
On the Exact Statistical Distribution of
Econometric Estimators and Test
Statistics

Yong Bao, Xiaotian Liu, and Aman Ullah

Abstract Barry Arnold has made many fundamental and innovative contributions
in different areas of statistics and econometrics, including estimation and inference,
distribution theory, Bayesian inference, order statistics, income inequality measures,
and characterization problems. His extensive work in the area of distribution theory
includes studies on income distributions and Lorenz curves, the exact sampling
distribution theory of test statistics, and the characterization of distributions. In
our paper, we consider the problem of developing exact sampling distributions of
various econometric and statistical estimators and test statistics. The motivation
stems from the fact that inference procedures based on the asymptotic distributions
may provide misleading results if the sample size is small or moderately large.
In view of this, we develop a unified procedure by first observing that a large
number of econometric and statistical estimators can be written as ratios of quadratic
forms. Their distributions can then be straightforwardly analyzed by using Imhof’s
(Biometrika 48:419–426, 1961) method. We show the applications of this procedure
to develop the distribution of some commonly used statistics in applied work. The
exact results developed will be helpful for practitioners to conduct appropriate
inference for any given size of the sample data.

1 Introduction

In the early twentieth century, Sir R. A. Fisher and others set in motion what
is known today as the classical parametric approach to statistical estimation of a
finite number of population parameters using sample data. Thus began the practice
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of statistical inference within the framework of estimation and hypothesis testing
of univariate and multivariate probability distributions. The extensive study of
conditional probability distributions followed, and hence, the estimation and testing
in the conditional mean (regression) and conditional variance (volatility) models
became a norm in econometrics and statistics. The estimation of parameters of
regression and other models gave rise to the development of statistical properties of
econometric estimators of such models like their bias, mean squared error (MSE),
and distributions. Within this and in related contexts, Barry Arnold has made many
fundamental and innovative contributions in different areas of statistics and econo-
metrics, including estimation and testing, distribution theory and characterization of
distributions, income distribution theory and Lorenz curves, among others. See, for
example, Arnold (1983, 1987, 2012, 2015), Arnold et al. (1987), Arnold and Sarabia
(2018), Coelho and Arnold (2014), Marques et al. (2011), and Villaseñor and Arnold
(1984, 1989). All of these have made significant impact on the profession and have
been instrumental in advancing statistics and econometrics.

The large sample limiting distribution theory was well developed, but there
were challenges to develop needed analytical finite sample distributional results.
In general, the large sample properties did not necessarily imply the small sample
properties, and if they were used in small or moderately large sample cases, they
may give misleading policy implications. This problem was posed since most of
econometric estimators were nonlinear functions of multivariate random variables
and it was not easy to develop their exact distributional properties. Nagar (1959)
developed finite sample approximate bias and MSE of the two-stage least squares
(2SLS) estimator of the parameters in a structural model. This was followed by
an extensive work of many other econometrians and statisticians on the exact
bias and MSE, and some on the exact distribution, of the 2SLS estimator. This
literature is summarized in Ullah (2004), also see Anderson and Sawa (1973),
Phillips (1980, 1986), and Bao et al. (2017). However, the exact distribution of many
other econometric and statistical estimators is not yet developed.

In view of this in this paper, we develop a unified procedure to analyze the
exact distribution by observing that many econometric and statistical estimators
can be written as ratios of quadratic forms. Their distributions can then be
straightforwardly developed by using Imhof’s (1961) result on the distribution of
an indefinite quadratic form. We show the applications of this procedure to develop
the distribution of some statistics used in applied work. These include squared
coefficient of variation for measuring income inequality, squared Sharpe ratio
commonly used in financial management, Durbin–Watson test statistic for serial
correlation routinely used in practice, Moran’s test statistic for spatial correlation,
and goodness of fit in regression models. The exact results developed here will be
helpful for practitioners to conduct appropriate inference for any given size of the
sample data.



On the Exact Statistical Distribution of Econometric Estimators and Test Statistics 121

This paper is organized as follows. In Sect. 2, we present the exact distributional
results. Then in Sect. 3, we provide a numerical analysis of the exact distribution of
a goodness of fit measure. Finally, the conclusion is given in Sect. 4. Throughout,
I = In is the n × n identity matrix, ι = ιn is an n × 1 vector of ones, and M0 =
I − n−1ιι′.

2 The Exact Distribution

Let us consider the ratio of quadratic forms as

q = y′N1y

y′N2y
, (1)

where y is an n × 1 normal random vector with E(y) = μ and Var(y) = � being
positive definite, N1 and N2 are n×n nonstochastic symmetric matrices, and N2 is
a positive semi-definite.1 The cumulative distribution function (CDF) of this ratio
is

F(q0) = Pr(q ≤ q0) = Pr(y′Ny ≤ 0),

where N=N1−q0N2. Note that y′Ny=y′�−1/2QQ′�1/2N�1/2QQ′�−1/2y ≡
z′�z, where z = Q′�−1/2y ∼ N(μz, I ), μz = Q′�−1/2μ, � is a diagonal matrix
of eigenvalues of �1/2N�1/2, and Q is an orthogonal matrix of eigenvectors of
�1/2N�1/2 such that Q′�1/2N�1/2Q = �. So the distribution of the ratio of
quadratic forms translates to that of a linear combination of independent non-central
chi-squared random variables. Without loss of generality, let λj , j = 1, . . . , r ≤ n,
denote non-zero distinct elements of �, nj be the corresponding mutiplicities,
δj = ∑

i→j μ2
zi
, where

∑
i→j denotes summing over i such that the ith element

of � equals λj . Then, z′�z = ∑r
j=1 λj ζ

2
j , where ζ 2

j ∼ χ2
nj

(δj ), and they
are independent of each other. For a linear combination (with weights λj ) of
independent non-central chi-squared variables ζ 2

j (with non-centrality parameter δj

and degrees of freedom nj ), Imhof (1961) showed that

Pr

⎛

⎝
r∑

j=1

λj ζ
2
j ≤ q∗

0

⎞

⎠ = 1

2
− 1

π

∫ ∞

0

sin θ(v)

vρ(v)
dv, (2)

where

1If they are not symmetric, we can simply replace N1 and N2 by (N1 +N ′
1)/2 and (N2 +N ′

2)/2,
respectively.
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θ(v) = −q∗
0v

2
+

r∑

j=1

[
nj

2
tan−1(λj v) + λj δj v

2(1 + λ2j v
2)

]

,

ρ(v) =
r∏

j=1

(1 + λ2j v
2)nj /4 exp

[
λ2j v

2δj

2(1 + λ2j v
2)

]

.

Setting q∗
0 = 0, we have F(q0) = Pr(y′Ny ≤ 0) = Pr(y′N1y/y′N2y ≤ q0).

2.1 Goodness of Fit Statistic R2

For the linear regression model y = Xβ + u, where y = (y1, . . . , yn)
′ is an

n × 1 vector of observations on the dependent variable, X = (x1, . . . , xn)
′ is an

n×k nonstochastic matrix of covariates (including a constant term) with coefficient
vector β, and u = (u1, . . . , un)

′ collects normally distributed error terms, a
goodness of fit statistic is

R2 =
∑n

i=1(yi − ȳ)(ŷi − ȳ)
∑n

i=1(yi − ȳ)2
= y′M0Py

y′M0y
, (3)

where ȳ = n−1 ∑n
i=1 yi , ŷi = x′

i β̂, and P = X(X′X)−1X′. We can thus evaluate
the distribution of R2 with N1 = M0P and N2 = M0 by applying (2).

Denote M = I − P and P 0 = n−1ιι′. Then, we can put N = M0P − aM0 =
M0((1 − a)P − aM) = P + (a − 1)P 0 − aI . Note that P is idempotent with
eigenvalues 1 (of multiplicity k) and 0 (of multiplicity n − k), and P 0 is also
idempotent with eigenvalues 1 (of multiplicity 1) and 0 (of multiplicity n − 1).
Since P 0v = (P 0P )v = P 0(Pv) for any conformable vector v, we see that
if v is an eigenvector of P associated with eigenvalue 0, then it must also be
an eigenvector of P 0 corresponding to its eigenvalue 0. There are n − k linearly
independent such vectors. Denote them by vi , i = 1, . . . , n − k. Further, Nvi =
[P + (a − 1)P 0 − aI ]vi = [0 + (a − 1) · 0 − a · 1]vi = −a · vi , implying
that N has eigenvalue −a with the corresponding eigenvectors vi . Similarly, if w

is an eigenvector of P 0 associated with eigenvalue 1, so it is an eigenvector of
P corresponding to its eigenvalue 1, and Nw = [P + (a − 1)P 0 − aI ]w =
[1 + (a − 1) · 1 − a · 1]w = 0 · w, implying that N has eigenvalue 0 with a
corresponding eigenvector w. Further, vi and w are linearly independent. Since N ,
P , and P 0 are all symmetric matrices, their eigenvectors span R

n (see page 179,
Exercise 7.48 of Abadir and Magnus 2005). Thus, there must exist k − 1 linearly
independent vectors zj ∈ R

n, j = 1, . . . , k − 1 (also linearly independent of
vi and w) to be eigenvectors of N , P , and P 0. Eigenvectors zj correspond to
eigenvalue 1 of P since zj and vi are linearly independent. Eigenvectors zj also
correspond to eigenvalue 0 of P 0 since zj and w are linearly independent. As such,
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Nzj = [P + (a − 1)P 0 − aI ]zj = [1 + (a − 1) · 0 − a · 1]zj = (1 − a) · zj ,
implying that N has eigenvalue 1 − a with the corresponding eigenvectors zj .

Given that N = M0((1 − a)P − aM) has two non-zero eigenvalues, 1 − a

and −a, with the corresponding mutiplicities k − 1 and n − k, respectively, it is
convenient for us to rewrite

R2 = y′M0Py

y′M0Py + y′My
. (4)

If the error terms are independent and identically distributed (i.i.d) with variance
σ 2

u , then y′M0Py/σ 2
u ∼ χ2

k−1(β
′X′M0Xβ), y′My/σ 2

u ∼ χ2
n−k(0), and they are

independent of each other. As such,R2 follows a singly non-central beta distribution
(see Koerts and Abrahamse 1969), and its distribution takes on the following form:

Pr(R2 ≤ r0) =
∞∑

j=0

1

j !
(

β ′X′M0Xβ

2σ 2
u

)j

exp

(

−β ′X′M0Xβ

2σ 2
u

)

I

(

r0| k − 1

2
+ j,

n − k

2

)

, (5)

where I (x|a, b) = ∫ x

0 za−1(1 − z)b−1dz is the incomplete beta function with
parameters a and b. Alternatively, the distribution function can be calculated by
(2) with λ1 = 1− a, λ2 = −a, n1 = k − 1, n2 = n − k, δ1 = β ′X′M0Xβ/σ 2

u , and
δ2 = 0.2

2.2 Squared Sharpe Ratio

In financial portfolio management, a routine task is to assess a portfolio’s perfor-
mance. The most widely used metric may be the Sharpe ratio, introduced by Sharpe
(1966). Recently, Barillas and Shanken (2017) discussed how to compare asset
pricing models under the classic Sharpe metric and showed that the quadratic form
in the investment alphas is equivalent to the improvement in the squared Sharpe
ratio when investment in other assets is permitted in addition to the given model’s
factors.

The squared Sharpe ratio of an asset is defined as s = μ2/σ 2, where μ is the
is mean of the asset’s excess return and σ 2 is its variance. Given a sample y =
(y1, . . . , yn)

′ of excess returns, the sample squared Sharpe ratio is

2The linkage between Imhof’s formula and the non-central F (see the next subsections) and beta
distribution functions was discussed in Ennis and Johnson (1993).
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ŝ =
(

μ̂

σ̂

)2

= y′ιι′y/n2

y′M0y/(n − 1)
=

y′
(

ιι′
n2

)
y

y′
(

M0
n−1

)
y

, (6)

and (2) can be sued to evaluate its exact finite sample distribution with N1 = ιι′/n2

and N2 = M0/(n − 1).
When the excess return series is i.i.d. normal, the sample Sharpe ratio ξ̂ = μ̂/σ̂ ,

when scaled by
√

n, is equivalent to a non-central t random variable with degrees
of freedom n − 1 and non-centrality parameter

√
nξ .3 As such, the sample

squared Sharpe ratio (scaled by n) follows a singly non-central F -distribution,
F1,n−1(ns, 0).4 So we have

Pr(ŝ ≤ s0) =
∞∑

j=0

(
( ns
2 )j

j ! exp
(
−ns

2

)
)

I

(
ns0

n − 1 + ns0

∣
∣
∣
∣
1

2
+ j,

n − 1

2

)

. (7)

2.3 Squared Coefficient of Variation

The coefficient of variation (CV) has long been used in the literature as one of
the income inequality indexes across regions or over time. It is defined as the ratio
of the standard deviation of the variable of interest (e.g., household income) to its
mean value, namely, σ/μ. A closely related measure is the squared CV, usually
called the coefficient of variation squared (CV2), denoted by α = σ 2/μ2. When
the mean value of the variable of interest is positive, CV and CV2 are monotonic
transformation of each other. As neither the population mean nor the standard
deviation is known, in practice, we usually use their sample analogues to calculate
CV and CV2.

Specifically, the sample CV2 is defined as

α̂ = σ̂ 2

μ̂2 = y′M0y/(n − 1)

y′ιι′y/n2
=

y′
(

M0
n−1

)
y

y′
(

ιι′
n2

)
y

. (8)

Obviously, we can set N1 = M0/(n − 1) and N2 = ιι′/n2 in (2) to evaluate the
exact distribution Pr(α̂ ≤ a).

If we further assume that the data is i.i.d., then from the discussion in the previous
subsection, it is obvious that the distribution of α̂ (scaled by n−1) is Fn−1,1(0, ns),

3The connection of the Sharpe ratio to the t-distribution seems to originate in Miller and Gehr’s
(1978) note on the bias of the Sharpe ratio.
4This notation is from the double non-central F -distribution with non-centrality parameters δ1 and
δ2 and the corresponding degrees of freedom d1 and d2, denoted by Fd1,d2 (δ1, δ2).
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where s = 1/α. This is a special case of double non-central F -distribution, and
since it is the reciprocal of F1,n−1(ns, 0), we have

Pr(α̂ ≤ α0) = 1 − Pr(α̂ ≥ α0)

= 1 − Pr

(
1

α̂
≤ 1

α0

)

= 1 −
∞∑

j=0

(
( n
2α )j

j ! exp
(
− n

2α

)
)

I

(
n
α0

n − 1 + n
α0

∣
∣
∣
∣
∣

1

2
+ j,

n − 1

2

)

. (9)

2.4 The Durbin–Watson Statistic and Moran’s I

For testing the first-order autocorrelation in the error term in the classical linear
regression model, the Durbin–Watson statistic for testing H0 : ρ = 0 against H1 :
ρ �= 0 in ui = ρui−1 + ei , where ei is an i.i.d. innovation term, is calculated as

d =
∑n

i=2(ûi − ûi−1)
2

∑n
i=1 û2i

= û
′
Aû

û
′
û

= y′MAMy

y′My
, (10)

where û = (û1, . . . , ûn)
′, ûi = yi − ŷi , is the residual vector, and A is a tri-diagonal

matrix with −1 on the super- and sub-diagonal positions, a11 = ann = 1, and
aii = 2, i = 2, . . . , n. So setting N1 = MAM and N2 = M in (2), we can evaluate
the exact distribution of the Durbin–Watson statistic. Srivastava (1987) derived the
asymptotic distribution of Durbin–Watson statistic under the null hypothesis ui ∼
N(0, σ 2

u I ) as [(n − k)d − tr(AM)]/√2tr(AM)2 → N(0, 1).
For spatial data, Moran’s I statistic is to test for possible correlation across space.

It is calculated as

I = n

1′W1
y′M0WM0y

y′M0y
, (11)

where W is the so-called spatial weights matrix with zeros on the diagonal.5 Again,
its exact distribution can be straightforwardly evaluated by (2).

5If we are interested instead in testing whether the spatial correlation arises from the unobservable
error term in a linear regression model, Moran’s I can be calculated with M replacing M0 in (11).
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3 Illustration

In this section, we illustrate the performance of the exact result via (2) in comparison
with the asymptotic distributional results. We focus on the statistic R2. As discussed
in Xu (2014), in the statistical and public health communities, reliable inference
on R2 has attracted a lot of attention. The literature on statistical inference of R2

has been scarce; however, Xu (2014) developed the asymptotic distribution of R2

in linear regression models with possibly nonnormal errors and discussed the F -
distribution approximation with degrees of freedom adjustment. In Xu’s (2014)
setup, the data is demeaned such that ȳ = 0. Here, we relax this restriction. We
begin with the general case when the error distribution may be nonnormal. In what
follows, let γ1 and γ2 denote the skewness and excess kurtosis coefficients of the
error distribution. Obviously, when the error is normal, γ1 = γ2 = 0.

Recall that we have written R2 = y′M0Py/(y′M0Py + y′My). Below we
present the asymptotic distributions of R2 and two monotonic transformations of it.

Theorem 1 For the linear regression model, y = Xβ+u, whereX is nonstochastic
and u consists of i.i.d. errors, R2, R2/(1 − R2), and log(R2/(1 − R2)) have the
following asymptotic distributions:

√
n

(

R2 − β ′X′M0Xβ

β ′X′M0Xβ + nσ 2
u

)
d→ N

⎛

⎜
⎝0,

4β ′�β

σ 2
u

+ (2 + γ2)
(

β ′�β

σ 2
u

)2

(
β ′�β

/σ 2
u

+ 1
)4

⎞

⎟
⎠ , (12)

√
n

(
R2

1 − R2
− β ′X′M0Xβ

nσ 2
u

)
d→ N

(

0,
4β ′�β

σ 2
u

+ (2 + γ2)(β
′�β)2

σ 4
u

)

, (13)

√
n

(

log

(
R2

1 − R2

)

− log

(
β ′X′M0Xβ

nσ 2
u

))
d→ N

(

0,
4σ 2

u

β ′�β
+ 2 + γ2

)

. (14)

Proof By substitution, y′M0Py = (Xβ + u)′M0P (Xβ + u) = β ′X′M0Xβ +
u′M0Pu + 2u′M0Xβ. Using results on the moments of quadratic forms
in nonnormal random vectors (see, for example, Bao and Ullah 2010), we
have E(u′M0Pu) = σ 2

u tr(M0P ) = kσ 2
u − n−11′P 1 and Var(u′M0Pu) =

σ 4
u [γ2tr(M0P M0P )+2tr(M0PM0P )], where  denotes the Hadamard product

operator. Since the idempotent matrix P has elements of order O(n−1) and M0
is uniformly bounded in row and column sums, we can write Var(u′M0Pu) =
2σ 4

u tr(M0PM0P ) + o(1) = 2σ 4
u [tr(P ) − 2n−11′PP1 + n−2(1′P1)2] + o(1) =

O(1). Thus we can claim n−1/2u′M0Pu = oP (1). Using the central limit theorem
on linear and quadratic forms in random vectors (see Kelejian and Prucha 2001),

we have n−1/2u′M0Xβ
d→ N(0, σ 2

uβ ′�β), where � = limn→∞ n−1X′M0X. So

n−1/2(y′M0Py − β ′X′M0Xβ) = 2n−1/2u′M0Xβ + oP (1)
d→ N(0, 4σ 2

uβ ′�β).

Similarly, n−1/2u′Mu = n−1/2u′u + oP (1)
d→ N(σ 2

u , σ 4
u (2 + γ2)). Further,

Cov(u′M0Xβ,u′u) = E(β ′X′M0uu′u) = γ1β
′X′M0ι = 0. Following



On the Exact Statistical Distribution of Econometric Estimators and Test Statistics 127

Kelejian and Prucha (2001) again, we can show that any linear combination of
n−1/2u′M0Xβ and n−1/2u′u − σ 2

u (say, l1n
−1/2u′M0Xβ + l2(n

−1/2u′u − σ 2
u ),

where l1 and l2 are non-zero constants) is asymptotically normal (N(0, l21σ
2
uβ ′�β +

l22σ
4
u (2 + γ2))). Therefore,

√
n

(
n−1y′M0Py−n−1β ′X′M0Xβ

n−1u′Mu−σ 2
u

)
d→ N

((
0
0

)

,

(
4σ 2

uβ ′�β 0
0 σ 4

u (2+γ2)

))

.

The asymptotic distributions of R2 = y′M0Py/(y′M0Py + u′Mu), R2/(1 −
R2) = y′M0Py/u′Mu, and log(R2/(1−R2)) = log(y′M0Py/u′Mu) then follow
immediately from the delta method. ��
Note that R2, R2/(1 − R2), and log(R2/(1 − R2)) are monotonic transformations
of each other. Thus,

Pr(R2 ≤ r0) = Pr

(
R2

1 − R2
≤ r0

1 − r0

)

= Pr

[

log

(
R2

1 − R2

)

≤ log

(
r0

1 − r0

)]

.

(15)
When the error is normally distributed, by using (2) and setting N1 = M0P and
N2 = M0, we can calculate the exact distribution of R2 and, equivalently, that of
R2/(1−R2) or log(R2/(1−R2)), in light of the above relationship. The asymptotic
distribution, however, crucially depends on which statistic we are using. From (13)–
(14), we see that when the signal to noise ratio, measured by β ′�β/σ 2

u , increases,
the asymptotic distribution of R2/(1 − R2) becomes more dispersed, whereas the
asymptotic distribution of log(R2/(1 − R2)) becomes more concentrated. Its effect
on the asymptotic distribution of R2 is ambiguous, and it depends on the strength
of the signal to noise ratio.6 An interesting case is the extreme case when β = 0.
In this case, while R2 and R2/(1 − R2) have well-defined asymptotic distributions,
log(R2/(1 − R2)) does not have a properly defined asymptotic distribution.7 The
exact distribution is free of this kind of pitfall and can be calculated regardless of
the strength of the signal to noise ratio.

Figures 1, 2, 3, and 4 plot the cumulative distribution functions of the three
statistics by comparing the true, exact, and asymptotic distributions for samples
sizes 10, 20, 50, and 100, based on averages across 100,000 simulations.8 The data
generating process is y = β0+β1x1+β2x2+u, where x1 and x2 are generated from
two independent i.i.d. N(0, 4) random variables, and the error term is simulated as

6More specifically, when β ′�β/σ 2
u < 1, as β ′�β/σ 2

u goes up, the asymptotic distribution of R2

gets more dispersed. But when β ′�β/σ 2
u > 1, as β ′�β/σ 2

u goes up, the asymptotic distribution
of R2 gets more concentrated.
7Recall that the null distribution of the F statistic for testing the overall significance of a linear
regression, which is proportional to R2/(1 − R2), has a well-defined distribution.
8We never know the true distribution. But we believe that averaging 100,000 simulations should
give results very close to the truth. In calculating the exact distributions via (2), we used Matlab’s
integral function.
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Fig. 1 CDF plots of R2, R2/(1 − R2), and log(R2/(1 − R2)), n = 10
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Fig. 2 CDF plots of R2, R2/(1 − R2), and log(R2/(1 − R2)), n = 20
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Fig. 3 CDF plots of R2, R2/(1 − R2), and log(R2/(1 − R2)), n = 50
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Fig. 4 CDF plots of R2, R2/(1 − R2), and log(R2/(1 − R2)), n = 100
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i.i.d. N(0, σ 2
u ). We fix β = (β0, β1, β2)

′ = (1, 0.3, 0.5)′ and set σu = 0.1, 1, 5, 10,
corresponding to scenarios from high to low signal to noise ratios. We observe that
regardless of the sample size and the signal to noise ratio, the exact distribution
matches precisely the true distribution. The asymptotic distributions fare reasonably
well in small samples with n = 10 when σ = 0.1, corresponding to the situation
of high signal to noise ratio. When σ = 10, the asymptotic distributions can be
quite off the exact distribution in small samples. Xu (2014) recommended using
log(R2/(1− R2)) by arguing that its asymptotic distribution is more stable. We see
here clearly that this is not necessarily the case, as it depends on the signal to noise
ratio.

4 Concluding Remarks

In this paper, we have presented a unified development of the exact distributions
of many econometric statistics. These results can be straightforwardly implemented
by numerical integration. In the context of the exact distribution of a goodness of fit
measure, we numerically demonstrate that the asymptotic distribution may not carry
forward in the small sample case. The exact distributional results developed in the
paper could be easily extended to a class of some other econometric and statistical
estimators used in practice that can be written as ratios of quadratic forms.
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