
Chapter 17
Axion Electrodynamics in
Magnetoelectric Media

A. Martín-Ruiz, M. Cambiaso, and L. F. Urrutia

Abstract Topologically ordered media demand a new understanding of the emer-
gent properties of quantum matter. This is a fundamental and technological feat.
Topological insulators and Weyl semimetals are materials with topological order.
Here we will focus on how these materials interact with sources of the electromag-
netic field. We start from the effective field theory of Maxwell’s electrodynamics
extended by a so-called magnetoelectric term, namely axion electrodynamics and
summarize some results we have found exploiting a Green’s function approach to
solve for the electromagnetic fields. Signals of the magnetolectric effect are minute
compared with other electromagnetic responses, therefore precision measurements
are required for its detection. Our formulation can be used for topological insulators
and Weyl semimetals with planar, cylindrical and spherical geometries interacting
with general charges, currents and boundary conditions. Our formulation is exem-
plified by: (i) the issue of Casimir effect involving a planar topological insulator, (ii)
Vavilov-Cherenkov radiation produced in the forward- and backward-direction of a
charged particle traversing a planar interface of two magnetoelectric media and (iii)
the electromagnetic fields induced by a static electric charge near the surface of a
Weyl semimetal. All three applications can yield observable signals that are within
experimental sensitivities.
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17.1 Introduction

Classical and quantum electrodynamics summarize all our understanding of the inter-
action betweenmatter and radiation. Although these topics have been profusely stud-
ied in many different areas since their early discoveries, still today they constitute a
fruitful research discipline and an excellent arena with potential for new discoveries.
This is specially true when precision measurements are at hand and also when new
materials come into play whose novel properties, of ultimate quantum origin, result
in new possible forms of interaction between light and such materials. That is the
case with topological insulators, as well as other materials with topological order.

Interestingly enough, the interaction between matter characterized by topologi-
cal order and external electromagnetic fields can be described by an extension of
Maxwell’s theory. In fact, in electrodynamics there is the possibility of writing two
quadratic gauge and Lorentz invariant terms: the first one is the usual electromagnetic
densityLEM = (E2 − B2)/8π which yieldsMaxwell’s equations, and the second one
is the magnetoelectric termLθ = θ E · B, where θ is a coupling field usually termed
the axion angle.

Many of the interesting properties of the latter can be recognized from its covari-
ant form Lθ = −(θ/8)εμνρλFμνFρλ, where εμνρλ is the Levi-Civita symbol and
Fμν = ∂μAν − ∂ν Aμ is the electromagnetic field strength written in terms of the
connection Aμ. When θ is globally constant, the θ -term is a total derivative and has
no effect on Maxwell’s equations. This property, together with its invariance under
continuous changes in the connection Aμ, qualify P = −(1/8)εμνρλFμνFρλ to be a
topological invariant. Actually, P is the simplest example of a Pontryagin density
[1], corresponding to the abelian group U (1). This structure, together with its gen-
eralization to nonabelian groups, has been relevant in diverse topics in high-energy
physics such as anomalies [2], the strong CP problem [3], topological field theories
[4] and axions [5], for example.

It is interesting to recall that the coupling to a Pontryagin density has a long
story in the development of Yang-Mills theories, with its origin dating back to a
problem arising because the axial symmetry of the QCD Lagrangian, in the massless
limit, would imply the existence of lowmass nucleons with odd parity, which are not
found in nature [6]. The alternative realization of this symmetry in the spontaneously
broken mode is not possible either because the three lighter mesons in the spectrum
(the pions) do not match the required four pseudo Goldstone bosons. The absence
of a fourth pseudoscalar meson with a mass similar to that of the pions is what is
known as theU (1)A problem. A solution was proposed in [7, 8] grounded in a more
detailed study of the structure of the vacuum in aYang-Mills theory, which introduces
a superposition of topologically nonequivalent vacua as the true ground state of the
system: the θ vacuum. This superposition eliminates theU (1)A problem but requires
the CP violating coupling of the θ -vacuum to the non-abelian Pontryagin density
in the QCD Lagrangian. Unfortunately, this addition generates a new problem. In
particular, the resulting effective pion-nucleon interaction predicts an electric dipole
moment for the neutron given by dn ∼ 3.2 × 10−16θ e cm. Comparison with the
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experimental value (dn)exp < 3 × 10−26 e cm produces the naturalness problem:why
should θ ∼ 10−10 be so small. This is known as the strong CP problem. A solution
was proposed in [9, 10] through the introduction of a new field, the axion a(x),
and a new symmetry U (1)PQ realized again in the spontaneously broken mode. The
vacuum expectation value of a(x) can be chosen to cancel the previous CP violating
term, but a new pseudo Goldstone boson must appear. Estimations of the coupling
constant and mass of this new particle reveal extremely low values, thus making
its detection very difficult. The abelian sector of the axion coupling in the QCD
Lagrangian, Laγ γ = −gaγ γ a E · B, was proposed in [11] as a possibility to detect
the axion through its coupling with strong electromagnetic fields available in the
laboratory. The addition of this term to the usual electromagnetic Lagrangian, gives
rise towhat is now known as axion electrodynamics. Recently the axion is considered
as a candidate to describe darkmatter. Reference [5] contains a recent review of axion
physics, including the efforts made towards its detection.

Another subject related to the θ -coupling is the photon sector of the Standard
Model Extension (SME), designed to study possible violations of the Lorentz and
CPT symmetries [12–14]. There one considers the effective couplings (kF )κλμνFκλ

Fμν and (kAF )κεκλμν AλFμν where the constant tensors (kF )κλμν and (kAF )κ define
fixed directions in spacetime that break Lorentz symmetry. An alternative way to per-
form this breaking is by choosing spacetime dependent coupling parameters [15],
like (kF )κλμν = θ(x)εκλμν and (kAF )κ = ∂κθ(x), for example. Both cases yield a
version of the axion coupling described previously which can be used as effective
theories with real Lorentz symmetry breaking in matter. The point of this com-
ment is to observe that many of the techniques and of the numerous high-precision
experiments proposed to test Lorentz symmetry breaking could adapt to the case of
matter-photon interaction.

Recently, an important additional application of the Pontryagin extended electro-
dynamics has been highlighted in condensed matter physics, where a non-dynamical
axion angle θ provides an effective field theory describing the electromagnetic
response of some materials such as (i) magnetoelectric media [16, 17], (ii) meta-
materials when θ is a purely complex function [18], (iii) topological insulators (TIs)
when θ = (2n + 1)π , with n integer [19–22] and (iv)Weyl semimetals (WSM)when
θ(x, t) = 2b · x − 2b0t , where b is the separation in momentum space between the
Weyl nodes and b0 is their separation in energy [23]. Lately, the study of topological
insulating and Weyl semimetal phases, either from a theoretical or an experimental
perspective has been actively pursued [22–24].

We will devote this chapter to the study of the interaction between magnetoelec-
tric media and the electromagnetic field. To do so we will employ field theoretic
techniques predicated on the aforementioned model Lagrangian of Maxwell’s the-
ory extended by the magnetoelectric term. The chapter is organized as follows. In
Sect. 17.2 we present the general framework of electrodynamics in media charac-
terized by a parameter θ (to be called a θ -medium) and review some of the most
important features of magnetoelectric media regarding their electromagnetic prop-
erties. Section 17.3 contains a summary of our generalized Green’s function method
to construct the corresponding electromagnetic fields produced by charges, currents
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and boundary conditions in systems satisfying the following coordinate conditions:
(i) the coordinates can be chosen such that the interface between two media, with
different θ , is defined by setting to a constant only one of coordinates and (ii) the
Laplacian is separable in such coordinates. At the end of this section the particularly
simple case of planar symmetry is discussed. There the reader is referred to the anal-
ogous extensions to cylindrical and spherical coordinates. As a specific application
of our methods to the case of a planar interface, the Casimir effect between two
metallic plates with a topological insulator between them is considered in Sect. 17.4.
In Sect. 17.5, we study the problem of Vavilov-Cherenkov radiation produced by
an electric charge propagating perpendicularly to the planar interface between two
differentmagnetoelectricmedia to find that, besides the usual forward-directed radia-
tion, there is a backward-directed emission of radiation, a so-called reversed Vavilov-
Cherenkov radiation (RVCR), solely due to the magnetoelectric nature of the media.
As yet another application, in Sect. 17.6 we show how a static electric charge induces
unexpected electromagnetic fields when placed near the surface of aWeyl semimetal
and provide two experimental proposals, feasible for present-day sensitivities, that
could be performed to measure the effects associated with the topological character
of the WSM. Finally in Sect. 17.7 we present some concluding remarks, provide a
summary of important results and highlight the benefits of our approach for solving
the electromagnetic response of magnetoelectric media.

Our conventions are taken from [25], where Fμν = ∂μAν − ∂ν Aμ, F̃μν = εμναβ

Fαβ/2, Fi0 = Ei , Fi j = −εi jk Bk and F̃ i0 = Bi , F̃ i j = εi jk Ek . Also V = (V i ) =
(Vx , Vy, Vz) for any vector V. The metric is (+,−,−,−) and ε0123 = +1 = ε123.

17.2 Nondynamical Axion Electrodynamics

In this section we discuss the basic features arising from adding to Maxwell’s elec-
trodynamics the coupling of the abelian Pontryagin density to a pseudoscalar field
θ(x), leading to a theory that we call θ -electrodynamics (θ -ED), retaining the name
of axion-electrodynamics for the case where the axion field θ becomes dynamical.
We call the parameter θ(x) the magnetoelectric polarizability (MEP) of the medium,
which we consider in the same footing as its permittivity ε and permeability μ. The
nature of the MEP depends on the type of magnetoelectric material under consider-
ation and it is ultimately related to the magnetic symmetries of the substance [26,
27] and/or to the properties of its band structure [19–21]. It can be calculated from a
Kubo-type response formula, once a microscopic model Hamiltonian for the mate-
rial is adopted. The permittivity tensor ε is usually understood by the Drude-Lorentz
type of single resonance oscillator model [28].

Magnetoelectric media [16, 17] are naturally existing materials like antiferro-
magnets [30], topological insulators (TIs) [19–22] and Weyl semimetals [23, 24],
for example. Leaving aside the remarkable microscopic properties of different mag-
netoelectric media, we will concentrate on θ -ED as the effective macroscopic theory
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describing the electromagnetic response in the case of linear, isotropic and homoge-
neousmagnetoelectrics. Let us start from the general formulation of electrodynamics
in a material medium according to the Maxwell equations

∇ · D = 4πρ, ∇ · B = 0, ∇ × E + 1

c

∂B
∂t

= 0, ∇ × H − 1

c

∂D
∂t

= 4π

c
J,

(17.1)
together with the Lorentz force

FL = q
(
E + v

c
× B

)
. (17.2)

The characterization of a specific media is given by the constitutive relations which
define the displacement D and the magnetic field H in terms of the electric field
E and the magnetic induction B, which are the fundamental fields that define the
electromagnetic potentials according to the homogeneous equations in (17.1) [25].

The constitutive relations depend on the nature of the material and usually have
the formD = D(E,B) andH = H(E,B). For example, in linear nonmagnetoelectric
media they are Di = εi j E j y Bi = μi j Hj , where εi j is the permittivity and μi j is
the permeability tensors, respectively, which can depend on the position and time.
For isotropic and homogeneous materials εi j = εδi j and μi j = μδi j , with ε and μ

constants. In the case of magnetoelectrics we will consider media described by the
following constitutive relations

D = εE − θα

π
B, H = 1

μ
B + θα

π
E, (17.3)

where α = e2/�c � 1/137 is the fine-structure constant and the MEP θ is an addi-
tional parameter of the medium. The extension of these constitutive relations to the
anisotropic case, for the optical properties of the material (ε and μ) is direct and for
the MEP θ is also possible.

Substituting them in (17.1), we obtain the following modified non-homogeneous
Maxwell equations

∇ · (εE) = 4πρ + α

π
∇θ · B, ∇ × (B/μ) − 1

c

∂(εE)

∂t
= 4π

c
J − α

π
∇θ × E − 1

c

α

π

∂θ

∂t
B.

(17.4)
We observe that the above equations can be derived from the usual Maxwell action
extended by the coupling of the abelian Pontryagin density P to a non-dynamical
axion field θ(x, t)

S[�,A] =
∫

dt d3x
[

1

8π

(
εE2 − 1

μ
B2

)
− α

4π2
θ(x, t)E · B − ρ� + 1

c
J · A

]
.

(17.5)
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The electromagnetic fields E and B are expressed in terms of the electromagnetic
potentials � and A as

E = −1

c

∂A
∂t

− ∇�, B = ∇ × A, (17.6)

which solve the homogeneous equations in (17.1). An important consequence of
(17.4) is the so-called magnetoelectric effect (MEE), summarized in the appearance
of the following effective field dependent charge and current densities

ρθ = α

4π2
∇θ · B, Jθ = − cα

4π2
∇θ × E − α

4π2

∂θ

∂t
B, (17.7)

evidencing the ability of themagnetic (electric) fields to produce charge (current) den-
sities, respectively. This effect is one of the most remarkable physical consequences
of the additional θ coupling. It was predicted in [26] and subsequently observed in
[30]. For an updated review of the MEE see, for example, [31]. A universal topolog-
ical magnetoelectric effect has recently been measured in TIs [32]. Many additional
consequences of the MEE have been highlighted using different approaches. For
example, electric charges close to the interface between two θ -media induce image
magnetic monopoles (and vice versa) [33–36]. Also, the propagation of electromag-
netic waves across a θ -boundary have been studied finding that a non trivial Faraday
rotation of the polarizations appears [29, 34, 35, 37]. The shifting of the spectral
lines in hydrogen-like ions placed in front of a planar TI, as well as the modifications
to the Casimir Polder potential in the non-retarded approximation were studied in
[38]. The classical dynamics of a Rydberg hydrogen atom near a planar TI has also
been investigated [39].

We observe that the dynamical modifications in (17.4) depend on the spatial and
temporal gradients of the MEP, as required because the Pontryagin density P is a
total derivative. In this way, the coupling with θ does not affect the equations of
motion when the MEP is globally constant. The explicit dependence on θ , instead of
∂μθ , of the constitutive relations may erroneously induce the belief that a globally
constant θ could produce dynamical effects. Nevertheless, from this perspective one
would identify additional polarization Pθ = −σB and magnetization Mθ = −σE
with σ = θα/4π2. When θ is constant, the calculation of the effective sources

ρeff = ∇ · Pθ = σ∇ · B, Jeff = 1

c

∂Pθ

∂t
+ ∇ × Mθ = −σ

(1
c

∂B
∂t

+ ∇ × E
)
,

(17.8)
yields identically zero due to the homogeneous Maxwell equations.
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17.3 The Green Function Approach to the Electromagnetic
Response of Linear Isotropic Homogeneous
Magnetolectric Media

The knowledge of the Green function (GF) of an electromagnetic system allows the
calculation of its response to arbitrary external sources, providing a definite starting
point for the algebraic or numerical approximations which are required in most
cases. This method supersedes the image approach, frequently used in the literature,
which is appealing for interpreting results in terms of the superposition of images of
charges and currents. Nevertheless, it requires a good amount of educated guesses
which are far from obvious in many interesting cases. We will focus on calculating
the GFs for the cases when materials with piecewise constant MEP’s exhibit planar,
cylindrical and spherical symmetries. Certainly one could solve for the electric and
magnetic fields from the modified Maxwell equations together with the boundary
conditions, however, just as in ordinary electrodynamics, there might be occasions
where information about the sources is unknown and rather we are providedwith data
of the 4-potential at some given boundaries. In these cases, the GF method provides
the general solution to such boundary-value problem (Dirichlet or Neumann) for
arbitrary sources.

As an important class of magnetoelectric media with constant MEP we single out
TIs, which serve to illustrate some of the phenomena discussed. Three dimensional
TIs are a class of topological materials that can host conducting helical surface states
each having the dispersion relation of a non-degenerate Dirac cone with a crossing
point at/close to the Fermi level. Nevertheless, TIs behave as insulators in the bulk
with a finite energy gap. The surface state is further topologically protected by time-
reversal symmetry and/or inversion symmetry, coupledwith spin-momentum locking
properties. The latter means that the spin orientation of the electrons on the surface
Dirac cone is always locked perpendicularly to their momentum. A distinguishing
feature of 3D TIs among magnetoelectrics, is that the MEP θ is of topological nature
and arises from the bulk band structure. It is given by a non-Abelian Berry flux over
theBrillouin zone [19]. For 3D time reversal invariant insulators in amanifoldwithout
boundaries there are only two possibilities: θ = 0 for normal insulators and θ = π

for TIs. In order to continuously connect both classes of insulators, time reversal
invariance should be broken at the interface. This can be achieved, for example, by
depositing a thin magnetic coating of a few nanometers at the interface. According to
the specific nature of the coating, theMEPof theTIwill bemodified to θ = π + 2nπ ,
where n is an integer [40].

From a macroscopic perspective we consider TIs as a class of magnetoelectric
media described by θ -ED and characterized by the choice of a constant MEP θ .
To illustrate the calculation of the GF it will be enough to consider the simplest
case where the (3 + 1) dimensional spacetime M can be split in such a way that
M = U × R, whereU is a three-dimensional manifold and R is the temporal axis.
Moreover, the space U is partitioned in two region U1 and U2, such that U1 and
U2 have a two-dimensional common interface �. In this way U = U1 ∪ U2 and
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Fig. 17.1 Region over
which the electromagnetic
field theory is defined,
(adapted from [43])

� = U1 ∩ U2, as shown in the Fig. 17.1.Alsowe assume that theMEP θ is piecewise
constant taking the values θ = θ1 in the regionU1 and θ = θ2 in the regionU2, which
is expressed by the characteristic function

θ (x) =
{

θ1 , x ∈ U1

θ2 , x ∈ U2
. (17.9)

The interface � is parametrized by a function F�(x) = 0, which yields nμ =
(0,n) = ∂μF�(x), as the normal vector to � which is external to the region U1.
In this setup, the action Sθ , corresponding to the second term on the right-hand
side of (17.5), is no longer a total derivative and the modified Maxwell equations
(17.4) acquire field dependent effective charges and currents with support only at the
interface (in the following we set c = 1)

∇ · (εE) = θ̃ δ (F�(x))B · n + 4πρ, (17.10)

∇ × (
B/μ

) − ∂(εE)

∂t
= θ̃ δ (F�(x))E × n + 4πJ. (17.11)

Here n is the vector normal to � external to the region U1 and θ̃ = α (θ1 − θ2) /π .
Equations (17.10)–(17.11) show that in the bulk regions U1,2 we recover the usual
Maxwell equations. The MEE shows up again in (17.10)–(17.11) and the realization
of such effect that can provide a way to measure the MEP of a medium, is one of the
main goals in the research related to TIs.

In the following we restrict ourselves to contributions of free sources only outside
the interface�, with no additional boundary conditions (BCs) besides those required
at �. Assuming that the temporal derivatives of the fields are finite in the neighbour-
hood of the interface, the field equations (17.10) and (17.11) yield the following
boundary conditions

�E · n∣∣
�

= θ̃B · n∣∣
�
, �B × n

∣∣
�

= −θ̃E × n
∣∣
�
, (17.12)

�B · n∣∣
�

= 0, �E × n
∣∣
�

= 0. (17.13)
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The notation �Vi

∣∣
�
stands for the discontinuity of the i component of the vector

V through the interface �, while V j

∣∣
�
indicates the continuous value of the j com-

ponent evaluated at �. The boundary conditions in (17.13) imply that the members
of the right hand side in (17.12) are correctly defined, representing field dependent
charge densities and surface currents respectively. Again, the magnetoelectric effect
is manifest in the boundary conditions (17.12). In order to emphasize the effects of
the topological coupling we consider the simplest media having θ1 �= θ2, but with
ε = 1 and μ = 1.

At this stage it is convenient to go back to the four dimensional notation:
Aμ = (�,A), Fμν = ∂μAν − ∂ν Aμ, F̃μν = 1

2ε
μναβFαβ, jμ = (ρ, J). In this way,

the
inhomogeneous Maxwell equations (17.10) and (17.11) are

∂μF
μν = θ̃ δ (F�(x)) nμ F̃

μν + 4π jν . (17.14)

In the Lorenz gauge ∂μAμ = 0, the 4-potential satisfies the equation of motion

[
ημ

ν∂
2 − θ̃ δ (F�(x)) nρε

ρμα
ν∂α

]
Aν = 4π jμ, ∂2 = ∂2

t − ∇2 (17.15)

together with the boundary conditions

�Aμ
∣∣
�

= 0, � (∂z A
μ)

∣∣
�

= −θ̃ ε3μα
ν (∂αA

ν)
∣∣
�
, (17.16)

which reproduce those written in (17.12)–(17.13) for the electric andmagnetic fields.
To obtain a general solution for the potential Aμ in the presence of arbitrary

external sources jμ(x), we introduce the GF Gν
σ

(
x, x ′) solving (17.15) for a point-

like source,

[
ημ

ν∂
2 − θ̃ δ (F�(x)) nρε

ρμα
ν∂α

]
Gν

σ

(
x, x ′) = 4πημ

σ δ4
(
x − x ′) , (17.17)

together with the boundary conditions derived from (17.16), in such a way that the
solution for the 4-potential in the Lorenz gauge is

Aμ (x) =
∫

d4x ′ Gμ
ν

(
x, x ′) jν (x ′) , (17.18)

up to homogeneous contributions.
As we will show in the following, a further simplification arises when the system

satisfies the following two coordinate conditions:(i) the coordinate system can be
chosen so that the interface � is defined by setting constant only one of them and
(ii) the Laplacian is separable in these coordinates in such a way that a complete
orthonormal set of eigenfunctions can be defined in the subspace orthogonal to the
coordinate defining the interface. Three cases show up immediately: (i) a planar
interface at fixed z, (ii) a spherical interface at constant r and (iii) a cylindrical
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interface at constant ρ. In all this cases the characteristic function θ (x) defined in
(17.9) can be written in terms of the Heaviside function H of one coordinate like
H(z − a), H(r − a) and H(ρ − a), respectively, with the associated unit vectors n̂
given by k̂, r̂ and ρ̂, in each of the adapted coordinate systems. Then (17.17) reduces
to

[
ημ

ν∂
2 − θ̃ δ (ξ − ξ0) ε

ξμα
ν∂α

]
Gν

σ

(
x, x ′) = 4πημ

σ δ4
(
x − x ′) , (17.19)

where ξ denotes the coordinate defining the interface at ξ = ξ0 and the coupling of
the θ -term is given by a one dimensional delta function with support only at ξ0. Also,
the unit vector n̂ will have a component only in the direction ξ .

Let us illustrate the procedure sketched above by taking the static case of a planar
interface located at z = a, separating two semi-infinite TIs, such that the MEP is
θ(z) = θ1H(a − z) + θ2H(z − a). In the Coulomb gauge the GF Gν

σ

(
x, x′) satis-

fies
[
−ημ

ν∇2 − θ̃ δ (z − a)) ε
3μα

ν∂α

]
Gν

σ

(
x, x′) = 4πημ

σ δ3
(
x − x′) , (17.20)

together with the boundary conditions (17.16). The coordinates are separated accord-
ing to ξ = z, ξ0 = a, plus the two remaining x and y defining the plane parallel to
the interface (i.e., perpendicular to the z-axis). The separation of the Laplacian is
direct

∇2 = ∂2

∂z2
+ ∇2

‖ , ∇2
‖ = ∂2

∂x2
+ ∂2

∂y2
, (17.21)

with the operator ∇2
‖ having the eigenfunctions

�p‖(x, y) = 1

2π
eip‖·x‖ , (17.22)

labelled by the momentum p‖ = (px , py) parallel to � and where x‖ = (x, y). Let
us emphasize that the subindex ‖ denotes objects living in the x − y plane, parallel
to the interface z = a. The eigenfunctions�p‖(x, y) are a complete and orthonormal
set in the x − y plane, satisfying [41]

∫
dxdy �∗

p‖(x, y)�p′‖(x, y) = δ2p‖,p′‖
,

∫
d2p‖�p‖(x, y)�

∗
p‖(x, y) = δ2(x‖ − x′‖).

(17.23)
We recall that in the full 3D-space we have d3x = dx‖ dz and δ3

(
x − x′) =

δ2(x‖ − x′‖)δ(z − z′). Invariance under translation in the x − y plane together with
the the properties in (17.23) allow us to simplify (17.20) introducing the reduced GF
gμ

ν

(
z, z′,p‖

)
, such that

Gμ
ν

(
x, x′) = 4π

∫
d2p‖
(2π)2

eip‖·(x−x′)‖gμ
ν

(
z, z′,p‖

)
. (17.24)
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For future usewedenote pα = (0, px , py, 0) = (0,p‖). Thus, the final representation
of the GF in (17.20) is given in terms of the Fourier transform of the reduced GF
in the directions x, y parallel to the plane � [43]. Due to the antisymmetry of the
Levi-Civita symbol, the partial derivative that appears in the second term of (17.20)
for the GF does not introduce derivatives with respect to z, but only in the parallel
directions. This allows us to write the equation of the reduced GF as

[
ημ

ν∇̃2 + i θ̃ δ (z − a) ε
3µα

ν pα

]
gν

σ

(
z, z′,p‖,

) = ημ
σ δ

(
z − z′) , (17.25)

with ∇̃2 = p2‖ − ∂2
z , pα pα = −p‖2 and |p‖| = p. In this way we transform the

calculationof the reducedGF into a one-dimensional problemwith a delta interaction.
Moreover, equation (17.25) can be integrated with the knowledge of an additional
reduced GF gμ

σ

(
z, z′,p‖

) = ημ
σg(z, z′,p‖), satisfying

(
p2‖ − ∂2

∂z2

)
g(z, z′,p‖) = δ

(
z − z′) , (17.26)

together with the required boundary conditions. This auxiliary GF results from the
limit θ̃ = 0 in (17.25) and we call it the free reduced GF of the problem, emphasizing
that ariseswhen the θ -media are absent. TheseGFs can be taken directly from the vast
literature on electrodynamics and constitute the basis for finding the electromagnetic
response of a system with the same symmetries, but now in the presence of a θ -
medium whose interface defines the corresponding coordinate system. In the planar
case of interest and with the usual BCs at infinity, the option is to take [42]

g(z, z′) = 1

2p
e−p|z−z′ |. (17.27)

As a first step in the solution of the (17.25) we obtain the integral equation

gμ
σ

(
z, z′) = ημ

σg
(
z, z′) − i θ̃ ε

3µα
ν pα

∫
dz′′g

(
z, z′′) δ(z′′ − a)gν

σ

(
z′′, z′) ,

(17.28)
where the integration over z′′ can be readily performed, reducing the problem to a
set of coupled algebraic equations. The solution to (17.28) is obtained as the result
of the following steps. First we split the index μ into μ = 0 and μ = j = 1, 2, 3
obtaining

g0σ
(
z, z′) = η0

σg
(
z, z′) − i θ̃ ε30i j pig (z, a) g j

σ

(
a, z′) , (17.29)

g j
σ

(
z, z′) = η

j
σg

(
z, z′) − i θ̃ ε

3 j i
0 pig (z, a) g0σ

(
a, z′) . (17.30)

Next we evaluate (17.30) at z = a and substitute g j
σ

(
a, z′) in (17.29), yielding
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g0σ
(
z, z′

) = η0σ g
(
z, z′

) − i θ̃ ε30i j piη
j
σ g (z, a) g

(
a, z′

) − θ̃2 p2g (z, a) g (a, a) g0σ
(
a, z′

)
.

(17.31)
Setting z = a in the above equation, we solve for g0σ

(
a, z′)whichwe substitute back

to obtain g0σ
(
z, z′) in terms of the free GF g

(
z, z′). The remaining components are

obtained after substituting g0σ
(
a, z′) in (17.30). The final result is

gμ
ν

(
z, z′

) = ημ
νg

(
z, z′

) + A
(
z, z′

) {
θ̃g (a, a)

[
pμ pν + (

ημ
ν + nμnν

)
p2

] + iεμ α3
ν pα

}
,

(17.32)
where nμ = (0, 0, 0, 1) and

A
(
z, z′) = −θ̃

g (z, a) g
(
a, z′)

1 + p2θ̃2g2 (a, a)
. (17.33)

Extending the above results to the case where one of the media has arbitrary ε,
keeping still nonmagnetic materials, we obtain a new version of the (17.32). Going
back to the coordinate representation by calculating the Fourier transform in (17.24)
we obtain

G0
0(x, x

′) = 1

ε(z′)

[
1

|x − x′| − sgn(z′) 2(ε − 1) + θ̃2

2(ε + 1) + θ̃2

1√
R2 + Z2

]
, (17.34)

Gi
0(x, x

′) = G0
i (x, x

′) = − 2θ̃

2(ε + 1) + θ̃2

ε0i j3R j

R2

(
1 − Z√

R2 + Z2

)
, (17.35)

Gi
j (x, x

′) =
ηi j

|x − x′| − θ̃2

2(ε + 1) + θ̃2

�i
j√

R2 + Z2
+ θ̃2

2(ε + 1) + θ̃2
�r

j ∂r K
i (x, x′).

(17.36)

where Z = |z − a| + |z′ − a|, R = (x − x ′, y − y′), R = |R|, �i
j = ηi

j + nin j ,
and

K i
(
x, x′) =

√
R2 + Z2 − Z

R2
Ri . (17.37)

We observe that the substitution of the free reduced GF (17.27) in the expression
(17.33) yields that the θ -dependent contribution to the full reduced GF is a function
of Z , instead of |z − z′| as it is in the θ̃ = 0 contribution. This property is clearly
manifest in the expressions written above for the GF components in coordinate space
and will have interesting consequences in the case of radiation to be discussed in
Sect. 17.5.

The details of the calculations already summarized are presented in [43, 44]. The
results for the staticGFwith spherical and cylindrical symmetries have been extended
to the case of ponderable magnetoelectric media with piecewise constant ε and μ in
[45, 46]. The MEE has also been explored in the static case by locating a conducting
sphere at constant potential in front of a planar TI [47]. Again, we mention that the
extension of the above to the case of anisotropic optical properties is possible, and
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so is the case for anisotropic MEP. Concretely, the antiferromagnet Cr2O3 possess
a θi j ∼ 1.26 × 10−3 (in non-rationalized CGS units), which is however small com-
pared to nonmagnetoelectric effects. LargerMEE signals can be found in the TbPO4,
whose coupling is ∼0.22 (in non-rationalized CGS units) and the search for giant
ME couplings continues mainly in composite multiferroics [48]. An early review of
numerous works on the study of infinite linear homogeneous bianisotropic media
can be found in [49], which deals mainly with the calculation of the Green functions
and the plane-wave propagation in various classes of these media. An alternative way
of taking into account magnetoelectric effects in such media would be to introduce
interfaces among them. This certainly requires an extension of the methods previ-
ously developed. Our GF approach precisely facilitates such extension and this has
been one of our motivations.

17.4 The Casimir Effect

The Casimir effect (CE) is one of the most remarkable consequences predicted by
quantum field theory as a result of the nonzero energy of the vacuum [50] and has
already been experimentally confirmed [51]. For a review of the subject see [52,
53]. Experimental access to probe distances of the order of microns, together with
the recent discovery of three-dimensional topological insulators provide additional
ground to study the CE [54].

The CE we consider is produced between two perfectly conducting flat surfaces
(plates) in vacuum, denoted by P1 and P2 and separated by a distance L . Inside this
device is placed a planar TI rigidly attached to the surface P2, as shown in Fig. 17.2.
The� interface of the TI, located at z = a < L , is covered by a very thin magnetized
layer. In order to explore the purely topological contribution of the MEP (θ̃ �= 0) we

Fig. 17.2 Schematic of the
Casimir effect in θ -ED,
(adapted from [57])
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take both media with ε = μ = 1, however, non trivial optical properties as well as
anisotropy effects can also be considered.

We follow a method similar to that of [42, 55] that begins with the calculation
of the corresponding GF, from which the renormalized energy-momentum tensor
in the region between the plates is obtained. A subsequent calculation yields the
Casimir stress in the interface � of the TI. We also consider the limit when the
plate P2 goes back to infinity (L → ∞) to obtain the Casimir stress produced by a
single conducting plate in front of a semi-infinite TI. The boundary conditions on the
plates P1 and P2 are the usual ones for a perfect conductor: nμ F̃μν |P1,2 = 0, where
n = (0, 0, 0, 1).

This calculation highlights two extensions of our method: (i) the inclusion of
time-dependence and (ii) the use of a convenient well-known free reduced GF to
obtain the full result. In the absence of free sources at the interface, the GF

Gμ
ν

(
x, x ′) = 4π

∫
d2p‖
(2π)2

eip‖·x‖
∫

dω

2π
e−iω(t−t ′)gμ

ν

(
z, z′) , (17.38)

satisfies the (17.19), together with the BC of (17.16). From here on we do not write
the dependence of the reduced GF gμ

ν onω and p‖. In the Lorenz gauge, the equation
for gμ

ν is

[
ημ

ν∂
2 + i θ̃ δ (z − a) ε

3µα
ν pα

]
gν

σ

(
z, z′) = ημ

σ δ
(
z − z′) , (17.39)

where now we have ∂2 = p‖2 − ω2 − ∂2
z and pα = (

ω,p‖, 0
)
.

The boundary contribution in z = L , which is not present in (17.39), is identically
zero in the distributional sense due to the BCs on the conducting plate P2. The next
step, which illustrates the flexibility of the method developed in the Sect. 17.3, is to
choose a free GF to integrate (17.39). It is clear that we must use the free reduced
GF corresponding to two perfectly conducting parallel plates located at z = 0 and
z = L , which is given by [42]

gC
(
z, z′) = sin [pz<] sin [p (L − z>)]

p sin [pL]
, (17.40)

where the suffix C is for Casimir, z> (z<) is the greater (smaller) value between the
coordinates z, z′, and p = √

ω2 − p2. Writting the solution of (17.39) as

gμ
ν

(
z, z′) = ημ

νgC
(
z, z′) + gμ

Cν

(
z, z′) . (17.41)

we realize that the first term corresponds to the absence of the TI between the plates,
while the second term, to be called the reduced θ -GF,
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gμ
Cν

(
z, z′

) = θ̃gC (a, a)
[
pμ pν − (

η
μ
ν + nμnν

)
p2

]
AC

(
z, z′

) + i ε
μ α3
ν pα AC

(
z, z′

)
,

AC
(
z, z′

) = −θ̃
gC (z, a) gC

(
a, z′

)

1 − p2θ̃2g2C (a, a)
, (17.42)

will be responsible for the effect we are looking for. The partition in (17.41) yields the
full GF as Gμ

ν

(
x, x ′) = ημ

νG
(
x, x ′) + Gμ

Cν

(
x, x ′), where each term arises from

the respective contribution in (17.41). Since the MEP modifies the behavior of the
fields only in the interface, the energy-momentum tensor (EMT) T μν in the bulk
retains the original expression of the unmodified Maxwell equations, failing to be
conserved only in the interface in the absence of free external sources [45]. Next
we determine the vacuum expectation value (VEV) of T μν , to be called the vacuum
stress (VE), according to the basic relation Gμν(x, x) = −i〈0|T Aμ(x)Aν(x ′)|0〉,
where T denotes time ordering. Following the standard point-splitting method we
obtain

〈T μν〉 = i

4π
lim
x→x ′

[
− ∂μ∂ ′νGλ

λ + ∂μ∂ ′
λG

λν + ∂λ∂ ′νGμ
λ

− ∂ ′λ∂λG
μν + 1

2
ημν

(
∂α∂ ′

αG
λ
λ − ∂α∂ ′

βG
β

α

) ]
. (17.43)

Again, we can write 〈T μν〉 = 〈tμν〉 + 〈
T μν

C

〉
. The first term is the contribution to

the VE in the absence of the TI, yielding the well-known result in [55], which is
independent of a. After some calculation, the second term

〈
T μν

C

〉
, to be called the

θ -vacuum stress (θ -VS), is

〈
T μν

C

〉 = i θ̃
∫

d2p‖
(2π)2

∫
dω

2π

(
pμ pν + nμnν p2

)
gC (a, a) lim

z→z′

(
p2 + ∂ ′

z∂z
)
AC

(
z, z′) .

(17.44)

Next we require the renormalized VS: 〈T μν〉ren = 〈T μν〉 − 〈TCμν〉vac, where the first
(second) term is the VS in the presence (absence) of conducting plates [55, 56]. We
obtain

〈
Tμν
C

〉
ren = − π2

720L4

(
ημν + 4nμnν

)
[u(θ, χ)H (a − z) + u(θ, 1 − χ)H (z − a)] ,(17.45)

u(θ, χ) = 120

π4

∞∫

0

θ̃2ξ3sh [ξχ ] sh3 [ξ (1 − χ)] sh−3 [ξ ]

1 + θ̃2sh2 [ξχ ] sh2 [ξ (1 − χ)] sh−2 [ξ ]
dξ. (17.46)

The notation is sh(x) = sinh(x) and χ = a/L with 0 < χ < 1. Our expression
(17.45) has the same tensorial structure as that in [55], except for a z dependence
because the EMT is not conserved at the interface, implying that the renormal-
ized θ -VS is constant in each bulk but has a discontinuity in z = a consistent with
∂z

〈
T 00
C

〉
ren ∝ δ(�).
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Fig. 17.3 Left panel: the ratio Eθ /EL . Right panel: the Casimir pressure at the interface in units
of FL . Both plots are in terms of the the dimensional parameter χ = a/L and for different values
of θ , (adapted from [57])

The Casimir energy E = EL + Eθ is defined as the energy per unit area stored by
the electromagnetic field in the region between the conducting plates. Let us recall
that EL = −π2/(720L3) is the Casimir energy in the absence of the TI. The relevant
contribution is

Eθ =
L∫

0

dz
〈
T 00
C

〉
ren = EL [χu(θ, χ) + (1 − χ)u(θ, 1 − χ)] . (17.47)

The first term is the energy stored between the plate P1 and the interface, while the
second term corresponds to the energy stored in the bulk of the TI. The Casimir
pressure Fθp on the interface is Fθp = −dEθ /da, yielding

Fθp

FL
= −1

3

d

dχ
[χu(θ, χ) + (1 − χ)u(θ, 1 − χ)] , FL = −π2/(240L4).

(17.48)
The ratiosEθ /EL (left panel) and Fθp/FL (right panel) as a function ofχ , for different
values of θ are plotted in Fig. 17.3 [57]. Our setup is a 3D analogue of the Casimir
piston [58], and we obtain the similar result that the Casimir pressure tends to pull the
interface towards the closest conducting plate, as shown in the right panel of the Fig.
17.3. When the plate P2 recedes to infinity, L → ∞, our setup describes the Casimir
interaction between a perfect conducting plate P1 at a distance a from a semi infinite
TI. The Casimir energy (17.47) is now EL→∞

θ = Ea R(θ), with Ea = −π2/720a3.
The function

R(θ) = 120

π4

∞∫

0

ξ 3 θ̃2

1 + θ̃2e−2ξ sinh2 ξ
e−3ξ sinh ξdξ, (17.49)

turns out to be independent of a and it is bounded by its limit θ → ±∞. In this way
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Table 17.1 The normalized pressure fθ = FL→∞
θ /Fa = R(θ) for different values of θ

θ ±7π ±15π ±23π ±31π ±39π

fθ 0.0005 0.0025 0.0060 0.0109 0.0172

R(θ) ≤ 120

π4

∞∫

0

ξ 3 e−ξ

sinh ξ
dξ = 1. (17.50)

Physically, this means that in the limit θ → ∞, the interface� behaves as a conduct-
ing plate. This is analogous to the Schwinger prescription that a perfect conductor
is obtained in the limit ε → ∞ of a dielectric material [42]. In the limit L → ∞ the
Casimir pressure is fθ = FL→∞

θ /Fa = R(θ), with Fa = −π2/240a4. In Table 17.1
we show some numerical results for fθ for different values of θ .

The θ dependence of the Casimir pressure could be used to determine the corre-
spondingMEP. This pressure has been measured for separation distances L between
the metal plates in the range of 0.5–3.0 µm [51], which will require to prepare TIs
with widths smaller than these amounts. In addition, the ratios for fθ indicated in
Table 17.1 allow us to estimate that an increase of several orders of magnitude would
be required in the experimental accuracy. The particular values of θ = ±7π,±15π
are suitable for a TI such as Bi1−xSex [59]. The CE could be explored in TIs with
higher values of θ̃ = (2n + 1)π , however these material features magnetoelectric
couplings that are not considered in our model based on θ -ED [60, 61].

As discussed above, the nondynamical axion electrodynamics can be seen as a
particular realization of the photon sector of the Standard Model Extension with
the identification (kF )κλμν = θ(x)εκλμν . The Casimir effect has also been analyzed
within the context of the SME, for arbitrary (kF )κλμν and (kAF )κ Lorentz-violating
couplings [62, 63].

17.5 Reversed Vavilov-Cherenkov (VC) Radiation in
Naturally Existing Magnetoelectric Media

In this section we summarize the discovery reported in the [64] of reversed VC
radiation (RVCR) in naturally occurring magnetoelectric materials. The usual VC
radiation is produced when a charge q propagates with velocity v > c/n in a medium
with refraction index n, i. e., with a velocity higher than the speed of light in themate-
rial [65, 66]. The first theoretical description of such radiation in the framework of
Maxwell’s theory, developed by Frank and Tamm in [67], revealed its unique polar-
ization and directional properties. In particular, VC radiation is localized in a forward
cone with opening angle α = arccos(vn/c). VC radiation has played a fundamental
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role in the study of high-energy particle physics, high-power microwave sources and
nuclear and cosmic-ray physics [68, 69], both theoretically and experimentally.

In 1968 Veselago theoretically proposed that RVCR could be produced in mate-
rials having simultaneously a negative permittivity and permeability, dubbed as left-
handed media (LHM). A medium is left-handed when the momentum k of a propa-
gating electromagnetic wave is antiparallel to its Poynting vector E × B, i. e., when
the group velocity and the phase velocity of the wave are antiparallel [70]. In this
case photons would be emitted in the backward direction with respect to the velocity
of the propagating charge. Since these materials are not found in nature, this proposal
has generated a great boost to the design and construction of metamaterials, that is,
artifacts built in the laboratory that can reproduce these properties in certain fre-
quency ranges. In recent years the study of RVCR has been of considerable interest
[71–79]. The realization of a LHM in an interface between an ordinary media was
experimentally proved in [80]. It is interesting that Reversed Cherenkov radiation
has also been found for sound in topological insulators in [81, 82].

Let us consider two semi infinite magnetoelectric media (θ1 �= θ2) separated by a
planar interface � located at z = 0. The setup is described by θ -ED according to the
conventions in Sect. 17.2 and the modified Maxwell equations are (17.4). This time
we take into account the permittivity of the media, but choose ε1 = ε2 = ε to avoid
the interference with transition radiation. Still we consider non-magnetic media with
μ1 = μ2 = 1. These choices provide a first approximation to the problemwhich aims
to single out the effects of the axion coupling, determined by θ̃ = α(θ2 − θ1)/π .

The electric and magnetic fields are obtained from (17.6) after the potential Aμ is
expressed in terms of the GF according to (17.18). The GF Gν

σ (x, x ′) satisfies the
equation

([
�2

]μ
ν
− θ̃ δ(z)ε3µα

ν∂α

)
Gν

σ (x, x′, t − t ′) = 4πημ
σ δ4(x − x ′) (17.51)

and its calculation is analogous to the static case in Sect. 17.3. The main differences
with respect to (17.20) arise in the inclusion of the time dependence together with set-

ting ε �= 1 and they are reflected in the changes −ημ
ν ∇2 → [

�2
]μ

ν
=

(
ε�2,�2δi j

)

with �2 = ε∂2
t − ∇2. An additional Fourier transform involving exp iω(t − t ′) in

(17.24) allows to write the GF in terms of the reduced GF gν
σ (z, z′,p‖, ω)which sat-

isfies an equation similar to (17.25). In this case, the free reducedGF,F0(z, z′;k‖, ω),
satisfies

(
p2‖ − ω2ε − ∂2

z

)
F0(z, z′;k‖, ω) = δ(z − z′), plus the standard BCs at

infinity. The result is [87]

F0(z, z
′;p‖, ω) = ieikz |z−z′ |

2kz
, kz =

√
εω2 − p2‖. (17.52)

The solution of the subsequent coupled algebraic equations yields a result for
gν

σ (z, z′,p‖, ω) in terms of F0(z, z′;p‖, ω) whose θ -dependent contribution shows
a dependence on |z| + |z′|, as it was the case in the static situation. The knowl-
edge of the reduced GF yields the coordinate representation Gν

σ (x, x′, ω) in terms
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of a Fourier transform in the parallel momentum space, as indicated in (17.24),
whose components are explicitly given in (43) of [64]. The next step is to evaluate
the GF in the far-field approximation corresponding to the coordinate conditions
r ≡ ‖x‖ � ‖x′‖, R‖ ≡ ‖ (

x − x′)
‖ ‖ � ‖x‖‖, |z| + |z′| � |z|. In this approxima-

tion the required integrals yielding the Fourier transforms include rapidly oscillat-
ing exponential functions whose leading contributions are calculated in the steepest
descent method [83–85]. Also we make repeated use of the generic Sommerfeld
identity [86]

i

∞∫

0

k‖dk‖√
k̃20 − k2‖

J0(k‖R‖)e
i
√
k̃20−k2‖ |Z | = eik̃0R

R
, k̃0 = √

εω, (17.53)

with R =
√
R2

‖ + Z2 and n = √
ε being the refraction index. Two cases appear: (i)

Z = |z − z′|, whereR is denoted by R, corresponding to the usual θ̃ = 0 contribution
and (ii) Z = |z| + |z′|, whereR is denoted by R̄ and which involves the effects of the
axion coupling. It is pertinent to emphasize an important difference in the phase of
the exponentials related to the source variables x′ in these two different cases. In the
choice (i) we encounter the exponential eik̃0R , which in the coordinate approximation
of the far-field zone produces the phase i k̃0(r − x̂ · x′

‖ − z′ cos θ) = i k̃0(r − x̂ · x′)
characteristic of radiation in standard electrodynamics [87]. Here x̂ = x/‖x‖. On the
other hand, the contributions to the GF involving the axion coupling arising from the
choice (ii) include the exponential eik̃0 R̃ with

R̃ =
√

(x − x′)2‖ + (|z| + |z′|)2 =
√

(x − x′)2 − (z − z′)2 + (|z| + |z′|)2
=

√
(x − x′)2 + 2(|zz′| + zz′) ∼ r − x̂ · x′

‖ + |z′ cos θ |, (17.54)

in the far-field approximation. From the square root in second line of (17.54) we
remark that whenever the sign of zz′ = r cos θ z′ is positivewewill have an additional
relative phase contributing to the GFs, which will show up in observable quantities as
the radiated power for example. The term (|z| + |z′|)2 can ultimately be traced back
to the formof the reducedGF, asmentioned before. In the followingwewill show that
RVCR arises precisely due to the contribution |z′ cos θ | in the phase of the GF. The
detailed calculation is presented in the Appendix of [64] and here we only summarize
the results emphasizing the phase dependence of the contributions. The full GF Gμ

ν

can be written in terms of the auxiliary function Ḡμ
ν = Ḡμ

ED ν + Ḡμ
θ̃ ν + Ḡμ

θ̃2 ν

such that G0
0 = Ḡ0

0/ε and Gμ
ν = Ḡμ

ν for the remaining cases. In the far field
approximation we find
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Ḡμ
ED ν(x, x

′; ω) = ημ
ν

eik̃0r

r
e−i k̃0 x̂·x′

,

Ḡμ

θ̃ ν
(x, x′; ω) = εμ α3

ν

2θ̃

4n2 + θ̃2

sα
| cos θ |

eik̃0r

r
e
i k̃0

(
−x̂·x′‖+|z′ cos θ |

)
,

Ḡμ

θ̃2 ν
(x, x′; ω) = θ̃2

4n2 + θ̃2

eik̃0r

r cos2 θ
Cμ

ν(θ, φ, n) × e
ik̃0

(
−x̂·x′‖+|z′ cos θ |

)
, (17.55)

Here sα = (1/n, x̂) and θ, φ are the standard spherical angles labelling the unit vector
x̂.

Now we choose our source by considering a point charge q moving with a con-
stant velocity vû in direction perpendicular to the interface � which is described

by the charge and current densities �(x′;ω) = q
v δ(x

′)δ(y′)eiω z′
v and j(x′;ω) = �vû,

respectively. Here û is the unit vector perpendicular to the the interface and directed
from the region z < 0 to the region z > 0. In the following we assume v > 0 and
consider the motion in the interval z ∈ (−ζ, ζ ), with ζ � v/ω, to then take the limit
ζ → ∞. After a long calculation in the far field approximation, we get the electric
field starting from the potential Aμ obtained from the convolution of the given source
with the GF resulting from (17.55). In this way we are in position to determine the
spectral distribution (SD) of the radiation given by

d2E/dωd� = (E∗ · E) nr2/4π2 (17.56)

in the limit r → ∞. The main point to stress is that the resulting E turns out to be
linear in the following integrals

I1(ω, θ) =
ζ∫

−ζ

dz′ei ωz′
v (1−vn cos θ) = 2 sin (ζ�−)

�−
, (17.57)

I2(ω, θ) =
ζ∫

−ζ

dz′einω|z′ cos θ |+iω z′
v = sin(ζ �̃−)

�̃−
+ sin(ζ �̃+)

�̃+
+ 2i

sin2( ζ
2 �̃−)

�̃−

− 2i
sin2( ζ

2 �̃+)

�̃+
. (17.58)

The notation is �− = ω
v (1 − vn cos θ) and �̃± = ω

v (1 ± vn| cos θ |). Moreover,
in the limit ζ → ∞, the right hand side in (17.57) and (17.58) yields contributions of
the type sin(ζ ρN )/(ρN )which behave like πδ(ρN ). This implies that the non-zero
contributions to the electric field arise from those terms whose arguments �− and
�̃± can take the value zero. With our previous conventions (vn > 0) this condition
eliminates the dependence on �̃+ as a possible candidate. The remaining possibilities
are (i) 1 − vn cos θ = 0 and/or (ii) 1 − vn| cos θ | = 0. The first case contributes to
the standardVC radiation yielding cos θC = 1/(nv). Case (ii) opens up the possibility
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that cos θ < 0 , yielding a radiation cone with angle θR = π − θC which signals the
reversed VC radiation. In other words, the term containing �̃− makes possible the
production of radiation in the backward direction with respect to the moving charge.
The total SD of the radiation is the sum of the following three contributions

d2E1
dωd�

= nω2q2

π2

(
1 − 1

v2n2

)
sin2 (ζ�−)

�2−
, (17.59)

d2E12
dωd�

= −nω2

π2
θ̃2q2

4n2 + θ̃2

(
1 − 1

v2n2

) sin (ζ�−) sin
(
ζ �̃−

)

�−�̃−
, (17.60)

d2E2
dωd�

= nω2

4π2
θ̃2q2

4n2 + θ̃2

(
1 − 1

v2n2

)⎡
⎣ sin2

(
ζ �̃−

)

�̃2−
+

sin4
(

ζ
2 �̃−

)

1
4 �̃2−

⎤
⎦ . (17.61)

Equation (17.59) gives the SD of standard VC radiation (cos θC = 1/(nv) > 0),
which acquires θ̃ -dependent corrections from the remaining contributions. Let us
observe that (17.60) contributes only to the forward radiation. The reversed VC
radiation, which is strictly zero for normal insulators, arises only from the term in
(17.61) which nevertheless also contributes to the forward output.

The total energy per unit frequency and per unit length radiated by the charge
on its path from −ζ to +ζ is calculated along the steps in [88] integrating the
solid angle and taking into account that the delta-like behavior of the integrands
shows that the radiation is sharply localized in a main lobe around the angles θC of
the forward/backward cone. Such lobes produce the final cones of radiation when
ζ → ∞. The results for the forward and reversed VC radiation are:

d2EFVCR

dω dL
= q2ω

(
1 − 1

v2n2

)[
1 − 1

2

θ̃2

4n2 + θ̃2

]
, (17.62)

d2ERVCR

dω dL
= q2ω

(
1 − 1

v2n2

)[
1

2

θ̃2

4n2 + θ̃2

]
, (17.63)

respectively. We have introduced the total length L = 2ζ travelled by the particle.
To illustrate our results, we consider medium 2 as the topological insulator

TlBiSe2, with n2 = 2, together with a normal insulator as medium 1, character-
ized by n1 = n2. We consider the radiation emitted at a frequency of ω = 2.5 eV
(500 nm), which constitutes an average in the Cherenkov radiation spectrum. The
angular distribution of the total radiation is shown in Fig. 17.4. In the left panel
we plot an enlargement of the angular distribution in the backward direction, which
shows the appearance of the reversed VC radiation and makes its suppression evi-
dent with respect to the forward output, which is given by the ratio θ̃2/8n2 between
the results (17.63) and (17.62). A comparison with measurements of reversed VC
radiation in metamaterials can be established by interpreting this suppression as
due to the detection of radiation at an effective frequency ωeff = ω θ̃2/8n2. Tak-
ing an average of 500 nm (2.5 eV) in the Cherenkov spectrum, we would expect
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Fig. 17.4 Angular distribution for the total radiated energy per unit frequency for the full VC
radiation for the choices for n = 2, ω = 2.48 eV and θ̃ = 11α. The dashed purple line corresponds
to v = 0.9 and ζ = 343 eV−1, and the solid cyan line to v = 0.5009 and ζ = 4830 eV−1. The scale
of the polar plot is in arbitrary dimensions and runs from 0 to 106. In the left side of the figure we
plot an enlargement in the backward direction showing the onset of the reversed VC radiation. Here
the radial scale goes from zero to 102. The charge moves from left to right, (adapted from [64])

the production of reversed VC radiation at effective frequencies ωeff in the range
from 4 × 10−3 meV for θ̃ = α to 0.5meV for θ̃ = 11α respectively, using TlBiSe2
as a θ -medium. Recent measurements of reversed VC radiation in metamaterials
show that this estimations are within the experimental capabilities. Reversed VC
radiation has been measured at a frequency of 2.85 GHz (1.2 × 10−2 meV), in
an all-metal metamaterial consisting of a square waveguide loaded with comple-
mentary electric split ring resonators [78]. Likewise, reversed VC radiation in the
range (3.4 − 3.9) × 10−2 meV has also been experimentally verified in a phased
electromagnetic dipole array used to model a moving charged particle [76]. We
have also estimated that d2ERVCR/dtdω = vd2ERVCR/dω dL is within the range
10−3 − 10−2 µW/eV for the frequency interval ω = 2 − 8 eV. Such values are
smaller by a factor of 10−4 − 10−3 than the maximum output of ∼ 10 µW/eV theo-
retically predicted to occur in the narrow interval of 5.7 − 6.5 eV in ametal-insulator-
metal waveguide [79]. In such a waveguide with a core thickness of a = 20 nm, sur-
face plasmon polaritons excited by an electron moving at v = 0.8 produce reversed
VC radiation.

The main features of the RVCR we have found are: (i) the threshold condition
v > 1/n must be satisfied as in the usual case, (ii) RVCR occurs for all frequencies
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in the Cherenkov spectrum and is always accompanied by forward radiation with
the same frequency, (iii) the angular distribution of the RVCR is suppressed with
respect to the forward emission by a factor θ̃2/8n2. The details of this development
are reported in [64].

17.6 Electromagnetic Response of Weyl Semimetals

In addition to the topological insulators, which are characterized by a gapped bulk
and protected boundary modes that are robust against disorder [19–22], we have
recently learned that gapless semimetallic states may be topologically nontrivial
in the same sense as gapped insulators. Weyl semimetals are topological states of
matter in which the 3D bulk containsWeyl points (band crossing points) protected by
crystalline symmetries and whose low-energy quasiparticles are linearly dispersing
massless Weyl fermions. Weyl semimetals possess protected gapless surface states
on disconnected Fermi arcs with end points at the projection of the bulk nodes onto
the surface Brillouin zone [24].

Besides their spectroscopic distinguishing features, WSMs also exhibit unusual
electromagnetic responses that are a direct macroscopic manifestation of the non-
trivial topology of their band structure. Mathematically, the anomalous Hall effect
and related effects to the chiral anomaly may be compactly expressed as an induced
θ term in the action of the electromagnetic field, when chiral fermions are integrated
out [89–91]:

Sθ = α

4π2

∫
θ(r, t)E · B dt d3r, (17.64)

where α = e2/�c is the fine-structure constant and θ(r, t) is the axion field, with the
following form

θ(r, t) = 2b · r − 2b0t, (17.65)

where 2b is the separation, in momentum space, between Weyl nodes and 2b0 their
separation in energy. Topological response of WSMs is thus described by an action
similar to that of axion-electrodynamics [36]. The relevant equations of motion are
obtained by varying the full action (Sθ plus the nontopological Maxwell action):

∇ · D = 4π
(
ρ − α

2π2
b · B

)
, (17.66)

and

∇ × H − 1

c

∂D
∂t

= 4π

c

(
J + α

2π2
cb × E − α

2π2
b0B

)
, (17.67)
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whereD = εE andB = μ̃H. Faraday’s law,∇ × E = −c−1∂B/∂t , and the equation
stating the absence of magnetic monopoles, ∇ · B = 0, remain unaltered. Here, as in
ordinary metals, ε = ε + iσxx (ω)/ω and μ̃ = 1 + χm , where ε is the static permit-
tivity, σxx (ω) is the longitudinal conductivity and χm is the magnetic susceptibility
that we assume is negligible for the WSM. Again, we will treat the WSMmaterial as
linear and isotropic, but the extension to the linear and anisotropic case is possible.

There are other distinguishing effects of Weyl semimetals not fully captured by
axion electrodynamics, such as the chiral magnetic effect and the chiral separation
effect. These can be derived by using, for example, the semiclassical Boltzmann
transport theory. In short, if we have chiral fermions in amagnetic fieldwith chemical
potentials μL and μR for left- and right-handed fermions, respectively, there are two
additional B-dependent current terms, namely,

J(B) = α

2π2
μ5B , J(B)5 = α

2π2
μB, (17.68)

whereμ5 = (μL − μR)/2 andμ = (μL + μR)/2 are the chiral and the electric chem-
ical potentials, respectively.

The anomalous Hall effect, which is expected to occur in a Weyl semimetal
with broken time-reversal (TR) symmetry, is described by the b-dependent terms in
(17.66) and (17.67). In addition, the b0-dependent term that arises inWeyl semimetals
with broken inversion symmetry, describes only one part of the celebrated chiral
magnetic effect, namely, the generation of an electric current driven by an applied
magnetic field. The second part is given by J(B) in (17.68), which arises from an
imbalance between chemical potentials of right- and left-handed fermions. The total
contribution to the chiral magnetic effect is thus given by JCME = α

2π2 (μ5 − b0)B,
that vanishes for b0 = μ5 in which case theWSM is said to be at the equilibrium state
[92]. The electric current JB5 in (17.68) is identified as the chiral separation effect,
which vanishes for μ = 0, condition that defines the neutrality point [92].

17.6.1 Electric Charge Near a Weyl Semimetal

Recent publications have tackled a number of physical effects on the basis of the
above theory. Among them we find the magneto-optical Faraday and Kerr rotations
[93] and the Casimir effect [94], as well as the appearance of plasmon polaritons
[95] and helicons [96] at the sample’s surface. Here, inspired by the image magnetic
monopole effect of topological insulators [33, 45, 97], we shall briefly discuss the
problem of a pointlike electric charge near the surface of a topological WSM in the
equilibrium state and at the neutrality point. This means that the material’s response
will be a direct consequence of the anomalous Hall effect in the bulk. Charge neutral-
ity is not an unrealistic assumption for WSMs, since it can be attained under specific
circumstances, as shown both theoretically and experimentally in [98].
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Let us consider a topologicalWeyl semimetal with a pair of nodes separated along
the kz-direction in the bulk BZ occupying the half-space z < 0. The region z > 0
is occupied by a dielectric fluid. An electric charge is brought near the surface that
does not support Fermi-arc electronic states, in this case the xy-plane for b = bêz .
Neglecting all frequency dependence on the conductivities (sincewe dealwith a static
problem), the electromagnetic response of theWSM is fully captured by (17.66) and
(17.67), with b0 = μ5 and μ = 0. Since θ(z = 0) = 0, there are no surface currents,
and the resulting material is just a bulk Hall medium with current responses given
by the transverse Hall conductivity

σxy = e2b

2π2�
. (17.69)

Due to the gauge invariance of the theory, we can introduce the electromagnetic
potentials as usual: E = −∇� and B = ∇ × A. In the Coulomb gauge ∇ · A = 0,
for a pointlike electric charge of strength q at r′ = z′êz with z′ > 0 (that is the
charge lies in the dielectric fluid), the electromagnetic potentials satisfy the coupled
equations of motion

−∇ · [ε(z)∇�] + 4π

c
σxy(z) êz · ∇ × A = 4πqδ(z − z′), (17.70)

−∇2A + 4π

c
σxy(z) êz × ∇� = 0, (17.71)

where σxy(z) = σxy H(−z) is the bulk Hall conductivity and ε(z) = ε1H(−z) +
ε2H(z) is the static permittivity of the system. The differential equations (17.70) and
(17.71), along with the appropriate boundary conditions at the interface z = 0 and at
the singular point z = z′, constitute a complete boundary value problem, which can
be solved with standard techniques of electromagnetism [42]. The solution is simple,
but not straightforward [99]. On the one hand, the final result for the electrostatic
potential beneath the surface is

�z<0 = 2q

∞∫

0

(λ+ + k) cos (λ−z) + λ− sin (λ−z)
ε1

(
λ2+ + λ2−

) + ε2k2 + kλ+ (ε1 + ε2)
k J0(kρ)eλ+z−kz′

dk, (17.72)

and, above the surface, we find

�z>0 = q

ε2

1√
ρ2 + (z − z′)2

+ q

ε2

ε2 − ε1

ε2 + ε1

1√
ρ2 + (z + z′)2

− 2qε1

ε1 + ε2

∞∫

0

λ2+ + λ2− − k2

ε1
(
λ2+ + λ2−

) + ε2k2 + kλ+(ε1+ε2)
J0(kρ)e−k(z+z′)dk.

(17.73)
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Fig. 17.5 Illustration of the electric (left) andmagnetic (right) fields (in units of q�2), as a function
of�z and�ρ, induced by an electric charge of strength q at z′ = 1/� (marked with the red sphere)
above the WSM TaAs (marked with the blue shaded region), (adapted from [99])

In these expressions λ2± = (k/2)
[√

k2 + �2 ± k
]
, � = 4πσxy/(c

√
ε1), ρ2 = x2 +

y2 and Jn is the nth order Bessel function of the first kind. We observe that in the
dielectric fluid, the electric potential can be interpreted as due to the original electric
charge of strength q at z′, an image electric charge of strength q(ε2 − ε1)/(ε2 + ε1)

at −z′, and an additional term arising from the nontrivial topology of the WSM.
Inside the material, the electric potential has no simple interpretation. However, as
evidenced by the exponential term in (17.72), it is attenuated inside the WSM due
to the metallic character of the material. This can also be seen in the limit ε1 → ∞,
for which �z<0 = 0, as in a perfect conductor.

The electric field is obtained from the above potentials as E = −∇�. The left
panel of Fig. 17.5 illustrates the electric field E (in units of q�2) generated by
an electric charge in vacuum (ε2 = 1) at z′ = 1/� (red sphere) close to the WSM
TaAs [100] as a function of the dimensionless coordinates �ρ and �z. We observe
that the electric field outside the WSM is similar to that generated by the original
electric charge, with deviations close to the interface due to the screening of the field
inside the material. This behaviour is similar to that produced by an electric charge
close to an ordinary metal or a dielectric, but the electric field beneath the surface is
more complicated than in these nontopological cases. For example, the electric field
within a uniform and isotropic dielectric is a radially directed field (with the charge
outside the material as its source); while the field inside an ordinary metal is zero. In
the present case, as shown in Fig. 17.5, the electric field is remarkably different as
evidenced by the curved field lines inside.

On the other hand, the resulting vector potential beneath the surface is
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Az<0 = 2qε1êϕ

∞∫

0

λ− cos (λ−z) − (λ+ + k) sin (λ−z)
ε1

(
λ2− + λ2+

) + ε2k2 + kλ+ (ε1 + ε2)
k J1(kρ)eλ+z−kz′

dk,

(17.74)

and, above the surface, we obtain

Az>0 = 2qε1êϕ

∞∫

0

λ−
ε1

(
λ2− + λ2+

) + ε2k2 + kλ+ (ε1 + ε2)
k J1(kρ)e−k(z+z′)dk.

(17.75)

The magnetic field is obtained as B = ∇ × A. The right panel of Fig. 17.5 shows
the magnetic field B (in units of q�2) induced by an electric charge in vacuum at
z′ = 1/� close to the WSM TaAs as a function of the dimensionless coordinates
�ρ and �z. We observe that in the present case, the behaviour of the field lines
is significantly different from the radially directed field lines appearing when the
charge is close to a TI. We will discuss this point later.

The physical origin of the magnetic field is the bulk Hall current circulating
around the symmetry axis, JHall = σxy

(
êρ · Ez<0

)
êϕ , which is induced by the in-

plane component of the electric field produced by the charge. In this way, each cross
section (perpendicular to the symmetry axis) of the bulk Hall current resembles the
surface Hall current induced by an electric charge near to a topological insulator.
This suggests that a 3D Weyl semimetallic phase can be understood as an infinite
number of 2+1 Dirac subsystems (one for each value of z in the bulk) supporting a
surface Hall current [100].

Now we go back to the discussion of the behaviour of the magnetic field lines in
Fig. 17.5. A close inspection reveals that below the surface of the WSM, centered
at the position of the image charge, the B-field lines wind in an axisymmetric way
as if about a loop of current, similar to those of a physical magnetic dipole. This
suggests that we consider a multipole expansion of the magnetic field and determine
the dominant contribution. Still, we recall that the source of the magnetic field is not
localized (since JHall is defined in the whole bulk), and hence the standard multipole
expansion for localized sources does not necessarily applies. In the far zone, the
integral in (17.75) can be approximated in powers of 1/r . The dominant contributions
are

A(1) ≈ 3

32

q

�

√
π

2

tan(θ/2)(13 + 3 cos θ)

r3/2
êϕ, A(2) ≈ − q

�

(
1 + ε2

ε1

)
sin θ

r2
êϕ,

(17.76)
where θ is the angle from the z-axis to the observation point, i.e. r cos θ = êz · r and
r = √

ρ2 + (z + z′)2.We observe that the leading term is a fractional multipole, with
no analogue in standard electromagnetism. The measurement of this contribution
would be a unique signature of the anomalous Hall effect in the bulk of 3D WSMs.
The second term can be successfully compared with the vector potential produced
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by a magnetic dipole of strengthm = −(q/�)(1 + ε2/ε1) located at the image point
−z′, thus confirming the qualitative expectation that a magnetic dipole is induced.

17.6.2 Experimental Proposals

Now we discuss two specific fingerprints of the induced magnetic field which could,
in principle, be measured.

Angle-resolved measurement

In the static case considered above, theWSMattracts the charge toward the surface in
the direction perpendicular to it with a force Fe = qEz>0(r′), where r′ = z′êz is the
position of the charge. However, interesting phenomena appear when we consider
the dynamics of the external charge. Let us consider, for instance, a steady electron
beam drifting at a distance z′ above the surface of the WSM. To make our solution
still valid, we have to consider the electrons slow enough with respect to the Fermi
velocity in the solid, in such a way that the induced polarization and magnetization
of the material rearranges infinitely fast. So, besides the electrostatic force Fe, if the
charge q moves with a uniform velocity v above the surface of theWSM, a magnetic
force of the form Fm = q v

c × Bz>0(r′) will also act on the charge due to the induced
magnetic field. For an electron beam moving along the x-direction (with velocity
v = vx êx ) we find

Fm = −2q2ε1(vx/c) êy

∞∫

0

k2λ− e−2kz′

ε1
(
λ2+ + λ2−

) + ε2 k2 + kλ+ (ε1 + ε2)
dk. (17.77)

Remarkably, this anomalous force is orthogonal to the electrons’ motion as well as to
the electric contribution Fe, and hence these effects can be distinguished from each
other. In fact, the effect of the anomalous force (17.77) on the electrons’ motion is
a deflection in the y-direction which could, in principle, be measurable. For a rough
estimate, we take vx ∼ 107 cm/s (which is appropriate for the steady electron beam
emitted from a low-energy electron gun) [101], z′ ∼ 1µm and L ∼ 1 cm for the
sample’s size. So, for a beam of electrons drifting above the WSM TaAs (for which
ε1 ∼ 6 and b ∼ 109 m−1 [100]), the resulting transverse drift would be 3.2µm. This
deflection can be easily traced by angle-resolved measurement [101]. If this exper-
iment were carried out with a Dirac semimetal by applying an external magnetic
field, instead of a genuineWSM such as the TaAs, the induced magnetic field will be
overwhelmed by the external one, and so would its contribution to the Lorentz force
on a moving charge. For example, by considering the Dirac semimetal Cd3As2 in
the presence of a magnetic field of 1T (for which b = 5 × 108m−1 and ε1 = 12), the
resulting transverse drift is 107 larger than the purely topological contribution, thus
making its detection challenging. We then conclude that an angle-resolved measure-
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ment is appropriate for experimental realization only if it were possible to consider
a genuine WSM, for which no external magnetic field is needed.

Scanning SQUID magnetometry

Scanning SQUID (Superconducting Quantum Interference Device) magnetometry
provides an alternative for measuring the induced magnetic field. SQUIDs are very
sensitivemagnetometers based on superconducting loops containing Josephson junc-
tions, and they are used to measure extremely low magnetic fields (of the order
of 5 × 10−18T [102]). In general terms, these devices measure the magnetic flux
through a loop (parallel to the surface) placed at a fixed distance above the material,
i.e. �B = ∫

S
B · dS, where S is the surface of the loop.

In the present case, a simple calculation produces �B(R, z) = 2πR êϕ · Az>0

(R, z), where R is the radius of the loop and Az>0 is given by (17.75). Of course,
�B = 0 at R = 0. Furthermore, since the magnetic field lines start at the WSM
surface and go back again to the surface (see the right panel of Fig. 17.5), we then
have �B → 0 as R → ∞. This behaviour implies the existence of a maximum
flux at a critical radius Rc, which can be determined in the usual manner (i.e. by
solving ∂R�B|R=Rc = 0 for Rc). For a numerical estimate of the magnetic flux we
consider a charge q = ne|e| placed at a distance z′ = 1µm above the surface of the
WSM TaAs and a SQUID of radius R = 10µm located at z = 10µm.We find �B ≈
7ne × 10−14T · cm2, which is measurable with present day attainable sensitivities of
SQUIDs [102]. One of the key challenges for the experimental detection of this flux
profile would be to find a way to fix and localize the charge above the surface.

If this experiment were carried out with a Dirac semimetal instead of a genuine
WSM, the required external magnetic field will overwhelm the topological contribu-
tion to the total magnetic flux, as before. Nevertheless, in this case it is still possible
to disentangle these effects by using the fact that the contribution to the flux produced
by the external magnetic field, say �ext

B , is constant in space and time, but not �B. A
sensitive magnetometer as the SQUID will be capable to measure small variations
of the flux which amounts to eventually measuring the induced electromotive force
E in the loop. Therefore, this allows for isolating the topological contribution, for
example, by producing a controlled displacement of the SQUID along the z-axis
at speed vz , namely: E = − d

dt

(
�ext

B + �B
) = −vz

d�B
dz , where the z-dependence is

read-off from (17.75).

17.7 Conclusions

In this chapter we have given an overview as to how the properties of magnetoelectric
media associated with topological order, that arise from subtleties in their electronic
structure, can be understood as macroscopic optical properties in regards to their
electromagnetic response. We have presented the reader with the theoretical frame-
work that allows to describe the electromagnetic response of magnetoelectric media
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by means of axion-like extended electrodynamics with a non-dynamical axion field
θ . Among the benefits of such effective field theory approach is that we can exploit a
Green’s function formulation to solve for the electromagnetic fields with rather arbi-
trary configuration of charges, currents, boundary conditions and/or combination of
these. Our tools and techniques have been applied to linear isotropic and homoge-
neous magnetoelectric media with mild coordinate restrictions that are, however,
plausible from an experimental point of view. Other benefit of the GF formulation is
that themethod canbe extended to the case of anisotropicmedia. To illustrate our tools
and techniques, we summarize some previously reported results that include: (i) a
detailed assessment of the boundary value problem of axion electrodynamics and the
modified boundary conditions for the electromagnetic fields across the magnetoelec-
tric interface; (ii) the application to the case of a topological insulator with planar
geometry located between two parallel conducting plates to compute the ensuing
modification to the Casimir effect; (iii) as an example on how to extend the formu-
lation beyond the static cases, we review some results showing that this technique
can be applied to the case of an electric charge traversing from one magnetoelectric
medium to another at a constant speed and perpendicular to the interface between
them to reveal that, besides the usual forward-directed Vavilov-Cherenkov emission
of radiation, a novel feature due entirely to the magnetoelectric effect is an additional
backward-directed radiation, termed reversedVavilov-Cherenkov radiation. Last (iv)
we employ the same approach to study the induced electromagnetic fields due to a
static electric charge near the surface of a Weyl semimetal in the equilibrium state
and at neutrality point to find that inside the WSMmedium the induced electric field
is nothing like inside a conductor nor insulator and the induced magnetic field out-
side the WSM has among its multipole contributions one term that corresponds to a
magnetic dipole field, as if below the surface of theWSM the electric charge induced
a stack of alternating axisymmetric circulating currents centered at the projection of
the electric charge. Two different experimental setups are proposed to measure dis-
tinctive characteristics of the induced magnetic field as smoking-gun signals of the
magnetoelectric effect in WSM and we argue that these observable signals could be
measured given the present-day experimental sensitivities available.

As mentioned in the beginning, the study of topological phases of matter is both
a fundamental and technological challenge. We think that with our exposition we
contributed in both fronts. Our approach allows to shed lights on the understanding
of the interaction of these new states of matter with electromagnetic radiation. At
the same time, and as a corollary of our approach, we have provided new means to
eventuallymeasure observable signals of themagnetoelectric effect using topological
insulators or Weyl semimetals. Though we have provided but a few examples, the
generality of the Green’s function method paves the way for new proposals to similar
ends.
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