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Life and Works of Barry C. Arnold

Barry C. Arnold was born on December 6, 1939, in the London borough of
Lewisham to Charles and Irene Arnold. He was the second child born to his
parents with his sister, Nina Arnold, born earlier on January 24, 1938. After their
house was bombed by the Germans, they were evacuated from London and then
lived in Herne Bay, Barrie, and Blackpool before settling in Caterham, Surrey,
a few miles south of London. In April 1952, the family emigrated to Canada.
After attending St. Laurent High School, Barry joined the Engineering Program
at McGill University in 1956. When the family moved to Hamilton in 1958, he
transferred to McMaster University and graduated in 1961 with a Bachelor’s degree
in mathematics (statistics). Barry subsequently entered the graduate program in
statistics at the Stanford University, the school that he selected because not only
was it highly recommended but it also had some palm trees on campus. This was
a good choice as Stanford had an all-star faculty that included Ted Anderson,
Herman Chernoff, Kai Lai Chung, Shanti Gupta, M. V. Johns, Sam Karlin, Ingram
Olkin, Rupert Miller, Lincoln Moses, Emmanuel Parzen, Charles Stein, Herbert
Solomon, and Pat Suppes. His classmates here were a pretty impressive group,
too, which included Norm Breslow, Morris Eaton, Brad Efron, Leon Gleser, Burt
Holland, Myles Hollander, Jay Kadane, Carl Morris, Jim Press, Richard Royall,
Steve Samuels, Galen Shorack, Muni Srivastava, David Sylwester, Grace Wahba,
and Jim Zidek. Barry graduated from Stanford in 1965 after writing a doctoral
dissertation under the guidance of Pat Suppes. Another event of importance that
occurred while Barry was at Stanford was that he got married to Carole Revelle
in September 1964. From Stanford, Barry went to the Iowa State University and
joined the faculty with a joint appointment in the Departments of Mathematics
and Statistics. There, he had good friends and plenty of intellectual stimulation
from many statisticians of repute including Ted Bancroft, H. A. David, H. T.
David, Wayne Fuller, Dick Groeneveld, Chien-Pai Han, Dean Isaacson, B. K. Kale,
Oscar Kempthorne, Bill Kennedy, Glen Meeden, Ed Pollak, Joe Sedransk, and
Vince Sposito. During 1968–1969, Barry was a visiting professor at the Colegio de
Postgraduados in Chapingo, Mexico, lecturing in pretty bad Spanish. During 1974–
1975, he went on an AID assignment, working with the Ministry of Agriculture in
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viii Life and Works of Barry C. Arnold

Lima, Peru. Although he was not successful in selling sampling methods there, he
did improve his Spanish! In 1979, Barry hung up his snow shovel, donated his winter
coat to the Salvation Army, and moved to Riverside, California, to join Jim Press
(whom he knew from Stanford) and his department there. He has been there since.
He spent two years (1982–1984) back in Mexico as the Director of the University of
California Education Abroad Program. Barry Arnold has served the Department of
Statistics at the University of California, Riverside, as Chair for a number of years.
In addition, he has provided distinguished service to the statistical community at
large by his activities in various capacities for professional societies such as the
American Statistical Association and the Institute of Mathematical Statistics. He has
participated in numerous national and international conferences and delivered many
invited and plenary lectures. He has provided valuable service to several research
journals in various capacities including as associate editor of Journal of Multivariate
Analysis and Journal of the American Statistical Association and Communications
in Statistics, editor-in-chief of Journal of Multivariate Analysis, and managing
editor of The Annals of Statistics. Barry Arnold has been elected a Fellow of
the American Statistical Association and the Institute of Mathematical Statistics,
and a member of the International Statistical Institute. He has had a long list of
stimulating coworkers and coauthors. Particularly noteworthy are Enrique Castillo
and Jose Maria Sarabia (both at the University of Cantabria, Santander, Spain), H. N.
Nagaraja (The Ohio State University, Columbus, Ohio, USA), and N. Balakrishnan
(McMaster University, Hamilton, Ontario, Canada). Numerous visits to Santander,
Hamilton, and Texcoco, Mexico (where Barry has worked with Jose Villasenor and
Humberto Vaquera) have provided him with many pleasant productive interludes.
In addition, he has been a frequent visitor to India in particular to Kolkata working
with Ashis Sengupta, but also, over the years, attending conferences in many other
parts of the country. His passport documents several visits to Portugal (working with
Carlos Coelho), to Taiwan (working with Su-Fen Yang), and to Chile (working with
Hector Gomez and colleagues at the University of Antofagasta). He has never been
to a foreign country he did not like, and so he rarely turns down any invitation! Over
the past 55 years, Barry Arnold, through his tremendous research in many different
areas of statistics, and especially in distribution theory and ordered data, has greatly
influenced the trend of research in these areas and has provided inspiration and
encouragement to many young researchers. It is our wish and sincere hope that he
will continue his contributions to the field with added vigor, interest, and energy!
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We express our sincere thanks to all the authors for presenting their articles in
a timely fashion and also for assisting us in the review work of articles of other

xxix



xxx Preface

authors that are present in this volume. We also pass on our great appreciation to
Ms. Laura Aileen Briskman, Editor, Statistics, from Springer who took great interest
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UC Riverside for providing the colorful portrait of Barry that is present in the first
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With great pleasure, we have prepared this volume to honor our friend, collab-
orator, and mentor, Barry C. Arnold, and it is our sincere hope that he will enjoy
going over this volume as much as we enjoyed putting it together!

Wilmington, NC, USA Indranil Ghosh
Hamilton, ON, Canada N. Balakrishnan
Dallas, TX, USA Hon Keung Tony Ng
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Aman Ullah Department of Economics, University of California Riverside, CA,
USA

J. A. Villaseñor Department of Statistics, Colegio de Postgraduados, México,
México

Wei Zhang Department of Statistics, Iowa State University, Ames, IA, USA



About the Editors

Indranil Ghosh is currently an Associate Professor of
Statistics in the Department of Mathematics and Statis-
tics at the University of North Carolina Wilmington.
Currently, he is serving as a guest editor for a special
issue of the journal Computational and Mathematical
Methods published by John Wiley & Sons, on the
editorial board of the Journal of Business Analytics
published by Taylor & Francis, and an associate editor
for the Journal of the Iranian Statistical Society. He
is elected as the Chair-Elect 2021 of the Section on
Risk Analysis of the American Statistical Association.
He is an elected member of the International Statistical
Institute.

N. Balakrishnan Distinguished University Professor,
is in the Department of Mathematics and Statistics,
McMaster University, Hamilton, Ontario, Canada. Pro-
fessor Balakrishnan is an internationally recognized
expert on many areas of statistics, and especially on
statistical distribution theory and ordered data analysis.
He is currently the Editor-in-Chief of Communications
in Statistics published by Taylor & Francis and was
previously the Editor-in-Chief for the revised version
of Encyclopedia of Statistical Sciences published by
John Wiley & Sons. He is a Fellow of the American
Statistical Association and a Fellow of the Institute of
Mathematical Statistics, and in 2016, he received an
Honorary Doctorate from The National and Kapodis-
trian University of Athens, Athens, Greece.

xxxvii



xxxviii About the Editors

Hon Keung Tony Ng is currently a Professor of
statistical science with the Southern Methodist Univer-
sity, Dallas, TX, USA. He is an associate editor of
Communications in Statistics, Computational Statistics,
IEEE Transactions on Reliability, Journal of Statistical
Computation and Simulation, Naval Research Logis-
tics, Sequential Analysis, and Statistics & Probability
Letters. His research interests include reliability, censor-
ing methodology, ordered data analysis, nonparametric
methods, and statistical inference. He is the co-editor of
Ordered Data Analysis, Modeling and Health Research
Methods, Statistical Modeling for Degradation Data,
and Statistical Quality Technologies—Theory and Prac-
tice published by Springer. He is a Fellow of the Amer-
ican Statistical Association, an elected senior member
of IEEE, and an elected member of the International
Statistical Institute.



Part I
Ordered Data Analysis



A Record-Based Transmuted Family
of Distributions

N. Balakrishnan and M. He

Abstract Recently, much attention in distribution theory has focused on the family
of transmuted distributions derived through a quadratic rank transmutation map. Its
stochastic construction as a mixture, through the use of order statistics, facilitated
a generalization of the original family of transmuted distributions. In this work,
continuing on with a similar idea, we put forward a new family of transmuted
distributions based on the theory of records and examine its hazard properties, and
also discuss some special cases of interest.

1 Introduction

During the last two decades, many authors have put forward different methods
and constructions to come up with “general” families of distributions that offer
more flexibility while modeling statistical data than their classical counterparts.
Among these are the following well-known and extensively studied families of
distributions: families of skewed models (Azzalini and Capitanio 2013; Genton
2004), families with the addition of a parameter (Marshall and Olkin 1997, 2007),
exponentiated families of distributions (see, for example, Gupta and Kundu (1999),
Mudholkar and Srivastava (1993), and Mudholkar et al. (1995)), generalized forms
of distributions (Hosking and Wallis 2005), beta-generated family of distributions
(Eugene et al. 2002; Jones 2004), and the subsequent works of Arnold et al.
(2006) who introduced a multivariate version of this family and of Ferreira and
Steel (2006, 2007) who used it to construct skewed distributions, gamma-generated
family of distributions (Balakrishnan and Ristić 2016; Zografos and Balakrishnan
2009), Kumaraswamy-generalized distributions (Jones 2009; Kumaraswamy 1980),
general families of quantile models (Gilchrist 2000; Nair et al. 2013), and family of
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transmuted distributions (see, for example, Shaw and Buckley (2007, 2009) and
Granzotto et al. (2017)).

In this work, we focus specifically on the last one in the above list, namely,
the family of transmuted distributions. After providing a brief description of this
family as proposed by Shaw and Buckley (2007, 2009) and its alternative stochastic
construction through order statistics as given by Granzotto et al. (2017), we
introduce here a new family of transmuted distributions based on the theory of
records. We then examine some general properties of this family of distributions,
and also focus on some special cases based on uniform, exponential, linear-
exponential, Weibull, normal, and logistic baseline distributions, which are all quite
tractable.

2 Transmuted Distributions

Let X be a random variable with its support as S, an absolutely continuous
probability density function (PDF) g(x), and a cumulative distribution function
(CDF) G(x). We refer to this as the baseline distribution. It is important to mention
here that the assumption of continuous distribution for the variable X is purely for
convenience in the ensuing discussion. It will become evident in the subsequent
sections that all the results developed here could easily be formulated for the discrete
case as well, but we abstain from furnishing the corresponding details for the sake
of brevity.

Based on the baseline distribution G(x), Shaw and Buckley (2007, 2009) consid-
ered a transformation map to introduce a “quadratic rank transmuted distribution”
of the form

F(x) = (1+ λ)G(x)− λG2(x), x ∈ S, (1)

where −1 ≤ λ ≤ 1. With different choices of the baseline distribution G(x) in
(1), many authors have studied numerous special cases of this family. One may see,
for example, Aryal and Tsokos (2009, 2011), Elbatal and Aryal (2013), Khan and
King (2014), Tian et al. (2014), Granzotto and Louzada (2015), Al-Babtain et al.
(2017), Fattah et al. (2017), Khan et al. (2017), Nofal et al. (2017), and Kemaloglu
and Yilmaz (2017), to name a few. Kozubowski and Podgórski (2016) have shown
interestingly that transmuted models are a special case of extremal distributions.

Now, let us suppose X1 and X2 are independent and identically distributed
(I.I.D.) random variables with support S, PDF g(x), and CDF G(x). Let X1:2 =
min(X1, X2) and X2:2 = max(X1, X2) denote the corresponding order statistics.
Then, it is known that their PDFs are

g1:2(x) = 2{1−G(x)}g(x), g2:2(x) = 2G(x)g(x), x ∈ S, (2)

and their CDFs are
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G1:2(x) = 1− {1−G(x)}2 G2:2(x) = {G(x)}2, x ∈ S, (3)

respectively; see, for example, Arnold et al. (1992). Let us now define a new random
variable Y with the following two-component mixture distribution function:

FY (x) = πG1:2(x)+ (1− π)G2:2(x), x ∈ S,

where π ∈ [0, 1] is the mixing probability. Upon substituting for G1:2(x) and
G2:2(x) from (3), we get

FY (x) = π [1− {1−G(x)}2] + (1− π)G2(x)

= 2πG(x)+ (1− 2π)G2(x), x ∈ S.
(4)

From the mixture CDF form in (4), upon setting λ = 2π − 1 ∈ [−1, 1], Granzotto
et al. (2017) arrived at the transmuted CDF in (1) through this mixture stochastic
representation. It should be noted that, while the pure mixture form in (4) would
require the mixture probability 2π to be in [0, 1], the fact that G(x) ≥ G2(x) for all
x ∈ S facilitates the extended parameter range for the model.

Granzotto et al. (2017) then extended this mixture representation to introduce a
“cubic rank transmuted distribution” in the following manner. Let X1, X2, X3 be
I.I.D. random variables with support S, PDF g(x), and CDF G(x), and X1:3 <

X2:3 < X3:3 denote the corresponding order statistics. Then, it is known that their
PDFs are

g1:3(x) = 3{1−G(x)}2g(x),
g2:3(x) = 6G(x){1−G(x)}g(x),
g3:3(x) = 3G2(x)g(x), x ∈ S,

(5)

and their CDFs are

G1:3(x) = 1− {1−G(x)}3,
G2:3(x) = 3G2(x){1−G(x)} +G3(x),

G3:3(x) = G3(x), x ∈ S

(6)

respectively; see Arnold et al. (1992). Then, Granzotto et al. (2017) considered the
following three-component mixture distribution function:

FY (x) = π1G1:3(x)+ π2G2:3(x)+ π3G3:3(x),

where 0 ≤ π1, π2, π3 ≤ 1, such that π1+π2+π3 = 1, are the mixing probabilities.
Upon substituting for G1:3(x), G2:3(x), G3:3(x) from (6), we get
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FY (x) = 3π1G(x)+ 3(π2 − π1)G
2(x)+ (1− 3π2)G

3(x), x ∈ S, (7)

which Granzotto et al. (2017) reparametrized in the form

FY (x) = λ1G(x)+ (λ2 − λ1)G
2(x)+ (1− λ2)G

3(x), x ∈ S. (8)

Subsequently, many authors have discussed numerous special cases of this cubic
transmuted family in (8) by using different choices of the baseline distribution G(x).
Interested readers may see, for example, Rahman et al. (2018), Saraçoǧlu and Taniş
(2018), Celik (2018), Ogunde and Chukwu (2020) and Ogunde et al. (2020).

3 Record-Based Transmuted Distributions

In the preceding section, stochastic mixture representations were given for quadratic
and cubic rank transmuted distributions based on order statistics. We now use the
same principle, but based on the theory of record values to propose record-based
transmuted families of distributions.

First, let us recall the definition of record values and their distributions. Let
X1, X2, · · · be a sequence of I.I.D. random variables with absolutely continuous
PDF g(x) and CDF G(x), and support S. Let XU(1) ≡ X1, XU(2) · · · be the
sequence of upper record values, where

U(1) = 1 with probability 1, (9)

and for n > 1,

U(n) = min{i : i > U(n− 1),Xi > XU(n−1)}.

In the above, {U(n)}∞n=1 are called upper record times, while {XU(n)}∞n=1 is the
corresponding record sequence, whose distributional theory has been developed in
great length; see, for example, Arnold et al. (1998) and Nevzorov (2001).

The marginal PDF of XU(n), the n-th upper record value, is known to be (see
Arnold et al. (1998))

gU(n)(x) = 1

(n− 1)! {− ln
(
1−G(x)

)}n−1g(x), x ∈ S, (10)

for n = 1, 2, · · · . Evidently, gU(1) ≡ g(x), by definition. Moreover, the correspond-
ing CDF is given by

GU(n)(x) = 1− (
1−G(x)

) n−1∑

i=0

1

i! {− ln
(
1−G(x)

)}i , x ∈ S. (11)
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Now, analogous to the mixture representation for the quadratic rank transmuted
distribution presented in the last section, let us consider a new random variable with
the following two-component mixture density

fR2(x) = πgU(1)(x)+ (1− π)gU(2)(x)

= πg(x)+ (1− π){− ln
(
1−G(x)

)}g(x)
= g(x)[π + (1− π){− ln

(
1−G(x)

)}], x ∈ S,

(12)

where π ∈ [0, 1] is the mixing probability. The corresponding survival function
(SF) follows readily from (11) as

F̄R2(x) = π
(
1−G(x)

)+ (1− π)
(
1−G(x)

)[1+ {− ln(1−G(x))}]
= (

1−G(x)
)[1+ (1− π){− ln

(
1−G(x)

)}], x ∈ S.
(13)

We shall refer to the family of distributions introduced in (12) (or (13)) as record-
based transmuted family of distributions of order 2. The use of order 2 in the name
refers to the fact that the family is constructed as a mixture of distributions of the
first two upper record values from the distribution G(x). As with the transmuted
distributions discussed in the last section, G(x) here is the baseline distribution.

Remark 1 Let hG(x) = g(x)
1−G(x)

be the hazard function of the baseline distribution
G(x). Then, from (12) and (13), we readily find the hazard function of the
distribution FR2(x) to be

hFR2
(x) = hG(x)

[
π + (1− π){− ln

(
1−G(x)

)}
1+ (1− π){− ln

(
1−G(x)

)}
]
, x ∈ S. (14)

From (14), we can readily observe the following three features of the record-based
transmuted distributions:

1. Even if we start with a baseline distribution G(x) that belongs to the proportional
hazards family, such as exponential or Weibull, the corresponding record-based
transmuted distribution of order 2 will not inherit that property;

2. Because the mixing probability parameter π ∈ [0, 1], it is evident from (14) that
hFR2

(x) ≤ hG(x). In other words, the transmutation process on the baseline
distribution G(x), through the use of first two record values, always has a
dampening effect on the hazard function;

3. From (14), we observe that if the baseline distribution G(x) is IFR (Increasing
Failure Rate), then in order for the record transmuted distribution FR2(x) to be
IFR, it is sufficient to check whether the second term on the right-hand side of

(14) is non-decreasing. In fact, with
sgn= denoting that both sides of an equation

have the same sign, we have
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d

dx
hFR2

(x)
sgn= d

dx

[
π + (1− π){− ln

(
1−G(x)

)}
1+ (1− π){− ln

(
1−G(x)

)}
]

sgn= (1− π)2hG(x),

(15)

which is clearly positive. This proves that if the baseline distribution G(x) is IFR,
then so is the corresponding record-based transmuted distribution of order 2.

Remark 2 Though we have constructed in (13) a record-based transmuted distribu-
tion of order 2 by mixing the distributions of the first two upper record values, it
is evident from the PDF and CDF of the n-th upper record value given in (10) and
(11), respectively, a mixture of the distributions of the first n upper record values
from G(x) can be readily constructed to form the so-called record-based transmuted
family of distributions of order n.

For example, analogous to the cubic ranked transmuted distribution in (7) as
proposed by Granzotto et al. (2017), we construct the family of record-based
transmuted distributions of order 3 through a mixture of the distributions of three
upper record values with its PDF as follows:

fR3(x)=π1gU(1)(x)+π2gU(2)(x)+(1−π1−π2)gU(3)(x)

=g(x)
[
π1+π2{− ln

(
1−G(x)

)}+1−π1−π2

2
{− ln(1−G(x))}2

]
, x ∈ S,

(16)
where 0 ≤ π1, π2 ≤ 1, with π1 + π2 ≤ 1, are the mixing probabilities. The
corresponding SF follows immediately from (11) as, for x ∈ S,

F̄R3(x) =
(
1−G(x)

)[
π1 + π2

(
1+ {− ln

(
1−G(x)

)}
)

+ (1− π1 − π2)

(
1+ {− ln

(
1−G(x)

)} + 1

2
{− ln

(
1−G(x)

)}2
)]

=(1−G(x)
)[

1+ (1− π1){− ln
(
1−G(x)

)}

+ 1− π1 − π2

2
{− ln(1−G(x))}2

]
.

(17)

Remark 3 Here again, with hG(x) denoting the hazard function of the baseline
distribution G(x), we readily have the hazard function of the distribution FR3(x)

to be, for x ∈ S,

hFR3
(x) = hG(x)

[
π1 + π2{− ln

(
1−G(x)

)} + 1−π1−π2
2 {− ln(1−G(x))}2

1+ (1− π1){− ln
(
1−G(x)

)} + 1−π1−π2
2 {− ln(1−G(x))}2

]
.

(18)
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As stated in Remark 1, in this case as well, even if the baseline distribution
G(x) belongs to the proportional hazards family, the corresponding record-based
transmuted distribution of order 3 will not inherit this property. Moreover, due to
the facts that π1 ≤ 1 and π2 ≤ 1 − π1, we simply realize that the second term
on the RHS of (18) is at most 1, which yields hFR3

(x) ≤ hG(x). This means that
the transmutation process of order 3 on the baseline distribution G(x) also has a
dampening effect on the hazard function.

Remark 4 As a matter of fact, we can also compare the hazard functions hFR2
(x)

and hFR3
(x) in (14) and (18), respectively, to examine the impact of increasing the

order in the record transmutation process. For this purpose, let us first choose in (18)
π1 = π , π2 = 1 − π − a (so the first mixing probability in the two models are the
same, while the second mixing probability in the second model is smaller), and set
y = − ln

(
1−G(x)

)
> 0. Then, upon realizing that proving the inequality

π + (1− π)y

1+ (1− π)y
>

π + (1− π − a)y + a
2y

2

1+ (1− π)y + a
2y

2

is equivalent to showing that

ay + a

2
(1− π)y2 > 0,

which is obviously true, we see that the third order record transmutation has further
decreased the hazard function, resulting in hG(x) > hFR2

(x) > hFR3
(x) for all

x ∈ S.

Next, let us perturb the first mixing probability in (18) and set π1 = π − a,
π2 = 1 − π (so the second mixing probability in the two models are the same,
while the first mixing probability in the second model is smaller), and set y =
− ln

(
1−G(x)

)
> 0. Then, upon realizing that proving the inequality

π + (1− π)y

1+ (1− π)y
>

(π − a)+ (1− π)y + a
2y

2

1+ (1− π + a)y + a
2y

2

is equivalent to showing that

a + {1− π(π − a)}y + a

2
(1− π)y2 > 0,

which is obviously true, we observe that the third order record transmutation has
once again decreased the hazard function, resulting in hG(x) > hFR2

(x) > hFR3
(x)

for all x ∈ S.
It is important to mention, however, that this property need not be true in general.

To see this, let us consider now the inequality
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π + (1− π)y

1+ (1− π)y
>

π1 + π2y + 1−π1−π2
2 y2

1+ (1− π1)y + 1−π1−π2
2 y2

.

Upon cross-multiplying and rearranging the terms, we see that proving the above
inequality is equivalent to showing that

(π − π1)+ (1− π1 − π2)y + (1− π)

(
1− π1 − π2

2

)
y2 > 0, (19)

which clearly does not hold for all y > 0. In fact, it is evident that if π1 > π and y
is small (close to 0), the quantity on the left side will be clearly negative!

Earlier in Remark 1, we noted that if the baseline distribution G(x) is IFR, then so
is the corresponding record-based transmuted distribution of order 2. We may now
ask the question whether this is true for the record-based transmuted distribution of
order 3 in (17). The answer, unfortunately, turns out to be negative. To see this, we
observe from (18), after considerable algebraic simplification, that

d

dx
hFR3

(x)
sgn= [1+ (1− π1){− ln

(
1−G(x)

)}+1−π1−π2

2
{− ln

(
1−G(x)

)}2]

× [
π2 + (1− π1 − π2){− ln

(
1−G(x)

)}]

− [
π1 + π2{− ln

(
1−G(x)

)} + 1− π1 − π2

2
{− ln

(
1−G(x)

)}2]

× [
(1− π1)+ (1− π1 − π2){− ln

(
1−G(x)

)}]

sgn={π2 − π1(1− π1)} + (1− π1)(1− π1 − π2){− ln
(
1−G(x)

)}

+ 1

2
(1− π1 − π2)

2{− ln
(
1−G(x)

)}2.
(20)

From (20), we see that the first term on the right side will be negative if π2 < π1(1−
π1) while the second and third terms can be made arbitrarily small by letting x

close to 0. So, because d
dx
hFR3

(x) in (20) can be negative, we immediately conclude
that the record-based transmuted distribution of order 3 in (17) need not be IFR in
general. However, we do see that π2 ≥ π1(1 − π1) is indeed a sufficient condition
for FR3(x) to be IFR when the baseline distribution G(x) is IFR.

4 Special Cases

First, it needs to be mentioned that the newly proposed record-based transmuted
distributions in (13) and (17), for example, could prove useful in modeling lifetime
data just as the corresponding transmuted distribution counterparts described in
Sect. 2. Of course, the use of different baseline distributions would result in
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different families of record-based transmuted distributions. If one were to choose
the baseline distribution G(x) to be a member of the scale-family of distributions
(say, scaled exponential distribution), then the record transmuted distribution in (13)
would possess a scale parameter and an additional mixing parameter π to provide
flexibility while modeling. In addition, it would also facilitate an easy interpretation
in terms of the mixture of the two underlying random variables used in the stochastic
representation in (13). Alternatively, the baseline distribution could also come from
location-scale or log-location-scale families of distributions. We now present several
examples here and briefly describe their properties and characteristics and for this
purpose, without loss of any generality, we take the baseline distribution G(x) to be
the standard distribution without scale parameter.

4.1 Record-Based Transmuted Uniform Distribution

Let us start with the standard uniform distribution for the baseline distribution G(x),
i.e., G(x) = x, 0 < x < 1. Then, from (12)–(14), we have

f U
R2
(x) = π + (1− π){− ln

(
1− x

)}, 0 < x < 1, (21)

FU
R2
(x) = (1− x)[1+ (1− π){− ln

(
1− x

)}], 0 < x < 1, (22)

and

hFU
R2
(x) = 1

1− x

[
π + (1− π){− ln

(
1− x

)}
1+ (1− π){− ln

(
1− x

)}
]
, 0 < x < 1. (23)

Clearly, the hazard function of the baseline distribution, hG(x) = 1
1−x , is increasing

and so, according to Remark 1, the above record-based transmuted uniform
distribution is IFR.

4.2 Record-Based Transmuted Exponential Distribution

Let us take the baseline distribution G(x) = 1 − e−x, x > 0, corresponding to the
standard exponential distribution. We then have from (12)–(14) the corresponding
PDF, SF and hazard function to be

f E
R2
(x) = e−x{π + (1− π)x}, x > 0, π ∈ [0, 1], (24)

F̄ E
R2
(x) = e−x{1+ (1− π)x}, x > 0, π ∈ [0, 1], (25)
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and

hFE
R2
(x) = π + (1− π)x

1+ (1− π)x
, x > 0, π ∈ [0, 1]. (26)

The PDF in (24) is nothing but the Lindley distribution; see Lindley (1958). From
the hazard function in (26), it can be verified that its derivative is

h′
FE
R2

(x) =
[

1− π

1+ (1− π)x

]2

> 0, (27)

implying that the record-based transmuted exponential distribution in (24) belongs
to the IFR class of distributions.

In Fig. 1, we have presented plots of the PDF in (24) and the hazard function in
(26) for π = 0.25, 0.5, and 0.75. The fact that this distribution belongs to the IFR
class of distributions, as commented in Remark 1, can be readily seen in this plot.

4.3 Record-Based Transmuted Linear-Exponential
Distribution

Let us now consider the baseline distribution G(x) = 1 − e−(λx+μx2/2), x > 0,
λ,μ > 0, corresponding to the linear-exponential distribution; see Bain (1974) and
Johnson et al. (1994) for details on its properties and reliability applications. We
then have from (12)–(14) the corresponding PDF, SF, and hazard function to be

f LE
R2

(x)=(λ+μx)e−(λx+μx2/2)
[
π+(1−π)

(
λx+μx2

2

)]
, x > 0, μ > 0, λ > 0,

(28)

F̄ LE
R2

(x) = e−(λx+μx2/2)
[

1+ (1− π)

(
λx + μx2

2

)]
, x > 0, μ > 0, λ > 0,

(29)
and

hFLE
R2

(x) = (λ+μx)

[
π + (1− π)(λx + μx2

2 )

1+ (1− π)(λx + μx2

2 )

]
, x > 0, μ > 0, λ > 0, (30)

with π ∈ [0, 1]. From Remark 1, we know that the record-based transmuted linear-
exponential distribution in (28) belongs to the IFR class of distributions as the
baseline linear-exponential distribution is.

In Fig. 2, we have presented plots of the PDF in (28) and the hazard function
in (30) for π = 0.25, 0.5, and 0.75, λ = 0.5, and μ = 1.0, 2.0. From the plot of
the hazard function, we can readily see that it is in agreement with the comment in
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Fig. 1 Density and hazard functions of record-based transmuted exponential distribution

Remark 1 that this distribution belongs to the IFR class. In the plot, we have Group
1 (π = 0.25, μ = 1.0), Group 2 (π = 0.5, μ = 1.0), Group 3 (π = 0.75, μ = 1.0),
Group 4 (π = 0.25, μ = 2.0), Group 5 (π = 0.5, μ = 2.0), and Group 6 (π = 0.75,
μ = 2.0).

Finally, it should be mentioned that by adopting a lifetime distribution with a
polynomial hazard function as the one considered by Krane (1963), for example,
as the baseline distribution G(x) in (28), we can propose a very general family
of record-based transmuted polynomial-exponential distribution, and then study
its properties and applications. Furthermore, upon letting the intercept parameter
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Fig. 2 Density and hazard functions of record-based transmuted linear-exponential distribution

λ→ 0 in the baseline distribution G(x) used in (28), so that the linear-exponential
distribution reduces in this case to the Rayleigh distribution (see Polovko (1968)
and Johnson et al. (1994)), we will deduce the family of record-based transmuted
Rayleigh distributions.
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4.4 Record-Based Transmuted Weibull Distribution

Next, we consider the baseline distribution to be G(x) = 1 − e−xα , x > 0, α > 0,
corresponding to the standard Weibull distribution with shape parameter α > 0. It
is well-known that this distribution is IFR when α > 1, exponential with constant
hazard function when α = 1, and DFR (Decreasing Failure Rate) distribution when
0 < α < 1; one may refer to Johnson et al. (1994) and Murthy et al. (2004) for
detailed reviews of various properties and developments on Weibull distribution.

With the choice of Weibull distribution as the baseline distribution G(x), we have
from (12)–(14) the corresponding PDF, SF, and hazard function to be

fW
R2
(x) = αxα−1e−xα [π + (1− π)xα], x > 0, α > 0, (31)

SW
R2
(x) = e−xα [1+ (1− π)xα], x > 0, α > 0, (32)

and

hFW
R2
(x) = αxα−1

[
π + (1− π)xα

1+ (1− π)xα

]
x > 0, α > 0, (33)

with π ∈ [0, 1]. From the hazard function in (33), it can be verified that its
derivative, for x > 0, is given by

h′
FW
R2

(x) = α(α − 1)xα−2[1+ (1− π)xα][π + (1− π)xα] + α2(1− π)2x2α−2

[1+ (1− π)xα]2 .

(34)

From (34), it is evident that h′
FW
R2

(x) > 0 when α > 1, implying that record-based

transmuted Weibull distribution is IFR, which is in agreement with Remark 1. Next,
when α = 1, (34) simply reduces to (27) for the case of exponential distribution
showing that the corresponding record-based transmuted exponential distribution
is also IFR (see the comment in Sect. 4.2). Finally, for the case 0 < α < 1, the
first term on RHS of (34) is negative while the second term is positive. A careful
examination of (34) suggests that when 0 < α ≤ 1

2 , h′
FW
R2

(x) is negative which

implies that the corresponding record-based transmuted Weibull distribution is DFR
just as the baseline Weibull distribution is. But, in the range 1

2 < α < 1, it need not
be DFR!

In Fig. 3, we have presented plots of the PDF in (31) and the hazard function
in (33) for π = 0.25, 0.5, and 0.75, and α = 0.3, 0.75, and 2.0, with Group 1
(π = 0.25, α = 0.3), Group 2 (π = 0.25, α = 0.75), Group 3 (π = 0.25, α = 2.0),
and so on, and Group 9 (π = 0.75, α = 2.0) in the plot. This plot supports the
observations made about the hazard characteristics of this distribution.
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Fig. 3 Density and hazard functions of record-based transmuted Weibull distribution

4.5 Record-Based Transmuted Normal Distribution

Let us now take the baseline distribution to be standard normal, which is known
to be IFR; see Johnson et al. (1994). In this case, we have from (12)–(14) the
corresponding PDF, SF, and hazard function to be

f N
R2
(x) = φ(x)

[
π + (1− π){− ln

(
1−�(x)

)}],−∞ < x <∞, (35)
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F̄ N
R2
(x) = (

1−�(x)
)[

1+ (1− π){− ln
(
1−�(x)

)}],−∞ < x <∞, (36)

and

hFN
R2
(x) = φ(x)

1−�(x)

[
π + (1− π){− ln

(
1−�(x)

)}
1+ (1− π){− ln

(
1−�(x)

)}
]
,−∞ < x <∞, (37)

with π ∈ [0, 1], where � and φ denote the standard normal CDF and PDF,
respectively. From Remark 1, we know that the record-based transmuted normal
distribution in (35) belongs to the IFR class of distributions.

In Fig. 4, we have presented plots of the PDF in (35) and the hazard function in
(37) for π = 0.25, 0.5, and 0.75, which supports the observation made about the
hazard function of this distribution.

4.6 Record-Based Transmuted Logistic Distribution

As a final case, let us take the baseline distribution to be standard logistic distribution
with CDF G(x) = 1

1+e−x and PDF g(x) = e−x
(1+e−x)2 = G(x)

(
1−G(x)

)
, for −∞ <

x <∞. Evidently, hG(x) = g(x)
1−G(x)

= G(x) is monotone increasing, implying that
the baseline logistic distribution is IFR. In this case, we have from (12)–(14) the
corresponding PDF, SF, and hazard function to be

f L
R2
(x) = g(x)[π + (1− π){− ln

(
1−G(x)

)}], −∞ < x <∞, (38)

F̄ L
R2
(X) = (

1−G(x)
)[1+ (1− π){− ln

(
1−G(x)

)}], −∞ < x <∞,

(39)
and

hFL
R2
(x) = G(x)

[
π + (1− π){− ln

(
1−G(x)

)}
1+ (1− π){− ln

(
1−G(x)

)}
]
, −∞ < x <∞, (40)

with π ∈ [0, 1]. It is known from Remark 1 that the record-based transmuted logistic
distribution in (38) belongs to the IFR class of distributions.

In Fig. 5, we have presented plots of the PDF in (38) and the hazard function
in (40) for π = 0.25, 0.5, and 0.75. The plot of the hazard function once again
supports the observations made about the hazard characteristic of this distribution.
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Fig. 4 Density and hazard functions of record-based transmuted normal distribution

5 Dual Record-Based Transmuted Distributions

In Sect. 3, to develop record-based transmuted distributions, we started with a
sequence of upper record values. Instead, if we use lower record values, we will
obtain a dual family of record-based transmuted distributions.
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Fig. 5 Density and hazard functions of record-based transmuted logistic distribution

To be specific, let {Xi}∞i=1 be a sequence of I.I.D. random variables from a
continuous baseline distribution with PDF g(x) and CDF G(x), and support S.
Then, the sequence {XL(n)}∞n=1, where

L(1) = 1 with probability 1,

and for n > 1,

L(n) = min
{
i : i > L(n− 1),Xi < XL(n−1)

}
(41)
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is said to be the sequence of lower record values, while {L(n)}∞n=1 are called lower
record times. Then, it is known that the marginal PDF of XL(n), the n-th lower record
value, is given by (see Arnold et al. (1998) and Nevzorov (2001))

gL(n)(x) = 1

(n− 1)!
(− lnG(x)

)n−1
g(x), x ∈ S, (42)

for n = 1, 2, · · · . Evidently, gL(1)(x) ≡ g(x); also, the CDF corresponding to (42)
is

GL(n)(x) = G(x)

n−1∑

i=0

1

i!
(− lnG(x)

)i
, x ∈ S. (43)

Now, analogous to (12), we can consider the two-component mixture density

f ∗R2
(x) = πg(x)+ (1− π)

(− lnG(x)
)
g(x)

= g(x)
[
π + (1− π)

(− lnG(x)
)]
, x ∈ S,

(44)

where π ∈ [0, 1] is the mixing probability, as before. Then, the corresponding CDF
readily follows from (43) as

F ∗R2
(x) = πG(x)+ (1− π)G(x)[1+ (− lnG(x))]

= G(x)+ (1− π)G(x)(− lnG(x)), x ∈ S.
(45)

We shall refer to the family of distributions in (43) (or (44)) as dual record-based
transmuted family of distributions of order 2. Clearly, one can similarly construct
the family of dual record-based transmuted family of distributions of order n. An
important feature of the distributions in (45) is with regard to its reversed hazard
function. Specifically, let rG(x) = g(x)

G(x)
be the reversed hazard function of baseline

distribution G(x). Then, from (44) and (45), we readily obtain the reversed hazard
function of the distribution F ∗R2

to be

r∗FR2
(x) = rG(x)

[
π + (1− π)

(− lnG(x)
)

1+ (1− π)
(− lnG(x)

)
]
, x ∈ S, (46)

with π ∈ [0, 1]. We then observe immediately the following features of the dual
record-based transmuted distributions:

1. Even if we start with a baseline distribution G(x) that belongs to the proportional
reversed hazard family, such as Fréchet or inverse Weibull distribution, with CDF
e−x−α , x > 0, the corresponding dual record-based transmuted distribution of
order 2 will not inherit that property;
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2. Due to the fact that π ∈ [0, 1], we observe immediately from (46) that rF ∗R2
(x) ≤

rG(x), implying that the transmutation process on the baseline distribution G(x)

has a dampening effect on its reversed hazard function.

We can similarly examine the family of dual record-based transmuted family of
distributions of order 3 and its characteristics and properties. But, we refrain from
it here for the sake of brevity.

Remark 5 Due to the symmetry (around zero) of standard normal and standard
logistic distributions, we readily see that the dual record-based transmuted families
of distributions in these cases will simply be mirror images of the corresponding
record-based transmuted families of distributions presented earlier in Sects. 4.5
and 4.6.

Remark 6 Recall that, in Remark 1, it has been shown that if the baseline distri-
bution G is IFR, then so is the corresponding record-based transmuted distribution.
In an analogous manner, it can be shown that if the baseline distribution G has a
decreasing reversed hazard function, then so will the corresponding dual record-
based transmutation distribution.

6 Concluding Remarks

The family of transmuted distributions was introduced by Shaw and Buckley (2007,
2009) through a quadratic rank transmutation map. Granzotto et al. (2017) showed
that this family is in fact a mixture of distributions of minima and maxima from
a sample of size 2 from the baseline distribution. They then used this mixture
representation to introduce cubic rank transmuted distributions, generalizing the
family of distributions by Shaw and Buckley (2007, 2009), by considering mixtures
of distributions of order statistics from a sample size 3 from the baseline distribution.
In this work, we have instead used the distributions of record values (both upper
and lower) to put forward two new general families of distributions. We have then
discussed some of its properties based on hazard and reversed hazard functions,
and as to how they relate to proportional hazards and reversed hazards families
of distributions. Some special cases based on the uniform, exponential, linear-
exponential, Weibull, normal, logistic, and Fréchet distributions have also been
discussed. It will be of great interest to develop efficient inferential methods for
these families of distributions. We are currently working in this direction and hope
to report the findings in a future paper.
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Large-Sample Properties of Jackknife
Estimators of the Variance of a Sample
Quantile

Haikady N. Nagaraja and Chaitra H. Nagaraja

Abstract We study for a finite d (≥ 1), the limit properties of the family of delete-
d jackknife estimators of the variance of a sample quantile from a random sample of
size n as n→∞. We consider central and intermediate sample quantiles and for the
central case, we provide asymptotically unbiased delete-d jackknife estimators of its
large-sample variance. In the intermediate case, the limit distribution of the delete-d
jackknife estimator is free of d. For the sample median, the limit distributions of the
delete-d jackknife estimators of its variance differ for sequences of odd and even
values of n− d.

1 Introduction

Consider a continuous cumulative distribution function (cdf) F with inverse cdf F−1

and probability density function (pdf) f whose functional form is unknown. For a
given p ∈ (0, 1) suppose there exists an xp such that F(xp) = p and f (xp) > 0.
Then, xp = F−1(p) is the pth population quantile. Let Xk:n, 1 ≤ k ≤ n, be the
kth order statistic of a random sample of size n from F . When k = [np] + 1, and
[·] is the greatest integer function, the sample quantile Xk:n represents a commonly
used distribution-free estimator of xp. Numerous point and interval estimators of xp
based on selected sample quantiles exist in the literature; for a recent review, see
Nagaraja and Nagaraja (2020).

It is well-known that whenever f (xp) > 0 and 0 < p < 1,
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√
n(Xk:n − xp)

D→ N
(

0, σ 2
p

)
, (1)

where
D→ indicates convergence in distribution and where

σ 2
p =

p(1− p)

{f (xp)}2 (2)

is positive and finite. See, for example, David and Nagaraja (2003, p. 288). When
the mean of F is finite, f (xp) > 0, and f ′ is bounded in a neighborhood of xp, it
follows from Theorem 6.1.1 of Reiss (1989, p. 207) that

nV ar(Xk:n)→ σ 2
p. (3)

The unknown parameter in σ 2
p is 1/f (xp), the derivative of F−1(p) with respect to

p and is called the quantile density function (Parzen 1979). Thus, the problem of
estimating the quantile density function at xp is closely related to the distribution-
free estimation of the large-sample variance of Xk:n.

Jackknife (JK) methodology, introduced by Quenouille (1949), provides an
established approach for estimating an arbitrary distributional parameter and is
shown to reduce bias in many cases. It has been successfully used to identify outliers
(see, for example, Martin et al. 2010). However, for estimating σ 2

p in (2) it has been
shown that the delete-1 JK estimator is inconsistent for the sample median from
even-sized samples and has a large bias (see, Efron 1982, p. 13, 16).

Martin (1990) has shown that the limit distribution of the delete-1 JK variance
estimator of a central sample quantile (that is, k = [np] + 1, 0 < p < 1) is Weibull.
Peng and Yang (2009) have extended his work to intermediate order statistics (that
is, k/n → 0 or 1). Assuming d is proportional to n as n → ∞, Shao (1988)
has established the consistency of the delete-d JK estimator in estimating σ 2

p for
a central quantile. But as the methodology depends on d and computational time
increases quickly with d, small d values are desirable. With this in mind, we study
the limit distribution of the delete-d JK estimator of the limiting variance of central
and intermediate order statistics for a fixed and finite d ≥ 1. For the sample median,
we show that the limit distribution depends on whether n − d approaches infinity
through even or odd values.

Section 2 formally introduces two JK variance estimators and known limit results
on spacings around a specified central or intermediate order statistic. Section 3
discusses the limit distribution of the commonly used delete-d JK estimators of the
variance of Xk:n for the central and upper intermediate cases for a finite d. Section 4
focuses on the limit distribution of the JK variance estimator of the sample median.
Section 5 contains a short discussion of our results.

Now, some notation for quick reference. Equality in distribution, convergence in

distribution, and convergence in probability will be denoted respectively by
D=,

D→,

and
P→. For two sequences an and bn, we write an ≈ bn if an/bn → 1 as n → ∞.
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For two sequences of random variables (rvs) An and Bn, we write An

D≈ Bn if

An/Bn
P→ 1. A standard exponential rv will be denoted by Z or Zi, i ≥ 1. The sum

of m independent standard exponential rvs is a Gamma(η = m,β = 1) rv where η

and β are, respectively, the shape and scale parameters. With η = m/2 and β = 2,
we obtain a χ2

(m) rv with m degrees of freedom. A Weibull distribution with shape
parameter η and scale parameter β will be denoted by Wei(η, β). A normal rv with
mean μ and variance σ 2 is represented by N(μ, σ 2). A binomial rv with n trials
and success probability p will be represented by Bin(n, p) and its cdf is given by
FB(·; n, p).

We note that rvs (χ2
(2)/2)2, Wei(1, 1/2), and Z2 are identically distributed with

pdf

f (w) = 1

2
√
w
e−
√
w,w ≥ 0. (4)

Furthermore, for an rv Y with finite variance V ar(Y ),

V ar(Y ) = 1

2
E(Y1 − Y2)

2, (5)

where Y1 and Y2 are independent copies of Y .

2 Preliminaries

We now introduce some known results on jackknife estimators and spacings of order
statistics in a neighborhood.

2.1 Jackknife Estimators of Variance of an Estimator

Let θ be a (scalar) parameter and θ̂n be its estimator based on a random sample of
size n. Define Sn,n−d to be the family of all

(
n
d

)
subsets B with n− d observations,

obtained by dropping d observations from the sample. Let θ̂n−d(B) denote the

estimator based on the subset B ∈ Sn,n−d , and θ̂ be the average of these
(
n
d

)

estimators. Then θ̂ is the JK estimator of θ that is associated with θ̂n.
The classical delete-d JK estimator of the variance of

√
nθ̂n is (Shao and Tu

1995, p. 50–51)

Vn(d) = n− d

d
(
n
d

)
∑

B∈Sn,n−d

(
θ̂n−d(B)− θ̂

)2
. (6)
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Shao and Wu (1989) propose another JK estimator

V2,n(d) = n− d

d
(
n
d

)
∑

B∈Sn,n−d

(
θ̂n−d(B)− θ̂n

)2 = Vn(d)+ n− d

d

(
θ̂ − θ̂n

)2
. (7)

For us, θ = xp and θ̂n is the sample quantile Xk:n with k = [np] + 1, 0 < p < 1,
for the central case and p = k/n → 1 such that (n − k) → ∞ for the upper
intermediate case.

For d = 1 and 0 < p < 1, Martin (1990) has shown that Vn(1) can be expressed
as

(n−1)
(n− 1− [(n− 1)p])([(n− 1)p] + 1)

n2

(
X([(n−1)p]+2):n −X([(n−1)p]+1):n

)2
,

(8)

and that nVn(1)/σ 2
p

D→ Wei(1, 1/2) (i.e., Z2) with pdf given by (4).

2.2 Joint Limit Distribution of Spacings in a Neighborhood

All of the JK estimators of the limiting variance of Xk:n are continuous functions
of a finite number of spacings (that is, the difference between consecutive order
statistics) in its neighborhood. Therefore, we need the joint limiting distribution of
these spacings. It is given below, and is taken from Theorems 2a and 3 of Nagaraja
et al. (2015). See the references therein for earlier work.

Lemma 1

(a) Let k/n→ p ∈ (0, 1), and a and b be fixed positive integers. Assume f (xp) is
positive and finite and f is continuous at xp. Then

(
nf (xp)(Xk+j :n −Xk+j−1:n),−(a − 1) ≤ j ≤ b

) D→ (Z1, . . . , Za+b).

(b) Let one of the three Von Mises conditions (von Mises 1936; David and Nagaraja
2003, p. 299–300) hold, and n, k, n− k →∞ such that k/n = pn → 1. Then,

(
nf (xpn)(Xk+j :n −Xk+j−1:n),−(a − 1) ≤ j ≤ b

) D→ (Z1, . . . , Za+b).

In both cases, the Z’s are independent and identically distributed (i.i.d.) standard
exponential rvs.
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3 Delete-d Jackknife Estimators of the Variance of Xk:n

We now present results on the limiting properties of the jackknife estimators of the
variance for the central and intermediate cases.

3.1 The Central Case

For a central quantile xp, we have θ̂n = Xk:n where k = [np] + 1, and for a chosen
subset B of size n−d in Sn,n−d , θ̂n−d(B) = Xs:n−d(B), where s = [(n−d)p]+1.
Then, conditioned on the observed order statistics x1:n < · · · < xn:n from the entire
sample, Xs:n−d(B) takes d + 1 distinct values xs:n < · · · < xs+d:n depending on
the configuration of the d dropped order statistics.

Let wn(i) denote the proportion among
(
n
d

)
subsamples that yield Xs:n−d(B) =

xs+i:n. Then,

wn(i) = P(i values below xs+i:n and (d − i) values above xs+i:n are dropped)

=
(
i+s−1

i

)(
n−i−s
d−i

)

(
n
d

) , 0 ≤ i ≤ d, (9)

represents a hypergeometric probability. These weights have also been given by

Shao (1988). With θ̂ representing the weighted average of Xs+i:n, and θ̂n = Xk:n,
we obtain respectively from (6) and (7),

Vn(d) = n− d

d

d∑

i=0

wn(i)(Xs+i:n − θ̂ )2, and (10)

V2,n(d) = n− d

d

d∑

i=0

wn(i)(Xs+i:n − θ̂n)
2. (11)

The sum in (10) can be viewed as the variance of a discrete rv Y taking on the
value Xs+i:n with probability wn(i), for i = 0, . . . , d . Using (5), this sum can be
expressed as

d∑

i=0

wn(i)
(
Xs+i:n − θ̂

)2 = 1

2

d∑

i=0

d∑

j=0

wn(i)wn(j)(Xs+j :n −Xs+i:n)2

=
d−1∑

i=0

d∑

j=i+1

wn(i)wn(j)(Xs+j :n −Xs+i:n)2.
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As n → ∞, s/n → p and wn(i) →
(
d
i

)
pi(1 − p)d−i . Also, from part (a) of

Lemma 1, {nf (xp)}2(Xs+j :n − Xs+i:n)2 D→
(∑j

l=i+1 Zl

)2
, where the Zl , l ≥ 1,

are i.i.d. standard exponential rvs. Now define

Ti =
i∑

l=0

Zl, 0 ≤ i ≤ d, with Z0 ≡ 0, (12)

and note that
∑j

l=i+1 Zl = Tj − Ti . Thus, we have proved the following result.

Proposition 1 For 0 < p < 1, take k = [np] + 1, and assume that 0 < f (xp) <

∞, and f is continuous at xp. Then the first delete-d JK estimator of the variance
of
√
nXk:n in (6) can be expressed as

Vn(d) = n− d

d

d∑

i=0

d∑

j=i+1

wn(i)wn(j)(Xs+j :n −Xs+i:n)2; (13)

and

n{f (xp)}2Vn(d)
D→ 1

d

d−1∑

i=0

d∑

j=i+1

(
d

i

)(
d

j

)
pi+j (1− p)2d−i−j (Tj − Ti

)2
,(14)

= 1

d

d∑

i=0

(
d

i

)
pi(1− p)d−i

(
Ti − T

)2 ≡ V (d;p) (15)

where s = [(n − d)p] + 1, the wn(i) are given in (9), Ti in (12), and T is the
binomially weighted average of these Ti’s.

Equivalence of the sums in (14) and (15) is established by appealing again to (5).
When d = 1, the expression for the limiting rv V (d;p) simplifies to p(1−p)Z2,

and the above proposition essentially reduces to Theorem 2.1 of Martin (1990). This
is a scaled Weibull rv (Z2) whose pdf is given in (4) and is unbounded near 0.

For d > 1, obtaining a closed form for the limiting pdf is too cumbersome.
Therefore, we simulate V (d;p) starting with i.i.d. rvs Z1, . . . , Zd and approximate
the pdf of V (d;p). Figure 1 provides these approximations for selected p and d.
It shows that the limiting pdf of the JK variance estimator is bounded for d >

1, is positively skewed, and the skewness decreases as d increases. For a fixed d,
skewness decreases as p approaches 0.5. Further, the pdf of V (d;p) is symmetric
around p = 0.5.

Convergence in distribution, established above, does not ensure the convergence
of moments. In particular, to provide an asymptotically unbiased estimator of
σ 2
p that is a function of nVn(d), we need to examine the limit behavior of the
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Fig. 1 Simulated pdfs of the limiting rv V (d;p) for d = 2, 5, 10 and for p = 0.1, 0.2, and 0.4.
(Smoothed density created from 100,000 simulations of V and uses a Gaussian kernel)

sequence nE{Vn(d)}. This can be done under additional smoothness conditions on
the behavior of f around xp, and is given below.

Proposition 2 For 0 < p < 1, take k = [np] + 1, assume that 0 < f (xp) < ∞,
and that f has bounded derivative in a neighborhood of xp. Further, assume that F
has a finite mean. Then, as n→∞,

n{f (xp)}2E{Vn(d)}→p(1− p)

{
1+ E|Y1 − Y2|

2dp(1− p)

}
, (16)

where Vn(d) is given by (13), and Y1 and Y2 are i.i.d. Bin(n, p) rvs.

Proof With the rv V (d;p) given on the right side of (15), first we establish
under our assumed conditions that nE{Vn(d)} → E{V (d;p)}. Next, we show that
E{V (d;p)} has the form given in (16).

Under the finite mean and smoothness assumptions, it follows from Reiss (1989,
p. 207) that for s = [np] +O(n−1), nE(Xs:n − xp)

2 → σ 2
p. Thus, nE(Xs:n − xp)

2

is a bounded sequence. Consider

E(Xs+j :n −Xs+i:n)2 = E(Xs+j :n − xp)
2 + E(Xs+i:n − xp)

2

−2E(Xs+i:n − xp)(Xs+j :n − xp).

Since Xs+i:n and Xs+j :n are associated rvs (Esary et al. 1967), the product moment
is nonnegative (actually positive) and hence

E(Xs+j :n −Xs+i:n)2 ≤ E(Xs+j :n − xp)
2 + E(Xs+i:n − xp)

2.

Since both terms on the right are bounded, each of the terms in the finite sum on the
right in (13) is bounded as well. Consequently, nE{Vn(d)} is a bounded sequence.
This fact, along with the convergence in distribution proved in Proposition 1,
establishes the moment convergence (see, e.g., Chung 1974, p. 95).
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From (12) it follows that Tj − Ti = ∑j

l=i+1 Zl is a Gamma(j − i, 1) rv with
mean as well as variance (j − i). Thus,

E
(
Tj − Ti

)2 = (j − i)+ (j − i)2, 0 ≤ i < j ≤ d. (17)

Hence, the mean of the double sum in (15) in the expression for V (d;p),
d−1∑

i=0

d∑

j=i+1

(
d

i

)(
d

j

)
pi+j (1− p)2d−i−jE

(
Tj − Ti

)2

=
d−1∑

i=0

d∑

j=i+1

(
d

i

)(
d

j

)
pi+j (1− p)2d−i−j {(j − i)+ (j − i)2

}

= 1

2

d∑

i=0

d∑

j=0

(
d

i

)(
d

j

)
pi+j (1− p)2d−i−j |j − i|

+1

2

d∑

i=0

d∑

j=0

(
d

i

)(
d

j

)
pi+j (1− p)2d−i−j (j − i)2. (18)

Let Y be a Bin(d, p) rv and Y1 and Y2 be independent copies of Y . The first
term in (18) can be viewed as 1

2E|Y1−Y2|, and from (5), the second term represents
V ar(Y ) = dp(1− p). Hence, (14) leads us to conclude that

E(V (d;p)) = 1

d

{
1

2
E|Y1 − Y2| + dp(1− p)

}
= p(1− p)

{
1+ E|Y1 − Y2|

2dp(1− p)

}
.

�
Simple expressions are available for E|Y1 − Y2|, the mean of the sample range

from a random sample of size 2 from a binomial distribution. From Siotani (1956),
we conclude that

E|Y1 − Y2| = 2
d−1∑

i=0

FB(i; d, p)(1− FB(i; d, p)). (19)

The expression in (19) can be computed for any d and p.
Proposition 2 implies that

E(nVn(d)) ≈ σ 2
p

{
1+ E|Y1 − Y2|

2dp(1− p)

}
.
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Fig. 2 The asymptotic relative bias of the d-delete JK estimator nVn(d) as an estimator of σ 2
p for

0 < p < 1 and selected d ≥ 1

Hence the asymptotic relative bias of nVn(d) in estimating σ 2
p is E|Y1 −

Y2|/(2dp(1 − p)). Figure 2 shows this quantity for selected d ≥ 1 and p ∈ (0, 1);
we can see that the relative bias is symmetric around 0.5. When d = 1, E|Y1 − Y2|
simplifies to 2p(1− p) and hence the relative bias is constant at 1. For fixed p, the
asymptotic relative bias decreases as d increases, and for fixed d, it decreases as p
approaches 0.5.

While nVn(d) converges in distribution to a rv V (d;p) that has a closed form
representation (given in (14) or (15)), we now show that the limit distribution of
nV2,n(d) does not exist when d is finite. For this first we show the following.

Lemma 2 For any p ∈ (0, 1) there exist distinct subsequences of positive integers n
satisfying one of the following conditions: (i) [(n−1)p] = [np]; or (ii) [(n−1)p] =
[np] − 1.

Proof Suppose p is rational. Then there exist positive integers a and b such that
p = a/b or a = bp. Let n = mb + 1 where m is an arbitrary positive integer. Then
[np] = [mbp + p] = ma and [(n − 1)p] = [np − p] = [mbp] = ma. So, (i)
holds for n = mb + 1. Now with n = mb, we have [np] = ma and [(n − 1)p] =
[mbp − p] = [ma − 1] = ma − 1; that is, (ii) holds.
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If p is irrational, the sequence {np − [np], n ≥ 1} is dense in [0, 1] (Miller
and Takloo-Bighash 2006, Theorem 12.2.2, p. 280). Thus, we can find increasing
integer subsequences {m1,j , j ≥ 1} such that m1,jp − [m1,jp] → θ1 > p, and
{m2,j , j ≥ 1} such that m2,jp − [m2,jp] → θ2 < p, as j → ∞, where θ1, θ2 ∈
(0, 1). This means we can find a sufficiently large positive integer N such that for
all j > N , m1,jp > [m1,jp] + p or (m1,j − 1)p > [m1,jp], and so (i) holds for
these m1,j . Similarly, we can find a sufficiently large positive integer N such that
m2,jp < [m2,jp] + p or (m2,j − 1)p < [m2,jp], and so (ii) holds for these m2,j .

�
From (11),

V2,n(1) = (n− 1)
1∑

i=0

wn(i)(Xs+i:n −Xk:n)2

= (n− 1)
{
wn(0)(Xs:n −Xk:n)2 + wn(1)(Xs+1:n −Xk:n)2

}
, (20)

where s = [(n−1)p]+1 and k = [np]+1. Of the two terms in the sum above, one
always vanishes. Using Lemma 2, we conclude that there exist integer subsequences
m1,j , j ≥ 1, such that

V2,m1,j (1) = (m1,j − 1)wm1,j (1)(X[m1,j p]+2:n −X[m1,j p]+1:n)2,

and subsequences m2,j , j ≥ 1, such that

V2,m2,j (1) = (m2,j − 1)wm2,j (0)(X[m2,j p]+1:n −X[m2,j p]:n)2.

We know that wn(i)→ pi(1− p)1−i as n→∞. Consequently, we conclude that,
as j →∞,

m1,j {f (xp)}2V2,m1,j (1)
D→ pZ2; m2,j {f (xp)}2V2,m2,j (1)

D→ (1− p)Z2.

Thus, the limit distributions are distinct unless p = 0.5. When p = 0.5, condition
(i) of Lemma 2 holds when n is odd; when n is even, condition (ii) holds. Thus
for both odd and even sequences the limit distributions coincide. Hence, we have
proved the following result.

Proposition 3 As in Proposition 1, take 0 < p < 1, k = [np] + 1, and assume
that 0 < f (xp) < ∞, and f is continuous at xp. Consider the second delete-1 JK
estimator of the variance of

√
nXk:n, given by

V2,n(1) = (n− 1)
1∑

i=0

wn(i)(Xs+i:n −Xk:n)2,



Jackknife Estimators of the Variance of a Sample Quantile 35

where the wn(i) are defined in (9). The sequence {nV2,n(1), n ≥ 1} does not
converge in distribution if p �= 0.5. When p = 0.5, however,

nV2,n(1)
D→ 1

2{f (x0.5)}2Z
2. (21)

Remarks

1. Non-existence of the limit distribution for nV2,n(d) for p �= 0.5 can be
established for d > 1 as well. The key point is that only one term among the d+1
terms constituting (11) vanishes and we can choose subsequences for which we
can make a specified term vanish, resulting in different limit distributions.

2. When p = 0.5 we have shown that the limit distribution of nV2,n(1) exists and
is given in (21). This limit distribution differs from that of nVn(1) (denoted as
V (1; 0.5)) given in Proposition 1. In fact, the limit distributions of 2nVn(1) and
nV2,n(1) are identical.

3. When p = 0.5, xp is the population median. The corresponding sample quantile
is the sample median θ̂n−d that is computed differently for even and odd values
of (n − d). The limit distribution of nVn(d) given in Proposition 1 holds if n −
d remains odd (where the sample median of the subsample is a single order
statistic), and does not hold if n − d remains even as it approaches infinity. See
Sect. 4 for a detailed discussion.

3.2 Intermediate Case

We focus on the upper intermediate case where k = [npn] + 1 with pn → 1,
but (n − k) ≈ n(1 − pn) → ∞. A similar approach can be used for the lower
intermediate case (i.e., k/n→ 0) and is not presented.

The expression for Vn(d) remains the same as in the central case, as given in (13)
of Proposition 1, and weights wn(i) given in (9), but with s = [(n− d)pn] + 1.

We first examine the limit behavior of the weight wn(i) for 0 ≤ i ≤ d. Upon
simplification, we obtain

wn(i) =
(
i+s−1

i

)(
n−i−s
d−i

)

(
n
d

) = d!
i!(d − i)! ×

i∏

l=1

i + s − l

n+ 1− l
×

d−i∏

l=1

n− s − d + l

n− d + l

= η1 × η2 × η3, (22)

where η1 is free of n, η2 is made up of i factors and is to be interpreted as 1 when
i = 0, and η3 consists of (d − i) factors and is interpreted as 1 when i = d. Hence
for all i ≥ 0, η2 approaches 1 since s/n → 1. Each of the (d − i) factors of η3
approaches 0 as (n − s)/n → 0. Thus, when we consider the product wn(i)wn(j)

appearing in (13) with i < j , we have (2d − i − j) factors that approach 0. The
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number of such factors will be the smallest at 1 when i = d − 1, j = i + 1 = d.
From (22) it follows that

wn(d − 1)wn(d) = d

d−1∏

l=1

(
d − 1+ s − l

n+ 1− l

) d∏

l=1

(
d + s − l

n+ 1− d

)
n− s − d + 1

n− d + 1

≈ d × 1× 1× (n− d)(1− pn)

n− d
≈ d(1− pn),

where the asymptotic approximation holds since s = [(n− d)pn] + 1 and pn → 1.
From the representation for Vn(d) given in (13) it follows that

n

1− pn

{f (xpn)}2Vn(d)
D≈ {

nf (xpn)(Xs+d−1:n −Xs+d:n)
}2

.

Under the regularity conditions due to von Mises (1936), we can use part (b) of
Lemma 1 to establish the following result.

Proposition 4 Let one of the three Von Mises conditions hold, n, k, n − k → ∞
such that k/n = pn → 1, and xpn = F−1(pn). Then

n

1− pn

{f (xpn)}2Vn(d)
D→ Z2 = Wei(1, 1/2).

The pdf of the limit distribution established above is given by (4) and is free of d; it
matches the result for d = 1 in the central case. The limit distribution of nVn(1) in
the intermediate case was established earlier by Peng and Yang (2009).

4 Delete-d Jackknife Estimator of the Variance of the
Sample Median

Miller (1974) stated that Moses (in an unpublished note) was the first to observe
the inconsistency of the delete-1 JK variance estimator of the sample median for
even-sized samples. Efron (1982, Sec. 3.4, p. 16) has shown that, for even sample
sizes, the limit distribution of 4n{f (x0.5)}2Vn(1) is {χ2

(2)/2}2; the pdf of this rv is
given by (4). The limit properties of Vn(d) for a finite d > 1 and an even n, and for
any finite d ≥ 1 and an odd n, have not been examined. As we see below, the limit
depends on whether n− d remains odd or even.

When n − d is odd, the sample median based on a subsample of size n − d is a
single order statistic of the form X(n−d+1)/2:n−d(B) where B ∈ Sn,n−d is a subset
of size n− d from X1:n < · · · < Xn:n. Thus, Proposition 1 applies.

When n − d is even, the median of the subsample is the average of two
central order statistics. Let s = 1

2 (n − d) so that n = 2s + d. Then θ̂B =
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(Xs:n−d(B) + Xs+1:n−d(B))/2 is the median for the subsample generated by the
subset B. Conditioned on the observed order statistics x1:n < · · · < xn:n of
the entire sample, possible values of θ̂B are of the form (xs+i:n + xs+j :n)/2 with
0 ≤ i < j ≤ d + 1. Let wn(i, j) denote the associated proportion of subsamples
among

(
n

n−d
)

such samples. This is a hypergeometric probability given by

wn(i, j) =
(
i+s−1
s−1

)(
j−i−1

0

)(
s+d−j
s−1

)

(2s+d
2s

) , 0 ≤ i < j ≤ d + 1, and

Vn(d) = n− d

d

d∑

i=0

d+1∑

j=i+1

wn(i, j)
(
(Xs+i:n +Xs+j :n)/2− θ̂

)2
, (23)

where the wn(i, j) are nonnegative and sum to 1, and θ̂ is the weighted average of
(Xs+i:n +Xs+j :n)/2 values. The weights can be expressed as

wn(i, j) =
(
i+s−1

i

)(
s+d−j
d+1−j

)

(2s+d
2s

) = d!
i!(d − j + 1)! (24)

×{(i + s − 1) · · · s}{(s + d − j) · · · s}
(2s + d) · · · (2s + 1)

,

where the product {(i + s − 1) · · · s} in the numerator of the second factor is
interpreted as 1 when i = 0, the product {(s + d − j) · · · s} is interpreted as 1
when j = d + 1, and the numerator itself is 1 when i = 0, j = d + 1. Further,
only the second factor depends on s = (n− d)/2 and hence we investigate its limit
behavior as s →∞. It has d factors in the denominator and d + (i + 1− j) factors
in the numerator. Thus, the ratio goes to 0 as s → ∞ if j > i + 1 and to (1/2)d

when j = i + 1.
Consequently, we conclude using (24) that wn(i, j) → 0 if j > i + 1, and

wn(i, i + 1) → (
d
i

)( 1
2

)d as n → ∞. From (23) it now follows that the limit
distribution of nVn(d) is the same as that of the sequence

n2

d

d∑

i=0

(
d

i

)(
1

2

)d (
(Xs+i:n +Xs+i+1:n)/2− θ̂

)2
.

In view of (5), the above expression can be seen as a function of a finite number of
spacings in the neighborhood of a central order statistic. Define

T ∗i =
Ti + Ti+1

2
=

i∑

l=0

1

2
(Zl + Zl+1), i = 0, . . . , d, Z0 ≡ 0, (25)
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where the Ti’s are given by (12). Let T
∗

be the weighted average of the T ∗i with
weights given by Bin(d, 1/2) probabilities. Then, from part (a) of Lemma 1 it
follows that

{nf (x0.5)}2 1

d

d∑

i=0

(
d

i

)(
1

2

)d (
(Xs+i:n +Xs+i+1:n)

2
− θ̂

)2

D→ 1

d

d∑

i=0

(
d

i

)(
1

2

)d (
T ∗i − T

∗)2
.

This discussion leads to the following.

Proposition 5 Assume 0 < f (x0.5) < ∞ and f is continuous at x0.5. Let the
delete-d JK estimator of the variance of the sample median from a sample of size n,
represented by (6) be denoted by Vn(d).

(a) If n→∞ such that n− d remains even, Vn(d) has the form given in (23) with
s = (n− d)/2, and

n{f (x0.5)}2Vn(d)
D→ 1

d

d∑

i=0

(
d

i

)(
1

2

)d (
T ∗i − T

∗)2 ≡ V ∗(d; 0.5), (26)

where the T ∗i are given in (25), and T
∗
is their binomially weighted average.

(b) If n − d remains odd and n → ∞, Vn(d) has the form given in (13) with
s = [(n− d)/2] + 1, and (from Proposition 1),

n{f (x0.5)}2Vn(d)
D→ 1

d

d∑

i=0

(
d

i

)(
1

2

)d (
Ti − T

)2 ≡ V (d; 0.5), (27)

where the Ti are given in (12), and T is their binomially weighted average.

The rvs V (d; 0.5) and V ∗(d; 0.5) given above are identical functions of different
sets of rvs and thus it follows that the limit distribution of nVn(d) is different for
even and odd values of n−d. Hence the sequence {nVn(d), n ≥ 1} does not converge
in distribution as n→∞.

We now illustrate the difference between the distributions of V (d; 0.5) and
V ∗(d; 0.5) for selected small d values.

With d = 1, upon simplification, it follows that

V (1; 0.5)
D= 1

4
Z2

1 ≡
1

4
W ;V ∗(1; 0.5)

D= 1

4

(
Z1 + Z2

2

)2

≡ 1

4
W ∗.

The pdf of W , fW (w), is given by (4) and its cdf is given by
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FW(w) = 1− e−
√
w,w ≥ 0. (28)

The pdf and cdf of W ∗ are given respectively by

fW ∗(w) = 2e−2
√
w; and F ∗W(w) = 1− e−2

√
w
(
1+ 2

√
w
)
, w ≥ 0. (29)

The pdf fW (w) is unbounded near 0 and has thicker tail than fW ∗(w) on both
ends of its support, (0,∞). The latter pdf is bounded, and dominates in the
middle region (0.128, 4.637) whose endpoints have been determined by solving
fW(w) = fW ∗(w). The means of W and W ∗ are, respectively, 2 and 1.5, and the
variances are 20 and 5.25. The means can be used to scale nVn(1) appropriately (n
even or odd) to suggest an asymptotically unbiased estimate of the quantile density
function 1/f (x0.5).

We can obtain an approximate 95% confidence interval for 1/f (x0.5) (or for
f (x0.5)) using the percentiles of W or W ∗ that can be obtained from (28) and (29).
The 2.5th and 97.5th percentiles of W are 0.0006 and 13.6078, and of W ∗ are 0.0147
and 7.761, respectively. When n is even (that is, n− 1 is odd), we use the former set
of percentiles and when n is odd, we use the latter.

For d > 1, analytical expressions for the pdfs of V (d; 0.5) and V ∗(d; 0.5)
become too complex. We simulate these rvs starting with i.i.d. rvs Z1, . . . , Zd and
find approximations to their pdfs for d = 2 and d = 5. They are reported in Fig. 3.
The plot shows that for the chosen d values, the pdfs of V (d; 0.5) and V ∗(d; 0.5)
are both positively skewed, and both tails of the former are thicker than that of the
latter. Further, the skewness decreases as d increases.

A closed form expression for E{V (d; 0.5)} is available in Proposition 2, namely,

d=2 d=5

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
0

1

2

3

variance when p=0.5

pd
f

Variance: V(d;0.5) V*(d;0.5)

Fig. 3 Simulated pdfs of V (d; 0.5) and V ∗(d; 0.5) for d = 2 and d = 5. (Smoothed density
created from 100,000 simulations of V and V ∗ and uses a Gaussian kernel)
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E{V (d; 0.5)} = 1

4d
{d + 2E|Y1 − Y2|} ,

where Y1 and Y2 are i.i.d. Bin(n, 1/2) rvs.
To derive an expression for E{V ∗(d; 0.5)} we proceed as follows. As in

Proposition 2, consider an alternative expression for V ∗(d; 0.5) given by

1

d

d−1∑

i=0

d∑

j=i+1

(
d

i

)(
d

j

)(
1

2

)2d (
T ∗j − T ∗i

)2
, (30)

where the T ∗i are defined in (25). Therefore,

E
(
T ∗j − T ∗i

)2 = E

⎧
⎨

⎩
1

2
(Zi+1 + Zj+1)+

j∑

l=i+2

Zl

⎫
⎬

⎭

2

= V ar

⎧
⎨

⎩
1

2
(Zi+1 + Zj+1)+

j∑

l=i+2

Zl

⎫
⎬

⎭

+
⎧
⎨

⎩
1

2
E(Zi+1 + Zj+1)+

j∑

l=i+2

E(Zl)

⎫
⎬

⎭

2

=
(
j − i − 1

2

)
+ (j − i)2 = E(Tj − Ti)

2 − 1

2
, (31)

where the last equality follows from (17). The final form in (31) holds for all 0 ≤
i < j ≤ d. Consequently,

E{V (d; 0.5)} − E{V ∗(d; 0.5)} = 1

2d

d−1∑

i=0

d∑

j=i+1

(
d

i

)(
d

j

)
1

4d
. (32)

We now observe that

2
d−1∑

i=0

d∑

j=i+1

(
d

i

)(
d

j

)
1

4d
=

d∑

i=0

d∑

j=0

(
d

i

)(
d

j

)
1

2d
1

2d
−

d∑

i=0

{(
d

i

)
1

2d

}2

= 1−
d∑

i=0

{(
d

i

)
1

2d

}2

= 1− P(Y1 = Y2),

where Y1 and Y2 are i.i.d. Bin(d, 1/2) rvs. Upon using the above simplification, we
conclude from (32) that
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E{V (d; 0.5)} − E{V ∗(d; 0.5)} = 1

4d
{P(Y1 �= Y2)} . (33)

Assuming the existence of the mean and that f ′ is bounded in a neighborhood
of x0.5, one can show that E{nVn(d)} → E{V ∗(d; 0.5)} as (n − d) →∞ through
even values. Details are omitted. For odd (n − d) sequences, Proposition 2 holds
with p = 1/2 and consequently E{nVn(d)} → E{V (d; 0.5)}.

5 Concluding Remarks

We have developed asymptotic theory for the delete-d JK estimator of the variance
for a sample quantile by viewing it as a function of spacings around the sample
quantile, and obtained its limit distribution for all finite d > 1. Building upon this
theory, we have examined the special case of the sample median. We have shown
that the limit distribution of the JK estimators of the variance of a sample median
for even and odd (n − d) values are different and that the limiting mean is smaller
for even values of (n− d).

We also show that when d is finite, the commonly used JK variance estimator of
a central sample quantile, nVn(d), and a variant, nV2,n(d), discussed in Shao and
Wu (1989), can have different limit properties, and that the nV2,n(d) sequence may
not have a limit distribution at all!

When d is finite, the delete-d JK estimator of the variance of a sample quantile
is not consistent, and yields an asymptotically scale-biased estimator of σ 2

p , and of

{1/f (xp)}2. But the bias can be corrected using a scale factor given by Proposition 2.
In the case of the sample median, the bias correction factor is dependent on whether
(n − d) is odd or even. Our results are also useful in producing asymptotically
distribution-free approximate 100(1−α)% confidence intervals for σ 2

p , the quantile
density function 1/f (xp), and also for the pdf f (xp).

This investigation improves over Martin’s (1990) work for a central quantile,
Peng and Yang’s (2009) work for an intermediate quantile, and Efron’s (1982) note
on the sample median for even sample sizes.
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Properties of System Lifetime in the
Classical Model with I.I.D. Exponential
Component Lifetimes

Tomasz Rychlik and Magdalena Szymkowiak

Abstract We consider coherent and mixed systems composed of components with
independent identically exponentially distributed lifetimes. We describe sufficient
conditions assuring specific properties of the system lifetime density and failure
rate functions expressed in terms of the system Samaniego signature. In particular,
we determine conditions which guarantee monotonicity, unimodality, and strong
unimodality of the density function, and monotonicity of the failure rate and mean
residual life.
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1 Introduction and Auxiliary Results

We assume that the component lifetimes T1, . . . , Tn of n-component system are
I.I.D. exponential with common distribution function Fλ(t) = 1 − exp(−λt), and
density function fλ(t) = λ exp(−λt), t > 0, for some positive λ. Let T1:n, . . . , Tn:n
denote the respective order statistics which represent consecutive failure times of
the components. If the system has a structure function ϕ : {0, 1}n �→ {0, 1}, then the
distribution function of the system lifetime T has the form

FT (t) = P(T ≤ t) =
n∑

r=1

srP(Tr:n ≤ t), (1)
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where sr = P(T = Tr:n), or equivalently

sr = 1
( n
r−1

)
∑

∑n
j=1 xj=n−r+1

ϕ(x1, . . . xn) − 1
(n
r

)
∑

∑n
j=1 xj=n−r

ϕ(x1, . . . xn), r = 1, . . . , n.

(2)
Representation (1) was established by Samaniego (1985), and formula (2) comes
from Boland (2001). The vector s = (s1, . . . , sn) is called the Samaniego signature
of the system. As follows from (2) it depends merely on the system structure, and
is independent of the component lifetime distribution. Other variants of the system
signatures and their significance in reliability engineering were extensively studied
in Samaniego (2007). The coefficients of s are non-negative, sum to 1, and are
rational with the denominators equal either to n! or to its divisors. Special cases
of the systems are so called k-out-of-n (more precisely k-out-of-n : F ) systems,
k = 1, . . . , n, which work till the kth consecutive component failure. Then T = Tk:n
and s = ek = (0, . . . , 0, 1, 0, . . . , 0) with 1 at the kth position. Note that by (1) the
distribution of T is identical with the lifetime distribution of randomly chosen k-
out-of-n system with respective probability sk, k = 1, . . . , n. The observation was
a stimulus for defining the mixed systems which were introduced in Boland and
Samaniego (2004). The mixed system with n components is a randomly chosen k-
out-of-n system with probability sk, k = 1, . . . , n, where s1, . . . , sn are arbitrary
non-negative numbers such that

∑n
r=1 sr = 1. Under our assumption the Samaniego

representation (1) is valid for all coherent and mixed systems of sizes not greater
than n.

Performance of coherent systems composed of elements with independent mem-
oryless exponential lifetimes is one of the most classic problems in the reliability
theory, and it was the topic of a number of papers. Here we mention only a few,
recent ones. Many authors studied stochastic comparisons of particular system
lifetimes with identical and nonidentical exponential component lifetimes with
respect to various partial orderings. In particular, the parallel systems were analyzed
in Dykstra et al. (1997), Wang (2015), Wang and Zhao (2016), and Cheng and
Wang (2017). Various orders for 2-out-of-n systems, called also fail-safe systems,
were considered by Zhao and Balakrishnan (2009, 2011), and Balakrishnan et al.
(2015). Explicit expressions and bounds for the system reliability as well as other
performance measures of system lifetimes were presented in Chaudhuri (2004),
and Çekyay and Özekici (2015). Arulmozhi (2003), Wang (2012), and Gonzalez-
Lopez et al. (2017) developed methods of estimating the exponential parameters of
component lifetimes based on operating times of systems.

Our purpose is to describe probabilistic properties of mixed system lifetimes
in the standard exponential model expressed in terms of the system signatures.
Precisely, we present assumptions on the system signatures imposing unimodality,
strong unimodality, and monotonicity of the failure rate and mean residual life of
the system lifetime distribution. For completeness, we recall the definitions of these
notions.
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Definition 1 Let the distribution function FX of a random variable X have a density
function fX which is positive inside its support interval [a, b].
(a) X is unimodal if its density function fX is either monotone in (a, b) or it is

non-decreasing on (a,m] and non-increasing on [m, b) for some a < m < b.
(b) X is strongly unimodal if ln fX is concave on (a, b).
(c) X has an increasing (decreasing) failure rate if the failure rate function λX(t) =

fX(t)
1−FX(t)

is non-decreasing (non-increasing) on (a, b).
(d) X with a finite expectation has an increasing (decreasing) mean residual life if

the mean residual life function μX(t) = E(X − t |X > t) is non-decreasing
(non-increasing) on (a, b).

Strong unimodality of X is a stronger condition than the classical unimodality.
It means that the sum X + Y is unimodal for every unimodal random variable
Y independent of X. Its characterization by log-concavity of the density function
was proven by Ibragimov (1956). Below we use standard acronyms IFR (DFR) and
IMRL (DMRL) for the properties of increasing (decreasing) failure rate and mean
residual life, respectively. It is well-known that IFR implies DMRL, and IMRL
follows from DFR (see, e.g., Hollander and Proschan 1984). The other commonly
known facts are unique characterizations of distributions by the failure rate and
mean residual life functions. In particular, the scale members of the exponential
distribution family are characterized by constant failure rate and mean residual life.

The paper is organized as follows. Below we gather some formulae and auxiliary
lemmas useful in the proofs of our main results. In Sect. 2 we present conditions
on the systems signatures which determine monotonicity, unimodality, and strong
unimodality of density functions of system lifetimes. In Sects. 3 and 4 we describe
analogous assumptions assuring monotonicity of respective failure rates and mean
residual lifetimes, respectively. We also show that our conditions assuring strong
unimodality, increasing failure rate, and decreasing mean residual life coincide,
although they look different at the first glance.

Let

Br,n(u) =
(
n

r

)
ur(1− u)n−r , 0 ≤ u ≤ 1, r = 0, . . . , n,

denote the family of Bernstein polynomials of degree n. It follows from the
classical theory of order statistics (see, e.g., David and Nagaraja 2003, p. 9) that
the lifetime distribution function of the r-out-of-n system whose components have
I.I.D. exponential lifetimes is

Fr:n(t) =
n∑

i=r
Bi,n(Fλ(t)), 1 ≤ r ≤ n, t > 0.

The respective survival and density functions are
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F̄r:n(t) = 1− Fr:n(t) =
r−1∑

i=0

Bi,n(Fλ(t))), (3)

fr:n(t) = nBr−1,n−1(Fλ(t))fλ(t) = λ(n+ 1− r)Br−1,n(Fλ(t)). (4)

We also use a similar representation for the derivative of the density function

f ′r:n(t) = nλ[Br−2,n−1(Fλ(t))− Br−1,n−1(Fλ(t))]fλ(t)
= λ2(n+ 1− r)(n+ 2− r)Br−2,n(Fλ(t))− λ2(n+ 1−r)2Br−1,n(Fλ(t)),

under the convention that B−1,n(Fλ(t)) ≡ 0. Due to representation (1), the
respective formulae for general coherent and mixed system are given below.

FT (t) =
n∑

r=1

sr

n∑

i=r
Bi,n(Fλ(t)) =

n∑

r=1

(
r∑

i=1

si

)

Br,n(Fλ(t)),

F̄T (t) = 1− FT (t) =
n∑

r=1

sr

r−1∑

i=0

Bi,n(Fλ(t)) =
n∑

r=1

(
n∑

i=r
si

)

Br−1,n(Fλ(t)),

fT (t) = nfλ(t)

n∑

r=1

srBr−1,n−1(Fλ(t)) = λ

n∑

r=1

(n+ 1− r)srBr−1,n(Fλ(t)), (5)

f ′T (t) = λ2
n∑

r=1

(n+ 1− r)[(n− r)sr+1 − (n+ 1− r)sr ]Br−1,n(Fλ(t)), (6)

under the convention that sn+1 = 0.
The main tool of our analysis is the Samaniego representation of the system

lifetime distribution (1), and the variation diminishing property of the Bernstein
polynomials described in the following lemma.

Lemma 1 (cf Rychlik 2001, p. 66) The number of zeros of a given nonzero linear
combination

B(u) =
n∑

i=0

aiBi,n(u), 0 < u < 1,

of Bernstein polynomials of a fixed degree n is not greater than the number of
sign changes in the sequence a0, . . . , an. Moreover, the signs of B in the right
neighborhood of 0 and the left neighborhood of 1 coincide with the signs of the
first and last nonzero elements among a0, . . . , an, respectively.

The first statement was proved in Schoenberg (1959). The second one is trivial. We
also apply the following elementary lemma.
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Lemma 2 For two non-negative integers p < q, take sequences αp, . . . , αq ∈ R,
and βp, . . . , βq > 0. The sequence of ratios αr

βr
, r = p, . . . , q, is non-decreasing

(non-increasing, decreasing, increasing, constant, respectively), iff either of
sequences

∑r
i=p αi∑r
i=p βi

,

∑q
i=r αi∑q
i=r βi

, r = p, . . . , q, (7)

is non-decreasing (non-increasing, decreasing, increasing, constant, respectively).

Numbering the elements of sequences from p > 1 looks strange at a first glance,
and does not provide any generalization. However, formulating the results in the
present form simplifies arguments in our applications below. The proofs of all the
statements are similar, and we only show that non-decreasing property of the latter
sequence of partial sums in (7) follows from the non-decreasing property of the
quotients of their consecutive summands, and vice versa.

Proof of Lemma 2 We easily show that inequality
αq−1
βq−1

≤ αq
βq

is equivalent to the
relations

αq−1

βq−1
≤ αq−1 + αq

βq−1 + βq
≤ αq

βq
.

We assume so now that

αr

βr
≤
∑q

i=r+1 αi∑q

i=r+1 βi

for some r = p, . . . , q−1. By simple calculation we obtain two equivalent relations

αr

βr
≤
∑q

i=r αi∑q
i=r βi

≤
∑q

i=r+1 αi∑q

i=r+1 βi
.

The induction argument shows that conditions for the non-decreasing property of

both sequences αr
βr

and
∑q

i=r αi∑q
i=r βi

, r = p, . . . , q, are equivalent. �

2 Density Function

We first study the shape of the density function of the system lifetime.

Theorem 1 Assume that a mixed system has signature s = (s1, . . . , sn), and
its components have I.I.D. exponential lifetime distributions with some intensity
parameter λ > 0. Let 1 ≤ p ≤ q ≤ n denote the indices of the first and last
strictly positive elements, respectively, of the system signature.
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(a) Under either of conditions

(i) p = q = 1,
(ii) p = 1 < q ≤ n, and sequence ar = (n+ 1− r)sr , r = 1, . . . , q, is either

a constant or non-increasing,

the system lifetime density function (5) is decreasing on its support R+.
(b) If either of the following conditions holds:

(i) p ≥ 2, q = p, p + 1,
(ii) p = 1 < q ≤ n, and ar = (n + 1 − r)sr , r = 1, . . . , q, is non-constant,

either non-decreasing or first non-decreasing and then non-increasing,
(iii) p ≥ 2, q ≥ p + 2, and sequence ar = (n + 1 − r)sr , r = p, . . . , q, is

unimodal (i.e., either a constant, or non-decreasing, or non-increasing, or
first non-decreasing and then non-increasing),

then density function (5) is first increasing and then decreasing.

Remark 1 The density function (4) of each order statistic is decreasing for suffi-
ciently large arguments, because each Bi,n, i = 0, . . . , n − 1, (except for the last
one Bn,n) is decreasing on a left neighborhood of 1, and Fλ(t) increases to 1 as
t →+∞. Therefore the convex combination fT (t) =∑n

r=1 srfr:n(t) is decreasing
for large t as well. This implies that the lifetime density function of any coherent
or mixed system whose components have I.I.D. exponential lifetimes cannot be
increasing. By the same reason, the bath-tub shape of the density functions (i.e.,
first decrease and then increase) is impossible.

Remark 2 Among all the density functions of order statistics, only that of the
sample minimum does not vanish at 0. This implies that the systems with s1 = 0
cannot have decreasing density functions on R+, because they have to increase in
a right neighborhood of the origin. The strict inequality s1 > 0 does not assure
decrease of the density function, though. It suffices to check that the signature with
s1 = 1 − s2 < n−1

2n−1 , and sr = 0, r = 3, . . . , n, satisfies the assumptions of
Theorem 1(b(ii)). On the other hand, assumptions of Theorem 1(b) guarantying
unimodality admit s1 ≥ 0.

Remark 3 Relations 0 < sp > sm = 0 < sq = 0 for some 1 ≤ p < m < q ≤ n

contradict the assumptions of Theorem 1, because sequence ar , r = p, . . . , q, with
ap > am < aq is neither monotone nor unimodal. Note that any coherent system
signature cannot have zeros between nonzero elements (see, e.g., Ross et al. 1980,
and D’Andrea and Sanctis 2015).

Proof of Theorem 1 Since the density functions (5) are differentiable, it suffices to
analyze changes of sign of their derivatives using (6).

(a) (i) For p = q = 1 we simply get

f ′T (t) = f ′1:n(t) = −λ2n2B0,n(Fλ(t)) < 0.
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(ii) Take now p = 1 < q ≤ n. When q = 2, we obtain

f ′T (t) = s1f
′
1:n(t)+ s2f

′
2:n(t) = λ2n[(n− 1)s2 − ns1]B0,n(Fλ(t))

−λ2(n− 1)2s2B1,n(Fλ(t)).

Noting that Fλ(t) increases from 0 to 1 as t increases in (0,+∞), we can
apply Lemma 1. If ns1 ≥ (n − 1)s2 = (n − 1)(1 − s1), the former term is
non-positive, and the latter is negative, which together imply that fT itself is
decreasing. However, when ns1 < (n − 1)s2 (i.e., s1 < n−1

2n−1 ), the density
function is first increasing, and then decreasing.
For p = 1 and 3 ≤ q ≤ n, the density derivative has the form

f ′T (t) = λ2
q−1∑

r=1

(n+ 1− r)[(n− r)sr+1 − (n+ 1− r)sr ]Br−1,n(Fλ(t))

−λ2(n+ 1− q)2sqBq−1,n(Fλ(t)).

The last term is evidently negative. If the sequence ar = (n + 1 − r)sr , r =
1, . . . , q, is non-increasing (it suffices that it is even constant), then the whole
sum is non-positive. It follows that fT is decreasing on R+. This completes the
proof of part (a). Note that non-increase as well as initial non-increase and final
non-decreases of the sequence results in initial positivity and ultimate negativity
of the derivative. In this way we also obtain the conclusion of part (b) under
respective assumption (ii).

(b) Now we consider p ≥ 2 with various q.

(i) For q = p, p + 1 we have

f ′T (t) = f ′p:n(t) = λ2(n+ 1− p)(n+ 2− p)Bp−2,n(Fλ(t))

−λ2(n+ 1− p)2Bp−1,n(Fλ(t))

and

f ′T (t) = spf
′
p:n(t)+ sp+1f

′
p+1:n(t)

= λ2(n+ 1− p)(n+ 2− p)spBp−2,n(Fλ(t))

+λ2(n+ 1− p)[(n− p)sp+1 − (n+ 1− p)sp]Bp−1,n(Fλ(t))

−λ2(n− p)2sp+1Bp,n(Fλ(t)),

respectively, with sp+1 = 1 − sp in the latter formula. In the first
case Lemma 1 immediately implies that f ′T (t) is first positive, and then
negative. The same conclusion we get in the latter one, because the
coefficients in the first and the last terms are positive and negative,
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respectively, and the sign of the middle one does not affect the sign order
+− in the whole summation.

(iii) When p ≥ 2 and p + 2 ≤ q ≤ n,

f ′T (t) = λ2(n+ 1− p)(n+ 2− p)spBp−2,n(Fλ(t))

+λ2
q−1∑

r=p
(n+ 1− r)[(n− r)sr+1 − (n+ 1− r)sr ]Br−1,n(Fλ(t))

−λ2(n+ 1− q)2sqBq−1,n(Fλ(t)).

The coefficients of the first and the last summands are positive and
negative, respectively. The sign order of the whole sequence of coefficients
remains undisturbed if the coefficients of the middle sum either have
the same sign, or there is only one sign change which changes from
plus to minus. This is equivalent to unimodality of the sequence ar =
(n+ 1− r)sr , r = p, . . . , q.

�
Example 1 Consider the weakest possible conditions of Theorem 1(a) assuring
decrease of the system lifetime density function. Namely, we assume that for some
1 ≤ q ≤ n sequence ar , r = 1, . . . , q, is constant. Conditions ns1 = (n − 1)s2 =
. . . = (n+ 1− q)sq and

∑q

r=1 sr = 1 imply that

sr = 1

(n+ 1− r)
∑q

i=1
1

n+1−i
, r = 1, . . . , q. (8)

Observe that the sequence is increasing. Plugging (8) into (5), we obtain

ft (t) = λ
∑q

i=1
1

n+1−i

q∑

r=1

Br−1,n(Fλ(t)).

The sum of Bernstein polynomials represents the survival function of the qth order
statistic (cf. (3)). Consequently,

fT (t) = Fq:n(t)
ETq:n

is the equilibrium density function associated with the qth order statistic (see, e.g.,
Andrews and Andrews (1962), Nakamura (2009)). It is also called the density of
the length-biased (or size-biased) of order 1 weighted distribution of the qth order
statistic. This is clearly decreasing, because so is the reliability function. When q =
1, this is obviously the density function of the series system
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fT (t) = nλ exp(−nλt), t > 0.

For q = n yields

fT (t) = λ
∑n

i=1
1
i

{1− [1− exp(−λt)]n}, t > 0.

We provide some examples of signatures (8) for n = 5 and 1 ≤ q ≤ 5. They have

the following forms (1, 0, 0, 0, 0),
(

4
9 ,

5
9 , 0, 0, 0

)
,
(

12
47 ,

15
47 ,

20
47 , 0, 0

)
,
(

12
77 ,

15
77 ,

20
77 ,

30
77 , 0

)
, and

(
12

137 ,
15
137 ,

20
137 ,

30
137 ,

60
137

)
.

Theorem 1 together with Remark 1 describe necessary conditions for getting
unimodality of the system lifetime density function. Combining the respective
assumptions we obtain the following conditions:

(a) q = p, p+1, i.e., all the p-out-of-n systems, p = 1, . . . , n, and all the mixtures
of p-out-of-n and (p + 1)-out-of-n systems,

(b) q ≥ p+ 2, and unimodality of the sequence ar = (n+ 1− r)sr , r = p, . . . , q.

Below we present more restrictive assumptions guarantying strong unimodality of
the respective density function.

Theorem 2 Assume the model and notation of Theorem 1.

(a) If q = p, then fT = fp:n is strongly unimodal.
(b) If q = p + 1, the density function (5) is strongly unimodal iff

0 < sp = 1− sp+1 ≤ n− p

n− p + 1
, p = 1, . . . , n− 1. (9)

(c) If q ≥ p + 2 and sequence

br = (n− r)

(
sr+1

sr
− 1

)
, r = p, . . . , q, (10)

is non-increasing, then (5) is strongly unimodal.

Remark 4 Inequality (9) is equivalent to (10) in the case q = p + 1. We consider
q = p+1 and q > p+1 cases separately because (9) gives necessary and sufficient
conditions for strong unimodality whereas (10) provides only a sufficient condition.

Remark 5 Strong unimodality obviously implies classical unimodality. We can also
check that the conditions of strong unimodality of Theorem 2 are more restrictive
than the conditions of unimodality presented above. Although the distribution of
a single order statistic is strongly unimodal, in the case of mixtures of adjacent
order statistics which are unimodal (see Theorem 1(b(i)) we need extra conditions
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in order to obtain the strong unimodality (see Theorem 2(b)). We also show that
non-increasing property of br , r = p, . . . , q, implies that of ar , r = p, . . . , q. To
prove the statement, we assume the former. It follows that either

ar+1 − ar

sr
= (n− r)sr+1 − (n+ 1− r)sr

sr
, r = p, . . . , q,

does not change the sign, or it is first positive, then possibly equals zero, and finally
negative. Due to the fact that

aq+1−aq
sq

= −(n+ 1− q) < 0, sequence ar+1−ar
sr

, and,
in consequence, ar+1 − ar itself, r = p, . . . , q − 1, is either still non-positive, or
first positive, then possibly equals zero, and finally it becomes negative. Therefore
we observe that sequence ar = (n+1−r)sr , r = p, . . . , q, is either non-increasing
or unimodal.

Proof of Theorem 2 Due to the classic result of Ibragimov (1956), strong uni-
modality of the system lifetime distribution is equivalent to logarithmic concavity

of the associated density function (5). In our proof we check if the ratio
f ′T (t)
fT (t)

is
non-increasing on R+.

(a) For the series system ln f1:n(t) = −nλt, t > 0, is obviously concave. For
p = q ≥ 2, we have from (5) and (6),

f ′T (t)
fT (t)

= λ
(n+1−p)(n+2−p)Bp−2,n(Fλ(t))−(n+1−p)2Bp−1,n(Fλ(t))

(n+ 1− p)Bp−1,n(Fλ(t))

= λ(n+ 2− p)
Bp−2,n(Fλ(t))

Bp−1,n(Fλ(t))
− λ(n+ 1− p)

= λ(p − 1)

(
1

Fλ(t)
− 1

)
− λ(n+ 1− p) = λ(p − 1)

Fλ(t)
− λn,

which is clearly decreasing.
(b) Let 2 ≤ q = p + 1 ≤ n. For p = 1, we have

f ′T (t)
fT (t)

= λ
n[(n−1)(1−s1)−ns1]B0,n(Fλ(t))−(n−1)2(1−s1)B1,n(Fλ(t))

ns1B0,n(Fλ(t))+(n− 1)(1− s1)B1,n(Fλ(t))

= λ
[(n− 1)(1− s1)− ns1][1− Fλ(t)] − (n− 1)2(1− s1)Fλ(t)

s1[1− Fλ(t)] + (n− 1)(1− s1)Fλ(t)
.

Since

d

dx

a(1− x)− bx

c(1− x)+ dx
= −bc − ad

[c(1− x)+ dx]2 ,

we deduce
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d

dt

f ′T (t)
fT (t)

= −λ fλ(t) (n− 1)(1− s1)[(n− 1)(1− s1)+ (n− 1)s1 + ns1]
[s1[1− Fλ(t)] + (n− 1)(1− s1)Fλ(t)]2 .

Negativity of the right-hand side expression is ensured by positivity of the
factors in the numerator. This is just our assumption.

Taking p = q − 1 ≥ 2, we obtain

f ′T (t)
fT (t)

= λ(n+ 1− p)(n+ 2− p)spBp−2,n(Fλ(t))

(n+ 1− p)spBp−1,n(Fλ(t))+ (n− p)(1− sp)Bp,n(Fλ(t))

+ λ(n+ 1− p)[n− p − (2n+ 1− 2p)sp]Bp−1,n(Fλ(t))

(n+ 1− p)spBp−1,n(Fλ(t))+ (n− p)(1− sp)Bp,n(Fλ(t))

− λ(n− p)2(1− sp)Bp,n(Fλ(t))

(n+ 1− p)spBp−1,n(Fλ(t))+ (n− p)(1− sp)Bp,n(Fλ(t))

= λ(n+ 1− p)(n+ 2− p)spBp−2,n(Fλ(t))

(n+ 1− p)spBp−1,n(F )+(n−p)(1−sp)Bp,n(Fλ(t))

+ λ(n+ 1− p)[n− p−(n+1−p)sp]Bp−1,n(Fλ(t))

(n+1−p)spBp−1,n(F )+(n−p)(1−sp)Bp,n(Fλ(t))
−λ(n− p)

= λp
(p−1)sp[1−Fλ(t)]2+[n−p−(n+1−p)sp]Fλ(t)[1−Fλ(t)]

pspFλ(t)[1−Fλ(t)]+(n− p)(1− sp)F
2
λ (t)

−λ(n− p).

Dividing the numerator and denominator by [1−Fλ(t)]2, and introducing a new
variable x = x(t) = Fλ(t)

1−Fλ(t)
= exp(λt) − 1 that is increasing and transforms

R+ onto itself, we obtain

f ′T (t)
fT (t) |x=exp(λt)−1

= λp
a + bx

cx + dx2 − λ(n− p), (11)

where

a = (p − 1)sp > 0,

b = n− p − (n+ 1− p)sp ∈ [−1, n− p], (12)

c = psp > 0,

d = (n− p)(1− sp) > 0.

It suffices to check when the right-hand side of (11) is decreasing on the positive
half-axis. It has the derivative
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d

dx

[
λp

a + bx

cx + dx2
− λ(n− p)

]
= λp

−bdx2 − 2adx − ac

(cx + dx2)2
.

If b ≤ 0, the derivative is obviously negative for all x > 0. If b > 0, it is
negative when x is close to 0, and positive for large x’s. It follows that the
former condition with b defined in (12) is the necessary and sufficient condition
for log-concavity of fT .

(c) Under the assumption given in (10),

br − 1 = (n− r)sr+1 − (n+ 1− r)sr

sr
= ar+1 − ar

sr
, r = p, . . . , q,

is non-increasing as well. It follows that for each real c sequence br−1− c
λ
, r =

p, . . . , q, changes the sign once at most, and if so, it is first positive, and finally
negative. The same concerns

dc(r) = (n+ 1− r)sr

(
br − 1− c

λ

)

= (n+1−r)
[
(n−r)sr+1−(n+1−r)sr− c

λ
sr

]
, r = p, . . . , q.

For a moment exclude the case p = 1, and for a given p ≥ 2 define functions

c(t) = λ2(n+1−p)(n+2−p)spBp−2,n(Fλ(t))+λ2
q∑

r=p
dc(r)Br−1,n(Fλ(t))

= λ2(n+1−p)(n+2−p)spBp−2,n(Fλ(t))

+λ2
q∑

r=p
(n+1−r)[(n−r)sr−(n+1−r)sr ]Br−1,n(Fλ(t))

−cλ
q∑

r=p
(n+1−r)srBr−1,n(Fλ(t))

= f ′T (t)−cfT (t), t > 0, c ∈ R. (13)

Consider the signs of coefficients of the above linear combination of Bernstein
polynomials given in (13). The first one appearing at the (p − 2)nd polynomial
is positive, and the next ones have at most one sign change from + to −. It
means that for every c ∈ R the sign order of the whole sequence is either + or
+−, and the property is inherited by f ′T (t) − cfT (t), t > 0, due to Lemma 1.

Consequently,
f ′T (t)
fT (t)

crosses an arbitrary horizontal level c at most once, and if

so, it does from top down. This provides the conclusion that
f ′T (t)
fT (t)

is decreasing
on R+ and its antiderivative ln fT (t) is concave there, as desired.
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For p = 1 the reasoning is similar. The only difference is that the first term with
(p − 2)nd polynomial does not appear in Eq. (13). �

3 Failure Rate

It is well-known that every k-out-of-n system composed of elements with I.I.D. IFR
lifetime distributions has the IFR distribution as well (cf., e.g., Barlow and Proschan
1975, Chapter 4, Theorem 5.8, and Ross 2010, Example 9.24). This is obviously true
if the component lifetimes are exponential in particular. If, moreover, this is a series
system, its failure rate is constant, which means that the system lifetime distribution
is also a member of the DFR family. The other systems are treated in the following
theorem.

Theorem 3 Assume that an n-component mixed system has signature s =
(0, . . . , 0, sp, . . . , sq, 0, . . . , 0) for some 1 ≤ p < q ≤ n, and its components
have I.I.D. exponential lifetimes with a common density function fλ(t) =
λ exp(−λt), t > 0, for some λ > 0. If the sequence

gr = (n+ 1− r)sr∑q
i=r si

, r = p, . . . , q, (14)

is non-decreasing (non-increasing, respectively), then the system lifetime has an IFR
(DFR, respectively) distribution.

Remark 6 Sequence (14) is non-negative, and its extreme elements gp = (n+ 1−
p)sp and gq = n+1−q are strictly positive. Monotonicity of the sequence excludes
possibility that there exists p < r < q such that sr = gr = 0. This is a property of
all coherent system signatures which may have some zeros at the beginning and the
end, but they cannot have any zeros between positive elements.

Remark 7 Bieniek and Burkschat (2019) use monotonicity conditions with more
general g̃r = γr sr∑q

i=r si
, where γr > 0 replacing the gr in (14). They establish

preservation of IFR and DFR properties by system lifetimes in the so-called failure
dependent proportional hazard reliability model. In their model, consecutive failures
of system components have distributions identical with generalized order statistics
with positive parameters γr , and γr = n+ 1− r in the classical I.I.D. case.

Corollary 1 Under assumptions of Theorem 3 with q = p + 1, condition sp =
1 − sp+1 ≤ n−p

n+1−p is sufficient and necessary for the IFR property of the system
lifetime. The inequality is reversed iff the system lifetime has a DFR distribution.

Note that the conditions for strong unimodality and increasing failure rate for
mixtures of two adjacent order statistics are identical. We further show that the same
concerns the other systems.
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Proof of Theorem 3 The proof is similar to that of Theorem 2. We focus on the
assumption that (14) is non-decreasing. Then for every positive c the difference
gr − c

λ
as well as

(
gr − c

λ

)∑q
i=r si = (n + 1 − r)sr − c

λ

∑q
i=r si , r = p, . . . , q,

have either a fixed sign or change sign from + to −. Lemma 1 implies that

fT (t)− cFT (t) = λ

q∑

r−p

[

(n+ 1− r)sr − c

λ

q∑

i=r
si

]

Br−1,n(Fλ(t)), t > 0,

either does not change the sign or the sign does it once from + to −. The same
conclusion concerns fT (t)

F T (t)
− c = λT (t) − c. Therefore λT (t) itself is decreasing

on R+. The proof that non-increase of (14) implies the DFR property of the system
lifetime distribution is analogous. �
Corollary 2 Non-decreasing property of sequence (14) assuring increasing failure
rate of the system lifetime coincides with non-increasing property of sequence (10)
guarantying strong unimodality of the respective distribution.

Proof Consider the sequences αr = (n − r)sr+1 − (n + 1 − r)sr and βr =
sr , r = p, . . . , q. Their partial sums are

∑q
i=r αi = −(n + 1 − r)sr and∑q

i=r βi =
∑q

i=r si , r = p, . . . , q. By Lemma 2, sequence

br − 1 = (n− r)sr+1 − (n+ 1− r)sr

sr
= αr

βr
, r = p, . . . , q,

does not increase iff so does

∑q
i=r αi∑q
i=r βi

= − (n+ 1− r)sr∑q
i=r si

, r = p, . . . , q.

The latter simply means non-decreasing property for (14). �
On the other hand, we have the following.

Proposition 1 Strong unimodality of a life distribution implies non-decreasing
property for its failure rate.

Proof Log-concavity of a density function f implies that there exists a monotone
right continuous version f ′ of its derivative. Moreover, we have

f ′(t)
f (t)

≥ f ′(t + s)

f (t + s)

for all t, s ≥ 0. Consequently,

f ′(t)f (t + s)− f ′(t + s)f (t)

f 2(t + s)
= d

dt

f (t)

f (t + s)
≥ 0,
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for every non-negative t and s. It follows that for every s ≥ 0 function t �→ f (t+s)
f (t)

is non-increasing with respect to t . The inequality is inherited by

∫ ∞

0

f (t + s)

f (t)
ds =

∫ ∞

t

f (x)

f (t)
dx = 1− F(t)

f (t)
.

It follows that λ(t) = f (t)

F (t)
, t ≥ 0, is non-decreasing. �

4 Mean Residual Lifetime

It is well-known that the IFR distributions have decreasing mean residual lifetime
(see, e.g., Bryson and Siddiqui 1969; Hollander and Proschan 1984). In fact, the
proof is analogous to that of Proposition 1. Similarly, the DFR property implies
IMRL. Due to the results of the previous section, all the k-out-of-n systems and the
mixtures with q = p + 1 and sp = 1 − sp+1 ≤ n−p

n+1−p have a DMRL distribution.

Moreover, the series system and the mixed systems with sp = 1 − sp+1 ≥ n−p
n+1−p

have an IMRL distribution. Below we consider other mixed and coherent systems.

Theorem 4 Assume the conditions and notation of Theorems 1–3, and introduce
Sr = 1

n+1−r
∑n

j=r sj , r = 1, . . . , n, denoting the averages of the last n + 1 − r

signature components. If a system has a signature s such that

hr =
∑q

i=r Si
∑q

i=r si
, r = p, . . . , q, (15)

is non-increasing, then the system lifetime has distribution with decreasing mean
residual lifetime. If p = 1, and (15) is non-decreasing, then the system has an
IMRL distribution.

Proof Applying (3) and (4), we conclude

∫ ∞

t

Bj,n(Fλ(s))ds = 1

λ(n− j)

j∑

i=0

Bi,n(Fλ(t))

for j = 1, . . . , n− 1. Accordingly, by (3) again, we get

∫ ∞

t

F r:n(s)ds =
r−1∑

j=0

∫ ∞

t

Bj,n(Fλ(s))ds = 1

λ

r−1∑

j=0

1

n− j

j∑

i=0

Bi,n(Fλ(t))

= 1

λ

r−1∑

j=0

⎛

⎝
r−1∑

i=j

1

n− i

⎞

⎠Bi,n(Fλ(t)).
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Finally,

∫ ∞

t

F T (s)ds=
n∑

r=1

sr

∫ ∞

t

F r:n(s)ds=1

λ

n∑

r=1

sr

r−1∑

j=0

⎛

⎝
r−1∑

i=j

1

n−i

⎞

⎠Bi,n(Fλ(t))

= 1

λ

n∑

r=1

(
n∑

i=r

∑n
j=i sj

n+1−i

)

Br−1,n(Fλ(t))=1

λ

n∑

r=1

(
n∑

i=r
Si

)

Br−1,n(Fλ(t)).

The mean residual lifetime of the system has the form

μT (t) = E(T − t |T > t) =
∫∞
t

F T (s)ds

F T (t)
= 1

λ

∑n
r=1

(∑n
i=r Si

)
Br−1,n(Fλ(t))

∑n
r=1

(∑n
i=r si

)
Br−1,n(Fλ(t))

.

If sq > 0 = sq+1 = . . . = sn for some q ≤ n − 1, we have
∑n

i=r si =
∑n

i=r Si =
0, r = q + 1, . . . , n. This justifies rewriting the above expression for the mean
residual life

μT (t) = 1

λ

∑q

r=1

(∑q
i=r Si

)
Br−1,n(Fλ(t))

∑q

r=1

(∑q
i=r si

)
Br−1,n(Fλ(t))

.

Mimicking the reasoning used in the proofs of the previous theorems we arrive at

the conclusions that if the sequence hr =
∑q

i=r Si∑q
i=r si

, r = 1, . . . , q, is non-increasing,

then the above MRL function is decreasing on (0,∞). Non-decreasing property
of the sequence results in the IMRL property of the function. However, if sp >

0 = sr , r = 1, . . . , p − 1, for some p ≥ 2, then
∑q

i=r si = 1 and
∑q

i=r Si =∑p
i=r

1
n+1−r +

∑q

r=p+1 Sr, r = 1, . . . , p. It follows that the subsequence

∑q
i=r Si

∑q
i=r si

=
p∑

i=r

1

n+ 1− r
+

q∑

r=p+1

Sr, r = 1, . . . , p,

is strictly decreasing. If the subsequence
∑q

i=r Si∑q
i=r si

, r = p, . . . , q is non-increasing

as well, then the MRL function is decreasing. For increase of the function we need
p = 1 and non-decrease of the sequence hr for r = 1, . . . , q. �
Corollary 3 The necessary condition for the DMRL property of the system lifetime
distribution presented in Theorem 4 is identical with the conditions of Theorems 2
and 3 assuring strong unimodality and IFR property of the system lifetime.

Proof Owing to Corollary 1, it suffices to verify that non-increase of (14) is
equivalent to non-decrease of (15). Accordingly, we claim that
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∑q
i=r si∑q
i=r Si

, r = p, . . . , q,

is non-decreasing iff so is

(n+ 1− r)sr∑q
i=r si

= sr

Sr

, r = p, . . . , q.

Defining αr = sr and βr = Sr , which implies αr
βr
= (n+1−r)sr∑q

i=r si
and

∑q
i=r αi∑q
i=r βi

=
∑q

i=r si∑q
i=r Si

, r = p, . . . , q, we merely refer to Lemma 2 in order to reach the final

conclusion. �.

Remark 8 The conclusion of Corollary 3 can be represented as equivalent to the
following conditions.

(a) Sequence

1

1− br
= sr

(n+ 1− r)sr − (n− r)sr+1
, r = p, . . . , q,

is non-increasing.
(b) Sequence

∑q
i=r sr∑q

i=r [(n+ 1− r)sr − (n− r)sr+1]
=

∑q
i=r si

(n+ 1− r)sr
= Sr

sr
, r = p, . . . , q,

is non-increasing.
(c) Sequence

∑q
i=r Sr

∑q
i=r sr

, r = p, . . . , q,

is non-increasing.
Notice that the implications of (c), (b), and (a), in order, are conditions (C),

(B), (A), given below.
(C)

μT (t) =
∫∞
t

F T (u)du

FT (t)
, t > 0,

is non-increasing,
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(B)

d
dt

∫∞
t

F T (u)du

d
dt
F T (t)

= −FT (t)

−fT (t) , t > 0,

is non-increasing, which means that λT (t) = fT (t)

F T (t)
, t > 0, is non-decreasing,

(A)

d2

dt2

∫∞
t

F T (u)du

d2

dt2
FT (t)

= fT (t)

−f ′T (t)
, t > 0,

is non-increasing, i.e., d
dt

ln fT (t) = f ′T (t)
fT (t)

, t > 0, is non-increasing.

Clearly strong unimodality, IFR, and DMRL are not equivalent properties of the
system lifetimes. However, we find the above observation interesting, although we
do not have a reasonable justification for it.

Example 2 We consider the weakest conditions of Theorems 2–4 which assure
strong unimodality, increasing failure rate, and decreasing mean residual life of
the system lifetime distribution. As we checked above, all the k-out-of-n systems
possess these properties. For 1 ≤ p < q ≤ n we here check which signatures
(0, . . . , 0, sp, . . . , sq, 0, . . . , 0) assure constancy of sequences (10), (14), and (15).
Theorem 3 asserts that a signature with constant value for the gr in (14) represents
the distribution with a constant failure rate, which is exponential. Analogous
conclusion can be drawn from Theorem 4. We claim that the signatures with
constant (10), (14), and (15) have the forms

sr =
{(

n−r
q−r

)
/
(
n+1−p
q−p

)
, r = p, . . . , q,

0, r = 1, . . . , p − 1, q + 1, . . . , n.
(16)

We first verify that for r = p, . . . , q the following equalities hold:

sr =
(
n− r

q − r

)
sq, (17)

q∑

i=r
si =

(
n+ 1− r

q − r

)
sq .

Both the equalities are trivially true for r = q. Assume that they hold for p + 1 ≤
r + 1 ≤ q, i.e.,

sr+1 =
(
n− r − 1

q − r − 1

)
sq,

q∑

i=r+1

si =
(

n− r

q − r − 1

)
sq . (18)
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Relations br = (n − r)
(
sr+1
sr
− 1

)
= bq = q − n imply sr = n−r

q−r sr+1, r =
p, . . . , q − 1. Using (18) we determine

sr = n− r

q − r

(
n− r − 1

q − r − 1

)
sq =

(
n− r

q − r

)
sq

and

q∑

i=r
si =

(
n− r

q − r

)
sq +

(
n− r

q − r − 1

)
sq =

(
n+ 1− r

q − r

)
sq .

Condition

1 =
q∑

i=p
si =

(
n+ 1− p

q − p

)
sq

allows us to determine sq = 1/
(
n+1−p
q−p

)
, and, in combination with (17), provides the

final claim (16).
From the equality (n+ 1− r)sr = (n+ 1− q)

∑q
i=r sr we obtain

fT (t)

F T (t)
=
∑q

r=p λ(n+ 1− r)srBr−1,n(Fλ(t))
∑q

r=p
∑q

i=r srBr−1,n(Fλ(t))
= λ(n+ 1− q).

This means that the system with signature (16) has the same lifetime distribution
as the series system with n + 1 − q components. We also note that (16) satisfy
sr+1 = q−r

n−r sr ≤ sr , with strict inequality for q < n. Non-increasing property
of (16) contradicts the increasing property of (8). Signatures (16) specified for

n = 5 with q − p ≥ 2 have the forms
(

3
5 ,

3
10 ,

1
10 , 0, 0

)
,
(

0, 1
2 ,

1
3 ,

1
6 , 0

)
,

(
0, 0, 1

3 ,
1
3 ,

1
3

)
,
(

2
5 ,

3
10 ,

1
5 ,

1
10 , 0

)
,
(

0, 1
4 ,

1
4 ,

1
4 ,

1
4

)
, and

(
1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5

)
.

Example 3 There are many coherent systems which satisfy the conditions of
Theorem 1 guarantying unimodality and decreasing properties of the density
functions of their lifetimes. It is, though, difficult to find systems with signatures
guarantying strong unimodality, IFR and DMRL properties, except for the classical
k-out-of-n systems. One such example is the 5-component system with minimal
path sets {1, 2, 3} and {1, 4, 5} (for the definition of the notion, see, e.g., Bar-
low and Proschan 1975, p. 9, Ross 2010, Subsection 9.2.1), and lifetime T =
min{T1,min{T2, T3},min{T4, T5}}. It has signature

(
1
5 ,

3
5 ,

1
5 , 0, 0

)
(cf. Navarro and

Rubio 2010, Tables 1 and 2, system 10). The respective vector ar = (n + 1 −
r)sr , r = 1, 2, 3, takes on values a1 = 1, a2 = 12

5 , a3 = 3
5 , which guarantees



62 T. Rychlik and M. Szymkowiak

unimodality of the system lifetime density function. It is also strongly unimodal, and
the corresponding failure rate and mean residual life are increasing and decreasing,

respectively, because sequence br = (n − r)
(
sr+1
sr
− 1

)
, r = 1, 2, 3, with values

b1 = 8, b2 = b3 = −2 is non-increasing. Observe that the dual system with

minimal path sets {1}, {2, 4}, {2, 5}, {3, 4}, {3, 5} and signature
(

0, 0, 1
5 ,

3
5 ,

1
5

)

(see Navarro and Rubio 2010, Tables 1 and 2, system 172) satisfies a3 = 3
5 , a4 =

6
5 , a5 = 1

5 and b3 = 8, b2 = −1, b5 = 0. It follows that its unimodality is
guaranteed, but the other properties are not.

Example 4 We finally analyze a family of n-component systems, n ≥ 3, with
minimal path sets P1 = {2, . . . , n}, and Pi = {1, i}, i = 2, . . . , n, (cf. Bieniek

and Burkschat 2018, Example 3.1). They have signatures (0, 1, 0),
(

0, 1
2 ,

1
2 , 0

)
,

and
(

0, 2
n
, 1
n
, . . . , 1

n
, 2
n
, 0
)

, when n = 3, 4, and n ≥ 5, respectively. Theorem 1(bi)

and Theorem 2(a,b) assert that the system lifetime density functions in cases n = 3
and 4 are both increasing-decreasing and log-concave. For n = 5, sequence
ar = (6 − r)sr , r = 2, 3, 4, takes on values 8

5 ,
3
5 , and 4

5 , which means that the
assumptions of Theorem 1 do not guarantee unimodality of fT . A similar conclusion
is derived for n ≥ 6, because an−3 = an−1 = 4

n
> an−2 = 3

n
. It follows that the

assumptions of Theorems 2, 3, and 4 do not ensure strong unimodality, increasing
failure rate, and decreasing mean residual life, either.

It occurs that these properties are preserved for small system sizes, and disappear
gradually as n increases. All of them hold for the systems with 5 and 6 components.
In the cases 7 ≤ n ≤ 12, only decreasing mean residual life remains valid, and the
others are not. Eventually, for n ≥ 13 the DMRL property vanishes as well. This is
illustrated in Figs. 1, 2, and 3, where the graphs of density function fT , derivative
of its logarithm (ln fT )′, failure rate λT , and mean residual life μT functions are
presented for n = 5, 9, and 15. We assumed here that the component lifetimes are
standard exponential. In order to improve visuality of the results we rescaled the
time replacing t running over the whole positive half-axis by 0 < u = − ln(1 − t)

< 1.
Note that for the systems of this type we do not observe the case when the strong

unimodality property fails to hold, whereas IFR and DMRL properties still hold.
This happens, e.g., for the 5-component system with minimal path sets Pi = {1, i+
1}, i = 1, . . . , 4, and signature

(
1
5 ,

1
5 ,

1
5 ,

2
5 , 0

)
(see Fig. 4).
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Fig. 1 Density function fT , derivative of its logarithm (ln fT )′, failure rate λT , and mean residual

life μT of the lifetime distribution of the system with signature
(
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)

and n = 5
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Fig. 2 Density function fT , derivative of its logarithm (ln fT )′, failure rate λT , and mean residual

life μT of the lifetime distribution of the system with signature
(
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, . . . , 1

n
, 2
n
, 0
)

and n = 9
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Fig. 3 Density function fT , derivative of its logarithm (ln fT )′, failure rate λT , and mean residual

life μT of the lifetime distribution of the system with signature
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Fig. 4 Density function fT , derivative of its logarithm (ln fT )′, failure rate λT , and mean residual
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Part II
Univariate Distribution Theory



A Note on the Product of Independent
Beta Random Variables

Filipe J. Marques, Indranil Ghosh, Johan Ferreira, and Andriëtte Bekker

Abstract In this work, approximations for the distribution of the product of
independent Beta random variables, based on mixtures of generalized Gamma
distributions, are proposed. These mixtures are finite, and the parameters involved
are determined using a two-step moment matching technique. A numerical study
is conducted in order to assess the precision of the approximation proposed when
compared with other approximations based on mixtures of Gamma distributions
or mixtures of Beta distributions. Some observations related with the computational
implementation of each type of approximations are discussed, particularly that these
approximations may be simple yet efficient alternatives to several other approaches
which are more complex in nature.

1 Introduction

The distribution of the product of independent Beta random variables was studied
extensively in the last century. Several approaches have been proposed based on dif-
ferent representations, for example, in the form of series expansions (Moschopoulos
1986; Tang and Gupta 1984), Meijer G-function (Meijer 1946; Nagar et al. 1985),
or Fox H-function (Carter and Springer 1977; Fox 1961) representations, among
others (see Coelho and Alberto (2012) and the references cited therein). However, as
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already mentioned by other authors (Coelho and Alberto 2012), despite the existing
computational power, these representations are not always easy or straightforward
to implement. Recently, new approximations have been proposed, based on the
concept of near-exact distributions (Coelho 2004), which have been used with
excellent results in terms of precision and that can be implemented in computational
terms (Coelho 2004; Coelho and Alberto 2012).

The importance and significance of the distribution of the product of independent
Beta random variables can be easily justified, since it is the distribution of Wilks’s
lambda statistic and the distribution of most of the likelihood ratio statistics used to
test the structure of a covariance matrix such as the sphericity, block independence,
circularity, and compound symmetry structures of a covariance matrix (see, for
example, (Coelho et al. 2010; Marques and Coelho 2008, 2013a,b; Marques et al.
2011) and the references cited therein).

The aim of this paper is to provide an approximation based on mixtures of
generalized Gamma distributions to approximate the distribution of the product of
independent Beta random variables, which is simple in practice, and at the same
time precise. Moreover, we aim to analyze and discuss the performance of other
simple approximations. The motivation for this approximation arises from the work
of Marques et al. (2019), where it was shown that a generalized Gamma distribution
can be represented as a mixture of generalized Gamma distributions with weights
given by the probability mass function (p.m.f.) of a negative Binomial distribution
and with the shape parameters of the associated generalized Gamma distributions
given by a sequence of the type a + n with n = 0, . . . and a > 0. This result
has motivated, in the same reference, the use of mixtures of Generalized Gamma
distributions to approximate the distributions of the sum of independent Gamma,
Weibull, or Rayleigh random variables, which turned out to be a useful strategy.

To establish the notation, if the random variable Yi has a Beta distribution with
parameters ai and bi , we write Yi ∼ Beta(ai, bi), i = 1, . . . , p, then Wi = − log Yi
has a Logbeta distribution with parameters ai and bi . It is well known that a
single Logbeta distribution may be represented as an infinite mixture of Exponential
distributions, and since the Exponential distribution is a particular case of the
generalized Gamma distribution, we may use the results in Marques et al. (2019)
to show that a Logbeta distribution may be represented as an infinite mixture of
generalized Gamma distributions. Consequently, the study of the distribution of the
product of independent Beta random variables is the same as the study of the sum
of independent Logbeta distributions. A similar procedure to the one considered in
Marques et al. (2019) may thus be used to address the distribution of the sum of
independent Logbeta random variables.

The paper is organized as follows. In Sect. 2, the approximation based on
mixtures of generalized Gamma distributions is derived. Additionally, other approx-
imations, one based on a single Beta distribution and/or the mixture of two Beta
distributions and the others based on the mixture of Gamma distributions, are also
presented. In Sect. 3, numerical studies and simulations are carried out to assess the
precision and advantages in using the mixtures presented in Sect. 2. Finally, some
concluding remarks are presented in Sect. 4.
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2 Approximations Based on Mixtures

In this section, we present the approximations considered for the probability density
function (p.d.f.) and cumulative distribution function (c.d.f.) of the product of
independent Beta random variables. If Y1, . . . , Yp are independent random variables
with Yi ∼ Beta(ai, bi) i = 1, . . . , p, with p.d.f. given by

fYi (y) =
1

B(ai, bi)
(1− y)bi−1 yai−1 , 0 < y < 1 , ai > 0 , bi > 0 ,

we are interested in the distribution of Y =∏p

i=1 Yi . However, in most of the cases,
it is easier to consider

W = − log

(
p∏

i=1

Yi

)

= −
p∑

i=1

logYi =
p∑

i=1

Wi ,

where Wi = − log Yi . We say that the random variable Wi = − log Yi has a Logbeta
distribution with parameters ai > 0 and bi > 0, and we denote this fact by Wi ∼
Logbeta(ai, bi), if its p.d.f. is given by

fWi
(w) = 1

B(ai, bi)
exp{−aiw}(1− exp{−w})bi−1 , w > 0 . (1)

Once the approximating p.d.f. and c.d.f. are obtained for W, by simple transforma-
tion, we may obtain the corresponding p.d.f. and c.d.f. for Y .

The approximations proposed are based on mixtures of distributions, or on a
single Beta distribution, and on a moment matching technique. With regard to the
h-th moment of Y = ∏p

i=1 Yi , where Yi are independent, the moments Y can be
easily obtained as

E(Yh) =
p∏

i=1

E(Yh
i ) =

p∏

i=1

�(ai + bi)

�(ai)

�(ai + h)

�(ai + bi + h)
.

Since the random variable W has moments of any order, its moments may be
obtained through the derivatives of the corresponding characteristic function, that
is,

E(Wh) = i−h ∂h�W(t)

∂th

∣
∣∣∣
t=0

, (2)

where
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�W(t) =
p∏

i=1

�(ai + bi)

�(ai)

�(ai − it)

�(ai + bi − it)
. (3)

Since the approximating distributions for the distribution of Y and W are based
on mixtures of distributions with moments of any order, the expression of the h-th
moment can be easily derived. More details are given in the next subsections.

2.1 Mixtures of Generalized Gamma Distributions

In Marques et al. (2019), it was shown that a single generalized Gamma distribution
can be represented as a mixture of generalized Gamma distributions. More precisely,
if a random variable X has a generalized Gamma distribution with p.d.f. given by

f (x) =
γ e

−
(
x−μ
β

)γ (
x−μ
β

)αγ−1

β�(α)
,

α > 0, β > 0, γ > 0, and μ ∈ R, which we denote by X ∼ G�(α, β, γ, μ), then
the p.d.f. f (x), for λ > 0 such that λ < β, may be represented in the following
form:

fX(x) =
∞∑

n=0

f
NB

(
α,
(
β
λ

)−γ)(n)fG�(n+α,λ,γ,μ)(x) , x > 0 , (4)

where f
NB

(
α,
(
β
λ

)−γ)(.) is the p.m.f. of a negative Binomial distribution with

parameters α and
(
β
λ

)−γ
, and for a given n, fG�(n+α,λ,γ,μ)(.) is the p.d.f. of a

generalized Gamma distribution with parameters (n + α), λ, γ , μ . Note that a
random variable Y has a negative binomial distribution, denoted by Y ∼ NB(r, p)
with r > 0 and success probability p, if its p.m.f. is given by

fY (n) = (1− p)npr

(
n+ r − 1

r − 1

)
, n ≥ 0 .

The expression in (4) is the p.d.f. of a mixture of generalized Gamma distributions
with parameters (n + α), λ, γ , and μ and with weights given by the p.m.f. of a
negative Binomial distribution. This representation motivated the use of mixtures
of generalized Gamma distributions for the sum of independent Gamma, Weibull,
and Rayleigh random variables in Marques et al. (2019), which are all particular
cases of the generalized Gamma distribution. Interestingly, we may also represent
a Logbeta distribution as a mixture of generalized Gamma distributions: if the
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random variables Yi have a Beta distribution with parameters ai and bi , Yi ∼
Beta(ai, bi), then Wi = − log Yi ∼ Logbeta(ai, bi), and if we expand the factor
(1− exp{−w})bi−1 in the p.d.f. of Wi in (1), we obtain

fWi
(w) =

∞∑

j=0

(−1)j
⎛

⎝bi − 1
j

⎞

⎠

B(ai, bi)(ai + j)
(ai + j) exp{−(ai + j)w} , w > 0 ,

which corresponds to an infinite mixture of Exponential distributions with param-
eters 1/(ai + j). Note that if bi is an integer, then the mixture is finite with the
upper limit of the sum equal to bi − 1. The Exponential distribution is a particular
case of the Gamma distribution and clearly also a particular case of the generalized
Gamma distribution; thus, it follows from the results in Marques et al. (2019), for
some λ > 0, that

fWi
(w) =

∞∑

j=0

(−1)j
(
bi−1
j

)

B(ai, bi)(ai + j)

∞∑

n=0

fNB(1,λ(ai+j))(n)fG�(1+n,λ,1,0)(w) (5)

=
∞∑

j=0

∞∑

n=0

(−1)jλ
(
bi−1
j

)
(1−λ(ai+j))n

B(ai, bi)
fG�(1+n,λ,1,0)(w), w > 0, (6)

where in expression (5), fNB(1,λ(ai+j))(.) is the p.m.f. of a negative binomial
distribution with parameters 1 and λ(ai + j), and for a given n, fG�(1+n,λ,1,0)(.)
is the p.d.f. of a generalized gamma distribution with parameters 1 + n, λ, 1,
and 0. From expression (6), we may conclude that a Logbeta distribution may be
represented as a mixture of generalized Gamma distributions with weights given by

(−1)jλ
(
bi−1
j

)
(1− λ(ai + j))n

B(ai, bi)

and with the component distributions being generalized Gamma distributions with
parameters 1 + n, λ, 1, and 0, which correspond to Gamma distributions with
parameters 1+ n and λ.

Motivated by the previous results, and following the methodology proposed in
Marques et al. (2019), we will consider mixtures of generalized Gamma distribu-
tions as approximating distributions for the distribution of the sum of independent
Logbeta random variables. The p.d.f. and c.d.f. of W will be approximated,
respectively, by

fW̃1
(w) =

m∑

n=0

πnfG�(α+n,β,γ,0)(w) (7)
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and

FW̃1
(w) =

m∑

n=0

πnFG�(α+n,β,γ,0)(w) , (8)

where πn are the weights, and fG�(α+n,β,γ,0)(.) and FG�(α+n,β,γ,0)(.) are the p.d.f.
and c.d.f. of a generalized gamma distribution with parameters α + n, β, γ , and 0.

The parameters and weights in (7) and (8) will be determined using the algorithm
given below.

Algorithm 1 Mixtures of generalized Gamma distributions
(i) First, we simulate a small sample from the distribution of W , and then we fit a generalized

Gamma distribution to the data in order to obtain the initial values for α, β, and γ ;
(ii) then, using initial values of α, β, and γ obtained in the previous step, the “true” values for

α, β, and γ are determined numerically in such a way that the first three moments of the
approximating distribution are the same as the first exact three moments; that is, α, β, and γ

are obtained as solutions of the system of equations

E(Wh) = E(Xh)

i−h ∂h�W (t)

∂th

∣
∣∣
∣
t=0

=
βh�

(
α + h

γ

)

� (α)
(9)

for h = 1, . . . , 3 with X ∼ G�(α, β, γ, 0) and with �W(t) in (3);
(iii) for a given integer m and the values of α, β, and γ defined in the previous step, the first

m weights in the mixture are determined in such a way that the first m moments of the
approximating distribution are equal to the first exact m moments; note that the last weight
is equal to πm = 1 −∑m−1

n=0 πn. Thus, the first m weights in the mixture are determined as
solutions of the system of equations

i−h ∂h�W (t)

∂th

∣
∣∣
∣
t=0

=
m∑

n=0

πn

βh�
(
α + n+ h

γ

)

� (α + n)
(10)

for h = 1, . . . , m, with πm = 1−
m−1∑

n=0
πn and �W(t) in (3) .

With this procedure, it is possible to control the precision of the approximation
by increasing or decreasing the value of m. Once the approximating p.d.f and c.d.f.
are obtained for the distribution of W , it is easy by simple transformation, to obtain
the corresponding approximations for the distribution Y = ∏p

i=1 Yi . The precision
of such approximations is examined in Sect. 3.



A Note on the Product of Independent Beta Random Variables 75

2.2 A Single Beta or a Mixture of Two Beta Distributions

Since the support of Y = ∏p

i=1 Yi is the set (0, 1), it is also intuitive to consider a
Beta distribution or mixtures of Beta distributions to approximate the distribution of
Y . The approximation based on a single Beta distribution is quite easy to implement,
and the corresponding approximating p.d.f. and c.d.f. of Y are given by

fW̃2
(w) = fBeta(c,d)(w) (11)

and

FW̃2
(w) = FBeta(c,d)(w) , (12)

where fBeta(c,d)(.) and FBeta(c,d)(.) are the p.d.f. and c.d.f. of a Beta distribution
with parameters c and d. The parameters c and d are obtained using a moment
matching technique, that is, by matching the first two exact moments, and thus as
solution of the following system of equations

p∏

i=1

�(ai + bi)

�(ai)

�(ai + h)

�(ai + bi + h)
= �(c + d)

�(c)

�(c + h)

�(c + d + h)
, (13)

for h = 1, 2 .
However, we face additional problems (illustrated in the next section) if we

want to consider mixtures of Beta distributions, since the numerical computation
of the parameters is not easy. For the mixture of two Beta distributions, we have
to determine the five parameters of the distribution, that is, one weight and four
parameters. In this case, the p.d.f. and c.d.f. of Y will be approximated, respectively,
by

fW̃3
(w) = π1fBeta(c,d)(w)+ (1− π1)fBeta(e,f )(w) (14)

and

FW̃3
(w) = π1FBeta(c,d)(w)+ (1− π1)FBeta(e,f )(w) , (15)

where π1 and 1 − π1 are the weights. The parameters π1, c, d, e, and f are
determined by matching the first five exact moments and thus as solution of the
system of equations

p∏

i=1

�(ai + bi)

�(ai)

�(ai + h)

�(ai + bi + h)
= π1

�(c + d)

�(c)

�(c + h)

�(c + d + h)
(16)

+(1− π1)
�(e + f )

�(e)

�(e + h)

�(e + f + h)
,
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for h = 1, . . . , 5 . In this case, we do not consider mixtures of more than two
Beta distributions, since it becomes challenging to obtain a numeric solution for
the system of equations in (16). The process may be summarized in the following
algorithm.

Algorithm 2 A single Beta or a mixture of two Beta distributions
(i) First, we simulate a small sample from the distribution of Y , and then we fit to the data (A) a

single Beta distribution in order to obtain the initial values for c and d or (B) a mixture of two
Beta distributions such that we may obtain initial values for c, d, e, f , and π1;

(ii) then, using as initial values for c, d, e, f , and π1 obtained in the previous step, the “true”
values for c, d, e, f , and π1 are determined numerically in such a way that (A) the first two
moments of single Beta distribution are the same as the first two exact moments, that is, c and
d are obtained as solution of the system in (13) and (B) the first five moments of a mixture of
two Beta distribution are the same as the first five exact moments, that is, c, d, e, f , and π1
are determined as solutions of the system of equations in (16) .

2.3 Mixtures of Gamma Distributions: Type I

Here, we consider mixtures of Gamma distributions as an approximation for the
distribution of W = ∑p

i=1 Wi . This approximation is based on the results derived
for the ratio of two Gamma functions by Tricomi and Erdélyi (1951), which after
some algebraic manipulation (see Coelho et al. (2010) for further details) can
be used to show that the distribution of W may be approximated by an infinite
mixture of Gamma distributions all with the same rate parameter λ and with shape
parameters r + n for n = 0, 1, . . . . In order to overcome the computational
limitations involved when working with the referred infinite mixture, we consider a
truncated version of this result, being the approximating p.d.f. and c.d.f. given by

fW̃4
(w) =

m∑

n=0

πnf�(r+n,λ)(w) (17)

and

FW̃4
(w) =

m∑

n=0

πnF�(r+n,λ)(w) , (18)

where πn are the weights, and f�(r+n,λ)(w)(.) and F�(r+n,λ)(w)(.) are the p.d.f. and
c.d.f. of a Gamma distribution with rate parameter λ and shape parameters r+n, n =
0, . . . , m, where m is the number of exact moments matched by the approximating
distribution. This approximation is implemented as follows.
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Algorithm 3 Mixtures of Gamma distributions: Type I
(i) First, the parameters r and λ are defined in the following way (as suggested in Coelho et al.

(2010)): (a) the parameter r is chosen to be equal to the sum of the second parameters of
the Logbeta distributions of Wi , and thus r = ∑p

i=1 bi and (b) the parameter λ is chosen to
be equal to the rate parameter of a mixture of two Gamma distributions (with the same rate
parameter), which matches the first four exact moments; thus, it is determined together with
the weight θ and the shape parameters r1 and r2, such that

i−h ∂h�W (t)

∂th

∣
∣∣
∣
t=0

= θ λh
�(r1 + h)

�(r1)
+ (1− θ)λh

�(r2 + h)

�(r2)
, (19)

for h = 1, . . . , 4 and �W(t) in (3). It is easy to solve the system of equations in (19), but in
some cases, we may need to perform some prior simulation to have starting values for θ , r1,
r2, and λ;

(ii) after defining the values of r and λ, the weights πn (n = 0, . . . , m− 1) are determined as
solutions of the following system of equations:

i−h ∂h�W (t)

∂th

∣
∣∣
∣
t=0

=
m∑

n=0

πnλ
h �(r + n+ h)

�(r + n)
, h = 1, . . . , m , (20)

with πm = 1−∑m−1
n=0 πn and �W(t) in (3). This ensures that the first m moments of the

approximating distribution are equal to the corresponding exact moments.

In the next section, the precision of asymptotic approximation in (17) and (18)
will be analyzed, and it will be shown that in some cases, it is not the best option to
approximate the sum of independent Logbeta random variables.

2.4 Mixtures of Gamma Distributions: Type II

Finally, we also consider mixtures of Gamma distributions; however, in this case, the
shape parameter r is not equal to the sum of the second parameters of the Logbeta
distributions of Wi , as it happened in the previous section, but it will be obtained,
together with λ, as solution of the system of equations in (21). More precisely, we
consider as approximating p.d.f. and c.d.f. for the distribution of W , respectively, the
expressions in (17) and (18) but now, the parameters r and λ are both determined as
the parameters of a Gamma distribution which match the first two exact moments;
thus, this approximation is implemented by replacing the first step in Algorithm 3
as follows.

Note that, in step (i), we have analytical expressions, so the values of r and λ are
obtained in a straightforward manner.
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Algorithm 4 Mixtures of Gamma distributions: Type II
(i) First, the parameters r and λ are defined as the solution of the system of equations

i−h ∂h�W (t)

∂th

∣
∣∣
∣
t=0

= λh
�(r + h)

�(r)
, (21)

for h = 1, 2 and �W(t) in (3). The solution of this system of equations is equal to

r = − m2
1

m2
1 −m2

and λ = −m2
1 +m2

m1
,

where

m1 = i−1 ∂�W (t)

∂t

∣∣
∣∣
t=0

and m2 = − ∂2�W(t)

∂t2

∣∣
∣∣
t=0

.

(ii) After defining the values of r and λ, the weights πn (n = 0, . . . , m− 1) are determined as
solutions of the system of equations in (20) with πm = 1−∑m−1

n=0 πn.

3 Simulation Study

In order to analyze the precision of the approximations proposed in Sect. 2,
we computed the empirical quantiles of Y and W by simulation. We simulated
samples of sizes 2,000,000, and we computed the empirical quantiles of Y and
W , denoted by q�, for � = 0.05, 0.1, 0.5, 0.9, 0.95. Next, we determined the
value of the approximating c.d.f.’s computed for the empirical quantiles. Since
the approximation proposed in Sect. 2.2 is for the c.d.f. of Y , in this case, we
consider the quantiles of Y , and in the remaining cases, the empirical quantiles
of W were considered. All the computations, simulations, and plots were obtained
using the software Mathematica, Version 10.0 with an Intel(R) Core(TM) i7-7500U
CPU@2.70GHz. In Tables 1, 2, 3, and 4 and in Figs. 1, 2, 3, and 4, we considered
the following scenarios:

1. Scenario I: ai = {1/2, 1/5} and bi = {1/3, 1/6};
2. Scenario II: ai = {1/2, 1/5} and bi = {14/3, 6/5};
3. Scenario III: ai = {1, 1/2, 1/3} and bi = {1, 2, 3};
4. Scenario IV: ai = {1/2, 5, 7/3, 4/5} and bi = {1, 1/6, 11/2, 3};

Table 1 Scenario I—computed values of the approximating c.d.f.’s for the empirical quantiles q�
with � = 0.05, 0.1, 0.5, 0.90, 0.95

m MG�2 MG�4 MG�6 MB2 MB5 M�2 M�4 M�6 M�∗2 M�∗4 M�∗6
q0.05 0.044 0.044 0.044 0.038 0.050 0.051 0.050 0.050 0.032 0.033 0.034

q0.10 0.092 0.092 0.092 0.085 0.100 0.102 0.100 0.100 0.075 0.077 0.080

q0.50 0.501 0.502 0.503 0.501 0.500 0.503 0.501 0.500 0.496 0.503 0.506

q0.90 0.900 0.900 0.899 0.898 0.900 0.899 0.900 0.900 0.903 0.900 0.898

q0.95 0.950 0.950 0.950 0.948 0.950 0.950 0.950 0.950 0.951 0.948 0.948
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Table 2 Scenario II—computed values of the approximating c.d.f.’s for the empirical quantiles
q� with � = 0.05, 0.1, 0.5, 0.90, 0.95

m MG�2 MG�4 MG�6 MB2 MB5 M�2 M�4 M�6 M�∗2 M�∗4 M�∗6
q0.05 0.056 0.053 0.050 0.150 0.179 0.006 0.014 0.024 0.081 0.064 0.054

q0.10 0.105 0.102 0.100 0.222 0.256 0.017 0.040 0.063 0.130 0.109 0.100

q0.50 0.495 0.497 0.500 0.575 0.604 0.366 0.551 0.581 0.485 0.485 0.497

q0.90 0.901 0.901 0.900 0.896 0.901 1.061 0.839 0.848 0.896 0.907 0.900

q0.95 0.951 0.950 0.950 0.946 0.948 1.022 0.870 0.977 0.952 0.953 0.948

Table 3 Scenario III—computed values of the approximating c.d.f.’s for the empirical quantiles
q� with � = 0.05, 0.1, 0.5, 0.90, 0.95

m MG�2 MG�4 MG�6 MB2 MB5 M�2 M�4 M�6 M�∗2 M�∗4 M�∗6
q0.05 0.051 0.050 0.050 0.235 0.070 0.035 0.045 0.049 0.065 0.054 0.050

q0.10 0.101 0.100 0.100 0.307 0.116 0.077 0.095 0.100 0.115 0.102 0.099

q0.50 0.499 0.500 0.500 0.611 0.444 0.506 0.509 0.500 0.489 0.494 0.500

q0.90 0.900 0.900 0.900 0.892 0.888 0.910 0.895 0.901 0.898 0.903 0.900

q0.95 0.951 0.950 0.950 0.943 0.956 0.947 0.949 0.951 0.951 0.951 0.949

Table 4 Scenario IV—computed values of the approximating c.d.f.’s for the empirical quantiles
q� with � = 0.05, 0.1, 0.5, 0.90, 0.95

m MG�2 MG�4 MG�6 MB2 MB5 M�2 M�4 M�6 M�∗2 M�∗4 M�∗6
q0.05 0.052 0.050 0.050 0.111 0.139 0.009 0.022 0.035 0.073 0.055 0.051

q0.10 0.102 0.101 0.100 0.173 0.206 0.025 0.058 0.085 0.122 0.102 0.101

q0.50 0.497 0.499 0.500 0.528 0.560 0.420 0.573 0.542 0.483 0.492 0.500

q0.90 0.901 0.900 0.900 0.893 0.899 1.037 0.825 0.896 0.897 0.904 0.899

q0.95 0.951 0.950 0.950 0.947 0.949 0.995 0.894 0.987 0.953 0.951 0.949

and we denote by MG�m, MBm, M�m, and M�∗m the approximations developed,
respectively, in Sects. 2.1, 2.2, 2.3, and 2.4, where m stands for the number of exact
moments matched by each of the approximating distributions.

From Tables 1, 2, 3, and 4, we may conclude that the approximations M�m do not
perform well in Scenarios 2 and 4, and the justification for this pattern is discussed
in the final section and is also illustrated in Figs. 2 and 4. The approximations
based on a single Beta or on mixtures of Beta distributions, in most of the cases,
only represent good precision for the quantiles 0.90 and 0.95. In all scenarios, the
approximations MG�m and M�∗m have similar behaviors displaying precise results
in most of the cases considered. However, it seems that the approximations MG�m

need to match less exact moments in order to obtain precise results. The results
obtained for the different scenarios are illustrated in Figs. 1, 2, 3, and 4, where the
approximating p.d.f.’s are plotted together with the histograms obtained from the
simulated values of Y or W .
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Fig. 1 Scenario 1—Plots for the approximating p.d.f.’s of MG�6 (i), MB5 (ii), M�6 (iii), and
M�∗6 (iv) and for the histograms obtained from the simulated values of W (i), (iii), and (iv) and
from the simulated values of Y (ii)
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Fig. 2 Scenario 2—Plots for the approximating p.d.f.’s of MG�6 (i), MB5 (ii), M�6 (iii), and
M�∗6 (iv) and for the histograms obtained from the simulated values of W (i), (iii), and (iv) and
from the simulated values of Y (ii)
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Fig. 3 Scenario 3—Plots for the approximating p.d.f.’s of MG�6 (i), MB5 (ii), M�6 (iii), and
M�∗6 (iv) and for the histograms obtained from the simulated values of W (i), (iii), and (iv) and
from the simulated values of Y (ii)
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4 Concluding Remarks

Based on our simulation study, some comments are in order. In some of the
scenarios, the approximations, designated by M�m, do not perform well. It seems
that the approximations denoted by MG�m and M�∗m are stable and precise.
However, the approximation based on mixtures of generalized Gamma distributions,
MG�m, reaches better results with lower values of m, that is, with less exact
moments matched. On the other hand, the approximations based on a single Beta
or on mixtures of two Beta distributions, denoted by MBm, in most of the cases,
only provide reasonable results for the 0.90 and 0.95 quantiles. When mixtures of
Beta distributions are considered, the solutions of the system in (16) are not easy to
obtain with a reasonable precision.

Although we only considered m = 2, 4, and 6 for the approximations based on
mixtures of Gamma or generalized Gamma distributions, the methodology used to
derive these type of approximations allows to consider higher values of m. Since
m is the number of exact moments matched by the approximating distributions, we
expect to obtain even better results for higher values of m.

To achieve further improvements in the precision of the approximations based
on mixtures of Gamma or generalized Gamma distributions, we may also consider a
similar procedure to the one used in Marques et al. (2019), where a tuning parameter
was introduced in the shape parameters with positive results in the precision of the
approximations.

Finally, we should note that it is quite simple to use the approximations discussed
in this work, since these approximations are represented as finite mixtures of well-
known distributions. With the approximations MG�m and M�∗m, it is possible and
simple to obtain results with 3 or 4 exact decimal places. If more precision is
required, whenever desired, the near-exact approximations should be considered.
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On the Distribution of the Product
of Independent Beta Random
Variables — Applications

Carlos A. Coelho and Rui P. Alberto

Abstract A first approach, based on recently obtained asymptotic expansions of
ratios of gamma functions, enables the obtention of the distribution of the product
of independent and identically distributed random variables in a much manageable
form. However, for the general case, this approach leads to a form which although
being very manageable and in line with some previous results, suffers from serious
problems of precision and convergence, which have been completely overlooked
by other authors and which in most cases prevent its practical use. Nevertheless,
it is based on these first results that the authors, using the concept of near-
exact distribution, are able to obtain highly manageable but extremely accurate
approximations for all cases of the distribution of the product of independent Beta
random variables. These near-exact approximations, given their high manageability,
accuracy, and proximity to the exact distribution, may in practice be used instead of
the exact distribution.

1 Introduction

The distribution of the product of independent Beta random variables (r.v.’s) is a
distribution which plays a key role in Statistics. There are many likelihood ratio
test (l.r.t.) statistics, namely in Multivariate Analysis, whose distribution has been
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shown to be that of the product of a number of independent Beta r.v.’s, as for example
the l.r.t. statistics to test, under multivariate normality, or rather, under multivariate
elliptically contoured or left orthogonal-invariant distributions, the independence of
several sets of variables, the equality of several mean vectors, the equality of several
variance–covariance matrices or sphericity of the covariance matrix (Anderson
2003; Kshirsagar 1972; Marques et al. 2011; Muirhead 2005), the l.r.t. statistics
to test similar hypotheses under the complex multivariate normal setting (Coelho et
al. 2015; Gupta 1971; Khatri 1965a; Pillai and Jouris 1971), the l.r.t. statistics to
test multi-sample sphericity or block-scalar or block-matrix sphericity (Coelho and
Marques 2011a; Marques and Coelho 2011a,b), the l.r.t. statistic to test reality of
a covariance matrix in a complex Normal distribution (Khatri 1965b) or the l.r.t.
statistics to test circularity of the covariance matrix and stationarity (Olkin and
Press 1961), or even the l.r.t. statistic to test the equality of several exponential
distributions, in the case of equal sample sizes (Coelho and Marques 2011b).

Although along the years many authors have worked on obtaining the distribution
of the product of independent Beta r.v.’s in a manageable form or otherwise
obtaining manageable approximations for its distribution (Bharbava and Khatri
1981; Carter and Springer 1977; Mathai 1984; Nagar et al. 1985; Nagarsenker and
Das 1975; Nagarsenker and Suniaga 1983; Nandi 1980; Pederzoli 1985; Springer
1979; Springer and Thompson 1966, 1970; Tang and Gupta 1984, 1986; Tretter
and Walster 1975; Tukey and Wilks 1946; Walster and Tretter 1980), obtaining an
explicit, accurate, and highly manageable expression for both the probability density
function (p.d.f.) and the cumulative distribution function (c.d.f.) of this distribution
has been a hard task and we are absolutely sure that there is still much room left for
improvement.

Our aim is exactly to obtain explicit highly manageable expressions for both the
p.d.f. and c.d.f. of extremely well-fitting approximations for this distribution, based
on highly accurate and manageable mixture expansions.

One popular form to represent the exact p.d.f. and c.d.f. of the distribution of
the product of independent Beta r.v.’s has been the use of either the Meijer G or
Fox’s H functions (Carter and Springer 1977; Springer 1979). However, although
this is a very handy way to represent these distributions, these representations are not
very adequate in practical terms since both Fox’s H function and Meijer G function
implementations have their drawbacks not only in terms of precision, but mainly in
terms of computation time in all the commonly available software.

Other authors like Bharbava and Khatri (1981) and Pederzoli (1985) used mul-
tiple series representations where each summation corresponds to a different Beta
r.v. in the product, yielding a too much complicated structure for the distribution,
mainly when the number of Beta r.v.’s involved is rather large.

Yet other authors like Nagarsenker and Das (1975), Nandi (1980), Nagarsenker
and Suniaga (1983), and Tang and Gupta (1984) express the distribution of
the product of independent Beta r.v.’s as infinite mixtures of Beta distributions.
However these representations have the drawback of needing, in the general case,
a large number of terms to attain the desired accuracy and not allowing for the
development of further better performing approximations, while are also not able
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to take advantage from those cases where some of the Beta r.v.’s have the same
distribution. Furthermore, the distribution in Nandi (1980) and Tang and Gupta
(1984) depends on the particular ordering of the Beta r.v.’s considered, while the
series in Nagarsenker and Das (1975) and Nagarsenker and Suniaga (1983) have
highly complicated coefficients.

The papers by Tang and Gupta (1986), Mathai (1984), and Nagar et al. (1985)
present results which match the results of what is our first approach to the problem;
however, without any reference to accuracy and convergence issues which indeed
occur with the series obtained. Moreover, opposite to the results obtained in the
present paper, in Nagar et al. (1985) the weights in the infinite mixture have a very
complicated formulation, while in Tang and Gupta (1986) there is a parameter left
with a not well-defined value.

Yet, our approach enables the use of more adequate expansions for the cases
where some of the Beta r.v.’s involved in the product have the same distribution. In a
further step we will determine the weights in our mixture distributions by matching
some of the first exact moments, what will enable us to obtain distributions which
will converge on the whole support of the r.v., overcoming the problems mentioned
in Lemma 3.1 and Remark 3.1 in Tang and Gupta (1986). We may note that this
moment matching approach is supported by the well known fact that the product of
independent Beta r.v.’s, having a bounded support, has its distribution determined
by its moments.

In this paper the authors show how, based on asymptotic expansions of the ratio
of two gamma functions, presented by Burić and Elezović (2011) but for which
much simpler proofs are shown in Appendix A, it is possible to obtain a single
mixture of exponentiated gamma distributions as an asymptotic approximation for
the exact distribution of the product of any number of independent Beta r.v.’s, with
easily computable coefficients. However, in practical terms this approach leads to
almost impossible to handle difficulties, arising from the fact that the resulting series
distributions are either very slowly convergent or even divergent.

To overcome these difficulties the authors, recover the concept of near-exact
distribution (see Sect. 4), and based on this approach they develop near-exact
approximations which lie very close to the exact distribution of the product of
independent Beta r.v.’s, although remaining highly manageable, while displaying
much better performances than previous approaches proposed by different authors.

As already mentioned, many likelihood ratio test statistics have the same
distribution as that of a product of independent Beta r.v.’s. In these cases, the first
parameter in the distribution of these Beta r.v.’s is directly related with the sample
sizes, while the second parameter is commonly directly related with the number
of variables. The near-exact distributions developed by the authors, when applied to
these settings, show very good performances even for situations in which the sample
sizes are very small, that is, barely exceeding the number of variables, even when
the number of variables involved is large.

The setup: let

Xj ∼ Beta(aj , bj ) and Yj = − log Xj , j = 1, . . . , p , (1)
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be a set of p independent random variables and let

Z =
p∏

j=1

Xj , W = − log Z = −
p∑

j=1

log Xj =
p∑

j=1

Yj . (2)

We will say that the random variable Y = − log X has a Logbeta(a, b) distribution
and we are interested in the distribution of Z, or, somehow equivalently, in the
distribution of W .

At first sight we may think that a good idea to work around the difficulties of the
representation of the distribution of Z might be to try to express the distribution of
each Xj or Yj as a mixture.

In order to obtain an asymptotic expansion for the distribution of a Logbeta r.v.,
we might think about using expression following expression (18) together with
expression (19) in Tricomi and Erdélyi (1951) or expression (1) in Fields (1966)
which may be written, for |arg(z+ α)| < π , as z→∞, as

Γ (z+ α)

Γ (z+ β)
≈

∞∑

k=0

1

k!
Γ (1+ α − β)

Γ (1+ α − β − k)
B

(1+α−β)
k (α) zα−β−k , (3)

where B
(n)
j ( · ) is the generalized Bernoulli polynomial of degree j and order n.

In fact, an application of expression (3), with z = a− it , α = 0 and β = b, yields

Γ (a − it)

Γ (a + b − it)
≈

∞∑

k=0

pk(b) (a − it)−b−k (as a →∞) (4)

where

pk(b) = 1

k!
Γ (1− b)

Γ (1− b − k)
B

(1−b)
k (0)

with B
(1−b)
k (0) being the generalized Bernoulli number of degree k and order 1−b.

The result in (4) enables us to represent asymptotically any Logbeta(a, b)

distribution as an infinite mixture of Γ (b + k, a) distributions (k = 0, 1, . . . )—
see Appendix B in Coelho and Alberto (2020) for the notation used for the gamma
distribution. Indeed, from (4) we may then write the characteristic function (c.f.) of
Yj as

ΦYj
(t) = E

(
eitYj

)
= E

(
X−it

j

)
= Γ (aj + bj )

Γ (aj )

Γ (aj − it)

Γ (aj + bj − it)

≈
∞∑

k=0

Γ (aj + bj )

Γ (aj )

pk(bj )

a
bj+k
j︸ ︷︷ ︸

p∗k (aj ,bj )

a
bj+k
j (aj − it)−(bj+k) , (as aj →∞)
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which is the c.f. of an infinite mixture of Γ (bj + k, aj ) distributions, with weights
p∗k (aj , bj ) (k = 0, 1, . . . ).

Then in order to obtain an asymptotic representation for the distribution of W we
might think about convoluting p independent Logbeta distributions in the form of
mixtures of Gamma distributions, to obtain then, by exponentiation, the distribution
of the corresponding product of independent Beta r.v.’s.

However, the problem is that in this case the asymptotic distribution of W

would be an infinite mixture of sums of independent gamma random variables,
with possibly different rate parameters aj . Then, the distribution of each of these
sums would have itself to be expressed in the form of a mixture, rendering the final
expression for the whole distribution not manageable at all.

To overcome these difficulties, our aim is to approximate asymptotically the
distribution of W by a single infinite mixture of gamma distributions. This will be
achieved with the approach followed in the next section.

2 Some Results Concerning Ratios of Gamma Functions

Let, for the aj in (1),

a = min(a1, a2, . . . , ap) , (5)

and then, for

αj = aj − a and βj = aj + bj − a = αj + bj , (j = 1, . . . , p) , (6)

using (3) with z = a − it , write (as a →∞)

Γ (aj − it)

Γ (aj + bj − it)
= Γ (a − it + αj )

Γ (a − it + βj )

≈
∞∑

k=0

1

k!
Γ (1− bj )

Γ (1− bj − k)
B
(1−bj )
k

(αj ) (a − it)−bj−k

= Γ (1−bj ) (a−it)−bj
∞∑

k=0

1

k!Γ (1−bj−k)
B
(1−bj )
k

(αj ) (a−it)−k .

Then, for W in (2), we may write, as a →∞,

ΦW(t) =
p∏

j=1

Γ (aj + bj )

Γ (aj )

Γ (aj − it)

Γ (aj + bj − it)
(7)
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≈ C (a − it)−b
p∏

j=1

∞∑

k=0

1

k!Γ (1− bj − k)
B

(1−bj )
k (αj )

︸ ︷︷ ︸
qjk

(a − it)−k , (8)

where

C =
p∏

j=1

Γ (1− bj ) Γ (aj + bj )

Γ (aj )
and b =

p∑

j=1

bj . (9)

In (8) we have

p∏

j=1

∞∑

k=0

qjk (a − it)−k =
∞∑

k=0

wk (a − it)−k ,

where

wk =
∑

r1+r2+···+rp=k
q1r1q2r2 . . . qprp ,

with each sequence {r1, r2, . . . , rp} being a weak composition of the integer k into
p parts, and being the sum extended to the complete set of the above compositions,
which cardinality is

(
k+p−1
p−1

) = (
k+p−1

k

)
(see for example Heuback and Mansour

(2009)).
We may thus write

ΦW(t) ≈ C

∞∑

k=0

wk

ab+k
ab+k (a − it)−(b+k) (as a →∞) (10)

which shows that for large enough a and for b in (9) the c.f. of W in (2) should be
well approximated by the c.f. of an infinite mixture of Γ (b + k, a) (k = 0, 1, . . . )
distributions, with weights Cwk/a

b+k .
However, in the more general case we may have each pair (aj , bj ) in (7) repeated

say mj times. Although in this case we could still use the same approach as above,
it happens that for each set of random variables with the same set of parameters
(aj , bj ) the computation of the weights in the mixture will be much more efficient
if carried out through a slightly different way. In this case, instead of (3) we should
use the more general expression

(
Γ (z+ α)

Γ (z+ β)

)m

≈
∞∑

k=0

νk,m(α, β) z
m(α−β)−k , (as z→∞, |arg(z+ α)| < π) ,

(11)
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with

νk,m(α, β) = 1

k

k∑

j=1

j δj,m(α, β) νk−j,m(α, β) , (k = 1, 2, . . . ), ν0,m(α, β) = 1 ,

(12)
where

δj,m(α, β) = (−1)jm
Bj+1(β)− Bj+1(α)

j (j + 1)
, (13)

and where Bj (a) represents the value of the Bernoulli polynomial of degree j in a.
Expression (11) is expression (2.1) in Burić and Elezović (2011) and it may be

quite easily obtained from Barnes expression (37). See Appendix A for a simpler
and straightforward demonstration. The use of (11) is shown in the next section.

3 Main Results Concerning the Exact Distribution
of the Product of Independent Beta Random Variables

3.1 The General Case

In this “general case” we will allow some of the Beta r.v.’s to be identically
distributed. Let then

X� ∼ Beta(a�, b�) � = 1, . . . , p

be a set of p independent random variables. Let then q be the number of distinct
pairs of parameters (a�, b�) among the p random variables X� and let (aj , bj )

(j = 1, . . . , q) represent the set of distinct pairs (a�, b�) (� = 1, . . . , p). Let further
mj be the number of times the pair of parameters (aj , bj ) appears among the p

random variables X�, thus with

p =
q∑

j=1

mj ,

and of course with q = p if all mj = 1.
Since from (11), taking a as defined in (5), z = a − it , and αj and βj as in (6),

we may write

(
Γ (aj − it)

Γ (aj+bj−it)

)mj

=
(
Γ (a − it + αj )

Γ (a−it + βj )

)mj

≈
∞∑

k=0

νk,mj
(αj , βj ) (a−it)−mjbj−k ,

(14)
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we may thus write, for W in (2),

ΦW(t) =
q∏

j=1

(
Γ (aj + bj )

Γ (aj )

)mj
(

Γ (aj − it)

Γ (aj + bj − it)

)mj

(15)

≈ C (a − it)−b
q∏

j=1

∞∑

k=0

νk,mj
(αj , βj ) (a − it)−k (as a →∞) (16)

where νk,mj
(αj , βj ) (k = 0, 1, . . . ; j = 1, . . . , q) are given by (12)–(13) and

C =
q∏

j=1

(
Γ (aj + bj )

Γ (aj )

)mj

and b =
q∑

j=1

mjbj . (17)

In (16), we may set

q∏

j=1

∞∑

k=0

νk,mj
(αj , βj ) (a − it)−k =

∞∑

k=0

ωk (a − it)−k

with

ωk =
∑

r1+r2+···+rq=k
νr1,m1(α1, β1) νr2,m2(α2, β2) . . . νrq ,mq (αq, βq) , (18)

where, as in the previous section, each sequence {r1, r2, . . . , rq} is a weak compo-
sition of the integer k into q parts, and the sum is extended to the complete set of
these compositions, whose cardinality is

(
k+q−1
q−1

) = (
k+q−1

k

)
.

From (16) and (18) we may write

ΦW(t) ≈ C

∞∑

k=0

ωk

ab+k
ab+k (a − it)−(b+k) (as a →∞) (19)

for a as in (5), C and b given by (17), and ωk given by (18).
Expression (19) shows that for sufficiently large a the exact distribution of W is

well approximated by an infinite mixture of Γ (b+ k, a) distributions, with weights
Cωk/a

b+k (k = 0, 1, . . . ), and as such, the exact distribution of Z = e−W will be
also well approximated by the corresponding mixture, that is, with the same weights,
of exponentiated Γ (b + k, a) distributions.

From (19) we may thus write

fW(w) ≈ C

∞∑

k=0

ωk

Γ (b + k)
e−aw wb+k−1 , (w > 0) ,
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and

FW(w) ≈ C

∞∑

k=0

ωk

Γ ∗(b + k, aw)

Γ (b + k)
, (w > 0) ,

where

Γ ∗(b + k, aw) =
∫ aw

0
e−aw wb+k−1 dw

is a version of the incomplete gamma function, and therefore also

fZ(z) ≈ C

∞∑

k=0

ωk

Γ (b + k)
za−1 (− log z)b+k−1 , (0 < z < 1) ,

and

FZ(z) ≈ 1− C

∞∑

k=0

ωk

Γ ∗(b + k,−a log z)

Γ (b + k)
, (0 < z < 1) .

However, as we will see in Sect. 6, with the help of some numerical studies, the
practical implementation of these representations faces some problems which are
not easy to solve and which are related with the facts that

(i) while for sets of Beta r.v.’s with values of aj which show a moderately large
variability we may need an unsoundly large number of terms in the series to get
a good approximation,

(ii) on the other hand, the use of a larger number of terms may start to give worse
approximations, namely for sets of Beta r.v.’s with values of aj which show a
small variability, while the use of a moderately large number of terms may still
not give the desired precision.

We should remark that these problems are not brought to our attention by other
authors who, although using different approaches, obtain similar results, as it is the
case of Tang and Gupta (1986), Mathai (1984), and Nagar et al. (1985).

We should also note here that the approach followed, in case all mj in (14) and
(16) are equal to 1, yields the approach of Moschopoulos (1986). Although the use
of the mj with values different from 1 may seem a minor detail, that is indeed
not so, since this approach, where general mj are used, may allow for much better
approximations than the ones that would be obtained if such approach is not taken.
This is true even when we will be interested in developing near-exact distributions,
rather than just common asymptotic distributions, as it is shown later in Sect. 7.1,
where the use of such expressions enables the obtention of even better near-exact
distributions than the ones previously obtained.
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If some restrictions are met by the parameters of the Beta distributed r.v.’s in (1)
and (2), the distribution of Z and also that of W in (2) may then have a finite closed
form representation, and a number of l.r.t. statistics fall in this case. For details on
this topic we refer the reader to Coelho and Arnold (2019).

3.2 The Particular Case of All Different Sets of Pairs
of Parameters

In case each Beta r.v. has a different set of parameters, then all the mj defined in the
previous subsection will be equal to 1 and we will have q = p. In this case W will
have an approximate c.f. still given by (16) and (19) in the previous subsection, for
all mj = 1, or, if we prefer, given by (8) or (10) in Sect. 2.

3.3 The Particular Case of All Equal Sets of Pairs
of Parameters

In case all p random variables Xj have the same distribution, although remaining
independent, then we may either take q = p, with all mj = 1 and then apply
the results in Sect. 3.1, or take q = 1, with m1 = p and then apply the results in
Sect. 3.1. From the derivations in Sect. 2 we are able to see that the second choice is
far more efficient in terms of the computation of the weights ωk .

However, using expression (45) in Appendix A, we may obtain a much faster
converging series or mixture distribution. This expression is expression (7.1) in
Burić and Elezović (2011), for which we provide a much simpler and straightfor-
ward demonstration path in Appendix A.

In this case, if we take aj = a and bj = b (j = 1, . . . , p), and if we also take in
(45), z = a − it , α = 0 and β = b, we may write

ΦW(t) =
(
Γ (a + b)

Γ (a)

Γ (a − it)

Γ (a + b − it)

)p

≈ C

∞∑

k=0

ν2k,p(−k, b − k)

(
a − it + b − 1

2

)−pb−2k

= C

∞∑

k=0

ν2k,p(−k, b − k)
(
a + b−1

2

)pb+2k

(
a + b − 1

2

)pb+2k (
a + b − 1

2
− it

)−(pb+2k)
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with ν2k,p(−k, b − k) given by (12)–(13) and

C =
(
Γ (a + b)

Γ (a)

)p

,

which shows that in this case the distribution of W is asymptotically approximated,

for increasing a+ b−1
2 , by an infinite mixture of Γ

(
pb + 2k, a + b−1

2

)
distributions

with weights Cν2k,p(−k, b − k)
/(

a + b−1
2

)pb+2k
(k = 0, 1, . . . ).

3.4 The Distribution of the Product of Powers of Independent
Beta Random Variables

So far we have only dealt with the distribution of the product of independent Beta
r.v.’s as expressed in (2), that is, with the Beta r.v.’s raised to the power 1. Of
course, the results obtained are easily extended to the case where all the Beta r.v.’s
are raised to some common positive power. In this case one only has to consider
the distribution of the product of the random variable W = − log Z considered so
far, multiplied by that power or the distribution of the exponential of this random
variable, if the distribution of Z is desired, being both very simple to obtain by
simple transformation.

However, there may be cases where we are interested in the distribution of the
random variable

Z =
p∏

j=1

X
cj
j

where Xj are as in (2) and the cj are positive reals. In this case the problem becomes
much harder to tackle.

As in Sect. 3.1, let us suppose that among the p random variables X�

(� = 1, . . . , p) there are q ≤ p of them with different first and second parameter
or raised to a different power, that is, let us suppose that there are q ≤ p different
triplets (aj , bj , cj ) (j = 1, . . . , q).

Let us further suppose that the triplet (aj , bj , cj ) appears mj times
(j = 1, . . . , q), once again with p = ∑q

j=1 mj . Then, for a = min(a1, . . . , aq)

and for αj and βj given by (6), we may write the c.f. of W = − log Z as
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ΦW(t) =
q∏

j=1

(
Γ (aj + bj )

Γ (aj )

)mj
(

Γ (aj − cj it)

Γ (aj + bj − cj it)

)mj

≈ C

q∏

j=1

∞∑

k=0

νk,mj
(αj , βj ) (a − cj it)−(mj bj+k)

= C

q∏

j=1

∞∑

k=0

νk,mj
(αj , βj )

(
a

cj
− it

)−(mj bj+k)
(cj )

−(mj bj+k) .

The problem now is hard to tackle because the rate parameters a/cj are now
function of j , that is, their value varies now with j , and there is no simple way to
work around this fact.

Of course we may take each set of Beta r.v.’s with parameters (aj , bj , cj )

individually and take the approach first outlined in Sect. 2, but this, as stated in
Sect. 2, would lead us to an almost intractable infinite mixture of infinite mixtures,
with the further concomitant even arduous problems related with the convergence
of truncations of these distributions, if we try to use them in applications.

Although in this case the Fox H function gives a nice way to express both the
exact p.d.f. and c.d.f. of Z, there seems to be no really satisfactory formulation
for the distribution of Z for practical uses, in this case. However, as we will see
in Sects. 5 and 7, the near-exact approach is able to handle this case with no
big problems and extremely satisfactory results. See Sect. 5.2 for the theoretical
developments and Sect. 7.3 for an application and some numerical results.

4 The Practical Implementation of the Exact Distribution
in Sect. 3 — Another Look at the Exact Distribution
on the Way to Near-Exact Distributions

Since in any of the cases addressed in Sect. 3 the exact distribution always takes the
form of an infinite mixture, in practice when using these distributions we will have
to truncate them.

For a truncation corresponding to a c.f. of the form

C

m∑

k=0

ωk

ab+k
ab+k (a − it)−(b+k) (20)

an upper-bound for the truncation error is

1− C

m∑

k=0

ωk

ab+k
.
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But, as we may see from the results in Sect. 6, we may do much better by using a
truncation with completion of the weights in such a way that they add up to 1, that
is, by using in (20) ωk given by (18) and (12)–(13) for k = 0, . . . , m− 1, and

ωm = ab+m

C
−

m−1∑

k=0

ωk a
m−k . (21)

Although for quite small values of k the computation of the weights ωk does not
pose any serious problem, that is not anymore the case for large values of k, where
the weights ωk , given the summation in (18), become quite heavy to compute.

Since we have indeed the exact c.f. of W at hand in the form in (15), we may think
about determining the weights ωk in (20), for k = 0, . . . , m− 1, in such a manner
that the first m derivatives of the c.f. in (20), at t = 0, match the corresponding
derivatives of ΦW(t) in (15), setting then ωm to the value given by (21).

This approach will indeed give much better results than the computation of the
weights ωk through their original expression. See the results in Sect. 6.

Yet, in order to better analyze the behavior of these approximations we will
consider in Sect. 6 truncations where the first ωk are computed from (18) and (12)–
(13) and the remaining are computed by matching some of the exact moments, that
is, we will use a c.f.

C

m∗∑

k=0

ωk

ab+k
ab+k (a − it)−(b+k) +

m∗∗∑

k=m∗+1

πk−m∗ ab+k (a − it)−(b+k), (22)

where ωk (k = 0, . . . , m∗) are computed from (18) and (12)–(13) and πk−m∗
(k = m∗ + 1, . . . , m∗∗) are computed by matching the first m∗∗ −m∗ derivatives at
t = 0 of the c.f. in (22) and ΦW(t).

One other thing we may notice is that, either computing the weights through their
original expression or by matching derivatives, that is, by matching exact moments,
for a given number of terms used in (20), the approximations are always much better
when the bj ’s fall between zero and one. The ascertainment of this fact may lead
us to a different approach in which we would “extract” the integer part of the bj ’s
and somehow set it apart, whenever any of the bj ’s exceeds the value of one. This
is indeed the approach pursued in the next section.

We should remark that although the notation used in this section is the one used in
Sect. 3.1, in order to encompass the case treated in Sect. 3.3 one only has to consider
ωk = ν2k,p(−k, b − k).
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5 Near-Exact Distributions for the Product of Independent
Beta Random Variables

5.1 Near-Exact Distributions for Z in (2)

In trying to “extract” the integer part of the bj ’s and set it apart, whenever any of the
bj ’s exceeds the value of one, this will indeed lead us to the use of what has been
called ‘near-exact distributions’.

In simple terms, near-exact distributions are distributions which keep intact
a good part of the exact distribution and which approximate asymptotically the
remaining part.

In order to try to keep intact a good part of the exact c.f. when at least one of the
bj ’s is greater than 1, we may work through the exact c.f. of W as it is done below,
using the fact that for any real or complex a and positive integer n we may write

Γ (a + n)

Γ (a)
=

n−1∏

�=0

(a + �) . (23)

In fact, using (23), taking b∗j = �bj � and b∗∗j = bj − b∗j , we may write, for the
general case of the distribution of W in Sect. 3.1,

ΦW(t) =
q∏

j=1

(
Γ (aj + bj )

Γ (aj )

)mj
(

Γ (aj − it)

Γ (aj + bj − it)

)mj

=
q∏

j=1

(
Γ (aj + bj )

Γ (aj + b∗
j
)

Γ (aj + b∗
j
)

Γ (aj )

)mj
(

Γ (aj − it)

Γ (aj + b∗
j
− it)

Γ (aj + b∗
j
− it)

Γ (aj + bj − it)

)mj

=
q∏

j=1

(
Γ (aj + bj )

Γ (aj + b∗
j
)

Γ (aj + b∗
j
− it)

Γ (aj + bj − it)

)mj
b∗j−1
∏

�=0

(aj + �)mj (aj + �− it)−mj

=

⎧
⎪⎨

⎪⎩

q∏

j=1

b∗j−1
∏

�=0

(aj + �)mj (aj + �− it)−mj

⎫
⎪⎬

⎪⎭
︸ ︷︷ ︸

Φ1,W (t)

×
⎧
⎨

⎩

q∏

j=1

(
Γ (aj + bj )

Γ (aj + b∗
j
)

Γ (aj + b∗
j
− it)

Γ (aj + bj − it)

)mj

⎫
⎬

⎭
︸ ︷︷ ︸

Φ2,W (t)

(24)
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where Φ1,W (t) is the c.f. of a sum of
q∑

j=1
b∗j independent Gamma random variables,

with integer shape parameters mj and rate parameters aj + � (� = 0, . . . , b∗j − 1;
j = 1, . . . , q), which is a GIG distribution (Coelho 1998) of depth

q∑

j=1
b∗j , with rate

parameters aj + � and shape parameters mj (j = 1, . . . , q; � = 0, . . . , b∗j − 1) and

Φ2,W (t) is the c.f. of a sum of p = ∑q

j=1 mj independent Logbeta r.v.’s, mj of
which have the set of parameters (aj + b∗j , b∗∗j ) (j = 1, . . . , q).

We may note that if in (24) some bj is smaller than 1, then the corresponding b∗j
equals zero and the corresponding term in Φ1,W (t) simply vanishes, i.e., equals 1.

Since, opposite to Φ2,W (t), Φ1,W (t) corresponds to a very manageable distribu-
tion, in building the near-exact distribution for W we will leave Φ1,W (t) unchanged
and we will approximate Φ2,W (t) in a similar manner to the one used in Sect. 3 to
approximate ΦW(t).

We will take

a = min(a1+b∗1, . . . , aq+b∗q) , αj = aj +bj −a , and βj = b∗∗j = bj −b∗j ,

(25)
and we will write

Φ2,W (t) ≈ C

∞∑

k=0

ωk

ab+k
ab+k (a − it)−(b+k) ,

where

C =
q∏

j=1

(
Γ (aj + bj )

Γ (aj + b∗j )

)mj

and b =
q∑

j=1

mj(bj − b∗j ) , (26)

and where ωk is computed using (18), now with αj and βj given by (25). We will
then use as near-exact c.f. for W the c.f.

Φ∗
W(t) = Φ1,W (t) C

m∑

k=0

πk a
b+k (a − it)−(b+k), (27)

where the weights πk will be determined in such a way that

dh

dth
C

m∑

k=0

πk a
b+k (a − it)−(b+k)

∣∣∣∣
∣
t=0

= dh

dth
Φ2,W (t)

∣∣∣
∣
t=0

, h = 1, . . . , m
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or, equivalently, in such a way that

dh

dth
Φ∗

W(t)

∣
∣∣∣
t=0

= dh

dth
ΦW(t)

∣
∣∣∣
t=0

, h = 1, . . . , m .

The reason to compute the weights πk in this way is twofold: computed this way,
instead of using expressions (18) and (12)–(13), the weights πk (i) will yield better
approximations and (ii) will be easier to compute for moderately large values of k.

The distribution corresponding to the c.f. Φ∗
W(t) in (27) is a finite mixture

of GNIG (Generalized Near-Integer Gamma) distributions (see Coelho (2004)
for the definition of this distribution and Appendix B of Coelho and Alberto
(2020) for a definition of its p.d.f. and c.d.f.) which in case all aj + �

(j=1, . . . , q; �=0, . . . , b∗j−1) are different will have depth 1 + ∑q

j=1 b
∗
j with

shape parameters

m1, . . . , m1︸ ︷︷ ︸
b∗1 times

, . . . , mj , . . . , mj︸ ︷︷ ︸
b∗j times

, . . . , mq, . . . , mq︸ ︷︷ ︸
b∗q times

, b + k

and rate parameters {aj + 0, . . . , aj + b∗j − 1(j = 1, . . . , q), a}.
For the general case, where some of the aj + � may have the same value, let

{
a∗ν ; ν = 1, . . . , q∗ ≤∑q

j=1 b
∗
j

}
= {{aj + �; � = 0, . . . , b∗j − 1; j = 1, . . . , q}}

represent the set of all different rate parameters aj + �, that is, the set of all different
values of aj + � (� = 0, . . . , b∗j − 1; j = 1, . . . , q) and let

{
m∗ν; ν=1, . . . , q∗ ≤∑q

j=1 b
∗
j

}
={{mj�=mj ; �=0, . . . , b∗

j
− 1; j = 1, . . . , q}}{aj+�}

be the set of the corresponding shape parameters, where the shape parameter
m∗ν is the shape parameter corresponding to a∗ν , that is, it is the sum of all
mj� = mj corresponding to the ν-th distinct value aj + �. Then the p.d.f. and c.d.f.
corresponding to the c.f. in (27), using the notation in Appendix B of Coelho and
Alberto (2020) for the GNIG distribution would be respectively

f ∗W(w) =
m∑

k=0

πkf
GNIG

(
w | {a∗ν }ν=1:q∗ , b + k; {a∗ν }ν=1:q∗ , a; q∗ + 1

)

and

F ∗W(w) =
m∑

k=0

πkF
GNIG

(
w | {a∗ν }ν=1:q∗ , b + k; {a∗ν }ν=1:q∗ , a; q∗ + 1

)
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and the corresponding p.d.f. and c.d.f. for Z = e−W would be

f ∗Z(z) =
m∑

k=0

πkf
GNIG

(− log z | {a∗ν }ν=1:q∗ , b + k; {a∗ν }ν=1:q∗ , a; q∗ + 1
) 1

z

and

F ∗Z(z) = 1−
m∑

k=0

πkF
GNIG

(− log z | {a∗ν }ν=1:q∗ , b + k; {a∗ν }ν=1:q∗ , a; q∗ + 1
)
.

We may note that in case b in (26) is an integer the GNIG distributions will indeed
be GIG (Generalized Integer Gamma) distributions.

Built in this way, the near-exact distribution which c.f. is in (27) will provide
extremely good approximations to the exact distribution, while remaining quite
manageable. Some of the several vast advantages of these near-exact distributions
are that:

(i) they provide the exact distribution in cases where all bj are integer (in the form
of a GIG distribution for W = − log Z or an EGIG distribution (Arnold et al.
2013) for Z),

(ii) the approximations provided will be even better for cases where the bj are
larger,

(iii) they have a much stable performance for a wide range of values of the
parameters aj , bj , and mj ,

(iv) they will perform even slightly better in the situations where the other
approximations show severe difficulties.

Actually, since the weights πk in (27) are not going to be computed from (18)
and (12)–(13), we may also think about a couple of alternative ways to compute the
parameter a in (27). These may be to take a in (27) as one of the following choices:

i) a = minj=1,...,q (aj + b∗
j
) ii) a = 1

q

∑q
j=1(aj + b∗

j
) iii) a =

∑q
j=1(bj−b∗j )(aj+b∗j )∑q

j=1(bj−b∗j )
iv) a =

∑q
j=1 mj (aj+b∗j )∑q

j=1 mj
v) a =

∑q
j=1 mj (bj−b∗j )(aj+b∗j )∑q

j=1 mj (bj−b∗j )
vi) the rate parameter a in Φ∗∗(t) = as(a − it)−s , where

∂h

∂th
Φ∗∗(t)

∣∣
∣
t=0

= ∂h

∂th
Φ2,W (t)

∣∣
∣
t=0

, h = 1, 2

vii) the rate parameter a in Φ∗∗∗(t)=πas1(a−it)−s1 + (1−π)as2(a−it)−s2 , where

∂h

∂th
Φ∗∗∗(t)

∣
∣
∣
t=0

= ∂h

∂th
Φ2,W (t)

∣
∣
∣
t=0

, h = 1, . . . , 4.

(28)

Details on the performance of such near-exact approximations may be analyzed
in the next section and also in Sect. 7.
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Mathematica modules to compute these as well as all the other approximations
developed in this manuscript are available, on demand, from the authors.

These different strategies for the choice of a will be used only for approximations
which correspond to the situations studied in Sects. 3.1 and 3.2, since for the
situation addressed in Sect. 3.3 there is no doubt in the choice of a, having only to
consider that in this case the parameter a in (27) has to be taken as a + b−1

2 , where
b is the common value of the second parameter for all the Beta r.v.’s involved.

In cases where all the bj are smaller than 1, the near-exact distribution will then
provide an asymptotic distribution of the same kind of the ones in Sect. 3. Anyway,
for these cases the distributions in Sect. 3, which are indeed asymptotic distributions,
work very well, as we may see from the results in Sect. 6. Furthermore, these are
not the most common cases that occur, mainly when these distributions refer to
likelihood ratio test statistics, and, as we may also see from the results in Sect. 6, by
determining some of the weights through equating some of the first exact moments
we may obtain approximations which lie very close to the exact distribution.

Actually, in these latter cases where all bj are smaller than 1, as it may be seen
from the results analyzed in Sect. 6 and reported in Appendix C of Coelho and
Alberto (2020), a good balance between a number of weights determined through
(18) and (12)–(13) and a number of weights determined by equating some of the first
exact moments leads usually to the best results and although this approach might
also be applied to the general near-exact distributions, for reasons of simplicity
and extent of the manuscript we decided to use in the near-exact distributions only
weights determined by equating exact moments. The adaptation of the approach
followed to this other one of determining some of the weights through their
formulation in (18) and (12)–(13) is quite easy and straightforward, although the
computation of the weights through (18) and (12)–(13), namely for higher orders,
may require more computation than their determination by equating exact moments.

5.2 Near-Exact Distributions for the Product of Independent
Beta Random Variables Raised to Different Powers

However, it is interesting to note that this case of different powers cj poses indeed
no big problems when we adopt the near-exact approach. It indeed poses no problem
at all in what concerns the handling of the part of the c.f. ΦW(t) which will be left
unchanged, that is, Φ1,W (t), anyway posing a similar problem to the one described
above for Φ2,W (t), the part of the c.f. ΦW(t) to be asymptotically approximated,
since in the present case, following the same lines as in (24) we have
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ΦW(t) =
⎧
⎨

⎩

q∏

j=1

b∗j−1∏

�=0

(aj + �)mj (aj + �− cj it)−mj

⎫
⎬

⎭

×
⎧
⎨

⎩

q∏

j=1

(
Γ (aj + bj )

Γ (aj + b∗j )
Γ (aj + b∗j − cj it)

Γ (aj + bj − cj it)

)mj

⎫
⎬

⎭

=
⎧
⎨

⎩

q∏

j=1

b∗j−1∏

�=0

(
aj + �

cj

)mj
(
aj + �

cj
− it

)−mj

⎫
⎬

⎭
︸ ︷︷ ︸

Φ1,W (t)

×
⎧
⎨

⎩

q∏

j=1

(
Γ (aj + bj )

Γ (aj + b∗j )
Γ (aj + b∗j − cj it)

Γ (aj + bj − cj it)

)mj

⎫
⎬

⎭
︸ ︷︷ ︸

Φ2,W (t)

where now Φ1,W (t) is the c.f. of a sum of
q∑

j=1
b∗j independent Gamma random

variables, with integer shape parameters mj and rate parameters (aj + �)/cj (� =
0, . . . , b∗j − 1; j = 1, . . . , q), which is a GIG distribution of depth

q∑

j=1
b∗j , with rate

parameters (aj+�)/cj and shape parameters mj (j = 1, . . . , q; � = 0, . . . , b∗j − 1)

and Φ2,W (t) is the c.f. of a sum of p =∑q

j=1 mj independent Logbeta r.v.’s, mj of
which have parameters (aj + b∗j , b∗∗j ) and are multiplied by cj (j = 1, . . . , q).

Then, based on a heuristic approach, in building the near-exact distribution for W
we will leave Φ1,W (t) unchanged and we will now approximate Φ2,W (t) in exactly
the same way we did in the previous subsection, now taking a in (27) as one of the
choices in (28), with aj + b∗j replaced by (aj + b∗J )/cj .

As it happened in the previous subsection, these different strategies for the choice
of a will be used only for approximations which correspond to the situations studied
in Sects. 3.1 and 3.2, since for the situation addressed in Sect. 3.3, once again there
is no doubt in the choice of a, having now to consider that in this case not only
the first and second parameters of all the Beta r.v.’s have to be equal but also all
the powers to which they are raised have also to be the same. Then we may either

take the parameter a in (27) as
(
a + b−1

2

)
/c, where a and b are respectively the

common values of the first and second parameters for all the Beta r.v.’s involved and
c the common power, or just take the transformation procedure outlined in Sect. 3.4.

From the results in the next section as well as in Sect. 7.3, we may see that this
approach really works well in practice.
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6 Some Evidence Better Analyzed from Numerical Studies

While we clearly expect the “completed” truncation to perform much better than the
simple truncation, and the version with the weights computed from the moments to
perform even much better, we also expect the near-exact distributions to display an
even much better performance than any of these. The results coming out of a few
numerical studies may indeed help us in better figuring out the fine behavior of each
of these approximations and also to better see that the near-exact approximations are
indeed the only ones with a remarkable outstanding performance in all situations,
that is, for any combination of values of the parameters involved. These results may
be analyzed in detail in Coelho and Alberto (2020).

In order to assess the proximity between the exact distributions of W and Z and
the approximations suggested in this manuscript we use the measure

Δ = 1

2π

∫ +∞

−∞

∣∣∣
∣
ΦW(t)−Φ∗(t)

t

∣∣∣
∣ dt (29)

with

max
w∈SW

∣∣FW(w)− F ∗W(w)
∣∣ = max

z∈SZ
∣∣FZ(z)− F ∗Z(z)

∣∣ ≤ Δ,

where ΦW(t) represents the exact c.f. of W given by (7) or (16) and Φ∗(t) the
approximate c.f. corresponding to the approximation being used, and where FW(w)

and F ∗W(w) represent the c.d.f.’s corresponding to ΦW(t) and Φ∗(t), and FZ(z) and
F ∗Z(z) the corresponding c.d.f.’s of Z. Therefore smaller values of Δ correspond to
better approximations.

The measure in (29) may be seen as related with the Berry–Esseen bound (Berry
1941; Esseen 1945; Hsu 1945; Hwang 1998) and has been used in several studies as
a measure of proximity between distributions (Coelho et al. 2010, 2015; Marques
and Coelho 2011a; Marques et al. 2011).

From the results in Tables 1-23 in Appendix C in Coelho and Alberto (2020),
we may see how the approximations based on the c.f. in (20) only give somewhat
satisfactory results for the scenarios with bj ’s smaller than 1, with completely
nonsense results for the scenarios with larger spans of the aj , with values of Δ

larger than 1, indicating that indeed the supposedly approximating c.f.’s are not
indeed true c.f.’s, that is, they do not even correspond to true distributions. Anyway
the behavior of the approximation based on (20) that uses the completion of weights
is in all cases much better than the one that does not use the weight completion,
and the approximation based on (20) with the weights computed by matching
exact moments has always a much better performance than the approximations that
compute the weights through (18) and (12)–(13), with quite satisfactory results for
all scenarios. However, all these approaches suffer from the problem of starting
to yield worse approximations when the number of terms m goes above some
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threshold for which it is not easy to obtain an “a priori” guess. This problem
is more pronounced for the approximation based on (20) with weights given by
(18) and (12)–(13) without weight completion and much less pronounced for the
approximation that uses weights obtained by equating moments, and it also starts at
much larger values of m for this latter approximation.

The results show that in general there is no advantage of having some of the first
weights computed through their exact expressions, that is, they show that it is indeed
more advantageous to have all weights computed by matching exact moments.

However for the scenarios with bj ’s smaller than 1 some combinations of
moderate values of m∗ with somehow larger values of m∗∗ − m∗ in (22) may give
somewhat better results than those obtained when all the weights are obtained by
equating the first exact moments.

This shows that this approach might be useful to be implemented for the near-
exact approximations, where the remaining part of the c.f. left to be asymptotically
approximated corresponds indeed to a product of independent Beta r.v.’s, all with
bj parameters smaller than 1. However, for reasons related with the already large
length of this manuscript, such approaches were not explored, although they may be
easily implemented from the approaches developed.

For the same number of exact moments matched, and for the same number
of terms in the mixtures, the near-exact distributions yield approximations which
exhibit values of Δ which are several millions of times smaller than those for the
corresponding approximations based on simple truncations of the c.f., that is the
ones based on the c.f.’s in (20) and (22). Moreover, the near-exact distributions show
a much stable behavior across all scenarios, actually tending to show slightly better
performances in those scenarios where the other approaches tend to behave worse,
which are the scenarios where the aj show larger spans, or scenarios where the
bj have larger values, or yet scenarios where there are more Beta r.v.’s involved,
showing this way their great ability and adequacy to handle more complicated
situations.

Although for situations where we consider the distribution of the product of
different powers of independent Beta r.v.’s, the near-exact approximations exhibit
rather larger values of the measure Δ than what they do for situations where no
powers are considered, they still have very good performances, with the near-exact
approximations with a in (27) given by the minimum of the (aj − b∗j )/cj being the
one with a less good performance and the near-exact approximations with a in (27)
given by vi) or vii) in (28) being the ones with the best performance. This also shows
that there are good reasons to consider the different choices for a in (28), although
introduced then in a somewhat heuristic way. As we will also see in Sect. 7.3, these
near-exact approximations also perform very well when applied to the distribution
of likelihood ratio test statistics.



106 C. A. Coelho and R. P. Alberto

7 Applications

In this section we have chosen the likelihood ratio test statistics to test (i) the
independence of several sets of variables, (ii) sphericity, and (iii) equality of
several covariance matrices, under multivariate normal or elliptically contoured
distributions to illustrate the performance of the near-exact distributions suggested
in Sect. 5 and the different cases addressed in Sects. 3 and 5. In this section we will
indeed only use near-exact distributions, given the evidence that these distributions
give much better approximations, while remaining highly manageable.

For each type of near-exact distribution studied, 4, 6, 10, or 15 exact moments
are matched, in order to make it easier to compare the results obtained with the
ones published elsewhere for other near-exact distributions which equated exactly
the same numbers of exact moments. As it may be seen from the numerical results,
some of the near-exact distributions suggested in this paper, for the general case
of the product of independent Beta r.v.’s, yield even slightly better results than the
best performing near-exact distributions earlier expressly developed for each of the
statistics used as examples.

7.1 The Distribution of the Likelihood Ratio Test Statistic
to Test Independence of Sets of Variables

According to Marques et al. (2011), the distribution of Λ1, the likelihood ratio test
statistic to test the independence of m groups of variables, the k-th of them having
pk variables, based on a sample of size n from a multivariate normal or elliptically
contoured distribution is the same as the distribution of

m−1∏

k=1

pk∏

j=1

(
Yjk

)n/2 where Yjk ∼ Beta

(
n− qk − j

2
,
qk

2

)
(30)

or the distribution of
⎧
⎨

⎩

p∏

j=3

e−Zj

⎫
⎬

⎭

⎧
⎨

⎩

k∗∏

j=1

(
Y ∗j
)n/2

⎫
⎬

⎭
where Zj ∼Γ

(
rj ,

n−j

n

)
and Y ∗j ∼Beta

(
n−2

2
,

1

2

)

(31)
with

p =
m∑

k=1

pk , qk = pk+1 + · · · + pm and k∗ =
⌊
�

2

⌋

where � is the number of sets of variables with an odd number of variables and
where rj (j = 3, . . . , p) are given by (A.2)-(A.3) in Marques et al. (2011).
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We may note that the non-integer part of the second parameters of the Beta r.v.’s
in (30) is always either zero or 1/2, thus rendering the near-exact approach for the
distribution in (31) quite simple and much adequate, while in case k∗ = 0, that is,
when at most one of the sets has an odd number of variables, it is clear from (31)
above, that we have in this case the exact distribution of Λ1 as an EGIG distribution.

The way the distribution of Λ1 is presented in (31), although requiring more
elaborate work on the c.f. of − log Λ1, it will allow for much more precise
approximations than the ones obtained so far. The c.f. corresponding to

∏p

j=3 e
Zj in

(31) plays the role of Φ∗
1,W (t) in (24), while the c.f. corresponding to

∏k∗
j=1

(
Y ∗j
)n/2

in (31) plays the role of Φ2,W (t) in (24). In this case, in order to approximate
Φ2,W (t) we will use the approach outlined in Sect. 5, corresponding to the case
studied in Sect. 3.3.

In Table 28 in Appendix D of Coelho and Alberto (2020) we have values of the
measure Δ in (29) for near-exact distributions for Λ1 for different numbers of sets
of variables, different numbers of variables in each set, and different sample sizes.
In this table, NE-1, NE-2, NE-6, and NE-7 refer to the near-exact distributions based
on the expression of the distribution of Λ1 in the form in (30) and corresponding
different choices for a in (28), while NE-II refers to the near-exact distribution
obtained using the form of the distribution in (31) and the approach described in
Sect. 3.3, which uses a mixture of gamma distributions, all with rate parameters
equal to n−2

2 − 1
4 and shape parameters k∗

2 + 2k, for k = 0, . . . , m. We should
note that given the fact that for the representation of the distribution of Λ1 in (30)
all b∗j = �bj � are equal to either zero or 1/2 and all mj are equal to 1, then the
near-exact distributions NE-2 through NE-5, corresponding to the choices for a in
ii) through v) in (28) yield exactly the same near-exact distributions.

We may note that the form of the distribution in (31) allows for much better
approximations. Actually, the results obtained for this form of the distribution by
using the approach described in Sects. 5 and 3.3 allow for much better approxima-
tions than any of the ones obtained before for this statistic. However, it is interesting
to note that the bus approach of building near-exact approximations based directly
on the form of the distribution in (30) gives very sharp near-exact approximations
which are only barely worse than the ones previously obtained for this statistic when
using a dedicated approach (see Coelho et al. (2010) and Marques et al. (2011)).

Some more detailed comments on the performance of the several near-exact
distributions are:

– as expected, all the near-exact distributions show a clear asymptotic behavior
both for increasing values of m, the number of exact moments matched, and n,
the sample size,

– NE-II is by far the best performing near-exact distribution, with a performance
even much better than the near-exact distributions in Coelho et al. (2010) and
Marques et al. (2011).
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– NE-1 through NE-7, which use what we may call a “bus” approach, do not give
much worse results than the near-exact distributions in Coelho et al. (2010) and
Marques et al. (2011), specifically developed for Λ1,

– for increasing values of p =∑ν
k=1 pk , keeping n− p fixed, even for very small

values of n−p and reduced values of m (the number of exact moments matched),
the performance of the near-exact approximations NE-1 through NE-7 does not
worsen while the performance of NE-II even improves, what may be seen as a
much desirable feature,

– NE-1 is the worse performing near-exact approximation, what amply justifies the
choices for the rate parameter a in ii)–vii) of (28) in Sect. 5, which then seemed
to be a somewhat heuristic approach,

– the near-exact approximation NE-6, with the rate parameter a based on only two
moments, performs always better than NE-7, with a rate parameter a based on
four moments, and this latter one better than NE-2.

7.2 The Distribution of the Likelihood Ratio Test Statistic
to Test Sphericity

Once again according to Marques et al. (2011), the distribution of Λ2, the likelihood
ratio test statistic to test sphericity in a p-multivariate normal or elliptically
contoured distribution, based on a sample of size n has the same distribution as

p∏

j=2

(
Yj
)n/2 where Yj ∼ Beta

(
n− j

2
,
j − 1

p
+ j − 1

2

)
(32)

or
⎧
⎨

⎩

p∏

j=2

e−Zj

⎫
⎬

⎭

⎧
⎨

⎩

p−k∗∏

j=2

(
Y ∗j
)n/2

⎫
⎬

⎭

⎧
⎨

⎩

p∏

j=p−k∗+1

(
Y ∗∗j

)n/2

⎫
⎬

⎭
, (33)

where k∗ = �p/2�, and

Zj ∼ Γ

(
rj ,

n−j

n

)
, Y ∗j ∼Beta

(
n−1

2
,
j−1

p

)
and Y ∗∗j ∼Beta

(
n

2
,
j−1

p
− 1

2

)

with

rj =
⌊
p − j + 2

2

⌋
, j = 2, . . . , p .

Since all Beta r.v.’s in either (32) or (33) are all different, with different first and
second parameters, in this case all the mj will be equal to 1 and the near-exact
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distributions corresponding to the choices of a in ii) and iv) of (28), on one side,
and the ones corresponding to iii) and v) in (28) will yield the same result.

As such, in Tables 29-31, in Subsect. D.2 of Appendix D in Coelho and Alberto
(2020), we refer to the near-exact distributions for the distribution of Λ2 as depicted
in (32) by NE-1 through NE-7, not using NE-4 neither NE-5, and by NE2-1 through
NE2-7 for the representation of the distribution in (33), not using NE2-4 neither
NE2-5. For this statistic,

– as it also happens with the statistic Λ1 in the previous subsection, and as it was
expected, all near-exact approximations show a marked asymptotic behavior for
increasing values of n, the sample size, and m, the number of exact moments
matched,

– an important characteristic of all the near-exact approximations for Λ2 is that
they are also asymptotic in p, that is, for all values of m, even the smaller ones,
they perform even better for larger values of p, when keeping n − p constant,
even for very small values of n− p,

– for the first approach, the NE-2 near-exact distribution presents the worse
performance, while NE-1 is comparable to NE-3, with NE-6 and NE-7, which
are comparable, exhibiting the best performance,

– for the second approach, NE2-6 and NE2-7 are comparable, showing a better
performance than NE2-2 and NE2-3, which are comparable,

– also for the second approach, and for the larger values of m, NE2-1 generally
performs better than NE2-6 and NE2-7 for smaller values of n, and the other
way around for larger values of n,

– generally, the near-exact distributions based on the second approach show a
better performance than the ones based on the first approach, although the gain
may be rather slim and tends to reduce for larger values of m.

As the near-exact distributions based on the first approach, based on (32), need less
work on the exact c.f. and the gains with the second approach, based on (33), tend
to be rather slim, the “bus” near-exact distributions based on the first approach may
represent a good choice.

7.3 The Distribution of the Likelihood Ratio Test Statistic
to Test Equality of Covariance Matrices

Once again according to Marques et al. (2011), the distribution of Λ3, the likelihood
ratio test statistic to test the equality of q covariance matrices, based on q

independent samples, all with size n, from as many p-multivariate normal or
elliptically contoured distributions, has the same distribution as
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p∏

j=1

q∏

k=1
except j=k=1

(
Yjk

)n/2 where Yjk ∼ Beta

(
n− j

2
,
j (q − 1)+ 2k − 1− q

2q

)
,

(34)
or

⎧
⎨

⎩

p∏

j=2

e−Zj

⎫
⎬

⎭

⎧
⎨

⎩

�p/2�∏

j=1

q∏

k=1

(
Y ∗jk

)n
⎫
⎬

⎭

{
q∏

k=1

(
Y ∗k
)n/2

}p⊥⊥2

(35)

where p ⊥⊥ 2 is the remainder of the integer division of p by 2, or equivalently, the
indicator function of p being odd,

Zj ∼Γ

(
rj ,

n−j

n

)
, Y ∗jk∼Beta

(
aj+b∗jk, bjk−b∗jk

)

and Y ∗∗j ∼Beta
(
ap+b∗pk, bpk−b∗pk

)

with

aj = n− 2j, bjk = 2j − 1+ k − 2j

q
, b∗jk = �bjk� ,

ap = n− p

2
, bpk = pq − q − p + 2k − 1

2q
, b∗pk = �bpk� ,

and rj given by (A.12)-(A.16) in Marques et al. (2011).
Also in the distribution of Λ3 all Beta r.v.’s in either (34) or (35) are all different.

As such, in Tables 32-34 in Appendix D of Coelho and Alberto (2020), similar to
what was done for Λ2, we do not use the near-exact distributions NE-4 neither
NE-5, NE2-4, NE2-5. In these Tables NE-1 through NE-7 refer to the form of
the distribution of Λ3 in (34) and NE2-1 through NE2-7 refer to the form of the
distribution of Λ3 in (35).

We should also note that for odd p, when using the representation of the
distribution of Λ3 in (35), we will have two products of Beta r.v.’s where in each
product the Beta r.v.’s involved are raised to a different power. As such, when using
this representation of the distribution for odd p, we will have to use the approach
outlined in Sect. 5.2. As overall comments we may see that

– once again, and as expected, all near-exact approximations show a marked
asymptotic behavior for increasing values of n, the sample size, and m, the
number of exact moments matched,

– NE-6, NE-7, NE2-6, and NE2-7, which are the best performing approximations,
even seem to improve quite a bit with the increase in q, what is a token in favor
of these near-exact approximations, or, if we want, in favor of the choice of the
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computation of the parameter a as in vi) and vii) of (28), and, as in Sect. 7.1,
it shows that what might have seemed then as mostly heuristic choices for the
computation of the parameter a, are indeed well justified, moreover since this
behavior even seems to be more accentuated for larger values of m and n,

– generally the second approach, based on (35) yields somewhat better results,
although the difference to the first approach is rather slim mainly for NE-6 and
NE-7, what shows that these two near-exact approximations, based on a simpler
and more crude approach may indeed constitute good alternatives to NE2-6 and
NE2-7,

– very good approximations are obtained, namely when using NE2-6 and NE2-
7, but also NE-6 and NE-7, even for small values of n− p, which is a much
desirable feature.

8 Conclusions

Although the asymptotic distributions which are finite mixtures of beta or expo-
nentiated gamma distributions, are simpler and as such easier to compute, in most
situations they do not provide the necessary precision, yielding in many situations
completely inadequate approximations. However, opposite to these, the near-exact
approximations provide high quality approximations for all situations, even though
remaining much manageable. Mainly in situations where the parameters bj have
large values, the aj present large spans and/or the number of Beta r.v’s involved
in the product is moderately large or large, the near-exact distributions, which are
finite mixtures of GNIG or GIG distributions, provide the sensible approach and
the adequate answer to the problem of approximating the distribution of the product
of independent Beta r.v.’s with high quality but manageable approximations. These
approximations also show very stable performances for all kinds of situations. That
is, they show values of the measure Δ which seem to be not much affected by
changes in the number of Beta r.v.’s in the product, or the span of the values of
the aj , actually giving even better approximations for situations where the number
of Beta r.v.’s involved in the product increase or the values of the parameters bj
increase, and this in clear contrast with all other asymptotic approximations.

In what concerns the l.r.t. statistics used in Multivariate Analysis addressed in
Sect. 7, all near-exact distributions show very good performances even for very
small sample sizes, and an asymptotic behavior not only for increasing sample
sizes but also for increasing number of variables involved. Among all near-exact
distributions, the ones with the parameter a defined by vi) or vii) in (28) are usually
the best performing ones. The fact that NE-II was by far the best performing near-
exact approximation for Λ1 and that the near-exact distributions corresponding to
the “second approaches” for both Λ2 and Λ3 yield in general the best approaches,
indicates that specific further work on the exact c.f.’s in order to develop near-exact
distributions which may lead to the ability of keeping as much as possible of the
original c.f. under its exact form, usually pays off. However, for both Λ1 and Λ2
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this gain is rather slim, while for Λ3 this gain is extremely slim for smaller values
of p (the number of variables involved) and larger for larger values of p, indicating
that the application of the near-exact approach and near-exact distributions to a more
crude process obtained by working directly on the original product of independent
Beta r.v.’s also leads to very accurate approximations, with c.d.f.’s which may easily
lie apart from the original by much less than a hundredth of a millionth part, which
would never be possible to attain with any other approach.

In fact, the results in this chapter have an even much wider scope than the one
analyzed so far. Actually, the distribution of W in (15) is not only the distribution
of the negative logarithm of a large number of l.r.t. statistics but it is also the
distribution of a linear combination of independent gamma random variables.

Indeed, although in the setting that expression (15) is taken in Sect. 3, all mj were
there taken as positive integers, m in (11) does not have to be an integer. In fact, if
in (15) we take bj = 1 and mj as positive reals (j = 1, . . . , q), the c.f. of W may
be written as

ΦW(t) =
q∏

j=1

(aj )
mj (aj − it)−mj (36)

which is the c.f. of a sum of independent Γ (mj , aj ) random variables, which is also
the c.f. of a linear combination of independent gamma distributed random variables.

If in (36) we take mj = kj /2 for some positive integers mj (j = 1, . . . , q), we
may write

ΦW(t) =
q∏

j=1

(aj )
kj /2(aj − it)−kj /2 =

q∏

j=1

(
1

2

)kj /2 (1

2
− 1

2aj
it

)−kj /2

,

which is the c.f. of a linear combination of independent χ2
kj

random variables

with coefficients 1
2aj

(j = 1, . . . , q). This distribution is of key importance since
it is intimately related with the distribution of quadratic forms, more precisely,
quadratic forms in normal variables (Baksalary et al. 1994; Imhof 1961; Kotz et al.
1967a,b; Shah 1963) which arise in many estimation and testing problems related
with Gaussian processes and normal models, or which arise as limiting distributions
in non-normal processes (Jensen and Solomon 1972; Khatri 1980).
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Appendix A: Simple Proofs for Expressions (11) and (45)

The asymptotic expansions in (39) and (45) were first proved by Burić and Elezović
(2011). We propose here simpler and straightforward demonstrations.

Barnes (1899) established an asymptotic expansion for the logarithm of the
gamma function in the form

log Γ (x + h) ≈ log
√

2π +
(
x + h− 1

2

)
log x − x −

∞∑
r=1

(−1)r Br+1(h)

r(r+1)xr ,

(x →∞) (37)

for any x, h ∈ C and where Br(·) is the Bernoulli polynomial of degree r.
Assuming z, α, β ∈ C and m ∈ R, the application of (37) leads to

log

[
Γ (z+ α)

Γ (z+ β)

]m
≈ m(α − β) log z+

∞∑

r=1

δr,m(α, β) z
−r , (z→∞)

where

δr,m(α, β) = (−1)rm
Br+1(β)− Br+1(α)

r(r + 1)
. (38)

Therefore, we may write

[
Γ (z+ α)

Γ (z+ β)

]m
≈ zm (α−β) e

∑∞
r=1 δr,m(α,β) z

−r
, (z→∞) ,

from which, expanding the exponential function according to expressions (2.7) and
(2.8) in Moschopoulos (1985) we obtain the asymptotic expansion

[
Γ (z+ α)

Γ (z+ β)

]m
≈

∞∑

k=0

νk,m(α, β) z
m (α−β)−k, (z→∞) , (39)

for the power of a ratio of two gamma functions, with νk,m(α, β) given by (12).
However, it is indeed possible to improve the series expansion in (39), achieving

a faster convergence series after a convenient parameter manipulation, in case we
are willing to use a power basis which is also function of α and β.

From the property of the Bernoulli polynomials stated in expression 23.1.8 in
Abramowitz and Stegun (1972), we note that, when n is even,

Bn(1− x) = Bn(x) . (40)
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Consider now c ∈ C and let z∗ = z+ c, α∗ = α − c, and β∗ = β − c. Then, from
(39) we may write

[
Γ (z∗ + α∗)
Γ (z∗ + β∗)

]m
≈

∞∑

k=0

νk,m(α
∗, β∗) (z∗)m (α−β)−k, (z→∞) . (41)

Now, the proper choice of c will allow us to reduce the number of terms in the
above series. For this purpose we will force ν1,m(α

∗, β∗) = 0. Since ν1,m(α
∗, β∗) =

δ1,m(α
∗, β∗), it is enough to determine c such that

B2(β − c) = B2(α − c) . (42)

But then, according to (40), we have

B2(β − c) = B2(1− (β − c)) ,

which, together with (42), entails

c = (α + β − 1)/2 . (43)

Moreover, this choice of c implies that, for every odd j

δj,m(α − k, β − k) = 0 . (44)

Thus, from (43) and (44), we may prove that, for every odd k

νk,m(α − c, β − c) = 0 ,

and that therefore all the odd terms of the series represented in (41) vanish.
The proof is done by induction. As induction basis, the statement ν1,m(α−c, β−

c) = 0 holds, according to the choice of c in (43). Assuming as induction hypothesis
that, for any given odd k, the statement

ν1,m(α − c, β − c) = ν3,m(α − c, β − c) = . . . = νk−2,m(α − c, β − c)

= νk,m(α − c, β − c) = 0

is true, we have, by (38),

νk+2,m(α − c, β − c) = 1

k + 2

k+2∑

j=1

j δj,m(α − c, β − c) νk+2−j,m(α − c, β − c) .

Now all the terms in the summation are zero since, when j is odd the factor δj,m(α−
c, β − c) is zero, according to (44). Otherwise, when j is even, the index k + 2− j
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is odd and, by the induction hypothesis, the correspondent coefficient νk+2−j,m(α−
c, β − c) is also zero.

Finally, expression (41) may be written as

[
Γ (z+ α)

Γ (z+ β)

]m
≈

∞∑

k=0

ν2k,m(α − c, β − c) (z+ α+β−1
2 )m(α−β)−2k, (z→∞) ,

(45)

where each coefficient ν2k,m(α−c, β−c) is given by (12), with c = (α+β−1)/2.
Setting m = 1 in (39) we obtain a power expansion which is equivalent to the

asymptotic series expansion for the ratio of two gamma functions proposed by
Tricomi and Erdélyi (1951), here in the form given by Fields (1966), while by setting
m = 1 in (45) we obtain the equivalent to the asymptotic series expansion for the
ratio of two gamma functions proposed by Fields (1966).
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On the Exact Statistical Distribution of
Econometric Estimators and Test
Statistics

Yong Bao, Xiaotian Liu, and Aman Ullah

Abstract Barry Arnold has made many fundamental and innovative contributions
in different areas of statistics and econometrics, including estimation and inference,
distribution theory, Bayesian inference, order statistics, income inequality measures,
and characterization problems. His extensive work in the area of distribution theory
includes studies on income distributions and Lorenz curves, the exact sampling
distribution theory of test statistics, and the characterization of distributions. In
our paper, we consider the problem of developing exact sampling distributions of
various econometric and statistical estimators and test statistics. The motivation
stems from the fact that inference procedures based on the asymptotic distributions
may provide misleading results if the sample size is small or moderately large.
In view of this, we develop a unified procedure by first observing that a large
number of econometric and statistical estimators can be written as ratios of quadratic
forms. Their distributions can then be straightforwardly analyzed by using Imhof’s
(Biometrika 48:419–426, 1961) method. We show the applications of this procedure
to develop the distribution of some commonly used statistics in applied work. The
exact results developed will be helpful for practitioners to conduct appropriate
inference for any given size of the sample data.

1 Introduction

In the early twentieth century, Sir R. A. Fisher and others set in motion what
is known today as the classical parametric approach to statistical estimation of a
finite number of population parameters using sample data. Thus began the practice
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of statistical inference within the framework of estimation and hypothesis testing
of univariate and multivariate probability distributions. The extensive study of
conditional probability distributions followed, and hence, the estimation and testing
in the conditional mean (regression) and conditional variance (volatility) models
became a norm in econometrics and statistics. The estimation of parameters of
regression and other models gave rise to the development of statistical properties of
econometric estimators of such models like their bias, mean squared error (MSE),
and distributions. Within this and in related contexts, Barry Arnold has made many
fundamental and innovative contributions in different areas of statistics and econo-
metrics, including estimation and testing, distribution theory and characterization of
distributions, income distribution theory and Lorenz curves, among others. See, for
example, Arnold (1983, 1987, 2012, 2015), Arnold et al. (1987), Arnold and Sarabia
(2018), Coelho and Arnold (2014), Marques et al. (2011), and Villaseñor and Arnold
(1984, 1989). All of these have made significant impact on the profession and have
been instrumental in advancing statistics and econometrics.

The large sample limiting distribution theory was well developed, but there
were challenges to develop needed analytical finite sample distributional results.
In general, the large sample properties did not necessarily imply the small sample
properties, and if they were used in small or moderately large sample cases, they
may give misleading policy implications. This problem was posed since most of
econometric estimators were nonlinear functions of multivariate random variables
and it was not easy to develop their exact distributional properties. Nagar (1959)
developed finite sample approximate bias and MSE of the two-stage least squares
(2SLS) estimator of the parameters in a structural model. This was followed by
an extensive work of many other econometrians and statisticians on the exact
bias and MSE, and some on the exact distribution, of the 2SLS estimator. This
literature is summarized in Ullah (2004), also see Anderson and Sawa (1973),
Phillips (1980, 1986), and Bao et al. (2017). However, the exact distribution of many
other econometric and statistical estimators is not yet developed.

In view of this in this paper, we develop a unified procedure to analyze the
exact distribution by observing that many econometric and statistical estimators
can be written as ratios of quadratic forms. Their distributions can then be
straightforwardly developed by using Imhof’s (1961) result on the distribution of
an indefinite quadratic form. We show the applications of this procedure to develop
the distribution of some statistics used in applied work. These include squared
coefficient of variation for measuring income inequality, squared Sharpe ratio
commonly used in financial management, Durbin–Watson test statistic for serial
correlation routinely used in practice, Moran’s test statistic for spatial correlation,
and goodness of fit in regression models. The exact results developed here will be
helpful for practitioners to conduct appropriate inference for any given size of the
sample data.
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This paper is organized as follows. In Sect. 2, we present the exact distributional
results. Then in Sect. 3, we provide a numerical analysis of the exact distribution of
a goodness of fit measure. Finally, the conclusion is given in Sect. 4. Throughout,
I = In is the n × n identity matrix, ι = ιn is an n × 1 vector of ones, and M0 =
I − n−1ιι′.

2 The Exact Distribution

Let us consider the ratio of quadratic forms as

q = y′N1y

y′N2y
, (1)

where y is an n × 1 normal random vector with E(y) = μ and Var(y) = � being
positive definite, N1 and N2 are n×n nonstochastic symmetric matrices, and N2 is
a positive semi-definite.1 The cumulative distribution function (CDF) of this ratio is

F(q0) = Pr(q ≤ q0) = Pr(y′Ny ≤ 0),

where N=N1−q0N2. Note that y′Ny=y′�−1/2QQ′�1/2N�1/2QQ′�−1/2y ≡
z′�z, where z = Q′�−1/2y ∼ N(μz, I ), μz = Q′�−1/2μ, � is a diagonal matrix
of eigenvalues of �1/2N�1/2, and Q is an orthogonal matrix of eigenvectors of
�1/2N�1/2 such that Q′�1/2N�1/2Q = �. So the distribution of the ratio of
quadratic forms translates to that of a linear combination of independent non-central
chi-squared random variables. Without loss of generality, let λj , j = 1, . . . , r ≤ n,
denote non-zero distinct elements of �, nj be the corresponding mutiplicities,
δj = ∑

i→j μ
2
zi

, where
∑

i→j denotes summing over i such that the ith element

of � equals λj . Then, z′�z = ∑r
j=1 λj ζ

2
j , where ζ 2

j ∼ χ2
nj
(δj ), and they

are independent of each other. For a linear combination (with weights λj ) of
independent non-central chi-squared variables ζ 2

j (with non-centrality parameter δj
and degrees of freedom nj ), Imhof (1961) showed that

Pr

⎛

⎝
r∑

j=1

λj ζ
2
j ≤ q∗0

⎞

⎠ = 1

2
− 1

π

∫ ∞

0

sin θ(v)

vρ(v)
dv, (2)

where

1If they are not symmetric, we can simply replace N1 and N2 by (N1+N ′
1)/2 and (N2+N ′

2)/2,
respectively.
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θ(v) = −q∗0v
2
+

r∑

j=1

[
nj

2
tan−1(λj v)+ λj δj v

2(1+ λ2
j v

2)

]

,

ρ(v) =
r∏

j=1

(1+ λ2
j v

2)nj /4 exp

[
λ2
j v

2δj

2(1+ λ2
j v

2)

]

.

Setting q∗0 = 0, we have F(q0) = Pr(y′Ny ≤ 0) = Pr(y′N1y/y
′N2y ≤ q0).

2.1 Goodness of Fit Statistic R2

For the linear regression model y = Xβ + u, where y = (y1, . . . , yn)
′ is an

n × 1 vector of observations on the dependent variable, X = (x1, . . . , xn)
′ is an

n×k nonstochastic matrix of covariates (including a constant term) with coefficient
vector β, and u = (u1, . . . , un)

′ collects normally distributed error terms, a
goodness of fit statistic is

R2 =
∑n

i=1(yi − ȳ)(ŷi − ȳ)
∑n

i=1(yi − ȳ)2
= y′M0Py

y′M0y
, (3)

where ȳ = n−1 ∑n
i=1 yi , ŷi = x′i β̂, and P = X(X′X)−1X′. We can thus evaluate

the distribution of R2 with N1 = M0P and N2 = M0 by applying (2).
Denote M = I − P and P 0 = n−1ιι′. Then, we can put N = M0P − aM0 =

M0((1 − a)P − aM) = P + (a − 1)P 0 − aI . Note that P is idempotent with
eigenvalues 1 (of multiplicity k) and 0 (of multiplicity n − k), and P 0 is also
idempotent with eigenvalues 1 (of multiplicity 1) and 0 (of multiplicity n − 1).
Since P 0v = (P 0P )v = P 0(Pv) for any conformable vector v, we see that
if v is an eigenvector of P associated with eigenvalue 0, then it must also be
an eigenvector of P 0 corresponding to its eigenvalue 0. There are n − k linearly
independent such vectors. Denote them by vi , i = 1, . . . , n − k. Further, Nvi =
[P + (a − 1)P 0 − aI ]vi = [0 + (a − 1) · 0 − a · 1]vi = −a · vi , implying
that N has eigenvalue −a with the corresponding eigenvectors vi . Similarly, if w

is an eigenvector of P 0 associated with eigenvalue 1, so it is an eigenvector of
P corresponding to its eigenvalue 1, and Nw = [P + (a − 1)P 0 − aI ]w =
[1 + (a − 1) · 1 − a · 1]w = 0 · w, implying that N has eigenvalue 0 with a
corresponding eigenvector w. Further, vi and w are linearly independent. Since N ,
P , and P 0 are all symmetric matrices, their eigenvectors span R

n (see page 179,
Exercise 7.48 of Abadir and Magnus 2005). Thus, there must exist k − 1 linearly
independent vectors zj ∈ R

n, j = 1, . . . , k − 1 (also linearly independent of
vi and w) to be eigenvectors of N , P , and P 0. Eigenvectors zj correspond to
eigenvalue 1 of P since zj and vi are linearly independent. Eigenvectors zj also
correspond to eigenvalue 0 of P 0 since zj and w are linearly independent. As such,
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Nzj = [P + (a − 1)P 0 − aI ]zj = [1 + (a − 1) · 0 − a · 1]zj = (1 − a) · zj ,
implying that N has eigenvalue 1− a with the corresponding eigenvectors zj .

Given that N = M0((1 − a)P − aM) has two non-zero eigenvalues, 1 − a

and −a, with the corresponding mutiplicities k − 1 and n − k, respectively, it is
convenient for us to rewrite

R2 = y′M0Py

y′M0Py + y′My
. (4)

If the error terms are independent and identically distributed (i.i.d) with variance
σ 2
u , then y′M0Py/σ 2

u ∼ χ2
k−1(β

′X′M0Xβ), y′My/σ 2
u ∼ χ2

n−k(0), and they are
independent of each other. As such, R2 follows a singly non-central beta distribution
(see Koerts and Abrahamse 1969), and its distribution takes on the following form:

Pr(R2 ≤ r0) =
∞∑

j=0

1

j !
(

β ′X′M0Xβ

2σ 2
u

)j

exp

(
−β ′X′M0Xβ

2σ 2
u

)

I

(
r0| k − 1

2
+ j,

n− k

2

)
, (5)

where I (x|a, b) = ∫ x

0 za−1(1 − z)b−1dz is the incomplete beta function with
parameters a and b. Alternatively, the distribution function can be calculated by
(2) with λ1 = 1− a, λ2 = −a, n1 = k − 1, n2 = n− k, δ1 = β ′X′M0Xβ/σ 2

u , and
δ2 = 0.2

2.2 Squared Sharpe Ratio

In financial portfolio management, a routine task is to assess a portfolio’s perfor-
mance. The most widely used metric may be the Sharpe ratio, introduced by Sharpe
(1966). Recently, Barillas and Shanken (2017) discussed how to compare asset
pricing models under the classic Sharpe metric and showed that the quadratic form
in the investment alphas is equivalent to the improvement in the squared Sharpe
ratio when investment in other assets is permitted in addition to the given model’s
factors.

The squared Sharpe ratio of an asset is defined as s = μ2/σ 2, where μ is the
is mean of the asset’s excess return and σ 2 is its variance. Given a sample y =
(y1, . . . , yn)

′ of excess returns, the sample squared Sharpe ratio is

2The linkage between Imhof’s formula and the non-central F (see the next subsections) and beta
distribution functions was discussed in Ennis and Johnson (1993).
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ŝ =
(
μ̂

σ̂

)2

= y′ιι′y/n2

y′M0y/(n− 1)
=

y′
(

ιι′
n2

)
y

y′
(

M0
n−1

)
y
, (6)

and (2) can be sued to evaluate its exact finite sample distribution with N1 = ιι′/n2

and N2 = M0/(n− 1).
When the excess return series is i.i.d. normal, the sample Sharpe ratio ξ̂ =

μ̂/σ̂ , when scaled by
√
n, is equivalent to a non-central t random variable with

degrees of freedom n− 1 and non-centrality parameter
√
nξ .3 As such, the sample

squared Sharpe ratio (scaled by n) follows a singly non-central F -distribution,
F1,n−1(ns, 0).4 So we have

Pr(ŝ ≤ s0) =
∞∑

j=0

(
( ns2 )j

j ! exp
(
−ns

2

))

I

(
ns0

n− 1+ ns0

∣
∣∣∣

1

2
+ j,

n− 1

2

)
. (7)

2.3 Squared Coefficient of Variation

The coefficient of variation (CV) has long been used in the literature as one of
the income inequality indexes across regions or over time. It is defined as the ratio
of the standard deviation of the variable of interest (e.g., household income) to its
mean value, namely, σ/μ. A closely related measure is the squared CV, usually
called the coefficient of variation squared (CV2), denoted by α = σ 2/μ2. When
the mean value of the variable of interest is positive, CV and CV2 are monotonic
transformation of each other. As neither the population mean nor the standard
deviation is known, in practice, we usually use their sample analogues to calculate
CV and CV2.

Specifically, the sample CV2 is defined as

α̂ = σ̂ 2

μ̂2 =
y′M0y/(n− 1)

y′ιι′y/n2 =
y′
(

M0
n−1

)
y

y′
(

ιι′
n2

)
y

. (8)

Obviously, we can set N1 = M0/(n − 1) and N2 = ιι′/n2 in (2) to evaluate the
exact distribution Pr(α̂ ≤ a).

If we further assume that the data is i.i.d., then from the discussion in the previous
subsection, it is obvious that the distribution of α̂ (scaled by n−1) is Fn−1,1(0, ns),

3The connection of the Sharpe ratio to the t-distribution seems to originate in Miller and Gehr’s
(1978) note on the bias of the Sharpe ratio.
4This notation is from the double non-central F -distribution with non-centrality parameters δ1 and
δ2 and the corresponding degrees of freedom d1 and d2, denoted by Fd1,d2 (δ1, δ2).
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where s = 1/α. This is a special case of double non-central F -distribution, and
since it is the reciprocal of F1,n−1(ns, 0), we have

Pr(α̂ ≤ α0) = 1− Pr(α̂ ≥ α0)

= 1− Pr

(
1

α̂
≤ 1

α0

)

= 1−
∞∑

j=0

(
( n

2α )
j

j ! exp
(
− n

2α

))

I

(
n
α0

n− 1+ n
α0

∣∣∣∣
∣

1

2
+ j,

n− 1

2

)

. (9)

2.4 The Durbin–Watson Statistic and Moran’s I

For testing the first-order autocorrelation in the error term in the classical linear
regression model, the Durbin–Watson statistic for testing H0 : ρ = 0 against H1 :
ρ �= 0 in ui = ρui−1 + ei , where ei is an i.i.d. innovation term, is calculated as

d =
∑n

i=2(ûi − ûi−1)
2

∑n
i=1 û

2
i

= û
′
Aû

û
′
û
= y′MAMy

y′My
, (10)

where û = (û1, . . . , ûn)
′, ûi = yi− ŷi , is the residual vector, and A is a tri-diagonal

matrix with −1 on the super- and sub-diagonal positions, a11 = ann = 1, and
aii = 2, i = 2, . . . , n. So setting N1 = MAM and N2 = M in (2), we can evaluate
the exact distribution of the Durbin–Watson statistic. Srivastava (1987) derived the
asymptotic distribution of Durbin–Watson statistic under the null hypothesis ui ∼
N(0, σ 2

u I ) as [(n− k)d − tr(AM)]/√2tr(AM)2 → N(0, 1).
For spatial data, Moran’s I statistic is to test for possible correlation across space.

It is calculated as

I = n

1′W1
y′M0WM0y

y′M0y
, (11)

where W is the so-called spatial weights matrix with zeros on the diagonal.5 Again,
its exact distribution can be straightforwardly evaluated by (2).

5If we are interested instead in testing whether the spatial correlation arises from the unobservable
error term in a linear regression model, Moran’s I can be calculated with M replacing M0 in (11).
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3 Illustration

In this section, we illustrate the performance of the exact result via (2) in comparison
with the asymptotic distributional results. We focus on the statistic R2. As discussed
in Xu (2014), in the statistical and public health communities, reliable inference
on R2 has attracted a lot of attention. The literature on statistical inference of R2

has been scarce; however, Xu (2014) developed the asymptotic distribution of R2

in linear regression models with possibly nonnormal errors and discussed the F -
distribution approximation with degrees of freedom adjustment. In Xu’s (2014)
setup, the data is demeaned such that ȳ = 0. Here, we relax this restriction. We
begin with the general case when the error distribution may be nonnormal. In what
follows, let γ1 and γ2 denote the skewness and excess kurtosis coefficients of the
error distribution. Obviously, when the error is normal, γ1 = γ2 = 0.

Recall that we have written R2 = y′M0Py/(y′M0Py + y′My). Below we
present the asymptotic distributions of R2 and two monotonic transformations of it.

Theorem 1 For the linear regression model, y = Xβ+u, whereX is nonstochastic
and u consists of i.i.d. errors, R2, R2/(1 − R2), and log(R2/(1 − R2)) have the
following asymptotic distributions:

√
n

(
R2 − β ′X′M0Xβ

β ′X′M0Xβ + nσ 2
u

)
d→ N

⎛

⎜
⎝0,

4β ′�β

σ 2
u
+ (2+ γ2)

(
β ′�β

σ 2
u

)2

(
β ′�β

/σ 2
u
+ 1

)4

⎞

⎟
⎠ , (12)

√
n

(
R2

1− R2
− β ′X′M0Xβ

nσ 2
u

)
d→ N

(
0,

4β ′�β

σ 2
u

+ (2+ γ2)(β
′�β)2

σ 4
u

)
, (13)

√
n

(
log

(
R2

1− R2

)
− log

(
β ′X′M0Xβ

nσ 2
u

))
d→ N

(
0,

4σ 2
u

β ′�β
+ 2+ γ2

)
. (14)

Proof By substitution, y′M0Py = (Xβ + u)′M0P (Xβ + u) = β ′X′M0Xβ +
u′M0Pu + 2u′M0Xβ. Using results on the moments of quadratic forms
in nonnormal random vectors (see, for example, Bao and Ullah 2010), we
have E(u′M0Pu) = σ 2

u tr(M0P ) = kσ 2
u − n−11′P 1 and Var(u′M0Pu) =

σ 4
u [γ2tr(M0P �M0P )+2tr(M0PM0P )], where� denotes the Hadamard product

operator. Since the idempotent matrix P has elements of order O(n−1) and M0
is uniformly bounded in row and column sums, we can write Var(u′M0Pu) =
2σ 4

u tr(M0PM0P ) + o(1) = 2σ 4
u [tr(P ) − 2n−11′PP 1 + n−2(1′P 1)2] + o(1) =

O(1). Thus we can claim n−1/2u′M0Pu = oP (1). Using the central limit theorem
on linear and quadratic forms in random vectors (see Kelejian and Prucha 2001),

we have n−1/2u′M0Xβ
d→ N(0, σ 2

uβ ′�β), where � = limn→∞ n−1X′M0X. So

n−1/2(y′M0Py − β ′X′M0Xβ) = 2n−1/2u′M0Xβ + oP (1)
d→ N(0, 4σ 2

uβ ′�β).

Similarly, n−1/2u′Mu = n−1/2u′u + oP (1)
d→ N(σ 2

u , σ
4
u (2 + γ2)). Further,

Cov(u′M0Xβ,u′u) = E(β ′X′M0uu′u) = γ1β
′X′M0ι = 0. Following
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Kelejian and Prucha (2001) again, we can show that any linear combination of
n−1/2u′M0Xβ and n−1/2u′u − σ 2

u (say, l1n−1/2u′M0Xβ + l2(n
−1/2u′u − σ 2

u ),
where l1 and l2 are non-zero constants) is asymptotically normal (N(0, l21σ

2
uβ ′�β+

l22σ
4
u (2+ γ2))). Therefore,

√
n

(
n−1y′M0Py−n−1β ′X′M0Xβ

n−1u′Mu−σ 2
u

)
d→ N

((
0
0

)
,

(
4σ 2

uβ ′�β 0
0 σ 4

u (2+γ2)

))
.

The asymptotic distributions of R2 = y′M0Py/(y′M0Py + u′Mu), R2/(1 −
R2) = y′M0Py/u′Mu, and log(R2/(1−R2)) = log(y′M0Py/u′Mu) then follow
immediately from the delta method. �
Note that R2, R2/(1 − R2), and log(R2/(1 − R2)) are monotonic transformations
of each other. Thus,

Pr(R2 ≤ r0) = Pr

(
R2

1− R2
≤ r0

1− r0

)
= Pr

[
log

(
R2

1− R2

)
≤ log

(
r0

1− r0

)]
.

(15)
When the error is normally distributed, by using (2) and setting N1 = M0P and
N2 = M0, we can calculate the exact distribution of R2 and, equivalently, that of
R2/(1−R2) or log(R2/(1−R2)), in light of the above relationship. The asymptotic
distribution, however, crucially depends on which statistic we are using. From (13)–
(14), we see that when the signal to noise ratio, measured by β ′�β/σ 2

u , increases,
the asymptotic distribution of R2/(1 − R2) becomes more dispersed, whereas the
asymptotic distribution of log(R2/(1− R2)) becomes more concentrated. Its effect
on the asymptotic distribution of R2 is ambiguous, and it depends on the strength
of the signal to noise ratio.6 An interesting case is the extreme case when β = 0.
In this case, while R2 and R2/(1− R2) have well-defined asymptotic distributions,
log(R2/(1 − R2)) does not have a properly defined asymptotic distribution.7 The
exact distribution is free of this kind of pitfall and can be calculated regardless of
the strength of the signal to noise ratio.

Figures 1, 2, 3, and 4 plot the cumulative distribution functions of the three
statistics by comparing the true, exact, and asymptotic distributions for samples
sizes 10, 20, 50, and 100, based on averages across 100,000 simulations.8 The data
generating process is y = β0+β1x1+β2x2+u, where x1 and x2 are generated from
two independent i.i.d. N(0, 4) random variables, and the error term is simulated as

6More specifically, when β ′�β/σ 2
u < 1, as β ′�β/σ 2

u goes up, the asymptotic distribution of R2

gets more dispersed. But when β ′�β/σ 2
u > 1, as β ′�β/σ 2

u goes up, the asymptotic distribution
of R2 gets more concentrated.
7Recall that the null distribution of the F statistic for testing the overall significance of a linear
regression, which is proportional to R2/(1− R2), has a well-defined distribution.
8We never know the true distribution. But we believe that averaging 100,000 simulations should
give results very close to the truth. In calculating the exact distributions via (2), we used Matlab’s
integral function.
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Fig. 1 CDF plots of R2, R2/(1− R2), and log(R2/(1− R2)), n = 10
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Fig. 2 CDF plots of R2, R2/(1− R2), and log(R2/(1− R2)), n = 20
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Fig. 3 CDF plots of R2, R2/(1− R2), and log(R2/(1− R2)), n = 50
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Fig. 4 CDF plots of R2, R2/(1− R2), and log(R2/(1− R2)), n = 100
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i.i.d. N(0, σ 2
u ). We fix β = (β0, β1, β2)

′ = (1, 0.3, 0.5)′ and set σu = 0.1, 1, 5, 10,
corresponding to scenarios from high to low signal to noise ratios. We observe that
regardless of the sample size and the signal to noise ratio, the exact distribution
matches precisely the true distribution. The asymptotic distributions fare reasonably
well in small samples with n = 10 when σ = 0.1, corresponding to the situation
of high signal to noise ratio. When σ = 10, the asymptotic distributions can be
quite off the exact distribution in small samples. Xu (2014) recommended using
log(R2/(1−R2)) by arguing that its asymptotic distribution is more stable. We see
here clearly that this is not necessarily the case, as it depends on the signal to noise
ratio.

4 Concluding Remarks

In this paper, we have presented a unified development of the exact distributions
of many econometric statistics. These results can be straightforwardly implemented
by numerical integration. In the context of the exact distribution of a goodness of fit
measure, we numerically demonstrate that the asymptotic distribution may not carry
forward in the small sample case. The exact distributional results developed in the
paper could be easily extended to a class of some other econometric and statistical
estimators used in practice that can be written as ratios of quadratic forms.
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Hidden Truncation in Non-Normal
Models: A Brief Survey

Indranil Ghosh and Hon Keung Tony Ng

Following Arnold and Beaver (2000, Sankhyā A, 62, 23–35), we revisit the hidden
truncation paradigm for non-normal models with a feature that the resulting hidden
truncated distribution arises from two different families of distributions with the
same support set as well as from the same family. In the bivariate case, we illustrate
the situations where the normalizing constant is in a closed form and situations
where the normalizing constant is not in a closed form. Distributional properties
of such models are investigated. Discussions on some conjectures related to hidden
truncation paradigm for non-normal models are also provided.

1 Introduction

The theory and applications of hidden truncation models have a long history in the
statistics literature. Some of the earliest works include Galton (1898) and Pearson
and Lee (1908), who introduced the basic concepts of left and right truncated
distributions. Thereafter, several different types of truncated distributions, both in
the discrete domain and in the continuous domain, have been developed. For discrete
distributions, one may refer to the papers by David and Johnson (1952) and Moore
(1954), who implemented a truncated Poisson distribution to examine the number
of accidents per worker. Finney (1947) and Sampford (1955) discussed the doubly
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truncated binomial and negative-binomial distributions with applications in biology
with respect to the number of abnormal sibships of specified size. Hidden truncation
paradigm in non-normal models has received a great attention since the inception
of it in the modern era. Truncated gamma, Pareto, exponential, Cauchy, t , F ,
normal, Weibull, and beta distributions have also been studied by many researchers.
Chapman (1956) discussed a truncated gamma distribution with right truncation to
analyze an animal migration pattern. A truncated Pareto distribution was considered
to find the appropriate distribution due to the lack of the Pareto distribution, in which
the whole range of income and tax is not rarely fitted over, in income statistics by
Bhattacharya (1963). Cosentino et al. (1977) investigated the frequency magnitude
relationship to solve a problem concerning the statistical analysis of earthquakes
with a truncated exponential distribution. A truncated Cauchy distribution was
introduced to overcome the weakness of the Cauchy distribution by Nadarajah
and Kotz (2006). Nadarajah and Kotz (2008) introduced the truncated t and F

distributions to inspect the moments and estimation procedures by the method of
moments and the method of maximum likelihood. A truncated Weibull distribution
was studied to solve the problem of nonexistence of the maximum likelihood
estimators by Mittal and Dahiya (1989). Jamalizadeh et al. (2009) examined the
cumulative distribution function (c.d.f.) and the moment generating function (m.g.f.)
of a truncated skew normal distribution. Zaninetti (2013) found that a left truncated
beta distribution provides a better fit to the initial mass function for stars compared
to the lognormal distribution, which has been commonly used in astrophysics. The
details of formation of distributions through truncation have also been discussed
in Kotz et al. (2000, Chapter 44). Arnold (2009) developed and studied several
univariate, bivariate, and multivariate parametric families of flexible models based
on hidden truncation. Arnold and Ghosh (2011, 2013) discussed and studied hidden
truncation in bivariate and multivariate Pareto data and applied to income modeling,
especially in data sets where a hidden truncation has occurred. In particular, for
a hidden truncation of a bivariate Pareto (type II), see Ghosh and Nadarajah
(2015), and for a hidden truncation of a bivariate Pareto (type IV), see Ghosh
and Balakrishnan (2017). Although a general framework to construct non-normal
hidden truncation models was described by Arnold and Beaver (2000), much of
the attention was given to the Gaussian family of distributions. Arnold and Beaver
(2002) came up with a new characterization of a skew normal distribution via a
hidden truncation mechanism. The hidden truncation models are also known as
frontier models in the economics literature (see, for example, Kumbhakar and Knox
Lovell 2000).

In this article, we motivate the study from Arnold and Beaver (2000) that
many hidden truncation models with non-normal component densities undoubtedly
deserve further attention. In many cases, as we will observe in this article, the
normalizing constant may not be obtained in a closed form. During this course,
we will also discuss some useful structural properties of those hidden truncation
models. The rest of this paper is organized as follows. In Sect. 2, we provide
the basic two-component models of hidden truncated distributions for non-normal
component models. Section 3 discusses some illustrative examples from non-
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normal component densities in which the normalizing constant is either comprised
of special mathematical functions and/or analytically intractable expressions. In
Sect. 4, we discuss some useful structural properties of the hidden truncated models
developed in Sect. 3. In Sect. 5, we discuss some inferential issues related to non-
normal hidden truncated densities and briefly explore some conjectures related
to hidden truncated models obtained via non-normal components. Finally, some
concluding remarks are presented in Sect. 6.

2 Hidden Truncation in Non-Normal Models

Consider a hidden truncation model in which the observed data is truncated
with respect to an unobserved co-variable. We examine two hidden truncation
mechanisms that are slightly different from each other. The first type of hidden
truncation, denoted as HD(Type I), starts with two independent random variables,
while the second type of hidden truncation, denoted as HD(Type II), starts with two
concomitant random variables. HD(Type II) is a more general mechanism in nature
as it describes the hidden truncation from below, hidden truncation from above, and
hidden truncation from both sides. Note that the outset that hidden truncation from
below will not augment the original model since the resulting density will be again
a member in the same family of distributions with only a reparametrization of the
parent model. Consequently, we focus primarily on hidden truncation from both
sides in the more general framework as hidden truncation from below and/or from
above will be simply a particular case of the hidden truncation from both sides.

For the first type of hidden truncation, HD(Type I), we start with the basic
definition as described in Arnold and Beaver (2000). Let U1 and U2 be two
independent random variables with c.d.f. (probability density function (p.d.f.))
Ψ1(·)(ψ1(·)) and Ψ2(·)(ψ2(·)), respectively. Then, the conditional p.d.f. of U1 given
λ0 + λ1U1 > U2, for any λ0 ∈ R and λ1 �= 0, can be written as

fU1|U2<λ0+λ1U1(u1|U2 < λ0 + λ1U1) = Ψ1(u1)Ψ2 (λ0 + λ1u1)

Pr (λ0 + λ1U1 > U2)
. (1)

In Eq. (1), if we consider the conditional density as λ0 →∞, then the limit will be
ψ1(·), which is the non-truncated (alias unconditional) version of the density of U1.
If we consider λ1 = 0, then we have the conditional density of U1 given U2 < λ0,
which is the same as the unconditional density of U1, (i.e., ψ1(·)) because of U1
and U2 are independent. Noticeably, if we include the location (μ) and the scale
parameter (σ ) for U1, a four-parameter model corresponding to Eq. (1) will be

fU1|U2<λ0+λ1U1 (u1|U2 < λ0 + λ1U1) = Ψ1(
u1−μ
σ

)Ψ2
(
λ0 + λ1

(
u1−μ
σ

))

Pr
(
λ0 + λ1

(
U1−μ

σ

)
> U2

) .
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If both U1 and U2 belong to the same family of distributions, then the resulting
hidden truncation model is again a member of the same family (possibly with a
reparametrization). Therefore, it does not augment the parent distribution in such
a case. On the contrary, under the same set of conditions, if we consider the
conditional density of U1 given that λ0 + λ1U1 ≤ U2, then the resulting hidden
truncation model will be a distribution different from their parent distributions. We
will consider truncation from both sides as well. We will illustrate this phenomenon
with several examples in Sect. 3.

For the second type of hidden truncation, denoted as HD(Type II), we start with
a bivariate model in which X and Y are concomitant variables with three different
forms of hidden truncation. Suppose (X, Y ) is a two-dimensional absolutely
continuous random vector, we consider the conditional distribution of X given
Y ∈ M , where M is a Borel set in R. We can write the conditional p.d.f. of X

given Y ∈ M as

fX|Y∈M(x) = fX(x)
Pr(Y ∈ M|X = x)

Pr(Y ∈ M)
. (2)

The following three forms of hidden truncation model are considered:

(i) truncation from below (also known as lower truncation): M = (a,∞), where
a is the lower truncation point;

(ii) truncation from above (also known as upper truncation): M = (−∞, b), where
b is the upper truncation point;

(iii) two-sided truncation: M = (a, b], where a and b are the lower and upper
truncation points, respectively.

For a two-sided hidden truncation, the observations are only available for X’s whose
concomitant variable Y is between (a, b], a < b,, and Eq. (2) reduces to

f(a,b](x) = f (x|a < Y ≤ b) = fX(x)
Pr (a < Y ≤ b|X = x)

Pr (a < Y ≤ b)
. (3)

This kind of hidden truncation model is characterized by

• the underlying distribution of X, which can be specified by the p.d.f. fX(x);
• the conditional distribution of Y given X = x, which can be specified by the

conditional p.d.f. fY |X (y|x);
• the specified values of the truncation points a and b;
• some other model parameters in addition to a and b.

For the conditional p.d.f. in Eq. (3), if we consider a → −∞ and b → +∞, the
p.d.f. reduces to the unconditional density of X. The shape of the conditional p.d.f.
will be more sensitive for smaller values of the lower truncation point a as compared
to small or large values of the upper truncation point b.
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3 Model Descriptions

In this section, we focus on several specific hidden truncation models with non-
normal distributions. We will utilize either of the two hidden truncation paradigms,
HD(Type I) and HD(Type II), as described in Sect. 2.

3.1 Bivariate Cauchy distribution

Consider the bivariate standard Cauchy distribution with joint p.d.f.

f (x, y) = 1

2π

(
1+ x2 + y2

)−3/2
I (−∞ < x <∞;−∞ < y <∞) ,

where I (A) is the indication function with I (A) = 1 when event A is true and
I (A) = 0 when event A is false. In this case, both the marginals of X and Y are
univariate standard Cauchy distributed. For more details on the bivariate Cauchy
distribution, one may refer to Nadarajah and Kotz (2007). Several properties of the
bivariate Cauchy distributions can also be found in Balakrishnan and Lai (2009,
Chapter 9).

Under the bivariate Cauchy distribution, the second type of hidden truncation,
HD(Type II), described in Sect. 2 is considered. The conditional p.d.f. of Y given
X = x is

f (y|X = x) = 1

2

(
1+ y2

1+ x2

)−3/2 (
1+ x2

)−1/2
I (−∞ < y <∞) .

For the hidden truncation model, we assume that the random variable X is observed
if and only if d1 < Y ≤ d2, for any (d1, d2) ∈ S(Y ), where S(Y ) is the set of support
of Y . The associated hidden truncated p.d.f. of X given d1 < Y ≤ d2 in Eq. (2) can
be expressed as

f (x|d1 < Y ≤ d2) = f (x)Pr (d1 < Y ≤ d2|X = x)

Pr (d1 < Y ≤ d2)
I (−∞ < x <∞) , (4)

where

Pr (d1 < Y ≤ d2) =
∫ d2

d1

1

π

(
1+ y2

)
dy = 1

π

[
tan−1(d2)− tan−1(d1)

]
, (5)
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and

Pr (d1 < Y ≤ d2|X = x)

= 1

π

∫ d2

d1

1

2

(
1+ y2

1+ x2

)−3/2 (
1+ x2

)−1/2
dy

= 1

2π

{
d2

[
1+ x2 + d2

2

]−1/2 − d1

[
1+ x2 + d2

1

]−1/2
}
. (6)

Therefore, with Eqs. (5) and (6), the hidden truncated p.d.f. of X given d1 < Y ≤ d2
in Eq. (4) can be expressed as

f (x|d1 < Y ≤ d2)

=
{
d2
[
1+ x2 + d2

2

]−1/2 − d1
[
1+ x2 + d2

1

]−1/2
}

2π
(
1+ x2

) [
tan−1(d2)− tan−1(d1)

] I (−∞ < x <∞). (7)

Figure 1 presents the hidden truncated p.d.f.s of X given d1 < Y ≤ d2 for different
values of d1 and d2 based on the bivariate Cauchy distribution along with the non-
truncated Cauchy distribution.

From Fig. 1, we can observe that when the left truncation point (i.e., d1) assumes
larger negative values (i.e, far away from 0), regardless of the right truncation point
(i.e., d2), the spread remains almost the same. For positive value of d1, the spread of
the distribution increases as the value of the right truncation point d2 increases.

3.2 Bivariate Generalized Pareto Distribution

Consider the generalized bivariate Pareto distribution with joint p.d.f.

f (x, y) = K(xy)p−1

(α + βx + γy + δxy)p+q
I (0 < x <∞, 0 < y <∞), (8)

where p ∈ Z, q ∈ Z, α > 0, β > 0, γ > 0, and δ > 0 are the model parameters,
and K is the normalizing constant that can be evaluated as

K =
[∫ ∞

0

∫ ∞

0

(xy)p−1

(α + βx + γy + δxy)p+q
dx dy

]−1

.

The bivariate distribution considered in Eq. (8) is the class of bivariate distributions
with second kind beta conditionals (or bivariate distributions with Pearson type
VI conditionals). Some aspects of this class of distributions have been studied in
Castillo and Sarabia (1990) (see also, Arnold et al. 1999, Section 5.3). Moreover,
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Fig. 1 Hidden truncated p.d.f.s of X given d1 < Y ≤ d2 for different values of d1 and d2 based
on bivariate Cauchy distribution along with the non-truncated Cauchy distribution

Eq. (8) is an extension of the class of bivariate distributions with Pareto conditionals
considered by Arnold (1987).

For more details on the bivariate generalized Pareto distribution, see Ali and
Nadarajah (2007) and Ghosh and Banks (2020). To construct a hidden truncation
model based on HD(Type II) in Sect. 2, we need the following result.

Result 1 For 0 < α < p,

∫ ∞

0

xα−1

(x + z)p
dx = zα−pB (p, p − α) ,

where B(a, b) = ∫ 1
0 wa−1(1−w)b−1dw with a > 0 and b > 0 is the beta function.

�
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From Ghosh and Banks (2020), if (X, Y ) follows the bivariate generalized Pareto
distribution in Eq. (8), then using Result 1, the marginal p.d.f. of X is

fX(x) = Kxp−1 (α + βx)−q (γ + δx)−p B (p, q) I (0 < x <∞) . (9)

Similarly, the marginal p.d.f. of Y is

fY (y) = Kyp−1 (α + γy)−q (β + δy)−p B (p, q) I (0 < y <∞) .

Therefore, the normalizing constant can be evaluated using a one-dimensional
integral instead of a two-dimensional integral as

K =
[
B (p, q)

∫ ∞

0
xp−1(α + βx)−q (γ + δx)−p dx

]−1

=
[
B (p, q)

∫ ∞

0
yp−1(α + γy)−q (β + δy)−p dy

]−1

.

The conditional p.d.f. of Y given X = x can be expressed as

f (y|X = x) = yp−1

B (p, q)

[
1+ y

(
γ + δx

α + βx

)]−p−q (
γ + δx

α + βx

)p

I (0 < y <∞) .

Note that the random variable

Y

(
γ + δX

α + βX

)∣∣∣∣X = x

follows the beta prime distribution (also known as the beta distribution of second
kind or inverted beta distribution) with parameters p and q. Similarly, we can show
that the random variable

X

(
β + δY

α + γ Y

)∣∣∣∣ Y = y

also follows the beta prime distribution with parameters p and q. Based on the
marginal p.d.f. of Y , we can compute

Pr (d1 < Y ≤ d2) = KB (p, q)

∫ d2

d1

yp−1 (α + γy)−q (β + δy)−p dy

= p−1KB(p, q)

×
[
d
p

1

(
δd1

β
+ 1

)p

(β + δd1)
−p(α + γ d1)

−q
(
γ d1

α
+ 1

)q



Hidden Truncation in Non-Normal Models: A Brief Survey 141

×F1

(
p; q, p;p + 1;−d1γ

α
,−d1δ

β

)

+dp2 (β + δd2)
−p

(
δd2

β
+ 1

)p

(α + γ d2)
−q

(
γ d2

α
+ 1

)q

×F1

(
p; q;p;p + 1;−d2γ

α
,−d2δ

β

)]
, (10)

Pr (d1 < Y ≤ d2)

= p−1KB(p, q)

×
[
d
p

1

(
δd1

β
+ 1

)p

(β + δd1)
−p(α + γ d1)

−q
(
γ d1

α
+ 1

)q

×F1

(
p; q, p;p + 1;−d1γ

α
,−d1δ

β

)

+dp2 (β + δd2)
−p

(
δd2

β
+ 1

)p

(α + γ d2)
−q

(
γ d2

α
+ 1

)q

×F1

(
p; q;p;p + 1;−d2γ

α
,−d2δ

β

)]
, (11)

where F1 (a; b; c; d, u, v) is the Appell hypergeometric function defined as

F1(a; b; c; d, u, v)

= Γ (d)

Γ (a)Γ (d − a)

∫ 1

0
wa−1(1− w)d−a−1(1− wu)−b(1− wv)−cdw

and Γ (a) = ∫∞
0 wa−1e−wdw denotes the gamma function.

Then, we obtain the conditional probability

Pr (d1 < Y ≤ d2|X = x)

=
(
γ + δx

α + βx

)p 1

B(p, q)

∫ d2

d1

yp−1
[

1+ y

(
γ + δx

α + βx

)]−p−q
dy

=
(

α + xβ

(γ + δx) B(p, q)

)

×
[
d
p

2 Γ (p) 2F̃1

(
p, p + q;p + 1;−d2(γ + xδ)

α + xβ

)

−dp1 Γ (p) 2F̃1

(
p, p + q;p + 1;−d1(γ + xδ)

α + xβ

)]
, (12)
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where 2F̃1(a, b; c; z) = 2F1(a, b; c; z)/Γ (c) is the regularized hypergeometric
function. As a result, the hidden truncated p.d.f. of X given d1 < Y ≤ d2 in Eq. (4)
can be obtained by using Eqs. (9), (11), and (12) as

f (x|d1 < Y ≤ d2) = pxp−1

B(p, q)
(α + βx)−q+1 (γ + δx)−p−1

×
[
d
p

2 Γ (p) 2F̃1

(
p, p + q;p + 1;−d2(γ + xδ)

α + xβ

)

−dp1 Γ (p) 2F̃1

(
p, p + q;p + 1;−d1(γ + xδ)

α + xβ

)]

×
[
d
p

1

(
δd1

β
+ 1

)p

(β + δd1)
−p(α + γ d1)

−q
(
γ d1

α
+ 1

)q

×F1

(
p; q, p;p + 1;−d1γ

α
,−d1δ

β

)

+dp2 (β + δd2)
−p

(
δd2

β
+ 1

)p

(α + γ d2)
−q

(
γ d2

α
+ 1

)q

×F1

(
p; q, p;p + 1;−d2γ

α
,−d2δ

β

)]−1

.

Figure 2 presents the hidden truncated p.d.f.s of X given d1 < Y ≤ d2 for
different values of d1 and d2 based on the bivariate generalized Pareto distribution
along with the non-truncated Pareto distribution. From Fig. 2, we can observe that
the non-truncated and hidden truncated p.d.f.s (regardless of the choices of the lower
and upper truncation points, d1 and d2, respectively) are always positively skewed.
For fixed values of α, β, γ , δ, p, and d1, when d2 and q increase, the skewness of
the hidden truncated p.d.f. increases. For fixed values of α, β, γ , δ, p, q, and d2,
when d1 increases, the hidden truncated p.d.f. behaves similarly to a non-truncated
version in terms of the overall shape.

3.3 Arnold and Strauss Bivariate Exponential Distribution

The joint p.d.f. of the Arnold and Strauss (1988) bivariate exponential distribution
is

f (x, y) = K exp [− (ax + by + cxy)] , (13)
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Fig. 2 Hidden truncated p.d.f.s of X given d1 < Y ≤ d2 for different values of d1 and d2 based
on the bivariate generalized Pareto distribution along with the non-truncated Pareto distribution

where x > 0, y > 0, a > 0, b > 0, c > 0, and K is the normalizing constant, which
is defined as

K−1 = −c exp

(
ab

c

)
Ei

(
−ab

c

)
,

with Ei(x) be the exponential integral function defined by Ei(x)= ∫ x

−∞t−1exp(t)dt .
For Arnold and Strauss (1988) bivariate exponential distribution, we can obtain

the following:

• The marginal density of X is given by

fX(x) = K exp (−ax)
b + cx

, x > 0. (14)
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• Similarly, the marginal density of Y is given by

fY (y) = K exp (−by)
a + cy

, y > 0.

• Conditional p.d.f. of Y given X = x is

fY |x (y|X = x) = (b + cx) exp (−(b + cx)y) , y > 0.

Let us consider the two-sided hidden truncation for Y , say d1 < Y ≤ d2, where
(d1, d2) ∈ S(Y ), i.e., a HD(Type II) model from Sect. 2. Observe that

Pr (d1 < Y ≤ d2|X=x)=
∫ d2

d1

(b+cx) exp [−(b+cx)y] dy=A1 (d1, d2, b, c, x) ,

where A1 (d1, d2, b, c, x) = exp [−d1(b + cx)] − exp [−d2(b + cx)] . Then, we
have

Pr (d1 < Y ≤ d2) =
∫ d2

d1

K exp (−by)
a + cy

dy

=
∫ d2

0

K exp (−by)
a + cy

dy −
∫ d1

0

K exp (−by)
a + cy

dy

= K

{
−

e
ab
c

[
Ei

(
− b(a+cd1)

c

)
−Ei

(
− b(a+cd2)

c

)]

c

}
=M1 say.

Therefore, the conditional p.d.f. of X given d1 < Y ≤ d2, based on the HD(Type II)
mechanism, can be expressed as

f (x|d1 < Y ≤ d2) = exp (−ax) (b + cx)−1 A1 (d1, d2, b, c, x)
b
c

exp
(− ab

c

)
M1

, x > 0.

(15)
Here, numerical integration is needed to compute A1 (d1, d2, b, c, x). Figure 3
presents the hidden truncated p.d.f.s of X given d1 < Y ≤ d2 for different values of
d1 and d2 based on the Arnold and Strauss bivariate exponential distribution along
with the non-truncated exponential distribution.

From Fig. 3, we can observe that regardless of the choices of model parameters
a, b, c and with non-zero values of d1 and d2,, the hidden truncated p.d.f.s are
always positively skewed with varying intensity. The results in this subsection can
be extended to the case of gamma conditionals (see Section 4.6 in Arnold et al.
(1999) and Castillo et al. (1990)).
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Fig. 3 Hidden truncated p.d.f.s of X given d1 < Y ≤ d2 for different values of d1 and d2 based on
the Arnold and Strauss bivariate exponential distribution along with the non-truncated exponential
distribution

3.4 Pareto (Type II) and Pareto (Type IV) Model

For this model, the first type of hidden truncation, HD(Type I), described in
Sect. 2 is considered. Suppose U1 ∼ Pareto(type II)(μ = 0, α, δ) and U2 ∼
Pareto(type IV )(μ = 0, α, δ, γ ) with p.d.f.s

f1(u1) = α

δ

(
1+ u1

δ

)−(α+1)
, u1 ≥ 0

and f2(u2) = α

δγ

(u2

δ

)1/γ−1
[

1+
(u2

δ

)1/γ
]−(α+1)

, u2 ≥ 0,
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respectively. Therefore, the denominator in Eq. (1) can be expressed as

Pr (λ0 + λ1U1 > U2) = Pr (W < U1) , where W = U2 − λ0

λ1
.

The p.d.f. of W is

fW(w)

= α

γ δ

(
λ0 + λ1w

δ

)1/γ−1
[

1+
(
λ0 + λ1w

δ

)1/γ
]−(α+1)

I

(
−λ0

λ1
< w <∞

)
.

The associated c.d.f. of W can be obtained as

FW(w) =
∫ w

− λ0
λ1

(
α

γ δ

)(
λ0 + λ1t

δ

)1/γ−1
[

1+
(
λ0 + λ1t

δ

)1/γ
]−(α+1)

dt

= 1−
[

1+
(
λ0 + λ1w

δ

) 1
γ

]−α
.

Therefore, the denominator of Eq. (1) can be written as

Pr (W < U1)

=
∫ ∞

0
FW(u1)f1(u1)du1

= α

δ

∫ ∞

0

⎧
⎨

⎩
1−

[

1+
(
λ0+λ1u1

δ

) 1
γ

]−α⎫⎬

⎭

(
1+u1

δ

)−(α+1)
du1 = C1, say.

Hence, the hidden truncated density from Eq. (1) is

f (u1|U2 < λ0 + λ1U1) (16)

= C−1
1

α

δ

(
1+ u1

δ

)−(α+1)

⎧
⎨

⎩
1−

[

1+
(
λ0 + λ1u1

δ

) 1
γ

]−α⎫⎬

⎭
I (0 < u1 <∞) .

Figure 4 presents the hidden truncated p.d.f.s of U1 given U2 < λ0 + λ1U1 for
different values of λ1 and λ2 based on the Pareto(type II) and Pareto(type IV) models
along with the Pareto(type II) distribution.
From Fig. 4, it appears that for any choices of the model parameters, α, δ, and γ,

and for any finite choices of λ0 and λ1 (i.e., |λ0| <∞ and |λ1| <∞), the associated
p.d.f.s are positively skewed.
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Fig. 4 Hidden truncated p.d.f.s of U1 given U2 < λ0 + λ1U1 for different values of λ0 and λ1
based on the Pareto(type II) and Pareto(type IV) models along with the Pareto(type II) distribution

3.5 Cauchy–Cauchy Hidden Truncated Model

In this subsection, we revisit the hidden truncation model discussed in Arnold
and Gomez (2008) based on the two independent standard Cauchy distributions.
Specifically, the standard Cauchy random variables U1 and U2 have c.d.f.

Ψ1(x) = Ψ2(x) = 1

2
+ π−1 tan−1 x,

and p.d.f.

ψ1(x) = ψ2(x) = 1

π
(
1+ x2

)I (−∞ < x <∞).
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Observe that Ui ∼ Cauchy (0, 1), i = 1, 2, and we have U2 − λ1U1 ∼
Cauchy (0, 1+ |λ1|) . Consequently,

Pr (U2 < λ0 + λ1U1) = Ψ

(
λ0

1+ |λ1|
)
.

The associated hidden truncated model via the HD(type I) mechanism is

f (u1|U2 < λ0 + λ1U1) = 1

π
(
1+ u2

1

)

×
[ 1

2 + π−1 tan−1 (λ0 + λ1u1)

1
2 + π−1 tan−1

(
λ0

1+|λ1|
)

]
I (−∞ < x <∞).

(17)

Figure 5 presents the hidden truncated p.d.f.s of U1 given U2 < λ0 + λ1U1 for
different values of λ0 and λ2 based on the Cauchy–Cauchy hidden truncated model
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Fig. 5 Hidden truncated p.d.f.s of U1 given U2 < λ0 + λ1U1 for different values of λ0 and λ2
based on the Cauchy–Cauchy hidden truncated model in Arnold and Gomez (2008) along with the
non-truncated Cauchy distribution
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in Arnold and Gomez (2008) along with the non-truncated Cauchy distribution.
From Fig. 5, we can observe that depending on the choices of λ0 and λ1, the hidden
truncated density given in Eq. (17) can assume to be approximately left-skewed and
can have more than one peak in the distribution.

4 Distributional Properties of Non-normal Hidden
Truncation Models

In this section, we discuss some useful structural properties of the hidden truncated
densities developed in Sect. 3. We begin our discussion with the both-sided hidden
truncated Cauchy model. Here, we will primarily focus on identifying the shape of
the density functions, the shape of the hazard functions, the raw moments of order
r(r ≥ 2), and several different types of stochastic orderings. All the mathematical
calculations are obtained using the Mathematica software. Note that in the situations
where a closed form or an analytically tractable form of the normalizing constant
is not found, one will have to consider the strategy involving the use of numerical
integration.

4.1 Structural Properties for Hidden Truncated Cauchy Model

In this subsection, we discuss the structural properties of the hidden truncated
Cauchy model presented in Sect. 3.1.

4.1.1 Moments

For the hidden truncated Cauchy model with p.d.f. in Eq. (7), the moments of order
r(r ≥ 1) can be obtained as

E
(
Xr |d1 < Y ≤ d2

)

=
(

4
√
πd1d2

)−1{
− [

(−1)r + 1
]

exp

(
−1

2
iπr

)
sin

(πr
2

) [
cot

(πr
2

)
+ i

]

×
[
d1d2Γ

(
− r

2

)
Γ

(
r + 1

2

)[
d1

(
d2

1 + 1
)r/2

2F1

(
1,

r + 1

2
; r + 2

2
; d2

1 + 1

)

−d2

(
d2

2 + 1
)r/2

2F1

(
1,

r + 1

2
; r + 2

2
; d2

2 + 1

)]

+π3/2
(
d1

√
−d2

2 − d2

√
−d2

1

)
csc

(πr
2

)]}
,
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where i = √−1. The variance and other moment-based measures such as skewness
and kurtosis of the hidden truncated random variable X|d1 < Y ≤ d2 can be
obtained from the above expression.

4.1.2 Stochastic Ordering

Ordering probability distributions, particularly among lifetime distributions, play an
important role in the statistical literature and distribution theory, see, for example,
Johnson et al. (1995) and the references therein. Here, we consider four different
stochastic orders including the conventional order, the hazard rate order, the
mean residual life order, and the likelihood ratio order for the hidden truncated
distributions constructed in Sect. 3. There are numerous statistical applications of
these stochastic orders. For instance, if a family of distributions has a likelihood
ratio ordering, then it has the monotone likelihood ratio property. This implies that
there exists a uniformly most powerful test for any one-sided hypothesis when the
other parameters are known. If X1 and X2 are independent random variables with
c.d.f.s FX1 and FX2 , respectively, then X1 is said to be smaller than X2 in the

• stochastic order (X1 ≥st X2), if FX1(x) ≤ FX2(x) for all x;
• hazard rate order (X1 ≥hr X2), if hX1(x) ≤ hX2(x) for all x;
• mean residual life order (X1 ≥mrl X2), if mX1(x) ≤ mX2(x) for all x;

• likelihood ratio order (X1 ≥lr X2), if
fX1 (x)

fX2 (x)
decreases in x.

The following well-known results for establishing stochastic orders of distribu-
tions are due to Shaked and Shanthikumar (1995):

X1 ≤lr X2 ⇒ X1 ≤hr X2 ⇒ X1 ≤mrl X2

⇓
X1 ≤st X2.

We begin with the p.d.f. in Eq. (7), and for notational simplicity, we denote
the hidden truncated Cauchy distribution with truncation points d1 and d2 as
T C (d1, d2) . The T C (d1, d2) distribution is ordered with respect to the strongest
“likelihood ratio” ordering as shown in the following Theorem 1. It shows the
flexibility of a two-parameter T C (d1, d2) distribution.

Theorem 1 Let X1 ∼ T C (a, b) and X2 ∼ T C (c, d). If a < min{b, d} and d <

b < c, then X1 ≥lr x2, X1 ≥hr X2, X1 ≥mrl X2, and X1 ≤st X2.

Proof Taking the derivative of the natural logarithm of the ratio of the p.d.f.s of X1
and X2, where X1 ∼ T C (a, b) and X2 ∼ T C (c, d), we have
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d

dx
log

fX1(x|a < Y ≤ b)

fX2(x|c < Y ≤ d)

=

(
d√

d2+x2+1
− c√

c2+x2+1

)

(
b√

b2+x2+1
− a√

a2+x2+1

)(
c√

c2+x2+1
− d√

d2+x2+1

)2

×

⎧
⎪⎪⎨

⎪⎪⎩

ax

[
c
(
a2−c2

)

(c2+x2+1)
3/2 + d3−a2d

(d2+x2+1)
3/2

]

(
a2 + x2 + 1

)3/2
+

bx

[
c
(
c2−b2

)

(c2+x2+1)
3/2 + d

(
b2−d2

)

(d2+x2+1)
3/2

]

(
b2 + x2 + 1

)3/2

⎫
⎪⎪⎬

⎪⎪⎭
.

If a < min{b, d} and d < b < c, then d
dx

log
fX1 (x)

fX2 (x)
≥ 0, which implies that

X1 ≥lr X2 and, hence, X1 ≥lr X2, X1 ≥hr X2, X1 ≥mrl X2, and X1 ≥st X2. �

4.1.3 Shape of the Probability Density Function

For the p.d.f. presented in Eq. (7), we have the first derivative of the logarithm of
p.d.f. as

∂ log f (x|d1 < Y ≤ d2)

∂x
=

d1x
(
2d2

1+3x2+3
)

(
d2

1+x2+1
)3/2 − d2x

(
2d2

2+3x2+3
)

(
d2

2+x2+1
)3/2

(
x2 + 1

)
(

d2√
d2

2+x2+1
− d1√

d2
1+x2+1

) . (18)

From Eq. (18), it can be shown that the p.d.f. is log-concave. The proof is available
from the authors upon request.

4.1.4 Shape of the Hazard Function

For the hidden truncated Cauchy model with p.d.f. in Eq. (7), the associated hazard
function is decreasing provided that d1 < d2. The details are presented in Appendix.

4.2 Structural Properties of the Hidden Truncated in Arnold
and Strauss Bivariate Exponential Distribution

In this subsection, we discuss the structural properties of the hidden truncated model
based on the Arnold and Strauss bivariate exponential distribution presented in
Sect. 3.3.
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4.2.1 Moments

For the hidden truncated model based on the Arnold and Strauss bivariate expo-
nential distribution with p.d.f. in Eq. (15), the moments of order r(r ≥ 1) can be
obtained as

E
(
Xr |d1 < Y ≤ d2

)

=
[
b exp

(
−ab

c

)
M1

]−1 ( c
b

)−r
Γ (r + 1) exp

(
ab

c

)
(19)

×
[

exp(−bd1)Γ

(
−r, b(a + cd1)

c

)
− exp(−bd2)Γ

(
−r, b(a + cd2)

c

)]
.

4.2.2 Stochastic Ordering

We denote the hidden truncated model based on the Arnold and Strauss bivariate
exponential distribution with parameters a, b, and c, and truncation points d1 and
d2 as HTExp (a, b, c, d1, d2). The HTExp (a, b, c, d1, d2) distribution is ordered
with respect to the strongest “likelihood ratio” ordering as shown in the following
Theorem 2.

Theorem 2 LetX1 ∼ HTExp (a, b, c, d1, d2) andX2 ∼ HTExp (a, b, c, �1, �2).
If d1 < d2 and �1 < �2, �1 < min{d1, d2}, then X1 ≥lr X2, X1 ≥hr X2,
X1 ≥mrl X2, and X1 ≤st X2.

Proof Taking the derivative of the natural logarithm of the ratio of two p.d.f.s of X1
and X2, where X1 ∼ HTExp (a, b, c, d1, d2) and X2 ∼ HTExp (a, b, c, �1, �2),
we have

d

dx
log

fX1(x)

fX2(x)

=
{
c
[
d2

(
e(d1+�2)(b+cx) − e(d1+�1)(b+cx)

)

+d1

(
e(d2+�1)(b+cx) − e(d2+�2)(b+cx)

)

+
(
ed1(b+cx) − ed2(b+cx)

) (
�2e

�1(b+cx) − �1e
�2(b+cx)

)]}

×
[ (

ed1(b+cx) − ed2(b+cx)
) (

e�1(b+cx) − e�2(b+cx)
) ]−1

.
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Observe that if d1 < d2 and �1 < �2, with �1 < min{d1, d2}, d
dx

log
fX1 (x)

fX2 (x)
≥ 0,

which implies that X1 ≥lr X2, X1 ≥hr X2, X1 ≥mrl X2, and X1 ≤st X2. �

4.2.3 Shape of the Probability Density Function

For the hidden truncated model based on the Arnold and Strauss bivariate exponen-
tial distribution with p.d.f. presented in Eq. (15), we have the first derivative of the
logarithm of p.d.f. as

∂ log f (x|d1 < Y ≤ d2)

∂x

= (b + cx)−2

×
{
e−x(a+c(d1+d2))−b(d1+d2)

[
a(b + cx)

(
ed1(b+cx) − ed2(b+cx)

)

−c(bd1 + cd1x + 1)ed2(b+cx) + ced1(b+cx)(bd2 + cd2x + 1)
] }

.

We can also obtain the second derivative of the logarithm of p.d.f. as

∂2 log f (x|d1 < Y ≤ d2)

∂x2

= (b + cx)−3

×
{
e−x(a+c(d1+d2))−b(d1+d2)

[
−a2(b + cx)2

(
ed1(b+cx) − ed2(b+cx)

)

−2ac(b + cx)
[
ed1(b+cx)(bd2 + cd2x + 1)− (bd1 + cd1x + 1)ed2(b+cx)

]

+c2
[
−
(
ed1(b+cx)

(
b2d2

2 + 2bd2(cd2x + 1)+ c2d2
2x

2 + 2cd2x + 2
)

−
(
b2d2

1 + 2bd1(cd1x + 1)+ c2d2
1x

2 + 2cd1x + 2
)
ed2(b+cx)

)]}
. (20)

From Eq. (20), we can observe that for all choices of the parameters a, b, c, d1, d2,
∂2 log f (x)

∂x2 ≤ 0. This implies that the hidden truncated p.d.f. based on the Arnold and
Strauss bivariate exponential distribution is log-concave and unimodal. �
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4.2.4 Shape of the Hazard Function

For the hidden truncated model based on the Arnold and Strauss bivariate exponen-
tial distribution with p.d.f. presented in Eq. (15), we show that the associated hazard
function is increasing in the following theorem.

Theorem 3 The hazard rate function is increasing for any μ ∈ R, δ ∈ R+.

Proof For the hidden truncated model based on the Arnold and Strauss bivariate
exponential distribution, we have

η(x) = −
{
− a(b + cx)

(
ed1(b+cx) − ed2(b+cx)

)
+ c (bd1 + cd1x + 1) ed2(b+cx)

−ced1(b+cx) (bd2 + cd2x + 1)

}

×
{
(b + cx)

(
ed1(b+cx) − ed2(b+cx)

)}−1

.

Then, we have

∂η(x)

∂x
= c2

(b + cx)2 (exp[d1(b + cx)] − exp[d2(b + cx)])2

×
{

exp[(d1 + d2)(b + cx)]

×
[
b2(d1 − d2)

2 + 2bcx(d1 − d2)
2 + c2x2(d1 − d2)

2 + 2
]

− exp[2d1(b + cx)] − exp[2d2(b + cx)]
}
. (21)

Note that from Eq. (21), we can show that ∂η(x)
∂x

> 0, for any μ ∈ R, δ ∈ R+, and
therefore, from Glaser (1980), the hazard function is increasing. �

4.3 Structural Properties for Hidden Truncated Pareto Mixture
Model

In this subsection, we discuss the structural properties of the hidden truncated model
based on the Pareto(type II) and Pareto(type IV) models presented in Sect. 3.4.
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4.3.1 Moments

For the hidden truncated model based on the Pareto(type II) and Pareto(type IV)
models with p.d.f. presented in Eq. (17), the moments of order r(r ≥ 1) can be
obtained as

E
(
Ur

1 |U2 < λ0 + λ1U1
)

=
∞∑

j1=0

∞∑

j2=0

(−1)j1

(−α
j1

)(
j1

j2

)
C−1

1

×
{[

δλ1Γ (α + 1)Γ

(
−j2

γ

)]−1 }
α

(
λ1

λ0

)−r

×
(
λ0

δ

)j2/γ
{
δλ1Γ

(
−j2

γ

)
Γ

(
j2

γ
+r+1

)
Γ

(
−j2

γ
−r+α

)(
δλ1

λ0

) j2
γ
+r

×2F1

(
−j2

γ
− r + α,−j2

γ
;−j2 + rγ

γ
; λ0

δλ1

)

+λ0Γ (α + 1)Γ (r + 1)Γ

(
−j2 + rγ + γ

γ

)

2F1

×
(
r + 1, α + 1; j2

γ
+ r + 2; λ0

δλ1

)}
.

Note If j1 is an integer, the second sum will be up to j1.

4.3.2 Shape of the Probability Density Function

For the hidden truncated model based on the Pareto(type II) and Pareto(type IV)
models with p.d.f. presented in Eq. (17), we have the first derivative of the logarithm
of p.d.f. as

∂ log f (u|U2 < λ0 + λ1U1)

∂u

= C−1
1

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

αλ1

(
λ0+λ1u

δ

) 1
γ
−1

γ δ

[(
λ0+λ1u

δ

) 1
γ + 1

][[(
λ0+λ1u

δ

) 1
γ + 1

]α
− 1

] − α + 1

δ + u

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

From this first derivative of p.d.f., it can be shown that the p.d.f. is log-concave. The
proof is available from the authors upon request.
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4.3.3 Shape of the Hazard Function

For the hidden truncated model based on the Pareto(type II) and Pareto(type IV)
models with p.d.f. presented in Eq. (17), the associated hazard function is decreasing
if δ > max{λ0, λ1} and 1 ≤ γ ≤ δ. The proof is available from the authors upon
request.

5 Inferential Issues and Conjectures

5.1 Inferential Issues

In this subsection, we discuss the relative merits and/or demerits of the classical
and Bayesian inferential aspects related to the hidden truncated models for non-
normal densities exist in the literature. A full scale simulation study along with
some useful applications of the hidden truncation models developed in Sect. 3 will
be the subject matter of a separate report. Except for the hidden truncation model
based on the Arnold and Strauss bivariate exponential distribution presented in
Sect. 3.3, the hidden truncation models discussed in this article do not constitute
exponential family of densities. As a consequence, essentially no reduction in the
complexity of the model can be obtained by introducing the sufficiency arguments.
In general, the method of maximum likelihood can be used for parameter estimation;
however, the likelihood functions associated with these models often do not have
easily identified modes. For hidden truncated Pareto models, there has been a
reasonable amount of successes when it comes to classical parameter estimation.
For instance, Arnold and Ghosh (2011) studied the hidden truncated bivariate
Pareto(type II) model and discussed the parameter estimation via the method of
maximum likelihood, fractional method of moments, and the quartile estimation
method with appreciable amount of errors in the maximum likelihood method for
small sample sizes. Arnold and Ghosh (2011) provided a foundation to the theory
and applications of hidden truncated Pareto-type models. Consequently, several
research papers in the literature focused on particular members of the Pareto family
of distributions and addressed the issue of statistical inference primarily under
the classical setup. Ghosh and Nadarajah (2015) and Ghosh and Balakrishnan
(2017) studied the hidden truncation models (both-sided truncation) starting from
a bivariate Pareto(type II) and a bivariate Pareto(type IV) distribution, respectively.
In the Bayesian paradigm, Ghosh (2014) discussed the Bayesian estimation for
a hidden truncated Pareto(type II) model. Recently, Ghosh (2020) discussed the
Bayesian estimation for a hidden truncated Pareto(type IV) model. In Arnold and
Ghosh (2013), hidden truncation in a multivariate Pareto setting is discussed. For a
comprehensive review on skewed and/or hidden truncation models, one may refer
to Arnold (2015) and the references therein.
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Besides the Pareto-type hidden truncated models, there is not much work done
for the other non-normal models, especially for the models with a ubiquitous
normalizing constant. In case that the normalizing constant involves some special
functions/series (e.g., the Gauss hypergeometric function), certain software pack-
ages such as Mathematica can handle this issue as these software packages have
built-in functions to compute these special functions that are readily available.
However, there are cases that the normalizing constant cannot be written in a closed
form. In such scenarios, one can consider the Bayesian paradigm in which the
likelihood is updated with judicious prior choices of the model parameters, and
the posterior distribution can be approximated without knowing the normalizing
constant. On the other hand, frequentist approach with profile likelihood method or
expectation maximization (EM) algorithm can be used. The usual strategy (specially
for multi-parameter models) is to pick initial values using the method of moments
estimates and then use in a variation of the Newton–Raphson approach to finding
the maximum of the surface.

5.2 Conjectures

In this subsection, we postulate some conjectures related to hidden truncation.
General proofs are left to readers as open research problems.

Conjecture 1 Let X be a random variable defined over R or in any subset of R
with a finite mean (μ) and variance (σ 2). Let XT denote the truncated version of the
original random variable X. Then, regardless of the hidden truncation mechanism
(i.e., HD(type I) or HD(type II)), and the type of truncation (left, right, or both-
sided), the variance of XT , say, σ 2

T will be smaller than or equal to σ 2. �
As an illustration, we sketch the approach to access the result described in

Conjecture 1 for the hidden truncated model constructed based on the Arnold
and Strauss bivariate exponential distribution discussed in Sect. 3.3. Let X be a
random variable with marginal density in Eq. (14) based on the Arnold and Strauss
bivariate exponential distribution and XT ∼ HTPExp (a, b, c, d1, d2), and let
V ar(X) and V ar(XT ) be the variances of X and XT , respectively. To show that
V ar(XT ) ≤ V ar(X), we obtain

V ar(X) = c−4
{
c
[
a2 log(b)

(
−e ab

c

)
+ a2e

ab
c log

( c
a

)

+a2e
ab
c

(
log

(
ab

c

)
+ Γ

(
ab

c

))
− ac

b
+ c2

b2

]

−
[
c − abe

ab
c

(
log

(
ab
c

)+ Γ
(
ab
c

)+ log
(
c
a

)− log(b)
)]2

b2

⎫
⎪⎬

⎪⎭
,
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and

V ar(XT ) =
{

2M−1
1 c−2 exp

(
2ab

c

)

×
[
Γ

(
−2,

b(a + cd1)

c

)
− Γ

(
−2,

b(a + cd2)

c

)]}

−
{

exp

(
2ab

c

)
M−1

1

[
Γ

(
−1,

b(a + cd1)

c

)
− Γ

(
−1,

b(a + cd2)

c

)]}2

.

With some tedious algebraic simplification, it can be shown that V ar(X) −
V ar(XT ) ≥ 0. �
Conjecture 2 If the original density for random variable X is log-concave, then the
hidden truncated p.d.f. of XT is also log-concave and hence unimodal.

Conjecture 3 If the hazard function for random variable X is increasing, decreas-
ing, and/or bathtub shape, then the hazard function of the corresponding hidden
truncated random variable XT exhibits similar behavior.

Conjecture 4 The hidden truncated version from any density retains the properties
corresponding to several variants of stochastic ordering that holds for the non-
truncated version.

6 Concluding Remarks

In this paper, we have explored two different types of hidden truncation mecha-
nism. Noticeably, the hidden truncation models resulting from the two different
approaches, HD(Type I) and HD(Type II), will lead to different distributions if
we begin with non-normal components. Data sets involving hidden truncation, or
in the case of model-misspecification leading to a hidden truncation, require a
careful investigation as well as its appropriate applications to real life scenarios.
With our naked eye, at times, we may not be able to differentiate/identify whether
or not we are actually using a truncated version of an underlying probability
model. For example, any statistical analysis involving linear normal models (e.g.,
analysis of variance, regression, principal components, etc.) can be considered to
be potentially a setting in which hidden truncation might have occurred and some
effort to investigate the possibility can be clearly justified. Mitra and Das (1989)
used the truncated Cauchy distribution in the field of crystallographic statistics.
Mitra and Das (1989) stated that “the Cauchy or Lorentzian distribution, having
no finite moment apart from above and the first is looked upon with suspicion. But
one never works with a distribution function ranging between ±∞; the function
is cut off on the surface of the sphere of reflection.” Thus, we are actually dealing
with a truncated Cauchy distribution function for which second and higher moments
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exist. The findings in this article have the potential to impact a wide range of other
engineering and science applications such as those found in statistical tolerance
analysis, more specifically, tolerance stack analysis methods. We also hope that the
results investigated/studied here will ignite much deserved motivation and attention
to develop the associated theoretical and methodological works (including but not
limited to a thorough comparative study among several different methods of skewing
paradigm, such as hidden truncation, additive components, and Jones method of
skewing non-normal densities in two and higher dimensions) before it can be applied
to real world data involving some forms of hidden truncation.
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Multivariate Distribution Theory



Our Joint Work with Barry Arnold:
Conditional Specification and Other
Topics

Enrique Castillo and José María Sarabia

Abstract We review some of the joint contributions made with Barry C. Arnold to
the Probability and Statistics field during more than 30 years. First, we concentrate
on those related to conditional specification, characterization of distributions and
Bayesian methodologies with priors based on conditional specification. Also, we
review other topics studied jointly with Barry C. Arnold such as multivariate
distributions defined in terms of contours, new classes of multivariate distributions
based on the Rosenblatt construction and multivariate order statistics and other
applications.

1 Introduction

Professor Barry Charles Arnold has made relevant contributions to many different
areas of probability and statistics including distribution theory, multivariate analysis,
majorization and stochastic ordering, order statistics and record values, classical and
Bayesian inference, bounds and orderings, and characterization problems.

When Barry turned 65, we had the opportunity to organize (jointly with Professor
N. Balakrishnan) an International Conference on Distribution Theory, Order Statis-
tics, and Inference in his honor in Santander, Spain in June 2004. That conference
was a success and some selected papers that were presented at that conference
were included in a volume (Advances in Distribution Theory, Order Statistics, and
Inference, N. Balakrishnan, E. Castillo, J.M. Sarabia Editors, Birkhäuser, Boston,
2006), see Balakrishnan et al. (2006).
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At this time we celebrate Barry’s 80th birthday, and our participation consists of
this article, as a tribute to his academic and research career, and to all the works we
made together with him.

The contents of this chapter are the following. In this first section we continue by
describing the first contacts with Professor Barry C. Arnold, in the early eighties of
the last century. In Sect. 2, we present our contributions to conditional specification,
with reference to some new advances in the topic. In Sect. 3 we discuss other
research topics made jointly with Barry. Finally, some conclusions are included in
Sect. 4.

1.1 First Contacts with Barry Arnold

The first time Enrique Castillo met Barry Arnold was at the Institute of Advanced
Studies of NATO on Statistical Extremes and Applications dedicated to the Memory
of E. J. Gumbel, held in Vimeiro, Portugal in 1983. The meeting took 2 weeks
and was organized by J. Tiago de Oliveira and it was probably one of the most
important meetings on this important topic. In fact, well-known scientists shared
their knowledge and contributed to the development of this crucial field, not only in
probability and statistics but also in physics and engineering.

Enrique also met Janos Galambos for the first time there, and informed Janos
about his desire of a sabbatical year at Temple University to write a book on
Extremes and Engineering Applications. This stay started after the Summer in 1985.
During this stay, Janos and Enrique wrote some common papers. The first one was
born after a Janos invitation to Enrique to participate at a Conference on Weighted
distributions at Pen State University. One Friday morning, Janos offered Enrique this
opportunity and mentioned that we could travel together by car from Philadelphia.
On Monday morning, we discussed a draft of our first joint paper and developed
our paper with title “Bivariate distributions with normal conditionals” in which the
most general bivariate model with normal conditionals was obtained. It is important
to indicate that functional equations played a very important role in that paper and in
almost all of the sequence of papers that followed. So, we cannot avoid to mention
the books of Janos Aczél, but specially Aczél (1966), who motivated the books
Castillo and Ruíz-Cobo (1992) and Castillo et al. (2005).

The paper was presented at the meeting. By chance, Barry Arnold was there and
liked the idea. Very soon Barry wrote to Janos, asking for permission to publish
a paper with exponential conditionals, based on the methodology proposed by us. I
have to point out that Barry did not need our permission, but he was extremely polite
and kind to follow this process. In fact, we were really honored by this letter because
of the implied recognition to our work. He published the paper in 1988 with David
Strauss in Journal of the American Statistical Association (see Arnold and Strauss
1988) and in 1991, another paper about bivariate distributions with conditionals
in prescribed exponential families (see Arnold and Strauss 1991). In 1989, he
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Fig. 1 Bivariate densities with normal conditionals and non-linear regressions with one mode
(left) and two modes (right)

published one important paper about compatibility in conditional distribution with
Jim Press (see Arnold and Press 1989).

1.2 Parallel Works on Conditional Specification

In the meantime, Enrique and Janos published the normal conditionals paper
(see Castillo and Galambos 1989). Two examples of these families are shown in
Fig. 1, where the left hand side shows a normal conditionals model with non-linear
regressions and the right hand side model is a normal conditionals model with two
modes. In Arnold et al. (2000) a normal conditionals model with three modes was
presented.

Later, we published one paper in which some conditional considerations allowed
to solve a functional equation that generated a fatigue model for the S-N curves,
Castillo and Galambos (1987). The idea is as follows. Suppose that several
specimens are tested at different stress ranges, σ ∗, and that their fatigue lives are
determined N∗, that is, their S-N curves, shown in red in Fig. 2. If we consider a
generic point (σ ∗, N∗), and the vertical and horizontal segments of the figure, it
is obvious that any S-N curve crossing the horizontal segment, necessarily has to
cross the vertical segment, which implies that the shaded areas of the densities of
N∗ conditioned by σ ∗ and σ ∗ conditional by N∗, have to be identical. But those
areas correspond to the corresponding conditional distribution functions, so it must
be:

p = h∗(N∗|σ ∗) = g∗(σ ∗|N),

where h∗ and g∗ are the conditional distributions. This is a compatibility condition.
If we assume now that the functions h∗ and g∗ belong to the same family of

distributions and that, this is a location and scale family of distributions, which is a
very weak hypothesis, since they have to be stable with respect to changes of scale
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Fig. 2 Compatibility condition of two conditionals leading to the S-N fatigue model

(of units) and of origin, the compatibility condition can be written in the form:

N∗ − μ∗1(σ ∗)
σ ∗1 (σ ∗)

= σ ∗ − μ∗2(N∗)
σ ∗2 (N∗)

, (1)

which is a functional equation with four unknown functions, whose solution, as
shown in Castillo and Galambos (1987), leads to the following models:

Model 1 : p = h∗
(
(N∗ − B∗)(σ ∗ − C∗)− λ∗

δ

)
, (2)

Model 2 : p = h∗
(
A∗N∗ + B∗σ ∗ + C∗

)
, (3)

where λ∗ and δ∗ are location and scale parameters, respectively, and A∗, B∗, and
C∗ are other parameters, and this is independent on the selected function h∗.

Later, they also studied the conditional families specified by Weibull conditionals
in Castillo and Galambos (1990), and later by gamma conditionals in Castillo et al.
(1990), this work joint with José María Sarabia.
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2 Contributions to Conditional Specification

In this section we present our main contributions with Barry in the field of
conditional specification of statistical models.

2.1 The Lecture Notes in Statistics Monograph

A short period of time working in similar papers having the conditional specification
as the main topic motivated an invitation from Enrique and José María to Barry in
order to work on a joint book. The invitation was immediately accepted by Barry and
the book project started. After several stays of Barry at the University of Cantabria
in Santander, we produced a Monograph that was presented to Springer for its
publication in the Lecture Notes Series on Probability and Statistics and published
as Monograph N. 73, in 1992 (see Arnold et al. 1992).

Some common works on conditional specification of families of distributions
include: (a) second kind beta conditionals in Castillo and Sarabia (1990) and
classical beta conditionals and its generalizations in Arnold et al. (2004b), (b) the
generalized Pareto conditionals model, in Arnold et al. (1993b), (c) distributions
with conditionals in truncated weighted families, in Arnold et al. (2005), (d) the
conditional characterization of the Mardia multivariate Pareto in Arnold et al.
(1994b), (e) the conditionally specified multivariate skewed distributions, in Arnold
et al. (2002a), and (f) conditionally specified multivariate generalized skewed
distributions in Arnold et al. (2007a).

In a few years, the edition was sold out and, then, we decided to write a
second book on the conditional specification of distributions, to include the new
advances produced from and after the previous monograph. After some hard work,
we produced a new book, that was published by Springer in 1999, in its prestigious
Springer Series in Statistics (Arnold et al. 1999).

Immediately after publication of this book, we published an invited paper
(Arnold et al. 2001b) in the journal Statistical Science with a summary of the
material included in the book and some new results and applications.

2.2 Some Work on Characterizations of the Normal Family

First of all we want to emphasize the importance of characterizing families of
distributions. If we characterize a family of distributions in different ways, we
have alternative definitions of these families. This implied a better and deeper
knowledge of these classes of distributions. It also means that we were able to derive
conclusions about these families from different points of view or starting points.
Logically, some definitions will make easier to derive certain conclusions, and other
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definitions will do the same for other conclusions. Thus, having at hand different
characterizations allow us to analyze and solve more problems and in different ways,
because we can start proofs from different alternative definitions

The next theorem provides a relevant characterization of the bivariate normal
distribution (see Castillo and Galambos 1989).

Theorem 1 (Characterization of the Bivariate Normal Distribution) The den-
sity f (x, y) is a classical bivariate normal density if and only if all conditional
distributions, both of X given Y and of Y given X, are normal and any one of the
following properties holds:

• σ 2
2 (x) = V ar(Y |X = x) or σ 2

1 (y) = V ar(X|Y = y) is constant.
• lim y→∞y2σ 2

1 (y) = ∞ or lim x→∞x2σ 2
1 (x) = ∞.

• lim y→∞σ1(y) �= 0 or lim→∞ σ2(x) �= 0.
• E(Y |X = x) or E(X|Y = y) is linear and non-constant.

These results for the bidimensional case were extended to the conditional
characterization of the multivariate normal family in terms of classical conditional
distributions of (Xi,Xj ) given X(i,j), where X = (X1, X2, . . . , Xn) and X(i,j)

refers to X with Xi and Xj deleted, which appear in Arnold et al. (1994a).
Later, these results were extended to the case of classical conditional distributions

of Xi |X(i) = x(i) and Xi |X(i,j) = x(i,j) (see Arnold et al. 1994c).
Finally, an extension to (k − 1)-dimensional marginal densities was provided in

Arnold et al. (2007b).

2.3 Compatibility and Near Compatibility

In Arnold et al. (2001c), the authors move further from the problem of conditional
specification of distributions dealing with the problem of determining whether or
not a given set of constraints, including marginal and conditional probabilities and
expectations of given functions are compatible. They deal with the finite discrete
case and convert it into a problem of linear equations in restricted domains. When
compatibility was not possible, they introduced the concept of near compatibility
and ε-compatibility of conditional distributions. A general solution was provided in
Arnold et al. (2002b).

In Arnold et al. (2004a), the authors dealt with the problem of whether or not a set
of conditional probabilities are compatible, and obtaining all the possible solutions.
The authors propose the “rank one extension” technique as the most convenient
for identifying all possible compatible distributions associated with complete and
partial conditional specifications including the case with zero probabilities. The
case of a sequential assessment of compatible conditional probabilities and the
possible extensions to higher dimensions are also discussed. The proposed methods
are illustrated with several examples. The rank-based compatibility method allows
us to conclude whether or not two conditional probability arrays are compatible
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and, if the answer is positive, to obtain the set of all compatible joint distributions.
The method works for all cases, even if the conditional probability matrices are not
strictly positive. The method is valid for cases including the partial specification and
can be used to help human experts to make the assessments sequentially by giving
adequate compatibility intervals for each desired parameter being assessed.

2.4 Conditionally Specified Bivariate Gumbel Models

Assume that for every y, the conditional distribution of X given Y = y is Gumbel
(μ1(y), σ1(y)) and that for every x, the conditional distribution of Y given X =
x is Gumbel (μ2(x), σ2(x)). The family of densities satisfying this condition is
the family of distributions with conditional Gumbel densities that was identified in
Arnold et al. (1998b).

It is interesting to point out that the classical bivariate Gumbel models are limited
in the sense that they include only non-negative correlation, while the conditional
models exhibit non-positive correlation. Three examples are given in Fig. 3, where
the positive and negative correlations become apparent.

2.5 Bivariate Distributions Characterized by One Family of
Conditionals and Conditional Percentile or Mode
Functions

As illustrated above, the knowledge of all conditional distributions will typically
serve to completely characterize a bivariate distribution if they are compatible. In
addition, a partial knowledge can also be sufficient, as it is the case of the conditional
distribution of X given Y and the conditional mean of Y given X.

5 Density contour plot for
the Gumbel Type I

5

4

4

3

3

2

2

1

1

-1

-1
-2

-2

0

0

5 Density contour plot for
the Gumbel Type II

5

4

4

3

3

2

2

1

1

-1

-1
-2

-2

0

0
Density contour plot for a conditionals model

4

4

3

3

2

2

1

1

-1

-1
-2

-2

0

0

Fig. 3 Contour plots corresponding to classical bivariate Gumbel models (left and center) and
bivariate densities with conditional Gumbel distributions (right)
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Thus, it is natural to ask whether or not a conditional percentile or mode function
(of Y given X) together with knowledge of the conditional distribution of X given
Y characterize the joint distribution.

In Arnold et al. (2008a), the authors investigate the required conditions for the
characterization problem in the following two cases: (a) given Pr(X ≤ x|Y ≤ y)

and a conditional percentile function of Y given {X ≤ x}, and (b) given fX|Y (x|y)
and the conditional mode function of Y given {X = x}. As a corollary, they obtain
the following normal characterization theorem,

Theorem 2 The classical bivariate normal distribution is characterized as the
unique absolutely continuous bivariate distribution with normal conditionals of X
given Y with linear regression and a constant conditional variance function together
with a linear conditional mode function of Y given X.

2.6 Distributions with Generalized Skewed Conditionals and
Mixtures of Such Distributions

The class of skew-normal distributions introduced by Azzalini has received a lot
of attention in the recent statistical literature. The paper Arnold et al. (2002a)
identifies first the classes of bivariate distributions with skewed normal, linearly
skewed normal, rotation and quadratic skewed normal conditionals, and also some
multivariate extensions. In the bivariate case, this class of distributions (without
including location and scale parameters) is given by

fX,Y (x, y; λ) = 2φ(x)φ(y)�(λxy), (x, y) ∈ R
2, (4)

and λ ∈ R. One of the relevant property of (4) is its bimodality. If |λ| > √
π/2,

the density (4) presents two modes. This property is also presented in more general
multivariate skew-normal distributions. They also deal with non-normal variants and
polynomially skewed normal models.

A probability density function (pdf) is said to have a generalized skewed
distribution if

f (x) = 2f0(x)G {w(x)} ; −∞ < x <∞, (5)

where f0 is a one-dimensional probability density function, symmetric about 0, and
G is a one-dimensional distribution function such that G′ exists and is symmetric
about 0. The paper Arnold et al. (2007a) considers the choice w(x) = w(x; θ),
where θ is a vector of parameters, obtaining new classes of multivariate distributions
with conditionals of the type (5), when w(x; θ) are scale functions or high-order
odd polynomials. Some examples of these densities are shown in Fig. 4. A class of
skewed distributions with applications in environmental data has been provided by
Ghosh and Ng (2019).
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Fig. 4 Some examples of densities with generalized skew conditionals with w(x; θ) a scale
function

2.7 Some Bayesian Applications

We have collaborated in some Bayesian models in which we had explored the power
of functional equations to obtain the most general models with priors and likelihoods
in exponential families, in Arnold et al. (1993a), and later the most general models
with priors and posteriors, not necessarily in the same but, in well-known posterior
families, in Arnold et al. (1996b).

More specifically, this methodology has been used for the Bayesian estimation
of the parameters of classical distributions, including normal and classical Pareto
distributions and simple linear regression (see Arnold et al. 1993a, Arnold et al.
1998a and Sarabia et al. 2005) and in the Bayesian estimation of ratios of gamma
scale parameters (see Arnold et al. 1998c and Moschopoulos and Sha 2005). In
Sarabia et al. (2008) we have proposed the use of this methodology for the Bayesian
analysis of hurdle count data models and the estimation with incomplete count
data. A more recent application of these methodologies can be found in Sarabia
and Shahtahmassebi (2017).
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2.8 Other Topics in Conditional Specification

In this section we discuss briefly other research topics related to conditional
specification were studied.

Motivated by our research in conditional specification and by the paper by
Gelman and Speed (see Gelman and Speed 1993), we studied the problem of
specification of distributions by combinations of marginal and conditional dis-
tributions. A k-dimensional probability density function can be determined by
certain combinations of marginal and conditional densities. The paper Arnold et al.
(1996c) identifies all possible such specifications. As well, appropriate compatibility
conditions are described as sufficient conditions for uniqueness of the resulting
density which must, in general, be checked for integrability.

A particular and very interesting case of conditional specification is the case
of Bayesian networks, which are defined by an acyclic graph of the set of
nodes (variables) and a set of conditional distributions of each variable given its
parents. The interesting thing is that the graph defines the dependence structure
of the multivariate model, and the set of conditional distributions quantifies it.
More important this definition is always compatible provided that the conditional
distributions are well defined and that the graph is acyclic. The reader can see all
these properties in Castillo et al. (1997), together with some interesting applications.

A multivariate version of Stein’s identity with applications to moment calcu-
lations and estimation of conditionally specified distributions is included in Arnold
et al. (2001a). The resulting identity is useful for generating recurrence formulae for
mixed moments and for deriving consistent moment based estimates of parameters.
The technique is illustrated in a spectrum of one-dimensional multiparameter cases
and in a variety of bivariate conditionally specified distribution settings, including
non-exponential families of distributions.

The modeling of the fatigue life of longitudinal elements is studied in Arnold
et al. (1996a). In this paper using functional equations, a simple consensus model for
fatigue life of longitudinal elements based on engineering principles is obtained. As
well, by the application of proportional hazard techniques and subsequent likelihood
analysis, simple parsimonious Weibull models are obtained.

2.9 Some Recent Topics and Applications in Conditional
Specification

The field of conditional specification has served as inspiration for the study and
development of other topics in probability and statistical applications. In this section
we include some recent applications, some of them discussed initially in Arnold
(2008) and in Sarabia et al. (2008).

An application in the field of economics is the specification of multivariate
income distributions. The catalogue of multivariate income distributions is limited
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and is usually reduced to the use of to the classical multivariate lognormal distribu-
tion. However, this distribution presents some shortcomings. It is well known that
the range of the correlation coefficient is more narrowed than the normal case. An
alternative model has been proposed in Sarabia et al. (2007), where the class of
bivariate distributions with lognormal conditionals has been considered. This model
includes the classical lognormal distribution and is more flexible for fitting bivariate
income data.

Actuarial statistics and risk analysis are other important fields of application of
the conditional specification models. In Sarabia et al. (2005), we have considered
a new methodology for obtaining a premium based on a broad class of conjugate
priors, assuming lognormal claims. Other models with broad application in risk
theory in the classical collective model (see Sarabia et al. 2004 and Sarabia and
Guillén 2008) are the mixture conditional distributions. These models correspond
to distributions where one of the conditional distributions is of the type discrete and
the other one is of the type continuous. More relevant applications in risk analysis
have also been provided in Gómez-Déniz and Calderín (2014).

Another recent application of the conditional specification models is in some
topics in reliability. The concept of equilibrium distribution plays an important
role in reliability, survival analysis, and insurance studies. In Navarro and Sarabia
(2010) several alternative definitions of bivariate equilibrium distributions are
studied, some of them based on the conditional specification idea. Reliability
properties in two classes of bivariate continuous distributions based on specification
of conditional hazard functions are considered in Navarro and Sarabia (2013).
These classes were constructed by conditioning on two different kinds of events
proposed in Arnold and Kim (1996). New classes of bivariate distributions based
on conditional specification satisfying the proportional generalized odds rate model
were considered in Navarro et al. (2015). More recently, families of bivariate
distributions with generalized three-parameter beta conditionals and transmuted
conditionals have been studied in Sarabia and Castillo (2006) and Sarabia et al.
(2020), respectively.

3 Other Research Topics

In this section we include other topics studied in our joint research work with Barry.

3.1 Multivariate Distributions Involving the Rosenblatt
Construction

Other joint research with Barry (see Arnold et al. 2006) was on the construction of
families of multivariate distributions involving the Rosenblatt transformation. In this
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work we proposed a method for generating extensions of multivariate parametric
models that provides extra flexibility by means of the beta parameters.

The idea in this paper is as follows: It is well known (see Rosenblatt 1952) that
if X has distribution function FX(x; θ) and if we define

U1 = F1(X1; θ)
U2 = F2(X2|X1; θ)
. . . . . . . . .

Um = Fm(Xm|X1, X2, . . . , Xm−1; θ), (6)

then the Ui’s are independent Uniform(0, 1) random variables. In the spirit of the
quantile function construction in Jones (2004), we can use (6) to generate a random
vector with distribution FX(x; θ) as follows

X1 = F−1
1 (U1; θ)

X2 = F−1
2 (U2|X1; θ) = F−1

2

(
U2|F−1

1 (U1); θ
)

. . . . . . . . .

Xm = F−1
m

(
Um|X1, . . . , Xm−1; θ

) = F−1
m

(
Um|F−1

1 (U1; θ), . . . ,

F−1
m−1

(
Um−1|F−1

1 (U1; θ), . . .
)
; θ
)
,

(7)

where the Ui’s are independent Uniform(0, 1) random variables.
If we replace the uniformly distributed U ’s in (7) and independent V ’s which are

assumed to have Beta distribution, we have

X1 = F−1
1 (V1; θ)

X2 = F−1
2 (V2|X1; θ) = F−1

2

(
V2|F−1

1 (V1); θ
)

. . . . . . . . .

Xm = F−1
m (Vm|X1, . . . , Xm−1; θ) = F−1

m

(
Vm|F−1

1 (V1; θ), . . . ,

F−1
m−1

(
Vm−1|F−1

1 (V1; θ), . . .
)
; θ
)
,

(8)

where Vi ∼ B(αi, βi); i = 1, 2, . . . , m.
The resulting joint density for X is then given by
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fX(x; θ, α, β) = f (x1, x2, . . . , xm; θ)
m∏

i=1

fαi,βi (Fi(xi |x1, . . . , xi−1; θ)) (9)

in which fαi,βi denotes the density of a Beta(αi, βi) random variable, i =
1, 2, . . . , m.

It is evident from (9) that the original joint density f (x1, x2, . . . , xm; θ) is
included in (9) as a special case corresponding to the choice αi = βi = 1; i =
1, 2, . . . , m. If the original family of joint densities is

F = {f (x; θ) : θ ∈ �}, (10)

then we will say that (9) represents the F-Beta family of distributions parameterized
now by θ ∈ � and αi, βi ∈ R+, i = 1, 2, . . . , m. Thus, if the original parameter
space of F is of dimension k, then the dimension of the parameter space of the
F-Beta family of distributions will be k + 2m.

The authors provide several specific models, a very simple estimation method
for the parameters of this family of distribution and applications with simulated and
real data.

3.2 Probability Distributions Defined in Terms of Contours

An interesting alternative to conditional specification presented jointly with Barry
Arnold in Arnold et al. (2008b) consists of using contours as the basis for defining
probability distributions. To this end, the most general probability densities with
given contours are obtained and the particular cases of circular and elliptical
contours are discussed. It is demonstrated that the well-known elliptically contoured
family of distributions does not include all possible cases to be used in practical
applications, which are obtained in this paper.

In particular, the case of contours defined by polar coordinates is analyzed
including its simulation and parameter estimation, which become especially simple
for this case. Finally, the contours idea is extended to the case of case of cumulative
distribution functions, so that the families of distribution functions with given
contours are identified and some illustrative examples are presented.

Figure 5 shows two examples of densities with elliptic contours, the left one with
parallel axes ellipses and the right one with rotated axes. One original contribution of
this paper consists of giving the possibility of extend given families of distributions
to improve the fit associated with a given data set and at the same time keeping the
initial family of contours.
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Fig. 5 Bivariate densities with normal conditionals based on contours

3.3 Multivariate Order Statistics

The problem of defining multivariate order statistics is studied in Arnold et al.
(2009). In that paper a general class of complete orderings of such random vectors
is supplied by viewing them as concomitants of an auxiliary random variable. The
resulting definitions of multivariate order statistics subsume and extend orderings
that have been previously proposed. As well, analogous concepts of multivariate
record values and multivariate generalized order statistics are also proposed.

4 Conclusions

Our joint work with Barry C. Arnold covered several relevant fields of probability
and statistics. Many of the most important contributions were made in the topic of
conditional specification of distributions, characterization, and estimation of new
families of distributions. Other fields of our work include the construction of new
families of multivariate distributions, multivariate order statistics, specification of
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Fig. 6 Barry (right), Enrique (left) and José María in Castro Urdiales (Cantabria, Spain) in June
2004 in the 65th birthday of Barry

fatigue models and Bayesian estimation of parametric families using conditional
specification priors. The research in all these topics continues to be an active field
of work is current statistical science and should extend to other fields of application
including applications in data science and machine learning.

Figure 6 shows a photo taken in the Castro Urdiales (Cantabria, Spain) meeting
in June 2004, honoring Barry in his 65th birthday. In this picture he appears with
Enrique and José María.
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On the Asymptotic Joint Distribution of
Multivariate Sample Moments

Reinaldo B. Arellano-Valle, Simone B. Harnik, and Marc G. Genton

Abstract We present the asymptotic joint distribution of the sample central
moments and the standardized sample central moments of multivariate random
variables. Sample central moments and standardized sample central moments are
quantities of interest for statistical inference as the variance and the coefficients of
skewness and kurtosis are particular cases. The results described here are known
for univariate random variables; now, we extend them to random vectors. After
presenting our results, we apply them to multivariate elliptical distributions and
the multivariate skew-normal distribution, showing that these expressions can be
simplified considerably in specific cases.

1 Introduction

Statistical analyses frequently make use of functions of the sample mean and sample
covariance matrix for multivariate inference. In the exponential family, for instance,
such statistics are sufficient to estimate the parameters of distributions. In other
families, the third and fourth standardized sample moments, respectively, known
as the coefficients of skewness and kurtosis, may be of interest. Here, we present
the asymptotic joint distribution for multivariate sample moments and apply it to
both multivariate elliptical distributions and the multivariate skew-normal family.
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Sample moments are used in the method of moments, an estimation technique
based on the assumption that unknown parameters can be computed by matching the
sample moments with the theoretical ones, and solving a system of p equations and
p unknown parameters. The p parameters may be over-identified by the system of
equations; so, the Generalized Method of Moments (GMM) was developed to tackle
this obstacle. As noted by Harris and Mátyás (1999), the estimation via moments
requires fewer assumptions than the maximum likelihood estimation, which needs
specification of the whole distribution. Therefore, estimation via moments may
be convenient in many situations. The sample moments can also be used for
optimization of the likelihood, according to Lehmann and Casella (1998, pp. 456–
457).

As the sample moments have numerous applications, these measures and their
asymptotic distributions have been vastly explored in the literature. As one of
the first in this field, Cramér (1946) dealt with moments, functions of moments,
and their asymptotic normality using a technique that later became known as the
delta method. Pewsey (2005) derived a general result for the large-sample joint
distribution of the mean, the standard deviation, and the coefficients of skewness
and kurtosis of a general distribution by employing the Central Limit Theorem
(CLT), the Taylor expansion of functions of the moments, and extensive algebraic
manipulations. Both these works referred to the univariate context only.

An interesting property of Pewsey’s result is that he isolated the asymptotic bias
for the coefficients of skewness and kurtosis, so his formulation can be applied in
bias corrections of estimators. However, practical simulations from the author with
bias correction through subtraction or ratio performed poorly. Bao (2013) derived
analytical results for finite sample biases for skewness and kurtosis coefficients in
a different way. He achieved a good performance using his asymptotic results for
bias correction in an AR(1) process. He also claimed that applying the results to
hypothesis tests for normality increased the power of the tests. In the multivariate
context, Kollo and von Rosen (2005) presented the asymptotic distribution of the
sample mean and the sample covariance matrix, using as a background the law of
large numbers and the CLT.

Asymptotic results may be applied to the multivariate skew-normal distribution,
a more general class than the normal distribution, as shown by Arnold and Beaver
(2002). The authors also exposed different causes yielding skewed distributions,
for example, the hidden truncation mechanism. Arnold et al. (1993), motivated
by practical problems, such as “selective reporting,” i.e., when, intentionally or
not, only random vectors related to a truncated variable are recorded, developed
these ideas and provided a direct relationship with Azzalini’s (1985) skew-normal
distribution. As selective reporting is generated by common procedures, this hidden
truncation mechanism may be frequent in data analyses and was addressed by a
series of papers that Prof. Arnold pioneered.

Here, we apply asymptotic results to multivariate elliptical distributions and
the multivariate skew-normal distribution developed by Azzalini and Dalla Valle
(1996). In this last scenario, we show that expressions simplify considerably,
depending on the parameters. Two key advantages of our results are that we address
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the higher-order moments, unlike previous works, and we employ intuitive and
straightforward notation.

The structure of this paper is as follows. In Sect. 2, we provide the notation and
terminology used throughout the paper. In Sect. 3, we present the main results about
the asymptotic joint distribution of multivariate sample moments and multivariate
standardized sample moments and describe several examples for illustration. In
Sect. 4, we apply the results to multivariate elliptical distributions, and in Sect. 5,
we evaluate the asymptotic behavior for the skew-normal distribution.

2 Notation and Terminology

To derive the asymptotic joint distribution of central moments from multivariate ran-
dom variables, we consider a non-degenerate random vector X = (X1, . . . , Xd)

� ∼
f (x; θ), x ∈ X ⊆ R

d , θ ∈ � ⊂ R
q , where f is a parametric joint probability

density function. We also consider the following theoretical quantities, provided
they exist:

• μkr = E(Xr
k), k = 1, . . . , d, r = 1, . . . , p, is the rth theoretical moment of Xk ,

and μk1 = μk is the mean of the kth variable;
• κkr = E{(Xk − μk)

r}, k = 1, . . . , d, r = 1, . . . , p, is the rth theoretical central
moment of Xk about the mean μk , where κk1 = 0 and κk2 = σ 2

k is the variance;
• κkl,rs = E{(Xk − μk)

r(Xl − μl)
s}, k, l = 1, . . . , d, r, s = 1, . . . , p, represents

the theoretical central cross-moments of orders r and s between the kth and lth
variables, κkl,11 = σkl is the covariance between the kth and lth variables, and
κkk,rs = κk,r+s ;

• ρkr = κkr

κ
r/2
k2

, k = 1, . . . , d, r = 1, . . . , p, is the standardized rth theoretical

moment of Xk with ρk1 = 0, ρk2 = 1, ρk3 = γk1 and ρk4 − 3 = γk2, where γk1
is the skewness coefficient and γk2 is the excess kurtosis;

• ρkl,rs = κkl,rs

κ
r/2
k2 κ

s/2
l2

, k, l = 1, . . . , d, r, s = 1, . . . , p, and ρkk,rs = ρk,r+s ,
ρkk,11 = ρk2 = 1;

• ρ̄kl,rs = κkl,rs−κkr κls
κ
r/2
k2 κ

s/2
l2

= ρkl,rs − ρkrρls , k, l = 1, . . . , d, r, s = 1, . . . , p, and

ρ̄kk,rs = ρ̄k,r+s , ρ̄kl,1s = ρkl,1s and ρ̄kl,r1 = ρkl,r1.

We also define Dkr , Skr , and Rkr , which are, respectively, the rth sample central
moment about the mean, the rth sample central moment about the sample mean,
and the rth standardized sample central moment about the sample mean, for a
random sample Xi = (Xi1, . . . , Xid)

�, i = 1, . . . , n, from the random vector
X = (X1, . . . , Xd)

� ∼ f (x; θ) as follows:

Dkr = 1

n

n∑

i=1

(Xik − μk)
r , k = 1, . . . , d, r = 1, . . . , p, (Dk1 = X̄k − μk),
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Skr = 1

n

n∑

i=1

(Xik − X̄k)
r , k = 1, . . . , d, r = 2, . . . , p, (Sk1 = 0, Sk2 = S2

k ),

=
r∑

s=0

(−1)r−s
(
r

s

)
DksD

r−s
k1 , (Dk0 = 1),

Rkr = S
−r/2
k2 Skr , k = 1, . . . , d, r = 3, . . . , p.

The sample central moments (Skr ) are strongly consistent estimators of the
respective theoretical central moments (κkr ) for each k = 1, . . . , d and r =
2, . . . , p. Therefore, the standardized sample central moments (Rkr ) are also
strongly consistent estimators of the respective standardized theoretical central
moments (ρkr ) for each k = 1, . . . , d and r = 2, . . . , p, i.e., each univariate
marginal. Besides, if the (2r)th theoretical moments are finite, then the asymptotic
normality of these central statistics is known. In the next section, we deliver the basic
elements needed to study the asymptotic distribution in the multivariate context and
give some illustrative examples of how to apply the proposed results.

3 Main Results

We let D = (D�
1 , . . . ,D

�
p )
�, Dk = (Dk1, . . . , Dkp)

�, and Dk = 1
n

∑n
i=1 W ik ,

where W ik = ((Xik − μk)
1, (Xik − μk)

2, . . . , (Xik − μk)
p)�, k = 1, . . . , d ,

i = 1, . . . , n. If the mean vector and the variance–covariance matrix of W ik exist,
they are, respectively, defined as

E(W ik) = κk = (κk1, κk2, . . . , κkp)
�, and

Var(W ik) = Kkk =
(

Cov
{
(Xk − μk)

i, (Xk − μk)
j
})

i,j=1,2,...,p

= (κkk,ij − κkiκkj )i,j=1,2,...,p, k = 1, . . . , d.

Thus, D = 1
n

∑n
i=1 W i , where W i = (W�

i1, . . . ,W
�
id )

�, i = 1, . . . , n, are i.i.d.
random vectors, with a mean vector κ = (κ�1 , . . . , κ�d )� and a variance–covariance
matrix K = (Kkl), k, l = 1, . . . , d, where the block Kkl = Cov{W k,W l} is

Kkl =
(

Cov
{
(Xk − μk)

i, (Xl − μl)
j
})

i,j=1,2,...,p

= (κkl,ij − κkiκlj )i,j=1,2,...,p, k, l = 1, . . . , d. (1)

With this, we make use of the multivariate Central Limit Theorem (CLT) to
obtain the results in Proposition 1:
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Proposition 1 Let D = (D�
1 , . . . ,D

�
d )
�, and κ = (κ�1 , . . . , κ�d )�, where Dk =

(Dk1, . . . , Dkp)
�, Dk1 = X̄k − μk , κk = (κk1, . . . , κkp)

�, κk1 = 0, and κk2 = σ 2
k ,

k = 1, . . . , d. If κk,2p <∞ for all k = 1, . . . , d, then

√
n(D − κ)

d−→ Ndp(0,K),

where K has block elements Kkl given by (1). In particular,

√
n(Dk − κk)

d−→ Np(0,Kkk), k = 1, . . . , d.

Example 1 We illustrate this result with the case in which p = 4. Assuming
that κk,8 <∞, then for all k = 1, . . . , d,

√
n

⎛

⎜
⎜
⎝

Dk1 − κk1

Dk2 − κk2

Dk3 − κk3

Dk4 − κk4

⎞

⎟
⎟
⎠

d−→N4

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝

0
0
0
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

κk2−κ2
k1 κk3−κk1κk2 κk4−κk1κk3 κk5−κk1κk4

κk3−κk2κk1 κk4−κ2
k2 κk5−κk2κk3 κk6−κk2κk4

κk4−κk3κk1 κk5−κk3κk2 κk6−κ2
k3 κk7−κk3κk4

κk5−κk4κk1 κk6−κk4κk2 κk7−κk4κk3 κk8−κ2
k4

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠ .

If the distribution of Xk−μk is symmetric around zero, then the result reduces
to

√
n

⎛

⎜⎜
⎝

Dk1

Dk2 − κk2

Dk3

Dk4 − κk4

⎞

⎟⎟
⎠

d−→ N4

⎛

⎜⎜
⎝

⎛

⎜⎜
⎝

0
0
0
0

⎞

⎟⎟
⎠ ,

⎛

⎜⎜
⎝

κk2 0 κk4 0
0 κk4 − κ2

k2 0 κk6 − κk2κk4

κk4 0 κk6 0
0 κk6 − κk4κk2 0 κk8 − κ2

k4

⎞

⎟⎟
⎠

⎞

⎟⎟
⎠ ,

indicating asymptotic independence between the random vectors√
n (Dk1,Dk3)

� and
√
n (Dk2 − κk2,Dk4 − κk4)

�.

Similarly, for sample central moments about the true mean vector, we derive
asymptotic distributions for the sample central moments about the sample mean as
stated below in Proposition 2. As noted by Afendras et al. (2020), when investigating
the limiting behavior of sample central moments in the univariate context, two
general assumptions about each of the components of the random vector X =
(X1, . . . , Xd)

� are required. First, E(|Xk|2r ) < ∞. Second, non-singularity of
order r , that is, τ 2

kr �= 0, for r = 2, 3, . . .. These conditions guarantee the marginal√
n-convergence of the sample central moments, i.e., each marginal sample central

moment
√
n (Skr − κkr ) converges in distribution to a non-degenerate N1(0, τ 2

kr ),
with τ 2

kr > 0. Under singularity of order r , whenever τ 2
kr = 0, Afendras et al.

(2020) verified that n (Skr − κkr ) converges in distribution to a non-normal law of
probability.
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Proposition 2 Let S = (S�1 , . . . ,S�d )� and κ = (κ�1 , . . . , κ�d )�, where Sk =
(Dk1, Sk2, . . . , Skp)

� and κk = (κk1, κk2, . . . , κkp)
�, k = 1, . . . , d. If κk(2p) < ∞

for all k = 1, . . . , d, then

√
n (S − κ)

d−→ Npd(0,CKC�),

where C = diag(C1, . . . ,Cd), and

Ck =

⎛

⎜⎜
⎜⎜⎜
⎝

1 0 0 · · · 0
−2κk1 1 0 · · · 0
−3κk2 0 1 · · · 0

...
...
...
. . .

...

−pκk(p−1) 0 0 · · · 1

⎞

⎟⎟
⎟⎟⎟
⎠
, k = 1, . . . , d,

where κk1 = 0 and κk2 = σ 2
k . In particular,

√
n(Sk − κk)

d−→ Np(0,CkKkkC
�
k ), k = 1, . . . , d,

where the asymptotic variance–covariance matrix CkKkkC
�
k has entries τk,rs ,

where τk,rr = τ 2
k,r , and

τk,11 = κk2 − κ2
k1,

τk,1s = τk,s1 = κk(s+1) − sκk2κk(s−1), s = 2, . . . , p,

τk,rs = κk(r+s) − κkrκks − rκk(r−1)κk(s+1)

−sκk(r+1)κk(s−1) + rsκk2κk(r−1)κk(s−1), r, s = 2, . . . , p.

Proof of Proposition 2 Since X̄k − μk = Dk1 and, for r = 2, . . . , p,

Skr =
r∑

s=0

(−1)r−s
(
r

s

)
DksD

r−s
k1 (Dk0 = κk0 = 0, Dk1 = X̄k − μk)

= (−1)r−1(r − 1)Dr
k1 +

r−1∑

s=2

(−1)r−s
(
r

s

)
(Dks − κks)D

r−s
k1

+
r−1∑

s=2

(−1)r−s
(
r

s

)
κksD

r−s
k1 +Dkr
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= −rκk,r−1Dk1 +Dkr +
r−1∑

s=0

(−1)r−s
(
r

s

)
(Dks − κks)D

r−s
k1

+
r−2∑

s=0

(−1)r−s
(
r

s

)
κksD

r−s
k1 ,

we have

√
n (Skr − κkr ) = √n

(
Dkr − κkr − rκk(r−1)Dk1

+
r−1∑

s=0

(−1)r−s
(
r

s

)
(Dks − κks)D

r−s
k1

+
r−2∑

s=0

(−1)r−s
(
r

s

)
κksD

r−s
k1

)

= √n
(
Dkr − κkr − rκk(r−1)Dk1

)

+
r−1∑

s=0

(−1)r−s
(
r

s

)√
n (Dks − κks)D

r−s
k1

+
r−2∑

s=0

(−1)r−s
(
r

s

)
κks
√
nDr−s

k1 .

By Proposition 1,
√
n (Dks − κks) = Op(1) as n → ∞, for all k = 1, . . . , d and

s = 1, . . . , p, implying that:
Dk1 = Op(n

−1/2) = op(1) and Dr−s
k1 = op(1), for all r − s > 0;√

n (Dks − κks)D
r−s
k1 = Op(1)op(1) = op(1), for s = 2, . . . , r − 1 and r =

3, . . . , p; and√
nDr−s

k1 = n−(r−s−1)/2(
√
nDk1)

r−s = op(1)Op(1) = op(1), for all r − s ≥ 2.
These facts imply that:

r−1∑

s=0

(−1)r−s
(
r

s

)√
n (Dks − κks)D

r−s
k1 +

r−2∑

s=0

(−1)r−s
(
r

s

)
κks
√
nDr−s

k1 = op(1),

which holds for all k = 1, . . . , d and all r = 2, . . . , p.
Hence, we obtain

√
n (Sk−κk) = Ck

√
n(Dk−κk)+op(1), for all k = 1, . . . , d,

and thus,
√
n (S− κ) = C

√
n(D− κ)+ op(1). The proof is concluded by applying

Proposition 1 and Slutsky’s theorem. �
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Example 2 Similar to Example 1, for p = 4, we suppose that κk8 < ∞.
Then, for all k = 1, . . . , d,

√
n

⎛

⎜⎜
⎝

X̄k − μk

Sk2 − κk2

Sk3 − κk3

Sk4 − κk4

⎞

⎟⎟
⎠

= √n

⎛

⎜
⎜
⎝

Dk1

−2κk1Dk1 + (Dk2 − κk2)−D2
k1

−3κk2Dk1 + (Dk3 − κk3)+ 2D2
k1 − 3(Dk2 − κk2)Dk1

−4κk3Dk1 + (Dk4 − κk4)− 3D2
k1 − 4(Dk3 − κk3)Dk1 + 6(Dk2 − κk2)D

2
k1

⎞

⎟
⎟
⎠

=

⎛

⎜⎜
⎝

1 0 0 0
−2κk1 1 0 0
−3κk2 0 1 0
−4κk3 0 0 1

⎞

⎟⎟
⎠
√
n

⎛

⎜⎜
⎝

Dk1

Dk2 − κk2

Dk3 − κk3

Dk4 − κk4

⎞

⎟⎟
⎠

+√n

⎛

⎜
⎜
⎝

0
−D2

k1
−3(Dk2 − κk2)Dk1 + 2D2

k1
−4(Dk3 − κk3)Dk1 + 6(Dk2 − κk2)D

2
k1 − 3D2

k1

⎞

⎟
⎟
⎠

︸ ︷︷ ︸
op(1)

d−→ N4

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝

0
0
0
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

τk,11 τk,12 τk,13 τk,14

τk,21 τk,22 τk,23 τk,24

τk,31 τk,32 τk,33 τk,34

τk,41 τk,42 τk,43 τk,44

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠ ,

where

τk,11 = τ 2
k,1 = κk2 − κ2

k1,

τk,12 = τk,21 = κk3 − 2κk2κk1,

τk,13 = τk,31 = κk4 − 3κ2
k2,

τk,14 = τk,41 = κk5 − 4κk2κk3,

τk,22 = τ 2
k,2 = κk4 − κ2

k2 − 4κk1κk3 + 4κk2κ
2
k1,

τk,23 = κk5 − 4κk2κk3 − 2κk1κk4 + 6κ2
k2κk1,

τk,24 = κk6 − κk2κk4 − 2κk1κk5 − 4κ2
k3 + 8κk2κk1κk3,

τk,33 = τ 2
k,3 = κk6 − κ2

k3 − 6κk2κk4 + 9κ3
k,2,

τk,34 = κk7 − 5κk3κk4 − 3κk2κk5 + 12κ2
k2κk3,

(continued)
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Example 2 (continued)
τk,44 = τ 2

k,4 = κk8 − κ2
k4 − 8κk3κk5 + 16κk2κ

2
k3,

with κk1 = 0 and κk2 = σ 2
k . In particular, if the marginal distribution of

Xk−μk is symmetric around zero, then κkr = 0 for odd r , and the asymptotic
multivariate normal distribution of

√
n (X̄k −μk, Sk2 − κk2, Sk3, Sk4 − κk4)

�
reduces to

N4

⎛

⎜⎜
⎝

⎛

⎜⎜
⎝

0
0
0
0

⎞

⎟⎟
⎠ ,

⎛

⎜⎜
⎝

κk2 0 κk4−3κ2
k2 0

0 κk4−κ2
k2 0 κk6−κk2κk4

κk4−3κ2
k2 0 κk6−6κk2κk4+9κ3

k2 0
0 κk6−κk2κk4 0 κk8−κ2

k4

⎞

⎟⎟
⎠

⎞

⎟⎟
⎠ ,

which indicates that there is asymptotic independence between the sample
central moments of odd and even orders. This is a general result valid for
higher-order sample central moments.

The next proposition shows the asymptotic joint distribution of multivariate
standardized sample central moments.

Proposition 3 Let R = (R�
1 , . . . ,R

�
d ) and ρ = (0�, ρ�1 , . . . , ρ�d )�, where

Rk = (Dk1, Sk2, Rk3, . . . , Rkp)
� and ρk = (0, κk2, ρk3, . . . , ρkp)

�, k = 1, . . . , d.
If κk,2p <∞ for all k = 1, . . . , d, then

√
n (R − ρ)

d−→ Ndp(0,GCKC�G�),

where GC = diag(G1C1, . . . ,GdCd), with

GkCk =

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

1 0 0 · · · 0

0 1
...

. . .
...

− 3
κ

1/2
k2

− 3
2
ρk3
κk2

1
κ

3/2
k2

· · · 0

...
...

...
. . .

...

−pρk(p−1)

κ
1/2
k2

−p
2
ρkp
κk2

0 · · · 1
κ
p/2
k2

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

.

In particular,

√
n(Rk − ρk)

d−→ Np(0,GkCkKkkC
�
k G�

k ), k = 1, . . . , d.
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Proof of Proposition 3 We let g(x) = (g1(x1), . . . ,gd(xd))
�, where x =

(x�1 , . . . , x�d )�, xk = (xk1, . . . , xkp)
�, gk = (gk1, . . . , gkp)

�, and

gkr (xk) =
{

xkr , r = 1, 2,

x
−r/2
k2 xkr , r = 3, . . . , p.

The Jacobian matrix is Ġ(x) = diag(G1(x1), . . . ,Gk(xk)), with Gk(xk) =(
∂gk(xk)

∂xk

)
given by

Gk(xk) =

⎛

⎜⎜⎜⎜⎜⎜
⎜
⎝

1 0 0 · · · 0
0 1 0 · · · 0
0 − 3

2
xk3

x
3/2+1
k2

1
x

3/2
k2

· · · 0

...
...

...
. . .

...

0 −p
2

xkp

x
p/2+1
k2

0 · · · 1
x
p/2
k2

⎞

⎟⎟⎟⎟⎟⎟
⎟
⎠

, k = 1, . . . , d.

Thus, from the delta method, we have
√
n (R − ρ) = √

n (G(S) − G(ρ))
d−→

Ndp(0,GCKC�G�), where G = G(ρ) = diag(G1(ρ1), . . . ,Gd(ρd)) and GC =
diag(G1C1, . . . ,GdCd), concluding the proof. �

Example 3 For p = 4, we have

GkCk =

⎛

⎜⎜⎜⎜
⎝

1 0 0 0
0 1 0 0

− 3
κ

1/2
k2

− 3
2
ρk3
κk2

1
κ

3/2
k2

0

− 4ρk3

κ
1/2
k2

− 2ρk4
κk2

0 1
κ2
k2

⎞

⎟⎟⎟⎟
⎠
.

Hence, as in Example 2, if κk8 <∞, then for all k = 1, . . . , d,

√
n

⎛

⎜⎜
⎝

X̄k − μk

Sk2 − κk2

Rk3 − ρk3

Rk4 − ρk4

⎞

⎟⎟
⎠

d−→ N4

⎛

⎜⎜
⎝

⎛

⎜⎜
⎝

0
0
0
0

⎞

⎟⎟
⎠ ,

⎛

⎜⎜
⎝

υk,11 υk,12 υk,13 υk,14

υk,21 υk,22 υk,23 υk,24

υk,31 υk,32 υk,33 υk,34

υk,41 υk,42 υk,43 υk,44

⎞

⎟⎟
⎠

⎞

⎟⎟
⎠ ,

where υk,ij = υk,ji and υk,ii = υ2
k,i , with

υk,11 = τk,11 = σ 2
k ,

(continued)
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Example 3 (continued)
υk,12 = τk,12 = σ 3

k ρk3,

υk,13 = σk(−3− 3ρ2
k3/2+ ρk4),

υk,14 = σk(−4ρk3 − 2ρk3ρk4 + ρk5),

υk,22 = σ 4
k (ρk4 − 1),

υk,23 = −(σ 2
k /2){ρk3(5+ 3ρk4)− 2ρk5},

υk,24 = σ 2
k (−4ρ2

k3 + ρk4 − 2ρ2
k4 + ρk6),

υk,33 = 9− 6ρk4 + (ρ2
k3/4)(35+ 9ρk4)− 3ρk3ρk5 + ρk6,

υk,34 = 6ρ3
k3 − (3+ 2ρk4)ρk5 + (3ρk3/2)(8+ ρk4 + 2ρ2

k4 − ρk6)+ ρk7,

υk,44 = −ρ2
k4 + 4ρ3

k4 + 16ρ2
k3(1+ ρk4)− 8ρk3ρk5 − 4ρk4ρk6 + ρk8.

In this paper, we developed all the calculations considering Sk2, i.e., the second
sample central moment (the sample variance). Pewsey (2005), on the other hand,
built his results with Sk = √

Sk2, the sample standard deviation, and only for the
univariate case. Therefore, Example 3 corresponds to Pewsey’s result, if k = 1, and
we make use of another Jacobian matrix P k:

P k =

⎛

⎜⎜⎜
⎝

1 0 0 0
0 1

2κ1/2
k2

0 0

0 0 1 0
0 0 0 1

⎞

⎟⎟⎟
⎠
.

Hence, the variance–covariance matrix for the asymptotic distribution for the
kth marginal univariate example, considering Pewsey’s approach, is given by the

expression P k(GkCkKC
�
k G

�
k )P

�
k .

With Proposition 3, we derive the following corollary:

Corollary 1 Let R3· = (R31, . . . , R3d)
� and ρ3· = (ρ31, . . . , ρ3d)

�. Under the
conditions of Proposition 3, we have

√
n (R3· − ρ3·)

d−→ Nd(0,ϒ3),

where

ϒ3 = (I d ⊗ e�3 )GCKC�G�(I d ⊗ e3),
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with e3 = (0, 0, 1, 0, . . . , 0)� ∈ R
p, i.e., ϒ3 has entries υ

{3}
kl , k, l = 1, . . . , d, given

by

υ
{3}
kl = e�3 GkCkKklC

�
l G�

l e3 =
(− 3

κ
1/2
k2

, − 3ρk3
2κk2

, 1
κ

3/2
k2

, 0, . . . , 0
)

×

⎛

⎜⎜⎜⎜⎜
⎝

κkl,11 − κk1κl1 κkl,12 − κk1κl2 κkl,13 − κk1κl3 · · · κkl,1p − κk1κlp

κkl,21 − κk2κl1 κkl,22 − κk2κl2 κkl,23 − κk2κl3 · · · κkl,2p − κk2κlp

κkl,31 − κk3κl1 κkl,32 − κk3κl2 κkl,33 − κk3κl3 · · · κkl,3p − κk3κlp
...

...
...

. . .
...

κkl,p1 − κkpκl1 κkl,p2 − κkpκl2 κkl,p3 − κkpκl3 · · · κkl,pp − κkpκlp

⎞

⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜
⎝

− 3
κ

1/2
l2

− 3ρl3
2κl2
1

κ
3/2
l2

0
...

0

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟
⎠

= 9ρ̄kl,11 + 9

2
(ρl3ρ̄kl,12 + ρk3ρ̄kl,21)+ 9

4
ρk3ρl3ρ̄kl,22 − 3(ρ̄kl,13 + ρ̄kl,31)

−3

2
(ρk3ρ̄kl,23 + ρl3ρ̄kl,32)+ ρ̄kl,33

= 9ρkl,11 + 9

2
(ρl3ρkl,12 + ρk3ρkl,21)

+9

4
ρk3ρl3(ρkl,22 − ρk2ρl2)− 3(ρkl,13 + ρkl,31)

−3

2
{ρk3(ρkl,23 − ρk2ρl3)+ ρl3(ρkl,32 − ρk3ρl2)} + ρkl,33 − ρk3ρl3.

In particular,

√
n (Rk3 − ρk3)

d−→ N(0, υ{3}kk ), k = 1, . . . , d,

with

υ
{3}
kk = 9ρ̄kk,11 + 9

2
(ρl3ρ̄kk,12 + ρk3ρ̄kk,21)+ 9

4
ρ2
k3ρ̄kk,22 − 3(ρ̄kk,13 + ρ̄kk,31)

−3

2
ρk3(ρ̄kk,23 + ρ̄kk,32)+ ρ̄kl,33

= 9− 6ρk4 + 1

4
ρ2
k3(35+ 9ρk4)− 3ρk3ρk5 + ρk6.
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Example 4 For symmetric distributions, we have ρk5 = ρk3 = ρk1 = 0.
Therefore,

√
nRk3

d−→ N (0, 9− 6ρk4 + ρk6) , k = 1, . . . , d,

where ρkr = κkr

κ
r/2
k2

. For the normal model, 9−6ρk4+ρk6 = 9−6×3+15 = 6,

so

√
nRk3

d−→ N (0, 6) , k = 1, . . . , d.

Focusing on the fourth standardized sample central moment, we derive the next
corollary:

Corollary 2 Let R4· = (R41, . . . , R4d)
� and ρ4· = (ρ41, . . . , ρ4d)

�. Under the
conditions of Proposition 3, we have

√
n (R4· − ρ4·)

d−→ Nd(0,ϒ4),

where

ϒ4 = (I d ⊗ e�4 )GCKC�G�(I d ⊗ e4),

with e4 = (0, 0, 1, 0, . . . , 0)� ∈ R
p, i.e., ϒ4 has entries υ

{4}
kl , k, l = 1, . . . , d, given

by

υ
{4}
kl = e�4 GkCkKklC

�
l G�

l e4 =
(− 4ρk3

κ
1/2
k2

, − 2ρk4
κk2

, 0, 1
κ2
k2
, 0, . . . , 0

)

×

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

κkl,11 − κk1κl1 κkl,12 − κk1κl2 κkl,13 − κk1κl3 · · · κkl,1p − κk1κlp

κkl,21 − κk2κl1 κkl,22 − κk2κl2 κkl,23 − κk2κl3 · · · κkl,2p − κk2κlp

κkl,31 − κk3κl1 κkl,32 − κk3κl2 κkl,33 − κk3κl3 · · · κkl,3p − κk3κlp

κkl,41 − κk4κl1 κkl,42 − κk4κl2 κkl,43 − κk4κl3 · · · κkl,4p − κk4κlp
...

...
... . . .

...

κkl,p1 − κkpκl1 κkl,p2 − κkpκl2 κkl,p3 − κkpκl3 · · · κkl,pp − κkpκlp

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

− 4ρl3
κ

1/2
l2

− 2ρl4
κl2

0
1
κ2
l2

0
...

0

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

= ρ̄kl,44 − 4ρ̄kl,41ρl3 − 2ρ̄kl,42ρl4 − 4ρk3(ρ̄kl,14 − 4ρ̄kl,11ρl3 − 2ρ̄kl,12ρl4)

+ρk4(−2ρ̄kl,24 + 8ρ̄kl,21ρl3 + 4ρ̄kl,22ρl4).



194 R. B. Arellano-Valle et al.

In particular,

√
n (Rk4 − ρk4)

d−→ N(0, υ{4}kk ), k = 1, . . . , d,

with

υ
{4}
kk = ρ̄kk,44 − 4ρ̄kk,41ρk3 − 2ρ̄kk,42ρk4 − 4ρk3(ρ̄kk,14 − 4ρ̄kk,11ρk3 − 2ρ̄kk,12ρk4)

+ρk4(−2ρ̄kk,24 + 8ρ̄kk,21ρk3 + 4ρ̄kk,22ρk4)

= ρkk,44 − ρ2
k4 − 4ρk5ρk3 − 2(ρk6 − ρk4)ρk4 − 4ρk3(ρk4 − 4ρk3 − 2ρk3ρk4)

+ρk4{−2(ρk6 − ρk4)+ 8ρ2
k3 + 4(ρk4 − 1)ρk4}

= −ρ2
k4 + 4ρ3

k4 + 16ρ2
k3(1+ ρk4)− 8ρk3ρk5 − 4ρk4ρk6 + ρk8.

Example 5 When working with symmetric distributions, we have ρk5 =
ρk3 = ρk1 = 0.
Therefore,

√
nRk4

d−→ N
(

0,−ρ2
k4 + 4ρ3

k4 − 4ρk4ρk6 + ρk8

)
, k = 1, . . . , d.

For the standard normal model, we have ρk4 = 3, ρk6 = 15, ρk8 = 108, and

−ρ2
k4 + 4ρ3

k4 − 4ρk4ρk6 + ρk8 = −9+ 108− 180+ 105 = 24

so
√
nRk4

d−→ N (0, 24) , k = 1, . . . , d.

4 Application to Multivariate Elliptical Distributions

In this section, we apply the previous results to a d-dimensional elliptical random
vector X ∼ Eld(μ,
;h) with the density function |
|−1/2h{(x−μ)�
−1(x−μ)},
where μ is a d × 1 location vector, 
 is a d × d positive definite scale matrix, and
h is the density generator function.

The central moments of X can be obtained from the moments of R and U because
X − μ = R 
1/2U , where R and U are independent random quantities, with R

d=
‖Z‖, a radial variable, and U

d= Z
‖Z‖ , a uniform vector on the unit sphere {x ∈ R

d :
‖x‖ = 1}, where Z = 
−1/2(X − μ) is the spherical version of X. The existence
of these moments depends on the existence of the associated moments of R. For
instance, as we know,
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• if E(R) <∞, then E(X) = μ, and
• if E(R) <∞, then Var(X) = σ 2

h
,

where σ 2
h = 1

d
E(R2) becomes the marginal variance induced by the density

generator function h.
By symmetry, the odd moments of X−μ are zero, and its even moments can be

computed using the results in Berkane and Bentler (1986); see also Lemmas 1 and 2
in Maruyama and Seo (2003). Thus, for r + s = 2m (even), we have

κkl,rs = E
{
(Xk − μk)

r(Xl − μl)
s
} = (κ(m) + 1)ν2mσ

m
kl , k, l = 1, . . . , d,

where σkl = Cov(Xk,Xl) = σ 2
hωkl becomes κkl,11, ν2m = (2m)!

2mm! is the (2m)th

moment of Z ∼ N(0, 1), and κ(m) + 1 = dm

d(m)

E(R2m)

(E(R2))m
, with d(m) = d(d +

2) · · · (d − 2(m − 1)) being the mth moment of the chi-square distribution with
d degrees of freedom. We note that κ(1) = 0 and κ(2) = κ is the kurtosis
parameter, which is related to the multivariate kurtosis index of Mardia (1970) of
X ∼ Eld(μ,
;h). The Kkl matrix for elliptical distributions can be simplified due
to symmetry, which makes the odd central moments equal to zero. As mentioned
before, this result implies asymptotic independence between the even and odd
sample central moments. The Kkl matrix is given by

Kkl =

⎛

⎜⎜
⎜⎜⎜
⎝

κkl,11 0 κkl,13 0 · · ·
0 κkl,22 − κk2κl2 0 κkl,24 − κk2κl4 · · ·

κkl,31 0 κkl,33 0 · · ·
0 κkl,42 − κk4κl2 0 κkl,44 − κk4κl4 · · ·
...

...
...

... . . .

⎞

⎟⎟
⎟⎟⎟
⎠
.

That is, if r + s = 2m (even) and r and s are odd, then the elements of Kkl are
κkl,rs ; if r+s = 2m (even) and r and s are also even, then the elements ofKkl are of
the form κkl,rs − κkrκls . When r + s = 2m− 1 (odd), then the element in row r and
column s of Kkl is zero. If p = 4 and we are interested in Kkk , then the expression
reduces to the following, as κkk,rs = κk,r+s :

Kkk =

⎛

⎜
⎜
⎝

κk2 0 κk4 0
0 κk4 − κ2

k2 0 κk6 − κk2κk4

κk4 0 κk6 0
0 κk6 − κk4κk2 0 κk8 − κ2

k4

⎞

⎟
⎟
⎠ .

Therefore, we see that there is independence between the pairs Xk and Sk2 and
Rk3 and Rk4. Also, by Proposition 3, we have

√
n(Rk − ρk)

d−→ Np(0,GkCkKkkC
�
k G�

k ), k = 1, . . . , d.
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For elliptical distributions, with κk8 <∞, for all k = 1, . . . , d,

GkCkKkkC
�
k G�

k =

⎛

⎜⎜
⎝

υk,11 0 υk,13 0
0 υk,22 0 υk,24

υk,31 0 υk,33 0
0 υk,42 0 υk,44

⎞

⎟⎟
⎠ ,

where υij = υji , and

υk,11 = κk2,

υk,13 = −3κ2
k2 + κk4

κ
(3/2)
k2

,

υk,22 = −κ2
k2 + κk4,

υk,24 = κ2
k2κk4 − 2κ2

k4 + κk2κk6

κ3
k2

,

υk,33 = 9− 6κk4

κ2
k2

+ κk6

κ3
k2

,

υk,44 = 4κ3
k4 − 4κk2κk4κk6 + κ2

k2(−κ2
k4 + κk8)

κ6
k2

.

Using the formula for computing κkl,rs , we have the following elements:

υk,11 = σkk = σ 2
hωkk,

υk,13 = 3κ(2)σhω
(1/2)
kk ,

υk,22 = (2+ 3κ(2))σ
4
hω

2
kk,

υk,24 = −3(11κ(2) + 6κ2
(2) − 5κ(3))σ

2
hωkk,

υk,33 = 6− 18κ(2) + 15κ(3),

υk,44 = 3(8+ 105κ2
(2) + 36κ3

(2) + κ(2)(42− 60κ(3))− 60κ(3) + 35κ(4)).

For the multivariate normal distribution, according to Maruyama and Seo (2003),
κ(i) = 0, i = 2, 3, 4. Considering the standard normal distribution, σ 2

h = ωkk =
1, υk,11 = 1, υk,13 = 0, υk,22 = 2, υk,24 = 0, υk,33 = 6, and υk,44 = 24.
For other elliptical distributions, the values for the asymptotic variance–covariance
matrix depend on the computation of σ 2

h and κ(i), i = 2, 3, 4. For a multivariate
Student-t distribution, we have σ 2

h = ν
ν−2 , κ(2) = 2

ν−4 , κ(3) = 6ν−20
(ν−6)(ν−4) and

κ(4) = 12ν2−92ν+184
(ν−8)(ν−6)(ν−4) .
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5 Application to Multivariate Skew-Normal Distributions

In this section, we apply the previous results to the multivariate skew-normal
distributions of Azzalini and Dalla Valle (1996); see also the books by Genton
(2004) and Azzalini and Capitanio (2014). We let X ∼ SNd(ξ ,
,α), with the
density given by 2φd(x − ξ ;
)�{α�ω−1(x − ξ)}, x ∈ R

d , where φd(x;
) is
the pdf of the Nd(0,
) distribution, and �(·) is the cdf of the univariate standard
normal distribution. We know that μ = E(X) = ξ + μ0 and � = Var(X) =

 − μ0μ

�
0 , where μ0 = E(X − ξ) = √

2/πωδ, δ = 
̄α/
√

1+ α�
̄α, 
̄ =
ω−1
ω−1, and ω = diag(
)1/2 = σ {I d + diag(μ̄0μ̄

�
0 )}1/2, with μ̄0 = σ−1μ0

and σ = diag(�)1/2.
Here, for any d × d matrix A = (aij ) ≥ 0, diag(A)1/2 is the diagonal matrix

whose diagonal elements are a
1/2
11 , . . . , a

1/2
dd . We know that

α =
√
π/2 ωσ−1�̄

−1
μ̄0√

(1+ β2
0 )
{
1+ (1− π/2)β2

0

} , β2
0 = μ̄�0 �̄

−1
μ̄0,

where �̄ = σ−1�σ−1 and ωσ−1 = σ−1ω = {I d + diag(μ̄0μ̄
�
0 )}1/2.

We let Z = σ−1(X − μ) = σ−1(X0 − μ0), where X0 = X − ξ . Its density and
moment-generating functions are, respectively, given by

fZ(z) = 2φd
(
z+ μ̄0; �̄ + μ̄0μ̄

�
0

)
�
{
α�ω−1σ (z+ μ̄0)

}
, z ∈ R

d ,

and

MZ(t) = 2e
−t�μ̄0+ 1

2 t�
(
�̄+μ̄0μ̄

�
0

)
t
�
(
t�σ−1ωδ

)
, t ∈ R

d ,

where ω−1σ = {
I d + diag(μ̄0μ

�
0 )
}−1/2 = diag

(
�̄ + μ̄0μ̄

�
0

)−1/2
and

σ−1ωδ =
√

π
2 μ̄0.

Hence, we obtain

Z ∼ SNd

(
−μ̄0, �̄ + μ̄0μ̄

�
0 ,α

)
,α =

√
π/2

{
I d + diag(μ̄0μ̄

�
0 )
}1/2

�̄
−1

μ̄0√
(1+ β2

0 )
{
1+ (1− π/2)β2

0

} ,

�⇒ X = μ+ σZ ∼ SNd(μ− μ0,� + μ0μ
�
0 ,α).

Moreover, Z has univariate and bivariate marginals given by
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Zk = e�k Z ∼ SN1

⎛

⎝−μ̄0k, 1+ μ̄2
0k,

√
π/2 μ̄0k√

1+ (1− π/2)μ̄2
0k

⎞

⎠ , k = 1, . . . , d,

and

(
Zk

Zl

)
∼ SN2

((−μ̄0k

−μ̄0l

)
,

(
1+ μ̄2

0k σ̄kl + μ̄0kμ̄0l

σ̄kl + μ̄0kμ̄0l 1+ μ̄2
0l

)
,

(
α′k
α′l

))
,

where �̄ = (σ̄kl), with σ̄kk = 1. To identify the skewness parameters (α′k, α′l )�,
we use the fact that for a dB × d matrix B of rank dB , BZ ∼ SNdB (Bμ̄0,B�̄ +
Bμ̄0μ̄0B

�,αB), with

αB =
√
π/2 diag

(
B�̄B

� + Bμ̄0μ̄
�
0 B�

)1/2 (
B�̄ + Bμ̄0μ̄

�
0 B�)−1

Bμ̄0
√

1− (π/2)(Bμ̄0)
� (B�̄ + Bμ̄0μ̄

�
0 B�)−1

Bμ̄0

,

and

δB =
√
π/2 diag

(
B�̄B

� + Bμ̄0μ̄
�
0 B�)−1/2

Bμ̄0.

We also note that

MBZ(t) = MZ(B
�t) = 2e

−t�μ̄0+ 1
2 t�

(
B�̄+Bμ̄0μ̄

�
0 B�

)
t
�
(√

π/2 t�Bμ̄0

)
.

Thus, for B = (ek, el )
�, we have

αB =
(
α′
k

α′
l

)

= 1
√
(1− ρ2

B
){1− ρ2

B
− (δ2

0k + δ2
0l − 2ρB δ0kδ0l )}

(
δ0k − ρB δ0l
δ0l − ρB δ0k

)
,

and δB = (δ0k, δ0l )
�, where

δ0k =
√
π/2 μ̄0k√
1+ μ̄2

0k

, ρB = σ̄kl + μ̄0kμ̄0l√
(1+ μ̄2

0k)(1+ μ̄2
0l )

,

and

MZk,Zl
(tk, tl) = 2 exp

{
−tkμ̄0k − tlμ̄0l + 1

2
t2
k

(
1+ μ̄2

0k

)
+ 1

2
t2
l

(
1+ μ̄2

0l

)

+tktl (σ̄kl + μ̄0kμ̄0l )} ×�

{√
π

2
(tkμ̄0k + tlμ̄0l )

}
.
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We compute ρkr(Zk) = E(Zr
k), ρkl,rs(Zk, Zl) = E(Zr

kZ
s
l ), and ρ̄kl,rs(Zk, Zl) =

E(Zr
kZ

s
l )− E(Zr

k)E(Z
s
l ) = ρkl,rs(Zk, Zl)− ρkr(Zk)ρlr (Zk).

Now, we let M(tk, tl) = MZk,Zl
(tk, tl), and the cumulant function

K(tk, tl) = logM(tk, tl)

= −tkμ̄0k − tlμ̄0l + 1

2
t2
k

(
1+ μ̄2

0k

)
+ 1

2
t2
l

(
1+ μ̄2

0l

)

+tktl (σ̄kl + μ̄0kμ̄0l )

+ log

[
2�

{√
π

2
(tkμ̄0k + tlμ̄0l )

}]
.

We also denote the derivatives as follows:

Mk = ∂M

∂tk
, Mkk = ∂2M

∂t2
k

, Mkl = ∂2M

∂tk∂tl
, . . . ,

and

Kk = ∂K

∂tk
, Kkk = ∂2K

∂t2
k

, Kkl = ∂2K

∂tk∂tl
, . . . .

Then, we have

Mk = MKk,

Mkl = MlKk +MKkl,

Mkll = MllKk + 2MlKkl +MKkll,

Mkkl = MklKk +MkKkl +MlKkk +MKkkl,

Mkkkl = MkklKk + 2MklKkk +MkkKkl + 2MkKkkl +MlKkkk +MKkkkl,

Mkkll = MkllKk + 2MklKkl +MkKkll +MllKkk + 2MlKkkl +MKkkll,

Mklll = MlllKk + 3MllKkl + 3MlKkll +MKklll,

Mkklll = MklllKk + 3MkllKkl + 3MklKkll +MkKklll +MlllKkk

+3MllKkkl + 3MlKkkll +MKkklll ,

Mkkkll = MkkllKk + 2MkllKkk + 2MkklKkl + 4MklKkkl +MkkKkll

+2MkKkkll +MllKkkk + 2MlKkkkl +MKkkkll,

Mkkklll = MkklllKk + 2MklllKkk + 3MkkllKkl + 6MkllKkkl + 3MkklKkll

+6MklKkkll +MlllKkkk + 3MllKkkkl + 3MlKkkkll +MkkKklll

+2MkKkklll +MKkkklll ,
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with

Kk = −μ̄0k + tk(1+ μ̄2
0k)+ tl(σ̄kl + μ̄0kμ̄0l )

+ζ1{
√
π/2(tkμ̄0k + tlμ̄0l )}

√
π/2 μ̄0k,

Kkl = (σ̄kl + μ̄0kμ̄0l )+ ζ2{
√
π/2(tkμ̄0k + tlμ̄0l )}{

√
π/2}2μ̄0kμ̄0l ,

Kkll = ζ3{
√
π/2(tkμ̄0k + tlμ̄0l )}{

√
π/2}3μ̄0kμ̄

2
0l ,

Kklll = ζ4{
√
π/2(tkμ̄0k + tlμ̄0l )}{

√
π/2}4μ̄0kμ̄

3
0l ,

Kkkl = ζ3{
√
π/2(tkμ̄0k + tlμ̄0l )}{

√
π/2}3μ̄2

0kμ̄0l ,

Kkkk = ζ3{
√
π/2(tkμ̄0k + tlμ̄0l )}{

√
π/2}3μ̄3

0k,

Kkkll = ζ4{
√
π/2(tkμ̄0k + tlμ̄0l )}{

√
π/2}4μ̄2

0kμ̄
2
0l ,

Kkklll = ζ5{
√
π/2(tkμ̄0k + tlμ̄0l )}{

√
π/2}5μ̄2

0kμ̄
3
0l ,

Kkkkll = ζ5{
√
π/2(tkμ̄0k + tlμ̄0l )}{

√
π/2}5μ̄3

0kμ̄
2
0l ,

Kkkklll = ζ6{
√
π/2(tkμ̄0k + tlμ̄0l )}{

√
π/2}6μ̄3

0kμ̄
3
0l .

Here, ζk(x) is the kth derivative of ζ0(x) = log{2�(x)}, for which

ζ0(0) = 1, ζ1(0) =
√

2/π = b, ζ2(0) = −b2,

ζ3(0) = b(2b2 − 1), ζ4(0) = −2b2(3b2 − 2),

ζ5(0) = b(24b4 − 20b2 + 3), ζ6(0) = −4b2(30b4 − 30b2 + 7).

Hence,

Kk(0) = −μ̄0k + ζ1(0)
√
π/2 μ̄0k = 0,

Kkl(0) = σ̄kl + μ̄0kμ̄0l + ζ2(0){
√
π/2}2μ̄0kμ̄0l = σ̄kl,

Kkll(0) = ζ3(0){
√
π/2}3μ̄0kμ̄

2
0l = (2− π/2)μ̄0kμ̄

2
0l ,

Kkkl(0) = ζ3(0){
√
π/2}3μ̄2

0kμ̄0l = (2− π/2)μ̄2
0kμ̄0l ,

Kkkk(0) = ζ3(0){
√
π/2}3μ̄3

0k = (2− π/2)μ̄3
0k,

Kklll(0) = ζ4(0){
√
π/2}4μ̄0kμ̄

3
0l = −2(3− π)μ̄0kμ̄

3
0l ,

Kkkkl(0) = ζ4(0){
√
π/2}4μ̄3

0kμ̄0l = −2(3− π)μ̄3
0kμ̄0l ,

Kkkll(0) = ζ4(0){
√
π/2}4μ̄2

0kμ̄
2
0l = −2(3− π)μ̄2

0kμ̄
2
0l ,

Kkklll(0) = ζ5(0){
√
π/2}5μ̄2

0kμ̄
3
0l = (3π2/4− 10π + 24)μ̄2

0kμ̄
3
0l ,

Kkkkll(0) = ζ5(0){
√
π/2}5μ̄3

0kμ̄
2
0l = (3π2/4− 10π + 24)μ̄3

0kμ̄
2
0l ,
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Kkkklll(0) = ζ6(0){
√
π/2}6μ̄3

0kμ̄
3
0l = (−7π2 + 60π − 120)μ̄3

0kμ̄
3
0l .

Thus, considering that M(0) = 1, ρk1 = Mk(0) = Kk(0) = 0, and ρkl,11 =
Mkl(0) = Kkl(0) = σ̄kl , with σ̄kk = σ̄ll = 1, we have

ρk1 = Mk(0) = M(0)Kk(0) = 0,

ρk2 = Mkk(0) = Mk(0)Kk(0)+M(0)Kkk(0) = 1,

ρk3 = Mkkk(0) = Mkk(0)Kk(0)+ 2Mk(0)Kkk(0)+M(0)Kkkk(0)

= (2− π/2)μ̄3
0k,

ρk4 = Mkkkk(0) = Mkkk(0)Kk(0)+ 3Mkk(0)Kkk(0)+ 3Mk(0)Kkkk(0)

+M(0)Kkkkk(0)

= 3− 2(3− π/2)μ̄4
0k,

ρk5 = Mkkkkk(0) = Mkkkk(0)Kk(0)+ 4Mkkk(0)Kkk(0)+ 6Mkk(0)Kkkk(0)

+4Mk(0)Kkkkk(0)+M(0)Kkkkkk(0)

= 10(2− π/2)μ̄3
0k + (3π2/4− 10π + 24)μ̄5

0k,

ρk6 = Mkkkkkk(0) = Mkkkkk(0)Kk(0)+ 5Mkkkk(0)Kkk(0)+ 10Mkkk(0)Kkkk(0)

+10Mkk(0)Kkkkk(0)+ 5Mk(0)Kkkkkk(0)+M(0)Kkkkkkk(0)

= 15− 30(3− π)μ̄4
0k + 10(2− π/2)2μ̄6

0k

+(−7π2 + 60π − 120)μ̄6
0k,

and

ρkl,11 = Mkl(0) = Ml(0)Kk(0)+M(0)Kkl(0) = σ̄kl,

ρkl,12 = Mkll(0) = Mll(0)Kk(0)+ 2Ml(0)Kkl(0)+M(0)Kkll(0)

= (2− π/2)μ̄0kμ̄
2
0l ,

ρkl,21 = Mkkl(0) = Mkl(0)Kk(0)+Mk(0)Kkl(0)+Ml(0)Kkk(0)+M(0)Kkkl(0)

= (2− π/2)μ̄2
0kμ̄0l ,

ρkl,22 = Mkkll(0) = Mkll(0)Kk(0)+ 2Mkl(0)Kkl(0)+Mk(0)Kkll(0)

+Mll(0)Kkk(0)+ 2Ml(0)Kkkl(0)+M(0)Kkkll(0)

= 2σ̄ 2
kl + 1− 2(3− π)μ̄2

0kμ̄
2
0l ,

ρkl,13 = Mklll(0) = Mlll(0)Kk(0)+ 3Mll(0)Kkl(0)

+3Ml(0)Kkll(0)+M(0)Kklll(0)

= 3σ̄kl − 2(3− π)μ̄0kμ̄
3
0l ,
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ρkl,31 = Mkkkl(0) = Mkkl(0)Kk(0)+ 2Mkl(0)Kkk(0)+Mkk(0)Kkl(0)

+2Mk(0)Kkkl(0)+Ml(0)Kkkk(0)+M(0)Kkkkl(0)

= 3σ̄kl − 2(3− π)μ̄3
0kμ̄0l ,

ρkl,23 = Mkklll(0) = Mklll(0)Kk(0)+ 3Mkll(0)Kkl(0)+ 3Mkl(0)Kkll(0)

+Mk(0)Kklll(0)+Mlll(0)Kkk(0)+ 3Mll(0)Kkkl(0)

+3Ml(0)Kkkll(0)+M(0)Kkklll(0)

= 3(2− π/2)μ̄0kμ̄
2
0l σ̄kl + 3(2− π/2)μ̄0kμ̄

2
0l σ̄kl

+(2− π/2)μ̄3
0l

+3(2− π/2)μ̄2
0kμ̄0l + (3π2/4− 10π + 24)μ̄2

0kμ̄
3
0l ,

ρkl,32 = Mkkkll(0) = Mkkll(0)Kk(0)+ 2Mkll(0)Kkk(0)+ 2Mkkl(0)Kkl(0)

+4Mkl(0)Kkkl(0)+Mkk(0)Kkll(0)+ 2Mk(0)Kkkll(0)

+Mll(0)Kkkk(0)+ 2Ml(0)Kkkkl(0)+M(0)Kkkkll(0)

= 2(2− π/2)μ̄0kμ̄
2
0l + 2(2− π/2)μ̄2

0kμ̄0l σ̄kl

+4(2− π/2)μ̄2
0kμ̄0l σ̄kl

+(2− π/2)μ̄0kμ̄
2
0l + (2− π/2)μ̄3

0k

+(3π2/4− 10π + 24)μ̄3
0kμ̄

2
0l ,

ρkl,33 = Mkkklll(0) = Mkklll(0)Kk(0)+ 2Mklll(0)Kkk(0)+ 3Mkkll(0)Kkl(0)

+6Mkll(0)Kkkl(0)+ 3Mkkl(0)Kkll(0)+ 6Mkl(0)Kkkll(0)

+Mlll(0)Kkkk(0)+ 3Mll(0)Kkkkl(0)+ 3Ml(0)Kkkkll(0)

+Mkk(0)Kklll(0)+ 2Mk(0)Kkklll(0)+M(0)Kkkklll(0)

= 2{3σ̄kl − 2(3− π)μ̄0kμ̄
3
0l} + 3{2σ̄ 2

kl + 1

−2(3− π)μ̄2
0kμ̄

2
0l}σ̄kl

+10(2− π/2)2μ̄3
0kμ̄

3
0l l − 12(3− π)μ̄2

0kμ̄
2
0l σ̄kl

−6(3− π)μ̄3
0kμ̄0l

−2(3− π)μ̄0kμ̄
3
0l + (−7π2 + 60π − 120)μ̄3

0kμ̄
3
0l .

Finally, with the purpose of illustrating the application of some of the previous
results to the multivariate skew-normal distribution, we present two examples below.
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Example 6 From Corollary 1, we have that
√
n(R3· − ρ3·)

d−→ N(0,ϒ3),

k = 1, . . . , d, where ϒ3 has elements given by

υ
{3}
kl = 9ρkl,11 + 9

2
(ρl3ρkl,12 + ρk3ρkl,21)+ 9

4
ρk3ρl3(ρkl,22 − ρk2ρl2)

−3(ρkl,13 + ρkl,31)

−3

2
{ρk3(ρkl,23 − ρk2ρl3)+ ρl3(ρkl,32 − ρk3ρl2)} + ρkl,33 − ρk3ρl3

= 6σ̄ 3
kl + (9/2)(2− π/2)2(μ̄0kμ̄

5
0l + μ̄5

0kμ̄0l )

+9

4
(2− π/2)2{2σ̄ 2

klμ̄
3
0kμ̄

3
0l − 2(3− π)μ̄5

0kμ̄
5
0l}

−(9/2)(2− π/2)2(μ̄5
0kμ̄0l + μ̄0kμ̄

5
0l + 2μ̄4

0kμ̄
2
0l σ̄kl + 2μ̄2

0kμ̄
4
0l σ̄kl)

−(3/2)(2− π/2)(3π2/4− 10π + 24)(μ̄5
0kμ̄

3
0l + μ̄3

0kμ̄
5
0l )}

+{9(2− π/2)2 − 7π2 + 60π − 120}μ̄3
0kμ̄

3
0l − 18(3− π)μ̄2

0kμ̄
2
0l σ̄kl .

In particular,
√
n (Rk3 − ρk3)

d−→ N(0, υ{3}kk ), k = 1, . . . , d, with

υ
{3}
kk = 6−18(3−π/2)μ̄4

0k−{(9/2)(2−π/2)2+7π2−60π+120}μ̄6
0k

−3(2−π/2)(3π2/4−10π+24)μ̄8
0k−(9/2)(2−π/2)2(3−π/2)}μ̄10

0k.

Moreover, for μ̄0k = 0 (k = 1, . . . , d), we have

υ
{3}
kl = 6σ̄ 3

kl,

where σ̄kl (k, l = 1, . . . , d) are the entries of the correlation matrix �̄.
In a similar way, from Corollary 2, we can find the asymptotic variance–

covariance matrix ϒ4 of
√
n(R4· − ρ4·).

The following example provides for each marginal k the joint asymptotic
distribution for its sample mean, sample variance, and sample skewness, and from
which, we can also find the joint asymptotic distribution of the moment estimators
of the respective marginal parameters, namely, (ξk, ω2

k, αk), k = 1, . . . , d.
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Example 7 From Example 3, we have for all k = 1, . . . , d:

√
n

⎛

⎝
X̄k − μk

Sk2 − κk2

Rk3 − ρk3

⎞

⎠ d−→ N4

⎛

⎝

⎛

⎝
0
0
0

⎞

⎠ ,

⎛

⎝
υk,11 υk,12 υk,13

υk,21 υk,22 υk,23

υk,31 υk,32 υk,33

⎞

⎠

⎞

⎠ ,

where

υk,11 = σ 2
k ,

υk,12 = σ 3
k ρk3,

υk,13 = σk(−3− 3ρ2
k3/2+ ρk4),

υk,22 = σ 4
k (ρk4 − 1),

υk,23 = −(σ 2
k /2)(5ρk3 + 3ρk3ρk4 − 2ρk5),

υk,33 = 9− 6ρk4 + (1/4)(35ρ2
k3 + 9ρ2

k3ρk4)− 3ρk3ρk5 + ρk6,

with

ρk3 = (2− π/2)μ̄3
0k,

ρk4 = 3− 2(3− π)μ̄4
0k,

ρk5 = 10(2− π/2)μ̄3
0k + (3π2/4− 10π + 24)μ̄5

0k,

ρk6 = 15− 30(3− π)μ̄4
0k + {10(2− π/2)2μ̄6

0k − 7π2 + 60π − 120}μ̄6
0k.

For μ̄0k = 0, we have

√
n

⎛

⎝
X̄k − μk

Sk2 − κk2

Rk3 − ρk3

⎞

⎠ d−→ N4

⎛

⎝

⎛

⎝
0
0
0

⎞

⎠ ,

⎛

⎝
σ 2
k 0 0
0 2σ 4

k 0
0 0 6

⎞

⎠

⎞

⎠ , k = 1, . . . , d.

6 Final Remarks

We used standard tools to obtain our results, hence facilitating the comprehension of
the derivations. We illustrated the practical capabilities of the developed techniques
through several simple examples. Derivations similar to the ones we presented
can be carried out for multivariate skew-t and skew-elliptical distributions. Some
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references on theses distributions include Branco and Dey (2001), Azzalini and
Capitanio (2003), Gupta (2003), and Genton and Loperfido (2005).

As a by-product of the derivations, we found that in the context of symmetric
distributions, such as the elliptical ones, the known fact of asymptotic independence
between the sample mean and the sample variance extends to all the sample central
moments of both even and odd orders.
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Tail Behavior for Bivariate Distributions
Based on Pareto Mixtures

Vincenzo Coia, Harry Joe, and Natalia Nolde

Abstract For conditional tail inferences from multivariate distributions, we desire
models with positive dependence for which conditional distributions of one variable
given others have extreme value indices that can be functions of the values of
conditioning variables. That is, the tails of the conditional distributions behave like
Pareto distributions with varying tail parameter. It is shown in Arnold (Stat Probab
Lett 5:263–266, 1987) and Arnold et al. (Stat Probab Lett 17:361–368, 1993) in
the bivariate case that if all conditional distributions are (generalized) Pareto and
the tail parameters are non-constant, then tractable solutions have limited range
of dependence. To obtain models with our desired properties, we specify one set
of conditional Pareto distributions and one marginal distribution: for example, (a)
FY |X(·|x) is Pareto with tail parameter decreasing in x and/or scale parameter
is increasing in x, (b) no specification is made for FX|Y (·|x), and (c) X has a
distribution with regularly varying upper tail. Based on this construction, we study
the following properties: (1) relation of concordance ordering to the tail parameter
function, (2) relations of conditional extreme value indices to marginal extreme
value indices, and (3) tail dependence.

1 Introduction

Bivariate and multivariate distributions have been constructed in many ways (Arnold
et al. 1999; Balakrishnan and Lai 2009; Joe 2014, and references cited therein). To
match with potential applications and different types of inferences, it is important
to know about their dependence and tail properties.

Examples of applications that motivated our research include forecasting of
conditional extreme quantiles (Coia 2017) and estimation of extreme quantiles as
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a function of covariates in operational risk losses (Chavez-Demoulin et al. 2016)
and in heavy internet traffic (Rezaul and Grout 2007).

For applications where conditional tail inferences are important, we would like
multivariate and bivariate models to have the flexibility of allowing for conditional
distributions with varying extreme value indices. For the bivariate case, this means
a bivariate distribution FX,Y for variables X, Y such that FY |X(·|x) has regular
varying (Pareto-like) tails with non-constant extreme value index as x varies. For
example, FY |X(y|x) = 1 − FY |X(y|x) = O(y−α(x)) as y → ∞, with α(x) > 0
and non-constant. With this notation, the conditional extreme value index function
is ξY |X(x) = 1/α(x) so that a larger value of ξ implies a heavier tail.

For conditional models based on specifications of functional forms of all possible
conditional distributions of one variable given others, one can sometimes get
families of bivariate distributions with only negative dependence. This happens
in one tractable case with Burr (or generalized Pareto) conditional distributions in
Arnold et al. (1993).

For tractable bivariate copula families with a wide range of dependence that have
been constructed in different ways, it seems that the conditional extreme value
index is constant. One goal is to understand conditions that lead to (1) a non-
constant conditional extreme value index function and/or (2) conditional extreme
value index values smaller than marginal extreme value index. To achieve these
properties, we consider constructions based on one set of conditional distributions
(e.g., {FY |X(·|x)}) assumed to be Pareto with no specifications made for the other set
of conditional distributions (e.g., {FX|Y (·|y)}). The tail and dependence properties
of the resulting joint distribution can be studied with different assumptions on
the scale and tail parameters of the conditional distributions and on the mixing
distribution over the set of conditional distributions.

The rest of this chapter is organized as follows. Section 2 provides background
results for extreme value indices and copulas, because the constructions may be
converted to copulas for analysis of tail and dependence properties. Section 3
presents the constructions with different mixtures of conditional Pareto distributions
to achieve different tail properties. Section 4 contains theory to show how con-
cordance properties can be verified for the different constructions. Section 5 gives
results on comparison of conditional and marginal extreme value indices. Section 6
has results on conditions for upper tail dependence. Section 7 concludes with a
discussion.

2 Background for Extreme Value Index and Copula

In this section, we set out the notation for distributions and densities and provide
mathematical definitions for concepts such as regular variation, extreme value index,
and copula. Some examples are given to show how these are obtained for some
copula families.
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We use the following notation: F for the cumulative distribution function (cdf),
f for the probability density function (pdf), and F for the survival function. These
have subscripts to indicate the random variable or random vector. Conditional cdfs
have the form FY |X for Y conditional on X.

Definition (Regular Variation and Extreme Value Index of Univariate Dis-
tribution with Regularly Varying Upper Tail) Let F be the cdf of a random
variable with upper support point of ∞. F is regularly varying of order −α at ∞
(α > 0), denoted as F ∈ RV−α , if F(x) = 1 − F(x) ∼ x−α�(x) as x → ∞
for a slowly varying function �(x), where a slowly varying function �(x) satisfies
limx→∞ �(tx)/�(x) = 1 for all t > 0. Equivalently, limx→∞[1 − F(tx)]/[1 −
F(x)] = t−α for all t > 0. The extreme value index for Z ∼ F ∈ RV−α is
ξF = ξZ = 1/α > 0, so that a larger ξZ value indicates a heavier upper tail.

Definition (Copula) A copula is a multivariate distribution with U(0, 1) margins.

The copula cdf is denoted with C. Next is Sklar’s result (Sklar 1959) for copulas
and how it is used.

If F is a d-variate distribution with univariate marginal cdfs F1, . . . , Fd , then
there is a copula C with domain [0, 1]d such that

F(y1, . . . , yd) = C
(
F1(y1), . . . , Fd(yd)

)
, (y1, . . . , yd) ∈  d .

If F is continuous, the copula is unique and is given by

C(u1, . . . , ud) = F
(
F−1

1 (u1), . . . , F
−1
d (ud)

)
, 0 ≤ uj ≤ 1, j = 1, . . . , d,

where the F−1
j for j = 1, . . . , d are the inverse cdfs.

For a given copula family C, one can get a multivariate distribution with
univariate margins F ∗1 , . . . , F ∗d from C(F ∗1 , . . . , F ∗d ). Similarly, one can get a

multivariate survival function with univariate survival functions F
∗
1, . . . , F

∗
d from

C(F
∗
1, . . . , F

∗
d).

Definition (Marginal and Conditional Extreme Value Index of Bivariate Dis-
tribution) Assume that the marginal and conditional distributions have regularly
varying upper tails. Suppose (X, Y ) has continuous joint cdf FX,Y . The univariate
marginal extreme value indices are denoted as ξX and ξY . The conditional extreme
value index function of FY |X(·|x) is denoted as ξY |X(x), and the conditional extreme
value index function of FX|Y (·|y) is denoted as ξX|Y (y).

Similarly, conditional extreme value index functions can be defined for multi-
variate distributions, but here we focus on properties for the bivariate case. The
conditional extreme value indices are obtained from the conditional distributions of
a bivariate or multivariate distribution. They can be calculated with the following
steps.

For a bivariate or multivariate distribution, one can convert via probability
integral transforms to a copula with U(0, 1) margins and then to Pareto margins



210 V. Coia et al.

with cdf FPareto(x;α) = 1 − x−α , for x > 1 and α > 0 with scale parameter
1. This is called type I Pareto in Arnold (2015). The conversion to Pareto margins
makes it easier to compute extreme value indices; however, extreme value indices
could be defined from the copula and its conditional distributions without Pareto
distributions.

One goal is to find or construct models for which the conditional extreme value
index function is not constant as the conditioning variables vary. The ideas are
clarified after the next example.

Example Consider the bivariate Pareto distribution of Mardia (1962) and Takahasi
(1965) with scale parameters of 1. Its survival function and cdf are

FX,Y (x, y) = Pr(X > x, Y > y) = (1+ x + y)−1/δ, x > 0, y > 0, δ > 0,

FX,Y (x, y) = 1− (1+ x)−1/δ − (1+ y)−1/δ + (1+ x + y)−1/δ,

with univariate survival functions FX(x) = (1+ x)−1/δ and FY (y) = (1+ y)−1/δ .
Its copula (from probability integral transforms via univariate cdfs) with u = 1 −
FX(x) and v = 1− FY (y) is

C(u, v; δ) = u+ v − 1+ [(1− u)−δ + (1− v)−δ − 1]−1/δ,

0 < u < 1, 0 < v < 1, δ > 0, (1)

and its survival or reflected copula (from probability integral transforms via
univariate survival functions) with u = FX(x) and v = FY (y) is

Ĉ(u, v; δ) = [u−δ + v−δ − 1]−1/δ, 0 < u < 1, 0 < v < 1, δ > 0. (2)

For each of these copulas, we convert to bivariate Pareto distributions FX,Y (x, y) =
C(FX(x), FY (y)) with marginal cdfs FX(x) = 1 − x−α , FY (y) = 1 − y−α with
x > 1, y > 1, and α > 0. Then, we will derive the extreme value indices of the
conditional cdf FY |X(·|x) for x > 1, making use of the univariate density fX(x) =
αx−α−1 for x > 1. Because these distributions are permutation symmetric, the
behavior is similar for the conditional cdfs FX|Y (·|y) for y > 1.

(a) The copula family in (1) leads to

FX,Y (x, y) = 1− x−α − y−α + [xαδ + yαδ − 1]−1/δ,

∂FX,Y (x, y)

∂x
= αx−α−1 − αxαδ−1[xαδ + yαδ − 1]−1/δ−1,

FY |X(y|x) = ∂FX,Y (x, y)

∂x
/fX(x) = 1− [1+ x−αδ(yαδ − 1)]−1/δ−1,

FY |X(y|x) ∼ 1− xα(1+δ)y−α(1+δ), y →∞.
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Hence, FY |X(y|x) ∈ RV−α(1+δ) for all x > 1 and ξY |X(x) = α−1(1 + δ)−1 <

α−1 = ξY for all x > 1.
(b) The copula family in (2) leads to

FX,Y (x, y) = [(1− x−α)−δ + (1− y−α)−δ − 1]−1/δ,

∂FX,Y (x, y)

∂x
= αx−α−1(1− x−α)−δ−1[(1− x−α)−δ

+(1− y−α)−δ − 1]−1/δ−1,

FY |X(y|x) = ∂FX,Y (x, y)

∂x
/fX(x)

= [1+ (1− x−α)δ{(1− y−α)−δ − 1}]−1/δ−1,

FY |X(y|x) ∼ 1− (δ + 1)(1− x−α)δy−α, y →∞.

Hence, FY |X(y|x) ∈ RV−α for all x > 1 and ξY |X(x) = α−1 = ξY for all
x > 1.

The above example raises some questions on how dependence properties of a
copula are related to the conditional and marginal extreme value indices.

1. What is a condition for ξY |X(x) = ξY for all x?
2. What is a condition for supx ξY |X(x) < ξY ?
3. Is it possible for ξY |X(x) > ξY for some x?
4. Are there bivariate distributions with simple forms such that ξY |X(x) is non-

constant over x?

The copulas in (1) and (2) are related through

Ĉ(u, v) = u+ v − 1+ C(1− u, 1− v). (3)

Or stochastically, if (U, V ) ∼ C, then with reflected U(0, 1) random variables,
(1 − U, 1 − V ) ∼ Ĉ. It turns out that C in (1) has upper tail dependence but not
lower tail dependence, so that the reflected copula (2) has lower tail dependence but
not upper tail dependence.

In copula families where we can compute ξY |X(x), a general observation is that
upper tail dependence is linked to supx ξY |X(x) < ξY . However, a proof of this as a
general result does not appear tractable.

The definitions of upper and lower tail dependence for a bivariate continuous
distribution FX,Y are as follows. See Section 2.13 of Joe (2014) for more details.

Definition (Tail Dependence Coefficients) Let FX,Y be the continuous bivariate
cdf of a random vector (X, Y ) with survival function FX,Y , univariate cdfs FX and
FY , and copula C. Let Ĉ be defined as in (3). Provided the limits exist, the upper
tail dependence coefficient is
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λU = lim
u→0+

Pr
(
Y > F−1

Y (1− u) | X > F−1
X (1− u)

)

= lim
u→0+

u−1FX,Y

(
F−1
X (1− u), F−1

Y (1− u)
) = lim

u→0+
u−1Ĉ(u, u),

and the lower tail dependence coefficient is

λL = lim
u→0+

Pr
(
Y < F−1

Y (u) | X < F−1
X (u)

)

= lim
u→0+

u−1FX,Y

(
F−1
X (u), F−1

Y (u)
) = lim

u→0+
u−1C(u, u).

3 Constructions of Pareto Mixtures

In this section, we consider constructions from mixtures of Pareto distributions of
type I or type II. That is, FY |X(·|x) is Pareto with the scale parameter and/or tail
parameter varying with x, and FX has conveniently chosen distribution so that
the joint distribution FX,Y is tractable for obtaining some tail and dependence
properties.

Sometimes we take Pareto of type I and sometimes Pareto of type II depending
on what is mathematically more convenient. Tail and dependence properties are not
affected by the choice. With constant scale parameter and varying tail parameter, it
is simpler to use the type I form FY |X(y|x) = (yσ )−α(x) for y > σ . With varying
scale parameter and constant or varying tail parameter, the above type I form would
have varying lower end point of support, so it is better to use Pareto of type II with
FY |X(y|x) = (1+ y/σ(x))−α(x) for y > 0.

We would like to have the resulting bivariate distribution FX,Y to have posi-
tive dependence. For a tractable form of positive dependence, FY |X(·|x) can be
stochastically increasing in x or FY |X(y|x) increasing in x for all y > 0; this
implies that Y tends to be increasing as X increases. This condition requires α(x)

to be decreasing in x and σ(x) to be increasing in x. Negative dependence could
be obtained by reversing the direction of monotonicity of these two functions.
For dependence properties such as positive quadrant dependence and stochastic
increasingness, detailed explanations are given in Chapter 2 of Joe (2014).

The bivariate survival function is

FX,Y (x, y) =
∫ ∞

x

F Y |X(y|z) fX(z) dz, (4)

from which we can derive FY (y) = FX,Y (−∞, y) and compute ξY to compare with
ξY |X(x) = 1/α(x). We can also compute the other set of conditional distributions
{FX|Y (·|y)} to determine ξX|Y (y) to compare with ξX.

In Sects. 3.1 and 3.2, we consider some cases so that the integration results in
closed-form expressions, and as a consequence, tail and dependence properties can
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more easily be studied. These provide insights into how to generalize to get a wider
range of dependence. The tail and dependence properties depend only on the copula,
so when a parameter of the conditional distributions is constant, we can fix it at a
convenient value for simpler derivations.

3.1 X ∼ Pareto(1, 1) on [1,∞) and σ(x) = 1

Suppose σ(x) is constant and without loss of generality set to 1. Let X ∼
Pareto(1, γ ) on [1,∞) with scale parameter 1 and tail parameter γ . We can assume
γ = 1 without loss of generality in terms of the resulting copula. Then, the density
of X is fX(x) = x−2 for x > 1. From (4), we have

FX,Y (x, y) =
∫ ∞

x

y−α(z)z−2dz =
∫ ∞

x

exp{−α(z) log(y)}z−2dz. (5)

To obtain a closed-form integral,−α(z) log(y) should be linear in z−1. A possibility
with constant scale is to choose α(z) = a1+a2/z for z ≥ 1, with a1 > 0 and a2 > 0
(so that α(z) is decreasing). Then, α(x) goes from a1+ a2 to a1 as x increases from
1 to ∞.

For x > 1 and y > 1,

FX,Y (x, y) =
∫ ∞

x

exp{−(a1 + a2/z) log(y)}z−2dz

= [a2 log y]−1 exp{−(a1 + a2/z) log(y)}
∣∣∣
∞
x

= [a2 log y]−1{y−a1 − y−(a1+a2/x)}
= [a2 log y]−1y−a1{1− y−a2/x}, (6)

FY (y) = FX,Y (1, y) = [a2 log y]−1y−a1{1− y−a2}, (7)

FY (y) ∼ [a2 log y]−1y−a1 , y →∞,

F Y (1) = lim
y→1+

1− y−a2

a2 log y
= lim

y→1+
a2y

−a2−1

a2y−1 = 1.

Hence, ξY = a−1
1 and ξY |X(x) = (a1+a2/x)

−1 < ξY for x > 1, but supx ξY |X(x) =
a−1

1 = ξY .
For η > 0, let H(w; η) = [ηw logw]−1(1 − w−η) for w > 1. With θ = a2/a1

and w = ya1 , FY (y) = H(w; θ), so that H(1; θ) = 1, H(∞; θ) = 0, and H is
decreasing; that is, it is a survival function on [1,∞). Furthermore, with w = ya1

and θ = a2/a1,
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F(x, y) = [θ logw]−1w−1{1− w−θ/x} = x−1H(w; θ/x).

Since FX(x) = x−1 for x > 1 by construction, the copula of (6) is obtained by
substituting u = FX(x) = x−1 and v = H(w; θ) or w = H−1(v; θ) to get

C(u, v; θ) = FX,Y

(
F
−1
X (u), F

−1
X (v)

) = uH
(
H−1(v; θ); θu), 0 < u, v < 1.

(8)
That is, the copula depends on a1, a2 only through θ = a2/a1. The above is a
construction in Section 6.1.1 of Coia (2017) with a slightly different derivation.

Properties include the following:

• Positive quadrant dependence (C(u, v; θ) ≥ uv for 0 < u, v < 1) follows from
the stochastic increasingness property.

• Concordance (or monotone dependence) increases as θ increases; this follows
from results in Sect. 4.

• A boundary case is independence as α2 → 0 or θ → 0 for the copula. However,
the comonotonicity copula or perfect positive dependence cannot be achieved as
θ →∞.

• Spearman’s rank correlation ρS increases in the concordance ordering, so there
is an upper limit of ρS(C(·; θ)) for family (8). It can be shown numerically that
the maximum dependence obtained is ρS = 0.47 (i.e., Cor (U, V ) for (U, V ) ∼
C(·; θ) as θ →∞).

We can also study the other set of conditional distributions {FX|Y (·|y)}:

fY (y) = −∂FY (y)

∂y

= y−a1−1

a2 log y

{
(log y)−1(1− y−a2)+ a1(1− y−a2)− a2y

−a2
}
,

−∂FX,Y (x, y)

∂y
= y−a1−1

a2 log y

{
(log y)−1(1− y−a2/x)

+a1(1− y−a2/x)− a2x
−1y−a2/x

}
,

FX|Y (x|y) =
− ∂FX,Y (x,y)

∂y

fY (y)

= (log y)−1(1− y−a2/x)+ a1(1− y−a2/x)− a2x
−1y−a2/x

(log y)−1(1− y−a2)+ a1(1− y−a2)− a2y−a2
.

For fixed y, as x →∞,

FX|Y (x|y) ∼ a2x
−1 + a1a2x

−1 log y − a2x
−1(1− a2x

−1 log y)

(log y)−1(1− y−a2)+ a1(1− y−a2)− a2y−a2
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∼ a1a2x
−1 log y +O(x−2)

(log y)−1(1− y−a2)+ a1(1− y−a2)− a2y−a2
.

Hence, ξX|Y (y) = 1 = ξX, for all y > 1.
Notice that the choice of Pareto(1, γ ) with γ = 1 for the distribution of X is

without loss of generality if we are interested in the dependence property (via the
copula) and the relation of ξY |X(x) and ξY . If we start with FX(x) = x−γ and
fX(x) = γ x−γ−1, for x > 1 and γ > 0, then to get a closed-form bivariate survival
function, we would choose α(x) = a1+a2x

−γ , and the resulting copula is as above
in (8).

However, we can choose other mixture distributions in order to get a family
covering a wider range of dependence. These are shown in subsequent subsections.

3.2 X ∼ Fréchet(1) on (0,∞) and σ(x) = 1

Tractable results are also obtained if the Pareto distribution for FX is replaced with
the Fréchet distribution. It turns out that a wider range of dependence is obtained
compared with the preceding subsection, and the intuition is due to a wide range of
α(x) decreasing from ∞ to a positive constant.

Suppose FX(x) = 1 − e−1/x for x > 0, so that fX(x) = x−2e−1/x . This has
the same upper tail behavior as Pareto(1,1) with ξX = 1. Let α(x) = a1 + a2/x be
decreasing in x > 0, where a1, a2 > 0. Then, α(x) goes from ∞ to a1 as x goes
from 0 to ∞.

For x > 0 and y > 1, (4) becomes

FX,Y (x, y) =
∫ ∞

x

y−α(z)z−2e−1/zdz

=
∫ ∞

x

exp{−(log y)(a1 + a2/z)− z−1}z−2dz

= [a2 log y + 1]−1{y−a1 − y−a1−a2/xe−1/x}
= [a2 log y + 1]−1y−a1(1− y−a2/xe−1/x); (9)

FY (y) = FX,Y (0, y) = [a2 log y + 1]−1y−a1 , F Y (1) = 1.

Hence, ξY = a−1
1 and ξY |X(x) = (a1+a2/x)

−1 < ξY for x > 1, but supx ξY |X(x) =
a−1

1 = ξY .
Let w = ya1 , θ = a2/a1 > 0, and let

G(w; θ) = [θ logw + 1]−1w−1, w ≥ 1, θ > 0

be a survival function on [1,∞). Then, FY (y) = G(ya1; θ) = G(w; θ) and



216 V. Coia et al.

FX,Y (x, y) = [θ logw+ 1]−1w−1(1−w−θ/xe−1/x) = G(w; θ)(1−w−θ/xe−1/x).

To get the copula based on survival functions, let u = 1 − e−1/x , v = FY (y) =
G(w; θ). Then,

C(u, v; θ) = v
{
1− (1− u)

[
G−1(v; θ)]θ log(1−u)}

, 0 < u, v < 1. (10)

We can also study the other set of conditional distributions FX|Y (·|y):

fY (y) = [a2 log y + 1]−2y−a1−1{a2 + a1(a2 log y + 1)};
−∂FX,Y

∂y
= [a2 log y + 1]−2y−a1−1 × {

a2(1−y−a2/xe−1/x)

+a1(a2 log y + 1)(1−y−a2/xe−1/x)

−a2x
−1y−a2/xe−1/x(a2 log y + 1)

};
FX|Y (x|y) =

{
a2(1−y−a2/xe−1/x)+ a1(a2 log y + 1)(1−y−a2/xe−1/x)

−a2x
−1y−a2/xe−1/x(a2 log y + 1)

} / {
a2 + a1(a2 log y + 1)

}
.

Since 1− y−a2/xe−1/x ∼ x−1(a2 log y + 1) as x →∞,

FX|Y (x|y)

∼ a2x
−1(a2 log y +1)+ a1x

−1(a2 log y +1)2 − a2x
−1(a2 log y +1)+O(x−2)

a2 + a1(a2 log y + 1)

∼ a1x
−1(a2 log y + 1)2

a2 + a1(a2 log y + 1)
, x →∞.

Hence, ξX|Y (y) = 1 for all y > 0 and ξX = 1.
The properties of the copula family (10) are similar to those of copula family (8),

except that there is a wider range of dependence. Numerically from simulations, the
Spearman’s rank correlation ρS(C(·; θ)) for (10) increases from 0 to about 0.68 as
θ increases from 0 to ∞.

3.3 Other Pareto Mixtures

In this section, we consider more general Pareto mixtures that do not lead to closed-
form cdfs as in the preceding two subsections. However, these constructions lead to
a wider range of dependence as well as more flexible tail properties. The properties
can be shown analytically and also be seen from scatterplots of simulated data.
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Let the density of X be Fréchet(1) with fX(x) = x−2e1/x . As an extension of the
preceding section, we consider

FX,Y (x, y) =
∫ ∞

x

y−α(z)z−2e−1/zdz, x > 0, y > 1. (11)

Now, suppose α(x) = a1 + a2x
−β , where a1 ≥ 0, a2 > 0, and β > 0.

The bivariate distribution FX,Y is not tractable, but dependence properties can be
obtained. Numerically for large values of a2/a1 and β, one can get Spearman’s rank
correlation approaching 1. Other parametric families of α(x) can also be considered
to get this conclusion; the important property is that the family covers a wide range
of derivatives of the decreasing function. Negative dependence can be obtained
with families of α(x) consisting of increasing functions. Explanations are given
in Sect. 4.

The joint distribution in (11) becomes

FX,Y (x, y) =
∫ ∞

x

exp{−(log y)(a1 + a2z
−β)} · z−2e−1/zdz,

and this and its copula density can be evaluated with one-dimensional numerical
integration. This distribution approaches comonotonicity as β increases because for
large values of a2/a1 and β, the conditional tail parameter α(x) can decrease from
∞ to a1 at a fast rate as x goes from 0 to ∞.

For another Pareto mixture, we allow the scale parameter to vary. In this case,
we use Pareto distributions of type II in order that the support of Y conditional on x

is always (0,∞). The most general form has fX with support on (0,∞) combined
with FY |X(y|x) = [1 + y/σ(x)]−α(x) for y > 0. The conditional scale parameter
is σ(x), and the conditional tail parameter is α(x). Assume that σ(x) is constant or
increasing in x and α(x) is constant or decreasing in x in order that FY |X(·|x) is
stochastically increasing as x increases. The resulting joint survival function is

FX,Y (x, y) =
∫ ∞

x

[1+ y/σ(z)]−α(z)fX(z) dz, x > 0, y > 0. (12)

For fX to have regularly varying tail, X can have Fréchet distribution or Pareto of
type II. Some properties of (12) are given in Sects. 5 and 6 in special cases.

4 Concordance Ordering for Copulas from Different Pareto
Mixtures

In this section, we show how to verify some concordance properties of the
constructions in Sect. 3 for different α(x).
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Definition (Bivariate Concordance) Let (W,Z) and (W ′, Z′) be two dependent
continuous random vectors such that FW = FW ′ and FZ = FZ′ . Then, (W ′, Z′) is
more concordant than (W,Z) if FW ′,Z′(w, z) ≥ FW,Z(w, z) for all (w, z) ∈  2.

Because of invariance to strictly increasing transformations, (W,Z) and (W ′, Z′)
are ordered by concordance if and only if their respective copulas CW,Z and CW ′,Z′
are such that CW ′,Z′(u, v) ≥ CW,Z(u, v) for all 0 ≤ u, v ≤ 1.

We next state conditions and results on the conditional distributions so that
the copulas CX,Y and CX,Y ∗ of FX,Y and FX,Y ∗ , respectively, are ordered by
concordance when Y and Y ∗ have different distributions.

Let X be a continuous random variable with cdf FX. Let {FY |X(·|x) : x ∈  }
and {FY ∗|X(·|x) : x ∈  } be two sets of continuous conditional distributions leading
to marginal cdfs FY and FY ∗ , respectively. Then, V = FY (Y ) and V ∗ = FY ∗(Y ∗)
are U(0, 1) random variables, so that (X, V ) and (X, V ∗) can be compared with the
concordance ordering.

A condition on the conditional distributions FV |X(·|x) and FV ∗|X(·|x) leading to
the concordance ordering is that

F−1
V ∗|X

[
FV |X(v|x)|x

] ↑ x (increasing in x), ∀v. (13)

See Section 2.2.4 of Joe (1997) for details of this stochastic increasing ordering.
Note that

FV |X(v|x) = Pr
(
FY (Y ) ≤ v|X = x

) = FY |X
[
F−1
Y (v)|x],

and similarly FV ∗|X(v|x) = FY ∗|X(F−1
Y∗ (v)|x). We next convert (13) to a condition

on {FY |X(·|x)} and {FY ∗|X(·|x)}. The left-hand side of (13) is

FY ∗
[
F−1
Y ∗|X

(
FY |X[F−1

Y (v)|x] | x)]. (14)

With y = F−1
Y (v), (14) is increasing in x for all v if

F−1
Y ∗|X

(
FY |X[y|x] | x

) ↑ x, ∀y. (15)

Condition (15) is straightforward to check if {FY |X(·|x)} and {FY ∗|X(·|x)} are
Pareto distributions with different tail parameters as in Sect. 3.

Because the resulting copulas depend on a1, a2 only through θ = a2/a1, it
suffices to consider α(x) = 1 + θ/x and α∗(x) = 1 + θ∗/x with 0 < θ < θ∗.
We would like to show that the copula in (8) or (10) with parameter θ∗ is more
concordant than that with parameter θ .

The conditional distributions and inverses are

FY |X(y|x) = 1−y−α(x), FY ∗|X(y|x) = 1−y−α∗(x), F−1
Y ∗|X(p|x) = (1−p)−1/α∗(x),

with y > 1, x > 0, 0 < p < 1. The left-hand side of (15) is
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(1− FY |X(y|x))−1/α∗(x) = yα(x)/α
∗(x);

this is increasing in x for all y > 1 if

α(x)

α∗(x)
= 1+ θ/x

1+ θ∗/x
= 1− θ∗ − θ

x + θ∗

is increasing in x. This holds if θ∗ > θ > 0.

In Sect. 3.3, the conditional Pareto tail parameter is α(x) = a1 + a2x
−β for

x > 0, with a1 ≥ 0, a2 > 0, and β > 0. Cases of ordered by concordance are
listed below based on the triplets (a1, a2, β) for α(x) and (a∗1 , a∗2 , β∗) for α∗(x);
this requires showing that α(x)/α∗(x) is increasing in x > 0.

1. (a∗1 , a∗2 , β∗) = (1, a2/a1, β) lead to the same copula, because α(x)/α∗(x) =
a−1 is constant over x.

2. (a1, a2, β) = (1, θ, β) and (a∗1 , a∗2 , β∗) = (1, θ∗, β) with θ∗ > θ > 0. Then,

α(x)

α∗(x)
= 1− θ∗ − θ

xβ + θ∗
↑ x.

3. (a∗1 , a∗2 , β∗) = (0, 1, β). Then,

α(x)

α∗(x)
= a1x

β + a2 ↑ x.

4. (a1, a2, β) = (0, 1, β) and (a∗1 , a∗2 , β∗) = (0, 1, β∗) with β∗ > β > 0. Then,

α(x)

α∗(x)
= xβ

∗−β ↑ x.

For (a1, a2, β) = (0, 1, β), the explanation for comonotonicity as β →∞ is as
follows. Suppose data are simulated conditionally with Pareto(1, α(x) = x−β ). Let
x1, . . . , xn be realizations of a Pareto(1,1) random sample with support on (0,∞),

and let u1, . . . , un be a U(0, 1) random sample. Let yi = u
−1/α(xi )
i = u

−xβi
i .

Suppose β is large. Then, for xi > 1, yi is large, and for xi < 1, yi is near 1. Hence,
Spearman’s rank correlation of (x1, y1), . . . , (xn, yn), as a random sample from the
Pareto mixture model, approaches 1 as β →∞. See Fig. 1 for an illustration.

With a similar analysis for (12), consider FY |X based on α(x), σ (x) and FY ∗|X
based on α∗(x), σ ∗(x). Then, FX,Y ∗ is more concordant than FX,Y if α(x) = α∗(x)
and σ ∗(x)/σ (x) is increasing. No general concordance result can be proved with
σ(x) = σ ∗(x) and α(x)/α∗(x) increasing. However, (12) includes comonotonicity
as β →∞ from the case of constant σ(x). As shown in Sect. 6, σ(x) increasing at
a sufficiently fast rate is needed for (12) to have upper tail dependence.
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Fig. 1 Plots of simulated data from (11) with α(x) = x−β , β = 1.5 and 3. The plots on the
right-hand side include the empirical Spearman’s rank correlation values

5 ξY |X(x) Versus ξY for Pareto Mixtures

In this section, we elaborate on a question from the end of Sect. 2 concerning
conditions for supx ξY |X(x) < ξY .

If ξY |X(x) is non-constant and the conditional Pareto scale parameter is constant,
the examples in Sect. 3 have supx ξY |X(x) = ξY . Proposition 2.5.1 in Coia (2017)
establishes that under some regularity and continuity conditions, ξY |X(x) ≤ ξY for
all x.

To get some initial insight, we analyze a special case of (12) with α(x) =
α > 0 for which ξY |X(x) = α−1 is constant. We consider conditions on the
conditional scale parameter σ(x) of the Pareto type II distributions FY |X(y|x) =
(1+ y/σ(x))−α in order that ξY |X(x) = α−1 < ξY .
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For Y to be stochastically increasing in X, assume that σ(x) is strictly increasing
in x. For an assumption that leads to more tractable integrals, suppose X ∼
Pareto(1, γ ) with survival function FX(x) = (1 + x)−γ . The resulting joint
distribution is

FX,Y (x, y) =
∫ ∞

x

[1+ y/σ(z)]−αγ (1+ z)−γ−1dz, x > 0, y > 0. (16)

Without loss of generality, we can assume γ = 1 for study of dependence and tail
properties.

Several cases are outlined below:

(a) Suppose σ(x) is a smooth bounded function in the interval [b1, b2], with 0 <

b1 < b2 <∞. Then,

(1+ y/b1)
−α =

∫ ∞

0
(1+ y/b1)

−αγ (1+ x)−γ−1dx

≤ FY (y) =
∫ ∞

0
(1+ y/σ(x))−αγ (1+ x)−γ−1dx

≤
∫ ∞

0
(1+ y/b2)

−αγ (1+ x)−γ−1dx = (1+ y/b2)
−α.

Assuming that FY has regularly varying tail, ξY = 1/α = ξY |X(x).
(b) Therefore, in order to have ξY |X < ξY , σ(x) should be unbounded. Note that in

the example in Sect. 2 based on Mardia’s bivariate Pareto, σ(x) ranges from 1
to∞ and ξY |X < ξY . We show below with examples that if σ(x) increases from
b1 to b2 = ∞ at a fast enough rate, then ξY |X < ξY holds.

We take γ = 1 and σ(x) = (1+x)a for different a > 0 for a concrete illustration
of this claim. In this case, σ(x) increases from 1 to ∞ as x goes from 0 to ∞. The
comparison of ξY |X and ξY will depend on the relative magnitudes of a and α. If
γ �= 1, a result will follow from the same steps as below.

Under the above assumptions, we have

FY (y) =
∫ ∞

0

[
1+ y/(1+ x)a

]−α
(1+ x)−2dx.

To get approximations to this integral, we transform with (1+x) = ez or x = ez−1
for z > 0. Then,

FY (y) =
∫ ∞

0
(1+ ye−az)−αe−zdz =

∫ ∞

0
e−g(z)dz, (17)

where g(z; y) = α log(1+ ye−az)+ z. Then,
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g′(z; y) = 1− αay/(eaz + y),

g′′(z; y) = αa2y eaz/(eaz + y)2 > 0,

so that g′ > 0 if αa ≤ 1 and g(z; y) has a global minimum at z∗ = z∗(y) =
a−1 log[y(αa − 1)] or eaz

∗ = y(αa − 1) if αa > 1. In the latter case, g′′(z∗; y) =
(αa − 1)/α > 0.

We consider three subcases: (i) αa < 1, (ii) αa = 1, and (iii) αa > 1.

Case (i) For large y, (17) becomes

FY (y) = y−α
∫ ∞

0
(y−1 + e−az)−αe−zdz = O(y−α)

because

lim
y→∞

∫ ∞

0
(y−1 + e−az)−αe−zdz =

∫ ∞

0
e−z(1−αa)dz = (1− αa)−1,

by the dominated convergence theorem. Hence, ξY = α−1 = ξY |X(x).

Case (ii) Let w = z/(α log y) so that (17) becomes

FY (y) = y−α
∫ ∞

0
(1+ y−1ez/α)−αdz = αy−α log y

∫ ∞

0
(1+ y−1ew log y)−αdw

= αy−α log y
∫ 1

0
(1+ y−1+w)−αdw + αy−α log y

∫ ∞

1
(1+ y−1+w)−αdw.

For the first term, by the dominated convergence theorem,

lim
y→∞

∫ 1

0
(1+ y−1+w)−αdw = 1.

For the second term,

∫ ∞

1
(1+ y−1+w)−αdw ≤

∫ ∞

1
y−α(w−1)dw =

∫ ∞

1
exp{−α(log y)(w − 1)}dw

=
∫ ∞

0
exp{−α(log y)w′}dw′ = α−1(log y)−1.

Hence, as y →∞,

FY (y) = O(y−α log y)+O(y−α) = O(y−α log y).

Hence, ξY = α−1 = ξY |X(x), but the marginal distribution has slightly heavier tail
because of the slowly varying log y term with a positive power.
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Case (iii) For large y, apply Laplace’s approximation (see Breitung 1994) to get

FY (y) ≈
∫ ∞

0
exp

{− g(z∗; y)− 1
2g
′′(z∗; y)(z− z∗)2}dz

≈ exp{−g(z∗; y)}[g′′(z∗; y)]−1/2

= [1+ 1/(αa − 1)]−αy−1/a(αa − 1)−1/a
√

α

αa − 1
.

Hence, ξY = a > α−1 = ξY |X(x).

The third case (iii) extends to (12) with a non-constant α(x); for some tractable
approximations, we assume that the tail parameter is α(x) = a1 + a2x

−β and fX is
Pareto(1,1) on (0,∞). The joint survival function is

FX,Y (x, y) =
∫ ∞

x

[1+ y/σ(z)]−α(x)(1+ z)−2dz, x > 0, y > 0. (18)

The marginal survival function is

FY (y) =
∫ ∞

0
(1+ ye−az)−α(z)e−zdz =

∫ ∞

0
e−g(z)dz, (19)

if g(z; y) = α(z) log(1 + ye−az) + z. For Laplace’s approximation, g′(z; y) =
1− α(z)ay/(eaz + y)+ α′(z) log(1+ ye−az) and

g′′(z; y) = α(z)a2yeaz/(eaz+y)2−2α′(z)ay/(eaz+y)+α′′(z) log(1+ye−az) > 0,

where α′(z) = −a2βz
−β−1 < 0 and α′′(z) = a2β(1+ β)z−β−2 > 0.

Consider the case of α(z)a > 1 for all z > 0 with a1a > 1. For large y, g′(z; y)
has a global minimum at z∗ = z∗(y) satisfying g′(z∗; y) = 0. With a tail expansion
and δ = a1a − 1 > 0, one gets

eaz
∗(y) = δy + ry, ry = O(y(log y)−β),

z∗(y) = a−1 log(δy)+ a−1ry(δy)
−1 = a−1 log(δy)+O((log y)−β).

Now, substitute into g(z∗) and g′′(z∗), to get, as y →∞,

g(z∗; y) ∼ [a1 + a2(a
−1 log(δy))−β ] log(1+ δ−1)+ a−1 log(δy)+O((log y)−β)

∼ log(1+ δ−1) · [a1 +O((log y)−β ] + a−1 log(δy)+O((log y)−β)

∼ a−1 log(δy)+ log(1+ δ−1),
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e−g(z∗;y) = O(y−1/a),

g′′(z∗; y) ∼ α(z∗)a2yeaz
∗
/(eaz

∗ + y)2 − 2α′(z∗)ay/(eaz∗ + y)

+α′′(z∗) log(1+ ye−az∗)

= (aa1 − 1)a−1
1 +O((z∗)−β).

For large y, Laplace’s approximation yields

FY (y) ≈
∫ ∞

0
exp{−g(z∗; y)− 1

2g
′′(z∗; y)(z− z∗)2}dz

≈ exp{−g(z∗; y)}[g′′(z∗; y)]−1/2 = O(y−1/a).

Hence, ξY = a > a−1
1 ≥ ξY |X(x) = (a1 + a2x

−β)−1, and ξY > supx ξY |X(x) =
a−1

1 .

6 Upper Tail Dependence for Pareto Mixtures

This section provides details on the result mentioned in Sect. 2 on the link between
upper tail dependence and the property of ξY |X(x) < ξY , for the Pareto mixtures.

We first consider the case of constant α(x) in the conditional Pareto distribution
and show that there is upper tail dependence when the scale function σ(x) is
increasing at a fast enough rate. We then show that there is no upper tail dependence
for the constructions in Sects. 3.1 and 3.2 with constant σ(x) and non-constant α(x).
To achieve increasing ξY |X(x) with supx ξY |X(x) < ξY and upper tail dependence,
we need σ(x) increasing at a fast enough rate and non-constant α(x). The details
are given below.

Let σ(x) be increasing as in Sect. 5, and let γ = 1 and α > 0. We show for the
case of σ(x) bounded in [b1, b2] or σ(x) = (1+x)a with αa < 1 (and α > 0, a > 0)
that the upper tail dependence coefficient is 0; for σ(x) = (1 + x)a with αa > 1,
the upper tail dependence coefficient is in the interval (0, 1).

If (X, Y ) ∼ FX,Y is a continuous random vector, the upper tail dependence
coefficient, defined in Sect. 2, is equivalent to

λU = lim
u→0

u−1 Pr
(
X > F

−1
X (u), Y > F

−1
Y (u)

) = lim
u→0

u−1FX,Y

(
F
−1
X (u), F

−1
Y (u)

)
.

If X is Pareto(1,1) on (0,∞), then F
−1
X (u) = u−1 − 1 ∼ u−1 as u → 0+. For

the Pareto scale mixture,

FX,Y (x, y) =
∫ ∞

x

[1+ y/σ(z)]−α(1+ z)−2dz,
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u−1FX,Y

(
F
−1
X (u), F

−1
Y (u)

) ∼ u−1
∫ ∞

u−1
[1+ F

−1
Y (u)/σ (z)]−α(1+ z)−2dz

= u−2
∫ ∞

1
[1+ F

−1
Y (u)/σ (w/u)]−α(1+ w/u)−2dw

∼
∫ ∞

1
[1+ F

−1
Y (u)/σ (w/u)]−αw−2dw,

as u→ 0. Next, we consider several cases:

(a) σ(x) bounded in [b1, b2] with 0 < b1 < b2 < ∞. From Sect. 5, F
−1
Y (u) ∼

bu−1/α as u→ 0 for some b > 0, and σ(w/u)→ b2 as u→ 0. Hence,

λU = lim
u→0

∫ ∞

1
[1+ F

−1
Y (u)/σ (w/u)]−αw−2dw

= lim
u→0

∫ ∞

1
[1+ bu−1/α/b2)]−αw−2dw = lim

u→0

∫ ∞

1
ub−αbα2w

−2dw = 0.

(b) σ(x) = (1 + x)a with αa < 1. From Sect. 5, F
−1
Y (u) ∼ (u/k)−1/α as u → 0,

for some k > 0. Hence,

λU = lim
u→0

∫ ∞

1
[1+ k1/αu−1/α/(1+ (w/u))a]−αw−2dw

= lim
u→0

∫ ∞

1
[1+ k1/αua−1/α/wa]−αw−2dw

= lim
u→0

u1−αak−1
∫ ∞

1
w−2+αadw

= lim
u→0

u1−αak−1(1− αa)−1 = 0.

(c) σ(x) = (1+ x)a with αa > 1. From Sect. 5, F
−1
Y (u) ∼ (u/k)−a as u→ 0, for

some k > 0. Hence,

λU = lim
u→0

∫ ∞

1
[1+ F

−1
Y (u)/σ (w/u)]−αw−2dw (20)

= lim
u→0

∫ ∞

1
[1+ kau−a/(1+ (w/u))a]−αw−2dw

= lim
u→0

∫ ∞

1
[1+ ka/wa]−αw−2dw ∈ (0, 1).

For comparisons, next consider the copulas derived from the constructions in
Sects. 3.1 and 3.2. Because the copula in (8) was obtained from the survival
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functions, it will have lower tail dependence if the original FX,Y has upper tail
dependence. It can be shown analytically (and numerically) that (8) does not have
lower tail dependence; this is based on H−1(u; η) ∼ [−ηu log u]−1 as u → 0.
With similar techniques, (10) also does not have lower tail dependence, based on
G−1(u; θ) ∼ [−θu log u]−1 as u → 0. After substituting in C(u, u)/u in the two
cases, one makes use of [−θu log u]θu → 1 as u→ 0.

To have non-constant ξY |X(x) and upper tail dependence, we consider (12) with
appropriate non-constant σ(x) and α(x). Consider the case at the end of Sect. 5 with
α(x) = a1 + a2x

−β with a1 > 0, a2 > 0, and β > 0, and σ(x) = (1 + x)a . Also,
assume aa1 > 1. Then, the expression and derivation for λU > 0 are similar to
those in (20), making use of FY (y) = O(y−1/a) as y →∞.

7 Discussion

We have studied some properties of bivariate distributions based on Pareto mixtures.
In this section, we give a big picture viewpoint of when the theory is relevant for
data analysis and conditional tail inferences.

With bivariate data (xi, yi), i = 1, . . . , n, from a random sample, different
approaches, depending on sample size, can be used to assess if conditional extreme
value index function is non-constant. One method is to apply the peaks over
threshold method (Coles 2001) or fit generalized Pareto distributions to moving
windows of x-values to evaluate if the estimation of ξY |X(x) is monotone or
non-constant. Another method involves non-parametric estimation of conditional
extreme quantiles such as in Gardes et al. (2010). Tail dependence properties can be
assessed with bivariate plots after data have been transformed to N(0, 1) or with tail-
weighted dependence measures (Krupskii and Joe 2015). The models in this chapter
can be used if a monotone conditional extreme value index function is suggested,
with or without tail dependence.

The constructions in the first two subsections of Sect. 3 have monotone ξY |X(x)
approaching ξY as x → ∞ and constant ξX|Y (y) and do not have tail dependence.
The results in Sects. 5 and 6 suggest that the Pareto scale parameter must be
increasing at a fast enough rate to achieve both supx ξY |X(x) < ξY and upper tail
dependence.

We summarize the main results in Sects. 3–6 in order to discuss some results
in Arnold et al. (1999) and possible future research. Consider [Y |X = x] ∼
Pareto(σ (x), α(x)) and X > 0 with regularly varying tail. For positive dependence,
we have α(x) decreasing and σ(x) increasing:

(a) With α(x) decreasing in x and σ(x) constant, we can get families with positive
dependence and ξY |X(x) < ξY . The range of dependence depends on the
flexibility of the parametric family α(x). The specific examples in Sect. 3 do
not have upper tail dependence.
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(b) With α(x) constant and σ(x) increasing and bounded, ξY |X(x) = ξY and there
is no upper tail dependence.

(c) With α(x) constant and σ(x) unbounded and increasing at a fast enough rate, it
is possible that ξY |X(x) < ξY and upper tail dependence exists.

(d) With α(x) decreasing in x and σ(x) unbounded and increasing at a fast enough
rate, supx ξY |X(x) < ξY and upper tail dependence exists.

Qualitatively, these results should hold for more general Pareto families because
they just concern a tail parameter and a scale parameter.

With conditionally specified Pareto or generalized Pareto distributions for
{FY |X(·|x)} and {FX|Y (·|y)}, Arnold (1987) and Arnold et al. (1993) (see also
Chapter 5 of Arnold et al. 1999) have a few closed-form joint densities that
satisfy the functional equations from the compatibility constraints. However, these
distributions do not have flexible ranges of dependence. With the generalized
Pareto(σ, δ, α) or Burr family defined by FGP(z; σ, δ, α) = 1− [1+ (z/σ )δ]−α for
z > 0, Arnold et al. (1993) consider the conditional specifications:

[X|Y = y] ∼ FGP(·; σ(y), δ(y), α(y)), y > 0,

[Y |X = x] ∼ FGP(·; τ(x), γ (x), β(x)), x > 0.

They assume constant inner power parameters δ(y) = δ and γ (x) = γ and
find examples of densities satisfying the compatibility constraints when the outer
power parameters α and β are constants or when the scale parameters σ and τ are
constants. Neither class of resulting densities has much range of dependence, and it
can be shown that ξY |X(x) = ξY and ξX|Y (y) = ξX, so that the conditional tail index
functions are the same as their respective marginal tail indices. Also, there is no
upper tail dependence, and the upper tail behaves like tail quadrant independence.

It is an open problem on how to construct bivariate models and copulas
with simpler parametric forms that have non-constant ξY |X(x) and ξX|Y (y), with
possible tail dependence. One would have to relax the assumption that conditional
distributions are Pareto throughout the whole domain and instead assume that the
conditional tails are regularly varying. The results of this chapter suggest that the
conditional tail indices for {FY |X(·|x)} and {FX|Y (·|y)} should have a wide range
of decreasing functions and that the scale functions for {FY |X(·|x)} and {FX|Y (·|y)}
should have a wide range of increasing functions.

The investigation here is mainly bivariate and is focused on getting bivariate
copula families with properties that are not satisfied by commonly used copula
families. If multivariate distributions with non-constant conditional extreme value
index functions are needed, the bivariate copula constructions developed here can
be used within vine copulas. Vine copulas (Czado 2019; Joe 2014) have flexible
dependence structures and are composed from a sequence of bivariate copulas, most
of which are used to summarize conditional dependence.
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Part IV
General



How and Why Did Probability Theory
Come About?

Nozer D. Singpurwalla and Boya Lai

Abstract This paper is a top down historical perspective on the several phases
in the development of probability from its prehistoric origins to its modern day
evolution, as one of the key methodologies in artificial intelligence, data science,
and machine learning.

It is written in honor of Barry Arnold’s birthday for his many contributions to
statistical theory and methodology. Despite the fact that much of Barry’s work is
technical, a descriptive document to mark his achievements should not be viewed
as being out of line. Barry’s dissertation adviser at Stanford (he received a Ph.D. in
Statistics there) was a philosopher of Science, who dug deep in the foundations and
roots of probability, and it is this breadth of perspective is what Barry has inherent.
The paper is based on lecture materials compiled by the first author from various
published sources, and over a long period of time. The material below gives a limited
list of references because the cast of characters is many, and their contributions are
a part of the historical heritage of those of us who are interested in probability,
statistics, and the many topics they have spawned.

1 Overview

The material here attempts to give a top down historical perspective on the several
phases in the evolution of probability, from its prehistoric origins for imperial needs,
to its current state as a branch of mathematics. As a branch of the mathematical
sciences, probability evolved in five stages, not counting a period of stagnation
between the second and third stages, when doubts were cast about its relevance as
a mathematical discipline. Also pointed out are paradoxes in probability, spawned
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by the absence of its precise definition, leading to its last two phases, namely, an
axiomatic and a subjective view of probability.

2 The Prehistoric Phase

The rulers of ancient Egypt, Greece, and Rome collected census data for taxes,
grain distribution, and other matters of administration; this activity certainty had an
impact on the origins of probability.

Next to come was the “Doomsday” list of William the Norman (1027–1087),
which was so exhaustive an economic survey that it reminded one of the final and
the last judgment by God in the Christian faith. Following this were the “London
Bills of Mortality,” published since 1517, and notions such as the chance of death in
a given time period, the chance of survival to a certain age, and the like, originated,
around about 1535, almost a century before John Graunt’s celebrated mortality
table. Another impetus to the origins of probability came from marine insurance
in the 1300s, and also during the renaissance, wherein an emphasis was placed
on observation and experiments in the natural sciences—especially, on errors of
observation.

From a philosophical angle, the interrelations between chance and causality have
been on the philosopher’s agenda since the ancient times. These too had an impact
on the origins of probability. In 1292, a treatise on the theory of the logical ideas
of Syadvada (which is the basis of India’s Jaina religion) lists seven predications of
which the fourth supplies a foundation for modern probability.

Another influential angle was the famous dictum of Thomas Hobbs (1588–1679),
whose thesis was that no matter for how long we observe a phenomenon, this is not
sufficient grounds for its absolute and definitive knowledge.

To summarize, the prehistoric impact on probability came from: census, com-
merce, renaissance, scientific observation, and philosophy.

3 Was Probability Not Spawned by Gambling?

Apart from the discussion above, there is another belief that probability theory owes
its birth to gambling. To some, this is a questionable issue. They claim that since
gambling has been practiced since 5000 BC, it could not have taken 6000 years for
it to influence probability. Their view is that it was commerce that really influenced
the development of probability.

Nonetheless, gambling has had an impact on probability, and its earliest traces
are in the literature, such as “De Vetula” of Richard de Fournival (1200–1250)
and Dante’s “Divine Comedy” (1307–1321), wherein combinatorial arguments
pertaining to outcomes of games of chance were mentioned.
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Paccioli (1445–1514) published in 1487 “Summa de Arithmetica, Geometria,
Proportioni et Proportionalita,” which was an encyclopedia of the mathematical
knowledge of his period in Venice, and in the section labeled “unusual problems,”
he discussed the question of the fair division of stakes when a match is stopped in
advance of an agreed termination of the game. Paccioli’s solution embeds notions
of probability. This is also called the “problem of points” and was a trigger point of
the famous Pascal Fermat correspondence.

Cardano (1501–1576) and Tartagalia (1499–1557) contributed much to the
connection between probability and gambling. Cardano developed probabilistic
notions in “The Book on Games of Chance,” written in 1526, as “Liber de Ludo
Aleae.” In this book, Cardano enumerates possibilities, permutations, deviations of
frequencies from “portion,” introduces the notions of fair games and expectation,
equally likely events, and uses the addition and multiplication rules of probability
for independent events. He even came close to inventing the law of large numbers.
However, Cardano was an ardent gambler who restricted his writings, only to games
of chance. All the same, as one can surmise, he set the stage for much that was to
follow.

Tartagalia (1499–1557) published in Venice in 1556, his treatise on “Number and
Measure” in which he related problems of probability to those of combinatorics,
and offered correct solutions to the problems posed by Paccioli, in particular, the
problem of the division of stakes (or the problem of points). Following Cardano and
Tartagalia, was Galileo (1564–1642), who posited that errors of measurement are
inevitable; they are symmetric and clustered around a true value. He in fact revealed
many of the characteristics of the normal probability distribution.

The above developments perhaps mark the end of the phase of the earliest
writings on probability, subsequent to its prehistoric phase.

4 Development of Probability as a Science

This phase can be categorized into five stages and includes a phase called “the period
of stagnation,” between the second and third stage, when concerns were raised about
probability as a branch of mathematics. Also included is a phase labeled “paradoxes
in probability,” which can be seen as the doorstep to the development of the last two
stages in the evolution of probability as a mathematical discipline.

Within the five stages alluded to above, are also some milestones in the evolution
of statistics, which evolved as a way to reason with numbers.

4.1 Stage I: Of the Development of Probability as a Science

Up until the middle of the seventeenth century, there were no general methods for
solving probabilistic problems. Specific problems had been solved, and a substantial
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amount of knowledge was accumulated. The term probability (nor its disposition as
a number) was not a part of the lexicon in the solution of such problems.

In the middle of the seventeenth century, some prominent mathematicians like
Pascal, Fermat, and Huygens became involved in the development of probability,
even without mentioning the term. These individuals were familiar with Cardano’s
addition and the multiplication rules, the notion of independence, and put to practice
the notion of expectation using combinatorics. They developed new methods for
solving problems, determined the realm of problems to which this new science is
applicable, and in so doing were on the verge of transforming probability to a bona
fide science.

Two very important and key individuals need to be mentioned in Stage I. They
were Chevalier de Mére and Christian Huygens. They brought probability into a new
stage as a science. Chevalier de Mére (1607–1684) was a philosopher and a man
of letters; he wrote to Pascal about the division of stakes (considered by Paccioli
but per Shafer (2019)) solved in the 1400s by two Italian abacus masters, and his
(de Mére’s) solution to it. With Pascal and Fermat, he had authored in 1662 “Ars
Cognitandi” (Art of Thinking) as a part of the Arnold - Nicole (who were abbots at
the Port Royal Monastry), a book on “Port RoyaleLogic.” de Mére’s letter to Pascal
triggered a correspondence between Pascal and Fermat in 1654, and thus originated
the founding document on mathematical probability.

Even though many mathematicians of that period devoted much attention to the
solution of games of chance, actual gambling was condemned. Thus, the myth that
Chevalier de Mere was a fervent gambler. Rather, he was a man of letters who
viewed probability only as a “useless curiosity.” By contrast, Cardano, who was an
ardent gambler, used mathematics for gambling but in 1526 did not quite hit upon
the notion of probability as a number.

Christian Huygens (1629–1695), a Dutchman from Holland, visited Paris in 1655
to receive a doctorate in law. He was impressed with the problems on gambling of
Pascal and Fermat and undertook further work on it. He was told of the solutions
but not the methods (which were published posthumously, because both Pascal
and Fermat posed problems to each other but hid their methods of solution). The
correspondence between Pascal and Fermat was published only in 1679.

Huygens returned to Holland and begun work on solving the problems posed by
Pascal and Fermat. Huygens solutions, independent of the methods of Pascal and
Fermat, but identical to those of Pascal and Fermat, were published in his book
(written in Latin) called “About Dice Games.” This book appeared in 1657 wherein
Huygens says “. . . we are dealing not only with games but rather with a foundation
of a new theory, both deep and interesting.” His reasons for writing this book was
the absence of methods used by Pascal and Fermat.

This book is viewed as the first published treatise on mathematical probability.
Huygens’s book can be viewed as being the first formal document on the intro-
duction of mathematical probability, until Bernoulli’s famous “Ars Conjectandi”
(a possible imitation of the Pascal–Fermat–de Mere’s, Ars Cognitandi). Huygens’
book was also the first to introduce and to apply the notion of expectation in
commercial and industrial problems. Huygens’ terminology was commercial.



How and Why Did Probability Theory Come About? 235

Subsequent to the above, more and more works on probability began to appear,
most notable being the birth to a new discipline, now called “Data Science.” In 1662,
at about the same time as Huygens’ book, John Graunt, an Englishman, published a
tiny book devoted to problems of vital statistics. Huygens was asked to comment on
this landmark book, which he did favorably. Indeed, in 1669, using Graunt’s work
Huygens constructed a mortality curve and initiated the application of probability to
demography, and to annuities. In 1690, another Englishman, by the name of William
Petty, published his treaties on “Political Arithmetic,” which was about a method of
reasoning on matters of government, via the use of numbers. This can now be seen
as a founding document on Government Statistics.

Preceding Petty’s treatise, was work on actuarial mathematics and the worth of
annuities, due to deWitts in 1671, followed by that of Edmund Haley in 1693, who
published the very first mortality table based on data from Breslau. Between 1791
and 1799, a Scotsman named John Sinclair published 21 volumes of his Statistical
Account of Scotland and introduced the word “Statistics” to replace Petty’s political
arithmetic. Up until 1796, the word “statistics” was used in Germany to describe the
political strength, happiness, and the improvement of a country, as a measure of its
well-being. Statistics was an artificial word, with no evidential meaning, that is now
used for anything having to do with data. Sinclair used it to garner attention over
Petty’s political arithmetic, which did not seemed to have gained traction (cf. von
Collani 2014).

To summarize, Huygens recognized the role of probability as a science, wrote
the first book on it, applied the notion of expectation to commerce and industry, and
used probability for assessing demography and insurance. Huygens’ Book played an
important role in the history of probability. Jacob Bernoulli, who introduced the term
“probability,” based on the Latin “probabilitas,” was greatly influenced by Huygens’
book. Bernoulli’s work established the foundations of mathematical probability.

Bernoulli’s word probability is based on the term “probabilitas,” which was a
moral system of the Catholic Church. Probabilitas was formally introduced in 1577
by the Spanish Dominican, Bartolome de Medina, and was mainly applied by Jesuit
priests. Bernoulli’s aim in writing Ars Conjectandi was to introduce a new branch
of science that he called Stochastics, or the science of prediction.

To Bernoulli, a relevant feature of “stochastics” was an event’s readiness to
occur, and “probability,” the degree of certainty of its occurrence, see von Collani
(2014). Thus, to Bernoulli, stochastics was the art of measuring probability as
exactly as is possible.

However, Bernoulli acknowledged that the determination of the true value of
probability is impossible and labeled as “mad” any attempt at doing so. This
motivated him to develop his law of large numbers, as an empirical method to
determine a lower and an upper limit for an unknown probability. Note that
Bernoulli’s notion of probability was devoid of any mathematical basis.

Given below in Fig. 1 is a graphic of the evolution of mathematical probability,
up until the beginning of Stage II that established it as a mathematical science.
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Jacob Bernoulli (1654-1705)

William Petty (1623-1687)John Graunt (1620-1674)
Edmund Haley (1656-1742) John Sinclair (1754-1835)

Fig. 1 Evolution of mathematical probability

4.2 Stage II: Bernoulli Makes Probability a Bona Fide
Mathematical Science

James (Jacques) Bernoulli (1654–1705) in his 1713 “Ars Conjectandi” proved the
first limit theorem and, in so doing, raised the status of probability to that of a
formal mathematical science. This book was published posthumously by his nephew
Nichols (1) Bernoulli (who also applied probability to matters of jurisprudence, like
the credibility of a witness).

The contribution of Bernoulli to make probability a bona fide mathematical
science is that he interpreted propositions in Huygens’ book, showed inapplicability
of the addition law to non-disjoint events, gave the binomial formula, and used
Leibnitz’s combinatorics for solving probability problems.

He proved the weak law of large numbers as a way to bound a “true” probability
and interpreted probability as the degree of certainty of an event’s occurrence.
Bernoulli was a metaphysical determinist; that is, if we know the position of a dice,
its speed, its distance from the board, etc., we can exactly predict its outcome. Thus,
to Bernoulli, probability, or chance, the terms he used interchangeably, depends on
our state of knowledge and is thus personal to the individual specifying it.

However, since all knowledge is not possible, we assume a statistical regularity
in a large number of trials, say n, and conclude that for the tossing of coins, the
deviation of m/n from p, as n → ∞, is small with a large probability; m is the
total number of heads in the n trials. Bernoulli also touched upon the philosophical
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problems connected with probability, and asserted probability should also be applied
to situations outside games of chance.

Besides Bernoulli, there were others who worked on probability during the
beginning of the eighteenth century. We name a few.

Pierre de Montmort (1678–1719), a mathematician, who was chosen by Leibnitz
on the commission to inquire about the priority of inventing differential and integral
calculus between him and Newton; de Montmort favored Newton; see Maistrov
(1974). His basic work on probability entitled “Essai d’Analyse sur les Jeux
de Hazard” was published in 1708 (5 years prior to Bernoulli’s posthumously
published work). It was in a letter to de Montmort that Nicholas (1) Bernoulli
posed the St. Petersburg paradox. Montmort’s main effort was the applications of
probability to human behavior.

Abraham de Moivre’s (1667–1754) principal work in probability was in “The
Doctrine of Chances,” 1718. Here, without addressing the matter of what probability
is, de Moivre discusses topics connected to Bernoulli’s theorem, and the problem
of the duration of the play (first proposed by Huygens). de Moivre investigated
the probabilities of various deviations between m/n and p, for p = 1/2. Laplace
extended these to p ∈ (0,1), and thus, the de Moivre–Laplace theorem is the second
limit theorem in mathematical probability.

Thomas Bayes (1792–1761), speculated as being tutored by de Moivre, pub-
lished his famous essay posthumously in 1763; it was entitled “Thomas Bayes’s
Essay Towards Solving a Problem in the Doctrine of Chances”; it addressed the
following question: what is the chance that p ∈ (a, b) given x and n? Bayes offered
a solution to this problem using solely the calculus of probability. In so doing, he
introduced the notion of what is referred to as “probabilistic induction.”

To obtain his solution, Bayes used what is now called Bayes formula (which is
really an alternative form of the well-known, by then, multiplication rule), inter-
preted conditional probability and its subtleties, and assumed a uniform distribution
on p (via eliciting priors on the observables—i.e., the predictive distribution). It was
Laplace who coined the term “Bayes Theorem” and set in notion this terminology—
Bayes did not invent Bayes Theorem.

Daniel Bernoulli (1700–1782) introduced the idea of probability curves, applied
differential calculus to problems of probability theory and, in so doing, simplified
many of the cumbersome combinatoric formulas used before. However, his most
important contribution is the introduction of the notion of “utility” or “moral
expectation” and its use in solving the St. Petersburg paradox, posed by Nicholas
(1) Bernoulli.

Condorcet [Jean Antoine de Caritat, Marquis de Condorcet] (1743–1794) was a
well-known sociologist and economist during the period of the French Revolution.
His main contribution is his introduction of the notion of “probabilite’ propre,”
which is a subjective, or personal, probability. His ideas were rejected as being
beyond the scope of mathematical probability theory.

After Bernoulli, one of the great minds who came to wrestle with probability
was Pierre Simon, de Laplace. His main technical contribution is the de Moivre–
Laplace central limit theorem, for Bernoulli trials. His contribution to larger issues
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is extending the realm of applicability of probability to social phenomena, and his
reinforcement of Condorcet’s notion of subjective probability. That is “probability
is relative in part to ignorance, and our knowledge.” If a coin is asymmetrical, but
we do not know which side, then its probability of head is 1/2. Laplace also played
a role in developing statistics.

Stage II of the development of probability ends with Gauss (1777–1855), who
derived the normal law for the distribution of errors. [This was also done by Robert
Adrian (1755–1843) an obscure American mathematician.]

Poisson (1781–1840) did much work on technical and practical aspects of
probability. He subscribed to the subjective view of probability and like Laplace felt
that probability can also be applied to jurisprudence. Poisson’s main contribution is
a generalization of Bernoulli’s theorem when the probability of an event changes
from trial to trial, so that if p̃ is the arithmetic mean of these probabilities, then

lim
n→∞P

(∣∣∣
m

n
− p̃

∣∣∣ < ε
)
= 1, (1)

and his proof that as pn → 0, then as n→∞, P(m/n) = e−n
m! e

−λ, where λ = npn,
the famous Poisson formula; recall that m is the number of events in n Bernoulli
trials.

4.3 The Period of Stagnation

The period (1860–1900) is also viewed as one of stagnation in the development of
probability. Many felt that its application to social problems was a compromise in
the mathematical sciences.

The areas of application being not clearly defined there was much controversy
about the subject. There was much criticism of the early developers, like Pascal,
Bernoulli, Laplace, and Poisson for their subjectivist inklings via metaphysical
determinism. The period of stagnation terminated with the emergence of the now
famous Russian School of probability.

4.4 Stage III: Creation of the Russian School

The originators of the Russian School of probability were Ostrogradski (1801–
1862) and Bunyakovsky (1804–1889). Ostrogradski, influenced by Laplace, was a
proponent of the principle of insufficient reason and applied the theory of probability
to moral problems. He too subscribed to the notion that probability is a measure of
our ignorance and is thus subjective. Bunyakovsky wrote the first Russian book in
probability and introduced the needed terminology; he too was a determinist in the
spirit of Bernoulli and Laplace.
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Chebyshev (1821–1894), influenced by Ostrogradski and Bunyakovsky, is cred-
ited with the creation of the Russian School of probability. His students Markov,
Voroni, Lyapunov, and Steklov pushed frontiers of the subject to the modern era. In
effect, Chebyshev and his followers broke the period of stagnation and impasse
in probability, as a mathematical science. Chebyshev defined the subject matter
of probability theory as the mathematical science of constructing probabilities of
an event based on probabilities of other events. He did not discuss how initial
probabilities are to be obtained. Chebyshev introduced mathematical rigor in the
theorems and obtained exact estimates or inequalities of derivations from limiting
laws that arise when the number of trials is large but finite.

Philosophically, Chebyshev and his followers were materialists through the
natural sciences, mechanics, and mathematics. They were guided by the opinion that
only those investigations initiated by applications are of value, and only theories that
arise from a consideration of particular cases are useful. The materialist philosophy
is founded on the belief that nothing exists but matter itself and its manifestations.

Markov (1856–1922) was Chebyshev’s closest disciples and his most colorful
spokesperson. He transformed probability, with clarity and rigor, to one of the most
perfect field in mathematics. His noteworthy works are on the limit theorems for
sums of independent and dependent random variables using the method of moments.
Markov introduced the famous chain named after him, for analyzing Pushkin’s
poem “Eugene Onegnin.”

Lyapunov (1857–1918) improvised on the proofs of Markov’s theorems using
characteristic functions; the central limit theorem is named after him. Lindberg and
Feller later improved on Lyapunov’s theorems.

4.5 Probability in Physics

The evolution of probability as a mathematical science would not complete without
a mention of its impact in physics, one of the most basic of all the sciences.
In 1827, Robert Brown, an English botanist, detected the movement of minute
suspended particles in an unpredictable manner. This movement is due to random
bombardments of chaotically moving molecules in suspension. Using probabilistic
arguments, Albert Einstein in 1905 was able to develop a sound theory for such
motions. It was observed that every sufficiently small grain suspended in a fluid
constantly moves in an unpredictable manner.

If before the second half of the nineteenth century, the basic areas of application
of probability were in the processing of observations, and the second half was in
physics. This was prompted by the work of Ludwig Boltzmann (1844–1906), an
Austrian, and Josiah Willard Gibbs (1839–1903), an American.

Boltzmann is credited with the initiation of statistical physics, and the prob-
abilistic interpretation of entropy. His work paved the way for quantum theory.
Boltzmann was preceded by Maxwell who thought of molecules as elastic solids,
whose behavior can be studied through the methods of probability.
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In 1902, Gibbs, who was occupied with problems of mechanics, published
his famous book “Basic Principles of Statistical Mechanics.” This book was an
influential development for the enhancement of probabilistic notions in physics.

4.6 Paradoxes in Probability

Toward the beginning of the twentieth century, great inroads were made in proba-
bility as a mathematical discipline by Chebyshev, Markov, and Lyapunov, and into
its inroads in physics by Maxwell, Boltmann, and Gibbs. However, mathematicians
were repeatedly pointing out concerns regarding the need for a precise meaning of
probability.

Indeed Bertrand (of Bertrand’s Paradox, of which is Borel’s Paradox, and the
three envelope problem are examples), and Henri Poincare, via their paradoxes, tried
to emphasize the inaccuracies and vaguenesses in the basic notions of interpreting
probability.

Emil Borel (1871–1956) and Henri Poincare (1854–1912), both prominent
French mathematicians, were determinists whose notion of probability was that it is
a reflection of our ignorance. Both wrote two highly influential books on the subject
and called for a rigorous definition of the meaning of probability. These can be
seen as paving the path toward Stage IV and V on the axiomatic and the subjective
development of probability.

4.7 Stage IV: The Axiomatic Development

The axiomatic method in science, particularly, the mathematical sciences, makes
it possible to apply any theory to many areas. For example, Lobachevskii (1829)
suggested the possibility of constructing geometry based on a system of axioms,
different from those of Euclid, whereas Hilbert, Peano, and Kagan investigated such
a possibility for geometry in the early part of the twentieth century; Hilbert and
Peano also did this for arithmetic.

With probability, Laplace’s classical definition using equiprobable events was
a tautology because equiprobable ⇔ equal probability. Also, the subjective inter-
pretation of probability had, at the early part of the twentieth century, serious flaws
having to do with a linear utility for money and state dependence. As a consequence,
the need for axiomatization was becoming more and more pressing.

In 1917, S.N. Bernstein (1880–1968) published a paper hinting the axioma-
tization of probability. This marked a new stage in its development. Bernstein’s
axiomatization was based on the notion of qualitative comparisons of events in
which larger and smaller probabilities serve as a foundation. Bernstein’s ideas were
further developed by Glivenko and, more recently, by Koopman (1940). Bernstein’s
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notion of probability was also materialistic and was for applications to the natural
sciences.

Richard von Mises (1883–1953) was a strong critic of both the equiprobable
and the subjective theory of interpreting probability. His main contribution is
the frequency approach; that is, probability is relevant only to mass phenomena.
Approaches alternate to von Mises were due to Keynes, followed by Harold Jeffreys,
who viewed probability as a degree of likelihood, wherein every proposition has a
certain definite probability. It is said that later on, Keynes recanted this position.

Simultaneous with attempts to lay the foundations of probability were rapid new
developments in the mathematical sciences, vis-a-vis the works of Khinchin, Borel,
Cantelli, Hardy, Littlewood, and Hausdorff. These trends facilitated Kolmogorov
to construct his axiomatization of probability and lay the foundation for a decisive
stage in its development. In particular, Bernoulli’s result on the weak law and Borel’s
on the strong law led Kolmogorov to notice the connection between probability and
measure and thus began his work on axiomatization, resulting in the publication of
his famous book, in 1933.

Kolmogorov’s aim was not to clarify the meaning of probability but to establish
a branch of mathematics in exactly the same way as algebra and geometry. To
Kolmogorov, the concept of a theory of probability is a system of sets that satisfy
certain conditions. He thus introduced the term probability in the above context,
detached from any real world meaning.

Not all applied scenarios satisfy Kolmogorov’s setup and architecture. Conse-
quently, there are alternatives to probability like Zadeh’s Possibility Theory for
fuzzy sets, and the Dempster–Shafer Belief Function Theory.

4.8 Stage V: Personal Probability

Approaches at interpreting probability, alternate to the “classical” one of La Place,
the “frequency” one of von Mises, the “logical” one of Keynes, as well as the
axiomatics of Kolmogorov (that technically speaking are free of interpretation) were
due to de Finetti, and Ramsey, who interpret probability as a subjective quantity,
personal to each individual. Whereas de Finetti interprets probability as a two-
sided bet assuming a linear utility for money, Savage motivated by Ramsey takes
an axiomatic approach.

Savage’s approach to personal probability was modeled after von-Neumann
and Morgernstern’s axiomatic development of utility theory. This approach is the
most widely referenced approach to personal probability; it has as its foundation
behavioristic axioms of choice. Perhaps, it is not too well recognized that these
axioms appear to be rooted in Bernstein’s qualitative comparison of events; save for
the feature that they pertain to choices between actions in the face of uncertainty.

A striking feature of Savage’s axioms is that their consequences lead to the
simultaneous existence of both a subjective probability and a utility, and the
maximization of expected utility as a recipe for decision making under uncertainty.
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Savage’s subjective probability conforms to the Kolmogorov axioms; however, in
the latter’s setup, conditional probability is a definition, whereas in the former, it is
a consequence of the Savage axioms.
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Assessment of Distributional
Goodness-of-Fit for Modeling the
Superposition of Renewal Process Data

Wei Zhang and William Q. Meeker

Abstract Parametric maximum likelihood methods can be used to estimate the
renewal distribution based on aggregate data from superpositions of a group of
renewal processes (SRP). The traditional distributional assessment approaches are,
however, unable to be applied to the SRP data directly as the actual locations where
the renewal events occurred are unknown. In this paper, we present two graphical
distributional assessment procedures to evaluate how well alternative parametric
models fit the observed SRP data. The first procedure provides a flexible semi-
parametric estimate of the renewal distribution which is based on a piecewise
exponential (PEX) model. Corresponding nonparametric simultaneous confidence
bands (NPSCBs) are given to assess the amount of statistical uncertainty of the semi-
parametric estimate. The results show that the PEX model with NPSCBs provides
a flexible framework for comparing different parametric distributions. The second
procedure is based on a comparison of parametric and nonparametric estimates
of the mean cumulative function (MCF) for the SRP recurrence data. These two
procedures are illustrated by applications to both real and simulated SRP data.

1 Introduction

1.1 Background and Motivation

Certain applications result in data from a group of superpositions of renewal
processes (SRP). For example, recurrence data from a collection of systems are
of interest in maintenance and warranty applications. Often a system consists
of multiple identical copies of certain components. If one component fails, it
can be replaced by a new one, which will restore the system operation. Then
the replacement history at each component location (socket) can be modeled as
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a renewal process (RP), based on the assumption that all the components are
assumed to be identical and independent. Examples in industrial applications
include cylinders and valve seats in a locomotive engine, DIMM memory modules
on a laptop computer motherboard, headlights and tires in an automobile, etc. For
such systems, it is common that the recurrence data are available in a scenario, such
as event times at the system level are available, but the socket identities for these
events are unknown. The reason for this is that maintenance database systems were
designed to capture financial information, not engineering information. This kind of
data structure generates an SRP.

Zhang et al. (2017) described the maximum likelihood (ML) method for estimat-
ing the renewal distribution from SRP data. In their work, the renewal distribution
is assumed to be a particular distribution from the log-location-scale family (e.g.,
Weibull or lognormal). Enumerating all possible allocations of the SRP recurrent
events to sockets in the system allows computation of the likelihood function that
can be maximized to obtain the ML estimates for the renewal distribution. The
performance of the proposed ML estimator was investigated extensively in their
simulation study.

One natural question arising from this work is how to determine whether the
SRP data are consistent with the particular assumed renewal distribution. Due to
lack of information about the positions of the events within each system, however,
it is difficult to apply the traditional probability plotting method to the SRP data. In
this paper, we propose two alternative graphical methods to assess the adequacy
of a particular parametric model for modeling the SRP data. The first method
is an extension of the traditional probability plotting method for complete and
censored data. The other method is based on the comparison of the nonparametric
estimate of the mean cumulative function (MCF) from the observed SRP data and
the parametric fitted-model MCF computed from the ML estimates of renewal
distribution parameters.

1.2 Related Work

In reliability data analysis, probability plots are commonly used as a graphical tech-
nique for assessing distributional assumptions. The idea is to plot the nonparametric
estimate F̂ (t) on the linearizing probability scales and assess departure from a
straight line. The linearity of the F̂ (t) on the probability paper serves as a measure
of the agreement of the data with the candidate distribution. Much research related
to the probability plotting has been done for complete and censored data. Details
and additional references can be found, for example, in Chapter 6 of Meeker and
Escobar (1998).

For commonly occurring multiply censored data, Kaplan and Meier (1958)
proposed the nonparametric maximum likelihood estimator (also known as the
product-limit estimator) to estimate the distribution F(t) of lifetimes, and this
estimator is commonly used in constructing probability plots. For the SRP data,
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however, the actual event times within each socket are unknown, and thus, the
Kaplan–Meier (KM) estimation method cannot be used. Here we propose an
extension of the traditional probability plotting method for the SRP data. A
piecewise exponential (PEX) model is used to obtain a flexible semi-parametric
estimate of the renewal (component lifetime) distribution F(t) that can be used in
place of the KM estimate. The PEX model is semi-parametric in the sense that unlike
fitting a parametric distribution, the form of the cumulative distribution function
(cdf) is not specified.

The PEX model was introduced by Grenander (1956) as a nonparametric model
for estimating lifetime distribution for complete data. In his work, hazard jump
points were assumed to occur at the observed failure times. Padgett and Wei (1980)
generalized the PEX model to right-censored data. In this case, the PEX estimator
can be viewed as a competitor to the Kaplan–Meier estimator. The performances
of the two estimators were compared by Kitchin et al. (1983). Kim and Proschan
(1991) used PEX model to estimate the life distribution from a set of right-censored
data in a telecommunication application.

The PEX model can also be interpreted as a parametric model. Miller (1960)
studied a special case where there is only one hazard jump point. Estimates of
the two hazard levels and the jump point are obtained using maximum likelihood
estimation. Prairie and Ostle (1961) extended Miller’s method to the case of three
hazard levels. For right-censored and nonoverlapping data, Colvert and Boardman
(1976) provided the estimates of the piecewise constant hazard levels under PEX
model using maximum likelihood estimation when the hazard jump points are pre-
specified. Loubert (1986) extended the PEX model to the case of arbitrarily censored
data with the constraint that the distribution has a monotone hazard function.

In addition to the nonparametric estimate F̂ (t), nonparametric simultaneous
confidence bands (NPSCBs) are usually given on the probability plot to assess the
amount of uncertainty of F̂ (t). Greenwood (1926) suggested a formula that gives an
estimate of the variance of the Kaplan–Meier estimator. Nair (1981, 1984) showed
how to extend the usual pointwise confidence intervals based on Greenwood’s
variance formula to large-sample simultaneous confidence bands. Nair called these
“equal precision” (EP) bands because the replacement of the usual standard normal
distribution (1 − α/2) quantile used to compute pointwise approximate confidence
intervals with a larger factor that provides asymptotically correct simultaneous
confidence bands. Nair compared the performance of the EP band with other
existing confidence bands, such as the Hall–Wellner (HW) band and R band (a
censored version of the Rényi band). In this paper, we extend the idea of Nair’s
EP band and derive a NPSCB for the SRP data based on a bootstrap resampling
procedure given in Sect. 2.

The second tool to assess the distributional goodness-of-fit for the SRP data is
based on comparing the nonparametric and parametric estimates of the MCF. The
MCF, M(t), as described by Nelson (2003, page 25) and Cook and Lawless (2007,
page 9), is interpreted as the population expected cumulative number of events per
system at time t . Thus, the MCF describes the average behavior of multiple systems.
Nelson gives a nonparametric estimate of the MCF (also known as the empirical
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MCF). The shape of the nonparametric MCF estimate can reveal important features
about the behavior of the recurrent events. We propose also to use a comparison of
the nonparametric and the parametric estimates of the MCF to assess the adequacy
of a parametric fit for SRP data.

1.3 Overview

The rest of this paper is organized as follows. Section 2 illustrates an extension
of the probability plotting method. We introduce the definition of the semi-
parametric PEX estimator of the renewal distribution and show how to construct
the NPSCB, followed by some illustrative examples. Section 3 illustrates the use
of the MCF nonparametric and parametric comparison to assess the goodness-of-fit
of the proposed parametric distributions. Section 4 describes an application of the
probability plotting method and the MCF method to a locomotive maintenance data
example. Section 5 gives concluding remarks and discussion of possible extensions
of the proposed methods.

2 Probability Plotting Method

In this section, we show how to construct a probability plot for SRP data by plotting
the semi-parametric PEX estimate F̂ (t) and the NPSCBs on a linearized probability
scale. For a particular distribution, if it is possible to draw a straight line between the
NPSCBs on the probability paper, then the distribution is consistent with the SRP
data.

2.1 A Semi-Parametric Estimate of F(t) Using the PEX Model

2.1.1 The PEX Model

The PEX model is characterized by a piecewise constant hazard function with
specified jump points. We denote the PEX model as PEX(γ ,ω), where ω′ =
(ω1, ω2, . . . , ωb) are the b pre-specified jump points of the hazard function, 0 <

ω1 < ω2 < · · · < ωb, and ωb+1 = ∞. The vector γ ′ = (γ1, γ2, . . . , γb) denotes
the values of the hazard function, where γp is the value of the hazard function in the
pth hazard interval [ωp, ωp+1). Thus the PEX hazard function is

γ (t) =
b∑

p=1

γpI[ωp,ωp+1)(t),
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where I[ωp,ωp+1) = 1 if t ∈ [ωp, ωp+1), and 0 otherwise. In this study, the first
jump point ω1 is set as the smallest event time in the SRP data. Similar to the
nonparametric KM estimate, because there are no events before the first event time,
the probability to fail at any time before ω1 is estimated to be 0. That is, γ̂ (t) = 0
for 0 < t < ω1. Thus, ω1 serves as a threshold for the time t .

The PEX cumulative hazard function at time t is

ξ ′tγ =
∫ t

0
γ (u)du = − log S(t),

where ξ ′t = (ξt,1, ξt,2, . . . , ξt,b), 0 ≤ ξt,p ≤ ωp+1 − ωp, and S(t) is the survival
function of the PEX model. We see that log S(t) is a piecewise linear function of
the elements in γ . Figure 1 provides a plot of the PEX hazard and cumulative
hazard functions for a simple example with seven jump points and a hazard function
increasing at an increasing rate. Thus, the cdf of the PEX model is

F(t) = 1− S(t) = 1− exp(−ξ ′tγ )

= 1− exp [−γ1(t − ω1)] I[ω1,ω2)

−
b+1∑

p=2

exp

⎡

⎣−
p−1∑

q=1

γq(ωq+1 − ωq)− γp(t − ωp)

⎤

⎦ I[ωp,ωp+1),

(1)

and the density of the PEX model is

f (t) = S(t)γ (t) = exp(−ξ ′tγ )γ (t)

= γ1 exp [−γ1(t − ω1)] I[ω1,ω2)

+
b+1∑

p=2

γp exp

⎡

⎣−
p−1∑

q=1

γq(ωq+1 − ωq)− γp(t − ωp)

⎤

⎦ I[ωp,ωp+1). (2)

2.1.2 Choosing the Number and Locations of Hazard Jump Points

Note that the PEX model is completely determined by the specification of the
locations of the hazard jump points and the values of the hazard function between
each pair of jump points. Therefore, one of the key challenges of working with the
PEX model is how to properly specify a sequence of jump points which provides a
good approximation for the lifetime distribution. The adequacy of the approximation
depends on the size of the data set as well as the number and locations of the hazard
jump points.
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Fig. 1 A PEX hazard function (top) and cumulative hazard function (bottom)

For some of the earlier work related to the PEX model, the hazard jump points
were defined at the observed failure times, which is not feasible for the SRP data as
the exact component failure times are unknown within each system. To overcome
this difficulty, we first focus on the data for the first replacement time within each
system, and use this information as a guideline to specify the number of locations
of the hazard jump points. The observed first failures from the collection of systems
are a sample from the distribution of the minimum of the m sockets in each system.
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Although the PEX model allows flexibility for the number of jump points, it
is important to point out that there is a tradeoff. If one specifies a number of jump
points that is too large, the procedure is more computationally intensive. In addition,
due to potential identifiability problems, unstable estimates for the hazard values
may result unless there is a large amount of data. In other words, the resulting PEX
parameters are not clearly identifiable. On the other hand, a hazard function based
on just a few jump points may produce a poor approximation for the true lifetime
distribution. Based on some numerical studies (an example is given in Appendix 1),
we found that using 6–10 jump points (possibly 4 for a small set of SRP data) for
the hazard function ensures sufficient flexibility of the model, and does not require
too much computer time.

Furthermore, the location of the jump points also plays a central role in using the
PEX goodness-of-fit assessment. When choosing the locations of the hazard jump
points, a key requirement is that there should be event times that fall within each of
the different time intervals. If this is not the case, sensible estimates of the hazard
values cannot be obtained by the optimization of the likelihood. In our approach,
the quantiles of the distribution for the first replacement time within each system are
used to determine the locations of the jump points. This will guarantee identifiability
of the model.

Specifically, suppose there are n systems in a fleet and n∗ of these systems
contain events. Let (τ 1

1 , τ
2
1 , . . . , τ

n∗
1 ) denote the first replacement times in the n∗

systems. Therefore, the desired number of hazard jump points b should be an integer
that is less than n∗. According to the proposed algorithm, the hazard jump points
(ω1, ω2, . . . , ωb) correspond to the

[
0

b
,

1

b
, . . . ,

(b − 1)

b

]
(3)

sample quantiles of the sequence (τ 1
1 , τ

2
1 , . . . , τ

n∗
1 ). The sample quantiles are

computed using the R function quantiles() with the default quantile algorithm
(type = 7) discussed in Hyndman and Fan (1996).

It is worth noting that according to Drenick’s theorem (Drenick 1960), an SRP
behaves as a homogeneous Poisson process (HPP), irrespective of the underlying
renewal distribution, when the combined number of systems and sockets is large,
and the time of operation becomes long enough. Thus, most of the information
allowing for discrimination among different parametric distributions will be in the
early part of the probability plot. For this reason, our probability plotting procedure
focuses on the lower tail of the renewal distribution by using the above algorithm to
determine the hazard jump points.
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2.1.3 PEX Likelihood for SRP Data

Zhang et al. (2017) showed how to compute the likelihood for SRP data for
log-location-scale distributions. Their method extends to the PEX model without
difficulty. For a group of independent SRPs, the log-likelihood can be expressed as
the sum of the log-likelihoods for each individual SRP. Here we briefly review how
to compute the likelihood for a single SRP as applied to the PEX model. See Zhang
et al. (2017) for a more detailed description, examples, and other information.

Consider an SRP with m sockets and an observed event history
Hτc = (τ1, τ2, . . . , τr , τc), where r is the number of events within the SRP,
τ1 < · · · < τr , and the end-of-observation time τc with τc ≥ τr . Therefore,
there are h partitions of the integer r , where a partition E r

i = (r1, · · · , rli ) is a
list of li nonincreasing positive integers that sum to r (see Hankin 2006). The
partition suggests that li out of the m sockets contain events and how many
events are assigned to each of these li sockets. For a given partition E r

i , the
way of the observed event times are allocated to the li sockets is defined as the
unique-likelihood configuration, which corresponds to the set partition of an integer
partition, as described by Hankin and West (2007). Within each partition, the
number of ways that one can choose li sockets from the m sockets in an SRP is
given by the number of permutations ki (see more details in Zhang et al. 2017).
To write down the likelihood of a particular SRP, we consider all possible data
configurations that could have led to the observed r events. The data configurations
can be enumerated by considering all possible partitions of r and then enumerating
all possible unique-likelihood configurations within each partition. Therefore, the
likelihood L

(
γ ;Hτc

)
for the observed SRP is defined as

L
(
γ ;Hτc

) =
h∑

i=1

ki

si∑

j=1

Li,j

(
γ ;Hτc

)
, (4)

where Li,j

(
γ ;Hτc

)
is the likelihood for j th unique-likelihood configuration

[j = (1, · · · , si)] within the ith partition E r
i = (r1, r2, . . . , rli ), and ki is the number

of permutations of the socket labels. Based on (1) and (2), and the corresponding
unique-likelihood configuration, Li,j

(
γ ;Hτc

)
in (4) can be expressed as a function

of the unknown parameters given by the hazard values γ for the PEX model.
For a fleet of n independent systems, suppose that there are mk sockets and rk

events in system k, k = 1, 2, . . . , n. Let H k
τkc
= (τ k1 , τ

k
2 , . . . , τ

k
rk
, τ kc ) denote the

observed event history of system k, where observed failure times τ k1 < · · · < τkrk ,
and end-of-observation time τ kc ≥ τ krk . Then the total log-likelihood for the fleet is
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L
[
γ ; (H 1

τ 1
c
,H 2

τ 2
c
, . . . ,H n

τnc
)
]
=

n∑

k=1

Lk

(
γ ;H k

τkc

)

=
n∑

k=1

log
[
Lk

(
γ ;H k

τkc

)]
.

(5)

2.1.4 Constrained Optimization of the Likelihood

The PEX ML estimates γ̂ are obtained by maximizing the sum of the log-likelihoods
for all of the SRPs in the data, set subject to: γp ≥ 0, p = 1, . . . , b. Note that
we constrain the hazard levels γ such that they are all nonnegative. Hence, this
ML problem is expressed as a constrained nonlinear optimization problem. The
optimization is done by using the R function constrOptim(). Based on the
resulting estimates γ̂ of the hazard levels, the PEX semi-parametric estimate F̂ (t)

for the cdf of the renewal distribution is obtained by evaluating (1) at γ̂ .

2.2 Probability Plot for a Specified Distribution

A probability plot presents the nonparametric estimate F̂ (t) using particular plotting
scales that linearize the candidate probability distribution. The plotting scales
vary from distribution to distribution, as described in Chapter 6 of Meeker and
Escobar (1998). Following Zhang et al. (2017), we mainly use the log-location-
scale family to model the renewal distribution. A probability plot for a pre-specified
distribution is constructed by linearizing the cdf F(t). That is, by finding appropriate
transformations of F(t) and t such that the relationship between the two transformed
variables is linear. The resulting probability axis is nonlinear and is called the
probability scale.

Here we illustrate this idea with a Weibull distribution. For the common
parameterization of the Weibull (β, η) distribution, the cdf is

F(t) = Pr(T ≤ t) = 1− exp
[−(t/η)β] ,

where β and η are the shape and scale parameters, respectively. The corresponding
quantile function can be expressed as tp = η[− log(1− p)]1/β . Therefore, we have

log(tp) = log(η)+ log[− log(1− p)] 1

β
.

The above equation suggests that plotting log[− log(1 − p)] against log(tp)
generates a straight line, defining the Weibull probability plot axes.



254 W. Zhang and W. Q. Meeker

In our probability plot procedure, the semi-parametric PEX estimate F̂ (t)

is plotted on the probability axes and we assess the fit by comparing with a
straight line. Departure from this straight line indicates departure from the specified
distribution.

2.3 Assessing Sampling Variability Using Nonparametric
Simultaneous Confidence Bands

In addition to the PEX-based F̂ (t), nonparametric simultaneous confidence bands
(NPSCBs) are often used to indicate the amount of sampling variability that one
might expect to see in the probability plot, as described by Nair (1981, 1984). In
this section, we describe how to construct PEX-based NPSCBs for F(t) over the
time span of interest [tl , tu], based on a bootstrap resampling procedure.

For time tl < t < tu, a two-sided 100(1− α)% NPSCBs for F(t) is defined as

Pr
{
F(t) ∈ [F̂ (t)− elŜEF̂ (t), F̂ (t)+ euŜEF̂ (t)

]
, t ∈ [tl , tu]

}
= 1− α, (6)

where ŜEF̂ (t) is the standard error of F̂ (t), which can be obtained by using the
observed Fisher information matrix I (γ̂ ) for the PEX model, evaluated at the ML
estimates γ̂ . Let

%(γ ) =
[

∂

∂γ1
F(γ ),

∂

∂γ2
F(γ ), . . . ,

∂

∂γb
F (γ )

]

denote the first-order derivatives of F(γ ) and %(γ̂ ) is the estimate of %(γ ). Then
according to the delta method, the standard error of F̂ (t) is computed as

ŜEF̂ (t) =
√
%(γ̂ )I (γ̂ )−1%(γ̂ )′. (7)

In many reliability applications, it is desirable to obtain NPSCBs with approxi-
mately equal error probabilities in each tail. For this purpose, we use the constraint

Pr
{
F(t) ∈ [F̂ (t)− elŜEF̂ (t),∞

)
, t ∈ [tl , tu]

}

= Pr
{
F(t) ∈ (−∞, F̂ (t)+ euŜEF̂ (t)

]
, t ∈ [tl , tu]

}

for the NPSCBs. Unlike the confidence interval for a single parameter, it is known
that combining a one-sided lower and upper 100(1 − α/2)% NPSCBs will not
generate two-sided 100(1 − α)% NPSCBs. Thus, to find the solution to (6), we
used a numerical procedure for constructing two-sided NPSCBs with equal error
probabilities in both tails. More specifically, we first re-express the two-sided
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coverage probability of NPSCBs as a function of the coverage probability of the
one-sided NPSCBs to reduce the dimension of root-finding, and then find the error
probability that gives the desired two-sided coverage probability.

A bootstrap method is used to determine the critical values el , eu for a given α.
The procedure is described below.

Bootstrap NPSCBs for F(t)

1. Determine the hazard jump points according to (3) and use this set of jump points
for all of the bootstrap samples.

2. Determine the upper bound tu of the time range of interest for the NPSCB.
First, calculate the average number of events per socket in the fleet r̄ =∑n

k=1 rk/
∑n

k=1 mk . Then let τc,max denote the maximum end-of-observation
time for all of the systems, and set the upper bound to be tu = τc,max/r̄ .

3. Determine the lower bound tl of the time range of interest for the NPSCB.
First generate the �-th bootstrap SRP data by resampling from the systems
with replacement. Then find the smallest recurrence time τ(1),� in resample �.
Repeat the procedure for � = 1, . . . , B, and determine the maximum τ(1),max of
[τ(1),1, τ(1),2, . . . , τ(1),B ]. Set the lower bound to be tl = τ(1),max.

4. For the �-th bootstrap SRP data set, compute the PEX estimate F̂ (t)� and the
ŜE(t)� for t ∈ [tl , tu], � = 1, . . . , B.

5. Based on the B bootstrap estimates, calculate the values el , eu that give the two-
sided 100(1− α)% NPSCBs with equal coverage probability in the two tails.

6. For the original SRP data, compute the PEX estimate F̂ (t) and the ŜE(t) for
t ∈ [tl , tu].

7. Compute the NPSCBs by using

F̂ (t)− elŜEF̂ (t)

F̂ (t)+ euŜEF̂ (t)

for t ∈ [tl , tu].
Note that this bootstrap procedure is computationally intensive as it requires

the PEX estimation for each bootstrap sample. Thus, computation time goes up
linearly with the number of bootstrap resamples. However, for purposes of a graph-
ical assessment of goodness-of-fit (as opposed to reporting numerical confidence
bounds), a high degree of precision is not needed. A simulation study showed that
B = 200 is sufficient to generate NPSCBs because even with this small number of
bootstrap trials, the amount of Monte Carlo error is small relative to the width of the
NPSCBs. Appendix 2 gives an example.
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2.4 Illustrative Examples

In this section, we illustrate the use of the PEX semi-parametric estimate of F(t) and
NPSCBs for two sets of simulated SRP data. Both of the data sets were simulated
from a Weibull renewal distribution (η = 3378 h and β = 4), with n = 50 systems
and the expected number of events E(R) = 4 per system. The two data sets only
differ in the number of sockets, corresponding to m = 2 (Case 1) and m = 16 (Case
2) sockets, respectively.

For the Case 1 SRP data, the top and bottom plots in Fig. 2 show, respectively, the
Weibull and Fréchet probability plots. The dot-dash curve corresponds to the semi-
parametric PEX estimate of F(t) with the number of jump points b = 10, and the
two dashed curves correspond to the approximate 95% NPSCBs. The time range
of interest is (tl, tu) = (1574, 3743) h. The bootstrap procedure gives the critical
values el = 2.70 and eu = 3.60 for the NPSCBs over (tl, tu). The idML estimation
method from Zhang et al. (2017) was used to estimate the Weibull distribution
parameters (the solid straight line corresponding to the idMLE_Weibull in the top
plot) and the Fréchet distribution parameters (the solid straight line corresponding
to the idMLE_Fréchet in the bottom plot), respectively. Figure 2 indicates that the
Weibull distribution provides a good fit to the SRP data, which is not surprising
because the data were simulated from a Weibull distribution. The Fréchet estimate
has a larger departure from the PEX estimate. It is not possible to draw a straight
line through the NPSCB bands, indicating the Fréchet distribution is not consistent
with the Case 1 SRP data (see Nair 1981).

Similarly, Fig. 3 shows the Weibull and Fréchet probability plots for the Case
2 SRP data, including the semi-parametric PEX estimate of F(t) (with number
of jump points b = 5), the approximate 95% NPSCBs for t ∈ (tl, tu) =
(1034, 2443) h, and the parametric idMLE fit. The critical values for the NPSCBs
are el = 2.40 and eu = 3.17. One can see that the Weibull distribution appears
to provide a better description of the simulated SRP data as the PEX estimate has
a better agreement with the straight line on the Weibull probability plot. In this
case, however, we cannot rule out the Fréchet distribution because it is possible to
draw a straight line through the NPSCBs. Note that in the Case 2 data, the fraction
of sockets with events is approximately E(R)/m = 4/16 = 0.25; therefore, we
expect to have a good estimation of quantiles up to t0.25. This explains the relatively
low power of the probability plots in detecting the lack of fit because the data
are apparently only from the lower tail of the renewal distribution, providing less
information to discriminate among candidate probability distributions.

3 MCF Method

In this section, we describe another goodness-of-fit procedure based on the MCF
plot of the SRP data.
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Fig. 2 Weibull (top) and Fréchet (bottom) probability plots for the Case 1 SRP data (n = 50
systems, m = 2 sockets, E(R) = 4 events from a Weibull distribution)
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Fig. 3 Weibull (top) and Fréchet (bottom) probability plots for the Case 2 SRP data (n = 50
systems, m = 16 sockets, E(R) = 4 events from a Weibull distribution)
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3.1 Nonparametric MCF Estimate and Its Variance

First, the nonparametric graphical estimate of the MCF is computed by using the
following algorithm, as described, for example, in Lawless and Nadeau (1995) and
Nelson (2003).

1. Among all of the n systems, find all the V unique event times and order them
from t1 to tV .

2. For v = 1, 2, . . . , V , compute the total number of events dk(tv) for system k at
tv .

3. Let δk(tv) = 1 if system k is still being observed at time tv and δk(tv) = 0
otherwise.

4. The nonparametric estimate of the MCF M(tj ) at time tv , j = 1, 2, . . . , V , is
computed as

M̂(tj ) =
j∑

u=1

[∑n
k=1 δk(tv)dk(tv)∑n

k=1 δk(tv)

]
=

j∑

v=1

d.(tv)

δ.(tv)
=

j∑

v=1

d̄(tv), (8)

where d.(tv) is the total number of system events at time tv , δ.(tv) is the number
of systems at risk at tv , and d̄(tv) is the average number of events per system at
time tv .

Thus, the nonparametric MCF estimate M̂(t) at time t is a step function, which is
constant between the unique event times t1 < t2 < · · · < tV . These estimates do
not impose any underlying assumption for the recurrence process; therefore, serves
as a reference for the parametric fit.

To compute an estimate of the variance of M̂(tj ), Lawless and Nadeau (1995)
suggested

V̂ar
[
M̂(tj )

] =
n∑

k=1

⎧
⎨

⎩

j∑

v=1

δk(tv)

δ.(tv)

[
dk(tv)− d̄(tv)

]
⎫
⎬

⎭

2

. (9)

3.2 Parametric MCF Estimate

Zhang et al. (2017) showed how to compute a parametric estimate of the MCF
(fitted-model MCF) from a large number simulated realizations of the SRP data
from the ML estimate of the renewal distribution. By displaying both of the fitted-
model MCF and the nonparametric MCF on the same plot, the MCF plot can be
used as a graphical tool for checking deviations between the two estimates of MCF.
Suppose there is deviation detected from the MCF plot, one question arises whether
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the deviation comes from random noise or there is a lack of fit for the specified
parametric distribution.

3.3 Assessing Sampling Variability Using Nonparametric
Simultaneous Confidence Bands

Similar to the probability plotting method, we can also construct NPSCBs to assess
the sampling variability of the MCF estimate over a specified time range [tl , tu]
based on a bootstrap resampling procedure. For time tl < t < tu, a two-sided
100(1− α)% NPSCBs for the MCF M(t) is defined as

Pr
{
M(t) ∈ [M̂(t)− elŜEM̂(t), M̂(t)+ euŜEM̂(t)

]
, t ∈ [tl , tu]

}
= 1− α,

(10)

where ŜEM̂(t) is the standard error of M̂(t), which can be computed using (9). The
following constraint

Pr
{
M(t) ∈ [M̂(t)− elŜEM̂(t),∞)

, t ∈ [tl , tu]
}

= Pr
{
M(t) ∈ (−∞, M̂(t)+ euŜEM̂(t)

]
, t ∈ [tl , tu]

}

is used to obtain NPSCBs with approximately equal coverage probabilities in each
tail.

Here we propose a bootstrap resampling method to obtain the NPSCBs for a
specified time range [tl , tu]. The method is described as below. Bootstrap NPSCBs
for M(t)

1. Generate the �-th bootstrap SRP data by resampling from the systems with
replacement. Then find the range of t values [τ(1),�, τc,max,�], where τ(1),� is the
smallest recurrence time and τc,max,� is the largest end-of-observation time.

2. Repeat step 1 for � = 1, . . . , B, and determine the intersection [tl , tu] of all the
ranges [τ(1),�, τc,max,�]. [tl , tu] will be the time range of interest for the NPSCBs.

3. For the �-th bootstrap SRP data set, compute the nonparametric MCF estimates
and their variances within the time range t ∈ [tl , tu], � = 1, 2, . . . , B.

4. Calculate the values el , eu that give the two-sided 100(1 − α)% NPSCBs with
equal coverage probability in two tails.

5. For the original SRP data, compute the nonparametric MCF estimate M̂(t) and
the ŜE(t) for t ∈ [tl , tu].

6. Construct the NPSCBs by using
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M̂(t)− elŜEM̂(t)

M̂(t)+ euŜEM̂(t)

for t ∈ [tl , tu].
For a particular distribution from log-location-scale family whose cdf can be

expressed as

F(t;μ, σ) = Φ

(
log(t)− μ

σ

)
,

first obtain the idML estimates μ̂ and σ̂ for the shape and location parameters,
respectively. Compute the corresponding MCF based on θ̂ = (μ̂, σ̂ ), which is the
parametric MCF estimate described in Sect. 3.2. Then display the parametric MCF
estimates on the same plot with the nonparametric MCF estimates and NPSCBs.

3.4 Illustrative Examples

In this section, we use the same Cases 1 and 2 Weibull data examples in Sect. 2.4 to
illustrate how the above simulation procedure is used to check the adequacy of the
assumed parametric model for the SRP data. Two parametric distributions, Weibull
and Fréchet, were fit to the Case 1 SRP data, respectively. The nonparametric MCF
estimates and the two parametric MCF estimates, Weibull and Fréchet, are shown
in Fig. 4. The results show, as expected, that Weibull parametric MCF estimates
have a better agreement with the nonparametric MCF estimates. Thus, compared
to the Fréchet distribution, the Weibull distribution gives a better fit, which is
consistent with the fact that the data set was simulated from a Weibull distribution.
As described in Sect. 2.1.2, Drenick’s theorem suggests that an SRP behaves as
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Fig. 4 Weibull (left) and Frećhet (right) fitted MCF plots for Case 1 Weibull data. The solid and
dashed curves correspond to the nonparametric and parametric MCF estimates, respectively
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Fig. 5 Weibull (left) and Frećhet (right) fitted MCF plots for Case 1 Weibull SRP data. The solid,
dashed, and dot-dash curves correspond to the nonparametric, parametric MCF estimates, and 95%
NPSCBs, respectively

a HPP when the number of systems and the operation times are large enough.
Furthermore, it is known that the MCF of an HPP is linear. These facts provide
an explanation for why the nonparametric MCF estimates are nearly linear after
t = 4000 h.

To assess the amount of sampling variability and check the lack of fit, the
approximate 95% NPSCBs over (tl, tu) = (1574, 7485) h were obtained (according
to Sect. 3.3) and presented on the plots of Fig. 5 (dot-dash curves around the two
MCF estimates). The critical values are el = 3.20 and eu = 4.40, respectively.
The Weibull and Fréchet parametric MCF estimates are presented on the left and
right plots, respectively. The results indicate that Weibull distribution is consistent
with the Case 1 SRP data. The deviation between the nonparametric and Weibull
parametric MCF estimates is due to natural variability and there is no statistical
evidence for a departure from the Weibull distribution. The right-hand plot in Fig. 5
suggests, however, Fréchet parametric MCF estimate has a large departure from the
nonparametric MCF estimate; thus, it is not a good candidate in describing the Case
1 SRP data, based on the fact that the parametric MCF estimate almost falls outside
the 95% NPSCBs.

For the Case 2 data example, the nonparametric and parametric MCF estimates,
along with the 95% NPSCBs for t ∈ (tl, tu) = (1034, 2443) h, are presented in
Fig. 6. The NPSCB critical values are el = 2.75 and eu = 5.05, respectively.
Note that in this case, again due to Drenick’s theorem, most of the information for
distinguishing among different parametric distributions is in the early times of the
renewal processes (the fraction of sockets with events in this example is 0.25). One
can see that both the Weibull and the Fréchet parametric estimates stay within the
NPSCBs, indicating that both distributions are consistent with the Case 2 SRP data.
The Weibull distribution, however, fits better in the sense that the Weibull parametric
MCF estimate has a better agreement with the nonparametric MCF estimate, which
is consistent with the observations from the probability plot in Fig. 3.

The above examples show how much sampling variability one can expect in the
MCF estimates if a parametric distribution is specified correctly. If the parametric
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Fig. 6 Weibull (left) and Frećhet (right) fitted MCF plots for Case 2 Weibull SRP data. The solid,
dashed, and dot-dash curves correspond to the nonparametric, parametric MCF estimates, and 95%
NPSCBs, respectively

MCF estimate has a large deviation from the nonparametric MCF estimate, and it
falls outside the NPSCBs, then the proposed parametric distribution is not consistent
with the SRP data.

4 Application to the Cylinder Data

In the work of Zhang et al. (2017), the idML estimation was performed on the
locomotive cylinder data that first appeared in Nelson and Doganaksoy (1989) and
was subsequently given in Meeker and Escobar (1998). The data includes n = 120
systems, m = 16 sockets per system, and a total of 156 events in the fleet. Both
the Weibull and Fréchet distributions were fit to the data. In this section, we apply
both goodness-of-fit methods to the data to check the adequacy of the parametric
distributions.

4.1 Probability Plotting Method

The PEX semi-parametric estimate of the cdf F(t) with the number of breaking
points b = 8 were obtained and presented in Fig. 7 (the dot-dash curves). The
bootstrap procedure gives the critical values el = 2.71 and eu = 3.86, and 95%
NPSCBs over the time range (tl, tu) = (910, 1719) days were presented using the
dashed curves in Fig. 7. The results showed that Fréchet distribution gives a better
fit to the cylinder data than the Weibull distribution, as the PEX estimate roughly
follows a straight line on the Fréchet probability plot. The Weibull distribution does
not fit as well, but cannot be ruled out for the cylinder data because it is possible to
draw a straight line within the 95% NPSCBs.
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Fig. 7 Weibull (top) and Fréchet (bottom) probability plots for the cylinder data
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Fig. 8 Weibull (left) and Frećhet (right) fitted MCF plots for the cylinder data. The solid,
dashed, and dot-dash curves correspond to the nonparametric, parametric MCF estimates, and 95%
NPSCBs, respectively

4.2 MCF Method

The nonparametric MCF estimates and parametric MCF estimates for the Weibull
and Fréchet distributions are shown in Fig. 8. We see that, as with the probability
plotting method, the Fréchet distribution has a better agreement with the data
compared to the Weibull distribution. However, there is still some deviation between
the two estimates of MCF. Following the simulation procedure described in Sect. 3,
we obtained the 95% NPSCBs of the MCF over the time range (tl, tu) = (910, 1704)
days (the dot-dash curves in Fig. 8). The bootstrap procedure gives the critical values
el = 2.68 and eu = 4.50. Based on the results, we draw the conclusion that
the Weibull distribution does not provide an adequate description of the renewal
distribution for the locomotive cylinder data. The deviation in the right-hand MCF
plot in Fig. 8 is due to natural variability and there is no statistical evidence of a
departure from the Fréchet distribution. These observations are consistent with the
conclusions from using the probability plotting method.

5 Concluding Remarks and Areas for Future Research

In this paper, we developed two graphical diagnostic approaches to examine the
fit of a distributional model to SRP data detect and assess departures from a
fitted distribution. The two methods were based on probability plotting and MCF
estimation, respectively. The probability plotting method for detecting overall lack
of fit is a modification and extension of the traditional probability plotting method.
For the probability plotting method, the PEX model provides graphical semi-
parametric estimate of the cdf F(t) and the NPSCBs quantify statistical uncertainty.
If a straight line cannot be drawn within the bands, then data are not consistent
with the proposed distributional model. Thus, the probability plot method performs
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insightful graphical tests of goodness-of-fit hypotheses. The MCF graphical test of
goodness-of-fit, requires a comparison of the nonparametric MCF estimate with the
parametric MCF estimate for a particular distribution. The amount of sampling error
can, again, be judged by using NPSCBs, which show the underlying structure and
helps point out the departures from the fitted model.

We did an informal study to investigate the effect that the number of jump points
in the PEX model has on the graphical goodness-of-fit method described in Sect. 2.
The purpose of this appendix is to outline how we did that study and to explain why
we suggest between 6 and 10 jumps.

Some possible areas for future research include:

• It would be useful to develop alternative methods to determine the number
and location of hazard jump points. For example, Gamerman (1991, 1994) and
Demarqui et al. (2014, 2008, 2012) proposed a Bayesian approach for the PEX
model in which the hazard jump points are a random quantity, and further
introduced a flexible class of prior distributions for modeling jointly the hazard
jump points and the corresponding hazard levels.

• The NPSCBs used in the paper are based on the idea of Nair’s EP band.
Our bootstrap procedure is, however, computationally intensive. Alternative
techniques for generating the NPSCBs are needed for situations involving large
data sets.

• It would be useful to extend the goodness-of-fit method to applications where
different systems are operated in different environments. In such applications,
system-level covariates can be used and the methods in this paper can be extended
to provide a tool to help identify a baseline renewal distribution.

Appendix 1: Choosing the Number of PEX Jump Points

Starting with the cylinder SRP data, we applied the PEX probability plotting
goodness-of-fit procedure described in Sect. 2. The plots in Fig. 9 show the PEX
point estimates (solid piecewise linear curve) and the NPSCBs from bootstrapping,
using b = 3, . . . , 8 jump points (similar plots were made also for b = 9 and 10,
but are not shown here). The results were plotted on Fréchet probability scales (the
distribution that provides the best fit for the cylinder SRP data, as shown in Sect. 4).
Also shown on the plots are ML estimates for the Fréchet (straight dashed line)
and the Weibull (dash-dot curve) distributions. The PEX and Fréchet distribution
estimates agree well for b ≥ 4 and the conclusions from visual assessment are not
sensitive to the choice of b. That is, the cylinder SRP data are consistent with the
Fréchet distribution.
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Fig. 9 Fréchet probability plots showing application of the PEX probability plot procedure for
b = 3, . . . , 8 jump points
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Appendix 2: Choosing the Number of Bootstrap Samples

We did an informal simulation study to investigate the effect that bootstrap sample
size has on the graphical goodness-of-fit method for the PEX model. The purpose
of this appendix is to outline how we did that study and to explain why the
bootstrap sample size B = 200 is sufficiently large. We simulated B = 200
bootstrap SRP data sets, as described in Sect. 2.3 (simulations were also done
with other distributions with similar results). For each bootstrap SRP data set, we
computed the PEX estimates with b = 7 jump points and the corresponding standard
errors. Then, given pre-specified nominal values of el and eu, a pair of SCBs was
generated for each bootstrap SRP data set. In Fig. 10, the solid gray curves (above)
and the dashed gray curves (below) show these upper bounds and lower bounds,
respectively, plotted on Fréchet distribution probability scales. Based on the 200
bootstrap confidence-bound pairs, we calculated new calibrated values el and eu that
have equal simultaneous coverage probability in the two tails. Then the calibrated
values el , eu were used to construct the two-sided 95% NPSCBs for the original SRP
data set using the PEX point estimate and standard errors at a large number of time
points. When the bootstrap procedure was repeated, the resulting NPSCBs were,
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Fig. 10 Upper and lower simultaneous approximate one-sided 97.5% confidence bounds gener-
ated from B = 200 bootstrap samples



Goodness-of-Fit for Modeling Superposition of Renewal Process Data 269

visually, reasonably stable. With only B = 200 bootstrap the confidence bounds
will not have three (or even two) digits of accuracy, but such is not necessary for the
graphical goodness-of-fit application.
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Goodness-of-Fit Tests for Cauchy
Distributions Using Data
Transformations

J. A. Villaseñor and E. González-Estrada

Abstract The Cauchy distribution is commonly used for modeling symmetric data
sets with heavy tails in the areas of finance and economics, among others. In the
last two decades, several authors have addressed the problem of testing the null
hypothesis of the Cauchy distribution. Here, for testing this hypothesis based on a
random sample, it is proposed to transform the sample to approximately exponential
random variables and then to test for exponentiality. A power simulation study to
compare this test against other tests for the same problem provides evidence that this
test is competitive in terms of power versus several types of alternative distributions
included in the study. As an application, the returns of daily closing prices for the
period September 1st, 2018 to February 28th, 2019 of the German Stock Index
(DAX) are analyzed, where the sample size is 122. The studied tests reject the
Cauchy distribution hypothesis at the level α = 0.05.

1 Introduction

A random variable X follows the Cauchy distribution with location and scale
parameters −∞ < λ < ∞ and κ > 0, denoted by X ∼ C(λ, κ), while the cdf
of X is given by

F0(x; λ, κ) = 1

2
+ 1

π
arctan

(
x − λ

κ

)
, −∞ < x <∞. (1)

The Cauchy distribution is commonly used for modeling symmetric data sets
with heavy tails in the areas of finance, economics, etc. (Johnson et al. 1994).
Williams et al. (2015) argue that the distribution of firm growth rates is best
approximated by the Cauchy distribution than by lighter tail distributions like
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Laplace. Mahdizadeh and Zamanzade (2017) conclude that the closing prices of
the German Stock Index follow a Cauchy distribution.

In the last two decades, several authors have addressed the problem of testing the
composite null hypothesis

H0 : X1, . . . , Xn ∼ C(λ, κ), where λ and κ are unknown, (2)

versus the alternative hypothesis H1 : X1, . . . , Xn � C(λ, κ), where X1, . . . , Xn

are a random sample from a given population with continuous cdf F . Gürtler and
Henze (2000), and Matsui and Takemura (2005) consider tests for H0 based on
certain differences between the empirical characteristic function of the standardized
data and the characteristic function of the standard Cauchy distribution. Onen
et al. (2001) present several modified EDF goodness-of-fit tests. Litvinova (2005)
constructs two EDF tests for Cauchy distributions based on characterizations due
to Arnold (1979) and Ramachandran and Rao (1970). Morris and Szynal (2013)
give tests using characterization conditions of continuous distributions in terms of
moments of the k-th record values. Mahdizadeh and Zamanzade (2017) propose
three tests based on the likelihood ratio statistic and a test based on the Kullback–
Leibler information criterion. Gürtler and Henze (2000)’s tests overpower the
classical EDF goodness-of-fit tests, and Mahdizadeh and Zamanzade (2017)’s tests
are more powerful than the existing tests, especially for small sample sizes versus
light-tailed symmetric alternatives.

Data transformations have proved to be useful for testing goodness of fit of
distributions with tails heavier than the normal distribution. For instance, for testing
the Generalized Pareto distribution hypothesis, Meintanis and Bassiakos (2007)
used a data transformation to approximately exponentially distributed random
variables. Simulation results provided by González-Estrada and Villaseñor (2016)
show that for testing the Laplace distribution hypothesis, it is better to use
Anderson–Darling test based on a sample of transformed data to approximately
exponentially distributed random variables than Anderson–Darling test without
using such transformation.

Chen and Balakrishnan (1995) proposed a general goodness-of-fit test procedure
based on a data transformation to approximately normal random variables. Follow-
ing the spirit of Chen and Balakrishnan’s approach, a procedure for testing goodness
of fit of the Cauchy family of distributions is proposed here. The random sample is
transformed to approximately exponential random variables, and then Anderson and
Darling’s (1952) test is used for testing exponentiality.

This manuscript is organized as follows. Two parameter estimation methods for
the Cauchy distribution are reviewed in Sect. 2. The proposed testing procedure is
presented in Sect. 3. The results of a simulation study on the power of the test are
presented in Sect. 4. Daily price’s returns of the German stock index are analyzed in
Sect. 5. Some conclusions are given in Sect. 6.
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2 Parameter Estimation

Let X1, . . . , Xn be a random sample from the C(λ, κ) distribution. The maximum
likelihood estimators (MLE) of λ and κ , denoted by λ̂ and κ̂ , are obtained as the
solution to the following system of equations, which is solved by using numerical
algorithms like Newton–Raphson.

n∑

i=1

xi − λ

κ2 + (xi − λ)2 = 0,

n∑

i=1

κ2

κ2 + (xi − λ)2 =
1

2
n.

In general, the likelihood function has a unique root, except in some cases where
samples are of size 2 and for any arbitrary sample size n when half of the
observations are at some point x1 (Copas 1975).

Let ξp (0 < p < 1) denote the p-quantile of F0, and let ξ̃pn denote the
sample p-quantile of X1, . . . , Xn. The unbiased sample median and the sample half-
interquartile range are also estimators for λ and κ , which are defined as follows:

λ̃ =
{ 1

2

(
X(n/2) +X(n/2+1)

)
, if n is even

X(�n/2�+1), otherwise
(3)

and

κ̃ = 1

2

(
ξ̃(3/4)n − ξ̃(1/4)n

)
, (4)

where X(1) < · · · < X(n) denote the order statistics of X1, . . . , Xn, and �x� denotes
the largest integer not greater than x.

3 The New Test

It is well known that if X1, . . . , Xn are iid random variables with continuous cdf
F(·; θ), then the random variables V1, . . . , Vn are iid with Exp(1) distribution,
where Vi = − logF(Xi; θ), i = 1, . . . , n. Exp(1) denotes the standard exponential
distribution with cdf 1− e−v , v > 0.

Therefore, based on this result, for testing H0 in (2), the following test procedure
is proposed:

1. Estimate θ ′ = (λ, κ) by its MLE θ̂n.
2. Calculate vi = − log(F0(xi; θ̂n)), i = 1, . . . , n.
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3. Calculate pi = 1− exp(−v(i)/v̄), i = 1, . . . , n, where v(1) < · · · < v(n) are the
ordered values corresponding to v1, . . . , vn and v̄ =∑n

i=1 vi/n.
4. Compute Anderson–Darling test statistic by using the formula

A2 = −n− 1

n

n∑

i=1

[
(2i − 1) logpi + (2n+ 1− 2i) log(1− pi)

]
. (5)

5. Reject H0 at the significance level α ∈ (0, 1) if A2 > k1−α , where k1−α is such
that α = P(A2 > k1−α|H0), that is, k1−α is the 1−α quantile of the distribution
of A2 under H0. This critical value can be obtained by Monte Carlo simulation
for any finite sample size n.

For completeness, a brief description of Anderson–Darling test is provided in the
next subsection.

3.1 Anderson–Darling Test

Let Y1, . . . , Yn be a random sample of size n from a continuous population.
Anderson–Darling test for H ∗

0 : Y1, . . . , Yn ∼ G(·; θ1) vs. H ∗
1 : Y1, . . . , Yn �

G(·; θ1), where G(·; θ1) is some continuous cdf and θ1 is an unknown parameter, is
based on the test statistic

A2 = n

∫ ∞

−∞

[
Gn(y)−G(y; θ̂1)

]2

G(y; θ̂1)
[
1−G(y; θ̂1)

]dG(y; θ̂1), (6)

where Gn is the EDF of the Y ′i s and θ̂1 is an efficient estimator of θ1 (typically, θ̂1 is
the maximum likelihood estimator of θ1). H ∗

0 is rejected for large values of A2. The
formula to compute A2 is given in (5), where pi = G(y(i); θ̂1) and y(1) < · · · < y(n)
are the ordered values of the observed sample y1, . . . , yn.

4 Power Study

A Monte Carlo simulation study was conducted in order to assess the power
performance of the proposed test in comparison to the tests presented in Sect. 4.1.
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4.1 Other Tests for the Cauchy Distribution

As before, let X1, . . . , Xn be a random sample of size n from a population with
continuous cdf F .

4.1.1 Chen–Balakrishnan Test

For testing H ′
0 : X1, . . . , Xn ∼ F ′0, where F ′0 is the cdf of some skew pdf, Chen

and Balakrishnan (1995) proposed a testing procedure that consists in transforming
the observations to approximately normally distributed random variables and then
testing normality. The procedure is intended to facilitate the computation of critical
values when F ′0 is the cdf of some skew pdf; however, it can also be used for testing
goodness of fit of location-scale families of distributions. Here, we use it for testing
H0 in (2). To our knowledge, this procedure has not been used previously for testing
H0. The test procedure is as follows:

1. Estimate θ ′ = (λ, κ)′ by its MLE θ̂ .
2. Compute ui = F0(xi; θ̂ ), i = 1, . . . , n.
3. Calculate v′i = �−1(ui), i = 1, . . . , n, where �−1 is the inverse function of �,

the standard normal cdf.
4. Compute pi = �

(
(v′(i) − v̄′)/s

)
, i = 1, . . . , n, where v̄′ and s are the sample

mean and standard deviation of v′1, . . . , v′n.
5. Calculate Anderson–Darling test statistic (A2) by using formula (5).
6. Reject H0 at the significance level α ∈ (0, 1) if A2 > k1−α , where k1−α is such

that α = P(A2 > k1−α|H0) and it can be obtained by Monte Carlo simulation.

4.1.2 An Empirical Characteristic Function Test

Gürtler and Henze (2000) proposed a test for the Cauchy distribution based
on the empirical characteristic function #n(t) of the standardized observations
Yj = (Xj − λ̃)/κ̃ , j = 1, . . . , n, which has the following definition: #n(t) =
1
n

∑n
j=1 exp(itYj ), where λ̃ and κ̃ are given in (3) and (4). The test statistic is

Dn,a = n
∫∞
−∞ |#n(t)−e−|t ||2e−a|t |dt , where a > 0 is a fixed weighting parameter.

H0 is rejected for large values of Dn,a . Critical values are provided in Tables 1 and 2
of the same reference for different values of parameter a, as suggested by the same
authors. Here, a was fixed at 5.

For testing H0, Gürtler and Henze (2000) considered a version of Anderson–
Darling test described in Sect. 3.1 based on the parameter estimators given in (3)
and (4).
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4.1.3 Kullback–Leibler Test

Mahdizadeh and Zamanzade (2017) proposed a test for H0 based on the Kullback–
Leibler distance. The test statistic is

D̃inf = exp

{

−Hm,n − 1

n

n∑

i=1

log f0(Xi; λ̃, κ̃)
}

,

where f0 is the Cauchy density function and Hm,n= 1
n

∑n
i=1 log

{
n

2m

(
X(i+m)

−X(i−m)

)}
. Parameter m (window size) is such that 0 < m ≤ n/2. H0 is rejected

for large values of D̃inf . Critical values are provided by the authors for different
sample sizes.

4.2 Simulation Experiment

The powers of the proposed test and the tests described in Sect. 4.1 were estimated
at a test size α = 0.05 by simulating 10,000 pseudo random samples of sizes
n = 20, 35, and 50 of each considered alternative distribution, which belongs to
the following families of probability distributions:

1. Stable(a, b): four parameter stable distributions with stability index a ∈ (0, 2]
and skewness parameter b ∈ [−1, 1]. The location and scale parameters were
fixed at 0 and 1 because all tests under comparison are location-scale invariant.
This family includes the Cauchy (a = 1, b = 0) and normal (a = 2, b = 0)
distributions as particular cases. When a < 1 (a > 1), the stable distributions
have heavier (lighter) tails than the Cauchy distribution.

2. DoubleGP(ξ ): double generalized Pareto distributions with shape parameter ξ ≥
0. The DoubleGP distribution reduces to the standard Laplace distribution when
ξ = 0.

3. t (ν): Student’s t with ν degrees of freedom. This family of distributions includes
the Cauchy distribution as a particular case when ν = 1. When ν > 1, the tails
of these distributions are lighter than those of Cauchy’s.

4. st(a, ν): skew-t distributions with slant parameter a ∈ (−∞,∞) and ν > 0
degrees of freedom. Reduces to the t (ν) distribution when a = 0.

5. Logistic: standard logistic distribution.
6. LN(0,σ ): lognormal distributions with parameters (0,σ ). The tails of these

distributions become fatter as the value of σ increases.
7. GP(ξ ): generalized Pareto distributions with shape parameter ξ . GP distributions

with parameter ξ > 0.5 are heavy tailed.

Computations were carried out in R (R Core Team 2019). Packages sn (Azzalini
2017) and stable (Wuertz et al. 2016) were used to simulate random numbers
from the skew-t and stable distributions.
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Table 1 Estimated power of the tests with n = 20 and α = 0.05

Tail Skew Support Alternative A2
Exp A2

Norm A2 D̃inf Dn

Heavy 0 R DoubleGP(2) 0.75 0.51 0.60 0.02 0.53

Heavy 0 R DoubleGP(1.5) 0.48 0.24 0.35 0.02 0.33

Heavy 0 R DoubleGP(1) 0.17 0.08 0.14 0.03 0.15

0 R DoubleGP(0.75) 0.07 0.05 0.07 0.04 0.08

0 R DoubleGP(0) 0.06 0.14 0.03 0.31 0.06

Heavy 0 R Stable(0.5, 0) 0.74 0.50 0.60 0.02 0.53

Heavy 0 R Stable(0.75, 0) 0.24 0.11 0.17 0.02 0.18

Heavy 0 R Stable(1, 0) 0.05 0.05 0.05 0.05 0.05

0 R Stable(1.25, 0) 0.04 0.08 0.03 0.13 0.03

0 R Stable(1.5, 0) 0.08 0.16 0.03 0.27 0.06

0 R Stable(1.75, 0) 0.15 0.29 0.04 0.47 0.12

0 R Stable(2, 0) 0.25 0.42 0.06 0.72 0.22

0 R t(2) 0.05 0.11 0.03 0.21 0.04

0 R t4) 0.12 0.23 0.04 0.42 0.10

0 R t(6) 0.15 0.29 0.04 0.53 0.13

0 R t(12) 0.20 0.35 0.05 0.62 0.17

0 R logistic 0.16 0.30 0.04 0.55 0.14

Heavy + R st(1, 0.75) 0.37 0.19 0.33 0.09 0.14

Heavy + R st(1, 1) 0.18 0.13 0.18 0.12 0.07

Heavy + R st(2, 0.75) 0.55 0.40 0.52 0.22 0.16

Heavy + R st(2, 1) 0.32 0.30 0.34 0.23 0.09

Heavy + R Stable(0.5, 0.5) 0.88 0.66 0.77 0.08 0.53

Heavy + R Stable(0.75, 0.5) 0.44 0.26 0.35 0.08 0.19

+ R Stable(1.25, 0.5) 0.06 0.14 0.06 0.19 0.04

+ R Stable(1.5, 0.5) 0.08 0.20 0.04 0.31 0.07

+ R Stable(1.75, 0.5) 0.16 0.30 0.04 0.49 0.12

+ R Stable(2, 0.5) 0.25 0.42 0.06 0.72 0.22

+ R+ GP(−0.25) 0.45 0.77 0.26 0.95 0.35

+ R+ GP(0.25) 0.52 0.76 0.44 0.87 0.22

+ R+ GP(0.5) 0.63 0.80 0.56 0.81 0.20

Heavy + R+ GP(0.75) 0.76 0.86 0.68 0.78 0.20

Heavy + R+ GP(1) 0.85 0.91 0.78 0.74 0.23

+ R+ LN(0, 0.5) 0.22 0.49 0.13 0.73 0.18

+ R+ LN(0, 1) 0.43 0.69 0.38 0.80 0.19

Heavy + R+ LN(0, 2) 0.94 0.97 0.89 0.87 0.33

Heavy + R+ LN(0, 3) 1.00 1.00 0.98 0.91 0.56

4.3 Results

Tables 1, 2, and 3 contain the estimated powers of the tests rounded to two
decimal positions, where A2

Exp denotes the proposed test, A2
Norm denotes Chen–
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Table 2 Estimated power of the tests with n = 35 and α = 0.05

Tail Skew Support Alternative A2
Exp A2

Norm A2 D̃inf Dn

Heavy 0 R DoubleGP(2) 0.93 0.80 0.78 0.00 0.70

Heavy 0 R DoubleGP(1.5) 0.68 0.45 0.45 0.00 0.44

Heavy 0 R DoubleGP(1) 0.24 0.11 0.15 0.01 0.16

0 R DoubleGP(.75) 0.08 0.05 0.08 0.04 0.07

0 R DoubleGP(0) 0.20 0.29 0.07 0.72 0.30

Heavy 0 R Stable(0.5, 0) 0.93 0.83 0.76 0.00 0.69

Heavy 0 R Stable(0.75, 0) 0.33 0.19 0.19 0.01 0.21

Heavy 0 R Stable(1, 0) 0.05 0.06 0.05 0.05 0.05

0 R Stable(1.25, 0) 0.08 0.13 0.04 0.18 0.10

0 R Stable(1.5, 0) 0.24 0.34 0.07 0.43 0.27

0 R Stable(1.75, 0) 0.48 0.61 0.14 0.73 0.53

0 R Stable(2, 0) 0.71 0.84 0.26 0.99 0.79

0 R t(2) 0.14 0.22 0.05 0.39 0.17

0 R t4) 0.39 0.53 0.11 0.77 0.45

0 R t(6) 0.51 0.64 0.15 0.90 0.58

0 R t(12) 0.61 0.76 0.20 0.96 0.70

0 R logistic 0.52 0.64 0.16 0.93 0.61

Heavy + R st(1, 0.75) 0.54 0.27 0.49 0.05 0.21

Heavy + R st(1, 1) 0.27 0.19 0.30 0.11 0.11

Heavy + R st(2, 0.75) 0.79 0.58 0.78 0.17 0.33

Heavy + R st(2, 1) 0.57 0.48 0.59 0.24 0.22

Heavy + R Stable(0.5, 0.5) 0.98 0.91 0.94 0.02 0.77

Heavy + R Stable(0.75, 0.5) 0.63 0.44 0.53 0.04 0.28

+ R Stable(1.25, 0.5) 0.14 0.25 0.11 0.26 0.13

+ R Stable(1.5, 0.5) 0.25 0.39 0.10 0.49 0.29

+ R Stable(1.75, 0.5) 0.47 0.58 0.15 0.77 0.54

+ R Stable(2, 0.5) 0.70 0.81 0.25 0.99 0.79

+ R+ GP(−0.25) 0.93 0.99 0.69 1.00 0.89

+ R+ GP(0.25) 0.96 1.00 0.83 0.98 0.66

+ R+ GP(0.5) 0.98 1.00 0.91 0.94 0.59

Heavy + R+ GP(0.75) 0.99 1.00 0.96 0.87 0.59

Heavy + R+ GP(1) 1.00 1.00 0.98 0.79 0.62

+ R+ LN(0.5) 0.68 0.91 0.39 0.98 0.67

+ R+ LN(0, 1) 0.91 0.99 0.78 0.96 0.59

Heavy + R+ LN(0, 2) 1.00 1.00 0.99 0.92 0.77

Heavy + R+ LN(0, 3) 1.00 1.00 1.00 0.90 0.94

Balakrishnan test, and A2 denotes Gürtler and Henze (2000)’s version of Anderson–
Darling test based on estimators (3) and (4). Notations Dn and D̃inf are defined in
Sect. 4.1. The power of the tests versus the Stable(1,0) distribution provides the
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Table 3 Estimated power of the tests with n = 50 and α = 0.05

Tail Skew Support Alternative A2
Exp A2

Norm A2 D̃inf Dn

Heavy 0 R DoubleGP(2) 0.98 0.94 0.92 0.00 0.88

Heavy 0 R DoubleGP(1.5) 0.83 0.65 0.64 0.00 0.63

Heavy 0 R DoubleGP(1) 0.31 0.17 0.20 0.01 0.24

0 R DoubleGP(0.75) 0.09 0.06 0.09 0.04 0.10

0 R DoubleGP(0) 0.37 0.49 0.11 0.94 0.39

Heavy 0 R Stable(0.5, 0) 0.98 0.95 0.92 0.00 0.87

Heavy 0 R Stable(0.75, 0) 0.42 0.29 0.25 0.00 0.31

Heavy 0 R Stable(1, 0) 0.05 0.06 0.05 0.05 0.04

0 R Stable(1.25, 0) 0.13 0.19 0.05 0.23 0.10

0 R Stable(1.5, 0) 0.41 0.51 0.12 0.53 0.37

0 R Stable(1.75, 0) 0.74 0.83 0.29 0.83 0.71

0 R Stable(2, 0) 0.93 0.98 0.54 1.00 0.93

0 R t(2) 0.26 0.35 0.07 0.51 0.22

0 R t4) 0.65 0.77 0.22 0.93 0.61

0 R t(6) 0.79 0.88 0.31 0.98 0.76

0 R t(12) 0.87 0.95 0.42 1.00 0.86

0 R logistic 0.81 0.88 0.33 1.00 0.79

Heavy + R st(1, 0.75) 0.69 0.35 0.69 0.02 0.28

Heavy + R st(1, 1) 0.36 0.25 0.47 0.10 0.14

Heavy + R st(2, 0.75) 0.91 0.72 0.93 0.07 0.47

Heavy + R st(2, 1) 0.74 0.63 0.81 0.18 0.34

Heavy + R Stable(0.5, 0.5) 1.00 0.98 0.99 0.00 0.91

Heavy + R Stable(0.75, 0.5) 0.76 0.59 0.73 0.01 0.38

+ R Stable(1.25, 0.5) 0.22 0.38 0.20 0.30 0.18

+ R Stable(1.5, 0.5) 0.44 0.59 0.20 0.60 0.40

+ R Stable(1.75, 0.5) 0.73 0.82 0.32 0.85 0.71

+ R Stable(2, 0.5) 0.93 0.97 0.53 1.00 0.93

+ R+ GP(−0.25) 1.00 1.00 0.95 1.00 0.99

+ R+ GP(0.25) 1.00 1.00 0.99 0.98 0.90

+ R+ GP(0.5) 1.00 1.00 0.99 0.85 0.86

Heavy + R+ GP(0.75) 1.00 1.00 1.00 0.67 0.86

Heavy + R+ GP(1) 1.00 1.00 1.00 0.49 0.88

+ R+ LN(0.5) 0.94 0.99 0.72 1.00 0.88

+ R+ LN(0, 1) 1.00 1.00 0.98 0.96 0.85

Heavy + R+ LN(0, 2) 1.00 1.00 1.00 0.62 0.95

Heavy + R+ LN(0, 3) 1.00 1.00 1.00 0.31 1.00

estimated size of the tests since a Stable(1,0) distribution is the standard Cauchy
distribution. The tests preserve the nominal size, in general.

The power results indicate that A2
Exp test is more powerful than the rest of the

tests under comparison versus the considered symmetric alternative distributions
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with tails heavier than Cauchy’s distribution. On the other hand, when the alternative
has tails lighter than Cauchy’s, A2

Exp is competitive with Dn test.

D̃inf test is powerful versus alternative distributions with light tail; however, its
power is zero or close to zero versus heavy-tailed alternatives for all sample sizes
considered and, in some cases, its power decreases as the sample size increases (see,
for instance, the cases of st and GP(1) alternatives).

A2 is a competitive test for this problem against heavy-tailed alternatives;
however, this test has low power versus light-tailed alternative distributions with
support in the whole real line.

Notice that A2
Norm test is in general more powerful than A2

Exp, A2 and Dn

tests versus both symmetric and skew alternatives with light tail. Furthermore, this
test turns out to be the best among these three tests versus the considered skew
alternatives with support on R+.

The powers of A2
Exp, A2

Norm, and Dn tests increase as the skewness of the
alternative increases, the tail of the alternative becomes either fatter or lighter than
Cauchy’s, both the skewness and the weight of the tail differ from those of Cauchy’s
distribution, and the sample size increases.

5 A Financial Data Set

Mahdizadeh and Zamanzade (2017) consider 30 returns of the closing prices of
the German Stock Index (DAX), observed daily from January 1st, 1991, excluding
weekends and public holidays. They apply 8 tests for the Cauchy distribution
hypothesis to this data set. By using any of these tests, the null hypothesis is not
rejected with a test size α = 0.05.

Here, the returns of the closing prices of the DAX index observed daily in the
semester from September 1st, 2018 to February 28th, 2019 are considered.1 Figure 1
shows a histogram of these 122 values. The five tests compared in Sect. 4 are applied
to these observations. Opposite to Mahdizadeh and Zamanzade (2017)’s results,
according to four of the considered tests, this data set with a larger sample size does
not support the null hypothesis that the Cauchy distribution is a plausible model for
the returns because this hypothesis is rejected by such tests with α = 0.05. A2 does
not reject H0. The calculated p-values are the following:

A2
Exp A2

Norm A2 D̃inf Dn

0.00214 0.00018 0.05386 2e-05 0.00102

1Data downloaded from Yahoo Finance website https://finance.yahoo.com.

https://finance.yahoo.com
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The conclusion of rejecting H0 is supported by Fig. 2, which shows a significant
disagreement between the EDF of the observations and the MLE fitted Cauchy dis-
tribution. Figure 2 also shows that the Laplace (or double exponential) distribution
provides a better fit to this data set. This observation agrees with the result of the test
for the Laplace distribution hypothesis based on a transformation to exponentiality
proposed by González-Estrada and Villaseñor (2016), which produces a p-value =
0.5831.
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6 Conclusions

A goodness-of-fit test procedure (A2
Exp) is proposed in this manuscript for testing

the Cauchy distribution hypothesis. Monte Carlo simulation results on the power
of the test provide evidence that this test is competitive with respect to most of the
groups of alternative distributions studied. Also notice that, against the considered
heavy-tailed symmetric alternatives, A2

Exp is in general the most powerful test.
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A Bayesian Approach to Cluster
Sampling Under Simple Random
Sampling

Michael Soma and Glen Meeden

Abstract Two-stage cluster sampling arises when units in the population belong
to groups or clusters, and drawing a sample must proceed in two stages. First, a
subset of the clusters is chosen, and then within the selected clusters, a subset of
the units within a cluster is selected. When there is little available prior information
about the population, simple random sampling without replacement is often used at
both stages, and the ratio estimate is used to estimate the population total. Here, we
will compare this estimate with two Bayesian alternatives and see that the Bayesian
estimators are a slight improvement over the standard method.

1 Introduction

Two-stage cluster sampling arises when the units in the population (secondary)
come in groups or clusters (primary), and drawing a sample must proceed in
two stages. First, a subset of the primary units is chosen, and then within the
selected clusters, a subset of the secondary units within a cluster is selected. An
important special case is when there is little available prior information about the
clusters or units within the clusters. In such cases, simple random sampling without
replacement is used in both stages. In this note, we will assume that the quantity of
interest associated with each secondary unit can take on just two values, zero or one.

For this setup, Nandram and Sedransk (1993) introduced a Bayesian hierarchical
model. A limitation of their approach was that their prior distribution on the hyper-
parameter assumed a particular simple form. In this note, we will we show that
a non-informative prior suggested in Gelman et al. (2004) works better for this
problem. In the special case when all the clusters are of the same size and the
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same number of secondary units are take from each sample cluster, Meeden (1999)
showed that a stepwise Bayes approach based on the Polya posterior essentially
agrees with standard methods. Here, we will consider a modification to this
approach which allows for different cluster sizes and different sample sizes within
clusters. We will see that both Bayesian approaches can give slightly better results
that the standard frequentist estimator.

In Sect. 2, we describe in detail the two Bayesian approaches, and in Sect. 3, we
present some simulation results that compare the Bayesian approaches with the ratio
estimator.

2 Existing Bayesian Methods for Two-Stage Cluster
Sampling

We begin by setting the notation. Let N be the number of clusters or the number
of primary sampling units. For a given cluster i, let Mi be the number of secondary
sampling units in the cluster. For a given cluster i, let yij be the value of the quantity
of interest for unit j in cluster i. That is, yij is the value of the j th secondary unit
in the ith primary unit. We assume that the every yij has either the value one or the
value zero. Let yi be the cluster total for the ith cluster. Let y = (y1, . . . , yN) be the
vector of cluster totals.

Let n denote the number of clusters in the first stage of sampling. Let s be the
indices of the clusters in the sample and s′ be the indices of the clusters not in the
sample. For a given i, let mi be the size of the sample taken from cluster i. Given
s, Ms will denote the sizes of the clusters in the sample, and Ms′ will denote the
sizes of the clusters not in s. Similarly, ys and ys′ will denote the cluster totals for
the clusters in the sample and those not in the sample, respectively.

2.1 A Proper Bayesian Approach

In the absence of an informative prior, a Bayesian approach desires exchangeability
between the sampled and unsampled units. Exchangeability for a Bayesian approach
is analogous to independent and identically distributed random variables for a
frequentist. If a sequence of random variables has a joint distribution that is invariant
under all permutations of the indices, it is said to be finitely exchangeable. For
predictive inference, exchangeability ensures that the probability distribution on the
population y does not depend on the order units were drawn or which units were
sampled and unsampled.

For a two-stage cluster sample, we desire exchangeability not only between
sampled and unsampled units within a cluster but also between sampled and
unsampled clusters.
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Nandram and Sedransk (1993) propose a fully Bayesian approach for binary y.
Their model assumes that given a θi , the {yij : j = 1, 2, . . . ,Mi} are independent
with

Pr(yij = 1|θi) = θi and Pr(yij = 0|θi) = 1− θi .

Here, given θi , the probability distribution of yi is the binomial distribution with
parameters θi and Mi . That is,

f
(
yi |θi

) =
(
Mi

yi

)
θ
yi
i (1− θi)

Mi−yi .

If we take as the prior for the θi’s a Beta(α1, α2) distribution, where the
parameters α1 and α2 are fixed and known, then the posterior distribution for the
θi’s is independent, and given yi , the distribution for θi is a Beta distribution with
parameters yi + α1 and Mi − yi + α2.

If, however, we place a hyperprior on α = (α1, α2), we are able to derive
a posterior for α conditional on the observed data which can be used to better
understand how the θi’s are distributed for the unobserved clusters. This allows
for a more flexible Bayesian model than specifying an exact pair of values for α.
Nandram and Sedransk propose a prior on θi that limits α1 to take on only a finite
set of possible values and fixes α2 = τ − α1 for some fixed τ . More formally, they
assume that

α1 ∈ {ar : 0 < a1 < a2 < · · · < aR < τ }

Pr(α1 = ar) = ωr and
R∑

r=1

ωr = 1,

where the ai’s and the ω’s must be specified by the statistician.
Given the current methods in Bayesian computing, we can now extend the

approach of Nandram and Sedransk (1993) to the case where we specify a
continuous probability function on the set of α’s, where α1 and α2 can range from
zero to infinity.

Let h(α) denote a prior density for α, and consider the joint distribution of
y, θ, and α:

p(y, θ, α) = h(α)

N∏

i=1

f
(
yi |θi

)
g(θi |α).

Since we are assuming that given the θi’s, the cluster totals are independent, this
joint distribution can be rewritten as the product of the sampled and unsampled
units. That is, ignoring h(α) for a moment, we have
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N∏

i=1

f
(
yi |θi

)
g(θi |α) =

∏

i∈s
f (ysi |θsi )g(θsi |α)

∏

i∈s′
f (ys′i |θs′i )g(θs′i |α). (1)

A similar argument can be applied to the sampled and unsampled secondary
sampling units for the partially observed clusters:

∏

i∈s
f (ysi |θsi )g(θsi |α) =

∏

i∈s
f (zsi , zs′i |θsi )g(θsi |α). (2)

Now, our joint density can be expressed in terms of the observed data. Using (1)
and (2), our joint density is now

p(y, θ, α) = p(zs, zs′ , ys′ , θs, θs′ , α)

= h(α)
∏

i∈s
f (zsi , zs′i |θsi )g(θsi |α)

∏

i∈s′
f (ys′i |θs′i )g(θs′i |α).

(3)

Using (3), the joint density conditional on the observed data is

p(zs′ , ys′ , θs, θs′ , α| zs) = p(y, θ, α)

p(zs)
.

By integrating out θs , we have the joint density of zs′ , ys′ , θs′ , and α given the
observed data is

p(zs′ , ys′ , θs′ , α| zs) =
h(α)

∏
i∈s f (zsi , zs′i |α)

∏
i∈s′ f (ys′i |θs′i )g(θs′i |α)

p(zs)
.

Using the fact that we can rewrite the conditional distribution of zsi and zs′i given
α as

f (zsi , zs′i |α) =
p(zsi , zs′i , α)

p(α)

= p(zsi , zs′i , α)

p(zsi , α)

p(zsi , α)

p(α)

= p(zs′i |zsi , α)p(zsi |α).

We can now write the joint distribution of zs′i , ys′i , θs′i , and α conditional on the
observed clusters as
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p(zs′ , ys′ , θs′ , α| zs)

=
(
h(α)

∏
i∈s p(zsi |α)
p(zs)

)∏

i∈s
p(zs′i |zsi , α)

∏

i∈s′
f (ys′i |θs′i )g(θs′i |α)

= p(α|zsi )
∏

i∈s
p(zs′i |zsi , α)

∏

i∈s′
f (ys′i |θs′i )g(θs′i |α).

Next, we need to choose a prior distribution for α. Since we want our prior to be
“non-informative,” we need one that puts most of its mass close to (0, 0). We have
found that the prior discussed in Gelman et al. (2004),

h(α1, α2) ∝ (α1 + α2)
−5/2 for α1 > 0 and α2 > 0,

works well for our problem. Now, we evaluate Eq. (2.1) for this choice of the prior
h. For the rest of the discussion for notational simplicity, we will assume that the
clusters selected in the first stage where primary units i = 1, . . . , n. In this case, we
can write the joint distribution as

p(zsi , θsi , α) = h(α)

n∏

i=1

f (zsi |θsi )g(θsi |α)

∝ (α1 + α2)
−5/2

n∏

i=1

(
msi

zsi

)
θsi

zsi (1− θsi )
(msi

−zsi ) Γ (
∑2

l=1 αl)∏2
l=1 Γ (αl)

θsi
α1−1(1− θsi )

α2−1

∝ (α1 + α2)
−5/2

(
Γ (
∑2

l=1 αl)∏2
l=1 Γ (αl)

)n n∏

i=1

(
msi

zsi

) n∏

i=1

θsi
(zsi+α1−1)

(1− θsi )
(msi

−zsi+α2−1)

∝ (α1 + α2)
−5/2

n∏

i=1

θsi
(zsi+α1−1)

(1− θsi )
(msi

−zsi+α2−1)
.

Integrating out θsi , we find

p(zsi , α)

∝ (α1 + α2)
−5/2

∫

θs1

. . .

∫

θsn

n∏

i=1

θsi
(zsi+α1−1)(1− θsi )

(msi
−zsi+α2−1)dθs1 . . . dθsn

∝ (α1 + α2)
−5/2

n∏

i=1

Γ (zsi + α1)Γ (msi − zsi + α2)

Γ (msi + α1 + α2)
,

and so we have
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p(α|zsi ) ∝ (α1 + α2)
−5/2

(
Γ (
∑2

l=1 αl)∏2
l=1 Γ (αl)

)n n∏

i=1

Γ (zsi + α1)Γ (msi − zsi + α2)

Γ (msi + α1 + α2)
.

Thus, we have the log posterior:

logp(α|zs) ∝ −5

2
log(α1 + α2)+ n

⎛

⎝log (Γ (

2∑

l=1

αl))− log (Γ (α1))− log (Γ (α2))

⎞

⎠

+
n∑

i=1

[
log (Γ (zsi + α1))+ log (Γ (msi − zsi + α2))− log (Γ (msi + α1 + α2))

]
.

We can easily use the Metropolis algorithm to simulate from this posterior for
α. We can generate roughly independent draws from the posterior distribution by
saving every rth draw (Geyer 2011, Section 1.12.9.). In the examples that follow,
we use r = 1000, but the length required for roughly independent draws is always
unknown but can be estimated from the output of the algorithm if the Markov chain
has been run long enough. When computing the Bayes estimator, acceptance rates
for the Metropolis algorithm were tuned to have a roughly 20% acceptance (Geyer
2011, Section 1.13 and references cited therein). All simulations were done in the R
programming language (R Core Team 2020).

Putting this all together, given a sample, we can now simulate complete copies
of the full population for our Bayesian model. First, we get an “independent” draw
from P(α|zs). Then, for an unobserved cluster, i ∈ s′, we

1. generate θs′i from g(θs′i |α) ∼ Beta(α) and

2. generate ys′i from f (ys′i |θs′i ) ∼ Binomial(θs′i ,Msi
′).

Similarly, we can simulate the remaining Mi−mi values for the observed clusters
i ∈ s by

1. Generate θsi from P(θsi | zsi , α) ∼ Beta
(
zsi + α1,Msi − zsi + α2

)
and

2. Generate zs′i from P(zs′i |θsi ) ∼ Binomial(θsi ,Msi ).

2.2 A Stepwise Bayes Approach

The Polya posterior is related to the Polya urn distribution. For a finite population
y, no clusters for now, assume that we have a sample ys of size n. We write the
observed yi values on n pieces of paper which are then placed in an urn. The first
step in generating a complete simulated copy of a population is to select a piece of
paper at random from the urn. If the paper selected has the value yi , it is returned to
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the urn along with another piece of paper which also has the value yi . So now the urn
contains n+1 pieces of paper. The next step is to repeat the process, copying the new
yi value onto another blank piece of paper and placing both pieces of paper back
into the urn. The process is repeated until the urn contains N pieces of paper, where
N is the size of the population y. The set of numbers written on the N pieces of
paper represents on simulated copy of the population under the Polya posterior. By
simulating many such complete copies of the population, one can make inferences
about the finite population y in the usual Bayesian manor.

When estimating the population mean, the sample mean is the posterior expec-
tation of the population mean under the Polya posterior, and its posterior variance
is (n − 1)/(n + 1) times the design-based estimate of variance when the sampling
design is simple random sampling without replacement. From the Bayesian point
of view, the Polya posterior is appropriate when the sampler’s beliefs about the
sampled and unsampled units are exchangeable and little else is known about the
population. Lo (1988) showed that asymptotic distribution of the Polya posterior
is normal. Moreover, the Polya posterior is just the Bayesian bootstrap of Rubin
(1981) applied to finite population sampling. The Polya posterior is not a true
Bayesian posterior since it does not arise from a single prior distribution. But it does
have a stepwise Bayesian justification, a notion introduced in Hsuan (1979). Using
this idea, one can prove the admissibility of the sample mean when estimating the
population mean. A detailed exposition of this story is given in Ghosh and Meeden
(1997).

Meeden (1999) proposed a Polya posterior approach to two-stage cluster sam-
pling given that simple random sampling without replacement was used in both
stages. He also assumed that the clusters were all of the same size and that the
sample size at the second stage was the same for all selected clusters. To simulate
complete copies of the population of clusters given the sample, he proceeded as
follows. In the first stage, he treated the cluster labels as single units and assigned
sampled clusters to unsampled clusters using the Polya posterior for the primary
sampling units. Assume for simplicity the sample clusters s = {1, 2, . . . , n}. After
this first step, the N − n unobserved clusters now have a label i ∈ {1, 2, . . . , n}
assigned using the Polya posterior. In this way, there are zsi ones and m− zsi zeros
copied onto an unobserved cluster according to the label derived from the Polya
posterior. Meeden suggests using the Polya posterior again within each cluster to
generate the remaining M − m values to give one complete simulated copy of the
population. As usual, we calculate the desired statistic and repeat this process many
times. It is shown that when the number of clusters N is large compared to the
number of sampled clusters n, the usual design-based and Polya estimates of the
population total are almost the same and have approximately the same variance.

The condition of equal mi’s and Mi’s is a very strong one, but we now suggest
a simple modification that will work for our setup with different mi’s and Mi’s. A
problem arises when in the first stage of Polya sampling, a sampled cluster, say i,
is assigned to an unsampled cluster, say j , where mi > Mj . In this case, we will
select a random sample of size Mj from the observed sample of mi values. In the
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second stage of Polya sampling, we will consider this cluster “complete,” and no
further Polya sampling will be done.

3 Simulation Studies

For two-stage cluster sampling, when simple random sampling is used in both
stages, the standard frequentist method is to use the ratio estimator. In our
simulations, we wish to compare it with the Bayes estimator and the stepwise Bayes
estimator described in the previous section. For our simulations, we constructed four
populations with 30 different clusters of various sizes ranging from 13 to 28. Then,
for each cluster, we generated its y vector of 0’s and 1’s. Figure 1 shows the plot of
the cluster total, yi against the cluster size, Mi for the four populations.

From each of these four fixed populations, we took 500 samples of 18 clusters
and between 50 and 80% of the secondary sampling units within these sampled
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Fig. 1 For the four test populations, a plot of the cluster totals against the cluster sizes
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clusters. In these simulations, we are assuming that Mi is known for all clusters,
and thus M0 is known. The summary of the results over these 500 samples is
given in the tables. Each table gives with the average estimate for the total and
its average absolute error. The average lower bound and the average length of the
95% confidence interval and its frequency of containing the true population total are
also given. We considered three different estimators: the ratio, the Polya posterior,
and the Bayes. They are denoted by trat , tpp, and tb, respectively. The simulation
results for the four populations are given in Tables 1, 2, 3, and 4.

In all four cases, the ratio estimator had the biggest average absolute error.
Although our estimators did not perform dramatically better, for the first population,
our Bayes estimator did approximately 7% better. There is evidence that a Bayesian
posterior can be a better alternative for interval estimates than the traditional
design-based confidence intervals. For all four populations considered, the design-
based estimate never dominated either the Polya posterior or the Gelman prior in
terms of better coverage and shorter interval estimates. In all four populations, the
Gelman prior had better coverage than the design-based interval, and in two of
the populations, they also had shorter intervals. The Polya posterior had a shorter
interval than the design-based interval for all four populations, and for two of the
populations, it also had better coverage.

Table 1 Results for estimating the true total, 618, for the first population

t̂ |t − t̂ | t̂0.025 t̂0.975 − t̂0.025 t ∈ [t̂0.025, t̂0.975]
trat 615.6 64.15 469 293 0.926

tpp 615.9 62.54 480 278 0.930

tb 615.8 59.55 479 284 0.948

Table 2 Results for estimating the true total, 334, for the second population

t̂ |t − t̂ | t̂0.025 t̂0.975 − t̂0.025 t ∈ [t̂0.025, t̂0.975]
trat 333.1 47.74 219 228 0.924

tpp 333.0 45.73 241 211 0.928

tb 343.9 45.08 245 229 0.956

Table 3 Results for estimating the true total, 749, for the third population

t̂ |t − t̂ | t̂0.025 t̂0.975 − t̂0.025 t ∈ [t̂0.025, t̂0.975]
trat 747.1 55.36 616 263 0.942

tpp 748.2 53.10 628 242 0.936

tb 753.6 52.38 626 252 0.956

Table 4 Results for estimating the true total, 750, for the fourth population

t̂ |t − t̂ | t̂0.025 t̂0.975 − t̂0.025 t ∈ [t̂0.025, t̂0.975]
trat 751.1 27.56 691 120 0.910

tpp 750.2 24.06 689 119 0.938

tb 750.0 26.93 677 145 0.972



294 M. Soma and G. Meeden

4 Final Remarks

Here, we have focused on the situation where the secondary units can take on only
two values. But the methods easily generalize to the case where they can take on
only some finite set of values.

Sometimes, one has additional information about the population, for example,
the value of an auxiliary variable for either the primary or the secondary units
in the population. In other situations, one could be interested in estimating other
population parameters, say the population median. Soma (2012) discusses how the
methods given here and some other Bayesian approaches can be used in for such
problems.
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Bayesian Model Assessment and
Selection Using Bregman Divergence

Gyuhyeong Goh and Dipak K. Dey

Abstract One of the fundamental steps in statistical modeling is to select the
best-fitting model from a set of candidate models for given data. In this paper,
based on Bayesian decision theory, we introduce a new model selection criterion,
called Bregman divergence criterion (BDC). The proposed criterion improves many
existing Bayesian model selection methods such as Bayes factor, intrinsic Bayes
factor, pseudo-Bayes factor, etc. In addition, using a Monte Carlo approach, we
develop an efficient estimator that significantly eases the computational burden
associated with our approach and prove its consistency. The versatility of our
methodology is demonstrated on both simulated and real data; to this end, some
illustrative examples are provided for linear regression models and longitudinal data
models.

1 Introduction

In a Bayesian framework, various predictive densities have been utilized as essential
ingredients for developing Bayesian model selection criteria. For instance, the Bayes
factor is a ratio of prior predictive densities for two candidate models and represents
an intuitively appealing tool for selecting a better model. Stone (1974) and Geisser
(1975) proposed the pseudo-Bayes factor based on posterior predictive densities
coupled with the idea of leave-one-out cross-validation. In similar spirit, Berger and
Pericchi (1996b) introduced the intrinsic Bayes factor based on posterior predictive
densities characterized by the notion of minimal training samples to ensure the
existence of posterior predictive densities.
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In this paper, our primary goal is to develop a general tool for Bayesian model
selection and assessment. To unify and extend many existing predictive model
selection and assessment procedures, we consider a general conditioning scheme
for predictive density and introduce a fairly general summary measure for observed
predictive densities. Our summary measure is analogous to a scoring rule which
assigns a numerical score for the observed data based on their predictive densities.
In general, there are many kinds of scoring rules available such as logarithmic score,
quadratic score, and ranked probability score (Gneiting and Raftery 2007). From a
Bayesian perspective, we adopt the Bregman divergence scoring rule (Grünwald
and Dawid 2004). This rule offers a general scoring method in the sense that
the Bregman divergence (Bregman 1967) includes, as a special case, many well-
known loss functions such as squared error loss, Kullback–Leibler divergence, and
Mahalanobis distance.

In a frequentist framework, the predictive density approach for model selection
produces a convenient tool because a predictive density can be easily calculated
by plugging the maximum likelihood estimate into the predictive density function.
However, the calculation of Bayesian predictive density is a challenge due to the fact
that, in many cases, the predictive density function cannot be expressed in a closed
form. Several attempts have been made to address this problem. Gelfand and Dey
(1994) proposed a Monte Carlo estimator for several types of conditional predictive
densities. Chen (1994) developed a relatively accurate estimation method for the
prior predictive (or marginal) density. As an extension of Gelfand and Dey (1994)
and Chen (1994), we introduce a general Monte Carlo estimator to calculate various
predictive densities.

Some remarks are due on notation and assumptions used in this paper. We use
f (y|θ), m(y), p(y1|y2), π(θ), and π(θ |y) to denote, respectively, the likelihood
function, the marginal density (or prior predictive density), conditional predictive
density (or posterior predictive density), the prior, and the posterior, where y =
(y1, . . . , yn) is the observed data set, y1 and y2 are sub-vectors of y, and θ =
(θ1, . . . , θq) represents a vector of parameters such that θ ∈ Θ for a suitable
parameter space Θ . We remark here that there is no restriction on the nature of the
posterior, i.e., the posterior can be a density with respect to the Lebesgue measure
or with respect to a counting measure or can also be a mixture of densities. For
notational convenience, the distributions, normal, inverse-gamma, inverse-Wishart,
and uniform are, respectively, denoted as N, IG, IW, and U.

The outline of the remainder of the paper is as follows. In Sect. 2, we introduce
our main construct and result. Section 3 details the calculation of Bayesian
predictive density with some examples. Simulation studies are conducted with a
linear regression model and a longitudinal data model in Sect. 4. Section 5 offers
some concluding remarks.
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2 Model Selection Using Bregman Divergence

2.1 Predictive Model Selection and Bayesian Decision-Making

A predictive model selection problem can be considered as a decision-making
problem; see Bernardo and Smith (2000) and the references therein. In other words,
the best model among candidate models is the one whose prediction performance
is most similar to the true model’s. To formalize this idea, let M true be the true
model and M = {M1,M2, . . . ,MK } be a collection of candidate models, where
the number of candidate models, K , is assumed to be known, and further there is
no preferred model. Suppose that ynew is a future observation after yold is observed.
Let p(ynew|yold,M

true) be the true conditional predictive density of ynew given yold,
that is,

p(ynew|yold,M
true) =

∫
f (ynew|θ, yold,M

true)π(θ |yold,M
true)dθ .

For model Mk , we denote the conditional predictive density by p(ynew|yold,M
k).

Then, predictive model selection can be formulated as finding a model that has
the minimum dissimilarity between p(ynew|yold,M

true) and p(ynew|yold,M
k) as

follows:

M∗ = arg min
Mk∈M

d
(
p(ynew|yold,M

true), p(ynew|yold,M
k)
)
, (1)

where d(·, ·) is an appropriate functional divergence measure between two density
functions satisfying

d(f, g) ≥ 0, and d(f, g) = 0 if and only if f = g, a.e.

For example, if we define d(·, ·) as the Kullback–Leibler divergence, then we reduce
(1) to

M∗ = arg min
Mk∈M

∫
log

{
p(ynew|yold,M

true)

p(ynew|yold,Mk)

}
p(ynew|yold,M

true)dynew.

The proposed method in (1) looks straightforward and reasonable, but two serious
problems occur in practice. First, since the true model M true is unknown, then the
true predictive density p(ynew|yold,M

true) is unknown. Second, the calculation of
functional divergence between M true and Mk over ynew may not have an analytical
solution.

To address the first challenge, following Bernardo and Smith (2000), Gelfand
and Ghosh (1998), Gutierrez-Pena and Walker (2001), Laud and Ibrahim (1995),
and San Martini and Spezzaferri (1984), we employ Bayesian decision theory as
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follows. Define S to represent a collection of all possible models. Let M (∈ S )

be the unknown true model (the unknown state of nature) and M be a collection
of candidate models under consideration (the decision space). We define the loss
function by L(M, a) = d (p(ynew|yold,M), p(ynew|yold, a)), where M ∈ S and
a ∈ M . The posterior expected loss is given as

ρ (π(M|yold), a) =
∫

M∈S
L(M, a)π(M|yold)dM, (2)

where

π(M|yold) = m(yold|M)π(M)
∫
M∈S m(yold|M)π(M)dM

,

and the prior π(M) reflects our prior information or belief about the true model.
Hence, the Bayes rule is given as

M̃ = arg min
a∈M

ρ (π(M|yold), a) . (3)

Based on the aforementioned Bayesian decision theory, we can estimate the best
model M∗ in (1) by M̃ . We further assume that M ∈ M , that is, one of the
candidate models is the true model, often referred to as the M -closed framework
(Bernardo and Smith 2000). Since we consider M = {M1,M2, . . . ,MK} as a pool
of candidate models for the true model with no preference, we naturally define

π(M) =
{

1
K
, M ∈ M

0, M /∈ M
, M ∈ S .

Under this prior, the posterior expected loss (2) can be explicitly expressed as

ρ (π(M|yold), a) =
∑K

l=1 d
(
p(ynew|yold,M

l), p(ynew|yold, a)
)
m(yold|Ml)

∑K
k=1 m(yold|Mk)

. (4)

For the second issue, we propose to use the cross-validation approach as in Stone
(1974), Geisser (1975), Geisser and Eddy (1979), and Dawid (1984). In this paper,
we consider a similar strategy used in Gelfand and Dey (1994) in order to provide
more flexible grouping and conditioning schemes than the classical cross-validation
methods. Suppose that y = (y1, . . . , yn) is observed. Let ys1 , ys2 , . . . , ysm be m(≤
n) subsets of y such that y = (ys1 , ys2 , . . . ysm). Define y−si as a complement of
ysi , that is, y−si = y \ ysi for i = 1, 2, . . . , m. Now, we treat ysi and y−si as the
future data and the observed data, respectively. The determination of sub-sample
ysi should depend on the nature of data. In practice, the leave-one-out approach
(i.e., ysi = yi) is commonly used for small- or moderate-sized data. For large data,
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tenfold cross-validation (or 10% of data) is generally preferred to define the sub-
sample because the leave-one-out approach is computationally inefficient in this
case. For each observed ysi , the posterior expected loss (4) reduces to

ρ∗
(
π(M|y−si ), a

) =
∑K

l=1 D
(
p(ysi |y−si ,Ml), p(ysi |y−si , a)

)
m(y−si |Ml)

∑K
k=1 m(y−si |Mk)

,

where D(·, ·) denotes a divergence measure between two vectors (or scalars).
Inspired by (3), we define our best model as follows:

M̂ = arg min
a∈M

m∑

i=1

ρ∗
(
π(M|y−si ), a

)
. (5)

2.2 Bregman Divergence Criterion

To employ our minimum divergence approach in (5), a valid divergence measure
between two vectors should be determined. We consider a general class of diver-
gence measures, called Bregman divergence.

Definition 1 Let ψ : Ω → R be a strictly convex and differentiable function on a
nonempty convex set Ω ⊆ R

m. Then, the Bregman divergence BDψ is defined as

BDψ(x, y) = ψ(x)− ψ(y)− 〈x− y,∇ψ(y)〉 ,

where ∇ψ represents the gradient vector of ψ .

It is worthwhile to note that Bregman divergences reduce to various divergence
measures according to the choice of the convex function ψ ; few illuminating
examples are enumerated below.

Example 1 Let x = (x1, . . . , xm)
T and y = (y1, . . . , ym)

T. Suppose ψ(x) =∑m
i=1{xi log xi}, then the Bregman divergence is given as

BDψ(x, y) =
m∑

i=1

{xi log xi} −
m∑

i=1

{yi log yi} −
m∑

i=1

{(xi − yi) (log yi + 1)}

=
m∑

i=1

{
xi log

xi

yi
− xi + yi

}
,

which is the generalized Kullback–Leibler divergence between x and y.

Example 2 Suppose ψ(x) = ∑m
i=1{− log xi}, then the Bregman divergence is

written as
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BDψ(x, y) =
m∑

i=1

{− log xi} −
m∑

i=1

{− log yi} −
m∑

i=1

{(xi − yi) (−1/yi)}

=
m∑

i=1

{
xi

yi
− log

xi

yi
− 1

}
,

which is called Itakura–Saito distance (Itakura and Saito 1970) between x and y.

Example 3 Suppose ψ(x) = xTAx, where A is a positive definite matrix, then the
Bregman divergence is given as

BDψ(x, y) = xTAx− yTAy− 〈x− y, 2Ay〉
= (x− y)TA(x− y).

If A is assumed to be an inverse covariance matrix, then the Bregman divergence
becomes the Mahalanobis distance between x and y. If we assume that A is the
identity matrix, then the Bregman divergence reduces to the squared Euclidean
distance between x and y such that BDψ(x, y) = ‖x− y‖2, where ‖x‖ = √xTx.

Another important feature of Bregman divergence is that under the Bregman
divergence loss, the proposed model selection criterion in (5) can be viewed as
Bregman divergence.

Theorem 1 Let p̄i = ∑K
l=1

m(y−si |Ml)
∑K

k=1 m(y−si |Mk)
p(ysi |y−si ,Ml) and p

(a)
i =

p(ysi |y−si , a) for i = 1, 2, . . . , m and m ≤ n. If D(·, ·) = BDψ(·, ·), we have

arg min
a∈M

m∑

i=1

ρ∗
(
π(M|y−si ), a

) = arg min
a∈M

BDψ

(
p̄,p(a)

)
,

where p̄ = (p̄1, p̄2, . . . , p̄m) and p(a) = (p
(a)
1 , p

(a)
2 , . . . , p

(a)
m ). Note that this holds

for any strictly convex and differentiable function ψ .

From Theorem 1, we now define a new Bayesian model selection criterion, called
Bregman divergence criterion (BDC).

Definition 2 (Bregman Divergence Criterion)

BDCψ(k) = BDψ

(
p̄,p(Mk)

)
, (6)

where p(Mk) = (p
(Mk)
1 , p

(Mk)
2 , . . . , p

(Mk)
m ) with p

(Mk)
i = m(y|Mk)/m(y−si |Mk)

and p̄ = (p̄1, p̄2, . . . , p̄m) with p̄i = {∑K
l=1 m(y|Ml)}/{∑K

t=1 m(y−si |Mt)}.
The BDC defined in (6) measures the dissimilarity in the Bregman divergence
sense between the predictive density vector of model Mk and the average vector
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of predictive densities under each of the models considered. Hence, the model with
the smallest BDC is preferred. In Sect. 4.1, using simulation studies, we show that
our model selection with BDC is more powerful than the existing Bayesian model
selection methods.

3 Calculation of BDC

For calculation of BDC, it suffices to compute m(ys |Mk) for an arbitrary subset ys
and k ∈ {1, 2, . . . , K}. Therefore, in this section, we mainly discuss the calculation
of the marginal density. Our approach relies on a Monte Carlo method with a
single set of posterior samples, which is computationally efficient. For simplicity
of notation, we omit to indicate the given model Mk . Hence, m(ys |Mk) will be
denoted by m(ys) throughout this section.

In some cases, one may be fortunate enough to obtain m(ys) in a closed form.
The following example illustrates the abovementioned scenario in the case of the
linear regression model with independent errors.

Example 4 (Linear Regression Model) Consider the linear model given in Berger
and Pericchi (1996a). Suppose that model M is given as

M : y = Xβ + ε, ε ∼ N(0, σ 2In),

where β = (β1, . . . , βq)
T and σ 2 are unknown, y = (y1, . . . , yn)

T is the data
vector, X is the (n× q) design matrix with rank q(< n), and xi is the ith row of X.
Consider the objective prior π(β, σ 2) = 1/σ 2. Let ns be the number of observations
in ys(⊆ y). With a straightforward calculation, the marginal density is explicitly
expressed as follows. If ns ≥ q, then

m(ys) = (π)−
ns−q

2 Γ
(ns−q

2

)

∣∣XT
s Xs

∣∣1/2 [
(ys − ŷs)T(ys − ŷs)

] ns−q
2

,

where ŷs = Xs(XT
s Xs)

−1XT
s ys . If ns < q, then m(ys) is undefined (improper).

Example 4 represents a special case where the marginal density can be expressed
in a closed form. However, in general, the calculation of marginal density is not
an easy task within a Bayesian framework; pertinently, even if it is amenable to
calculation via numerical methods, the huge computational burden associated with
the task creates a significant obstacle; this is so since the marginal density needs to
be calculated for each sub-sample ysi , i = 1, . . . , m. In view of that, we propose
a Monte Carlo estimator of the marginal density based on a single set of Markov
Chain Monte Carlo (MCMC) samples from the stationary full posterior distribution.
In this approach, all the required marginal densities can be simultaneously computed
by the single set of MCMC samples. In addition, our method considerably mitigates
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the burden of Bayesian computation since the posterior sample should be already
generated for the inference procedure in the first place. We formalize the preceding
discussion with the following theorem.

Theorem 2 Suppose that g(·) is a probability density function satisfying supp(g) ⊂
supp(π). Let 1(A) be the indicator function for a set A and f (y|θ) be the likelihood
function. If

{
θ j
}N
j=1 is a set of MCMC samples from the full posterior distribution

π(θ |y) and p(ys |y−s) <∞, where y−s = y \ ys , then

lim
N→∞

⎡

⎣ 1

N

N∑

j=1

⎧
⎨

⎩
1

f (ys |y−s , θ j )

(
g(θ j )

π(θ j )

)1({y−s }=∅)
⎫
⎬

⎭

⎤

⎦

−1

a.s.= p(ys |y−s). (7)

It is easy to check that the marginal density can be expressed as

m(ys) = m(y)/p(y−s |ys). (8)

From Theorem 2 and (8), a Monte Carlo estimator of marginal density is given by

m̂(ys) =
⎧
⎨

⎩

N∑

j=1

f (ys |θ j )
f (y|θ j )

⎫
⎬

⎭

⎧
⎨

⎩

N∑

j=1

g(θ j )

f (y|θ j )π(θ j )

⎫
⎬

⎭

−1

, (9)

for i = 1, . . . , m, where g(·) is a probability density function, π(·) is a prior density

function, and
{
θ j
}N
j=1 is a set of MCMC samples from the full posterior density

π(θ |y). Note that using Theorem 2 and (8), the following argument can be easily
shown:

m̂(ys)
a.s.= m(ys).

To minimize the variance of our Monte Carlo estimator, the weight function g(·)
should be chosen to be close to the target function f (y|·)π(·). Chen (1994) proposed
to use a density function such that its mean and variance match the posterior
mean and variance. Later, Goh and Dey (2014) showed that if g(·) is a normal
density function, then the mean and variance matching density minimizes the
Kullback–Leibler divergence between g(·) and f (y|·)π(·). Let φ(·;μ,Σ) be a
density function of N(μ,Σ). Here, we define g(·) = φ(·;μθ ,Σθ ) with

μθ = 1

N

N∑

j=1

θ j and Σθ = 1

N − 1

N∑

j=1

(θ j − μθ )(θ
j − μθ )

T,

where
{
θ j
}N
j=1 is a set of MCMC samples from the full posterior density π(θ |y).

In addition, a suitable burn-in length and a large number of MCMC draws are
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necessary to improve the precision of the Monte Carlo estimate. Liu et al. (2016)
and the references therein provide useful guidance on the number of MCMC draws
and the burn-in length.

The following example describes the utility of our Monte Carlo estimator in
generalized linear models.

Example 5 (Generalized Linear Model) Suppose that y = (y1, . . . , yn)
T is a vector

of independent observations such that the density of the observation yj belongs to
the natural exponential family, that is,

f (yj |θj ) = exp
{
θj yj − a(θj )+ b(yj )

}
, (10)

where a(·) and b(·) are known functions. Let θj be related to the regression
coefficients such that

θj = h(xT
j β). (11)

Then, the model determined by (10) and (11) is called the generalized linear model
(GLM). Let π(β) be a prior density. From (10) and (11), the posterior density of β

is given by

π(β|y) ∝ exp

⎡

⎣
n∑

j=1

{
yjh(xT

j β)− a
(
h(xT

j β)
)}
⎤

⎦π(β). (12)

Let
{
β l
}N
l=1 be a set of MCMC samples from the full posterior density in (12). The

Monte Carlo estimator in (9) is written as

m̂(ys) =
⎡

⎣
N∑

l=1

exp

⎧
⎨

⎩

n∑

j=1

dj

{
a
(
h(xT

j β l )
)
− yjh(xT

j β l )− b(yj )
}
⎫
⎬

⎭

⎤

⎦

×
⎡

⎣
N∑

l=1

exp

⎧
⎨

⎩

n∑

j=1

{
a
(
h(xT

j β l )
)
− yjh(xT

j β l )− b(yj )
}
⎫
⎬

⎭

×φ(β l;μβ,Σβ)

π(β l )

]−1

,

where dj = 1
(
yj /∈ ys

)
, μβ = 1

N

∑N
l=1 β l , and Σβ = 1

N−1

∑N
l=1(β

l − μβ)(β
l −

μβ)
T.

Remark 1 In this paper, our computation of the BDC relies on an importance
sampling approach, but this may fail if the proposal distribution does not sufficiently
well approximate the target. To improve the accuracy, using Truncated Importance
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Sampling (Ionides 2008), (9) can be replaced by

m̂(ys) =
⎡

⎣
N∑

j=1

min{W1(θ
j ),
√
NW̄1}

⎤

⎦

⎡

⎣
N∑

j=1

min{W2(θ
j ),
√
NW̄2}

⎤

⎦

−1

,

where W1(θ
j ) = f (ys |θj )

f (y|θj ) , W2(θ
j ) = g(θj )

f (y|θj )π(θj ) , and W̄i = ∑N
j=1 Wi(θ

j )/N for

i = 1, 2.

4 Illustrative Examples

To show the applicability and reliability of BDC for variable selection and determi-
nation of covariance matrix, we discuss some illustrative examples via simulation
studies and real data analysis.

4.1 Linear Regression Models

In this section, we conduct some simulation studies to compare the variable
selection performance with existing Bayesian model selection methods under a
linear regression model setup, which are the most popular statistical models in
practical application. To define the predictive density, we use the leave-one-out
cross-validation approach, also known as the Conditional Predictive Ordinate (CPO)
approach, i.e., ysi = yi . To define BDC, we need to specify a Bregman divergence.
As in Goh and Dey (2014), we consider a subclass of Bregman divergence, called
Beta-divergence, rather than choosing one specific Bregman divergence.

BDCψγ (k) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑m
i=1

{
p̄i/p

(Mk)
i − log

(
p̄i/p

(Mk)
i

)
− 1

}
, γ = 0

∑m
i=1

{
p̄i log

(
p̄i/p

(Mk)
i

)
− p̄i + p

(Mk)
i

}
, γ = 1

∑m
i=1

(p̄i )
γ+(γ−1)

(
p
(Mk)
i

)γ

−γ p̄i

(
p
(Mk)
i

)γ−1

γ (γ−1) , γ ∈ R \ {0, 1}

,

where

ψγ (x) =

⎧
⎪⎪⎨

⎪⎪⎩

∑m
i=1 {− log xi + xi − 1} , γ = 0

∑m
i=1 {xi log xi − xi + 1} , γ = 1
1

γ (γ−1)

∑m
i=1

{
x
γ

i − γ xi + (γ − 1)
}
, γ ∈ R \ {0, 1}

.

Note that ψγ is continuous with respect to γ (Hennequin et al. 2011).
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Consider three models M1, M2, and M3 such that

Mk : y = Xβk + ε, k = 1, 2, 3,

where β1 = (β0, β1, β2, β3)
T, β2 = (β0, β1, β2, 0)T, β3 = (β0, β1, 0, 0)T, ε ∼

N(0, σ 2
k In) (σ 2

k is unknown), y = (y1, . . . , yn)
T, and X = [1n,X1, X2, X3] is the

(n × 4) design matrix with full column rank. Define X1 = [1n,X1, X2, X3], X2 =
[1n,X1, X2], and X3 = [1n,X1]. Consider the objective prior πk(βk, σk) = 1/σ 2

k

for k = 1, 2, 3, then for given k, the posterior distribution is

π(βk, σ
2
k |y) ∝ (σ 2

k )
−( n

2+1) exp

{

− 1

2σ 2
k

(
y− Xkβk

)T (y− Xkβk

)
}

. (13)

From (13), we can easily determine that

σ 2
k |y ∼ IG

(
n− qk

2
,
(y− ŷk)T(y− ŷk)

2

)
, (14)

βk|σ 2
k , y ∼ N

(
β̂k, σ

2
k (X

T
k Xk)

−1
)
, (15)

where ŷk = Xk(XT
k Xk)

−1XT
k y, β̂k = (XT

k Xk)
−1XT

k y, and qk is the dimension of βk

for k = 1, 2, 3. Therefore, the full posterior sample,
{
(β l

k, σ
2l
k )
}N
l=1, can be directly

generated from (14) and (15).
We simulate 2000 data sets under the following setting: for given n = 100,

we set β = (2,−2, 2.5, 0)T, X = [1n,X1, X2, X3] with xij
iid∼N(0, 1), where xij

indicates ith element of a vector Xj , and σ 2 = 1. In this setting, the true model
is M2. The models M1 and M3 are over-fitting and under-fitting, respectively. The
size of full posterior samples is N = 3000 in each simulation. Note that since our
sampling procedure generates an independently and identically distributed (i.i.d.)
sample from the posterior distribution, the burn-in period is not needed.

Table 1 summarizes the variable selection performance of BDCψγ for γ =
0, 0.2, . . . , 2.0. For comparison purposes, Deviance Information Criterion (DIC)
and pseudo-Bayes factor (PSBF) are also computed. Note that PSBF evaluates pro-
posed models based on CPOs, which are also used in BDC, but PSBF summarizes
the obtained CPOs simply by the log sum, or equivalently, the geometric mean.
Table 1 shows that the percentage of true model (= M2) selected by BDCs is about
90% across the 2000 Monte Carlo replicates, while about 85% of the true model
has been selected by PSBF and DIC. This result demonstrates that BDC is more
powerful than DIC and PSBF. In addition, the percentage of selecting the true model
is constantly about 90% for any value of γ . This shows that BDC is robust to the
choice of convex function.

To check the accuracy of our Monte Carlo estimator in (9), we fit a simple linear
regression model for the true CPOs as a linear function of estimated CPOs in which
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Table 1 Summary of model
selection rates (%)

Model

Criterion M1 M2 M3

BDCψ0.0 9.10 90.90 0.00

BDCψ0.2 9.15 90.85 0.00

BDCψ0.4 9.15 90.85 0.00

BDCψ0.6 9.25 90.75 0.00

BDCψ0.8 9.30 90.70 0.00

BDCψ1.0 9.30 90.70 0.00

BDCψ1.2 9.35 90.65 0.00

BDCψ1.4 9.20 90.80 0.00

BDCψ1.6 9.20 90.80 0.00

BDCψ1.8 9.30 90.70 0.00

BDCψ2.0 9.35 90.65 0.00

PSBF 15.00 85.00 0.00

DIC 15.35 84.65 0.00

Table 2 True CPOs versus estimated CPOs

Comparison Coef. est. s.e. MSE R2

p(yi |y−i ,M1) vs p̂(yi |y−i ,M1) 1 1.304× 10−6 3.009828× 10−8 1

p(yi |y−i ,M2) vs p̂(yi |y−i ,M2) 1 1.046× 10−6 1.956894× 10−8 1

p(yi |y−i ,M3) vs p̂(yi |y−i ,M3) 1 9.171× 10−7 2.099638× 10−9 1

p(yi |y−i , M̂ true) vs p̂(yi |y−i , M̂ true) 1 1.026× 10−6 1.877235× 10−8 1

we assume that the regression line passes through the origin, that is, the intercept is
assumed to be zero. The results are shown in Table 2. All the estimated coefficients
(i.e., slopes) are one with extremely small standard errors. Furthermore, R2 is one,
and mean squared error (MSE) is extremely small for all the models. Therefore, we
conclude that the proposed Monte Carlo estimator is very accurate in this simulation
study.

4.2 Bayesian Longitudinal Data Models

Many biological experiments are conducted under a longitudinal study setup, where
the measurements on subjects are repeatedly measured over time. Due to the
experimental scheme, a correlation between measurements on the given subject
naturally occurs, so the determination of correlation structure requires a special care
in the statistical modeling for longitudinal data models. In this section, we assume
that every individual has the same number of observations, but unequal size of
observations can occur due to missing data in practice. Suppose that yij denotes the
j th measurement on the ith subject and Xi is an (T ×q) design matrix of covariates
for ith subject in the longitudinal study for i = 1, 2, . . . , n and j = 1, 2, . . . , T .
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Then, the following linear model can be used to fit the longitudinal data:

yi = Xiβ + εi , (16)

where yi = (yi1, yi2, . . . , yiT )
T, β = (β0, β1, . . . , βq−1)

T is a q-dimensional
parameter vector, and εi is the random error vector with E(εi ) = 0 and
Cov(εi , εj ) = Vi if i = j and Cov(εi , εj ) = 0 if i �= j for i, j = 1, 2, . . . , n. In
general, the normality is assumed for the error vector εi with the homogeneity, i.e.,
Vi = V for all i, and then we can write (16) as

y ∼ N(Zβ, In ⊗ V), (17)

where y = (yT
1 , yT

2 , . . . , yT
n)

T, Z = [
XT

1 ,XT
2 , . . . ,XT

n

]T
, In is the (n × n) identity

matrix, and In ⊗ V denotes the Kronecker product of In and V. In model (17), the
correlation between measurements is determined by the covariance matrix V. In this
section, we exemplify the determination of covariance matrix using BDC with rat
population growth data (Gelfand et al. 1990). The data consist of the weights of
30 young rats (n = 30) that were measured weekly for 5 weeks (T = 5). Define
that yij is the weight of the ith rat at time point j and the j th row of Xi is xT

ij =
(1, xij ), where xij is the age in days at the point j for i = 1, 2, . . . , 30 and j =
1, 2, . . . , 5. In many cases, a uniform correlation between measurements (called
compound symmetry) on the individual subject is assumed on the covariance matrix
V such that

V = σ 2V1(ρ) = σ 2

⎡

⎢⎢
⎢⎢⎢
⎣

1 ρ ρ ρ ρ

ρ 1 ρ ρ ρ

ρ ρ 1 ρ ρ

ρ ρ ρ 1 ρ

ρ ρ ρ ρ 1

⎤

⎥⎥
⎥⎥⎥
⎦
,

where 0 < ρ < 1. If the correlation between any two measurements on the
same subject dramatically decreases toward zero as the time distance between the
measurements increases, then the exponential correlation function can be considered
as follows:

ρ(l, k) = exp (−b|tl − tk|) , (18)

where b is an unknown constant, and tl and tk indicate the time points of lth and
kth measurements, respectively. Since the weights were measured once every week,
i.e., |tl − tk| ∝ |l − t |, then (18) can be rewritten as

ρ(l, k) = ρ|l−k|, (19)
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where ρ = exp(−b), and a common constant in |tl−tk| is absorbed into the unknown
constant b for l, k = 1, 2, . . . , 5. According to (19), the covariance matrix V is given
as

V = σ 2V2(ρ) = σ 2

⎡

⎢⎢⎢⎢⎢
⎣

1 ρ ρ2 ρ3 ρ4

ρ 1 ρ ρ2 ρ3

ρ2 ρ 1 ρ ρ2

ρ3 ρ2 ρ 1 ρ

ρ4 ρ3 ρ2 ρ 1

⎤

⎥⎥⎥⎥⎥
⎦
,

where 0 < ρ < 1. Now, we compare the following four models: (1) model M1

(uniform correlation) with V = σ 2V1(ρ), (2) model M2 (exponential correlation)
with V = σ 2V2(ρ), (3) model M3 (no correlation) with V = σ 2I5, and (4) model
M4 (unspecified dependence structure) with V = Σ . Let us consider the following
priors:

π(β, σ 2, ρ) ∝ σ−2 for model M1,M2,M3, (20)

(β,Σ) ∼ IW (v0,Σ0) for model M4, (21)

where v0 = 5 and Σ0 = 0.001I5. After some calculations with (17), (20), and (21),
we obtain the following full conditionals for each model:
For models M1 and M2,

β|σ 2, ρ, y,Mk ∼ N

(
β̃
k
, σ 2

[
ZTṼk(ρ)−1Z

]−1
)
,

σ 2|ρ,β, y,Mk ∼ IG

(
nT

2
,
(y− Zβ)TṼk(ρ)−1(y− Zβ)

2

)

,

π(ρ|β, σ 2, y,Mk) ∝
∣∣
∣Vk(ρ)

∣∣
∣
− n

2
exp

{

− (y− Zβ)TṼk(ρ)−1(y− Zβ)

2σ 2

}

,

where β̃
k =

(
ZTṼk(ρ)−1Z

)−1
ZTṼk(ρ)−1y and Ṽk(ρ)−1 = In ⊗ Vk(ρ)−1 for

k = 1, 2. For model M3,

β|σ 2, y,M3 ∼ N

(
β̂, σ 2

(
ZTZ

)−1
)
,

σ 2|β, y,M3 ∼ IG

(
nT

2
,
(y− Zβ)T(y− Zβ)

2

)
,

where β̂ = (
ZTZ

)−1
ZTy. For model M4,
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β|Σ, y,M4 ∼ N

(
β̃

4
,
[
ZTΣ̃

−1
Z
]−1

)
,

Σ |β, y,M4 ∼ IW

(

v0 + n,Σ0 +
n∑

i=1

(yi − Xiβ)(yi − Xiβ)
T

)

,

where β̃
4 =

(
ZTΣ̃

−1
Z
)−1

ZTΣ̃
−1

y, Σ̃
−1 = In⊗Σ−1. Using the full conditionals,

we generate 10,000 samples from the full posterior (after 5000 burn-in iterations)
using Gibbs sampler in each model. In models M1 and M2, we use Metropolis–
Hastings algorithm within the Gibbs chain in order to generate samples from ρ. For
the proposal distribution, we approximate the conditional distribution of ρ given
posterior mean of (β, σ 2) (obtained from M3) using Gaussian approximation and
then truncate the distribution with lower tail 0 and upper tail 1. Since the data have
the dependency within the subject, we define ysi = yi. = (yi1, yi2, . . . , yi5) for
i = 1, 2, . . . , 30. The Monte Carlo estimators of m(ysi |Mk) and m(y|Mk) are,
respectively, given as

m̂(ysi |Mk) =
{

N∑

l=1

f (yi.|θ lk,Mk)

f (y|θ lk,Mk)

}{
N∑

l=1

gk(θ lk)

f (y|θ lk,Mk)π(θ lk)

}−1

, (22)

m̂(y|Mk) =
{

1

N

N∑

l=1

gk(θ lk)

f (y|θ lk,Mk)π(θ lk)

}−1

, (23)

where
{
θ l1 = (β l

1, σ
2l
1 , ρl

1)
}N
l=1,

{
θ l2 = (β l

2, σ
2l
2 , ρl

2)
}N
l=1,

{
θ l3 = (β l

3, σ
2l
3 )
}N
l=1,

and
{
θ l4 = (β l

4,Σ
l
4)
}N
l=1, respectively, indicate sets of MCMC samples of full

posterior distributions under models M1, M2, M3, and M4. Note that the likelihood
functions in (22) and (23) can be easily obtained from (17).

We compare BDCψγ (γ = 0, 1, 2) with DIC and PSBF. The result is shown in
Table 3. All the BDCs and DIC select M4 as the best model, while PSBF chooses
M2. Hence, we conclude that model M4 is the best model for the rat population
growth data.

Table 3 BDCs, DIC, and PSBF for M1, M2, M3, and M4

Model

Criterion M1 M2 M3 M4

BDCψ0.0 2.429×102 1.350 ×101 4.207 ×105 7.382× 10−3

BDCψ1.0 3.650×10−7 3.832 ×10−7 2.423 ×10−6 7.806× 10−11

BDCψ2.0 1.027 ×10−14 7.176 ×10−14 3.517×10−14 3.314× 10−18

PSBF −557.684 −522.710 −649.105 −525.991

DIC 1125.526 1052.211 1309.100 1031.423
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Table 4 Summary of model
selection rates (%)

Model

Criterion M1 M2 M3 M4

BDCψ0.0 100 0 0 0

BDCψ1.0 100 0 0 0

BDCψ2.0 100 0 0 0

LPML 100 0 0 0

DIC 100 0 0 0

Note that one may suspect that BDC supports the more highly parameterized
model rather than the true model for the determination of covariance matrix. To
deal with this contention, we conduct a small simulation study as follows. Let V̂1
and β̂1 be the obtained Bayes estimates (i.e., posterior means) for V and β under
M1, respectively. For given Z, V̂1, and β̂, we generate y from (17). Based on 100
replicates, we compute the selection rate (%) for BDCs, DIC, and PSBF. The result
in Table 4 shows that all model selection criteria always select the true model (=
M1) rather than over-parameterized model (= M4). This experiment demonstrates
the reliability of our real data analysis conducted in this section.

5 Concluding Remarks

We have introduced a new Bayesian model selection criterion, named BDC. In order
to calculate BDC, we have proposed a Monte Carlo method that requires only a
single set of MCMC samples from the full posterior distribution. It is worth noting
that the proposed Monte Carlo estimator can be directly applied to computing many
Bayes factors such as BF, PSBF, and IBF.

In this paper, we have used the Bregman divergence between two vectors
with the cross-validation approach in order to avoid the calculation of functional
divergence over the new observation space in the posterior expected loss (2). A
possible extension of BDC can be made by using the following functional Bregman
divergence (Goh and Dey 2014; Grünwald and Dawid 2004):

fDBξ (f, g) =
∫

ξ(f (y))− ξ(g(y))− {f (y)− g(y)}ξ ′(g(y))dy,

where ξ : (0,∞) → R is a strictly convex and differentiable function, and ξ ′
represents the first derivative of ξ . Then, under the functional Bregman divergence
loss, the Bayes rule in (3) can be obtained by

M̃ = arg min
a∈M

fBDξ (p̄(ynew|yold), p(ynew|yold, a)) ,
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where p̄(ynew|yold) =
∫
p(ynew|yold,M)π(M|yold)dM . If we can find the analyti-

cal or numerical solution, this criterion can be considered as a general extension of
BDC.

6 Proofs

6.1 Proof of Theorem 1

Let wli = m(y−si |Ml)
∑K

k=1 m(y−si |Mk)
. By the fact that

∑K
l=1 wli = 1, we have

ρ∗
(
π(M|y−si ), a

) =
K∑

l=1

wliBDψ

(
p(ysi |y−si ,Ml), p(ysi |y−si , a)

)

=
K∑

l=1

wliψ
(
p(ysi |y−si ,Ml)

)
− ψ

(
p(ysi |y−si , a)

)

− {p̄i − p(ysi |y−si , a)
}
ψ ′
(
p(ysi |y−si , a)

)

=
K∑

l=1

wliψ
(
p(ysi |y−si ,Ml)

)
− ψ (p̄i)+ BDψ

(
p̄i , p(ysi |y−si , a)

)
,

where p̄i =∑K
l=1 wlip(ysi |y−si ,Ml). This implies that

arg min
a∈M

m∑

i=1

ρ∗
(
π(M|y−si ), a

) = arg min
a∈M

m∑

i=1

BDψ

(
p̄i , p(ysi |y−si , a)

)

= arg min
a∈M

BDψ

(
p̄,p(a)

)
.

6.2 Proof of Theorem 2

When {y−s} = ∅, the left-hand side of (7) is

⎡

⎣ 1

N

N∑

j=1

g(θ j )

f (y|θ j )π(θ j )

⎤

⎦

−1

,

which converges, as N →∞, to m(y) almost surely (Chen 1994). Assume {y−s} �=
∅, and then
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p(ys |y−s) = m(y)
m(y−s)

= m(y)
∫
Θ
f (y−s |θ)π(θ)dθ

= m(y)
∫
Θ

f (y|θ)
f (ys |y−s ,θ)π(θ)dθ

=
[∫

Θ

π(θ |y)
f (ys |y−s , θ)dθ

]−1

a.s.= lim
N→∞

⎡

⎣ 1

N

N∑

j=1

1

f (ys |y−s , θ j )

⎤

⎦

−1

,

where the last part of proof can be done by the pointwise ergodic theorem.
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A Simple Step-Stress Model for Lehmann
Family of Distributions

Ayan Pal, Debashis Samanta, Sharmishtha Mitra, and Debasis Kundu

Abstract In this chapter, we consider a flexible simple step-stress model for the
Lehmann family of distributions, also known as the exponentiated distributions,
when the data are Type-II censored. At each stress level, we assume that the lifetime
distribution of the experimental units follows a member of the Lehmann family
of distributions with different shape and scale parameters. The distribution under
each stress level is connected through a failure rate-based step-stress accelerated
life testing (SSALT) model. We obtain the maximum likelihood estimators (MLEs)
of the unknown model parameters. It is observed that the MLEs of the unknown
parameters do not always exist, and whenever they exist, they are not in closed form.
However, the failure rate-based SSALT model assumption simplifies the inference
problem to a significant extent. It is not possible to obtain the exact distribution
of the MLEs, and hence, we have constructed the asymptotic confidence intervals
(CIs) based on the observed Fisher information matrix. We have also obtained
the bootstrap CIs for model parameters. Extensive simulation study is carried out
when the lifetime distribution is a two-parameter generalized exponential (GE)
distribution, an important member of the Lehmann family. A real data set has
been analyzed assuming that the lifetimes follow a few important members of the
Lehmann family for illustration purposes.

1 Introduction

Industrial products nowadays are highly reliable due to advancement in science
and technology, and one of the major recent challenges in reliability analysis
is to conduct their life testing experiments. Mean time to failure is quite high
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in industries like VLSI (very large-scale integrated) electronic devices, computer
equipment, missiles, automobile parts, etc. Performing life tests under normal
operating condition (NOC) often turns out to be impractical, expensive, and time
intensive.

Censoring is a well-known statistical technique to truncate the life testing
experiment in a well-planned manner before all the items fail. But censoring of a
life testing experiment under NOC will not resolve the issue of insufficient number
of failures for proper statistical analysis. To address this problem, accelerated life
testing (ALT) experiment has been introduced, which ensures a faster rate of failure.
The step-stress accelerated life testing (SSALT) experiment is a special class of
the ALT experiment in which the experimenter has the flexibility to perform the
experiment under one or more stress levels. In a multiple step-stress model setup,
n identical units are placed on a life testing experiment at an initial stress level s1
and then the stress level is gradually increased to s2 < s3 < · · · < sm+1 at pre-fixed
times τ1 < τ2 < · · · < τm, respectively. If m = 1, the corresponding model is
called a simple step-stress model. One way to truncate the life testing experiment is
to fix some positive integer 1 ≤ r ≤ n, and then the experiment is allowed to stop
as soon as the rth failure occurs. This is the usual Type-II censoring case, and total
time of experimental duration here is random. The successive failure times thus
recorded may then be extrapolated to estimate the failure time distribution under
NOC. If there are only two stress levels, the model is called a simple step-stress
model. To analyze the failure time data from any SSALT experiment, we need a
model that relates the distributions under different stress levels. The popular model
in the literature is the cumulative exposure model (CEM), introduced by Sedyakin
(1966) and later generalized by Bagdonavičius (1978) and Nelson (1980). Here, if
F1(.) and F2(.) are the cumulative distribution functions (CDFs) of lifetimes under
the constant stress levels s1 and s2, respectively, the CDF of the lifetime of the
experimental unit under the CEM is given by

FCEM(t) =
{
F1(t) if 0 < t ≤ τ

F2(t + τ − τ ∗) if τ < t <∞.
(1)

Here, τ ∗ is the solution of the equation F2(τ
∗) = F1(τ ) and τ is the stress-

changing time. Another widely used model is the proportional hazards model
(PHM) introduced by Cox (1992). It describes the impact of the covariates on the
lifetime distribution. Later, as a variation of Cox’s PHM, Bhattacharyya and Soejoeti
(1989) introduced the tampered failure rate model (TFRM). The assumption here is
that the effect of increasing the stress level from s1 to s2 is equivalent to multiply the
initial failure rate function at stress level s1 by an unknown factor α > 0. Therefore,
the hazard function (HF) of the lifetime of the experimental unit under the TFRM is
given by
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hTFRM(t) =
{
h1(t) if 0 < t ≤ τ

αh1(t) if τ < t <∞,
(2)

where h1(.) is the HF at the stress level s1. It may be mentioned that Madi
(1993) used the TFRM for the multiple SSALT model (m ≥ 2) when the lifetime
distribution across the stress levels is Weibull with common shape parameter and
different scale parameters. Under a similar setup, Khamis and Higgins (1998)
derived the MLEs of the common shape parameter and different scale parameters
using a log-link model. Their model is well known as the Khamis–Higgins model
(KHM).

In this chapter, we work with a flexible failure rate based SSALT model with
pre-fixed but arbitrarily chosen failure rates at different stress levels. If s1 and s2 are
the two stress levels and τ is the stress-changing time point, it is assumed that the
hazard rate of the distribution under the step-stress pattern is as follows:

h(t) =
{
h1(t) if 0 < t ≤ τ

h2(t) if τ < t <∞,
(3)

where hi(t) is the HF corresponding to the CDF Fi(t), i = 1, 2. On simplifying,
one can obtain the distribution function corresponding to h(t) as follows:

F(t) =
⎧
⎨

⎩

F1(t) if 0 < t ≤ τ

1− 1− F1(τ )

1− F2(τ )
(1− F2(t)) if τ < t <∞.

(4)

In fact, the CEM, TFRM, and the failure rate-based SSALT model coincide when
the underlying distributions at the two stress levels are exponential. The flexibility
of this model allows us to assume difference in both shape and scale parameters
of the underlying failure distribution in the different stress levels. This assumption
will take prior information about the failure situations under different stress levels
into account. For the probabilistic interpretation, flexibility, and application of this
model, readers are referred to Kateri and Kamps (2015, 2017).

A family of distributions is said to belong to Lehmann family if the CDF is given
by

F ∗(t;α, λ) =
{
[G0(t; λ)]α if t > 0,

0 otherwise.
(5)

Here, G0(t; λ) is some baseline absolutely continuous CDF assumed to be
completely specified except for the unknown parameter λ, and depending on G0(.),

α > 0 and λ > 0 can be shape, scale, or location parameters. In general, a standard
form of the baseline CDF is assumed to take the following form:
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G0(t; λ) = 1− e−λQ(t), (6)

where Q(t) is a strictly increasing function, differentiable on (0,∞) with Q(0) = 0
and Q(∞) = ∞. The Lehmann family of distributions discussed in this chapter
is also known as the exponentiated distributions. This model is quite flexible in
reliability analysis in the sense that one can obtain the various well-known lifetime
distributions as special cases for different choices of Q(.). For example,

• Q(t) = t gives the exponentiated (generalized) exponential (GE) distribution
(see Gupta and Kundu 1999).

• Q(t) = t2 leads to the generalized Rayleigh (GR) distribution. It is also known
as Burr type-X distribution (see Surles and Padgett 2005).

• Q(t) = ln(1 + t) gives the exponentiated Pareto (EP) distribution (see Gupta
et al. 1998; Shawky and Abu-Zinadah 2009).

• Q(t) = a

λ
t + b

2λ
t2 leads to the generalized failure rate distribution with

parameters a, b, α and will be denoted by GFRD(a, b, α) (see Sarhan and Kundu
2009).

Not many authors focus on inferential procedures in SSALT setup, when the
lifetime distribution is a member or belongs to the Lehmann family of distributions.
It may be mentioned that Abdel-Hamid and Al-Hussaini (2009) considered the
inference of parameters of a GE distribution for simple SSALT model for Type-I
censored data based on the CEM assumptions. The lifetime distribution at each of
the two stress levels is assumed to have the common shape parameter, and the only
difference lies in the scale parameters across the stress levels. El-Monem and Jaheen
(2015) considered the problem of maximum likelihood estimation for a simple step-
stress accelerated GE distribution with Type II censored data based on the CEM
assumptions and keeping shape parameters fixed at both the stress levels. Ismail
(2014) considered the maximum likelihood estimation of the GE distribution
parameters and the acceleration factor under step-stress partially accelerated life
testing (SSPALT) when the data are Type-II censored and the underlying model
is the tampered random variable model (TRVM). Recently Samanta and Kundu
(2018) provided an order-restricted inference of the multiple step-stress model
when the lifetime distribution at the different stress levels is GE distribution
with common shape parameter and different scale parameters. However, a flexible
SSALT experiment with difference in both the shape and scale parameters is yet to
be addressed.

The main intent of this chapter is to consider the likelihood inference of a
simple step-stress model for the Lehmann family of distributions based on Type-
II censoring under failure rate-based SSALT model assumptions.

It is assumed that the lifetime distribution of the experimental units at each of
the stress levels belongs to the Lehmann family with difference in shape and scale
parameters. In particular, the CDF, probability density function (PDF), and the HF
of the lifetime distribution at the ith stress level for i = 1, 2 are given by
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F ∗i (t) =
{[G0(t; λi)]αi if t > 0

0 otherwise,
(7)

f ∗i (t) =
{
αi[G0(t; λi)]αi−1[g0(t; λi)] if t > 0

0 otherwise,
(8)

and

h∗i (t) =

⎧
⎪⎨

⎪⎩

αi[G0(t; λi)]αi−1g0(t; λi)
1− [G0(t; λi)]αi if t > 0

0 otherwise.

(9)

The existence of MLEs of the unknown model parameters depends on the number
of failures at the two stress levels s1 and s2. However, given that they exist, the
MLEs cannot be obtained in closed form but can be obtained by solving a four-
dimensional optimization problem. The assumption of the failure rate-based SSALT
model simplifies the optimization problem in terms of dimension reduction. The
MLEs can then be obtained by solving a one-dimensional and a two-dimensional
optimization problems. In the complete sample (r = n) case, the optimization
problem gets even more simplified. The MLEs can then be obtained by solving
two one-dimensional optimization problems.

It is not possible to obtain the exact distributions of the MLEs, as they are
not in closed forms. We suggest to use the observed Fisher information matrix
to construct the asymptotic CIs of the unknown model parameters assuming the
asymptotic normality of the MLEs. The parametric bootstrap CIs are also proposed
as an alternative as they are easy to implement in practice.

The rest of the chapter is organized as follows. In Sect. 2, we provide the model
description, likelihood function, and MLEs of the unknown model parameters. For
illustration purpose, some specific results for the GE distribution are demonstrated.
The construction of both asymptotic and bootstrap CIs is discussed in Sect. 3. To
see the effectiveness of the proposed methods, an extensive simulation experiment
is carried out in Sect. 4 for different sample sizes, censoring proportions, and stress-
changing time points. We have analyzed a real-life data set for illustrative purpose,
assuming that the lifetime distribution follows different important members of the
Lehmann family. Finally we conclude the chapter in Sect. 5.

2 Model Description, Likelihood Function, and MLEs

2.1 Model Description

We consider a simple step-stress model with two stress levels s1 and s2 under Type-II
censoring scheme. Initially n identical units are placed on the life testing experiment
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at the stress level s1. The stress level is changed to a higher level s2 at the pre-fixed
time τ (0 < τ < ∞), and the experiment terminates as soon as the r-th failure
occurs (r is a prefixed integer less than or equal to n). Let ni be the number of units
that fail at stress level si (i = 1, 2). With this notation, we observe the following
ordered failure time data:

D =
{
t1:n < · · · < tn1:n < τ < tn1+1:n < · · · < tr:n

}
, (10)

where r = n1 + n2.

Suppose that the lifetime distributions of the experimental units at stress levels
s1 and s2 belong to the Lehmann family of distributions with difference in both
the shape and scale parameters. To relate the CDFs of lifetime distributions at two
consecutive stress levels to the CDF of the lifetime under the used conditions, we
follow the failure rate-based SSALT model assumptions. Under the assumption of
the failure rate-based SSALT model to analyze the failure time data, the HF h(t),

the corresponding CDF G(t) and the associated PDF g(t) of the lifetime of an
experimental unit are, respectively, given by

h(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

α1[G0(t; λ1)]α1−1g0(t; λ1)

1− [G0(t; λ1)]α1
if 0 < t ≤ τ

α2[G0(t; λ2)]α2−1g0(t; λ2)

1− [G0(t; λ2)]α2
if τ < t <∞,

G(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[G0(t; λ1)]α1 if 0 < t ≤ τ

1−
{

1− [G0(τ ; λ1)]α1

}

{
1− [G0(τ ; λ2)]α2

}
{

1− [G0(t; λ2)]α2
}

if τ < t <∞,

g(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

α1[G0(t; λ1)]α1−1[g0(t; λ1)] if 0 < t ≤ τ

α2

{
1− [G0(τ ; λ1)]α1

}

{
1− [G0(τ ; λ2)]α2

} [G0(t; λ2)]α2−1[g0(t; λ2)] if τ < t <∞.
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2.2 Likelihood Function and MLEs

2.2.1 Type-II Censoring Case

In this subsection, we consider the likelihood function based on the observed Type-
II censored data in (10) and obtain the MLEs of the unknown model parameters
α1, λ1, α2, and λ2.

If T1:n < · · · < Tr:n denote the ordered Type-II censored sample from any
absolutely continuous CDF FT (.), PDF fT (.), then the likelihood function of this
censored sample (see Arnold et al. 1992) can be written as

L(θ | Data) = n!
(n− r)!

{ r∏

k=1

fT (tk:n)
}
{1− FT (tr:n)}n−r ,

0 < t1:n < · · · < tr:n <∞, (11)

where θ is the vector of model parameters.
Let θ = (α1, λ1, α2, λ2) be the set of unknown model parameters of

interest. Based on the observed Type-II censored data in (10) of failure time from
the Lehmann family of distributions with difference in both the shape and scale
parameters at each of the two stress levels and assuming a failure rate-based simple
SSALT model, we obtain the likelihood function LII (θ | D) as

LII(θ | D) = n!
(n− r)! α

n1
1 α

n2
2

n1∏

k=1

[G0(tk:n; λ1)]α1−1

×
r∏

k=n1+1

[G0(tk:n; λ2)]α2−1
n1∏

k=1

[g0(tk:n; λ1)]
r∏

k=n1+1

[g0(tk:n; λ2)]

×
{

1− [G0(tr:n; λ2)]α2
}n−r[1− [G0(τ ; λ1)]α1

1− [G0(τ ; λ2)]α2

]n−n1

,

0 < t1:n < · · · < tn1:n < τ < tn1+1:n < · · · < tr:n <∞. (12)

The MLE of θ , say θ̂ = (̂α1, λ̂1, α̂2, λ̂2), can be obtained by maximizing (12) over
the region � = (0,∞)× (0,∞)× (0,∞)× (0,∞). The associated log-likelihood
function lII(θ | D) of the observed data without additive constants is given by

lII(θ | D) = g1(α1, λ1)+ g2(α2, λ2), (13)

where

g1(α1, λ1) = n1 lnα1 + (α1 − 1)
n1∑

k=1

lnG0(tk:n; λ1)+
n1∑

k=1

ln g0(tk:n; λ1)

+(n− n1) ln{1− [G0(τ ; λ1)]α1}, (14)
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g2(α2, λ2) = n2 lnα2 + (α2 − 1)
r∑

k=n1+1

lnG0(tk:n; λ2)

+
r∑

k=n1+1

ln g0(tk:n; λ2)+ (n− r) ln{1− [G0(tr:n; λ2)]α2}

−(n− n1) ln{1− [G0(τ ; λ2)]α2}.
(15)

Hence, θ̂ can be obtained by maximizing the log-likelihood function (13) over
the region �. The log-likelihood function (13) can be written as the sum of two
terms g1(α1, λ1) and g2(α2, λ2). Differentiating the log-likelihood function (13)
with respect to α1, λ1, α2 and λ2, respectively, and equating them to zero, the four
normal equations are obtained (see Appendix section “Normal Equations for the
Type-II Censoring Case”). θ̂ can directly be obtained by solving the four normal
equations. In this context, it is to note that the assumption of the failure rate-based
SSALT model yields the simple representation of the log-likelihood function. It
indicates that the separate maximization of the constituent functions g1(α1, λ1) and
g2(α2, λ2) is sufficient to obtain (̂α1, λ̂1), (̂α2, λ̂2), and hence θ̂ , provided that the
log-likelihood function (13) is unimodal. Additionally, from the normal equations
associated with g1(α1, λ1), it can be easily seen that α̂1(λ1) maximizes g1(α1, λ1)

for a given λ1, where α̂1(λ1) is

ln[G0(τ ; λ1)]
n1∑

k=1

no(tk:n; λ1)

g0(tk:n; λ1)
− n1m0(τ ; λ1)

G0(τ ; λ1)
− ln[G0(τ ; λ1)]

n1∑

k=1

m0(tk:n; λ1)

G0(tk:n; λ1)

m0(τ ; λ1)

G0(τ ; λ1)
− ln[G0(τ ; λ1)]

n1∑

k=1

m0(tk:n; λ1)

G0(tk:n; λ1)

.

(16)

For details of the calculation and expressions for m0(.; λ1) and n0(.; λ1), the
readers are referred to Appendix section “Normal Equations for the Type-II Cen-
soring Case”. This provides an extra edge over solving the usual four-dimensional
optimization problem in the sense that we are now maximizing a single one-
dimensional nonlinear function for estimating λ1 and a single two-dimensional
nonlinear function g2(α2, λ2) for estimating α2 and λ2. Note that once we obtain
λ̂1 by maximizing g1(̂α1(λ1), λ1), we can obtain α̂1 = α̂1(̂λ1). Next, we address the
complete sample (r = n) scenario, a particular case of Type-II censoring. In fact,
inference becomes simplified to a large extent in the complete sample case.
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2.2.2 Complete Sample (r = n) Case

The likelihood function Lc(θ | D) of the observed complete data is given by

Lc(θ | D) = n! αn1
1 α

n2
2

n1∏

k=1

[G0(tk:n; λ1)]α1−1
n∏

k=n1+1

[G0(tk:n; λ2)]α2−1

×
n1∏

k=1

[g0(tk:n; λ1)]
n∏

k=n1+1

[g0(tk:n; λ2)]
[

1− [G0(τ ; λ1)]α1

1− [G0(τ ; λ2)]α2

]n−n1

.

(17)

The MLE of θ , say θ̂ = (̂α1, λ̂1, α̂2, λ̂2), can be obtained by maximizing (17) over
the region � = (0,∞)× (0,∞)× (0,∞)× (0,∞). The associated log-likelihood
function lc(θ | D) of the observed complete data without additive constants is given
by

lc(θ | D) = m1(α1, λ1)+m2(α2, λ2), (18)

where

m1(α1, λ1) = n1 lnα1 + (α1 − 1)
n1∑

k=1

lnG0(tk:n; λ1)+
n1∑

k=1

ln g0(tk:n; λ1)

+ (n− n1) ln{1− [G0(τ ; λ1)]α1}, (19)

m2(α2, λ2) = n2 lnα2 + (α2 − 1)
r∑

k=n1+1

lnG0(tk:n; λ2)+
r∑

k=n1+1

ln g0(tk:n; λ2)

− (n− n1) ln{1− [G0(τ ; λ2)]α2}. (20)

Hence, θ̂ can be obtained by maximizing the log-likelihood function (18) over the
region �. In this case, also the log-likelihood function (18) can be written as the sum
of two terms m1(α1, λ1) and m2(α2, λ2). Differentiating the log-likelihood function
(18) with respect to α1, λ1, α2 and λ2, respectively, and equating them to zero, the
four normal equations are obtained (see Appendix section “Normal Equations for
the Complete Sample Case”). It is to note that m1(α1, λ1) = g1(α1, λ1). Hence,
from the normal equations associated with g1(α1, λ1), it is obvious that α̂1(λ1)

maximizes m1(α1, λ1) for a given λ1, where α̂1(λ1) is given by Eq. (16). Once we
obtain λ̂1 by maximizing m1(̂α1(λ1), λ1), we can obtain α̂1 = α̂1(̂λ1). Unlike the
Type-II censoring case, the inference associated with m2(α2, λ2) is much simplified
for obtaining α̂2 and λ̂2 in the complete sample case.

From the normal equations associated with m2(α2, λ2) and proceeding along the
same lines as in Appendix section “Normal Equations for the Type-II Censoring
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Case”, it can be easily seen that α̂2(λ2) maximizes m2(α2, λ2) for a given λ2, where
α̂2(λ2) is

ln[G0(τ ; λ2)]
n∑

k=n1+1

n0(tk:n; λ2)

g0(tk:n; λ2)
− n1m0(τ ; λ2)

G0(τ ; λ2)
− ln[G0(τ ; λ2)]

n∑

k=n1+1

m0(tk:n; λ2)

G0(tk:n; λ2)

m0(τ ; λ2)

G0(τ ; λ2)
− ln[G0(τ ; λ2)]

n∑

k=n1+1

m0(tk:n; λ2)

G0(tk:n; λ2)

.

(21)

For details of the calculation and expressions for m0(.; λ2) and n0(.; λ2), the readers
are referred to Appendix section “Normal Equations for the Type-II Censoring
Case”. Note that once we obtain λ̂2 by maximizing m2(̂α2(λ2), λ2), we can obtain
α̂2 = α̂2(̂λ2). The four-dimensional optimization problem now thus boils down to
maximizing two one-dimensional nonlinear functions, one for each one of the scale
parameters.

Remarks

1. The MLEs of α1, λ1, α2, and λ2 exist only
when {2 ≤ n1, n2 ≤ r − 2, r ≥ 4}.

2. In case of equality of shape or equality in scale parameters, dimension of
the optimization problem cannot be reduced. We need to perform a three-
dimensional optimization problem by using some numerical routines.

Special Case: Generalized Exponential (GE) Distribution Q(t) = t in (6)
gives rise to the two-parameter GE distribution with shape parameter α and scale
parameter λ in (5). This distribution was first considered by Gupta and Kundu
(1999) as an alternative to the well-known gamma or Weibull distribution. It
has received considerable amount of attention in recent years. Interested readers
are referred to a survey on this distribution by Nadarajah (2011), and a recent
monograph by Al-Hussaini and Ahsnullah (2015).

Based on the observed Type-II censored data in (10) and assuming a failure rate-
based simple SSALT model, we obtain the log-likelihood function of θ as follows:

lGE(θ | D) = g1(α1, λ1)+ g2(α2, λ2),

where

g1(α1, λ1) = ln n! − ln(n− r)! + n1 lnα1 + n1 ln λ1 − λ1

n1∑

k=1

tk:n

+ (α1 − 1)
n1∑

k=1

ln
(
1− e−λ1tk:n)

+ (n− n1) ln{1− (
1− e−λ1τ

)α1}, (22)
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g2(α2, λ2) = n2 lnα2 + n2 ln λ2 − (n− n1) ln
{
1− (

1− e−λ2τ
)α2
}

+ (α2 − 1)
r∑

k=n1+1

ln
(
1− e−λ2tk:n)− λ2

r∑

k=n1+1

tk:n

+ (n− r) ln
{
1− (

1− e−λ2tr:n)α2
}
. (23)

Differentiating the log-likelihood function lGE(θ | D) with respect to α1, λ1, α2 and
λ2, respectively, the normal equations are obtained in Appendix section “Normal
Equations for the Type-II Censoring Case.” From the normal equations associated
with g1(α1, λ1) in (22), it can be easily seen that α̂1(λ1) maximizes g1(α1, λ1) for a
given λ1, where

α̂1(λ1) =
n1

λ1
ln
(
1− e−λ1τ

)− n1τe
−λ1τ

1− e−λ1τ
− ln

(
1− e−λ1τ

) n1∑

k=1

tk:n
1− e−λ1tk:n

τe−λ1τ

1− e−λ1τ

n1∑

k=1
ln
(
1− e−λ1tk:n

)− ln
(
1− e−λ1τ

) n1∑

k=1

tk:ne−λ1tk:n

1− e−λ1tk:n

.

(24)

Once we obtain λ̂1 by maximizing g1(̂α1(λ1), λ1), we can obtain α̂1 = α̂1(̂λ1).

Remarks

1. In Type-II censoring case, we need to maximize g2(α2, λ2) to obtain α̂2 and λ̂2.

2. Additionally, in the complete sample (r = n) case, maximization of g2(α2, λ2)

becomes much simpler in the sense that from the normal equations associated
with g2(α2, λ2) in (23), it can be easily seen that α̂2(λ2) maximizes g2(α2, λ2)

for a given λ2, where

α̂2(λ2)=
n2

λ2
ln(1− e−λ2τ )− n2τe

−λ2τ

1− e−λ2τ
− ln(1− e−λ2τ )

n∑

k=n1+1

tk:n
1− e−λ2tk:n

τe−λ2τ

1− e−λ2τ

n∑

k=n1+1
ln(1− e−λ2tk:n)− ln(1− e−λ2τ )

n∑

k=n1+1

tk:ne−λ2tk:n

1− e−λ2tk:n

.

(25)

Once we obtain λ̂2 by maximizing g2(̂α2(λ2), λ2), we can obtain α̂2 = α̂2(̂λ2).

3 Interval Estimation

In this section, we present two different methods for construction of CIs of the
unknown model parameters α1, λ1, α2, and λ2. Since the closed forms of the MLEs
do not exist, we cannot obtain the exact CIs of the unknown model parameters.
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First, we provide asymptotic CIs assuming the asymptotic normality of the MLEs
and then the parametric bootstrap CIs.

3.1 Asymptotic Confidence Intervals

Here, we present a method that assumes asymptotic normality of the MLEs to
obtain the CIs for α1, λ1, α2, and λ2, using the observed Fisher information matrix.
This method is useful for its computational simplicity and provides good coverage
probabilities (close to the nominal value) for large sample sizes.

At first, explicit expressions for elements of the Fisher information matrix I (θ)

need to be obtained. Then, the 100(1− γ )% asymptotic CIs for α1, λ1, α2, and λ2
are, respectively,

(
α̂1 ± z1− γ

2

√
V11

)
,
(
λ̂1 ± z1− γ

2

√
V22

)
,
(
α̂2 ± z1− γ

2

√
V33

)
,
(
λ̂2 ± z1− γ

2

√
V44

)
,

where zq is the qth upper percentile of a standard normal distribution, Vij is the
(i, j)th element of the inverse of the Fisher information matrix I (θ).

3.2 Bootstrap Confidence Intervals

In this subsection, we obtain the parametric bootstrap CIs for α1, λ1, α2, and λ2. The
following algorithm can be employed to construct the parametric bootstrap CIs.

Algorithm 1

Step 1: For given n, r, and τ , the MLEs of (α1, λ1, α2, λ2), say (̂α1, λ̂1, α̂2, λ̂2),

are computed based on the original sample t = (t1, . . . , tn1 , tn1+1, . . . , tr ).

Step 2: To generate the bootstrap sample from the proposed model, first generate
n observations from U (0,1) distribution and sort them. Suppose that the ordered
observations are u1:n < u2:n < · · · < un:n.

Step 3: Find n1 = max{k : uk:n ≤ G(τ) ≤ uk+1:n}, where G(τ) = {1 −
e−̂λ1Q(τ)}α̂1 .

Step 4: For 1 ≤ i ≤ n1, find t∗i by solving ui:n = [G0(t
∗
i ; λ̂1)]α̂1 and for n1+1 ≤

i ≤ r, find t∗i by solving ui:n = 1−
{

1−[G0(τ ;̂λ1)]̂α1

}

{
1−[G0(τ ;̂λ2)]̂α2

}
{

1− [G0(t
∗
i ; λ̂2)]α̂2

}
.

Step 5: Based on n, r, τ , and the bootstrap sample {t∗1 , t∗2 , . . . , t∗n1
, t∗n1+1, . . . , t

∗
r },

the MLEs of α1, λ1, α2, and λ2 are computed, say (̂α
(1)
1 , λ̂

(1)
1 , α̂

(1)
2 , λ̂

(1)
2 ).
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Step 6: Suppose δ = (δ1, δ2, δ3, δ4) = (α1, λ1, α2, λ2) and ̂δ
(i) =

(̂δ
(i)
1 , δ̂

(i)
2 , δ̂

(i)
3 , δ̂

(i)
4 ) = (̂α

(i)
1 , λ̂

(i)
1 , α̂

(i)
2 , λ̂

(i)
2 ). Repeat steps 2 − 5, B times to

obtain B sets of MLE of δ, saŷδ(i), i = 1, 2, . . . , B.
Step 7: Arrange δ̂

(1)
j , δ̂

(2)
j , . . . , δ̂

(B)
j in ascending order and denote the ordered

MLEs as δ̂j
[1]

< δ̂
[2]
j < · · · < δ̂

[B]
j , j = 1, 2, 3, 4.

A two-sided 100(1 − α)% bootstrap confidence interval of δj is then given by

(δ̂j
[ α2 B], δ̂j

[(1− α
2 )B]), where [x] denotes the largest integer less than or equal to x.

The performances of all these confidence intervals are evaluated through an
extensive simulation study in Sect. 4.

4 Simulation Studies and Data Analysis

4.1 Simulation Studies

In this section, we perform extensive Monte Carlo simulation study to evaluate
the performance of the proposed parameter estimation method in a simple step-
stress setup. In the simulation study, we consider an important member of the
Lehmann family—the GE distribution as the failure time distribution with difference
in both the shape and scale parameters across the two stress levels. For analysis
purpose, we have taken different sample sizes (n) ranging from moderate to large
(n = 40, 60, 80, 100), two different values of r (r = 0.8n and r = n). Associated
with each of these choices of (n, r), we have considered different values of stress-
changing time points (τ = 0.45, 0.50, 0.55). The parameter values are set as
α1 = 3.0, λ1 = 1.0, α2 = 2.0, andλ2 = 1.5. The average biases and the associated
mean squared errors (MSEs) of the MLEs are provided in Table 1.

For interval estimation, we resort to 95% asymptotic CIs and 95% parametric
bootstrap CIs. The average lengths (ALs) and the associated coverage probabilities
(CPs) of the two different CIs are reported in Tables 2 and 3, respectively. For
computing the asymptotic CIs, the elements of the Fisher information matrix
IGE(α1, λ1, α2, λ2) are provided in Appendix section “GE Distribution”. All the
results are based on 10,000 replications, and for bootstrap CIs, we have taken B =
15,000.

Some of the observations are quite obvious from the above results. It can be
observed from the biases in Table 1 that for fixed n and r , as τ increases, the
estimates of α1 and λ1 approach toward the true values of α1 and λ1 and the
corresponding MSEs decrease. On the other hand, as expected, one observes exactly
the opposite behavior for the estimates of α2 and λ2. Again for fixed n, as r increases
we can see the improved behavior of the estimates and MSEs of α2 and λ2. For
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fixed (r, τ ), as the sample size grows, the MLEs approach the true values and the
corresponding MSEs decrease. It indicates the asymptotic consistency property of
the MLEs. The performances of both types of CIs are quite satisfactory in terms of
CP. For fixed n and r , as τ increases, the average lengths of α1 and λ1 decrease,
while under same conditions, the average lengths of α2 and λ2 increase. As the
sample size increases, the average lengths of all the model parameters decrease,
which is also quite expected.

Table 1 Biases and MSEs of MLEs of model parameters

α1 λ1 α2 λ2

n r τ Bias MSE Bias MSE Bias MSE Bias MSE

40 32 0.45 0.3364 1.8161 0.6881 0.8821 0.5698 2.5607 0.0904 0.1631

0.50 0.2974 1.7611 0.5199 0.6048 0.6046 2.6813 0.0838 0.1714

0.55 0.2884 1.7503 0.3981 0.4416 0.6178 2.7907 0.0767 0.1825

40 0.45 0.3492 1.8072 0.6950 0.8885 0.4577 2.1413 0.0698 0.1033

0.50 0.3063 1.7540 0.5242 0.6062 0.4952 2.2976 0.0681 0.1093

0.55 0.3011 1.7650 0.4034 0.4483 0.5150 2.4648 0.0604 0.1095

60 48 0.45 0.3004 1.7216 0.4288 0.5312 0.4852 2.1975 0.0771 0.1302

0.50 0.2643 1.6982 0.2949 0.3776 0.5103 2.3723 0.0722 0.1207

0.55 0.2699 1.6887 0.2118 0.2942 0.5274 2.4894 0.0635 0.1217

60 0.45 0.2734 1.6581 0.4184 0.5130 0.3825 1.7558 0.0602 0.0836

0.50 0.2516 1.6376 0.2927 0.3695 0.4240 1.9755 0.0583 0.0847

0.55 0.2210 1.6105 0.1925 0.2807 0.4320 2.1076 0.0516 0.0891

80 64 0.45 0.2606 1.6678 0.2821 0.3935 0.4099 1.8933 0.0619 0.1023

0.50 0.2410 1.5942 0.1741 0.2883 0.4519 2.1073 0.0629 0.1030

0.55 0.2325 1.5960 0.1143 0.2388 0.4848 2.2681 0.0607 0.0967

80 0.45 0.2585 1.6335 0.2812 0.3882 0.2711 1.3723 0.0388 0.0668

0.50 0.2302 1.6258 0.1780 0.2956 0.3177 1.5895 0.0397 0.0668

0.55 0.2186 1.5247 0.1127 0.2325 0.3844 1.8279 0.0470 0.0670

100 80 0.45 0.2424 1.6052 0.1968 0.3290 0.3473 1.6198 0.0549 0.0935

0.50 0.2196 1.5334 0.1175 0.2570 0.3990 1.8790 0.0544 0.0898

0.55 0.2206 1.4764 0.0753 0.2129 0.4428 2.0723 0.0561 0.0848

100 0.45 0.2315 1.5871 0.1937 0.3263 0.2379 1.1450 0.0348 0.0566

0.50 0.2518 1.5701 0.1304 0.2626 0.2665 1.3618 0.0375 0.0569

0.55 0.2381 1.5151 0.0793 0.2170 0.3118 1.5766 0.0375 0.0570
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Table 2 CP and AL of 95% asymptotic CIs of the model parameters

α1 λ1 α2 λ2

n r τ CP AL CP AL CP AL CP AL

40 32 0.45 0.9549 8.3843 0.9980 4.0943 0.9997 8.8531 0.9955 2.1452

0.50 0.9503 8.2463 0.9969 3.6549 0.9997 9.9223 0.9962 2.2166

0.55 0.9496 8.1102 0.9942 3.2972 0.9998 9.9766 0.9974 2.2837

40 0.45 0.9558 8.4811 0.9980 4.1150 0.9949 6.9413 0.9862 1.5422

0.50 0.9570 8.2816 0.9961 3.6664 0.9991 7.8038 0.9886 1.5818

0.55 0.9772 7.9878 0.9927 3.2748 0.9998 8.6274 0.9906 1.6057

60 48 0.45 0.9494 7.8394 0.9906 3.5575 0.9964 6.9265 0.9934 1.6912

0.50 0.9465 7.6278 0.9839 3.1531 0.9988 7.8597 0.9963 1.7511

0.55 0.9500 7.3855 0.9804 2.8270 0.9990 8.7875 0.9963 1.8054

60 0.45 0.9491 7.7510 0.9912 3.5374 0.9822 5.5080 0.9834 1.2324

0.50 0.9477 7.6035 0.9838 3.1512 0.9921 6.1893 0.9873 1.2606

0.55 0.9393 7.3490 0.9772 2.8164 0.9973 6.8647 0.9874 1.2907

80 64 0.45 0.9468 7.3980 0.9798 3.2116 0.9899 5.8899 0.9899 1.4351

0.50 0.9448 7.1114 0.9709 2.8329 0.9968 6.6501 0.9956 1.4868

0.55 0.9467 6.8140 0.9665 2.5261 0.9995 7.5039 0.9966 1.5437

80 0.45 0.9469 7.3705 0.9801 3.2015 0.9687 4.6845 0.9686 1.0560

0.50 0.9472 7.1696 0.9731 2.8496 0.9817 5.2523 0.9819 1.0811

0.55 0.9506 6.8342 0.9666 2.5317 0.9894 5.8523 0.9868 1.1048

100 80 0.45 0.9431 7.0682 0.9677 2.9701 0.9808 5.2058 0.9868 1.2756

0.50 0.9455 6.6814 0.9609 2.6011 0.9918 5.8950 0.9941 1.3208

0.55 0.9467 6.3581 0.9547 2.3077 0.9967 6.6584 0.9948 1.3736

100 0.45 0.9484 7.0957 0.9702 2.9746 0.9664 4.1607 0.9646 0.9394

0.50 0.9455 6.6820 0.9632 2.6017 0.9777 4.6742 0.9755 0.9626

0.55 0.9458 6.3185 0.9568 2.3027 0.9812 5.1905 0.9795 0.9860

4.2 Data Analysis

4.2.1 Fish Data Set

In this section, we consider a real-life step-stress fish data set obtained from Greven
et al. (2004). A sample of 15 fish were swum at initial flow rate of 15 cm/s. The
time at which a fish could not maintain its position was recorded as its failure time.
To ensure an early failure, the stress level was increased (flow rate by 5 cm/s) at
time 110, 130, 150, and 170 min, respectively. The observed failure time data are
presented in Table 4.

There are five stress levels, and the number of failures at each stress level is 4,
6, 0, 3, and 2, respectively. For our analysis purpose, we consider it as a simple
step-stress data merging the first two stress levels into a single stress level and the
remaining stress levels to another single stress level. For computational purpose, we
have subtracted 80 from each data points, divided them by 150, and then analyzed
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Table 3 CP and AL of 95% bootstrap CIs of the model parameters

α1 λ1 α2 λ2

n r τ CP AL CP AL CP AL CP AL

40 32 0.45 0.9993 5.6187 0.8156 2.7256 0.9976 6.7509 0.9843 1.6206

0.50 0.9994 5.6028 0.8628 2.5029 0.9928 6.9105 0.9827 1.6209

0.55 0.9996 5.5967 0.8700 2.2507 0.9996 7.0273 0.9906 1.6227

40 0.45 0.9990 5.6346 0.8176 2.7304 0.9776 6.1875 0.9593 1.3525

0.50 0.9996 5.6229 0.8330 2.4722 0.9923 6.4338 0.9700 1.3533

0.55 0.9996 5.6046 0.8800 2.2555 0.9963 6.6588 0.9763 1.3675

60 48 0.45 0.9986 5.5270 0.8850 2.4634 0.9733 6.1632 0.9686 1.4139

0.50 0.9993 5.5029 0.9400 2.2253 0.9876 6.4390 0.9820 1.4141

0.55 0.9973 5.4828 0.9773 2.0406 0.9976 6.6909 0.9870 1.4210

60 0.45 0.9993 5.5175 0.8810 2.4599 0.9536 5.4065 0.9490 1.1519

0.50 0.9990 5.5080 0.9356 2.2284 0.9686 5.7482 0.9566 1.1545

0.55 0.9996 5.4862 0.9763 2.0467 0.9786 6.0299 0.9636 1.1548

80 64 0.45 0.9996 5.4548 0.9486 2.2963 0.9696 5.6035 0.9636 1.2732

0.50 0.9900 5.4083 0.9830 2.0855 0.9783 5.9800 0.9670 1.2742

0.55 0.9976 5.3813 0.9900 1.9152 0.9866 6.3047 0.9763 1.2767

80 0.45 0.9883 5.4617 0.9503 2.3050 0.9543 4.7643 0.9436 1.0108

0.50 0.9890 5.4203 0.9810 2.0881 0.9560 5.2115 0.9510 1.0143

0.55 0.9866 5.3690 0.9856 1.9179 0.9646 5.5305 0.9493 1.0800

100 80 0.45 0.9890 5.3960 0.9813 2.1937 0.9583 5.1345 0.9560 1.1724

0.50 0.9883 5.3445 0.9893 1.9904 0.9650 5.5649 0.9586 1.1722

0.55 0.9843 5.2703 0.9890 1.8300 0.9750 5.9379 0.9680 1.1726

100 0.45 0.9890 5.3952 0.9826 2.1945 0.9560 4.2940 0.9530 0.9216

0.50 0.9850 5.3325 0.9800 1.9885 0.9620 4.6512 0.9526 0.9217

0.55 0.9833 5.2506 0.9866 1.8265 0.9613 5.0611 0.9453 0.9260

Table 4 Fish data set Stress level Failure times

s1 91.00, 93.00, 94.00, 98.20

s2 115.81, 116.00, 116.50,

117.25, 126.75, 127.50

s3 No failures

s4 154.33, 159.50, 164.00

s5 184.14, 188.33

the data with n = r = 15, τ = 0.33. Here, we consider the complete sample for
analysis purpose and stop at the 15th failure to facilitate the Type-II censoring.

As a choice of the failure time distribution, we consider three members (GE,
GR, and EP) of the Lehmann family of distributions. All these three distributions
are fitted to the Fish data set assuming difference in both the shape and scale
parameters at each of the two stress levels. MLEs of the model parameters are
obtained by solving one-dimensional optimization problems. The MLEs of the
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Table 5 MLEs, K-S
statistics, and the
corresponding p-values of the
Fish data set

Model MLEs K-S statistics p-Value

GE α̂1 2.8304 0.1833 0.6437

λ̂1 5.8775

α̂2 2264.2688

λ̂2 13.8730

GR α̂1 0.9459 0.1639 0.7776

λ̂1 9.2678

α̂2 35.1339

λ̂2 11.3299

EP α̂1 3.3031 0.1901 0.6022

λ̂1 7.2645

α̂2 17,876.6484

λ̂2 22.1745

Table 6 Bootstrap CIs of parameters based on the Fish data set

α1 λ1 α2 λ2

Model Level LL UL LL UL LL UL LL UL

GE 90% 1.4493 8.5005 2.9325 9.7810 976.3842 4129.729 11.7081 15.4846

95% 1.2838 10.7785 2.4991 10.6449 938.3585 4315.795 11.4094 15.8299

99% 1.0355 16.1782 1.6474 12.1417 907.2052 4460.666 10.7977 16.5033

GR 90% 0.5371 1.6997 3.1702 13.1903 12.3428 88.2046 7.6982 15.2679

95% 0.4878 1.9145 2.3662 13.5989 11.1726 93.8493 7.2067 16.0640

99% 0.4097 2.4103 1.5100 13.9127 10.2514 98.6554 6.4699 17.8533

EP 90% 1.6466 10.1209 3.7740 11.8878 12,572.91 28,660.54 20.2098 24.1174

95% 1.4745 12.6201 3.2021 12.7611 12,284.68 29,350.65 19.7901 24.4845

99% 1.1784 17.2071 2.0931 14.5229 12,052.65 29,883.83 18.9644 25.2057

model parameters, the Kolmogorov–Smirnov (K-S) distances between the fitted and
the empirical distribution functions, and the p-values for the K-S test are presented
in Table 5. 90%, 95%, and 99%, bootstrap CIs are presented in Table 6.

Examining the K-S statistics and the p-values, it is observed that although all the
three distributions fit the data well, the GR distribution has a better fit than the other
two distributions. The plot of the empirical CDF along with the fitted CDF based on
the GR fit is provided in Fig. 1.

In Figs. 2 and 3, we have provided the plots for the profile likelihood functions of
λ1 and λ2, respectively. It is observed that both the functions are unimodal functions
of the respective parameters.

One may be interested to know whether we can analyze the same data assuming
equality of the shape or equality of the scale parameters. For this purpose, we
perform the corresponding likelihood ratio-based tests. First, we want to test the
following hypotheses:
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Fig. 1 Plot of empirical and fitted CDFs of Fish data set assuming GR distribution

A. Ho : α1 = α2 vs H1 : α1 �= α2.
Under Ho, the MLEs are α̃ = 1.0367, λ̃1 = 10.0857, λ̃2 = 3.9102. The
likelihood ratio test (LRT ) statistic and−2lnLRT are obtained as 0.0896 and
4.8245, respectively, and the corresponding p value is 0.0280. Thus, we reject
the null hypothesis in this case at 5% level of significance.

Now we consider the following testing problem:
B. Ho : λ1 = λ2 vs H1 : λ1 �= λ2.

Under Ho, the MLEs are: α̃1 = 1.0125, α̃2 = 26.6399, λ̃ = 10.3797. The
likelihood ratio test (LRT ) statistic and−2lnLRT are obtained as 0.9490 and
0.1045, respectively. The corresponding p value is 0.7464. Thus, in this case,
we accept the null hypothesis.

The two testing procedures lead us to assume difference in shape param-
eters and equality in scale parameters and carry on the appropriate analysis
assuming the GR distribution. Assuming different shape parameters and
common scale parameters, the MLEs of the model parameters are obtained
as α̂1 = 1.0125, α̂2 = 26.6399, λ̂ = 10.3797. As a measure of the goodness
of fit, we have computed the K-S statistics and the associated p-value. The
K-S distance and the associated p-value are obtained as 0.1753 and 0.7023,
respectively. It indicates a good fit of the given data. The plot of the empirical
v/s the fitted CDFs is shown in Fig. 4. 90%, 95%, and 99% asymptotic and
bootstrap CIs of the model parameters are given in Table 7. The elements
of the associated Fisher information matrix IGR

sc (α1, λ, α2) are provided in
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Fig. 2 Unimodality of the profile log-likelihood function of λ1 for Fish data set assuming GR
distribution

Appendix section “GR Distribution with Different Shape and Common Scale
Parameter”.

5 Conclusion

In this chapter, we have considered the likelihood inference of a simple-step stress
model under Type-II censoring, when the lifetime distribution at each of the stress
levels belongs to the Lehmann family of distributions. To relate the distributions
at the two stress levels, a failure rate-based SSALT model is proposed. Further,
all the underlying two parameters (especially the shape parameter) of the lifetime
distribution are allowed to vary across the stress levels, which makes this model
a flexible one. In case of Type-II censoring, the MLEs of the model parameters
can be obtained by solving a one-dimensional and a two-dimensional optimization
problems. Again, in the complete sample case, inference becomes much simplified
in terms of dimension reduction, as expected. The MLEs can then be obtained by
solving two one-dimensional optimization problems. Due to the absence of closed
form solutions of the likelihood equations, the asymptotic and the bootstrap CIs have
been obtained here. Performance of the proposed model for analyzing time to failure
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Fig. 3 Unimodality of the profile log-likelihood function of λ2 for Fish data set assuming GR
distribution

Table 7 Asymptotic and bootstrap CIs of Fish data set

α1 λ α2

CI Level LL UL LL UL LL UL

Asymptotic 90% 0.4807 1.5442 5.1565 15.6028 0 72.0466

95% 0.3788 4.1556 16.6038 1.6461 0 80.7481

99% 0.1796 1.8453 2.1995 18.5500 0 97.7535

Bootstrap 90% 0.6674 1.8023 6.8463 14.1895 8.3102 62.6906

95% 0.6159 2.0243 6.2858 14.9762 6.7643 66.2360

99% 0.5307 2.5515 5.3487 16.6555 4.3802 69.2758

data has been evaluated through an extensive simulation study considering GE
distribution, an important distribution of the Lehmann family. From the simulation
study, it has been observed that the estimators are consistent and the CPs of the
different CIs are close to the nominal values.

A real data set is analyzed for illustrative purpose. It has been observed that
different members of the general family fit the data set quite well.

Although we have only considered the Type-II censoring here, the data set from
other censoring schemes can also be analyzed in a similar way. Again, not restricting
to a simple step-stress model, the analysis can easily be extended to a multiple step-
stress scenario. In this work, we have only considered the classical inference of the
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Fig. 4 Plot of empirical and fitted CDFs of Fish data set assuming GR distribution with different
shape parameters and common scale parameter

proposed model. However, it would be interesting to work on the Bayesian analysis
of the proposed model. The order-restricted inference can also be considered for this
model. More work is needed along these directions.

Acknowledgments The authors would like to thank the reviewers for their constructive comments
that had helped to improve the manuscript significantly.

Appendix

Lehmann Family of Distributions

Normal Equations for the Type-II Censoring Case

The normal equations associated with the log-likelihood function (13) are given by
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∂lII

∂α1
=n1

α1
+

n1∑

k=1

lnG0(tk:n; λ1)− (n− n1){G0(τ ; λ1)}α1 lnG0(τ ; λ1)

1− {G0(τ ; λ1)}α1
= 0,

(A.1)

∂lII

∂λ1
=(α1 − 1)

n1∑

k=1

m0(tk:n; λ1)

G0(tk:n; λ1)
− (n− n1)α1{G0(τ ; λ1)}α1−1m0(τ ; λ1)

1− {G0(τ ; λ1)}α1

+
n1∑

k=1

n0(tk:n; λ1)

g0(tk:n; λ1)
= 0, (A.2)

∂lII

∂α2
=n2

α2
−

r∑

k=n1+1

lnG0(tk:n; λ1)+ (n− n1){G0(τ ; λ2)}α2 lnG0(τ ; λ2)

1− {G0(τ ; λ2)}α2

− (n− r){G0(tr:n; λ2)}α2 lnG0(tr:n; λ2)

1− {G0(tr:n; λ2)}α2
= 0, (A.3)

∂lII

∂λ2
=(α2 − 1)

r∑

k=n1+1

m0(tk:n; λ2)

G0(tk:n; λ2)
+ (n− n1)α2{G0(τ ; λ2)}α2−1m0(τ ; λ2)

1− {G0(τ ; λ2)}α2

+
r∑

k=n1+1

n0(tk:n; λ2)

g0(tk:n; λ2)
− (n− r)α2{G0(tr:n; λ2)}α2−1m0(tr:n; λ2)

1− {G0(tr:n; λ2)}α2
= 0,

(A.4)

where

m0(.; λ1) = ∂

∂λ1
G0(.; λ1), n0(.; λ1) = ∂

∂λ1
g0(.; λ1),

m0(.; λ2) = ∂

∂λ2
G0(.; λ2), n0(.; λ2) = ∂

∂λ2
g0(.; λ2).

Now multiplying (A.1) by
α1m0(τ ; λ1)

G0(τ ; λ1)
and (A.2) by lnG0(τ ; λ1), respectively, we

have

n1m0(τ ; λ1)

G0(τ ; λ1)
− (n− n1)α1{G0(τ ; λ1)}α1−1m0(τ ; λ1) lnG0(τ ; λ1)

1− {G0(τ ; λ1)}α1

+ α1m0(τ ; λ1)

G0(τ ; λ1)

n1∑

k=1

lnG0(tk:n; λ1) = 0, (A.5)
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− (n− n1)α1{G0(τ ; λ1)}α1−1m0(τ ; λ1) lnG0(τ ; λ1)

1− {G0(τ ; λ1)}α1

+ lnG0(τ ; λ1)

n1∑

k=1

n0(tk:n; λ1)

g0(tk:n; λ1)
+ (α1 − 1) lnG0(τ ; λ1)

n1∑

k=1

m0(tk:n; λ1)

G0(tk:n; λ1)
= 0.

(A.6)

Subtracting (A.6) from (A.5), and after little simplification, finally we establish the
following relation and α̂1(λ1) is

ln[G0(τ ; λ1)]
n1∑

k=1

no(tk:n; λ1)

g0(tk:n; λ1)
− n1mo(τ ; λ1)

G0(τ ; λ1)
− ln[G0(τ ; λ1)]

n1∑

k=1

mo(tk:n; λ1)

G0(tk:n; λ1)

mo(τ ; λ1)

G0(τ ; λ1)
− ln[G0(τ ; λ1)]

n1∑

k=1

mo(tk:n; λ1)

G0(tk:n; λ1)

.

(A.7)

Normal Equations for the Complete Sample Case

∂lc

∂α1
= n1

α1
+

n1∑

k=1

lnG0(tk:n; λ1)− (n− n1){G0(τ ; λ1)}α1 lnG0(τ ; λ1)

1− {G0(τ ; λ1)}α1
= 0,

∂lc

∂λ1
= (α1 − 1)

n1∑

k=1

mo(tk:n; λ1)

G0(tk:n; λ1)
− (n− n1)α1{G0(τ ; λ1)}α1−1mo(τ ; λ1)

1− {G0(τ ; λ1)}α1

+
n1∑

k=1

no(tk:n; λ1)

g0(tk:n; λ1)
= 0,

∂lc

∂α2
= n2

α2
−

r∑

k=n1+1

lnG0(tk:n; λ1)+ (n− n1){G0(τ ; λ2)}α2 lnG0(τ ; λ2)

1− {G0(τ ; λ2)}α2
= 0,

∂lc

∂λ2
= (α2 − 1)

r∑

k=n1+1

mo(tk:n; λ2)

G0(tk:n; λ2)
+ (n− n1)α2{G0(τ ; λ2)}α2−1mo(τ ; λ2)

1− {G0(τ ; λ2)}α2

+
r∑

k=n1+1

no(tk:n; λ2)

g0(tk:n; λ2)
= 0.
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Special Case: GE Distribution

Normal Equations for the Type-II Censoring Case

∂lGE

∂α1
= n1

α1
+

n1∑

k=1

ln(1− e−λ1tk:n)− A(α1, λ1) = 0, (A.8)

∂lGE

∂λ1
= n1

λ1
−

n1∑

k=1

tk:n + (α1 − 1)
n1∑

k=1

tk:ne−λ1tk:n

1− e−λ1tk:n − B(α1, λ1) = 0, (A.9)

∂lGE

∂α2
= n2

α2
+

n1+n2∑

k=n1+1

ln(1− e−λ2tk:n)+ C1(α2, λ2)− C2(α2, λ2) = 0, (A.10)

∂lGE

∂λ2
= n2

λ2
−

n1+n2∑

k=n1+1

tk:n + (α2 − 1)
n1+n2∑

k=n1+1

tk:ne−λ2tk:n

1− e−λ2tk:n +D1(α2, λ2)

−D2(α2, λ2) = 0, (A.11)

where

A(α1, λ1) = (n− n1)
(
1− e−λ1τ

)α1

1− (
1− e−λ1τ

)α1
ln
(
1− e−λ1τ

)
,

B(α1, λ1) = (n− n1)α1τe
−λ1τ

(
1− e−λ1τ

)α1−1

1− (
1− e−λ1τ

)α1
,

C1(α2, λ2) = (n− n1)
(
1− e−λ2τ

)α2

1− (
1− e−λ2τ

)α2
ln
(
1− e−λ2τ

)
,

C2(α2, λ2) = (n− r)
(
1− e−λ2tr:n

)α2

1− (
1− e−λ2tr:n

)α2
ln
(
1− e−λ2tr:n),

D1(α2, λ2) = (n− n1)α2τ
(
1− e−λ2τ

)α2−1
e−λ2τ

1− (
1− e−λ2τ

)α2
,

D2(α2, λ2) = (n− r)α2tr:n
(
1− e−λ2tr:n

)α2−1
e−λ2tr:n

1− (
1− e−λ2tr:n

)α2
.
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Elements of the Fisher Information Matrix

GE Distribution

The Fisher information matrix IGE(α1, λ1, α2, λ2) can be expressed using two block
diagonal matrices, viz., IGE

1 (α1, λ1) and IGE
2 (α2, λ2). Thus, we have

IGE(α1, λ1, α2, λ2) =
[
IGE

1 (α1, λ1) 0
0 IGE

2 (α2, λ2)

]

The elements of IGE
1 (α1, λ1) =

⎡

⎢⎢⎢⎢⎢
⎣

−∂2lGE

∂α2
1

− ∂2lGE

∂α1∂λ1

− ∂2lGE

∂α1∂λ1
−∂2lGE

∂λ2
1

⎤

⎥⎥⎥⎥⎥
⎦

are

∂2lGE

∂α2
1

= −
(
n1

α2
1

+ (n− n1)
(
1− e−λ1τ

)α1{ln[1− e−λ1τ ]}2
{1− (

1− e−λ1τ
)α1}2

)
,

∂2lGE

∂α1∂λ1
=

n1∑

k=1

tk:ne−λ1tk:n

1− e−λ1tk:n − (n− n1)τe
−λ1τ '1(α1, λ1),

∂2lGE

∂λ2
1

= −
(
n1

λ2
1

− (α1 − 1)ψ1(λ1)+ (n− n1)α1τκ1(α1, λ1, τ )

)
,

where

'1(α1, λ1) =
{1− r(λ1)

α1 }[r(λ1)
α1{α1 ln(r(λ1)+ 1}]+ α1r(λ1)

2α1 ln(r(λ1)

r(λ1){1− r(λ1)
α1}2 ,

ψ1(λ1) = −
n1∑

k=1

t2
k:ne−λ1tk:n

(1− e−λ1tk:n)2
,

κ1(α1, λ1) =
{1− r(λ1)

α1 }[r(λ1)
α1−2τe−λ1τ {α1e

−λ1τ − 1}]+ α1τe
−2λ1τ r(λ1)

2α1−2

{1− r(λ1)
α1 }2 ,

r1(λ1) =
(
1− e−λ1τ

)
.

The elements of IGE
2 (α2, λ2) =

⎡

⎢⎢⎢
⎣

−∂2lGE

∂α2
2

− ∂2lGE

∂α2∂λ2

− ∂2lGE

∂α1∂λ1
−∂2lGE

∂λ2
2

⎤

⎥⎥⎥
⎦

are
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∂2lGE

∂α2
2

= −
(
n2

α2
2

− (n− n1)β1(α2, λ2)+ (n− r)η1(α2, λ2)

)
,

∂2lGE

∂α2∂λ2
=

n1+n2∑

k=n1+1

tk:ne−λ2tk:n

1− e−λ2tk:n + (n− n1)ξ1(α2, λ2)− (n− r)ϒ1(α2, λ2),

∂2lGE

∂λ2
2

= −
(n2

λ2
2

− (n− n1)σ1(α2, λ2)− (α2 − 1)δ1(λ2)+ (n− r)ζ1(α2, λ2)
)
,

where

β1(α2, λ2) =
(
1− e−λ2τ

)α2{ln[1− e−λ2τ ]}2
{1− (1− e−λ2τ )α2}2 ,

η1(α2, λ2) =
(
1− e−λ2tr:n

)α2{ln[1− e−λ2tr:n]}2
{1− (

1− e−λ2tr:n
)α2}2 ,

ξ1(α2, λ2) = τe−λ2τ
{1− q1(λ2)

α2}[q1(λ2)
α2{α2 ln(q1(λ2)+ 1}]

q1(λ2){1− q1(λ2)α2}2

+ τe−λ2τ
α2q1(λ2)

2α2 ln(q1(λ2)

q1(λ2){1− q1(λ2)α2}2 ,

ϒ1(α2, λ2) = tr:ne−λ2tr:n {1− s1(λ2)
α2}[s1(λ2)

α2{α2 ln(s1(λ2)+ 1}]
s1(λ2){1− s1(λ2)α2}2

+ tr:ne−λ2tr:n α2s1(λ2)
2α2 ln(s1(λ2)

s1(λ2){1− s1(λ2)α2}2 ,

σ1(α2, λ2) = α2τ
{1− q1(λ2)

α2}[q1(λ2)
α2−2τe−λ2τ {α2e

−λ2τ − 1}]
{1− q1(λ2)α2}2

+ α2τ
α2τe

−2λ2τ q1(λ2)
2α2−2

{1− q1(λ2)α2}2 ,
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δ(λ2) = −
n1+n2∑

k=n1+1

[
t2
k:ne−λ2tk:n

(
1− e−λ2tk:n

)2

]

,

q1(λ2) =
(
1− e−λ2τ

)
, s1(λ2) =

(
1− e−λ2tr:n).

ζ1(α2, λ2) = α2tr:n
{1− s1(λ2)

α2}[s1(λ2)
α2−2tr:ne−λ2tr:n{α2e

−λ2tr:n − 1}]
{1− s1(λ2)α2}2

+ α2tr:n
α2tr:ne−2λ2tr:ns1(λ2)

2α2−2

{1− s1(λ2)α2}2 .

GR Distribution with Different Shape and Common Scale Parameter

Let the Fisher information matrix associated with the parameters α1, λ, α2,
respectively, be

IGR
sc (α1, λ, α2) =

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

−∂2lGR
sc

∂α2
1

− ∂2lGR
sc

∂α1∂λ
− ∂2lGR

sc

∂α1∂α2

− ∂2lGR
sc

∂α1∂λ
−∂2lGR

sc

∂λ2 − ∂2lGR
sc

∂α2∂λ

− ∂2lGR
sc

∂α1∂α2
− ∂2lGR

sc

∂α2∂λ
−∂2lGR

sc

∂α2
2

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

The corresponding elements are

∂2lGR
sc

∂α2
1

= −
(
n1

α2
1

+ (n− n1)
(
1− e−λτ 2)α1{ln[1− e−λτ 2 ]}2
{1− (

1− e−λτ 2)α1}2
)
,

∂2lGR
sc

∂α1∂λ
=

n1∑

k=1

t2
k:ne

−λt2k:n

1− e−λt2k:n
− (n− n1)'3(α1, λ),

∂2lGR
sc

∂α1∂α2
= 0,

∂2lGR

∂λ2
= −

(
n

λ2
− (α1 − 1)ψ3(λ)+ (n− n1)κ3(α1, λ)− (n− n1)σ3(α2, λ)

− (α2 − 1)δ3(λ)

)
,
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∂2lGR
sc

∂α2∂λ
=

n1+n2∑

k=n1+1

t2
k:ne

−λt2k:n

1− e−λt2k:n
+ (n− n1)ξ3(α2, λ),

∂2lGR
sc

∂α2
2

= −
(
n2

α2
2

+ (n− n1)
(
1− e−λτ 2)α2{ln[1− e−λτ 2 ]}2
{1− (1− e−λτ 2

)α2}2
)
,

where

'3(α1, λ) = τ 2e−λτ 2 {1− r3(λ)
α1}[r3(λ)

α1{α1 ln(r3(λ)+ 1}]
r(λ){1− r3(λ)α1}2

+ τ 2e−λτ 2 α1r3(λ)
2α1 ln(r3(λ)

r(λ){1− r3(λ)α1}2 ,

ψ3(λ) = −
n1∑

k=1

t4
k:ne

−λt2k:n
(
1− e−λt2k:n

)2
,

κ3(α1, λ1) = α1τ
2 {1− r3(λ)

α1}[r3(λ)
α1−2τ 2e−λτ 2{α1e

−λτ 2 − 1}]
{1− r3(λ)α1}2

+ α1τ
2α1τ

2e−2λτ 2
r3(λ)

2α1−2

{1− r3(λ)α1}2 ,

σ3(α2, λ) = α2τ
2 {1− r3(λ)

α2}[r3(λ)
α2−2τ 2e−λτ 2{α2e

−λτ 2 − 1}]
{1− r3(λ)α2}2

+ α2τ
2α2τ

2e−2λτ 2
r3(λ)

2α2−2

{1− r3(λ)α2}2 ,

δ3(λ) = −
n1+n2∑

k=n1+1

[
t4
k:ne

−λt2k:n
(
1− e−λt2k:n

)2

]

,

ξ3(α2, λ) = τ 2e−λτ 2 {1− r3(λ)
α2}[r3(λ)

α2{α2 ln(r3(λ)+ 1}]
r3(λ){1− r3(λ)α2}2

+ τ 2e−λτ 2 α2r3(λ)
2α2 ln(r3(λ)

r3(λ){1− r3(λ)α2}2 ,

r3(λ) =
(
1− e−λτ 2)

.
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Part VII
Applications



Model-Based Clustering for Cylindrical
Data

Ashis SenGupta, Moumita Roy, and Asis Kumar Chattopadhyay

Abstract The objective of this paper is to perform clustering based on data
consisting of both linear and circular variables, that is the data that lie on the
surface of a cylinder. There are many circular–linear distributions available in
the literature. We use the pragmatic approach of specifying the conditional rather
than the marginal, which is often easier. Adopting Arnold et al. (Lecture Notes in
Statistics: Conditionally Specified Distributions, Springer Verlag Publisher, Berlin
Heidelberg, 1992), we provide the conditional distribution of θ given x and that of
x given θ . Here, a mixture model approach based on the joint distribution of the
linear and the circular variable is proposed. In particular, two types of such mixture
models are used. One is based on the joint distribution of the marginal distribution
of the linear variable and the conditional distribution of the circular variable given
the linear variable and the other vice versa. Convergence property of Expectation
Maximization (EM) algorithm for the members of the curved exponential family
used for our models is studied. A real-life application on meteorological data is
made of the proposed approaches. Comparison of the two models is done based on
this example. The distinctive and important feature of preserving the geometry of
the cylindrical manifold by our clustering method and its marked deviation from
that for data on  p is also revealed by this example.

1 Introduction

Often in real life, we encounter observations not only on linear variables but also
on circular ones, i.e., we observe directional data. It is often necessary to group
such data as consisting of both linear and circular variables, i.e., data that lie on the
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surface of a cylinder, into several clusters according to similarity of characteristics.
There are many circular–linear, to be termed cylindrical, distributions available in
the literature. Johnson et al. (1978) have considered angular–linear distributions,
viz., generalized von Mises distribution based on the principle of maximum
entropy subject to constraints on certain moments and the method of specified
marginals. Cylindrical distributions have been constructed also by SenGupta (2004)
by generalizing the approach of conditionally specified distributions for linear
variables given in Arnold et al. (1992). Kato et al. (2008) considered a maximum
entropy distribution through an extension of the distribution by Johnson et al. (1978)
and Mardia et al. (1978), which was a conditional of a trivariate normal distribution
with some restrictions on the parameters. Abe et al. (2017) proposed a cylindrical
distribution by combining von Mises distribution and Weibull distribution. Lagona
et al. (2015) has approximated the distribution of cylindrical time series data by the
mixture of the distribution proposed by Abe et al. (2017). In this chapter, a mixture
model approach based on the joint distribution of the linear and the circular variable
is proposed for model-based clustering of such data as on the cylinder. In Sect. 2,
the mixture model based on the joint distribution of the marginal distribution of
the circular variable and the conditional distribution of the linear variable given the
circular variable is used. In Sect. 3, the joint distribution of the marginal distribution
of the linear variable and the conditional distribution of the circular variable given
the linear variable is used in the mixture model. Expectation Maximization (EM)
algorithm is used for estimating the various parameters of the mixture distributions.
In Sect. 4, the clustering technique used is described. The methods for determining
the optimum number of clusters is given in Sect. 5. A real-life application is made
of the above-proposed approaches in Sect. 6. We demonstrate by the plots for
the example how clustering using only linear distributions may be misleading.
The clustering for the example on environmental data can be helpful to the
meteorologists for weather determination and forecasting. Finally, a comparison of
the performance of the two models is done in Sect. 7, and some concluding remarks
are given in Sect. 8.

2 Model 1

Initially, we consider bivariate data (xi, θi), where xi and θi are observations on the
linear and circular variables, respectively, xi ∈  and θi ∈ (0, 2π ], i = 1, . . . , n.
Specifically, it is assumed that for i = 1, . . . , n, θi is distributed as von Mises
distribution with mean direction μc and concentration parameter κ; that is, the pdf
is given by

g(θi) = 1

2πI0(κ)
exp{κ cos(θi − μc)}

where I0(.) denotes the Bessel function of the first kind with order zero.
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The von Mises or the circular normal distribution is considered here because it
belongs to the popular exponential family of distributions rather than the wrapped
normal (WN) distribution. The WN distribution as used by, e.g., Modlin et al.
(2012), does not belong to the exponential family and also its density is expressed
as an infinite series, as a result of which the maximum likelihood estimation of its
parameters is difficult. Also it is well known that wrapped normal distribution and
circular normal distribution are virtually the same (see SenGupta et al. 2001).

The conditional distribution of xi given θi is N(μl, σ
2
l ). That is,

μl = E(x|θ) = b0 + b1 cos θ + b2 sin θ

This kind of regression function is popular in the literature. For example, see
Ugwuowo et al. (2006).

Then, the joint distribution of xi and θi is given by

f (xi, θi) = 1

2πI0(κ)
exp{κ cos(θi−μc)} 1

(
√

2π)σl
exp

{

− 1

2σ 2
l

(xi − μl)
2

}

(1)

Now we consider the mixture model to be fitted as

f (x, θ;ψ) =
p∑

j=1

πjfj (xi, θi; ηj ) (2)

where p denotes the number of mixture components,

η = (
μc1 , . . . , μcp , κ, b01 , . . . , b0p , b11 , . . . , b1p , b21 , . . . , b2p , σ

2
l

)′

ψ = (η′, π1, . . . , πp−1) (since πp = 1 −
p−1∑

j=1
πj ) denote the parameter vectors

of the mixture model, ηj = (μcj , κ, b0j , b1j , b2j , σ
2
l )
′ (j = 1, . . . , p) denote the

parameter vector of the j th component of the mixture model, and

fj (xi, θi; ηj )

= 1

2πI0(κ)

√
2πσ 2

l

exp
{
κ cos(θi − μcj )−

1

2σ 2
l

(x1i − b0j − b1j x2i − b2j x3i )
2
}

(3)

where x1i = xi , x2i = cos θi , x3i = sin θi . It can be shown that (using theorem
2 given in page 143–144 in SenGupta 2004) the above distribution given by (3) is

the maximum entropy distribution subject to E(x1i ) = b0j

σ 2
l

,
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E(cos θi) = −
b0j b1j

σ 2
l

+ κ cosμcj , E(sin θi) = −
b0j b2j

σ 2
l

+ κ sinμcj ,

E(x1i cos θi) =
b1j

σ 2
l

, E(x1i sin θi) =
b2j

σ 2
l

, E
(

cos2 θi
) =

b2
1j

2σ 2
l

,

E(sin2 θi) =
b2

2j

2σ 2
l

, E(x2
1i ) = − 1

2σ 2
l

, and E(cos θi sin θi) = − b1j b2j

σ 2
l

taking

specified values consistent with the expectations with respect to the specified
distributions.

2.1 Estimation of Parameters

We use EM algorithm to estimate the parameters of the mixture model (2). So we
introduce an indicator variable zij as follows:

zij =
{

1 if (xi, θi) comes from the j th component of the mixture
0 otherwise

Using the complete data vector (zij , θi , x1i , x2i , x3i )
′, the complete data log-

likelihood function for ψ is given by

Lc(ψ) =
n∑

i=1

p∑

j=1

zij ln fj (x, θ; ηj )

= −n ln 2π − n ln I0(κ)− n

2
ln 2π − n

2
ln σ 2

l +
n∑

i=1

p∑

j=1

zij

{
κ cos(θi − μcj )

− 1

2σ 2
l

(x1i − b0j − b1j x2i − b2j x3i )
2
}

(4)

If the zij s are observable, then the MLE of πj is simply given by

π̂j =
n∑

i=1

zij /n (5)

The likelihood equations for estimating the parameters μcj , κ , b0j , b1j , b2j , (j =
1, . . . , p), and σ 2

l , respectively, are given as

n∑

i=1

ẑij sin
(
θi − μ̂cj

) = 0 (6)
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n∑

i=1

p∑

j=1

ẑij cos
(
θi − μ̂cj

)− nI1(κ̂)

I0(κ̂)
= 0 (7)

(
I1(κ) = d

dκ
I0(κ)

)

n∑

i=1

ẑij
(
x1i − b̂0j − b̂1j x2i − b̂2j x3i

) = 0 (8)

n∑

i=1

ẑij x2i
(
x1i − b̂0j − b̂1j x2i − b̂2j x3i

) = 0 (9)

n∑

i=1

ẑij x3i
(
x1i − b̂0j − b̂1j x2i − b̂2j x3i

) = 0 (10)

n∑

i=1

p∑

j=1

ẑij
(
x1i − b̂0j − b̂1j x2i − b̂2j x3i

)2 − nσ̂ 2
l = 0 (11)

where

ẑij = Eψ(zij |(x, θ)) = Pψ(zij = 1|(x, θ)) = π̂j fj (xi, θi; η̂j )
f (xi, θi; ψ̂)

(by Bayes’ theorem)

This quantity is the posterior probability that the ith member of the sample with
observed value (xi, θi) belongs to the j th component of the mixture.

Hence solving the likelihood equations (6)–(11), the maximum likelihood esti-
mators of the parameters are given by

μ̂cj = arctan∗(θ̄j ) j = 1, . . . , p (12)

where

θ̄j =

n∑

i=1
ẑij sin θi

n∑

i=1
ẑij cos θi

and arctan∗ is as defined in SenGupta et al. (2001).

κ̂ = A−1(R̄0) (13)

where R̄0 =

n∑

i=1

p∑

j=1
ẑij cos

(
θi − μ̂cj

)

n
and A(κ) = I1(κ)

I0(κ)
.
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b̂0j =

n∑

i=1
ẑij
(
x1i − b̂1j x2i − b̂2j x3i

)

n∑

i=1
ẑij

, (14)

b̂1j =

n∑

i=1
ẑij x2i

(
x1i − b̂0j − b̂2j x3i

)

n∑

i=1
ẑij x

2
2i

, (15)

b̂2j =

n∑

i=1
ẑij x3i

(
x1i − b̂0j − b̂1j x2i

)

n∑

i=1
ẑij x

2
3i

j = 1, . . . , p (16)

and σ̂ 2
l =

n∑

i=1

p∑

j=1
ẑij (x1i − b̂0j − b̂1j x2i − b̂2j x3i )

2

n
(17)

The E-step of the EM algorithm on the (k + 1)th iteration requires

Eψ(k) (zij |(x, θ)) = Pψ(k) (zij = 1|(x, θ)) = z
(k)
ij

= π
(k)
j fj

(
xi, θi; η(k)j

)

f
(
xi, θi;ψ(k)

) ; j = 1, . . . , p, i = 1, . . . , n

The M-step on the (k + 1)th iteration requires replacing each zij by z
(k)
ij in (5) to

give π
(k+1)
j =

n∑

i=1
z
(k)
ij /n, j = 1, . . . , p.

The M-step also requires the computation of μ(k)
cj , b(k)0j

, b(k)1j
, b(k)2j

, (j = 1, . . . , p),

κ(k), and σ 2(k)
l , which involves replacing zij by z

(k)
ij in the estimators in (12)–(17) to

give

μ(k+1)
cj

= arctan∗

⎛

⎜
⎜
⎝

n∑

i=1
z
(k)
ij sin θi

n∑

i=1
z
(k)
ij cos θi

⎞

⎟
⎟
⎠ j = 1, . . . , p
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κ(k+1) = A−1

⎛

⎜⎜⎜
⎝

n∑

i=1

p∑

j=1
z
(k)
ij cos(θi − μ

(k+1)
cj )

n

⎞

⎟⎟⎟
⎠

b
(k+1)
0j

=

n∑

i=1
z
(k)
ij

(
x1i − b

(k)
1j

x2i − b
(k)
2j

x3i

)

n∑

i=1
z
(k)
ij

,

b
(k+1)
1j

=

n∑

i=1
z
(k)
ij x2i

(
x1i − b

(k+1)
0j

− b
(k)
2j

x3i

)

n∑

i=1
z
(k)
ij x2

2i

,

b
(k+1)
2j

=

n∑

i=1
z
(k)
ij x3i

(
x1i − b

(k+1)
0j

− b
(k+1)
1j

x2i

)

n∑

i=1
z
(k)
ij x2

3i

j = 1, . . . , p

and σ 2(k+1)

l =

n∑

i=1

p∑

j=1
z
(k)
ij

(
x1i − b

(k+1)
0j

− b
(k+1)
1j

x2i − b
(k+1)
2j

x3i

)2

n

where the parameters with upper suffix k denote the estimators of the parameters at
the kth iteration. The E- and M-steps are alternated repeatedly until the difference

Lc

(
ψ(k+1)

)
− Lc

(
ψ(k)

)

changes by an arbitrary small amount for convergence of the sequence of the log-
likelihood values.

2.2 Convergence of the EM Algorithm

We now establish the convergence of the algorithm. First, suppose that SU1
defines the joint density of (xi, θi), i = 1, . . . , n, given by (1) for the j th
component of Model 1 given by (3). It can be seen that SU1 is a member of
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the curved exponential family exp(γ ′T (x, θ)), where γ1 = κ cosμcj , T1 =
n∑

i=1
cos θi, γ2 = κ sinμcj , T2 =

n∑

i=1
sin θi,

γ3 = 1
σ 2
l

, T3 = −
n∑

i=1
x2

1i/2, γ4 = b2
1j

σ 2
l

, T4 = −
n∑

i=1
x2

2i , γ5 = b2
2j

σ 2
l

,

T5 = −
n∑

i=1
x2

3i , γ6 = b0j

σ 2
l

, T6 =
n∑

i=1
x1i , γ7 = b1j

σ 2
l

, T7 =
n∑

i=1
x1ix2i ,

γ8 = b2j

σ 2
l

, T8 =
n∑

i=1
x1ix3i , γ9 = b0j b1j

σ 2
l

, T9 =
n∑

i=1
x2i , γ10 = b0j b2j

σ 2
l

,

T10 =
n∑

i=1
x3i , γ11 = b1j b2j

σ 2
l

, and T11 =
n∑

i=1
x2ix3i

Hence using property (ii) under section 3 in page 101 of Wu (1983), since SU1 is a
member of the curved exponential family, it follows that fj (xi, θi; ηj ) is continuous
in ηj . Further by (i) in that section, the EM parameter vector ψ converges,
implying the convergence of Lc(ψ) correspondingly. Thus, the convergence of the
EM algorithm is guaranteed theoretically. Numerically also we had no issue with
convergence of the EM algorithms above for the examples presented in Sect. 6
below.

3 Model 2

Now consider the situation when the conditional distribution of θi given xi is von
Mises with mean direction μ(x) and concentration parameter κ(x), where

E(θ |x) = μ(x) = μ+ 2 arctan(βx)(mod 2π)

We assume for simplicity κ(x) = κ and xi is distributed as Normal with mean μl

and variance σ 2; that is, the pdf is given by

g(xi) = 1√
2πσ

exp− 1

2σ 2 (xi − μl)
2

In some cases one may encounter heteroscedastic cylindrical distribution. In such
cases one would ideally take σ 2 = σ 2(θ) and κ = κ(x). However this would
entail a large number of parameters, as large as the sample size. This would be
computationally intensive as the number of parameters to be estimated will increase.
One can of course put ad hoc structures on these variance/concentration parameters,
but it can be quite complicated. So, for simplicity as also for lack of knowledge
regarding such structures, we have taken these as constants. Johnson et al. (1978)
and Fisher et al. (1992) have also made this assumption of simplicity. This situation
may not universally hold for cylindrical data but is possibly not different from what
one also often suggests for bivariate linear data.
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Then, the joint distribution of xi and θi is given by

f (xi, θi) = 1

2πI0(κ)
exp[κ cos{θi − μ− 2 arctan(βxi)}]

× 1

(
√

2π)σ
exp

{
− 1

2σ 2 (xi − μl)
2
}

(18)

Here the mixture model to be fitted is

f (x, θ;ψ) =
p∑

j=1

πjfj (xi, θi; ηj ) (19)

where p denotes the number of mixture components,
η = (μ1, . . . , μp, κ, β1, . . . , βp, μl1 , . . . , μlp , σ

2)′

ψ = (η′, π1, . . . , πp−1)
(

since πp = 1 −
p−1∑

j=1
πj

)
denote the parameter vectors of

the mixture model, ηj = (μj , κ, βj , μlj , σ
2)′, (j = 1, . . . , p) denote the parameter

vector of the j th component of the mixture model, and

fj (xi, θi; ηj ) = 1

2πI0(κ)
exp[κ cos{θi − μj − 2 arctan(βjxi)}]

× 1

(
√

2π)σ
exp

{
− 1

2σ 2
(xi − μlj )

2
}

(20)

3.1 Estimation of Parameters

Here also as in Model 1, we use EM algorithm to estimate the parameters of the
mixture model (19) and introduce an indicator variable zij as before.

Hence using the complete data vector (zij , θi , xi)
′, the complete data log-

likelihood function for ψ is given by

Lc(ψ) =
n∑

i=1

p∑

j=1

zij ln fj (x, θ; ηj )

= −n ln 2π − n ln I0(κ)− n

2
ln 2π − n

2
ln σ 2 +

n∑

i=1

p∑

j=1

zij

[
κ cos{θi − μj

− 2 arctan(βjxi)} − 1

2σ 2 (xi − μlj )
2
]

(21)

The MLEs of πj are obtained the same as in case of Model 1.
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The maximum likelihood estimators of the other parameters are given by

μ̂lj =

n∑

i=1
ẑij xi

n∑

i=1
ẑij

j = 1, . . . , p (22)

σ̂ 2 =

n∑

i=1

p∑

j=1
ẑij (xi − μ̂lj )

2

n
(23)

μ̂j = arctan∗(θ̄1) j = 1, . . . , p (24)

where

θ̄1 =

n∑

i=1
ẑij sin

{
θi − 2 arctan

(
β̂j xi

)}

n∑

i=1
ẑij cos

{
θi − 2 arctan

(
β̂j xi

)}

and arctan∗ is as defined in SenGupta et al. (2001).

κ̂ = A−1(R̄1) (25)

where

R̄1 =

n∑

i=1

p∑

j=1
ẑij cos

{
θi − μ̂j − 2 arctan

(
β̂j xi

)}

n
and A(κ) = I1(κ)

I0(κ)

The E- and M-steps are alternated repeatedly, as in the case of Model 1, till the
convergence of the sequence of the log-likelihood values.

We now establish the convergence of the algorithm in the lines of that for Model
1 above. Let us suppose that SU2 defines the joint density of (xi, θi), i = 1, . . . , n,
given by (18) for the j th component of Model 2 given by (20). It can be seen that
(substituting an initial value of βj ) SU2 is a member of the curved exponential
family exp(γ ′T (x, θ)) where γ1 = κ cosμj , γ2 = κ sinμj ,

T1 =
n∑

i=1

cos θi cos{2 arctan(βjxi)}, T2 =
n∑

i=1

sin{θi − 2 arctan(βjxi)},

γ3 = 1

σ 2
, T3 = −

n∑

i=1

x2
i /2 γ4 = μj

σ 2
, and T4 =

n∑

i=1

xi

Thus, here also the convergence of the EM algorithm is ensured as in Model 1.
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4 Clustering Technique

Suppose that there are n observations on each of which a linear variable and a
circular variable are measured, resulting in the bivariate data (xi, θi), i = 1, . . . , n.
Our objective is to classify the n observations based on the bivariate data. We
assume that each mixture component of the mixture model to be fitted is a cluster.
In the E-step of the EM algorithm in Sect. 2.1, a (n × p) matrix is created whose
ith row contains estimates of the conditional (on the current parameter estimates)
probabilities that the ith observation (xi, θi) belongs to the j th mixture component
or cluster j (j = 1, . . . , p). So at convergence, the ith observation is assigned to
the cluster j for which the conditional probability of membership given by

Pi|j = π̂j fj
(
xi, θi; η̂j

)

p∑

j=1
π̂j fj

(
xi, θi; η̂j

)

is the largest.

5 Choice of the Number of Clusters p

One of the important questions that arises is how to decide on a reasonable value
for the number of clusters. One of the solutions can be obtained by using Bayesian
information criterion (BIC), which is given by

BIC = −2 lnLmax + Penalty

= −2 lnLmax + ln(n)× number of parameters estimated

= −2 lnLmax + (5p + 1) ln(n) in case of Model 1

= −2 lnLmax + (4p + 1) ln(n) in case of Model 2

In order to decide on the number of clusters, we choose that value of p for which the
BIC is minimized (McLachlan et al. 1997 and Richard et al. 2007). Another solution
can be obtained by using Akaike information criterion (AIC) given by

AIC = −2 lnLmax + 2× number of parameters estimated

= −2 lnLmax + 2.(5p + 1) in case of Model 1

= −2 lnLmax + 2.(4p + 1) in case of Model 2

The optimum number of clusters is selected as that value of p that minimizes AIC.
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6 Example

Twenty-eight observations are available on the January surface wind direction and
temperature at 12 h GMT at Kew for the years 1956–1960. This is a popular data set,
and we illustrate our methodology through this example. Although the size of the
data is small, similar large size data can be visualized in practice for this purpose.

6.1 Applications of Model 1

These observations can constitute the bivariate data (xi, θi) for our clustering where
x = temperature and θ = wind direction. Here, the objective of clustering is
to determine and identify groups corresponding to similar conditions of surface
temperature and similar patterns of wind direction. This example of clustering
serves to illustrate how meteorologists may be provided with groups of similar
overall weather conditions as per the joint variations in surface temperature and
wind direction at some specific time (e.g., at 12 h GMT at Kew as in this example).
These in turn may be used by them to forecast the weather for some future time
period. The values of BIC and AIC are calculated for different values of p in the
following table. Here, we restrict the possible number of clusters to 6 due to the size
of the data.

It can be observed from Table 1 that the BIC and the AIC criteria are minimum
for p = 4 clusters. The values in the above table may seem to be an anomaly for
nested models. But for small and moderate sample sizes, this anomaly is not quite
unexpected as can be seen in Vermunt et al. (2005). Figure 1 also confirms the
optimum number of clusters to be 4. The final estimates of the parameters for the
optimum number of clusters are shown in Table 2. Then, following the clustering
technique as described in Sect. 4, the 28 observations are assigned to the 4 clusters
as displayed in Table 3.

It appears from the left plot of Fig. 1 that there are only three clusters due to
the structure of the circular variable (wind direction), but actually there are four
clusters. We compare the sample means and variances with those based on model
as obtained from the EM algorithm. The comparison is shown in Table 4. It can
be observed that the means of the circular components of all the clusters almost
match with each other. Also Fig. 1 indicates that the four clusters formed are well
separated from one another. Thus, the performance of the cluster allocation is quite
satisfactory.

Table 1 The values of BIC
and AIC

No. of clusters BIC AIC

2 249.2102 234.556

3 220.1765 198.8612

4 210.8566 182.8803

5 231.5125 196.8752

6 236.5395 195.2412
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Fig. 1 Plot of BIC and clustering plot for January data based on the variables wind direction and
temperature to select the number of clusters under Model 1

Table 2 Results from EM algorithm for the optimum number of clusters

No. of
clusters

No. of
iterations μ̂c κ̂ b̂0 b̂1 b̂2 σ̂ 2

l BIC

4 359
⎛

⎜⎜
⎜
⎝

−1.801

0.268

−2.583

−2.573

⎞

⎟⎟
⎟
⎠

2.300
⎛

⎜⎜
⎜
⎝

34.548

46.246

47.448

37.813

⎞

⎟⎟
⎟
⎠

⎛

⎜⎜
⎜
⎝

−4.549

−4.213

−2.717

−7.172

⎞

⎟⎟
⎟
⎠

⎛

⎜⎜
⎜
⎝

−3.366

−3.008

−4.544

−6.572

⎞

⎟⎟
⎟
⎠

0.862 210.857

Table 3 Cluster allocation

Cluster number No. of observations Observation number

1 6 2–3, 15, 19, 21, 28

2 4 7–9, 24

3 7 1, 5, 12, 17, 23, 25, 27

4 11 4, 6, 10–11, 13–14, 16, 18, 20, 22, 26
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Table 4 Cluster means and variances

Cluster No. of Mean Variance Mean of θi Mean of θi Concentration
number observations π̂j of xi of xi after clustering before clustering of θi
1 6 0.214 38.167 8.967 −1.793 −1.801 0.157

2 4 0.143 42.25 0.917 0.287 0.268 0.184

3 7 0.25 51.571 1.952 −42.577 −2.583 0.128

4 11 0.393 43.545 29.473 −2.596 −2.573 0.399

Table 5 The values of BIC
and AIC

No. of clusters BIC AIC

2 260.6822 248.6924

3 248.0171 230.6984

4 240.2125 217.5651

5 242.0051 214.0288

6 267.4518 234.1466

6.2 Applications of Model 2

Next we are interested in clustering the above 28 observations using Model 2, i.e.,
(19).

It can be noted from Table 5 and Fig. 2 that the BIC criterion is minimum for
p = 4 clusters. Thus, the optimum number of clusters is chosen as 4. The final
estimates of the parameters of the optimum number of clusters under Model 2 is
given in Table 6. Then, following the clustering technique as described in Sect. 4,
the 28 observations are assigned to the 4 clusters as displayed in Table 7.

It can be noted that the means of the linear components before and after clustering
are quite close to each other for almost all the clusters. Also Fig. 2 indicates that the
four clusters formed are well-separated. Hence, the performance of the clustering
can be considered to be quite satisfactory.

7 Performance of the Clustering

A comparison of the performance of the optimum cluster allocation is done through
the expected misclassification rate (see Dingxi et al. 2007) given by

EMCR = 1−
p∗∑

j=1

π̂jPi|j
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Fig. 2 Plot of BIC and clustering plot for January data based on the variables wind direction and
temperature to select the number of clusters under Model 2

Table 6 Results from EM algorithm for the optimum number of clusters

No. of No. of
clusters iterations μ̂ β̂ κ̂ μ̂l σ̂ 2 BIC

4 67
⎛

⎜⎜
⎜
⎝

2.836

−1.417

1.310

0.855

⎞

⎟⎟
⎟
⎠

⎛

⎜⎜
⎜
⎝

−2582.458

500.772

932.026

0.127

⎞

⎟⎟
⎟
⎠

5.150
⎛

⎜⎜
⎜
⎝

39.563

37.587

39.833

48.913

⎞

⎟⎟
⎟
⎠

11.070 253.541

Table 7 Cluster allocation

Cluster number No. of observations Observation number

1 5 7–9, 20–21

2 3 4, 16, 24

3 6 2–3, 13, 15, 19, 28

4 14 1, 5–6, 10–12, 14, 17–18, 22–23, 25–27
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Table 8 Comparison of cluster means and variances

Cluster No. of Mean of xi Mean of xi Variance Mean Concentration
number observations π̂j after

clustering
before clustering of xi of θi of θi

1 5 0.179 39.4 39.563 18.8 −0.292 0.097

2 3 0.107 37.667 37.587 34.333 1.782 0.168

3 6 0.214 39.833 39.833 4.967 −1.884 0.076

4 14 0.5 49.214 48.913 7.258 −2.598 0.092

Table 9 Comparison of the performance of clustering under Model 1 and Model 2

p∗ EMCR p∗ EMCR
Data under Model 1 under Model 1 under Model 2 under Model 2

Jan. wind dir & temp 4 6.362423e–08 4 0.0291549

where p∗ denotes the optimum number of clusters and

Pi|j = π̂j fj (xi, θi; η̂j )
p∗∑

j=1
π̂j fj (xi, θi; η̂j )

is the conditional probability of membership of the ith observation to the j th(j =
1, . . . , p∗) cluster. Using this measure, the comparison of the two models is shown
in Table 9. The results in Table 9 show that the performance of clustering under
Model 1 is better than that under Model 2 for our example, since it has a smaller
misclassification rate.

Remark In the right figure (of Fig. 1), it appears that there are 3 clusters due to
the linear positioning of the circular variable wind direction. However, values at
the extremities 0 and 2π rad are, in reality, geometrically in close proximities
in the circular scale. So, indeed the 4 clusters are justified. The same is true for
Fig. 2. These examples thus reveal yet another unique feature of clustering on the
cylindrical manifolds as compared to the Rp case.

8 Conclusion

The results from Tables 4, 8, Figs. 1, and 2 well indicate the satisfactory performance
of the clustering methodology enhanced here as the clusters formed clearly exhibit
separation from each other. The results in Table 9 show that for the given example,
the clustering under Model 1 may be preferred to that under Model 2 since it
yields smaller misclassification rate. Finally, as mentioned in Remark above, our
model-based clustering methodology enhances and preserves the geometry of the
underlying cylindrical manifold.
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Skew-Elliptical Cluster Processes

Ngoc Anh Dao and Marc G. Genton

Abstract This paper introduces skew-elliptical cluster processes. In contrast to the
simple Gaussian isotropic structure of the distribution of the “children” events of
a Thomas process, we propose an anisotropic structure by allowing the choice of
a flexible covariance matrix and incorporating skewness or ellipticity parameters
into the structure. Since the theoretical pair correlation functions of these processes
are complex and analytically incomplete, and therefore the estimation of the
parameters is computationally intensive, we propose reasonable approximations of
the theoretical pair correlation functions of these cluster processes, which allow
for a simpler parameter estimation. We present the estimation of their parameters
using the minimum contrast method. For a data application, we use a fraction of
the full redwood dataset. Our analysis shows that an elliptical cluster process can
describe this point pattern better than a common Thomas process, since it is able
to statistically model the non-circular shapes of the clusters in the data. The skew-
elliptical cluster processes can be very meaningful for analyzing complex datasets
in the field of spatial point processes since they provide more flexibility to detect
interesting characteristics of the data.

1 Introduction

The Thomas process (TP) (Thomas 1949) is very important in the field of spatial
point processes because it has the intrinsic statistical ability to model propagation
or clustering in nature. In particular, the TP is widely used in astronomy, biology,
and forestry, to name a few areas. In this work, we introduce a class of skew-
elliptical cluster processes that includes the (traditional) TP and offers the possibility
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of modeling the ellipticity, skewness, and, in some situations, information in the tail
of the distribution of the “children” events. These characteristics would otherwise
remain unknown if the (traditional) TP were used to model the data.

The TP is a special case of the Neyman–Scott cluster point process (Neyman
and Scott 1952), which is a specific type of homogeneous, independent clustering
applied to a stationary Poisson process. Neyman and Scott (1952, 1958) and
Neyman et al. (1953) used this process to model patterns formed by the locations of
galaxies in space. Neyman and Scott (1972) gave further examples of such processes
to model the distributions of insect larvae in fields and the geometry of bombing
patterns. Penttinen et al. (1992) and Tanaka et al. (2008) used Neyman–Scott cluster
point processes to model patterns of trees such as pines in natural forests. Similarly,
Illian et al. (2008) used the TP to model 207 Phlebocarya filifolia plants, and Diggle
(2003, Chap. 6.3) used the TP to model 62 redwood seedlings.

We now look at how Neyman–Scott cluster point processes and the TP are
defined. A Neyman–Scott cluster point process is constructed by letting unobserv-
able, the so-called parent events form a stationary Poisson process with intensity κ .
The “children” events in a cluster are random in number and scattered independently
and with identical distribution around each “parent” event. To construct a TP, a
complete spatial randomness (CSR) with intensity κ is generated to obtain the
“parent” events. Each “parent” event is replaced by a random cluster of “children”
events, the number of which is Poisson distributed with intensity μ. The positions
of the “children” events are distributed around the “parent” event according to a
bivariate normal distribution with circular covariance matrix σ 2I2, where I2 is the
2 × 2 identity matrix (Møller and Waagepetersen 2003; Thomas 1949). Stoyan
(2006) introduced a generalized TP with small and large clusters, and Tanaka
et al. (2008) proposed a generalized Thomas model of type A, in which the
probability density function (pdf) of the distance between the “children” events
and their “parent” event corresponds to a mixture of distances from two Gaussian
distributions with two different dispersion parameters.

Another generalizing work on TP was done by Castelloe (1998) by extending an
isotropic bivariate normal offspring distribution to the case of a general bivariate
normal offspring distribution. The extended process is no longer isotropic but
anisotropic. The pair correlation function (pcf), a concept borrowed from physics,
physical chemistry, and statistical mechanics, is also commonly called a radial
distribution function (McQuarrie 1976, Chap. 13), and it describes how the density
of points changes with the distance from a reference point. For the aforementioned
processes, it is complicated and analytically incomplete. For the estimation, Castel-
loe (1998) considered a Bayesian approach. Further studies on extension of TP was
done by Møller and Toftaker (2014) where anisotropic spatial point processes were
introduced. There, Cox, shot noise Cox, and log Gaussian Cox processes having
elliptical pcf were studied. In this context, the TP was presented as a limiting
case of the Whittle-Matérn shot noise Cox process. Møller and Toftaker (2014)
applied a more sophisticated MCMC algorithm to the anisotropic cluster process
proposed by Castelloe (1998). However, the estimation still remains complicated
and computationally intensive (Møller and Toftaker 2014, p. 426).
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Unlike Stoyan (2006) and Tanaka et al. (2008), but like Castelloe (1998) we
generalize the TP in our approach not by introducing the pcf first but by presenting
the general distribution of the “children” events. In particular, we impose a unified
skew-elliptical (SUE) distribution (Arellano-Valle and Genton 2010a) on them. The
SUE family is a member of skewed multivariate models (Arnold and Beaver 2000)
among which there are some other members with certain characteristics such as
skewed multivariate models related to hidden truncation (Arnold and Beaver 2002)
and multivariate skew-normal distributions (Azzalini and Dalla Valle 1996) to name
a few. Although the SUE family includes a wide range of continuous distributions,
we focus on only two representatives of this family here. They are the unified skew-
normal (SUN) distribution (Arellano-Valle and Azzalini 2006) and the extended
skew-t (EST) distribution (Arellano-Valle and Genton 2010b). The reason for our
focus on these two distributions is that, in contrast to other continuous distributions
in the SUE family, their probabilistic properties have previously been intensively
studied. With these results, we can therefore carry out explicit theoretical derivations
for approximation. If the “children” events are SUN distributed, then the process
would be named a skew-elliptical-normal cluster process (CP). If they are EST
distributed, then it would be called a skew-elliptical-t CP. These two classes of
processes together give us skew-elliptical CP. It is obvious that a TP is simply
a special case of the skew-elliptical-normal CP. Due to its circular shape of the
“children” clusters induced by the dispersion matrix σ 2I2 of the bivariate normal
distribution, a TP can also be called a circular-normal CP.

The introduction of the skew-elliptical-normal CP and the skew-elliptical-t CP
is natural because datasets sometimes have non-circular patterns that need to be
statistically modeled. If wind or the slope of a location caused the positions of
the “children” events to be skew-elliptical distributed, the circular-normal CP (TP)
would apparently be inferior to a skew-elliptical-normal or skew-elliptical-t CP.
Without going into great details about these models, we motivate our approach by
showing graphical representations of “children” events of skew-elliptical-normal
CPs in Fig. 1 and skew-elliptical-t CPs in Fig. 2. The spatial point patterns (SPPs)
are generated via R (R Core Team 2019) using the same seed, 999, and all have
κ = 5 and μ = 25. The meanings of the dispersion parameters, σ1, σ2, and the
skewness parameters, α or αY, of the skew-elliptical CPs are presented in Sects. 2
and 3. In each of the first rows of Figs. 1 and 2, the patterns of a circular-normal
and a circular-t CP (left) have clusters in a circular shape induced by the isotropic
dispersion matrix, σ 2I2, of the bivariate normal and t-distributions of the “children”
events. The patterns of an elliptical-normal and an elliptical-t CP (middle) have
elliptically shaped clusters with the vertical dispersion double the horizontal one
induced by the anisotropic dispersion matrix diag(σ 2

1 , σ
2
2 ), with σ2 = 2σ1, of

the bivariate normal and t-distribution of the “children” events. Castelloe (1998)
dealt with the elliptical-normal CP. The patterns of a skew-normal and a skew-t CP
(right) have clusters that are relocated further away from the diagonal reference line
and skewed toward the upper-right corner. This shape is induced by the isotropic
dispersion matrix, σ 2I2, the skewness parameter, α = α(1, 1)T , of the bivariate
skew-normal distribution according to Azzalini and Capitanio (1999), and the
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Fig. 1 To generate spatial point patterns (SPPs), κ = 5, μ = 25, and the same random seed were
used. The first row shows a pattern of a circular-normal CP (TP) (left) with “children” events, Y,
being bivariate normal distributed with the isotropic dispersion matrix σ 2I2, σ 2 = 0.052; one of
an elliptical-normal CP (middle) with Y being bivariate normal distributed with the anisotropic
dispersion matrix with σ 2

1 = 0.052, σ 2
2 = 0.102 in the diagonal; one of a skew-normal CP

(right) with Y being bivariate skew-normal distributed with the isotropic dispersion matrix σ 2I2,
σ 2 = 0.052, and skewness parameter α = 2(1, 1)T . The parameters are described in Sect. 2. The
diagonal line serves as a reference to better identify the difference in the cluster shape of Y. In
the corresponding column, the second row shows the contour plots of the distribution of Y of the
CPs, the SPPs of which are shown in the first row: circular (black), elliptical (blue), and skewed
(red). The four contour levels from the most outer to the most inner level correspond to the 95th-,
75th-, 50th-, and 10th-percentile of the distribution of Y. The origin in the second row serves as
an unobservable “parent” event. The third row shows the empirical pcf (solid) of the observed SPP
from the corresponding first row, the approximating pcf (dashed) of each model, and the theoretical
pcf (dotted) of the circular-normal CP (TP) as a reference
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Fig. 2 As in Fig. 1, to generate SPPs of skew-elliptical-t CPs with four df (ν = 4), κ = 5, μ = 25,
and the same random seed were used. The first row shows a pattern of a circular-t CP (left) with
“children” events, Y, being bivariate t-distributed with dispersion matrix σ 2I2 with σ 2 = 0.052,
one of an elliptical-t CP (middle) with σ 2

1 = 0.052, σ 2
2 = 0.102, and one of a skew-t CP (right)

with τ = 1, σ 2 = 0.052, αT
Y = (α1/

√
1+ α2

1 + α2
2, α2/

√
1+ α2

1 + α2
2) = (0.7067, 0.7067),

where αT = (α1, α2) = (20, 20). The roles of these parameters are described in Sect. 3. The
diagonal line serves as a reference to better identify the difference in the cluster shape of Y. In
the corresponding column, the second row shows the contour plots of the distribution of Y of the
CPs, the SPPs of which are shown in the first row: circular (black), elliptical (blue), and skewed
(red). The four contour levels from the most outer to the most inner level correspond to the 95th-,
75th-, 50th-, and 10th-percentile of the distribution of Y. The origin in the second row serves as
an unobservable “parent” event. The third row shows the empirical pcf (solid) of the observed SPP
from the corresponding first row, the approximating pcf (dashed) of each model, and the theoretical
pcf (dotted) of the circular-normal CP (TP) as a reference
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skewness parameter, αY (Sect. 3), of the bivariate EST distribution according to
Arellano-Valle and Genton (2010b). The simulated patterns of skew-elliptical-t CPs
with four degrees of freedom (df) in the first row of Fig. 2 have more dispersed
clusters than do those of the skew-elliptical-normal CPs, in Fig. 1. This distinction is
clearer in the second rows where the corresponding contour plots of the distribution
of the “children” events are shown. In general, regardless of the df, the “children”
events of skew-elliptical-t CPs are more dispersed than those of skew-elliptical-
normal CP. The second rows also show the shapes of the clusters: circular (left),
elliptical (middle), and skewed or squeezed (right), indicating that the “children”
events are not symmetrically distributed around the “parent” event but have fewer
events in one particular quarter. In this example, the lower left quarter has fewer
events, compared with the number of events in the other three quarters.

The theoretical summary descriptions, in particular pcfs, of the skew-elliptical
CPs, except for the TP, are all analytically incomplete. In Castelloe (1998) and
Møller and Toftaker (2014), we face the challenge in estimation using the Bayesian
approach. However, if we relax the anisotropy condition to the assumption of
isotropy, approximation of the pcf is analytically complete. Then, we make use of
the minimum contrast method (MCM) for estimation because it is computationally
easy, allowing quick exploration of a range of possible models. An estimation via
MCM minimizes the discrepancy between the approximating pcf and the empirical
pcf of the process. In our case, the minimizer of the discrepancy is the estimator of
the parameters of the approximating pcf, but it is also good enough to be considered
as the estimator of true parameters.

This paper is organized with the following structure. Sections 2 and 3 present
the approximating pcfs of the skew-elliptical-normal and the corresponding skew-
elliptical-t CPs. Some analytical derivations were carried out with Mathematica
(Wolfram Research, Inc. 2020). The intermediate derivation steps are given in
the Appendix. Section 4 demonstrates the performance of parameter estimation
via the MCM using the function optim available in R (R Core Team 2019).
Section 5 provides a data application of these skew-elliptical CPs on a fraction of the
dataset called fullredwood available in the R-library spatstat (Baddeley and
Turner 2005; Baddeley et al. 2015). Finally, Sect. 6 introduces alternative probability
distributions to extend our work on TP, suggests to generalize a similar clustered
spatial point process, and raises a possible exploration for an adjustment of the
MCM.

2 Skew-Elliptical-Normal Cluster Processes

2.1 Distributions of “Children” Events

Let Y, the random vector representing the position of the “children” event in
a cluster, be bivariate skew-normal distributed with skewness parameter vector
α = (α1, α2)

T , location parameter−ωδ
√

2/π , where δ = α/
√

1+ αT α, dispersion
matrix 
 = diag(σ 2

1 , σ
2
2 ) with σ1 > 0, σ2 > 0, and ω = diag(
1/2). In
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short, Y ∼ SN2(−ωδ
√

2/π,
,α). In particular, its pdf is fY(y) = 2φ2(y +
ωδ
√

2/π;
) �{αT ω−1(y + ωδ
√

2/π)}, where φ(·) and �(·) denote the pdf and
cumulative distribution function (cdf) of the univariate standard normal distribution,
φ2(·; ) and �2(·; ) denote the corresponding functions of the bivariate normal
distribution and y = (y1, y2)

T (Arellano-Valle and Azzalini 2006; Azzalini and
Dalla Valle 1996). Then, E(Y) = 0 and Var(Y) = 
 − 2

π
ωδδT ω (Azzalini and

Capitanio 1999; Gupta et al. 2013). Then, Y is also a unified skew-normal (SUN)
random vector (Arellano-Valle and Azzalini 2006; Azzalini and Capitanio 2014).
It is important to state here that the SUN distribution has the additive property.
In general, the SUN distribution introduced by Arellano-Valle and Azzalini (2006)
generalizes the parametrization of several variants of the original multivariate skew-
normal distribution developed by Azzalini and Dalla Valle (1996). To name a few
of these variants, there are the closed skew-normal of González-Farías et al. (2004),
the hierarchical skew-normal of Liseo and Loperfido (2003), the fundamental skew-
normal of Arellano-Valle and Genton (2005), and the multivariate skew-normal of
Gupta et al. (2004).

It is advantageous to use the notation according to Azzalini and Capitanio (2014):

Y has distribution denoted by SUN2,1(−ωδ
√

2/π,
, δ, 0, 1). For X d= Y1 − Y2,
where Y1 and Y2 are two independent “children” events within a cluster, due to
the additive property, X ∼ SUN2,2 (0, 2
,�, 0, I2) (Azzalini and Capitanio 2014,
Ch. 7), where � = δ/

√
2 (1, −1), i.e., the pdf of X is fX(x) = 4φ2 (x; 2
)

�2(�
T ω−1x/

√
2; I2 −�T �). Explicitly,

fX(x) =
exp

(
− σ 2

2 x
2
1+σ 2

1 x
2
2

4σ 2
1 σ

2
2

)

πσ1σ2

×�2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
α1x1
σ1

+ α2x2
σ2

)( 1
−1

)

2
√

1+ α2
1 + α2

2

;

(
2+ α2

1 + α2
2 α2

1 + α2
2

α2
1 + α2

2 2+ α2
1 + α2

2

)

2(1+ α2
1 + α2

2)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

where x = (x1, x2)
T . Note that the distribution of X shown above is centrally sym-

metric. The reason for the symmetry is that Y1 and Y2 are identically distributed.
Hence, X = Y1−Y2 and−X = Y2−Y1 = −(Y1−Y2) have the same distribution.

2.2 Approximation of the Pair Correlation Function

The usual way of defining the pcf of an anisotropic spatial point process is g(u, v) =
λ(2)(u, v)/[λ(u)λ(v)], where λ(2)(u, v) is the second-order product density and λ

is the intensity function. In our setting, g is anisotropic but translation invariant,
g(u, v) = g(v− u), we obtain
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K(r) =
∫

R2
1[‖h‖≤r]g(h)dh,

where r > 0 and 1[‖h‖≤r] is an indicator function. We will then approximate g by gd ,
where the subscript d stands for distance and where gd will be an isotropic function,
i.e., gd(r) with r = ‖h‖. Then, gd(r) = K ′

d(r)/(2πr), where K ′
d(r) = ∂Kd(r)/∂r .

For MCM, the most popular choice for theoretical summary description is
the second-order characteristic known as Ripley’s K-function (Ripley 1976). The
information from Ripley’s K-function is the expected number of events found
within a distance r from an event of interest, K(r) = E[N{b(o, r)}]/λ, where N

denotes the number of events within a disc, b(o, r), of radius r ≥ 0 at the event of
interest o, and λ denotes the global intensity of the process. However, according to
Illian et al. (2008, Chap. 4.3.1), the pcf offers the best statistical way to represent
the distributional information contained in the point patterns. Additionally, the
advantage of using gd here is that while most approximating pcfs gd are analytically
complete, their corresponding Kd -functions are not. We therefore focus on deriving
gd and provide Kd only if they are analytically complete.

Under the relaxed assumption of isotropy, to derive Kd and gd , we calculate
the distribution of the Euclidean distance, or lag, R = √

(Y1 − Y2)T (Y1 − Y2) =√
XT X, where the Yi’s represent two independent “children” events within a cluster.

They are independently and identically distributed bivariate random vectors, and
R is the random variable representing the lag between two randomly distributed
“children” events in a cluster under the assumption of isotropy. We first derive its
cdf, Fd(r), since Kd(r) = πr2 + Fd(r)/κ (Cressie 1993). Then, the pcf is gd(r) =
1+ F ′d(r)/(2πκr) = 1+ fd(r)/(2πκr), where fd(r) is the pdf of R.

We consider the following transformation with R ≥ 0, 0 ≤ � ≤ 2π , X =
(X1, X2)

T ,

X1 = R cos�, X2 = R sin�, and (1)

R =
√

XT X =
√
X2

1 +X2
2, � = arctan(X2/X1).

The determinant of the Jacobian matrix is |∂(r, θ)/∂(x1, x2)| = 1/r . Thus,
fR,�(r, θ) = rfX1,X2(r cos θ, r sin θ), fd(r) =

∫ 2π
0 fR,�(r, θ)dθ , and Fd(r) =∫ r

0 fd(t)dt . From (1), the joint distribution, fR,�(r, θ), is derived in (A.1). The pdf
of R follows easily, and from gd(r) = 1+ fd(r)/(2πκr), the pcf is

gd(r) = 1+
∫ 2π

0

exp

(
− σ 2

2 r
2 cos2 θ+σ 2

1 r
2 sin2 θ

4σ 2
1 σ

2
2

)

2π2κσ1σ2

×�2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
α1r cos θ

σ1
+ α2r sin θ

σ2

)( 1
−1

)

2
√

1+ α2
1 + α2

2

;

(
2+ α2

1 + α2
2 α2

1 + α2
2

α2
1 + α2

2 2+ α2
1 + α2

2

)

2(1+ α2
1 + α2

2)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

dθ.

(2)
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For α �= 0, the pcf is analytically incomplete since the integration over the analyti-
cally incomplete function, �2(·; ), is analytically incomplete. In particular, the pcf
becomes analytically complete if α1 = α2 = 0, i.e., �2(·; ) = �2

{
(0, 0)T ; I2

} =
1/4.

2.3 The Elliptical-Normal Cluster Process

Now assume that σ1 �= σ2 and α = 0. That is, Y is bivariate normal distributed, i.e.,
Y ∼ N2(0,
). Here, the distribution of the “children” events is elliptical around the
“parent” event, and the skewness parameter, α, is not present. Then, from (2), the
approximating pcf is

gd(r) = 1+ 1

4πκσ1σ2
exp

{

− (σ 2
1 + σ 2

2 )r
2

8σ 2
1 σ

2
2

}

BesselI0

{
(σ 2

1 − σ 2
2 )r

2

8σ 2
1 σ

2
2

}

,

where BesselI0(x) = ∑∞
n=0(x/2)2n/(n!)2 is a modified Bessel function of the first

kind. A different parametrization, σ1 ≡ σ and σ2 = cσ σ with cσ > 0, can be
beneficial in parameter estimation with respect to identifiability because we no
longer have two dispersion parameters as above but have one dispersion and its
scaling parameter instead,

gd(r) = 1+ 1

4πκcσ σ 2 exp

{
− (1+ c2

σ )r
2

8c2
σ σ

2

}
BesselI0

{
(1− c2

σ )r
2

8c2
σ σ

2

}
.

Kd of the elliptical-normal CP is not analytically complete. We estimate κ , σ 2, and
c2
σ using gd via the MCM.

As mentioned in Sect. 1, Stoyan (2006) and Tanaka et al. (2008) introduced
different models with more than one dispersion parameters to generalize the
(traditional) TP. For comparison, we provide the pdf of R of our model in (A.2)
and (A.3) in the Appendix.

2.4 The Circular-Normal Cluster Process

Assume that α = 0 and σ1 = σ2 = σ for the distribution of Y. That is,
“children” events are distributed symmetrically circular around their “parent” event.
The corresponding process is the traditional TP and is isotropic. For completeness,
fd(r) = fR(r) is provided in (A.4) in the Appendix. From (2), the true pcf is
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g(r) = 1+ exp{−r2/(4σ 2)}
4πκσ 2

. (3)

The true K-function can be computed as K(r) = ∫ r

0 2πt g(t) dt = πr2 + [1 −
exp{−r2/(4σ 2)}]/κ . This formula of the K-function has been widely used prior to
this work; for example, it can be found in Cressie (1993). To estimate κ and σ 2, the
MCM can use either the pcf or the K-function.

2.5 The Skew-Normal Cluster Process

Let the distribution of Y be a special case of the SUN distribution mentioned
earlier in Sect. 2.1 with σ1 = σ2 = σ . For a scalar σ > 0 and a bivariate vector
δ = α/

√
1+ αT α with α = (α1, α2)

T , assume that Y = −δσ
√

2/π+δσV0+σV1,
where V0 and V1 are an independent random variable and vector, respectively.
Here, V0 follows the univariate standard normal distribution truncated below 0 with
E(V0) = √

2/π , Var(V0) = 1 − 2/π , and V1 is bivariate normal distributed,
N2(0,�), where

� = I2 − δδT = I2 − ααT /(1+ αT α) =
(

1+ α2
2 −α1α2

−α1α2 1+ α2
1

)
/(1+ α2

1 + α2
2)

is a correlation matrix. Under this setting, according to Arellano-Valle and Azzalini
(2006, Sect. 2.1.), Y is bivariate SUN distributed, in particular, E(Y) = 0, Var(Y) =
σ 2(I2−2/πδδT ). This distribution is purely skewed and does not have any elliptical
property. For Y1 and Y2 representing two independent positions of the “children”

events in a cluster, X d= Y1 − Y2 has the pdf fX in Sect. 2.1 with σ1 = σ2 = σ .
Since it is centrally symmetric, we approximate it with a N2

(
0, 2σ 2(I2 − 2/πδδT )

)

distribution, i.e., bivariate normal with pdf

fX(x) = 1

2c0

√
π2c1c2 − 4α2

1α
2
2

exp

[

− π{π(c2x
2
1 + c1x

2
2)+ 4α1α2x1x2}

2c0(π2c1c2 − 4α2
1α

2
2)

]

,

where c0 = 2σ 2/(1 + α2
1 + α2

2), c1 = 1 + α2
1(1 − 2/π) + α2

2, and c2 = 1 + α2
1 +

α2
2(1 − 2/π). The joint distribution, fR,�(r, θ), is given in (A.5) in the Appendix.

The approximating pcf, gd(r), is analytically complete only in the following two
cases. First, assume that α2

1 = α2
2, i.e., (i) α = α(1, 1)T , (ii) α = α(−1,−1)T , (iii)

α = α(1,−1)T , or (iv) α = α(−1, 1)T , for α > 0. Then, fd(r) is given in (A.6) in
the Appendix. Consequently, gd(r) is



Skew-Elliptical Cluster Processes 375

gd(r) = 1+
√

1+ 2α2

4κσ 2
√
π{π(1+ 2α2)− 4α2} exp

[
− {π + 2α2(π − 1)}r2

4σ 2{π(1+ 2α2)− 4α2}
]

× BesselI0

[
α2r2

2σ 2{π(1+ 2α2)− 4α2}
]
.

Second, suppose that (i) α = (0, α)T or (ii) α = (α, 0)T . Then, fd(r) is given
in (A.7) in the Appendix. Consequently, gd(r) is

gd(r) = 1+ r(1+α2)

4πκσ 2
√
(1+α2){1+α2(1−2/π)} exp

[
− r2{1+α2(1−1/π)}

4σ 2{1+α2(1− 2/π)}
]

× BesselI0

[
α2r2

4πσ 2{1+ α2(1− 2/π)}
]
.

Kd of the above scenarios is analytically incomplete. We estimate κ , σ 2, and α2

via MCM using gd . The complete determination of α results from choosing the
optimal α̂ from the above possibilities such that the cluster shape of simulated SPP
can illustrate that of the observed SPP as best as possible.

Remark 1 So far we have emphasized on presenting CPs having the approximating
pcf gd as being analytically complete because they are advantageous in MCM. In
practice, however, for CP having only analytically incomplete pcfs or K-functions,
the parameter estimation can still be carried out, for example, with a Bayesian
approach, but the computation is more intensive.

3 Skew-Elliptical-t Cluster Processes

3.1 General Scenario and Relaxing Independence

Let Y be the bivariate random vector representing the position of a “children” event
in a cluster, and let (YT ,Y∗T )T be four-variate extended skew-t (EST) distributed,
i.e., EST4(0, diag(
,
), (αT ,αT )T , ν, τ ) (Arellano-Valle and Genton 2010b) with
a 4 × 4 dispersion matrix diag(
,
), four-variate shape parameter (αT ,αT )T , ν
df, and extension parameter τ ∈ R, where the 2 × 2 matrix 
 = diag(σ 2

1 , σ
2
2 )

and the bivariate vector αT = (α1, α2). According to Arellano-Valle and Genton
(2010b, Prop. 3), the marginal distribution of Y is also EST distributed: Y ∼
EST2(0,
,αY, ν, τY), where αY = α/

√
1+ αT α is termed as marginal shape

parameter, and τY = τ/
√

1+ αT α is termed as marginal extension parameter. Note
that (i) αY is not necessary in the setting of skew-elliptical-normal CPs because there
α = αY and (ii) the statistical characteristic of αY of a skew-t CP is equivalent to
that of α of a skew-normal CP. Moreover, for simplicity, we have set the location
parameter to zero, but it could be adjusted to yield E(Y) = 0 with the results of
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Section 2.3 in Arellano-Valle and Genton (2010b). From Proposition 5 of the same
paper, we derive that X = Y− Y∗ ∼ EST2(0, 2
, 0, ν, τ/

√
1+ 2αT α).

Although α is neither the shape parameter of the distribution of (YT ,Y∗T )T
nor of Y, it is important in the setting of skew-elliptical-t CPs. First, it contributes
to the shape of the distribution of (YT ,Y∗T )T and of Y; thus, we know how the
“children” events are distributed and know how the process is constructed. Second,
α, but not αY, appears in the formulas of the pcfs of skew-t CPs; hence, we can use
the theoretical pcf to estimate the parameter α and then compute αY. The task of αY
is to describe the shape of the marginal distribution of Y: the cluster shape of the
process.

For independent and identically distributed children Yi ,Yj with i �= j in

a cluster, Xtrue
d= Yi − Yj is not bivariate EST, unified skew-t , or bivariate t

distributed. In fact, its distribution is unknown. The only sub-family of the skew-
elliptical distributions that has the additive property is the SUN family (Arellano-
Valle and Genton 2010a,b; González-Farías et al. 2004). We chose to approximate

the distribution of Xtrue by X, i.e., Xtrue
d≈ X ∼ EST2(0, 2
, 0, ν, τ/

√
1+ 2αT α).

Note that the distribution of X loses the information about α of the distribution of Y
if τ = 0. The pdf of X is

fX(x) =
T1

{
τ√

1+2αT α

(
ν+2

ν+xT 
−1x/2

)1/2 ; ν + 2

}

2π |2
|1/2
(

1+ xT 
−1x/2
ν

)(ν+2)/2
T1

(
τ√

1+2αT α
; ν
) ,

where T1(·; ν) denotes the cdf of the univariate t-distribution with ν degrees of
freedom. The explicit form of fX(x) is given in (A.8), and under the isotropy
assumption, the joint distribution function, fd,R,�(r, θ), is provided in (A.9). If
α �= 0 and σ1 �= σ2, the approximating pcf is analytically incomplete:

gd(r) = 1+ 1

8π2κσ1σ2T1

{
τ√

1+2(α2
1+α2

2)
; ν
} (4)

×

∫ 2π

0

T1

[
τ√

1+2(α2
1+α2

2)

{
ν+2

ν+(r2 cos2 θ/σ 2
1+r2 sin2 θ/σ 2

2

)
/2

}1/2

; ν + 2

]

(
1+ r2 cos2 θ/σ 2

1+r2 sin2 θ/σ 2
2

2ν

)(ν+2)/2
dθ.

For MCM, we use a sequence of ν. For each value of ν, we estimate the other
parameters. Then, we choose the set of estimates and the corresponding ν that
provide the smallest discrepancy between the approximating and empirical pcfs.
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3.2 The Skew-t Cluster Process

If α �= 0 and σ1 = σ2, i.e., (YT ,Y∗T )T ∼ EST4(0, σ 2I4, (α
T ,αT )T , ν, τ )

(Arellano-Valle and Genton 2010b) and, hence, Y ∼ EST2(0, σ 2I2,αY, ν, τY),
where αY = α/

√
1+ αT α and τY = τ/

√
1+ αT α, we obtain the following

approximating pcf under isotropy assumption from (4):

gd(r) = 1+
T1

[
τ√

1+2(α2
1+α2

2)

{
ν+2

ν+r2/(2σ 2)

}1/2 ; ν + 2

]

4πκσ 2 T1

{
τ√

1+2(α2
1+α2

2)
; ν
}(

1+ r2

2νσ 2

)(ν+2)/2
.

The previous formula has two parameters, α1 and α2, of the same role: they both
contribute to the skewness of the distribution of Y. A different parametrization,
α1 = α and α2 = cαα with cα being a real constant, can be useful for parameter
estimation.

Kd of the skew-t CP is analytically incomplete. For the parameter estimation,
we estimate κ , σ 2, α2, and c2

α via MCM using the pcf. Then, we can compute the
estimates of αY,1 and αY,2 because eventually we are interested in knowing the
estimate of the skewness parameter of the skew-t CP, which is αY, not α.

Remark 2 Recall that αY,i = αi/

√
1+ α2

1 + α2
2, i = 1, 2. Thus, they have absolute

values less than 1, i.e., |αY,1| < 1, |αY,2| < 1, although the absolute values of
α1 and α2 can be large. For |αY,1| = |αY,2|, their absolute values can be at most
1/
√

2 ≈ 0.7071. Consequently, only skew-normal CPs with skewness parameters
having absolute values smaller than 1/

√
2 can be considered to be approximated by

a skew-t CP with large df. A demonstration of this statement is given in Sect. 5.

3.3 The Elliptical-t Cluster Process

If τ = 0, α = 0, but σ1 �= σ2, i.e., (YT ,Y∗T )T ∼ tν((0T , 0T )T , diag(
,
)), where

 = diag(σ 2

1 , σ
2
2 ) and, hence, Y ∼ tν(0,
), where tν is the multivariate Student

t-distribution with ν df, then the approximating pcf is

gd(r) = 1+ 1

8π2κσ1σ2

∫ 2π

0

(

1+ r2 cos2 θ/σ 2
1 + r2 sin2 θ/σ 2

2

2ν

)−(ν+2)/2

dθ.

For ν = 1, gd(r) ≡ 1. Only for ν = 2k, where k ∈ N, is gd(r) analytically
complete. For each even df, we have to compute the approximating pcf individually
since there is no general formula for the pcf. Mathematica can compute up to
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26 df analytically. For df greater than 6, the formulas of pcfs are very cumbersome
and can take several rows to be displayed. We choose to represent the pcfs only for
ν = 2, 4, and 6 in the following. For ν = 2,

gd(r) = 1+ 2{(σ 2
1 + σ 2

2 )r
2 + 8σ 2

1 σ
2
2 }

πκ{(r2 + 4σ 2
1 )(r

2 + 4σ 2
2 )}3/2

,

ν = 4,

gd(r) = 1+ 16
{
512σ 4

1 σ
4
2 + 64σ 2

1 σ
2
2 (σ

2
1 + σ 2

2 )r
2 + (3σ 4

1 + 2σ 2
1 σ

2
2 + 3σ 4

2 )r
4
}

πκ{(r2 + 8σ 2
1 )(r

2 + 8σ 2
2 )}5/2

,

and ν = 6,

gd (r) = 1+
324

[
{24σ2

1 σ
2
2 + (σ2

1 + σ2
2 )r

2}{1152σ4
1 σ

4
2 + 96σ2

1 σ
2
2 (σ

2
1 + σ2

2 )r
2 + (5σ4

1 − 2σ2
1 σ

2
2 + 5σ4

2 )r
4}
]

πκ{(r2 + 12σ2
1 )(r

2 + 12σ2
2 )}7/2

.

Kd of the elliptical-t CP is analytically incomplete regardless of df. We can
estimate κ , σ 2

1 = σ 2, and c2
σ , where σ 2

2 = c2
σ σ

2, via MCM using the pcf.

3.4 The Circular-t Cluster Process

If τ = 0, α = 0, and σ1 = σ2, i.e., (YT ,Y∗T )T ∼ tν((0T , 0T )T , σ 2I4), and, hence,
Y ∼ tν(0, σ 2I2), the pcf is

g(r) = 1+ 1

4πκσ 2

(
1+ r2

2νσ 2

)−(ν+2)/2

, (5)

and the K-function is

K(r) = πr2 + 1− {
1+ r2/(2σ 2ν)

}−ν/2

κ
. (6)

We can estimate κ and σ 2. The results presented in Sect. 4 are from an estimation
using the pcf; however, the K-function could be employed just as well.

It is important to note that, in this setting, τ = 0, α = 0, and σ1 = σ2, and
the exact distribution of X is multivariate Behrens–Fisher (Dickey 1966) with pdf
(Dickey 1968):

fX(x) = C B

(
ν + 2

2
,
ν + 2

2

)
F1

(
ν + 2

2
; ν + 1, ν + 1; ν + 2; s1, s2

)
,
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where the constant C = �(ν + 1)/[πν{�(ν/2)}2] for �(·) denoting the Gamma
function, B {(ν + 2)/2, (ν + 2)/2} = {�(ν/2)}2/�(ν + 2), and F1 is the Appell’s
hypergeometric function. In particular (Erdélyi et al. 1953),

F1 ((ν + 2)/2, ν + 1, ν + 1, ν + 2; s1, s2)

=[B{(ν + 2)/2, (ν + 2)/2}]−1×
∫ 1

0
{t (1− t)}ν/2 {(1− ts1)(1− ts2)}−ν−1 dt,

and s1 and s2 are the two real roots of the equation s2 + (s − 1)xT x/(2σ 2ν) = 0.
According to the transformation in (1),

fd(r) = 2�(ν + 1) r

ν{�(ν/2)}2
∫ 1

0

{t (1− t)}ν/2

{(1− ts1)(1− ts2)}ν+1 dt,

where s1,2 = −r2/(4σ 2ν) ± √
r2/(2σ 2ν)+ {r2/(4σ 2ν)}2. The notation s1,2

denotes s1 and s2. The pcf, g(r), can be derived from fd(r). However, the
computation of fd(r) is computationally intensive and does not yield any advantage
for the parameter estimation, since g(r) remains analytically incomplete from this
approach. This again confirms that using the approximation distribution of Xtrue is
computationally advantageous.

3.5 The Case of Orthogonality

If Y1 and Y2 are orthogonal, i.e., E (YT
1 Y2) = 0, and if they are jointly scale

mixtures of bivariate normals, i.e., Yi = V −1/2Zi , i = 1, 2, where the Zi’s are
independently and identically N2(0,�) distributed, which are independent of V ∼
G and have a cdf with G(0) = 0, then X = V −1/2Z with Z ∼ N2(0, 2�) is
independent of V . In particular, for V ∼ Gamma(ν/2, ν/2), Yi follows the bivariate
Student t-distribution mentioned above with � = σ 2I2, and the exact pcf and K-
function are given in (5) and (6).

4 Parameter Estimation by Minimum Contrast

Diggle (2003, Sect. 6) defined the minimum contrast method (MCM) using the
K-function. MCM minimizes discrepancy between the theoretical K-function,
K(r; θ) ≡ K(r), of the assumed model and the empirical K-function, K̂(r),
of the observed pattern. In particular, the discrepancy is defined as D(θ) =
∫ r0

0 w(r)
[
{K̂(r)}cstabil − {K(r; θ)}cstabil

]2
dr , where the constants, r0 and cstabil, and

the weighting function, w(r), are to be chosen. Here, cstabil acts as a variance-
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stabilizing transformation, and θ is the vector comprising the parameters of the
K-function, K(r), or of the pcf, g(r). The estimator, θ̂ , is the minimizer of D(θ).

In our setting, using the approximating pcf gd(r; θ) and the empirical pcf ĝ(r),
we redefine the discrepancy,

Dd,g(θ) =
∫ r0

0
w(r)

[{ĝ(r)}cstabil − {gd(r; θ)}cstabil
]2

dr. (7)

For the data simulation, we want to work with spatial point patterns (SPPs)
having approximately 200 events on a unit square. Consequently, the dispersion
parameters σ1 and σ2 should not be larger than 0.10; otherwise, the data gener-
ation cannot produce enough events because the cluster dispersion is too large.
Additionally, we want the number of “parent” and of “children” events to be
between 10 and 20, so that the parameter estimation can be stable. Thus, we chose
κ = 20, σ1 = σ = 0.04, μ = 10. In Table 1, the models of interest are given
in the first column and the parameters are given in the second column. For the
elliptical-normal CP, σ2 = 0.08 or cσ = 2 were chosen. For the skew-normal

Table 1 3000 SPPs were generated from each skew-elliptical CP. The first column provides the
model specification. The second column gives information about the parameters of the model, and
in the second row of each cell in this column, the logarithms of starting values for our estimation
are provided. In the third column, the average computational time in seconds is represented

by T̄ . Dis2
d,g(θ̂n) denotes the average of Dis2

d,g(θ̂n) according to (8), where θ̂n denotes the

MCM estimate from the (true) novel (skew-elliptical) CP. Dis2
d,g(θ̂ t ) is the average of Dis2

d,g(θ̂ t )

according to (8), where θ̂ t denotes the MCM estimate from the (wrong) traditional TP. In the sixth
column, % provides the percentage of how often Dis2

d,g(θ̂n) is smaller than Dis2
d,g(θ̂ t )

Parameters/starting values T̄ Dis2
d,g(θ̂n) Dis2

d,g(θ̂ t ) %

Elliptical-normal (κ, σ1, cσ )
T = (20, 0.04, 2)T 0.164 0.029 0.031 96.0

log(κ0, σ
2
1,0, c

2
σ,0)

T =
(0,−4, 3.5)T

Skew-normal (κ, σ, α1 = α2 = α)T =
(20, 0.04, 10)T

0.177 0.176 0.179 83.9

log(κ0, σ
2
0 , α

2
0)

T =
(0,−4, 5.5)T

Elliptical-t , df = 6 (κ, σ1, cσ )
T = (20, 0.04, 2)T 0.115 0.035 0.038 85.3

log(κ0, σ
2
1,0, c

2
σ,0)

T =
(0,−4, 3.3)T

Skew-t , df = 6 (κ, σ, α1 = α2 = α)T =
(20, 0.04, 20)T

0.082 0.098 0.101 84.7

log(κ0, σ
2
0 , α

2
0)

T =
(0,−5, 5)T

Circular-t , df = 6 (κ, σ )T = (20, 0.04)T 0.035 0.077 0.085 88.1

log(κ0, σ
2
0 )

T = (0,−4)T
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CP, α1 = α2 = α = 2 were chosen. For elliptical-t CP with ν = 6, σ2 = 0.08
or cσ = 2, and for the skew-t CP with the same df, α1 = α2 = α = 20,
and τ = 1 were selected. Thus, the skewness parameter of the skew-t CP is

αT
Y = (α1/

√
1+ α2

1 + α2
2, α2/

√
1+ α2

1 + α2
2) = (0.7067, 0.7067).

The R-package spatstat computes the empirical pcf with an isotropic-
corrected estimator (Ripley 1988) and a translation-corrected estimator (Ohser
1983). Our experience shows that the empirical pcf according to the former
sometimes has NA (not-available) values, which can stop the computation of the
estimation. Hence, for the parameter estimation in this section as well as for the
data application in Sect. 5, we use the empirical pcf according to the translation-
corrected estimator. The computation was done on compute nodes that have 8 CPU
cores, 32 GB of RAM, and the CPU processors clocked at 2.4 GHz or faster.

Since we generated the SPPs on a unit square, r0 = 0.25 and cstabil = 0.25 were
chosen (Diggle 2003, Chap. 6.1) for the parameter estimation. Additionally, w(r) =
1 was set due to clustered patterns (Diggle 2003, Chap. 6.3). We used the function
optim available in R to minimize (7).

The logarithms of the starting values needed for the function optim are given
in the second column of Table 1 since we estimated the logarithms of κ , σ 2, c2

σ ,
and α2. For the parameter estimation, we just need to estimate α2 since we set
α1 = α2 = α, i.e., cα = 1, for the skew-normal and skew-t CP. Additionally,
we set ν = 6 and τ = 1 for a simple computation for the skew-t CP. In practice,
however, the parameter estimation is done differently: one sequence of ν and one
of τ are considered, and the parameter estimation is done given a pair of (ν, τ ).
Among these possible combinations, a set of values is chosen as a set of estimates
when it delivers the smallest discrepancy between the approximating and empirical
pcfs. Table 1 provides the average computational time, T̄ , in seconds in the third
column and provides information to determine whether or not the choice of MCM

and the function optim makes sense in the last three columns. Let Dis2
d,g(θ̂) denote

the average of bilateral discrepancy,

Dis2
d,g(θ̂) =

∫
{ĝ(r)− gd(θ̂ , r)}2 + {gd(θ̂ , r)− gd(θ, r)}2dr, (8)

where the d, g subscript shows the involvement of the approximating pcf, gd(r), and

θ̂ denotes the estimate. Dis2
d,g(θ̂n) is the average of bilateral discrepancy Dis2

d,g(θ̂n),

where θ̂n denotes the estimate resulting from the assumption of the (true) novel

(skew-elliptical) CP. Similarly, Dis2
d,g(θ̂ t ) is the average of bilateral discrepancy

Dis2
d,g(θ̂ t ), where θ̂ t denotes the estimate resulting from the assumption of the

(wrong) traditional TP. For each of 3000 SPPs, we could compute Dis2
d,g(θ̂n) and

Dis2
d,g(θ̂ t ). The percentage in the last column shows how often Dis2

d,g(θ̂n) <

Dis2
d,g(θ̂ t ); i.e., if the correct model is assumed, the MCM using the approximating

pcf can provide better estimates than assuming a TP. It shows that in the most cases
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Dis2
d,g(θ̂n) < Dis2

d,g(θ̂ t ). Additional information, Dis2
d,g(θ̂n) < Dis2

d,g(θ̂ t ), also
supports this statement.

The estimate of the mean number of “children” events, μ, does not come from
the MCM directly, since μ does not appear in the pcf and, hence, is not involved in
the minimization of Dd,g(θ) in (7). The estimator of μ is, in fact, μ̂ = n/κ̂ , where n
is the number of events of the observed pattern and κ̂ denotes the estimate of κ and
can be obtained via MCM.

The left column of Table 2 displays the choice of models and statistical
information of the estimates. If the hypothesized model is correctly assumed, the
MCM estimators of κ and σ = σ1 outperform the ones under TP, the wrong model,
with respect to MSE. The estimators of cσ or σ2 of elliptical-normal and -t CP,
and of α of skew-normal and skew-t CP seem to be very reasonable since they are
relatively unbiased and have tolerable variance. Overall, MCM provided reasonable
estimates with respect to minimizing the discrepancy in (7).

5 The Clustered Redwoods Dataset

The redwoodfull dataset, available from the library spatstat and rep-
resenting the locations of 195 Californian redwood seedlings and saplings in
a square sampling region, was first described and analyzed by Strauss (1975).
Additionally, according to Baddeley and Turner (2005), it has never been subjected
to a comprehensive analysis. In fact, only a small subset of it, known as the dataset
redwood and consisting of only 62 trees, was analyzed in many works of spatial
point processes, e.g., Diggle (2003). The redwoodfull dataset appears to be
interesting because it has many clusters that display non-circular shapes. We plotted
redwoodfull in Fig. 3 (left) in clustered and inhibitory partitions, represented by
circles and triangles, respectively. In our opinion, 73 trees represented by triangles
cannot be reasonably described by a clustered spatial point process since they follow
an inhibitory pattern. We are interested only in analyzing the clustered redwoods,
especially in finding out which skew-elliptical CPs can best model the process
generating it. Figure 3 (middle) shows the empirical K-function (solid line) of the
clustered redwoods and, for reference, the theoretical K-function (dotted line) of
a CSR with the same intensity over the polygon. Here, r is the Euclidean distance
from the event of interest. Figure 3 (right) displays the empirical F -function (dashed
line) and G-function (solid line). For reference, the theoretical F - and G-functions
of a CSR of the same intensity over the polygon are shown with a dotted line. Note
for CSR, F ≡ G. Two facts indicating clustering are given in the following: (i) the
empirical F -function lies below the theoretical F -function of a CSR and (ii) the
K-function progresses above the theoretical K-function of a CSR. The empirical
G-function also suggests clustering although not as clearly as the empirical F -
and K-functions do. Sometimes it lies below, indicating inhibition, and sometimes
above the reference line (the theoretical G-function of a CSR) over the domain



Skew-Elliptical Cluster Processes 383

Table 2 The information about the models is given in Table 1. std = se × √3000, where std
is the estimate of standard deviation and se is the standard error. 2.5% gives the 2.5-percentile,
and 97.5% gives the 97.5-percentile of the distribution of the estimates, respectively. Bias2 =
{E(θ̂) − θ}2, where E(·) denotes the expectation and is approximated by average of the 3000
estimates. MSE = Bias2+Var(θ̂ ), where Var(θ̂) is the variance of θ̂ and is approximated by std2.
The four columns under Skew-elliptical Cluster Processes show the estimates and the statistical
properties under the true models, and the two columns under Thomas process provide the ones
under the (traditional) TP, the wrong model

Skew-elliptical cluster processes Thomas process

κ̂ σ̂ = σ̂1 σ̂2 α̂ = α̂1 = α̂2 κ̂ σ̂

Elliptical-normal 21.854 0.042 0.098 26.485 0.052

Std 12.686 0.013 0.077 12.522 0.011

2.5% 4.711 0.020 0.038 9.374 0.035

97.5% 52.724 0.068 0.313 56.785 0.077

Bias2 3.436 29× 10−7 31× 10−5 42.060 14 ×10−5

MSE 164.366 16 ×10−5 0.006 198.867 26× 10−5

Skew-normal 23.175 0.034 2.355 23.593 0.028

Std 7.486 0.007 4.716 7.611 0.004

2.5% 11.255 0.023 0.066 11.503 0.022

97.5% 40.024 0.049 10.789 40.912 0.037

Bias2 10.081 4× 10−5 20.471 12.907 15× 10−5

MSE 66.125 9× 10−5 42.711 70.831 16× 10−5

Elliptical-t , df = 6 20.470 0.046 0.094 26.625 0.053

Std 12.168 0.017 0.064 13.469 0.012

2.5% 4.988 0.018 0.037 9.126 0.035

97.5% 51.158 0.084 0.268 61.441 0.080

Bias2 0.221 4× 10−5 19× 10−5 43.897 18× 10−5

MSE 148.270 32× 10−5 431× 10−5 225.319 32× 10−5

Skew-t 19.596 0.040 19.245 22.244 0.037

Std 7.952 0.010 8.624 8.399 0.007

2.5% 7.174 0.027 6.848 9.108 0.028

97.5% 7.403 0.065 41.041 40.904 0.056

Bias2 0.163 1× 10−7 297.381 5.035 73× 10−7

MSE 63.403 5× 10−5 371.755 75.584 6× 10−5

Circular-t 22.030 0.039 22.820 0.039

Std 8.446 0.006 8.703 0.006

2.5% 10.253 0.029 10.538 0.029

97.5% 41.927 0.054 43.340 0.053

Bias2 4.119 3 ×10−7 7.952 8×10−7

MSE 75.446 35 ×10−6 83.702 39 ×10−6

of r approximately from 0.01 to 0.05, suggesting clustering. Overall, there are
graphical hints that the redwoods of interest are clustered. We have, however, to
investigate statistically whether this is truly the case. First, we test whether CSR can
provide a good fit to the redwoods of interest. For that, the plug-in goodness-of-fit
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Fig. 3 On the left, the locations of 195 Californian redwood seedlings and saplings in a square
sampling region, 130× 130 feet, are shown. They are displayed in two partitions: circles represent
the clustered redwoods and triangles the inhibitory ones, respectively. In the middle, the empirical
K-function (solid line) of the clustered redwoods and the theoretical one of a CSR of the same
global intensity (dotted line) are shown. Here, the global intensity, λ, over the polygon containing
the circles is approximately 221. On the right, the empirical F -function (dashed line) and G-
function (solid line) are plotted along with the theoretical F - and G-functions of a CSR of 221
events (dotted line). Note that for a CSR, the theoretical F -function ≡ G-function

test using the G- and F -functions (Diggle 2003, Chap. 1.7) is employed, and the
resulting estimated p-values, p̂, are all 0. Since the p-values are smaller than the
nominal significance level of αGOF = 0.05, we reject that CSR provides a good fit
and conclude that the redwoods of interest are clustered. Second, for the circular-,
elliptical-, skew-normal CPs, and the corresponding-t CPs with a certain df, we
compute the estimates and the corresponding discrepancy between the empirical
pcf and the theoretical one of the underlying model. For elliptical-t CPs, we choose
2, 6, 10, 20, and 26 df for simplicity since their pcfs can be computed analytically
with Mathematica. For skew- and circular-t CPs, we consider all even df up to
30, although we display results only for 2, 10, 20, and 30 df. The estimates such as
κ̂ , σ̂ 2, ĉ2

σ , α̂2, and ĉ2
α are obtained directly from the MCM (Table 3) except the one

of μ, the mean of children number per cluster, which is absent in the pcf and hence
irrelevant in this context.

The empirical pcf (solid line, right plot in the first row) in Fig. 4 takes small
values for small r , increases over the domain 0.001 < r < 0.0123, and decreases
for r > 0.0123. This observation is unlike how the pcf of a cluster process should
progress. Illian et al. (2008, Sect. 4.3.1, 4.3.4) state that for a cluster process, the
pcf takes large values for small r and decreases as r increases. This empirical
pcf is indeed problematic at small r , and we are aware that “the estimation of
the pair correlation function is more delicate and complicated than that of K due
to the serious issues of bandwidth choice and estimation for small r” (Illian et
al. 2008, p. 227, Sect. 4.3.2). We believe that using the complete curve of the
empirical pcf would produce misleading estimates of κ , σ 2, c2

σ , α2, and c2
α . Thus,

two estimation possibilities should be investigated. The first data analysis uses the
empirical pcf, ĝ(r), completely. The second data analysis discards the first 28 pairs
from 512 pairs of data (ri, gi), i = 1, . . . , 512, where ri denotes one of 512 grid
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Table 3 In the first column, the models applied to the clustered redwoods are shown. The resulting
MCM estimates are given in the second and third columns. Here, ĝ(r) is the empirical pcf. The
discrepancy, Dis1

g(θ̂), between the empirical pcf and the theoretical one of certain underlying model
is defined in (9). The smallest discrepancy in each column is displayed boldly

Using ĝ(r)completely Using ĝ(r) partially

CP Estimates Dis1
g(θ̂) Estimates Dis1

g(θ̂)

Circular-normal κ̂ = 60.910, σ̂ = 0.022 0.04824 κ̂ = 60.082, σ̂ = 0.018 0.007080

Elliptical-normal κ̂ = 60.880,
σ̂1 = 0.022,

0.04823 κ̂ = 53.098,
σ̂1 = 0.009,

0.004028

σ̂2 = 0.022 σ̂2 = 0.030

Skew-normal κ̂ = 60.873, σ̂ = 0.022, 0.04822 κ̂ = 58.647, σ̂ = 0.023 0.006032

α̂1 = −0.185,
α̂2 = 0.185

α̂1 = −20.254,
α̂2 = 20.254

Circular-t , df = 2 κ̂ = 47.182,
σ̂ = 0.0242

0.05329 κ̂ = 49.164,
σ̂ = 0.0172

0.004481

Circular-t , df = 10 κ̂ = 57.988,
σ̂ = 0.0223

0.04899 κ̂ = 57.754,
σ̂ = 0.0177

0.005673

Circular-t , df = 20 κ̂ = 59.369,
σ̂ = 0.0222

0.04857 κ̂ = 58.845,
σ̂ = 0.0178

0.006274

Circular-t , df = 30 κ̂ = 59.852,
σ̂ = 0.0222

0.04846 κ̂ = 59.283,
σ̂ = 0.0179

0.006513

Elliptical-t , df = 2 κ̂ = 47.148,
σ̂1 = 0.0242,

0.05328 κ̂ = 49.158,
σ̂1 = 0.0172,

0.004481

σ̂2 = 0.0242 σ̂2 = 0.0172

Elliptical-t , df = 10 κ̂ = 57.949,
σ̂1 = 0.0223,

0.04899 κ̂ = 52.712,
σ̂1 = 0.0095,

0.004154

σ̂2 = 0.0223 σ̂2 = 0.0282

Elliptical-t , df = 20 κ̂ = 59.042,
σ̂1 = 0.0223,

0.04862 κ̂ = 52.845,
σ̂1 = 0.0092,

0.004112

σ̂2 = 0.0223 σ̂2 = 0.0292

Elliptical-t , df = 26 κ̂ = 59.732,
σ̂1 = 0.0222,

0.04847 κ̂ = 52.959,
σ̂1 = 0.0091,

0.004078

σ̂2 = 0.0222 σ̂2 = 0.0296

Skew-t , df = 2 κ̂ = 47.174,
σ̂ = 0.0243,

0.053 κ̂ = 49.180,
σ̂ = 0.0172,

0.004480

α̂1 = −5.178,
α̂2 = 62.388

α̂1 = −12.368,
α̂2 = 84.517

(α̂Y,1 = −0.083,
α̂Y,2 = 0.996)

(α̂Y,1 = 0− 0.145,
α̂Y,2 = 0.989)

(continued)
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Table 3 (continued)

Using ĝ(r)completely Using ĝ(r) partially

CP Estimates Dis1
g(θ̂) Estimates Dis1

g(θ̂)

Skew-t , df = 10 κ̂ = 57.963,
σ̂ = 0.0224,

0.049 κ̂ = 57.732,
σ̂ = 0.0177,

0.005671

α̂1 = −3.356,
α̂2 = 49.077

α̂1 = −2.595,
α̂2 = 28.391

(α̂Y,1 = 0− 0.068,
α̂Y,2 = 0.997)

(α̂Y,1 = 0− 0.091,
α̂Y,2 = 0.995)

Skew-t , df = 20 κ̂ = 59.427,
σ̂ = 0.0222,

0.0486 κ̂ = 58.890,
σ̂ = 0.0178,

0.006273

α̂1 = −8.095,
α̂2 = 51.185

α̂1 = −4.079,
α̂2 = 45.750

(α̂Y,1 = 0− 0.156,
α̂Y,2 = 0.988)

(α̂Y,1 = 0− 0.089,
α̂Y,2 = 0.996)

Skew-t , df = 30 κ̂ = 59.915,
σ̂ = 0.0222,

0.048 κ̂ = 59.270,
σ̂ = 0.0179,

0.006519

α̂1 = −8.646,
α̂2 = 18.942

α̂1 = −4.048,
α̂2 = 45.369

(α̂Y,1 = 0− 0.415,
α̂Y,2 = 0.909)

(α̂Y,1 = 0− 0.089,
α̂Y,2 = 0.996)

Fig. 4 The 122 clustered redwoods (circles) are displayed in the upper left polygon of the left and
middle plots. There, in the lower right polygon, the left plot shows the simulated events (triangles)
of the skew-normal CP with parameters κ = 60.873, σ = 0.022, α1 = −0.185, α2 = 0.185, and
μ = 3.632, and similarly, the middle plot shows the simulated events (triangles) of the elliptical-
normal CP with parameters κ = 53.098, σ1 = 0.009, σ2 = 0.030, and μ = 4.163. The right
plot shows the empirical pcf (solid), the theoretical pcf of the circular-normal CP (TP) (thin), the
approximating pcf of skew-normal CP (dotted, red), and the approximating pcf of elliptical-normal
CP (dashed, blue). The theoretical pcf of TP and the approximating pcf of skew-normal are very
similar due to the negligible estimate, α̂ = 0.185. Here, these two pcfs overlay each other. For the
simulations, the random seed, 999, as in Fig. 1 was used

points representing the domain of r and gi the value of the empirical pcf at ri .
Estimates and the discrepancies, Dis1

g(θ̂) in (9), of the corresponding models from
both analyses are listed in Table 3. We define the discrepancy between the empirical
and approximating pcfs at θ̂ as follows
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Dis1
g(θ̂) =

∫ r0

0
{ĝ(r)− gd(θ̂, r)}2 dr, (9)

where r0 = 0.25 is chosen for analysis of datasets on a unit square.
The first analysis using the empirical pcf completely assigns the smallest

discrepancy to a skew-normal CP. The second analysis using the empirical pcf
partially assigns the smallest discrepancy, however, to an elliptical-normal CP.
Before the goodness-of-fit (GOF) of these two models is tested, we want to clarify
a point that might appear to be an inconsistency in our calculation. Under the
column “Using ĝ(r) partially”, the discrepancies, Dis1

g(θ̂), of the skew-t CPs do
not converge to the one (0.006032) of the skew-normal CP when the df increases.
The reason for it is the absolute values of the skewness parameters of the skew-
normal CP are really large |α1| = |α2| = 20.254, while the absolute values of the
skewness parameters of the skew-t CP are much smaller, |αY,i | < 1, i = 1, 2. On
the contrary, under the column “Using ĝ(r) completely”, the discrepancies, Dis1

g(θ̂),
of the skew-t CPs do converge to the one (0.04822) of the skew-normal CP when
the df increases. The reason for it is the absolute values of the skewness parameters
of the skew-normal CP are smaller than 1, in particular |α1| = |α2| = 0.185, and
the absolute values of the skewness parameters of the skew-t CP are also smaller
than 1, |αY,i | < 1, i = 1, 2. These phenomena can serve as demonstrations of a
statement in Remark 2.

Now, the adjusted goodness-of-fit (AGOF) test (Dao and Genton 2014) is applied
since the plug-in GOF test is not appropriate because only one dataset is available.
The AGOF test is also termed as the Dao–Genton test in Baddeley et al. (2015)
and is made available in the R-library spatstat. Diggle (2003, Sect. 6.2.)
recommended not to use the GOF test based on the K-function if the K-function
was used for parameter estimation. Since we used the empirical pcf (originating
from the K-function) for the parameter estimation, we could rely on the GOF
conclusion from the AGOF-G or −F test. We expect, however, that the AGOF-
G tests would not support the fit of any CP due to the limited support of the
clustering of the empirical G-function. Therefore, we decided to rely mainly on the
conclusion from the AGOF-F test. For the testing, the nominal significance level
is αGOF = 0.05, and α̂∗AGOF denotes the estimated adjusted level (Dao and Genton
2014). For completeness, we run AGOF-G tests that rejected all the models to
be a good fit. This is expected due to the limited support of the clustering of the
empirical G-function explained previously. The AGOF-F test, the only test to be
relied on, provided (i) p̂ = 0.025, which is greater than α̂∗AGOF = 0.005 for the
skew-normal CP model and (ii) p̂ = 0.035, which is greater than α̂∗AGOF = 0.004
for the elliptical-normal CP model. For the latter model, we used the empirical pcf
partially as described previously for the parameter estimation but used the empirical
pcf completely for the computation of the p̂-value. The AGOF-F test provided
p̂ > α̂∗AGOF for both models. Hence, we conclude that these models provide a good
fit, statistically speaking.
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Now, we examine these models graphically. The right plot (Fig. 4) shows the
empirical pcf (solid), the approximating pcf of the circular-normal CP (TP) (thin),
the theoretical skew-normal CP (dotted, red), and the approximating elliptical-
normal CP (dashed, blue). The two approximating pcfs of the circular- and the
skew-normal are very similar due to the negligible estimate of the skewness
parameter, α̂ = 0.185. The approximating pcf of the skew-normal CP does not
represent well the empirical pcf, neither at short nor at middle distance, i.e., r <

0.066. The approximating pcf of the elliptical-normal CP, however, does represent
the empirical pcf well from the middle distance, r > 0.0123. The left plot (Fig. 4)
shows that the simulated events (triangles) of the skew-normal CP do not mimic the
clustered redwoods (circles) well because while the cluster shape of the clustered
redwoods is oblong, that of the simulated data is fairly circular. On the contrary,
the middle plot shows that the simulated events (triangles) of the elliptical-normal
CP have oblong cluster shape that is similar to the cluster shape of the clustered
redwoods. One can see this more clearly if one turns the simulated data by an angle
of approximately 40◦.

Overall, we think that the elliptical-normal CP represents the data better than
does the skew-normal CP. This data application also confirms that the introduction
of skew-elliptical CPs is necessary; otherwise; the ellipticity of the cluster shape
could not be modeled.

6 Discussion

There are a few robustness problems in estimation. First, the MCM uses the
approximating instead of the theoretical pcf. The approximating pcf results from
isotropy assumption of the CP to achieve the analytical completeness, easy to be
incorporated in MCM. The isotropy leads to a significant loss of information, and
therefore the results of estimates need to be carefully verified.

Second, there is sensitivity toward starting values of the empirical pcf under
isotropy assumption. It is usually poorly estimated at a short distance, i.e., r close
to 0. We encountered this problem in our data application: the empirical pcf does
not decrease throughout although it should be strictly decreasing since the assumed
model is clustered (Illian et al. 2008, Sect. 4.3.4). It even increases over a short
domain close to 0. Using the complete curve of the empirical pcf might produce
misleading estimates, but at the same time, ignoring the poorly estimated part of the
empirical pcf might cause overfitting. It may be possible to come up with a cut-off
point from which data of the pcf can be used.

Third, the more parameters the model has, the more sensitive the estimation
can become with respect to the starting values. In general, it is usually difficult
to estimate high-dimensional parameters. One can try to improve the robustness
by estimating certain parameters at a time. For example, assuming that a few
parameters, say θ1, are given, one estimates the remaining parameters, say θ2, where
θT = (θT1 , θ

T
2 ). Then, we plug in the estimates θ2 = θ̂2 in the pcf and estimate
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θ1. The estimation continues until the discrepancy (9) goes below a pre-set limit.
According to our limited estimation studies, parameters such as cα or α could be
treated as θ1, and κ , cσ , or σ could be treated together as θ2.

A possible extension of generalizing the TP is to consider enlarging the choice of
the distribution that is imposable on Y, which is the location of a “children” event in
a cluster. Besides the SUN and EST classes, there may be other distributions of the
unified skew-elliptical families. One of the requirements for the distribution of Y is
that it has the additive property because the distribution of X has to be established

where X d= Y1 − Y2 and Yi , i = 1, 2, representing two independent positions of
the “children” events in a cluster.

In this work, we generalized the TP to some extent. However, we can shift the
focus to the Matérn process, the role of which is very similar to that of the TP
in the field of spatial point processes. Both are special cases of the Neyman–Scott
cluster point process. A Matérn process is constructed similar to a TP except that
the positions of the “children” events are distributed independently and uniformly
inside a disc with the “parent” event as the center. Similar to this work, it is possible
to establish some variations of the Matérn process with respect to the circular,
elliptical, and skew properties of the distribution of “children” events.
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Appendix

Table of Acronyms

Acronym Complete words

AGOF Adjusted goodness-of-fit

cdf Cumulative distribution function

CP Cluster process

CSR Complete spatial randomness

df Degrees of freedom

EST Extended skew-t

GOF Goodness-of-fit

MCM Minimum contrast method

pcf Pair correlation function

pdf Probability density function

SPP Spatial point pattern

SUE Unified skew-elliptical

SUN Unified skew-normal

TP Thomas process
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Skew-Elliptical-Normal Cluster Processes

According to the transformation in (1), the joint distribution fR,�(r, θ) of (R,�) is

fR,�(r, θ) =
r exp
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−σ 2

2 r
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1 r
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Elliptical-Normal Cluster Process

fd(r) = r

2σ1σ2
exp

{

− (σ 2
1 + σ 2

2 )r
2

8σ 2
1 σ

2
2
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BesselI0
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8σ 2
1 σ

2
2

}

. (A.2)

For a different parametrization, σ1 ≡ σ and σ2 = cσ σ with cσ > 0, the pdf fd(r)
can be rewritten as follows:

fd(r) = 1

2cσ σ 2
exp

{
− (1+ c2

σ )r
2

8c2
σ σ

2

}
BesselI0

{
(1− c2

σ )r
2

8c2
σ σ

2

}
. (A.3)

Circular-Normal Cluster Process

Here, σ1 = σ2. We provide the pdf of R, fR(r) = fd(r) in the following:

fR(r) = r

2σ 2 exp

(
− r2

4σ 2

)
. (A.4)

Skew-Normal Cluster Process

Following the transformation defined in (1),

fR,�(r, θ) = r

2c0

√
π2c1c2 − 4α2

1α
2
2

(A.5)

× exp

(

− πr2[π{cos2 θ(c2 − c1)+ c1} + 4α1α2 cos θ sin θ ]
2c0(π2c1c2 − 4α2

1α
2
1)

)

,
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where c0 = 2σ 2/(1+α2
1+α2

2), c1 = 1+α2
1(1−2/π)+α2

2, and c2 = 1+α2
1+α2

2(1−
2/π). The pdf, fd(r), is analytically complete only in the following two cases. First,
α2

1 = α2
2, i.e., (i) αT = α(1, 1), (ii) αT = α(−1,−1), (iii) αT = α(1,−1), or (iv)

αT = α(−1, 1), assuming that α > 0. Consequently, c1 = c2,

fd(r) = π
√

1+ 2α2r

2σ 2
√
π{π(1+ 2α2)− 4α2} exp

[
− {π + 2α2(π − 1)}r2

4σ 2{π(1+ 2α2)− 4α2}
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(A.6)

× BesselI0
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α2r2

2σ 2{π(1+ 2α2)− 4α2}
]
,

where BesselI0(x) = ∑∞
n=0(x/2)2n/(n!)2 is a modified Bessel function of the first

kind.
Second, suppose that α = (0, α)T or α = (α, 0)T . Then,

fd(r) = r(1+ α2)

2σ 2
√
(1+ α2){1+ α2(1− 2/π)} exp
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− r2{1+ α2(1− 1/π)}
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Skew-Elliptical-t Cluster Processes

For x = (x1, x2)
T ,

fX(x1, x2) =
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where T1(·; ν) denotes the cdf of the univariate t-distribution with ν degrees of
freedom. According to the transformation in (1), the joint distribution of (R,�) is

fR,�(r, θ) (A.9)

=
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Nonparametric Approximation Methods
for the First-Passage Time Distribution
for Degradation Data Measured with
Unequal Time Intervals

Lochana K. Palayangoda and Hon Keung Tony Ng

Abstract Evaluating the first-passage time (FPT) distribution of a stochastic
process is a prominent statistical problem, which has long been studied. This
problem has important applications in reliability and degradation data analysis since
the time that a degradation process of a product passes a critical level is considered
as the failure time of the product. While most of the studies for FPT distribution
focus on parametric stochastic process in the past, nonparametric approaches
based on empirical saddlepoint approximation (ESA) are proposed recently. An
advantage of those nonparametric approaches for evaluating the FPT distribution
is that it does not require the specification of the parametric form of the underlying
stochastic process. However, those nonparametric approaches based on ESA require
the degradation measurements to be measured at equally distanced time points.
For this reason, several random imputation methods are proposed by Palayangoda
et al. (Appl Stoch Model Bus Ind 36(4):730–753, 2020). To facilitate the ESA
method when the degradation data are measured at unequal time intervals, in this
chapter, a least-squares modeling approach is proposed as an alternative approach
to the random imputation methods. Monte Carlo simulation studies are used to
evaluate the performance of the proposed methods for estimating the quantiles of
the FPT distribution and for estimating the standard deviation of the FPT. Finally,
degradation data analysis of a laser data is used to illustrate the methodologies
presented in this chapter.

1 Introduction

In the past, most of the reliability studies are focused on lifetime data analysis in
which the statistical analysis is based on data collected from life testing experiments
or field failures. Nowadays, due to the significant improvements in product quality
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and reliability, it may be difficult to assess reliability of a product using the
traditional lifetime data analysis. Therefore, degradation measures that record the
accumulation of damage (e.g., wear, corrosion, crack growth, etc.) of the product
over time can contain more important information about the product’s performance
and reliability. Degradation analysis aims to characterize the underlying failure
process by modeling the degradation measures. A prescribed critical level is
the level above/below which the product is considered to be failed (or not able
to perform its required function). Hence, the failure time distribution based on
degradation data is equivalent to the first-passage time (FPT) (also known as the
first hitting time) distribution, which is defined as the time when the stochastic
degradation process first reaches the critical level.

In different applications, a FPT model usually consists of three underlying
components: (1) a parent stochastic process {Xt, t ≥ 0}; (2) a threshold critical
level c; and (3) a time scale. In addition to the application in reliability analysis,
the problem of determining the FPT distribution frequently occurs in different
disciplines such as biology, chemistry, ecology, economics, finance, and physics.
Due to the numerous applications of the FPT model, estimating the FPT distribution
has long been studied in the literature. However, most of the studies of FPT distri-
bution focus on obtaining the FPT distribution for a specified parametric stochastic
process either analytically or numerically, while a few studies considered the
nonparametric estimation of the FPT distribution without specifying the parametric
form of the underlying stochastic process. Recently, Balakrishnan and Qin (2019)
and Palayangoda et al. (2020) developed nonparametric approaches to evaluate the
FPT of degradation processes. In addition, Balakrishnan and Qin (2020) discussed
the optimal design of degradation tests from a nonparametric perspective, whereas
the degradation process is modeled by an empirical Lévy process. In contrast to
the parametric approaches, those nonparametric approaches for estimating the FPT
distribution of degradation processes require the degradation measurements to be
measured at equally distanced time points. For this reason, Palayangoda et al. (2020)
proposed several random imputation methods to estimate the FPT distribution
nonparametrically based on degradation data measured with unequal time intervals;
however, the performance of those imputation methods can be sensitive to the
variation in the measurement time points. Moreover, those random imputation
methods may give different estimates of FPT in different imputations and lead to
different conclusions. To address these issues, in this chapter, we propose a least-
square modeling approach as an alternative to the random imputation approach.

The rest of this chapter is organized as follows. In Sect. 2, we briefly review
two parametric Lévy process models, the gamma process model and the IG process
model. In Sect. 3, the nonparametric approach in estimating the FPT distribution
based on empirical saddlepoint approximation (ESA) is presented. In addition, esti-
mation of the moments of FPT distribution, different random imputation methods
with ESA, and the issues of these imputation methods are discussed. Then, in
Sect. 4, a least-squares modeling approach is proposed as an alternative approach
to the imputation methods. In Sect. 5, Monte Carlo simulation studies are used to
evaluate the performance of the proposed nonparametric estimation methods for
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estimating the quantiles of the FPT distribution and for estimating the standard
deviation of the FPT. In Sect. 6, an analysis of laser degradation data is used to
illustrate the methodologies presented in this chapter.

2 Parametric Lévy Process Models

The Lévy process {Xt, t ≥ 0} is a right continuous stochastic process, which
satisfies stationary and independent increments. In other words, the increment
Xt+v−Xt has the same distribution ∀t ≥ 0, v ≥ 0, and Xtj −Xtj−1 are independent
∀tj ≥ 0 with t0 < t1 < . . ., respectively. From the infinitely divisible property, the
characteristic function of any Lévy process is defined in Lévy–Khintchine theorem.
For any θ ∈ R, the characteristics function ψ of an infinitely divisible distribution
is given by Bertoin (1996)

log{ψ(θ)} = iaθ − 1

2
σ 2θ2 +

∫

R

(
eiθx − 1− iθx1|x|<1

)
Π(dx), (1)

where a, σ ∈ R, and Π is a measure satisfying Π({0}) = 0 and
∫
R
(1∧x2)Π(dx) <

∞. From the Lévy-Itō decomposition, iaθ corresponds to a linear drift, 1
2σ

2θ2 is
the Brownian motion, and

∫
R

(
eiθx − 1− iθx1|x|<1

)
Π(dx) represents a Poisson

process with jumps. The Wiener process, the gamma process, and the inverse
Gaussian (IG) process are some parametric Lévy processes commonly used in
the literature with numerous applications. Among the three parametric processes,
gamma process and IG process consist of monotonic increments, whereas the
Wiener process can support both monotonic and non-monotonic increments. In
this chapter, we mainly focus on monotonic degradation processes. Furthermore,
we assume that the initial degradation measurement time and the corresponding
degradation measurement are t0 = 0 and Xt0 = 0, respectively. Moreover, suppose
ΔXj = Xtj − Xtj−1 and Δtj = tj − tj−1 (j = 1, 2, . . . , m), where Δtj is
the corresponding time difference between the degradation measurements Xtj and
Xtj−1 . We denote the random variable of the first-passage time with threshold c as
Tc. A brief introduction for the gamma and IG degradation processes is given in the
following subsections.

2.1 Gamma Process

The stochastic process {Xt, t ≥ 0} follows a gamma degradation process if the
random increment ΔXj follows a gamma distribution with shape parameter αΔtj >

0 and scale parameter β > 0 (denoted as gamma(αt, β)), whereas the probability
density function (PDF) and cumulative distribution function (CDF) are, respectively,



398 L. K. Palayangoda and H. K. T. Ng

gXt (x;αt, β) =
1

βαtΓ (αt)
xαt−1 exp

(
− x

β

)
, x > 0,

and

GXt (x;αt, β) =
∫ x

0
gXt (w;αt, β)dw, x > 0,

where Γ (a) = ∫∞
0 xa−1 exp(−x)dx is the gamma function. We denote the

gamma degradation process as Gamma(α, β) process. Suppose the mth degradation
measurement taken at time t = tm is Xt = ∑m

j=1 ΔXj , and thus, the distribution
of Xt is Xt ∼ gamma(αt, β), where t = ∑m

j=1 Δtj . The cumulant generating
function (CGF) of Xt is KXt (s) = ln[MXt (s)] = −αt ln (1− βs) for s < 1/β.
For a given threshold level c, the true FPT distribution of Gamma(α, β) process
can be directly obtained by Pr(Tc > t) = Pr(Xt < c) = GXt (c;αt, β). As an
alternative approach, the Birnbaum–Saunders approximation proposed by Park and
Padgett (2005) can be used to estimate the FPT distribution. For more details on the
Birnbaum–Saunders distribution, one may refer to Birnbaum and Saunders (1969),
Balakrishnan and Kundu (2019).

2.2 Inverse Gaussian Process

Let {Xt, t ≥ 0} be an IG degradation process (Wang and Xu 2010; Ye and Chen
2014), then ΔXj follows an IG distribution (Chhikara and Folks 1989) with mean
parameter μΔtj and shape parameter λ(Δtj )

2, whereas the PDF and CDF are,
respectively,

φIG(x;μΔtj , λ(Δtj )
2) =

√
λ(Δtj )2

2πx3 exp

[

−λ(x − μΔtj )
2

2μ2x

]

, x > 0,

and

ΦIG(x;μΔtj , λ(Δtj )
2)

= Φ

[√
λ

x

(
x

μ
−Δtj

)]

+ exp

(
2λΔtj

μ

)
Φ

[

−
√
λ

x

(
x

μ
−Δtj

)]

, x > 0,

respectively, where Φ(·) is the CDF of the standard normal distribution. Let the mth
degradation measurement is taken at time tm, then Xt = ∑m

j=1 ΔXj , and thus, the

distribution of Xt is Xt ∼ IG(μt, λt2), where t = ∑m
j=1 Δtj . The CGF of Xt is

given by
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KXt (s) = ln[MXt (s)] = (λt/μ)

(
1−

√
1− (2μ2s/λ)

)
for s ≤ λ/(2μ2).

In this chapter, we denote the IG degradation process as IG(μ, λ) process. If
threshold level is c, the true FPT distribution if IG process can be directly obtained
by Pr(Tc > t) = Pr(Xt < c) = ΦIG(c;μt, λt2). In addition, Peng (2015) proposed
that the FPT distribution of the IG process can be approximated by the Birnbaum–
Saunders distribution. For some independence properties and the characterization of
the inverse Gaussian distribution, one may refer to Arnold and Seshadri (2009).

3 Empirical Saddlepoint Approximation

Saddlepoint approximation is a well-established procedure for estimating the PDF
or CDF of a random variable when the moment generating function (MGF) or
the CGF of the random variable is known. For a given dataset, we can obtain the
empirical MGF or empirical CGF and then apply the saddlepoint approximation
based on the empirical MGF or the empirical CGF. This procedure is named the
empirical saddlepoint approximation (ESA). Following the saddlepoint approxima-
tion method introduced by Lugannani and Rice (1980), when a degradation process
follows a Lévy process, Palayangoda et al. (2020) proposed an ESA method to
estimate the FPT distribution of the degradation process. The main advantage of
the ESA approach is that it is a nonparametric procedure in which specification of
the underlying distribution of the degradation process is not required.

Suppose {Xt ; t > 0} follows a Lévy process with I units and m measurements,
we assume that the measurements are taken at unit time intervals and all units have
the same number of measurements. Let the observed values of degradation data are
X = {xij ; i = 1, 2, . . . , I , j = 1, 2, . . . , (m + 1)}. Furthermore, for a given unit,
the difference between two consecutive measurements is ΔXj = Xj − X(j−1),
and the time interval between two consecutive degradation measurements is Δtj =
tj − t(j−1) = 1, j = 1, 2, . . . , m. Therefore, the empirical CGF of this degradation
process, this Lévy process, at time t is given by

ˆKXt (s) = t ln
1

Im

⎧
⎨

⎩

I∑

i=1

m∑

j=1

exp(sΔxij )

⎫
⎬

⎭
, (2)

where Δxij = xij − xi(j−1). Using the empirical CGF in Eq. (2) and following the
saddlepoint approximation by Lugannani and Rice (1980), Palayangoda et al. (2020)
proposed an ESA procedure to estimate the FPT distribution at t for degradation data
with threshold level c as follows:
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P̂r(Tc > t) =

⎧
⎪⎨

⎪⎩

Φ(ŵ)+ φ(ŵ)( 1
ŵ
− 1

û
), if t �= ts ,

1
2 +

ˆK ′′′
Xt

(0)

6
√

2π ˆK ′′
Xt

(0)3/2
, if t = ts ,

(3)

where ˆK ′′
Xt

and ˆK ′′′
Xt

are the second and third derivatives of the function ˆKXt ,

ŵ = sgn(ŝ)

√
2{ŝc − ˆKXt (ŝ)}, û = ŝ

√
ˆK ′′
Xt
(ŝ), and the saddlepoint ŝ is obtained

by solving ˆK ′
Xt
(ŝ) = c such that

ˆK ′
Xt
(s) =

∑m
j=1{Δxj exp(sΔxi)}
∑m

j=1{exp(sΔxj )} t = c.

Furthermore, ts is the singularity point, which is evaluated by solving c = E(Xt0).

Thus, ts is the solution of K ′
Xt
(0) = c and is t̂s = c/{∑I

i=1
∑m

j=1[Δxij /(Im)]}.
The empirical CGF, ˆKXt (ŝ), can be determined from Eq. (2).

3.1 Estimation of the Moments of FPT Distribution

To find the moments of gamma or IG degradation process, the common practice is to
apply the Birnbaum–Saunders approximation (Birnbaum and Saunders 1969; Park
and Padgett 2005). Palayangoda (2020) proposed a residue approximate to evaluate
the moments of monotone Lévy processes. Suppose Xt follows a Lévy process and
Y is a random variable that corresponds to the degradation per unit interval, then the
CGF of Xt with respect to the CGF of Y can be obtained as KXt (s) = tKY (s). The
following result presented in Palayangoda (2020) provides the approximation of the
first and second moments of Tc, where Tc is the FPT with threshold level c.

Result 1 Residue approximations for the MTTF (i.e., the first moment of Tc) and
the second moment of Tc are, respectively,

E(Tc) . c

K ′
Y (0)

+ K ′′
Y (0)

2[K ′
Y (0)]2

, (4)

and

E(T 2
c ) .

1

{K ′
Y (0)}2

[

c

(
2
K ′′

Y (0)

K ′
Y (0)

+ c

)
+ 3

2

(
K ′′

Y (0)

K ′
Y (0)

)2

− 2

3

K ′′′
Y (0)

K ′
Y (0)

]

.� (5)

The cumulants K ′
Y (0) and K ′′

Y (0) are the mean and variance of Y , respectively,
and the first moment of Tc in Eq. (4) is the same as the first moment of the
FPT distribution obtained from the Birnbaum–Saunders approximation (Park and
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Padgett 2005). In addition, from Eqs. (4) and (5), we can obtain the nonparametric

estimates of the first and second moments, denoted as T̂ESA

(1)
and T̂ESA

(2)
, of the

FPT distribution as

T̂ESA

(1) = Ê(Tc) = c

ȳ
+ s2

y

2ȳ2
, (6)

T̂ESA

(2) = Ê(T 2
c ) =

1

ȳ2

⎡

⎣c

{

2
s2
y

ȳ
+ c

}

+ 3

2

{
s2
y

ȳ

}2

− 2

3

k3
y

ȳ

⎤

⎦ , (7)

where ȳ = ∑m
j=1 Δxj , s2

y = ∑m
j=1{Δxj − ȳ}2/(m− 1) and

k3
y =

∑m
j=1{Δxj − ȳ}3/(m− 1) are the sample mean, the sample variance, and the

third sample cumulant of the sample degradation measurements per unit interval
(i.e., Y ), respectively.

3.2 ESA for Data with Unequal Time Intervals

As shown in Palayangoda et al. (2020, Section 3.1), the ESA approach provides
promising results on estimating the FPT distribution when the distribution of degra-
dation data is unknown and it is robust under model misspecification. However,
the ESA method works only when the degradation data are measured at equal time
intervals. To accommodate and make accurate estimation of FPT distribution for
the degradation data with unequal time intervals, several imputation techniques are
proposed in Palayangoda et al. (2020) to transform the unequal time degradation
process to an equal time degradation process. Palayangoda et al. (2020) showed
that the random imputation (RImp) and conditional random imputation (CRImp)
methods are performing well. In particular, for monotone degradation data, the
CRImp method has showed better performance than the RImp method. In addition
to the imputation methods proposed by Palayangoda et al. (2020), other imputation
methods such as the gamma bridge interpolation suggested by Balakrishnan and Qin
(2020, Section 3.2), can also be considered.

To apply these imputation methods, a general assumption is that the degradation
process follows a Lévy process. These techniques are developed by setting the unit
time interval as the highest common factor (HCF)1 of the different time intervals
(i.e., HCF of Δti). Then, imputation techniques are used to impute the missing
values at unit time intervals. Therefore, the pseudo-completed degradation data
with equal time intervals will be resulted to apply the ESA method to obtain
the FPT distribution. Specifically, let the Lévy process {Xt : t ≥ 0} consist of

1The HCF is the largest real number, which when used to divide the time increments leads to all
the ratios as positive integers.
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Fig. 1 A schematic diagram for the data imputation method in the j th interval (tj−1, tj ]

degradation measurements, xt = {xt0, xt1 , . . . , xtm}, which are taken at time points
t = {tj ; j = 1, 2, . . . , m}. Suppose the j th time interval be Δtj = tj − tj−1 with
an initial measurement, t0 = 0. The HCF of Δt (i.e., the pseudo-unit-time interval)
Δt0 = HCF {Δtj : j = 1, . . . , m}. For example, if the degradation measurements
are taken at t = {1, 2, 5, 10, 11, 14, 19, . . .}, then Δtj = {1, 3, 5, 1, 3, 5, . . .}.
Thus, the HCF of Δt0 is 1 (i.e., HCF(1, 3, 5) = 1). Using the imputation
techniques, we will fill the missing degradation measurements at time points t∗ =
{3, 4, 6, 7, 8, 9, 12, 13, 15, 16, 17, 18, . . .}.

Suppose that �j is the number of pseudo-unit-time intervals inside the j th interval
(tj−1, tj ] is defined as

�j = tj − tj−1

Δt0
= Δtj

Δt0
,

and the total number of pseudo-unit-time intervals up to time tj (i.e., in (0, tj ]) is

kj = ∑j

l=1 �l, for j = 1, 2, . . . , m, with k0 = 0. Thereby, with pseudo-unit-time
interval Δt0, the imputed pseudo-complete degradation data contain km =∑m

j=1 �j
degradation measurements. The imputed pseudo-complete degradation data are
denoted as (y1, y2, . . . , ym), where

yj = (ykj−�j+1, ykj−�j+2, . . . , ykj−2, ykj−1, ykj ),

with ykj = xtj for j = 1, 2, . . . , m. Therefore, in the j th time interval
(tj−1, tj ], we have to impute �j − 1 measurements, which are denoted as
(ykj−�j+1, ykj−�j+2, . . . , ykj−2, ykj−1). Figure 1 shows the data imputation scheme
in the j th interval.

When �j �= 1, the unit-drift in the j th time interval (tj−1, tj ] is defined as

δj =
(
xtj − xtj−1

tj − tj−1

)
Δt0, (8)

and the set of m unit-drifts is δ = {δ1, δ2, . . . , δm} for the m time intervals.
The RImp and CRImp methods for obtaining pseudo-complete degradation data

with unit-time interval Δt0 are discussed in the following subsections. Without loss
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of generality, we assume that all the I items under the degradation test are measured
at the same time points and the increments of the degradation measurements follow
the same distribution.

3.2.1 Random Imputation Method (RImp)

In the RImp method, the unit-drift sampling frame for the I items is created as
(δ1, δ2, . . . , δI ), where δi = {δi1, δi2, . . . , δim} is the set of unit-drifts for the ith
item (i = 1, 2, . . . , I ). After setting ykj = xtj , for the j th interval (tj−1, tj ], the
other values in yj are imputed by using the following algorithm:

1. Set L = ykj−1 and COUNT = 0.
2. Draw a random sample of I values with replacement from the unit-drifts
{δ1j , δ2j , . . . , δIj } and denote each as δ∗j .

3. For each item set ykj−1+1 = L + δ∗j , then set L = ykj−1+1 and COUNT =
COUNT + 1.

4. If COUNT < �j − 1, repeat Steps 2 and 3.

The RImp method may provide negative increment at the last imputation of the
j th interval (i.e., possibility to have xtj − ykj−1 < 0). In this situation, the negative
imputed value will affect the monotonicity of the degradation process; therefore, the
CRImp method is considered to accommodate this issue.

3.2.2 Conditional Random Imputation Method (CRImp)

The CRImp method artificially transforms the unequal time interval degradation
data into equal time interval degradation data, while maintaining the monotonicity
of the degradation process. By using a constrained sampling frame, the CRImp
method ensures that all the increments are positive. In the j th interval (tj−1, tj ],
after setting ykj = xtj , the other values in yj can be imputed by the following
algorithm:

1. Set L = ykj−1 and COUNT = 0.
2. Draw a random sample of n values with replacement from the constrained

sampling frame {δ1j , δ2j , . . . , δIj : δij < xtj − L, i = 1, 2, . . . , I }, denote
each as δ∗j .

3. Set ykj−1+1 = L+ δ∗j , then set L = ykj−1+1 and COUNT = COUNT + 1.
4. If COUNT < �j − 1, repeat Steps 2 and 3.

3.2.3 Simulated Example for RImp and CRImp

To illustrate the RImp and CRImp methods, a set of simulated degradation data from
the Gamma(1, 3) degradation process with threshold level c = 300 and 5 degra-
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Fig. 2 Imputed degradation (left) and estimated FPT distribution (right) for a simulated Gamma(1,
3) degradation process measured with Δt = {1, 3, 5} for I = 5, total experiment time of 80, and
c = 300

dation paths (i.e., I = 5) measured at t = {0, 1, 4, 9, 10, 13, 18, 19, 22, 27, . . .}
(i.e., Δt = {1, 3, 5, 1, 3, 5, . . .}) up to a total experiment time of each sample
tm = 80. Since the degradation process is simulated based on a gamma process,
the parameters in the gamma process model are estimated by the maximum
likelihood estimation approach, and the FPT distribution based on maximum
likelihood estimates (MLEs) with the gamma process assumption is compared to
the ESA approach with the RImp and CRImp imputation methods. Note that the
ESA approach does not require any distributional assumption about the underlying
degradation process, and the parametric form of the underlying degradation process
is usually unknown in practice. The imputed values based on the RImp and CRImp
methods and the estimates of the FPT distribution based on the parametric approach
(i.e., MLEs with gamma process) and based on ESA using RImp, CRImp, and
without imputation are presented in Fig. 2.

From Fig. 2, we observe that the estimated FPT distribution based on the ESA
approach with CRImp provides a better approximation (closer to the estimated FPT
distribution based on the parametric approach) compared to the RImp approach,
while the estimated FPT distribution based on ESA without considering the issue of
unequal time intervals is problematic.

3.2.4 Issues with the Imputation Methods

As shown in the simulated example in Sect. 3.2.3 (see also, Palayangoda et al. 2020),
the imputation methods, RImp and CRImp, provide decent results in estimating
the FPT distribution nonparmetrically using ESA; however, when the time intervals
between two degradation measurements are large and the HCF of the time intervals
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Fig. 3 Imputed degradation (left) and FPT distribution (right) for a sample Gamma(1, 3)
degradation process measured at Δt = {1, 25, 50} for I = 5, a total experiment time of 80,
and c = 300

is relatively small, the performance of the ESA of FPT distribution can be affected.
Based on the simulation setting in Sect. 3.2.3, we consider a simulated degradation
data measured at time t = {0, 1, 26, 76} for each sample, i.e., the time differences
of the subsequent measurements are Δt = {1, 25, 50}. The imputed values based
on the RImp and CRImp methods and the estimates of the FPT distribution based
on the parametric approach (i.e., MLEs with gamma process) and based on ESA
using RImp, CRImp and without imputation are presented in Fig. 3. Compared
to the results presented in Fig. 2, the estimated FPT distributions based on ESA
with the imputation methods are not as close to the parametric estimate of FPT
distribution. This illustrates that the performance of the imputation methods, RImp
and CRImp, is sensitive to the variations of the time intervals between degradation
measurements.

To illustrate this issue with the random imputation methods, Palayangoda et al.
(2020) observed that the imputation methods provide nearly unbiased estimate for
the mean of FPT distribution (i.e., the mean time to failure (MTTF)). However, the
variance of the FPT distribution estimated through these imputation methods can
be different from each other. For both the RImp and CRImp methods, we evaluate
the degradation per unit time interval for all the degradation measurements (i.e.,
δj in Eq. (8)). Since ΔXj follows a Lévy process, the mean and variance of ΔXj

are μΔtj and σ 2Δtj , respectively, and then the mean and variance of δj can be
obtained as

E(δj ) = E

(
ΔXj

Δtj
Δt0

)
= μΔt0
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and V(δj ) = V

(
ΔXj

Δtj
Δt0

)
= σ 2

Δtj
(Δt0)

2,

respectively. Here, we can see that the mean of δj is time independent, yet the
variance of δj is time dependent. A feasible estimate for the MTTF is c/E(δj ),
and thereby, the MTTF is unbiased if we use δj (j = 1, 2, . . . , m) as an
estimate of the imputed degradation measurements. On the other hand, a feasible
estimate of the variance of the FPT distribution is c2/V(δj ) = c2Δtj/[σ 2(Δt0)

2].
These results show that when estimating the FPT distribution based on the ESA
imputation methods using δj , the variance depends on the time differences of the
measurements (i.e., Δtj ). Another issue with these imputation methods may give
different estimates of FPT in different imputations and lead to different conclusions.

To address these issues about the imputation methods, it is desired to develop an
estimation method based on ESA with measurements from unequal time intervals
that does not rely on random sampling, and the variance of the estimates is less
sensitive to the time differences of the measurements. In the next section, we
propose an alternative approach to estimate the FPT distribution using ESA when
the degradation data are measured with unequal time intervals.

4 Least-Squares Modeling Approach

As an alternative to imputation methods, in this section, we propose two methods
based on a least-squares modeling approach to obtain the FPT distribution for
degradation data with unequal time measurements using the ESA method. In
the proposed approaches, we transform the degradation data into unit time scale
increments to facilitate the ESA approach.

4.1 Transformed Degradation Data with Least-Squares
Modeling

From Eq. (1), we observe that the Lévy process can be decomposed into a
Wiener process (i.e., linear drift and Brownian motion) and a Poisson process.
Considering Donsker’s Theorem (Donsker 1951), for sufficiently large sample,
we can approximate the decomposition of the Lévy process by a Wiener process.
Suppose that {Xt ; t > 0} follows a Lévy process that consists of I units with m

measurements and the time intervals of consecutive measurements are {Δtij ; i =
1, 2, . . . , I, j = 1, 2, . . . , m} and the differences in consecutive measurements are
{ΔXΔtij ;i = 1, 2, . . . , I , j = 1, 2, . . . , m}. Assuming {Xtij } follows a Lévy
process and the sample size is sufficiently large, we consider the model
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Xtij = μY tij + εtij , (9)

where εtij is a random variable with mean 0 and variance σ 2
Y tij , and μY and σ 2

Y

are the mean and variance of the degradation per unit interval, respectively. For
example, if Xt follows Gamma(α, β) process, then μY = αβ and σ 2

Y = αβ2. Here,
the variance parameter of the Lévy process is σY . Note that Eq. (9) only captures the
mean and variance of Xtij but not the skewness; therefore, an interesting extension
for future research is to consider more general models that can capture other features
of the Lévy process (see, for example, Tseng and Lee 2016).

Because the Lévy process is infinitely divisible, ΔXtij can be written as

ΔXΔtij = μYΔtij + εΔtij , (10)

where εΔtij is a random variable with mean 0 and variance σ 2
YΔtij .

Suppose the HCF of the time differences Δtij (i = 1, 2, . . . , I ; j = 1, 2, . . . , m)

is Δt0, the proposed approach is to transform the stochastic process ΔXΔtij into
ΔXΔt0 by estimating μY and σY using a least-squares method. An independent and
identically distributed error of the model in Eq. (10) is

ε∗Δtij
=
(
ΔXΔtij − μYΔtij

)

√
Δtij

, i = 1, 2, . . . , I ; j = 1, 2, . . . , m. (11)

Then, the sum of squares of the errors is given by

I∑

i=1

m∑

j=1

{
ε∗Δtij

}2 =
I∑

i=1

m∑

j=1

(
ΔXΔtij − μYΔtij

)2

Δtij
. (12)

By minimizing the sum of squares of errors in Eq. (12), we can obtain an estimate
of μY as

μ̂Y =
∑I

i=1
∑m

j=1 ΔXΔtij
∑I

i=1
∑m

j=1 Δtij
. (13)

If the measurements of all units are taken at the same set of time points (i.e., Δtij =
Δtj ), then the estimate in Eq. (13) can be simplified as

μ̂Y =
∑I

i=1
∑m

j=1 ΔXΔtj

I tm
, (14)

where tm = ∑m
j=1 Δtj is the total experiment time. The expected value of the

estimate in Eq. (14) is μY ; thus, it is unbiased. Furthermore, the variance of the
estimate in Eq. (14) is σ 2

Y /(I tm); thereby, μ̂Y is consistent as its variance goes to
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0 when either I → ∞ (i.e., large sample) or tm → ∞ (i.e., infinite experimental
time). Moreover, the estimate of the random error, ε∗Δtij

, can be obtained as

ε̂∗Δtj
=
(
ΔXΔtj − μ̂YΔtj

)

√
Δtj

. (15)

Thus, the variance of ε̂∗Δtj
is σ 2

Y [1−Δtj/(I tm)]. Using those estimates in Eqs. (14)
and (15), the transformed degradation process model for time differences with Δt0
is estimated by

ΔX̃Δt0|Δtj = μ̂YΔt0 + ε̂Δt0|Δtj , (16)

where ε̂Δt0|Δtj =
√
Δt0ε̂

∗
Δtj

, and ΔX̃Δt0|Δtj is the estimated degradation increment
for time interval Δt0 for the j th measurement. The proposed method applies the
ESA based on the values ΔX̃Δt0|Δtj in Eq. (16), and this method is called the LS
method.

The expected value of ΔX̃Δt0|Δtj is μYΔt0, which is thereby unbiased. In

addition, the variance of ΔX̃Δt0|Δtj can be obtained as

V(ΔX̃Δt0|Δtj ) = σ 2
Y

[
1− (Δtj − 1)

I tm

]
Δt0. (17)

From Eq. (17), we can see that either I → ∞ (i.e., large sample size) or tm → ∞
(i.e., infinite experimental time), and the variance of ΔX̃Δt0|Δtj reaches σ 2

YΔt0,

which is the variance of ΔXΔt0 . Therefore, the estimate ΔX̃Δt0|Δtj → ΔXΔt0 as
I → ∞ or tm → ∞ for all Δtj , j = 1, 2, . . . , m. This shows that the estimate,
ΔX̃Δt0 , is asymptotically efficient. From the estimated differences for Δt0 (i.e.,
˜ΔXΔt0 ), we can apply ESA for a given threshold level.

4.2 CRImp Method Based on Transformed Degradation Data

For the RImp and CRImp methods, we impute the degradation measurements
per unit interval based on the estimates presented in Eq. (8). Instead of using
the estimates presented in Eq. (8), we propose using the least-squares estimate in
Eq. (16) to perform the CRImp algorithm instead of using the estimates presented
in Eq. (8). This method is called the CRImpLS method.
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5 Monte Carlo Simulation Studies

5.1 Estimating the Quantiles of FPT Distribution

In this simulation study, we generate degradation data from the gamma degradation
process and the IG degradation process with time gaps {1, 3, 5} (i.e., degradation
data are measured at time t1 = 1, t2 = 4, t3 = 9, t4 = 10, t5 = 13, t6 = 18,
. . .) and with time gaps {1, 5, 15} (i.e., degradation data are measured at time
t1 = 1, t2 = 6, t3 = 21, t4 = 22, t5 = 27, t6 = 42, . . .). The Gamma(1,
2), Gamma(0.5, 4), IG(2,5), and IG(2,10) processes are generated with I = 5 or
I = 50 items with threshold value c = 200. Furthermore, we set the termination
time of the experiment as tm = 75. In each simulation, the FPT distribution is
estimated by using the parametric approach (i.e., obtain the MLEs of the parameters
by assuming that the true distribution of the underlying degradation process is
known) and the nonparametric ESA approach. For example, when the degradation
data are generated from the Gamma(α, β) process, we can obtain the MLEs of the
parameters α and β, denoted as α̂ and β̂, respectively, and the parametric estimate of
the FPT distribution at time t can be obtained by P̂r(Tc > t) = GXt (c; α̂t, β̂). The
true values of the FPT distributions at time t are obtained by the procedures provided
in Sects. 2.1 and 2.2 for the gamma and inverse Gaussian processes, respectively.
Since the simulated degradation data are not measured at equal time intervals, for
the nonparametric ESA approach, we consider the RImp, CRImp, LS, and CRImpLS
methods to accommodate the unequal time intervals issue. The performance of the
estimation methods for FPT distribution is evaluated in terms of the mean squared
errors (MSEs) for estimating the 1st, 5th, 10th, 90th, and 99th percentiles. The
simulation results based on 10,000 simulations for different settings are presented
in Tables 1, 2, 3, and 4.

From Tables 1, 2, 3, and 4, we observe that the CRImp method gives MSEs
closest to the MSEs of the parametric MLE approach in many situations. The LS
method appears to perform better when the sample size increases. The MSEs of the
estimates based on the LS method are smaller than all the other imputation methods
except for the CRImp method. On the other hand, the CRImpLS method appears to
perform similar to the RImp method.

5.2 Estimating the Standard Deviation of FPT

In this simulation study, the degradation data are generated from gamma and IG
degradation processes with different time gaps Δt = {1, 3, 5} and Δt = {1, 5, 15}
from the Gamma(1, 2), Gamma(0.5, 4), IG(2, 5), and IG(2, 10) degradation
processes with I = 5 and 50 items, termination time tm = 75, and different
threshold values c = 200 and 300. For each setting, the standard deviation of the
FPT is estimated based on the results for Lévy process model by estimating E(Tc)
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Table 1 Simulated MSEs of the estimates of 1st, 5th, 10th, 90th, and 99th percentiles based on
MLE, ESA with RImp, CRImp, LS, and CRImpLS methods when the data are generated from the
Gamma(1, 2) and Gamma(0.5, 4) processes with Δt = {1, 3, 5}, experiment time tm = 75, and
threshold value c = 200

Simulated from Gamma(1, 2) Simulated from Gamma(0.5, 4)

Percentile I MLE RImp CRImp LS CRImpLS MLE RImp CRImp LS CRImpLS
1st 5 23.9 41.4 26.1 34.1 36.0 42.0 74.1 46.4 62.1 55.3

5th 5 24.3 38.5 26.0 32.4 32.9 45.0 69.2 46.8 60.7 52.6

10th 5 25.4 32.1 25.4 33.4 28.2 46.9 66.3 47.9 61.3 52.0

90th 5 32.7 57.6 34.3 40.9 44.0 67.1 130.7 70.1 83.2 86.1

99th 5 37.7 153.7 41.1 47.3 74.1 79.3 392.7 85.3 101.4 141.5

1st 50 2.7 22.1 4.3 4.2 16.9 4.1 44.8 7.0 7.0 22.4

5th 50 2.5 18.4 4.1 3.2 12.8 4.5 35.0 5.9 6.1 16.0

10th 50 2.6 10.7 2.8 3.5 6.8 4.8 30.2 5.7 6.2 13.3

90th 50 3.3 23.9 4.0 4.1 12.3 6.7 52.7 7.0 8.2 18.8

99th 50 3.8 106.5 5.1 5.0 35.3 7.9 266.3 8.5 10.8 54.6

Table 2 Simulated MSEs of the estimates of 1st, 5th, 10th, 90th, and 99th percentiles based on
MLE, ESA with RImp, CRImp, LS, and CRImpLS methods when the data are generated from the
Gamma(1, 2) and Gamma(0.5, 4) processes with Δt = {1, 5, 15}, experiment time tm = 75, and
threshold value c = 200

Simulated from Gamma(1, 2) Simulated from Gamma(0.5, 4)

Percentile I MLE RImp CRImp LS CRImpLS MLE RImp CRImp LS CRImpLS
1st 5 27.5 54.6 38.9 63.8 69.2 48.4 98.0 65.3 119.1 104.7

5th 5 26.6 45.6 32.6 61.0 50.0 49.9 83.4 57.4 116.8 80.1

10th 5 27.3 36.5 28.7 62.5 36.8 51.2 77.4 55.4 117.7 70.6

90th 5 34.5 71.6 42.0 77.2 61.3 73.4 163.6 80.2 164.6 122.0

99th 5 41.5 229.1 68.7 91.0 121.2 90.5 478.3 108.4 205.0 246.2

1st 50 2.9 31.3 11.5 7.5 50.0 4.7 59.0 16.1 13.7 69.6

5th 50 2.7 22.2 7.1 6.2 29.4 4.9 40.4 8.8 11.9 39.7

10th 50 2.8 12.5 3.7 6.4 14.9 5.2 32.5 7.1 11.8 28.0

90th 50 3.6 26.8 4.7 7.7 23.6 7.4 62.1 8.0 15.9 42.3

99th 50 4.3 137.0 6.6 9.5 69.0 9.1 353.0 11.2 21.4 131.6

and E(T 2
c ) with Eqs. (4) and (5), respectively, and

ŜD(Tc) =
√
Ê(T 2

c )−
[
Ê(Tc)

]2
. (18)

The simulated MSEs of the estimates of standard deviation of FPT based on
MLE, ESA with RImp, CRImp, LS, and CRImpLS methods for different settings
are presented in Tables 5 and 6. From Tables 5 and 6, we observe that in all the cases
considered here, both the CRImp and LS methods give MSEs closest to the MSEs of
the MLE method based on the correctly specified degradation process. In addition,
the LS method gives the smallest MSEs in estimating the standard deviation of FPT
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Table 3 Simulated MSEs of the estimates of 1st, 5th, 10th, 90th, and 99th percentiles based on
MLE, ESA with RImp, CRImp, LS, and CRImpLS methods when the data are generated from the
IG(2, 5) and IG(2, 10) processes with Δt = {1, 3, 5}, experiment time tm = 75, and threshold
value c = 200

Simulated from IG(2, 5) Simulated from IG(2, 10)

Percentile I MLE RImp CRImp LS CRImpLS MLE RImp CRImp LS CRImpLS
1st 5 11.9 23.7 15.7 15.8 24.2 6.1 12.0 8.9 7.9 15.9

5th 5 11.6 16.6 12.4 15.1 16.1 5.9 8.6 6.9 7.6 10.3

10th 5 11.3 17.2 13.0 14.3 16.5 5.7 8.4 6.9 7.2 9.5

90th 5 11.2 18.9 13.0 13.9 16.6 5.8 11.0 8.3 7.2 12.1

99th 5 12.0 54.0 21.7 15.1 36.1 6.0 22.0 12.0 7.4 22.7

1st 50 1.2 13.6 5.4 1.8 14.6 0.7 6.9 3.7 1.0 10.4

5th 50 1.3 6.7 2.4 1.8 6.4 0.7 3.6 1.9 0.9 5.1

10th 50 1.3 7.6 3.3 1.6 7.0 0.7 3.5 2.0 0.8 4.5

90th 50 1.2 7.6 2.3 1.5 5.9 0.7 5.4 2.9 0.9 6.2

99th 50 1.4 39.8 8.7 2.0 23.7 0.7 15.3 5.6 0.8 14.7

Table 4 Simulated MSEs of the estimates of 1st, 5th, 10th, 90th, and 99th percentiles based on
MLE, ESA with RImp, CRImp, LS, and CRImpLS methods when the data are generated from the
IG(2, 5) and IG(2, 10) processes with Δt = {1, 5, 15}, experiment time tm = 75, and threshold
value c = 200

Simulated from IG(2, 5) Simulated from IG(2, 10)

Percentile I MLE RImp CRImp LS CRImpLS MLE RImp CRImp LS CRImpLS
1st 5 13.6 31.5 25.5 29.5 44.2 7.0 16.4 14.1 21.1 28.4

5th 5 12.8 20.4 17.0 28.0 24.8 6.5 10.7 9.3 19.9 16.0

10th 5 12.2 20.1 16.8 26.6 22.6 6.2 9.8 8.7 19.1 13.4

90th 5 12.3 23.3 17.5 26.2 23.3 6.3 13.0 10.6 17.9 17.3

99th 5 13.7 79.0 45.5 28.4 58.2 6.8 32.1 21.7 18.1 40.4

1st 50 1.4 18.0 11.6 3.3 32.0 0.8 9.2 6.7 1.7 19.9

5th 50 1.5 8.0 4.5 3.2 13.1 0.8 4.3 2.9 1.6 8.7

10th 50 1.4 8.4 5.1 2.9 11.6 0.7 3.9 2.7 1.5 6.7

90th 50 1.3 8.7 3.9 2.8 9.9 0.8 6.1 3.8 1.5 8.7

99th 50 1.6 51.3 20.4 3.5 36.2 0.8 20.1 10.2 1.5 20.6

among all the procedures considered here. Furthermore, when the number of items
increases from 5 to 50, the MSEs decrease for all the methods as expected. On the
other hand, the MSEs of different estimation methods increase when the time gaps
become larger. In addition, it is important to note that when the number of items
increases from 5 to 50, the performance of the LS method improved significantly.
This indicates an advantage of the LS method over the random imputation methods
for large samples. Moreover, the simulation results in Tables 5 and 6 demonstrate the
usefulness of the ESA with the CRImp method and the LS method to accommodate
the unequal time intervals issue.
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Table 5 Simulated MSEs of the estimates of the standard deviation of FPT based on MLE, ESA
with RImp, CRImp, LS, and CRImpLS methods when the data are generated from the Gamma(1,
2), Gamma(0.5, 4), IG(2,5), and IG(2,10) processes with Δt = {1, 3, 5} and experiment time
tm = 75

Simulated from Gamma(1, 2) Simulated from Gamma(0.5, 4)

I c MLE RImp CRImp LS CRImpLS MLE RImp CRImp LS CRImpLS
5 200 0.42 11.35 1.17 0.66 5.26 0.92 25.75 2.03 1.80 7.73

5 300 0.63 16.49 1.76 0.98 7.87 1.32 36.75 3.04 2.60 11.66

50 200 0.04 9.87 0.47 0.07 4.59 0.09 21.20 0.38 0.19 6.06

50 300 0.06 14.50 0.73 0.10 6.88 0.13 30.35 0.59 0.28 9.03

Simulated from IG(2, 5) Simulated from IG(2, 10)

I c MLE RImp CRImp LS CRImpLS MLE RImp CRImp LS CRImpLS
5 200 0.16 4.26 1.17 0.24 3.20 0.08 2.07 0.94 0.10 2.62

5 300 0.25 6.32 1.78 0.38 4.81 0.12 3.08 1.42 0.16 3.93

50 200 0.02 3.80 0.86 0.03 2.96 0.01 1.87 0.77 0.01 2.31

50 300 0.02 5.67 1.29 0.04 4.47 0.01 2.80 1.16 0.02 3.48

Table 6 Simulated MSEs of the estimates of the standard deviation of FPT based on MLE, ESA
with RImp, CRImp, LS, and CRImpLS methods when the data are generated from the Gamma(1,
2), Gamma(0.5, 4), IG(2,5), and IG(2,10) processes with Δt = {1, 5, 15} and experiment time
tm = 75

Simulated from Gamma(1, 2) Simulated from Gamma(0.5, 4)

I c MLE RImp CRImp LS CRImpLS MLE RImp CRImp LS CRImpLS
5 200 0.88 16.73 4.03 1.34 12.46 1.78 39.52 4.83 3.55 21.45

5 300 1.33 24.75 6.12 2.05 19.10 2.68 54.49 7.31 5.31 31.76

50 200 0.09 12.05 1.02 0.15 10.68 0.18 25.80 0.70 0.38 17.22

50 300 0.13 17.42 1.58 0.22 16.26 0.26 37.26 1.16 0.58 25.78

Simulated from IG(2, 5) Simulated from IG(2, 10)

I c MLE RImp CRImp LS CRImpLS MLE RImp CRImp LS CRImpLS
5 200 0.36 6.27 3.40 0.51 6.71 0.18 2.99 1.98 0.22 5.12

5 300 0.55 9.21 4.97 0.77 10.20 0.27 4.41 2.94 0.34 7.76

50 200 0.04 4.59 1.97 0.06 5.53 0.02 2.24 1.27 0.02 3.64

50 300 0.05 6.83 2.97 0.08 8.43 0.03 3.37 1.92 0.03 5.52

6 Numerical Example: Analysis of Laser Degradation Data

Laser devices are made of light emitting diodes (LEDs), and LEDs are subjected to
degradation over time. As a matter of fact, laser devices are designed to maintain
constant light output by providing more current to LED; thus, the operating current
increases with time. Therefore, the failure time of laser devices is evaluated, which
is the time at which the operating current passes a specific threshold level. An
experiment is conducted with 15 GaAs laser devices at temperature 80 ◦C by Meeker
and Escobar (1998). In the experiment, for 15 GaAs laser devices, the percent
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Fig. 4 Degradation paths of the 15 GaAs Laser degradation in an experiment described in Meeker
and Escobar (1998)

increase in operating current is recorded for every 250 h up to 4000 h. In Fig. 4,
the degradation paths are presented for the corresponding laser devices.

To illustrate the nonparametric approach for handling degradation data measured
at unequal time intervals, we artificially remove some data by considering the
measurements at time points {250, 500, 1000, 1750, 2000, 2500, 3250, 3500, 4000}
with Δt1 = Δt4 = Δt7 = 250, Δt2 = Δt5 = Δt8 = 500, Δt3 = Δt6 = 750,
and Δt0 = HCF(250, 500, 750) = 250. The FPT distribution is estimated based
on the modified data using ESA, and the parametric approach based on the gamma
process assumption. To model the data with ESA, we apply the RImp, CRImp, LS,
and CRImpLS methods. For the FPT approximation through gamma process, we
used the complete data set before the removal to find the MLEs, which can be used
as a reference for comparison purposes.

The estimated percentiles of the FPT distribution and the estimates of the
standard deviation of FPT based on different estimation approaches are presented
in Table 7. Using the estimates based on the parametric method as a reference,
the proposed LS method provides estimates closer to the estimates based on the
parametric method. It can be seen from Fig. 5 that all the methods considered here,
including the proposed LS and CRImpLS methods, are not heavily deviated from
the estimates based on the parametric method.
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Table 7 Estimates of 1st, 5th, 10th, 50th, 90th, and 99th percentiles of FPT distributions obtained
based on Gamma MLE (all data), RImp, CRImp, LS, and CRImpLS methods with threshold levels
c = 10 and c = 20

c = 10 c = 20

Percentile MLE RImp CRImp LS CRImpLS MLE RImp CRImp LS CRImpLS
1st 3990 3590 3668 3878 3615 8498 7908 8110 8343 7818

5th 4255 3958 4025 4175 3985 8880 8448 8608 8775 8405

10th 4398 4160 4220 4338 4190 9085 8743 8875 9013 8720

50th 4918 4918 4925 4943 4930 9825 9825 9838 9870 9845

90th 5455 5765 5673 5575 5708 10583 10993 10815 10760 10995

99th 5908 6560 6335 6105 6373 11213 12023 11628 11500 11965

ŜD(Tc) 413 633 571 483 594 584 883 758 683 891
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Fig. 5 FPT distribution of GaAs Laser degradation data with threshold c = 10 for unequal time
intervals
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