
Chapter 18
Purcell Effect in PT-Symmetric
Waveguides

Alina Karabchevsky, Andrey Novitsky, and Fyodor Morozko

Abstract This chapter overviews the principles of the spontaneous emission rate
increase, that is the Purcell effect, in relation to the photonic parity-time (PT) symme-
try. Being focused on the system of coupled PT-symmetric optical waveguides, we
consider behaviors of the Purcell factor in PT-symmetric and broken-PT-symmetric
regimes. Surprisingly, exceptional points in a coupled waveguide do not influence
on the Purcell factor.

18.1 Introduction

By exploring the interplay between loss and gain as well as the coupling mecha-
nism in waveguide-emitter systems, one can generate and control light on a chip.
This chapter introduces the underlying physics of Purcell effect for emitters in PT-
symmetric waveguides. In general, physical world exhibits symmetries lying behind
the conservation laws of physics. They help to control the structure of matter and
define interactions. The laws of physics are required to be invariant under changes
of redundant degrees of freedom dictated by the symmetries. There are several fun-
damental symmetries including the charge conjunction or C symmetry for a particle
and its anti-particle, parity or P symmetry for a system and its mirror image and time
reversal or T symmetry for the time running forward and backward. Despite the fact
that the laws of physics are dictated by symmetries, it is the symmetry breaking that
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Fig. 18.1 Schematics of
materials characterisation in
terms of loss and gain
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creates nontrivial physics by lifting the degeneracies. A number of intriguing proper-
ties in photonics are related to the PT-symmetry usually described by non-Hermitian
systems. Non-Hermitian Hamiltonians possessing parity-time (PT) symmetry that
is the symmetry with respect to the simultaneous coordinate and time reversal [1].
There is still a debate whether PT-symmetry is a fundamental feature or shares
common properties with naturally occurring symmetries. Also questionable is the
phenomenon of phase transition and it is important to understand the spectral degen-
eracies induced by PT-symmetry named exceptional points (EP) which is a point in
parameter space at which phase transition occurs.

Controlling the magnetic permeabilityμ and the real part of the dielectric permit-
tivity εr has enabled novel functionalities. PT symmetry and non-Hermitian photon-
ics open new possibilities by controlling the imaginary part of the dielectric permit-
tivity (εi ), and by considering gain and loss. Figure 18.1 schematically shows this
interplay when characterising materials in terms of the gain and loss.

The chapter is organised in the followingway: In Sect. 18.2, we introduce the prin-
ciples of PT-symmetry. PT-symmetric photonic devices are presented in Sect. 18.3
such as those based on coupled-mode theory, two-dimensional photonic waveguide
lattices, multilayer structures, and microresonators. Purcell effect in PT-symmetric
waveguides is described in Sect. 18.4. Eventually, the Sect. 18.5 summarises the
chapter and gives an outlook to future research.

18.2 Principles of PT Symmetry

In 1998 Bender and Bötcher [2] have shown that quantum systems with non-
Hermitian Hamiltonians can have entirely real spectra. Such Hamiltonians are
referred to as pseudo-Hermitian. The first known class of pseudo-Hermitian Hamil-
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tonians are PT-symmetric ones i.e. those commuting with P̂ T̂ operator where P̂ and
T̂ are correspondingly coordinate and time reversal operators

P̂ T̂ Ĥ = Ĥ P̂ T̂ . (18.1)

Operator P̂ changes sign of coordinates whereas T̂ operator changes sign of
time and performs complex conjugation [1]. This means that PT-invariance of the
Hamiltonian can be stated in the form

Ĥ(p̂, r̂, t) = Ĥ∗(p̂,−r̂,−t). (18.2)

For Hamiltonians of the form

Ĥ = p̂2

2m
+ V (r), (18.3)

where p̂ is the momentum operator, m is mass, and V is complex potential, action
of P̂ T̂ operator results in the Hamiltonian

P̂ T̂ Ĥ = Ĥ P̂ T̂ = p̂2

2m
+ V ∗(−r). (18.4)

Therefore, for the Hamiltonian (18.3) to be PT-invariant it is needed that potential
energy V (r) satisfies the condition

V (r) = V ∗(−r). (18.5)

In other words, real part of the potential energy must be even function of coordinates
whereas imaginary part must be odd function.

It can be shown that if the eigenfunctions |ψn〉 of the PT-symmetric Hamiltonian
Ĥ ,

Ĥ |ψn〉 = En|ψn〉, (18.6)

with the corresponding eigenvalues En are also eigenfunctions of the P̂ T̂ operator

P̂ T̂ |ψn〉 ≡ σn|ψn〉 (18.7)

with some (complex) eigenvalues σn , the eigenvalues En of the Hamiltonian are real.
Condition (18.7) is necessary and sufficient for eigenvalues of the Hamiltonian [1] to
be real. Hence, if the eigenvalues En are real, the eigenfunctions are PT-symmetric
and the system is considered to be in PT-symmetric regime (phase). Contrarily, if the
eigenvalues are complex, the eigenfunctions are essentially not PT-symmetric and
the system is in PT-symmetry-broken regime.

In contrast to Hermitian case, eigenfunctions of pseudo-Hermitian Hamiltonians
are not orthogonal under conventional inner product. Instead, they obeymore general
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biorthogonality relations. Orthogonality can be re-established bymodifying the inner
product. Discussion of quantum mechanics based on biorthogonal states is given in
[3–6].

18.2.1 Phase Transition in PT-Symmetric Systems

One of the most intriguing features of PT-symmetric systems is a phase transition
from the PT-symmetric to PT-symmetry-broken phase. If the Hamiltonian of the
system Ĥ(p̂, r̂, t, p) depends on some parameter p, the Hamiltonian can have real
as well as complex eigenvalues being, either in PT-symmetric or non-PT-symmetric
states, respectively. When due to variation of the parameter p the system’s spectrum
changes from real to complex and vice-versa, one can study the phase transition
related to the spontaneous breaking of PT symmetry. The point in parameter space
p = pc at which phase transition occurs is named as an exceptional point (EP). At
the EP, both eigenvalues and eigenfunctions coalesce.

18.2.2 PT-Symmetry in Optics

Quantum-mechanical concept of the PT symmetry can be realised in optics due to the
fact that Maxwell’s equations in case of two- and one-dimensional photonic struc-
tures can be reformulated into an equation formally coinciding with the Schrödinger
equation.

With light propagation along these structures it is convenient to introduce the
so called slowly varying envelope (SVE) field, where most of the electromagnetic
field variation is extracted by defining a suitably selected reference propagation
constant [7]. Specifically, if the structure is invariant in z, SVE e for electric field is
defined as

E(x, y, z) = e(x, y, z)e−ik0n0z (18.8)

where k0 = ω/c is the vacuum wavenumber and n0 is the reference (background)
refractive index. SVE h for magnetic field is defined analogously as

H(x, y, z) = h(x, y, z)e−ik0n0z . (18.9)

Within the slowly varying envelope approximation (SVEA) it is assumed that

∂2

∂z2

(
e
h

)
� 2k0n0

∂

∂z

(
e
h

)
(18.10)

and the second-order z-derivative terms are neglected. Due to z-invariance of the
structure transverse and longitudinal components of e and h decouple. The transverse
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components of SVE fields et and ht , hence, satisfy first-order equations with respect
to the z derivative. The above can be summarised in a Schrödinger-like equation

i
∂

∂z
|ψ〉 = Ĥ |ψ〉, (18.11)

for an optical state-vector |ψ〉 defined as

|ψ〉 =
(
et
ht

)
. (18.12)

Ĥ is an optical Hamiltonian governing the z-evolution of SVE fields. Generally, Ĥ
is represented by a 4 × 4 matrix joining operators describing evolution of et and ht .
Explicit form of these operators found in [7]. For waveguide structures with very
small index contrast in both transverse directions equation (18.11) can be reduced
to a scalar equation. Within the scalar approximation the Hamiltonian Ĥ takes the
form

Ĥ = 1

2k0n0

(
∂2

∂x2
+ ∂2

∂y2
+ V (x, y)

)
. (18.13)

Quantity
V (x, y) = k20

(
ε(x, y) − n20

)
(18.14)

can be associated with a potential of the Schödinger equation. From the condition
of the PT symmetry in quantum mechanics V (x, y) = V ∗(−x,−y) we arrive at the
similar condition in optics ε(x, y) = ε∗(−x,−y). Therefore, in optical systems the
PT symmetry can be established by judiciously incorporating gain and loss. Thus,
the refractive index profile now plays the role of the complex potential.

18.2.3 Inner Product for PT-Symmetric Optical Systems

We define the inner product as a cross product of the bra-electric and ket-magnetic
fields integrated over the cross-section z = const:

〈φ1|φ2〉 ≡
∫

(E1 × H2) · ẑdxdy (18.15)

Such a definition is justified by the non-Hermitian nature of PT-symmetric systems.
In the above and following relations we can drop t subscripts because z component of
the vector products depends only on transverse components and

(
Et,1 × Ht,2

) · ẑ =
(E1 × H2) · ẑ.

It is well known that the modes of Hermitian systems are orthogonal in the sense
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〈i | j∗〉 =
∫ (

ei × h∗
j

) · ẑdxdy ∼ δi j , (18.16)

where δi j is the Kronecker delta. Here and below |ψ∗〉 = (e∗
t ,h

∗
t )

T . Relation-
ship (18.16) is often referred to as power orthogonality, because 1

2 Re 〈i |i∗〉 is the
power carried by the mode |i〉. However, the loss and gain in the non-Hermitian sys-
tems break power orthogonality. In this case, one should use a non-conjugate inner
product [8–10] bringing us to the orthogonality relationship

〈i | j〉 =
∫ (

ei × h j
) · ẑdxdy = 2Niδi j , (18.17)

where Ni is a normalisation parameter. We want to stress that orthogonality rela-
tion (18.17) is valid not only for PT-symmetric but for arbitrary non-Hermitian sys-
tems.

Forward and backward transverse modal fields et,i and ht,i satisfy the symmetry
relations

et,−i = et,i , ht,−i = −ht,i (18.18)

both in the case of Hermitian and non-Hermitian systems.
This means that the inner product of the modes also meets the symmetry relations

for its bra- and ket-parts:

〈−i | j〉 = 〈i | j〉, (18.19)

〈i | − j〉 = −〈i | j〉. (18.20)

18.2.4 Petermann Factor

It is common to express non-orthogonality of the modes quantitatively in terms of
Petermann factor [11–15]. Petermann factor is defined as the squared ratio between
Hermitian and non-Hermitian norms. In our notation Petermann factor Ki of the
mode |i〉 reads as

Ki = |〈i |i∗〉|2
|〈i |i〉|2 . (18.21)

Petermann factor obviously equals to unity in Hermitian case since in this case
transverse modal fields always can be rescaled to be real. Hence, non-Hermitian
norm is equal to the Hermitian norm and to the power carried by the mode.
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18.2.5 Eigenmodes of PT-Symmetric Optical Systems

To get some insight on the eigenstates of photonic PT-symmetric systems, let us anal-
yse the system of two coupled waveguides using the coupled mode theory. Coupled
waveguides are the simplest systems proposed at the beginning of the era of optical
PT symmetry [16]. As schematically shown in Fig. 18.5a, they consist of gain and
lossy waveguides having identical geometrical parameters at a distance g one from
another. The waveguide can be either slab, rectangular, circular or gradient one, yet
the physics behind the coupling mechanism is the same.

We express the total field in the coupled system in terms of the modes |g〉 =
(eg,t ,hg,t )

T and |l〉 = (el,t ,hl,t )T of isolated gain and loss waveguides with corre-
sponding z-dependent amplitudes g and l as

|ψ〉 = g(z)|g〉 + l(z)|l〉. (18.22)

We assume that the overlap between the modes of isolated waveguides is negligible
(weak coupling condition), therefore, the modes are orthogonal and normalised as
follows

〈g|l〉 = 〈g|l∗〉 = 0, (18.23)

〈g|g〉 = 〈l|l〉 = 1. (18.24)

P̂ T̂ operator converts the mode of isolated lossy waveguide to the mode of the
isolated gain waveguide and vice versa, and so

P̂ T̂ |g〉 = |l〉, (18.25a)

P̂ T̂ |l〉 = |g〉. (18.25b)

Coupled mode theory for optical PT-symmetric systems can be formulated on the
basis of Lagrangian formalism [17] or by using Lorentz reciprocity theorem [18].

Spatial evolution of amplitudes is governed by the system of coupled equations

i
d

dz

(
g
l

)
=

(
Re (β + δ) − iα/2 κ

κ Re (β + δ) + iα/2

) (
g
l

)
(18.26)

where β is a propagation constant, κ is a coupling coefficient, δ is a correction to the
propagation constant, α is an effective gain (or loss). It can be shown that due to the
weak coupling and relations (18.25) the coupling constant κ is real [17, 18].

Matrix in the right hand side of (18.26) is the matrix of the system’s Hamiltonian
in the basis |g〉, |l〉.

The eigenvalues of this Hamiltonian are the propagation constants of the sytem’s
eigenmodes. They read as
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Fig. 18.2 Eigenvalues of the coupled waveguide system’s Hamiltonian versus non-Hermiticity
parameter α/2κ . Black curves correspond to the first supermode, grey curves correspond to the
second supermode. Solid curves correspond to real parts, dotted curves correspond to imaginary
parts

β1,2 = Re (β + δ) ±
√

κ2 − α2/4. (18.27)

Clearly, the system behaves differently depending on whether α/2 is less or greater
than κ . When α/2 is less than κ both propagation constants are real. When α/2
is greater than κ the eigenvalues constitute complex-conjugate pair and one mode
experiences gain whereas the other one experiences loss. When α = αc = 2κ modes
degenerate. Therefore the point α = αc corresponds to exceptional point (EP). The
situation when α passes through αc is called the phase transition. Phase diagram of a
PT-symmetric coupled waveguide system in Fig. 18.2 shows distribution of real and
imaginary parts of system’s eigenvalues. It illustrates a typical picture of the phase
transition in a PT-symmetric system.

In PT-symmetric regime, the eigenvalues can be written as

β1,2 = Re (β + δ) ± κ cos θ, (18.28)

where sin θ = α/2κ . With this parametrization supermodes take the form

|1, 2〉 = |g〉 ± e±iθ |l〉. (18.29)

It can be seen from (18.25) that the states (18.29) are indeed the eigenstates of
the P̂ T̂ operator

P̂ T̂ |1〉 = |l〉 + e−iθ |g〉 = e−iθ |1〉, (18.30)

P̂ T̂ |2〉 = |l〉 − e+iθ |g〉 = e+iθ |2〉. (18.31)
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In the PT-broken regime, eigenvalues can be written as

β1,2 = Re (β + δ) ± iκ sinh θ, (18.32)

where cosh θ = α/2κ . Supermodes then read as

|1, 2〉 = |g〉 + ie∓θ |l〉. (18.33)

The eigenmodes in PT-broken regime are not longer the eigenstates of the P̂ T̂
operator. Instead, in this regime P̂ T̂ operator relates |1〉 and |2〉 as follows

Fig. 18.3 Mode profiles in
PT-symmetric regime: a
mode |1〉 and b mode |2〉

Fig. 18.4 Mode profiles in
PT-symmetry-broken
regime: a mode |1〉 and b
mode |2〉

Fig. 18.5 Schematics of state-of-art PT-symmetric structures: a coupled waveguides, b two-
dimensional photonic lattices, c multilayer systems and d microresonators
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P̂ T̂ |1〉 = |l〉 − ie−θ |g〉 = ie−θ |2〉, (18.34)

P̂ T̂ |2〉 = |g〉 − ieθ |g〉 = −ieθ |1〉. (18.35)

Typical mode profiles for the coupled waveguide system (see Fig. 18.5a) in PT-
symmetric and PT-broken regimes are shown in Fig. 18.3 and in Fig. 18.4.

When the parameter α approaches the value αc = 2κ corresponding to the EP,
eigenmodes |1, 2〉 merge to become |g〉 + i|l〉. Interestingly, that the modes become
self-orthogonal as 〈1|1〉 = 〈2|2〉 = 0 at the EP. Self-orthogonality is responsible for
singularity of Petermann factor due to zero in denominator in (18.21).

18.3 PT-Symmetric Photonic Devices

Photonics is an excellent platform for experimental verification of the fundamental
concept of the parity-time symmetry discussed earlier. Novel photonic devices can be
fabricated using several basic types of PT-symmetric structures, such as waveguides,
multilayer systems and photonic crystals. A number of remarkable applications of
the PT symmetry have been proposed andwell studied including unidirectional invis-
ibility, lasing, sensing and coherent perfect absorption. In this section, we overview
the recent PT-symmetric photonic devices with the application perspective.

18.3.1 Coupled Waveguide Systems

Coupled waveguides were the first candidates for observation of the parity-time sym-
metry. In [19] it was fabricated a gradient-index system with balanced loss and gain,
the gain being guaranteed by the photorefractive nonlinearity of Fe-doped LiNbO3.
The detailed description of the physics of coupled waveguides has been provided
in the previous section. Here we discuss a gain-free technique for observation of
the PT symmetry demonstrated in practice in [20]. The idea behind the passive PT
symmetry is to carry out transformation of the fields in a purely lossy system with
the aim of reducing the governing equation to that describing PT-symmetric systems.
In fact, using the gauge transformation |ψ〉 = exp(−γ z)|ψ̃〉, we can rewrite (18.11)
of the passive system as

i
∂

∂z
|ψ̃〉 = ˆ̃H |ψ̃〉 (18.36)

Nowweclaim that (18.36) describes aPT-symmetric systemwith the effectiveHamil-

tonian ˆ̃H which corresponds to the system with the effective permittivity

ε̃(x, y) = ε(x, y) + 2i
n0γ

k0
. (18.37)
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ε̃ satisfies condition ε̃(x, y) = ε̃∗(−x,−y) and the permittivity of the passive system
meets

ε(x, y) = ε∗(−x,−y) − 4i
n0γ

k0
. (18.38)

Assuming that one of the waveguides is transparent (lossless) with εg = ε∗
g , one can

easily determine the permittivity of the lossy waveguide as εl = εg − 4in0γ /k0. In
spite of the gain-free system does not have a true PT symmetry, it still possesses
some features inherent in PT-symmetric systems as PT-symmetry breaking observed
in [20]. Passive PT symmetry is a smart technique to ease validation of PT-symmetry
effects and its applicability.

A number of surprising effects arise in guiding systems under gain-loss mod-
ulation in a PT-symmetric manner. The modulation shifts positions of exceptional
points resulting in the directional amplification, when the phase transition is made
with a threshold in one direction, being thresholdless in the opposite direction [21].
Similarly, on the boundary between the metallic substrate and PT-symmetrically
modulated dielectric slab, there is a unidirectional excitation of the surface plasmon-
polaritons [22]. In a waveguide as an isotropic slab sandwiched between oppositely
biased gyrotropic media, topologically protected guided modes arise. PT symmetry
in such a system introduces exceptional points, where electromagnetic modes are
slow-light and linearly-growing [23]. Slow light phenomenon is known to be asso-
ciated with degeneracy of the modes (matching of their propagation constants). In
PT-symmetric systems, the degeneration is realised at exceptional points of mode
coalescence [24].

PT-symmetric laser waveguide was fabricated in [25]. Gain and loss are electri-
cally controlled to achieve a lasing threshold in the range of PT-symmetry violation.
By interplay of two guided modes there were distinguished several phases, the lasing
within which being confirmed experimentally.

Twocoupledwaveguides experience optical forces originating fromexcited eigen-
modes. The forces qualitatively change at exceptional points and may result in push-
ing and pulling of one waveguide to another. When the forces deflect the waveg-
uides, they may induce the phase transition through changing a gap between them
[26]. An unusual power flow in the PT-symmetric coupled waveguide results in an
off-diagonal stress tensor components causing the shear along the mode propagation
direction [27].

18.3.2 Two-Dimensional Photonic Waveguide Lattices

An array of parallel waveguides can be arranged in nodes of a lattice as demonstrated
in Fig. 18.5b. Such a two-dimensional photonic crystal is a natural generalization of
a pair of coupled waveguides. To engage a PT symmetry in the lattice, the gain and
lossy waveguides should be disposed periodically. As other PT-symmetric systems,
the lattice has exceptional points bordering phases of broken and unbroken PT-
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symmetric states. At the same time, light beams propagating in lattices demonstrate
beam splitting, power oscillations, nonreciprocity and secondary emissions [28].
These diffraction properties are explained by nonorthogonality of the Floquet-Bloch
modes of the periodic structure.

In the systemof PT-symmetric periodically arranged cylinders situated at the inter-
face between two semi-infinite media, unidirectional transmission without reflec-
tion can be achieved. It was investigated in [29] using the perturbation and scat-
tering matrix theories. Photonic graphene lattice of waveguides described using the
coupled-mode techniques can be represented as the Dirac equation. The PT sym-
metry in such a system requires the corresponding Hamiltonian is non-Hermitian
exhibiting unbroken and broken PT-symmetry phases. These theoretical findings are
well confirmed in experiments [30]. In [31] photonic lattices were used for the proof
of existence of topological interface states on a defect waveguide between two PT-
symmetric media. The results propose a way of excitation of topologically protected
localised states. A PT-symmetric photonic crystal can be also designed as a group of
gain cylinders paired with a group of lossy cylinders. Then surface electromagnetic
waves emerge at the gain-loss interface, while exceptional points can be tuned to
coalesce forming higher-order exceptional points [32].

18.3.3 Multilayer Structures

To illustrate the basic principles of the PT symmetry, a simple multilayer systemmay
be harnessed. The PT symmetry in multilayer structures is introduced in direction
of the wave propagation, and multilayers as open systems can be described by a
scattering matrix. The scattering matrix connects the input and output channels.
For the multilayer system there are two input channels and two output channels as
demonstrated in Fig. 18.5c. The output fields ψR = tφL + rRφR and ψL = tφR +
rLφL can be arranged as

(
ψR

ψL

)
=

(
rR t
t rL

) (
φR

φL

)
or

(
ψL

ψR

)
=

(
t rL
rR t

)(
φR

φL

)
, (18.39)

where φL ,R are the input fields, t is the transmission coefficent and rL and rR are the
reflectrion coefficients to the left and to the right sides, respectively. Transmission
coefficient t does not depend on the direction of wave incidence owing to reciprocity
of the system.

Equation (18.39) shows that the scattering matrix as a matrix between input and
output fields can be defined in two different ways by means of the permutation of the
output channels. Such a nominal designation is expected to be unimportant. However,
since the scattering matrix eigenvalues are different for two matrices in (18.39), but,
as generally accepted, should predict exceptional points, a dilemma arises, which
scatteringmatrix is appropriate [33, 34]. The problem of uniqueness of the scattering
matrix of the PT-symmetric system has been successfully solved in [35] using the
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direct connection of the scatteringmatrix Ŝ with the PT-symmetric Hamiltonian Ĥ of
the one-dimensional multilayer system as Ŝ = exp(iĤ(t − t0)/�). Correct positions
of the exceptional points then read as s1,2 = t ± √

rLrR , where the scattering matrix
defined by the right-hand equation in (18.39) is employed. Exceptional points of
the scattering matrix with permuted channels given by the another scattering matrix
approximate the lasing onset.

PT-symmetric multilayer systems are widely studiedwith the aim of enhancement
of physical phenomena near exceptional points. A PT-symmetric bilayer exhibits
a giant Goos-Hänhen shift at specific angles of incidence [36]. The enhancement
is explained by excitation of surface modes at the interface between the gain and
lossy slabs facilitating the quasi-BIC (quasi-bound state in the continuum) states. An
ordinarily weak spin-orbit interaction of light can be also significantly intensified
in vicinity of exceptional points of the PT-symmetric bilayer. Interaction of light
spin and orbital momenta is coined as the spin Hall or Imbert-Fedorov effect and
results in a lateral shift of a light beam. Near exceptional points of the PT-symmetric
bilayer the reflection coefficient experiences negligible values and abrupt phase shift
enhancing the lateral beamdisplacement, though it takes zero value at the exceptional
point [37]. Graphene sheets in PT-symmetric multilayer systems can be used for
modulation of an exceptional point position via tuning their surface conductivity
[38]. Light also makes a bilayer to move. Optical forces exerting on PT-symmetric
multilayer structures can be both pushing and pulling depending on the direction of
light and realization of the broken or unbroken PT-symmetric phase [39].

A PT-symmetric multilayer structure can be used as a laser. More precisely, the
laser must be simultaneously a coherent perfect absorber [40, 41]. In the broken
PT-symmetry phase, an illumination from one side is normally amplified, while a
coherent illumination from both sides of the multilayer system is absorbed owing
to interference. Laser-absorber modes arise, when a pole and a zero of a scatter-
ing matrix approach each other on the real axis in the plane of complex frequency.
Finite-difference-time-domain (FDTD) calculations basically confirm predictions of
the transfer-matrix and scattering-matrix approaches and show an enormous increase
in the output intensity, when the laser threshold is achieved [35]. If the pole is not on
the real axis, the lasing onset is still feasible at a greater threshold. In realistic PT-
symmetric systems, realization of the gain occurs in quantum systems and requires
accounting for the saturation effect. This means that the PT-symmetric system has
to be nonlinear. In [42] it was considered a two-level resonant medium described
by the Maxwell-Bloch equations. Due to the saturation, the condition for PT sym-
metry is approximately valid and the system can be named as a non-Hermitian one
[43]. Saturation may result in novel effects, e.g., locking of the light propagation by
the PT-symmetry breaking [42]. Steady-state solutions for PT-symmetric multilayer
structures with nonlinear refractive indices of gain and loss media are investigated
in [44] using a modified transfer-matrix method. The bistable behavior of the trans-
mitted and reflected intensities was studied together with unidirectional invisibility
and coherent perfect absorption versus the input and saturation intensities.
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18.3.4 Microresonators

PT symmetry can be realised on a resonator platform promising for interesting appli-
cations on a chip. In Fig. 18.5d we show a typical system comprising two coupled
gain and loss cavities. It is shown in [45] that a non-Hermitian optical microring
resonator coupled to a waveguide can be used as an asymmetric absorber, if a mirror
is placed on one side of the waveguide. Robustness of the asymmetric absorption
is explained by the emergence of the chiral exceptional surface, which can be also
exploited for directional absorption control. Unidirectional lasing and coherent per-
fect absorption can be achieved using unidirectional destructive interferences being
realised with an asymmetrically coupled passive resonator chain [46]. Asymmetry
in coupling breaks the reciprocity in transmission due to the destructive interfer-
ence. A PT-symmetric side-coupled resonator can be realised using unidirectional
lasing together with perfectly absorbing resonators and can result in simultaneous
unidirectional lasing and perfect absorption effects. In a similar fashion, the spec-
tral singularities of scattering matrix can be investigated in a PT-symmetric two-arm
Aharonov-Bohm interferometer [46]. Such spectral singularities can be tailored to
realise symmetric, asymmetric and unidirectional lasing onsets.

Non-Hermitian resonators are widely used as extremely sensible sensors at excep-
tional points. The sensitivity can be evenmore increased for higher-order exceptional
points, at which more than two eigenvalues of a non-Hermitian Hamiltonian coin-
cide. In this case, the frequency splitting stems from a perturbation ε � 1 follows the
law ε1/N , where N is the order of the exceptional point [47]. Since the susceptibility
d(ε1/N )/dε diverges at ε = 0, the sensitivity can be arbitrarily high. This idea was
experimentally validated in a PT-symmetric ternary (loss-neutral-gain) micro-ring
system [48] and micro-toroid cavity [49], the non-Hermiticity of the latter being
introduced by a scatterer resulting in coupling eigenmodes of the cavity. Sensitiv-
ity of parameter estimation can be analysed using the formalism of quantum Fisher
information without referring to a specific measurement scheme. The average of all
merging eigenstates cancels out the divergence at the singularity resulting to a finite
value at the exceptional point [38].

PT-symmetric [50] and anti-PT-symmetric [51] optical gyroscopes were proposed
on the basis of ring resonators coupled to a waveguide. Frequency splitting and,
hence, sensitivity in gyroscopes are normally limited by the ring dimensions. In PT-
symmetric gyroscopes, the frequency splitting is independent of the ring radius and,
therefore, the phase shift of interference fringes is enhanced in vicinity of exceptional
points. A unique “superluminal” lasing may be used as a sensor and can be obtained
in a broken PT-symmetry phase of the white-light cavity that consists of gain and
lossy coupled micro-resonators [52].

Finally, PT-symmetric microcavities possess indispensable nanophotonic proper-
ties for suppression of spontaneous relaxation rate [53]. In the next section we will
discuss this subject in detail.
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18.4 Purcell Effect in PT-Symmetric Waveguides

In 1946, E. M. Purcell predicted that the spontaneous emission rate of a light source
is not solely an intrinsic property of the source but is affected by the optical envi-
ronment [54]. This effect is now referred to as Purcell effect. The Purcell factor is
defined as

Fp = Psystem
P0

, (18.40)

where Psystem denotes the power of an emitter radiated into a particular optical system
and P0 is the power of the same emitter radiated into vacuum or free space. Purcell
factor is a common figure of merit to describe the emission enhancement induced by
feedback of the source with a particular optical system. Alternatively, Purcell factor
can be defined in terms of spontaneous emission rate

Fp = τ0

τsystem
, (18.41)

where τ0 is the spontaneous emission lifetime in vacuum and τsystem is the lifetime
of the emitter in the particular system of interest.

The interaction between the emitter and its environment is formally described
by Fermi’s golden rule which states that the probability for spontaneous emission
is proportional to the (photonic) local density of states (LDOS). LDOS, in turn,
is proportional to the imaginary part of Green’s dyadic Ĝ at the position of the
emitter [55]

ρp(r0, ω) = 6ω

πc2

[
p̂ Im Ĝ(r0, r0;ω)p̂

]
, (18.42)

where r0 is emitter position and p̂ denotes unit vector of the dipole orientation.
It is well known since the Purcell’s work [54] that the strong Purcell enhance-

ment occurs in resonant systems where the light is confined to small volumes. More
recent work suggests that giant enhancements can occur via the less familiar Peter-
mann effect [11, 12, 14]. The Petermann enhancement factor is a measure of non-
orthogonality of the modes in non-Hermitian systems and it appears to diverge when
two modes coalesce at an exceptional point (EP). In the work of Pick et al. [15]
authors develop a general theory of the spontaneous emission at exceptional points.
They show that traditional theories of spontaneous emission fail in case of degen-
erate resonances occurring at EPs and lead to infinite Purcell factors. Approach
presented in [15] is based on the perturbation theory which properly accounts for
degeneracies at EPs by using Jordan vectors. Within this approach authors prove that
actual enhancement factors is finite, but can still be significant (about hundreds) in
gain-aided and higher-order EP systems.

Interestingly, that not only enhancement but rather suppression of spontaneous
decay rate can occur in PT-symmetric systems. Akbarzadeh et al. in [53] show that
a PT-symmetric planar cavity is able to suppress the spontaneous relaxation rate of
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a two-level atom below the vacuum level. Recent work of Khanbekyan and Wiersig
reports on decay suppression of spontaneous emission of a single emitter in a high-Q
cavity at exceptional points [56].

The Purcell factor can be calculated separately for each of the discrete scatter-
ing channels. For instance, just a couple of years ago, the Purcell effect in the mode
of the basic element of PIC planar waveguide was introduced within the scattering
matrix formalism [57].

It has recently been shown in the context of single molecule detections that the
power emitted from a molecule into a single mode fiber can be elegantly calculated
using the reciprocity theoremof electromagnetic theory [58]. In thework [59] authors
propose a reciprocity approach to calculate the emission enhancement for emitters
coupled to arbitrary resonant or non-resonant openoptical systems.They calculate the
modal Purcell factor—the quantity which measures the power emitted by an emitter
situated in the vicinity of a device into a particular propagating mode normalised by
the power radiated by the same emitter into the free space.

18.4.1 Reciprocity Approach

In this section, we generalise the reciprocity approach formulated in [59] to the
case when the propagating modes are not orthogonal. We probe the method by
calculation of the modal Purcell factor in PT-symmetric coupled waveguide system.
In the following section we will obtain closed-form expressions for modal Purcell
factor describing the system in terms of coupled modes.

We consider a current source (current density distribution J1) situated in the vicin-
ity of some optical system with two exit ports at z1 and zn [59]. For brevity, we use
optical state-vector notation for 4-component vector joining transverse electric and
magnetic fields introduced in (18.12). In thiswaywe can describe the fields of guiding
(and leaking) modes. For the i th mode we write

|Mi (z)〉 =
(
Et,i (x, y, z)
Ht,i (x, y, z)

)
= |i〉e−iβi z, (18.43)

where

|i〉 =
(
et,i (x, y)
ht,i (x, y)

)
(18.44)

and (
Et,i (x, y, z)
Ht,i (x, y, z)

)
=

(
et,i (x, y)
ht,i (x, y)

)
e−iβi z . (18.45)

The fields excited by the current source J1 at the cross-section of exit ports can
be expanded into a set of modes as follows
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|ψ1(z1)〉 =
∑
i

Ai,z1 |i, z1〉,

|ψ1(zn)〉 =
∑
i

A−i,zn | − i, zn〉. (18.46)

Here Ai,z1 and A−i,zn are the amplitudes of the modes propagating forward to port z1
and backward to port zn , respectively, |i, z1〉, | − i, zn〉 are respectively eigenmodes
of ports z1 and zn propagating from the cavity.

In our notations the Lorentz reciprocity theorem

∫
δV

(E1 × H2 − E2 × H1) · ẑdxdy =
∫
V

(E2 · J1 − E1 · J2) dV . (18.47)

should be rewritten as

〈ψ1(z1)|ψ2(z1)〉 − 〈ψ2(z1)|ψ1(z1)〉 − 〈ψ1(zn)|ψ2(zn)〉 + 〈ψ2(zn)|ψ1(zn)〉
=

∫
V

(E2 · J1 − E1 · J2) dV, (18.48)

where δV is the surface enclosing the cavity volume V between two planes z = z1
and z = zn . In (18.48), J1 and |ψ1〉 are defined above, while the source J2 and the
fields |ψ2〉 produced by it can be chosen as we need. Let the source current J2, being
outside the volume V (J2 = 0), excite a single mode | − k, z1〉. In general, this mode
is scattered by the cavity V and creates the set of transmitted and reflected modes as
discussed in [59]:

|ψ2(z1)〉 =B−k,z1 | − k, z1〉 +
∑
i

Bi,z1 |i, z1〉, (18.49)

|ψ2(zn)〉 =
∑
i

B−i,zn | − i, zn〉. (18.50)

Using the orthogonality condition (18.17) and the symmetry relations (18.20) we
obtain the inner products of the fields

〈ψ1(z1)|ψ2(z1)〉 =
∑
i

Ai,z1B−k,z1〈i, z1| − k, z1〉 +
∑
i, j

Ai,z1Bj,z1〈i, z1| j, z1〉

= −2Ak,z1B−k,z1Nk + 2
∑
i

Ai,z1Bi,z1Ni,z1 . (18.51a)
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〈ψ2(z1)|ψ1(z1)〉 =
∑
i

Ai,z1B−k,z1〈−k, z1|i, z1〉 +
∑
i, j

Ai,z1Bj,z1〈i, z1| j, z1〉

= 2Ak,z1B−k,z1Nk,z1 + 2
∑
i

Ai,z1Bi,z1Ni,z1 . (18.51b)

〈ψ1(zn)|ψ2(zn)〉 = 〈ψ2(zn)|ψ1(zn)〉 =
∑
i, j

A−i,zn B− j,zn 〈−i, zn| − j, zn〉

= 2
∑
i

A−i,zn B−i,zn Ni,zn , (18.51c)

where Ni,z1(n)
the norm of the mode |i, z1(n)〉 as defined in (18.17).

By substituting these equations into (18.48), we arrive at the amplitude Ak,z1 of
the mode excited by the source current J1

Ak,z1 = − 1

4B−k,z1Nk,z1

∫
V

E2,−k · J1dV, (18.52)

where E2,−k = B−k,z1e−k(x, y)eiβk (z−z1) is the electric field created by the excitation
of the system with reciprocal mode | − k, z1〉 at the port z1.

As an emitter we consider a point dipole oscillating at the circular frequency ω

and having the current density distribution

J1 (r) = iωpδ (r − r0) , (18.53)

where p is the dipole moment of the emitter and r0 is its position. Then we are able
to carry out the integration in (18.52) and obtain

Ak,z1 = − iω

4B−k,z1Nk,z1

E2,−k (r0) · p. (18.54)

Here we observe a difference compared to the Hermitian case considered in [59].
This difference appears due to the fact that now the expansion coefficients Ak,z1 are
not directly related to the powers carried by the modes. Finding a power carried by a
specific mode is a challenge. To circumvent this challenge, we propose a calculation
of the total power carried by the set of modes as we describe below.

The power emitted by the current source J1 into the port z1 can be written as

P = 1

2
Re

∫
z=z1

(
E1 × H∗

1

) · ẑdxdy = 1

2
Re 〈ψ1(z1)|ψ∗

1 (z1)〉. (18.55)

Expanding the electromagnetic fields |ψ1(z1)〉 according to (18.46) we represent the
power transmitted through the port (18.55) as follows
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P = Re
∑
k,l

Ak,z1 A
∗
l,z1 Pkl, (18.56)

where Pkl is the so called cross-power equal to the Hermitian inner product of the
modal fields

Pkl,z1 = 1

2
〈k, z1|l∗, z1〉 = 1

2

∫
z=z1

(
ek,z1 × h∗

l,z1

) · ẑdxdy. (18.57)

For k = l the cross-power reduces to the mode power Pk = Re Pkk . By considering
the expansion coefficients (18.54) we rewrite the power (18.56) in terms of the
reciprocal fields E2,−k as

P = ω2

16
Re

∑
k,l

(E2,−k (r0) · p)(E∗
2,−l (r0) · p∗)

B−k B∗
−l Nk N ∗

l

Pkl

= ω2

16
Re

∑
k,l

(e−k (x0, y0) · p)(e∗
−l (x0, y0) · p∗)

NkN ∗
l

Pkl . (18.58)

The last equality is the consequence of the substitution ofE2,−k at the emitter position
r0 = (x0, y0, z0) considering the negligible dimensions of the cavity z1 ≈ zn ≈ z0.
Note that here we dropped z1 subscripts.

To find the Purcell factor we divide (18.58) by the power emitted by the same
dipole into the free space

P0 = μ0

12πc
ω4|p|2, (18.59)

where μ0 is the vacuum permeability and c is the speed of light in vacuum. The
dipole moment, located in the xy plane, can be presented using the unit vector p̂ as
follows

p = pp̂, (18.60)

therefore,
E2,−k(r0) · p = E2,−k(r0) · p̂p = Ep,k(r0)p. (18.61)

Here Ep,k denotes projection of the vector E2,−k onto the dipole orientation vector p̂

Ep,k = E2,−k · p̂. (18.62)

Then the Purcell factor reads

Fp = P

P0
= 3πc

4ω2μ0
Re

∑
k,l

ep,k (x0, y0) e∗
p,l (x0, y0)

NkN ∗
l

Pkl . (18.63)

It is convenient to rewrite (18.63) through the normalised fields as
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Fp = 3πc

4ω2μ0
Re

∑
kl

êp,k ê
∗
p,l Kkl P̂kl , (18.64)

where we have introduced normalised modal electric fields

ê2,i = e2,i√
Nh
i

(18.65)

and normalised cross-power coefficients

P̂kl = 1√
Nh
k N

h
l

Pkl (18.66)

Where Nh
i = 1

2 〈i |i∗〉 is the Hermitian norm of the mode |i〉 defined by the Hermitian
inner product (18.16).Herewe generalise the Petermann factor defined in Sect. 18.2.4

Ki = Kii (18.67)

defining cross-mode Petermann factor

Kkl = 〈k|k∗〉
〈k|k〉

〈l|l∗〉∗
〈l|l〉∗ . (18.68)

The modal Purcell factor can be naturally divided into two parts, the first of which is
the sum of all diagonal (k = l) terms, while the second part is the sum of off-diagonal
(k �= l) terms:

Fp = Fp,diag + Fp,off−diag =
∑
k

Fp,k +
∑
k �=l

Fp,kl , (18.69)

where

Fp,i = 3πc

4ω2μ0
|êp,k |2Ki , (18.70)

Fp,kl = 3πc

4ω2μ0
êp,k ê

∗
p,l Kkl P̂kl . (18.71)

In the Hermitian case, the off-diagonal terms (18.71) reduce to zero due to the regular
orthogonality of the modes expressed by P̂kl = δkl . That is why the Purcell factor
(18.64) applied to Hermitian systems coincides with the expression in [59].
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18.4.2 Modal Purcell Factor Within the Coupled Mode
Theory

PT-symmetric regime
To find the modal Purcell factor for the coupled waveguide system in PT-symmetric
regime we substitute the modes in the form (18.29) into expression (18.64).

One more assumption is introduced for the sake of simplicity:

〈g|g∗〉 = 〈l|l∗〉 = 1. (18.72)

It implies that the Hermitian norms of the isolated modes are equal to the non-
Hermitian norms or, in other words, the Petermann factors for the modes equal unity.

Then the quantities Kkl and P̂kl can be written in the closed form as

K1 = |〈1|1∗〉|2
|〈1|1〉|2 = 2

1 + cos 2θ
, (18.73a)

K2 = |〈2|2∗〉|2
|〈2|2〉|2 = 2

1 + cos 2θ
, (18.73b)

K12 = 〈1|1∗〉
〈1|1〉

〈2|2∗〉∗
〈2|2〉∗ = 2(1 + e−i2θ )2

(1 + cos 2θ)2
, (18.73c)

K21 = 〈2|2∗〉
〈2|2〉

〈1|1∗〉∗
〈1|1〉∗ = 2(1 + e+i2θ )2

(1 + cos 2θ)2
, (18.73d)

P̂12 = 〈1|2∗〉√〈1|1∗〉〈2|2∗〉 = 1

2
(1 − ei2θ ), (18.74a)

P̂21 = 〈2|1∗〉√〈1|1∗〉〈2|2∗〉 = 1

2
(1 − e−i2θ ). (18.74b)

Normalised field projections êp,k in the basis of isolated modes read

êp,1 = 1√
1
2 〈1|1∗〉

(êp,g + eiθ êp,l) = êp,g + eiθ êp,l , (18.75a)

êp,2 = 1√
1
2 〈2|2∗〉

(êp,g − e−iθ êp,l) = êp,g − e−iθ êp,l . (18.75b)

In above expressions êp,g and êp,l denote projections of the fields of backward-
propagating isolated modes onto dipole orientation. If the emitter dipole moment is
perpendicular to ẑ, projections of backward-propagating modal fields are equal to
the projections of forward-propagating ones.
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Performing calculation of themodal Purcell factor (18.64) using relations (18.73)–
(18.74) we obtain

Fp = Fp,diag + Fp,off−diag = 6πc

ω2μ0
(|êp,g|2 + |êp,l |2). (18.76)

Diagonal and off-diagonal terms separately take the form

Fp,diag = 3πc

4ω2μ0

4

1 + cos 2θ
(|êp,g|2 + |êp,l |2), (18.77a)

Fp,off−diag = − 3πc

4ω2μ0

2(1 − cos 2θ)

1 + cos 2θ
(|êp,g|2 + |êp,l |2). (18.77b)

It is curious that althoughbothdiagonal andoff-diagonal terms (18.77) are singular
at the EP corresponding to θEP = π/2 and cos 2θEP = −1, the singularities cancel
each other making the modal Purcell factor finite and independent of θ . The modal
Purcell factor (18.76) depends solely on the mode profiles of the isolated modes in
PT-symmetric regime.

PT-symmetry-broken regime
To obtain the modal Purcell factor in PT-symmetry-broken regime we substitute the
modes in the form (18.33) into expression (18.64).

Calculating the Petermann factors

K1 = coth2 θ, (18.78a)

K2 = coth2 θ, (18.78b)

K12 = − coth2 θ, (18.78c)

K21 = − coth2 θ, (18.78d)

normalised cross-powers

P̂12 = 1

cosh θ
, (18.79a)

P̂21 = 1

cosh θ
, (18.79b)

and reciprocal modal field projections

êp,1 = 1√
1
2 (1 + e−2θ )

(êp,g + ie−θ êp,l), (18.80a)

êp,2 = 1√
1
2 (1 + e2θ )

(êp,g + ieθ êp,l) (18.80b)
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we straightforwardly derive the diagonal and off-diagonal terms

Fp,diag = 3πc

4ω2μ0

2 cosh θ

sinh2 θ

(
(|êp,g|2 + |êp,l |2) cosh θ − 2 Im (ê∗

p,gêp,l)
)
, (18.81a)

Fp,off−diag = − 3πc

4ω2μ0

2

sinh2 θ

(|êp,g|2 + |êp,l |2 − 2 cosh θ Im (ê∗
p,gêp,l)

)
(18.81b)

as well as the modal Purcell factor

Fp = Fp,diag + Fp,off−diag = 6πc

ω2μ0
(|êp,g|2 + |êp,l |2). (18.82)

The main result of this section is that although diagonal and off-diagonal terms
of the modal Purcell factor diverge at the EP, the modal Purcell factor itself does not
exhibit a singular behavior when approaching to the EP either from the left or right
side.

Thoughwedonot carry out a rigorous analysis of the behavior at theEPaccounting
for the degeneracy of the modes as it was done in [15], the developed approach leads
to the well-defined expressions (18.76) and (18.82) for Fp at the exceptional point.

Fig. 18.6 Effectivemode indices versus the non-Hermiticity parameter γ . Black curves correspond
to the mode |1〉. Red curves correspond to the mode |2〉
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18.4.3 Numerical Example: PT-Symmetric Coupler

This section presents an example of utilising the theory developed in the previous
section. Here, we analyse an optical system consisting of two coupled rectangular
waveguides with width w and height h separated by the distance g as schematically
shown in Fig. 18.5a. We assume that the complex refractive indices of the left (Gain)
and right (Loss) waveguides are nl = nco + iγ and nr = nco − iγ respectively. nco
is the real part of the refractive index and γ > 0 is the gain/loss (non-Hermiticity)
parameter. Thus, the system of the coupled waveguides satisfies PT-symmetry con-
dition n(x, y) = n∗(−x,−y). The refractive index of the background is assumed to
be unity.

We take parameters of the waveguide coupler as g = 2 μm, w = 1 μm, h = 0.5
µm, and nco = 1.44. The coupler has two quasi-TE supermodes at this wavelength.
We calculated the field distribution of the guided modes of these waveguides, shown
in Figs. 18.3 and 18.4.

By increasing the gain/loss parameter γ the system passes through the regime of
propagation (PT-symmetric state) for two non-decaying supermodes to the regime
of decay/amplification (PT-symmetry-broken state). This behavior, shown by the
curves in Fig. 18.6.

Fig. 18.7 Purcell factor distribution in the plane (x , y) a for the Hermitian system characterised
by γ = 0, b in the PT-symmetric phase (γ = 1.02 × 10−3), c in the broken-PT-symmetric state
(γ = 2.5 × 10−3). Parameters of the waveguide coupler: g = 2.0 μm, w = 1 μm, h = 0.5 μm,
and nco = 1.44
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Fig. 18.8 Distribution of the Purcell factor a diagonal and b off-diagonal terms depending on the
emitter position x0 at y0 = 0 for different values of γ . Parameters of the coupled waveguide are
given in the caption of Fig. 18.7

For the studied system the value of γ corresponding to EP is γEP = 1.12 × 10−3.
Next, we explore the modal Purcell factor Fp for the pair of quasi-TE modes.

According to (18.63), the Purcell factor is defined by the fields of the reciprocal
modes at the dipole position (x0, y0, z0 ≈ z1 ≈ zn). In Fig. 18.7, we demonstrate the
Purcell factor for an x-oriented dipoles as a function of x0 and y0 for different values
of non-Hermiticity parameter γ .

From Fig. 18.7 we conclude that the modal Purcell factor is symmetric in (a) Her-
mitian regime as well as in (b) PT-symmetric and (c) PT-symmetry broken regimes.
In all three cases, the modal Purcell factor Fp distribution is the same and finite
(taking maximum value of approximately 0.085 in the middle of the waveguides)
despite the fact that both diagonal and off-diagonal terms experience enhancement
as shown in Fig. 18.8. According to the Eqs. (18.77) and (18.81) this enhancement is
direct consequence of non-orthogonality. Opposite signs and close absolute values
of diagonal and off-diagonal terms observed in Fig. 18.8 result in cancellation of
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Fig. 18.9 Distribution of the Purcell factor at the line y = 0 as function of the emitter position x
and non-Hermiticity parameter γ . Parameters of the coupled waveguide are given in the caption of
Fig. 18.7

divergent terms in modal Purcell factor. This explains small values of the modal Pur-
cell factor and its independence on the non-Hermiticity parameter γ demonstrated in
Fig. 18.9. Independence on the non-Hermiticity parameter also confirms the analyti-
cal predictions given by (18.76) and (18.82). Note: a tiny spike observed near the EP
is a numerical artefact. It arises due to amplification of terms Fp,diag and Fp,off−diag.

Such a behavior well agrees with the result obtained in Sect. 18.4.2 utilising the
coupled-mode theory, namely, the numerically observed distribution of the modal
Purcell factor is similar in Hermitian, PT-symmetric, and PT-symmetry broken
regimes.

18.5 Summary and Outlook

To summarise, one of the challenges in integrated photonics, is to develop on-chip
optical devices for efficient lightmanipulationfinding its use in emerging applications
such as data processing, quantum technologies, healthcare, security and sensing.
Purcell effects in PT-symmetry can be utilised in variety of applications on a chip for
instance for lasing. Lasing like behaviour can be realised based on multilayer system
releasing the pumped energy in the form of powerful pulses [60]. Similar approach
studied in [60] can be implemented on a chip. Figure 18.10 shows the concept of
Transmission and Reflection through the multilayered waveguide core, composed
from Loss and Gain media.

Although efficient on-chip lightmanipulation can be achieved by engineering arti-
ficial materials (metamaterials) with unique optical permittivities and permeabilities,
PT-symmetric photonics allows to tune the complex refractive index and control the
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Fig. 18.10 Schematics of the proposed concept with N-periods multilayer waveguide core of
alternating Loss and Gain media for on-chip lasing based on PT-symmetry effect

interplay between the phase (real part of complex refractive index) and attenuation or
loss (in case the imaginary part of complex refractive index is negative); or amplifica-
tion/gain in case the imaginary part of complex refractive index is positive. Themajor
advantage of PT-symmetric systems is to confine and guide light in coupled passive
waveguides as was first shown in [20]. Then, the active fully PT-symmetric system
with gain and loss was demonstrated using two coupled waveguides fabricated from
Fe-doped LiNbO3 [19] in such a way that the transmission always appeared at the
output of the activewaveguide regardless of the inputwaveguide. This effect is named
non-reciprocal meaning that power oscillations between the coupled waveguides are
asymmetric. The degree of non-reciprocity in such nonlinear devices depends on the
intensity of the signal. However in [19], Lorentz reciprocity still holds as long as no
nonlinearity builds up.

PT-optomechanics is another interesting way to go and explore the interaction
between the optical fields and mechanical option in PT-symmetric systems in pres-
ence of a quantum emitter. In coupled mechanical resonators with optically induced
loss and gain, a combination of nonlinear saturation and noise leads to preserved or
weakly broken PT-symmetry, and a transition occurs from a thermal to a lasing state
with small amplitude [16, 61].

Systems with exceptional points, particularly, PT-symmetric systems are known
to be able to enhance [15] and suppress [53, 56] the spontaneous emission rate in
optical systems when operating near exceptional point. Analysis of the spontaneous
emission enhancement and coupling to the guided modes of the PT-symmetric cou-
pled waveguide system shown that, interestingly, for this class of systems the modal
enhancement factor (modal Purcell factor) does not depend on the non-Hermiticity
even at the EP.
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In conclusion, although the PT symmetry and non-Hermiticity in integrated pho-
tonics research has already established novel ways of utilising gain, loss and their
coupling to control light transport, there is still a room for new direction to go, when
considering a Purcell effect in PT-symmetric waveguides.
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