
Chapter 15
Topological Dynamics of Spin Texture
Based Metamaterials

Zhixiong Li, Yunshan Cao, and Peng Yan

Abstract Pursuing topological phase andmatter in a variety of systems is one central
issue in current physical sciences and engineering. Similar to other
(quasi-)particles, the collective gyration motion of magnetic spin textures (vortex,
bubble, and skyrmion etc.) can also exhibit the behavior of waves. In this chapter, we
review our recent work on topological dynamics of spin-texture basedmetamaterials.
We first briefly introduce the topological structures, properties, and applications of
magnetic solitons. Then we focus on the topological dynamics of spin texture lat-
tice, uncovering the first-order topological insulator in two-dimensional honeycomb
lattice of massive magnetic skyrmions, and the second-order topological insulator
in breathing kagome and honeycomb lattice of vortices. Conclusion and outlook are
drawn finally.

15.1 Introduction

In recent years, topological insulators (TIs) [1–3] are receiving considerable attention
for their exotic physical properties. Themost peculiar character of TIs is that they can
support chiral edge states which are absent in conventional insulators. Topological
edge states are modes confined at the boundary/surface of a system and generally
have a certain chirality which enables them to be immune from small disturbances
such as disorders and/or defects. Ever since its discovery in electronic systems [4, 5],
the topological edge state has been readily predicted and observed in optics [6–10],
mechanics [11–14], acoustics [15–18], and very recently in magnetics [19–22].

A conventional n-dimensional topological insulator only has (n − 1)-dimensional
(first-order) topological edge/surface modes according to the bulk-boundary cor-
respondence [1, 2]. Very recently, the concept of higher-order topological insu-
lators (HOTIs) was proposed [23–29] and confirmed by various experiments in
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photonic [30–35], acoustic [36–40], and electric-circuit [41–45] systems. Different
from first-order topological insulators (FOTIs), a HOTI has (n − 2) or even (n − 3)-
dimensional (second-order or third-order) topological boundary states, which goes
beyond the conventional bulk-boundary correspondence and is characterized by sev-
eral new topological invariants, such as the nestedWilson loop [46], Green’s function
zeros [47], the quantized bulk polarization (Wannier center) [25, 36, 37], and the
ZN Berry phase (quantized to 2π/N ) [48–52]. The HOTIs thus have broadened our
understanding on topological insulating phases of matter.

There are two important excitations in magnetic systems. One is the spin wave (or
magnon) [53, 54], i.e., the collective motion of magnetic moments. The topological
phase of magnons in magnetic materials is of great current interest in magnetism
because of its fundamental significance as well as in spintronics because of its prac-
tical utility for robust information processing [20, 22, 55–60]. The other one is the
collective oscillation of magnetic solitons (such as the magnetic vortex [61, 62],
bubble [63–65], skyrmion [66, 67], and domain wall [68–70]), which are long-term
topic in condensedmatter physics for their interesting dynamics and promising appli-
cation. These magnetic solitons generally have the characteristics of small size, easy
manipulation and high stability. The spintronic devices based on magnetic solitons
thus have advantages over other electronic devices. For example, the racetrack mem-
ory made of magnetic domain walls can greatly improve the data storage density and
the reading speed [71, 72]; the critical current density required for encoding informa-
tion can be significantly reduced by using the skyrmion as the carrier of information
[73, 74]; the magnetic oscillators based on vortices or skyrmions are very robust and
flexible [75–77]. On the other hand, it has been shown that the collective gyration
motion ofmagnetic solitons can exhibits the behavior ofwaves [78–82]. Furthermore,
the first-order topological chiral edge states based on two-dimensional honeycomb
lattices of magnetic solitons (vortices and bubbles) have been predicted by Kim and
Tserkovnyak [83]. In a word, the metamaterials based on topological spin texture are
attracting more and more attention for both fundamental interest and the potential
applications in spintronics and quantum computing [84–89].

In this chapter, we report the realization of TIs in magnetic soliton lattices. The
exposition is organized as follows: Sect. 15.2 introduces the topological structures,
properties, and applications of magnetic solitons; the first-order topological edge
states of skyrmion lattice are discussed in Sects. 15.3, 15.4 and 15.5 focus on the
second-order TIs in the breathing kagome and honeycomb lattices of magnetic vor-
tices, respectively. We summarise the results in Sect. 15.6.

15.2 Topological Structures, Properties, and Applications
of Magnetic Solitons

Topology is a study of geometry or space which can keep some properties invariant
under a continuous transformation. Topological magnetic soliton is an application
of topology in condensed matter physics. More precisely, magnetic solitons are the
spin textures characterized by a topological charge [83],
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Fig. 15.1 The micromagnetic structures of magnetic bubble (a), vortex (b), Néel-type skyrmion
(c), and Bloch-type skyrmion (d). Images are taken from [64, 83, 90]

Q = 1

4π

∫∫
dxdym · (

∂m
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× ∂m
∂y

), (15.1)

which counts how many times the local magnetization m wraps the unit sphere.
Typical magnetic solitons include magnetic bubble, vortex, and skyrmion, with the
micromagnetic structures shown in Fig. 15.1, respectively. The topological charge
of magnetic bubble and skyrmion are ±1, while this value changes to ±1/2 for
vortex configuration. Topological charge is a topological invariant which indicates
the trivial structure (for example, ferromagnetic state) can not continuously deformed
into a topological spin texture because of the topological protection and the magnetic
solitons with the same topological charge are homotopic.

The low-energy dynamics of themagnetic vortex can be described by themassless
Thiele’s equation [83, 91] whithin the approximation of the rigid model:

Gẑ × dU j

dt
− αD

dU j

dt
+ F j = 0, (15.2)

where U j ≡ R j − R0
j is the displacement of the vortex core from its equilibrium

positionR0
j ; G = −4πQdMs /γ is the gyroscopic constant with Q is the topological

charge; d is the thickness of ferromagnetic layer; Ms is the saturation magnetization;
γ is the gyromagnetic ratio. αD is the viscous coefficient with α being the Gilbert
damping constant. The conservative force F j = −∂W/∂U j whereW is the potential
energy of the system. For a single vortex, the potential energy have the parabolic type:
W = W0 + KU2

j/2,whereW0 is the energy of systemwhen vortex core located at the
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center of the nanodisk and K is the spring constant. By neglecting the viscous force
term, we can derive the gyration frequency of an isolated vortex with ω0 = K/|G|.

However, it is well known that magnetic bubbles and skyrmions in particular
manifest an inertia in their gyration motion [63, 92]. The mass effect thus should
be taken into account for describing the skyrmion (or bubble) oscillation. Therefore,
the Thiele’s equation can be generalized as:

− M
d2U j

dt2
+ Gẑ × dU j

dt
− αD

dU j

dt
+ F j = 0, (15.3)

with M being the inertial mass of magnetic soliton. Similarly, we can calculate the
gyration frequency of skyrmion (or bubble) with:

ω± = −G/2M ±
√

(G/2M)2 + K/M . (15.4)

The positive and negative values of the ω in (15.4) indicate that there are two kinds
of gyration modes with clockwise and counterclockwise direction, respectively.

Magnetic skyrmions are typical magnetic solitons stabilized by Dzyaloshinskii
Moriya interactions (DMIs) [66, 93, 94]. They can be manipulated by spin-polarized
electrical current with extremely low density [73, 74]. Skyrmion also can be drived
by other external force, such as spin wave [95, 96], microwave field [97, 98], and
temperature gradient [99–101]. Interestingly, very recently, it has been proposed
that twisted photons [102] and magnons [103] carrying orbital angular momentum
(OAM) can act as “optical tweezers” and “magnetic tweezers” to drive the rotation of
skyrmion, as shown in Fig. 15.2 and Fig. 15.3, respectively. Theoretical calculation
and numerical simulation show that the topological charge of twisted photons (or
magnons) can determine both the magnitude and the handedness of the rotation
velocity of skyrmions.

Skyrmions are the ideal information carrier in spintronic devices. However, a
skyrmion can not move in a straight line along the driving current direction because
of the Magnus force which leads to the shift of its motion trajectory, such behavior is
called skyrmion Hall effect (SHE) [104, 105]. In practical applications, the skyrmion
may be destroyed when touching the device boundaries. To overcome this issue, a lot
of methods have been proposed. For example, X. Zhang et al. [106] showed that the
antiferromagnetically exchange-coupled bilayer system containing two skyrmions
with different polarities can suppress the SHE, leading to a perfectly straight trajec-
tory for skyrmion driven by a spin-polarized current.Moreover, the antiferromagnetic
(AFM) skyrmion can also avoid SHE [107, 108]. Interestingly, recent research shows
that the AFM skyrmion can emerge in a ferromagnet with gain (negative α) [109].
Figure15.4 shows the dynamical process of the formation of AFM skyrmion in fer-
romagnet (here α is set to be −0.01), with the initial magnetization profile being
random [see Fig. 15.4a]. At t = 0.035 ns, local magnetic moments quickly evolve to
an antiparallelly aligned state, as shown in Fig. 15.4b. Then, all spins inside a circle
of radius 5nm in the film center are randomized. At t = 0.14 ns, an AFM skyrmion
is stabilized (see Fig. 15.4d). When an in-plane spin-polarized electric current was
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Fig. 15.2 Schematic diagram of the rotational motion of a Néel-type skyrmion in a thin ferromag-
netic film driven by an optical vortex with radial index n = 1 and OAM quantum number l = 3. The
solid circle with a red core represents the skyrmion. The flower-like pattern (pink and blue spots)
sketches the induced magnetization profile by the optical vortex field shinning on the magnetic film.
Images are taken from [102]
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Fig. 15.3 Schematic illustration of a heterostructured nanocylinder exchange-coupled to a chiral
magnetic nanodisk hosting a Néel-type skyrmion. An external static field H is applied along the
z-direction. A spin-wave beamwith the wavevector k and OAM quantum number l = −5 is excited
by a localized microwave field B, leading to a steady skyrmion gyration around the disk center.
Images are taken from [103]
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Fig. 15.4 a Random spin configuration at t = 0 ns. b AFM state evolved at t = 0.035 ns. c Ran-
domizing spins inside the circle at t = 0.04 ns. d AFM skyrmion stabilized at t = 0.14 ns. (Inset)
Magnetization profile of the cross section of the AFM skyrmion. e Current-driven AFM skyrmion
motion. (Inset) Spatial distribution of the z component of the Néel vector li . f AFM skyrmion
annihilation at the film boundary. (Inset) Current dependence of the skyrmion velocity when it is
far from the edge. Images are taken from [109]

applied to drive the AFM skyrmion, the skyrmion trajectory is exactly along the
flowing direction of electrons, without the SHE. Besides, the method for the current-
driven skyrmion motion on magnetic nanotubes [110] can also make the skyrmion
away from the edge of system (avoid touching the edges of system), since the tube
is edgeless for the tangential skyrmion motion. A stable skyrmion propagation can
survive in the presence of a very large current density without any annihilation or
accumulation. The nanotube can be viewed as a seamless, hollow tubular structure
rolled from a planar strip, as illustrated in Fig. 15.5.

On the other hand, the magnetic skyrmions can be used to realize logical opera-
tion and thus have great potential application in logic devices [111–113]. Figure15.6
shows typical double-track logic AND gate and OR gate based on twisted skyrmions
[114]. The logical AND operation can be realized through the following pro-
cesses (Fig. 15.7a1–a5): two p = −1 skyrmions (encoding 1) are placed at the
left and right sides of the logic AND gate at t = 0. Here p represents the polar-
ity of the skyrmion core. Then, driven by an electric current, the two skyrmions
begin to move close to each other and become two twisted skyrmions, as shown
in Fig. 15.7a2. Next, the two twisted skyrmions move along the AFM boundaries
and merge into one twisted skyrmion at the intersection of the two boundaries,
see Fig. 15.7a3, a4. Finally, the twisted skyrmion is pushed out of the boundary.



15 Topological Dynamics of Spin Texture Based Metamaterials 411

Fig. 15.5 a Schematic illustration of a Bloch-type skyrmion in a planar film. Green arrows refer
to the local spin directions. b Skyrmion on a nanotube by rolling up (a). Colors refer to the ρ-
component of the magnetization. The coordinate system is defined in the inset. Images are taken
from [110]
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Fig. 15.6 Schematic plot of a logic AND (a) and OR (c) gate with two input skyrmions (top view).
Truth table for the logic AND (b) and OR (d) gate. Images are taken from [114]
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Fig. 15.7 Snapshots of the working process of skyrmions logic AND gate (top view). a1–a5 Logic
operation “1 + 1 = 1”. b1–b5 “1 + 0 = 0”. c1–c5 “0 + 0 = 0”. Images are taken from [114]

Consequently, the final state is a skyrmion with p = −1 (encoding 1) such that
“1 + 1 = 1”, as shown in Fig. 15.7a5. Likewise, the other logical AND operations (“0
+ 1 = 0” and “0 + 0 = 0”) are plotted in Fig. 15.7b1–b5 and c1–c5, respectively.

15.3 The Topological Properties of Skyrmion Lattice

As mentioned in Sect. 15.1, Kim and Tserkovnyak have predicted theoretically the
chiral edge modes in two-dimensional honeycomb lattice of vortices and bubbles
by solving massless Thiele’s equation [83]. However, the higher-order terms are
important for describing the skyrmions (or bubbles) oscillation. In this section, we
will discuss the edge states of honeycomb lattice of massive magnetic skyrmions for
considering both a second-order inertial term of skyrmion mass and a third-order
non-Newtonian gyroscopic term.

15.3.1 Large-Scale Micromagnetic Simulations

A large two-dimensional honeycomb lattice consisting of 984 identical magnetic
nanodisks is considered to show the chiral edge states of magnetic soliton system.
Figure15.8a shows the sketch. Each disk contains a single magnetic skyrmion made
of MnSi [115] which supports the Bloch-type skyrmion (depicted in Fig. 15.8b) due
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Fig. 15.8 a Illustration of the honeycomb lattice with size 1070 × 1080 nm2, including 984 Bloch-
type skyrmions. A uniform magnetic field is applied along the z axis to stabilize the skyrmions.
Green and yellow crosses denote the positions of the driving fields in the center and at the edge
of the lattice, respectively. b Zoomed in details of a nanodisk containing a Bloch-type skyrmion.
c Time-dependence of the sinc-function field H(t). Images are taken from [125]

to the bulk Dzyakoshinskii-Moriya interaction (DMI) [93, 116]. Here, the distance
between nearest-neighbor disks is chosen to be equal to the disk diameter, indicating
that nearest-neighbor skyrmions can strongly interactwith each othermediated by the
exchange spin-wave. It is worth noting that the dipolar interaction can not efficiently
couple skyrmions when a physical gap between nearest-neighboring nanodisks is
left. The micromagnetic simulations are performed with MUMAX3 [117].

The dispersion relation of skyrmion gyrations can be obtained by computing
the spatiotemporal Fourier spectrum of the skyrmion positions over the lattice.
Figure15.9a shows the simulated band structure of skyrmion oscillation below a
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Fig. 15.9 The band structure of skyrmion gyrations when the exciting field is in the film center a
and at the film edge by evaluating the Fourier spectrum over the upper b and the lower c parts of
the honeycomb lattice. The constant a = 2

√
3r represents the distance between the second-nearest

neighboring nanodisks. Images are taken from [125]

cutoff frequency of 20GHz when the exciting field (sinc-function magnetic field)
locates in the lattice center. It can be seen that there is no bulk state in the gaps (areas
shaded in both yellow and green). However, when the driving field is located at the
edge of lattice, the situations are totally different. By implementing the Fourier anal-
ysis over the upper (W2/2 < y < W2) and the lower parts (0 < y < W2/2) of the
lattice, with results plotted in Fig. 15.9b, c, respectively, one can find that four edge
states emerge in the spectrum gaps, labeled as ES1–ES4. Moreover, By evaluating
the group velocity dω/dkx of eachmodewithω the frequency and kx the wave vector
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Fig. 15.10 Snapshot of the propagation of edge states with frequency f = 6.1 GHz (a), 12.62 GHz
(b), 15.3 GHz (c), and 16.65 GHz (d) at t = 40 ns. Since the oscillation amplitudes of the skyrmion
guiding centers are too small, we have magnified them by 10, 40 or 400 times labeled in each figure,
correspondingly. Images are taken from [125]

along x direction, the chirality of these edge states can be identified: three edge states
ES1, ES2 and ES4 (shaded in yellow) are unidirectional and chiral, in which ES1
and ES2 counterclockwise propagate, while ES4 behaves oppositely; ES3 (shaded
in green) is bidirectional and thus non-chiral.

We choose four representative frequencies to visualize the propagation of edge
wave by stimulating the dynamics of lattice under a sinusoidal field h(t) = h0 sin(2π
f t)x̂ on one disk at the top edge, indicated by the blue arrows in Fig. 15.10.
Figures15.10a, b, d show the propagation of chiral edge states. One can clearly
observe unidirectional wave propagation of these modes with either a counterclock-
wise manner (ES1 and ES2 shown in Fig. 15.10a, b respectively) or a clockwise one
(ES4 plotted in Fig. 15.10d). It’s very interesting and unique that multiband edge
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states with opposite chiralities coexist in a given soliton lattice. There is no analogue
in condensed matter system, to the best of our knowledge. In contrast, the propa-
gation of ES3 is bidirectional, as shown in Fig. 15.10c. This non-chiral mode can
be simply explained in terms of the Tamm-Shockley mechanism [118, 119] which
predicts that the periodicity breaking of the crystal potential at the boundary can
lead to the formation of a conducting surface/edge state. Furthermore, it is rather
straightforward to show the propagation of the chiral modes is immune from the
defects and robust against the type of boundary, while the Tamm-Shockley mode is
not.

15.3.2 Theoretical Model

We adopt the generalized Thiele’s equation to theoretically understand themultiband
chiral skyrmionic edge states carrying opposite chiralities. First of all, we assume
that the steady-state magnetizationm depends on not only the position of the guiding
center R(t) but also its velocity Ṙ(t) and acceleration R̈(t), and write m = m(r −
R(t), Ṙ(t), R̈(t)). After some algebra and by neglecting the damping term, one can
obtain the generalized Thiele’s equation including both a second-order inertial term
of skyrmionmass M [63, 92, 102] and a non-Newtonian third-order gyroscopic term
G3 [120–122]:

G3 ẑ × d3U j

dt3
− M

d2U j

dt2
+ Gẑ × dU j

dt
+ F j = 0, (15.5)

where U j and G share the same definition as (15.2). The conservative force can
be expressed as F j = −∂W/∂U j . Here W is the total potential energy for the
sum of single disk and the interaction energy between nearest-neighbor disks:
W = ∑

j KU2
j/2 + ∑

j �=k U jk/2 with Ujk = I‖U
‖
j U

‖
k − I⊥U⊥

j U
⊥
k [83, 123, 124].

I‖ and I⊥ are the longitudinal and the transverse coupling constants, respectively. By
imposing U j = (u j , v j ) and defining ψ j = u j + iv j , we have:

D̂ψ j = ωKψ j +
∑
k∈〈 j〉

(ζψk + ξei2θ jkψ∗
k ), (15.6)

where the differential operator D̂ = iω3
d3

dt3 − ωM
d2

dt2 + i d
dt , ω3 = G3/|G|, ωM =

M/|G|,ωK = K/|G|, ζ = (I‖ − I⊥)/2|G|, and ξ = (I‖ + I⊥)/2|G|, θ jk is the angle
of the direction ê jk from x axis with ê jk = (R0

k − R0
j )/|R0

k − R0
j |, and 〈 j〉 is the set

of the nearest neighbors of j (here Q = −1). We then expand the complex variable
to

ψ j = χ j (t) exp(−iω0t) + η j (t) exp(iω0t). (15.7)

For counterclockwise (clockwise) skyrmion gyrations, one can justify |χ j | � |η j |
(|χ j | � |η j |). Substituting (15.7) into (15.6), one can obtain the following eigenvalue
equation:
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Fig. 15.11 a Resonant spectrum of skyrmion gyrations when the exciting field is applied over the
whole system. Inset shows the chirality/handedness of the skyrmion guiding center of each mode.
b Band structure by solving (15.8). Images are taken from [125]

D̂ψ j = (ωK − 3ξ 2/2ω̄K )ψ j + ζ
∑
k∈〈 j〉

ψk − (ξ 2/2ω̄K )
∑
l∈〈〈 j〉〉

ei2θ̄ jlψl , (15.8)

with ω̄K = ωK − ω2
0ωM , θ̄ jl = θ jk − θkl the relative angle from the bond k → l to

the bond j → k with k between j and l, and 〈〈 j〉〉 the set of the second-nearest
neighbors of j .

The key parameters G3, M , K , I‖ and I⊥ can be determined from micro-
magnetic simulations in a self-consistent manner [125]. Figure15.11a shows the
spectrum of collective skyrmion oscillations with three strong resonance peaks at
ω0,1/2π = 6.1 GHz, ω0,2/2π = 12.6 GHz, and ω0,3/2π = 16.6 GHz above the
spin-wave band gap. Furthermore, Fig. 15.11b shows the computed band structure
of the skyrmion gyrations near the resonance frequencies ω0 = ω0,1, ω0,2, and ω0,3

by solving (15.8) with the periodic boundary condition along x direction and the
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zigzag termination at y = 0 and y = W2. The average vertical position of the modes
〈y〉 ≡ ∑

j R
0
j,y|U j |2/∑

j |U j |2 are also shown in Fig. 15.11, where R0
j,y is the equi-

librium position of the skyrmion projected onto the y axis, represented by different
colors: closer to magenta indicating more localized at the upper edge. It is interesting
to note that the chirality of ES4 is opposite to those of ES1 and ES2. An interpreta-
tion is as following: The direction reversal of the skyrmion gyration generates a π

phase accumulation in the next-nearest-neighbor hopping term of (15.8). The Chern
numbers of two neighbouring bulk bands then switch their signs, so that the chirality
of the edge state in between reverses.

15.4 Corner States in a Breathing Kagome Lattice of
Vortices

In previous sections, we have discussed the topological insulating phases inmagnetic
system. All these phases, however, are first order by nature. In this section, we will
discuss the higher-order topological edge states (corner states) in magnetic system,
and demonstrate their features in breathing kagome lattice of magnetic vortices.

15.4.1 The Theoretical Results and Discussions

A breathing kagome lattice of magnetic nanodisks with vortex states is considered.
Figure15.12a plots the lattice structure with alternate distance parameters d1 and
d2. We start with the generalized Thiele’s equation (15.6) to describe the collective
dynamics of vortex lattice:

D̂ψ j = ωKψ j +
∑

k∈〈 j〉,l
(ζlψk + ξl e

i2θ jkψ∗
k ), (15.9)

where the differential operator D̂ = iω3
d3

dt3 − ωM
d2

dt2 − i d
dt , ζl = (I‖,l − I⊥,l)/2|G|,

and ξl = (I‖,l + I⊥,l)/2|G|, with l = 1 (or l = 2) representing the distance d1 (or d2)
between the nearest neighbor vortices, here the topological charge Q = 1/2.

The coupling strengths I‖ and I⊥ are strongly dependon the parameterd (d = d ′/r
with d ′ the distance between two vortices and r being the radius of nanodisk) [127–
129]. The analytical expression of I‖(d) and I⊥(d) are essential for evaluating the
spectrum and the phase diagram of vortex gyrations. With the help of micromag-
netic simulations for two-vortex system with different combinations of vortex polar-
ities, one can obtain the best fit of the numerical data: I‖ = μ0M2

s r(−1.72064 ×
10−4 + 4.13166 × 10−2/d3 − 0.24639/d5 + 1.21066/d7 − 1.81836/d9) and I⊥ =
μ0M2

s r (5.43158 × 10−4 − 4.34685 × 10−2/d3 + 1.23778/d5 − 6.48907/d7 +
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Fig. 15.12 a Illustration of the triangle-shape breathing kagome lattice including 45 nanodisks of
the vortex state. d1 and d2 are the distance between two nearest-neighbor vortices. Arabic numbers
1, 2 and 3 denote the positions of spectrum analysis for bulk, edge and corner states, respectively.
b Zoomed in details of a nanodisk with the radius r = 50 nm and the thickness w = 10 nm. c Time
dependence of the sinc-function field H(t) applied to the whole system. Images are taken from
[126]

13.6422/d9), as shown in Fig. 15.13a with symbols and curves representing sim-
ulation results and analytical formulas, respectively. In the calculations, the mate-
rial parameters of Permalloy (Py: Ni80Fe20) [88, 130] was adopted, and G =
−3.0725 × 10−13 J s rad−1m−2. The spring constant K , massM , and non-Newtonian
gyration G3 can be obtained by analyzing the dynamics of a single vortex confined
in the nanodisk [126]: K = 1.8128 × 10−3 Jm−2, M = 9.1224 × 10−25 kg, and
G3 = −4.5571 × 10−35J s3rad−3m−2. Then, the eigenfrequencies of vortex gyra-
tions in the breathing kagome lattice can be obtained by solving (15.9) numerically.
Figure15.13b shows the eigenfrequencies of the triangle-shape system for different
values d2/d1 with a fixed d1 = 2.2r . The results of the spatial distribution of the
corresponding eigenfunctions show that corner states can exist only if d2/d1 > 1.2,
as indicated by the red line segment. Different choices of d1 gives almost the same
conclusion. Furthermore, the complete phase diagram can be calculated by sys-
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Fig. 15.13 a Dependence of the coupling strength I‖ and I⊥ on the vortex-vortex distance d
(normalized by the disk radius r ). Pentagrams and circles denote simulation results and solid curves
represent the analytical fitting. bEigenfrequencies of collective vortex gyration under different ratio
d2/d1 with the red segment labeling the corner state phase. c The phase diagram. dEigenfrequencies
of the breathing kagome lattice of vortices under different disorder strength. Images are taken from
[126]

tematically changing d1 and d2. It can be clearly seen that the boundary separating
topologically non-trivial andmetallic phases lies in d2/d1 = 1.2, while topologically
trivial and metallic phases are separated by d1/d2 = 1.2, as shown in Fig. 15.13c.
When d2/d1 > 1.2, the system is topologically non-trivial and can support second-
order topological corner states. The system is trivial without any topological edge
modes if d1/d2 > 1.2.Here, the trivial phase is the gapped (insulator) state, themetal-
lic/conducting phase represents the gapless state such that vortices oscillations can
propagate in the bulk lattice, and the non-trivial phase means the second-order cor-
ner state surviving in a gapped bulk. Besides, it is worth mentioning that the critical
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Fig. 15.14 a Eigenfrequencies of triangle-shape kagome vortex lattice with d1 = 2.08r and d2 =
3.60r . The spatial distribution of vortex gyrations for the bulk [(b) and (e)], edge (c), and corner
(d) states. Images are taken from [126]

condition (d2/d1 > 1.2) for HOTIs may vary with respect to materials parameters.
For example, the critical value will slightly increase (decrease) if the radius of the
nanodisk increases (decreases).

Topological corner states should be robust against disorders in the bulk. Figure
15.13d shows the eigenfrequencies of the triangle-shape breathing kagome lattice
of vortices under bulk disorders of different strengths, where d1 = 2.08r and d2 =
3.60r (d2/d1 = 1.73 > 1.2).Here, disorders are introduced by assuming the resonant
frequency ω0 with a random shift, i.e., ω0 → ω0 + δZω0, where δ indicates the
strength of the disorder and Z is a uniformly distributed random number between
−1 to 1. It can be seen from Fig. 15.13d that with the increasing of the disorder
strength, the spectrum of both edge and bulk states is significantly modified, while
the corner states are quite robust. What’s more, it can be further confirmed that these
corner states are also robust against defects.

The same geometric parameters as Fig. 15.13d are chosen to explicitly visualize
the corner states and other modes in the phase diagram. The computed eigenfrequen-
cies and eigenmodes are plotted in Fig. 15.14a–e, respectively. It is found that there
are three degenerate modes with the frequency equal to 927.6MHz, represented by
red balls. These modes are indeed second-order topological states (corner states)
with oscillations being highly localized at the three corners, see Fig. 15.14d. The
edge states are also identified, denoted by blue balls in Fig. 15.14a. The spatial dis-
tribution of edge oscillations are confined on three edges, as shown in Fig. 15.14c.
However, these edge modes are Tamm-Shockley type [118, 119], not chiral, which
can be confirmed by micromagnetic simulations [126]. Bulk modes are plotted in
Fig. 15.14b, e, where corners do not participate in the oscillations.

The higher-order topological properties can be interpreted in terms of the bulk
topological index, i.e., the polarization [131, 132]:
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Pj = 1

S

∫∫
BZ

A jd
2k, (15.10)

where S is the area of the first Brillouin zone, A j = −i〈ψ |∂k j |ψ〉 is Berry con-
nection with j = x, y, and ψ is the wave function for the lowest band. It is
shown that (Px , Py) = (0.499, 0.288) for d1 = 2.08r andd2 = 3.60r and (Px , Py) =
(0.032, 0.047) for d1 = 3r and d2 = 2.1r . The former corresponds to the topological
insulating phase while the latter is for the trivial phase. Theoretically, for breathing
kagome lattice, the polarization (Px , Py) is identical to Wannier center, which is
restricted to two positions for insulating phases. If Wannier center coincides with
(0, 0), the system is in trivial insulating phase and no topological edge states exist.
Higher-order topological corner states emerge when the Wannier center lies at (1/2,
1/2

√
3) [25, 36]. The distribution of bulk topological index is consistent with the

computed phase diagram Fig. 15.13c.
The other type of breathing kagome lattice of vortices (parallelogram-shape) also

supports the corner states, with the sketch plotted in Fig. 15.15a. Here, the same
parameters as those in the triangle-shape lattice are adopted. Figure15.15b shows
the eigenfrequencies of system. Interestingly, it can be seen that there is only one
corner state, represented by the red ball. Edge and bulk states are also observed,
denoted by blue and black balls, respectively. The spatial distribution of vortices
oscillation for different modes are shown in Fig. 15.15c–f. From Fig. 15.15e, one can
clearly see that the oscillations for corner state are confined to one acute angle and the
vortex at the position of two obtuse angles hardly oscillates. The spatial distribution
of vortex gyration for edge and bulk states are plotted in Fig. 15.15c, d, f. Further,
the robustness of the corner states are also confirmed [126].

It is interesting to note that the results of triangle-shape and parallelogram-shape
lattices are closely related. Two opposite acuted-angle corners in the parallelogram
are actually not equivalent: one via d1 bonding while the other one via d2 bonding;
see Fig. 15.15a. Only the d2 bonding (bottom-right) corner in the parallelogram-
shape lattice is identical to three corners in the triangle-shape lattice. Therefore, for
parallelogram-shape lattice, we can observe only one corner state.

15.4.2 Micromagnetic Simulations

Micromagnetic simulations are implemented to verify the theoretical predictions of
corner states above. The breathing kagome lattice consisting of massive identical
magnetic nanodisks in vortex states are considered, as shown in Figs. 15.12a and
15.15a, with the same geometric parameters as those in Figs. 15.14a and 15.15b,
respectively. Micromagnetic software MUMAX3 [117] is used to simulate the
dynamics of vortices.

Figure15.16a shows the temporal Fourier spectra of the vortex oscillations at dif-
ferent positions, with black, blue, and red curves denoting the positions of bulk, edge,
and corner bands, respectively. One can immediately see that, near the frequency of
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Fig. 15.15 a The sketch for parallelogram-shaped breathing kagome lattice of vortices. Arabic
numbers 1, 2 and 3 denote the position of spectrum analysis for bulk, edge, and corner states,
respectively. bNumerically computed eigenfrequencies for parallelogram-shaped system. The spa-
tial distribution of vortices oscillation for the bulk [(c) and (f)], edge (d), and corner (e) states.
Images are taken from [126]

940MHz, the spectrum for the corner has a very strong peak, which does not happen
for the edge and bulk. It can be inferred that this is the corner-state band with oscilla-
tions localized only at three corners. Similarly, one can identify the frequency range
which allows the bulk and edge states, as shown by shaded area with different colors
in Fig. 15.16a. Four representative frequencies are chosen to visualize the spatial
distribution of vortex oscillations for different modes: 940MHz for the corner state,
842MHz for the edge state, and both 769MHz and 959MHz for bulk states, and then
stimulate their dynamics by a sinusoidal magnetic field h(t) = h0 sin(2π f t)x̂ with
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Fig. 15.16 Micromagnetic simulation of excitations in triangle-shape structure. a The temporal
Fourier spectrum of the vortex oscillations at different positions. The spatial distribution of oscilla-
tion amplitude under the exciting field of various frequencies, 769MHz (b), 842MHz (c), 940MHz
(d), and 959MHz (e). Since the oscillation amplitudes of the vortex centers are too small, we have
magnified them by 2 or 10 times labeled in each figure. Images are taken from [126]

h0 = 0.1 mT to the whole system for 100 ns. Figures15.16b–e plot the spatial distri-
bution of oscillation amplitude. One can clearly see the corner state in Fig. 15.16d,
which is in a good agreement with theoretical results shown in Fig. 15.14d. Spatial
distribution of vortices motion for bulk and edge states are shown in Fig. 15.16b, c,
respectively. It is worth noting that vortices at three corners in Fig. 15.16e also oscil-
late with a sizable amplitude, which is somewhat quite unexpected for bulk states.
This inconsistency may come from the strong coupling (or hybridization) between
the bulk and corner modes, since their frequencies are very close to each other, as
shown in Figs. 15.14a and 15.16a.

The simulations of parallelogram-shaped lattice show similar results to triangle-
shaped lattice. The spectra are shown in Fig. 15.17a with the black, blue and red
curves indicating the positions of bulk (Number 1), edge (Number 2) and corner
(Number 3) bands, respectively. Shaded area with different colors denote different
modes. The spatial distribution of oscillation amplitude is plotted in Fig. 15.17b–e.
Figure15.17d shows only one corner state at only one (bottom-right) acute angle,
which is in a good agreement with theoretical results shown in Fig. 15.15e. Spatial
distribution of vortices motion for bulk and edge states are shown in Fig. 15.17b, c,
respectively. Interestingly, the hybridization between bulk mode and corner mode
occurs as well in parallelogram-shaped lattice, see Fig. 15.17e.



15 Topological Dynamics of Spin Texture Based Metamaterials 425

Fig. 15.17 Micromagnetic simulation of excitations in parallelogram-shape structure. a The tem-
poral Fourier spectrum of the vortex oscillations at different positions. The spatial distribution of
oscillation amplitude under the exciting field with different frequencies, 767MHz (b), 844MHz (c),
940MHz (d), and 964MHz (e). The simulation time is 100 ns. Since the oscillation amplitudes of
the vortices centers are too small, we have magnified them by 2 or 10 times labeled in each figure.
Images are taken from [126]

15.5 Corner States in a Breathing Honeycomb Lattice of
Vortices

It is known that the perfect graphene lattice has a gapless band structure with Dirac
cones inmomentumspace [133].When spatially periodicmagnetic flux [134] or spin-
orbit coupling [135] are introduced, a gap opens at the Dirac point, leading to a FOTI.
Interestingly, the realization of gap opening and closing by tuning the intercellular
and intracellular bond distances has been demonstrated in photonic [31] and elastic
[136] honeycomb lattices, in which HOTI emerges. In this section, we show that the
higher-order topological insulating phase do exist in a breathing honeycomb lattice
of vortices.

15.5.1 Theoretical Model

Figure15.18 shows a breathing honeycomb lattice ofmagnetic nanodisks with vortex
states.We use (15.9) to describe the collective dynamics of the breathing honeycomb
lattice of vortices. For vortex (topological charge Q = +1/2) gyrations, one can jus-
tify |χ j | � |η j |. By substituting (15.7) into (15.9), we obtain the eigenvalue equation
of the system,
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Fig. 15.18 Illustration (top
view) of the breathing
honeycomb lattice of
magnetic vortices, with d1
and d2 denoting the
alternating lengths of
intercellular and intracellular
bonds, respectively. The
radius of each nanodisk is
r = 50 nm, and the thickness
is w = 10 nm. The dashed
black rectangle is the unit
cell used for calculating the
band structure, with a1 and
a2 denoting the basis vectors.
Images are taken from [137]

D̂ψ j = (ω0 − ξ 2
1 + 2ξ 2

2

2ωK
)ψ j + ζ1

∑
k∈〈 j1〉

ψk + ζ2
∑
k∈〈 j2〉

ψk

− ξ1ξ2

2ωK

∑
s∈〈〈 j1〉〉

ei2θ̄ jsψs − ξ 2
2

2ωK

∑
s∈〈〈 j2〉〉

ei2θ̄ jsψs, (15.11)

with ωK = ω0 − ω2
0ωM , θ̄ js = θ jk − θks is the relative angle from the bond k → s to

the bond j → k with k between j and s, 〈 j1〉 and 〈 j2〉 (〈〈 j1〉〉 and 〈〈 j2〉〉) are the set
of nearest (next-nearest) intercellular and intracellular neighbors of j , respectively.

For an infinite lattice, with the dashed black rectangle indicating the unit cell,
as shown in Fig. 15.18, a1 = ax̂ and a2 = 1

2ax̂ +
√
3
2 a ŷ are two basis vectors of

the crystal, with a = d1 + 2d2. The band structure of system can be calculated by
diagonalizing the Hamiltonian,

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

Q0 ζ2 Q1 Q2 Q3 ζ2
ζ2 Q0 ζ2 Q4 ζ1 exp(ik · a2) Q5

Q∗
1 ζ2 Q0 ζ2 Q6 ζ1 exp(ik · a1)

Q∗
2 Q∗

4 ζ2 Q0 ζ2 Q7

Q∗
3 ζ1 exp(−ik · a2) Q∗

6 ζ2 Q0 ζ2
ζ2 Q∗

5 ζ1 exp(−ik · a1) Q∗
7 ζ2 Q0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(15.12)
with elements explicitly expressed as
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Q0 = ω0 − ξ21 + 2ξ22
2ωK

,

Q1 = − ξ1ξ2

2ωK
exp(i

2π

3
)
{
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}
− ξ22

2ωK
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2π

3
),

Q2 = ζ1 exp[ik · (a2 − a1)],

Q3 = − ξ1ξ2

2ωK
exp(−i

2π

3
)
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exp[ik · (a2 − a1)] + exp(ik · a2)

}
− ξ22

2ωK
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2π

3
),

Q4 = − ξ1ξ2
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2π

3
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2ωK
exp(−i

2π

3
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exp(i
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)[exp(ik · a2) + exp(ik · a1)] − ξ22
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Q7 = − ξ1ξ2

2ωK
exp(i

2π

3
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{
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− ξ22
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3
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(15.13)

Topological invariants can be used to distinguish different phases. For any insu-
lator with translational symmetry, the gauge-invariant Chern number of bulk bands
[58, 138]

C = i

2π

∫∫
BZ

dkxdkyTr
[
P(

∂P

∂kx

∂P

∂ky
− ∂P

∂ky

∂P

∂kx
)
]

(15.14)

is often adopted for determining the FOTI phase, where P is projection matrix
P(k) = φ(k)φ(k)†, with φ(k) being the normalized eigenstate (column vector) of
Hamiltonian, and the integral is over the first Brillouin zone. However, to determine
whether the system allows the HOTI phase, another different topological invariant
should be considered.

In the presence of six-fold rotational (C6) symmetry, a proper topological invariant
is the Z6 Berry phase [48–52]:

θ =
∫
L1

Tr[A(k)] · dk (mod 2π), (15.15)

where A(k) is the Berry connection:

A(k) = i�†(k)
∂

∂k
�(k). (15.16)

Here,�(k) = [φ1(k),φ2(k),φ3(k)] is the 6× 3 matrix composed of the eigenvectors
of (15.12) for the lowest three bands. L1 is an integral path in momentum space
G ′ → � → K ′; see the green line segment in Fig. 15.19a. TheWilson-loop approach
is adopted for evaluating the Berry phase θ to avoid the difficulty of the gauge choice
[23, 24]. It is worth mentioning that the six high-symmetry points G, K , G ′, K ′, G ′′,
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Fig. 15.19 aThefirstBrillouin zone of the breathing honeycomb lattice,with high-symmetry points

�, G, M , and K located at (kx , ky) = (0, 0), ( 2π3a , 2
√
3π

3a ), ( π
a ,

√
3π
3a ), and ( 4π3a , 0), respectively.

Band structures along the loop �-M-K -� for different lattice parameters: d1 = 3.6r, d2 = 2.08r
(b), d1 = d2 = 3.6r (c), and d1 = 2.08r, d2 = 3.6r (d). Images are taken from [137]

and K ′′ in the first Brillouin zone are equivalent (see Fig. 15.19a), because of the C6

symmetry. Therefore, there are other five equivalent integral paths (L2 : K ′ → � →
G ′′, L3 : G ′′ → � → K ′′, L4 : K ′′ → � → G, L5 : G → � → K , and L6 : K →
� → G ′) leading to the identical θ . It is also straightforward to see that the integral
along the path L1 + L2 + L3 + L4 + L5 + L6 vanishes. Thus, the Z6 Berry phase
must be quantized as θ = 2nπ

6 (n = 0, 1, 2, 3, 4, 5). By simultaneously quantifying
the Chern number C and the Z6 Berry phase θ , the topological phases and their
transition can be determined accurately.

Corner states are of particular interest and are deeply related to the symme-
try of Hamiltonian (15.12). Below, we prove that the emergence of topological
zero modes is protected by the generalized chiral symmetry. First of all, because
(ξ 2

1 + 2ξ 2
2 )/2ωK � ω0, the diagonal element of H can be regarded as a constant

independent of d, i.e., Q0 = ω0, which is the “zero-energy” of the original Hamil-
tonian. Q1,2,3,4,5,6 are the next-nearest hopping terms. At first glance, the system
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does not possess any chiral symmetry to protect the “zero-energy” modes because
the breathing honeycomb lattice is not a bipartite lattice. Inspired by the explanation
of generalized chiral symmetry in the breathing kagome lattice [37, 139], the chiral
symmetry for a unit cell containing six sites can be generalized by defining

�−1
6 H1�6 = H2,

�−1
6 H2�6 = H3,

�−1
6 H3�6 = H4,

�−1
6 H4�6 = H5,

�−1
6 H5�6 = H6,

H1 + H2 + H3 + H4 + H5 + H6 = 0,

(15.17)

where the chiral operator �6 is a diagonal matrix to be determined, and H1 =
H − Q0I. Here, to prove the system has generalized chiral symmetry, we divide
the system into six subgroups with the components of matrix Hamiltonian being
nonzero only between different subgroups, such a property is essential for chiral
symmetry and indicates no interaction within sublattices. Therefore, the matrices
(H2, H3, etc.) are the subgroups used for explaining the chiral symmetry of sys-
tem. Upon combining the last equation with the previous five in (15.17), we have
�−1
6 H6�6 = H1, implying that [H1, �

6
6] = 0; thus, �6

6 = I, via the reasoning com-
pletely analogous to the Su-Schrieffer-Heeger model [140]. HamiltoniansH1,2,3,4,5,6

each have the same set of eigenvalues λ1,2,3,4,5,6. The eigenvalues of �6 are given by
1, exp(2π i/6), exp(4π i/6), exp(π i), exp(8π i/6), and exp(10π i/6). Therefore,
the matrix �6 can written as

�6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 e

2π i
6 0 0 0 0

0 0 e
4π i
6 0 0 0

0 0 0 eπ i 0 0
0 0 0 0 e

8π i
6 0

0 0 0 0 0 e
10π i
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (15.18)

in the same bases as expressing the Hamiltonian (15.12). By taking the trace of the
sixth line from (15.17), we find

∑6
i=1 Tr(Hi ) = 6Tr(H1) = 0, which means that the

sum of the six eigenvalues vanishes
∑6

i=1 λi = 0. Given an eigenstate φ j that has
support in only sublattice j , it will satisfy H1φ j = λφ j and �6φ j = exp[2π i( j −
1)/6]φ j with j = 1, 2, 3, 4, 5, 6. From these formulas and (15.17), one can find that∑6

i=1 Hiφ j = ∑6
i=1 �

−(i−1)
6 H1�

i−1
6 φ j = 6λφ j = 0, indicating λ = 0 for any mode

that has support in only one sublattice, i.e., zero-energy corner state.
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15.5.2 Corner States and Phase Diagram

Figure15.19b–d shows the bulk band structures under a variety of lattice parameters.
For d1 = d2 = 3.6r (see Fig. 15.19c), it can be found that the highest three bands and
the lowest three bands merged separately, leaving a next-nearest hopping-induced
gap centered at 927MHz. In this case, the FOTI phase was anticipated [83, 125].
However, the six bands are separated from each other when considering the other
two kinds of parameters (see Fig. 15.19b, d), indicating that the system is in the
insulating state. These insulating phases and the phase transition point can be further
distinguished by calculating Chern number and Z6 Berry phase.

Figure15.20a plots the dependence of the Chern number (C) and the Z6 Berry
phase (θ ) on the parameter d2/d1. Here the material parameters of Py (Ni80Fe20) [88,
130] are used and fix d1 = 2.5r . In addition, the eigenfrequencies of collective vortex
gyration under different ratios d2/d1 for a parallelogram-shaped (see Fig. 15.20b)
structure are also shown in Fig. 15.20c. By considering the topological invariants and
spectrum simultaneously, one can infer that the system is in the trivial phase when
d2/d1 < 0.9 and 1.08 < d2/d1 < 1.49, in the FOTI phasewhen 0.9 < d2/d1 < 1.08,
and in the HOTI phase when d2/d1 > 1.49. Haldane model is a well-known example
for breaking the time-reversal symmetry [134]. If we consider the limit case of
honeycomb lattice, i.e., d1 = d2, (15.9) can be exactly mapped to the Haldane model,
as shown in [83] and [125]. The very existence of the chiral edge state is thus naturally
expected. For a breathing honeycomb lattice, our (15.11) represents the generalized
form of the mapping, where the last two terms in the right-hand side are the next-to-
nearest hopping that breaks the time-reversal symmetry. The complete phase diagram
of system can be obtained by systematically changing d1 and d2, with the results
plotted in Fig. 15.20d: The regions labeled gray, white, and red represent the trivial,
FOTI, and HOTI phases, respectively. Importantly, we find that the boundary for
the phase transition between trivial and FOTI phases depends only weakly on the
choice of the absolute values of d1 and d2 but is (almost) solely determined by their
ratio, as indicated by dashed black lines (l1 : d2/d1 = 0.94 and l2 : d2/d1 = 1.05)
in the figure. However, the boundary for the phase transition between trivial and
HOTI phases is a linear function l3 : d2 = 2.24d1 − 1.88 (see the dashed red line
in Fig. 15.20d). It is worth noting that the topological charge of the vortex has no
influence on higher-order topology for the reason that the sign of topological charge
just determines the direction (clockwise or anti-clockwise) of gyration, see (15.5).
However, it indeed can affect the chiral edge state (first-order topology). Namely the
chirality of edge state will be reversed if the topological charge changes.

The existence of symmetry-protected states on boundaries is the hallmark of a
topological insulating phase. Figure 15.21b–d shows the energy spectrum of the
ribbon configuration with armchair edges (see Fig. 15.21a) for different choices of
d1 and d2. For d1 = 3.6r and d2 = 2.08r (black star in Fig. 15.20d), the system
is in the trivial phase without any topological edge mode (see Fig. 15.21b). For
d1 = d2 = 3.6r (blue star in Fig. 15.20d), the lattice considered is identical to a
magnetic texture version of graphene (the perfect honeycomb lattice). In contrast to



15 Topological Dynamics of Spin Texture Based Metamaterials 431

Fig. 15.20 a Dependence of the topological invariants Chern number and Z6 Berry phase on the
ratio d2/d1 when d1 is fixed at 2.5r . b Schematic plot of the parallelogram-shaped vortex lattice with
armchair edges. c Eigenfrequencies of collective vortex gyration under different ratios d2/d1 with
the red segment denoting the corner state phase. d Phase diagram of the system with pentagonal
stars of different colors representing three typical parameters of d1 and d2 for different phases
considered in the subsequent calculations and analyses. Images are taken from [137]

the gapless band structure for perfect graphene nanoribbons, the imaginary second-
nearest hopping term opens a gap at the Dirac point and supports a topologically
protected first-order chiral edge state [83, 125]. For d1 = 2.08r and d2 = 3.6r (red
star in Fig. 15.20d), one can clearly see two distinct edge bands, in addition to bulk
ones, as shown in Fig. 15.21d. These localized modes are actually not topological
because they maintain the bidirectional propagation nature, which is justified by
the fact that the wave group-velocity dω/dkx can be either positive or negative at
different kx points. Below, we will show that higher-order topological corner states
exactly emerge around these edge bands when the system is decreased to be finite in
both dimensions.
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Fig. 15.21 a Nanoribbon with armchair edges (closed boundaries in the x-direction and open
boundaries in the y-direction). The dashed black rectangle is the unit cell. Band dispersions with
different geometric parameters as denoted in Fig. 15.20d: d1 = 3.6r, d2 = 2.08r (b), d1 = d2 =
3.6r (c), and d1 = 2.08r, d2 = 3.6r (d). The dashed blue frame in (d) indicates the band of non-
chiral edge states. D is the width of the nanoribbon. Images are taken from [137]

A parallelogram-shaped vortex lattice is considered to visualize the second-order
corner states, as shown in Fig. 15.20b, where d1 = 2.08r and d2 = 3.6r . From the
spectrum (see Fig. 15.22a), one can clearly see that there exist a few degenerate
modes in the band gap. To distinguish these states, the spatial distribution of vortex
gyrations are plotted for each mode in Fig. 15.22b–f. Three types of corner states
are confirmed, all of which have oscillations highly localized at obtuse-angled or
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Fig. 15.22 a Eigenfrequencies of the finite system with parameters d1 = 2.08r and d2 = 3.6r for
the parallelogram-shaped structure (see Fig. 15.3b). The spatial distribution of vortex gyrations for
the bulk (b), corner (c, d and f), and edge (e) states of five representative frequencies. Images are
taken from [137]

acute-angled corners (see Fig. 15.22c, d, f), where corner states 1 (type I), 2 (type
II), and 3 (type III) are denoted by red, magenta, and green balls, respectively. Two
degenerate edge modes are denoted by blue balls, in which only two vortices on each
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edge participate in the oscillation, as shown in Fig. 15.22e. Figure15.22b shows the
bulk state with oscillations spreading over the whole lattice except the boundaries.
To judge whether these edge and corner states are topologically protected or not,
moderate defects and disorder are introduced into the system and we evaluate the
change of the spectrum. It can be found that the eigenfrequency of “zero-energy”
corner state 3 at the obtuse-angled corner (see Fig. 15.22f) is well confined around
927MHz, which means that this corner state is suitably immune from external frus-
trations. This feature is due to the topological protection from the generalized chiral
symmetry. However, the frequencies of other corner modes (Fig. 15.22c, d) have
obvious shifts, revealing that these crystalline-symmetry-induced modes are sensi-
tive to disorder. The origin of the edge state (Fig. 15.22e) is again attributed to the
so-called Tamm-Shockley mechanism [118, 119].

To figure out why the chiral symmetry-protected (CSP) corner modes emerge at
only obtuse-angled corners instead of acute-angled corners, the topological index
N = |N+ − N−| is introduced, which captures the interplay between the topology
of the bulk Hamiltonian and the defect structure [31, 141]. Here, N counts the
number of topologically stablemodes bound to corners, andN± are integers counting
the number of eigenstates of the chiral symmetry operator �̂ with eigenvalues +1
and −1, respectively. In the zero-correlation length limit d2 → ∞, the breathing
honeycomb lattice is then reduced to isolated dimers (see Fig. 15.23b). As long as
the gap is not closed, the symmetry and the Berry phase remain, as evidenced by the
topological invariant θ . When the system is in the HOTI phase, N+ = N− = 1 in
each edge unit cell and N+ = N− = 2 for acute-angled corners, such that N = 0,
indicating that there may exist non-CSP modes at acute-angled corners or edges.
However, a similar analysis results in totally different outcome for obtuse-angled
corners:N+ = 1 andN− = 2 orN+ = 2 andN− = 1, which leads toN = 1. Thus,
CSP or “zero-energy” modes must exist in each obtuse-angled corner. It is worth
noting that the “zero-energy” corner state appears at acute-angled corners rather
than obtuse-angled corners if the edges of lattice change to zigzag type. This result
also can be fully explained in terms of the topological index N (see Fig. 15.23d, e).

On the other hand, in the limit d1 → ∞ (see Fig. 15.23c, f), we find that there are
no uncoupled vortices. The six corners of the isolated hexagon are equivalent, with
no special edge or corner states.

15.5.3 Micromagnetic Simulations

The micromagnetic simulations are implemented to verify theoretical predictions.
Here, the parallelogram-shaped breathing honeycomb lattice of magnetic vortices
with an armchair edge is considered, as shown in Fig. 15.20b. All material parame-
ters are the same as those for theoretical calculations in Fig. 15.21d. The numerical
packageMUMAX3 [117] is used to simulate the collective dynamics of vortex lattice.

Figure15.24a shows the temporal Fourier spectra of the vortex oscillations at
different positions, with the black, red, blue, and green curves indicating the positions
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Fig. 15.23 The configuration of breathing honeycomb lattices of magnetic vortices with armchair
(a) and zigzag edges (d). (b) and (e) [(c) and (f)] are the corresponding configurations of (a) and
(d) in the zero-correlation length limit d2 → ∞ (d1 → ∞), respectively, which consist of isolated
dimers (hexamer). Green and black balls indicate eigenvalues of+1 and−1 of the chiral-symmetry
operator, respectively. Shaded areas represent the unit cell at different positions. Images are taken
from [137]
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Fig. 15.24 a The temporal Fourier spectra of the vortex oscillations at different positions marked
by dashed black rectangles in Fig. 15.20b. The gyration path for all vortices under excitation fields
with different frequencies, 872 MHz (b), 934 MHz (c), 944 MHz (d), and 948 MHz (e). Since the
oscillation amplitudes of the vortex centers are too small, we have magnified them by 2, 5 or 10
times, as labeled in each figure. Images are taken from [137]
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of acute-angled corner, obtuse-angled corner, edge, and bulk bands, respectively.
It can be seen that around the frequency of 944MHz (948MHz), the spectra for
acute-angled corner (obtuse-angled corner) have an obvious peak, which does not
happen for the spectra for edge and bulk bands. Therefore, these two peaks denote
two different corner states that are located at acute-angled or obtuse-angled corners.
Similarly, the frequency range for bulk and edge states is identified. Further, to
visualize the spatial distribution of the vortex oscillations for different modes, four
representative frequencies are chosen and are marked by green, blue, black, and red
dots: 872MHz for the bulk state, 934MHz for the edge state, 944MHz for the acute-
angled corner state, and 948MHz for the obtuse-angled corner state, respectively.We
then stimulate their dynamics by applying a sinusoidal field to the whole system. The
10 ns gyration paths of all vortices are plotted in Fig. 15.24b–e when the excitation
field drives a steady-state vortex dynamics. The spatial distribution of vorticesmotion
for the bulk and edge states are shown in Fig. 15.24b, c, respectively. We observe
type I corner state with vortex oscillation localized at the acute-angled corner in
Fig. 15.24d, which is in good agreement with the theoretical result. Interestingly, we
note a strong hybridization between the type II and type III corner states, as shown
in Fig. 15.22f, which is because their frequencies are very close to each other and
their wavefunctions have a large overlap (see Fig. 15.22).

15.6 Conclusion and Outlook

We have introduced the concept of topological insulator (both first-order and higher-
order) based on spin texture metamaterials. The emerging multiband chiral edge
modes possessing different handness in skyrmion lattice should be appealing for
designing future skyrmionic topological devices. Besides, the predicted second-order
insulating phase in vortex lattice can facilitate designing new functional devices
based on magnetic solitons. For instance, we can realize a magnetic imaging system
by designing one vortex lattice of the desired shape in the HOTI phase surrounded
by another vortex lattice in the trivial phase [142, 143]. It is noted that the unique
localization property of vortex gyrations strongly depends on the working frequency,
which would motivate us to devise magnetic nano-oscillators with high spatiotempo-
ral resolution. Furthermore, the multiband nature of corner modes (spectrum ranging
from sub GHz to dozens of GHz) is very useful to design broad-band topological
devices. In the present model, we have considered nanodisks with identical radius.
When the translational symmetry is broken, for instance, by introducing Kekulé dis-
tortions to disk sizes, one may realize novel devices supporting robust Majorana-like
zero modes localized in the device’s geometric center [144]. From an experimental
point of view, the fabrication of artificial vortex or skyrmion lattices is readily within
reach of current technology, e.g., electron-beam lithography [78, 79, 145] or X-ray
illumination [146]. By tracking the nanometer-scale vortex orbits using the recently
developed ultrafast Lorentz microscopy technique in a time-resolved manner [147],
one can directly observe the second-order topological corner states.
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