On the Asymptotic Joint Distribution of )
Multivariate Sample Moments Qs

Reinaldo B. Arellano-Valle, Simone B. Harnik, and Marc G. Genton

Abstract We present the asymptotic joint distribution of the sample central
moments and the standardized sample central moments of multivariate random
variables. Sample central moments and standardized sample central moments are
quantities of interest for statistical inference as the variance and the coefficients of
skewness and kurtosis are particular cases. The results described here are known
for univariate random variables; now, we extend them to random vectors. After
presenting our results, we apply them to multivariate elliptical distributions and
the multivariate skew-normal distribution, showing that these expressions can be
simplified considerably in specific cases.

1 Introduction

Statistical analyses frequently make use of functions of the sample mean and sample
covariance matrix for multivariate inference. In the exponential family, for instance,
such statistics are sufficient to estimate the parameters of distributions. In other
families, the third and fourth standardized sample moments, respectively, known
as the coefficients of skewness and kurtosis, may be of interest. Here, we present
the asymptotic joint distribution for multivariate sample moments and apply it to
both multivariate elliptical distributions and the multivariate skew-normal family.
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Sample moments are used in the method of moments, an estimation technique
based on the assumption that unknown parameters can be computed by matching the
sample moments with the theoretical ones, and solving a system of p equations and
p unknown parameters. The p parameters may be over-identified by the system of
equations; so, the Generalized Method of Moments (GMM) was developed to tackle
this obstacle. As noted by Harris and Matyas (1999), the estimation via moments
requires fewer assumptions than the maximum likelihood estimation, which needs
specification of the whole distribution. Therefore, estimation via moments may
be convenient in many situations. The sample moments can also be used for
optimization of the likelihood, according to Lehmann and Casella (1998, pp. 456—
457).

As the sample moments have numerous applications, these measures and their
asymptotic distributions have been vastly explored in the literature. As one of
the first in this field, Cramér (1946) dealt with moments, functions of moments,
and their asymptotic normality using a technique that later became known as the
delta method. Pewsey (2005) derived a general result for the large-sample joint
distribution of the mean, the standard deviation, and the coefficients of skewness
and kurtosis of a general distribution by employing the Central Limit Theorem
(CLT), the Taylor expansion of functions of the moments, and extensive algebraic
manipulations. Both these works referred to the univariate context only.

An interesting property of Pewsey’s result is that he isolated the asymptotic bias
for the coefficients of skewness and kurtosis, so his formulation can be applied in
bias corrections of estimators. However, practical simulations from the author with
bias correction through subtraction or ratio performed poorly. Bao (2013) derived
analytical results for finite sample biases for skewness and kurtosis coefficients in
a different way. He achieved a good performance using his asymptotic results for
bias correction in an AR(1) process. He also claimed that applying the results to
hypothesis tests for normality increased the power of the tests. In the multivariate
context, Kollo and von Rosen (2005) presented the asymptotic distribution of the
sample mean and the sample covariance matrix, using as a background the law of
large numbers and the CLT.

Asymptotic results may be applied to the multivariate skew-normal distribution,
a more general class than the normal distribution, as shown by Arnold and Beaver
(2002). The authors also exposed different causes yielding skewed distributions,
for example, the hidden truncation mechanism. Arnold et al. (1993), motivated
by practical problems, such as “selective reporting,” i.e., when, intentionally or
not, only random vectors related to a truncated variable are recorded, developed
these ideas and provided a direct relationship with Azzalini’s (1985) skew-normal
distribution. As selective reporting is generated by common procedures, this hidden
truncation mechanism may be frequent in data analyses and was addressed by a
series of papers that Prof. Arnold pioneered.

Here, we apply asymptotic results to multivariate elliptical distributions and
the multivariate skew-normal distribution developed by Azzalini and Dalla Valle
(1996). In this last scenario, we show that expressions simplify considerably,
depending on the parameters. Two key advantages of our results are that we address
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the higher-order moments, unlike previous works, and we employ intuitive and
straightforward notation.

The structure of this paper is as follows. In Sect. 2, we provide the notation and
terminology used throughout the paper. In Sect. 3, we present the main results about
the asymptotic joint distribution of multivariate sample moments and multivariate
standardized sample moments and describe several examples for illustration. In
Sect. 4, we apply the results to multivariate elliptical distributions, and in Sect. 5,
we evaluate the asymptotic behavior for the skew-normal distribution.

2 Notation and Terminology

To derive the asymptotic joint distribution of central moments from multivariate ran-
dom variables, we consider a non-degenerate random vector X = (X1,..., X DT~
f(x;0),x € X C R, 0 € © c RY, where f is a parametric joint probability
density function. We also consider the following theoretical quantities, provided
they exist:

o iy = IE(X,Z), k=1,...,d, r=1,..., p,is the rth theoretical moment of Xy,
and w1 = uk is the mean of the kth variable;

o ki =E{(Xx —up)'},k=1,...,d, r=1,..., p,is the rth theoretical central
moment of X; about the mean uy, where xx; = 0 and kyr = akz is the variance;

o kilrs = E{(Xk — )" (X; — )’} k,l=1,...,d, r,s =1, ..., p, represents
the theoretical central cross-moments of orders r and s between the kth and /th
variables, kx;,11 = oy is the covariance between the kth and /th variables, and
Kkk,rs = Kk,r+s

* Okr = :,"/'2 ,k=1,...,d, r = 1,..., p, is the standardized rth theoretical

k2
moment of X with pr1 =0, pr2 =1, k3 = yr1 and prg4 — 3 = yy2, where yyg
is the skewness coefficient and yj» is the excess kurtosis;

Kkl rs
° ;Okl,rs = r/2 r;/2$ k7l = 15 "'7da r7s = 15 "'7p’ and Iokk,r.Y = Iok,r+S’
Ki2 Kp2
Prk,11 = pr2 = 13
= Kkl,rs —KkrKi;
® Pklrs = W = Pkl,rs — Pkrpis, k, 1 = 1,...,d, r,s = 1,...,p, and
k2 T2

Pkk,rs = Pk,r+s» Pki,1s = Pki,1s and Pk; r1 = Pkl r1-

We also define Dy, Skr, and Ry, which are, respectively, the rth sample central
moment about the mean, the rth sample central moment about the sample mean,
and the rth standardized sample central moment about the sample mean, for a
random sample X; = (Xj1,. ..,X,-d)T, i = 1,...,n, from the random vector
X =(X1,...,Xa)" ~ f(x;0) as follows:

1 n _
Dkr=—Z(Xik—/ik)r,k=1,-~-,d, r=1,....,p, (Dr1 = Xr — ),
n

i=1
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1 ¢ _
Sir =~ X =X k=1,....d, r=2.....p, (S =0, Sz =5,
n

i=1

.
r _

> (S>DksD,:l 5. (D=1,

s=0

Riy =SSk, k=1,....d, r=3,...,p.

The sample central moments (Sg,) are strongly consistent estimators of the
respective theoretical central moments (ki) for each k = 1,...,d and r =
2, ..., p. Therefore, the standardized sample central moments (Ry,) are also
strongly consistent estimators of the respective standardized theoretical central
moments (pg-) for each k = 1,...,d and r = 2,..., p, i.e., each univariate
marginal. Besides, if the (2r)th theoretical moments are finite, then the asymptotic
normality of these central statistics is known. In the next section, we deliver the basic
elements needed to study the asymptotic distribution in the multivariate context and
give some illustrative examples of how to apply the proposed results.

3 Main Results

Welet D = (D{,....D))7, Dy = (Di1..... D)7, and Dy = 2371 Wiy,

where Wir = ((Xit — )" Xik — u)*, ... Xig — )P Tk = 1,....d,
i = 1,...,n.If the mean vector and the variance—covariance matrix of W;; exist,
they are, respectively, defined as

E(Wi) = kx = (Kk1, Kk2, - - -, Kip) | » and
Var(Wi) = Ko = (Cov Xk — ' e —}),
= (Kkk,ij — Kkikkj)i,j=1,2,...p» k=1,...,d.

Thus, D = 13"\ W;, where W; = (W],.... W])T,i=1,... nareiid.
random vectors, with a mean vector ¥k = (KT, el Ic;lr)T and a variance—covariance
matrix K= (K, k,I =1, ...,d, where the block K; = Cov{W,, W;}is

K = (Cov| (e — o), s = ')
i,j=1,2,...,p
= (Kki,ij — Kkikij)i,j=1,2,...p» k,I=1,...,d. (D

With this, we make use of the multivariate Central Limit Theorem (CLT) to
obtain the results in Proposition 1:
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Proposition1 Let D = (D{,....D)), andk = (k[ ,... k)", where Dy =
(Di1, ... Dip) ", Dii = Xk — s ki = (k1 - -« Kip) T kx1 = 0, and ko = o,
k=1,....d Ifkxap < 00 forallk =1,...,d, then

VD — k) ~5 Ny (0, %),

where K has block elements Ky given by (1). In particular,

Dy — k1) —5 Np©,. K, k=1,....d.

Example I We illustrate this result with the case in which p = 4. Assuming
that kg g8 < oo, thenforallk =1,...,d,

Dyy — kx1 0 Kio—K2  KK3—Ki1Kk2 Kka—Kk1Kk3 Kks—Kk1Kka
Jn Dio —ki2 | 4 Ni 0 Kia—Kiakkl  Kka—KPy  Kks—Kkakk3 Kk6—Kk2Kka
= ) 2
D3 — ki3 0 Kka—Kk3Kk1 Kk5—Kk3Kk2  Kk6—Kjz  Kk7—Kk3Kka
Dys — kpa 0 Kis—Kkakkl Kro—Kkakka Kk1—Kkakik3  Kis—KZy

If the distribution of X — uy is symmetric around zero, then the result reduces
to

Dy 0 Ki2 0 Kk 0
D> — k, d 0 0  Kpa — K2 0 Kre — Kiak,
Jn | P~ Ni ’ k4 — Kip k6 — Kxakia | |
Dy3 0 Kk4 0 Kk6 0
Dya — ki4 0 0 ko — kkakkz O kis — kK

indicating asymptotic independence between the random vectors
V1 (Di1, Di3) " and \/n (Dry — Ki2, Dia — kexa) T

Similarly, for sample central moments about the true mean vector, we derive
asymptotic distributions for the sample central moments about the sample mean as
stated below in Proposition 2. As noted by Afendras et al. (2020), when investigating
the limiting behavior of sample central moments in the univariate context, two
general assumptions about each of the components of the random vector X =
(X1,..., X7 are required. First, E(|Xk|2r) < 00. Second, non-singularity of
order r, that is, rkzr # 0, for r = 2, 3, .... These conditions guarantee the marginal
J/n-convergence of the sample central moments, i.e., each marginal sample central
moment /7 (Sg, — ki) converges in distribution to a non-degenerate N (0, rkzr),
with r,fr > 0. Under singularity of order r, whenever rkzr = 0, Afendras et al.
(2020) verified that n (Sx, — k) converges in distribution to a non-normal law of
probability.
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Proposition2 Let S = (S{,....,S))" and k = (], .. k)T, where Sy =
(Dk1, Skz, ceey Skp)T and Kip = (Kkl,lckz, ey Kkp)T, k = 1, ey d. Ifl(k(zp) < 0
forallk =1,...,d, then

(8 = 1) =5 Npa(0, €KCT,

where C = diag(Cy, ..., Cy), and

1 00---0
—2kr; 10---0
Ci = -3k 01---0 , k=1,...,d,

—PKk(p—1) 00 - 1

where ki1 = 0 and Ky = okz. In particular,

JA(Sk — k) —5 Np(©, CKiu €Y. k=1,....d,

where the asymptotic variance—covariance matrix Ck‘Kka,j has entries Tk s,
where Ty, = I,gr, and

2
Tk,11 = Kk2 — K1,
Tk, ls = Th,s1 = Kk(s+1) — SKk2Kk(s—1)s S =2,..., D,
Tk,rs = Kk(r+s) — KkrKks — FKk(r—1)Kk(s+1)

—SKk(r+1)Kk(s—1) T TSKR2Kk(r—D)Kk(s—=1)s T8 =2, ..., D.

Proof of Proposition 2 Since X — ur = Dypand, forr =2,..., p,

r

—s(T — S
Str= Y (=1) S(s)DkxD,Ql S (Dro=r0 =0, D1 = Xx — jup)
s=0

r—1

= ("N = DD + Y (=) (Z)(Dks — ki) D

s=2

r—1
T _
+Y (=1 (S>Kksb,z] S+ Dy
s=2
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r—1

7 _
= _rKk,r—lel + Dy + Z(_l)r s (S) (Dys — Kks)D]zl s
s=0

+Z< ™ ( )xks D,

we have

Vi (Skr — ki) = \/E(Dkr — Kir — FKi(r—1)Dr1

r—1

+ Z(_l)r—s (Z) (Dis — Kks)D]};;S
s=0

+Z( s ( )xks )

= /n (Dir — kir — rii—1)Di1)

r—1
+Y (=1 (Z)ﬁ (Dis — ki) Dy °
s=0

r—2
—s(7 _
+§(—1)’ S(S>Kksﬁb,:1 "

By Proposition 1, /n (Dks — kks) = Op(1) asn — oo, forallk = 1,...,d and
s=1,..., p,implying that:

Dy = 0,(n"1?) = 0,(1) and D};* = 0,(1), forall r — s > 0;

Vn (Diys — ki)D" = 0,(1o,(1) = o0p(1), fors = 2,...,r —land r =
3,...,p;and

VD =002 (i D) ™ =0, (1) 0, (1) = 0,(1), forall r — s > 2.
These facts imply that:

r—1

r—2
o= (;)ﬁ (Dis — k) Dy + Q—l)f—f (Z)xkxﬁ DT =o0,(D),

s=0

which holds forallk = 1,...,dandallr =2,..., p.

Hence, we obtain /n (S —k¢) = Ci/n(Dx—kr)+op(1), forallk = 1,....d,
and thus, /n (S — k) = C/n(D — k) + 0,(1). The proof is concluded by applying
Proposition 1 and Slutsky’s theorem. O
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(continued)
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Example 2 (continued)
2 2 2
Th,d4 = Tjog = Kk8 — Kjg — 8Kk3Kks + 16Kk2K3,

with k1 = 0 and kpp = akz. In particular, if the marginal distribution of
Xk — 1k is symmetric around zero, then i, = 0 for odd r, and the asymptotic
multivariate normal distribution of /i (}_(k — Wk, Sk2 — Kk2, Sk3, Ska — Kk4)T
reduces to

0 K2 0 Kra—3k2, 0

Nu 0 0 ) K4 —K,%Z 0 X Kk6—Kk2Kk4 ’
0 Kra—3Kj 0 K6 —6KraKka+9K], 0
0 0 Kk —Kk2Kk4 0 Kis—K2y

which indicates that there is asymptotic independence between the sample
central moments of odd and even orders. This is a general result valid for
higher-order sample central moments.

The next proposition shows the asymptotic joint distribution of multivariate
standardized sample central moments.

Proposition3 Ler R = (RT,...,RI) and p = (OT,pT,...,p;)T, where
Ry = (D1, Si2, Ria, - .., Rip) " and pr = (0, k12, pi3s -, prp) T k=1,....d.
Ifkpop <ooforallk =1,...,d, then

Vi (R = p) -5 Nyp(0, GCKCTGT),

where GC = diag(G1C1, ..., GaCy), with

1 0 0O --- 0
0 1
3 _3pm3 1 0
GiCr=| P T P
_PPkp-l) _p P 1
1/2 2 Ky r/2
K2 k2 Ki2

In particular,

d
V(R — pp) —> Np(0, G Ci K CL Gl), k=1,....d.
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Proof of Proposition 3 We let g(x) = (gl(xl),...,gd(xd))T, where x =
Gl x )X =ty Xkp) T gk = (8k1s -+ Gkp) |, and
Xker s r=1,2,
8kr(Xk) =1 2
Xpeo ' Xkrs r=3,...,p.

The Jacobian matrix is G(x) = diag(G1(x1), ..., Gr(xk)), with Gg(xy)

3 .
(%’:")) given by

1 0 0o - 0
0 1 o - 0
03X _L_ 0
Gi(xp) = 2ah oy . k=1,....d
0 12) lf/k2p+1 0 1}/2
k2 k2

Thus, from the delta method, we have /n (R — p) = /n (G(S) — G(p)) 4,
Nap (0, GCKCTGT), where G = G(p) = diag(G1(p), ..., Ga(py)) and GC =
diag(G1C1y, ..., G4Cy), concluding the proof. O

Example 3 For p = 4, we have

1 0 0 O
0 1 0 0
— 3 3p 1
R B o
403 _2pka g L
1/2 Ki2 K2
Hence, as in Example 2, if k3 < oo, thenforallk =1, ...,d,

X — Wk 0 Uk,11 Uk,12 Uk,13 Uk, 14
Sko — K d 0 v, %) U, %)
Jn | S e Ni | Ukt Vk22 V23 Vis
Ri3 — pr3 0 Uk,31 Uk,32 Uk,33 Uk,34
Ria — pra 0 Uk,41 Uk,42 Uk,43 Uk, 44

where v ;; = vg ji and v i = U,%’i, with

2
Uk, 11 = Tk,11 = Of,

(continued)
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Example 3 (continued)
3
Uk,12 = Tk,12 = OF Pk3,

Uk, 13 = 0k (=3 — 3053/2 + pra),

Uk, 14 = 0k(—4pk3 — 2013 k4 + Pk5) s

ai (pea = 1),

—(@F/D{px3(5 + 3pra) — 2015},

Uk2a = 07 (—4p3s 4 pra — 2034 + Pk6)s

Uk,22

Uk,23

Ue33 = 9 — 6pka + (0i3/4) (35 + 9pka) — 3pk30k5 + 6
Uk 34 = 605 — (3 + 214) ps + 3ox3/2) (8 + pra + 20} — pre) + pir,
Uk s = —piq + 403 + 1605 (1 + pia) — 8pi3 ks — 4pkapre + Pis-

In this paper, we developed all the calculations considering Si», i.e., the second
sample central moment (the sample variance). Pewsey (2005), on the other hand,
built his results with Sy = +/Sk2, the sample standard deviation, and only for the
univariate case. Therefore, Example 3 corresponds to Pewsey’s result, if k = 1, and
we make use of another Jacobian matrix Pp:

1 0 00
1
po— |02 00
0 0 10
0 0 01

Hence, the variance—covariance matrix for the asymptotic distribution for the
kth marginal univariate example, considering Pewsey’s approach, is given by the

expression Py (Gy Ck‘KC,: GZ)P,(T.
With Proposition 3, we derive the following corollary:

Corollary 1 Let R3. = (R3q, oo R3) T and p3. = (P31, ..., p3d)T. Under the
conditions of Proposition 3, we have

d
where

Y;=(1I;Re;)GCKCTG (14 ® e3),
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withe; = (0,0, 1,0, ..., O)T € R?, i.e., Y3 has entries U{S} k,l=1,...,d, given

Kl
by
{3} T T~T _ 3 _3/3k3 1 0 0
v =e3 G CrKuC, G| e3 = Q7 T J
__3_
2
12
Kkl 11— KkIKIL K112 — KELKI2 Kkl 13 — KkIKI3 -+ Kl 1p — Kkikip \ | 3
Kk1,21 — Kk2KI1 Kkl 22 — Kk2Ki2 K123 — KkaKi3 -+ Kkl 2p — Kk2Kip 212
x| Kri31 — Ki3Ki1 Kri 32 — Kk3Kio Kki,33 — Kk3K13 -+ Kkl 3p — Kk3Kip il
) ) ) i 0
Kkl,pl — KkpKI1 Kkl,p2 — KkpKi2 Kkl,p3 — KkpKi3 -+ Kkl,pp — KkpKip .
0

_ 9 _ _ 9 _ _ _
= 901,11 + 5(9[3,01(1,12 + ok30k1,21) + 7 PR3P — 3(0ki,13 + Oki,31)
3 _ _ _
_E(PkSPkl,B + 013Pk1,32) + Pki33
9
= 9pp,11 + §(p13/0k1,12 + Pk30k1,21)

9
+Z:0k3pl3(,0kl,22 — pr2p12) — 3(0ki,13 + Pki31)

3
—E{Pk3()0kl,23 — pPr2013) + p13 (k1,32 — Pk3P12)} + PkI33 — PK3PI3-

In particular,

i (Ris — pra) =5 NO, v, k=1,....4,
with

. 9 i 9 , i _
U/Ek} = 90k, 11 + E(pl3,0kk,12 + pk30kk,21) + Zplépkk,zz — 3(0kk,13 + Pkk,31)

3 _ _ _
—5PK3 (Prk,23 + Pkk,32) + Pki,33

1
=9 — 6014 + ZP£3(35 + 90k4) — 30k30k5 + Pk6-
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Example 4 For symmetric distributions, we have px5 = o3 = pr1 = 0.
Therefore,

d
ViR — N(©0,9—6ps+ k), k=1,....d,

where p, = ",L/z For the normal model, 9 —6,0x4 + o6 = 9—6x3+15 = 6,
Ki2
SO

ViR -5 N©,6), k=1,....d.

Focusing on the fourth standardized sample central moment, we derive the next
corollary:

Corollary 2 Let Ry. = (Ry41, ..., Ryg)" and py. = (a1, ..., paq)". Under the
conditions of Proposition 3, we have

d
Vi (Ra. — pg) —> Ng(0, Y4),
where
Yi=I;®e)GCKC G (14 ® es),

withey, = (0,0, 1,0, ..., O)T € R?, i.e., Y4 has entries v,i?}, k,l=1,...,d, given
by

4y _ T TAT, _ (%3 204 L
vl = el GCuKuCT Gl eg = (= =3 0. (7. 0., 0

_4p3
12
Kkl 11 — Kk1KI1 Kkl,12 — Kk1K12 Kk, 13 — Kk1KI13 -+ Kkl 1p — Kk1Kip _21514
Kkl 21 — Ki2Kil Kkl,22 — KioKio Kk, 23 — Kk2Ki3 - Kkl 2p — Kk2Kip 0“2

Kkl,31 — Kk3KI11 Kki,32 — Kk3K12 Kki,33 — Kk3K13 -+ Kkl ,3p — Kk3Kip 1

x 1

Kkl, 41 — Kk4Ki1 Kkl,42 — Kk4K[2 Kkl,43 — Kkg4Ki3 - - Kkl,4p — Kk4Kip K[22

) . . . 0

Kkl,pl — KkpKl1 Kkl,p2 — KkpKI2 Kki,p3 — KkpKi3 - Kkl,pp — KkpKip :

0

= Pk, 44 — 40k1,41013 — 20k1,42014 — 4013 (Oki,14 — 40k, 11013 — 20k1,12014)
+ k4 (—2011,24 + 80k1,21 013 + 4Pk1,22014)-
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In particular,

Vi (Rea — pra) —5 NO. v, k=1.....4.
with

4 _ _ _ _ _ _
Ulik} = QOkk,44 — 40kk 410k3 — 20k 42 Pk4 — 40k3(Okk, 14 — 40k, 110k3 — 20kk,120k4)

+0k4 (=2 0k 24 + 80kk,210k3 + 4Pk, 22 k4)
= Prk.a4 — Py — 40k50k3 — 2(0k6 — Pra) Pka — 4013 (ks — 40k3 — 2,013 Pka)
+pra{—=2(0k6 — pra) + 8073 + 4(pra — 1 pral

= —p} +4pPy + 16p3 (1 + pra) — 8pk3 k5 — 4Pkapre + Pis-

Example 5 When working with symmetric distributions, we have o5 =
k3 = 1 = 0.
Therefore,

d
Vn Ry — N(O, — Py + 403y — 4oaone + ,0k8> , k=1,...,d.
For the standard normal model, we have px4 = 3, pre = 15, prg = 108, and

— 0% + 403, — 4praprs + prs = —9 + 108 — 180 + 105 = 24

50 /7 Ria —55 N(0,24), k=1,....d.

4 Application to Multivariate Elliptical Distributions

In this section, we apply the previous results to a d-dimensional elliptical random
vector X ~ Ely(p, ; h) with the density function ||~ 2h{(x —p) T ' (x —p)},
where p is a d x 1 location vector, 2 is a d x d positive definite scale matrix, and
h is the density generator function.

The central moments of X can be obtained from the moments of R and U because

X —p = R Q'2U, where R and U are independent random quantities, with R 4

. . d . .
I|Z]|, a radial variable, and U = ﬁ, a uniform vector on the unit sphere {x € RY :

x|l = 1}, where Z = ~2(X — p) is the spherical version of X. The existence
of these moments depends on the existence of the associated moments of R. For
instance, as we know,
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e if E(R) < o0, then E(X) = u, and
* if E(R) < oo, then Var(X) = 07,

where o;% = é]E(RZ) becomes the marginal variance induced by the density

generator function /.

By symmetry, the odd moments of X — u are zero, and its even moments can be
computed using the results in Berkane and Bentler (1986); see also Lemmas 1 and 2
in Maruyama and Seo (2003). Thus, for r + s = 2m (even), we have

iitrs = E{(Xk — )" (Xi — w)*} = (kmy + Dvamoy),  kI=1,....d,

where oy = Cov(Xy, X)) = ahzwkl becomes ki 11, Vo = (2%,—”2,' is the (2m)th
m (R .
moment of Z ~ N(0,1), and «¢p) + 1 = [Z—m) W, with diny = d(d +

2)---(d — 2(m — 1)) being the mth moment of the chi-square distribution with
d degrees of freedom. We note that k1) = 0 and k) = « is the kurtosis
parameter, which is related to the multivariate kurtosis index of Mardia (1970) of
X ~ Elj(n, 2; h). The K, matrix for elliptical distributions can be simplified due
to symmetry, which makes the odd central moments equal to zero. As mentioned
before, this result implies asymptotic independence between the even and odd
sample central moments. The Kj; matrix is given by

Kkl 11 0 Kki,13 0
0 kw2 —kiokiz 0 Kpi24 — KioKig -
Ky = | k1,31 0 Kkl,33 0

0 kria2 —krakrz O Kk a4 — Krakig - -

That is, if r + s = 2m (even) and r and s are odd, then the elements of Kj; are
Kki,rs; if r+5 = 2m (even) and r and s are also even, then the elements of K}, are of
the form x5 — kirk1s. Whenr +s = 2m — 1 (odd), then the element in row r and
column s of Ky, is zero. If p = 4 and we are interested in K}, then the expression
reduces to the following, as kxk rs = Kk r+s:

Ki2 0 Kk4 0

| 0 kw—k O kke — kiokia

Kik =
Kk4 0 Kk6 0

0 kio — krakkz 0 Kkig — K2y

Therefore, we see that there is independence between the pairs Xy and Si, and
Ri3 and Ry4. Also, by Proposition 3, we have

d
VIR — p) —> Np(0, G C K CLGL), k=1,....d.
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For elliptical distributions, with k3§ < oo, forallk =1,...,d,

veir 0 vz O

TAT 0 w22 0 wveos
w3t 0 vz O

0 w2 0 wvras

where v;; = vj;, and

Uk, 11 = K2,
— 32
_ Mo T Kk4
Uk, 13 = G
k2
2
Uk,22 = —Kjp + Kka,
2 2
Kipkka — 2Ky + Ki2Kk6
U4 = 3 )
Kia
OKkra  Kie
Uk,33 =9——2+—3,
Ko Kio
43, — 4 + ki (=K +
Kiq — dKi2Kkakke + K (—Kiy + Ki8)
Uk,44 = g .
Kia

Using the formula for computing «y; s, we have the following elements:

2
Uk, 11 = Okk = O} Wkk,

1/2
Uk, 13 = 3K(2)Uha)](<k/ )

vk = 2+ 3k2)0; wpy»

k24 = —3(11k) + 6/<(22) — 5K(3))0F Wkk

Ug,33 = 6 — 18k (2) + 15k(3),

ka4 = 3(8 + 105Ky, + 36Ky, + k(2) (42 — 60k (3)) — 60k 3) + 35K (4)).

For the multivariate normal distribution, according to Maruyama and Seo (2003),
kgy = 0,1 = 2,3, 4. Considering the standard normal distribution, a}% = Wi =
Lvgin = Lvgs =0, vk = 2, u04 = 0, ug33 = 6, and v aq = 24
For other elliptical distributions, the values for the asymptotic variance—covariance
matrix depend on the computation of o}% and k¢, i = 2,3,4. For a multivariate
Student- distribution, we have 07 = Y5, ko) = ﬁ,/c@) = (Ufg)% and

v—2"
_ 12v2-921v+184
K4 = 0 3y0-—60—5"
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5 Application to Multivariate Skew-Normal Distributions

In this section, we apply the previous results to the multivariate skew-normal
distributions of Azzalini and Dalla Valle (1996); see also the books by Genton
(2004) and Azzalini and Capitanio (2014). We let X ~ SNy (&, R, a), with the
density given by 2¢,(x — &; )®{a '@ ' (x — &)}, x € R?, where ¢y(x; R) is
the pdf of the N4 (0, ) distribution, and ®(-) is the cdf of the univariate standard
normal distribution. We know that u = E(X) = & + pp and ¥ = Var(X) =
Q — popg, where py = E(X — &) = /2/708,8 = Qu/V1+a Qa, @ =
0 Qw7 and w = diag(R)'/? = o (I, + diag(iioig)}'/?, with jig = o~ pg
and o = diag(X)!/2.

Here, for any d x d matrix A = (a;;) > 0, diag(A)l/2 is the diagonal matrix

whose diagonal elements are a Hz AU a:h/)_,z. We know that

=—1_
Vi2wo 'S 1 =1L
L Bi=igZ i

CJasg i+ a -8

o

where L =0 'To'andwo ! =0 lw = {1, + diag(ﬁoﬁ(—)r)}l/z.
WeletZ =0"1(X — n) = o 1(Xg— o), where Xog = X — &. Its density and
moment-generating functions are, respectively, given by

f2@) =24 (z+fio: T + fioiig ) @ a0 o+ )|z RY,
and
L TE LT (5 =T
My(t) = 2¢ " Fotat <E+"°”’°)'q>(ﬁa—1wa), t eRY,

where @0 = {1, + diag(iiong)) " = diag (£ + fofig) " and
o lws = \/%[LO,

Hence, we obtain

_ VT2 {1, + diag(l_Lol_Lg)}l/2 iilﬁo
\/(1+,3§){1+(1 —7/2)82)

Z ~ SNy (i, £ + iok] . ) .

’

—= X=p+0Z~SNa( — po. T + polg - ).

Moreover, Z has univariate and bivariate marginals given by
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T /2 ok
\/1+(1 — /)i,

Zy — Lok L+ A3, G+ Aokl oy
~ SN2 - k) - - - -2 k] ’ k)
Z — ol ox + fokfror 1+ Ay, o

where ¥ = (63;), with Gxx = 1. To identify the skewness parameters (ot al’)T,
we use the fact that for a dp x d matrix B of rank dg, BZ ~ SNy, (B, BY +
BitoitoB ', ap), with

Zi =e] Z ~ SNy | —itok, 1 + i3y

and

. =T _ - 172 - - -1 _
4/_n/2d1ag(BEB +B;L0,LJBT) (BE + Biigiig BT) ' Bit

)

op
- = - - -1 -
J1 = @/2)(Big) T (BE + Biaoii] BT) ' Bilg

and
. = .1 - —-TpT —-1/2 -
33=«/n/2d1ag(BEB —i—B[,LOﬂ,OB) Bii,.
We also note that

T L T(pyaRi il BT
Maz(t) = My(BTe) = 2¢ P04 (PR g (o T ).

Thus, for B = (ex, ;) |, we have

() _ ! 8ok — PBSO1
“B=\u )= 2 2 2 .52 So1 — rBSok )
1) Ja = 03— o — 63 + 8% — 20mdordon) 001~ PBOOK
and 8g = (Sok, So1) T, where

/2 ok _ Okl + Lok Lol

— ’ pB - ~ ~ ’
1+, Ja+ 300+ ad)

Sok

and
_ 5 PR 1, 1+ 72 1, |+ 72
Mz, z,(tk, 1) = 2exp | —tkfhok — tiftor + 2tk + Lo ) + 2f1 + Koy

_ o [m _
+txty (Or + forflo)} x @ { 3 (te ok + thoz)} .
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We compute pi-(Zy) = E(Z}), pui,rs(Zk, Z1) = B(Z;Z]), and pyy,rs(Zi, Z1) =
E(Z, Z}) — E(Z)DE(Z}) = prt,rs(Zk, Z1) — poir (Zi) pir (Zi).
Now, we let M (t, t;) = Mz, z,(t, 1), and the cumulant function

K (tx, ;) = log M (1, 1)
_ _ 1 B 1 B
= —Ixjok — tiflor + 3 2 (1 + Mgk) + 3 7 (1 + M%[)
“+ixty (Ok1 + Lok iLor)

+log [ZCP {\/g(tkl_mk + tlﬁoz)H :

We also denote the derivatives as follows:

v, — M M_82M M_82M
](_ 8[‘](’ kk_ 8[]? ’ kl_atkatla"'v
and
0K 9’ K _’K
K= % K art’ T Andn’
Then, we have
My = MKy,

My = MKy + M Ky,
My = My Ky +2M Ky + MKy,
Mk = MK + Mi Ky + M Kie + M Kk,
Miki = Miki K + 2Mpa Kik + My K + 2Mi Kkt + Mi Kk + M K gk
Mgt = My Kie + 2Miq Kt + My Kt + My Kie + 2M Kkt + M Kk s
M = M Ky +3My Ky + 3M Ky + M Ky,
Mk = My Ky + 3Miy Kig + 3Mig Ky + My Ky + Mo Kk
+3My Kpki + 3M Kyt + M Ky,
Mk = Mikn Kie + 2Myai Kk + 2Migg Ky + My K + Mg Ky
+2My Kirat + My Kk + 2M) Kyt + M K s
Mg = Migan K + 2Myan K + 3 Mg Ky + M Kk + 3 Mg K
+O6 My Kkt + Myt Kige + 3My Kkt + 3M Kigkir + Mi K
+2My Kkt + M K s
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with
Ki = —fiok + (1 + idy) + 11(6r + Lok itor)
+o {7/ 2ok + trio) /7 /2 froks
K = (@ + fokito) + S0/ /20t ok + niikon /7 /2 ok ftor
K = (/7 /2 fiok + tito) Hy/'7/2) ok iy
K = Galy/m/2(tjtox + tito) Hy/70/2} flow figy
Kixr = 3{/70 /2t fio + o) H/7/2F iy o
Kok = &3{/m/2(tkjiox + tifion /7 /2 iy
Kirr = taf/m /2t jox + tito) Hy/70 /2 iy iy
Kin = ¢5{3/m /2t jor + o) /7 /2 i1, iagy-
Kiwir = ¢5{3/m/2(tkiiox + titon) Hy/70/2F iy ity
Kk = Sol/7/2(tkitox + tiito) Hy/m /20 iy ity -

Here, ¢i(x) is the kth derivative of {p(x) = log{2®(x)}, for which

00 =1, &) =2/t =b, &0)=-b
G(0) = b(2b* — 1),  ¢4(0) = —26>(3b* - 2),
5(0) = b(24b* — 206% +3),  £6(0) = —4b> (306" — 30b° + 7).

Hence,
Ki(0) = —jiox + £1(0)y/7/2 jtok = 0,
Ki(0) = 61 + foitor + (07 /2Y focfor = s
Kui(0) = &3O/ /2P iy = 2 — 7/2)jiokfigy-
K (0) = 53(0){V/7/2P ifeiior = 2 — /2t
K (0) = GOV /2P i3, = (2 — 7/2)jidy,
K (0) = ¢ (V/m/2) fowiagy = —2(3 — ) fioi1q)
Kt (0) = 2O (V7 /2) ideiior = —2(3 — ) fiy idor-
K (0) = ca(O) (/7 /2 i ndy = —23 — m)iideindy.
K (0) = &) {y/m/2Y i iy, = (3m?/4 — 107 + 24) i iag)
K1 (0) = &)/ /2P i iidy = (3m?/4 — 107 + 24) a3y i,
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Kirr11(0) = &) y/7/2)0 iy iidy = (—=Tm% + 60 — 120)fig, ity

Thus, considering that M(0) = 1, px1 = Mr(0) = Ky (0) = 0, and pg;.11 =
My (0) = Ky (0) = oy, with o, = 677 = 1, we have
pk1 = Mi(0) = M(0)K(0) = 0,
pi2 = M (0) = M (0)Ki(0) + M(0) K (0) = 1,
oi3 = Mg (0) = My (0) Ky (0) + 2My (0) Kieie (0) + M (0) Kiere (0)
= (2 — 7/ iy
Pka = Mgk (0) = Mk (0) Ky (0) + 3 M (0) Kk (0) + 3 M (0) Kierc (0)
+M (0) K ik (0)
=3-20 - 7/Digy
oks = Migrir (0) = Mpgir (0) Ky (0) + 4Miger (0) Keie (0) + 6 Mt (0) K e (0)
+4M;(0) Kirick (0) + M (0) K ik (0)
=102 — 7/2) i3, + (3n%/4 — 107 +24) /i3,
k6 = Migkkikk (0) = Mgkir (0) K (0) + 5 Mg (0) Ky (0) + 10M g (0) K ir (0)
+10Mjk (0) Kieeie (0) + SMi (0) Keiekier (0) + M (0) Keeiekir (0)
= 15— 3003 — m)jig; + 102 — 7/2)? i,
+(=77? + 607 — 12015,

and

pri11 = My (0) = Mi(0)Ki (0) + M(0)Ki(0) = o,
pri 12 = M (0) = My (0) Ky (0) + 2M;(0) Ky (0) + M (0) Ky (0)
= (2 — /) Aok gy
ki, 21 = Mik1(0) = Mj (0) Ky (0)+Mjy (0) Kk (0) + M;(0) Kiek (0) + M (0) Kir (0)
= (2 — 7/ i,
pri,22 = Mk (0) = M1 (0) Ki(0) + 2M (0) Kk (0) + M (0) Kt (0)
+M1(0) Kk (0) + 2M;(0) Kk (0) + M (0) Kt (0)
=265 + 1 — 23 — m)Ad i,
Pkt 13 = M (0) = My (0) Ky (0) + 3My;(0) Kii (0)
+3M;(0) Ki1(0) + M (0) Kgy11(0)

= 361 — 2(3 — 7)jLok gy
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P31 = My (0) =

Pk123 = My (0) =

Pki32 = Mg (0) =

Pki,33 = Mg (0) =

R. B. Arellano-Valle et al.

Mk (0) Kic(0) + 2M 1 (0) Kk (0) + Mk (0) Kz (0)
+2M; (0) K (0) + M;(0) K (0) + M (0) K (0)
36k — 2(3 — ) gy fhor

M1 (0) Kk (0) + 3Mj1(0) K (0) + 3 M (0) Kar (0)
+Mi(0) K111 (0) + Mi1i(0) Kieie (0) + 3M 1 (0) Kt (0)
+3M;(0) K11 (0) + M (0) Kk (0)

3(2 — 7/2) fiok il Okt + 32 — 7/2) fiok il 5k

+2 - 7/2) iy,

132 — /23 fror + B2 /4 — 107 +24) ik, i3,
M1 (0) Ky (0) + 2Mi1(0) Kk (0) + 2M k1 (0) Kz (0)
+4 My (0) Kk (0) + Mk (0) K1 (0) + 2M (0) K1 (0)
+Mi1(0) Kk (0) + 2M;(0) Kk (0) + M (0) Kkt (0)
2(2 — /) ok iy + 22 — 7/2) g oG

+4Q2 — /D)L oGk

+2 = /2oLy + (2 = 7/2)ikgy

+(3r? /4 — 107 + 24) fig, ity

M1 (0) K (0) + 2Mi11(0) Kk (0) + 3 Micks1 (0) K1 (0)
+6Mp11(0) Kk (0) + 3Mixi (0) K11 (0) + 6 My (0) K (0)
+Mi11(0) Kk (0) + 3M1;(0) Kikr (0) + 3M;(0) Kk (0)
+ Mk (0) Kia11(0) + 2Mjc (0) Keka11 (0) + M (0) K ieka1 (0)
2(36u — 2(3 — m) ok ity ) + 3267 + 1

—2(3 — 7) iy ity ki

+102 — 7/2)* Ageitg)l — 1263 — 1) iage it ou

—6(3 — ) iy fhor

—2(3 — ) iorfiy; + (=77 + 60 — 120) i3, 13-

Finally, with the purpose of illustrating the application of some of the previous
results to the multivariate skew-normal distribution, we present two examples below.
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Example 6 From Corollary 1, we have that /n(R3. — £3.) —d> N(0, Y3),
k=1,...,d, where Y3 has elements given by

3 9 9
U/Ez} = 9pk,11 + E(PlSPkl,lZ + P30k 21) + Zpk3pl3(/0kl,22 — Pk2012)

—3(pr1,13 + Pr1,31)
3

—E{pm (ok1,23 — pr2pi3) + Pi3(Pki32 — Pr3PI2)} + Pki,33 — PR3 LI3

= 667, + (9/2)(2 — /2 (fiokiLyy + Adefior)

9 52 _ 5 _

22 = /225 ity — 23 = TR}

—(9/2)(2 — 22-5— = =5 -4 -2 = -2 -4 =
9/2)( w/2) (H()leOl + Kok g + 2(or oy Okl ~+ 2oy oy Oki)

—(3/2)2 — w/2) B2 /4 — 10m + 24) (i35, i3, + i i)
+{9Q2 — 7/2)* — Tr? 4 607 — 120} i3, ity — 18(3 — 7)jid, iid 51

In particular, /7 (Rg3 — 0k3) N N(O, U,Ei}), k=1,...,d, with

vt} = 6-18G—m/D)jif—((9/2)2~7/2)*+ 1% 607 +120}ia§
—3Q2—7/2)3n* /A—10m+24) i, —(9/2) (2—7/2)* B—7/2)} fi -

Moreover, for jor =0 (k =1, ..., d), we have
{3} -3
Vg = 657,
where oy (k,l =1, ..., d) are the entries of the correlation matrix x.

In a similar way, from Corollary 2, we can find the asymptotic variance—
covariance matrix Y4 of «/n(Rs. — py4.).

The following example provides for each marginal k the joint asymptotic
distribution for its sample mean, sample variance, and sample skewness, and from
which, we can also find the joint asymptotic distribution of the moment estimators
of the respective marginal parameters, namely, (&, w,%, ap), k=1,...,d.
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Example 7 From Example 3, we have forallk =1, ..., d:

Xi — 0 Uk,11 Uk,12 Uk,13
Vn | Sk2 — ki L ni ([ {o]. Uk,21 Uk,22 Vk,23 | | >
Riz — pi3 0 Uk,31 Uk,32 Uk,33
where
Uk11 = of,
Uk, 12 = O} i3,
Uk 13 = 0k(=3 — 3pi3/2 + pra),
Uk22 = of (ors — 1),
Uk 23 = — (07 /2)(5pr3 + 30k3 064 — 20k5)
Uk33 = 9 — 604 + (1/4) (3505 + 908 0k4) — 30k30k5 + Pr6s
with

o3 = 2 — /DAy

pra =3 —2(3 — )iy

prs = 10Q2 — w/2) i3, + 3% /4 — 107 + 24) i3,

pre = 15 — 303 — m)jigy + {102 — 7/2)* 1§, — T2 + 607 — 120}z, .

For or = 0, we have

Xk — Hi ; 0\ (o 00
Vo | S—kio | — Nal|O]. OZo,fO , k=1,...,d.
Ri3 — px3 0 0 0 6

6 Final Remarks

We used standard tools to obtain our results, hence facilitating the comprehension of
the derivations. We illustrated the practical capabilities of the developed techniques
through several simple examples. Derivations similar to the ones we presented
can be carried out for multivariate skew-¢ and skew-elliptical distributions. Some
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references on theses distributions include Branco and Dey (2001), Azzalini and
Capitanio (2003), Gupta (2003), and Genton and Loperfido (2005).

As a by-product of the derivations, we found that in the context of symmetric
distributions, such as the elliptical ones, the known fact of asymptotic independence
between the sample mean and the sample variance extends to all the sample central
moments of both even and odd orders.
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