
Chapter 7
Current-Induced Dynamics of Chiral
Magnetic Structures: Creation, Motion,
and Applications

Jan Masell and Karin Everschor-Sitte

Abstract Magnetic textures can be manipulated by electric currents via the mech-
anisms of spin-transfer and spin-orbit-torques. We review how these torques can be
exploited to create chiral magnetic textures in magnets with broken inversion sym-
metries, including domain walls and skyrmions. These chiral textures can also be
moved by (electric) currents and obey very rich dynamics. For example, magnetic
domain walls feature the famous Walker breakdown, and magnetic whirls are sub-
ject to the skyrmion Hall effect, which is rooted in their real-space topology. These
properties led to a variety of potential novel applications which we briefly overview.

7.1 Introduction

Magnetic materials have been studied over the centuries for various prospects, in
particular yielding the fundamental building blocks in computers that enable us to
store tremendous amounts of data and transcending our culture to the age of infor-
mation technology. Permanent magnetism as a key feature in these devices which
offers not only fundamentally interesting, but also application-wise impressive and
practical phenomena. The fact that magnets can be strongly influenced by external
magnetic fields is both, a blessing and a curse. On the one hand, localized mag-
netic fields can be used to easily manipulate magnetic states of matter. On the other
hand, magnetic devices are sensitive to invasive, external stimuli. Even nowadays,
where magnetic mass storages in the form of rotating hard disc drives are steadily
replaced by all-electric devices, magnetic recording media still appears throughout
our everyday lives. Besides their intrinsic advantage of being non-volatile, magnetic
recording media have to overcome some challenges such as increasing the speed
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Fig. 7.1 Schematic figures of a a Néel-type domain wall, b Bloch-type skyrmion, c antiskymion,
and d hopfion. The color code represents the direction of the normalized local magnetization. For
the hopfion, we sketch an isosurface of the magnetization, using the same color code as in (a–c)

for reading and writing information and reducing the energy consumption to be
competitive with nowadays all-electric information technology. For example, in the
1970s, some memories and computers used magnetic bubbles as mobile information
carriers which, however, by the 1980s were completely replaced by magnetic hard
drives or transistor-based controllers which turned out to be faster and better scal-
able. However, since the 1980s, research has unveiled a number of new effects and
novel ways to control the static and dynamic properties of magnetic materials. These
include most importantly (i) chiral magnetic systems and the ability to control their
relativistic asymmetric exchange interaction—the Dzyaloshinskii-Moriya interac-
tion (DMI) [1, 2]—and (ii) the ability to generate current-induced spin-torques, in
particular spin-transfer torques (STTs) [3, 4] and spin-orbit torques (SOTs) [5, 6].
These spin-torques can be used to manipulate the magnetization directly, providing
a new toolbox for potentially more competitive magnetic applications and opening
the door to a whole range of interesting new physical phenomena.

This book chapter is intended to serve as an overview over the basic theoretical
concepts in the context of chiral magnetic textures and their dynamics, in particu-
lar, when subject to spin-torques. Those spin textures which are stabilized, e.g., in
systems with DMI or in systems with strong frustration comprise the well-studied
magnetic domain walls, [7] but also the miniaturized versions of magnetic bub-
bles, i.e., magnetic skyrmions and antiskyrmions, [8–12] and magnetic hopfions [13,
14]. Representatives of such structures are shown in Fig. 7.1. We first review in
Sect. 7.2 the description of magnetic textures within a continuum (micromagnetic)
model, discussing their energy functional and their effective dynamic equation—the
Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation. In this part, we also address
the interaction of magnetic textures with electric currents, focusing on the origin and
effects of spin-torques. In Sect. 7.3 we review the most common magnetic textures.
In Sect. 7.4 we address how to create magnetic textures focusing on all-electrical
methods. In Sect. 7.5we review the recent progressmade in the analysis of themotion
of spin textures subject to spin-torques. In particular, we provide a detailed review
on one of the most important and yet simple theoretical concepts for the motion of
magnetic textures—the Thiele equation in its generalized form.We demonstrate how
to apply it to the dynamics of magnetic textures such as domain walls, skyrmions,
and hopfions. Finally, in Sect. 7.6, we give a brief overview over the plethora of
suggested possible applications for chiral magnetic textures.
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7.2 Continuum Model for the Magnetization

In this section, we present the continuum description of magnets and their interplay
with electric currents, which in a simplified form is known as the micromagnetic
model.

7.2.1 Magnetization Statics

The static properties of any magnet are well determined by an energy functional
whose form depends strongly on the symmetries of the system. The precise deter-
mination of this energy functional in all its components is a very hard task. For
sufficiently simple systems, the spin wave dispersion can be calculated with ab initio
methods and then be fitted to a model of localized magnetic moments {Si }. Such
treatments are very successful in describing magnetism on the atomic scale, which
often requires exchange interactions Si · S j beyond nearest neighbors and, poten-
tially, also more exotic interactions between multiple spins [15].

The magnetization in most chiral ferromagnets is, however, smooth, i.e., it is
polarized on the length scale of the atomic lattice and varies only on much larger
length scales. In this limit, the magnetic system can be well described by a phe-
nomenological Ginzburg-Landau theory where an effective energy functional for the
magnetization M is derived as a series expansion in powers of M and spatial deriva-
tives ∂α . Moreover, for temperatures far below the Curie temperature the magnetic
system is in an ordered state and the local magnitude of the magnetization corre-
sponds to the saturation magnetization Ms . The resulting energy functional can then
be expressed in terms of the normalized magnetization m = M/Ms in very general
terms as

E[m] =
∫
dr

[ − Bimi − Ki j mim j − Ki jkl mim jmkml

− Dα
i j mi∂αm j + Aαβ

i j ∂αmi∂βm j − Qαβ

i jk mi∂αm j∂βmk (7.1)

+ Aαβ

i jkl mim j∂αmk∂βml + Aαβγ δ

i j ∂α∂βmi∂γ ∂δm j − ...
]

where we implicitly sum over all spatial indices α, β and magnetization indices i, j .
The first term is usually written explicitly as B = μ0Ms(

1
2 Hd + H) where Hd is

the demagnetizing field and H is the externally applied magnetic field. All other
interaction tensors are material specific and their tensorial structure is determined
by the point group symmetry of the system. In principle, they can be completely
anisotropic and even non-local, similar to the demagnetizing field. For an effective
description of the low energy physics on large length scales, the infinite series in (7.1)
is restricted to only the most relevant terms. Higher order interaction processes are
usually small which suppresses terms which are higher order in the magnetization.
Higher orders of derivatives, moreover, are suppressed as they become increasingly
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irrelevant on larger scales. Other terms, such as the DMI term with Dα
i j , are only

non-vanishing because of the finite spin-orbit coupling, which is usually also small.
Here we list the most common and relevant examples focusing on magnetic systems
with their dominant lowest order chiral interaction

• For a time-reversal invariant system all terms with an odd power of m vanish.
• For an inversion symmetric system there is no chiral interaction, i.e. the DMI term
vanishes, Dα

i j = 0, and so do all terms with an odd number of derivatives.
• For a bulk chiral magnet with a cubic unit cell and a three-fold screw axis in
the [109] direction, like the prototypical chiral magnets MnSi or FeGe, the DMI
tensor simplifies to what is denoted as Bloch-type DMI in the literature, i.e.,
Dα

i j = Dεiα j , with εi jk being the Levi-Civita symbol. The exchange interaction

becomes Aαβ

i j = Aδi jδαβ + A′δi jδαβδiα with the Kronecker delta δi j . The last term
proportional to A′ reflects an anisotropic exchange coupling which can be present
in cubic systems, but for MnSi and FeGe it turns out to be negligible [16].

• In thin films ormonolayers, the inversion symmetry along the film normal (e.g., the
ẑ-direction) is explicitly brokenby the sandwich structure of thematerial or the sub-
strate, but is usually preserved in the other directions. In such a setup the DMI ten-
sor simplifies to what is known as Néel-type DMI, i.e. Dα

i j = D(δiαδ j z − δi zδ jα).

The exchange interaction simplifies to Aαβ

i j = Aδi jδαβ + Azδi jδi zδαβ . Besides
exchange and DMI, the term that is often relevant in such systems is the uni-
axial anisotropy Ki j = K δi jδi z . In combination with the demagnetizing field, it
can lead to the stabilization of magnetic bubbles.

• For systems with lower symmetry, the emerging terms and the corresponding
tensor entries become more and more complex. We still would like to highlight
systems with C2ν symmetry, where the two-fold rotational symmetry allows not
only to realize magnetic skyrmions but also antiskyrmions [17], see Fig. 7.1. In a
basis where the ẑ-axis is the two-fold rotational symmetry and the x̂ and ŷ-axes
are defined to be along the two reflection planes of the C2v point group [18], the
exchange parameters are Aαβ

i j ∂αmi∂βm j = Aiδi jδαβ and there are seven indepen-
dent DMI tensor components given by Dx

xz, Dx
zx , Dy

yz, Dy
zy, Dz

zz, Dz
xx , and Dz

yy .
For further interesting systems we refer to [19, 20].

To summarize, the specific systems determine which magnetic interaction scales
are relevant and which magnetic structures can be realized as (meta-)stable states.
Over the past century, magnets with strong uniaxial anisotropy have been in the
focus of material research, mostly application-oriented. With the advances made
over the past decades, more detailed engineering of the properties of magnetic mate-
rials became possible and experimental techniques were developed that enable the
observation of magnetic structures on the nanometer scale. With these new tech-
niques at hand, more exotic materials can be studied where other interactions are
dominant and stabilize new forms of magnetic textures.
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7.2.2 Magnetization Dynamics in the Presence of
Spin-Torques

The interplay of magnetism and currents is very complex and they mutually influ-
ence each other. For example, upon traversing a topologically non-trivial magnetic
structure, the electrons pick up a Berry phase [21] which then leads to a topological
Hall effect [12, 22–24] in addition to other Hall contributions such as the anomalous
Hall effect. In this part, we will focus on the effects that an electric current has on
the magnetization.

Within the micromagnetic framework, where the local magnitude of the magne-
tization is constant, the slow and smooth magnetization dynamics can be described
effectively within the LLGS equation [3]

dtm = −γ m × Beff + α m × dtm + τ, (7.2)

where γ is the (positive) gyromagnetic ratio, α is the dimensionless Gilbert damping
parameter, and Beff = −δE[m]/(Msδm) is the effective magnetic field due to inter-
actions in the magnetization. τ represents the current-induced magnetic torques. It
comprises STTs as well as SOTs, τ = τST T + τSOT. Their lowest order terms com-
prise each a field- and damping-like term [25]

τSTT = − (ve · ∇)m + β m × (ve · ∇)m (7.3a)

τSOT = −τFL m × σ − τDL m × (m × σ ), (7.3b)

where ve = −[PμB/eMs(1 + β2)] je is the effective spin velocity [26] with je the
electric current density, P the polarization, μB the Bohr magneton, and e > 0 the
electron charge. β is the non-adiabatic damping parameter. σ encodes the spin polar-
ized current: For the typical situation where the SOTs [5, 6] are generated by the spin
Hall effect at an interface between a ferromagnet and a heavy metal, it is σ = n̂ × je
where n̂ is the normal direction of the interface between the materials. The strengths
τFL and τDL for the field-like and damping-like terms are material dependent.

Note that the two torque expressions are not uniquely linked to STTs and SOTs,
respectively, and we use these labels mostly for a better distinction of the two math-
ematically different expressions. For example, Eq. (7.3b) also describes STTs in
layered systems where a current perpendicular to one layer is σ -polarized according
to the magnetization in the adjacent layer.
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7.3 Magnetic Solitons

In this part we review the most common magnetic structures focusing on chiral
solitons, shown in Fig. 7.1.

Magnetic domain walls are rather ubiquitous one-dimensional textures that connect
two distinctly polarized phases. The reason for this is that they do not require any
particular stabilization mechanisms; the two distinct ferromagnetic ordered phases
can be fixed by the boundary conditions. Therefore, magnetic domain walls have
been observed and studied already long ago and can be found in many different sam-
ples with different properties. By continuation in further dimensions, domain walls
can also be hosted in two-dimensional or three-dimensional systems. For example,
in symmetric thin films Bloch- or Néel-type domain walls can be stabilized. Their
helicity is determined by magnetostatic interactions and therefore depends on the
film geometry. For very thin films, Néel type domain walls are formed, where the
magnetization winds from one out-of-plane polarized state to the oppositely polar-
ized state in the plane spanned by the out-of-plane state and the direction of rotation,
as shown in Fig. 7.1. For thicker filmsmainlyBloch type domainwalls are realized. In
two-dimensional systems, domain walls can be effectively described as strings [27,
28] and closing this string leads to structures that are called magnetic bubbles. Fur-
thermore, domain walls can obey localized defects for example in the version of
Bloch lines, i.e., localized windings in the domain wall where the helicity switches
from one Bloch handedness to the other handedness.

Magnetic skyrmions are localized whirls in two dimensions which can be viewed
as a closed magnetic domain wall, embedded as defects in a surrounding background
phase or they can be ordered in a lattice. In three-dimensional systems, skyrmions
form extended strings. Skyrmions received lots of attention in particular due to their
non-trivial real-space topology. The two-dimensional winding number for skyrmions
(located in the xy-plane)

Q = 1

4π

∫
�

dr m · (∂xm × ∂ym) = 1

4π

∫
�

dr Fz ∈ Z (7.4)

evaluates to Q = −1 for the skyrmion and to Q = +1 for the antiskyrmion shown
in Fig. 7.1, when integrating over the open area � of the skyrmion. Note that Q only
evaluates to an integer if � is a closed surface, i.e. ∂� = 0, which can, however, be
mapped to an open area � with a topologically trivial boundary ∂�. In the second
equality we have introduced the solenoidal gyro-vector field F as

Fα = 1

2
εαβγm ·

(
m
∂rβ

× m
∂rγ

)
. (7.5)

While for the skyrmion only one component of this vector field is important, the
topological index in 3D—the Hopf invariant—involves all components, see below.



7 Current-Induced Dynamics of Chiral Magnetic Structures 153

Note that from a topological point of view, skyrmions and the earlier studied mag-
netic bubbles are equivalent. Even, given the various systems where such magnetic
whirl-like textures with a winding number of ±1 occur, a clear definition and full
disentanglement might not be possible. Here, wewill refer to magnetic bubbles when
the domain wall width of the topological whirl-like structure is small compared to its
the center area and to a skyrmion otherwise.While a strict differentiation between the
two is not possible, the static and dynamic properties of magnetic whirls do depend
on their detailed energy scales, and can be very different. In particular, skyrmions
are typically smaller and more stable such that they are potentially interesting for
future technological applications, see Sect. 7.6.

Roughly speaking, skyrmions occur in systems with competing interactions, of
which some favor the alignment of magnetic moments, and others prefer their twist-
ing. Inmost systems, however, it is amore complicated interplay that finally stabilizes
the topological magnetic whirls. Experimentally, skyrmions have first been observed
in bulk crystals with broken inversion symmetry as a result of a competition between
a uniform stiffness A, DMI strength D, an applied magnetic field B and strong
thermal fluctuations at temperatures slightly below the critical temperature [29]. By
now several other systems have been identified to host skyrmions, revealing alterna-
tive stabilization mechanisms such as spatial confinement and frustrated exchange,
e.g., via RKKY [30, 31]. Moreover, materials have been tailored to exhibit a strong
interfacial DMI to host skyrmions at room temperature [32, 33]. For an overview of
different material systems we refer to [11].

Typically, when discussingmagnetic skyrmions, it is assumed that these arewhirls
in an out-of-plane polarized background. However, just as domain walls, skyrmions
can be hosted by in-plane polarized backgrounds [34, 35] or even more complex
background phases such as conical backgrounds in 3d [36], or embedded inside a
helical phase [37].While skyrmions are effectively two-dimensional structures, there
is an ongoing search to find three-dimensional magnetic solitons.

A bit in the middle of two or three-dimensional structures are magnetic bob-
bers, [38] which, for example, occur in extended films. They look like a skyrmion on
the top surface and then turn into a Bloch point within thematerial. Chiral bobbers are
metastable states which are stabilized by the interplay of DMI and the boundary con-
dition. The DMI induces a repulsive force between the skyrmion at the surface and
the the Bloch point, wherefore the remaining skyrmion string is not expelled from the
material. Similar surface effects have been known to occur due to demagnetization
effects [39].

Magnetic hopfions are three-dimensional topological objects which, similar to the
relation between skyrmions and domain walls, can be viewed as a closed skyrmion
string, see Fig. 7.1. They can be characterized by the Hopf index H , which can be
calculated by the Whitehead formula [40]

H = − 1

4π2

∫
R3

(F · A) d r (7.6)
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with the vector field F defined above in (7.5) and A being an appropriate vector
potential ∇ × A = F. They have been predicted to occur in magnetic systems [13,
14] and recent progress in the development of new experimental techniques led to
the first experimental signatures of hopfions in magnetic multilayers [114].

Other topological magnetic textures apart from the above mentioned ones, are
predicted including those which have a more complex order parameter than just
the normalized magnetization. Several of them have not yet been observed experi-
mentally. However, the vast progress in recent years, allowing to engineer coupling
strengths and image magnetizations in more and more detail, might reveal more
exotic states in the future.

7.4 Creation of Magnetic Solitons

In this section we discuss, from a theoretical point of view, how to create mag-
netic solitons in different dimensions. These solitons comprise domain walls and
skyrmions, see Sect. 7.3, and can be introduced into a given magnetic background,
such as the ferromagnetic or helical state. Before discussing specific properties of
different creation mechanisms, we first comment on a few very generic principles.

A soliton is stable and does not decay into magnons if it is protected by a (free)
energy barrier. Vice versa, the creation of a soliton is also associated with an energy
barrier, otherwise the solitons would just spontaneously proliferate and trigger a
phase transition. As an example, Fig. 7.2 shows two possible mechanisms for the
creation/annihilation of a skyrmion in a finite-size two-dimensional system. On the
blue path, the magnetization twists at the edge and a skyrmion enters from outside

Fig. 7.2 Energetics of skyrmion creation in a finite size system with interfacial DMI. The energy
barrier depends on details of the interactions but also on the creation process which can, for example,
involve a continuous change of the winding number via the edge of the system (blue path) or a
discontinuous change via the creation of a skyrmion in the bulk (red path)
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the sample, while on the red path the skyrmion emerges between lattice points within
the sample and then grows. In either case, the energy (as function of time in arbitrary
units) has to rise above the bare energy difference between the initial and the final
state but the absolute height of the barrier depends on how the soliton is introduced.
Furthermore, introducing a soliton into the system requires to “twist” some parts
of the current magnetization state, i.e., exerting local torques on the magnetization
structure which are also very different for the two distinct paths shown in Fig. 7.2.
Thus, the different creation mechanisms can be classified by the effective dimen-
sionality of the magnetic soliton, its embedding background, and the origin of the
acting torques. While creating one and two-dimensional textures is explored quite
well, the controlled creation of three-dimensional magnetic structures is subject to
current and future research.

7.4.1 Creation of One-Dimensional Solitons

Amagnetic domain wall is an (effectively) one-dimensional magnetic soliton which
usually connects two oppositely polarized phases, see Sect. 7.3. Within a nanowire
with uniform magnetization, domain walls can only be created pairwise, as an odd
number of domain walls naturally leads to opposite background orientations on both
ends. To create such a pair of domain walls, one somehow has to locally flip the ori-
entation of themagnetization. Themost naive way is to locally apply amagnetic field
in the desired direction, see Fig. 7.3a. An alternative is to switch the magnetization
by means of locally applied spin-currents.

Single domain walls can be created at the edge of the sample. One can employ
similar techniques as mentioned above, but at the edge the restrictive condition of
having the same ferromagnetic state on both sides of the created magnetic texture
does not apply. Alternatively, one can utilizemagnetic inhomogeneities in the sample
which effectively act as the edge of a smaller subsample. When an inhomogeneity

Fig. 7.3 Possible mechanisms to create magnetic domain walls. a Pairwise creation in the middle
of a nanowire by a local magnetic field H or spin-currents (not shown). b Insertion of individual
domain walls at the end of the wire via the interplay of spin-torques and an inhomogeneity (white
spin fixed e.g. by strong perpendicular anisotropy)
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alters the local magnetization direction, the generation of domain walls is not neces-
sarily pairwise, see Fig. 7.3b. One idea is to exploit that the magnetic profile around
an inhomogeneity is twisted and, therefore, spin-torques can act on this part by both,
further twisting and pulling on the magnetic texture [41]. Increasing the applied cur-
rent will enhance the twisting until a domain wall structure is built, that at the critical
current density j ce rips off and travels along the system. Such a creation mechanism
also works in aminimal model consisting of exchange and anisotropy interaction and
basic STTs [41]. In this setup, domain walls are created periodically with a period
T that depends on the applied current strengths je, or respectively on the effective
spin velocity ve as

T ∼ (ve − vce)
−1/2 ∼ ( je − j ce )

−1/2, (7.7)

where the exponent is independent of themicroscopic details. This universal behavior
of the shedding period T can be proven by explicitly solving for the magnetic profile
and its shedding period in the one-dimensional model including only exchange and
anisotropy interactions. Furthermore, it is valid for a large class of magnetic systems
independent of the details of themicroscopicHamiltonian, including the applicability
for higher dimensions [42]. The required assumptions are (i) presuming a translation-
ally invariant model away from the inhomogeneity and (ii) neglecting non-adiabatic
spin-torque terms. The argument for the universal exponent in the shedding period
is based on combining three ingredients:

(1) the postulate of a critical current density j ce abovewhich therewill be no statically
stable solution and the created magnetic texture rips off the inhomogeneity,

(2) the behavior of the magnetic structure in the “just still static limit”, i.e., for
je � j ce and

(3) the “just dynamic limit”, i.e. for je � j ce .

For the last two, one employs that the magnetic profile at the critical point will not
differ too much in these two limits. The main influence on the magnetic structure
will be a (time-dependent) shift in the position x0 where the structure is centered
in combination with a mild perturbation on the profile. Solving the LLGS equation
in these two limits, yields for the “just still static” limit the relation j ce − j se ∼ x20
and for the “just dynamic limit” ∂t x0 = j de − j se , where j se is the current strength
in the just still static limit and j de in the just dynamic limit. These relations are
the simplest, that satisfy the expected behavior: (i) the velocity of the domain wall
depends linearly on the current strength beyond the threshold value and (ii) inverting
the direction of the current should, in principle, create the domain wall structure in
the opposite direction. Eliminating j se allows to calculate the period of the magnetic
texture formation T ∼ ( je − j ce )

−1/2 and thus explains the universal dependence.
Note that this universal behavior holds independent of the dimension, provided

the above mentioned assumptions are satisfied. In dimensions higher than one the
precise shape of the createdmagnetic texture cannot be calculated analytically. Based
on topology, one can, however, conclude that the winding number during the pro-
duction process must be conserved, opening up the possibility to shed more complex
topological structures and their anti-particles.
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Fig. 7.4 Possible mechanisms to create magnetic skyrmions in ferromagnetic background by creat-
ing them within the sample (blue box), at the boundary (orange box) or via an engineered geometry
(red box): a writing them locally, e.g. with spin-polarized electric currents, b creation of skyrmion-
antiskyrmion pairs due to the interplay of magnetic inhomogeneities and spin-torques. c a train of
skyrmions is created due to a particular sequence of applied magnetic fields. d a skyrmion is created
at a notch via spin currents. e current-driven domain wall pairs are fusing to skyrmions, and f at the
end of a constriction domain walls are chopped off to form skyrmions

7.4.2 Creation of Two-Dimensional Solitons

Examples of (effectively) two-dimensionalmagnetic solitons are skyrmions and anti-
skyrmions, see Sect. 7.3. To create skyrmions numerous methods exist, see for exam-
ple [11] for an overview. Similar to domain walls, their creation mechanisms can be
categorized by (i) being createdwithin the sample, (ii) at the boundary, or (iii) because
of a specialized geometry, see Fig. 7.4.

To create skyrmions within the sample in a ferromagnetic background one has
to invert the magnetization in a small region. This can be done for example by
local magnetic fields [43, 44], by local spin currents flowing perpendicular to the
material [25, 45] by electric fields induced, e.g., by spin-polarized STM [46, 47],
by effective local heating [48] or spontaneously by fluctuations [49]. Furthermore,
one can generate skyrmions dynamically by means of the interplay of spin-currents
and some inhomogeneity or defect, as indicated above when discussing domain
wall production. Increasing the spin-current density above a critical values allows to
produce skyrmion-antiskyrmion pairs dynamically by means of STTs [41, 42, 50,
51].While the creationmechanism itself is independent ofmicromagnetic details and,
in principle no twisting-like interactions such as DMI are required, in the subsequent
dynamics, only the (meta-)stable solutions will continue to exist. For example, in a
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materialwithBlochDMI, the antiskyrmionwill annihilate and only aBloch skyrmion
will remain. Similarly, skyrmions can be created by SOTs [52–54].

An alternative is to create skyrmions via exploiting the tailored geometry of the
material, see Fig. 7.4 for different options. For example, one can convert a domain
wall pair into a skyrmion [55] or one can generate skyrmions through what has
become known as “blowing bubble” technique [56] where a worm domain is sent
through constrictions and “chopped” into pieces, i.e. skyrmions, by means of the
diverging current upon leaving the constriction. Or skyrmions can be produced at
a notch [57]. The latter technique leads over to the another principal option, i.e. to
create skyrmions at the boundaries of a sample. Here the effect of the chiral surface
states are helpful in pre-twisting themagnetic configurations. Bymeans of a properly
chosen protocol of an applied field strength one can even generate a whole train of
skyrmions at the boundary [58].

While in a ferromagnetic background singlemagnetic skyrmions are (meta-)stable
states, magnetic skyrmions can be the ground state of a chiral magnet in the form of
skyrmion lattices under certain conditions [29]. To switch from the competing stripe
domain phase into the skyrmion phase several methods exist, including triggering
the magnetic material by means of AC field excitations [59].

7.5 Motion of Magnetic Solitons

Themicromagnetic dynamics of themagnetization aremainly governed by the LLGS
equation (7.2). This equation describes the local precession and relaxation of the
magnetization, formulated in terms of a local effectivemagnetic field which accounts
for the interaction of themagnetizationwith itself and its environment and,moreover,
additional torques due to current-induced STTs and/or SOTs. In general, these non-
linear dynamics lead to a complicated dynamical behavior which can even trigger
the creation of magnetic solitons as described in Sect. 7.4 and can usually only be
solved numerically.

However, once the solitons are created, they are influenced by the applied spin-
torques and other external forces, e.g., due to field gradients. The reaction of the
magnetization is most strongly expressed in the low energy degrees of freedom. An
effective and potentially more efficient description of the soliton dynamics can there-
fore be formulated by taking only a few collective coordinates into account. We will
review the derivation of these effective equations of motion, known as (generalized)
Thiele equations,1 in the following. We then show examples for their application
when we use them as the starting point for the discussion of the dynamics of current-
driven magnetic solitons.

1Note that the original equation that Thiele derived in his seminal works [60, 61] refers to the
steady-state motion of domain walls. By now the concept that Thiele used to obtain his equation
of motion for the domain wall has been generalized for any structure described by a finite set of
collective coordinates.



7 Current-Induced Dynamics of Chiral Magnetic Structures 159

7.5.1 A Collective Coordinate Approximation: Thiele
Equations of Motion

The main step to obtain the Thiele equations for a given magnetic structure is to
project the LLGS equation onto the corresponding collective coordinates. This said,
the first step is to select suitable collective coordinates for a givenmagnetic structure.
In principle, these collective coordinates can represent any property of the quasipar-
ticle. To achieve an accurate description of the system with only a few coordinates
it makes sense to choose coordinates which are related to zero modes or low energy
modes as these are most easily activated, and thus most relevant for the low-energy
physics of the system. A suitable choice of coordinates should therefore depend on
the symmetries of the entire setup: the quasi-particle itself, the energy landscape,
and the acting spin-torques.

To give an example for an appropriate collective coordinate, let us consider the
standard assumption of the standard Thiele approach, i.e., a translational invariant
model with a rigid magnetic texture. This means that the magnetic texture does not
change its shape when driven by an electric current. In this situation, the position
of the quasi-particle R(t) is a proper collective coordinate (or more generally, any
position of the rigid magnetic structure) and the magnetization behaves asm(r, t) =
m(r − R(t), 0).

For the derivation of the generalized Thiele equations, suppose that the time-
dependence of the magnetic texture m(r, t) is described by N collective coordinates
q(t) = {qi (t)}i=1,...,N . We first isolate the expression for the effective magnetic field
Beff by multiplying the LLGS equation (7.2), bym× from the left.2 Next, we project
the LLGS equation onto the translationalmode dm

dqi
of the i-th collective coordinate q i ,

where the projection P(qi ) is implemented by the scalar product P(qi ) = 〈 dmdqi | . 〉 =∫
dr( dm

dqi
· . ). Moreover, we explicitly use that all time-dependence is now expressed

in the collective coordinates to replace dtm = ∑N
j=1 q̇ j

dm
dq j

where q̇ j = dtq j . A com-
pact form of the i = 1, ..., N Thiele equations for an arbitrary magnetic texture with
both STTs and SOTs then reads

Fi (q) = Gi j q̇ j + αDi j q̇ j + GSTT
iμ ve,μ + βDSTT

iμ ve,μ + τFLGSOT
iμ σμ + τDLDSOT

iμ σμ

(7.8)
with implicit summation over both, the collective coordinates j = 1, ..., N and the
spatial dimensionsμ = x, y, z. The projection of the effective magnetic field Beff =
−δE[m]/(Msδm) can be interpreted as a force

Fi (q) = − γ

Ms

dE[q]
dqi

= − γ

Ms

∫
dm
dqi

· δE

δm
dr (7.9)

2We exploit that themagnetization is a normalized vector fieldwith |m(r)| = 1. Thus,m ⊥ ∂im and
m × (m × ∂im) = −∂im for all coordinates i = x, y, z, t . Moreover,m ⊥ Beff is always achieved
by adding a term λ(r)(1 − m2) = 0 to the energy functional which does not change the energy but
cancels all components of Beff that are parallel to m(r).
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acting on the i-th collective coordinate qi . Moreover (7.8) is implicitly non-linear
as, in general, all the matrices on the right hand side depend on q(t) and explicitly
read

Gi j = −
∫

m ·
(
dm
dqi

× dm
dq j

)
dr, Di j =

∫ (
dm
dqi

· dm
dq j

)
dr,

GSTT
iμ = −

∫
m ·

(
dm
dqi

× dm
dxμ

)
dr, DSTT

iμ =
∫ (

dm
dqi

· dm
dxμ

)
dr, (7.10)

GSOT
iμ = −

∫
m ·

(
dm
dqi

× (
m × x̂μ

))
dr, DSOT

iμ =
∫ (

dm
dqi

· (
m × x̂μ

))
dr.

Here xμ is the coordinate in the spatial directionμ and the corresponding unit vector is
x̂μ.Wewould like to emphasise that theThiele approach is only a good approximation
if sufficiently many relevant coordinates are considered. Furthermore, it is only of
practical quantitative use if the matrix elements can be computed with a reasonable
effort, which can also involve numerical simulations [62].

Note that for the above example of a translationally invariant system with a rigid
magnetic texture with q = R one obtains dm

dRi
= − dm

dxi
. Hence, the gyro-matrix G

and the STT-coupling matrix GSTT are directly related via GXY = −GSTT
Xy = −4πQ,

whereQ is the skyrmionwinding number, see (7.4). Similarly, in this standard Thiele
approach, the dissipation matrix D and the dissipative STT-coupling matrix DSTT

are related viaDi j = −DSTT
i j and their components resemble the magnetic stiffness

in the energy functional, see (7.1).
In the following, we apply the generalized Thiele equations to describe themotion

of magnetic solitons focusing on domain wall and skyrmion dynamics.

7.5.2 Magnetization Dynamics of Domain Walls in
Nanowires

Magnetic domain walls can be moved by various sources, including, in particular,
magnetic fields and spin-currents. The details of the motion as well as their pos-
sible maximal velocity typically depend on details of the system and the relevant
magnetic interactions. In systems without DMI, for example, the plane in which
the magnetization rotates when passing through the domain wall, i.e., domain wall
angle or helicity, is determined by magnetostatic interactions, which are a rather
weak effect. When increasing the driving magnetic field above a certain threshold
value, the helicity unpins and the magnetization inside the domain wall precesses.
This effect, known as the Walker breakdown [63], leads to a reduced domain wall
speed and is therefore detrimental for the application in information technology, as
discussed in Sect. 7.6. Nowadays, it is possible to design materials which have a
strong DMI that more strongly pins the helicity and, consequently, raises the barrier
for the activation of the Walker breakdown.
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The magnetic field-driven dynamics of one-dimensional magnetic domain walls
have been extensively studied over many decades and can be well described in the
Thiele framework. Also magnetic domain walls in higher dimensions can be well
described by this simple technique. Here, additionally to the one-dimensional case,
the position of the domain wall is not only a one-dimensional parameter, but charac-
terized by an extended line or surface. The additional degrees of freedom that then
typically become relevant is the tilting [39] or bending of the hyperplanes of the
domain walls.

To demonstrate the Thiele approach, let us consider a domainwall in an effectively
one-dimensional system. This means we assume that a domain wall is located in a
nanowire which is narrow compared to the length scale of the variations of the
magnetic texture. In such a system, a simple ansatz for the domain wall profile can
be written as

m (x − X, ψ) = (cosψ sin θ (x − X) , sinψ sin θ (x − X) , cos θ (x − X)) .

(7.11)
where X and ψ are the position and the helicity of the domain wall, respectively,
where ψ = ±π/2 describes a Bloch type wall and ψ = 0 or π describes a Néel type
wall. θ(x) is the azimuthal angle of the magnetization. Here we assumed that the
nanowire is along the x̂-direction and that the helicity is not spatially dependent.

Consider now the standard thin film setup as introduced in Sect. 7.2, where the
DMI is the relevant source of the twisting of the magnetization and magnetostatic
interactions only enters on the level of amodified uniaxial anisotropy. In its simplified
form, the only parameters that enter the energy functional (7.1) for a low energy
description are the uniform exchange A, interfacial DMI D > 0, and the easy-axis
anisotropy K > 0. In one spatial dimension, the energy functional then explicitly
takes the form

E[m] =
∫

A

(
dm
dx

)2

− D

(
mx

dmz

dx
− mz

dmx

dx

)
− K m2

z dx . (7.12)

A domain wall which connects two polarized phases m(−∞) = −ẑ and m(∞) = ẑ
minimizes this energy functional for the profile

θ(x) = −2 arctan
(
e−√

K/A x
)

and ψ = π . (7.13)

Here, the DMI term fixes the helicityψ = π while the other terms are independent of
ψ . In the following, we will use the ansatz, (7.11), and the profile, (7.13), to discuss
the current-driven motion of domain walls on the Thiele level.

Note that, in broader nanowires, the additional spatial dimension can allow for
more complex domain wall profiles and also dynamics. In particular, domain walls in
finite-width systems with DMI show a tilting of the domain wall normal [64] which
can be explained by the interaction with the edges of the system [65]. The dynamics
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of Bloch lines are also known to lead to more complex behavior [27]. However, these
effects go beyond the scope of this introduction.

7.5.2.1 Domain Wall Motion Due to Spin-Transfer Torques

In the continuum limit, without inhomogeneities the system is translationally invari-
ant, i.e., FX = 0. We will first consider the case of a small driving current which
can only activate the zero mode, i.e., the translational mode. Next we will discuss
the case of stronger driving which leads to the activation of the helicity degree of
freedom and, finally, to the Walker breakdown under STTs.

Pinned helicity. In the limit of a small STT ve = ve x̂, only the true zero modes
are activated. Therefore, for the one-dimensional domain wall, the only relevant
collective coordinate is the position X . Due to the lack of further spatial dimensions,
the only terms which contribute from (7.8) are the dissipation terms. SinceDXX =
−DSTT

Xx , however, the Thiele equation reduces to the simple expression

Ẋ = β

α
ve. (7.14)

In the limit of a rigid texture, the velocity Ẋ is directly proportional to the effective
spin velocity ve, and it is completely independent of details of the domain wall shape,
see Fig. 7.5.

Unpinned helicity. In a next step, we consider the role of collective coordinates
beyond the translational zero mode. The position X is still a zero mode with
FX (X, ψ) = 0 and, moreover, the off-diagonal dissipation matrix elements vanish,
i.e.,DXψ = DSTT

ψx = 0. Thus, the two coupled Thiele equations read

GXψψ̇ + DXX (α Ẋ − βve) = 0 , (7.15a)

GψX (Ẋ − ve) + Dψψ α ψ̇ = Fψ(X, ψ) . (7.15b)

With the ansatz from (7.11) and the solution for the profile in (7.13), the gyro-coupling
and dissipation matrices of the Thiele equations evaluate to

GψX = −GXψ = mz(∞) − mz(−∞) = 2 , (7.16a)

DXX =
∫ ∞

−∞
(θ ′(x))2 dx = 2

√
K/A , (7.16b)

Dψψ =
∫ ∞

−∞
sin2 θ(x) dx = 2

√
A/K . (7.16c)

For a non-equilibriumhelicity, i.e.ψ �= π , theDMI termyields a positive energy con-
tributionwhile the other terms remain unaffected.Relative to the energyof the domain
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Fig. 7.5 STT-driven domain wall motion. Shown is the average domain wall velocity 〈Ẋ〉 as
function of the effective spin velocity ve. Solid lines show Thiele results, see (7.14) and (7.21),
respectively. The dots are LLGS simulation results, see (7.2). We fixed α = 0.1 for various β, i.e.,
β = 3α, 2α, 3

2α (dark to light blue), β = α (gray dashed), and β = 2
3α, 1

2α, 1
3α (light to dark red)

wall in equilibrium, we therefore obtain the energy E(X, ψ) and force Fψ(X, ψ)

E(X, ψ) = πD(1 + cosψ) ⇒ Fψ(X, ψ) = − γ

Ms
∂ψE(ψ) = πγ D

Ms
sinψ

(7.17)
which completes the constituents of Eqs. (7.15a) and (7.15b). This set of coupled
non-linear differential equations can be solved analytically, in both cases, (i) below
and (ii) above the Walker-like breakdown.

Below theWalker breakdown, the helicity rotates away from its equilibrium position
and, in the long-time limit, assumes a constant value, i.e., ψ̇ = 0. In this limit (7.15a)
reduces to the simplified case (7.14) where the helicity dynamics are absent and the
velocity Ẋ is independent of details of the domain wall texture. From (7.15b), we
obtain the current-dependent helicity ψ(ve) of the driven domain wall which gives

ψ(ve) = π + arcsin

(
α − β

α

2Msve
πγ D

)
for |ve| ≤ vce = α

|α − β|
πγ D

2Ms
. (7.18)

For currents above the critical current vce the restoring force Fψ(X, ψ) cannot com-
pensate for the velocity anymore and, therefore, solutions with ψ̇ = 0 can no longer
be obtained. Consequently, vce marks the onset of the Walker breakdown.

Above the Walker breakdown, we can solve (7.15a) for Ẋ and make (7.15b) an
equation of only ψ and ψ̇ . This differential equation can be solved exactly for a
constant current density ve and the solutions can be written in the form
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Ẋ(ve, t) = β

α
ve +

√
A/K

α
ψ̇(ve, t) , (7.19a)

ψ(ve, t) = −2 arccot

(
u sign(α − β)

1 − √
u2 − 1 tan(ωψ t)

)
with u = ve

vce
≥ 1. (7.19b)

Here T = π/ωψ is the period of one helicity rotation and ωψ is the frequency given
by

ωψ = α

1 + α2

πγ D

4Ms

√
K

A

√( ve
vce

)2 − 1 . (7.20)

As can be seen from (7.19a), the velocity Ẋ of the domain wall is also periodic with
the frequency ωψ and shows a very complicated behavior as function of time. The
average velocity 〈Ẋ〉, however, can be obtained from the time-average of (7.19a)
where we can exploit the relation 〈ψ̇〉 = (2π/T ) sign(α − β). This yields

〈Ẋ〉 = β

α
ve + sign(α − β)

1 + α2

πγ D

2Ms

√( ve
vce

)2 − 1 for |ve| ≥ vce (7.21)

as the average velocity of the domain wall above the Walker breakdown, ve > vce , in
the Thiele framework. Interestingly, it turns out that above theWalker breakdown, for
β < α the domain wall speed does not get reduced but boosted instead. In Fig. 7.5,
we illustrate these different behaviors obtained from the Thiele approach, see (7.14)
and (7.21). For comparison, we also show data obtained from numerical simulations
of the full LLGS equation (7.2).

Despite the Walker breakdown there are other interesting effects for field-driven
domain walls and magnetic bubbles [39, 66]. For example, for a time-dependent
current, the coupled dynamics of the position and helicity degree of freedom (7.15a)
and (7.15b), lead to an effective mass similar to the Döring mass [67].

7.5.2.2 Domain Wall Motion Due to Spin-Orbit Torques

Spin-transfer torques act via gradients ve · ∇ only on local changes of the magne-
tization. This is very different for SOTs being characterized by a spin polarization
σ , where σ couples explicitly to the local direction of the magnetization. Therefore,
these can apply a torque also on a uniform magnetization and, moreover, induce a
helicity-dependence of the total forces. Upon including the helicity degree of free-
dom ψ as a collective coordinate for the description of the domain wall dynamics,
and using the ansatz from (7.11), we obtain the following Thiele equations for the
SOT-driven domain wall
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GXψψ̇ + τFLσ ·GSOT
X (ψ) + αDXX Ẋ + τDLσ ·DSOT

X (ψ) = 0 , (7.22a)

GψX Ẋ + τFLσ ·GSOT
ψ (ψ) + αDψψψ̇ + τDLσ ·DSOT

ψ (ψ) = Fψ(X, ψ) . (7.22b)

Here, for better readability, we have summarized the matrix products from (7.8) into
scalar products of σ with SOT gyro or dissipation vectors. For the SOT-independent
terms we refer to the previous section. For the domain wall ansatz in (7.11) together
with the solution in (7.13), these SOT-specific vectors read

GSOT
X (ψ) = ψ sin θ + ẑ cos θ |θ(+∞)

θ(−∞) = 2 ẑ , (7.23a)

GSOT
ψ (ψ) =

∫ ∞

−∞
− (ẑ×ψ) sin θ(x) dx = π

√
A/K (ẑ×ψ) , (7.23b)

DSOT
X (ψ) =

∫ ∞

−∞
(ẑ×ψ) θ ′(x) dx = π (ẑ×ψ) , (7.23c)

DSOT
ψ (ψ) =

∫ ∞

−∞
ψ cos θ(x) sin θ(x) − ẑ sin2 θ(x) dx = −2

√
A/K ẑ ,

(7.23d)

where we defined the helicity vector ψ = (cosψ, sinψ, 0) for a more compact
notation. For the standard setup with je = je x̂ and where the spin-polarization is
determined by the spin Hall effect, i.e., σ = ẑ × je = je ŷ, the contributions of gyro
and dissipation vectors GSOT

X (ψ) and DSOT
ψ (ψ) vanish. Moreover, for a Bloch-type

domain wall with ψ = ±π/2 the other scalar products also vanish and, hence, the
Bloch wall remains unaffected by the SOT. In contrast, for a Néel type domain wall,
the scalar products are maximized. The Néel wall with ψ = π then moves in the
direction of the current je with additional dynamics of ψ whereas it moves in the
opposite direction for ψ = 0. For additional information on SOT-induced dynamics
we refer to [68].

7.5.3 Magnetization Dynamics of Two-Dimensional Solitons

Skyrmions and related magnetic textures, see Sect. 7.3, are not only thought to have
an enhanced (topological) stability, but their non-zero winding number Q, see (7.4),
also leads to a gyromagnetic tensor element GXY = −4πQ in the Thiele equation,
(7.8). This gyromagnetic coupling induces a force, similar to the Magnus force
in Newtonian mechanics which acts on rotating bodies, leading to very particular
dynamics. These include a response perpendicular to extrinsic forces and an intrinsic
skyrmion Hall effect, which we both discuss in the following.

As for domain walls in one spatial dimension, to demonstrate the Thiele approach,
let us introduce an ansatz for a skyrmion-like profile in an out-of-plane polarized
background of the form
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m(r − R, ψ) = (cos(φ + ψ) sin θ, sin(φ + ψ) sin θ, cos θ) , (7.24)

whereφ = φ(r − R) sets the inplanemagnetic profile and θ = θ(r − R) determines
the mz profile. R is the position of the skyrmion and ψ is the helicity. For circular
skyrmions R is usually their center position, the profile only depends on the radial
coordinate ρ = |r − R| and φ depends only the axial coordinate χ of the cylindrical
coordinate system centered at R. In this convention, the Bloch-type skyrmion shown
in Fig. 7.1b is described by φ = χ , ψ = −π/2, and θ = θ(ρ) with θ(0) = π and
θ(∞) = 0. The antiskyrmion in Fig. 7.1c is described by φ = −χ , ψ = π/3. Other
skyrmion-like structures, e.g., higher order skyrmionswithQ = −N canbedescribed
by setting φ = Nχ , and the topologically trivial skyrmionium is characterized by
θ(0) = 2π and θ(∞) = 0.

7.5.3.1 Pinning and Deformation

At ultra low current densities all magnetic solitons are pinned bymaterial defects. For
skyrmion lattices, it has been shownexperimentally that the critical current density for
depinning is very low [69, 70]. Theoretically, the influence of disorder on skyrmion
lattices was studied in various micromagnetic simulations [71]. The micromagnetic
results agree well with particle model simulations which are based on the Thiele
equation of motion of skyrmions which interact with each other and with random
pinning sites [72]. Also for isolated skyrmions in the presence of defects, the pinning,
depinning, and motion has been studied experimentally [73] and can be described in
a generalized Thiele equation when taking deformations due to defects into account
[62]. For simplicity, however, we will neglect pinning effects in the following.

Deformations of moving solitons also occur in the absence of impurities, for
example, due to internal dynamics, as has been shown already in early studies in
magnetic bubble dynamics with Bloch lines [27]. For skyrmions, which do not have
Bloch lines, deformations can also arise due to spin-torques. In this case, the matrix
elements of the Thiele equation (7.10), become dependent on the current strength
which leads to non-trivial corrections of the particle-like motion [74]. These effects,
as well as deformations due to thermal fluctuations, interactions with defects or other
magnetic textures can induce an effective mass for two-dimensional solitons which
might potentially be described by the broader term automotion [27]. In the limit
where skyrmions can be treated as rigid objects, i.e., when the bound state excitation
gap of the skyrmion is large, deformation effects can be neglected, as we will assume
in the following.

7.5.3.2 Skyrmion Motion Due to External Forces

Historically, before spin-torques became an active research field, the motion of mag-
netic bubbles was studied intensively, for example, with pulsed field gradients. It
was found that the bubbles do not move along the direction of the external force, but
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along a deflected direction that depends on the winding number Q [27]. For both,
skyrmions and magnetic bubbles, the side-drift response can be understood within
the Thiele approach, (7.8). Moreover, this effect occurs not only for field gradients
but for all forces F(q) in the Thiele equation, e.g., due to field gradients or the inter-
action with defects and other magnetic structures. It is also the source of the unusual
Brownian motion of skyrmions which in two dimensions diffuse less if the Gilbert
damping α is reduced [37, 75, 76]. In the following, analog to the domain wall case,
we will first discuss the limit of a pinned helicity and then consider what happens
beyond this limit.

Pinned helicity. Consider a skyrmion with winding number Q and the position
R = (X,Y ) as the only collective coordinates for the Thiele approach. In a spatially
dependent energy landscape E(R), e.g., due to anisotropy gradients, magnetic field
gradients, defects, or other magnetic textures, R is not a true zero mode but can still
be a good collective coordinate. As the system is dissipative, the skyrmion will at
some point be trapped in a local minimum of E(R). An elegant form of the resulting
Thiele equation then reads

G × Ṙ + αD(R)Ṙ = F(R) (7.25)

where F(R) = −(γ /Ms)∇RE(R) is the force on the skyrmion, G = 4πQẑ is the
gyro-vector, and D(R) is the dissipation matrix. The gyro-vector G couples the
motion of the X and Y coordinates and leads to the side-deflection in the motion of
two-dimensional solitons with a finite topological charge. For a circular skyrmion,
using the notation in (7.24) and the angular dependence φ(χ) = Nχ , N ∈ Z, the
dissipation matrix reduces to a scalar with

D(R) = Ds(R) =
∫ ∞

0
πρ

(
N 2

ρ2
sin2 θ(ρ) + (

θ ′(ρ)
)2)

dρ (7.26)

where ρ is the distance to R, i.e., the center of the skyrmion. Usually, it is assumed
that the texture of the skyrmion does not change much with the position such that
Ds(R) ≈ Ds is a good approximation.

TheThiele equation, (7.25), can be solved for the skyrmion velocity Ṙ. Its absolute
value |Ṙ| and the direction relative to the force F, parameterized by the deflection
angle θd, then read

|Ṙ| = |F(R)|√
(4πQ)2 + α2D2

s

and θd = − arctan

(
4πQ
αDs

)
. (7.27)

In this formulation, the real-space topological nature of the side-deflection can be
identified as θd �= 0 only for Q �= 0. The deflection angle θd �= 0 is schematically
illustrated in Fig. 7.6 for various skyrmion-like textures and Gilbert dampings α.
Moreover, (7.27) reveals that a finite chargeQ reduces the (absolute) velocity |Ṙ|. The
dependence onQ should, however, be investigatedmore thoroughly as the dissipation
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scalar Ds depends explicitly on the vorticity N , see (7.26), and, hence, also on the
winding number. Furthermore, magnetic textures with different winding numbers
usually relax to different magnetization profiles and, thus, different values of Ds

[27].
Unpinned helicity. Let us assume now that the skyrmion is stabilized in a system
where the helicityψ is a zero mode and can, in principle, be activated. However, this
activation is not straightforward. In the Thiele equation, (7.8), all matrix elements
GXψ ,GYψ ,DXψ , andDYψ vanish for circular solitons. Therefore,ψ does not couple
to the position R or derivatives thereof, which seemingly suggests that the helicity
does not show any dynamics. However, this conclusion is wrong as, for example,
simulations with a magnetic field gradient show a steady rotation of the helicity
while the skyrmion moves towards the direction of the smaller field [77, 78]. In
the following, we discuss this example in more detail and show how to resolve the
apparent contradiction.

Consider a magnetic field of the form B(r) = (B0 + x δB) ẑ. Let us assume,
moreover, that the field gradient δB is a sufficiently small so that the skyrmion
profile is still approximately circular and the above arguments still hold. Due to the
field gradient, the position R is not a zero mode but still a good collective coordinate
which is subject to a force FR which drags the skyrmion towards regions with lower
field. While moving there, however, the skyrmion profile has to adapt to the local
magnetic field B(r), leading to an inflation of the skyrmion size ξ . Unlike R, the
collective coordinate ξ couples directly to the helicityψ via thematrices in the Thiele
equation but, due to the circular shape, ξ does not couple to R. In a compact form,
the four Thiele equations then read

G × Ṙ + αDs Ṙ = FR(R, ξ) , (7.28a)

Gψξ ξ̇ + αDψψ ψ̇ = 0 , (7.28b)

Gξψ ψ̇ + αDξξ ξ̇ = Fξ (R, ξ) . (7.28c)

All matrix elements with indices ψ or ξ are, in principle, dependent on ξ . This
dependence can be neglected on small time scales. The force Fξ (R, ξ) ensures that
the skyrmion size adapts to the local magnetic field. In a small field gradient δB, the
skyrmion moves slow enough that we can assume ξ to be close to the energetically
optimal value. Then its contribution to the force FR,ξ can be neglected and, to lowest
order in δB, this force is FR ∝ −δB x̂ . Now, (7.28a) is decoupled from the other
two equations of motion and the skyrmion moves according to the results of the pre-
vious section, (7.27). In particular, the parallel velocity is Ẋ ∝ −δB and, therefore,
ξ̇ ∝ Ḃ(R) = ẊδB ∝ δB2. Equation (7.28b) then yields the velocity of the helicity
ψ̇ ∝ δB2/α which continuously rotates while the skyrmion moves in magnetic field
gradient [77, 78], similar to the domain wall above the Walker breakdown [63].

We would like to point out that ψ̇ ∝ δB2/α is also the consequence of another
effect which we did not capture in the above discussion: So far, we assumed that
the skyrmion maintains its circular shape. In the field gradient B(R), however, the
skyrmion becomes slightly non-circular which adds a finite direct coupling DXψ ∝
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δB between the velocity Ẋ and ψ̇ to (7.28a) and (7.28b). For the full dynamics,
therefore, both the change of the skyrmion size and the its non-circular distortion
contribute.

In the following sections, we review the dynamics of current-driven instead of
force-driven skyrmions which follow the same basic concepts.

7.5.3.3 Skyrmion Motion Due to Spin-Transfer Torques

A standard example for the application of a Thiele equation is to model the motion
of spin-tranfer torque-driven skyrmions in chiral magnets. The Thiele formalism,
for example, provides a direct mean to explain the skyrmion Hall effect, where the
skyrmions move at an angle relative to the direction of the applied current density je.
We will discuss this in the following. Analog to the previous chapters we will first
discuss the limit of a pinned helicity and then explain briefly what happens beyond
this regime.

Pinned helicity. Let us consider a frequently used assumption for skyrmions in
chiral magnets, namely that the helicity is pinned by DMI to a fixed value ψ and
does not contribute to the dynamics. Consider,moreover, that the system is translation
invariant, i.e., the position R is a zero mode, and that the skyrmion can be described
by the ansatz in (7.24). The Thiele equation then reads

G × (Ṙ − ve) + Ds(α Ṙ − βve) = 0 (7.29)

where G = 4πQẑ is the gyro-vector, and the dissipation matrixD reduces to a scalar
Ds as in (7.26). In principle, this equation of motion can be solved for Ṙwhich yields
the skyrmion Hall effect. Alternatively, we can interpret the effect of the STTs from
a different perspective. By isolating all terms which originate from the STT on the
right hand side of (7.29), we effectively recover the Thiele equation for a skyrmion
driven by an external force, (7.25), with

FSTT = G × ve + βDsve . (7.30)

The skyrmion Hall angle θSTT
d is then the sum of (i) angle θSTT

F between the effective
STT-force FSTT and the direction of the current ve and (ii) the deflection angle θd for
a force-driven skyrmion, see (7.27), and reads

θSTT
d = arctan

(
4πQ
βDs

)
− arctan

(
4πQ
αDs

)
= arctan

(
4πQDs(α − β)

(4πQ)2 + αβD2
s

)
. (7.31)

The result reflects the trivial cases θSTT
d = 0 for α = β or for Q = 0 where the

magnetic texture just moves along with the current. In contrast to the deflection
angle θd in the previous section (7.27), the skyrmion Hall angle θSTT

d shrinks for
increasing Q and, for typical values of parameters, the maximal θSTT

d is at Q =
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Fig. 7.6 Deflection angle for force-driven and skyrmion Hall angles for STT-driven and SOT-
driven two-dimensional solitons. The force F = −(γ /Ms)∂RE and the electric currents je for both
STTs and SOTs point to the right, as indicated. For STTs we use β = 0.4 in all panels and for
SOTs we assume σ = ẑ × je. The direction of the velocity of the reacting soliton is indicated by
arrows in each panel, illustrating the Thiele results of (7.27), (7.31), and (7.34). A skyrmion with
Q = −1 and an antiskyrmion with Q = 1 are shown, both for three different helicities ψ = π/2 ,
0, and ψ0. The compensation helicity ψ0 is chosen such that the skyrmion Hall angle with SOT
vanishes for α = 0.2. The impact of the damping α is shown by various α = 0.6, 0.4, and 0.2,
where the skyrmion Hall angle in the second row vanishes (α = β). Moreover, we show a higher
order Q = −2 skyrmion and a Q = 0 skyrmionium, both with ψ = π/2. The Q = −2 skyrmion
is unaffected by SOTs and has slightly modified responses to forces and STTs, compared to the
skyrmion with Q = −1. The skyrmionium moves precisely in the direction of the force and STT,
while its reaction to SOTs is solely determined by its helicity
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±1. The properties of θSTT
d for different skyrmion-like solitons are schematically

summarized in Fig. 7.6.
The skyrmion Hall angle can change dramatically, for example, when considering

small random defects which additionally reduce the velocity [62, 72]. Extended
defects, such as the DMI-induced twisting at the edge of a sample, in turn, can speed
up the skyrmion motion∝ |Q|/α when STTs push the skyrmion into nonequilibrium
positions [71]. To accommodate the translationally non-invariant case in the Thiele
formalism one has to take a spatially dependent force in (7.29) into account.

Moreover, the STT-induced torques can distort the skyrmion profile on the level
of the LLGS equation which eventually leads to strong corrections to the skyrmion
Hall effect and, even more importantly, a speed limit above which the STTs destroy
the skyrmion [74]. The latter cannot be derived from a simple Thiele ansatz and
requires more rigorous models or numerical simulations of the LLGS equation.

Unpinned helicity. As discussed above in Sect. 7.5.3.2, for a circular skyrmion, the
coupling between the collective coordinates R and the helicityψ is absent. Similarly,
because of ∂Xm = −∂xm, STTs do not directly couple to the helicity. However, STT-
driven skyrmions can still show dynamics of the helicity, e.g., in an energy landscape
E(R, ψ) where the position and helicity are coupled. In this case, the helicity of the
moving skyrmion shows dynamics around the local optimum ψ0(R), potentially
showing features of an effective helicity mass [51]. Moreover, STTs can deform the
skyrmion which enables the coupling in the Thiele equation, leading to a steady
rotation of the helicity.

7.5.3.4 Skyrmion Motion Due to Spin-Orbit Torques

In contrast to STTs, SOTs couple directly to the magnetization texture and not
derivates thereof. Therefore, SOT induced dynamics are sensitive to the helicity
ψ of the magnetic soliton as we will discuss in more detail in the following. A
skyrmion Hall effect can also be derived for skyrmions with SOTs and was recently
also confirmed experimentally [73, 79].

Pinned helicity. In monolayers on heavy metal substrates or thin films of stacked
heterostructures, skyrmions can be stabilized by a strong DMI with extra stabilizing
support from dipolar interactions. These interactions usually pin the helicity such
that it does not contribute to the dynamics.

For the axially symmetric soliton with m(∞) = ẑ and φ = Nχ in the ansatz in
(7.24), the gyro-coupling SOT matrix evalutes to zero whereas the dissipative SOT
coupling matrix elements only vanish for |N | �= 1. Note that in this convention,
the relation Q = N (1 − mz(0))/2 implies that not only the skyrmion and the anti-
skyrmion, but also the topologically trivial skyrmionium can be driven by SOTs.
In turn, higher order skyrmions with |Q| > 1 do not react to SOTs within these
approximations. The Thiele equation for these |N | �= 1 objects can be written as

G × Ṙ + αDs Ṙ + τDL σ · DSOT
R (ψ) = 0 . (7.32)
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Here, we have introduced the 3 × 2 dissipation tensor (DSOT
R )μi , μ = x, y, z, and

i = X,Y , for the SOT-induces torque which reads

DSOT
R (ψ) =

(
ẑ × ψ,−Nψ

)
πδ|N |,1

∫ ∞

0
cos θ(ρ) sin θ(ρ) + ρθ ′(ρ) dρ (7.33)

with ψ = (cosψ, sinψ, 0). The Kronecker delta δ|N |,1 indicates that only solitons
with N = ±1 give finite contributions. The asymmetric N -dependence in only the
second column of DSOT

R is an artefact of the ansatz (7.24), which flips my → −my

for N → −N .
Similar to the discussion in Sect. 7.5.3.3, we can interpret the SOT-induced terms

as an external force FSOT and derive the skyrmion Hall angle from the direction of
this effective force. Assuming again the standard spin Hall setup for the SOT with
je = je x̂ and σ = ẑ × je = je ŷ, the skyrmion Hall angle θSOT

d becomes

θSOT
d (ψ) = −N

(
ψ + π − arctan

(
4πQ
αDs

))
with |N | = 1 , (7.34)

which is only well-defined for |N | = 1 as otherwise the soliton does not move. Note
that the skyrmion Hall angle θSOT

d is a function of the helicity ψ and can result in
a motion in arbitrary directions, including parallel to the current, by fine-tuning the
DMI [80]. This angular dependence is also schematically summarized in Fig.7.6 for
various soliton configurations and parameters.

Unpinned helicity. For circular two-dimensional solitons driven by SOTs, the same
physics arises as for the other driving mechanisms, namely that neither the collective
coordinates R couple directly to ψ nor do the Thiele matrices GSOT

ψ i andDSOT
ψ i yield

a finite coupling between σ and ψ (except for DSOT
ψz , which is usually not relevant

as σz = 0).
A distinguished feature of SOTs is that they tilt the background magnetization.

This naturally leads to deformations of the soliton, breaking the axial symmetry and
enabling a finite coupling of ψ and Ṙ, see Sect. 7.5.3.2. Thus, while moving with
velocity Ṙ at a skyrmion Hall angle θSOT

d (ψ), see (7.34), the helicity ψ changes
which feeds back on θSOT

d (ψ). Consequently, the skyrmion with an activated helicity
degree of freedom can end up orbiting around a fixed point [81] or, for sufficiently
asymmetric energy landscapes E(ψ), perform a trochoidal motion [82] which is a
combination of translation and orbiting.Moreover, once the helicity becomes dynam-
ical, it can also lead to an effective mass in the Thiele equation [51, 81].



7 Current-Induced Dynamics of Chiral Magnetic Structures 173

7.5.4 Magnetization Dynamics of Three-Dimensional
Hopfions

As magnetic hopfions in chiral magnets have only recently been proposed theoreti-
cally, see Sect. 7.3, their dynamics are a field that is still much under investigation.

In thin films of chiralmagnetswith perpendicularlymagnetized surfaces, hopfions
are predicted to be stabilized due to geometric confinement. The magnetic texture
of the hopfion is then fixed by the DMI such that only translational modes can be
activated easily. For such a setup, it was shown theoretically that the STT-driven
H = 1 hopfion behaves like a skyrmionium, i.e., it moves like a two-dimensional
soliton, straight along the applied current without any Hall angle [83].

More complex dynamics are predicted for three-dimensional frustrated magnets:
Here, the translation in all spatial dimensions and rotation around all axes are zero
modes. It was shown in a theoretical study by Liu et al. [84] that the STT-driven
H = 1 hopfion indeed rotates while moving with the current, adjusting such that
its skyrmionium-like cross-section aligns perpendicular to the current. Moreover,
inside the hopfion, regions with positive and negative skyrmion charge Q are present
which are subject to opposite skyrmion Hall angles. As a consequence, the STT-
driven hopfion either inflates or deflates, dependent on the direction of the current.
For a detailed description of the dynamics, featuring also a discussion in the Thiele
framework, we refer to [84].

7.6 Potential Applications

Based on the very rich playground of spintronics with chiral magnetic structures, sev-
eral potential applications have been proposed over the recent years. In the following
we will briefly introduce some of them.

7.6.1 Storage and Logic Technologies

Magnetic racetrack. The central idea behind the racetrack is that information is
encoded bymagnetic bits which are placed in a one-dimensional shift register device.
Data can be accessed or written at a particular point of the nanowire. It has the
great advantage that instead of moving mechanical parts, only the magnetic bits are
moved, e.g., by spin-currents. In the classically suggested version [85, 86], the bits are
magnetic domains, separated by domain walls. For the racetrack based on magnetic
skyrmions [87], the state of a bit can be represented by the presence or absence of a
skyrmion. The latter has the advantage to circumvent the impact of edge roughness
in the nanowire, as skyrmions opposed to domain walls do not necessarily touch the
edge. However, it has also some disadvantages. In particular, the skyrmionHall effect
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hinders the straight motion of the skyrmion through the nanowire. To enhance the
speed of the magnetic data, (synthetic) antiferromagnetic instead of ferromagnetic
materials have been studied within the recent years. An antiferromagnetic coupling
would also resolve the problemwith the skyrmionHall effect as in this case the forces
in the direction perpendicular to the current direction typically cancel [115, 116].
Moreover, similar devices with closely packed skyrmions or other similar solitons
have been suggested as the information encoded in not well-defined inter-skyrmion
distances is very fragile [88].
Bubble memory. In the 1970s and 1980s, before magnetic racetracks were dis-
cussed, memory devices exploiting magnetic bubbles have been commercially avail-
able. These are non-volatile two-dimensional shift register memories that exploit the
magnetic field-driven motion of small magnetized areas—the bubbles [89, 90].

Magnetic transistor. Transistors as key elements for controlling integrated circuits
and logic devices have also been proposed to be implemented based onmagnetic tex-
tures, such as a domain wall based transistor [91] or a skyrmion based transistor [92]
These exploit the gate-voltage controlled motion of the magnetic nanostructures.

Magnetic logic. Another key field in spintronics is the idea to create magnetic-based
logic gates [93]. This is, on the one hand, done by studying nano-magnetic logic,
where nano-magnetic islands with a uniaxial-anisotropy represent the zero and one
state based on their orientation with respect to this anisotropy direction, e.g., “up”
and “down”. The other idea is to send signals through an appropriately shaped device,
which represent the logical gates. This includes magnonic logic [94] as well as logic
based on chiral magnetic states such as skyrmions. An example of the latter was
suggested by Zhang et al. [95] which exploits the possibility to convert spin-torque
driven skyrmions into domain walls in narrow wires. In a convention where a logical
1 or 0 is represented by the presence or absence of a skyrmion, respectively, an
OR gate and AND gate have been simulated by properly designing the width of the
narrow wires.

Magnetic nano-oscillators. Oscillators exploit the system’s natural time scale and
responses to external sources to provide a tunable frequency source. In magnetic
texture based systems, these oscillators are naturally on the nano-scale and exploit, for
example, the current-driven self oscillation of domain walls [96] or skyrmions [97].
While for ferromagnets the frequencies are in the GHz regime and can be tuned,
e.g., by an externally applied magnetic field, they can be in the THz regime for
antiferromagnetic materials, thereby bridging the THz gap.

7.6.2 Unconventional Spintronics-Based Computing
Schemes

Within the recent years, more and more unconventional computational paradigms
are being explored. Based on their low-energy consumption, compact nanometer
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size scale, and manipulability, magnetic textures could play an important role in the
development of such novel computational technologies [98, 99].

Magnetic artificial neural networks. The vast progress within the field of artificial
intelligence is mainly based on the widely enhanced available hardware power, while
most of the concepts have been suggested already a few years ago. So as with deep
artificial neural networks, which nowadays are widely used for different types of AI
applications. However, so far they are mostly performed on the existing hardware
which, due to the classical segmentation in computational units and storage, are
not optimally suited for these types of applications as their power consumption
shows. Instead, alternative architectures which adjust to the deep neural network
structure are proposed,with a focus of creating their central components, i.e., artificial
synapses and neurons, in hardware. There are also several suggestions for magnetic
neuromorphic computing [99, 100] andhow to implement artificialneurons [101] and
synapses [102, 103]. In particular, memristors, [104] i.e., devices whose resistance
depends on the previous state, are suggested to function as a basis for synaptic
applications.

Spintronics based reservoir computing. Reservoir computing has the goal to
exploit the response of a reservoir to simplify, for example, spatial-temporal recog-
nition tasks. The reservoir itself projects the input into a higher dimensional space,
where it becomes easier to classify. For this concept to work, the reservoir needs to be
a non-linear, complex systemwith a short-termmemory, which is fulfilled by several
physical systems opening up the path for in-materio computing [105]. As spintronics
systems often naturally fulfill these criteria for the reservoir and additionally provide
a lot of tune-ability as well as complexity, together with their low energy consump-
tion, they do provide a promising hardware-based solution for reservoir computing
[106]. It has been proposed that skyrmion fabrics are very well suited for reservoir
computing applications [107].

Stochastic computing. The ansatz of stochastic computing is to trade speed for
accuracy, exploiting the law of large numbers where upon enhancing the number
of experiments the result converges to the expectation value. For example, one can
stochastically multiply two numbers in-between zero and one, when interpreting
them as a probability of having a one in a bit-string. For uncorrelated bit-strings
the multiplication of these two numbers can then be efficiently calculated as send-
ing the two bit-strings through an AND gate. Spintronics offers a potential ansatz
with respect to stochastic computing, as spintronics systems can naturally exhibit
stochastic behavior. Furthermore, recently a device which allows to reshuffle bit-
strings based on magnetic skyrmions has been realized [76, 108]. Such a skyrmion
reshuffler allows to restore the decoherence between signals which possibly syn-
chronized. A similar suggestion is to encode the information in probabilistic bits,
also called p-bits. These are bits that fluctuate between 0 and 1 and, in this sense,
interpolate between a classical bit and a q-bit. It has been suggested that magnetic
states naturally provide a realization for such p-bits [109].

Topological quantum computing. Even more exotically, chiral magnetic states
could contribute to topological quantum computing. It has been suggested thatMajo-
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rana modes localize at skyrmions [110] or compound structures of superconducting
vortices and skyrmions [111–113]. This might provide a path to perform the key
operation of topological quantum computing, i.e., braiding of the localized modes
with a non-Abelian statistics, via the manipulation of magnetic textures.

7.7 Conclusion

This book chapter presented an introduction to current-induced dynamics of chiral
magnetic structures. We briefly summarized the basic concepts for deriving a con-
tinuum theory of magnetization dynamics in Sect. 7.2 and introduced domain walls,
(anti-)skyrmions, and hopfions as examples for magnetic solitons in Sect. 7.3. In the
main part of this chapter, we focused on the manipulation of magnetic textures by
spin-troques, both due to spin-transfer and spin-orbit mechanisms. We reviewed (i)
selected creation processes for domain walls and skyrmions in Sect. 7.4 and (ii) the
motion of the above solitons in Sect. 7.5 with a particular focus on the generalized
Thiele method. Finally, in Sect. 7.6 we summarized already implemented or theoret-
ically suggested applications of magnetic textures which are manipulated by electric
currents.

The field of spintronics, which explores the interplay of electric currents and
the magnetization, has shown an enormous theoretical and experimental progress
in the past years and a vast variety of possible new routes have emerged, including
antiferromagnetic materials which are not discussed in this chapter. We can look
forward with excitement to the future of current-induced magnetization dynamics,
what new physics and which new quasi-particles will be revealed in the future, and
how spintronics might continue contributing to our everyday life.
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