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Abstract We present the asymptotic joint distribution of the sample central
moments and the standardized sample central moments of multivariate random
variables. Sample central moments and standardized sample central moments are
quantities of interest for statistical inference as the variance and the coefficients of
skewness and kurtosis are particular cases. The results described here are known
for univariate random variables; now, we extend them to random vectors. After
presenting our results, we apply them to multivariate elliptical distributions and
the multivariate skew-normal distribution, showing that these expressions can be
simplified considerably in specific cases.

1 Introduction

Statistical analyses frequently make use of functions of the sample mean and sample
covariance matrix for multivariate inference. In the exponential family, for instance,
such statistics are sufficient to estimate the parameters of distributions. In other
families, the third and fourth standardized sample moments, respectively, known
as the coefficients of skewness and kurtosis, may be of interest. Here, we present
the asymptotic joint distribution for multivariate sample moments and apply it to
both multivariate elliptical distributions and the multivariate skew-normal family.
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Sample moments are used in the method of moments, an estimation technique
based on the assumption that unknown parameters can be computed by matching the
sample moments with the theoretical ones, and solving a system of p equations and
p unknown parameters. The p parameters may be over-identified by the system of
equations; so, the Generalized Method of Moments (GMM) was developed to tackle
this obstacle. As noted by Harris and Mátyás (1999), the estimation via moments
requires fewer assumptions than the maximum likelihood estimation, which needs
specification of the whole distribution. Therefore, estimation via moments may
be convenient in many situations. The sample moments can also be used for
optimization of the likelihood, according to Lehmann and Casella (1998, pp. 456–
457).

As the sample moments have numerous applications, these measures and their
asymptotic distributions have been vastly explored in the literature. As one of
the first in this field, Cramér (1946) dealt with moments, functions of moments,
and their asymptotic normality using a technique that later became known as the
delta method. Pewsey (2005) derived a general result for the large-sample joint
distribution of the mean, the standard deviation, and the coefficients of skewness
and kurtosis of a general distribution by employing the Central Limit Theorem
(CLT), the Taylor expansion of functions of the moments, and extensive algebraic
manipulations. Both these works referred to the univariate context only.

An interesting property of Pewsey’s result is that he isolated the asymptotic bias
for the coefficients of skewness and kurtosis, so his formulation can be applied in
bias corrections of estimators. However, practical simulations from the author with
bias correction through subtraction or ratio performed poorly. Bao (2013) derived
analytical results for finite sample biases for skewness and kurtosis coefficients in
a different way. He achieved a good performance using his asymptotic results for
bias correction in an AR(1) process. He also claimed that applying the results to
hypothesis tests for normality increased the power of the tests. In the multivariate
context, Kollo and von Rosen (2005) presented the asymptotic distribution of the
sample mean and the sample covariance matrix, using as a background the law of
large numbers and the CLT.

Asymptotic results may be applied to the multivariate skew-normal distribution,
a more general class than the normal distribution, as shown by Arnold and Beaver
(2002). The authors also exposed different causes yielding skewed distributions,
for example, the hidden truncation mechanism. Arnold et al. (1993), motivated
by practical problems, such as “selective reporting,” i.e., when, intentionally or
not, only random vectors related to a truncated variable are recorded, developed
these ideas and provided a direct relationship with Azzalini’s (1985) skew-normal
distribution. As selective reporting is generated by common procedures, this hidden
truncation mechanism may be frequent in data analyses and was addressed by a
series of papers that Prof. Arnold pioneered.

Here, we apply asymptotic results to multivariate elliptical distributions and
the multivariate skew-normal distribution developed by Azzalini and Dalla Valle
(1996). In this last scenario, we show that expressions simplify considerably,
depending on the parameters. Two key advantages of our results are that we address
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the higher-order moments, unlike previous works, and we employ intuitive and
straightforward notation.

The structure of this paper is as follows. In Sect. 2, we provide the notation and
terminology used throughout the paper. In Sect. 3, we present the main results about
the asymptotic joint distribution of multivariate sample moments and multivariate
standardized sample moments and describe several examples for illustration. In
Sect. 4, we apply the results to multivariate elliptical distributions, and in Sect. 5,
we evaluate the asymptotic behavior for the skew-normal distribution.

2 Notation and Terminology

To derive the asymptotic joint distribution of central moments frommultivariate ran-
dom variables, we consider a non-degenerate random vectorX = (X1, . . . , Xd)� ∼
f (x; θ), x ∈ X ⊆ R

d , θ ∈ � ⊂ R
q , where f is a parametric joint probability

density function. We also consider the following theoretical quantities, provided
they exist:

• μkr = E(Xr
k), k = 1, . . . , d, r = 1, . . . , p, is the rth theoretical moment of Xk ,

and μk1 = μk is the mean of the kth variable;
• κkr = E{(Xk − μk)

r}, k = 1, . . . , d, r = 1, . . . , p, is the rth theoretical central
moment of Xk about the mean μk , where κk1 = 0 and κk2 = σ 2

k is the variance;
• κkl,rs = E{(Xk − μk)

r(Xl − μl)
s}, k, l = 1, . . . , d, r, s = 1, . . . , p, represents

the theoretical central cross-moments of orders r and s between the kth and lth
variables, κkl,11 = σkl is the covariance between the kth and lth variables, and
κkk,rs = κk,r+s ;

• ρkr = κkr

κ
r/2
k2

, k = 1, . . . , d, r = 1, . . . , p, is the standardized rth theoretical

moment of Xk with ρk1 = 0, ρk2 = 1, ρk3 = γk1 and ρk4 − 3 = γk2, where γk1
is the skewness coefficient and γk2 is the excess kurtosis;

• ρkl,rs = κkl,rs

κ
r/2
k2 κ

s/2
l2

, k, l = 1, . . . , d, r, s = 1, . . . , p, and ρkk,rs = ρk,r+s ,

ρkk,11 = ρk2 = 1;
• ρ̄kl,rs = κkl,rs−κkr κls

κ
r/2
k2 κ

s/2
l2

= ρkl,rs − ρkrρls , k, l = 1, . . . , d, r, s = 1, . . . , p, and

ρ̄kk,rs = ρ̄k,r+s , ρ̄kl,1s = ρkl,1s and ρ̄kl,r1 = ρkl,r1.

We also define Dkr , Skr , and Rkr , which are, respectively, the rth sample central
moment about the mean, the rth sample central moment about the sample mean,
and the rth standardized sample central moment about the sample mean, for a
random sample Xi = (Xi1, . . . , Xid)�, i = 1, . . . , n, from the random vector
X = (X1, . . . , Xd)� ∼ f (x; θ) as follows:

Dkr = 1

n

n∑

i=1

(Xik − μk)
r , k = 1, . . . , d, r = 1, . . . , p, (Dk1 = X̄k − μk),
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Skr = 1

n

n∑

i=1

(Xik − X̄k)
r , k = 1, . . . , d, r = 2, . . . , p, (Sk1 = 0, Sk2 = S2

k ),

=
r∑

s=0

(−1)r−s

(
r

s

)
DksD

r−s
k1 , (Dk0 = 1),

Rkr = S
−r/2
k2 Skr , k = 1, . . . , d, r = 3, . . . , p.

The sample central moments (Skr ) are strongly consistent estimators of the
respective theoretical central moments (κkr ) for each k = 1, . . . , d and r =
2, . . . , p. Therefore, the standardized sample central moments (Rkr ) are also
strongly consistent estimators of the respective standardized theoretical central
moments (ρkr ) for each k = 1, . . . , d and r = 2, . . . , p, i.e., each univariate
marginal. Besides, if the (2r)th theoretical moments are finite, then the asymptotic
normality of these central statistics is known. In the next section, we deliver the basic
elements needed to study the asymptotic distribution in the multivariate context and
give some illustrative examples of how to apply the proposed results.

3 Main Results

We let D = (D�
1 , . . . ,D�

p )�, Dk = (Dk1, . . . , Dkp)�, and Dk = 1
n

∑n
i=1 W ik ,

where W ik = ((Xik − μk)
1, (Xik − μk)

2, . . . , (Xik − μk)
p)�, k = 1, . . . , d,

i = 1, . . . , n. If the mean vector and the variance–covariance matrix of W ik exist,
they are, respectively, defined as

E(W ik) = κk = (κk1, κk2, . . . , κkp)�, and

Var(W ik) = Kkk =
(
Cov

{
(Xk − μk)

i, (Xk − μk)
j
})

i,j=1,2,...,p

= (κkk,ij − κkiκkj )i,j=1,2,...,p, k = 1, . . . , d.

Thus, D = 1
n

∑n
i=1 W i , where W i = (W�

i1, . . . ,W
�
id )�, i = 1, . . . , n, are i.i.d.

random vectors, with a mean vector κ = (κ�
1 , . . . , κ�

d )� and a variance–covariance
matrix K = (Kkl), k, l = 1, . . . , d, where the block Kkl = Cov{W k,W l} is

Kkl =
(
Cov

{
(Xk − μk)

i, (Xl − μl)
j
})

i,j=1,2,...,p

= (κkl,ij − κkiκlj )i,j=1,2,...,p, k, l = 1, . . . , d. (1)

With this, we make use of the multivariate Central Limit Theorem (CLT) to
obtain the results in Proposition 1:
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Proposition 1 Let D = (D�
1 , . . . ,D�

d )�, and κ = (κ�
1 , . . . , κ�

d )�, where Dk =
(Dk1, . . . , Dkp)�, Dk1 = X̄k − μk , κk = (κk1, . . . , κkp)�, κk1 = 0, and κk2 = σ 2

k ,
k = 1, . . . , d. If κk,2p < ∞ for all k = 1, . . . , d, then

√
n(D − κ)

d−→ Ndp(0,K),

where K has block elements Kkl given by (1). In particular,

√
n(Dk − κk)

d−→ Np(0,Kkk), k = 1, . . . , d.

Example 1 We illustrate this result with the case in which p = 4. Assuming
that κk,8 < ∞, then for all k = 1, . . . , d,

√
n

⎛

⎜⎜⎝

Dk1 − κk1

Dk2 − κk2

Dk3 − κk3

Dk4 − κk4

⎞

⎟⎟⎠ d−→N4

⎛

⎜⎜⎝

⎛

⎜⎜⎝

0
0
0
0

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

κk2−κ2
k1 κk3−κk1κk2 κk4−κk1κk3 κk5−κk1κk4

κk3−κk2κk1 κk4−κ2
k2 κk5−κk2κk3 κk6−κk2κk4

κk4−κk3κk1 κk5−κk3κk2 κk6−κ2
k3 κk7−κk3κk4

κk5−κk4κk1 κk6−κk4κk2 κk7−κk4κk3 κk8−κ2
k4

⎞

⎟⎟⎠

⎞

⎟⎟⎠ .

If the distribution ofXk−μk is symmetric around zero, then the result reduces
to

√
n

⎛

⎜⎜⎝

Dk1

Dk2 − κk2

Dk3

Dk4 − κk4

⎞

⎟⎟⎠
d−→ N4

⎛

⎜⎜⎝

⎛

⎜⎜⎝

0
0
0
0

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

κk2 0 κk4 0
0 κk4 − κ2

k2 0 κk6 − κk2κk4

κk4 0 κk6 0
0 κk6 − κk4κk2 0 κk8 − κ2

k4

⎞

⎟⎟⎠

⎞

⎟⎟⎠ ,

indicating asymptotic independence between the random vectors√
n (Dk1,Dk3)

� and
√

n (Dk2 − κk2,Dk4 − κk4)
�.

Similarly, for sample central moments about the true mean vector, we derive
asymptotic distributions for the sample central moments about the sample mean as
stated below in Proposition 2. As noted by Afendras et al. (2020), when investigating
the limiting behavior of sample central moments in the univariate context, two
general assumptions about each of the components of the random vector X =
(X1, . . . , Xd)� are required. First, E(|Xk|2r ) < ∞. Second, non-singularity of
order r , that is, τ 2kr 
= 0, for r = 2, 3, . . .. These conditions guarantee the marginal√

n-convergence of the sample central moments, i.e., each marginal sample central
moment

√
n (Skr − κkr ) converges in distribution to a non-degenerate N1(0, τ 2kr ),

with τ 2kr > 0. Under singularity of order r , whenever τ 2kr = 0, Afendras et al.
(2020) verified that n (Skr − κkr ) converges in distribution to a non-normal law of
probability.



186 R. B. Arellano-Valle et al.

Proposition 2 Let S = (S�
1 , . . . ,S�

d )� and κ = (κ�
1 , . . . , κ�

d )�, where Sk =
(Dk1, Sk2, . . . , Skp)� and κk = (κk1, κk2, . . . , κkp)�, k = 1, . . . , d. If κk(2p) < ∞
for all k = 1, . . . , d, then

√
n (S − κ)

d−→ Npd(0,CKC�),

where C = diag(C1, . . . ,Cd), and

Ck =

⎛

⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
−2κk1 1 0 · · · 0
−3κk2 0 1 · · · 0

...
...

...
. . .

...

−pκk(p−1) 0 0 · · · 1

⎞

⎟⎟⎟⎟⎟⎠
, k = 1, . . . , d,

where κk1 = 0 and κk2 = σ 2
k . In particular,

√
n(Sk − κk)

d−→ Np(0,CkKkkC
�
k ), k = 1, . . . , d,

where the asymptotic variance–covariance matrix CkKkkC
�
k has entries τk,rs ,

where τk,rr = τ 2k,r , and

τk,11 = κk2 − κ2
k1,

τk,1s = τk,s1 = κk(s+1) − sκk2κk(s−1), s = 2, . . . , p,

τk,rs = κk(r+s) − κkrκks − rκk(r−1)κk(s+1)

−sκk(r+1)κk(s−1) + rsκk2κk(r−1)κk(s−1), r, s = 2, . . . , p.

Proof of Proposition 2 Since X̄k − μk = Dk1 and, for r = 2, . . . , p,

Skr =
r∑

s=0

(−1)r−s

(
r

s

)
DksD

r−s
k1 (Dk0 = κk0 = 0, Dk1 = X̄k − μk)

= (−1)r−1(r − 1)Dr
k1 +

r−1∑

s=2

(−1)r−s

(
r

s

)
(Dks − κks)D

r−s
k1

+
r−1∑

s=2

(−1)r−s

(
r

s

)
κksD

r−s
k1 + Dkr
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= −rκk,r−1Dk1 + Dkr +
r−1∑

s=0

(−1)r−s

(
r

s

)
(Dks − κks)D

r−s
k1

+
r−2∑

s=0

(−1)r−s

(
r

s

)
κksD

r−s
k1 ,

we have

√
n (Skr − κkr ) = √

n
(
Dkr − κkr − rκk(r−1)Dk1

+
r−1∑

s=0

(−1)r−s

(
r

s

)
(Dks − κks)D

r−s
k1

+
r−2∑

s=0

(−1)r−s

(
r

s

)
κksD

r−s
k1

)

= √
n
(
Dkr − κkr − rκk(r−1)Dk1

)

+
r−1∑

s=0

(−1)r−s

(
r

s

)√
n (Dks − κks)D

r−s
k1

+
r−2∑

s=0

(−1)r−s

(
r

s

)
κks

√
n Dr−s

k1 .

By Proposition 1,
√

n (Dks − κks) = Op(1) as n → ∞, for all k = 1, . . . , d and
s = 1, . . . , p, implying that:
Dk1 = Op(n−1/2) = op(1) and Dr−s

k1 = op(1), for all r − s > 0;√
n (Dks − κks)D

r−s
k1 = Op(1)op(1) = op(1), for s = 2, . . . , r − 1 and r =

3, . . . , p; and√
n Dr−s

k1 = n−(r−s−1)/2(
√

n Dk1)
r−s = op(1)Op(1) = op(1), for all r − s ≥ 2.

These facts imply that:

r−1∑

s=0

(−1)r−s

(
r

s

)√
n (Dks − κks)D

r−s
k1 +

r−2∑

s=0

(−1)r−s

(
r

s

)
κks

√
nDr−s

k1 = op(1),

which holds for all k = 1, . . . , d and all r = 2, . . . , p.
Hence, we obtain

√
n (Sk −κk) = Ck

√
n(Dk −κk)+op(1), for all k = 1, . . . , d ,

and thus,
√

n (S − κ) = C
√

n(D − κ)+ op(1). The proof is concluded by applying
Proposition 1 and Slutsky’s theorem. �
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Example 2 Similar to Example 1, for p = 4, we suppose that κk8 < ∞.
Then, for all k = 1, . . . , d,

√
n

⎛

⎜⎜⎝

X̄k − μk

Sk2 − κk2

Sk3 − κk3

Sk4 − κk4

⎞

⎟⎟⎠

= √
n

⎛

⎜⎜⎝

Dk1

−2κk1Dk1 + (Dk2 − κk2) − D2
k1

−3κk2Dk1 + (Dk3 − κk3) + 2D2
k1 − 3(Dk2 − κk2)Dk1

−4κk3Dk1 + (Dk4 − κk4) − 3D2
k1 − 4(Dk3 − κk3)Dk1 + 6(Dk2 − κk2)D

2
k1

⎞

⎟⎟⎠

=

⎛

⎜⎜⎝

1 0 0 0
−2κk1 1 0 0
−3κk2 0 1 0
−4κk3 0 0 1

⎞

⎟⎟⎠
√

n

⎛

⎜⎜⎝

Dk1

Dk2 − κk2

Dk3 − κk3

Dk4 − κk4

⎞

⎟⎟⎠

+ √
n

⎛

⎜⎜⎝

0
−D2

k1
−3(Dk2 − κk2)Dk1 + 2D2

k1
−4(Dk3 − κk3)Dk1 + 6(Dk2 − κk2)D

2
k1 − 3D2

k1

⎞

⎟⎟⎠

︸ ︷︷ ︸
op(1)

d−→ N4

⎛

⎜⎜⎝

⎛

⎜⎜⎝

0
0
0
0

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

τk,11 τk,12 τk,13 τk,14

τk,21 τk,22 τk,23 τk,24

τk,31 τk,32 τk,33 τk,34

τk,41 τk,42 τk,43 τk,44

⎞

⎟⎟⎠

⎞

⎟⎟⎠ ,

where

τk,11 = τ 2k,1 = κk2 − κ2
k1,

τk,12 = τk,21 = κk3 − 2κk2κk1,

τk,13 = τk,31 = κk4 − 3κ2
k2,

τk,14 = τk,41 = κk5 − 4κk2κk3,

τk,22 = τ 2k,2 = κk4 − κ2
k2 − 4κk1κk3 + 4κk2κ

2
k1,

τk,23 = κk5 − 4κk2κk3 − 2κk1κk4 + 6κ2
k2κk1,

τk,24 = κk6 − κk2κk4 − 2κk1κk5 − 4κ2
k3 + 8κk2κk1κk3,

τk,33 = τ 2k,3 = κk6 − κ2
k3 − 6κk2κk4 + 9κ3

k,2,

τk,34 = κk7 − 5κk3κk4 − 3κk2κk5 + 12κ2
k2κk3,

(continued)



On the Asymptotic Joint Distribution of Multivariate Sample Moments 189

Example 2 (continued)
τk,44 = τ 2k,4 = κk8 − κ2

k4 − 8κk3κk5 + 16κk2κ
2
k3,

with κk1 = 0 and κk2 = σ 2
k . In particular, if the marginal distribution of

Xk −μk is symmetric around zero, then κkr = 0 for odd r , and the asymptotic
multivariate normal distribution of

√
n (X̄k − μk, Sk2 − κk2, Sk3, Sk4 − κk4)

�
reduces to

N4

⎛

⎜⎜⎝

⎛

⎜⎜⎝

0
0
0
0

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

κk2 0 κk4−3κ2
k2 0

0 κk4−κ2
k2 0 κk6−κk2κk4

κk4−3κ2
k2 0 κk6−6κk2κk4+9κ3

k2 0
0 κk6−κk2κk4 0 κk8−κ2

k4

⎞

⎟⎟⎠

⎞

⎟⎟⎠ ,

which indicates that there is asymptotic independence between the sample
central moments of odd and even orders. This is a general result valid for
higher-order sample central moments.

The next proposition shows the asymptotic joint distribution of multivariate
standardized sample central moments.

Proposition 3 Let R = (R�
1 , . . . ,R�

d ) and ρ = (0�, ρ�
1 , . . . , ρ�

d )�, where
Rk = (Dk1, Sk2, Rk3, . . . , Rkp)� and ρk = (0, κk2, ρk3, . . . , ρkp)�, k = 1, . . . , d.
If κk,2p < ∞ for all k = 1, . . . , d, then

√
n (R − ρ)

d−→ Ndp(0,GCKC�G�),

where GC = diag(G1C1, . . . ,GdCd), with

GkCk =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0

0 1
...

. . .
...

− 3
κ
1/2
k2

− 3
2

ρk3
κk2

1
κ
3/2
k2

· · · 0

...
...

...
. . .

...

−pρk(p−1)

κ
1/2
k2

−p
2

ρkp

κk2
0 · · · 1

κ
p/2
k2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In particular,

√
n(Rk − ρk)

d−→ Np(0,GkCkKkkC
�
k G�

k ), k = 1, . . . , d.
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Proof of Proposition 3 We let g(x) = (g1(x1), . . . ,gd(xd))�, where x =
(x�

1 , . . . , x�
d )�, xk = (xk1, . . . , xkp)�, gk = (gk1, . . . , gkp)�, and

gkr (xk) =
{

xkr , r = 1, 2,

x
−r/2
k2 xkr , r = 3, . . . , p.

The Jacobian matrix is Ġ(x) = diag(G1(x1), . . . ,Gk(xk)), with Gk(xk) =(
∂gk(xk)

∂xk

)
given by

Gk(xk) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
0 1 0 · · · 0
0 − 3

2
xk3

x
3/2+1
k2

1
x
3/2
k2

· · · 0

...
...

...
. . .

...

0 −p
2

xkp

x
p/2+1
k2

0 · · · 1
x

p/2
k2

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, k = 1, . . . , d.

Thus, from the delta method, we have
√

n (R − ρ) = √
n (G(S) − G(ρ))

d−→
Ndp(0,GCKC�G�), where G = G(ρ) = diag(G1(ρ1), . . . ,Gd(ρd)) and GC =
diag(G1C1, . . . ,GdCd), concluding the proof. �

Example 3 For p = 4, we have

GkCk =

⎛

⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0

− 3
κ
1/2
k2

− 3
2

ρk3
κk2

1
κ
3/2
k2

0

− 4ρk3

κ
1/2
k2

− 2ρk4
κk2

0 1
κ2k2

⎞

⎟⎟⎟⎟⎠
.

Hence, as in Example 2, if κk8 < ∞, then for all k = 1, . . . , d,

√
n

⎛

⎜⎜⎝

X̄k − μk

Sk2 − κk2

Rk3 − ρk3

Rk4 − ρk4

⎞

⎟⎟⎠
d−→ N4

⎛

⎜⎜⎝

⎛

⎜⎜⎝

0
0
0
0

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

υk,11 υk,12 υk,13 υk,14

υk,21 υk,22 υk,23 υk,24

υk,31 υk,32 υk,33 υk,34

υk,41 υk,42 υk,43 υk,44

⎞

⎟⎟⎠

⎞

⎟⎟⎠ ,

where υk,ij = υk,ji and υk,ii = υ2
k,i , with

υk,11 = τk,11 = σ 2
k ,

(continued)
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Example 3 (continued)
υk,12 = τk,12 = σ 3

k ρk3,

υk,13 = σk(−3 − 3ρ2
k3/2 + ρk4),

υk,14 = σk(−4ρk3 − 2ρk3ρk4 + ρk5),

υk,22 = σ 4
k (ρk4 − 1),

υk,23 = −(σ 2
k /2){ρk3(5 + 3ρk4) − 2ρk5},

υk,24 = σ 2
k (−4ρ2

k3 + ρk4 − 2ρ2
k4 + ρk6),

υk,33 = 9 − 6ρk4 + (ρ2
k3/4)(35 + 9ρk4) − 3ρk3ρk5 + ρk6,

υk,34 = 6ρ3
k3 − (3 + 2ρk4)ρk5 + (3ρk3/2)(8 + ρk4 + 2ρ2

k4 − ρk6) + ρk7,

υk,44 = −ρ2
k4 + 4ρ3

k4 + 16ρ2
k3(1 + ρk4) − 8ρk3ρk5 − 4ρk4ρk6 + ρk8.

In this paper, we developed all the calculations considering Sk2, i.e., the second
sample central moment (the sample variance). Pewsey (2005), on the other hand,
built his results with Sk = √

Sk2, the sample standard deviation, and only for the
univariate case. Therefore, Example 3 corresponds to Pewsey’s result, if k = 1, and
we make use of another Jacobian matrix P k:

P k =

⎛

⎜⎜⎜⎝

1 0 0 0
0 1

2κ1/2k2

0 0

0 0 1 0
0 0 0 1

⎞

⎟⎟⎟⎠ .

Hence, the variance–covariance matrix for the asymptotic distribution for the
kth marginal univariate example, considering Pewsey’s approach, is given by the

expression P k(GkCkKC
�
k G

�
k )P �

k .
With Proposition 3, we derive the following corollary:

Corollary 1 Let R3· = (R31, . . . , R3d)� and ρ3· = (ρ31, . . . , ρ3d)�. Under the
conditions of Proposition 3, we have

√
n (R3· − ρ3·)

d−→ Nd(0,ϒ3),

where

ϒ3 = (I d ⊗ e�
3 )GCKC�G�(I d ⊗ e3),
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with e3 = (0, 0, 1, 0, . . . , 0)� ∈ R
p, i.e., ϒ3 has entries υ

{3}
kl , k, l = 1, . . . , d, given

by

υ
{3}
kl = e�

3 GkCkKklC
�
l G�

l e3 =
(− 3

κ
1/2
k2

, − 3ρk3
2κk2

, 1
κ
3/2
k2

, 0, . . . , 0
)

×

⎛

⎜⎜⎜⎜⎜⎝

κkl,11 − κk1κl1 κkl,12 − κk1κl2 κkl,13 − κk1κl3 · · · κkl,1p − κk1κlp

κkl,21 − κk2κl1 κkl,22 − κk2κl2 κkl,23 − κk2κl3 · · · κkl,2p − κk2κlp

κkl,31 − κk3κl1 κkl,32 − κk3κl2 κkl,33 − κk3κl3 · · · κkl,3p − κk3κlp

...
...

...
. . .

...

κkl,p1 − κkpκl1 κkl,p2 − κkpκl2 κkl,p3 − κkpκl3 · · · κkl,pp − κkpκlp

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 3
κ
1/2
l2

− 3ρl3
2κl2
1

κ
3/2
l2

0
...

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 9ρ̄kl,11 + 9

2
(ρl3ρ̄kl,12 + ρk3ρ̄kl,21) + 9

4
ρk3ρl3ρ̄kl,22 − 3(ρ̄kl,13 + ρ̄kl,31)

−3

2
(ρk3ρ̄kl,23 + ρl3ρ̄kl,32) + ρ̄kl,33

= 9ρkl,11 + 9

2
(ρl3ρkl,12 + ρk3ρkl,21)

+9

4
ρk3ρl3(ρkl,22 − ρk2ρl2) − 3(ρkl,13 + ρkl,31)

−3

2
{ρk3(ρkl,23 − ρk2ρl3) + ρl3(ρkl,32 − ρk3ρl2)} + ρkl,33 − ρk3ρl3.

In particular,

√
n (Rk3 − ρk3)

d−→ N(0, υ{3}
kk ), k = 1, . . . , d,

with

υ
{3}
kk = 9ρ̄kk,11 + 9

2
(ρl3ρ̄kk,12 + ρk3ρ̄kk,21) + 9

4
ρ2

k3ρ̄kk,22 − 3(ρ̄kk,13 + ρ̄kk,31)

−3

2
ρk3(ρ̄kk,23 + ρ̄kk,32) + ρ̄kl,33

= 9 − 6ρk4 + 1

4
ρ2

k3(35 + 9ρk4) − 3ρk3ρk5 + ρk6.
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Example 4 For symmetric distributions, we have ρk5 = ρk3 = ρk1 = 0.
Therefore,

√
n Rk3

d−→ N (0, 9 − 6ρk4 + ρk6) , k = 1, . . . , d,

where ρkr = κkr

κ
r/2
k2

. For the normal model, 9−6ρk4+ρk6 = 9−6×3+15 = 6,

so

√
n Rk3

d−→ N (0, 6) , k = 1, . . . , d.

Focusing on the fourth standardized sample central moment, we derive the next
corollary:

Corollary 2 Let R4· = (R41, . . . , R4d)� and ρ4· = (ρ41, . . . , ρ4d)�. Under the
conditions of Proposition 3, we have

√
n (R4· − ρ4·)

d−→ Nd(0,ϒ4),

where

ϒ4 = (I d ⊗ e�
4 )GCKC�G�(I d ⊗ e4),

with e4 = (0, 0, 1, 0, . . . , 0)� ∈ R
p, i.e., ϒ4 has entries υ

{4}
kl , k, l = 1, . . . , d, given

by

υ
{4}
kl = e�

4 GkCkKklC
�
l G�

l e4 =
(− 4ρk3

κ
1/2
k2

, − 2ρk4
κk2

, 0, 1
κ2k2

, 0, . . . , 0
)

×

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

κkl,11 − κk1κl1 κkl,12 − κk1κl2 κkl,13 − κk1κl3 · · · κkl,1p − κk1κlp

κkl,21 − κk2κl1 κkl,22 − κk2κl2 κkl,23 − κk2κl3 · · · κkl,2p − κk2κlp

κkl,31 − κk3κl1 κkl,32 − κk3κl2 κkl,33 − κk3κl3 · · · κkl,3p − κk3κlp

κkl,41 − κk4κl1 κkl,42 − κk4κl2 κkl,43 − κk4κl3 · · · κkl,4p − κk4κlp

...
...

... . . .
...

κkl,p1 − κkpκl1 κkl,p2 − κkpκl2 κkl,p3 − κkpκl3 · · · κkl,pp − κkpκlp

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 4ρl3

κ
1/2
l2

− 2ρl4
κl2

0
1

κ2l2

0
...

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ρ̄kl,44 − 4ρ̄kl,41ρl3 − 2ρ̄kl,42ρl4 − 4ρk3(ρ̄kl,14 − 4ρ̄kl,11ρl3 − 2ρ̄kl,12ρl4)

+ρk4(−2ρ̄kl,24 + 8ρ̄kl,21ρl3 + 4ρ̄kl,22ρl4).
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In particular,

√
n (Rk4 − ρk4)

d−→ N(0, υ{4}
kk ), k = 1, . . . , d,

with

υ
{4}
kk = ρ̄kk,44 − 4ρ̄kk,41ρk3 − 2ρ̄kk,42ρk4 − 4ρk3(ρ̄kk,14 − 4ρ̄kk,11ρk3 − 2ρ̄kk,12ρk4)

+ρk4(−2ρ̄kk,24 + 8ρ̄kk,21ρk3 + 4ρ̄kk,22ρk4)

= ρkk,44 − ρ2
k4 − 4ρk5ρk3 − 2(ρk6 − ρk4)ρk4 − 4ρk3(ρk4 − 4ρk3 − 2ρk3ρk4)

+ρk4{−2(ρk6 − ρk4) + 8ρ2
k3 + 4(ρk4 − 1)ρk4}

= −ρ2
k4 + 4ρ3

k4 + 16ρ2
k3(1 + ρk4) − 8ρk3ρk5 − 4ρk4ρk6 + ρk8.

Example 5 When working with symmetric distributions, we have ρk5 =
ρk3 = ρk1 = 0.
Therefore,

√
nRk4

d−→ N
(
0,−ρ2

k4 + 4ρ3
k4 − 4ρk4ρk6 + ρk8

)
, k = 1, . . . , d.

For the standard normal model, we have ρk4 = 3, ρk6 = 15, ρk8 = 108, and

−ρ2
k4 + 4ρ3

k4 − 4ρk4ρk6 + ρk8 = −9 + 108 − 180 + 105 = 24

so
√

n Rk4
d−→ N (0, 24) , k = 1, . . . , d.

4 Application to Multivariate Elliptical Distributions

In this section, we apply the previous results to a d-dimensional elliptical random
vectorX ∼ Eld(μ,�;h)with the density function |�|−1/2h{(x−μ)��−1(x−μ)},
where μ is a d × 1 location vector, � is a d × d positive definite scale matrix, and
h is the density generator function.

The central moments ofX can be obtained from the moments ofR andU because
X − μ = R �1/2U , where R and U are independent random quantities, with R

d=
‖Z‖, a radial variable, and U

d= Z
‖Z‖ , a uniform vector on the unit sphere {x ∈ R

d :
‖x‖ = 1}, where Z = �−1/2(X − μ) is the spherical version of X. The existence
of these moments depends on the existence of the associated moments of R. For
instance, as we know,
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• if E(R) < ∞, then E(X) = μ, and
• if E(R) < ∞, then Var(X) = σ 2

h�,

where σ 2
h = 1

d
E(R2) becomes the marginal variance induced by the density

generator function h.
By symmetry, the odd moments of X − μ are zero, and its even moments can be

computed using the results in Berkane and Bentler (1986); see also Lemmas 1 and 2
in Maruyama and Seo (2003). Thus, for r + s = 2m (even), we have

κkl,rs = E
{
(Xk − μk)

r(Xl − μl)
s
} = (κ(m) + 1)ν2mσm

kl , k, l = 1, . . . , d,

where σkl = Cov(Xk,Xl) = σ 2
hωkl becomes κkl,11, ν2m = (2m)!

2mm! is the (2m)th

moment of Z ∼ N(0, 1), and κ(m) + 1 = dm

d(m)

E(R2m)

(E(R2))m
, with d(m) = d(d +

2) · · · (d − 2(m − 1)) being the mth moment of the chi-square distribution with
d degrees of freedom. We note that κ(1) = 0 and κ(2) = κ is the kurtosis
parameter, which is related to the multivariate kurtosis index of Mardia (1970) of
X ∼ Eld(μ,�;h). The Kkl matrix for elliptical distributions can be simplified due
to symmetry, which makes the odd central moments equal to zero. As mentioned
before, this result implies asymptotic independence between the even and odd
sample central moments. The Kkl matrix is given by

Kkl =

⎛

⎜⎜⎜⎜⎜⎝

κkl,11 0 κkl,13 0 · · ·
0 κkl,22 − κk2κl2 0 κkl,24 − κk2κl4 · · ·

κkl,31 0 κkl,33 0 · · ·
0 κkl,42 − κk4κl2 0 κkl,44 − κk4κl4 · · ·
...

...
...

... . . .

⎞

⎟⎟⎟⎟⎟⎠
.

That is, if r + s = 2m (even) and r and s are odd, then the elements of Kkl are
κkl,rs ; if r +s = 2m (even) and r and s are also even, then the elements ofKkl are of
the form κkl,rs − κkrκls . When r + s = 2m − 1 (odd), then the element in row r and
column s of Kkl is zero. If p = 4 and we are interested in Kkk , then the expression
reduces to the following, as κkk,rs = κk,r+s :

Kkk =

⎛

⎜⎜⎝

κk2 0 κk4 0
0 κk4 − κ2

k2 0 κk6 − κk2κk4

κk4 0 κk6 0
0 κk6 − κk4κk2 0 κk8 − κ2

k4

⎞

⎟⎟⎠ .

Therefore, we see that there is independence between the pairs Xk and Sk2 and
Rk3 and Rk4. Also, by Proposition 3, we have

√
n(Rk − ρk)

d−→ Np(0,GkCkKkkC
�
k G�

k ), k = 1, . . . , d.
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For elliptical distributions, with κk8 < ∞, for all k = 1, . . . , d,

GkCkKkkC
�
k G�

k =

⎛

⎜⎜⎝

υk,11 0 υk,13 0
0 υk,22 0 υk,24

υk,31 0 υk,33 0
0 υk,42 0 υk,44

⎞

⎟⎟⎠ ,

where υij = υji , and

υk,11 = κk2,

υk,13 = −3κ2
k2 + κk4

κ
(3/2)
k2

,

υk,22 = −κ2
k2 + κk4,

υk,24 = κ2
k2κk4 − 2κ2

k4 + κk2κk6

κ3
k2

,

υk,33 = 9 − 6κk4

κ2
k2

+ κk6

κ3
k2

,

υk,44 = 4κ3
k4 − 4κk2κk4κk6 + κ2

k2(−κ2
k4 + κk8)

κ6
k2

.

Using the formula for computing κkl,rs , we have the following elements:

υk,11 = σkk = σ 2
hωkk,

υk,13 = 3κ(2)σhω
(1/2)
kk ,

υk,22 = (2 + 3κ(2))σ
4
hω2

kk,

υk,24 = −3(11κ(2) + 6κ2
(2) − 5κ(3))σ

2
hωkk,

υk,33 = 6 − 18κ(2) + 15κ(3),

υk,44 = 3(8 + 105κ2
(2) + 36κ3

(2) + κ(2)(42 − 60κ(3)) − 60κ(3) + 35κ(4)).

For the multivariate normal distribution, according to Maruyama and Seo (2003),
κ(i) = 0, i = 2, 3, 4. Considering the standard normal distribution, σ 2

h = ωkk =
1, υk,11 = 1, υk,13 = 0, υk,22 = 2, υk,24 = 0, υk,33 = 6, and υk,44 = 24.
For other elliptical distributions, the values for the asymptotic variance–covariance
matrix depend on the computation of σ 2

h and κ(i), i = 2, 3, 4. For a multivariate
Student-t distribution, we have σ 2

h = ν
ν−2 , κ(2) = 2

ν−4 , κ(3) = 6ν−20
(ν−6)(ν−4) and

κ(4) = 12ν2−92ν+184
(ν−8)(ν−6)(ν−4) .
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5 Application to Multivariate Skew-Normal Distributions

In this section, we apply the previous results to the multivariate skew-normal
distributions of Azzalini and Dalla Valle (1996); see also the books by Genton
(2004) and Azzalini and Capitanio (2014). We let X ∼ SNd(ξ ,�,α), with the
density given by 2φd(x − ξ ;�){α�ω−1(x − ξ)}, x ∈ R

d , where φd(x;�) is
the pdf of the Nd(0,�) distribution, and (·) is the cdf of the univariate standard
normal distribution. We know that μ = E(X) = ξ + μ0 and 
 = Var(X) =
� − μ0μ

�
0 , where μ0 = E(X − ξ) = √

2/πωδ, δ = �̄α/
√
1 + α��̄α, �̄ =

ω−1�ω−1, and ω = diag(�)1/2 = σ {I d + diag(μ̄0μ̄
�
0 )}1/2, with μ̄0 = σ−1μ0

and σ = diag(
)1/2.
Here, for any d × d matrix A = (aij ) ≥ 0, diag(A)1/2 is the diagonal matrix

whose diagonal elements are a
1/2
11 , . . . , a

1/2
dd . We know that

α =
√

π/2ωσ−1
̄
−1

μ̄0√
(1 + β2

0 )
{
1 + (1 − π/2)β2

0

} , β2
0 = μ̄�

0 
̄
−1

μ̄0,

where 
̄ = σ−1
σ−1 and ωσ−1 = σ−1ω = {I d + diag(μ̄0μ̄
�
0 )}1/2.

We let Z = σ−1(X − μ) = σ−1(X0 − μ0), where X0 = X − ξ . Its density and
moment-generating functions are, respectively, given by

fZ(z) = 2φd

(
z + μ̄0; 
̄ + μ̄0μ̄

�
0

)

{
α�ω−1σ (z + μ̄0)

}
, z ∈ R

d ,

and

MZ(t) = 2e
−t�μ̄0+ 1

2 t�
(

̄+μ̄0μ̄

�
0

)
t

(
t�σ−1ωδ

)
, t ∈ R

d ,

where ω−1σ = {
I d + diag(μ̄0μ

�
0 )
}−1/2 = diag

(

̄ + μ̄0μ̄

�
0

)−1/2
and

σ−1ωδ =
√

π
2 μ̄0.

Hence, we obtain

Z ∼ SNd

(
−μ̄0, 
̄ + μ̄0μ̄

�
0 ,α

)
,α =

√
π/2

{
I d + diag(μ̄0μ̄

�
0 )
}1/2


̄
−1

μ̄0√
(1 + β2

0 )
{
1 + (1 − π/2)β2

0

} ,

�⇒ X = μ + σZ ∼ SNd(μ − μ0,
 + μ0μ
�
0 ,α).

Moreover, Z has univariate and bivariate marginals given by
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Zk = e�
k Z ∼ SN1

⎛

⎝−μ̄0k, 1 + μ̄2
0k,

√
π/2 μ̄0k√

1 + (1 − π/2)μ̄2
0k

⎞

⎠ , k = 1, . . . , d,

and

(
Zk

Zl

)
∼ SN2

((−μ̄0k

−μ̄0l

)
,

(
1 + μ̄2

0k σ̄kl + μ̄0kμ̄0l

σ̄kl + μ̄0kμ̄0l 1 + μ̄2
0l

)
,

(
α′

k

α′
l

))
,

where 
̄ = (σ̄kl), with σ̄kk = 1. To identify the skewness parameters (α′
k, α

′
l )

�,
we use the fact that for a dB × d matrix B of rank dB , BZ ∼ SNdB

(Bμ̄0,B
̄ +
Bμ̄0μ̄0B

�,αB), with

αB =
√

π/2 diag
(
B
̄B

� + Bμ̄0μ̄
�
0 B�

)1/2 (
B
̄ + Bμ̄0μ̄

�
0 B�)−1

Bμ̄0
√
1 − (π/2)(Bμ̄0)

� (
B
̄ + Bμ̄0μ̄

�
0 B�)−1

Bμ̄0

,

and

δB = √
π/2 diag

(
B
̄B

� + Bμ̄0μ̄
�
0 B�)−1/2

Bμ̄0.

We also note that

MBZ(t) = MZ(B�t) = 2e
−t�μ̄0+ 1

2 t�
(
B
̄+Bμ̄0μ̄

�
0 B�

)
t

(√

π/2 t�Bμ̄0

)
.

Thus, for B = (ek, el )
�, we have

αB =
(

α′
k

α′
l

)
= 1√

(1 − ρ2
B

){1 − ρ2
B

− (δ20k + δ20l − 2ρB δ0kδ0l )}

(
δ0k − ρB δ0l
δ0l − ρB δ0k

)
,

and δB = (δ0k, δ0l )
�, where

δ0k =
√

π/2 μ̄0k√
1 + μ̄2

0k

, ρB = σ̄kl + μ̄0kμ̄0l√
(1 + μ̄2

0k)(1 + μ̄2
0l )

,

and

MZk,Zl
(tk, tl) = 2 exp

{
−tkμ̄0k − tlμ̄0l + 1

2
t2k

(
1 + μ̄2

0k

)
+ 1

2
t2l

(
1 + μ̄2

0l

)

+tktl (σ̄kl + μ̄0kμ̄0l )} × 

{√
π

2
(tkμ̄0k + tlμ̄0l )

}
.
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We compute ρkr(Zk) = E(Zr
k), ρkl,rs(Zk, Zl) = E(Zr

kZ
s
l ), and ρ̄kl,rs(Zk, Zl) =

E(Zr
kZ

s
l ) − E(Zr

k)E(Zs
l ) = ρkl,rs(Zk, Zl) − ρkr(Zk)ρlr (Zk).

Now, we let M(tk, tl) = MZk,Zl
(tk, tl), and the cumulant function

K(tk, tl) = logM(tk, tl)

= −tkμ̄0k − tlμ̄0l + 1

2
t2k

(
1 + μ̄2

0k

)
+ 1

2
t2l

(
1 + μ̄2

0l

)

+tktl (σ̄kl + μ̄0kμ̄0l )

+ log

[
2

{√
π

2
(tkμ̄0k + tlμ̄0l )

}]
.

We also denote the derivatives as follows:

Mk = ∂M

∂tk
, Mkk = ∂2M

∂t2k

, Mkl = ∂2M

∂tk∂tl
, . . . ,

and

Kk = ∂K

∂tk
, Kkk = ∂2K

∂t2k

, Kkl = ∂2K

∂tk∂tl
, . . . .

Then, we have

Mk = MKk,

Mkl = MlKk + MKkl,

Mkll = MllKk + 2MlKkl + MKkll,

Mkkl = MklKk + MkKkl + MlKkk + MKkkl,

Mkkkl = MkklKk + 2MklKkk + MkkKkl + 2MkKkkl + MlKkkk + MKkkkl,

Mkkll = MkllKk + 2MklKkl + MkKkll + MllKkk + 2MlKkkl + MKkkll,

Mklll = MlllKk + 3MllKkl + 3MlKkll + MKklll,

Mkklll = MklllKk + 3MkllKkl + 3MklKkll + MkKklll + MlllKkk

+3MllKkkl + 3MlKkkll + MKkklll ,

Mkkkll = MkkllKk + 2MkllKkk + 2MkklKkl + 4MklKkkl + MkkKkll

+2MkKkkll + MllKkkk + 2MlKkkkl + MKkkkll,

Mkkklll = MkklllKk + 2MklllKkk + 3MkkllKkl + 6MkllKkkl + 3MkklKkll

+6MklKkkll + MlllKkkk + 3MllKkkkl + 3MlKkkkll + MkkKklll

+2MkKkklll + MKkkklll ,
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with

Kk = −μ̄0k + tk(1 + μ̄2
0k) + tl(σ̄kl + μ̄0kμ̄0l )

+ζ1{
√

π/2(tkμ̄0k + tlμ̄0l )}
√

π/2 μ̄0k,

Kkl = (σ̄kl + μ̄0kμ̄0l ) + ζ2{
√

π/2(tkμ̄0k + tlμ̄0l )}{
√

π/2}2μ̄0kμ̄0l ,

Kkll = ζ3{
√

π/2(tkμ̄0k + tlμ̄0l )}{
√

π/2}3μ̄0kμ̄
2
0l ,

Kklll = ζ4{
√

π/2(tkμ̄0k + tlμ̄0l )}{
√

π/2}4μ̄0kμ̄
3
0l ,

Kkkl = ζ3{
√

π/2(tkμ̄0k + tlμ̄0l )}{
√

π/2}3μ̄2
0kμ̄0l ,

Kkkk = ζ3{
√

π/2(tkμ̄0k + tlμ̄0l )}{
√

π/2}3μ̄3
0k,

Kkkll = ζ4{
√

π/2(tkμ̄0k + tlμ̄0l )}{
√

π/2}4μ̄2
0kμ̄

2
0l ,

Kkklll = ζ5{
√

π/2(tkμ̄0k + tlμ̄0l )}{
√

π/2}5μ̄2
0kμ̄

3
0l ,

Kkkkll = ζ5{
√

π/2(tkμ̄0k + tlμ̄0l )}{
√

π/2}5μ̄3
0kμ̄

2
0l ,

Kkkklll = ζ6{
√

π/2(tkμ̄0k + tlμ̄0l )}{
√

π/2}6μ̄3
0kμ̄

3
0l .

Here, ζk(x) is the kth derivative of ζ0(x) = log{2(x)}, for which

ζ0(0) = 1, ζ1(0) = √
2/π = b, ζ2(0) = −b2,

ζ3(0) = b(2b2 − 1), ζ4(0) = −2b2(3b2 − 2),

ζ5(0) = b(24b4 − 20b2 + 3), ζ6(0) = −4b2(30b4 − 30b2 + 7).

Hence,

Kk(0) = −μ̄0k + ζ1(0)
√

π/2 μ̄0k = 0,

Kkl(0) = σ̄kl + μ̄0kμ̄0l + ζ2(0){
√

π/2}2μ̄0kμ̄0l = σ̄kl,

Kkll(0) = ζ3(0){
√

π/2}3μ̄0kμ̄
2
0l = (2 − π/2)μ̄0kμ̄

2
0l ,

Kkkl(0) = ζ3(0){
√

π/2}3μ̄2
0kμ̄0l = (2 − π/2)μ̄2

0kμ̄0l ,

Kkkk(0) = ζ3(0){
√

π/2}3μ̄3
0k = (2 − π/2)μ̄3

0k,

Kklll(0) = ζ4(0){
√

π/2}4μ̄0kμ̄
3
0l = −2(3 − π)μ̄0kμ̄

3
0l ,

Kkkkl(0) = ζ4(0){
√

π/2}4μ̄3
0kμ̄0l = −2(3 − π)μ̄3

0kμ̄0l ,

Kkkll(0) = ζ4(0){
√

π/2}4μ̄2
0kμ̄

2
0l = −2(3 − π)μ̄2

0kμ̄
2
0l ,

Kkklll(0) = ζ5(0){
√

π/2}5μ̄2
0kμ̄

3
0l = (3π2/4 − 10π + 24)μ̄2

0kμ̄
3
0l ,

Kkkkll(0) = ζ5(0){
√

π/2}5μ̄3
0kμ̄

2
0l = (3π2/4 − 10π + 24)μ̄3

0kμ̄
2
0l ,
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Kkkklll(0) = ζ6(0){
√

π/2}6μ̄3
0kμ̄

3
0l = (−7π2 + 60π − 120)μ̄3

0kμ̄
3
0l .

Thus, considering that M(0) = 1, ρk1 = Mk(0) = Kk(0) = 0, and ρkl,11 =
Mkl(0) = Kkl(0) = σ̄kl , with σ̄kk = σ̄ll = 1, we have

ρk1 = Mk(0) = M(0)Kk(0) = 0,

ρk2 = Mkk(0) = Mk(0)Kk(0) + M(0)Kkk(0) = 1,

ρk3 = Mkkk(0) = Mkk(0)Kk(0) + 2Mk(0)Kkk(0) + M(0)Kkkk(0)

= (2 − π/2)μ̄3
0k,

ρk4 = Mkkkk(0) = Mkkk(0)Kk(0) + 3Mkk(0)Kkk(0) + 3Mk(0)Kkkk(0)

+M(0)Kkkkk(0)

= 3 − 2(3 − π/2)μ̄4
0k,

ρk5 = Mkkkkk(0) = Mkkkk(0)Kk(0) + 4Mkkk(0)Kkk(0) + 6Mkk(0)Kkkk(0)

+4Mk(0)Kkkkk(0) + M(0)Kkkkkk(0)

= 10(2 − π/2)μ̄3
0k + (3π2/4 − 10π + 24)μ̄5

0k,

ρk6 = Mkkkkkk(0) = Mkkkkk(0)Kk(0) + 5Mkkkk(0)Kkk(0) + 10Mkkk(0)Kkkk(0)

+10Mkk(0)Kkkkk(0) + 5Mk(0)Kkkkkk(0) + M(0)Kkkkkkk(0)

= 15 − 30(3 − π)μ̄4
0k + 10(2 − π/2)2μ̄6

0k

+(−7π2 + 60π − 120)μ̄6
0k,

and

ρkl,11 = Mkl(0) = Ml(0)Kk(0) + M(0)Kkl(0) = σ̄kl,

ρkl,12 = Mkll(0) = Mll(0)Kk(0) + 2Ml(0)Kkl(0) + M(0)Kkll(0)

= (2 − π/2)μ̄0kμ̄
2
0l ,

ρkl,21 = Mkkl(0) = Mkl(0)Kk(0)+Mk(0)Kkl(0)+ Ml(0)Kkk(0)+ M(0)Kkkl(0)

= (2 − π/2)μ̄2
0kμ̄0l ,

ρkl,22 = Mkkll(0) = Mkll(0)Kk(0) + 2Mkl(0)Kkl(0) + Mk(0)Kkll(0)

+Mll(0)Kkk(0) + 2Ml(0)Kkkl(0) + M(0)Kkkll(0)

= 2σ̄ 2
kl + 1 − 2(3 − π)μ̄2

0kμ̄
2
0l ,

ρkl,13 = Mklll(0) = Mlll(0)Kk(0) + 3Mll(0)Kkl(0)

+3Ml(0)Kkll(0) + M(0)Kklll(0)

= 3σ̄kl − 2(3 − π)μ̄0kμ̄
3
0l ,
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ρkl,31 = Mkkkl(0) = Mkkl(0)Kk(0) + 2Mkl(0)Kkk(0) + Mkk(0)Kkl(0)

+2Mk(0)Kkkl(0) + Ml(0)Kkkk(0) + M(0)Kkkkl(0)

= 3σ̄kl − 2(3 − π)μ̄3
0kμ̄0l ,

ρkl,23 = Mkklll(0) = Mklll(0)Kk(0) + 3Mkll(0)Kkl(0) + 3Mkl(0)Kkll(0)

+Mk(0)Kklll(0) + Mlll(0)Kkk(0) + 3Mll(0)Kkkl(0)

+3Ml(0)Kkkll(0) + M(0)Kkklll(0)

= 3(2 − π/2)μ̄0kμ̄
2
0l σ̄kl + 3(2 − π/2)μ̄0kμ̄

2
0l σ̄kl

+(2 − π/2)μ̄3
0l

+3(2 − π/2)μ̄2
0kμ̄0l + (3π2/4 − 10π + 24)μ̄2

0kμ̄
3
0l ,

ρkl,32 = Mkkkll(0) = Mkkll(0)Kk(0) + 2Mkll(0)Kkk(0) + 2Mkkl(0)Kkl(0)

+4Mkl(0)Kkkl(0) + Mkk(0)Kkll(0) + 2Mk(0)Kkkll(0)

+Mll(0)Kkkk(0) + 2Ml(0)Kkkkl(0) + M(0)Kkkkll(0)

= 2(2 − π/2)μ̄0kμ̄
2
0l + 2(2 − π/2)μ̄2

0kμ̄0l σ̄kl

+4(2 − π/2)μ̄2
0kμ̄0l σ̄kl

+(2 − π/2)μ̄0kμ̄
2
0l + (2 − π/2)μ̄3

0k

+(3π2/4 − 10π + 24)μ̄3
0kμ̄

2
0l ,

ρkl,33 = Mkkklll(0) = Mkklll(0)Kk(0) + 2Mklll(0)Kkk(0) + 3Mkkll(0)Kkl(0)

+6Mkll(0)Kkkl(0) + 3Mkkl(0)Kkll(0) + 6Mkl(0)Kkkll(0)

+Mlll(0)Kkkk(0) + 3Mll(0)Kkkkl(0) + 3Ml(0)Kkkkll(0)

+Mkk(0)Kklll(0) + 2Mk(0)Kkklll(0) + M(0)Kkkklll(0)

= 2{3σ̄kl − 2(3 − π)μ̄0kμ̄
3
0l} + 3{2σ̄ 2

kl + 1

−2(3 − π)μ̄2
0kμ̄

2
0l}σ̄kl

+10(2 − π/2)2μ̄3
0kμ̄

3
0l l − 12(3 − π)μ̄2

0kμ̄
2
0l σ̄kl

−6(3 − π)μ̄3
0kμ̄0l

−2(3 − π)μ̄0kμ̄
3
0l + (−7π2 + 60π − 120)μ̄3

0kμ̄
3
0l .

Finally, with the purpose of illustrating the application of some of the previous
results to the multivariate skew-normal distribution, we present two examples below.
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Example 6 From Corollary 1, we have that
√

n(R3· − ρ3·)
d−→ N(0,ϒ3),

k = 1, . . . , d, where ϒ3 has elements given by

υ
{3}
kl = 9ρkl,11 + 9

2
(ρl3ρkl,12 + ρk3ρkl,21) + 9

4
ρk3ρl3(ρkl,22 − ρk2ρl2)

−3(ρkl,13 + ρkl,31)

−3

2
{ρk3(ρkl,23 − ρk2ρl3) + ρl3(ρkl,32 − ρk3ρl2)} + ρkl,33 − ρk3ρl3

= 6σ̄ 3
kl + (9/2)(2 − π/2)2(μ̄0kμ̄

5
0l + μ̄5

0kμ̄0l )

+9

4
(2 − π/2)2{2σ̄ 2

klμ̄
3
0kμ̄

3
0l − 2(3 − π)μ̄5

0kμ̄
5
0l}

−(9/2)(2 − π/2)2(μ̄5
0kμ̄0l + μ̄0kμ̄

5
0l + 2μ̄4

0kμ̄
2
0l σ̄kl + 2μ̄2

0kμ̄
4
0l σ̄kl)

−(3/2)(2 − π/2)(3π2/4 − 10π + 24)(μ̄5
0kμ̄

3
0l + μ̄3

0kμ̄
5
0l )}

+{9(2 − π/2)2 − 7π2 + 60π − 120}μ̄3
0kμ̄

3
0l − 18(3 − π)μ̄2

0kμ̄
2
0l σ̄kl .

In particular,
√

n (Rk3 − ρk3)
d−→ N(0, υ{3}

kk ), k = 1, . . . , d, with

υ
{3}
kk = 6−18(3−π/2)μ̄4

0k−{(9/2)(2−π/2)2+7π2−60π+120}μ̄6
0k

−3(2−π/2)(3π2/4−10π+24)μ̄8
0k−(9/2)(2−π/2)2(3−π/2)}μ̄10

0k.

Moreover, for μ̄0k = 0 (k = 1, . . . , d), we have

υ
{3}
kl = 6σ̄ 3

kl,

where σ̄kl (k, l = 1, . . . , d) are the entries of the correlation matrix 
̄.
In a similar way, from Corollary 2, we can find the asymptotic variance–

covariance matrix ϒ4 of
√

n(R4· − ρ4·).

The following example provides for each marginal k the joint asymptotic
distribution for its sample mean, sample variance, and sample skewness, and from
which, we can also find the joint asymptotic distribution of the moment estimators
of the respective marginal parameters, namely, (ξk, ω

2
k, αk), k = 1, . . . , d.
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Example 7 From Example 3, we have for all k = 1, . . . , d:

√
n

⎛

⎝
X̄k − μk

Sk2 − κk2

Rk3 − ρk3

⎞

⎠ d−→ N4

⎛

⎝

⎛

⎝
0
0
0

⎞

⎠ ,

⎛

⎝
υk,11 υk,12 υk,13

υk,21 υk,22 υk,23

υk,31 υk,32 υk,33

⎞

⎠

⎞

⎠ ,

where

υk,11 = σ 2
k ,

υk,12 = σ 3
k ρk3,

υk,13 = σk(−3 − 3ρ2
k3/2 + ρk4),

υk,22 = σ 4
k (ρk4 − 1),

υk,23 = −(σ 2
k /2)(5ρk3 + 3ρk3ρk4 − 2ρk5),

υk,33 = 9 − 6ρk4 + (1/4)(35ρ2
k3 + 9ρ2

k3ρk4) − 3ρk3ρk5 + ρk6,

with

ρk3 = (2 − π/2)μ̄3
0k,

ρk4 = 3 − 2(3 − π)μ̄4
0k,

ρk5 = 10(2 − π/2)μ̄3
0k + (3π2/4 − 10π + 24)μ̄5

0k,

ρk6 = 15 − 30(3 − π)μ̄4
0k + {10(2 − π/2)2μ̄6

0k − 7π2 + 60π − 120}μ̄6
0k.

For μ̄0k = 0, we have

√
n

⎛

⎝
X̄k − μk

Sk2 − κk2

Rk3 − ρk3

⎞

⎠ d−→ N4

⎛

⎝

⎛

⎝
0
0
0

⎞

⎠ ,

⎛

⎝
σ 2

k 0 0
0 2σ 4

k 0
0 0 6

⎞

⎠

⎞

⎠ , k = 1, . . . , d.

6 Final Remarks

We used standard tools to obtain our results, hence facilitating the comprehension of
the derivations. We illustrated the practical capabilities of the developed techniques
through several simple examples. Derivations similar to the ones we presented
can be carried out for multivariate skew-t and skew-elliptical distributions. Some
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references on theses distributions include Branco and Dey (2001), Azzalini and
Capitanio (2003), Gupta (2003), and Genton and Loperfido (2005).

As a by-product of the derivations, we found that in the context of symmetric
distributions, such as the elliptical ones, the known fact of asymptotic independence
between the sample mean and the sample variance extends to all the sample central
moments of both even and odd orders.
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