just a back up of activated tickets.xml,
a file used to store the serialised activated tickets. This means that the con-
tent of net.corethree.lothianbuses is the representation of the state of the
app. Hence, we can save its contents, activate as many tickets as previously pur-
chased, and then swap the saved folder with the one used by the app, thereby
restoring all the tickets as if the app was never opened in the first place. To
facilitate repeated testing of this vulnerability and demonstrate the simplicity
of the attack, we build a small app, which exploits this process, as detailed in
Fig. 4.

In the above, we save the state of net.corethree.lothianbuses into a folder
called tickets, and then use the app to substitute the files in the official app
with those saved in this folder. However, it appears that after one week of testing,
the vulnerability can no longer be exploited. Since our exploit would return to
the state of the app after purchasing the tickets, from the apps point of view we
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Fig. 5. Code snippet mitigating the reactivation of expired tickets.

had not been connected to the Internet for more than 5 days, which is one of the
security measures that Corethree seem to have implemented. However, by the
very fact that this is a response to a certain event, we expect to find the relevant
implementation in the app’s source code. Indeed, the code checks if the value
CheckInLastSuccessfulTimestamp minus 5 days is less than 0, as shown in
Fig. 5, where CheckInLastSuccessfulTimestamp was extracted from the times-
tamp saved as CILST in the net.corethree.lothianbuses preferences.xml
file, as shown in Fig. 6 (see line 4).

Fig. 6. Excerpt from XML file containing m-tickets app preferences.

However, the app does not check whether CILST is larger than the current
time, meaning that an attacker can set the CILST to year 2030, and the exploit
would work for the next 10 years.

Finding: By restoring the application state prior to ticket activation and mod-
ifying the XML file containing the app preferences, an attacker can reactivate
expired tickets, which stay valid for any specified duration.

5.3 Modification of Tickets

Being able to re-activate tickets, next we explore the different type of tickets the
app offers and whether these could be modified by an adversary. Excluding the
fact that the app offers different tickets for different routes, there are 2 main
type of tickets: Single-Adult and All-day tickets. We purchase both types and
activate them on the same day, to understand the technical difference between
them. Perhaps unsurprisingly, the two are virtually the same, except that a user
has 5 min to use a Single-Adult, whilst the All-day ticket can be used for 24 h.
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Fig. 7. JSON fragment of an Adult Single ticket.

Knowing this, we analyse how the app identifies and stores different type
of tickets, and find that the majority of ticket data is stored in the data.json
file. The file is relatively large, containing information such as the app’s layout,
user tokens, URLs from where to download images and, most importantly, the
characteristics of purchased tickets, as exemplified in Fig. 7.

Examining Fig. 7, note that tickets are defined by a JSON structure, which
encompasses their characteristics. Therefore, our first attempt is to change the
values of a Single-Adult ticket to those of an All-day ticket. However, after
modifying data.json, the app would not open without an Internet connection,
suggesting a security provision was implemented to prevent this exploit. We
then use the Frida framework to trace precisely what happens internally when
the app blocks the modified data.json. The trace reveals that both data.json
and lothianbuses preferences.xml are opened at program execution start.
Reviewing the code again and identifying where these files are being used, it
appears data.json is hashed with ContentRoot and the devices GUID, which
are given in the lothianbuses preferences.xml file. The hash is then com-
pared with the value stored into NSSC (line 6 in Fig. 6). This procedure is illus-
trated in Fig. 8. Therefore, an attacker aiming to modify anything in the app,
should change the hash stored in NSSC for a new one that passes the checks.

Fig. 8. Pseudocode of procedure implemented by the m-tickets app to avoid modifi-
cation of ticket characteristics. By reversing the hashing applied and retrieving key
variables stored by the app, this can be circumvented.
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Fig. 9. Encryption logic implemented by the m-tickets app.

Since the hash is crafted based on values that we already have, we can write
a small C# script to replicate the creation of the hash and use it to modify
the app. We are now able to change any of the characteristics of a ticket. For
example, we could make a single Adult ticket last for months, if we changed the
ticket’s “Lifetime” property.

Finding: By replicating the hashing mechanism applied to the tickets data store
and overwriting key variables in the m-tickets preferences file, an attacker can
extend the lifetime of tickets at will.

5.4 Hard-Coded Keys and Tokens

After decompiling the app, we notice that some of the information being stored is
encrypted, since the developers included custom cryptography classes in addition
to imported C# crypto libraries. Although our proposed attacks do not exploit
any encrypted information, it is still worth analysing the encryption algorithms,
so as to understand if any potential weakness may exist once new functionalities
or features are integrated into m-ticket.

The app adopts the Advanced Encryption Standard with Cipher Block
Chaining (AES-CBC), a block cipher encryption scheme commonly used to pro-
vide strong confidential guarantees [4]. This algorithm uses three key instru-
ments to ensure secrecy: a salt, an Initialisation Vector (IV), and a key. The
salt is used to avoid brute-force attacks against the resulting cipher-text, the IV
ensures semantic security, and the key is used to encrypt the actual plain-text.
This algorithm by design is robust against both passive and active adversaries,
but unfortunately, our analysis reveals that it is not utilised correctly, resulting
in possible information leakage.

As shown in Fig. 9, both the key and IV are derived from a salt and a shared
secret, which turn out to be hard-coded right above the encryption function
(lines 1–2). That is to say, as long as an attacker obtains these strings, any
encrypted information can be easily deciphered on Android phones. Whilst it is
obvious that the seeds and secrets have to be stored locally for the program to
work in an offline environment, the developers should have been mindful of how
easy it is to decompile apps.
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Finding: Although state-of-the-art encryption is adopted, key elements aimed
at ensuring secrecy are hard-coded in the m-tickets app. Hence cipher-text is
straightforward to reverse.

5.5 Root Checker Bypass and Enabling Screenshots

A key step in exploiting the re-activation and modification of tickets is the ability
to have full control of the phone (root access), while maintaining full use of the
app. For this reason, checking whether the app has a root checker was one of our
first priorities after decompiling. Corethree implement a root checker function
that looks for certain files or binaries, denying access to the app if found, as
revealed in Fig. 10. Unfortunately, having a rooted phone, the system is not to
be trusted. In this case the app asks the system to look for certain files, but
since an attacker controls the system, they can manipulate the response stating
that the relevant files do not exist. To showcase this, we use Magisk hide, a
module of the Magisk manager,8 which hides the root files from whatever app
it is instructed to.

Fig. 10. m-tickets root checker function.

Another feature Corethree implemented in the app is the inability to take
screenshots whilst the app is in use, so as to prevent users from sharing screen-
shots of purchased tickets. However, if an attacker has root access to their phone,
they can disable the permission granted to apps to block screenshots. In our case
we used the smali patcher module from the Magisk rooter.

Finding: The app root checker can be bypassed, thereby enabling reverse-
engineering and modifying of the original app functionality.

5.6 Password Reset Issues

The majority of vulnerabilities found up to now were in the app source code.
However, one part of the ticketing ecosystem we do not have access to is the
source code of the server logic. Hence, we carry out a “black box” analysis,
by which we intercept the network traffic towards/from the server and seek to

8 Magisk, https://magiskmanager.com/.

https://magiskmanager.com/
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make sense of the back-end. In particular, we uncover two main problems with
the password reset procedure.

To understand the vulnerabilities, let us first examine the standard behav-
ior of a password reset. After requesting a password rest, the user would
receive a URL of the form https://passwordreset.corethree.net/<11upper-lower-
casecharacters>. This link would expire within 75 min after the reset request.
However, it appears the user could request a password reset as may times as
desired and the server would send a new link to reset the password, with-
out invalidating the old one. This means that an attacker could request many
resets and increase the probability of guessing the victim’s password reset link.
Arguably, the probability of brute-forcing a valid URL online is relatively small.
For instance, assuming a brute-force rate of 105 attempts/s and a reset password
rate of 105 requests/s, the probability of guessing a valid URL is

pguess =
(105 × (60 × 75))2

5211
= 2.69 × 10−4.

However, any further increase in compute power could lower the work factor.
Aside from this threat, the fact that the server allows a user to request as

many password resets as desired, creates an opportunity for malicious actors
who may exploit this weakness to launch Denial of Service (DoS)/Email flood
attacks towards other companies or individuals, using the Lothian Buses server
resources, further damaging the transport operator’s reputation in the process.

Finding: Poorly implemented password reset mechanisms lowers the barrier to
brute-forcing user credentials and launching DoS/Email flood attacks using the
transport operator’s computing infrastructure.

5.7 Availability

The main purpose of an e-ticket app for public transport is to enable users to
purchase tickets and use them at any point in time. The service must be thus
available at all times. Following recent reports about app availability issues [5],
we decide to run a network test and analyse the Internet connection needed to
run the app and amount of data exchanged over this. Unsurprisingly, during 10
tests whereby we open and close the app, the average amount of data consumed
is 45 kB and the time required to load the app did not vary with download speeds
of 19 kB/s and above. However, examining the source code again, we notice that
whenever the app is opened and any error occurs for whatever simple reason, the
app closes and all information is erased, as when a tamper attempt is detected. As
a result, the app has to re-download all data and validate it before displaying it
to the user when re-opened. This leads to a 400 kB increase in data consumption
and approximately 12 s boot-up time with an un-throttled connection.

To avoid this nuisance, modern programming languages force the user to
implement try-catch statements, which permit a program to continue executing
even if a small part of it encounters an exception. However, the m-tickets app is

https://passwordreset.corethree.net/
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peppered with try instructions that are not followed by an appropriate catch
logic. This leads to frequent occasions where the program crashes or gets stuck.

Findings: A combination of aggressive error handling practice and inappro-
priate use of try-catch statements leads to a history of poor app availability.
Occasional users will always be forced to have an Internet connection.

6 Recommendations

Given the security vulnerabilities identified in the m-tickets app, we propose
a set of solutions that can be deployed to address the exposed problems. We
also explain why some of the implementation decisions made by Corethree are
insecure, and suggest simple alternatives.

6.1 Tickets

Clearly, the whole purpose of the app is the secure purchase and use of tick-
ets. Security is largely an abstract concept that is not straightforward to mea-
sure [17]. However, in essence it should reflect how hard it is for an attacker
to read or modify information they are not authorised to. Taking a look at the
current design of an e-ticket in the m-tickets/Lothian Buses app and the weak-
nesses described in Sect. 5–5.3, to begin with, the validation of a ticket should
not rely on the bus driver. This is because the process is prone to error, as the
driver may fail to recognise the difference between a valid and a crafted ticket.
Indeed, previous studies show that humans are the weakest link in information
security [3].

Secondly, users can be selfish and app decompiling is increasingly accessible.
Therefore, the process of ticket generation should not be client-side, to avoid
users tampering with it in order to circumvent payment. Instead, this process
should be entirely server-based, whereby the user receives a valid ticket upon
purchase, but remains unaware of how it was created.

Thirdly, there is currently no way of knowing whether active e-tickets are
being re-used. The task of deleting a used ticket is handled by the app, yet as
shown in Sect. 5.2, a user can control the app’s behaviour on their phone. The
same applies to the illicit modification of the characteristics of tickets (Sect. 5.3).
Once again, to circumvent these problems, the user should be provided with a
ticket generated on the server side and which cannot be modified by the app.

Alternative Ticketing System: Strengthening the ticketing system may
require a complete redesign. In what follows, we propose a simple alternative,
which although arguably not flawless, mitigates the vulnerabilities identified.
The proposed system consists of (1) a QR code validation protocol that sub-
stitutes driver-based visual validation; (2) an additional private app that bus
drivers would use to validate tickets; and (3) an RSA signature algorithm to
safely maintain the tickets.

We illustrate the envisioned alternative ticketing system in Fig. 11 and sum-
marise its operation below.
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Fig. 11. Blueprint of proposed secure alternative ticketing system.

Step 1: User sends a payment for some amount of tickets of certain type, which
they want to purchase.

Step 2: Server crafts each ticket in JSON format, which contains all the infor-
mation needed to identify the ticket, including a Unique id to avoid
ticket reuse; Ticket type to specify if the ticket is Adult Single, All day,
etc.; an Expiry date to verify that the ticket is still valid. Once the
JSON is crafted, the server would use a private key kprv to sign the
JSON and send the result to the app.

Step 3: When the user wants to activate a ticket, the app builds a QR repre-
sentation of the encrypted ticket and displays it on the phone’s screen.

Step 4: The bus driver uses their app to scan the QR code. The app contains
a public key kpub, which is used to verify that the ticket has not been
tampered with. It also checks that the unique ID was not used in the
past. If the ticket appears valid, the app indicates approval and stores
the ticket’s unique ID.

Step 5: Periodically, the bus driver’s app connects to the server and sends
the unique IDs that were scanned. At the same time, it is updated
with information of other valid/invalid unique IDs that have changed
recently.

The downside to this system is that every bus driver must have a smartphone,
which increases CAPEX. The advantages might out-weight the cost, since (1) the
user only holds signed tickets and cannot craft tickets while subverting payment;
(2) the public key could be made available to anyone, since it only serves in
verifying if a ticket was tampered with; (3) the ticket duplication weakness is
removed, since an attacker would have almost no time to use a copy of a ticket
due to the unique IDs; and (4) modification of tickets becomes infeasible, since
digital signatures are proven to be secure [8].
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6.2 Hard-Coding and Availability

Having a flawless program is almost impossible. However, historically communi-
ties have come together to create standards, so that users/developers have the
means of checking the correctness of their programs. A widely-known security
standard is the OWASP Secure Coding Practices [10], which lays out practices
developers should follow to make a program secure. Hard-coding and Availabil-
ity issues we found in the m-tickets app are covered in these standards. Hence
we recommend following these checklists when developing future versions of the
app, to avoid the same or other pitfalls.

6.3 Password Reset

Not limiting the number of password resets a person can request has implication
on (1) user account security (as it simplifies brute-forcing); (2) can facilitate
DoS attacks towards third parties; and (3) can damage the reputation of the
app provider. To avoid these, developers could enforce, e.g. a 10-s restriction
between each password reset. This would be unnoticeable to the user, since it
is roughly the time it takes to check email, while adversarial actors would be
unable to perform any of the attacks discussed in Sect. 5.6. Additionally, it is
good practice to disable the last password reset link after issuing a new one for
the same account.

7 Conclusions

In this paper analyse the security and robustness of the m-tickets system used
by Lothian Buses, a leading UK transport operator. We identify a range of
vulnerabilities pertaining to ticket generation and life-cycle, app functionality,
and back-end logic. To mitigate these, we provide design recommendations which
Corethree, the developer, should implement, especially given that parts of older
highly-vulnerable versions of the ticketing app remain in use and suggest other
iterations of the system might be at risk. This includes those sold to other
transport companies in the UK. Lastly, we present the blueprint of an alternative
ticketing system, which should help in the development of future secure apps
supporting public transport worldwide.
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Abstract. Due to the distributed framework, Internet of Things (IoT)
is vulnerable to insider attacks like energy-depleting attack, where an
attacker can behave maliciously to consume the battery of IoT devices.
Such attack is difficult to detect because the attacker may behave dif-
ferently under various environments and it is hard to decide the attack
path. In this work, we focus on this challenge, and consider an advanced
energy-depleting attack, called mix-energy-depleting attack, which com-
bines three typical attacks such as carousel attack, flooding attack and
replay attack. Regarding the detection, we propose an approach called
Edge Learning Detection (ELD), which can learn malicious traffic by con-
structing an intrusion edge and can identify malicious nodes by building
an intrusion graph. To overcome the problem that it is impractical to pro-
vide labeled data for system training in advance, our proposed ELD can
train its model during detection by labeling traffic automatically. Then
the obtained detection results can be used to optimize the adaptability
of ELD in detecting practical attacks. In the evaluation, as compared
with some similar methods, ELD can overall provide a better detection
rate ranged from 5% to 40% according to concrete conditions.

Keywords: IoT network · Malicious node · Insider attack · Edge
learning · Mix-energy-depleting attack

1 Introduction

Internet of Things (IoT) has become a popular infrastructure to support many
modern applications and services, such as smart homes, smart healthcare, public
security, industrial monitoring and environment protection. It allows devices to
collect information from surroundings, i.e., control units can gather information
from other devices to make better strategies.

However, there is a growing concern about energy-depleting attacks on IoT
networks, like battery-deplete attacks [2,20] and vampire attacks [21]. For these
attacks, once some internal devices are compromised, cyber-criminals can send
c© Springer Nature Switzerland AG 2020
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more packets to other devices (target devices) or request them to forward packets
to consume the energy of target devices, via the infected devices. It is more
difficult to detect energy-depleting attacks as compared with traditional data-
oriented attacks (e.g., tamper attack or drop attack). This is because data-
oriented attacks cause damaged data (e.g., tampered data or lost data) that can
be identified clearly, while for energy-depleting attacks, the energy consumption
caused by attacks cannot be defined explicitly. In addition, it is hard to locate
malicious devices as one malicious device can create malicious traffic spreading
in the whole network and leading to the complexity of intrusion path. Hence it is
very important to design an effective security mechanism for detecting malicious
nodes under energy depleting attacks in IoT networks.

In the literature, most existing studies mainly focus on a single and unique
attack in an IoT environment, but an advanced intruder may perform several
different types of attacks at the same time. In this work, we thus focus on a more
powerful attacker, who can control some nodes illegally in an IoT network and
launch a mix-energy-depleting attack (MEDA) by combining carousel attacks,
flooding attacks and replay attacks. The selection is based on their versatility and
popularity. In particular, carousel attacks aim to consume energy by generating
forwarding loops. These three typical attacks can be performed separately or
simultaneously, resulting in an advanced insider attack scenario.

For detecting malicious nodes under energy depleting attacks, most of exist-
ing schemes are designed based on the assumption about attacks. That is, the
supposed threshold of extra received packets or extra energy consumption caused
by attacks. For example, Cong [13] introduced an approach based on received
packet threshold by using the count of received packets to judge whether a node
is affected by attacks or not. However, the threshold can be easily affected by con-
crete attack environments and devices. In addition, some research work [18,20]
believe that malicious nodes should be those who broadcast messages frequently
and have a higher battery energy as compared to other nodes. In fact, there is no
guarantee that malicious nodes have higher battery energy. Therefore, we believe
that a better solution could be guided by the assumption at the beginning, while
the assumption should be updated periodically according to the detection result.
On the other hand, many studies attempt to apply anomaly detection for detect-
ing insider attacks, whereas some strong machine learning classifiers cannot be
deployed in an IoT device, due to the limited resources. Further, traditional
supervised learning requires labeled data or traffic in advance, which might be
difficult in some network conditions.

Contribution. Motivated by the above observations, we propose an approach
called Edge Learning Detection (ELD) to detect MEDA. ELD focuses on learning
the malicious traffic caused by multiple types of attacks instead of using different
protocols to handle various attacks. In this case, the deployment of ELD does not
need to make any changes on network protocols. ELD can also use a parameter
to control the adaptability of detection based on specific environments, in which
the parameter can be adjusted automatically to optimize the detection accord-
ing to current detection results. That is, ELD could improve its adaptability
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to detect practical attacks based on the feedback from practical environments.
For deployment, ELD can gather traffic logs from IoT nodes without know-
ing the details of transferred packets or other information from neighbors, and
can execute the detection on base station or gateway within the network. More
importantly, ELD does not need to collect practical malicious traffic to train its
model in advance. Instead, the training can be performed during the detection.
Our contributions can be summarized as below.

– We propose an approach of Edge Learning Detection (ELD) to defeat MEDA
through extracting main features from traffic. For energy efficiency, we use
traffic logs (lightweight) to record the received packets and request IoT nodes
to send these logs to base station regularly. The system models like attack
model and traffic log model can refer to Sect. 3

– For detection, ELD first identifies damaged nodes (suffered from MEDA) and
labels their traffic as malicious based on traffic logs. Then ELD constructs
intrusion edges and trains a random forest model to identify malicious traffic.
These intrusion edges enable ELD to generate intrusion graphs for finding
malicious nodes. In addition, the obtained detection results can be used to
update the settings of ELD.

– In the evaluation, we compare ELD with two similar schemes of Hard Detec-
tion (HD) [8] and Perceptron Detection with enhancement (PDE) [7]. Our
results demonstrate that ELD could overall achieve better performance, i.e.,
offering a better detection rate by around 5% to 40% according to concrete
conditions.

Organization. The remaining parts are organized as follows. Section 2 intro-
duces related work on how to detect security threats. Section 3 presents the
system model. Section 4 describes the workflow of ELD in detail. Section 5 dis-
cusses our experimental settings and analyzes evaluation results. Finally, Sect. 6
concludes our work.

2 Related Work

Energy-related attacks can increase the workload of nodes through sending use-
less data packets. Besides, electromagnetic emissions can also be used to cause
errors and force packet retransmissions, which can increase traffic and energy
consumption [6].

Energy-Depleting Attacks. For this kind of attacks, malicious nodes can
pretend to be benign and continuously send packets to other nodes, in order to
cause additional traffic [5]. Carousel attack is a typical form of energy-depleting
attacks [19], in which a node can send corrupted data leading to routing loops.
Such attack is difficult to locate, as one malicious node can affect the whole
network [21]. For flooding attack, intruders can continuously make a new con-
nection request to consume the resources for all network nodes [11]. For replay
attack, an adversary can repeat a valid transmission in the network [17], aiming
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to fool other nodes by convincing them that the repeated messages contain a
new message exchange.

Detection Strategies. For carousel attack detection, Vasserman et al. [21]
proposed a protocol to detect and mitigate malicious nodes by routing through
the network only for legitimate packets, and verifying that consistent progress
is made by packets towards the destination. To locate malicious nodes, some
detection methods like [7] need to change existing protocols to provide prove-
nance information. In their work, the network protocol has to be modified in
order to deploy the detection system and the content of transmission needs to
be checked. In our work, ELD focuses on recording information of traffic without
considering the content of transferred packets or changing the network protocol.

In addition, some research studies like [18,20] attempt to detect energy-
depleting attack by searching those nodes with high battery and the frequent
broadcast behavior. In comparison, ELD does not adopt a certain assumption
about attacks which could change its adaptability based on the feedback from the
real network environment. Bhunia et al. [3] proposed an SDN-based secure IoT
framework called SoftThings to detect abnormal behaviors and mitigate flooding
attacks. Rughoobur et al. [15] then proposed a lightweight and reliable frame-
work, which uses a combination of universally unique identifier, timestamp and
a self-learning battery depletion monitor to detect and mitigate replay attacks.
The main limitation of these studies is that they only consider single attack, but
our ELD considers a more advanced insider attack.

Detection Schemes. Intrusion detection is an essential and important solution
to protect the security of IoT networks, but there are some major concerns.
1) Many studies like [4,9,16] figured out that traditional anomaly detection
schemes are not practical to be deployed in IoT devices due to the constrained
resources. To mitigate this issue, our ELD uses traffic logs (a kind of lightweight
data structure) to record the received packets without the need of analyzing the
content. 2) Existing centralized detection schemes (detection is deployed in a
strong node, e.g., base station or gateway of network) usually cannot perceive
the communications among end-devices. This makes detection of malicious nodes
difficult since the attack path is hard to be examined [4]. To solve this issue, ELD
constructs an intrusion graph based on malicious traffic to help locate malicious
nodes. 3) Most anomaly detection schemes with supervised learning need to train
their own model in advance, but it is hard to get enough labeled data in a real
network. By contrast, our ELD can perform training during the detection and
use the detection results to update its settings.

3 System Model

3.1 Attack Model

We assume advanced attackers have the ability to invade IoT devices to turn
them into malicious nodes and use these nodes to launch their attacks. We
consider a more harmful attack, called mix-energy-depleting attack, consisting
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of three typical malicious actions - with a probability to make carousel attacks,
flooding attacks and replay attacks. These attacks can be performed separately
or simultaneously in many IoT networks, including but not limited to smart
home, wireless sensor network and robot network, as shown in Fig. 1.

– Carousel Attack. In this attack, malicious nodes receive packets and send
the packets to a node which out of the original path to create a series of
loops to drain the energy of these nodes. An example is shown by the case
of wireless sensor network in Fig. 1, where a packet is supposed to pass
<n1, n3, n4, base station>; n3 is invaded by attacker and it redirects the
packet to n2 maliciously and requests n2 to transfer the packet to base sta-
tion. According to the route, n2 has to send the packet to n1, then the packet
is transferred in loop <n1, n3, n2, n1, n3, n2 ...> and the energy of n1 and n2

will be wasted.
– Flooding Attack In this attack, malicious nodes generate a huge number

of spoofed packets, which can result in the channels to be overloaded. All
nodes in the channels may suffer from this attack and waste their energy. An
example is shown by the case of smart home in Fig. 1, where d1 generates
spoofed packets sent to d2 to consume the energy of it (assuming d1, a door
lock, works cooperatively with d2, a monitor camera). Besides, in the case of
robot network, r5 is the leader of r4 and r4 is the leader of r3. An attacker
invades r3 and uses it to generate spoofed packets sent to the gateway to have
a report by passing <r3, r4, r5, gateway>, therefore the energy of r4 and r5
is wasted.

– Replay Attack In this attack, a malicious node can copy the packet and send
redundant packets to the next node when it receives a packet. An example
is shown by the case of wireless sensor network in Fig. 1, where n6 sends a
packet to the base station by passing <n6, n5, n4, base station> and n5 copies
the packet to create redundant packets sent to n4 in order to waste the energy
of it.

Fig. 1. Energy exhausting attacks

To sum up, it is hard to detect malicious nodes in a multiple-hop IoT network
like wireless sensor network or robot network, especially when the scale of the
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network is big, due to malicious traffic will pass many nodes of the network
and it is difficult to locate the origin of malicious traffic. Therefore, for existing
traffic detection based anomaly detection systems, they may realize malicious
traffic but cannot locate malicious nodes.

3.2 Traffic Log Model

Traffic logs are used for recording the information of traffic in IoT node side and
finally these logs are sent to base station or gateway of network for detection. In
every certain period (e.g., half an hour), IoT nodes save its traffic logs temporar-
ily and send these logs to base station at the end of period. A traffic log that
records the information about a packet received by a node, can be formalized
as log = <sender, receiver, timestamp, dataSize, serviceType> where sender
is the sender of the packet; receiver is the receiver of the packet; timestamp is
the time when the packet is received by the node; dataSize is the size of the
packet; serviceType is the service type that the packet is used to request.

The following is an example of implementing a traffic log: we use 7 bits to
encode sender and receiver respectively and it can support a network with 27

IoT nodes; assume the detection system collects traffic logs in every 30 min, so
the timestamp whose unit is second can be encoded by 11 bits; assume the size
of packets transferred in network is from 1 Byte to 1024 Bytes and dataSize
can be encoded by 10 bits; serviceType is encoded by 4 bits so it can support
24 types. Therefore, the log can be encoded by 7 + 7 + 11 + 10 + 4 = 39 bits and
the overall size of log can be 5 Bytes. That is, during 30 min, even if an IoT
node receives 100000 packets, the node can only use the space of 500 KB to
save all logs without any compress, which is light-weight in saving. On the other
hand, these logs can be easily transferred to base station. The cost of saving
and transferring can be reduced further if some efficient compress schemes are
adopted.

4 Edge Learning Detection

4.1 Core Workflow

To present our approach more clearly, Fig. 2 shows the core workflow of ELD,
consisting of intrusion detection and detection of malicious nodes. For intrusion
detection, according to collected traffic logs, edges can be constructed, which will
be introduced in Sect. 4.2. Edges can be input into a machine learning model to
execute the classification and after that ELD will execute damage node identi-
fication (refer to Sect. 4.3) to guide labeling edges automatically. These labeled
edges will be used for training the model and after the training all edges will be
classified by the model again. For detecting malicious nodes, those edges classi-
fied to be intrusive are called intrusion edges, which will be used for generating
intrusion graphs to identify malicious nodes. This will be introduced in Sect. 4.5.
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4.2 Intrusion Detection

Traffic Features. The extracted traffic features are important for detecting
an intrusion. Based on the literature and some widely available datasets like
UNSW-NB15 dataset [10], we select some features relevant to the characteristics
of carousel attack, flooding attack and replay attack. These features include: dur,
service, srcip, dstip, ct srv src, ct srv dst, ct dst ltm, ct src ltm, Stime, Ltime,
Spkts, and sbytes.

Fig. 2. Core workflow

These features can be extracted from an IoT network, but they cannot be
used directly because some of these features are extracted from a single connec-
tion (e.g., Spkts, service) or from the statistics of a connection set (e.g., ct srv src,
ct srv dst, ct src ltm). In addition, some features may involve the detail of the
whole connection (e.g., dur, sbytes), which would bring extra cost when analyz-
ing traffic logs. That is, it is not efficient to extract these features directly from
traffic logs. In this work, the final accepted features are shown in Table 1.

Edge. The use of edge aims to record the direction of main traffic and edge is
the data structure used for training model and being predicted. When the traffic
becomes malicious, an edge would be an intrusion edge. Considering a scenario
that the packets from multiple senders in a certain time period, the sender that
brings most packets can be selected as the pointer of edge and the receiver of
the traffic can be selected as the pointee. During the same time period, each
node is pointed by only one pointer. In this case, an edge records the direction
of main traffic instead of all traffic, which is helpful to simplify traffic analysis
and generate an intrusion graph.

Assume that the timestamp of the first traffic log is s stamp and the timestamp
of the last traffic log is e stamp, then (s stamp+ e stamp)/2 can be defined as the
timestamp of an edge. Figure 3 shows the process of edge generation, where N2
sends most packets to N1 according to the traffic log in N1. Thus N2 becomes
the pointer of the edge, N1 becomes the pointee, and (Packet1.timestamp +
Packet5.timestamp)/2 is the timestamp of the edge. Here the edge can be
modeled as edge = <pointer, pointee, timestamp, dur aver, dur std, ser std,
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Table 1. Designed features

Feature [type] Description ([c]:continuous, [d]:discrete)

dur aver [c] In the traffic of a certain period, a sender n is given; from
the timestamp of the first packet sent by n to the
timestamp of the last packet sent by n (number of
seconds) is called the connection duration of n. For all
senders of the traffic, the average of their connection
duration is called dur aver

dur std [c] For all senders of traffic, the standard deviation of their
connection duration is called dur std

ser std [c] The standard deviation of the number of packets that are
used to request the same service type is called ser std

bytes aver [c] The average of the size of packets in traffic (bytes) is
called bytes aver

bytes std [c] The standard deviation of the size of packets in traffic
(bytes) is called bytes std

land [d] In the traffic of a certain period, it is 1 if all packets come
from the same sender; 0 otherwise

count aver [c] In the traffic of a certain period, a sender n is given; the
number of packets coming from n is called the count of n.
For all senders of traffic, the average of their counts is
called count aver

count std [c] For all senders of traffic, the standard deviation of their
counts is called count std

Note: The following features refer to the connection of the
same sender that owns the max count

same ser rate std [c] The standard deviation of % of requests to the same
service

same bytes rate std [c] The standard deviation of % of packets with the same size

same count aver [c] The average of number of packets with the same size

same count std [c] The standard deviation of number of packets with the
same size

Fig. 3. Edge generation and classification

bytes aver, bytes std, land, count aver, count std, same ser rate std, same bytes
rate std, same count aver, same count std>, where pointer is the pointer of the

edge; pointee is the pointee of the edge; and timestamp is the timestamp of the
edge. The rest attributes can refer to Table 1.
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Random Forest Based Learning. To detect an intrusion edge via learning
features of edges (including intrusion edges and benign edges), this work adopts
a classifier of random forest. It is one commonly used algorithm to solve classi-
fication problem and has been proved to work effectively in intrusion detection
[14]. For example, Ahmad et al. [1] indicated that random forest model can per-
form well in analyzing huge traffic data. The random forest model is an ensemble
of decision trees, and the classification prediction is based on the majority votes
of the predicted values using the decision trees. It is noted that only part of
attributes of an edge can be used to train the random forest model and perform
prediction, while edge.pointer, edge.pointee and edge.timestamp are removed.

Edge Classification. In ELD, edge classification can be executed in every
certain period (e.g., half an hour), and the traffic logs can be split by their
timestamps - the interval used to split traffic logs depends on the length of
a time period. Based on these split traffic logs, edges can be generated and
classified by the random forest model. An example is shown in Fig. 3, where the
length of a time period is half an hour, thus the traffic logs of N during the
period of (08 : 00 : 01, 08 : 30 : 00) are used to generate edge1. The timestamp
of edge1 is (08 : 00 : 01 + 08 : 25 : 20)/2 = 08 : 12 : 40. If we input edge1 to the
random forest model, then it can be predicted as intrusive or not intrusive.

4.3 Damaged Node Identification

As discussed earlier, our ELD can train its model during the detection without
the need of labeled data in advance. This makes ELD practical in a real scenario,
as in many cases, there are no labeled data beforehand. While ELD can be
adaptive to the real network environments by labeling the traffic to support its
learning. ELD works with the knowledge learned from intrusion edges, therefore
something must guide ELD to understand what is an intrusion edge. That is,
enabling ELD to label edges automatically to provide itself with training data.
In this work, we use the information of damaged nodes (by energy-depleting
attack) as the tutor. As heterogeneous IoT nodes may have different battery
capacity and various energy overhead, it is impractical to use uniform energy
consumption metric to determine whether a node is damaged or not. Therefore,
we detect damaged nodes according to their abnormal speed of receiving packets.

In each certain period (e.g., half an hour), the base station of an IoT network
collects a batch of traffic logs to execute the detection. According to these logs,
the average speed of receiving packets of each node can be obtained (the size
of received data/the length of certain period). We denote AverRecvSpeed as
the average speed, and when the speed is larger than R, it could be detected
as abnormal speed of receiving packets and this node is a damaged node. R
(varies from 0 byte/s to the bandwidth of an IoT network) is the parameter to
control the sensibility of detecting whether a node is damaged. With the increase
of R, the sensibility decreases gradually, implying a reduction of both recall of
damaged nodes and false alarm rate.
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It is worth noting that R should be different in IoT nodes. This is because
in an IoT network, some nodes may receive more packets than others, e.g.,
nodes on the main route of a network (most packets need to pass them to be
delivered) or nodes having more neighbors (most packets need to be forwarded).
For detection, assuming there are a set of nodes n1, n2, ...nt and a set of R for
each node as RS = R1, R2, ...Rt, where Ri is the R for ni. For a given route,
e.g., p = <n1, n2, n3, base station>, we can name ni as the pre-node of ni+1.
RS can be initialized based on the assumption that nodes having more pre-
nodes should be set with a higher R. Thus, we define the initialization of ni

as Ri =

{
0 if ni does not have pre-nodes∑

(Rpre(i) + Sendpre(i)) otherwise
where pre(i)

represents the pre-nodes of ni; Sendi is an estimated value about the average
speed of sending packets of ni. For example, if a sensor node ni needs to send
a packet to base station to report sensing data every minute and the data size
varies from 5 bytes to 10 bytes, then we can estimate the speed Sendi to be 10
bytes/min = 0.167 bytes/s. For a route example in Fig. 4. In this route, assuming
Sendi is 0.167 bytes/s, then we have R1 = 0, R2 = R1 + Send1 = 0.167 bytes/s,
R3 = R1 + Send1 = 0.167 bytes/s, R4 = R2 + Send2 = 0.334 bytes/s, R5 =
R3 + Send3 = 0.334 bytes/s.

Fig. 4. Route Fig. 5. Loop in an intrusion path

When ELD detects the appearance of damaged nodes, the detection will be
executed for certain rounds to improve the accuracy of model. Note that edge
classification can be executed in every certain period (e.g., half an hour) and
intrusion detection only runs if damaged nodes or intrusion edges appear. In
the first round of detection, the edge pointing to damaged node will be labeled
as intrusion edge automatically, because before the first round ELD does not
have the knowledge about intrusion edge and it can only label edge with the
initial RS. However, in next rounds of detection, RS could be optimized based
on obtained detection results. This will be introduced later.

4.4 Adaptability Optimization

There are two important steps to improve the adaptability of ELD. 1) To improve
the adaptability of identifying damaged nodes (refer to Sect. 4.3), and 2) To
improve the adaptability of determining whether traffic is malicious.
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Here we explain the whole learning process of ELD as follows. After deploy-
ing ELD into a practical environment, it requires a time period (e.g., adaption
period) to learn normal traffic of the IoT network. This is common for most exist-
ing security solutions like anomaly detection. During this period, if we assume
there is no energy-depleting attack, then all edges constructed from traffic logs
can be labeled as not-intrusive and relevant training model is called base model.
After this adaptation period, ELD can work based on its initial knowledge includ-
ing the initial damaged node identification and the base model. When damaged
nodes are detected, ELD can perform multiple rounds of detection. Note that in
the first round of detection, the intrusive label of an edge depends on whether the
pointee of the edge is a damaged node. That is, in the first round of detection, if
the pointee of an edge is damaged, then the edge label can be intrusive and this
edge can be used to train the model of random forest. Essentially, identifying
some damaged nodes can guide ELD to label more malicious traffic automati-
cally. After learning intrusion edges, ELD can use its model to classify all edges
constructed in that round of detection and have the final classification result of
that round.

When the next batch of traffic logs is collected (e.g., half an hour later), ELD
can perform the next round of detection. From the second round, ELD first uses
the pre-round model to classify all edges. There are four cases or conditions of a
node: a) the node is identified as damaged and it is pointed by an intrusion edge;
b) the node is identified as not-damaged and it is pointed by an intrusion edge
(potential damaged); c) the node is identified as damaged and it is not pointed
by an intrusion edge, and d) the node is identified as not-damaged and it is not
pointed by an intrusion edge.

For case b), we have to decrease R (refer to Sect. 4.3) to enable the iden-
tification of these nodes correctly. In a real network, some potential damaged
nodes might not be detected at once, under the current setting of RS (refer to
Sect. 4.3). If they are pointed by intrusion edges, they may have a high probabil-
ity to be damaged. In this case, we may notice that RS is not optimized. Thus
RS should be adjusted to enable the identification of these potential damaged
nodes correctly. For example, in Fig. 4, if malicious traffic exists in <N2, N4>
and <N4, N6>, then there are intrusion edges (N2 −> N4) and (N4 −> N6).
If we set R of N6 too high, then N6 may not be detected as damaged node.

For case c), there might be two reasons for this conflict: i) R is set too low
(false alarm); and ii) there are novel attacks that are not learned by the pre-
round model. To handle this issue, we consider both possibilities and create
two branches (branch A and branch B). For branch A, we increase R of these
nodes until they can be identified as not-damaged. For branch B, we label those
edges pointing to these nodes to be intrusive, i.e., each branch contains the
corresponding model and RS individually. Note that if there is no node in case
c), then no branch will be needed.

Then the same as the first round, ELD learns intrusion edges and uses its
model to classify all edges again. It is worth noting that ELD can obtain different
RS and different models in different rounds of detection.
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4.5 Malicious Nodes Detection

Intrusion Graph Generation. To locate malicious nodes based on intrusion
edges, one important step is to construct an intrusion graph by considering joined
edges according to their timestamps. Essentially, an intrusion graph consists of
many intrusion paths built by linking intrusive edges, which means that the first
node of an intrusion path is very likely to be malicious. As the timestamp of each
edge could be different, we consider the following two principles to construct an
intrusion graph.

1) For an edge e, if other edges can be joined with e, their timestamp ts must
obey |e.timestamp− ts| <= the length of certain period;

2) For an edge e, it will always select one edge of other nodes that has the
closest timestamp (i.e., min(|e.timestamp− ts|)).

The generation details can refer to Fig. 6, where the length of a certain period
is half an hour. For edge11, as |edge11.timestamp − edge21.timestamp| = 00 :
02 : 00 <= 00 : 30 : 00, then edge21 is closer to edge11 as compared to edge22.
In this case, edge11 and edge21 can construct Graph1. Graph2 and Graph3 in
the same way.

Fig. 6. Graph generation

Malicious Node Identification. Based on the intrusion graph, ELD can link
malicious traffic from different malicious nodes. Intuitively, for a flooding/reply
attack, packets are transferred via intrusion paths of an intrusion graph, and
the first node would be the attacker. In some cases of multiple flooding attacks
or multiple replay attacks, different intrusion paths could have an overlap with
each other, which may create loops as well. For example, there is an intrusion
path p1 = <n1, n2, n3> and p2 = <n4, n3, n2>; p1 and p2 may have an overlap
with each other like n2 and n3, thus there is a loop <n2, n3, n2>, which is shown
in Fig. 5. While for a carousel attack, an intrusion path could also contain a
loop. We adopt two detection principles as below.

1) The first node of an intrusion path can be identified as malicious;
2) For each node of a loop, if there is another intrusion edge pointing to this

node, and the pointer of the edge is not in the loop, then the node should be
identified as benign; otherwise, it should be malicious.

For example, given two intrusion paths of p1 = <n1, n2, n3> and p2 =
<n4, n3, n2>, and a loop of <n2, n3, n2>. For n2, suppose there is an edge
<n1, n2> but n1 is not in the loop. For n3, suppose there is an edge <n4, n3>
but n4 is not in the loop. Thus, we can classify n2 and n3 as normal.
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For each round of detection, we repeat the above steps to identify malicious
nodes. As there might be multiple branches with continuous detection, we define,
in the final round of detection, malicious nodes detected by a branch are the mali-
cious set of this branch. For example, if we have four rounds of detection, then
in the final round there could be 23 (maximum) branches and eight malicious
sets. Note that only those malicious nodes appeared over half of malicious sets
(e.g., four malicious sets) can be determined as final malicious nodes, i.e., the
final detection result of ELD.

5 Our Evaluation

In this section, we introduce the comparison schemes, present our experimental
setup and discuss the impact of variables on the detection performance.

5.1 Comparison Scheme

As existing detection schemes mainly focus on identifying malicious traffic, it
is hard for them to locate malicious nodes in multiple hop IoT networks. Thus
we adopt the following detection schemes of malicious nodes in the comparison.
Table 2 shows the environmental settings in the evaluation.

– Hard Detection (HD) [8] is a mathematical method to detect malicious nodes
that can perform a tamper attack. As the focus of HD is not fully the same
as this work, we tune HD to make it workable in a mix-energy-depleting
attack environment. In particular, we added a module in HD to help detect
duplicated packets corresponding to replay attack, and enabled HD to search
replay-attack malicious nodes.

– Perceptron Detection with enhancement (PDE) [7] is a detection scheme that
uses both perceptron and K-means method to compute IoT nodes’ trust val-
ues and detect malicious nodes accordingly. It also adopts an enhanced per-
ceptron learning process to reduce the false alarm rate.

Fig. 7. A distribution of IoT nodes
(Color figure online)

Table 2. Environmental settings

Item Description

CPU Intel Core i7-4700MQ,
2.4 GHz, 4Core (8
threads)

Memory Kingston DDR3L
8 GB * 2

OS Ubuntu 18.04 LTS

Python 3.6.8

Scikit-learn 0.20
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5.2 Experimental Setup

In our environment, all IoT nodes were deployed in a 100 × 100m2 rectangle area
discretely, and each node’s communication range is from 10 m to 30 m. Our IoT
network is generated randomly but has a feature: for each node, there is at least
one path from the node to base station, ensuring IoT devices can be connected.
Figure 7 depicts an example of the distribution, where the green node is base
station, blue nodes are normal nodes and red nodes are malicious nodes - Na is
carousel-malicious, Nb is flooding-malicious, and Ne is replay-malicious.

Simulation. As there is no suitable IoT traffic dataset regarding mix-energy-
depleting attack in the research community, we decide to simulate different net-
works to generate traffic. In our simulation, IoT nodes and base station can
communicate with each other randomly in every fifteen seconds (i.e., a node
sends a packet to either other nodes or base station). The size of transferred
data varies from 1 byte to 100 bytes, and the network bandwidth is 10 kb/s. We
set 10 types of service packets and set attacks to vary randomly all the time, in
order to explore the adaptability of ELD.

We set all malicious nodes to launch attacks with a probability called attack
probability. For carousel attacks, a malicious node can forward malicious packets
to the neighbor of its sender with attack probability. For example, if there is a
packet transferred in p = <n1, n2, n3, n4, base station> and n3 is a malicious
node, then it can forward the packet received from n2 to n1 or to the neighbors of
n2 (assuming n2 can communicate with them by extending its transmit power).
The number of loops caused by carousel attack can vary from 20 to 50. For
flooding attacks, malicious nodes can send 50 to 80 packets (one time) to other
nodes or base station in every 15 min with attack probability. For replay attacks,
the number of replayed packets can vary from 10 to 20, when a replay attack
happens with attack probability. In the network, nodes can generate traffic logs
and send these logs to base station in every 30 min.

To avoid bias, our simulation repeated in 10 rounds with 10 differ-
ent networks for each experiment. Then the average value is selected
to represent the final experimental result. In particular, we used Python
to implement all algorithms, and the random forest classifier was extracted from
scikit-learn [12], which is a widely used and open-source machine learning tool
library. The n estimators parameter of Random Forest Classifier is set as 10000.
If damaged nodes appear, ELD will execute its detection for 3 rounds.

5.3 Impact of the Number of Nodes

To explore the impact of the number of nodes on the performance of HD, PDE
and ELD in detecting mix-energy-depleting attack, we consider a typical IoT
network, with the number of nodes as 7, 12, 17, 22 and 27, respectively. In
this experiment, we set the number of passing packets as 2000; the probability
of attack is 0.5; and the percentage of malicious nodes as 0.3. The results are
shown in Fig. 8.
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Fig. 8. The impact of the number of
nodes on detection accuracy

Fig. 9. The impact of the number of
passing packets on detection accuracy

It is observed that when the scale of IoT networks is small, all schemes can
reach a high accuracy rate, i.e., ELD can reach a rate of 0.9. With the increase
of nodes, the accuracy of HD has an obvious decrease while the accuracy of ELD
can decrease much slowly. This is because when the network scale is small, the
possible paths are limited so that malicious nodes can be easily identified by
HD. When the number of nodes reaches 10 or more, the network topology would
become complicated and the increasing complexity of attacked paths could cause
many false alarms. As PDE can apply perceptron for reducing false alarms, it
can achieve similar performance as ELD, i.e., PDE can reach better performance
when the node number is 12 and 17, while ELD is better when the node number
is 7 and 22.

5.4 Impact of the Number of Passing Packets

To examine the impact of passing packets (the normal packets generated to
be transferred in the network) on the detection performance of HD, PDE and
ELD, we set the number of passing packets to be 100, 500, 1000, 1500 and
2000, respectively. In this experiment, we set the number of nodes as 27; the
probability of attack as 0.5; and the percentage of malicious nodes as 0.3. The
obtained results are described in Fig. 9.

It is found that when the number of passing packets is small, our ELD could
achieve an accuracy rate of 0.8, whereas HD and PDE could only reach around
0.5. With the increase of packets, the performance of HD and PDE can be
improved. It is worth noting that the performance of ELD is stable and can
outperform the other two schemes in all cases. This is because each scheme
works differently. For HD and PDE, passing packets indicate the probability of
malicious nodes, which could be used for calculating the trust values of nodes.
That means the bigger number of passing packets, the more accurate reputation
can be computed by HD and PDE. By contrast, ELD focuses mainly on whether
there are malicious packets and would not be affected by the number of passing
packets.
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5.5 Impact of Attack Types

In this experiment, we aim to examine the impact of different attacks on the
detection performance, including carousel attack, flooding attack, replay attack
and mix-energy-depleting attack. In particular, we set the number of nodes as
27; the number of passing packets as 2000; the probability of attack as 0.5; and
the percentage of malicious nodes as 0.3. Our observations are shown below.

Fig. 10. The impact of the type of
attacks on detection accuracy

Fig. 11. The impact of the probability
of attack on detection accuracy

– For carousel attacks, as the loop of carousel attack can be recorded by both
HD and PDE, they can achieve good performance. PDE can outperform ELD
by benefitting from the low false alarm rate; however, as HD suffers a high
false alarm rate, ELD still outperformed the performance of HD.

– For flooding attacks, HD and PDE were failed since a flooding attacker only
sends useless packets with normal format and these packets cannot be recog-
nized by HD and PDE. Thus, there is no information that could be used by
HD and PDE to compute the attack probability of malicious nodes. Under
such environment, ELD is more effective.

– For replay attacks, PDE performed a bit better than ELD. For ELD, each
malicious node can be the first node of an intrusive path (e.g., flooding
attack), but the number of intrusive paths is lower than that in a carousel
attack, hence the accuracy of detecting replay attacks is lower than the accu-
racy of detecting flooding-malicious nodes.

Figure 10 shows that ELD could achieve better performance than HD in all
cases, while ELD and PDE have their own merits. Overall, for a mix-energy-
depleting attack, ELD could still outperform the other two approaches.

5.6 Impact of Attack Probability

To explore the impact of attack probability on the detection performance, we
set the probability of mix-energy-depleting attack to be 0.1, 0.3, 0.5, 0.7 and 0.9,
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respectively. In this experiment, we set the number of nodes as 27; the number
of passing packets as 2000; and the percentage of malicious nodes as 0.3. The
results are shown in Fig. 11.

Similarly, ELD could outperform HD in all cases. For ELD, a high attack
probability means that it could be easier to detect abnormal traffic and locate
malicious nodes. In contrast, for HD, malicious nodes have to be identified based
on the path reputation. For example, if there is a node with extremely high
attack probability in a path, the path reputation may be very low and it is hard
to analyze the reputation of all nodes in this path. In short, HD is not good
at handling the scenario of high attack probability. For PDE, it can use the
perceptron to help reduce false alarms so that it can reach similar performance
as ELD, i.e., ELD is better when the probability is 0.5 and 0.9.

Discussion. Based on the above results, it is observed that our ELD could
outperform HD in almost all cases. PDE and ELD have their own merits but
PDE cannot detect flooding attacks as it cannot recognize flooding packets. By
considering all these aspects, we consider our proposed ELD is overall better
than PDE, and these two schemes can complement each other in practice.

6 Conclusion

With the rapid development of IoT networks, there is a significant need to design
proper security mechanisms in identifying insider attacks like energy-depleting
attacks. Most existing studies mainly consider a single attack, but we notice that
an advanced intruder may launch some attacks simultaneously and cause a more
harmful impact. In this work, we focus on an advanced energy-depleting attack,
which combines carousel attack, flooding attack and replay attack with a pos-
sibility. We then propose an approach called Edge Learning Detection (ELD),
which can build intrusion graphs to detect malicious nodes and provide adapt-
ability by learning from the obtained detection results. Our experimental results
demonstrate that ELD can provide a better detection rate by around 5% to 40%
as compared with similar schemes in different conditions.

As our work is an early study in applying edge learning, there are some
limitations and open challenges that can be considered in our future work. For
instance, we assume that all traffic logs collected by base station are credible in
current attack model, but some malicious logs may be sent by malicious nodes.
In future work, this issue can be solved by comparing the sent packet logs (from
sender) with the received packet logs (from receiver). Also, ELD can consider
some more information to locate carousel-malicious nodes, i.e., recording all the
paths that a packet may bypass. This can further help reduce the false alarm
rate and improve the detection accuracy.

Acknowledgments. This work is supported by the National Natural Science Foun-
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National State Grid Ltd. (The Research on Key Technologies of Distributed Parallel
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Abstract. In the collected associated data streams, some potential outliers are
often fixed with the normal data instances, thus, it is necessary to accurately
detect the outliers to improve the reliability of the data streams. In real life, peo-
ple are more concerned about whether some outliers existed in the small scale
data instances that satisfy their constraints, rather than in the huge entire datasets.
However, the existing association-based outlier detection methods were proposed
to detect the outliers from the entire data streams, thus, the time consumption is
very long. To content with the existence of the constraints, this paper proposes
an efficient constrained minimal rare pattern-based outlier detection method for
data streams, namely AMCMRP-Outlier, to process the succinct and convertible
anti-monotonic constraints. In the pattern mining phase, the matrix structure is
used to quickly mine the minimal rare patterns that satisfy the constraints, thus
providing the pattern basis for the outlier detection. In the outlier detection phase,
two deviation indices are defined to measure the deviation degree of each trans-
action, and then the transactions having large deviation degrees are determined
as the outliers. Finally, extensive experiments on one synthetic dataset and two
public datasets verify that the AMCMRP-Outlier method can accurately detect
the outliers with less time cost.

Keywords: Outlier detection · Minimal rare pattern mining · Deviation indices ·
Data streams · Anti-monotonic constraints

1 Introduction

Outlier detection [10] aims to find potential, rarely appearing data instances (aka trans-
actions) that deviate much from most data elements, thus improving the quality of the
collected data. It can be widely used in fraud detection [14], intrusion detection [8],
sensor network detection [1], social network detection [12]. In recent years, numerous
outlier detection methods have been proposed to effectively detect the outliers, and they
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were roughly divided into: clustering-based method [7], distance-based method [9, 11],
density-based method [13] and association-based method [2–6]. In addition to the static
datasets, data streams also become the processing objects of the outlier detection, while
the characteristics of the data streams (such as generating quickly and continuously)
make the processing speed of the outlier detection should be as quickly as possible,
thus catching up the generating speed of the data streams. In many applications, the
data instances in the collected data streams are associated, thus, it is necessary to con-
sider the associations between the data instances when detecting the potential outliers
from associated data streams, so as to improve the detection accuracy. However, the
associations between the data instances are not considered as the detection basis in the
clustering-based, distance-based and density-based methods, thus, these categories of
the outlier detection methods cannot effectively detect the outliers from associated data
streams. The association-based methods solve this problem well, where the outliers are
detected through mining the associations between the data instances, including mining
the frequent patterns [5], closed frequent patterns [4], maximal frequent patterns [2] and
minimal rare patterns [3, 6].

In real life, users only care about a small scale data streams they are interested
rather than the huge scale data streams. For example, sales staff is more concerned
about the items having a total sales price exceeds $100. Thus, it is not necessary to wait
for a long period of time to process the huge entire data streams, out of which only a
tiny fraction may be interesting to users. This leads to constrained processing, which
aims to process the data streams that satisfy the user-specified constraints. However, the
existing association-based outlier detection methods are proposed to detect the potential
outliers from entire data streams, they cannot effectively process the constrained data
streams. It will consume long time to obtain the final detection results, while most time
is consumed on the data streams that they are not interested in. Thus, it is necessary to
design an outlier detection method to accurately detect the outliers from the data streams
that satisfy user-specified constraints.

In this paper, we propose an efficient minimal rare-pattern-based outlier detection
approach, namely AMCMRP-Outlier, to quickly and accurately detect the outliers from
the data streams that satisfy the user-specified succinct and convertible anti-monotonic
constraints. The main contributions of this paper are summarized as follows:

1. We propose a matrix-based minimal rare pattern mining method to process two dif-
ferent kinds of anti-monotonic constraints, including: succinct anti-monotonic con-
straint and convertible anti-monotonic constraint, thus quickly mining the minimal
rare patterns that satisfy the user-specified constraints from the data streams.

2. Through considering more factors that will influence the determination of the out-
liers, we design two deviation indices to measure the deviation degree of each
transaction based on the mined minimal rare patterns that satisfy the user-specified
constraint, and then propose the anti-monotonic constrained minimal rare pattern-
based outlier detection method, namely AMCMRP-Outlier, to accurately detect the
potential outliers.
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The remainder of this paper is organized as follows. Section 2 reviews the related
works of association-based outlier detection methods. Section 3 provides some pre-
liminaries. Section 4 introduces two constrained minimal rare pattern mining methods
and anti-monotonic constrained minimal rare pattern-based outlier detection method.
Section 5 tests the performance of the proposed method. Section 6 summarizes the full
text and gives the direction of the future work.

2 Related Works of Association-Based Outlier Detection Methods

In 2005, He et al. proposed the first association-based outlier detection method, namely
FindFPOF [5], to detect the outliers from static datasets based on the mining of frequent
patterns, where the deviation index (that is, the ratio of the count value of the contained
frequent patterns to the total number of all mined frequent patterns) is designed to
measure the deviation degree of each transaction. Because the designed deviation index
is very simple, thus, its detection accuracy is not very high. In addition, the basis of the
FindFPOF method is the frequent patterns, thus, the time cost on the outlier detection
phase is very long.

To reduce the scale of the patterns used in the outlier detection phase, the closed fre-
quent pattern-based outlier detection method FCI-Outlier [4] and the maximal frequent
pattern-based outlier detection method MFPM-AD [2] are proposed to quickly detect
the outliers. In these two methods, more factors that have the possibility to influence the
determination of the outliers are considered in the designing of the deviation indices,
thus, the detection accuracy of these two methods is obviously increased.

In addition, based on the idea that the rare patterns (represent the patterns that appear-
ing rarely) are more match to the characteristics of “rarely appearing” of the outliers, the
minimal rare pattern-based outlier detection method, namely MIFPOD [6], is proposed
to accurately detect the potential outliers from data streams. In the MIFPOD method,
three deviation factors are defined to accurately measure the deviation degree of each
transaction. Although the MIFPOD method can accurately detect the potential outliers
from the data streams, but the time efficiency is not very high. To effectively process the
uncertain data streams, through considering the existence probability, the MiFI-Outlier
method [3] is proposed based on themining ofminimal rare patterns.When the threshold
min_sup is set slightly large, the detection accuracy of the MIFPOD and MiFI-Outlier
methods are very high, but these twomethods cannot effectively detect the outliers when
the min_sup is set small.

3 Preliminaries

Assume that P = {p1, p2, …, pn} is a set of items, where each item is an object with
some attributes, such as: price, weight, length, etc. Data streams (DS) are composed
of continuous transactions (that is, DS = {T1, T2, …, Tn}), where each transaction
is composed of several items from P (that is, Ti = {p1, p2, …, pi}). Pattern Pi in the
transaction Ti is composed of some items existing in Ti, and pattern Pi is called an
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n-pattern if the length of Pi is n. For two patterns Pa and Pb, if all items in Pa are existed
in Pb but some items in Pb are not existed in Pa, then Pa is called the subset of Pb and Pb

is called the superset of Pa. In the data streams environment, the sliding window model
is often used to effectively process the data streams, where only k transactions can be
processed in the sliding window each time and k is the size of sliding window (denoted
as |SW |). For a pattern Pi, its appearing times in the sliding window is called count, Pi

is a frequent pattern if its count is not less than the given threshold min_sup, otherwise,
Pi is a rare pattern. Given a constraint C, if pattern Pi satisfies the specified constraint
C (that is, C(Pi) = true), Pi is a constrained pattern.

To describe the pattern mining process and outlier detection process, we provide a
detailed example of data streams, and it is shown in Table 1. And then, we provide two
SQL-style specified anti-monotonic constraints: C1 ≡ max(Pi.price) < 15 and C2 ≡
sum(Pi.price) ≤ 24. In this example, the size of sliding window (|SW |) is set to 6, and
the threshold min_sup is set to 3.

Table 1. An example of data streams with constraints

TID Transactions TID Transactions TID Transactions

01 {A, B, D, E, F} 02 {A, B, C, F} 03 {A, B, F}

04 {B, C, D, F, G, H} 05 {A, B, C, D, E, F, G} 06 {A, B, C, G, H}

… …… … …… … ……

item price item price item price

A 10 B 6 C 8

D 12 E 5 F 20

G 26 H 16

Definition 1. Anti-monotonic constraint: For a specified constraint C, when a pattern Pi

violates C, and any superset of Pi also violates C, then constraint C is an anti-monotonic
constraint.

Definition 2. Succinct constraint:For a specified constraint C, if all patterns that satisfy
C can be directly and accurately generated without generating any pattern that violates
C, then constraint C is a succinct constraint.

Definition 3. Convertible constraint: For a specified constraint C, if it can be con-
verted to the succinct constraint through some ways, then constraint C is a convertible
constraint.
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The anti-monotonic constraint can be subdivided into: succinct anti-monotonic con-
straint and convertible anti-monotonic constraint, where the convertible anti-monotonic
constraint can be converted to the weaker succinct constraint, such as constraint C2 ≡
sum(Pi.price) ≤ 24 can be converted to C2’ ≡ max(Pi.price) ≤ 24.

Definition 4. Constrained frequent pattern (CFP): For a pattern Pi, if it satisfies the
specified constraint C and its count is not less than the threshold min_sup, then, Pi is a
CFP. That is, pattern Pi is a CFP if {Pi | sup(Pi) ≥ min_sup & C(Pi) = true}.

Definition 5. Constrained rare pattern (CRP): For a pattern Pi, if it satisfies the spec-
ified constraint C and its count is less than the threshold min_sup, then, Pi is a CRP.
That is, pattern Pi is a CRP if {Pi | sup(Pi) < min_sup & C(Pi) = true}.

Definition 6. Constrained minimal rare pattern (CMRP): For a pattern Pi, if it is a CRP
and any subset of Pi is not a CFP, then, Pi is a CMRP.

Definition 7. Outlier: For the transaction Ti in the sliding window, if the deviation
degree of T i is not less than the given deviation threshold DT, then, T i is an outlier.

4 Anti-monotonic Constrained Minimal Rare Pattern-Based
Outlier Detection (AMCMRP-Outlier)

For the association-based outlier detection methods, they detect the potential outliers
through two phases, including: mining the associations between the data instances (such
as: frequent patterns, rare patterns) and calculating deviation degree of each transaction
based on the designing deviation indices. Similar to the traditional association-based
outlier detection methods, the anti-monotonic constrained minimal rare pattern-based
outlier detection method detects the outliers through mining the minimal rare patterns
that satisfy user-specified constraint and the calculating of deviation degrees of the
transactions.

4.1 Constrained Minimal Rare Pattern Mining (CMRP-Mine)

Constrained minimal rare pattern mining is the basis of the entire outlier detection pro-
cess, it provides the patterns basis for the outlier detection phase. To accurately detect
the outliers from the data streams that satisfy the user-specified constraints, this subsec-
tion first introduces two minimal rare pattern mining methods for two anti-monotonic
constraints, including: succinct anti-monotonic constrained minimal rare pattern min-
ing method and convertible anti-monotonic constrained minimal rare pattern mining
method.
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Succinct Anti-monotonic Constrained Minimal Rare Pattern Mining. It can be
known from the anti-monotonic property [3] that if the count of the pattern is less than
the threshold min_sup, then any superset of this pattern will be the rare pattern. Thus,
for both the anti-monotonic constraint and the convertible anti-monotonic constraint,
the first operation is to seek for the rare 1-patterns that have no meaning to be further
extended, thus reducing the scale of extensible patterns. For the rare 1-patterns, they are
divided into the rare 1-patterns that satisfy the constraint and the rare 1-patterns that
violate the constraint, where the rare 1-patterns that satisfy the constraint are CMRPs
and they are stored into the constrained minimal rare pattern library (CMRPL), the
rare 1-patterns that violate the constraint are stored into the violate constraint pattern
library (VCPL). Then, if the frequent 1-patterns violate the specified constraint, then any
superset will also violate the constraint, thus, it is not necessary to extend the frequent
1-patterns that violate the constraint and they are stored into the VCPL. And then the
frequent 1-patterns that satisfy the user-specified anti-monotonic constraint are as the
basic patterns to participate in the further “pattern extension” operations.

After obtaining the frequent 1-patterns that satisfy the user-specified anti-monotonic
constraint (called valid 1-patterns), the matrix structure is used to store the specific
information of these valid 1-patterns, thus reducing the scan times of the data streams.
The size of matrix is n*(m + 1), where n is equal to the number of the valid 1-patterns and
m is equal to the size of sliding window, and the (m + 1) row store the count value of the
valid 1-patterns. And then, the valid 1-patterns are fetched from thematrix to conduct the
“pattern extension” operations. Once the count value of the extended 2-patterns is less
than the min_sup, then the 2-patterns are CMRPs and they are stored into the CMRPL,
where the count value is calculated by multiplying the probability in the column vector
in which the two extended patterns are located. After obtaining the CMRPs with the
length of 2, the valid 2-patterns are used as the basic elements to perform the further
“pattern extension” operations, where the “pattern extension” operation means to “right
connect” one k-pattern with other k-pattern to form the (k + 1)-pattern, note that the two
extended k-patterns have the same prefix with the length of (k − 1). Because the patterns
are extended by the patterns that satisfy the specified succinct anti-monotonic constraint,
thus, it is not necessary to judge whether the extended patterns satisfy the constraint.

For the valid k-patterns (k ≥ 2), each two k-patterns with the same (k − 1) prefix are
fetched to conduct the “pattern extension” operation, thus forming the (k + 1)-pattern,
and then the count value of the generated (k + 1)-pattern is calculated using the above
manners to determine whether they are the rare patterns that satisfy the user-specified
constraint or valid k-patterns. For the mined rare k-patterns that satisfy the constraint, it
is necessary to conduct the “minimal checking” operation to seek for the minimal rare
patterns that satisfy the predefined constraints, where the “minimal checking” operation
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is to check whether there is any subset of the k-pattern with the length of (k − 1) is
the CMRP. If any subset of the k-pattern is the CMRP, then the extended k-pattern
is discarded, otherwise, the extended k-pattern is the CMRP and it is stored into the
CMRPL. Recursively perform the above operations until no longer pattern can be further
extended, and the patterns that stored into the CMRPL are outputted as the final CMRPs.

Convertible Anti-monotonic Constrained Minimal Rare Pattern Mining. The dif-
ference of the constrained pattern mining process under the convertible anti-monotonic
constraint and the succinct anti-monotonic constrained pattern mining can be summa-
rized as follows: (1) it cannot directly generate the full patterns that satisfy the user-
specified convertible anti-monotonic constraint; (2) whether the extended patterns sat-
isfy the constraint should be checked in the mining process. To solve the first difference,
it is necessary to convert the convertible anti-monotonic constraint to the tight succinct
anti-monotonic constraint, thus making it can generate the complete supersets, where
the principle of the conversion is to ensure the pattern mining operation will not appear
the situation of false mining based on the converted constraint. And then, scan the data
streams to distinguish the 1-patterns, where the rare 1-patterns that satisfy the converted
constraint are CMRPs and they are stored into the CMRPL, and the 1-patterns that vio-
late the converted constraint are stored into the VCPL. For the frequent 1-patterns that
satisfy the converted constraint, they are as the basic patterns to participate in the further
“pattern extension” operations.

And then, the valid 1-patterns are fetched from the matrix to conduct the “pat-
tern extension” operations, where the first fetched pattern is arranged by their decrease
price values, and the second fetched pattern is arranged by their increase price values.
Therefore, once the extended pattern that prefix by {pi} is not satisfying the converted
constraint, it is not necessary to further conduct the “pattern extension” on {pi}. With
this manner, the time cost on the pattern mining process is obviously reduced. After
obtaining the extended 2-patterns, their count value is also calculated like the succinct
anti-monotonic constrained minimal rare pattern mining method. However, the differ-
ence is that whether the extended 2-patterns satisfy the original constraint should be
determined, thus accurately mining the rare patterns that satisfy the convertible anti-
monotonic constraint. Recursively perform the “pattern extension” operations on the
valid k-patterns like the above method and check whether the extended patterns satisfy
the original constraint, and then perform the “minimal checking” operation to check
whether there is any subset of the k-pattern with the length of (k − 1) is the CMRP. With
the above operations, the minimal rare patterns that satisfy the user-specified convertible
anti-monotonic constraint can be accurately mined.

The detailed process of succinct and convertible anti-monotonic constrainedminimal
rare pattern mining method is shown in Algorithm 1.
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Algorithm 1: CMRP-Mine
Input: Data streams, min_sup, C (constraint)
Output: CMRPs
01:if C is CCAM then
02: convert the CCAM into tight CSAM

03:else //C is CSAM

04: foreach 1-pattern {pi} in the sliding window do
05: if count(pi) min_sup then
06: if CSAM(pi) true then
07: {pi} CMRPL
08: else
09: {pi} VCPL
10: end if
11: else
12: if CSAM(pi) false then
13: {pi} VCPL
14: else
15: {pi} matrix
16: end if
17: end for
18:end if
19:foreach 1-pattern {pa} and {pb}in matrix do
20: extend them to 2-pattern {pa,pb}
21: if count(pa,pb) min_sup then
22: if C(pa,pb then
23: {pi} CMRPL
24: end if
25: else
26: if C(pa,pb

) true 

) true then
27: {pa,pb} is the basic element for pattern extension
28: end if
29: end if
30:end for
31:k
32:foreach two valid k-patterns with the same prefix of length (k-1) do
33: extend them to (k+1)-pattern
34: if count((k+1)-pattern) min_sup then
35: if C((k+1)-pattern)=true then
36: perform 
37: CMRP CMRPL
38: end if
39: else
40: if C((k+1)-pattern)=true then
41: (k+1)-pattern is the basic element for pattern extension
42: end if
43: end if
44:end for
45:k++
46:go to 32
47:return CMRPs
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4.2 Outlier Detection Method

The designing of the deviation indices is very critical to the detection accuracy, thus, we
paid more attention to the following factors in the designing of the deviation indices to
improve the detection accuracy.

(I) The length and the count of the mined minimal rare patterns that satisfy the user-
specified constraint. The longer of the constrained minimal rare patterns indicates that
less rare patterns can be extended by them, thus, this factor is negative correlation to
the determination of the outliers. In addition, the small count value of the constrained
minimal rare patterns indicates that the patterns are appearing more rarely, thus, this
factor is also negative correlation to the determination of the outliers. (II) The number
of the contained 1-patterns that violate the user-specified constraint and the number of
the contained minimal rare patterns that satisfy the user-specified constraint. The large
number of the contained these two categories of the patterns means that more patterns
in the transaction are not satisfying the user-specified constraint, thus, the transaction
is more easily to be determined as the outliers. This factor is positive correlation to the
determination of the outlier. (III) The length of the transaction. For two transactions that
with different length (len(Ti) < len(Tj)), and the contained 1-patterns that violate the
user-specified constraint and the contained minimal rare patterns that satisfy the user-
specified constraint are the same. It is obviously that the larger ratio of patterns in Ti are
not required by the user, thus, transaction Ti is more like the outlier than transaction Tj.
This factor is negative correlation to the determination of the outliers.

Through fully considering the above three factors, the following two complete
deviation indices are designed to measure the deviation degree of each transaction.

Definition 8. Constrained minimal rare pattern deviation index (CMRPDI): For trans-
action Ti, its length is len(T i). In transaction Ti, the contained constrained minimal
rare pattern is {X}, its length is len(X) and its count value is count(X). Then, CMRPDI
is defined as:

CMRPDI(Ti) =
∑

X ∈Ti

(min_sup − count(X )) × 2len(Ti)−len(X ) (1)

Definition 9. Transaction Deviation Index (TDI): For transaction Ti, its length is
len(T i). In transaction Ti, the number of contained 1-patterns {Y} that violate the con-
straint is n(Y) and the number of contained minimal rare patterns {X} that satisfies the
constraint is n(X). Then, TDI is defined as:

TDI(Ti) =

∑
X ∈Ti,Y∈Ti

(CMRPDI(Ti) + n(Y ) × (len(Ti) − 1)) × (n(Y ) + n(X ))

len(Ti)
(2)

TDI is the deviation index to measure the deviation degree of each transaction in the
data streams that satisfy the user-specified constraint, and the bigger TDI(Ti) value of
transaction Ti means it is more like an outlier.

Based on the designing of the deviation indices and the mined patterns, we pro-
pose an efficient minimal rare-pattern-based outlier detection method for data streams
by considering anti-monotonic constraints, namely AMCMRP-Outlier, for accurately
detecting the potential outliers from the data streams. The AMCMRP-Outlier method
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detects the potential outliers through mining the minimal rare patterns that satisfy the
user-specified constraint and calculating the deviation degree of each transaction in the
data streams. And then, the transactions are sorted with the decreasing order of their
TDI(Ti) values, and the transactions whose TDI(Ti) value is not less than the given
deviation threshold DT are judged as the outliers. The detailed process of the proposed
AMCMRP-Outlier is shown in Algorithm 2.

Algorithm 2: AMCMRP-Outlier
Input: Data streams, min_sup, constraint, DT
Output: Outliers 
01:Mine CMRPs  //call Algorithm 1 
02:CMRPDI(Ti)=0, TDI(Ti)=0 
03:foreach Ti in the sliding window do
04:   foreach CMRP {X} in Ti do
05:      ( ) ( )( ) ( ( ) 1) 2 ilen T len X

iCMRPDI T min_sup count X

06:   end for 
07:   foreach 1-patterns that violate the constraint {Y} in Ti do
08:      ( ( ) ( ) ( ( ) 1)) ( ( ) ( ))

( )
( )

ii

i
i

CMRPDI T n Y len T n Y n X

TDI T
len T

09:   end for 
10:end for
11:sort the transactions using decreasing TDI(Ti) values 
12:if TDI(Ti) DT then
13:   Ti outlier
14:end if
15:Output outliers 

5 Experiment Results

To evaluate the detection accuracy and the time cost of the proposed AMCMRP-Outlier
method, a synthetic dataset [3] and two public datasets1 Lymphography and Satimage-2
are used in this experiment, where each element is added a price randomly selected from
{10, 12, 14, 16, 18, 20, 25, 30, 35}. In this experiment, the FCI-Outlier [4], MFPM-AD
[2] and MIFPOD [6] are used as the compared methods. All the methods compared in
this paper are implemented using the Python language (Python 3.6), and all experiments
are performed on a PC with 3.30 GHz CPU, 8 GB RAM and Windows 10OS.

5.1 Detection Accuracy of the AMCMRP-Outlier Method

To test the detection accuracy of the proposedAMCMRP-Outliermethod, the experiment
is conducted under different sizes of slidingwindowanddifferentmin_supvalues. For the
CSAM , the used constraints are CSAM1 ≡ max(X.price) ≤ 20 and CSAM2 ≡ max(X.price)
≤ 25. For the CCAM , the used constraints are CCAM1 ≡ sum(X.price) ≤ 50 and CCAM2
≡ sum(X.price) ≤ 80. The experimental results on the synthetic dataset are shown in

1 http://odds.cs.stonybrook.edu/.

http://odds.cs.stonybrook.edu/
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Fig. 1 and Fig. 2, where the X-axis (No. of sliding window) means the concrete number
of the sliding window and the Y-axis (Detection accuracy) means the ratio of the number
of true outliers to the total number of retrieved transactions when all true outliers are
identified. And the experimental results on two public datasets are shown in Table 2 and
Table 3.
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Fig. 1. Detection accuracy of the AMCMRP-Outlier method when |SW | is 30
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Fig. 2. Detection accuracy of the AMCMRP-Outlier method when |SW | is 40

Table 2. Detection accuracy of the AMCMRP-Outlier method on the dataset Lymphography

min_sup Methods

FCI-
Outlier

MFPM-
AD

MIFPOD AMCMRP-
OutlierSAM1

AMCMRP-
OutlierSAM2

AMCMRP-
OutlierCAM1

AMCMRP-
OutlierCAM2

29.6 46.15% 66.67% 15.79% 75% 75% 75% 75%

37.0 37.5% 60% 17.14% 85.71% 75% 75% 75%

44.4 35.29% 60% 18.75% 85.71% 75% 85.71% 75%

51.8 31.58% 50% 20.69% 85.71% 75% 85.71% 75%

59.2 26.09% 40% 25% 85.71% 85.71% 85.71% 75%

66.6 26.09% 35.29% 28.57% 85.71% 85.71% 85.71% 85.71%

74.0 23.08% 33.33% 35.29% 85.71% 85.71% 85.71% 85.71%

When the size of sliding window is set to 30, the detection accuracy of the proposed
AMCMRP-Outlier method under different min_sup values is shown in Fig. 1. For the
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Table 3. Detection accuracy of the AMCMRP-Outlier method on the dataset Satimage-2

min_sup Methods

FCI-
Outlier

MFPM-
AD

MIFPOD AMCMRP-
OutlierSAM1

AMCMRP-
OutlierSAM2

AMCMRP-
OutlierCAM1

AMCMRP-
OutlierCAM2

580.3 58.68% 65.74% 27.63% 82.56% 77.17% 79.78% 76.34%

725.325 57.72% 63.39% 30.34% 84.52% 78.02% 79.78% 77.17%

870.45 56.35% 62.28% 32.57% 85.54% 80.68% 81.61% 78.89%

1015.525 55.47% 59.66% 33.65% 88.75% 80.68% 82.56% 79.78%

1160.6 54.2% 57.72% 35.86% 87.65% 82.56% 84.52% 80.68%

1305.675 52.99% 56.35% 38.38% 88.75% 83.53% 84.52% 81.61%

1595.825 51.08% 55.47% 42.51% 91.03% 87.65% 85.54% 83.53%

AMCMRP-Outlier method, its detection accuracy always higher than that of the three
compared methods, and the detection accuracy shows an obviously increase trend with
the increase of the min_sup values. The reason for appearing this situation is that the
number of mined minimal rare patterns that satisfy the user-specified constraint is much
larger under the large min_sup values, thus, more patterns can be used as the pattern
basis for the outlier detection phase. When the kind of the constraint is constant, the
detection accuracy of the proposed AMCMRP-Outlier method shows a decrease trend
when the constraint is set much loose, the reason for appearing this situation is that
the less 1-patterns that violate the user-specified constraint can be mined under loose
constraint, thus, it cannot provide the strong support for the determination of the outliers.
For the compared association-based outlier detection methods, with the increase of the
min_sup values, the detection accuracy of the rare pattern-basedmethodMIFPOD shows
an increase trend, but the detection accuracy of the frequent pattern-based methods
FCI-Outlier and MFPM-AD shows a decrease trend.

When the size of slidingwindow is set to 40, the detection accuracy of theAMCMRP-
Outlier method under different min_sup values is shown in Fig. 2. When the min_sup
value is set to 12, the false detection of the AMCMRP-Outlier method is appearing in
eight windows of the thirty windows, but the false detection of the AMCMRP-Outlier
method is appearing in five windows when the min_sup is set to 16, while the false
detection is only appearing in two windows when the min_sup is set to 20. When the
min_sup value is set slightly small, the detection accuracy of the MIFPOD method is
much lower than that of the FCI-Outlier andMFPM-ADmethods, but when the min_sup
value is set slightly larger, the detection accuracy of the MIFPOD method is higher than
that of other two methods in more windows.

It can be seen from Table 2 and Table 3 that on the two public datasets, the detection
accuracy of the proposed AMCMRP-Outlier method under two kinds of anti-monotonic
constraints is higher than that of other three compared methods, including: FCI-Outlier,
MFPM-AD and MIFPOD. When the kind of the constraint is constant, the detection
accuracy of the AMCMRP-Outlier method is higher under the tight constraint, such as
the detection accuracy under CSAM1 is slightly high than that under CSAM2. Similar to
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the situation on the synthetic dataset, the detection accuracy of the AMCMRP-Outlier
method on the two public datasets shows an increase trend with the increasing of the
min_sup values, it is also owing to that more minimal rare patterns that satisfy the
user-specified constraint can be effectively mined under the large min_sup values, thus
more patterns can provide the pattern basis for the outlier detection phase. For the three
compared methods, the detection accuracy of the FCI-Outlier and MFPM-AD methods
shows a decrease trend with the increasing of the min_sup values, and the detection
accuracy of the MIFPOD method shows an increase trend with the increasing of the
min_sup values. When the min_sup value is set slightly larger, the detection accuracy of
the MIFPOD method exceeds other two compared methods.

In general, regardless of the kinds of the anti-monotonic constraints, the detection
accuracy of the AMCMRP-Outlier method on both the synthetic dataset and the pub-
lic datasets is higher than that of the three compared association-based outlier detec-
tion methods. In addition, for gaining the better detection accuracy when using the
AMCMRP-Outlier method, the min_sup value should set slightly larger.

5.2 Time Cost of the AMCMRP-Outlier Method

This subsection evaluates the time cost of the proposed AMCMRP-Outlier method and
other three association-based methods, where the different min_sup values and different
sizes of sliding window are also considered in the experiment. Each experiment is per-
formed for 50 times and the average time cost is calculated to form the final experimental
results. The experimental results on the synthetic dataset are shown in Fig. 3 and Fig. 4,
and the result on the public datasets is shown in Fig. 5.
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Fig. 3. Time cost of the AMCMRP-Outlier method on the synthetic dataset when |SW | is 30

It can be seen from the Fig. 3, 4 and Fig. 5 that on the synthetic dataset and public
datasets, the time cost of the proposed AMCMRP-Outlier method is much shorter than
that of the three compared association-based outlier detection methods, while the time
cost of the FCI-Outlier method is the longest, it is owing to that only a small amount
of patterns are pruned before the “pattern extension” operations, thus, the pattern min-
ing phase consumes very long time, and the time cost of the MIFPOD method and
MFPM-AD method is very close to each other. When the size of the sliding window is
constant, the time cost of the AMCMRP-Outlier method shows a decrease trend with
the increase of the min_sup values, the reason for appearing this situation is that more
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Fig. 4. Time cost of the AMCMRP-Outlier method on the synthetic dataset when |SW | is 40
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Fig. 5. Time cost of the AMCMRP-Outlier method on two public datasets

patterns are rare patterns under the large min_sup values, thus, the number of extensible
patterns is reduced, which results the time cost on the time consuming “pattern exten-
sion” operations is also greatly reduced. Compared with the succinct anti-monotonic
constraint, the time cost on the entire outlier detection process under the convertible
anti-monotonic constraint is much longer, the reason for appearing this situation is that
whether the extended patterns satisfy the user-specified constraint should be checked in
the pattern mining.When the kind of constraint is constant, the time cost of the proposed
AMCMRP-Outlier method under the loose constraint is much longer, it is owing to that
the scale of the patterns that satisfy the loose constraint is obviously increased when the
user-specified constraint is slightly loose, thus, more patterns can be participated into
the further “pattern extension” process. Thus, it is necessary to set the min_sup value
slightly larger to obtain a high time efficiency.

6 Conclusions

In this paper, we propose an efficient minimal rare pattern-based outlier detection
method, namely AMCMRP-Outlier, to detect the potential outliers from the data streams
that satisfy the user-specified anti-monotonic constraint through two phases. In the pat-
tern mining phase, with the use of the matrix structure, we proposed two constrained
minimal rare pattern mining methods to effectively mine the minimal rare patterns that
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satisfy the specified succinct anti-monotonic constraint and convertible anti-monotonic
constraint. In the outlier detection phase, through considering more factors that will
influence the determination of the outliers, we design two deviation indices to effectively
measure the deviation degree of each transaction in the data streams, and then the trans-
actions having largest deviation degrees are judged as the outliers. Extensive experiments
on the synthetic dataset and public datasets confirm that the proposedAMCMRP-Outlier
method can accurately detect the outliers with less time consumption. When the thresh-
oldmin_sup is set slightly large, the detection accuracy of theAMCMRP-Outliermethod
can reach to 100% in most sliding windows. However, when the threshold min_sup is
set small, the detection accuracy of the proposed AMCMRP-Outlier method is not so
competitive and its time cost is also very long. That is, when the min_sup is set small, the
AMCMRP-Outlier method is not an ideal choice for accurately detecting the potential
outliers from the data streams.

In the future, we prepare to improve the proposed AMCMRP-Outlier method to
make it can effectively process the set of constraints (that is, each constraint is combined
using logical operations like “and” and “or”). In addition, we also want to apply the
proposed method to some practical applications.
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Abstract. Protecting safety-critical Cyber-Physical Systems (CPS)
against security threats is becoming a growing necessity. Due to the
high level of network integration, CPS pose new targets to remote code-
reuse attacks, such as Return-Oriented Programming (ROP). An effec-
tive mechanism to detect code-reuse attacks is Control-Flow Integrity
(CFI). However, because of the intrusiveness of most current CFI solu-
tions, i.e., their requirement for program instrumentation and run-time
interference, we cannot directly apply them to safety-critical CPS. To the
best of our knowledge, there is no CFI solution designed for CPS; and
more specifically, we are not aware of any solution that fully monitors the
forward-edges and backward-edges of an application’s control-flow, while
providing independence and freedom from interference guarantees. Hence,
for the first time, we propose a safety certifiable, separation kernel-based
partitioning architecture to integrate CFI monitoring in a safety-critical
system to protect applications with real-time constraints. Our solution
leverages ARM CoreSight to transparently enforce both forward-edge
and backward-edge CFI for an application at run-time. Despite impos-
ing a significant overhead on the overall system, our approach reliably
protects the control-flow of the monitored application, while guarantee-
ing its real-time constraints. We evaluate our solution by analyzing its
timing impact and discussing the resulting considerations for the integra-
tion and practical deployment in a safety-critical CPS.

Keywords: Safety-critical cyber-physical systems · Code-reuse
attacks · Control-flow integrity · ARM CoreSight

1 Introduction

In modern networked safety-critical Cyber-Physical Systems (CPS) like automo-
tive, railway, and avionics, the industry’s trend is the integration of multiple func-
tions on the same hardware platform in order to cope with the non-functional
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requirements related to size, weight, and power. Due to the highly networked
nature of these systems, remote control-flow hijacking attacks pose a serious
threat [24,42].

From the safety certification perspective, modern networked CPS are typi-
cally built from components with different criticality or assurance levels and, as
such, are identified as mixed-critical systems [12]. The low-critical components in
such a system typically implement connectivity (e.g., black channel1) for safety
components, security functions for safety [44], or user-experience functions such
as touch interfaces. Even though the low-critical components don’t have any
safety function to perform, they are important for availability, user-experience,
and preserving confidentiality. A security vulnerability in such low-critical com-
ponents may even open up the path for an attacker to manipulate safety-critical
functions [36]. Thus, low-critical components also play an important role for the
commercial success of a product.

While the high-critical components in mixed-critical systems are developed
and verified using rigorous software engineering methods, it is common to see
low-critical components being developed using less rigorous methods or even
with the support of off-the-shelf libraries (e.g., OpenSSL). Due to the large code
base and use of less rigorous development methods, memory errors can sustain in
low-critical components and, with their direct exposure to the network, open up
a large attack surface for an adversary to exploit the entire system. Exploiting
memory corruptions is the most prevailing form of initiating remote control-flow
hijacking attacks [51]. In particular, code-reuse attacks represent a subtype of
such exploits, which consist of manipulating a victim program’s execution flow
by reusing legitimate code from within its address space in order to perform
malicious actions (e.g., privilege escalation). Because of their popularity [24,42,
51,54], we identify code-reuse attacks [10,15,46] as dangerous and likely exploits
in the context of safety-critical CPS.

Control-Flow Integrity (CFI) [1,13] prevents code-reuse attacks by enforc-
ing the execution flow of the protected application to conform to a pre-defined
Control-Flow Graph (CFG). CFI enforcement identifies deviations from the
baseline CFG as malicious control-flow transitions. For monitoring a program’s
control-flow, CFI approaches require instruction-level knowledge of the program
including forward-edge and backward-edge CFG branches. For this, CFI imple-
mentations commonly require source code [4,23,25,29,37,52,57] or binary instru-
mentation [1,3,20,38,39,55,56] in order to check the validity of control-flow tran-
sitions during run-time. In the context of safety-critical systems, especially in
multi-supplier product development, these constraints prohibit a straightforward
deployment of CFI.

For safety-critical system requiring certification, the system developer has to
ensure freedom from interference and independence between components to pre-
vent fault propagation and to enable easy verification. For the deployment of CFI
in safety-critical system, this means the resource usage (e.g. memory, CPU time)
of CFI checking shall be deterministically upper-bounded at run-time. For the

1 See IEC 61508 Part 2.
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industrial deployment of CFI, it shall also use commonly available hardware assis-
tance features, such as CFI solutions based on Intel Processor Trace (PT) [22,35]
and ARM CoreSight [31]. Although these alternative solutions demonstrate a
substantial improvement, they still don’t address all aspects of safety-critical
deployment and oftentimes even sacrifice complete CFG protection: They only
perform partial edge protection [22,31] or discontinuous/punctual monitoring
[35]. However, because of the safety-critical essence of our deployment context,
we believe a complete CFI enforcement is crucial.

To the best of our knowledge, there is no work addressing the deployment of
CFI in the context of safety-critical CPS. More specifically, we are not aware of
any CFI monitoring solution for safety-critical CPS fully covering both forward-
edges and backward-edges of an application’s control-flow, while simultaneously
providing freedom from interference and independence.

With this work, we make the following contributions: First, we validate the
applicability of instruction tracing of ARM CoreSight to realize transparent,
state-of-the-art CFI monitoring. Our solution protects the monitored applica-
tion’s baseline CFG at run-time. It fully covers backward-edges by maintaining
a shadow stack [1,14] and considerably reduces the set of authorized forward-
edges by employing a type-based policy generated at compile-time [37,52]. Sec-
ond, we propose a separation kernel-based partitioning architecture to integrate
our CFI monitoring solution in safety-critical CPS. We evaluate the temporal
interference of CFI monitoring on the monitored application and the system as
a whole by analyzing the performance impact for a worst-case and nominal-case
scenario. We further discuss the system design considerations to integrate our
CFI solution in a safety-critical system and identify optimization strategies to
reduce the overhead of our CFI solution.

2 Problem Statement

A major source of control-flow hijacking attacks on CPS are vulnerabilities in
their software, such as a buffer overflow corrupting a code pointer in memory. As
software for CPS is primarily written in the C and C++ programming languages,
which omit enforcing strong type and memory safety in favor of efficiency and
flexibility, programming errors are prone to result in such memory corruptions.
Unfortunately, modern CPS are highly distributed and interconnected devices,
causing these vulnerabilities to become a serious attack surface for remote adver-
saries.

2.1 Code-Reuse Attacks

The most prevailing form for an adversary to gain access to a remote sys-
tem are code-reuse attacks [51]. These attacks allow the adversary to exe-
cute arbitrary code even on systems that deploy memory isolation measures
[6,16,17,28,30,40,50]. However, in the presence of a software vulnerability, an
adversary gaining access to a code pointer in writable memory is still able to
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divert execution to an arbitrary location in executable memory. By repeatedly
diverting execution to different locations, the adversary is able to perform his
intended malicious behavior, while only repurposing legitimate code already
available in the software.

Code-reuse attacks were first introduced with Return-Oriented Program-
ming (ROP) [46] by utilizing function returns to combine arbitrary instruction
sequences—so called gadgets—for malicious intent. Later, Jump-Oriented Pro-
gramming (JOP) [10,15] extended code-reuse attacks to utilize indirect jumps
and indirect function calls as well. Both techniques were initially devised on the
X86 architecture, but rapidly adapted to various architectures in the embedded
systems domain [11,21], including the ARM architecture [15].

2.2 Threat Model

We aim to protect applications on safety-critical systems against remote code-
reuse attacks. We assume that the application contains memory errors resulting
in exploitable, input-controlled vulnerabilities known to the remote adversary.
Further, we presume the adversary has prior knowledge about the application’s
code layout and is able to identify suitable gadgets that can carry out his mali-
cious intent. The goal of our adversary is to alter a code pointer in the target
application’s data memory and subsequently achieve the execution of the gadgets
identified before. On the system, we assume higher privileged components, i.e.,
the Separation Kernel (SK), are trusted and operating correctly. The SK does
not provide memory layout randomization, but does employ memory isolation.
Hence, during an attack, the adversary is confined to the target application’s
address space, but otherwise able to infer the memory layout and gain arbi-
trary read access on executable memory and arbitrary read-write access to data
memory.

3 Background

In a successful code-reuse attack, the adversary deviates the execution of an appli-
cation from its predefined Control-Flow Graph (CFG). A CFG abstractly repre-
sents the application’s execution, in which edges represent control-flow transfers
between nodes, and nodes represent uninterruptible instruction sequences that
end in a branch instruction, also called basic blocks. Basic blocks connected
through jumps and function calls form forward edges, while function returns
form backward edges. To prevent code-reuse attacks, a countermeasure must
ensure that during an application’s entire execution, no other edges than the
legitimate and pre-defined forward and backward edges of the CFG are taken.

3.1 Control-Flow Integrity

A well-known approach to ensure that the execution of an application conforms
to the legitimate CFG is enforcing Control-Flow Integrity (CFI) [1]. CFI consid-
ers the edges of a CFG to be vulnerable to an attack, if they represent indirect
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control-flow transfers. An adversary gaining access to a code pointer used to
determine a basic block’s successor is able to divert control to any other basic
block in the graph. Edges representing direct control-flow transfers are consid-
ered safe, as CFI builds on the assumption that the application’s code in memory
is not writable (i.e., memory isolation is in use), resulting in the adversary being
unable to inject malicious code of his own. In general, implementations of CFI
first compute a representation of the application’s legitimate CFG and then val-
idate indirect control-flow transfers against their CFG metadata at run-time.
With structural differences in this metadata, variating granularities in enforcing
the application’s CFG can be achieved.

CFI solutions generally directly instrument CFG enforcement into protected
applications. However, this integration requires the metadata to be hidden within
or isolated from the application’s memory, so that an adversary—controlling the
memory—is unable to alter it as part of his attack. An alternative approach is
the strict separation of the CFI enforcement and the protected application by
means of passively and transparently monitoring the application. This separation
requires a secure channel between the CFI monitor and the application in order
to pass control-flow information to the monitor at run-time. In our work, we
utilize ARM CoreSight to provide that channel.

3.2 ARM CoreSight

CoreSight [7] is a hardware feature in ARM Systems on a Chip (SoCs) intended
for the debugging and tracing of executed applications in real-time. Each core on
the System on a Chip (SoC) is attached to an Embedded Trace Macrocell (ETM)
responsible for trace collection. The traces from multiple ETMs are merged and
stored in an Embedded Trace FIFO (ETF) queue. When the queue reaches a
configurable threshold, the ETF can raise a signal directed to a core as an inter-
rupt or to an external debugger. The software or external debugger can use
this trigger to copy/flush the traces from the ETF queue to system memory
or to external pins. CoreSight collects traces in form of packets, either contain-
ing branch decisions for direct control-flow transfers (i.e., branch taken or not
taken) or the target address for indirect transfers. Packets additionally include
per-thread Unique Identifiers (UIDs) that enable precise execution tracking of
different (potentially multi-threaded) applications. Based on the packets pro-
vided by CoreSight and with additional binary information about the executed
application, it is possible to reconstruct the entire execution control-flow includ-
ing the exact sequence of branches taken. For our work, we use CoreSight to
trace the program execution and perform transparent CFI monitoring.

3.3 Partitioned Architecture Based on Separation Kernel

As introduced in Sect. 1, modern safety-critical CPS combine mixed-critical com-
ponents on one hardware. For preventing cascading failures (i.e., a failure in one
component causing a failure in another one), all safety certification standards
prescribe fault containment requirements. Different standards use different terms



Towards Transparent Control-Flow Integrity in Safety-Critical Systems 295

to describe the fault containment concept. The automotive standard ISO 26262
specifies2 freedom from interference as a requirement to prevent cascading fail-
ures. The industry safety standard IEC 61508 requires3 sufficient independence
between safety and non-safety functions when they are running on the same
hardware to prevent faults from non-safety functions causing failure in the safety-
related functions. The avionics standard DO-178 explicitly states4 partitioning as
the means to prevent one component from contaminating another component’s
code, input/out, or data.

For achieving the freedom from interference and sufficient independence
between components, we use a partitioned architecture [26], in which the compo-
nents are executed in spatially and temporally separated sandboxes, called par-
titions, and communication between components is limited to explicitly defined
communication channels. This architectural approach is also called Multiple Inde-
pendent Levels of Security (MILS) [5,43,53]. The cornerstone of this partitioned
architecture is a software SK [43], which is a special type of operating system
often based on the microkernel approach [33]. Its primary functionality is to
provide separated partitions and secure communication channels. SKs (such as
PikeOS [50]) typically also offer the execution of virtualized operating systems
inside their partitions, in which case they also act as a hypervisor.

Spatial separation is achieved by resource partitioning in which system
resources, such as main memory, CPU cores, and I/O devices, are partitioned and
assigned to entities called resource partitions. Components are mapped to differ-
ent resource partitions and will be limited to the assigned resources at run-time.
Temporal separation is achieved by using time partitioning in which a certain
CPU time quota is assigned to partitions and the applications are guaranteed to
get the time quota assigned to their partitions at run-time. Temporal separation
for an application doesn’t necessarily require a monopolized CPU usage during a
certain period of time, instead, it can also be achieved if the application is guar-
anteed to get enough CPU time to meet its timing requirements (deadlines) in
spite of possible worst-case interference, such as preemptions by a higher priority
task.

On safety-critical systems, the resources (e.g., memory or CPU time) required
for the nominal operation of an application are determined by the application
developer during design-time. The methods used for resource estimation and
the pessimism in the estimation depend on the criticality levels of the applica-
tion [9]. The system integrator, at design-time, allocates the estimated resources
to partitions inside which the applications run. During run-time, the SK ensures
that this resource allocation is not violated, thus preserving the freedom from
interference between applications.

Hence, for securing safety-critical CPS, we choose a partitioned architecture
in combination with a SK to strictly separate the CFI monitoring from the
monitored application. This design is well suited for the safety-critical domain

2 See ISO 26262 Part 3, Annex D.
3 See IEC 61508 Part 3, Annex F.
4 See DO-178 Sect. 2.4.1.
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Fig. 1. Transparent CFI monitoring design.

because of two reasons: (i) the adversary is not able to interfere with the CFI
monitoring due to the separation, and (ii), at run-time, the CFI monitoring tasks
and other safety-critical tasks are restricted to their allocated resources, thereby
ensuring their independence and freedom from interference.

4 CFI Monitoring using ARM CoreSight

We now present our CFI monitor, a non-invasive and transparent solution for
protecting CPS against code-reuse attacks. We specifically target SK-based CPS
running on ARM SoCs with CoreSight support. Our monitor is strictly isolated
from the monitored applications and periodically collects and verifies control-
flow traces from CoreSight.

The architecture of our CFI monitoring solution is shown in Fig. 1. During
run-time monitoring, after a stream of traces has been collected by the monitor,
the current CFG path of the monitored application thread is reconstructed by
decoding the trace packets into the sequence of executed basic blocks. Using the
reconstructed path and the trace’s per-thread identifier, the monitor maintains
per-thread shadow stacks for backward-edge CFI enforcement. For the protection
of forward edges, the monitor validates that the source and destination addresses
of transitions between basic blocks belong to the same pre-computed equivalence
class. We compute the per-application equivalence classes according to a type-
based approximation of the CFG during a dedicated static pre-processing phase
and load them into our CFI monitor as metadata before starting the monitored
application.

For our work, we assume the SK does not randomize the memory layout of
monitored applications and statically inferred addresses are still valid during run-
time5. To ensure the security provided by our solution, we implement the forward-
5 This is not a limitation of our CFI monitoring solution, as providing randomization

details to the monitor would suffice to support memory layout randomization.
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edge and backward-edge CFI policies according to [52] and [1], respectively. Both
policies are well-established and known to thwart code-reuse attacks effectively
[13,14].

4.1 Static Pre-processing

The pre-processing phase statically computes a type-based approximation of the
CFG based on the concept of equivalence classes. We generate equivalence classes
only for indirect jumps and calls, but handle calls to ordinary functions, calls to
virtual methods (C++ only), and intra-function jumps differently.

For ordinary functions, we define equivalence as the signature of a call site
matching the signature of the called function, where the signatures are defined
as a combination of the function’s return type and parameter types. Hence,
two functions int add(int a, int b) and int sub(int a, int b) are con-
sidered equivalent by our CFI monitor and may be called from any indirect call
site having the same signature. For virtual methods, we define equivalence anal-
ogously with the addition of taking class hierarchies into account. Two functions
int Math.add(int a, int b) and int Math.sub(int a, int b) are consid-
ered equivalent if and only if they belong to the same class Math or any derived
or base class of Math. Lastly, for simple jumps, we define equivalence based on
code locality, i.e., restricting jumps to the switch statement or function body
they belong to.

In our final metadata, we store the equivalence classes as a simple lookup
table indexed by the addresses of branch targets. For every branch target within
the table, we store the list of call site addresses allowed to branch to the
that target—effectively representing the equivalence class the target belongs to.
Hence, for the two functions add() and sub(), the table contains two identical
entries specifying all call sites allowed to branch to add() and sub().

We generate the metadata in a two-step process during the compilation of the
application. We adopt this process, as computing equivalence classes at compile-
time is more precise than a binary-only computation [55]. Figure 1a depicts the
compilation and generation of the binary app.elf and the metadata app.cfg
for an application consisting of two source code files app1.cpp and app2.cpp.

Step 1: Equivalence Class Generation. The first step is built upon the LLVM
compiler infrastructure and computes the equivalence classes for indirect calls to
ordinary functions and virtual methods. During this step, we essentially gener-
ate a version of our metadata containing descriptive identifiers instead of actual
address locations. Branch targets (i.e., functions and virtual methods) are rep-
resented as string literals by their names and call sites by the offset into their
parent functions. Indirect jumps do not require compile-time information and
are only processed during the second step.

For the generation of equivalence classes, we utilize the type metadata mech-
anism already present in LLVM6. The mechanism computes the equivalence

6 https://llvm.org/docs/TypeMetadata.html.

https://llvm.org/docs/TypeMetadata.html
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classes according to [52] and as required by our definitions above. Because the
type metadata is only available in LLVM’s Intermediate Representation (IR), we
deploy a custom LLVM pass that passively collects and stores the equivalence
classes to a temporary file app.res. To resolve the equivalence on an application-
wide level, this step must be performed on a combined version of the application’s
IR (i.e., in our example, simultaneously for app1.cpp and app2.cpp) or during
link-time optimization. The data extracted by our LLVM pass is already repre-
sented in the form of our metadata, i.e., for every branch target, we have a list of
possible call sites. Because the extracted data still contains equivalence classes
represented as string literals, we translate the data into actual address locations
in the following, second pre-processing step.

Step 2: Metadata Generation. The second step generates the final metadata file
app.cfg based on a binary analysis of the compiled application app.elf and the
extracted equivalence classes app.res. We use Capstone7 to inspect the applica-
tion binary and translate the string-based equivalence classes to address-based
equivalence classes. The extracted data represents equivalence classes in form of
a lookup table indexed by function and virtual method names, i.e., the targets
of indirect call sites. Each entry in the table contains a list of call sites allowed
to branch to that function or virtual method. The call sites are identified by the
name of their parent function and their offset within the function. Looking up
the function names and virtual methods in the disassembled application binary,
we are able to translate the entire lookup table into actual address locations.

As the first pre-processing step only generates equivalence classes for ordi-
nary functions and virtual methods, we still have to generate legitimate branch
targets for indirect jumps. For this, we use the binary inspection to identify the
type of indirect jumps (e.g., a switch statement) and then extract all addresses
of legitimate jump targets within the scope of the identified type. Like this, a
switch statement is only allowed to perform jumps within the switch body. Unfor-
tunately, for some indirect branches, the target addresses cannot be identified
statically, because, for example, they are inferred from program input during
run-time. In such cases, like for other state-of-the-art forward-edge CFI solu-
tions, we refrain from generating metadata, leaving those branches unchecked
during run-time. Note that indirect jumps to functions, as generated by tail call
optimizations, are handled the same way indirect calls are handled.

4.2 Run-Time Monitoring

After the pre-processing phase, the application is ready to be executed normally
with our CFI monitor passively verifying its indirect control-flow transfers. We
decompose the monitoring process in five stages.

Initialization. To start monitoring an application, the generated CFG metadata
file together with the application binary are loaded into the monitor. The mon-
itor itself first initializes the CoreSight subsystem by configuring the ETMs to
7 https://www.capstone-engine.org/.

https://www.capstone-engine.org/
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generate traces whenever threads of the monitored application are schedule on
the corresponding cores (CoreSight does not trace applications by default). Next,
the monitor invokes the application, which then gets initialized and scheduled
by the SK as usual. At this point, our monitor moves into a waiting state until
the first traces are ready to be processed. As shown in Fig. 1b, processing traces
is done in three distinct steps, the trace collection, CFG path reconstruction, and
CFI checking.

Trace Collection. During execution of the monitored application, tracing is per-
formed automatically by the ETM connected to the core the application is sched-
uled on. For every control-flow changing instruction executed by the core, i.e.,
direct and indirect branch instructions, the ETM generates a CoreSight trace
and stores it into the ETF queue. Once the ETF queue reaches a threshold
configured by the monitor during initialization, the CoreSight subsystem inter-
rupts execution of the application, flushes the queue to system memory, and
lastly notifies our monitor of the traces ready for validation. Note that interrupt-
ing the application during the flushing of the ETF is required by CoreSight, as
traces cannot be collected while the ETF queue is transfered to system memory.
After the ETF has been fully flushed, the application can be resumed while our
monitor is executed in parallel.

CFG Path Reconstruction. The traces generated by the ETM and received by our
monitor include common data such as the application thread’s Unique Identifier
(UID) and the virtual address of the recorded instruction. Additionally, traces
of indirect branches include the destination address, while direct branches omit
the address and only include the branch decision, i.e., whether the branch was
taken or not. Other data in the traces is not relevant to our CFI monitor.

We use the data provided in the traces to reconstruct the path taken by
the application through the CFG. For this, our monitor utilizes the OpenCSD
library8 that takes the application’s binary as input and generates a sequence
of basic blocks resembling the application’s execution path. A basic block is
identified by its start and end address, as taken from the application’s binary.
The end address of a basic block always points to a set of control-flow instructions
such as direct or indirect branch (including function returns). The reconstruction
also preserves the UIDs and attaches them to basic blocks so that our monitor
is able to enforce CFI on a per-thread granularity. Finally, the reconstruction
sequentially emits the basic blocks to the CFI checking, where CFG conformity
is validated.

CFI Checking. With the sequence of executed basic blocks, our monitor is able to
perform per-application forward-edge and per-thread backward-edge CFI check-
ing. For forward-edge CFI, the monitor consults the CFG metadata provided
through the pre-processing phase. For every basic block terminating in a direct
or indirect function call, the monitor looks up the next basic block’s start address

8 https://github.com/Linaro/OpenCSD.

https://github.com/Linaro/OpenCSD
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in the metadata. This lookup yields a list of call site addresses that are allowed
to branch to the next basic block. To validate CFG conformity, the monitor
verifies that the current basic block’s end address (i.e., the call site address) is
present in the list. If the address is not found, a CFI violation has been detected.

For backward-edge CFI, the monitor does not rely on static metadata, but
maintains a per-thread shadow stack. The monitor first evaluates the UID
attached to a basic block and then looks up the shadow stack corresponding
to the identifier (i.e., the thread). Next, for every basic block terminating in
a direct or indirect function call, the call’s return address is pushed onto the
shadow stack. For every basic block terminating in a function return, the follow-
ing basic block’s start address is compared against the top-most address stored
on the stack. If the addresses are not equal, a CFI violation has been detected.
Otherwise the return is valid and the top-most address is removed from the stack.
To cope with tail call optimization or otherwise shortened return sequences (e.g.,
longjmp), where the top-most address on the shadow stack is not equal to the
next basic block’s start address, the monitor pops addresses from the stack until
a match is found or the bottom of the stack is reached. Like this, the monitor is
able to ignore all return addresses skipped by the longjmp.

CFI Violation Reporting. Finally, if our monitor detects a CFI violation, it
notifies the SK, which then is able to react accordingly, e.g., stop or restart
the monitored application, or notify the system administrator. In this paper, we
do not further elaborate on possible and adequate reactions to detected CFI
violations.

5 Timing Overhead Analysis

In this section, we analyze the timing overhead of our CFI monitoring solution
based on a prototype implementation on top of the PikeOS SK [50] running on
an ARM Juno platform [8]. We map the stages of CFI monitoring described in
Sect. 4.2 to the following tasks: trace collection Ttc, CFG path reconstruction
Tcfg, and CFI checking Tcfi. These tasks are running inside PikeOS partitions
that are separated from the monitored application Tu. For our prototype, we
implemented Tcfg and Tcfi inside a Linux virtual machine using non-optimized
libraries. We have implemented Ttc as an optimized task directly running on top
of the PikeOS SK. As explained in Sect. 4.2, for loss-free tracing, the monitored
application only has to be interrupted during Ttc, while Tcfg and Tcfi can be
executed in parallel to the monitored application. Hence, the optimized imple-
mentation of Ttc allows us to identify the minimum timing interference caused
by our CFI solution on the monitored application.

For the analysis, we compute the worst-case slowdown any application can
suffer (Sect. 5.2) and the nominal slowdown when monitoring a certified IP stack
of PikeOS called ANIS (Sect. 5.3). We also measure the execution time of the
non-optimized CFG path reconstruction Tcfg and CFI checking Tcfi (Sect. 5.4).
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Listing 1.1. Worst-Case Program

ADDR: branch ADDR

5.1 Modeling the Trace Collection Task

We can model Ttc as a sporadic task defined by a tuple (ptc, etc, dtc), where ptc
is the minimum inter-arrival time, etc the Worst-Case Execution Time (WCET),
and dtc the deadline relative to the task release. Once the collected traces in the
ETF reach a certain threshold, Ttc is scheduled by the SK. Hence, the minimum
inter-arrival time ptc depends on the trace generation rate, which in turn depends
on the number of monitored cores and the monitored application’s characteristics
(i.e., frequency of branches). To avoid the loss of traces, Tu is interrupted during
trace collection and re-scheduled thereafter. In such a scheduling scheme, we can
consider dtc to be equal to etc. The slowdown suffered by Tu due to the inclusion
of Ttc in the system can be computed as:

rtc =
etc
ptc

For copying the full ETF (64 KiB) queue to system memory, we have measured
an execution time of 1.9 ms with 99% of confidence from 1000 measurements.
We use 1.9 ms as a representative9 WCET etc for the trace collection task.

5.2 Worst-Case Slowdown Experienced by Any Application

For a given number of monitored cores, the minimum inter-arrival time ptc of the
trace collection task Ttc depends on the monitored application’s characteristics:
the ratio c = B

I , between the number of branch instructions B and the number
of total instructions I executed since application start-up. As branch instruc-
tions are included in the total number of instructions, 0 ≤ c ≤ 1, and c = 0
corresponds to a program composed of a single basic block (one linear sequence
of instructions), whereas c = 1 represents the worst-case, in which every instruc-
tion is a branch (see Listing 1.1). When monitoring such a worst-case program
running on a single core, the ETM associated with that core generates traces
at the maximum rate and correspondingly releases the monitoring task with a
worst-case ptc. As shown in Table 1, we have observed a ptc of 3487µs for such a
program, which correspond to an approx. slowdown of 55% due to monitoring.

5.3 Slowdown for ANIS IP Stack in a Nominal Operation

We evaluate the application slowdown for a nominal operation of a safety-
certified IP stack, called ANIS, running in the user-mode of PikeOS. The ICMP
9 Note: In the industry, WCET computation is performed using sophisticated static

analysis tools such as aiT from Absint that give tight bounds on the computed
values.
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Table 1. Experiment results for worst-case and nominal case operations, from 1000
measurements with 99% confidence.

Worst-Case Scenario Nominal Scenario

Minimum Maximum Minimum Maximum

etc (µs) 1914 1917 1914 1920

ptc (µs) 3487 3490 541768 581990

rtc (%) 54.84 54.98 0.33 0.35

service of the IP stack is stimulated at run-time via an external agent, which
sends ping requests (we treat this as a representative nominal operation). Since
we want to observe the worst-case stimulation for this setup, the external agent
floods the IP stack with requests. The results from Table 1 show a drastically
lower average overhead, compared to measurements of the worst-case scenario’s
slowdown. During the nominal operation of this application, the buffer is filled
more than 150 times slower than during the infinite empty loop (i.e., Listing 1.1).
As a result, the monitored application experiences an approx. slowdown of only
0.3% due to monitoring.

5.4 Overhead for CFG Path Reconstruction and CFI Checking

As mentioned in the beginning of this section, Tcfg and Tcfi can be decoupled
from Ttc and executed in parallel to the monitored application. After Ttc copies
the batch of traces (64 KiB) from the ETF to system memory, these two task are
invoked by the SK. We measured the time taken by the tasks to process 64 KiB of
trace data to be approx. 1s (between [0.92s, 1.10s] with 99% confidence). In our
observations, 95% of the overhead is contributed by the CFG path reconstruction,
while the CFI checking only requires 5%. CFI checking takes approx. between
[1.3ms, 1.5ms] for forward edges and [51.7ms, 61.6ms] for backward edges, both
with a 99% confidence. This huge overhead for the CFG path reconstruction
directly stems from the use of non-optimized libraries and the overhead in the
Linux VM that hosts these two tasks. In Sect. 6.4, we describe design strategies
to reduce this overhead for a real-world deployment.

6 System Design Considerations for the Integration
of the CFI Monitor in a Safety-Critical CPS

Having looked at the partitioned CFI monitoring architecture and its timing
overhead analysis, we now focus on the design considerations for the practical
deployment of our solution in a safety-critical CPS with real-time constraints. In
particular, we discuss methods for guaranteeing the freedom from interference
between monitored applications and monitoring tasks, applicability in multi-
supplier product development, scalability aspects, and design options to decouple
slow paths in our solution.
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6.1 Freedom from Interference and Independence Considerations

When deploying CFI monitoring in safety-critical CPS like avionics or automo-
tive, we have to ensure the freedom from interference and the independence
between monitored applications and monitoring tasks. We use the separation
mechanisms provided by the SK to create a partitioned architecture, where mon-
itored applications and monitoring tasks are separated in space and time.

Spatial separation is achieved by assigning the monitoring tasks and mon-
itored applications in different partitions having statically defined system
resources as show in Fig. 1b. By restricting the access of monitoring tasks to
this defined set of resources, no fault from the monitoring tasks will propagate
to the rest of the system, including the monitored applications. For example, if
the CFI checking task is implemented using a third party library, which contains
a memory corruption leading to unbounded memory usage, this fault will not
cause a memory starvation for the monitored applications in our partitioned
architecture.

As we have mentioned in Sect. 5, the monitored applications should be inter-
rupted during trace collection (task Ttc) to not lose any traces. So, when inte-
grating our CFI solution with a real-time application, the temporal interference
caused by the scheduling of Ttc shall be considered during the schedulability
analysis. There exist extensive techniques in the real-time literature to perform
offline schedulability analysis to determine if a set of tasks (consisting of peri-
odic, aperiodic, or sporadic tasks) can meet their deadlines at run-time when
scheduled with a certain scheduling policy. In fixed priority scheduling policies,
such as Rate Monotonic [34], the task priority is fixed at design-time, and all
instances of the task (jobs) inherit the task priority. In dynamic priority schedul-
ing policies, the priority of each task instance (job) is computed at run-time
based on task parameters; e.g., the relative deadline in the case of Earliest Dead-
line First (EDF) [34] scheduling.

In Sect. 5 we have seen that Ttc can be modeled as a sporadic task with the
WCET etc and the minimum inter-arrival time ptc known at design-time. For
scheduling sporadic tasks along with periodic tasks, aperiodic server-based algo-
rithms are used. Examples of aperiodic servers with fixed-priority scheduling are
polling servers, deferrable servers [32,49], and sporadic servers [48]. An exam-
ple of an aperiodic server with dynamic scheduling is the constant bandwidth
server [2]. The goal of an aperiodic server is to limit the temporal interference
caused by misbehaving sporadic tasks to the worst-case behavior of some peri-
odic task. In this way, the worst-case behavior of sporadic tasks can be replaced
with equivalent periodic tasks in the schedulability analysis. For example, in the
case of a sporadic server, Sprunt et al. [48] have shown that the sporadic server
can be replaced with a periodic task with a period equal to the minimum inter-
arrival time and the capacity equal to the WCET of the sporadic task in the
schedulability analysis. We can use such aperiodic servers implemented inside the
SK to integrate the task Ttc with the real-time tasks of the monitored applica-
tion. By servicing Ttc in an aperiodic server, we are effectively limiting the CPU
time it can take in such a way that the guarantees of other real-time tasks are
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not violated. Hence, misbehavior such as Ttc requiring more time than etc and
Ttc arriving at a higher rate than ptc will not affect the timing guarantees of the
real-time tasks of the monitored application. In this way, temporal separation of
the monitoring tasks from the monitored application is achieved.

When the instances of Ttc arriving at a higher rate than ptc are not serviced,
the CFI checking for a part of the application’s control-flow is effectively dis-
abled. An attacker could leverage this to circumvent the CFI checking simply
by changing the nominal behavior of an application (e.g., by increasing the load
on a network stack). So, we have to implement a monitoring routine to detect
whether Ttc is arriving faster than the nominal inter-arrival time. To minimize the
monitoring overhead, the routine shall be implemented in the low-level interrupt
service routine and the overhead when Ttc is arriving at the worst-case shall be
considered by the system integrator while allocating CPU time for the monitored
applications. Once a deviation is detected during run-time, it should be treated
as anomalous application behavior and countermeasures such as restarting/stop-
ping the system, switching to a fail-safe mode (disabling non-vital functions and
executing minimal safety functions), or migrating the monitored applications
should be applied.

6.2 Transparent CFI Monitoring and Its Applicability
in a Multi-supplier Product Development

Our CFI solution is transparent to the monitored application, since it does not
require source code or binary instrumentation. For monitoring an application,
in addition to the application binary, we only require CFI metadata, which is
generated during an offline pre-processing phase by the application developer
and stored separately from the application. This makes our solution suitable
for use in a multi-supplier product development, as practiced in the automotive,
railway, and avionics domains.

For the certification of complex safety and security critical systems built
with components from multiple suppliers, typically, a compositional certifica-
tion methodology [45] is used. Here, the lower-level component developers (e.g.,
application developers) perform evaluation for their components and provide
the evidences to the higher level developers (e.g., system integrator, operators),
who then reuse those artifacts to certify the system as a whole. The practice
of reusing low-level evaluation evidence is also reflected in standards such as
Common Criteria [47], ISO 26262 [27], and IEC 62443[41]. As our monitoring
solution does not require modification at the source code or binary level, when
the system integrator wants to enable monitoring of a component, there is no
need to regenerate the evaluation evidence for that component, which eases the
reuse.

6.3 Scalability for Monitoring Multiple Applications

In Sect. 5, we simplified the analysis by monitoring one (multi-threaded) appli-
cation running on a single core. To extend the CFI monitoring to multiple appli-
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cations, it is possible to include the application UID in addition to the thread
UID in the context of CoreSight traces. When scheduling the threads of a dif-
ferent application, the scheduler has to save the tracing context of the outgoing
application and restore the one of the incoming application. The tracing context
includes the thread and application UIDs, monitored virtual address ranges,
and monitoring task parameters (e.g., nominal inter-arrival time). This can be
extended to monitoring applications running in virtualized OS by using the Vir-
tual Context Identifier (VMID) register (set by the hypervisor) and ContextID
(set by the guest OS) to uniquely identify the VM, application, and thread in
the trace stream. As we rely on the ContextID set by the SK scheduler running
in supervisor-mode, our solution cannot monitor applications with user-space
thread scheduling.

When monitoring multiple applications running from different cores, the
instruction traces from all cores are collected on the same ETF and all mon-
itored applications (from all cores) shall be paused during the trace collection.
This creates a timing interference between the monitored applications, which
might otherwise be independent from each other. Also, when multiple cores are
generating traces at a high rate, the overhead for the trace collection might be
a limiting factor for the multi-core scalability of our solution. We can see in
Table 1 that when monitoring a worst-case program with only branches running
from one core, the trace collection task arrives at 3490µs and it takes 1917µs
to copy traces from the ETF to system memory. So, if all cores (e.g., 6 cores
on Juno) are generating traces at such a rate, there will be a huge overhead on
the monitored applications. In such a case, we might have to rely on an external
accelerator or an FPGA to process the traces (similar to the solution from Lee
et al. [31]).

6.4 Strategies for Decoupling Trace Collection from the CFG Path
Reconstruction and the CFI Checking

If the combined execution time of the CFG path reconstruction (task Tcfg) and
CFI checking (task Tcfi) is shorter than the nominal inter-arrival time ptc of the
trace collection (task Ttc), we can run them in parallel to the monitored applica-
tions using an intermediate buffer to store the collected traces (whose size equals
to the size of the ETF queue, i.e., 64 KiB). However, when the execution of Tcfg

and Tcfi is slower, such as in our case, the monitored applications accumulate
more traces than can be analyzed in the available time frame. Checking all the
traces for an unlimited time would require an unlimited intermediate buffer. To
avoid such unrealistic resource requirements, we can apply the following strate-
gies:

– Accelerating CFI path reconstruction and CFI checking so that
ecfg + ecfi ≤ pm, where pm is the nominal inter-arrival time of the monitored
applications. This can be achieved by (i) optimizing the implementation, (ii)
offloading the tasks to an accelerator such as an FPGA, or (iii) dedicating
multiple cores to these tasks.
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– Dropping traces and therefore limiting the coverage of the CFI monitor. We
can employ several methods for selecting whether a batch of traces must be
checked or can be dropped. The intuitive idea is for tasks Tcfg and Tcfi to run
whenever traces are located in the transient memory buffer in RAM. When the
buffer is full, the solution can either ignore newly generated trace batches or
overwrite stored data with new upcoming batches. The buffer design depends
on the strategy for prioritizing traces to analyze: i.e., recent traces first with
FIFO or synchronous analysis via a ring buffer. However, every time traces
are dropped, the monitor must reinitialize the current backward-edge and
forward-edge CFI status.

7 Related Work

Control-flow hijacking attacks and defenses have been an active research topic for
over two decades. A vast proportion of this research has focussed on the enforce-
ment of varying CFI policies. However, most CFI defenses are less applicable
in the safety-critical domain, as they either require compile-time instrumen-
tation [4,25,29,37,52,57], binary rewriting [1,56] or run-time instrumentation
[20,39,55]. Thus, our discussion focusses on related work leveraging hardware
features that potentially enable the transparency of a CFI defense.

In Table 2, we compare our solution to recent state-of-the-art hardware-
assisted and hardware-based CFI defenses, taking the following three criteria
(see Sect. 6) into account:

CFI enforcement: A solution should enforce both forward-edge and backward-
edge CFI.

Transparency: A solution should be transparent to the monitored program,
i.e., it should not require compile-time instrumentation, binary rewriting, or
run-time instrumentation.

Safety suitability: A solution should be suitable for the integration in safety-
critical systems, i.e., it should be transparent and should not impose any
interference on the monitored application.

As shown in Table 2, most solutions already support backward-edge CFI,
while comparatively less defenses protect forward control-flow transfers. Also, in
many solutions, the freedom from interference between the monitored applica-
tion and monitoring application is not addressed, making them not applicable
for safety deployment. Hence, our CFI monitoring solution appears as the first
transparent and complete forward-edge and backward-edge CFI implementation,
with the freedom from interference criteria addressed and making it usable in
the safety-critical domain.

While PT-CFI [22] implements backward-edge CFI utilizing Intel PT, Flow-
Guard [35], based on the same hardware, provides complete forward-edge and
backward-edge CFI, thus rendering it the closest implementation to our work.
Both PT-CFI and FlowGuard achieve transparent CFI monitoring by performing
a dynamic analysis of execution traces at run-time. They speed up CFI checking
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Table 2. Comparison of our solution to other hardware-assisted and hardware-based
CFI monitoring approaches. Solutions marked with ’∼’ are suitable for safety-critical
deployment, but require custom hardware or additional processing elements (such as
an FPGA).

Solution Forward-edge CFI Backward-edge CFI Transparency Safety suitability

PT-CFI [22] – ✓ ✓ –

FlowGuard [35] ✓ ✓ ✓ –

µCFI [23] ✓ – – –

Lee et al. [31] – ✓ ✓ ∼
HAFIX [18] – ✓ ✓ ∼
CaRE [38] ✓ ✓ – –

C-FLAT [3] ✓ ✓ – –

Our solution ✓ ✓ ✓ ✓

by learning legitimate CFG transitions from previous observations. The solu-
tions are light-weight, since they perform CFI checks at predefined endpoints
(such as system calls) on a fixed sequence of the most recently recorded traces.
In that regard, PT-CFI and FlowGuard diverge from our solution, which pro-
vides continuous CFI enforcement. Further, while both solutions are transparent
to the monitored program, they have not evaluated the compatibility for the
deployment in safety-critical systems. There is no mechanism to upper bound
the time when the monitored program is paused during the CFI checking.

With µCFI, Hu et al. [23] enforce a precise forward-edge CFI policy based
on leveraging Intel PT and compile-time analysis. During compile-time, they
recursively identify constraining data (i.e., non-control data used in control-flow
instructions) and insert routines at locations where these data are written, in
order to dynamically trace their values at run-time. With this method, µCFI is
able to enforce exactly one possible target for every forward-edge transition. In
comparison to our forward-edge CFI policy, this approach is more precise. How-
ever, achieving this precision requires an intrusive modification of the monitored
program, which is different from our solution and not possible for safety-critical
systems.

Lee et al. [31] utilize the ARM CoreSight hardware extension on an FPGA-
based SoC to transparently enforce a precise backward-edge CFI policy. The
authors build a dedicated FPGA soft core processor that is capable of extract-
ing control-flow information from CoreSight traces and using that information
to maintain and enforce a shadow stack. Based on this processor, the authors
are able to fully separate the CFI enforcement from the monitored program—
identical to our work. From a technical point of view, this enables their solution
to be applicable in the safety-critical domain. However, in contrast to our work,
their solution lacks forward-edge CFI enforcement and can only be deployed on
special SoCs with an on-chip or externally connected FPGA.
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Another hardware-based solution for embedded systems, presented by Davi
et al. [18,19] as HAFIX, implements a hardware function call stack to enforce
an imprecise backward-edge CFI policy. The policy deployed by HAFIX forces
function returns to target any call-preceded instruction residing within any func-
tion currently recorded on the function call stack. To implement the function
call stack and CFI enforcement, Davi et al. develop new processor instructions
on the fully synthesizable Intel Siskiyou Peak and SPARC LEON3 microproces-
sors. This enables their solution to be applicable in the safety-critical domain.
However, in comparison, our CFI monitor is based on the widely available ARM
platform and further enforces precise state-of-the-art CFI policies for both for-
ward and backward edges.

Nyman et al. [38] present CaRE, a binary rewriting solution that deploys
imprecise forward-edge and precise backward-edge CFI utilizing the ARM Trust-
Zone hardware extension. In particular, CaRE secures indirect function calls by
restricting target addresses to a list of valid function entry points, generated
during a static pre-processing phase. To protect function returns, CaRE main-
tains a shadow stack securely isolated in the ARM TrustZone. In comparison to
our work, CFI enforcement for backward edges is equally precise, while CaRE
only applies a weak approximation of the CFG for forward edges. Furthermore,
CaRE is not transparent to the protected software and therefore less suitable for
deployment in the safety-critical domain.

C-FLAT [3], another solution utilizing the ARM TrustZone, defines a remote
attestation protocol, in which a (bare-metal) embedded system proves its cor-
rect execution to a remote verifier. A cumulative hash chain is computed over
the target addresses of indirect branches taken by the embedded system. The
hash chain is calculated and stored securely within the ARM TrustZone. The
final hash value is transmitted to the verifier and compared to a list of valid
hash values gathered during a dynamic pre-processing phase. When performing
continuous attestation, C-FLAT achieves complete conformance to the legiti-
mate CFG. However, C-FLAT requires a dynamic pre-processing phase, which
has to identify every benign path in the embedded software—a non-trivial task.
Furthermore, C-FLAT requires instrumentation of the software being attested,
rendering an application in the safety-critical domain less suitable.

8 Conclusion

In this work, we presented a CFI solution to monitor applications in safety-
critical CPS. Our solution demonstrates the applicability of instruction tracing
with the ARM CoreSight hardware extension to perform transparent CFI mon-
itoring. We experimentally evaluated the worst-case and nominal slowdown on
the protected application, and considered system design aspects for deploying
the solution in a safety-critical system. In its current state, our solution induces
a significant timing overhead on the system to be mitigated in future work.



Towards Transparent Control-Flow Integrity in Safety-Critical Systems 309

Acknowledgement. We thank Philipp Gorski, Alez Züpke, and Holger Blasum, as
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Abstract. A reliable certificate revocation mechanism is crucial, as
illustrated by the recent revocation of 1.7 million certificates issued by
the Let’s Encrypt certificate authority. It is just as essential to get revo-
cation information to users in an efficient and timely manner without
impacting their privacy. Existing approaches such as Certificate Revo-
cation Lists (CRLs) or the Online Certificate Status Protocol (OCSP)
fail with respect to either of those metrics, while approaches that try to
mitigate both, such as OCSP-Staple and Must-Staple suffer from soft-
failure modes and meager adoption rates. To address these issues, we
propose the BlockVoke scheme, which decentralizes revocations, allow-
ing certificate owners as well as CAs to revoke certificates, and distribute
revocation information rapidly. Our approach furthermore allows the
revocation of CA root certificates, which is not possible with traditional
approaches. The use of a blockchain as an underlying layer ensures the
continued availability and immutability of revocation information. Block-
Voke interacts favorably with approaches such as CRLite and Certificate
Revocation Vectors (CRV), allowing organizations to update revocation
filters with as little delay as required by their security policies. We also
demonstrate the cost-efficiency of our approach in comparison to other
approaches such as CRLs, showing its high feasibility.

Keywords: PKI · Blockchain · Certificate · Revocation · Web of Trust

1 Introduction

Nowadays, Internet services and applications, such as e-commerce websites and
e-mail communication or messaging services, are not only essential to our daily
life, but also become more common and popular due to the progressing digitiza-
tion of society, e.g., [21] and [46]. X.509 certificates are used to secure those web
applications and ensure their authenticity, integrity, and confidentiality. Public
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key infrastructures (PKIs) ensure the correct association between a certificate
and its owner. The trust model of PKIs relies on hierarchically structured central
authorities [39], whereas the PGP Web of Trust (WoT) builds on a decentralized
structure [27]. The vulnerability induced by the centralized and intransparent
structure of CAs regularly results in security incidents [4,9]. Meanwhile, the
PGP WoT is decentralized and does not suffer from these vulnerabilities. Yet,
the PGP WoT does neither provide sufficient certainty that the information
stated in a public key (certificate) is correct, since users do not carefully verify
them due to missing incentives or lack of punishments, nor is it resilient to Sybil
node attacks [33].

Certificates expire after a pre-determined lifetime. However, security inci-
dents or other events require a certificate revocation before its expiry date. A
certificate may be revoked after its corresponding private key is compromised,
the identification of a flaw in the underlying cryptographic system, or due to
issues related to internal PKI processes.

Recently, the non-profit CA Let’s Encrypt (LE) announced the revocation of
3,048,289 certificates due to a bug in their Certification Authority Authorization
(CAA) software – the so-called LE CAA rechecking bug [10,24,25]. Ultimately,
only 1,706,950 certificates were revoked, and the remaining certificates were left
to expire within the subsequent 90 days.

Even though WoT revocations do not depend on a CA, any revocation has to
be propagated within the network. This is done by a set of distributed peer-to-
peer (P2P) keyservers which synchronize with each other. However, due to their
limited number and reoccurring reliability issues, they potentially pose risks to
organizations relying on them [20,28].

Several mechanisms for certificate revocation exist such as Certificate Revo-
cation Lists (CRLs) [14], the Online Certificate Status Protocol (OCSP) [43],
or OCSP extensions such as OCSP stapling [15] and OCSP Must-Staple [19].
Nonetheless, due to their centralized nature, these revocation mechanisms inherit
the same security concerns as the general PKI concept itself, e.g., single point
of failure (SPOF).

Alternative decentralized and more transparent alternatives – for both, PKIs
in general as well as the WoT – exist and are being tested, e.g., [12,18,30,45], but
are not widely used yet and suffer from different disadvantages such as scalability
issues, privacy leaks, efficiency deficits or low security guarantees.

Relying on CAs or WoT keyservers as gatekeepers to crucial information
such as certificate revocation data poses a risk not only to the everyday user,
but especially to big organizations with large IT-systems and thousands of users.
For them, a secure and timely revocation notification channel for X.509 certifi-
cates that does not impact user privacy is important. Therefore, a research gap
exists with respect to the design of such a system. This work fills the detected
gap and investigates the research question of how to enable secure, timely and
privacy preserving certificate revocation. Our proposed scheme is, in addition,
also decentralized, transparent, scalable and efficient. The proposed BlockVoke
scheme addresses these issues by rapidly distributing revocation information and
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decentralizing revocations, allowing certificate owners as well as CAs to revoke
certificates.

An instantiation of our scheme is explained using the Bitcoin blockchain and
1-of-2 threshold multi-signature addresses [1], which, once created using certifi-
cate specific public keys from both the certificate owner and the CA, will allow
either party to create a transaction on the blockchain revoking the certificate.

The remainder of this paper is structured as follows: Sect. 2 introduces supple-
mentary literature and related work. Section 3 focuses on the functional details
of BlockVoke as a transparent and accountable certificate revocation mechanism,
while Sect. 4 details specific properties as well as engagement processes. After-
wards, Sect. 5 evaluates BlockVoke and discusses the findings. Finally, Sect. 6
concludes this work and provides an outlook on future work.

2 Supplementary Literature and Related Work

This section provides background information, supplementary literature, and
also introduces related work with previous approaches to solving the issue of
certificate revocation.

2.1 Certificate Revocation Mechanisms

Certificates expire after a pre-determined lifetime. However, security incidents
or other events may require a certificate revocation before its expiry date, e.g.,
after its corresponding private key is compromised, the identification of a flaw
in the underlying cryptographic system, due to an insecure key length, or due to
issues related to internal PKI processes [24]. Compromised PGP keys or X.509
certificates enable an attacker to access initially secured data or perform MITM
attacks [45]. CAs revoke certificates by issuing a signed revocation statement – as
a cryptographic proof – using their private key. Additionally, the CA ensures the
distribution of the revocation statement. In the context of the WoT, revocations
do not depend on a CA. Instead, the certificate owner revokes the certificate and
posts a corresponding revocation message to the PGP keyservers.

The most common X.509 certificate revocation mechanisms are illustrated in
Fig. 1 and described in subsequent sections.

Certificate Revocation Lists (CRLs) are signed records of all revoked – but
not expired – certificates of a specific CA based on the certificates’ serial number
[14]. Certificates listed in a CRL are not trusted by any browser. However, CRLs
are criticized as not being efficient at dispersing the revocation information for
several reasons: First, clients are only interested in the validity of a single cer-
tificate – yet, they have to download the complete CRL. Second, each CA main-
tains its own CRL instead of a single global CRL for all CAs. Third, delays occur
between certificate revocation and adding the certificate to the CRL, resulting in
browsers trusting the certificate despite its revocation. Fourth, large numbers of
revocations, as illustrated by our initial Let’s Encrypt incident example, result
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Fig. 1. Certificate Revocation Mechanisms: [a] CRLs: The browser retrieves a signed
list of revoked certificates from the CA during the SSL/TLS negotiation; [b] OCSP:
The client requests the revocation status of a single certificate from the CA; [c] OSCP
stapling: The web server communicates with the CA to periodically receive signed
statements which prove that the corresponding certificate has not been revoked yet.
Alternatively, [b] serves as a fallback; [d] OCSP must-staple enforces [c] by removing
the fallback option [b]. If no valid OCSP response is available, the browser discards the
certificate; – Based on [13] and [45]

in large CRLs, which lead to additional latency and communication overhead
while loading websites [36].

Online Certificate Status Protocol (OCSP) addresses the CRL overhead
issue by allowing clients to query the CA directly and requesting the status
of a particular certificate instead of downloading the whole CRL [43]. The CA
responds by sending a signed response along with the current certificate’s sta-
tus (revoked, not-revoked, or unknown) along with the validity period of the
certificate. Even though OCSP reduces the amount of transferred data, it still
results in additional overhead since the CA has to be queried before trusting the
certificate [13]. Moreover, delays between revoking a certificate and listing the
certificate as revoked still occur [3].

In addition to the previously known issues, OCSP introduces a privacy issue.
The CA can profile clients by correlating their browser activities based on the
IP address with the requested certificates.

OCSP Stapling – also known as TLS Certificate Status Request – addresses
OCSP’s communication overhead with the CA as well as the privacy issue men-
tioned above [15]. Instead of the client sending an OCSP request to the CA, the
web server serving a certificate periodically requests the most-recent certificate
revocation status updates from the CA. The CA responds with a signed state-
ment for the certificates of the requesting web server, additionally stapling a
cryptographic proof to the certificate, which is then presented to a client during
the TLS/SSL negotiations. The CA’s signed statement is only valid for a pre-
defined period and thus cannot be used indefinitely by a malicious web server.
As a result, OCSP stapling reduces communication overhead and addresses the
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Fig. 2. General Blockchain Structure – Based on [37]

issue of CAs profiling clients based on their browsing activities. In case a web
server cannot provide an OCSP staple proof, the client can still fallback to nor-
mal OCSP.

Nevertheless, OCSP stapling still does not solve all issues of certificate revo-
cation. For example, CAs operate using a hierarchical trust model where a root
CA signs the certificate of a sub-ordinate CA, and so on. Neither OCSP nor
OCSP stapling incorporates the revocation status for the end-entity certificate.
An extension proposal exists to address this limitation by allowing the server
to incorporate multiple certificate statuses in a single response, although this
approach is not widely adopted [40].

Finally, the OCSP stapling Must Staple Extension enforces the existence of
a valid OCSP response to be presented by the web server – otherwise, TLS/SSL
negotiations are aborted. Furthermore, the OCSP protocol also enforces the
Must Staple Extension and addresses attack scenarios where an attacker is able
to block clients’ OCSP requests or web server OCSP requests forcing them to
fallback to less secure certificate validation mechanisms. However, according to
[13], out of 500,000,000 certificates tested in 2018 only 0.02% supported the
OCSP Must Staple Extension.

2.2 Blockchain Technology

Figure 2 presents the general structure of a blockchain and subsequently blocks
as used by, e.g., the Bitcoin [37], or Ethereum blockchains [47]. A blockchain con-
sists of a sequentially ordered number of blocks that record transaction events,
e.g., transfer of a cryptocurrency from one person to another. Transactions are
cryptographically signed and represent an incremental list of records, consistent
over the network, time-stamped, and verifiable [37]. Blocks are linked by hashes
of their previous ancestor block, thereby chaining all blocks together. As a result,
changing information in one block, results in a hash mismatch of the succeeding
block. Thus, tampering with one block requires the recalculation of all succeeding
blocks. Blocks are publicly available and synchronized via a global, distributed,
and decentralized P2P storage system.

The technological foundations of blockchains result in properties relevant for
secure, transparent, efficient, and decentralized certificate revocation. i) Decen-
tralization: Data is stored and processed in a decentralized and distributed man-
ner. Consensus is determined by the majority of network participants based on
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the conformity of the network rules. ii) Immutability: Confirmed transactions
are appended to the blockchain. Once recorded, transactions cannot be changed
later on. Furthermore, they are tamper-resistant and prevent unnoticed manip-
ulation of data. iii) Transparency: Information stored on a public blockchain is
globally available and provides transparency to all users. iv) Openness: The P2P
network is open; anyone can join or leave the network at any time. v) Security:
Security of blockchains is achieved based on cryptographically signed statements
and information in conjunction with the distributed and decentralized consensus
mechanism as well as redundant and transparent P2P data storage.

2.3 Related Work

Besides the general revocation mechanisms presented in the previous section,
many more exist and have been proposed in earlier research. In the context of
traditional PKI-related revocation, systems such as Certificate Revocation Trees
[29] and Certificate Revocation Systems [38] exist, while non-research organiza-
tions and entities proposed solutions such as CRLset [23]. Especially the latter
two suffer from bandwidth and latency problems and require the client to fetch
revocation details from pre-defined servers [22].

Larisch et al. [31] propose CRLite, a revocation mechanism that “aggregates
revocation information for all known, valid TLS certificates on the web, and
stores them in a space-efficient filter cascade data structure” [31] based on Bloom
Filters. The system is implemented in Firefox nightly and is distributed to all
browsers with small (580KB) daily updates. However, the system is prone to
single point of failure attacks since it relies on a centralized system design. Due
to being updated daily, there is also a certain amount of latency between the
revocation of certificates and users receiving these revocations.

Besides the classical centralized approaches, various decentralized solutions
using blockchain technology emerged in recent times. CertLedger [30] is a
blockchain-based PKI which records the complete SSL/TLS certificate lifecycle
on the blockchain, including issuance, validation, and revocation of certificates,
thereby circumventing SPOF issues as well as transparency-related drawbacks
of previous systems. However, CertLedger operates its specialized blockchain,
which incurs significant growth in storage (ca. 512GB per year), resulting in
storage and network communication overhead. Moreover, clients do not store
the complete blockchain and only access block headers. Thus, they cannot con-
firm whether they receive a proof referring to the most recent revocation state
of a certificate without making a request to a full node, which might lie. Finally,
operating their special-purpose blockchain implies that CertLedger cannot lever-
age security guarantees of established public blockchain platforms.

Yakubov et al., [48] and Fromknecht et al. [18], propose further blockchain-
based models for issuing, revoking, and validating X.509 digital certificates. The
proposed models manage the entire certificate lifecycle via a blockchain. While
Yakubov et al. rely on Ethereum-based smart contracts, Fromknecht et al. use
Namecoin, which is based on Bitcoin. Similarly, CertChain [12] implements a
X.509 digital certificate self-audit and operation service on a blockchain. It stores
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the entire certificate history from registration to revocation. The proposed sys-
tem makes entire revoked certificates publicly visible, while CertChain leverages
the advantages of blockchain to provide decentralized tamper-evident public cer-
tificates.

Despite their decentralized nature, these systems require users/clients to
either download the complete blockchain or rely on full nodes to provide the
relevant information to clients, which results in network structures that are still
prone to manipulation. Also, the proposed methods do not provide efficient meth-
ods for clients with storage constraints to query certificate revocation statuses.

3 BlockVoke – Blockchain-Based Certificate Revocation

Traditional PKI systems are based on trusted CAs that sign certificates, main-
tain CRLs, and provide OSCP proofs for certificates they issued. As previously
mentioned, the current mechanisms of certificate revocation are subject to SPOF
[2] risk as well as other security and privacy issues, while the WoT suffers from
disadvantages of its own. In this section, we describe the lifecycle of a certificate
using the blockchain-based BlockVoke certificate revocation system. The lifecy-
cle consists of three main parts. First, a certificate signing request is made by
the future certificate owner, which is subsequently used by the CA to create the
certificate. Finally, the certificate either expires or is revoked prematurely.

Throughout this section, we assume an instantiation of our scheme on the
Bitcoin blockchain, using 1-of-2 multi-signature addresses, which allow spending
with either of two different public keys. The general structure remains the same
even when instantiated on other blockchain platforms or through smart con-
tracts. First, we describe the BlockVoke scheme as it applies to the revocation
of SSL/TLS certificates. After that, we describe its applicability to WoT-based
systems, such as PGP. An overview of the whole process is given in Fig. 3.

3.1 Certificate Signing Request

Creating a CSR generally follows the procedure of creating any regular SSL/TLS
CSR. Our approach, however, requires the addition of a new attribute, which
contains the public key corresponding to a Bitcoin address owned by the certifi-
cate owner – illustrated as step 1 in Fig. 3.

3.2 Certificate Creation

Again, the creation and signing procedure of the certificate follows that of any
regular SSL/TLS certificate. In addition, using the public key corresponding to
a Bitcoin address, the CA uses its own Bitcoin public key and the certificate
owner’s key to create a 1-of-2 multi-signature address, which can be spent from
with either of the two public keys. The resulting address is added to the certificate
as an extension field. If the CA publishes Certificate Revocation Vectors (CRV)
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Fig. 3. Overview of the certificate lifecycle, from creation to blockchain based revoca-
tion.

as described in [45], it also adds its own public key to the field. These are steps
2 and 3 in Fig. 3.

Once the certificate owner receives the certificate, it is used as any other
certificate, as indicated by step 4 in Fig. 3.

3.3 Revocation

The extension field allows users attempting to validate the certificate to look up
past transactions originating from this multi-signature address. If any such trans-
action exists, the certificate is considered revoked. The creation and the process
of adding this transaction to the blockchain (the so-called mining process) are
indicated by step 5 in Fig. 3.

The actual revocation is performed either by the certificate owner or the
CA. To revoke a certificate, the party performing the revocation creates a Bitcoin
transaction, sending a small amount into the multi-signature address specified in
the extension field of the certificate. After transmitting this transaction, they cre-
ate a second transaction, spending the funds they just sent to the multi-signature
address back to their wallet. This transaction also contains an OP RETURN script
opcode containing necessary information concerning the revocation. During this
step, it is not necessary to wait for the first transaction to be confirmed since
Bitcoin allows the spending of unconfirmed change. For both transactions, a suf-
ficient miners’ fee should be added to ensure the timely confirmation of both
transactions.

The OP RETURN script opcode allows embedding arbitrary information in Bit-
coin transactions, with a limited size of up to 40 Bytes. The first ten of these
bytes are specified to be BlockVoke followed by a zero byte. As a result, it easy
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to scan the blockchain for revocation transactions even for unknown certificates.
This is followed by the first 16 Bytes of the certificate’s fingerprint, allowing
users to confirm that this transaction actually pertains to the certificate they
are trying to validate. It is then followed by a four-byte integer indicating the cer-
tificate’s date of issuance in days since 2020-02-02. One additional byte encodes
the reason for the revocation, following the RFC 5280 [14] revocation codes as
given in Table 1.

If the CA that issued the certificate is publishing CRVs, the last nine bytes
contain first a three-byte unsigned integer for the revocation number (RN) and
finally six bytes containing a unique identifier for the CA. This information is
added only in case the CA revokes the certificate, as can be confirmed through
the public key that was added to the certificate’s extension field.

As revocation information is instantly broadcast over the Bitcoin P2P net-
work, users and entities building their own revocation lists or filters can instantly
update their filters to include the newly revoked certificate. Examples of such
entities may include companies, universities, or other organizations, which have
stringent security requirements that demand a higher update rate than, e.g.,
the daily updates provided by the CRLite [31] implementation currently being
tested by Mozilla in Firefox Nightly builds [26].

We estimate that a revocation transaction on Bitcoin using a single input and
output, plus an OP RETURN operation has a size of up to 283 Bytes, depending
on the OP RETURN payload’s size.

3.4 CA Root Certificates

Usually, the revocation of CA root certificates poses difficulties as they are self-
signed, and there exists no key that is eligible to revoke them. With our scheme,
a separate key tied to a blockchain address is used for revocation. Therefore, the
BlockVoke revocation mechanism applies as well to CA root certificates, making
it possible to revoke them in case of compromise or other reasons.

3.5 Web of Trust Keys

In the WoT, no central authorities exist to provide trust in cryptographic keys.
Instead, users mutually sign their keys after, ideally, carefully confirming each
others’ identities. Users then determine how much they trust other users’ keys
by checking whether there is a path of transitively trusted signatures leading up
to it [33].

The BlockVoke scheme for certificate revocation is also applicable to keys in
the WoT with minor modifications. Since there is no certificate authority, only
the key owner can publish a revocation. Due to this, a regular Bitcoin address can
be used instead of a multi-signature address. The key owner directly generates
a Bitcoin address and stores it in a User Attribute Packet [11] that is part of an
OpenPGP key. From there on, a revocation is performed as specified above for
SSL/TLS certificates.
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Table 1. Certificate revocation codes according to RFC 5280 [14].

Code Reason Code Reason

0 Unspecified 6 Cessation of operation

1 Key compromise 7 Certificate hold

2 CA compromise 8 Remove from CRL

3 Affiliation changed 9 Privilege withdrawn

4 Key compromise 10 AA compromise

5 Superseded

4 Analysis

In this section, we give an analysis of various properties of the BlockVoke scheme.
First, we detail the security properties of our scheme.

4.1 Basic Security Properties

The primary security properties of certificates using our scheme remain unaf-
fected as BlockVoke is only concerned with the revocation process. It does this
by announcing and preserving revocations through a blockchain platform. Thus,
it is possible to also employ traditional revocation publication methods such as
OSCP or CRLs in parallel, where required.

The fingerprint provided in revocation transactions allows users to confirm
that the transaction is intended to revoke the specific certificate, while the fact
that the transaction originates from the address specified within the certificate
guarantees that the revocation is legitimate. Allowing for fingerprint verification
mitigates the possible scenario that an attacker gains access to the wallet keys of
a certificate owner and attempts to randomly revoke their certificates as a form
of Denial-of-Service attack, without actually knowing which certificates belong
to a particular certificate owner.

4.2 Timeliness of Revocations

In contrast to many other blockchain-based schemes, BlockVoke does not require
its users to wait until revocation transactions are confirmed before acting on
them. The transactions themselves are sufficient to allow the corresponding cer-
tificate to be added to revocation lists or CRLite-based filters without delay. The
purpose of adding them to the blockchain is to ensure the global and continued
availability of these revocations, as the lifetime of transactions that exist merely
in the transaction pool of the Bitcoin P2P network is limited.

Because revocations can be processed as soon as they are broadcast through
the network, attacks on the underlying blockchain also have only a limited impact
on BlockVoke. If the transactions do not get mined before falling out of the
transaction pool, revocations may be lost at some point in the future, unless the
CA or another party rebroadcasts them.
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4.3 Comparison with CertLedger

CertLedger moves the entire certificate lifecycle onto a new, special-purpose
blockchain [30]. While presenting a comprehensive solution to certificate issuance
and revocation, the approach has certain drawbacks.

First, the use of a custom blockchain means that is not possible for the scheme
to inherit the security properties of existing public blockchains. In the case of
BlockVoke, the computational effort spent on securing the Bitcoin blockchain by
miners also guarantees the future persistence of revocations on this blockchain.

Another issue concerns the privacy-preserving aspect of CertLedger. The
state of a certificate changes to revoked by triggering a state update operation in
a smart contract. Only full nodes are able to see these updates directly as most
clients only download block headers, which are then used to verify certificate
state proofs generated by full nodes. CertLedger claims to preserve client privacy
as a state proof can be sent to the client together with the certificate when
establishing a connection. This way, no request regarding this certificate has to
be made to any third party. However, if an attacker takes control of a domain
and compromises the key, a situation which certificate revocation should remedy,
the attacker can bundle an outdated certificate state proof as long as clients do
not check with a third party full node to ensure that the received state proof is
up to date.

4.4 Fees

When storing data on a blockchain, the size of transactions and the fees they
incur are important factors to consider. Table 2 shows the costs of BlockVoke
revocation transactions on the Bitcoin as well as the Ethereum platform.

As described in Sect. 3.3 and presented in Table 2, we estimate an optimal
revocation transaction in the Bitcoin network to have a size below 283 bytes
with a payload size of 40 bytes. As our approach does not depend on fast trans-
action processing, it is not necessary to gain a very high mining priority for our
revocation transactions by paying high fees. Based on data for March 2020, the
cost for a transaction average around $0.001751 per byte. Thus, a BlockVoke
revocation transaction of 283 bytes on the Bitcoin platform costs $0.496.

The costs for an Ethereum transaction are calculated as illustrated in Eq. 1,
where 21000 gas are the fees paid for any transaction, and each byte of payload
costs 68 gas. Based on the 40-byte payload of a BlockVoke revocation, the overall
transaction results in an Ethereum gas demand of 23720. As shown in Table 2
and based on the average Ether price for March 2020, this results in a price of ca.
$0.07 per BlockVoke revocation transaction on the Ethereum platform. Thus, it
is seven times cheaper than the Bitcoin platform.

Fee = 21000 gas + 68 gas ∗ size of txdata in bytes (1)

The size of a minimal Ethereum transaction is 107 bytes, in addition to the up
to 40-byte payload of BlockVoke data [35,47].
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In addition to the costs for the revocation transaction, there has to be a
transaction funding the BlockVoke address. This transaction is usually smaller
and therefore costs less. However, Ethereum multi-signature transactions are
implemented using smart contracts and therefore require two transactions to be
made – first, the transaction triggering the smart contract; second, the trans-
action of the smart contract that transfers the funds. Therefore, we need two
107-byte funding transactions.

We further analyze the impact of transaction size and fees in Sect. 5.

Table 2. Transaction fee comparison between Bitcoin and Ethereum based on the aver-
age transaction fee prices per byte for Bitcoin and the average gas price for Ethereum
in March 2020 – Sources: [5–7] and [16,17,35,47]

Platform Min. TX Size Avg. TX Cost

Bitcoin 283 bytes $0.496

Bitcoin (Funding) 193 bytes $0.338

Ethereum 147 bytes $0.070

Ethereum (Funding) 2× 107 bytes $0.124

4.5 Privacy

Privacy can be considered from two perspectives: The privacy of the certificate
owner who might be revoking their certificate and the privacy of users who
attempt to verify whether a certificate is still valid.

Certificate Owner. The privacy impact on certificate owners is not commonly
considered, but we will shortly explore the topic in the following. In the context
of BlockVoke, the only time a transaction is made on the blockchain is when a
certificate is revoked. Therefore, unless the certificate is revoked, our scheme has
no impact on certificate owner privacy. If a certificate is revoked, we can again
consider two separate aspects. The first aspect is the data contained within the
revocation transaction’s payload. It contains the fingerprint of the certificate,
the date of issuance, and the certificate authority. This information should have
little impact on the privacy of the certificate owner. It can only be matched to
a certificate when the certificate and thus its fingerprint is already known. The
only additional information gained from it is the revocation reason, which is
intended to be known by users attempting to use the certificate.

Another aspect is the issue of general blockchain privacy. Revoking a cer-
tificate using our scheme requires the creation of a transaction on a blockchain.
Therefore the usual considerations about transaction traceability apply [42].
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User. Our scheme has no impact on user privacy. Users running a full node
receive all revocations without leaking information about which certificates they
might be interested in. Users downstream of organizations building, e.g., CRLite
filters based on revocations from our scheme, will experience no privacy impact
from the use of BlockVoke.

4.6 Auditability

Auditability is given as all revocations are publicly stored on the blockchain.

5 Evaluation and Discussion

The following sections focus on evaluating the BlockVoke protocol. In Sect. 5.1
and Sect. 5.2, we analyze storage size and costs for different certificate revocation
scenarios in the context of PKIs and the WoT on the Ethereum and Bitcoin
blockchain.

Bit first, we discuss how fast a BlockVoke revocation statement propagates
through the system. After revoking a certificate – for both cases, PKI and WoT –
the revocation statement is posted to the blockchain in the form of a transac-
tion. The revocation transaction is pushed to the pool of pending transactions
before being mined into the next block of the Bitcoin or Ethereum blockchain.
Technically, a revocation transaction does not have to be mined to be valid in
the context of BlockVoke. Therefore, the lower boundary of time that it takes to
publish a revocation transaction is almost instantly. However, an upper bound
depends on the confirmation time of transactions in both networks.

The Bitcoin network aims to publish a new block every ten minutes (the
so-called block time). The larger the transaction fee attached to a revocation
transaction, the higher the probability that a miner will pick up the transaction
as soon as possible to include it into the next block to receive the transaction fee
for doing so. A Bitcoin transaction is usually considered confirmed after six con-
secutive blocks, i.e., after 60 min. However, the median transaction confirmation
time for transactions that include sufficient fees varies between five and thirty
minutes for the first block [8].

The Ethereum network aims to publish a new block every 12–15 s and is
therefore much faster than the Bitcoin network. A 2018 study suggests that less
than 1% of all transactions take more than ten minutes to be confirmed, while
72% are confirmed within 30 s, or less [44].

Next, we present three case study examples to evaluate cost, efficiency, and
storage requirements of BlockVoke in different real-life scenarios. The calcula-
tions are based on the transaction cost and storage size estimates presented
earlier in Sect. 4.4.

5.1 Case-Study I – Let’s Encrypt CAA Bug March 2020

In Sect. 1, we presented the Let’s Encrypt CAA bug, which forced LE to revoke
3,048,289 of its certificates. 1,706,950 were actually revoked while the remainder
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was left to expire within the next 90 days. Table 3 presents the costs and storage
size requirements of revoking the 1,706,950 LE certificates via BlockVoke. Assum-
ing a Bitcoin-based implementation, BlockVoke needs ca. 812.5 MB of storage
for the revocation and funding transactions as well as roughly $1,423,596 in
transaction fees. Given a block time of ten minutes and a block size limit of
one megabyte, all 1.7 million certificates could have been revoked in less than
136 h – ignoring any further regular transactions which are processed in paral-
lel. An Ethereum-based implementation requires only 616 MB and costs around
$331,148 in fees. Due to the shorter block time (12–15) and a transaction limit
which is imposed by a gas limit (10,000,000 gas at the time of writing this work),
Ethereum could handle the complete set of revocations in less than 47 h – again,
ignoring any further regular transactions.

Table 3. BlockVoke revocation and funding fees as well as storage size requirements
for revoking 1,706,950 certificates involved in the Let’s Encrypt CAA Bug of March
2020.

Platform Min.
BlockVoke TX
Size

Avg.
BlockVoke TX
Cost

Storage Size TX Cost

Bitcoin (Revocation) 283 bytes $0.496 483.07 MB $846,647.20

Bitcoin (Funding) 193 bytes $0.338 329.44 MB $576,949.10

Ethereum (Revocation) 147 bytes $0.070 250.92 MB $119,486.50

Ethereum (Funding) 2× 107 bytes $0.124 365.29 MB $211,661.80

Table 4 goes even one step further and assumes the compromise of the LE
root certificate which requires to revoke all existing LE certificates. On March 31,
2020 LE listed around 124.533 million active and valid certificates [34]. Revoking
all of them at once results in ca. 59.28 GB of storage and $103.8 million in fees on
the Bitcoin, and 44.96 GB of storage and $24.159 million in fees on the Ethereum
platform.

Table 4. Transaction fees and storage size requirements for the hypothetical scenario
of revoking all 124.533 million valid LE certificates as of March 31, 2020.

Platform Min.
BlockVoke TX
Size

Avg.
BlockVoke TX
Cost

Storage Size TX Cost

Bitcoin (Revocation) 283 bytes $0.496 35.24 GB $61,768,386

Bitcoin (Funding) 193 bytes $0.338 24.03 GB $42,092,154

Ethereum (Revocation) 147 bytes $0.070 18.31 GB $8,717,310

Ethereum (Funding) 2× 107 bytes $0.124 26.65 GB $15,442,092
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It is necessary to put the calculations above into context. Even though the
time, storage, and transaction costs seem to disqualify blockchains as foundations
for PKIs, it is important to keep in mind that the two scenarios presented above
are extreme cases. Revoking 1.7 million – yet alone 124.5 million certificates –
never happened before and is thus not comparable with day-to-day operating
costs. Moreover, the cost of $24.159 million to safely revoke all compromised
certificates of a complete CA is cost-efficient, given the size and potential security
implications. As a point of comparison, the US-company Cloudflare estimated
that they spend $400,000 per month to distribute their growing CRL [41,45].
This also leaves aside the fact that BlockVoke allows the direct revocation of the
root certificate, making it even less likely that such a high number of certificates
ever needs to be revoked.

Moreover, despite the timespan to add all transactions to the blockchain,
the approach is also very time-efficient. As mentioned at the beginning of this
section – a revocation is already valid once a revocation transaction is posted to
the transaction pool. Adding it to a valid blockchain block is only required
for subsequent actions. Nevertheless, adding several gigabytes of data to a
blockchain with a public consensus mechanism and slow block times is a tedious
process. Finally, due to a limited maximum lifetime of certificates, full nodes do
not have to process all past transactions anymore since their content becomes
irrelevant after some time (e.g., at the latest after two years) and only remains
relevant in the context of maintaining the underlying blockchain’s security guar-
antees.

5.2 Case-Study II – Revoking the Web of Trust

Our second case study scenario concerns key revocation in the context of the
WoT. Unfortunately, no statistics exist with regards to the daily, weekly, or
monthly amount of revoked certificates. However, [32] performed an analysis of
the WoT based on a snapshot from October 2014 and found 2,966,965 keys, which
were neither expired nor revoked. Similar to the root certificate compromise of
LE, we calculated the storage requirements and transaction fees for the scenario
of revoking the complete WoT. The results are presented in Table 5. Again,

Table 5. Transaction fees and storage size requirements for the hypothetical scenario
of revoking all 2,966,965 valid WoT keys existing in October, 2014.

Platform Min.
BlockVoke TX
Size

Avg.
BlockVoke TX
Cost

Storage
Size

TX Cost

Bitcoin (Revocation) 283 bytes $0.496 839.65 MB $1,471,614.64

Bitcoin (Funding) 193 bytes $0.338 572.62 MB $1,002,834.17

Ethereum (Revocation) 147 bytes $0.070 436.14 MB $207,687.55

Ethereum (Funding) 2× 107 bytes $0.124 634.93 MB $367,903.66



330 A. Garba et al.

the same considerations regarding time, storage size, and overall costs for this
operation apply as presented in the previous section.

6 Conclusion and Future Work

Relying on CAs or WoT keyservers as gatekeepers to crucial information such
as certificate revocations poses a risk not only to the everyday user but espe-
cially to organizations with large IT-systems and thousands of users. Existing
revocation mechanisms such as Certificate Revocation Lists (CRLs), the Online
Certificate Status Protocol (OCSP), and further OCSP extensions are subject
to various security and privacy challenges. CRLs are being criticized as being
an inefficient method of disseminating revocation information; OCSP faces crit-
ical privacy concerns, and its extensions such as OCSP-staple and Must-staple
have minimal adoption rates. On the other hand, the WoT is subject to various
security challenges of its own.

BlockVoke addresses these issues by utilizing blockchain technology to enable
secure, transparent, efficient, and decentralized certificate revocation using the
Bitcoin or the Ethereum blockchain. The scheme relies on a three-stage lifecycle.
First, a certificate signing request is made by the future certificate owner, which
is subsequently used by the CA to create the certificate in the second step.
Finally, the certificate either expires or is revoked prematurely. The BlockVoke
scheme is applicable to the revocation of X.509 certificates as well as OpenPGP
keys used in the context of the WoT.

Usually, the revocation of CA root certificates poses difficulties as they are
self-signed and there exists no key that is eligible to revoke them. BlockVoke
ties a separate key to a blockchain address, which enables the revocation of such
certificates. Revocation information is stored as part of revocation transactions
on the Bitcoin or Ethereum network by embedding payload data into the trans-
action. Our payload is limited to the size of up to 40 bytes and thus very storage
efficient. As revocation information is instantly broadcast over the correspond-
ing P2P networks, users and entities building their own revocation lists or filters
instantly receive updates for their filters to include the newly revoked certificate.

Furthermore, we detail the protocol parameters and various properties of our
scheme related to security, timeliness, cost, efficiency, and auditability. Likewise,
we discuss upper- and lower-bounds of revocation times. Finally, we evaluate
BlockVoke in different real-life case-studies and provide estimates on storage
size and revocation costs for these scenarios as well as a proof-of-concept imple-
mentation of the protocol for the Bitcoin and Ethereum platform.

For future work, we plan to implement and deploy the BlockVoke protocol
on the Bitcoin as well as Ethereum blockchain and evaluate real-world use-cases.
Moreover, we will further analyze the option to invoke smart contracts instead
of plain blockchain transactions. Finally, we will research implementations on
alternative blockchain platforms with faster transaction processing times as well
as lower transaction fees.
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Abstract. Bitcoin has introduced an open and decentralized consen-
sus mechanism which in combination with an append-only ledger allows
building so-called blockchain systems, often instantiated as permission-
less cryptocurrencies. Bitcoin is surprisingly successful and its market
capitalization has reached about 168 billion USD as of July 2020. Due
to its high economic value, it became a lucrative attack target and the
growing community has discovered various flaws, proposed promising
improvements, and introduced contingency plans for handling catas-
trophic failures. Nonetheless, existing analysis and contingency plans are
not formalized and are tailored only to handle a small subset of specific
attacks, and as such, they cannot resist unexpected emergency cases and
it is hard to reason about their effectiveness and impact on the system.
In this work, we provide a formalized framework to help evaluate a vari-
ety of attacks and their mitigations. The framework is based upon the
universal composability (UC) paradigm to describe the attacker’s power
and the system’s security goals. We propose the system in the context of
Bitcoin and to the best of our knowledge, no similar work has been pro-
posed previously. Besides, we demonstrate and evaluate our model with
case study from the real world. Finally, we signal remaining challenges
for the contingency plans and their formalization.

Keywords: Blockchain security · Bitcoin · Contingency plans ·
Attacks

1 Introduction

Satoshi Nakamoto’s Bitcoin [32] is the first decentralized system which does not
rely on a trusted party to reach consensus in a large set of mutually untrusting
nodes. Up to now, Bitcoin is the most popular cryptocurrency. Every Bitcoin
node replicates the public ledger, called the blockchain, and tries to extend it by
generating a new block pointing to the previous block and aggregating received
transactions. The process of generating a new valid block is called mining and
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nodes (called miners) are incentivized to run the protocol as each added block
rewards its finder with a block reward and transaction fees included.

With the increasing success of Bitcoin, there have been proposed multiple
blockchain systems with different capabilities [19,21,31,33]. Consequently, the
blockchain security has received increasing attention by researchers analyzing
various aspects of blockchain platforms [2,7,14,15,34,37]. Since these systems
promise to significantly change multiple sectors and businesses their security is
critical. Interestingly, their inherent properties, like decentralization and open-
ness, do not help with the security life cycle known from traditional platforms and
applications. These systems are difficult to be updated and patched and this limi-
tation is strongly manifested while considering hypothetical catastrophic crashes,
like a broken cryptographic primitive, that may affect most of the blockchain
users.

Unfortunately, we can predict that it is only a matter of time when a catas-
trophic failure happens to a popular cryptocurrency like Bitcoin. For instance, an
implementation of a privacy-oriented cryptocurrency Zerocoin [25] had a critical
bug found by noticing irregular coin spends on the 19 April 2019. Subsequently,
the developers tried to replace the core element of the system by another protocol
as an ad-hoc contingency plan [23]. To mitigate the effects of such events, Bit-
coin developers maintain the documentation of Bitcoin contingency plans [35].
However, these plans cover only a small subset of possible failures in their limited
scope. Moreover, these plans are based rather on predictions and speculations,
and are not supported by any rigorous formal reasoning.

In this paper, we propose a methodology and framework that helps to for-
mally reason about crashes in Bitcoin. In particular, we aim to answer the fol-
lowing questions:

– What component failures may be particularly harmful to the protocol?
– How could we respond if these components fail (i.e., propose contingency

plans)?
– Can we provide a uniform framework for modeling crashes and contingency

plans of blockchain systems?

Due to the uncertainty of the adversary’s power and strategies, it is not an
easy task to formulate possible crashes and contingency plans. One promising
direction is to use abstraction and model the Bitcoin functionality. In short, the
main application of the bitcoin protocol is as a decentralized currency system
with a payment mechanism, which is what it was designed for. An important
question is then: what functions does Bitcoin achieve and under what assump-
tions? To formally answer this question we propose to use the universally com-
posable (UC) paradigm [4] that has been proved to be a successful methodology
reasoning about such complex systems [3].

Contributions
In this work, we aim to analyze the Bitcoin security via the UC blockchain pro-
tocol [3] and formalize the Bitcoin crashes through the meticulous investigation.
More specifically, our contributions are as follows:
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– Firstly, we propose a general framework for the Bitcoin system in order to
analyze, detect, and mitigate adversarial behaviors. Our framework takes the
given attacks as input, while handling the detection method as well as a
contingency plan as output. To the best of our knowledge, there is no any
similar prior work.

– Secondly, thanks to the UC treatment of the Bitcoin protocol, we illustrate
the basic structure of our formalized security model as well as its analysis by
extracting the functionality of each protocol. Our security model could help
the framework to generate contingency plans.

– Finally, we illustrate the feasibility of our framework by demonstrating and
analyzing it with use case. We also identify remaining challenges for the con-
tingency plans modeling.

2 Related Work

The Bitcoin design and its rationale are mostly described in its whitepaper
[32]. The document is not formal and does not dive into system details or its
analysis, however, multiple papers have focused on analyzing the underlying
concepts and techniques related to Bitcoin and the blockchain technology [1,6,
16]. Due to the immaturity of the Bitcoin protocol at the beginning, a lot of
attacks have been found, such as selfish mining [1,2,15], where a miner adopts
a deviated (malicious) mining strategy to increase its reward. Other attacks
include double-spending attacks [29], network-level split attacks [9], forking the
public blockchain to invalidate the target transactions [26], or eclipse attacks
isolating victims from other peers in the peer-to-peer network [13,24]. With
all recent interest in blockchain systems, surprisingly, only little research effort
has been devoted to blockchain catastrophic events and contingency plans [35].
Giechaskiel et al. [10] first present the systematic analysis of the effect of broken
primitives in Bitcoin. Their analysis reveals that some breakage causes serious
problems for Bitcoin, whereas others seem to be inconsequential.

Recently, the simulation-based UC framework [4] is becoming the standard
technique for demonstrating that a protocol is “secure”. Since its introduction,
the framework has been extended and modified. Katz et al. [18] proposed a novel
approach to defining synchrony in the UC framework by introducing functional-
ities exactly meant to model, respectively, bounded-delay networks and loosely
synchronized clocks. No constant-round asynchronous MPC protocols based on
standard assumptions are known at that time, Coretti et al. [5] realized the syn-
chronous and asynchronous models have to a large extent developed in parallel
with results on both feasibility and asymptotic efficiency improvements in either
track and they close this gap by providing the first constant-round asynchronous
MPC protocol that is optimally resilient (i.e., it tolerates up to 1/3 corrupted
parties), adaptively secure, and makes black-box use of a pseudo-random func-
tion.

Based on the assumption that the computational puzzle is modeled as a
random oracle, Pass et al. [27] proved that the blockchain consensus mechanism
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satisfies a strong form of consistency and liveness in an asynchronous network
with adversarial delays that are a-priori bounded, within a formal model allowing
for adaptive corruption and spawning of new players. Concurrently, Garay et al.
[7] proposed and analyzed applications that can be built “on top” of the backbone
protocol, specifically focusing on the Byzantine agreement (BA) and on the
notion of a public transaction ledger. Garay et al. [8] subsequently extend this
work to provide the first formal analysis of Bitcoin’s target calculation function in
the cryptographic setting, i.e., against all possible adversaries aiming to subvert
the protocol’s properties.

From those points of view, Kiayias et al. [20] modeled the ideal guarantees as
a transaction-ledger functionality in the context of universal composition frame-
work. Subsequently, Badertscher et al. [3] put forth the first UC (simulation-
based) proof of the Bitcoin security and the functionality allows for participants
to join and leave the computation and allows for adaptive corruption.

3 Preliminaries

3.1 Functionalities

In contrast to weaker property-based notions, that only guarantee security in a
standalone setting [17] or under sequential composition [11], a UC-secure proto-
col maintains all security properties even when run concurrently with arbitrary
other protocol instances.

The basic idea of the security proofs in the UC model is the real and ideal
worlds paradigm [4]. First, we should define a cryptographic task to be achieved
in the real world, namely, a distributed protocol that achieves the task across
many untrusted processes. Then, to show that it is secure, we compare it with an
idealized protocol in which processes simply rely on a single trusted process to
carry out the task for them (and so security is satisfied trivially). The program
for this single trusted process is called an ideal functionality as it provides a
uniform way to describe all the security properties we require from the protocol
[22]. We assume a protocol π realizes an ideal functionality F (i.e., it meets its
specification) if every adversarial behavior in the real world can also be exhibited
in the ideal world. The steps to prove a protocol secure can seem as follows:

1. Specification: for a given ideal functionality F in the ideal world, we should
design a protocol π in the real world which achieves the task in the ideal
world.

2. Construction: we must provide a simulator S that translates any attack A on
the protocol π into an attack on F.

3. Security proof: we need to show that running π under an attack by any
adversary A (the real world) is indistinguishable from running F under attack
by S (the ideal world) to any distinguisher Z called the environment.

In particular, Z is an adaptive distinguisher, meaning that it interacts with
both the real world and the ideal world, and the simulation is sound if no Z can
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distinguish between the two. The primary goal of the UC model is composability.
Suppose a protocol π is a protocol functionality that realizes a functionality F,
and a protocol P relies on F as a subroutine, in turn realizes an application
specification functionality G. Then, the composed protocol P ◦ π, in which calls
to F are replaced by calls to π, also realizes G. Instead of analyzing the composite
protocol consisting of P and π, it suffices to analyze the security of P itself in
the simpler world with F, the idealized version of π.

This paper focuses on the functionalities in the ideal world. Because we base
on a secure proof of Bitcoin’s UC model from the previous research [3], for every
attack we consider only the functionality it breaks, i.e., the attacker’s behavior
could threaten or break nothing but the functionality assumptions. In such a
case, we fix the protocol by “recovering” the functionality, what then can be
specified as a contingency plan.

3.2 Notation

The Bitcoin system can be seen as a protocol run by each participant (i.e.,
node) Pi among the Bitcoin network. We treat each functionality in the Bitcoin
protocol as the functionality F providing some functions which are needed for
the node Pi. Before we define the security goal of the blockchain, we introduce
the basic components of the model.

Algorithm 1. Functionality Random Oracle FRO

Input: x. It maintains a table T1 (initially T1 = {}).
Output: (x, y).

1: if no pair of the form (x, ) is in T1 then
2: Sample a value y uniformly.
3: Add (x, y) to T1.
4: end if
5: Get (x, y) from T1.
6: Return (x, y)

– Functionality denotes the process algorithm which could accept a query and
respond to the query. In our model, we treat each composable function in the
UC model as the functionality.

– Protocol in the real world achieves the task in the ideal world, the UC
paradigm treats protocol as the real world.

– Node represents each user Pi ∈ P who has access to query a functionality. In
Bitcoin, each participant is a node, and the Bitcoin network intends to allow
each node to process functionalities correctly.

– Environment. In our model, all regular processes are within the envi-
ronment. An attacker A can observe the environment and launch adaptive
attacks, e.g., change the functionality output (we will define the malicious
behavior later).
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Algorithm 2. Functionality Chosen-format Bounded Pre-image Oracle FCBRO

Input: (a, b, yl, yh, i). It maintains a table T2 (initially T2 = {}).
Output: (x, y).

1: Find x to satisfy yl ≤ h(a||xi||b) ≤ yh.
2: add (x, y) to T2.
3: Return (x, y).

To model the Bitcoin protocol, we need to define its (sub)protocols that will
be run to facilitate access to the Bitcoin network resources and to provide its
security. The main question in that context can be formulated as what func-
tionality can the blockchain provide to cryptographic protocols? For a simple
presentation, in this work we do not present all functionalities and protocols of
the Bitcoin protocol, and we refer readers to the work we base on [3].

4 Formalizing Bitcoin Crashes

4.1 Motivation

Bitcoin is a complex decentralized system that combines network, consensus,
computation, game theory and other aspects from different areas. This paper
does not intend to model the Bitcoin system, however, we base on the prior
work [3] to extract some useful constructions and assumptions. As a large-scale
protocol, Bitcoin can be divided into functionalities. A functionality is part of
the features to be implemented by the Bitcoin system (it is modeled like an
algorithm executed by a trusted third party). Functionalities represent action
goals the protocol aims to achieve in the ideal world. For example, a simple
functionality is the hash query, which provides a random number y for each input
x – it is commonly recognized as the random oracle (RO) model as presented in
Algorithm 1.

However, with aging hash functions and their implementations the RO
assumption may not hold and such an event would “modify” this functional-
ity. Giechaskiel et al. [10] present the first systematic analysis of the effects of
the broken hash mechanism on Bitcoin. They summarize different types of break-
age into a chosen-format bounded pre-image oracle as in Algorithm 2, and they
discuss potential migration pitfalls of the breakage and the contingency plans.

Inspired by this approach, this work aims at another promising direction,
namely to analyze every functionality of the Bitcoin system and to find out
corresponding formalized contingency plans. Unlike previous work, we give a
framework allowing to reason about entire crash classes and contingency plan
of each functionality of the protocol (within the considered UC model). Using
the above example, we use the modified functionality F′

CBRO to represent an
adversary. The modified functionality F′

CBRO corresponds to the adversary with
the ability to access not only the FRO, but also the FCBPO. As shown in Algo-
rithm3, the adversary could access the random mapping y of arbitrary input x
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Algorithm 3. The modified functionality Chosen-format Bounded Pre-image
Oracle F′

CBRO

Input: x or (, , y, y, 0).
Output: (x, y).

1: if receive x then
2: Send x to FRO and receive (x, y).
3: end if
4: if receive (, , y, y, 0) then
5: Send (, , y, y, 0) to FCBRO and receive (x, y).
6: end if
7: Return (x, y).

and could also determine x of arbitrary input y (if the input y does not have
corresponding pre-image x, return φ). Such a modeling corresponds to reasoning
about the Bitcoin’s hash function being broken in the real world, allowing the
adversary to find a pre-image of the input y.

Interestingly, the Bitcoin documentation considers the case of the hash func-
tion being broken and the following contingency plan is proposed: a) Every
participant should be informed about the breach. b) A new secure hash algo-
rithm should be deployed. c) The old blockchain state (i.e., the unspent coins)
should be hardcoded and protected by the new secure hash algorithm.

The first and third steps are introduced to eliminate losses and to maintain
the state before the breakage. From our perspective, the second step is quite
interesting as we can view it as denying the functionality FCBRO for the adversary,
i.e., if the broken hash function is replaced, she has no access to the functionality
FCBRO anymore.

When the hash function is broken, the adversary has access to F′
CBRO. F′

CBRO

is the combination of FCBRO and FRO, for an adversary, she could invoke F′
CBRO,

then F′
CBRO could access the FCBRO or FRO with inputs, namely, x or (, , y, y, 0),

F′
CBRO receives the outputs from FCBRO or FRO and finally returns the results

to the adversary. Thus a contingency plan could be specified as follows: if the
adversary obtains access to FCBRO, we need to restrict this access by replacing
(recovering) FCBRO by FRO.

This simple example provides the main intuitions behind our framework. In
short, we represent an adversary by parts of the protocol she can affect. Then we
build the extracted functionality to analyze the advantage that the adversary
is obtaining while attacking the system. The change to the functionality that
restricts such an advantage is proposed as a contingency plan.

4.2 Methodology

We aim to analyze and mitigate attacks and crashes, however, in practice it
is infeasible to enumerate all possible attacks due to the protocol complexity
and the huge attack vector space. On the other hand, omitting an attack in
the analysis could result in incomplete analysis or non-functional contingency
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plans. Therefore, to maximize the effectiveness of our framework, we take an
approach where entire attack classes are considered (instead of single attack
vectors). Our core observation is that abstractions introduced by the UC model
significantly help our approach to capture and handle the protocol’s complexity
in a formalized way.

Attacker’s 
Behaviour

Check Call Difference Rectify

Output

Our Formalized Model 

The Given
    Attack

Detection Breach Contingency
      Plans

Input

Fig. 1. Our methodology to cope with attacks.

Our framework is illustrated in Fig. 1.

1. For a given attack, we first extract the attacker’s behavior as the basis of our
process. The process goes as follows, firstly we put the attacker’s behavior
into our formalized model and we intend to find the attack’s pattern and
the broken parts. We can verify the broken parts through invoking a special
function (i.e., a check call), which can be seen as a detection module.

2. Secondly, from the attacker’s behavior, we can find the difference between the
base protocol (that we want to achieve) and the broken protocol (i.e., after
the attack). This difference characterizes the breakage of the protocol (i.e.,
its specific affected components).

3. Finally, because we identified the breakage (i.e., the difference between the
base and broken protocol), we can rectify the deviation from the model’s
view and this rectification can be mapped in the contingency plan in the real
world.

To sum up, the framework imports the given attack as the input, and exports
the detection, the breakage, and the contingency plans as the output. In the
following we sketch our framework as shown in Fig. 2.

To realize our methodology, in the first place we need to formalize the pro-
tocol by defining what are the properties of the ideal protocol (i.e., what prop-
erties should be achieved when the protocol functions correctly). We adopt the
UC model of Badertscher et al. [3] as the base model for the correct Bitcoin
protocol. Once an attack is launched by an attacker, the real world’s process
could be harmed more or less, this event will be modeled as a deviation from
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the base Bitcoin protocol, i.e., some functionalities or protocols will not work as
expected which can be seen as replacing this functionality by the attacker.

For example, the Bitcoin protocol requires a solution to a cryptographic
puzzle as part of the block generation. This solution is found by finding a par-
tial pre-image of a hash function (i.e., proof-of-work, PoW), requiring enormous
computation of the Bitcoin network. However, if the adversary finds a way to
solve the hard puzzle without finding a pre-image, the PoW mechanism would
be replaced by a simple computation in our model (modeling the adversary
breaking the hash functionality). This would imply that the Bitcoin protocol is
partially modified by the attacker. In our model, we define such a replacement
as an attack and we are able to give the contingency plans to restore the Bit-
coin protocol in such a case. Moreover, another advantage in adopting the UC
methodology is that when a property is proved under some assumptions, we do
not need to consider the adversary’s behavior beyond the Bitcoin protocol, i.e.,
the environment in the UC model. We only deal with the replacement or the
modification of the affected functionalities in the ideal world.

Fig. 2. High-level overview of our framework.

Moreover, although we focus on Bitcoin, our framework could also be
deployed in other cryptocurrencies as long as the basic protocol has been proved
to be secure in the UC model.

4.3 Adversary Model

Firstly, we assume an adversary able to change some outputs or change the
functions of the functionalities. In addition, the adversary can delay the out-
put or does not execute the process. Secondly, the adversary can change the
environment which is out of the functionality, due to the security proof of the
UC framework, the breakage of the environment will not influence the security
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of each functionality, thus the security of the individual node will be guaran-
teed. Finally, we also inherit one of the core assumptions of the blockchain, i.e.,
the majority of the nodes are honest (i.e., do not launch any attacks) and the
attacker’s computing power is not larger than 50% of the total computing power
in the Bitcoin network. We emphasize, that our adversary model captures also
bugs or misconfiguration that can be introduced unintentionally.

Attack. For a Probabilistic Polynomial Time (PPT) attacker, the protocol is
secure if and only if the output of the protocol is indistinguishable from the
output of the ideal functionality. We define that the attacker can break the
protocol if and only if the output of the protocol targeted by the attacker can
be distinguished from the output of the ideal functionality.

4.4 Security Goals

We have the following security goals. First of all, for any party Pi ∈ P , any
feasible behavior or any potential change from an adversary A should be visible,
i.e., the Pi should have the ability to aware of the attacker’s potential behavior.
This security goal indicates that some detection method is established in the
real world. Second, the difference between the broken protocol and the desired
protocol should be pointed out, which would help any node aware of the breach of
the protocol. Besides, the party Pi should have the ability to solve the problem
(e.g., by installing a new software patch or configuring some settings). This
objective is in fact, similar to the goals of contingency plans in the real world.
Some attacks might not have a contingency plan, i.e., a totally broken function
or protocol, and in this scenario we also would like to give insights on why the
contingency plans do not work.

4.5 Analysis

It should be noted that the universal composable Bitcoin protocol actually con-
sists of other functionalities which are also composable, including the random
oracle functionality, a network functionality, and a clock functionality. The adver-
sary tries to undermine not only the Bitcoin core functionalities, but also its
dependencies and (sub)protocols.

The security of our framework can be split into two parts. The first one
is the UC security, which is related to the functionality, protocol, node, and
environment, and this part is securely guaranteed by the UC framework proof.
The second part is the channel’s security, which is related to the communication
between the nodes and functionality. In a UC protocol, node interactions with a
functionality or protocol are assumed to be secure and atomic. In our framework,
the node cannot access the functionality which is controlled by the adversary,
that means the node’s channel is not secure, thus we need to make an assumption
necessary to detect an adversarial behavior.
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In our model nodes detect attacks by finding a difference between the original
protocol and its broken modification. However, such a detection would be infea-
sible if the protocol is attacked in a way that nodes cannot detect it. Therefore,
to model node actions in the face of a functionality or protocol compromise we
need to make one assumption. We assume that there exists a functionality that
will never be corrupted by the adversary. This functionality only responds to
one question: Is any functionality corrupted? The functionality usually does not
need to be invoked, unless all of the channels have been corrupted. It should be
noted that any other functionality should be prepared to receive a query and
return the status of its state (i.e., original or corrupted). In the ideal world, the
standard protocol should be preserved, thus the protocol could compare itself
with the standard protocol to notice the differences between them.

Although we are aware that in practice attack detection is challenging and the
assumption may seem strong, without this functionality attacks can stay unde-
tected, thus rendering contingency plans useless. Interestingly, Bitcoin developers
in their contingency plans [36], make a similar (although informal) assumption
that there should be at least one operational communication channel while the
attack is being launched. As we have a communication channel available, the
attack would be noticed by the participants at some points, thus they could
apply the contingency plan to fix the attack. The communication channel is
actually taking the role of the query acceptance in reality, without the base
channel like this, Bitcoin or other cryptocurrencies could be effectively blocked
via a severe attack censoring any information exchange between participants.
An important difference between an available communication channel and the
detection functionality is that the former is rather for notification than for detec-
tion.

With the above assumption, we can use the following theorem as a premise
to support our methodology.

Theorem 1. The attacker can break the protocol πledger if and only if the pro-
tocol is modified so as to be distinguishable from the ideal functionality.

Proof. To prove this theorem, we should prove that the attacker can not break
ideal functionality Gledger. The ideal world’s functionality in the ideal world is the
function that we want to realize. In the event of the breach in the ideal world, we
could modify the ideal functionality and try to find another protocol to realize the
functionality. Recently, the previous research [30] has proved that protocol πledger

is statistically close to the ideal functionality Gledger under the UC standard
assumptions. Thus for any PPT adversary, the output from the protocol πledger

and the output from the functionality Gledger are indistinguishable. That implies
that as long as the attacker can not break the protocol πledger, the original
protocol remains secure under various of the attacks. However, if the protocol
is modified by the attacker, the modified protocol is not statistically close to
the ideal functionality, the attacker could break the modified protocol naturally.
Therefore the recovery of the attacker’s modification is the key point of our
analysis and contingency plans.
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We emphasize that all attacks could be handled in our framework as long
as the underlying security model is proved (i.e., has a formal proof in the UC
framework). Every attack can be modeled as a replacement of functionality in
Bitcoin protocol, and if the emerged attack does not relate to the replacement of
the functionality, then the protocol remains secure under certain assumptions.

5 Case Studies

Our framework allows adversaries to damage not only the functionality but also
a protocol, from the protocol’s point of view, we analyze the consequences of the
breach and try to find contingency plans to respond to it.
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Fig. 3. The ledger queries in the Bitcoin protocol.

The mining process is the key component of the Bitcoin protocol and the
considered UC model. It is critical for the stability and security of Bitcoin,
therefore, mining is often a subject of detailed analysis and studies. In the model,
the mining process is related to ledger queries in as shown in Fig. 3. In this
section, we discuss attacks on each part of the mining process (as modeled) and
their consequences.

Mining Process in Bitcoin. The underlying concept of Bitcoin is to maintain
a decentralized ledger by a group of nodes and selecting a leader is the essential
procedure to add new blocks (and transactions, consequently). The Bitcoin sys-
tem uses a proof-of-work scheme to determine the leader in each round, roughly
speaking, every node tries to find a solution of a cryptographic puzzle. These
nodes are called miners, and a puzzle solver for a round is its leader able to
propose a new block.

Each party can create new transactions, stores a copy of a blockchain (Valid
Struct), and maintains a transaction buffer to store transactions received from
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other nodes (Is Valid State). At the beginning of a new state (Ledger Main-
tenance), every miner obtains the current blockchain state and its transaction
buffer (Fetch Information, Max Valid), then the miners try to find a solution for
a given puzzle (Extend Chain). The miner who discovers a new solution becomes
the round leader who sends the solution to other nodes (Extend State). Other
nodes receive the solution and accept it after the validation event. All of the
above processes constitute the mining process in Bitcoin (Ledger Queries).

Table 1. The breaches of the mining process. Bold lines are the potential causes of
selfish mining.

Mining Process
Breach

Effect Breach description

Ledger Queries Transaction submission The node can not submit the
transaction

Fetching the state The node can not start fetching the
state

Mining start The node can not start mining

Fetch
Information

Fetching the blocks The node can not fetch the block after
invoking fetch information

Fetching the transactions The node can not fetch the transactions
after invoking fetch information

Handling new party The node can not join the protocol
while the protocol is already executed

Max Valid The node can not start verifying the
blocks and the transactions

Valid Struct The node can not verify the blocks after
invoking fetch information

Is Valid State The node can not verify the transactions
after invoking fetch information

Ledger
Maintenance

Voting the state in the
updating round

The nodes can not reach consensus at
the updating round

Pretreatment of mining
process

The node can not fetch the current clock
information (block height) before min-
ing; The node can not pack the trans-
actions and blockify the blocks;
The new party who join the protocol
while the protocol is already executed
can not get the latest information about
the blockchain

Voting the state in the
working round

The nodes can not reach consensus at
the working round

Fetch the information
at the end

The node can not fetch the information
after reaching consensus

Extend State Extend Chain The node can not mining locally by
using random oracle
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Modeling Mining Process Breach. As defined, a breach means that at least
one component of the attacked procedure is replaced by the adversary, thus the
entire procedure does not work as intended. Each replacement can seem like a
breach, and an attack can be combined as several different replacements. We
analyze the consequences of each replacement separately but the attack’s final
effect (if more components are affected) can be seen as a sum of several partial
effects. We, however, note that the framework does not handle the breach beyond
the UC model, for example, money fraud, hijacking, private key disclosure, or
other attacks related to operations security.

Consequences of the Breach. The consequences of the mining process breach
are summarized in Table 1. Due to the page limit, we omit the detailed descrip-
tion of each of those consequences.1

Contingency Plan. Any kind of the breach in the mining process would cause
the damage to nodes. Unfortunately, nodes are usually distributed in the net-
work and there are no “official” communication side channel proposed, thus it
may be challenging to detect a breach in the system by all nodes quickly. The
attacker may target a group of victims who would be unaware and respond to
the malicious behavior. In this setting, a non-compromised communication chan-
nel is however required to prevent the adversary, and once the node realized he
is likely to be attacked, the following actions should be taken immediately: a)
The nodes should stop submitting transactions and blocks. b) The nodes should
stop receiving transactions and blocks actively or passively. c) The nodes should
stop mining and any related behaviors. d) The node should verify the recent
transactions and blocks carefully, rollback to the previous states if necessary. e)
The new node should stop attempting to join the network.

Selfish Mining. Selfish mining attack occurs when a node or a mining pool
attempts to withhold a successfully validated block from being broadcast to the
rest of the bitcoin network as shown in Table 1. The selfish miner withholds their
successfully mined block and continues to mine the next block, resulting in the
selfish miner having mined more valid blocks compared to other miners. This
allows the selfish miner to claim the block rewards while the rest of the network
accepts “malicious” block solutions and abandons their “honest” fork.

In our model, selfish mining can be modeled as a modification of the Extend
State protocol. The original behavior is broadcasting every newly mined block
immediately, but the modified behavior is withholding the newly mined block.
Then the attacker modifies also the Fetch Information protocol. The original
behavior is to update to the latest blockchain view, while the modified adversarial
behavior is to monitor the Bitcoin network, and if the attacker wins, the attacker
would not take the action; otherwise, the attacker broadcasts the mined block
invalidating the work of honest nodes. Finally, the attacker modifies the protocol
1 The extended version of this paper will be publicly available as a preprint.
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ledger maintenance, such that the attacker can start mining without applying
honest updates, thus it will not lead to reaching the consensus phase (in the
adversarial view).

Because the modification of Extend State is actually not the key point of
the selfish mining, withholding proof-of-work means the attacker can not earn
the reward from the blockchain. By focusing on Fetch Information and ledger
Maintenance modifications, the following contingency plans can be suggested.

– A stale block can not be accepted by other nodes. Thus the attacker can not
withhold the newly mined block, the attacker should fetch the information
from outside if he withholds a block. This suggestion is focusing around Fetch
Information.

– The protocol should forbid the attacker to mine the next block if the attacker
has not published the newly mined block. The feasible procedure is that the
valid block should have the majority of the nodes’ signature after verifying
it, and the next block should contain the hash of these signatures. This sug-
gestion is focusing on ledger Maintenance.

The contingency plan guarantees that the messages transmitted by honest
miners are delayed maximally by Δ rounds,2 to formally state the intuition
behind the above contingency plans, we first present an useful observation about
the protocol’s observation.

Lemma 1. Let Pi and Pj be miners, and let the round r ≥ 0. Assume Pi is
honest in round r, and its local state has length l. Then for any honest miner
Pj in round r + Δ who is registered in the network before round r, the miner Pj

must have at least length l.

Proof. We have the assumption that the messages transmitted by honest miners
are delayed maximally by Δ rounds. Thus, if an honest miner receives a state
which has length l, then all of other miners will receive the state within the
next Δ rounds. Hence, the other honest miners will adopt a chain with length
at least l.

We define Pj in the above lemma is honest-and-synchronized miner, then we
state the relation between time (rounds) and number of new state blocks, i.e.,
chain growth.

Lemma 2. In the real world execution, Let Pi be miners, and let the round
r ≥ 0. Assume Pi is honest-and-synchronized miner in round r, and its local
state has length l. Then in the round r + t for t ≥ 0, it holds that for any
δ > 0, any honest-and-synchronized miner Pj will has length at least l + T if
T ≤ (1 − δ)t αmin

1+αminΔ except with negligible probability. Where α is the honest
mining power.

2 It is essentially assuming a synchronous network.
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Proof. (sketch) Generally, for an interval of rounds r, ..., r + t, we can guarantee
a length increase of γ · t with γ := τ

1+τΔ if for all possible subsets S of rounds
of size t′ = t(1 − γΔ) of this interval we have αS ≥ τ except with negligible
probability.

Theorem 2. In the real world execution, assume that in round r, an honest-
and-synchronized miner has a state. The probability that a block st mined by
the adversary in this state was first accepted before round r − wt with negligible
probability, for any constant 0 < w < 1, where S denotes the interval r−wt, ..., r.

Proof. (sketch) From chain growth and the above lemma, we derive that if an
honest-and-synchronized miner adopts a new state that contains a block the
adversary obtained by functionality then either this block has been published by
the adversary before, or it was mined quite recently by a corrupted party.

The attacker might have the ability to break the assumption, for instance,
delay the message for a long time. In this case, the contingency plans aim to
restore the corresponding parts in the protocol, it works as a guarantee of the
assumption of the above theorem.

Note, that although these suggestions may be insightful for new systems,
they actually require major protocol changes. In fact, multiple proposed selfish-
mining mitigations are based on similar observations [12,28].

6 Conclusion

We have presented the first formalized contingency plans framework for Bitcoin.
Our framework is able to facilitate analysis of entire attack classes, giving detec-
tion guides, breakage classification, and contingency plans as the output. Our
framework involves a formalized UC model that describes the Bitcoin protocol
and its properties as the start point. This approach allows us to formally reason
about attacks on the system, by modeling them as changes of the model. Con-
sequently, contingency plans can be proposed as fixes that recover the modified
protocol to its secure modification. Moreover, we demonstrated how to apply
our framework to different classes of failures and attacks.

Although we believe that this work can be seen as the first attempt towards
more complete and formal contingency plans, we are also aware that there is
still a substantial amount of future work to be undertaken. In particular, we see
limitations of some aspects of UC models and its relation with the real world
(e.g., network models). We leave more realistic and practical models as future
work.
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Abstract. Being the most popular permissionless blockchain that sup-
ports smart contracts, Ethereum allows any user to create accounts
on it. However, not all accounts matter. For example, the accounts
due to attacks can be removed. In this paper, we conduct the first
investigation on erasable accounts that can be removed to save sys-
tem resources and even users’ money (i.e., ETH or gas). In particu-
lar, we propose and develop a novel tool named Glaser, which ana-
lyzes the State DataBase of Ethereum to discover five kinds of erasable
accounts. The experimental results show that Glaser can accurately
reveal 508,482 erasable accounts and these accounts lead to users wasting
more than 106 million dollars. Glaser can help stop further economic
loss caused by these detected accounts. Moreover, Glaser character-
izes the attacks/behaviors related to detected erasable accounts through
graph analysis.

Keywords: P2P system security · System maintainability · Ethereum

1 Introduction

Being the largest blockchain that supports smart contract, Ethereum has two
kinds of accounts: EOA (Externally Owned Account) and contract account [17].
As a permissionless blockchain system, Ethereum allows any user to create many
EOAs through their private keys. Deploying a smart contract to Ethereum will
produce a contract account that contains the contract’s runtime bytecodes. Every
node must synchronize blockchain data, which includes blocks and StateDB
(State DataBase) [3]. The StateDB stores all the accounts’ state information,
such as ETH balance, transaction number, runtime bytecodes, and so on [3].

However, not all accounts should be kept. In particular, we identify three
kinds of erasable contract accounts that are produced due to contracts’ pro-
gramming errors or attacks, and two kinds of erasable EOAs that are produced
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due to contracts’ deployment failure or DoS (Denial of Service) attacks. Such
erasable accounts not only waste system resources and affect the efficiency of
blockchain, but also easily waste users’ money (i.e., ETH or gas). For example,
one empty account (Address: 0x6e55..) discovered in this paper was created due
to contract deployment failure. It wasted user’s 137,552 gas when it was called
because the contract’s runtime bytecodes were not stored in this account, whose
information is shown in Fig. 1. We regard the worthless accounts that deserve to
be removed without affecting the normal operations of users and other accounts
as erasable accounts.

Fig. 1. One empty account detected by Glaser.

Unfortunately, there lacks a systematic study on the erasable accounts that
can be removed. Although some studies [10,11] use call graph analysis to mea-
sure the control flow between contracts, their purposes are different from ours.
Our work focuses on the erasable accounts that exist in Ethereum, and some of
our analyzed accounts (e.g., DoS contracts) are related to interaction between
contracts. There also exist some other research analyzing different kinds of
security issues for smart contracts [13] or Ethereum architecture [15]. These
research mainly focus on security issues on the contract-level and system-level
of Ethereum, whose contents and purposes are different from ours.

To fill the gap, we design and implement a novel tool named Glaser (detect-
inG erasabLe AccountS in EtheReum) to discover erasable accounts by analyzing
the StateDB of Ethereum. It is worth noting that marking an account as erasable
just according to its liveness and balance value is improper, because an account
might contain useful runtime bytecodes or its private key is owned by external
user so that it cannot be removed even if it has not been used for a long time
and stores no ETH. Instead, Glaser analyzes accounts’ contents and states
stored in Ethereum StateDB. In detail, it leverages program analysis techniques
to discover contract accounts with worthless runtime bytecodes, and employs
state field and transaction analysis to discover EOAs that no one owns their

https://etherscan.io/address/0x6e557f01c9dcb573b03909c9a5b3528aec263472
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private keys. The accounts discovered by Glaser are worthless and deserve to
be removed without affecting the normal operations of other accounts/users.

Applying Glaser to all Ethereum accounts, we discovered 508,482 erasable
accounts, and more than 99.9% of them are still stored in Ethereum. These
erasable accounts have wasted users more than 106 million dollars and can be
removed through executing SELFDESTRUCT operation in their runtime bytecodes
by users, or removed forcibly by Ethereum officials. For example, one erasable
contract account (Address: 0xa30B..) can be removed through transaction sent
by any user, and some empty account created due to DoS attacks were already
removed forcibly through hard fork by Ethereum officials [1]. This paper mainly
focuses on erasable accounts’ detection to help users identify erasable accounts
and remind users not to call them to save money, and erasable accounts’ char-
acterization to interpret their behaviors/attacks and creation reasons.

The main contributions of this paper are as follows:

(1) To the best of our knowledge, we conduct the first systematic investiga-
tion on erasable accounts in Ethereum. We propose and define five kinds of
erasable accounts, i.e., three kinds of erasable contracts and two kinds of
erasable EOAs.

(2) We design a novel approach to analyze the Ethereum StateDB, and imple-
ment the idea in a tool called Glaser, which can discover and characterize
erasable contract accounts and erasable EOAs. For contract accounts, lever-
aging static analysis and symbolic execution, Glaser analyzes runtime byte-
codes of contracts to detect three kinds of erasable contract accounts. For
EOAs, Glaser analyzes their state-related attribute fields and historical
transactions to discover two kinds of erasable EOAs. Glaser also charac-
terizes erasable accounts through call graph and creation graph analysis.

(3) We conduct experiments to evaluate and characterize the detected erasable
accounts. We analyze the 508,482 detected erasable accounts’ creation time
distributions. More than 99.9% of them are still stored in Ethereum, and
their transactions wasted users more than 106 million dollars. Glaser can
remind users not to call erasable accounts and help stop further economic
loss of users caused by them. Furthermore, the graph analysis of erasable
accounts interprets their creation reasons, i.e., attacks, programming errors,
or deployment failure.

2 Background

2.1 Ethereum

Supporting smart contracts, Ethereum records not only transactions but also
state transitions that occur in blockchain. Ethereum contains two types of
accounts, i.e., EOA and contract account [17], which are all indexed by 20 bytes
length of addresses.

Account’s Creation and Usage: Ethereum is a permissionless blockchain sys-
tem, and users can create their own EOA and store ETH (native cryptocurrency

https://etherscan.io/address/0xa30BCeA7E5806aC5D37D221D2F8A40642B0Bb1a6
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in Ethereum). Users can initiate transactions by the private key corresponding
to the EOA address, including ETH transfers and contract calls. The contract
accounts are created by EOAs or other contract accounts. In addition to storing
ETH, the contract account also holds the runtime bytecodes of smart contract.
There are two types of bytecodes in Ethereum: runtime bytecodes stored in con-
tract account, and deployment bytecodes used for contract runtime bytecodes’
deployment. The contract account is not controlled by the user’s private key,
but by the contract’s runtime bytecodes’ logics.

Account’s Removal: Users can only remove contract account through execut-
ing SELFDESTRUCT in its runtime bytecodes. All EOAs and contract accounts
without SELFDESTRUCT in runtime bytecodes cannot be removed by users. In
addition, all erasable accounts can be removed forcibly by Ethereum officials.
Although some discovered erasable accounts in this paper cannot be removed by
users, our results can remind users not to call them to save money.

StateDB: The StateDB stores the world state of Ethereum based on accounts.
For every account a, its state σ[a] consists of four fields [3]: If a is an EOA,
σ[a]n stores the number of external transactions sent from this account. If a is a
contract account, σ[a]n stores the number of contracts created by this account.
σ[a]b stores the balance value (in Wei) of account a. σ[a]s stores the root hash
of Merkle tree which encodes the storage contents of the account. σ[a]c stores
the runtime bytecodes of account a. Note that the main difference between EOA
and contract account is whether its code field is empty [3].

2.2 Smart Contract

In Ethereum, each node runs an EVM (Ethereum Virtual Machine), and the
runtime bytecodes of contract are executed in EVM. Smart contract can be
developed through several Turing complete languages, such as Solidity (the rec-
ommended language), Serpent, and Vyper [17].

Execution: When a smart contract is deployed in Ethereum, users can invoke
its external functions through transactions. Note that we describe transactions
sent from EOAs as external transactions, and message-calls sent from contract
accounts as internal transactions in this paper. Gas is the basic unit of resource
consumption for transactions in Ethereum [6]. Before users initiate transactions,
they all need to pay a certain amount of gas. When the smart contract is running
in EVM, each opcode corresponds to a certain amount of gas, whose value is
defined in the Ethereum Yellow Paper [3]. To prevent DoS attacks, Ethereum has
modified the gas value of some specific opcodes, such as SELFDESTRUCT’s value
was modified from 0 to 5,000 in EIP-150 (Ethereum Improvement Proposal) [6].

Data: The smart contracts’ execution in EVM involves three forms of data,
namely storage, memory, and stack [7]. The storage data is stored in StateDB of
Ethereum in the form of key-value pairs, and both key’s length and value’s length
are 256 bits [17]. Storage is persistent and will not be released as transaction
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execution ends. Storage data is stored and read through two opcodes, i.e., SLOAD
and SSTORE. Memory is the temporarily allocated space when smart contracts
are executed in EVM, which is automatically freed as the transaction execution
finishes. EVM is a 1,024 depth stack-based virtual machine, and the contracts’
opcodes are all executed around the stack [16].

3 Erasable Accounts

3.1 Erasable Contract

The main difference between EOA and contract account is whether its code field
is empty[3]. Below we introduce erasable contracts with runtime bytecodes.

Meaningless Contract: We analyze two kinds of meaningless contract, i.e.,
MC-S (Meaningless Contract with STOP) and MC-RS (Meaningless Contract
with REVERT or SELFDESTRUCT).

MC-S refers to one particular kind of meaningless contract, whose first opcode
in its runtime bytecodes is STOP. There exist MC-S because users incorrectly
use runtime bytecodes to deploy contracts, whose creation and behavior will be
analyzed in Sect. 5. When the MC-S is called, STOP will halt the transaction’s
execution immediately. Therefore, these contracts are controlled by STOP, which
is meaningless and may waste user’s gas or ETH.

MC-S Example: One MC-S (Address: 0x2Ab7..) was called with input data three
times, which waste users’ gas. Their input data were not processed before the
related transactions were halted by STOP. Furthermore, this meaningless contract
was transferred ETH through transactions twice. Because the MC-S is controlled
by STOP, the total of more than 0.042 ETH stored in this account can never be
transferred out, which results in users’ money waste.

MC-RS refers to contract that has REVERT or SELFDESTRUCT opcode in its
first basic block. A basic block means a series of sequential opcodes without any
control flow operation (e.g., JUMP, STOP) [6]. The first basic block is the program
entrance and every call to the contract will execute it. Most MC-RS are deployed
by malicious contracts through internal transactions (i.e., sent from contract).
However, MC-RS is meaningless because any call to MC-RS will invoke REVERT
or SELFDESTRUCT. REVERT ends runtime bytecodes’ execution and reverts state
changes of the call. SELFDESTRUCT removes the contract account from blockchain.

MC-RS Example: The snippets of two MC-RS are shown in Fig. 2. There are
only three operations in the first MC-RS (Address: 0xa30B..). This contract can
be exploited by attacker to steal ETH through setting his own EOA address in
the call data. However, this contract is meaningless. Because any call to it will
invoke SELFDESTRUCT and transfer out the ETH stored in it. The second MC-RS
(Address: 0x7770..) will invoke REVERT during any call to it. Furthermore, the
operations after its first basic block will never execute. Any call to the contract
will execute operations from 0x0 to 0x8, which is meaningless and waste gas.

https://etherscan.io/address/0x2Ab748a546760b1EC834E164DEDE2E71C4010E1d
https://etherscan.io/address/0xa30BCeA7E5806aC5D37D221D2F8A40642B0Bb1a6
https://etherscan.io/address/0x7770A80851A266e717dC93A194A7eC0875214293
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0x0 PUSH1 0x00  //MC-RS-1
0x2  CALLDATALOAD  //get the first 32bytes call data
0x3  SELFDESTRUCT  //destruct the contract

0x0  PUSH1 0x80  //MC-RS-2
0x2  PUSH1 0x40
0x4  MSTORE  //save 0x80 to memory
0x5  PUSH1 0x00
0x7  DUP1
0x8  REVERT //end execution and revert state changes
0x9  STOP  
0xa  LOG2 //other basic blocks
…… ……

Fig. 2. Snippets of two MC-RS (i.e., with REVERT or SELFDESTRUCT in first basic blocks).

Stack or Opcode Error Contract: EVM is a virtual machine based on 1,024
depth stack, and the stack will definitely overflow (push more than 1,024 items
into stack) or underflow (pop item from empty stack) if the stack error contract
is called. Before EIP-150 increased the gas cost of CALL from 40 to 700, the
attacker may exploit stack overflow through recursive call depth attack [17].
Nowadays, although stack overflow is hard to occur, stack underflow still exists
due to program writing errors.

Stack Error Contract Example: One transaction (Hash: 0x9518..) encountered
“Stack Underflow” error and exhausted its gas, due to its contract deployment-
related codes. Moreover, runtime bytecodes’ contents may be related to some
uncontrollable factors, which may also produce stack error contracts. One exam-
ple of stack error contract’s deployment bytecodes is shown in Fig. 3 (Related
transaction: 0xf7db..). In program counter 0x5, it returns runtime bytecodes to
deploy, whose first byte is related to the current block’s timestamp (in program
counter 0x0 to 0x1). At last, one stack error contract (Address: 0x7A03..) was
deployed, and its first operation in runtime bytecodes is DIV, which will result
in stack underflow.

0x0 TIMESTAMP //get the block's timestamp
0x1 CALLVALUE
0x2 MSTORE8 //save byte to memory
0x3 CODESIZE
0x4 CALLVALUE
0x5 RETURN //return bytecodes to deploy

Fig. 3. The deployment bytecodes of one stack error contract.

Developers can use high-level languages or directly write bytecodes to develop
smart contract. However, due to programming errors, some runtime bytecodes

https://etherscan.io/tx/0x9518bcde68b522a4521c3eeade8fa461af16b5c7f0d1529d7ead27663d4e5092
https://etherscan.io/tx/0xf7db99fb4524133839915b8e08914dae0f9bcecd6847691e4dd2ce8ead61e420
https://etherscan.io/address/0x7a0352aa3231d2255a96113b619057994341069e
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deployed in blockchain cannot be disassembled to correct opcodes. If there exist
unknown opcodes that cannot be recognized by EVM, it will encounter “Bad
Instruction Error”. Opcode error contract refers to contract that has unknown
opcode in the first basic block, which will encounter error during any call to it.

Opcode Error Contract Example: The first two bytes of one contract’s runtime
bytecodes are 0xd929, which cannot be correctly disassembled to opcodes of
EVM. Because the unknown opcodes exist in its first basic block, all trans-
actions calling to it encountered “Bad Instruction Error” (Address: 0x5266..).
The transaction with “Bad Instruction Error” exhausts gas, halts execution and
reverts state changes [3].

DoS Contract: We analyze two kinds of DoS related contracts: attacked Parity
wallets, and malicious contracts exploited for DoS attacks. If contract A hard-
codes and calls contract B’s address to execute, and B is removed, A will be a
dependency error contract without normal service. In November of 2017, the
attacker escalated his privilege and removed Parity’s multi-sig library contract
(Address: 0x863d..), which caused all Parity wallets that depend on it out of
service. Note that calling to a removed contract will just return 1 (means no
error or exception), and users cannot verify if it is out of service through return
value. If users knew in advance that their wallets were out of service, they would
not use them anymore to deduce financial losses. Etherscan only marks part of
attacked Parity wallets, we attempt to detect more of them.

In 2016, the attacker exploited malicious contracts to initiate DoS attack
for Ethereum [17]. The attacker executes massive particular operations (e.g.,
EXTCODESIZE, DELEGATECALL), which consume low gas but high system
resources. The DoS attack leads to low nodes’ data synchronization and trans-
action execution. The Ethereum official modified many operations’ gas values in
EIP-150 [17] to repair related vulnerabilities.

Malicious DoS Contract Example: We analyze the malicious DoS contracts and
discover that they have similar patterns. These malicious contracts just have one
basic block in their runtime bytecodes. In the basic block, there are many par-
ticular operations that consume low gas but high system resources. For example,
one malicious DoS contract’s snippets are shown in Fig. 4 (Address: 0x7922..)
with 200 EXTCODESIZE in the only basic block of the contract.

0x00 PUSH20 0x42a119d24fd64362f3892815d310c83edcb61b88
0x15 EXTCODESIZE 
0x16 POP
0x17 PUSH20 0xdfccc8e473dc262cfc6ddb4092946b66baadf88b
0x2c EXTCODESIZE //its gas was modified from 20 to 700
0x2d POP
0x2e PUSH20 0xd96b74abd2ded0b7f2873202a2f3bb562b22b2ef
0x43 EXTCODESIZE
0x44 POP

Fig. 4. Snippets of one malicious DoS contract.

https://etherscan.io/address/0x526634cde83e541ba851a402e5c85bd0838505eb/advanced#internaltx
https://etherscan.io/address/0x863df6bfa4469f3ead0be8f9f2aae51c91a907b4
https://etherscan.io/address/0x792218d8bbe00fb81296236b014Fb14af2DA385B
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3.2 Erasable EOA

Empty Account: The empty account has the following features:
❶zero value balance, ❷zero value nonce, and ❸empty code. Whether the
account has code is the main difference between contract account and EOA,
and we classify empty accounts into erasable EOA. Ethereum officials have
only cleaned up the empty accounts created during the DoS attack exploit-
ing SELFDESTRUCT [1]. However, there still exist empty accounts due to contract
deployment failure. Before EIP-2, it will create an empty account if the contract
deployment transaction does not succeed (e.g., out of gas). After EIP-2, it will
fail with error and do not create empty accounts anymore. The creation process
of empty accounts denotes that they are not controlled by runtime bytecodes
or external users, which results in their uselessness. The empty account may
result in gas waste, because users may incorrectly think runtime bytecodes are
deployed in these accounts.

Example: One empty account (Address: 0x6e55..) has been called many times,
which wastes users’ gas. We analyze all the input data of the related transac-
tions, whose first four bytes are all function signatures. That is to say, all these
transactions were intended to invoke the functions in runtime bytecodes.

DoS EOA: The DoS EOA has the following features: ❶1 Wei value balance,
❷zero value nonce, ❸empty code, ❹zero historical external transaction, and
❺one historical internal transaction without error. The differences between
empty account and DoS EOA are their balance value and creation process.
DoS EOAs are created through internal transactions sent from contracts. Mas-
sive DoS EOAs were created during the DoS attack in 2016, whose creation
will be analyzed in Sect. 5.1. The attacker created DoS EOAs through smallest
financial cost (i.e., 1 Wei), and all of these accounts’ addresses were generated
through computation in runtime bytecodes, whose process denotes their use-
lessness (detail in Sect. 6). The existence of massive DoS EOAs increases the
StateDB size, resulting in the waste of disk resources and nodes’ difficulty in
syncing data.

Example: One transaction (Hash: 0x1aa8..) detected by Glaser created ten
DoS EOAs through internal transactions. Note that 1 Wei (1 ETH = 1018 Wei)
is the smallest cryptocurrency unit in Ethereum, which cannot even buy 1 gas.
The recommended gas price is 61 GWei [2] (1 GWei = 109 Wei), which can be
set in transaction by users.

4 GLASER

To analyze the StateDB, we synchronize the blockchain with “fat-db = on”
option through Parity client, which can build appropriate information to allow
enumeration of all accounts. Then we export the StateDB as plain text file
through Parity and leverage Glaser to traverse StateDB data to detect erasable
accounts. The overview of Glaser’s architecture is shown in Fig. 5, which mainly
consists of three modules:

https://etherscan.io/address/0x6e557f01c9dcB573b03909C9A5b3528aEc263472
https://etherscan.io/tx/0x1aa87a25df792f1dacacbc194e3963a0cbcf950ede1d60e679500b40d9589b17
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Fig. 5. Overview of Glaser’s architecture.

(1) Erasable contract account detection. In this module, Glaser detects three
kinds of erasable contract accounts: meaningless contracts, stack/opcode
error contracts, and DoS contracts. According to their respective character-
istics, we leverage different techniques, which mainly include runtime byte-
codes’ static analysis and symbolic execution.

(2) Erasable EOA detection. In this module, Glaser detects two kinds of
erasable EOAs: empty accounts, which are produced due to contract deploy-
ment failure; and DoS EOAs, which are produced due to DoS attacks. We
mainly leverage state field and transaction analysis to discover erasable
EOAs.

(3) Graph analysis for erasable accounts. For the detected erasable accounts,
Glaser characterizes their behaviors/attacks through call graph analysis
and creation graph analysis, whose details will be described in Sect. 6.

4.1 Erasable Contract Detection

Meaningless Contract: Glaser leverages runtime bytecodes’ static analy-
sis to detect two kinds of meaningless contract, i.e., MC-S and MC-RS. Static
analysis refers to techniques that examine codes without attempting to execute
them [12]. Glaser statically analyzes contracts’ runtime bytecodes to detect
MC-S. In detail, it intercepts runtime bytecodes’ first byte to judge whether it is
0x00, which is the hex code for STOP. If one contract starts with 0x00 byte in its
runtime bytecodes, it will be tagged as MC-S. Glaser also statically analyzes
contracts’ runtime bytecodes to detect MC-RS. First, it disassembles contract’s
runtime bytecodes to acquire the opcodes. Second, it splits the opcodes into dif-
ferent basic blocks, which end with specific control flow operations (i.e., STOP,
JUMP, JUMPI, RETURN, SELFDESTRUCT, REVERT). Third, it analyzes the first basic
block. If REVERT or SELFDESTRUCT exists in the first basic block, it will tag the
contract as MC-RS.

Stack or Opcode Error Contract: Glaser leverages symbolic execution
and runtime bytecodes’ static analysis to detect stack/opcode error contracts.
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Symbolic execution uses symbolic values as inputs to simulate the process of
program execution [18]. The detection process of stack error contract is divided
into three steps. First, Glaser acquires the opcodes of contract’s runtime byte-
codes. Second, it splits the opcodes into different basic blocks and extracts the
runtime bytecodes corresponding to the first basic block. Third, it symbolically
executes the extracted runtime bytecodes leveraging Oyente [18], which is a
symbolic execution engine. If the symbolic execution process encounters “Stack
Underflow”, it will tag the contract as stack error contract. For opcode error
contract, Glaser disassembles contract’s runtime bytecodes into opcodes and
split them into basic blocks. Then Glaser detects whether there exist unknown
opcodes in its first basic block. If unknown opcode exists in its first basic block,
the contract will be tagged as opcode error contract.

DoS Contract: Glaser leverages symbolic execution and runtime byte-
codes’ static analysis to detect DoS contracts. Glaser detects attacked Par-
ity wallet contracts leveraging symbolic execution techniques. Glaser ana-
lyzes four related operations for contracts’ interaction, i.e., CALL, CALLCODE,
DELEGATECALL, STATICCALL. If the symbolic execution encounters anyone of
these operations, it extracts the second item of the stack μs[1], which is used
as the address of contract being called. If μs[1] is a real value that matches the
address of removed Parity multi-sig library, it will tag this contract as attacked
Parity wallet. For malicious DoS contract, Glaser disassembles contract’s run-
time bytecodes into opcodes and split them into basic blocks. Then Glaser

analyzes the number and content of basic block. If one contract has only one
basic block and has more than 100 DoS related operations, Glaser will tag it as
malicious DoS contract. We analyze seven DoS related operations: EXTCODESIZE,
EXTCODECOPY, BALANCE, CALL, DELEGATECALL, CALLCODE, SELFDESTRUCT.

4.2 Erasable EOA Detection

Empty Account:Glaser leverages account state field analysis and transaction
analysis to detect empty accounts. The detection process of empty accounts is
divided into two steps. First, Glaser analyzes the account attribute fields to
detect possible empty accounts, which should satisfy the three features described
in Sect. 3.2. Second, Glaser analyzes the historical transaction of the detected
empty accounts in the first step, to verify that they are created due to contract
deployment failure. In detail, it analyzes the oldest transaction related to the
accounts detected in the first step. If one account’s oldest transaction is used for
contract deployment, Glaser will tag it as erasable empty account.

DoS EOA: Glaser leverages account state field analysis and transaction anal-
ysis to detect DoS EOA. Similar to the detection of empty accounts, detection
process of DoS EOAs is divided into two steps. First, Glaser analyzes the
account attribute fields to detect possible DoS EOAs, which should satisfy the
first three features described in Sect. 3.2. Second, Glaser analyzes the histori-
cal transaction of the detected DoS EOAs in the first step, to verify that they
are created through internal transactions sent from contracts. In detail, we set
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relatively strict conditions to verify DoS EOAs in this step. Glaser analyzes
their historical external transactions and internal transactions. If one account
has no external transaction and only one internal transaction without error (i.e.,
sent 1 Wei to create this account), we can conclude that it is an erasable DoS
EOA. There might exist massive internal transactions with “Out of Gas Error”,
which were used for DoS attacks.

5 Evaluation

We carry out experiments to answer the following research questions:
RQ1 Quantity: How many each kind of erasable accounts can be detected
through Glaser? RQ2 Accuracy: To what extent can Glaser accurately detect
erasable accounts? RQ3 Waste: How much money lost due to erasable accounts?

5.1 RQ1 Quantity

In this section, we evaluate the quantity statistics of erasable accounts detected
through Glaser. Furthermore, we analyze the creation time distribution of the
detected erasable accounts.

Table 1. Quantity statistics of erasable accounts detected through Glaser.

Cat. Taxonomy Quantity Erasable accounts Quantity

❶ Erasable contract 481,087 Meaningless contract 479,153

Stack/opcode error contract 150

DoS contract 1,784

❷ Erasable EOA 27,395 Empty account 195

DoS EOA 27,200

We have exported the StateDB of Ethereum and detect erasable accounts
leveraging Glaser, whose quantity statistics are shown in Table 1. We discover
481,087 erasable contracts and 27,395 erasable EOAs respectively. All the five
specific kinds of detected erasable accounts’ addresses are published on https://
figshare.com/articles/dataset/11516694. For the 1,784 DoS contracts, we detect
658 different contracts hardcode and call the removed Parity multi-sig library,
while Etherscan only tags 153 of them. Because most users leverage high-level
languages to develop contracts, there exists a small quantity of stack/opcode
error contracts. Because Ethereum officials have already repaired the bug of
empty account’s creation due to contract deployment failure, the discovered
empty accounts’ quantity is small.

To measure the number of erasable accounts at different time, we ana-
lyze their historical transactions to acquire their creation time. The analysis

https://figshare.com/articles/dataset/11516694
https://figshare.com/articles/dataset/11516694
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of accounts’ creation time is divided into two steps. First, we crawl all the his-
torical transactions related to the detected erasable accounts through Geth RPC
APIs. Second, we filter out the oldest transaction of each account and acquire
the timestamp of this transaction, which is the creation time of this account.

Fig. 6. Cumulative quantity distribution of meaningless contracts.

1

Fig. 7. Cumulative quantity distribution of DoS contracts.

The cumulative quantity distribution of meaningless contracts at different
time is shown in Fig. 6. Before July of 2019, the quantity of meaningless contracts
is small. Because most meaningless contracts are MC-S and they are directly
created by users through EOA. For example, one user (Address: 0x3ff5..) created
9 MC-S with totally same runtime bytecodes around February of 2018. When
the user realized his irrational behavior, he did not create MC-S any more. After
November of 2019, some active malicious contracts are massively called, which
leads to the quantity sharp growth of meaningless contracts (i.e., MC-RS). For
example, one Ponzi contract (Address: 0x7C20..) created many MC-RS before
April of 2020 through internal transactions (i.e., sent from contract account).
Because most users leverage high-level languages to develop contracts, there
exists a small quantity of stack/opcode error contracts. Their deployment time
distribution does not have clear trends or characteristics.

https://etherscan.io/address/0x3ff51120D34f4318B6aff85DbCa5481DbF03f40B
https://etherscan.io/address/0x7C20218efC2e07C8Fe2532fF860D4A5d8287cB31
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The cumulative quantity distribution of DoS contracts at different time is
shown in Fig. 7. There are two sharp growth periods for DoS contracts. The first
period is around October of 2016, the attacker deployed more than 1k malicious
DoS contracts and sent massive transactions to them, leading to external trans-
actions’ slow execution. The second period is around November of 2017, the
Parity’s multi-sig library contract was attacked and removed during this period,
which produced 658 dependency error wallets without service.

The cumulative quantity distribution of empty accounts at different time is
shown in Fig. 8. Because the Ethereum officials have repaired the bug of empty
accounts’ creation due to contract deployment failure and cleaned up the empty
accounts produced due to DoS attacks, the growing of their cumulative quantity
is halted around March of 2016. The cumulative quantity distribution of DoS
EOAs is shown in Fig. 9. There is a sharp growth period of DoS EOAs’ quantity
around November of 2016. According to analysis, the attacker (One exploited
account: 0xeec2..) created massive DoS EOAs during/after the DoS attacks of
empty accounts’ creation exploiting SELFDESTRUCT [1].

Answer to RQ1 (Quantity): We have discovered 508,482 erasable accounts,
whose quantity distributions at different time reflect their creation reasons.

Fig. 8. Cumulative quantity distribution of empty accounts.

5.2 RQ2 Accuracy

In this section, we evaluate the accuracy of erasable accounts detected through
Glaser, whose statistics are shown in Table 2. We evaluate the accuracy of
erasable accounts in two primary aspects. First, we analyze whether the detected
erasable accounts are still stored in Ethereum. Second, we analyze their trans-
actions to verify their uselessness.

Storage: Because it is difficult to traverse accounts in its changing StateDB,
we export the StateDB to offchain and execute Glaser on it. Therefore, there
exists possibility that the detected erasable accounts are already removed or

https://etherscan.io/address/0xeec2a1ee6ee942596b6e255d24d38c0a9338cfef
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Fig. 9. Cumulative quantity distribution of DoS EOAs.

cleaned up in the newest StateDB. We leverage Etherscan, which is a real-
time Ethereum block explorer, to verify their existence. We discover that 99.9%
(479,150/479,153) detected erasable contract accounts still store runtime byte-
codes. 3 MC-RS contracts are removed through executing SELFDESTRUCT. All
the 195 empty accounts can be still normally retrieved without special tagging,
and all the 27,200 detected DoS EOAs still store ETH. Therefore, more than
99.9% of the detected erasable accounts are still stored in the latest StateDB.

Table 2. Statistics of erasable accounts’ accuracy and waste evaluation.

Erasable account Quantity Storage Ext. tr. Int. tr. Gas ETH

❶ DoS contract 1,784 100% ✓ 26,474 7,707,646 50,497,619,162 515,035.16ETH

❷ Meaningless contract 479,153 99.9% ✓ 2,080 490,611 36,996,614,413 274.97ETH

❸ Stack/opcode error cont. 150 100% ✓ 141 157,513 854,099,555 0

❹ Empty account 195 100% ✓ 237 5 79,786,061 0

❺ DoS EOA 27,200 100% ✓ 0 1,163,763 1,180,693,660 27,200 Wei

Uselessness: In the following, we analyze the detected erasable accounts’ trans-
actions to verify their uselessness. All the below analyzed transactions’ data is
published on https://figshare.com/articles/dataset/11518017.

For the 1,784 DoS contracts, we crawl all of their 26,474 external transac-
tions and 7,707,646 internal transactions. According to the timestamp of Parity
multi-sig library’s removal (Transaction hash: 0x47f7..), we extract 920 exter-
nal transactions of attacked Parity wallets that occurred after the attack. Apart
from pure ETH transfers, there are 789 external transactions calling wallets’
functions. Because calling to a removed contract does not result in failure or
exception, we debug these transactions for analysis. We acquire these transac-
tions’ execution traces through Geth API debug traceTransaction. All these
transactions called the removed library through DELEGATECALL, which wasted
users’ gas or ETH. For malicious DoS contracts, there are 1,128 external trans-
actions used for contract deployments. All the other transactions (15,334 exter-
nal transactions and 7,700,836 internal transactions) executed with “Out of Gas
Error” were exploited for DoS attacks.

https://figshare.com/articles/dataset/11518017
https://etherscan.io/tx/0x47f7cff7a5e671884629c93b368cb18f58a993f4b19c2a53a8662e3f1482f690
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For the 479,153 meaningless contracts, we crawl all of their 2,080 exter-
nal transactions and 490,611 internal transactions for checking and debugging.
Apart from 2,002 contract deployment’s external transactions, 7 external trans-
actions were halted by the first executed operation STOP before their data
fields were processed, which verifies their uselessness. All the other 71 exter-
nal transactions were executed with “Reverted Error”. Apart from 489,890
internal transactions used for contract deployment or compulsive ETH trans-
fer through SELFDESTRUCT, all the other 721 internal transactions were executed
with “Reverted Error”.

For the 150 stack/opcode error contracts, we crawl all of their 141 exter-
nal transactions and 157,513 internal transactions for analysis. Apart from 150
transactions used for contract deployment and 337 transactions used for com-
pulsive ETH transfer through SELFDESTRUCT, all the other 157,167 transactions
were encountered “Bad Instruction Error” or “Stack Underflow Error”.

For the 195 empty accounts, we crawl all of their 237 external transactions
and 5 internal transactions. Apart from 195 contract deployment’s transac-
tions, we analyze other 47 transactions. All of these 47 transactions transferred
ETH or called the empty accounts with function signatures in their data fields,
which denotes that they were intended to call a function of contract. However,
all of their data fields were not processed because the accounts were empty,
which denotes their uselessness. For the 27,200 DoS EOAs, we crawl all of their
1,163,763 internal transactions, and there does not exist external transaction.
In 27,200 internal transactions, the attacker created DoS EOA through trans-
ferring 1 Wei, which is the smallest financial cost for the attacker. All the other
1,136,563 internal transactions were executed with “Out of Gas Error”, which
were used for DoS attack (analyzed in Sect. 3.2).

Answer to RQ2 (Accuracy): All the detected erasable accounts’ related
transactions are useless, and more than 99.9% of the detected erasable accounts
are still stored in Ethereum.

5.3 RQ3 Waste

In this section, we evaluate the money lost due to erasable accounts. We analyze
the gas and ETH consumed in erasable accounts’ transactions, whose statistics
are shown in Table 2. For DoS contracts, 733,583,247 gas were consumed dur-
ing calling Parity wallets before they were attacked. Therefore, these gas are
not wasted. We analyze all the DoS contracts’ balance values and 515,035.16
ETH transferred to them are permanently locked in DoS contracts, which are
wasted. For meaningless contracts, all their consumed gas are wasted. How-
ever, 272.77 ETH attached to their transactions were returned to users due to
“Reverted Error”, which are not wasted. For category ❸ to ❺, all their gas and
ETH are wasted. According to the gas prices set in transactions and ETH price
(204.36$/ETH) on May 25 of 2020 [2], 106,360,910$ is totally wasted due to
these erasable accounts.
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Answer to RQ3 (Waste): About 89 billion gas and 515,037 ETH are wasted
due to erasable accounts, which are worth 106,360,910$.

6 Graph Analysis

We analyze attacks/behaviors related to discovered erasable accounts to answer
the question: How are erasable accounts behaved and created in reality?

Glaser’s graph analysis module can be divided into two parts, i.e., call
graph and creation graph. First, through symbolic execution, we analyze DoS
contract’s runtime bytecodes to generate call graph from erasable accounts to
other accounts. According to the definitions (in Sect. 3) of erasable accounts,
only DoS contracts can call other accounts. During symbolic execution, we ana-
lyze the operands of DoS related operations (in Sect. 4). If the target address
of one operation is a real value, we can conclude that the DoS contract inter-
acts with another account and we add an edge into the call graph. Second,
through transaction analysis, we generate creation graph for erasable accounts.
We analyze the account creation related transactions of erasable accounts and
filter out their source addresses, which constructs the nodes of creation graph.
The creation related transactions construct the edges of creation graph. If the
erasable account is created through contract account, we also analyze which user
(i.e., EOA) calls the contract. Furthermore, we also analyze the creation source
address’s transactions to see whether it creates other accounts.

Call Graph: According to their features, the DoS contracts can be divided
into two types, i.e., Many-to-One DoS contract and One-to-Many DoS contract,
whose topology graphs are shown in Fig. 10. We only show the first three bytes
of contracts’ addresses for better display.

(A) (B)

Fig. 10. (A): Call graph of Many-to-One DoS contracts (best viewed in color). The
center contract has been removed (in red color), and some of its dependency error
contracts (in deep grey) still have ETH balance. (B): Call graph of One-to-Many DoS
contract. The malicious contract (in grey) executes massive EXTCODESIZE to external
contracts, which have all been removed. (Color figure online)



368 X. Li et al.

For Many-to-One DoS contract, one center contract’s address is hardcoded
and interacted with many other contracts. Some Many-to-One DoS contracts
detected through Glaser are shown in Fig. 10 (A). In this example, the center
contract (Address: 0x863D..) is Parity’s multi-sig library, which was attacked in
2017. The center contract is removed, all its dependent wallet contracts become
out of service (i.e., dependency error). Glaser has discovered 658 contract
accounts calling the removed library. We only show 20 attacked Parity con-
tracts in the figure for better display, and the nodes in deep grey color represent
that these erasable contracts still store ETH.

For One-to-Many DoS contract, one DoS contract hardcodes and interacts
with many other contracts. One example of One-to-Many DoS contract detected
through Glaser is shown in Fig. 10(B). In this example, Glaser has discovered
that one malicious DoS contract (Address: 0x7922..) hardcodes and interacts
with 200 different external contracts, which have all been removed. We only show
16 removed contracts in the figure, and the malicious DoS contract (in light grey)
is still stored in StateDB. Both types of DoS contracts might be called, which
will result in waste of gas or ETH. For example, one DoS contract (Address:
0x4184..) shown in Fig. 10 has been transferred ETH in 57 transactions, which
can be avoided if its account was detected/alerted in time.

Creation Graph: According to their features, the creation graphs can be
divided into two types: erasable account created by EOA, and erasable account
created by contract.

Erasable accounts were created by EOAs due to programming error or deploy-
ment error, and we explain their creations through one meaningless contract
example, whose creation graph is shown in Fig. 11 (A). The user (in red color)
called one deployed contract (Address: 0x2Ab7..) and realized that it was mean-

(A) (B)

Fig. 11. (A): Creation graph of one meaningless contract. After the user (in red) real-
ized the uselessness of the deployed contract (in grey), he redeployed another correct
contract (in green). (B): Creation graph of DoS EOAs. The attacker (in red) created
14 different DoS EOAs in one transaction. We show the last three bytes of the DoS
EOAs’ addresses. (Color figure online)

https://etherscan.io/address/0x863df6bfa4469f3ead0be8f9f2aae51c91a907b4
https://etherscan.io/address/0x792218d8bbe00fb81296236b014Fb14af2DA385B
https://etherscan.io/address/0x41849f3bd33ced4a21c73fddd4a595e22a3c2251
https://etherscan.io/address/0x2Ab748a546760b1EC834E164DEDE2E71C4010E1d
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ingless due to deployment error. The user incorrectly used runtime bytecodes to
deploy the contract and transferred ETH to it. Then the user redeployed another
correct contract (in green color), whose runtime bytecodes are just same with
the data field of the transaction deploying the previous meaningless contract.
Note that these types of erasable accounts’ creation can be avoided, and it is
better to first test and deploy contracts in private/public Testnet before they
are deployed in Mainnet.

Erasable accounts were created by contracts due to some attacks, and we
explain their creations through one DoS EOA example, whose creation graph
is shown in Fig. 11 (B). The attacker exploited one EOA (Address: 0xc0ae..) to
call a malicious contract (Address: 0xeec2..), creating 14 different DoS EOAs
through internal transactions (Hash: 0xefc6..). Exploiting one storage variable,
the malicious contract can generate different addresses in different transactions.
These addresses were calculated and generated in runtime bytecodes, and only
the last three bytes of them are different. The attacker totally created 12,204
different DoS EOAs leveraging this malicious contract, resulting in the waste of
system resources and nodes’ difficulty in syncing data.

7 Related Work

Frowis et al. [14] constructed call graph for smart contracts deployed in Ethereum
and discovered contracts calling to removed contracts. Note that they focus on
measuring the control flow immutability between contracts, whose purpose is
different from our work. Kiffer et al. [15] measured smart contracts’ creation
and interaction with each other, which interpreted how are smart contracts being
used. However, they do not analyze erasable contracts that exist in Ethereum.
There are some other research leveraging symbolic execution [5], static analysis
[4,9], and formal methods [19] to analyze different kinds of security issues for
smart contracts. Kiffer et al. [15] measured the overall usage of Ethereum, which
interpreted how is Ethereum being used. They discovered that SELFDESTRUCT’s
usage rose sharply during DoS attacks in 2016. However, they do not measure or
analyze erasable accounts produced during DoS attacks. Chen et al. [8] proposed
an adaptive gas cost mechanism for Ethereum to defend against under-priced
DoS attacks. They do not analyze real accounts in Ethereum that are related
to these attacks. Wang et al. [20] proposed an optimization storage engine to
reduce nodes’ storage volume, which can improve the scalability of blockchain
systems. They do not analyze the erasable accounts which are already stored in
StateDB. Angelo et al. [13] analyzed contract deployment code patterns which
were exploited by attackers, and they described three related attack scenarios
in reality appeared in the middle of 2018, whose contents and purposes are
different from ours. They focus on the vulnerabilities and attacks leveraging
skillfully crafted deployment codes, while we detect erasable accounts due to
programming or deployment errors.

https://etherscan.io/address/0xc0ae1ca3d89a417cbe525498a1a20d40c9fd720d
https://etherscan.io/address/0xeec2a1ee6ee942596b6e255d24d38c0a9338cfef
https://etherscan.io/tx/0xefc6cc36a06eb6b067a35e028a2ad42617d16ff9e958e8fdaec599d474e306f2
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8 Discussion and Conclusion

Discussion: We discuss validity threats, limitations, and future work. (1)
Glaser can not only discover erasable accounts that already exist in Ethereum,
but also erasable accounts that might be created in future. Some kinds of
accounts analyzed by Glaser might also be created in future, and Glaser

might discover more erasable accounts. (2) For the discovered erasable accounts,
only part of meaningless contracts can be destructed by ordinary users. Because
some MC-RS have SELFDESTRUCT in their first basic blocks, which can be invoked
through transactions by users. Although most of discovered erasable accounts
cannot be easily destructed by users, our results can remind users not to call
them, which can help users save money. (3) Path explosion and timeout excep-
tion are common threats for the symbolic execution techniques leveraged in this
paper. However, we use some methods to reduce these threats. During detecting
stack error contracts, we first extract runtime bytecodes corresponding to the
first basic block and then symbolically execute them. During detecting attacked
Parity wallets, we first filter out contracts without external call operations and
then symbolically execute them. (4) As Glaser focuses on five kinds of erasable
accounts in Ethereum, we will detect more kinds of erasable accounts in future.
We will also analyze erasable accounts in other blockchain systems.

Conclusion: We have conducted the first work that systematically character-
izes erasable accounts in Ethereum, i.e., erasable contract accounts and erasable
EOAs. We have implemented Glaser to analyze the StateDB, which can
detect erasable accounts leveraging bytecodes’ static analysis, symbolic execu-
tion, transaction analysis, and state fields analysis. Furthermore, we have ana-
lyzed attacks/behaviors related to erasable accounts through graph analysis.
Extensive experiments are also conducted to evaluate the quantity, accuracy,
and waste of the detected erasable accounts.
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Abstract. Accountability is a fundamental after-the-fact approach to
detect and punish illegal actions during the execution of a warrant for
accessing users’ sensitive data. To achieve accountability in a security
protocol, a trusted authority is required, denoted as judge, to faithfully
cooperate with the rest of the entities in the system. However, malicious
judges or uncooperative protocol participants may void the accountabil-
ity mechanism in practice, for example by fabricating fake evidence or by
refusing to provide any evidence at all. To provide remediation to these
issues, in this paper we propose Fialka, a novel accountable decryption
system based on privacy-preserving smart contracts (PPSC). The neu-
trality that is inherent to a secure blockchain platform is inherited by
PPSC which are then used in our approach as an accountable key man-
ager as well as a transparent judge. To the best of our knowledge, we
present the first PPSC-based accountable decryption system to increase
the transparency of warrant execution with formal definitions and proofs.
Furthermore, we provide and evaluate a prototype implementation using
the PPSC-enabled platform Oasis Devnet, which additionally demon-
strates the feasibility of Fialka.

Keywords: Accountability · Privacy-preserving smart contract ·
Blockchain

1 Introduction

Accountable cryptographic protocol is increasingly crucial in sensitive personal
data protection. We focus on the following scenario. Law enforcement or intel-
ligence agencies may demand access to personal encrypted data held by service
providers, and sometimes even require access to the communication metadata
c© Springer Nature Switzerland AG 2020
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that is closely related to sensitive information of individuals. In most cases, a
granted warrant is needed from a legal authority. However, data owners have no
way to know when and how law enforcement collects and accesses their sensitive
data. In particular, abuses of granted warrant of decryption may easily happen
since the overseers cannot verify whether the practical investigation activities
match the scope permitted in the document. Therefore, accountability mech-
anisms is a critical after-the-fact remediation technique to deter investigators,
since it provides an instant evidence to detect malicious or deviant behaviors,
which increases the transparency of warrant execution.

However, achieving accountability is tricky, and requires additional roles
involved. The investigators cannot autonomously convince others of the account-
ability of their actions. They need to resort to one or more neutral trusted parties,
usually named judge(s), to audit their actions. More specifically, an accountabil-
ity mechanism requires each investigator to generate evidence on their warrant
execution. This evidence is then examined by the judge to detect dishonest
behaviors or declare the examined participant compliant. This approach relies
heavily on faithful cooperation of the judge and the investigator, as a malicious
judge or dishonest investigator may undermine the accountability mechanism.
If the investigator rejects to cooperate with the judge in order to provide the
required evidence, or if the judge themselves examine fake evidence or apply the
wrong examination procedure, outsides cannot audit investigators’ decryption
actions. In this paper, we generalise the above example as a standard case, in
which an investigator obtains an order from a court, and his access of users’ data
needs to be audited by the judge. The discussed challenges lead to the following
research question:

Is it possible to design an accountability mechanism guaranteeing that (1)
the judge honestly checks the evidence; (2) the investigator does not refuse
to provide the evidence trail of their actions?

Based on the previous discussion, the answer would intuitively be “NO”.
Firstly, it is difficult to guarantee that a judge will always be secure and reliable.
Even if the judge claims to be neutral, she faces the threat of being attacked or
provided with misleading evidence. Once the judge is compromised, the account-
ability mechanism fails as it cannot be applied. Undoubtedly, multiple judges
may mitigate such concerns, but the judge collusion issue cannot be effortlessly
overcome. Secondly, asking the investigator to neutrally create a piece of hon-
est evidence also confronts difficulties. The isolated local execution environment
makes it potentially easy and profitable for the investigator to generate fake
evidence while incurring a low risk of being detected. Several proposals [3,9]
employed a certain trusted hardware to aid the evidence generation. Intuitively,
physical hardware is more secure and reliable since the evidence logic and its
measurement are hardcoded in non-volatile storage. However, the risk of com-
promised hardware still exists [17].

Blockchain-based smart contracts [26,27] have been used in [4,14,23] as a
building block to implement the judge. Roughly speaking, a smart contract is
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composed of a set of protocols to be automatically executed in a distributed net-
work, which naturally guarantees the neutrality and behaviour of the judge thus
obtained. However, the input/output data of the smart contract is transparent
to the public, which limits its usage in some scenarios. For instance, private
key-dependent protocols such as decryption are executed in an isolated local
environment. A transparent smart contract cannot prevent the investigator from
producing fake evidence if it does not have access to the secret key material. But
in the latter case, the secrecy of the private key material would be compromised.
Privacy-preserving smart contracts (PPSC) [6,13,16,25,29] inherit the security,
availability and neutrality benefits of smart contracts while additionally pro-
tecting the privacy of the contract data. It naturally could act as a high-level
cryptographic primitive to aid in the evidence generation involving local proto-
col executions. For example, PPSC could be used to implement a private key
manager to make decryption accountable.

In this paper, we propose Fialka, a novel transaction-triggering account-
ability framework using PPSC to make investigators accountable for executing
decryption calls. Our framework prevents the decryption queries evidence from
being maliciously generated (e.g. hidden) while guaranteeing the authenticity of
the evidence. More precisely, Fialka combines PPSC with an IND-CCA secure
public key encryption (PKE) scheme [15] at the protocol level to construct an
accountability mechanism. PPSC cryptographically hides a secret random num-
ber used as an additional decryption key, where external investigators have to
interact with PPSC for the execution of decryption warrant. The secret key
will be extracted by invoking the decryption-related smart contract, which con-
sequently generates a transaction-based evidence as an on-chain record. After
that, another smart contract plays the role of the judge who transparently checks
the transaction to decide whether the decryption is legal in a specific setting.
The accountability is thereby achieved. Additionally, our framework inherits the
benefit of high availability from the underlying blockchain protocol. This further
improves reliability of the PPSC-based judge. Our contributions are summarized
here:

– We propose an accountable decryption system called Fialka that combines
the techniques of PPSC and PKE.

– We formally define our system and provide a security analysis of its account-
ability properties, namely fairness and completeness.

– We provide a prototype implementation based on the PPSC platform Oasis
Devnet [1,8], and evaluate its running time and gas cost.

The rest of our paper is structured as follows. Some related studies are dis-
cussed in Sect. 2. Definitions and building blocks are detailed in Sect. 3. In Sect. 4,
we present the formal model with its property definitions. In Sect. 5, we pro-
vide the design of Fialka. Both the proof and security analysis are presented
in Sect. 6. Implementations and evaluations are discussed in Sect. 7 and Sect. 8.
Finally, Sect. 9 presents summaries and future work.
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2 Related Work

The smart contract-based accountability approach has been studied comprehen-
sively recently. Xu et al. [28] proposed a remotely decentralized data auditing
scheme for network storage service, where accountability is achieved by involving
smart contract as a third-party auditor to notarize the integrity of outsourced
data. Azaria et al. proposed MedRec [4], in which an Ethereum [27] smart con-
tract is used as a meta-data agent to manage the permission of data usage,
making patients’ choices accountable. Neisse et al. [23] proposed a blockchain-
based framework for data accountability and provenance tracking. However, a
pure smart contract does not provide a complete accountable protocol, since it
cannot guarantee the authenticity of the input (i.e. the submitted evidence).
In other words, even if the smart contract is neutral and trustful, a client may
provide fake evidence to the smart contract without being detected.

Several solutions have been proposed to ensure the authenticity of the sub-
mitted evidence. Among them, equipping entities with secure hardware devices
[3,17,24] is an attractive approach. Alder et al. [3] employed Intel SGX [10] to
produce a verifiable measurement of the resource usage in each function invo-
cation. Luo et al. [21] applied the Intel SGX with blockchain to a data shar-
ing scheme, where the decryption process also relied on the confidentiality of
secure hardware devices. The hardware-based approach is intuitively reliable
and robust, since trusted hardware devices cannot change the evidence genera-
tion rules once loaded. However, the security cannot be guaranteed when adver-
saries successfully attack the hardware. The approach using multiple hardware
may mitigate such security concerns to a certain extent. Unfortunately, the effi-
ciency issue and incentives issue cannot be easily overcome. Another promising
approach is directly employing the protocol execution result as the evidence,
such as using the ciphertext and the private key as evidence. A typical example
is accountable identity-based encryption [11,12,19], where a judge can decide
whether a PKG is malicious by showing cryptographic proofs that contain the
decryption key. However, such an approach lacks practicality.

Privacy-preserving smart contract (PPSC) is a special contract that aims to
make the contract state private. The techniques on PPSC have been studied
extensively in the recent years. Enigma [29] provided a decentralized confiden-
tial computation platform by employing multi-party computation. Hawk [16],
Zether [6] and Zkay [25] realized privacy-preserving smart contract by heavily
relying on zero-knowledge proofs. Ekiden [8] and Microsoft Coco framework [22]
employed Intel SGX to achieve confidential smart contracts. Essentially, PPSC
is a decentralized confidential computing technology, which inherits the benefit
of transparent execution from a smart contract while additionally protecting the
privacy of contract data. Our accountable system leverages the main benefits of
PPSC. The transparent execution of smart contracts ensures the judge honestly
checks the evidence, and the trigger mechanism of contract execution enforces
investigators to invoke PPSC through transactions, which ensures investigators
neutrally provide the evidence.
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3 Preliminaries

Let λ be the security parameter, and negl(λ) be a negligible function. The chal-
lenger and adversary are represented as C and A, respectively. We use the nota-
tion � to denote the game in security deduction, adv to represent the advantage
that the adversary holds, and the notation “≈” to show these two games are
computationally indistinguishable. The message space is denoted as M.

3.1 Privacy-Preserving Smart Contract

Smart contract was first proposed by Nick Szabo [26] and further developed
by Ethereum [27] in the blockchain system. A blockchain-based smart contract
consists of two mutually interacting components: contract state and operational
code [27]. The contract state covers the input and output of the operational
code, while operational code specifies operations/commands to store or transfer
the contract state. The intuitive target for a privacy-preserving smart contract
is to make the contract state private. However, purely protecting the privacy of
the state against the public is not sufficient, especially when multiple entities
are involved in one contract to finish complex cryptographic tasks. The state
in a contract is required to reach a new consensus view after the execution
of operational codes, in which this rule is followed by PPSC projects such as
Zether [6], Ekiden [8] and Oasis Devnet [1]. Thus, we capture two main PPSC
principles: P.1 the contract state should be protected against the public; P.2
the authorized entities should see the same private data view.

PPSC-Based Accountability. The initial contract state and the operational
code will reach consensus after the successful deployment. After that, two
approaches can trigger the execution of the operational code: the internal sched-
ule code and the external message call. The first approach allows the operational
code to execute periodically. However, it cannot complete a complex task due
to massive gas consumption [27]. Thus, to trigger the execution, an external
message call with sufficient gas is crucial. PPSC inherits the state triggering
mechanism from smart contracts, namely, the state-changing is based on exter-
nal message call. For example, Oasis Devnet [1] requires an external caller to
firstly build a secure channel with the TEE-protected smart contract, and then
the transition of the private state is accomplished through this channel when a
transaction call is provided. Origo Network [2] reveals the private input to an
off-line executor and then allows the executor to provide a ZKP-proof transac-
tion for online state transferring. Zether [6] funds the Zether tokens (ZTH) by
sending some Ethereum [27] tokens (ETH) and converts ZTH back to ETH by
sending a ZK-proof transaction. In summary, a transaction is required to trigger
the execution and obtain the state from PPSC. Therefore, by tracing the sender
who sends the transaction, the auditor implicates the wrongdoing of the contract
caller. Based on the above analysis, we give a formal definition of PPSC.

Definition 1. (P̂PSC) A Privacy-Preserving Smart Contract (PPSC) is a pri-
vate state machine built on top of a blockchain system and can be modeled by
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5-tuple (S,S ′, T , s, B) and a transition function f : S ⊗ T B−→ S ′, where S repre-
sents a set of private state with the initial state s, S ′ is the new state set after the
specified operations, T means the publicly visible transactions that can trigger the
execution of a contract, and B represents the blockchain oracle which provides
the execution environment.

– Deploy < bytecode >⊗Tx −→ (< opcode >,< reqcode >, s): The deployment
is triggered by a transaction Tx, where Tx ∈ T . It takes the binary code
< bytecode > as input, and outputs the private state s. The contract is com-
piled into < opcode > and < reqcode >, where < opcode > specifies the oper-
ation set to be executed and < reqcode > defines the conditions depending
on which the operation of < opcode > can be conducted.

– Transfer < input > ⊗ S ⊗ Tx
B−→ S ′: By sending a transaction Tx with the

input < input >, the current private state S is transited to the new private
state S ′ under the blockchain oracle B. The new state S ′ returns only when
Tx satisfies the condition defined in < reqcode >, i.e., Tx ∈ < reqcode >.

– Access S ⊗ Tx
B−→ S: By sending a query transaction Tx through the

blockchain oracle B, the private state returns only when Tx satisfies the con-
dition predefined in < reqcode >, i.e., Tx ∈ < reqcode >.

Based on the above syntax, we provide four PPSC security proper-
ties: state-privacy, state-consistency, transaction-transparency and transaction-
unforgeability. The state-privacy guarantees that the state is protected against
the public (Principle P.1). Only the caller who satisfies the predefined condi-
tions can learn the state. Meanwhile, the state-consistency ensures that a smart
contract shares the same data view after operational code is executed (Princi-
ple P.2). The transaction-transparency ensures that transactions triggering the
execution of PPSC can be freely queried, while the transaction-unforgeability
guarantees the transactions (as evidence) are reliable and authentic without
being forged or cheated. PPSC is secure when these four security properties are
all satisfied.

Definition 2. PPSC achieves state-privacy, if for all PPT adversaries A, there
exists a negligible function negl(λ) such that adv

�privacy

A,ppsc(λ) < negl(λ), where

adv
�privacy

A,ppsc(λ) is the advantage that A successfully obtains the private state without
satisfying the condition predefined in < reqcode >.

Definition 3. PPSC achieves state-consistency, if for all PPT adversaries A,
there exists a negligible function negl(λ) such that adv�cons

A,ppsc(λ) < negl(λ),
where adv�cons

A,ppsc(λ) is the advantage that A obtains a valid state S� through the
algorithm Transfer in which s� does not belong to the state set S, i.e., s� /∈ S.

Definition 4. PPSC achieves transaction-transparency, if for all PPT adver-
saries A, there exists a negligible function negl(λ) such that adv�tran

A,ppsc(λ) <

negl(λ), where adv�tran

A,ppsc(λ) is the advantage that A successfully obtains a trans-
action Tx� through calling the algorithm Transfer with the condition Tx� /∈ T .
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Definition 5. PPSC achieves transaction-unforgeability, if for all PPT adver-
saries A, there exists a negligible function negl(λ) such that adv

�unforg

A,ppsc(λ) <

negl(λ), where adv
�unforg

A,ppsc(λ) is the advantage that A successfully forges a trans-
action Tx� and obtains the state through Tx�.

3.2 Decision Linear Assumption

Decision Linear Assumption [5,15] is based on the Linear Problem. Due to lim-
itation of space, we skip a full definition and refer to Appendix A for details.

4 General Construction

4.1 System Overview

Our system consists of four entities (see Fig. 1.a): common users (sender/
receiver), investigator, key management smart contract (PPSC-KM), and audi-
tor smart contract (PPSC-AD). PPSC-KM is used to manage investigators’
decryption keys. PPSC-AD is employed as a “judge” to decide whether the
event of the investigator’s decryption is conducted under the court-issued order.
A detailed workflow is shown as follows. The sender encrypts messages with a
random number, which is hidden in PPSC-KM, and then it sends the encrypted
message to the receiver. The receiver decrypts the ciphertext as normal. Mean-
while, the investigator who obtained a court-issued order decrypts the ciphertext
by fetching the random number from PPSC-KM. When a query is sent to PPSC-
KM, the actions will be recorded through a transaction as the evidence. Next,
PPSC-AD will check the evidence to report malicious decryption. In our proto-
col, PPSC-KM and PPSC-AD are, respectively, abbreviated as ĉkm and ĉad for
simplicity. Formally, we provide the general construction as follows.

Fig. 1. System Framework & Architecture

Setup (pms, ĉkm, ĉad) ← Setup(1λ, codes). The algorithm takes as input a secu-
rity parameter λ and binary codes codes, and returns public parameters pms
and two contracts ĉkm, ĉad.
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Key Generation (pk, sk, tk) ← KeyGen(pms). The algorithm takes as input
pms, and returns receiver’s key pair (pk, sk), and a secret tag key tk.

Registration s
B←− Register(tk, P̆ ). The algorithm takes as input a master key

tk and accountability policies P̆ , and returns an initial state s ∈ S. The tk and
policies P̆ are added to ĉkm and ĉad, respectively.

Encryption ct ← Encrypt(tk, pk,m). This algorithm takes as input tk, pk, and
a message m, and then returns a ciphertext ct.

Decryption m ← Decrypt(sk, ct). The algorithm takes as input sk, ct, and
returns m ∈ M.

Warrant Decryption (m,Tx) B←− WDecrypt(r, r1, s, ct). This algorithm takes as
input a random number r, r1, and s (including tk) calls the algorithm Transfer
described in Sect. 3.1, and returns m ∈ M.

Inspection true/false
B←− Inspect(Tx, P̆ ). This algorithm takes as input P̆ and

Tx, and returns the inspection result. The result true indicates that the autho-
rized decryption is legitimately executed under the warrant, and vice versa.

The procedure of Decryption represents normal decryption run by offline
users, whereas Warrant Decryption is run by the investigators who are forced
to leave evidence each time of decryption. Meanwhile, the access control condi-
tions in ĉkm and the accountability policies in ĉad are set as the same. We notice
that the logic of Warrant Decryption might be confusing: the ĉkm has defined
the access control conditions for investigators. Is the accountability necessary
for investigators’ decryption? We clarify that access control and accountability
in our system play different roles. The access control condition in ĉkm is similar
to an order issued by the court, which describes the actions that an investigator
should do but not yet, whereas the accountability policies in ĉad are responsible
for checking the actions an investigator has done (e.g., whether an investigator
has executed the decryption under a warrant). We define malicious decryption
as: the investigator’s decryption does not match the actions permitted in the
issued orders.

4.2 Security Definitions

Our Fialka system is denoted by Π, and above algorithms are abbreviated as:
Set, Gen, Reg, Enc, Dec, WDec, and Insp, respectively. We assume an investigator
has already obtained a warrant from a court, and his access to users’ plaintext
needs to be audited by the judge. Inspired by [18], the investigator should obtain
fair treatment, neither being framed for the legitimate investigation nor being
escaped from the punishment for wrongdoings. We captures two properties w.r.t
accountability: fairness and completeness.

Fairness. This property prevents the judge from framing honest investigators.
An honest investigator should follow the pre-defined policies and return true.
We consider the adversary A who imitates an honest investigator, and then
maliciously executes the warrant/order attempting to frame him.
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Definition 6 (Fairness). Fialka satisfies fairness, if for all PPT adversaries
A, there exists a negligible function negl(λ) such that adv

�fair

A,Π(λ) < negl(λ) where

adv
�fair

A,Π(λ) is the advantage of A wins the game �fair defined as,

– Initialization�. The system configures the parameters pms = ⊥, and creates
ĉkm and ĉad by running the algorithm Set. Then, C generates the secret key
tk by running the algorithm Gen. Next, C registers the tk and decryption
policies P̆ to the ĉkm and ĉad, respectively.

– Actions�. At each round, the adversary A and the challenger C execute
the following algorithms. (1) A generates the key pair (ska, pka) by running
the algorithm Gen. (2) C inputs the public key pka, message m, a random
numbers r and a secret key tk, and then obtains the ciphertext ct by running
the algorithm Enc. (3) C runs the algorithm Transfer, and then returns r2
and Tx to the A. (4) A inputs r2, the ciphertext ct, and outputs the message
m by running the algorithm WDec. (5) ĉad executes the algorithm Insp with
the input Tx, and return the inspection result.

– Challenge. Assume that A executes above actions at most for l times, and
obtains a set T = {Tx0,Tx1, ...,Txl}. A wins if A generates a transaction Tx�

satisfying the conditions: false ← Insp(Tx�, P̆ ) ∧ Tx� /∈ T .

Completeness. This property guarantees that the judge always punishes the
users who misbehave. To define completeness, we consider an adversary A aims
to evade the responsibility of illegally executing the authorized decryption.

Definition 7 (Completeness). Fialka satisfies completeness, if for all PPT
adversaries A, there exists a negligible function negl(λ) such that adv

�comp

A,Π (λ) <

negl(λ), where adv
�comp

A,Π (λ) is the advantage of A wins �comp defined as,

– Initialization and Actions. The steps are same with that in fairness game
labeled with (�).

– Challenge. Assume that A executes the above action at most for l
times, and then obtains a set of ciphertext-transaction tuple {C, T } =
{(ct0,Tx0), (ct1,Tx1), ..., (ctl,Txl)}. A wins if A successfully generates a
new tuple (ct�,Tx�) that satisfying the conditions: true ← Insp(Tx�, P̆ ) ∧
WDec(r, s, ct�) = m� ∧ (ct�,Tx�) /∈ {C, T }.

5 Concrete Instantiation

In this section, we present an instantiation of Fialka based on Kiltz’s PKE pro-
tocol [15] and the Oasis Devnet [1,8]. Kiltz’s PKE is an efficient and IND-CCA
secure scheme with a tight security reduction, while Oasis Devnet is an SGX-
backed PPSC platform with a rigorous security proof under the Universal Com-
posability (UC) framework [7]. In this instance, PPSC-KM manages a secrete
random number as the investigator’s decryption key and its access permission
through the SGX enclave, and the PPSC-AD audits the transactions, and then
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reports the investigator’s malicious decryption. Specifically, a decryption key
using for investigation is loaded in PPSC-KM and hidden in an enclave, which
forces the outside investigator to fetch it, and further leaves the transaction-
based evidence that will be audited by PPSC-AD. Note that SGX-based PPSC
is an example by hiding the secret key inside the hardware, and other approaches
can also achieve the same goal, such as cryptographically hiding secret key by
ZKP. Our framework is compatible with various aforementioned PPSC tech-
nologies [6,13,16,25,29]. Importantly, our construction can easily be extended
to other accountable PKE protocols without significant modifications.

Setup (pms, ĉkm, ĉad) ← Setup(1λ, codes). The algorithm takes as input a secu-
rity parameter λ, and returns public parameters including the multiplicative
cyclic group G with prime order p. Then, it chooses two collision resistant hash
functions H1 : {0, 1}� → Zp and H2 : G × G → Zp. Next, it takes as input
contract binary codes, and calls the algorithm Deploy (defined in Sect. 3.1),
and finally returns two contracts ĉkm and ĉad.

Key Generation (pk, sk, tk) ← KeyGen(pms). The algorithm is run by the
sender and receiver. The receiver runs the algorithm to generate her key pair
(pk, sk), and the sender runs the algorithm to obtain a secret tag key tk.

tk, x1, x2, y1, y2 ←− Z
∗
p;

Choose (g1, g2, z) ∈ G, satisfying gx1
1 = gx2

2 = z;
u1 ←− gy1

1 ;u2 ←− gy2
2 ; pk ← (G, p, g1, g2, z, u1, u2); sk ← (x1, x2, y1, y2).

Registration s
B←− Register(tk, P̆ ): The algorithm is run by the sender. It takes

as input tk and policies P̆ , and outputs contract initial state s. In particular, the
tag key tk is registered into ĉkm. The policies P̆ are added to ĉad by the means
of external message calls (see Sect. 3.1). The privacy of tk and s are protected
by the SGX enclave. More details can be found in our implementation.

Encryption ct ← Encrypt(tk, pk,m). This algorithm is run by the sender. It
takes as input tk, pk, and a message m, returns a ciphertext ct.

pk = (G, p, g1, g2, z, u1, u2); r1, r ←− Zp;

r2 ← H1(tk|r);C1 ← gr1
1 ;C2 ← gr2

2 ; τ ← H2(C1, C2); V ← r1;

D1 ← zτr1ur1
1 ;D2 ← zτr2ur2

2 ;K ← zr1+r2 ;E ← mK;
ct ← (C1, C2,D1,D2, E, V ).

Decryption m ← Decrypt(sk, ct). This algorithm is run by the receiver. It takes
as input the receiver’s secret key sk, the ciphertext ct, and returns m ∈ M.

Parse ct as(C1, C2,D1,D2, E, V );
s1, s2 ←− Zp; τ ← H2(C1, C2);

K ′ ← C
x1+s1(τx1+y1)
1 C

x2+s2(τx2+y2)
2

Ds1
1 Ds2

2

; m ← E(K ′)−1.
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Warrant Decryption (m,Tx) B←− WDecrypt(r, r1, s, ct). This algorithm is run
by the investigator. It takes as input r, r1 and the private state s (including tk),
and then calls the Transfer algorithm to execute the function r2 ← H1(tk|r)
in an isolated environment provided by the SGX. This calling progress is repre-
sented in the form of a transaction Tx.

Parse ct as(C1, C2,D1,D2, E, V );
r2,Tx ← Transfer(s, r);

K ′′ = zr1+r2 ; m ← E(K ′′)−1.

Inspection true/false
B←− Inspect(Tx, P̆ ). This algorithm is run by ĉad. It takes

as input P̆ and Tx, and returns inspection result. The true indicates the warrant
decryption satisfying the policies, and vice versa.

Here, the correctness of our construction is easy to check as we have

K ′ =
C

x1+s1(τx1+y1)
1 C

x2+s2(τx2+y2)
2

Ds1
1 Ds2

2

= Cx1
1 Cx2

2

(

Cτx1+y1
1

ztr1ur1
1

)s1
(

Cτx2+y2
2

zτr2ur2
2

)s2

=Cx1
1 Cx2

2

(

g
r1(τx1+y1)
1

g
r1(x1τ+y1)
1

)s1
(

g
r2(τx2+y2)
2

g
r2(x2τ+y2)
2

)s2

= gr1x1
1 gr2x2

2 .

Note that the random numbers s1 and s2 are used for implicitly testing if the
ciphertext is consistent with tag τ [15]. We see that K = zr1+r2 = gx1r1+x1r2

1 =
gx1r1
1 gx2r2

2 . Then, we observe that K = K ′ = K ′′. Thus, both the receiver and
investigator can obtain the message m by

Dec(sk, ct) = E(K)−1 = mK(K)−1 = m.

6 Security Proof

Theorem 1 (Fairness). Assume that the SGX-based PPSC is secure, our con-
struction Fialka satisfies the property of fairness.

Proof. Suppose that there exists an adversary A who wins the fairness game
�fair with a non-negligible advantage. Then, we transform an adversary A against
Fairness into adversaries against PPSC security. Next, we describe a sequence
of games to finish the proof.

Lemma 1 (SGX-based PPSC [8,20]). Our SGX-based platform is a secure
instantiation of PPSC whose protocols match the ideal functionality in the UC
framework. More details can be found in [8].

Game �0. This is an unmodified game. Trivially, the winning probability of this
game equals the advantage of A against fairness game, namely, adv�fair

A,Π (λ).
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Game �1. In this game, when A calls C, we disallow C to call contract ĉkm.

Game �2. In this game, when A calls C, the transaction-based evidence is not
allowed to be given to the ĉad. Instead, the evidence is randomly selected for
auditing.

Obviously, the winning probability of the game �2, denoted as adv�2
A,Π(λ), is

negligible, since the transaction-based evidence is randomly selected. Next, to
find out the differences between these games, we define the following events.

• E[a1]: forging an evidence. The event E [a1] implies that the adversary B1

forges a valid transaction Tx∗ without update ĉkm, denoted as ¬Transfer.

r2,Tx
∗ B←− ¬Transfer(s, r) ∧

WDec (r, r1, s,Enc(tk, pk,m)) = m ∧
false

B←− Insp(Tx∗, P̆ )

⎤

⎥

⎥

⎦

⇒ E[a1] .

• E[a2]: forging an inspection result. The event E[a2] implies that the adver-
sary B2 forges an inspection result, where the originally “true” in the algo-
rithm Inspect is modified to be “false”.

r2,Tx
B←− Transfer(s, r)∧

WDec (r, r1, s,Enc(tk, pk,m)) = m∧
false

B←− Insp(Tx, P̆ )

⎤

⎥

⎥

⎦

⇒ E [a2] .

Game �0 ≈ Game �1. The winning condition for �0 is equal to the winning
condition for �1 if and only if the event E[a1] does not happen. The probability
of E [a1] happening is identical to the advantage of breaking the promise of
transaction-unforgeability. Thus, we have

|Pr[�0 ] − Pr[�1 ] | = Pr[E[a1]] = adv
�unforg
B1,Π (λ).

Game �1 ≈ Game �2. The winning condition for �1 is equal to the winning
condition for �2 if and only if the event E[a2] does not happen. We consider the
possibility of E[a2], and it is identical to the advantage of breaking the promise
of state-consistency. Thus, we obtain

|Pr[�1 ] − Pr[�2 ] | = Pr[E[a2]] = adv�cons
B2,Π (λ).

Putting everything together, we conclude that

adv�fair
A,Π (λ) ≤ Pr[E[a1]] + Pr[E[a2]] + adv�2

B,Π(λ)

≤adv
�unforg
B1,Π (λ) + adv�cons

B2,Π (λ) + adv�2
A,Π(λ) ≤ negl(λ).

Theorem 2 (Completeness). Assume that SGX-based PPSC is secure and
Kiltz’s full PKE scheme [15] is secure against chosen-ciphertext attacks, Fialka
satisfies completeness.

Proof. The concrete proof can be found at Appendix B.
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7 Implementation

In this section, we discuss the implementation1 of our instantiation based on the
SGX-based PPSC platform Oasis Devnet [1,8] (version 2.0). Our implementation
(see Fig. 1.b) has two components: the client-side and the server-side. The client-
side is run by the sender, receiver and investigator, while the server-side is run by
the PPSC platform. The client-side covers four algorithms: Set, Gen, Enc, Dec.
They are implemented by 1000+ lines of Javascript codes in total, containing
the packages of client and client-connector. The client implements basic
operations executed by end-users at local, while client-connector builds a
bridge between the client-side and the server-side. The server-side consists of
two pieces of privacy-preserving smart contracts: PPSC-KM and PPSC-AD.
PPSC-KM covers the algorithms CGen, Reg and Trans2, while PPSC-AD includes
the algorithm Insp. Both of them are implemented in Rust. PPSC-KM protects
private decryption keys by using the enclave technology from Intel SGX [10],
while PPSC-AD determines whether the decryption is legal or not by checking
the security policies.

To be specific, after a successful deployment of the contract PPSC-KM and
PPSC-AD, the evidence inspection algorithm Insp and the investigator’s key
generation algorithm (by revoking Trans) as well as their access conditions, will
be compiled as the binary codes and replicated to the enclaves [10] in SGX-
powered blockchain nodes. Then, an encrypted contract state containing the
investigator’s key H1(tk|r) reaches an agreement across distributed blockchain
nodes. After that, to obtain the key from PPSC-KM, two requirements must
be fulfilled: (1) a transaction with the input satisfying access conditions should
be provided; (2) An encrypted and authenticated channel connected to enclaves
should be established (after a successful attestation [1,8,10]). Then, an invoked
progress will be executed in the form of a transaction, and remains visible and
immutable which could be publicly accessed. Each entity is able to see/witness
the progress of obtaining the investigator’s key, but no entity except the con-
tract caller, knows the exact output (key) of the smart contract. Subsequently,
PPSC-AD audits the transactions through an internal query to detect suspi-
cious activities. Essentially, the privileges of the Trans algorithm are protected
and managed in a CPU-level by Intel SGX. Only designated investigators should
be allowed to access this secret key. We also notice that our implementation only
provides one-off auditing, since it can only trace the records when the first time
an investigator extracts the secret key. Our implementation provides a prototype
to demonstrate the feasibility.

8 Evaluation

We first provide the performance evaluation on average CPU-time, representing
the consumed time since the operation starts. The evaluation contains all the
1 A demo site and reference source code are accessible at http://www.fialka.top.
2 Trans (Transfer algorithm) calculates the investigator’s key and it belongs to WDec.

http://www.fialka.top
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algorithms, and the testing environment is set as follows. The client-side runs
on a Dell precision 3630 Tower with 16 GB of RAM and one 3.7 GHz six-core
i7-8700K processors running Ubuntu 18.04. The server-side runs on a blockchain
node, which is provided by Oasis SDK [1,8].

Table 1. The average CPU-time, Gas cost and Latency of Operations.

Operations CPU-time/ms Cost/gas Latency/ms

Set 1.16 – –
Gen 50.04 – –
CGen† 0.0880 5129943 5683
Reg 0.0104 494553 3960
Enc 102.35 – –
Dec 64.86 – –
Trans 0.0325 342514 3643
Insp 0.0027 251971 2450
†: CGen means contract generation

CPU-time. The evaluation results illustrate some critical points. The offline oper-
ation Enc is the most time-consuming operation since the encryption covers the
seven exponentiations. The offline operation Dec takes approximately half the
time of that in encryption because it processes four exponentiations. On the con-
trary, blockchain-related operations CGen, Reg, Trans and Insp take much less
than offline operations, since they do not have group mathematics computation.
In particular, the operation Insp is the fastest operation, which indicates the
efficiency of our accountability protocol. However, CPU-time is close to testing
environment, inefficient to convince that our framework is practical. Therefore,
we provide further evaluations on gas cost and latency for real-world scenarios.

Gas Cost. The gas cost measures the amount of computational effort that a
blockchain takes to execute an algorithm. The gas cost evaluation includes the
operations of CGen, Reg, Trans and Insp. The operation CGen costs the most gas
among all since the initial configuration of a smart contract has to be loaded.
Fortunately, this bottleneck can be ignored, because each contract is created only
once and can be reused multiple times. The cost of Reg is relatively high, since
the public parameters are needed to store on smart contracts. The cost of Trans
and Insp are relatively low due to simple online calculations, which indicates
that our accountability protocol is financially feasible3. In a real-world setting,
different investigators may call the functions in a same PPSC for decryption
and auditing simultaneously. To demonstrate the practicability of our system,
3 Estimates on real value of gas cost are omitted, since the Oasis token has not been

officially released at the time of writing.
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we simulate a distributed environment by increasing the number of invocations
from different investigators. Specifically, we test the gas cost of Trans and of Insp
along with a maximum 1000 invocations simultaneously. As shown in Fig. 2,
the outputs remains relatively stable under the variations, and the average cost
of Trans reaches approximately 340k while Insp is about 250k. It matches our
intuitive expectation, since the gas cost is theoretically independent with the
number of investigators. Based on such results, our accountability framework is
practically affordable which could be widely adopted.

Latency. Our latency test covers all the blockchain-related operations including
CGen, Reg, Trans and Insp. Among them, CGen is the most time consuming,
as the contract codes need to be compiled into the blockchain. The operation
Reg also takes a long time because all parameters have to be configured into
contracts. In contrast, the operations Trans and Insp are in low latency, due to
the fact that they do not have sophisticated on-chain computations. We also
provide a simulation by increasing the invocations in a distributed environment.
Our simulation includes the most two frequently used functions in PPSC, namely
Trans and Insp. As shown in Fig. 2, the results turn out that the latency stably
increases along with the growing number of invocations. Theoretically, numerous
invocations will impose a heavy burden onto the distributed network, which may
even cause the network failure or transaction stuck. We set an upper bound of
invoking transactions with 1000 users at the peak. The testing results confirm
our expectations.

Fig. 2. Gas and latency evaluation

Weakness. The average latency of the operation Trans reaches approximately five
seconds, which is the primary drawback of our implementation. Frankly speak-
ing, our system, at least built on the current version of Oasis Devnet (version
2.0), cannot compatibly support the applications that require fast decryption,
due to the latency constraints. However, it is worth noting that the execution of
warrant focuses on finding criminal evidence, which is latency insensitive.
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9 Conclusion

In this paper, we propose Fialka, a novel transaction-triggering accountable
decryption system based on the privacy-preserving smart contracts. Our sys-
tem utilizes PPSC to trace and detect the decryption evidence, which makes
warrant execution accountable. To the best of our knowledge, we present the
first PPSC-based accountability mechanism with formal definitions and proofs.
The security analysis shows that our system holds the accountability properties
of fairness and completeness. The implementation based on Oasis Devnet with
the detailed evaluation indicates that our system is feasible and applicable.

Future Work . Fialka is a composite framework containing PKE and PPSC. The
definition and proof of our instantiation are complete and sound. However, SGX-
based PPSC and its underlying blockchain are inherently hybrid systems with a
sophisticated mechanism, making our assumption inevitably strong. The possi-
bility to weaken the assumption will be further explored.
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Science Foundation of China under Grant No. 61672015 and Guangdong Provincial
Key Laboratory (Grant No. 2020B121201001). D. Galindo was partially supported by
the European Union’s Horizon 2020 research and innovation programme under grant
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A Appendix: Linear Problem

Definition 8. (Linear Problem [5,15]). Let G be a cyclic multiplicative group
with prime order p, and g1, g2, g3 be generators of G. Given g1, g2, g3, g

a
1 , gb

2, g
c
3 ∈

G, decide whether a+ b equals to c. If a+ b = c, outputs true, or false otherwise.
The advantage of an algorithm A in deciding the linear problem in G is

advLP
A =

∣

∣

∣

∣

∣

∣

∣

∣

Pr[A(g1, g2, g3, ga
1 , gb

2, g
a+b
3 ) = true:

g1, g2, g3 ← G, a, b ← Zp]
−Pr[A(g1, g2, g3, ga

1 , gb
2, η) = true:

g1, g2, g3, η ← G, a, b ← Zp]

∣

∣

∣

∣

∣

∣

∣

∣

,

with the probability taken over the uniform random choice of the parameters to
A and over the coin tosses of A.

Assumption 1 (Decision Linear Assumption). No adversary A succeeds
in deciding the Linear Problem in G with a non-negligible advantage.

Lemma 2. Assume H2 is a target collision-resistant hash function, under the
Decision Linear Problem, Kiltz’s full PKE scheme [15] is secure against chosen-
ciphertext attacks.
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B Appendix: Completeness

Proof (Theorem 2: Completeness). Suppose that there exists an adversary
A who wins the completeness game �comp with non-negligible probability. Then,
we transform an adversary A against Completeness into adversaries against
PPSC security and IND-CCA security of Kiltz’s PKE scheme. We describe a
sequence of games to conduct the proof.

Game �0. This is the unmodified completeness game. The winning probability
equals the advantage of A against Completeness game, namely, adv

�comp
A,Π (λ).

Game �1. In this game, when the adversary calls the C, we disallow contract
ĉad to execute the algorithm Insp, and then ĉad outputs true to the adversary.

Game �2. In this game, we disallow A calls C, and thus Transfer in ĉkm cannot
be executed, indicating A cannot obtain secret key from blockchain.

Clearly, without querying smart contract, the adversary’s advantage of win-
ning �2 equals the advantage of breaking the CCA security of PKE. The adver-
sary against security of Kiltz’s PKE scheme adv�CCA

B,Π (λ) is negligible, and the
proof is given in Lemma 2. To find out the difference between these games,
we define the events: (1) E [b1]: blocking the transaction-based evidence. The
adversary B1 fetches the key from the blockchain, and successfully hides the
transaction Tx� that used for validation in the algorithm Insp. (2) E [b2]: forging
an inspection result. The adversary B2 forges an inspection result by executing
¬Insp, where ¬Insp means the malicious behaviors of inspection and it modifies
the false result as true. (3)E [b3]: breaking the security of PPSC. The adversary
B3 obtains a valid private key without invoking the blockchain.

Game �0 ≈ Game �1. The winning conditions for �0 equals the winning con-
ditions for �1 if neither event E [b1] nor event E [b2] happen. Thus, we have
|Pr[�0 ] − Pr[�1 ] | = Pr[E[b1]] + Pr[E [b2]] . We then consider the happening
probabilities of the E [b1] and E [b2]. The happening of E [b1] implies that the
adversary B1 hides the transaction evidence, which contradicts the assumption
of the transparency properties. Thus, the wining advantages of E [b1] is identical
to breaking the promise of transaction-transparency. If the event E[b2] happens,
indicating that the adversary B2 breaks the state-consistency of PPSC, the pos-
sibility is identical to the advantage of breaking the promise of state-consistency.
Thus, we have Pr[E[b1]] = adv�tran

B1,Π(λ) and Pr[E[b2]] = adv�cons
B2,Π (λ).

Game �1 ≈ Game �2. The winning condition for �1 is equal to the winning
condition for �2 if and only if event E [b3] does not happen. The possibility of
E [b3] is identical to the advantages of breaking the promise of state-privacy.
Thus, |Pr[�1 ] − Pr[�2 ] | = Pr[E[b3]] = adv

�privacy
B3,Π (λ).

Combining everything together, we obtain that

adv
�comp
A,Π (λ) ≤Pr[E[b1]] + Pr[E[b2]] + Pr[E [b3]] + adv

�no-query
B,Π (λ)

≤ adv�tran
B1,Π(λ) + adv�cons

B2,Π (λ) + adv
�privacy
B3,Π (λ) + adv�CCA

B,Π (λ) ≤ negl(λ).
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Abstract. Video games Industry generated 150$ billion (approx. two
times Facebook revenue) and involved one-third of the world population,
in 2019 only. It is not hard to imagine how this attracted cyber-criminals,
e.g.: 77 million PlayStation Network accounts were compromised in 2011;
in 2015 Steam reported more than 70 thousand victims of scam monthly;
cyberbullism events are also frequently reported. Being able to recognize
gamers leveraging their gaming data could help to mitigate these issues,
e.g., harmful players that are banned could be found again in all the
other profiles they own. On the other side, this capability could be a
further tool in the hand of cyber-criminals.

In this paper, we are the first to demonstrate that players can be recog-
nized based on their play-style. In particular, we observe the play-style
through gaming data and use a Deep Neural Network for recognition.
Our solution addresses games in which players control a character, and
generic features are used to make our system possibly applicable to other
games as well. To demonstrate the feasibility of our proposal, we run a
thorough set of experiments based on players of Dota 2, which counts
more than 10 million monthly active users. Our results show the effi-
ciency and feasibility of the proposal, achieving 96% accuracy with only
two minutes of gaming data.

Keywords: Video games · Security · Privacy · User recognition

1 Introduction

Video games are an important and often present part of modern society. As of
July 2018, almost a third of people on Earth are gamers [11]. The video game
evolution is glaring: increasingly new technologies led to more performing gaming
platforms, going from Arcade Console a Nintendo64 to PlayStation 5 and Nin-
tendo Switch, potentially involving Augmented Reality (AR). In 2019, the video
game market generated around $150 billion in revenue [30], approximately two
times Facebook ones [26]. Nevertheless, the large diffusion of online video games
opened up a plethora of new paths for fraud. In-game purchases are incredibly
common nowadays, and one-click payments are becoming the trend, i.e., users’
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payment information is centralized and accessible through the accounts. There
is no surprise that account takeovers are a primary aim for hackers. A recent
study [19] showed that about half of all console gamers spend money in-game,
and at least one fifth has been the victim of payment fraud. In 2011, the PlaySta-
tion Network registered more than 77 million accounts being compromised [3].
In 2015 Valve, Steam’s developer, stated that more than 70 thousand account
were stolen monthly, and mitigated the problem with a two-factor authorization
method [29]. In 2018, the popular League of Legends (LOL) and Fortnite faced
serious account takeovers problems. LOL was targeted with several phishing
attacks [2], while in Fortnite several players discovered many unauthorized pay-
ments in their bank movements [5]. Very often, such scammers add the victims
on friends list, then start chatting sending malicious links or offering favorable
trades. To be more credible, the scammers usually add the victims after a game
played together. Even if scammers can be reported and banned, they can easily
create new accounts and continue with their malicious actions.

The problems of account takeovers and scams could be reduced being able
to uniquely recognize a player, regardless of the account they plays in (i.e.,
profiling a player1). An in-game payment could be blocked if the purchaser is
not recognized as the owner. At the same time, if dangerous user are banned,
they could be banned again every time they make or use another profile. The
same approach could be used to reduce harassment and cyberbullying that often
appears in video games [9]. In our opinion, a powerful way to carry out such
player recognition is by using the player’s play-style, i.e., in-game data. The
intuition behind this work is that players have their own way to play, and this
could potentially be a “biometric” factor.

The mentioned gaming data can be retrieved by exploiting matches replays
and tracking websites, tools that derived from the growing popularity of Elec-
tronic Sports (or e-sports). The replays availability and their analysis brought up
the birth of tracking websites, i.e., web applications that gather players data to
expose their entire careers and personal statistics. However, such data are pub-
lic, visible to anyone, without any exception, and the possibility of recognizing
a player starting from in-game data might lead to serious privacy issues.

In this paper, we are the first to demonstrate that players can be recognized
and distinguished using their in-game data as features. If this could help to
reduce the aforementioned problems, it could also boost harmful behaviors. If a
cyberbullying victim decides to create a new account to stop being bothered by
bullies, they can chase them down analyzing new players’ play-styles and finding
a correlation. Thus, we are also spreading awareness about these possible attacks.

Contributions. Our contribution is twofold: (1) we give the first demonstration
of player recognition using in-game data extracted from replays, and (2) we
show the current panorama of online gaming and discuss potential issues and
consequences arising from (1).

1 The title of the paper, Profiling vs Player, has the same acronym (PvP) of Player
vs Player, a term used in video games to express battles between gamers.
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Organization: Section 2 overviews related work, while Sect. 3 provides a
panorama of online gaming and Dota 2 background. Section 4 shows the data
collection procedure we used. Next, Sect. 5 describes the model used for the
recognition system, followed by experiments and results in Sect. 6. Discussions
follow in Sect. 7 and Sect. 8 concludes the paper.

2 Related Work

Video games, privacy, and deep learning fields have been widely explored in the
literature, although they have been treated together only recently. We restrict
the discussion to these three main areas related to video games: effects and
impacts on gamers, security and privacy issues, and studies carried out using
machine learning techniques, especially on Dota 2.

One of the main interests researchers have in the video games field is to
understand the benefits of playing video games and their impact on society.
In [13] Gong et al. conducted a study over 27 “expert” players of League of
Legend and Dota 2, showing that playing video games increases the amount of
grey matter and promotes better connectivity in a person’s brain. Despite the
video game influence on child health is usually perceived to be negative, [17]
proved that children who play more video games may be more likely to develop
good social skills and to build better relationships. Granic et al. demonstrated
in [14], that children who played strategy-based games usually improved their
problem-solving skills, getting better grades in the next school year. Studies have
tried to analyze the correlation between violence and video games [10], while or
to understand the learning potential of such means [25].

Privacy issues in video games are a recent concern. In [21] Newman et al. evi-
dence of how companies gather their players’ data through consoles using several
different sensors. Players’ voice, physical appearance or geographical location are
the main interesting and private features that are usually collected. Moreover,
players’ psychographic information can be obtained starting from their in-game
interactions. In [24], a full overview of how modern games aligns with information
privacy norms and notions is given. Furthermore, it analyzes how users, in par-
ticular child gamers, may be affected by data practices and technologies specific
to gaming. Many means have been used to recognize users, such as movements
information published on a social network in [15] and laptop power consumption
in [4], but video games were never used before, to the best of our knowledge.
Deep learning techniques have been applied in several fields of recognition, such
as Human Action Recognition [1] or Speech Recognition [6].

Classic machine learning techniques have been applied to video games for
several reasons. In 2009, Drachen et al. utilized an unsupervised learning app-
roach to construct models of players [7] of “Tomb Raider: Underworld”. One year
later, on the same game, different supervised learning algorithms were trained on
a large dataset of player behavior data, to predict when a player will stop playing
and the time to complete the game, if the player does it [18]. Müller et al., in
2015, classified player behavior in Minecraft using PCA, focusing on how much
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Table 1. Comparison between most played online video games.

Monthly Age Release Free Revenue Tracking Replays Replays Replay
players Range Year to Play Websites Availability easy to get Parsers

Minecraft 112M (2019)1 5-50 2011 ✗ $110M (2018)7 ✓ Low ✗ ✗

Fortnite 250M (2019)2 6-54 2017 ✓ $2.4B (2018)8 ✓ Medium ✗ ✓

League of
Legends

115M (2019)3 11-50 2009 ✓ $1.5B (2019)9 ✓ Medium ✓ ✓

PUBG 227M (2018)4 10-50 2017 ✗ $1.3B (2019)10 ✓ Medium ✗ ✓

CS:GO 17M (2019)5 13-40 2012 ✓ $414M (2018)11 ✓ Medium ✓ ✓

Dota 2 11M (2019)6 12-50 2013 ✓ $406M (2017)12 ✓ High ✓ ✓

1 https://tinyurl.com/minec-pl 2 https://tinyurl.com/fortn-pl 3 https://tinyurl.com/league-pl
4 https://tinyurl.com/plunk-pl 5 https://tinyurl.com/countst-pl 6 https://tinyurl.com/dota2-pl
7 https://tinyurl.com/minec-re 8 https://tinyurl.com/fortn-re 9 https://tinyurl.com/league-re
10 https://tinyurl.com/plunkn-re 11 https://tinyurl.com/countst-re 12 https://tinyurl.com/dota2-re

time players put in actions such as building, mining, exploring and fighting [20].
Different studies have been conducted on Dota 2 during the years. In [12], Gao
et al. used different classifiers to detect hero roles from IDs, achieving a 75%
accuracy, and hero positioning with more than 85% accuracy. Eggert et al. con-
tinued the work in [8] achieving 96.15% test accuracy using Logistic Regression.
Finally, OpenAI et al. [22] used deep reinforcement learning to create OpenAI
Five, a Dota 2 team composed by five bots trained for over ten months, which
was the first artificial team able to defeat world champions at an esports game,
demonstrating that self-play reinforcement learning can overcome a difficult task
with superhuman performance.

3 Background

In this section we first give a wide overview of the Online Gaming scenario,
to let the reader understand the impact our research could have on the society
(Sect. 3.1). Second, we explain more in details the game Dota 2, the one we chose
for the project (Sect. 3.2).

3.1 Online Gaming Panorama

As of July 2018, there are approximately 2.2 billion gamers on Earth, and 1.2
billion of those plays on a PC [11]. We gathered data to create a panorama about
the most played online multiplayer games. The list includes Minecraft, Fortnite
Battle Royale, League of Legends, PlayerUnknown’s BattleGrounds (PUBG),
Counter-Strike: Global Offensive (CS:GO) and Dota 2. Table 1 shows many char-
acteristics of the mentioned video games, such as monthly users, age ranges and
revenues. We also evaluated the availability of tracking websites and replays,
considering if they were available, easy to get for a casual player and the exis-
tence of parsers. The reported data come from our estimate, which did not follow
any specific procedure. We considered official reports, forum discussions, survey
results, and other online resources.

https://tinyurl.com/minec-pl
https://tinyurl.com/fortn-pl
https://tinyurl.com/league-pl
https://tinyurl.com/plunk-pl
https://tinyurl.com/countst-pl
https://tinyurl.com/dota2-pl
https://tinyurl.com/minec-re
https://tinyurl.com/fortn-re
https://tinyurl.com/league-re
https://tinyurl.com/plunkn-re
https://tinyurl.com/countst-re
https://tinyurl.com/dota2-re
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Each video game has at least 10 Million monthly players, with a huge spike
in Fortnite Battle Royale with 250 Million users. The age ranges are incredibly
wide, with games such as Minecraft and Fortnite involving very young children.
This fact emphasizes the critical impact of being able to recognize a user given
this very young audience. The revenue data shows the huge influence video games
have on the economy and society.

All the considered games have websites held by third parties that track their
players, while the replays availability is limited in some games (e.g., only some
typologies of matches are available). All of them, except for Minecraft, have
good replay parsers and keep updating their replay systems to make matches
replays available for all the players, especially professional matches, since watch-
ing replays is a good way to learn and improve in the game. Overall, Dota 2
has the more complete replay system, and replays of any player are very easy to
obtain. Every player can search and download any match using the match ID,
and different perspectives can be selected to watch the replay. Dota 2 also has
different parsers and tracking websites, thus we chose it as the game for our case
study. For the rest of the paper, we will use Dota 2 features to recognize play-
ers. However, we selected general features that can be possibly found in other
video games, or easily replaced by characteristics of such video games likely to
be “biometric”. Section 7 discusses on applicability of the presented system to
other games.

3.2 Dota 2

Dota 2 is a Multiplayer Online Battle Arena (MOBA) video game. Released by
Valve Corporation in 2013 and available on Steam for free, it is currently one
of their most played multiplayer game, with more than 400,000 unique players
every day. Two different teams of five players, the Radiant and the Dire, fight
each other to destroy the enemy base, defending their own one at the same time.
Each player controls a single character, called “hero”, with unique abilities.

Tracking Websites. Tracking Websites are web applications that automatically
analyze players’ matches to produce individual statistics as well as general trends
about the game. Each player career, i.e., all the matches they played, is publicly
exposed. The main Tracking websites for Dota 2 are Dotabuff2 and Opendota3.
Players allow data collection to such websites enabling an option in the game
client. Players not giving consent to such websites are not visible to them, but
their matches are still public and easy to get using the match ID.

Replay Parsing. Parsing a replay means going over it and extract useful infor-
mation. In Dota 2, replays are basically event streams, involving players’ orders,
spawn of unities, combat logs and so on. For this project we used the replay

2 https://www.dotabuff.com.
3 https://www.opendota.com.

https://www.dotabuff.com
https://www.opendota.com
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parser Clarity4 written in Java, which is also used by Opendota. We will give
more details about what data we used in our system in Sect. 5.

4 Our Data Collection

We now illustrate the data collection procedure. We used an online survey to
gather players willing to help with our research, with the details presented in
Sect. 4.1. The survey results with considerations are given in Sect. 4.2. Finally,
the survey allowed us to retrieve players’ IDs and download their replays as
shown in Sect. 4.3.

4.1 Dota 2 Online Survey

We found participants for our research using an online survey. The survey was
anonymous, and fulfilling it users gave us the consensus to use their data (from
the survey answers and from Dota 2) related to a Steam ID. The purpose of the
survey was twofold: (1) retrieving the Steam ID to download players’ replays
and statistics, (2) having a general idea about the Dota 2 community and to
understand if problems such as virtual scams and harassment were still actual
problems. We gathered this information in two different sections.

We spread the survey in different places, i.e., Facebook groups, Reddit, Dis-
cord groups, and private messages on different platforms. The estimated time
to complete the survey was 4 min, and we organized a prize draw for valid par-
ticipants. To be validated, users had to be visible on tracking websites and the
answers had to be coherent.

We know that the conducted survey cannot be a complete representation
of the Dota 2 community, but we do believe it was enough for a qualitative
assessment.

4.2 Survey Results

We received a total of 625 answers. 16 answers were considered invalid, while
43 participants were not visible by tracker websites. 37 players did not have
recent matches in the last three months, so a total of 529 active users from
62 different countries were considered for the research. 502 of them were males
while only 27 were females. Most of the players were students (47.5%), followed
by workers (30.8%), working student(11.7%) and a small fraction of unemployed
(10%). The age ranges from 13 from 46, with the majority between 16 and 28.
35% of them declared to have multiple accounts, but they answered providing
their most used one. We also asked their experience about scams and virtual
harassment in Dota 2. 429 players were never scammed, while 94 were scammed
at least once and 6 three or more times. However, 55% of them was contacted by
strangers suspecting a scamming attempts multiple times (3 or more), while 20%

4 https://github.com/skadistats/clarity.

https://github.com/skadistats/clarity
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was contacted one or two times, and 25% never had this risk. Finally, 56.5% of
the players were never harassed in game through chat or weird behaviour during
matches, while 22.8% was harassed very few times (1–2), and 20.6% was harassed
multiple times.

According to these results, we do believe our research tackles a big problem
in online games. A lot of players have multiple accounts, and the risk of being
scammed or harassed is pretty high.

4.3 Players Data

After we collected all the players’ ID from validated answers, we downloaded all
the matches replays of such players for one month. We used Steam APIs and
Opendota to retrieve the download link of the matches. We also used Opendota
APIs5 to retrieve player’s statistics, using the last three months as of date filter.

5 Model Selection for Player Recognition

In this section, we show the model we created to identify a player using gaming
data, i.e., the data extracted from replays. We start showing the data creation,
what data we collected and how in Sect. 5.1. In Sect. 5.2 we present the first
model we built along the consideration to create the definitive one. Section 5.3
reports the model selection phase.

5.1 Dataset Creation

To create our dataset, we followed a four-step procedure. We firstly selected the
number of players to recognize due to computational resource limitation(Players
Selection). Then, in the Features Selection phase, we identified the features that
could be used to represent the user play-style. Next, we parsed all the replays
focusing on the selected features (Replay Parsing). Lastly, we aggregated the
output of the parsed replays (Data Aggregation phase), to have multivariate
time-series representing the matches.

Players Selection. For the 529 users, we downloaded more than 30000 matches of
∼45 mb each. Analyzing all these replays would have been extremely expensive in
terms of time and resources. We then reduced the number of players to analyze:
we selected the first 50 players with a higher number of played matches. Since
a player can be Radiant or Dire, which means playing in the opposite parts of
the map for most of the time, we randomly selected 50 Radiant matches and 50
Dire matches, for a total of 100 matches per player and 5000 matches in total. A
balanced dataset is very important to achieve good and explanatory accuracy.
Balancing the matches played on the different sides of the map, as well the
number of matches per player, would surely help our model to learn better.

5 https://docs.opendota.com/.

https://docs.opendota.com/
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Features Selection. To identify players, we wanted to use general features pos-
sibly available in other video games, to make the research transferable to other
games as well. Features such as gold or experience per minute were too related
to the game. Instead, information such as the cursor movements, the camera
movements (what the player sees), hero positions and the actions a player can
do are more likely to be found in games similar to Dota 2. In detail, the cursor
is defined by X and Y coordinates, while the camera is defined by a cell and
a vector, both together giving the exact position, and each of them is defined
over the three axis X, Y and Z. For cells, we did not consider the Z axis since it
does not vary. The same approach of cells and vectors is used to represent a hero
position. Actions, instead, are the orders a player can give to the controlled hero.
We used only the most common actions as features to reduce the dimensionality
of the problem. Some actions can also have X and Y coordinates of the target.
The type and values of considered features are given in Table 2.

Table 2. Initial set of features considered for the task.

Type Values Aggregated features

Cursor, Camera Cell, X,Y X mean, X std, X changes

Hero Cell, Hero Vector Y mean, Y std, Y changes

Camera Vector X, Y, Z X mean, X std, X changes

Y mean, Y std, Y changes

Z mean, Z std, Z changes

Action: Move to position occurred, X, Y n occurs, X mean, X std, Y mean, Y std

Action: Move to target occurred n occurs

Action: Attack move occurred, X, Y n occurs, X mean, X std, Y mean, Y std

Action: Attack target occurred n occurs

Action: Cast position occurred, X, Y n occurs, X mean, X std, Y mean, Y std

Action: Cast target occurred n occurs

Action: Cast target tree occurred n occurs

Action: Cast no target occurred n occurs

Action: Hold position occurred n occurs

Action: Drop item occurred, X, Y n occurs, X mean, X std, Y mean, Y std

Action: Ping ability occurred n occurs

Action: Continue occurred n occurs

Replay Parsing. A replay is organized in ticks, with 30 ticks per second. At
every tick, information about entities (heroes, players, ...), players’ orders, etc.
are saved. We used the parser to get, at every tick, the features we showed above,
i.e., related to the cursor, the camera, the hero and the actions. In this way, a
replay became a sequence of states (cursor, camera, hero positions) and actions.
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Data Aggregation. Since a game is usually 45 min long, the number of data
points for a single game would have been definitely too much to be analyzed, in
terms of computational resources. Thus, we aggregated the ticks’ information to
have a data point every 0.5 s, i.e., 15 ticks. For every spatial feature, we kept the
average, the standard deviation and the number of changes that happened over
every axis. For actions, we counted the number of occurrences. Thus, a replay
became a sequence of states every 0.5 s, each of them expressing the spatial
information and the number of occurrences for every action. We ended up with
a total of 61 aggregated features, shown in Table 2.

5.2 Preliminary Model and Considerations

Since the game involves a high level of randomness, which depends on hero
choices, allies and enemies, strategies and so on, we reduced the identification
problem considering only the first 10 min of the game, in which players usually
remain in the same part of the map, even if their behavior can still be very
different depending on the heroes they selected and their allies or enemies. This
is a good choice for two reasons: it is very unlikely that a game ends before 10
min, and we want to identify a player as soon as possible. We then split the
10 min into sub-sequences, since it was better if we could recognize a player in
less time. The problem then became a sequence classification problem, with 50
classes.

Training, Validation, Test Sets Split. Not knowing a priori the best sequence
length to work with, we set the maximum acceptable length to 2 min (with no
overlap), and split the sequences even further afterward, to study the correlation
between length and accuracy. In this way, we could also create the training-
validation-test sets and not contaminating them (when shuffling) during the
model selection phase. Thus, we formed the dataset creating 25000 sequences (5
sequences per match ∗ 100 matches ∗ 50 players), each one with 240 data points
(120 s/0.5 s) assigning each of them the player they came from as the target
class. We then shuffled the dataset and proceeded with the training-validation-
test split of 80%-10%-10%. For the first try, we split our sequences of 2 min
in sequences of 20 s, which was a possibly good amount of time to recognize
players. Finally, we standardized each feature in the training set (i.e., makes the
values have zero-mean and unit-variance), and we applied that standardization
to the validation and test set.

First Model. Working with sequences, and being the time information relevant,
for the task we used a Recurrent Neural Network, in particular a Long Short
Term Memory (LSTM), which has been proven to work well in these situa-
tions [27]. In LSTM, information persists over time, allowing it to learn time-
dependent patterns. In our case, the way a player moves the mouse or the camera
is exactly the kind of pattern an LSTM can learn. For instance, to move from a
point A to B, a player could click one time in B, or two times in B, or do it in
whatever way. Our intuition was that the way of moving, as well as controlling
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the camera, is in some way “biometric”, i.e., every human has their own different
way to do so.

For the model, we used two LSTM layers (which are usually enough to solve
even tough problems [23]) with tanh activation function, a fully connected layer
with RELU activation, and a softmax output layer since we are classifying
sequences. We started with a standard value of 64 units in both LSTM and
dense layers. We used a batch size of 256, 100 epochs and the categorical cross-
entropy loss function. As optimizer, we used Adam, which was proven to be
one of the best optimizers so far [16], with a learning rate = 0.001. For the
implementation, we used the Keras library with Tensorflow backend.

Feature Elimination. From the first run of the model over our dataset, the
model was not able to learn: the noise was surely hiding the signal. We then
removed some features that could cause this problem. Information such as the
hero positions might introduce a lot of noise, since it could strongly depend on
the selected hero. The coordinates relative to some actions could also introduce
noise, since they might be very specific and varying a lot from each match.
Instead, we kept the coordinates for the movement actions, since it could tell us
how a player is used to move into the map (e.g., how many clicks to go from point
A to point B). Thus, from the features listed in Table 2 we completely removed
Hero Cell and Hero Vector, and the X and Y coordinates from Attack move,
Cast position, Drop item.

5.3 Model Selection

Training the model with the new set of features, it was definitely able to learn
and generalize on the validation set: we achieved 83.6% of accuracy. It was
a promising result, but we thought a problem could be related to the length
of the sequences. 20 s were probably too few to recognize a player very accu-
rately. We then tried different sequence lengths before moving on. Intuitively, a
longer sequence would help in better recognizing a player. We also used shorter

(a) Model Accuracy. (b) Model Loss.

Fig. 1. Model performance for difference sequence lengths.
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sequences to better understand the relationship between sequence length and
accuracy. We tried sequences of 5, 10, 15, 20, 30, 40, 60 and 120 s with the same
architecture as before. The accuracy and loss graphs are shown in Fig. 1.

Our intuition was confirmed: longer sequences mean better accuracy, and
accordingly, smaller losses. With sequences of 5 s, the accuracy was about 65%,
and near to 80% with 10 s. Sequences of 15, 20 and 30 s all scored an accuracy
between 80% and 90%. An accuracy of 90% was almost reached with 40 s and
slightly surpassed with 60 s, while 120 s scored definitively higher, 94%. The
losses followed the same trend, with a significantly lower value for sequences of
120s. According to these results, to find the best model to solve our problem we
used a sequence length of 120 s, a reasonably good amount of time to recognize a
player from a match. Figure 2 shows epoch accuracy and epoch loss for training
and validation sets using the sequences of 120 s. From this first graph, we could
see that our model was definitely not overfitting (the validation loss remained
constant), and it was not really learning after ∼70 epochs. Thus, in the future, we
could potentially stop the learning around ∼70 epochs to reduce computational
expenses.

(a) Epoch Accuracy. (b) Epoch Loss.

Fig. 2. Model performance for training and validation sets.

Before applying a grid search approach to find the best model, we tried
another run using Adam optimizer setting the learning rate to 0.01, and we
noticed the model converged around ∼35 epochs, with no risk of overfitting
(i.e., training and validation losses stabilized after 35 epochs). With this new
information, we applied a grid search approach to find the best hyperparameters
for our model, i.e., the number of neurons in each hidden layer and the learning
rate of Adam optimizer. Since there is not a fixed rule to choose the number
of units in a hidden layer, we used the common rule of thumb that suggests
a starting point of N train samples/(2 ∗ (Input + Output)), that in our case
yields 20000/(2 ∗ (37 + 50)) = 115. We then used the closest power of 2 (128),
the next one (256) and the first we used (64). We tried a learning rate of 0.01
and 0.001. The number of epochs was set to 50 for learning rate of 0.01 and to
75 for learning rate of 0.001, according to previous experiments.
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6 Results and Further Experiments

Based on the results of the grid search, we selected the model that performed
the best on the validation set. Such model (accuracy = 96.48%, loss = 0.179)
had 256 neurons for both LSTM layers and 128 neurons on the dense layer,
with a learning rate of 0.001. We then trained the selected model using both
training and validation set, and tested it on the test set, with a final accuracy of
96.32% and a loss of 0.198: our model is able to generalize very well, recognizing
a player with very high accuracy. To better evaluate our model, we conducted
further experiments: we investigated in Sect. 6.1 if we could recognize a player
even with less features, and consideration of recognizing “unknown” players are
discussed in Sect. 6.2.

6.1 General Features Evaluation

Many of the action features were related to Dota 2, such as casting a spell or
dropping an item. We believe these kinds of actions can be replaced in other
games with different actions. For instance, in an FPS, you could have the action
“shot” or “recharge”, and their occurrence frequencies could be “biometric” for a
player. However, we tried to train our model using only the Cursor features, the
Camera features, and the Move to position action. We do believe these features
are almost always available in a game where a player controls a character. We
used the same split as before, and we achieved an accuracy of 95.6% and a loss of
0.162. Compared with the previous result, we still have a very high performance,
using features that can be found in almost all online video games in which a
player controls a character, which makes the result highly valuable.

6.2 Unknown Players Evaluation

Our Deep Neural Network was able to classify a player with very high accuracy.
However, we wanted to study how it could face players that were not used
in the training phase. Neural Networks do not perform very well with open-
set problems, and there is still not a very effective solution. To evaluate our
algorithm, we tried two approaches: using a background class, and using a sort
of threshold for the last layer.

In the first case, we created an “unknown” background class, using 45 unseen
users, perfectly balanced with the known ones. Additional 5 unseen users were
put in the test set. Analyzing the confusion matrix after the testing phase,
only 4 sequences of the new users were correctly classified as “unknown”. This
is understandable, since the unknown users belong to the same domain of the
known ones, i.e., matches sequences. The network was probably trying to find
the most similar player for the unseen sequences.

In the second case, we assigned a player to a match only if at least 4 sequences
out of the 5 of the match were assigned to the same player. We used 50 unseen
players for the purpose, each one with two games of 5 sequences (the first 10
min). Out of the 100 games, 28 were assigned to a known player, obtaining a
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72% of success. Considering instead the two games together, i.e., two matches
were assigned to a player only if both matches were assigned to the same player,
only 8 unseen players were assigned to a known player, with a success rate of
84%. Even if the system did not reach very high accuracy, we showed that we
have some possibilities to reduce misclassification.

7 Discussions

Many consequences arise from our results. As we already mentioned, a well-
known issue is the presence of scammers. The victim must accept a scammer
friends request to be at risk. Usually, people do not accept requests from low-
level profiles, but the situation changes if the request comes from a good player
after a game won together. This means that scammers should be players of
the game to have a higher success rate. As we showed before, if a scammer is
reported, we could ban them from all the accounts they plays with.

More serious problems, such as cyberbullying or stalking, are usually involved
in online games. As the survey’s participants stated, almost 50% of them were
harassed in the game at least once. Bullies or stalkers usually try to chase their
victims, even if their account are banned. Using our system, all the accounts
where those mean people play can be banned. Nevertheless, the system might
also have negative feedback, since it could allow stalkers to chase the victim
more effectively, recognize them even if they creates a new account. However, a
known problem is easier to tackle than an unknown one.

A particular consequence, proven that the play-style is “biometric”, is that
the system can be used for authentication. It can be useful to prevent account
stealing, or to allow in-game purchases only to real owners. Even if the play-style
could be potentially reproduced by deep learning techniques as well, but we do
believe it is not an easy task, and the attack ranges would be definitely reduced.

The game community could benefit from this finding as well. Smurfing, boost-
ing and account selling are current problems in Dota 2 [28]. A “smurf” is a high-
skilled player who creates a new account to be matched against inexperienced
players for easy wins. This inevitably ruins the matches for the players in those
skill brackets. Boosting is a similar concept: low-skilled players pay a high-skilled
player to boost their accounts, i.e., win a lot to reach a higher rank. Selling an
account can cause both smurfing or boosting consequences, since buyers could
ruin other people game’s if they are not in the right skill bracket. With our sys-
tem, severe punishments can be taken against smurfs or booster players. Since
we are able to recognize players from their play-style, we would be able to find
the main account of a smurf or a booster, and ban that one. Usually, high-rank
players have a lot of expensive items in their account, so getting banned would
be an amazing repellent for the problem.

System Permanence. Concerns can arise about the permanence of the presented
system, i.e., whether the “biometric” (the play-style) remains consistent over
long term. Events like replacing the mouse with a different one or improvements
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of the player in the game might influence their play-style, resulting in the system
not being able to recognize the player anymore. While more studies should be
conducted in this direction, we strongly believe these two factors are not a threat
for our system. First of all, gaming mice are built to last long, some of them for
more than 60 million clicks6, so these changes are very rare in our opinion. More-
over, if controllers are used instead of mice, these devices are usually standard
for a console, thus replacing them will not be a problem. Finally, the number
of clicks or the actions issued by the player, as well as camera movements con-
trolled by keyboard keys, are not device-dependent, thus most of our features will
remain the same. Speaking about players’ improvements, they usually happen
slowly, step by step, since learning requires some time. The idea of the system is
to keep training the model adding new matches, so that small improvements of
players are considered to not be an obstacle. Anyhow, this recognition system is
not intended to be the only method used by producers to authenticate or detect
malicious users, but to improve and support their current techniques.

Applicability to Other Games. Although this system was designed for Dota 2
and uses some of its specific features, we expect the idea of this research can
be applied to other games in which a player controls a character. As we demon-
strated, the play-style can be considered “biometric” in the way a player moves
the controlled unit, issues orders, or “looks around” in the virtual world. Cursor
and camera movements are almost always available in such video games, and
using a deep neural network to recognize a player in the way we did, once the
actions in the game are identified, should be straightforward. If such data are not
recorded into replays, they can be implemented by the publisher for the purpose.
From an attacker’s perspective, if such data are not available, ideally, it would
be possible to “reconstruct” the cursor movements, using supervised learning
techniques, starting from the character movements, the direction it is looking
to, and so on. Moreover, replays, instead of being parsed, could be directly used
as input for computer vision models, probably obtaining similar results. The
generality of features we used let us believe that, once movement and action
orders are identified into a video game, the players’ play-style can be analyzed
and used to recognize them.

8 Conclusion and Future Works

In this paper, we showed that deep learning algorithms are able, using sequences
of two minutes, to recognize a player by exploiting their play-style, which is
unique with respect to our dataset. The presented method has a wide range of
adoption. It could be used to try recognizing scammers or harmful players in
every account they own. The features used in this case study are very generic
and can be easily found or replaced in other games, so the idea of this research
could be applied to other games as well. Also, authentication systems could be

6 https://steelseries.com/gaming-mice, accessed: 15th July 2020.

https://steelseries.com/gaming-mice
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built on such recognition, enhancing the security offered by a simple password-
based method. For instance, this recognition could be asked before an in-game
payment, reducing the damages when an account is stolen.

In this work, we conducted our experiments on Dota 2. A natural contin-
uation of the project could involve different games, trying transfer learning
approaches to better evaluate if the biometric play-style is game-dependent or
not. Moreover, more sophisticated models could be used to reduce the sequence
length needed to recognize a player, or other means could be found for the pur-
pose. Also, a better solution should be found to face unknown player recognition.
Finally, we expect that online-gaming data may also reveal more information
about a player. Such data could be used for several purpose, for instance, to find
and study categories of players or inferring some kind of private information.
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Abstract. The Wasserstein distance, also known in computer science
as the Earth Mover’s Distance (EMD) is a distance metric between two
probability distributions. EMD has often been used as a distance metric
to compare images and documents, and is central to privacy models such
as t-closeness. In this work, we show that, given one-dimensional discrete
probability distributions, the computation of EMD can be reduced to the
computation of the cardinality of the intersection of two sets. We then
use a private matching scheme to create a privacy-preserving computa-
tion protocol for EMD: two parties can compute EMD between their
privately-owned documents without revealing them to the other party.
We demonstrate our proposal by implementing a privacy-preserving
reverse image search, where images are kept encrypted at an external
server.

Keywords: Secure multiparty computation · Private matching
schemes · Searchable encryption · Earth Mover’s Distance

1 Introduction

The Wasserstein distance, better known in computer science as the Earth
Mover’s Distance (EMD), is a distance metric between two distributions that
measures the minimum amount of work needed to transform one distribution
into the other. If we imagine distributions as heaps of earth—hence the name of
the distance,—the cost of transforming one heap of earth into another is equal
to the amount of earth we need to move times the distance we need to move
it [18]. EMD is a special case of a transportation optimization problem and, for
discrete one-dimensional distributions (such as a histogram), there exist efficient
algorithms to compute it.

EMD can be used to compare images according to their distribution of col-
ors and textures [18,19], and to semantically compare documents [14,22]. Thus,
EMD can be used as a building block to develop databases with reverse search
support. EMD has also been used in microdata anonymization: the t-closeness
privacy model [15], which is an extension of k-anonymity [21], requires confiden-
tial attributes to have a distribution within each k-anonymous class that is close
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to their distribution on the whole microdata file. This closeness is measured as
the EMD.

In this work, we propose a mechanism for privacy-preserving computation
of EMD. Two individuals, each of them holding a private file, want to com-
pute the EMD of their files without any of them revealing their own file. Our
proposed mechanism is based on two-party computation of the set intersection
cardinality [10]. It might be used as a building block for the implementation
of searchable encryption schemes for reverse image and document search or to
develop distributed anonymization mechanisms.

In Sect. 2, we present the Earth Mover’s Distance and give an overview of
methods for secure multiparty computation of the cardinality of the intersection
of private sets. In Sect. 3 we demonstrate that, for discrete one-dimensional
distributions, the computation of EMD can be reduced to the computation of
the cardinality of the union or the intersection of two sets. Section 4 presents
our experimental work, in which we apply our EMD computation mechanism to
a reverse image search service for encrypted outsourced images. In Sect. 5 we
summarize the conclusions of the work.

2 Background

2.1 The Earth Mover’s Distance

Given two probability distributions A and B, EMD measures the distance
between such distributions [18]. In the general case, EMD can be obtained by
solving a transportation optimization problem. In the special case of discrete one-
dimensional distributions, or relative frequency histograms A = {a0, . . . , an−1}
and B = {b0, . . . , bn−1}, EMD can be iteratively computed using Algorithm1.

Algorithm 1: Earth Mover’s Distance between two one-dimensional dis-
crete distributions
Input: A = {a0, . . . , an−1}, B = {b0, . . . , bn−1}
Output: EMD(A,B)

1 w0 = 0
2 for i = 1 → n do
3 wi = ai−1 − bi−1 + wi−1

4 end
5 return

∑n
i=0 |wi|

2.2 Private Computation of the Size of the Intersection of Two Sets

In this section we present an overview of secure multiparty computation protocols
for computing the cardinality of the intersection of privately held sets. These
mechanisms are called Private Set Intersection – Cardinality (PSI-CA) and are
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a recurring primitive for secure protocols in privacy-preserving data mining.
Their main goal is to allow data sharing among entities that do not fully trust
each other. Instead of sharing all data held by each of them, the entities can
start by sharing information about the data they have in common.

More formally, parties P1 and P2, with private inputs x and y, respectively,
want to compute a function f(x, y) without revealing any information on x,
resp. y, to the other party. In our case, the private inputs x and y are sets of
elements in a common universe, and the function f is |x ∩ y|. A typical security
requirement on PSI-CA (but also on general multiparty computation schemes)
is that parties P1 and P2 do not learn more information about the other party’s
input than the information they would obtain if a trusted third party collected
their inputs, computed f and distributed the output to the participating parties.

An example application of PSI-CA would be several institutions co-operating
in searching and detecting fraudulent financial movements of the customers they
have in common. Other uses of PSI-CA include searching keywords in outsourced
document databases or matching social medial users according to their shared
contacts.

One of the most influential works on PSI-CA is that of Freedman, Nissim
and Pinkas [10]. This work presents several secure protocols to compute different
set operations, including the set intersection cardinality. All of them are based
on the same primitive, namely oblivious polynomial evaluation (OPE). One of
the parties builds a polynomial whose roots are the elements of her privately
owned set. The other party evaluates such a polynomial for all elements in her
own set. All elements whose evaluation is 0 are elements that are shared by
both parties. Using additively-homomorphic encryption (e.g.. the Paillier cryp-
tosystem [16]), the second party can evaluate the polynomial from its encrypted
coefficients. Unfortunately, these protocols require the computation of expensive
cryptographic operations and are not suitable for large datasets, although [9]
describes some optimizations.

Another frequently used construction in PSI-CA protocols are Bloom fil-
ters. Dong, Chen and Wen [6], use modified Bloom filters and oblivious transfer
protocols to compute multi-set operations. Pinkas, Schneider and Zohner [17]
proposed a scalability improvement of this protocol.

PSI-CA Based on Oblivious Polynomial Evaluation. Next we briefly
recall the computation of the size of the intersection of two sets using oblivious
polynomial evaluation, as per [10]. Let C and S be the two participants in the
protocol, with C bringing in the set A = {a0, . . . , an−1} and S the set B =
{b0, . . . , bm−1}. Let Enc be the encryption under the Paillier cryptosystem with
C’s public key. The Paillier cryptosystem is additively homomorphic, that is, it
satisfies the following two properties:

Enc(x) · Enc(y) = Enc(x + y);

Enc(x)k = Enc(kx).

Protocol 1. PSI-CA-OPE
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1. C computes P (x) =
∑n

i=0 pix
i =

∏n−1
j=0 (x − ai).

2. C sends Enc(p0), . . . , Enc(pn) to S.
3. S chooses random integers rj ∈ Zn for 1 ≤ j ≤ m − 1. S computes Enc(rj ·

p(bj) + k) for all 1 ≤ j ≤ |B|. Next, S returns these ciphertexts to C.
4. C decrypts the obtained ciphertexts. The result of each decryption is either k

or a random number.
5. The number of obtained k’s equals |A ∩ B|.

This protocol is secure against semi-honest adversaries. After this protocol
is executed, C obtains |B| from the number of ciphertexts received in Step 3,
S obtains |A| from the degree n of P (x), and C obtains |A ∩ B|. For S to also
obtain |A∩B|, the protocol has to be run a second time, with C and S inverting
their roles.

PSI-CA Based on Bloom Filters. We summarize here the properties of
Bloom filters and how they are used as a building block of PSI-CA protocols.
Bloom filters [2] are a probabilistic data structure used to encode sets that allows
membership queries. Membership queries for elements in the original set will test
positive with 100% probability, while for elements not in the set there is a fixed
probability of false positives.

A Bloom filter is a vector B ∈ Z
m
2 , with all its elements initialized to 0, and

equipped with k � m hash functions Hi : {0, 1}∗ → {0, . . . , m−1}. To insert an
element e, we compute a list of indices (i0, . . . , ik−1) = (H0(e), . . . ,Hk−1(e)) and
assign a value 1 to the corresponding positions in B. Similarly, a membership
query for element e is resolved by checking whether the corresponding k positions
in the vector are all set to 1. The false positive probability for membership queries
in a Bloom filter containing n elements is given by the expression (1−(1− 1

m )kn)k,
which is the probability that the k indices of the element e that is tested are
set to 1 when the element is not encoded in the filter. This may happen if an
element e′ �= e shares the same indices of e (which is unlikely if cryptographic
hashes are used) or if a combination of other elements set these indices to 1.

The approximate number of elements inserted in a Bloom filter is

|A| ≈ −m

k
ln

(

1 − H(BA)
m

)

, (1)

where A is the encoded set, BA is the Bloom filter containing the elements
of A, H(·) is the Hamming weight, m is the length of the Bloom filter, and k is
the number of hash functions.

A Bloom filter encoding the union, resp. the intersection, of two (or more)
sets can be easily obtained by applying the bitwise ∨ (logic “or”), resp. ∧ (logic
“and”) operation. By applying Expression (1) to the resulting Bloom filters, we
obtain an estimate of the cardinality of the union, resp. the intersection, of the
sets.

Bloom filters, by themselves, do not offer enough protection to the encoded
elements to be directly used in PSI-CA protocols. If both parties share the same
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universe of elements, any of them might obtain all elements from the other party’s
Bloom filter with a brute force attack. Using oblivious transfer protocols, one
of the parties can request the other party for all indices that are set to 1 in her
own Bloom filter and thus obtain the intersection of the sets [6]. An alternative
option is to encrypt all the Bloom filter positions with a cryptosystem which
is homomorphic for the binary sum, such as Goldwasser-Micali, and sum the
filters index-wise. Positions where both filters agree will result in 0 s and the
rest as 1 s [13]. Another option is to alter the Bloom filter’s values with some
probability, as in randomized response [7]. Finally, using keyed hash functions,
such as HMAC, we can control who is able to insert elements into the Bloom
filter and who is able to query it, which allows us to build indices for symmetric
searchable encryption schemes as we do in our experiments.

3 The EMD as a PSI-CA Problem

In this section, we show how the computation of EMD between two discrete
one-dimensional distributions A and B can be reduced to operations between
the cardinality of two sets that encode such distributions and the cardinality of
their intersection. This reduction will allow us to describe a protocol for secure
two-party computation of the EMD. To this end, we first show that Algorithm1
is equivalent to the Manhattan distance between two cumulative distributions.

Theorem 1. Let Ã (resp. B̃) be the cumulative distribution, or cumulative sum
of A (resp. B). Then, the distance EMD(A,B) can be computed as the 1-norm,
or Manhattan distance, of Ã and B̃:

EMD(A,B) = ‖Ã − B̃‖1. (2)

Proof. Given the discrete one-dimensional distribution A = {a0, . . . , an−1}, the
cumulative distribution of A is

Ã = {ãi =
i∑

j=0

aj : 0 ≤ i ≤ n − 1}. (3)

On the other hand, the 1-norm or Manhattan distance is defined as

‖A − B‖1 =
n−1∑

i=0

|ai − bi| . (4)

By developing line 3 of Algorithm1, which refers to the computation of wi,
and reordering the factors, we obtain for i > 0 and with w0 = 0
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wi = ai−1 − bi−1 + wi−1 (5)
= ai−1 − bi−1 + ai−2 − bi−2 + wi−2

· · ·
= ai−1 − bi−1 + ai−2 − bi−2 + · · · + a0 − b0

= (ai−1 + · · · + a0) − (bi−1 + · · · + b0)

=
i−1∑

j=0

aj −
i−1∑

j=0

bj .

According to line 5 of Algorithm1 and using Expressions (3), (4) and (5), we
obtain

EMD(A,B) =
n∑

i=0

|wi| = w0 +
n∑

i=1

|wi| =
n∑

i=1

|wi|

(5)
=

n∑

i=1

∣
∣
∣
∣
∣
∣

i−1∑

j=0

aj −
i−1∑

j=0

bj

∣
∣
∣
∣
∣
∣

(3)
=

n∑

i=1

|ãi−1 − b̃i−1|

=
n−1∑

i=0

|ãi − b̃i| (4)
= ‖Ã − B̃‖1.

�
Next, we prove that the Manhattan distance can be obtained from the cardi-

nality of the intersection of two sets. This result comes from [1], and we elaborate
on it.

First, we define an encoding function f , which takes a list A = {a0, . . . , an−1}
of nonnegative integers and returns a set of the form:

A = f(A) = {(i, j) : ai > 0, 1 ≤ j ≤ ai} .

For example, given the list A = {2, 1, 3}, the resulting set A is
{(1, 1), (1, 2), (2, 1), (3, 1), (3, 2), (3, 3)}. Figure 1 shows a graphical example of
the encoding function.

Fig. 1. The encoding function f encodes the histogram A as a set of two-dimensional
points A
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Theorem 2. Given the encoding function f , two lists A and B containing the
same number n of nonnegative integers, and their respective encodings A and B,
the following holds:

‖A − B‖1 = |A| + |B| − 2|A ∩ B|.

Proof. First, we rewrite the expression of the Manhattan distance between lists
A and B as the difference between the sum of the element-wise maximum values
minus the sum of the element-wise minimum values of A and B:

‖A − B‖1 =
n−1∑

i=0

|ai − bi|

=
n−1∑

i=0

max(ai, bi) − min(ai, bi)

=
n−1∑

i=0

max(ai, bi) −
n−1∑

i=0

min(ai, bi).

We also observe that the cardinality of the set resulting from applying the encod-
ing function f to a list equals the sum of the values of such list:

|A| =
n−1∑

i=0

ai.

The encoding function f also has the following property: the size of the union
of the encodings of A and B is the sum of the element-wise maximum values of
A and B:

|A ∪ B| = |{(i, j) : (i, j) ∈ A or (i, j) ∈ B}|
= |{(i, j) : ai, bi > 0, 1 ≤ j ≤ max(ai, bi)}|

=
n−1∑

i=0

max(ai, bi).

Likewise, the size of the intersection equals the sum of the element-wise
minimum values:

|A ∩ B| = |{(i, j) : (i, j) ∈ A and (i, j) ∈ B}|
= |{(i, j) : ai, bi > 0, 1 ≤ j ≤ min(ai, bi)}|

=
n−1∑

i=0

min(ai, bi).
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Figure 2 shows a graphical example of these union and intersection properties.
In the top row, we show the encodings of histograms A and B. In the bottom
row, we show the sets representing the intersection and the union of the encoded
datasets. It can be observed that the resulting sets represent the element-wise
minimum and maximum, respectively, of the two histograms.

Fig. 2. The intersection and union of A and B result in the element-wise minimum
and maximum, respectively, of A and B

Therefore, the Manhattan distance between A and B results from the differ-
ence |A ∪ B| − |A ∩ B|. Given the identity |A ∪ B| = |A| + |B| − |A ∩ B|, this
results in

‖A − B‖1 = |A| + |B| − 2|A ∩ B|.

�
From Theorems 1 and 2 it follows that the computation of EMD can be

expressed as
EMD(A,B) = |Ã| + |B̃| − 2|Ã ∩ B̃|. (6)

In Expression (6), |Ã|, |B̃| and |Ã∩B̃| can be privately computed by both parties
holding A and B, respectively, using the PSI-CA protocols discussed in Sect. 2.2,
in particular Protocol 1.

3.1 Message Expansion

Let the size of set A be |A| = n and its sum be s =
∑n−1

i=0 ai. The message
expansion of set Ã, resulting from computing the cumulative sum Ã and encoding
it using function f is:
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– In the best case, when a0 = · · · = an−2 = 0 and an−1 = s, |Ã| = s;
– In the worst, case, when a0 = s and a1, · · · , an−1 = 0, |Ã| = sn;
– In the average case |Ã| = (1 + n)s/2.

Thus, the spatial complexity of our proposal is O(sn).

4 Experimental Results

In our experimental work, we simulated a symmetric searchable encryption (SSE)
scheme that allows the data owner to conduct reverse image search queries on
an outsourced database of encrypted images. We use our proposed scheme to
privately compute the EMD between two distributions to build the search index
of an SSE scheme. Typical SSE schemes consist of two parts: on the one hand,
the information is encrypted using some standard symmetric encryption scheme
(e.g.. AES), and, on the other hand, a search index is built such that only the
parties holding some private information (i.e. a trapdoor generated with the
symmetric secret key) can query it [3–5,12,20]. In this experimental work we
focus on the search index to demonstrate the private computation of the EMD.

The experiments were implemented in Python in a Jupyter Notebook, which
is available in Github1. The images for the experiments were obtained from [8],
which contains 9144 images of 101 different categories.

We took half of the images (4572) from the database to build our search
index. For each image, we obtained its gray level histogram with n = 16 bins
of 16 values each, and we re-scaled it so that its cumulative sum was s = 100.
The maximum number of elements to be included in each of the Bloom filters
after encoding the histograms using function f was, as per Sect. 3.1, sn = 1600.
The implementation of the Bloom filters used keyed hash functions (HMAC) so
that only those who owned the key were able to add images to the database and
query it. To query the database, we encoded the image to be searched in the
same way as the index images, and we computed its EMD with respect to all
images in the search index.

We first studied the impact of the Bloom filters’ false positive rate on the
overall performance of the reverse image search service. The optimal values for
m and k can be computed as a function of the maximum number sn of allowed
item insertions, and a fixed false positive rate ρ [11]:

m = −sn ln ρ

(ln 2)2
, k =

m

sn
ln 2. (7)

For a maximum number of sn = 1600 elements, the optimal bit-length of the
Bloom filters m and number of hashes k with respect to the false positive rate
ρ, going from ρ = 0.0001 to ρ = 0.5, are shown in Figure 3.

The false positive rate, thus, directly affected the size of the search index,
from 10.06MB for a false positive rate of 50% to 133.73MB for a false positive
rate of 0.01%. Next, Figure 4 shows how the choice of ρ affected the time to
build the search index and the individual query times.
1 https://github.com/ablancoj/privateEMD/blob/master/EMD.

https://github.com/ablancoj/privateEMD/blob/master/EMD
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Fig. 3. Size of the Bloom filters (m) and number of hashes (k) as a function of the
false positive rate, for a fixed maximum number of elements equal to 1600

Fig. 4. Index build time and image query time as a function of the false positive rate,
for a fixed maximum number of elements equal to 1600

Some error in the computed EMD was to be expected for the following rea-
sons. On the one hand, we forced all gray level histograms to have the same
cumulative sum and we could only operate on integer values. Therefore, some
error had to come from the rounding of values. On the other hand, the false pos-
itive rate of the Bloom filters affects the collisions in the membership queries,
and therefore also the computation of the intersection, the estimation of encoded
elements and, thus, the computation of the EMD. Figure 5 shows the Mean
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Absolute Error of the EMD computed on the cleartext images versus the EMD
computed using our mechanism for different values of ρ.

Fig. 5. Mean Absolute Error as a function of the false positive rate, for a fixed maxi-
mum number of elements equal to 1600.

The pairwise distances of the first 1024 images in the search index, computed
in the clear and using our method with Bloom filters with m = 8000, k = 4 and
ρ ≤ 0.09 are shown as distance matrices in Figures 6 and 7.

Next, we generated queries for all 9144 images in the original database against
the search index including 4572 images. All images whose distance was less than
a threshold 10 were returned as the result. All search queries for the 4572 images
in the database returned the correct result, although some queries returned more
than one result. Figure 8 shows one of such false positives.

Regarding the 4572 images not included in the database, a few queries
returned a result. Figure 9 shows one such false positive.

Figure 10 shows the ratio of images not in the search index that returned
some result and the ratio of images in the search index that returned more than
one result, as a function of the Bloom filter’s false positive rate ρ.

Additionally, we generated queries on modified images. In particular we
applied random anisotropic scaling to images (randomly scaling each of the axes
by x0.5 to x1.5) both in the search index and out of it before querying for
them. In this scenario, we built a search index consisting of Bloom filters with
ρ = 0.0001, m = 30672, and k = 13. The number of bins n = 16 and maximum
cumulative sum s = 100 remained the same. The distance threshold to accept
an image in the index as a result was set to 15. The results were as follows:

– For images in the search index, 42.5% returned a correct result.
– For images not in the search index, 8.9% returned some result.
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Fig. 6. Pairwise EMD computed from cleartext images

Fig. 7. Pairwise EMD computed using our mechanism

Increasing the maximum cumulative sum to s = 500 (which increased the maxi-
mum number of elements to sn = 8000 and changed the Bloom filter parameters
to m = 115020 and k = 9 for a false positive rate of ρ = 0.001) and increasing
the distance threshold to 100 improved the matching results to 72.7% correct
matches for images in the search index, but increased the false positives for
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Fig. 8. False positive: querying for the left image returned both that image and the
image on the right

Fig. 9. False positive: querying for the image on the left resulted in the image on the
right

Fig. 10. Left: ratio of queries for images not in the search index that returned some
result. Right: ratio of queries for images in the search index that returned more than
one result.
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images not in the search index to 21%, at the additional cost of increasing the
search index size to 500MB and the query time to 381 ms.

5 Conclusions

In this work we have proposed a secure multiparty computation scheme to calcu-
late the Earth Mover’s distance between one-dimensional discrete distributions.
To do so, we have proved that computing EMD in such cases can be reduced
to finding the size of the intersection of sets encoding these distributions. From
these results, we propose to use existing Private Set Intersection—Cardinality
schemes to obtain EMD between two distributions. We have demonstrated our
scheme with a symmetric searchable encryption scheme that supports reverse
image search.
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