
Chapter 9
Symmetry Approach to Chiral
Optomagnonics in Antiferromagnetic
Insulators

Igor Proskurin and Robert L. Stamps

Abstract We discuss several aspects of chiral optomagnonics in antiferromagnetic
insulators by considering common symmetries between the electromagnetic field and
spin excitations. This approach allows us to look at optical and magnetic materials
from similar perspectives, and discuss useful analogies between them. We show that
spin waves in collinear antiferromagnets and the electromagnetic field in vacuum are
both invariant under the same eight-dimensional algebra of symmetry transforma-
tions. By such analogy, we can extend the concept of optical chirality to antiferro-
magnetic insulators, and demonstrate that the spin-wave dynamics in these materials
in the presence of a spin current is similar to that of the light inside chiral meta-
materials. Photo-excitation of magnonic spin currents is also discussed from the
symmetry point of view. It is demonstrated that a direct magnonic spin photocurrent
can be exited by circularly polarized light, which can be considered as a magnonic
analogue of the photogalvanic effect. We also note that the Zitterbewegung process
should appear and may play a role in photo-excitation processes.

9.1 Introduction

Modern spintronics is now a well-developed area that aims at bringing new func-
tionality to conventional electronics by making use of the spin degrees of freedom
[1], which may help to overcome looming saturation of Moore’s Law [2]. There are
a number of different trends in the development of the spintronics today. Among
different materials, antiferromagnets play an important role, which brings us to the
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field of antiferromagnetic spintronics [3, 4]. Their abundance in Nature and zero net
magnetization make antiferromagnets potentially useful for applications, while the
existence of two or more magnetic sublattices allows one to explore various topo-
logical effects [4]. The focus on optical manipulation of the spin states in magnetic
insulators constitutes the scope of the optospintronics [5]. A prominent direction
in optospintronics is related to the application of microwave cavity resonators [6],
which has already seen a rapid development during the last several years [7].

Being interdisciplinary, spintronics in general, and optomagnonics in particular,
can benefit by looking at the concept of chirality. Chirality or handedness, which
according to the original definition given by Lord Kelvin in his Baltimore Lectures
is related to the lack of symmetry between an object and its mirror image [8]. It is a
universal phenomenon that has proved its significance in various scientific areas from
high-energy physics to life sciences and soft matter [9]. Kelvin’s definition, which is
purely geometric, was generalized later to accommodate dynamical phenomena by
Barron [10]. Thus, according to Barron’s definition, one should distinguish between
true and false chiralities. The former is to be found in the systems that break inversion
symmetry, but at the same time are invariant under a time-reversal transformation
combined with any proper rotation, while the latter is characterized by breaking
time-reversal and inversion symmetries simultaneously [11].

How can the concept of chirality be useful for the development of optospintron-
ics? A general observation is that the goal of the spintronics is manipulation and
transformation of pure spin currents, and spin currents are chiral. Indeed, in agree-
ment with the definition of true chirality, a flow of angular momentum reverses its
sign under spatial inversion, while it remains invariant under the time reversal trans-
formation, which reverses both velocities and spins. Thus, from the symmetry point
of view, pure spin currents are in the same category as, for example, natural optical
activity and circular dichroism in optics. This argument also suggests that materials
with structural chirality may have unique properties for hosting and transferring spin
currents that makes them interesting for applications, which is reflected in the rapid
development of molecular spintronics [12, 13] and related topics such as chiral spin
selectivity [14].

Another observation helpful to establish a link between optics and spintronics
is that not only geometric structures but also physical fields can be characterized
by chirality. Chirality density of the electromagnetic field, for example, has been
known for a long time. Lipkin first noticed that the Maxwell’s equations in vacuum
have a hidden conservation law for a chiral density, which he dubbed zilch due to
the lack of clear physical meaning of this quantity at that time [15]. Later, it was
demonstrated that this conservation law is closely related to electromagnetic duality
[16, 17]. This eventually led to the formulation of the nongeometric symmetries of
the Maxwell’s equations [18], i. e. the symmetries, which are not reduced to space-
time transformations. For several decades, the formal properties of optical chirality,
helicity, and dual symmetries were discussed [19–26] but it was not until Tang and
Cohen showed how electromagnetic chirality density can be used to characterize
dichroism in light interacting with a chiral metamaterial that this was understood for
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materials [27]. This revived interest in optical chirality [28–31], which has found a
number of applications in optics and plasmonics [32–37].

The results of Tang and Cohen [27] can be understood as follows. In order to
observe effects related to the chirality of light, we have to put the electromagnetic
field in contact with a chiral environment. This principle suggests a way for find-
ing similar effects in other systems. For example, spin-wave dynamics in collinear
antiferromagnets can be represented in a form that closely resembles the Silberstein-
Bateman formulation of the Maxwell’s equations. Since collinear antiferromagnets
have two magnetic sublattices, the concept of electromagnetic duality and nongeo-
metric symmetries can be generalized to transformations between the antiferromag-
netic sublattices [38]. This allows to establish a conservation law for a spin-wave
analogue of the optical chirality. Injection of a spin current into the antiferromagnet
in this case has an effect similar to a chiral environment for light-matter interactions
inside a metamaterial [38].

It is also remarkable that both the Maxwell’s equations [39] and the dynamics of
antiferromagnetic spin waves [40] allow a formulation in the form of the Dirac equa-
tion for an ultra-relativistic particle. Such particles are characterized by conserving
helicity—a projection of spin on the linear momentum [41], which also satisfies the
definition of true chirality. Breaking the symmetry between right and left, in this case,
corresponds to a Weyl material [42], wherein quasi-particles with different helicities
are spatially separated. Symmetry considerations suggest that as far as single particle
dynamics is concerned, there should be some analogy between opticalmetamaterials,
Weyl semimetals, and chiral antiferromagnets. There has been several proposals in
these directions. For example, one can emulate the chiral magnetic effect in metallic
antiferromagnets [43].

These arguments have a direct impact on optospintronics. Since optical chirality
and spin currents share the same symmetry properties, it is possible to use polarized
light to excite magnon spin-photocurrents in antiferromagnetic insulators [44]. Cir-
cular polarized light in this case creates a direct flow of magnon angular momentum,
whose direction is controlled by helicity of light. This effect resembles the circular
photogalvanic effect in metals [45], which recently attracted attention in topological
electron materials [46]. It has been demonstrated that for a separated Weyl node, the
photocurrent excitation rate is determined by the product of the topological charge
of the node and the helicity of light [46].

In this Chapter, we review chiral excitations in optics and antiferromagnetic insu-
lators together with their applications in optomagnonics. Our discussion is organized
as follows. In Sect. 9.2, we give a brief review of optical chirality and nongeometric
symmetries, which is generalized to antiferromagnetic spin-waves in Sect. 9.3, where
we discuss potential applications such as spin-current induced magnon dichroism.
Section9.4 is reserved for photo-excitation of magnon spin currents with polarized
light. Summary and conclusions are in Sect. 9.5.
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9.2 Optical Chirality and Nongeometric Symmetries of the
Maxwell’s Equations

Since the early developments of electrodynamics, it has beenwell established that the
electromagnetic field in vacuum can be characterized by conserving energy, momen-
tum, angular momentum, which reflects the invariance of the Maxwell’s equations
with respect to the translations and rotations in the four-dimensional space-time [18].
It was found almost by chance [15] that in addition to these conservation laws, the
electromagnetic field has another invariant given by a combination of the electric,
E, and magnetic, B, fields

ρχ(t, r) = ε0

2
E · (∇ × E) + 1

2μ0
B · (∇ × B), (9.1)

which is odd under the spatial inversion and even under the time reversal transforma-
tions (ε0 and μ0 are the vacuum permittivity and permeability respectively). For this
quantity, Lipkin coined a special term—optical zilch to emphasize the lack of a clear
physical interpretation at that time [15]. According to its symmetry properties, ρχ is
truly chiral [10], and can be considered as a chirality density of the electromagnetic
field.

Using theMaxwell’s equations, it is straightforward to demonstrate that in vacuum
ρχ satisfies the continuity equation

∂ρχ

∂t
+ ∇ · Jχ = 0, (9.2)

where

Jχ (t, r) = ε0

2
E × ∂E

∂t
+ 1

2μ0
B × ∂B

∂t
, (9.3)

determines the corresponding zilch flow.
In this section, we will show that this conservation law belongs to the class of

so-called “hidden” or nongeometric symmetries of the Maxwell’s equations. One of
these symmetries, which has been known since the time of Heaviside, Larmor, and
Rainich, is the duality symmetry [47, 48]. If we consider Maxwell’s equations in
free space

∇ × E = 0, ∇ × B = 0, (9.4)

∇ · E = 0, ∇ · B = 0, (9.5)

(we set c = 1 throughout this section) the electromagnetic duality is a symmetry
with respect to the rotation in the pseudo-space of the electric and magnetic fields,
which leaves Maxwell’s equations invariant
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E → E′ = E cos θ + B sin θ, (9.6)

B → B′ = −E sin θ + B cos θ, (9.7)

where θ is a real parameter of the transformation. This symmetry is usually broken
inside materials, unless we deal with a dual symmetric medium [49].

The existence of duality symmetry guarantees the conservation of optical helicity,
i. e. the projection of spin angularmomentum of the photon onto its linearmomentum
[16, 17, 23, 24]. It should be mentioned, however, that the formulation of helicity
conservation law in classical electrodynamics is not straightforward, because the
standard Lagrangian for the electromagnetic field is not dual symmetric [48]. Using
the dual symmetric representation for the electromagnetic Lagrangian combinedwith
the Noether’s approach, it is possible to express the optical helicity density in the
form similar to (9.1)

ρhel(t, r) = 1

2
[A · (∇ × A) + C · (∇ × C)] , (9.8)

where in addition to the magnetic vector potential A, we also introduced the electric
vector potential C , which satisfies the following equations, E = −∇ × C = −∂t A
and B = ∇ × A = ∂tC . These are invariant under the transformations in (9.6) and
(9.7) [47, 48].

The definition of electromagnetic helicity depends on a specific representation of
the Lagrangian. It suggests that it would be useful to have a general formalism for
deriving “hidden” symmetries and conservation laws directly from the equations of
motion formulated exclusively in terms of the electromagnetic fields, and indepen-
dent of any gauge choice. Such a formalism has been developed by Fushchich and
Nikitin [18]. Below, we give a brief review of this formalism, which is necessary for
further discussions.

9.2.1 Symmetry Analysis of the Maxwell’s Equations

For the symmetry analysis, it is convenient to formulate Maxwell’s equations in
the form that resembles the Dirac equation for a massless relativistic particle. This
representation is called the Silberstein-Bateman form [18]. In this form, the first
pair of the Maxwell’s equations in (9.4) is rewritten in terms of a Schrödinger-like
equation for the six-component vector column composed of the components of the
electric and magnetic fields φ = (E, B)T

i
∂φ(t, p)

∂t
= H( p)φ(t, p), (9.9)

where for convenience, wework in themomentum space, p, defined by the following
Fourier transformations
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E(t, r) = 1

(2π)3/2

∫
d3 pei p·r E(t, p), (9.10)

B(t, r) = 1

(2π)3/2

∫
d3 pei p·r B(t, p). (9.11)

The matrix on the right-hand side of equation (9.9) has the following structure

H( p) =
(

0 i(Ŝ · p)
−i(Ŝ · p) 0

)
, (9.12)

which can be considered as a direct product of the Paulimatrixσ2, which interchanges
E and B, and the “helicity” operator (Ŝ · p), where the matrices Ŝα (α = x, y, z)
form a representation of the three-dimensional rotation group, (Ŝα)βγ = iεαβγ , with
εαβγ being the Levi-Civita symbol.

The second pair of the Maxwell’s equations (9.5) in this formalism impose an
additional constraint on the components of φ(t, p) [18]

(Ŝ · p)2φ(t, p) = p2φ(t, p), (9.13)

which acknowledges transversality of the electromagnetic field in vacuum.

9.2.1.1 Invariance Algebra of the Maxwell’s Equations

Now, we can find the symmetry operations that transform a solution φ(t, p) of (9.9)
into another solution φ̃(t, p) = Q( p)φ(t, p). We look for these transformations in
the form of the six-dimensional matricesQ( p), whichmay depend on themomentum
p. Formal resemblance of our representation with the quantum mechanics implies
that these matrices should commute withH( p).

The problem of finding all such transformation becomes almost trivial if we trans-
form to the helicity basis, where H( p) is diagonal. This transformation is reached
by a combination of the rotation in the three-dimensional space

Û� =

⎛
⎜⎜⎜⎜⎜⎜⎝

− px pz + i py p√
2pp⊥

px pz − i py p√
2pp⊥

px
p

− py pz − i px p√
2pp⊥

py pz + i px p√
2pp⊥

py
p

p⊥√
2p

− p⊥√
2p

pz
p

⎞
⎟⎟⎟⎟⎟⎟⎠

, (9.14)

where p⊥=(p2x + p2y)
1/2, which diagonalizes the “helicity” operator, Û †

�(Ŝ · p)Û�=
diag(−p, p, 0) (it transforms to the basis where the electric and magnetic fields are
written in terms of circularly polarized components), with the SU (2) transformation
in the pseudo-space of electric and magnetic fields
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U2 = 1√
2

(
1 −i
−i 1

)
. (9.15)

The resulting transformationU = U2 ⊗ Û� diagonalizesH( p) so that in the trans-
formed frame

H̃ = U†HU = diag(−p, p, 0, p,−p, 0). (9.16)

The eigenvalues of H̃ correspond to the left and right polarized electromagnetic
modes with the linear frequency dispersion cp (we have recovered the speed of light
c here), which are degenerate in the absence of light-matter interactions.

Straightforward calculations show that in the diagonal frame, any matrix that
commutes with H̃ , and at the same time leaves (9.13) invariant, is parameterized by
eight parameters, a, …h, and has the following structure

Q̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

a 0 0 0 e 0
0 b 0 f 0 0
0 0 0 0 0 0
0 g 0 c 0 0
h 0 0 0 d 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (9.17)

The basis in the linear space of Q̃ can be chosen such as its basis elements, Q̃i , (i =
1, . . . , 8) form the algebra isomorphic to the Lie algebra of the group U (2) ⊗U (2)

Q̃1 = −σ2 ⊗ Ŝy, Q̃2 = −iσ3 ⊗ Î
Q̃3 = −iσ1 ⊗ Ŝy, Q̃4 = σ1 ⊗ Ŝx
Q̃5 = −σ0 ⊗ Ŝz, Q̃6 = σ2 ⊗ Ŝx
Q̃7 = σ0 ⊗ Î , Q̃8 = iσ3 ⊗ Ŝz,

(9.18)

where σ0 and Î denote 2 × 2 and 3 × 3 unit matrices respectively.
Returning into original frame and taking into account that Û� ŜzÛ

†
� = −(Ŝ ·

p)/p, we obtain the generators of the symmetry transformations in the following
form

Q1 = σ3 ⊗ (Ŝ · p̃)D̂, Q2 = iσ2 ⊗ Î ,
Q3 = −σ1 ⊗ (Ŝ · p̃)D̂, Q4 = −σ1 ⊗ D̂,

Q5 = σ0 ⊗ (Ŝ · p̃), Q6 = −σ3 ⊗ D̂,

Q7 = σ0 ⊗ Î , Q8 = iσ2 ⊗ (Ŝ · p̃),
(9.19)

where p̃ = p/p, and D̂ = −pÛ� Ŝx Û
†
�. These equations form the eight-dimensional

invariance algebra of the Maxwell’s equations in vacuum [18].
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9.2.1.2 Nongeometric Symmetries

The basis elements in (9.19) generate continuous symmetries that Fushchich and
Nikitin called the nongeometric symmetries of the Maxwell’s equations [18]

φ(t, p) → φ′(t, p) = exp(Qiθi )φ(t, p), (9.20)

where θi denotes the real parameter of the transformation.
Some symmetry generators have a clear physical meaning. For example, Q7 is

a unit element. Q2 interchanges electric and magnetic fields in φ(t, p), so that the
corresponding continuous transformation exp(iσ2θ) is the duality symmetry in (9.6)
and (9.7). Q5 has the form of the helicity operator. Q8 is proportional to H , which
means that similar to Q7 it commutes with every element of the algebra. It reflects
the symmetry with respect to ∂t (the time derivative of φ(t, p), which solves the
Maxwell’s equations, is again a solution for the same p). The basis elements Q2,
Q5, Q7, and Q8 form a trivial Abelian part of the algebra in (9.19). The existence of
non-Abelian elements is related to the degeneracy between left and right polarized
eigenvalues in (9.16).

The conservation laws that correspond to the symmetry transformations in (9.20)
can be conveniently written in terms of the bilinear forms by analogy with the
quantum-mechanics

〈Qi 〉 = 1

2

∫
d3 pφ†(t, p)Qiφ(t, p). (9.21)

It can be demonstrated that the electromagnetic field in vacuum can be characterized
by an infinite number of invariants generated from the eight symmetry transforma-
tions [18]. For example, the unit element Q7 in this formalism corresponds to the
conservation of the electromagnetic energy

〈Q7〉 = 1

2

∫
d3 pφ†(t, p)φ(t, p) = 1

2

∫
d3 p

(
E2 + B2

)
. (9.22)

9.2.1.3 Conservation Law for Optical Chirality

Using this formalism, optical zilch can be expressed as a conservation law for the
helicity operator Q5

Cχ =
∫

d3rρχ(t, r) = 1

2

∫
d3 pφ†(t, p)(Ŝ · p)φ(t, p). (9.23)

Using the fact that the helicity operator, duality symmetry, and ∂t are related to each
other by the algebraic property, pQ5Q2 = −iH = ∂t , we establish a relation between
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zilch conservation and duality symmetry as it was originally discussed in [16, 17],
which allows to write the conservation law above in the following equivalent form

Cχ = − i

2

∫
d3 pφ†(t, p)Q2∂tφ(t, p) = 1

2

∫
d3r

(
B · ∂E

∂t
− E · ∂B

∂t

)
. (9.24)

This expression can be easily generalized to accommodate higher order terms in
space and time derivatives. By replacing Q2∂t with −(i p)2nQ2(i∂t )2m+1, which is
again a symmetry operation, we can find a hierarchy of conserving zilches

C (m,n)
χ = 1

2

∫
d3r

(
B · ∇2n∂2m+1

t E − E · ∇2n∂2m+1
t B

)
, (9.25)

where 00-zilch corresponds to the optical chirality [23, 24, 31].
It is possible to derive the conservation law for the optical zilch using theNoether’s

formalism by applying a specific “hidden” gauge transformation to the Lagrangian of
the electromagnetic field [31], which leads to the same results as in (9.23) and (9.25).
The advantage of the approach discussed in this section, based on the symmetry
analysis of the Maxwell’s equations, is that it does not depend on any specific gauge
choice. This fact makes it easy to extend this formalism to other physical systems
with similar form of the equations of motion.

9.2.2 Optical Chirality in Gyrotropic Media

Having now a complete picture of the nongeometric symmetries in vacuum, we
discuss how this approach can be applied for the light-matter interactions. Electro-
magnetic field in dielectric medium is usually described by the material form of the
Maxwell equations

∇ × E = −∂B
∂t

, ∇ · B = 0, (9.26)

∇ × H = ∂D
∂t

, ∇ · D = 0, (9.27)

supplemented by the constituent relations between the fields E, H , D, and B. The
constituent relations impose additional constraints on the formof the symmetry trans-
formations for the electromagnetic field, which reflect the intrinsic symmetries of
the medium. This often leads to the reduction of the invariance algebra in (9.19)
to lesser number of elements [50]. In the case of common constituent relations,
D( p) = ε̂( p)E( p) and B( p) = μ̂( p)H( p), where ε̂( p) and μ̂( p) denote the elec-
tric permittivity and magnetic permeability tensors in the Fourier space, Maxwell’s
equations in (9.9) are replaced by
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i
∂

∂t

(
D( p)
B( p)

)
=

(
0 i(Ŝ · p)μ̂−1( p)

−i(Ŝ · p)ε̂−1( p)

)(
D( p)
B( p)

)
. (9.28)

The symmetry analysis of the previous sections can be generalized for this case (see
[50] for detailed discussion). In particular, for dual symmetric medium, the optical
chirality is given by

Cχ = 1

2

∫
d3 p

(
D∗( p)(Ŝ · p)ε̂−1( p)D( p) + B∗( p)(Ŝ · p)μ̂−1( p)B( p)

)
(9.29)

In the real space this expression becomes

Cχ = 1

2

∫
d3r (B · ∂t D − D · ∂t B) , (9.30)

which also acknowledges spatial dispersion of the electromagnetic field.
As an important example, let us consider propagation of the electromagnetic field

in chiral media where structural chirality of thematerial leads to the existence of such
physical phenomena as natural optical activity and circular dichroism. There exists
several approaches for the electrodynamics of chiral gyrotropic media [51–53]. One
of these approaches, which is frequently adopted for characterizing metamaterials
[54, 55], is based on the following constituent relations

D = εε0E + iκH, (9.31)

B = μμ0H − iκE, (9.32)

where κ characterizes chirality of the material. This approach requires complex
representation for the electromagnetic fields and can be derived from the relativistic
covariance principle [51, 56].

By applying our general formalism to the Maxwell’s equations (9.26) and (9.27)
with the constituent relations (9.31) and (9.32),weobtain the sameequation ofmotion
as in (9.9), where φ is replaced by for the vector column φ(t, p) = (D, B)T , and
the matrix on the right-hand side is now given by (we use the units εε0 = μμ0 = 1)

H( p) = − 1

1 − κ
2

(
κ(Ŝ · p) −i(Ŝ · p)
i(Ŝ · p) κ(Ŝ · p)

)
. (9.33)

Thismatrix can be diagonalized by a combination of the sameunitary transformations
as in (9.14) and (9.15) that yields the following diagonal form

H̃ = U†HU = diag(−p−, p−, 0, p+,−p+, 0), (9.34)

where p± = p/(1 ∓ κ).
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Lifted degeneracy between left (p−) and right (p+) polarized eigenmodes in
(9.34) leads to the reduction of the eight-dimensional invariance algebra to four
basis elements, which commute with each other

Q2 = iσ2 ⊗ Î , Q5 = σ0 ⊗ (Ŝ · p̃)
Q7 = σ0 ⊗ Î , Q8 = iσ2 ⊗ (Ŝ · p̃). (9.35)

These symmetries, however, still contain the duality transformationQ2, whichmeans
that the medium is dual-symmetric and supports the conservation of the electromag-
netic helicity [49] and, as a consequence, optical zilches.

Definition of the optical chirality density in chiral media requires some attention.
This situation is similar to the definition of the electromagnetic energy density where
one should take care of the continuity of the energy flow at the boundary between two
chiral media [51]. It can be demonstrated that chirality density in the medium with
constituent relations (9.31) and (9.32) that provides continuity of chirality flow at
the boundary of two chiral media with different κ can be introduced in the following
way [50]

ρχ = εε0

2
B∗ · ∂E

∂t
− μμ0

2
D∗ · ∂H

∂t
, (9.36)

This expression remains valid even if ε(r), μ(r), and κ(r) become position depen-
dent. In this case, it satisfies the continuity equation with a source term on the
right-hand side

∂tρχ + ∇ · Jχ = F(t, r). (9.37)

where
Jχ = ε0ε

2
E∗ × ∂t E + μ0μ

2
H∗ × ∂tH, (9.38)

and the source term contains only gradients of ε and μ, but does not depend on the
gradient of κ

F(t, r) = ε0

2
∇ε · E∗ × ∂t E + μ0

2
∇μ · H∗ × ∂tH . (9.39)

In order to understand the physical meaning of ρχ , let us look at energy absorption
in a dissipative gyrotropic medium with the constituent relations (9.31) and (9.32).
As was demonstrated in [27], the electromagnetic energy absorption rate in this
case has an asymmetric part, which has opposite signs for left and right polarized
electromagnetic waves. This part is proportional the product between the chirality
of the material, given by the imaginary part of κ, and the chirality density of the
electromagnetic field ρχ . The flow of optical chirality in (9.3), in this situation, can
be associated with the asymmetric components of the electromagnetic forces in the
medium, which can be used, for example, for optical separation of chiral molecules
[37].
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In the next section, we will show how these arguments can be generalized to spin
excitations in antiferromagnetic materials. Similar to the results of this section, the
symmetry analysis will play a principal role in our discussion.

9.3 Spin-Wave Chirality in Antiferromagnetic Insulators

The symmetry analysis developed in the previous section for Maxwell’s equations
can be generalized to other dynamical systems. Here, we develop such generalization
for spin-wave excitations in an antiferromagnetic insulator. A key observation that
helps us to draw the analogy between spin-wave dynamics and electrodynamics is
that the antiferromagnetic spin waves can be also characterized by two polarization
states. This stems from the fact that the magnetization dynamics in antiferromagnets
involves two coupled magnetic sublattices. We, therefore, examine the symmetry
transformation in the extended space that includes three-dimensional rotations and
transformations between the sublattices, in order to find an algebra of nongeometric
symmetries for spin waves equivalent to that of the electrodynamics.

9.3.1 Equations of Motion for Antiferromagnetic Spin Waves

We start our discussion with a simple case of a collinear antiferromagnet with two
equivalent magnetic sublattices M1(t, r) and M2(t, r). The energy for such antifer-
romagnet can be written in the following form

W =
∫

d3r

[
α

2

(
∂M1

∂xμ

· ∂M1

∂xμ

+ ∂M2

∂xμ

· ∂M2

∂xμ

)
+ α′ ∂M1

∂xμ

· ∂M2

∂xμ

+ δ

2
M1 · M2 − β

2

(
(M1 · n)2 + (M2 · n)2

)]
, (9.40)

where α, α′, and δ are the antiferromagnetic exchange parameters and β > 0
describes the uniaxial magnetic anisotropy with n being the unit vector along the
anisotropy axis [57]. In the ground state, the anisotropy stabilizes a uniformmagnetic
ordering along n where two sublattices compensate each other, M1 = −M2, so that
the total magnetization vanishes.

In the semi-classical limit, magnetization dynamics are described by the Landau–
Lifshitz–Gilbert equations of motion

∂M i

∂t
= γ M i × Heff

i − ηM i × ∂M i

∂t
, (i = 1, 2), (9.41)
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Fig. 9.1 Sublattice
magnetizations M1 and M2
precessing along the
anisotropy axis n;
m = m1 + m2 is the
resulting dynamic
magnetization, and
l = m1 − m2 shows the
dynamic part of the
antiferromagnetic vector

where γ is the gyromagnetic ratio, Heff
i = −δW/δM i is the effective field acting

on the magnetization on the i th sublattice and η is the Gilbert damping that takes
dissipation into account [57].

For small excitations around the ground state configuration a linear form of
the Landau–Lifshitz–Gilbert equations of can be used. This is reached by break-
ing the sublattice magnetizations into static Msn and dynamic mi (t, t) parts,
M i = (−1)i+1Msn + mi , and keeping only the linear terms in mi in the resulting
equations of motion (Ms denotes the saturation magnetization). For convenience, we
transformmi (r) to momentum space, such thatmi (t, r) = ∫

d3 p exp(i p · r)mi p(t),
and introduce the dynamic vectors of themagnetization,mp = m1 p + m2 p, and anti-
ferromagnetism, l p = m1 p − m2 p, see Fig. 9.1. The resulting linear system of the
equations of motions is given by

∂mp

∂t
= −ε(l)

p n × l p + ηn × ∂ l p
∂t

, (9.42)

∂ l p
∂t

= −ε(m)
p n × mp + ηn × ∂mp

∂t
, (9.43)

where ε(m)
p = γ Ms(δ + β + (α + α′)p2) and ε(l)

p = γ Ms(β + (α − α′)p2).
For the equations of motion (9.42) and (9.43), it is possible to find a representation

that is similar to the Silberstein-Bateman form of the Maxwell’s equations [38]. For
this purpose, we introduce a vector column ψ(t, p) = (mp, l p)T , which allows us
to rewrite the equations of motion for the spin waves in the form (9.9), where the
matrix in the right-hand side is now given by

Hm =
(

0 −ε(l)
p (Ŝ · n)

−ε(m)
p (Ŝ · n) 0

)
. (9.44)

Here, we omit damping terms, which we discuss later. In this form, the equations of
motion for the spin waves resemble the Maxwell’s equations in a dispersive medium
where the roles of the electric permittivity and magnetic permeability is played by
ε(m)
p and ε(l)

p .



220 I. Proskurin and R. L. Stamps

The matrix in (9.44) can be symmetrized by an appropriate choice of the
units that can be expressed in the form of the transformation ψ = Nψ̄ , where
N = diag([ε(m)

p ]−1/2, [ε(l)
p ]−1/2). In the symmetric units, the equation of motion for

the antiferromagnetic spin waves is written as

i
∂ψ̄(t, p)

∂t
= H0( p)ψ̄(t, p), (9.45)

where the matrix on the right-hand side becomes symmetric

H0( p) =
(

0 −ω p(Ŝ · n)

−ω p(Ŝ · n) 0

)
= −ω pσ1 ⊗ (Ŝ · n), (9.46)

with ω p =
√

ε
(m)
p ε

(l)
p .

This expression has a structure similar to H( p) in (9.12) for the Maxwell’s
equations. The important difference between H0 and H comes from their prop-
erties under spatial inversion (P) and time-reversal (T ) transformations. For exam-
ple, in the case of the time-reversal transformation, φ(t, p) in (9.9) transforms as
Tφ(t, p) → σ3φ(−t, p). The Pauli matrix σ3 appears on the right-hand side due
to the different transformation properties of the electric and magnetic field with
respect to T . In contrast, both components of ψ(t, p) are odd under T , so that
Tψ(t, p) → −ψ(−t, p). Thismeans that ifwewant to transform from the spinwave
dynamics to the electrodynamics, we should replace σ1 in (9.46) with σ2 = iσ1σ3 to
ensure correct properties under the PT transformations.

9.3.2 Nongeometric Symmetries for Spin-Wave Dynamics

Formal analogybetween the equations ofmotion for the antiferromagnetic spinwaves
and the Maxwell’s equations enables us to generalize the concept of nongeometric
symmetries.Wemay ask a question about all the transformations ψ̄(t, p) → ψ̄ ′(t, p)
that leave the equation of motion (9.45) invariant.

In order to find all such symmetries, one can repeat the steps of Sect. 9.2.1.1. First,
we have to transform to the basis where H0( p) is diagonal. For this purpose, we
make a unitary transformation ψ̄ = Umψ̃ , where the transformation matrix, Um =
U1 ⊗ Û�, is given by the rotation matrix to the helicity basis in (9.14) (where p is
replaced by n) combined with the SU (2) rotation in the subspace of mp and l p

U1 = 1√
2

(
1 1

−1 1

)
. (9.47)
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The resulting equation of motion for ψ̃ is given by (9.45) with the diagonal matrix
on the right-hand side

H̃0 = U†
mH0Um = diag(−ω p, ω p, 0, ω p,−ω p, 0). (9.48)

This describes two antiferromagnetic spinwaveswith an energy dispersionω p degen-
erate with respect to the two polarization states. In an antiferromagnet, magnetization
precession is locked in the real space to the direction of n, so that these polarization
states correspond to left and right circular polarizations along the anisotropy axis.
This is in contrast to electrodynamics, where we deal with real helicity—precession
around the direction of wave vector p.

Secondly, we have to find all the matrices Q that commute with H̃0, which can
be done precisely in the same way as in (9.17). It should be mentioned that in the
region (α − α′)p2 � β, antiferromagnetic spin waves have almost linear dispersion,
ω p = cs p, where the velocity is given by cs = γ Ms

√
δ(α − α′). This fact gives them

the appearance similar to the electromagnetic waves. However, we emphasize that
the linear dispersion is not essential for our symmetry analysis.

What is important is that the eigenvalues of H̃0 are degenerate. This fact allows
us find the eight-dimensional algebra of the symmetry transformations, which is
isomorphic to invariance algebra of the Maxwell’s equations. The generators of this
algebra can be chosen as follows

Q1 = iσ2 ⊗ (Ŝ · n)D̂, Q2 = σ1 ⊗ Î ,
Q3 = σ3 ⊗ (Ŝ · n)D̂, Q4 = iσ2 ⊗ D̂,

Q5 = σ0 ⊗ (Ŝ · n), Q6 = σ3 ⊗ D̂,

Q7 = σ0 ⊗ Î , Q8 = σ1 ⊗ (Ŝ · n),

(9.49)

where D̂ = 2[(Ŝ · n⊥)2 − Î3n2
⊥]/n2⊥ − (Ŝ · n)2, Î3 = diag(0, 0, 1), and n⊥ = (n1,

n2, 0). The interpretation of these basis elements is similar to that in (9.19). We have
the unit element Q7, Q8 up to the factor of ω p coincides with H0( p) and, therefore,
commutes with all the other basis elements, and Q5 generates rotations along n.

Remarkably, Q2 plays a role of the duality transformation of the electromagnetic
field. It generates a continuous symmetry transformation, the Bogolyubov’s rotation,
in the subspace of mp and l p

mp → m′
p = mp cosh θ +

√√√√ ε
(l)
p

ε
(m)
p

l p sinh θ, (9.50)

l p → l ′p = l p cosh θ +
√√√√ε

(m)
p

ε
(l)
p

mp sinh θ, (9.51)
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which leaves (9.42) and (9.43) invariant for any real parameter θ . Similar to the
electrodynamics, we have an algebraic property Q2Q2 = Q8, which establishes a
relation between the duality, the rotation symmetry along n, and ∂t .

9.3.3 Conserving Chirality of Spin Waves

The existence of the symmetry transformations makes possible a formulation of the
conservation laws that correspond to these symmetries. Conserving quantities can
be expressed in terms of bilinear forms similar to (9.21)

C = 1

2

∫
d3 pψ†(t, p)ρQψ(t, p), (9.52)

where Q is a symmetry transformation, which can be expressed as a linear com-
bination of Qi (i = 1, . . . , 8), and the measure ρ = diag(ε(m)

p , ε(l)
p ) is necessary for

transforming from the symmetric representation of the equations of motions in (9.45)
and (9.46) to the original units.

The conservation law for spin-wave chirality can be formulated similar to the
expression for the optical zilch in Sect. 9.2.1.3. Since the rotation symmetry is pre-
served only along the direction of n, we take the component of the spin wavemomen-
tum along this direction pn = ( p · n)n, and apply the conservation law in (9.52) for
the symmetry transformation pnQ5 = (Ŝ · pn). As a result, the expression for con-
serving spin-wave chirality is given by

C (m)
χ = i

2

∫
d3 p

[
ε(m)
p m∗

p · ( pn × mp) + ε(l)
p l∗p · ( pn × l p)

]
, (9.53)

which is a direct analogue of the Lipkin’s zilch for the electromagnetic field. In real
space, the chirality density for spin waves can be written as

ρ(m)
χ (t, r) = 1

2

(
∇nm · ∂ l

∂t
+ ∇n l · ∂m

∂t

)
, (9.54)

where ∇n = ∇ · n.
Physical meaning of C (m)

χ becomes clear if we rewrite the expression (9.53) in
terms of circularly polarized magnon operators. In this case, total spin wave chirality
is determined by the difference between the number of left (N (R)

p ) and right (N (R)
p )

polarized magnons [38]

C (m)
χ = 2

∑
p

pnω p
(
N (L)

p − N (R)
p

)
. (9.55)
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Similar expression exists for the Lipkin’s zilch written in terms of the polarized
photon modes [30]. For a monochromatic spin wave, C (m)

χ becomes proportional to
the spin angular momentum component along n, which in terms of magnon number
operators is given by S(n) = ∑

p(N
(L)
p − N (R)

p ) [30].

9.3.4 Spin-Wave Chirality in Dissipative Media

Bynow,we have established that spinwaves in antiferromagnets can be characterized
by the chiral invariantC (m)

χ , which is analogous to the Lipkin’s zilch in optics. Similar
to the optical case, we may ask a question: how can we make this chirality of the spin
waves visible? To answer this question, we should look at the symmetries. SinceC (m)

χ

is a pseudoscalar that is odd under P and even under T , we have to break the same
symmetries inside the antiferromagnet following the idea discussed in Sect. 9.2.2 for
the light-matter interactions in chiral metamaterials.

Since our model in (9.40) is not chiral, we should provide some symmetry break-
ing mechanism. One interesting possibility of such mechanism that is relevant for
spintronic applications is based on electron spin current [38]. The flow of spin angu-
lar momentum is odd under the spatial inversion and even under the time reversal
transformation, therefore, its interaction with antiferromagnetic spin waves is able
to provide the necessary symmetry breaking.

The microscopic mechanism beyond this symmetry breaking is as follows. Let us
consider an electron spin current flowing along the magnetic ordering direction n,
which can be injected into an antiferromagnetic insulator film by a proximity effect
or can be created in bulk metallic antiferromagnets. A pure spin current consists of
a number of spin majority electrons (↑) polarized along n flowing with the velocity
vs parallel to n balanced by the same amount of spin minority electrons (↓) moving
with the velocity −vs , so that the net electric charge transport is zero. Since the
spin-wave dynamics is slow with respect to that of the electrons, the latter are able
to exert a spin transfer torque on the magnetization dynamics via the Zhang-Li
mechanism [58]. If the local s-d interactions between the electrons and sublattice
magnetizations are in the exchange dominant regime [59], which means that we can
neglect the intersublattice electron scattering, the spin majority (minority) electrons
couple mostly to M1 (M2) sublattice magnetization. In this situation, the spin-↑
electrons create the spin transfer torque acting mostly on the magnetization M1

T1 = − 1

M2
s

M1 × (M1 × (vs · ∇)M1) − ξ

Ms
M1 × (vs · ∇)M1, (9.56)

where the first (second) term is the adiabatic (non-adiabatic) torque component, and
ξ � 1 is the dimensionless parameter [58, 59]. At the same time, spin-↓ electron
flow produce the spin transfer torque T2 = −T1 applied to M2. Therefore, a pure
spin current in the exchange dominant regime of the electron-spin interaction is able
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Fig. 9.2 Schematic picture of a pure spin current inside an antiferromagnet. Spin majority (minor-
ity) electrons moving with the velocity +vs (−vs ) create adiabatic spin torque applied to M1 (M2).
These torques Doppler shift the energy dispersion of the left, ω(L)

p , and right, ω(R)
p , polarized modes

in the opposite directions lifting the degeneracy between magnons of different polarizations

to create a pair of equal anti-parallel spin transfer torques T1 and T2 acting on
magnetizations M1 and M2 respectively, as schematically shown in Fig. 9.2.

9.3.4.1 Doppler Shift from a Pure Spin Current

The Landau–Lifshitz–Gilbert equations of motion for the magnetizations in the pres-
ence of the spin-transfer torques are written as follows

∂M1

∂t
= γ M1 × Heff

1 + ηM1 × ∂M1

∂t
− vs

M2
s

M1 × (M1 × ∇nM1), (9.57)

∂M2

∂t
= γ M2 × Heff

2 + ηM2 × ∂M2

∂t
+ vs

M2
s

M2 × (M2 × ∇nM2), (9.58)

where we neglect non-adiabatic contribution to the spin torque. Taking into account
that |M i | = Ms (i = 1, 2), these expressions can be rewritten as follows

(
∂

∂t
∓ vs∇n

)
M i = γ M i × Heff

i + ηM i × ∂M i

∂t
, (9.59)

where the upper (lower) sign is for i = 1 (i = 2). This expression shows that the role
of the adiabatic spin transfer torque is to produce a Doppler shift of the spin waves by
the velocity vs . This effect is well-known for ferromagnetic and antiferromagnetic
spin waves when the Doppler shift is caused by a spin polarized electric current [59–
61]. In our case, the pure spin current produces two Doppler shifts in the opposite
directions for the magnetization dynamics on each sublattice.

By solving the equations of motion (9.57) and (9.58), it is possible to show that in
the presence of the spin current, the degeneracy between left and right polarizations
in the dispersion relations for the spin waves propagating along n becomes lifted,
and it can be approximated as follows [38]
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ω(R)
p = cs |p − ps | + iη(�s − pvs), (9.60)

ω(L)
p = cs |p + ps | + iη(�s + pvs), (9.61)

where ps = γ Msvsδ/(2c2s ),� = γ Msδ/2, and p � ps is the wave vector of the spin
waves along n, see Fig. 9.2.

This effect is in contrast to the Doppler shift from a spin polarized current where
both modes are shifted in the same direction so that the degeneracy holds [59]. The
imaginary parts of the frequencies ω(R)

p and ω(L)
p also have contributions from the

spin current of the opposite signs for the waves with left and right polarizations. This
can be considered as a spin-current-induced circular dichroims of spin waves, which
occurs at the characteristic length scale �CD = cs/(ηvs p).

Interestingly, the effect of spin current on the spin waves in the linear approxima-
tion is analogous to the existence of the additional Dzyaloshinskii-Moriya interaction
(DMI) term in the antiferromagnetic energy in (9.40)

WDMI = vs
2γ Ms

∫
d3r [m1 · (∇n × m1) + m2 · (∇n × m2)] , (9.62)

between the magnetizations on the same sublattices.

9.3.4.2 Asymmetric Energy Absorption

Let us now look at the spin-wave energy absorption. The dissipation rate for the
magnetization dynamics can be expressed through the Rayleigh dissipation function

dW

dt
= − η

γ

∫
d3r

[(
∂M1

∂t

)2

+
(

∂M2

∂t

)2
]

. (9.63)

According to the equations of motion (9.57) and (9.58), in the presence of the spin
current we replace ∂t with ∂t − vs∇n for M1 and with ∂t + vs∇n for M2. The energy
dissipation rate in (9.63) in this case acquires the asymmetric contribution propor-
tional to vs that is written as

(
dW

dt

)
χ

= 2ηvs
γ

∫
d3r

(
∇nm1 · ∂m1

∂t
− ∇nm2 · ∂m2

∂t

)
. (9.64)

The expression in parentheses is nothing but the spin-wave chirality density ρ(m)
χ

written in terms of m1 and m2.
As a result, when a pure spin current is injected into an antiferromagnet, the

asymmetry in the spin-wave energy absorption rate becomes proportional to the
spin-wave chirality, (dW/dt)χ = 2ηvsγ −1Cm

χ . This result is a direct analogy with
the result of Tang and Cohen [27] for the electromagnetic energy absorption rate in
chiral metamaterials, see Sect. 9.2.2. In antiferromagnetic materials, the microscopic
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mechanism beyond this phenomenon can be based on the adiabatic spin transfer
torque from a pure spin current, or on the DMI between the same sublattices, which
breaks the inversion symmetry and lifts the degeneracy between the left and right
polarized magnon modes. In contrast to optical metamaterials, where the asymmetry
in light-matter interactions is related to structural chirality, the symmetry breaking
mechanism, which is based on the spin current, induces chirality of the material in
controllable way. For a spin current density js ≈ 1011 A/m2 (in the electric units), we
obtain vs = μB js/(eMs) ≈ 30 m/s for Ms ≈ 3.5 × 105 A/m. This parameter should
be compared to the typical velocity of the spin waves in antiferromagnetic insulators
cs ≈ 10−4 m/s, which gives vs/cs ≈ 10−3. The characteristic length of the magnon
circular dichroism, in this situation, �CD ≈ 5 mm for the magnon frequencies about
1 THz and η ≈ 104. Curiously, the effective strength of the DMI, Deff = �vs/(kBa0)
is about 0.5 K (a0 is the lattice spacing), which is comparable to a typical DMI
strength in magnetic materials.

9.4 Excitation of Magnon Spin Photocurrents with
Polarized Fields

Among the major goals of spintronics are generation of spin currents, their trans-
mission over large distances, and conversion from one form to another because the
spin angular momentum can be carried by different types of carriers. Since magnons
are able to carry spin angular momentum, spin excitations in low damping magnetic
insulators are good candidates for being spin current mediators. The absence of the
net magnetization and the existence of two polarization states per magnon make
antiferromagnetic insulators particularly suitable for applications as spin current
conductors. It was demonstrated that an introduction of a thin layer of the antifer-
romagnetic insulator can enhance the spin current transmission in interface systems
[62, 63].

Magnon spin currents in antiferromagnetic insulators can be excited by several
methods. For example, it can be done by pumping a magnon spin current from a
neighboring ferromagnetic layer [62]. Thermal excitation of spin currents via the spin
versions of the Seebeck and Nernst effects also has attracted considerable attention
[64–68]. The latter is especially interesting in low-dimensional materials, where it
is provided by topological terms in magnon dynamics [69–71].

Optical control of spin states in antiferromagnetic insulators [72, 73] is a feature
in the emerging field of antiferromagnetic optospintronics [5]. In this respect, it is an
intriguing problem to investigate whether it is possible to find some sort of magnon
photo-effect [44]. Symmetry considerations suggest that this is indeed possible. As
we have already mentioned, spin currents satisfy the definition of true chirality [11],
which can be directly seen from the conservation law for the μth component of the
spin density

∂sμ(t, r)
∂t

+ ∇ · jμ(t, r) = 0. (9.65)
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Since sμ(t, r) is T odd and P even, the spin current density jμ(t, r) has opposite
transformation properties. As we have seen in Sect. 9.2, the electromagnetic field can
be characterizedbyoptical chiralityρχ (t, r)with the same transformations properties
as jμ(t, r). Therefore,wemay expect that by exposing an antiferromagnetic insulator
to a circularly polarized electromagnetic field, we can excite a spin photocurrent,
which direction should be determined by the helicity of light.

In this section, we will consider these arguments in detail, and show that this
photo-excitation process requires the frequency of the electromagnetic field to be in
the region of the antiferromagnetic resonance. We begin with a semiclassical theory.
Nonlinear response and geometric effects in low dimensional materials are discussed
at the end of this section. First we consider an interesting phenomenon analogous to
the Zitterbewegung effect for magnons.

9.4.1 Magnon Spin Currents in Antiferromagnets

Equations (9.42) and (9.43) preserve rotation symmetry along the magnetic ordering
direction that warrants conservation of the total angularmomentum component along
n. From these equations, the time evolution of thenth component of themagnetization
M (n) = 1

2Ms
(m2

2 − m2
1) is written in the following form

∂M (n)(t, r)
∂t

= 1

4Ms

∑
pq

e−iq·rn ·
{(

ε
(l)
p−q − ε

(l)
− p

) [
l∗p−q × l p

]

+
(
ε

(m)
− p+q − ε(m)

p

) [
m∗

p−q × mp
]}

. (9.66)

In the limit q → 0, this equation can be rewritten in the form of a continuity equation
∂t M (n)

q + iq · J (n)
s = 0, where

J (n)
s = i

4Ms

∑
p

(
∂ε(m)

p

∂ p
m∗

p · (n × mp) + ∂ε(l)
p

∂ p
l∗p · (n × l p)

)
(9.67)

is the total magnon spin current. This expression looks similar to our definition of the
spin-wave chirality in (9.53), especially if we consider the spin current flow along
n. However, as we shall see below, in contrast to magnon chirality, J (n)

s does not
obey any conservation law. It should be mentioned that the same expression for the
spin current can be obtained directly from the antiferromagnetic Lagrangian using
Noether’s theorem (see Appendix).

It is interesting to discuss the analogy between antiferromagnetic magnon spin
currents and charge currents in pseudo-relativisticDiracmaterials. In the latter case, it
was demonstrated that interband effectsmake a significant contribution near theDirac
point and can explain, for example, the universal conductivity of graphene [74]. In the
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relativistic language, interband effects in the dynamics of an electron wave packet
correspond to the Zitterbewegung, or the trembling motion of an ultra-relativistic
particle [74]. TheZitterbewegung effect has also been proposed for antiferromagnetic
magnons [40]. It can be easily understood by looking at the time evolution of ψ̄ p(t)
calculated from (9.45) to (9.46)

ψ̄ p(t) = 1

2

{[
1 + σ1 ⊗ (Ŝ · n)

]
eiω pt +

[
1 − σ1 ⊗ (Ŝ · n)

]
e−iω pt

}
ψ̄ p(0), (9.68)

which is similar to the analogous equation for relativistic particles [74]. This expres-
sion contains the off-diagonal elements responsible for the mixing of mp and l p
components of ψ̄ p while evolving in time.

By applying (9.68) to the time evolution of the spin current in (9.67), we find
that the spin current has two contributions, J (n)

s (t) = J (n)
s0 + J (n)

s1 (t). The first con-
tribution is conserved part of the spin current. It does not depend on time and is
proportional to the group velocity of magnons v p = ∂ω p/∂ p. In our matrix nota-
tions, it can be written as

J (n)
s = 1

4Ms

∑
p

v pψ̄
†(0)(Ŝ · n)ψ̄ p(0). (9.69)

The second term in the spin current oscillates at the double frequency, and can be
attributed to the Zitterbewegung of magnons

J (n)
s1 (t) = 1

16Ms

∑
p

e2iω pt K pψ̄
†
p(0)

(
(Ŝ · n) 1

−1 −(Ŝ · n)

)
ψ̄ p(0) + H.c., (9.70)

where

K p = 1

ω p

(
ε(l)
p

∂ε(m)
p

∂ p
− ε(m)

p

∂ε(l)
p

∂ p

)
. (9.71)

The physical meaning of these terms becomes clear if we transform to the helic-
ity basis, ψ̃ p = (ψ̃(R)

p , ψ̃(L)
p )T , where we have well-defined left and right polarized

magnonmodes, see (9.14), (9.47) and (9.48). In this basis, the first term is determined
by the difference in numbers of magnons with opposite polarizations

J (n)
s = 1

4Ms

∑
p

v p
(
ψ̃∗(R)

p ψ̃(R)
p − ψ̃∗(L)

p ψ̃(L)
p

)
, (9.72)

while the second term is purely off-diagonal and corresponds to the interband pro-
cesses

J (n)
s1 (t) = − 1

8Ms

∑
p

ψ̃†
p(0)

(
0 K p Ŝze−2iω p Ŝz t

K p Ŝze2iω p Ŝz t 0

)
ψ̃ p(0). (9.73)
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It should be mentioned that the contribution of the oscillating term in total spin
current may seem insignificant. Indeed, in the theory the spin Seebeck effect only the
term given by (9.72) was taken into account in the definition of the spin current [65,
66]. In this case, the second term, which mixes magnons of different helicities, has
vanishing contribution. However, as we discuss below, such processes as the photo-
excitation require both terms being considered with equal attention. Moreover, the
contribution of the second term in (9.73) may become dominant in low-dimensional
systems where it may contain geometric phase effects.

9.4.2 Photo-Excitation of Magnon Spin Currents

Let us now turn to a semi-classical theory of photo-excitation of magnon spin cur-
rents. For this purpose, we add a magneto-dipole interaction between the magnetic
field component of the electromagnetic wave h(t, r) and the magnetization of the
antiferromagnet, so that the total energy is written as

Wt = W −
∫

d3r(M1 + M2) · h(t, r), (9.74)

where W is determined by (9.40). In this case, (9.43) acquires the additional term
−2γ Ms[n × hp(t)], where hp(t) is the Fourier component of themagnetic field. The
system of equations of motion (9.42) and (9.43) can be easily solved by transforming
the ω-domain, which gives

mp(ω) = 2γ Ms

ε(l)
p h p(ω)

ω2
p − ω2

, (9.75)

l p(ω) = 2iγ Ms
ω[n × hp(ω)]

ω2
p − ω2

. (9.76)

The Gilbert damping can be phenomenologically introduced in these equations by
considering complex parameters ε(α)

p → ε(α)
p − iηω (α = m, l). Using the definition

of the spin current in (9.67), we find the current excited by the magnetic field vector
(Fig. 9.3)

J (n)
s = iγ 2Ms

∑
pω

ε(l)2
p ∂ pε

(m)
p + ω2∂ pε

(l)
p(

ω2 − ω2
p

)2 h∗
p(ω) · [n × hp(ω)]. (9.77)

This expression shows that the direct spin current excited by the electromagnetic
wave is the second order effect in hp(ω), and is determined by the asymmetric com-
bination h∗

p × hp, so that the direction of the current is determined by helicity of the
electromagnetic wave. The effect is resonantly amplified near the antiferromagnetic
resonance ω ≈ ω p.
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Fig. 9.3 Schematic picture
of the magnon photocurrent
J (n)
s induced inside an

antiferromagnet by the
circularly polarized
electromagnetic wave
propagating along the
direction of magnetic
ordering

Photo-excitation of magnon spin currents in antiferromagnetic insulators shows
some similarity with the circular photogalvanic effect in noncentrosymmetric metals
[45]. In the latter case, a direct electric photocurrent is generated by the helical
combination the electric-field vector of the electromagnetic wave, E∗(ω) × E(ω),
so that the direction of the current is reversed whenever circular polarization of light
is switched to the opposite.

In order to have further insight into magnon spin photocurrents, let us consider a
quantum variant of our theory.

9.4.3 Microscopic Theory of Magnon Spin Photocurrents

The spin Hamiltonian for an antiferromagnetic insulator with two magnetic sublat-
tices A and B can be written in the following form

Ĥ =
∑
i j

1

2

(
Ji j S

(+)
i S(−)

j + J ∗
i j S

(−)
i S(+)

j

)
+

∑
i j

J ′
i j S

z
i S

z
j − K

∑
i

(Szi )
2, (9.78)

where Ji j and J ′
i j are the exchange interaction constants such as Re Ji j > 0 and

J ′
i j > 0 for the nearest neighboring sites on A and B sublattices, and K ∼ βa−3

0 is
the magnetic anisotropy that stabilizes the antiferromagnetic ordering along the z
direction. We do not specify any lattice configuration at this stage. However, we note
that Ji j may have a complex phase factors in the presence of DMI.

The spin-wave approximation for theHamiltonian (9.78) is conveniently expressed
by the Holstein–Primakoff transformation of the spin operators

S(+)
i A = √

2Sai , S(+)
i B = √

2Sb†i ,
S(−)
i A = √

2Sa†i , S(−)
i B = √

2Sbi ,
Szi A = S − a†i ai , Szi B = −S + b†b†i ,

(9.79)

where ai and bi are boson operators at the A and B sublattice respectively, which sat-
isfy boson commutation relations. By transforming these operators to the reciprocal
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space, ai = ∑
k exp(ik · r i )ak and bi = ∑

k exp(ik · r i )bk, we can rewrite (9.78) in
the following form

Ĥ =
∑
k

[
Ak

(
a†kak + b†−kb−k

)
+ Bkakb−k + B∗

ka
†
kb

†
−k

]
, (9.80)

where parameters Ak and Bk include microscopic details. For example, in the case
when the exchange interactions are limited by the nearest neighboring sites so
that Ji j = J

′
i j = J1, we obtain Ak = 2K S + Z J1S and Bk = J1S

∑
δ exp(−ik · δ),

where δ connects a site on the A sublattice with its Z nearest neighboring sites on
the B sublattice.

9.4.3.1 Magnon Spin Currents: Quantum Version

The expression for a magnon spin current can be derived following the same steps as
in Sect. 9.4.1. Considering the equation of motion for the z component of the local
spin density, n(r i ) = b†i bi − a†i ai , we find the total magnon spin current

Ĵ s =
∑
k

[
∂Ak

∂k

(
a†kak + b†−kb−k

)
+ ∂Bk

∂k
akb−k + ∂B∗

k

∂k
a†kb

†
−k

]
. (9.81)

This expression can be conveniently written in the matrix form

Ĵ s =
∑
k

χ
†
k

∂Hk

∂k
χk, (9.82)

where we introduced χk =
(

ak
b†−k

)
and Hk =

(
Ak B∗

k
Bk Ak

)
. Note that in this rep-

resentation, χk does not satisfy boson communication relations; instead one has
[χk, χ

†
k′ ] = σzδk,k′ , which should be kept in mind.

Let us find how Ĵ s transforms under the Bogolyubov’s transformation that pre-
serves boson commutation relations of magnon operators. In the matrix form, this
transformation is expressed as χk = Ukχ̃k, where the transformation matrix is deter-
mined by two real parameters θk and φk:

Uk =
(
cosh θkeiφk − sinh θk
− sinh θk cosh θke−iφk

)
. (9.83)

Since the definition of spin current involves ∂k, its transformation properties invoke
covariant derivativeswith respect toUk. Explicit calculations show that in an arbitrary
basis

Ĵ s =
∑
k

χ̃
†
k

∂H̃k

∂k
χ̃k − ∂ Â

∂t
, (9.84)
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where H̃k = U †
kHkUk is the Hamiltonian in the transformed basis, and

Â = ∑
k χ̃

†
kAkχ̃k with

Ak = −iσzU
−1
k

∂Uk

∂k
(9.85)

being the connection associated with the transformation Uk.
Among the various representations, there is one specific basis, where the Hamil-

tonian in (9.80) becomes diagonal. This basis is reached by choosing tanh 2θk =
|Bk|/Ak and φk = arg Bk, which gives

Ĥ =
∑
k

εk

(
α
†
kαk + β

†
−kβ−k

)
, (9.86)

where εk =
√
A2
k − |Bk|2 is the magnon energy dispersion. To find the expression

for the spin current in this basis, we notice that in (9.84)

− ∂ Â
∂t

= i[ Â, Ĥ ] =
∑
k

(α
†
k, β−k)

(
0 K ∗

k
K k 0

)(
αk

β
†
−k

)
, (9.87)

is purely off-diagonal with Kk = eiφk
[
ε−1
k (Ak∂k|Bk| − |Bk|∂kAk) − i |Bk|∂kφk

]
.

Therefore, the total magnon spin current is written as

Ĵ s =
∑
k

(α
†
k, β−k)

(
vk K ∗

k
K k vk

)(
αk

β
†
−k

)
, (9.88)

where vk = ∂kεk is the group velocity of magnons [44]. This expression generalizes
two contributions to the spin current in (9.72) and (9.73) identified earlier in our
semi-classical approach.

9.4.3.2 Nonlinear Response Theory for Magnon Spin Photocurrents

By using semi-classical equations of motion in Sect. 9.4.2, we have already demon-
strated that magnon spin photocurrent is the second order effect in the magnetic field
of the electromagnetic wave. Here, we show how the process of photo-excitation can
be described via the nonlinear response theory.

Considering interaction of magnons with the electromagnetic wave as a perturba-
tion, we can express the excited spin current using the second-order Kubo formula
[75]
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〈 Ĵ s(t)〉 = −
∑
ω1ω2

∫ t

−∞
dt1

∫ t1

−∞
dt2e

ε(t1+t2−t)eiω1t1+iω2t2

×
〈[[

Ĵ s(t), Ĥ
(ω1)
I (t1)

]
, Ĥ (ω2)

I (t2)
]〉

, ε → 0+, (9.89)

where the interacting part of the Hamiltonian is taken in the form of dipole inter-
action between the magnetic field vector Bk(ω) and the local magnetization of the
antiferromagnet, ĤI = −gμB

∑
i B(t, r i )(Si A + Si B), where g is the Landé factor.

In terms of magnon operators, it is expressed as

Ĥ (ω)
I = −gμB

√
S

2

∑
k

[
B

(−)

k (ω)
(
ak + b†−k

)
+ H.c.

]
. (9.90)

In (9.89), the operators are in theHeisenbergpicture, e.g. Ĥ (ω1)
I (t1) = exp(i Ĥ t1)Ĥ

(ω1)
I

exp(−i Ĥ t1), and the statistical average is with the density matrix of the noninteract-
ing system ρ0 = exp(−Ĥ/kBT ).

Straightforward algebra shows that the spin current is calculated from (9.89) as
follows [44]

〈 Ĵs(t)〉 = 1

4

∑
ωk

[
vkμk

(εk − ω)2 + �2 + vkμk

(εk + ω)2 + �2

+ λk K k
(εk − ω − i�)(εk + ω − i�)

+ λ∗
k K

∗
k

(εk − ω + i�)(εk + ω + i�)

]
h(−)
k (ω)h(+)

−k (−ω),

(9.91)

where h = −gμB

√
2SB, h(±) = hx ± hy , and the coefficient are given by

μk = Ak − |Bk| cosφk√
A2
k − |Bk|2

, (9.92)

λk = e−iφk

⎛
⎝ Ak cosφk − |Bk|√

A2
k − |Bk|2

− i sin φk

⎞
⎠ . (9.93)

This expression contains two kinds of terms. The first is proportional to the group
velocity of magnons, and, therefore, can be associated with actual motion of magnon
wave packets. The second, proportional to Kk, is related to intersublattice dynamics;
it contains the phase gradient, ∂kφk. This phase can be interpreted as an offset in
dynamics of the magnetizations on A and B sublattices given by ak(t) ∼ exp(iεkt)
and b†−k(t) ∼ exp(iεkt − iφk) respectively. It may be accumulated as a result of the
DMI combined with a specific lattice configuration [76], or be generated by the
external electric field via the Aharonov-Casher effect [77, 78].
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In the case when both vk and Kk are odd under the transformation k → −k, the
spin current is determined by the asymmetric part of h(−)

k (ω)h(+)

−k (−ω), which is
proportional to i[h∗

k(ω) × hk(ω)]z . In the limiting case � → 0 and φk = 0, we can
combine both kinds of terms in (9.91), which eventually gives

〈 Ĵ s(t)〉 = i

2

∑
ωk

q2
k∂k pk − ω2∂kqk

(ε2k − ω2)2
[h∗

k(ω) × hk(ω)]z, (9.94)

where pk = Ak + |Bk| and qk = Ak − |Bk|, which coincides with (9.77) obtained
from the semi-classical equations of motion [44].

9.4.4 Magnon Spin Photocurrents in Antiferromagnetic
Insulators and Low Dimensional Materials

We have demonstrated that in antiferromagnetic materials magnon spin currents con-
tain intraband terms, proportional to the group velocity of magnons, and interband
terms, which by analogy to the relativistic mechanics can be associated with the
Zitterbewegung effect of magnons. The latter is proportional to the fast-oscillating
factors, which makes these terms irrelevant as far as response to a static perturbation
is concerned. For the thermal excitation of spin currents, for example, the antiferro-
magnetic spin current can be taken in the form of (9.72) [65, 69, 70].

The response to a dynamic perturbation is different. Since spin photocurrent is
the second-order effect, the interband terms that oscillate at the double frequency
should be taken into account together with the intraband contributions, so that the
resulting response current is given by (9.94).

For practical applications, the most interesting frequency region is near the anti-
ferromagnetic resonance, ω ≈ εk. In this area, the response current is resonantly
amplified and determined by the damping of the material. In the case of bal-
listic magnon transport, when εk � �, we can replace ω − εk ± i� → ±i� and
ω + εk ± i� → 2ωr near the resonance ωr . In this limit, the dominant contribution
in (9.91) comes from the first term proportional to vk

〈 Ĵs〉res ≈ iqk
4�ωr

vk
�2

[h∗(ωr ) × h(ωr )]z, (9.95)

where we used monochromatic microwave field with hk(ω) [44]. This expression
allows to estimate the order of magnitude for the spin photocurrent excited with
circularly polarized light as 〈 Ĵs〉res ≈ χg2μ2

B J1S
2cs IB/(2a0c2�η2ωr ), wherewe take

� = �ηωr , χ = ± denotes helicity of the wave, IB = |B(ωr )|2 is intensity, and
linear magnon energy disperison is implied, |vk| = cs . For a typical material with
cs = 3 × 104 m/s, Js = 200 K, ωr = 3 × 1013 s−1, η = 10−4, and a0 = 0.5 nm, we
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Fig. 9.4 Two-dimensional antiferromagnetic insulator with two magnetic sublattices SA and SB
on the honeycomb lattice. Green arrows show the DMI configuration. The sign of Di j is positive
for i → j pointing from A to B

estimate 〈 Ĵs〉res ≈ 1.5 × 104 A/m2 (in electric units e/�) for the microwave field
strength |B| ≈ 10 mT.

Relative contributions of different terms in (9.91) depend on the lattice config-
uration and on the details of microscopic interactions. We may expect that in low-
dimensional antiferromagnets interband contribution determined by the phase gra-
dient becomes more significant. We can separate this contribution from (9.91) as
follows

〈 Ĵ s〉φ = 1

2

∑
ωk

|Bk| sin φk∂kφk

ω2 − ε2k
h(−)

k (ω)h(+)

−k (−ω). (9.96)

Let us find a model system where this term in the spin current can be excited
individually. For this purpose, we consider a two-dimensional antiferromagnet on
the honeycomb lattice, as schematically shown in Fig. 9.4. This model is interesting
because antiferromagnetic magnons on the honeycomb lattice have finite φk even
without DMI. Indeed, straightforward algebra shows that Bk = J1SCk, where the
structure factor is Ck = 2 cos(kx/2) cos(

√
3ky/2) − 1 + 2i sin(kx/2)[cos(kx/2) −

cos(
√
3ky/2)], which in the long-wavelength limit gives the phase φk ≈ kx (3k2y −

k2x )/8.
Note thatφk is oddunder k → −k. In order to break this symmetry,we add the spe-

cific DMI configuration Di j (Si × S j )z between the nearest neighboring sites i and j
on the honeycomb lattice, such as Di j = D if i ∈ A and j ∈ B, and Di j = −D oth-
erwise. Adding such term does not modify the energy dispersion, but instead leads to
the constant phase accumulation Bk = J1SCk exp(iφ0)where tan φ0 = D/J1. In this
case, sin(φk + φ0)∂kxφk remains finite even in the kx → 0 limit. Therefore, by using
(9.96), we are able to excite magnon spin current along x by the linearly polarized
electromagnetic wave propagating along the y axis, see Fig. 9.4. The magnitude of
the spin current is estimated as 〈J x

s 〉φ ≈ 3g2μ2
B J1S/(8�2c2) sin φ0 IBω2/(ω2 − ε2k),

and its sign is proportional to the sign of φ0.
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9.5 Conclusions

We have discussed how symmetry analysis can help to bring new ideas from optics
to antiferromagnetic spintronics. Our discussion started with an observation that a
formal similarity between the electromagnetic field and spin waves in an antiferro-
magnetic insulator allows to find a generalization of optical chirality. This forms
a background for establishing a link between optics of chiral metamaterials and
magnonics. For example, spin wave absorption in chiral antiferromagnets can be
described in the same terms as the electromagnetic energy dissipation in metamate-
rials.Moreover, in antiferromagnets a pure spin current can provide a chiral symmetry
breaking in a controllable way through the spin torque mechanism.

Fundamentally, this follows from the fact that spin currents are truly chiral; they
have the same PT transformation properties as e.g. optical chirality density. The
latter suggests that chiral electromagnetic fields can be used for magnon spin current
generation.We discussed that a direct magnon spin current appears as a second-order
response to the circularly polarized microwave field, which frequency is near the
antiferromagnetic resonance. The direction of the current is determined by helicity
of light that makes it similar to the circular photogalvanic effect in metals.

Lastly, we discuss how magnon spin currents in antiferromagnets have an inter-
esting dynamics that can come into play for photo-excitation. Besides the transport
terms proportional to the group velocity of the spin waves, there is a contribution
from the trembling motion of magnons, which can be identified by analogy with
motion of ultra-relativistic particles. Although these fast oscillating terms can be
safely omitted in some applications, they contribute to the photo-excitation process.

Acknowledgements R.L.S. acknowledges the support of the Natural Sciences and Engineering
Research Council of Canada (NSERC) RGPIN 05011-18.

Appendix: Magnon Spin Current Definition from the
Antiferromagnetic Lagrangian

Let us consider a classical spin model for an antiferromagnet with two sublattices
SA and SB with the energy given by

HAFM = J
∑
〈i j〉

Si · S j − K
∑
i

(Szi )
2, (9.97)

where J > 0 is a nearest neighboring exchange interaction, K is the anisotropy
constant along the z-axis, and summation is over the nearest neighboring sites on
the A and B sublattices. For simplicity of notations, we consider one-dimensional
arrangement of Si along x . Semi-classical dynamics of this model can be captured
from the following Lagrangian [79]
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L =
∫

dx

[
ρM ·

(
L × ∂L

∂t

)
− a

2
|M|2

−A
∂

∂x

[(
∂L
∂x

)2

−
(

∂M
∂x

)2
]

− �M · ∂L
∂x

+ β̃

2
(Lz)2

]
,

(9.98)

where M = 1
2S (SA + SB) and L = 1

2S (SA − SB), which satisfy the constraints M ·
L = 0 and M2 + L2 = 1. The parameters of the Lagrangian are as follows: ρ =
2�S, a = 8J S2, � = 2J S2a0, A = J S2a20 , and β = 4K S2. Note that this expression
contains so-called topological term proportional to �, which breaks the inversion
symmetry in the Lagrangian [79].

The expression for the spin current canbeobtained applying theNoether’s theorem
to the Lagrangian transformation under the local infinitesimal rotation around z

M → M + δφ( ẑ × M), (9.99)

L → L + δφ( ẑ × L), (9.100)

where δφ(x) is the local rotation angle. The corresponding change in the Lagrangian
is given by

δL = −
∫

dxδφ

{
ρ

∂

∂t

[
Mz(1 − |M|2)]

−A
∂

∂x

[
( ẑ × L) · ∂L

∂x
− ( ẑ × M) · ∂M

∂x

]
− �

∂

∂x

[
M · ( ẑ × L)

]}
,

(9.101)

which gives the following expression for the spin current density

j zs = −A ẑ
[(

L × ∂L
∂x

)
−

(
M × ∂M

∂x

)]
− � ẑ · (L × M). (9.102)

The first term in this expression is consistent with the expression for the spin current
obtained from the equations of motion. The second is the contribution from the
topological terms, which has different symmetry. In particular, it changes the sign if
we interchange SA and SB .
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