
Chapter 12
Magnetoelastic Waves in Thin Films

Frederic Vanderveken, Florin Ciubotaru, and Christoph Adelmann

Abstract This chapter discusses the physics of magnetoelasticity and magnetoe-
lastic waves in thin films as well as their mathematical description. Magnetoelastic
waves occur as a result of strong coupling between spin waves and elastic waves
in magnetostrictive ferromagnetic media. In a first part, the basic behavior of spin
waves is reviewed in both bulk ferromagnets as well as in thin films. Next, elastic
waves are discussed with a focus on thin films. Then, the interactions between the
elastic and magnetic domains are described and it is shown how this results in the
formation of magnetoelastic waves. The description and themathematical formalism
of magnetoelastic waves in infinitesimally thin films is extended to magnetoelastic
waves in thin films with finite thickness. The dispersion relations and eigenstates
are derived and graphically visualised for such magnetoelastic waves. It is shown
that the behavior strongly depends on the geometry of the system, especially on the
polarization of the spin and elastic waves and the direction of the magnetization of
the magnetostrictive ferromagnetic medium.

12.1 Introduction

The coupling between different physical properties of a system is of great inter-
est for transducer elements. In recent years, the field of spintronics, which includes
applications of magnetism and magnetic materials in electronics, has gained enor-
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mous attention, which has led to the introduction of commercial magnetic memory
technologies. However, the efficient energy conversion from the electric to the mag-
netic domain and vice versa still remains challenging. Current magnetic memories
are based on spin-transfer or spin-orbit torques to switch the magnetization [1, 2];
however, these mechanisms depend on the current density in the device and require
typically energies on the order of (10 s of) femtojoules to reverse themagnetization of
a nanomagnet, despite amuch lower intrinsic energy barrier of the order of attojoules.
While femtojoule switching energies are promising for nonvolatile memories, they
are not competitive in other spintronic applications, such as spintronic logic circuits.
Therefore, much research has been devoted to developing more efficient transducers
between electric and magnetic subsystems of spintronic devices.

One of the most promising devices to efficiently couple electric and magnetic
properties in a spintronic system is the magnetoelectric transducer. Magnetoelectric
transducers consist of composite materials, which comprise piezoelectric and mag-
netostrictive layers [3–7]. Applying a voltage to the piezoelectric layer(s) leads to
the formation of strain in the compound. This strain introduces an effective magnetic
anisotropy field in the magnetostrictive ferromagnetic component, leading to an cou-
pling betweenvoltage (electric field) andmagnetization. The coupling is bidirectional
since rotating the magnetization of a magnetostrictive layer also induces strain in the
compound and consequently a polarization in the piezoelectric. Hence, such mag-
netoelectric schemes provide indirect coupling between electricity and magnetism
mediated by elastodynamics. Since generating large electric fields in the piezoelec-
tric layers can be energy efficiency, capacitive magnetoelectric transducers promise
a much higher energy efficiency than their current-based counterparts.

The coupling scheme of a magnetoelectric transducer can be split into two parts,
(i) piezoelectric coupling between electric and elastic domains, and (ii) magnetostric-
tive coupling between elastic and magnetic domains. Here, we investigate the second
part and focus especially on the behavior at GHz frequencies that are relevant for fast
electronic devices. In this frequency range, elastic waves (hypersound) interact with
magnetic waves (spin waves), forming hybrid magnetoelastic waves under resonant
conditions. The physics of the magnetoelastic resonance and the resulting magne-
toelastic waves have been described in bulk and infinitesimally thin films decades
ago [8–17]. However, modern applications of magnetoelastic waves in magneto-
electric and spintronic devices are based on nm-thick films. The finite thickness of
these magnetic films alters the dynamic dipolar field with respect to infinitesimally
thin films. Consequently, also the magnetoelastic coupling and the behavior of the
magnetoelastic waves change due to the finite film thickness. In this chapter, the
magnetoelastic theory and equations are extended to describe magnetoelastic waves
in thin films of finite thickness.

The chapter begins by introducing basic magnetic interactions and by review-
ing the properties of spin waves in bulk and thin film ferromagnets. The waves are
described by a general formalism to calculate the eigensystem. The effect of the
finite film thickness is then incorporated in this formalism. In the second part, linear
elasticity and elastic waves in thin films are discussed. In the third part, the mag-
netoelastic interactions together with the combination of the magnetodynamic and
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elastodynamic equations ofmotion are described. Finally, the fundamental properties
of magnetoelastic waves in thin films with finite thickness are derived and illustrated
both analytically and graphically for different magnetization orientations.

12.2 Spin Waves

Spin waves are collective excitations of the magnetization in magnetic materials.
The properties of spin waves are strongly affected by the geometry and the dominant
interactions inside the material. Hence, the relevant magnetic interactions will be
shortly introduced, followed by the derivation of the properties of spin waves in bulk
and thin film ferromagnets using the plane wave method.

12.2.1 Magnetic Interactions and Magnetization Dynamics

The magnetization dynamics in a ferromagnet can be described by the Landau–
Lifshitz–Gilbert (LLG) equation [18, 19]

dM
dt

= −γμ0(M × Heff) + α

Ms

(
M × dM

dt

)
(12.1)

with γ the absolute value of the gyromagnetic ratio (s−1T−1),μ0 the vacuum perme-
ability (TmA−1), α the Gilbert damping constant, Ms the saturation magnetization
(Am−1), and Heff the effective magnetic field (Am−1). The first term in the LLG
equation describes the precession of the magnetization around the effective magnetic
field. The second term in the LLG equation leads to the damping of themagnetization
precession towards the direction of the effective magnetic field.

Multiple magnetic interactions and effects exist that influence the magnetization
dynamics such as the exchange interaction, dipolar interaction, magnetocrystalline
effect, magnetoelastic effect, etc.. It is possible to derive a magnetic field that corre-
sponds to every interaction via

H = − 1

μ0

δU (M)

δM
and U (M) =

∫
V

E(M)dV (12.2)

with E(M) the corresponding energy density of that interaction. The total effective
magnetic field Heff , which is governing the magnetization dynamics in the LLG
equation, is given by the sum of all individual magnetic fields, including externally
applied fields. Below, the dipolar and exchange interaction are explained in more
detail since these lead to spin waves. Fully elaborated discussions of spin waves and
their properties can be found in [16, 20, 21].
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The dipolar interaction describes the direct interaction between magnetic dipoles.
Following (12.2), the interaction can be represented by a dipolar magnetic field. This
field is found by solvingMaxwell’s equations. For spinwaves atGHz frequencies, the
magnetostatic approximation is valid since the wavelengths of such spin waves are
several orders ofmagnitude shorter than those of electromagnetic waves in vacuum at
the same frequency, i.e. k0 � ksw with k0 thewavenumber of an electromagneticwave
in vacuum and ksw the wavenumber of a spin wave. This approximation implies that
the change in electric field over time, ∂E/∂t , has a negligible effect on the generation
of themagnetic field. Assuming further that no free charges and no electrical currents
are present inside the material, Maxwell’s equations become

∇ · E = 0 (12.3)

∇ · B = 0 (12.4)

∇ × E = −∂B
∂t

(12.5)

∇ × H = 0 (12.6)

with B = μ0(H + M) the magnetic induction (T). Hence, in the magnetostatic limit
(as in the electrostatic limit), electric and magnetic fields are decoupled from each
other. Equation (12.6) indicates that the curl of the magnetic field equals zero. This
allows for the definition of a magnetic scalar potential φ as

Hdip = −∇φ . (12.7)

Using (12.4), the definition of the magnetic scalar potential and the magnetic induc-
tion B, one finds the magnetic Poisson relation

∇2φ = ∇ · M . (12.8)

This relation indicates that the divergence of the magnetization ∇ · M, also called
the magnetic charge, acts as a source of the magnetic scalar potential and hence as a
source of the dipolar field. Two types of magnetic charges can be identified: first, a
surface charge, originating from surfaces between two materials with different mag-
netization magnitude or direction. Secondly, a magnetic volume charge, originating
from the change of the magnetization in the bulk of a ferromagnetic material. Both
surface and volume magnetic charges generate dipolar fields. The field outside the
magnetic material is called the stray field and the field inside the material is called
the demagnetization field.

By solving the magnetic Poisson equation (12.8) and using (12.7), it is possible
to derive a general expression for the demagnetization field given by [22, 23]

Hdemag = 1

4π

∫
V ′

D̄(r − r′)M(r′)dV ′ (12.9)
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with V ′ the volume of the magnetic material and D̄(r − r′) the tensorial magneto-
static Green’s function given by [16]

D̄(r − r′) = −∇r∇r′
1

|r − r′| . (12.10)

For uniform magnetization, the demagnetizing field is only generated by surface
charges, and (12.9) reduces to

Hdemag = 1

4π
M

∫
V ′

D̄(r − r′)dV ′ = −N̄ (r)M (12.11)

with N̄ (r) the demagnetization tensor, which only depends on the shape of the
magnetic volume. The anisotropy introduced by the demagnetization field is thus
often called the shape anisotropy.

The secondmagnetic interaction necessary to describe spin waves is the exchange
interaction between individual magnetic dipoles. This interaction gives rise to ferro-
magnetic coupling below the Curie temperature [24]. The exchange energy density
is given by

Eex = Aex

M2
s

[
(∇Mx)

2 + (∇My)
2 + (∇Mz)

2
]

(12.12)

with Aex the exchange stiffness constant (J/m). Following (12.2), the exchange field
is

Hex = 2Aex

μ0M2
s

�M = l2ex�M ≡ λex�M (12.13)

with � the Laplace operator and lex the exchange length (m). In ferromagnets,
the exchange interaction tries to keep the individual magnetic moments parallel.
The exchange length lex characterizes the competition between the dipolar and the
exchange interaction [21, 25]. At length scales below the exchange length lex, the
exchange interaction is dominant and magnetic moments align parallel with each
other. At length scales above the exchange length, the dipolar interaction is dom-
inant, and it becomes possible for domains to form. Analogously, the properties
of spin waves with short wavelengths are dominated by the exchange interaction,
whereas the dipolar interaction strongly affects the properties of spin waves with
large wavelengths.
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12.2.2 Spin Waves in the Bulk Ferromagnets

Consider a ferromagnetic material with static magnetic field Hext applied in the
z-direction. In absence of any anisotropy, the external field forces the equilibrium
magnetization along the z-direction. In such a system, stable wave-like excitations
exist, which can be described by weak perturbations of the equilibrium magnetiza-
tion. For a plane wave, the magnetization at a specific point in space and time can
be written as

M(r, t) = M0 + m(r, t) =
⎡
⎣ 0

0
M0

⎤
⎦ +

⎡
⎣mx

my

0

⎤
⎦ ei(ωt+k·r) (12.14)

with ω the angular frequency of the wave (rad s−1), and k the wavevector with norm
||k|| = k = 2π/λ (rad m−1) and direction perpendicular to the phase front. For weak
perturbations, i.e. ||m|| � M0, m(r, t) describes a wave-like perturbation which is
called a spin wave.

In (12.14), the z-component of the dynamic magnetization, mz, is neglected.
This approximation is only valid if the perturbations are weak. Since the angular
momentum, i.e. the norm of the magnetization vector, is conserved, the z-component
is given by m2

z = M2
0 − m2

x − m2
y. Therefore, the mz component can be considered

as a second order perturbation and is neglected in the remainder of this chapter.
For a uniform bulk material, the dipolar and exchange fields that correspond to

the perturbed magnetization state can be found via (12.9) and (12.13), respectively,
and are given by [26]

hdip(r, t) = −k · m(r, t)
||k||2 k = − 1

k2

⎡
⎣ k2x kxky 0
kxky k2y 0
0 0 0

⎤
⎦m(r, t) (12.15)

and

hex(r, t) = −λexk
2m(r, t) . (12.16)

The wavevector k = [kx , ky, kz] is determined by a single parameter θ because of
the axial symmetry around the magnetization vector. Hence, the wavevector can be
written as k = k[sin(θ), 0, cos(θ)] with θ the angle between the magnetization and
the propagation direction of the wave. With this substitution, the dipolar field can be
simplified to

hdip(r, t) = −
⎡
⎣sin2(θ) 0 0

0 0 0
0 0 0

⎤
⎦m(r, t) . (12.17)

The magnetization dynamics corresponding to the spin wave is found by solving
the LLG equation (12.1) including the perturbationm(r, t). Neglecting the damping



12 Magnetoelastic Waves in Thin Films 293

term, the LLG equation becomes

d[M0 + m(r, t)]
dt

= −γ0[(M0 + m(r, t)) × (Hext + hdip(r, t) + hex(r, t))]
(12.18)

with γ0 = γμ0. Terms quadratic in m can be neglected because the perturbation is
assumed to be weak, which results in the linearized LLG equation given by

iωm(r, ω) = −γ0[M0 × (hex(r, ω) + hdip(r, ω)) + m(r, ω) × Hext] . (12.19)

Rearranging the terms and rewriting the system in matrix notation leads to

[
ωbx −iω
iω ωby

] [
mx

my

]
= 0 (12.20)

with

ωbx = ω0 + ωM(λexk
2 + sin2(θ)) (12.21)

ωby = ω0 + ωMλexk
2 (12.22)

ω0 = γ0Hext, andωM = γ0Ms. The parametersωbx andωby are related to the effective
magnetic fields that interact with the x- and y-components of the dynamic magneti-
zation, respectively.

The properties of the stable perturbations of themagnetization, i.e. the spin waves,
can be extracted by analyzing the eigenvalues and corresponding eigenstates of
(12.20). Equation (12.20) has nontrivial solutions only if its determinant is zero.
This condition can be utilized to obtain the dispersion relations of the spin waves.
Considering only positive frequencies, the spin wave angular frequency is given by

ω = √
ωbxωby =

√
(ω0 + ωMλexk2)[ω0 + ωM(λexk2 + sin2(θ))] . (12.23)

This equation is the dispersion relation for spin waves in bulk ferromagnets. It is also
called the Herring–Kittel equation.

Equation (12.23) indicates that there is a nonzero minimum frequency, above
which resonant magnetization dynamics are obtained. Exciting a ferromagnet at fre-
quencies below the spinwave resonance generates evanescentwaves. If the excitation
source is removed, these waves disappear after a certain time (their lifetime) even in
absence of intrinsic damping. Moreover, they do not propagate and thus do not con-
tribute to steady state wave patterns at distances from the excitation source that are
much larger than their wavelength. However, they are important to satisfy boundary
conditions and in transient regimes.

The eigenstates corresponding to the eigenvalues of the linearized LLG equation
are
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m(k) = N√
ωbxωby

[
iωby√
ωbxωby

]
(12.24)

with N a normalization constant. Note that ωbx and ωby both depend on k and thus,
via the dispersion relation, also on the frequency. The eigenstate indicates that the
precession of the magnetization (the polarization of the wave) is always clockwise
in the direction of propagation. Furthermore, the precession of the magnetization is
generally elliptical with an ellipticity equal to

εb = |mx|
|my| = ωby√

ωbxωby
. (12.25)

In the limit of small k, the exchange interaction can be neglected since λexk2 � 1,
and the dispersion relation becomes ω =

√
ω0(ω0 + ωM sin2(θ)). This dispersion

relation characterizes dipolar spin waves that are degenerate. Hence, in this limit,
multiple spin waves with different wavelengths exist at the same frequency. For
θ = 0, the dispersion relation becomes ω = ω0 and the effect of the dipolar self-
interaction disappears. In this case, the dynamic magnetization components only
interactwith the external field Hext. For θ = π/2, the interaction between the dynamic
dipolar field and the spin wave is strongest. In this case, the dispersion relation is
ω = √

ω0(ω0 + ωM). Therefore, the spin wave frequencies in the dipolar regime are
limited to a specific interval

ω0 ≤ ω ≤ √
ω0(ω0 + ωM) . (12.26)

On the other hand, in the limit of large k, when λexk2 � 1, a quadratic dispersion
relation is obtained

ω = ωMλexk
2 . (12.27)

This dispersion characterizes spin waves for which the exchange interaction is dom-
inant. It is worth noting that these exchange spin waves are isotropic with respect to
the propagation direction. By contrast, dipolar spin waves are anisotropic because
they depend on the propagation direction via the parameter θ .

12.2.3 Spin Waves in Ferromagnetic Thin Films

In the previous section, the properties of spin waves in an infinite bulk medium were
discussed. In this section, we introduce boundaries in the ferromagnetic medium and
derive the properties of spin waves in ferromagnetic thin films of finite thickness.

Consider an infinitemagnetic thin filmof thickness d with its normal parallel to the
y-direction. In the previous section, electrical currents were neglected in Maxwell’s
equations, which is only a good approximation for ferromagnetic insulators. How-
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ever, for thin films, this approximation is even valid for conductors as long as the
thickness of the film is sufficiently small with respect to the skin depth of the fer-
romagnet [27]. It should also be noted that in the derivations below, the dynamic
magnetization and the fields are averaged over the thickness of the film and are thus
uniform in the y-direction. This is a valid approximation when the wavelength is
much larger than the thickness of the film, i.e. kd � 1. If this is not the case, it
is possible for thickness modes to arise which have varying amplitude along the
thickness [16]. These thickness modes will however not be considered here.

The magnetization is again defined as in (12.14) with the magnetization satu-
rated in-plane along an external field Hext in the z-direction. The components of the
dynamic magnetization are in the x- and y-direction and form a plane wave, the spin
wave. The exchange field is not affected by the thin film boundaries and is given by
(12.13). As indicated by (12.8), the boundaries generate magnetic surface charges
and therefore act as a source of the dipolar field. Therefore, in contrast with the
exchange field, the dipolar field is affected by the boundaries.

For a thin filmof finite thickness, the dipolar field can be approximated by [28–30]

hdip(r, t) = −[P k · m
||k||2 k + (1 − P)(n · m)n] (12.28)

= −
⎡
⎣ P sin2(θ) 0 P sin(θ) cos(θ)

0 1 − P 0
P sin(θ) cos(θ) 0 P cos2(θ)

⎤
⎦m(r, t) (12.29)

with

P = 1 − 1 − e−kd

kd
, (12.30)

k2 = k2x + k2z , as well as θ the angle between the static magnetization M0 and
wavevector k. In the limit of an infinitesimally thin film, this simplifies to

lim
d→0

hdip(r, t) = −
⎡
⎣0
1
0

⎤
⎦m(r, t) (12.31)

and thus only the out-of-plane magnetization component contributes to the spin
wave dipolar field. Hence, for a thin film of finite thickness, the spin wave behavior
is markedly different as compared to a thin film of infinitesimal thickness.

The linearized LLG equation (12.19) with the modified dipolar field in (12.28)
can then be written as

[
ωfx −iω
iω ωfy

] [
mx

my

]
= 0 (12.32)

with
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ωfx = ω0 + ωM(λexk
2 + P sin2(θ)) (12.33)

ωfy = ω0 + ωM(λexk
2 + 1 − P) . (12.34)

Again, nontrivial solutions of this equation only exist when the determinant of the
matrix is zero. This condition leads to the dispersion relation of spin waves in thin
ferromagnetic films, given by [30, 31]

ω = √
ωfxωfy =

√
(ω0 + ωMλexk2)(ω0 + ωMλexk2 + ωMFm) (12.35)

with

Fm = 1 − P cos2(θ) + ωMP(1 − P) sin2(θ)

ω0 + ωMλexk2
. (12.36)

The corresponding eigenstate has the same form and properties as the eigenstate of
spin waves in bulk ferromagnets and is given by

m(k) = N√
ωfxωfy

[
iωfy√
ωfxωfy

]
(12.37)

with N a dimensionless normalization constant.
In the limit of large wavevectors, i.e. the exchange limit λexk2 � 1, the dispersion

relation reduces to (12.27) that was derived for bulk magnetic media. However, in
the dipolar limit of small k-values, λexk2 � 1, the dispersion relation differs from
that in bulk ferromagnetic media. Again, two limiting cases are found for θ = 0 and
θ = π/2.

For λexk2 � 1 and θ = 0, the dispersion relation becomes

ω2
BVW = ω0

(
ω0 + ωM

1 − e−kd

kd

)
. (12.38)

The propagation direction of these waves is parallel to the direction of the static equi-
librium magnetization. Their dispersion relation is plotted in Fig. 12.1 for a 30nm
thick Ni film with Ms = 480 kA/m [32], Aex = 8 pJ/m [33], and an external mag-
netic field of μ0Hext = 50mT. According to the dispersion relation, the frequency
decreases with increasing wavenumber, and thus the group velocity, which is defined
asvg = ∂ω/∂k, is negative.On theother hand, the phase velocityvp = kω/k2,which
describes the velocity and direction of the phase front, is positive. The energy flow
of a wave is always parallel to the group velocity, and thus in this geometry, the
energy flow and the group velocity are antiparallel to the wavevector and the phase
velocity. For this reason, such waves are called backward volume waves (BVWs). As
shown in Fig. 12.1, when the exchange interaction becomes non-negligible at larger
wavevectors, the dispersion relation shifts to higher frequencies. This effect increases
for higher k-values, finally reaching the limiting case of exchange-dominated spin
waves.
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Fig. 12.1 Spin wave dispersion according to (12.35) for a 30nm thick Ni film. Material parameters
areMs = 480kA/m and Aex = 8pJ/m, whereas the external magnetic field isμ0Hext = 50mT. The
solid red and blue lines correspond to dispersion relations of dipolar and dipolar–exchange surface
spin waves, respectively. The dashed red and blue lines correspond to dispersion relations of dipolar
and dipolar–exchange backward volume spin waves, respectively

In the dipolar limit (λexk2 � 1), the dispersion relation for θ = π/2 becomes

ω2
SW = ω0(ω0 + ωM) + ω2

M

(
1 − 1 − e−kd

kd

)
1 − e−kd

kd
. (12.39)

These waves are called surface waves since their amplitude decays exponentially
away from the surface. However, if the film is sufficiently thin, the magnetization can
be considered uniform over the film thickness as mentioned earlier. The dispersion
relations of spin waves both in the dipolar approximation and when the dipolar and
exchange interaction are simultaneously present are plotted in Fig. 12.1. The group
velocity of these waves is positive and thus points in the same direction as the phase
velocity.

It should also bementioned that spinwaves are accompanied by a dynamic electric
field. This electric field e is obtained from Maxwell’s equations (12.3) and (12.5)
which can be rewritten as

∇ · e = 0 (12.40)

∇ × e = −iμ0ω(hdip + m) = −iμ0ω
(
N̄dip + Ī

)
m (12.41)

with Ī the identity matrix. Equation (12.41) indicates that both the dynamic dipolar
field and the dynamic magnetization contribute to the generation of the dynamic
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electric field. However, in the magnetostatic limit when k0 � k, the effect of the
dipolar field is much smaller than that of the dynamic magnetization. Taking this
into account and solving Maxwell’s equations for plane waves results in

e = −μ0ω

k2
k × m (12.42)

for the dynamic electric field [20].
For spin waves at GHz frequencies in ferromagnetic media, the energy stored in

the electric field is much smaller than the energy stored in the magnetic system [20].
Therefore, the magnetostatic waves can be considered as “magnetization waves”.
Note that this applies to spin waves in both the dipolar and exchange regime. In
both cases, at GHz frequencies, the wavelength of a spin wave is much shorter
than the wavelength of an electromagnetic wave in vacuum and the magnetostatic
approximation is thus valid.

All calculations in this section are only valid at GHz frequencies in the magne-
tostatic limit. At higher frequencies near the THz regime, the spin wave wavelength
becomes comparable to the wavelength of the electromagnetic wave in vacuum,
ksw ≈ k0, and the magnetostatic approximation does not longer hold. At these higher
frequencies, the influence of the time-varying electric field alters the wave behavior.
This can be seen by considering both generation mechanisms of the magnetic field.
As mentioned earlier, the dipolar magnetic field can be generated by both varying
electric fields over time and by varying magnetization over space. The generation
mechanism via the time varying electric field is proportional to the regular electro-
magnetic wave wavenumber k0, whereas the generation mechanism via the magneti-
zation is proportional to the magnetization wavenumber ksw. Hence, the mechanism
which governs the highest wavenumber dominates the generation of the magnetic
dipolar field.

In the GHz regime and magnetostatic limit k0 � ksw, the dipolar field generation
is thus dominated by the variation of themagnetization over space. However, at much
higher frequencies near the THz regime, both wavenumbers are of the same order
and thus both generation mechanisms are of similar magnitude. This means that the
generation of the magnetic dipolar field by the time varying electric field cannot be
neglected anymore.

The frequency, for which themagnetostatic approximation breaks down,ωcrit , can
be found by relating the wavenumbers to the frequency via the dispersion relations.
The crossing point of the spin-wave dispersion relation, (12.27), with the linear
electromagnetic dispersion relation, ω0 = ck0, determines ωcrit and is given by

ωcrit = c2

ωMλex
(12.43)

with c the speed of light in vacuum. For frequencies ω � ωcrit , the magnetostatic
limit is valid and regular spin waves are obtained. For frequencies above ωcrit , spin
waves behave similarly to classical electromagnetic waves with a considerable frac-
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tion of energy stored in the dynamic electric field. As a result, besides the dipolar
and exchange regime, there also exist a regular electromagnetic regime at higher
frequencies, which corresponds to electromagnetic waves with a linear dispersion
relation.

12.3 Elastic Waves

In the previous section, the properties of spin waves in ferromagnetic media, both in
bulk materials and in thin films, have been discussed. In this section, we turn to the
properties of wave-like oscillations of the displacement, i.e. elastic waves. We start
with a short derivation of the fundamental equations of linear elasticity. Then, the
different types of elastic waves and their characteristics are described.

12.3.1 Elastodynamic Equations of Motion

The equation of motion for the displacement u is given by

ρ
d2u
dt2

= ∇ · σ̄ + fb (12.44)

with ρ the mass density (kgm−3), σ̄ the two dimensional stress tensor with compo-
nents σij (Nm−2), and fb the body forces acting on the material (Nm−3). For linear
elastic materials, the stress tensor is related to the strain tensor via Hooke’s law

σ̄ = ¯̄C : ε̄ or σij =
3∑

k=1

3∑
l=1

Cijklεkl . (12.45)

Here, ¯̄C is the fourth-order stiffness tensor and ε̄ is the second-order strain tensor.
The symmetries of the stiffness tensor allows to rewrite Hooke’s law in reduced
dimensionality [34, 35] as

⎡
⎢⎢⎢⎢⎢⎢⎣

σ11

σ22

σ33

σ12

σ13

σ23

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

symm. C55 C56

C66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ε11
ε22
ε33
2ε12
2ε13
2ε23

⎤
⎥⎥⎥⎥⎥⎥⎦

. (12.46)
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This is called the Voigt notation for Hooke’s law. Important to note is the notation
for the shear strain elements. In some works, this is given by the engineering strains
γij = 2εij which gives a factor of 2 difference with the real shear strains.

Equation (12.46) indicates that a material with a nonsymmetric (e.g. triclinic)
crystal structure is described by 21 independent stiffness coefficients [36, 37]. In a
crystal systemwith a certain symmetry, the number of independent stiffness constants
can be greatly reduced. For example, only three independent stiffness constants are
required to describe cubic crystal systems. The stiffness tensor then becomes

C̄cubic =

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C12 0 0 0
C11 C12 0 0 0

C11 0 0 0
C44 0 0

symm. C44 0
C44

⎤
⎥⎥⎥⎥⎥⎥⎦

. (12.47)

In this case, the residual anisotropy can be quantified by the Zener factor A, which
is given by

A = 2C44

C11 − C12
. (12.48)

A Zener factor of 1 indicates fully isotropic elastic properties. In this isotropic limit,
only two independent constants are necessary to describe the stiffness tensor. Note
that different combinations of parameters can be used to represent the isotropic case,
such as Young’s modulus and the Poisson ratio, Young’s modulus and the shear
modulus, or the Lamé moduli. All descriptions are fully equivalent [37, 38].

For small displacements, the relation between the strain and displacement is given
by [34, 36]

ε̄ = 1

2

(∇u + (∇u)T − ∇u (∇u)T
) ≈ 1

2

(∇u + (∇u)T
)

. (12.49)

Combining (12.44), (12.47), and (12.49) results in the elastodynamic equations of
motion with the displacement as the only variable. For a material with cubic sym-
metry, the equations are given by

ρ
∂2ux
∂t2

= C11
∂2ux
∂x2

+ C44

(
∂2ux
∂y2

+ ∂2ux
∂z2

)
+ (C12 + C44)

(
∂2uy
∂x∂y

+ ∂2uz
∂x∂z

)
+ fx

ρ
∂2uy
∂t2

= C11
∂2uy
∂y2

+ C44

(
∂2uy
∂x2

+ ∂2uy
∂z2

)
+ (C12 + C44)

(
∂2ux
∂x∂y

+ ∂2uz
∂y∂z

)
+ fy

ρ
∂2uz
∂t2

= C11
∂2uz
∂z2

+ C44

(
∂2uz
∂x2

+ ∂2uz
∂y2

)
+ (C12 + C44)

(
∂2ux
∂x∂z

+ ∂2uy
∂y∂z

)
+ fz .

(12.50)
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Note that the above equations do not contain any damping terms and the system
is assumed to be lossless. In practice, materials always possess some degree of
viscoelasticity. In this case, the energy in the elastic wave is lost by different mecha-
nisms such as phonon–phonon scattering due to the anharmonicity of the vibrational
potential or the scattering of phonons by impurities. This can be taken into account
by considering complex stiffness coefficients [37, 38]. However, in the following,
perfect elasticity without loss is assumed for simplicity.

12.3.2 Elastic Waves in Thin Films

In this section, we introduce the properties of elastic waves in an idealized thin film
with free surfaces. This corresponds to an isolated thin film in vacuum in which
the elastodynamics is perfectly confined inside the film. The perfect confinement
is achieved by large acoustical impedance mismatch between the film and vacuum.
Therefore, the model also approximately represents a thin film surrounded by mate-
rials with strongly different acoustic impedances, e.g. a film with a free top surface
and a large acoustic impedance mismatch with the supporting substrate. For more
realistic approaches, appropriate stress and velocity boundary conditions need to be
applied at the interfaces. In the next section, when the magnetoelastic interaction is
included, it is demonstrated that the magnetization dynamics also generate elastic
stresses, which further complicates the description at the boundaries. In such cases,
an analytical treatment of the system is difficult and accurate studies require numer-
ical simulations, e.g. by finite element methods. Nonetheless, the treatment of an
idealized system presented here provides analytical insights in the basic elastic (and
magnetoelastic) behavior. This insight will help in the understanding of the magne-
toelastic waves in the next section and can be used in the future to interpret numerical
simulations of more realistic systems.

For the case of thin films with free surface boundary conditions, the variation
of the displacement along the thickness of the film is much smaller than the in-
plane variation. Hence, the derivative of the displacement along the film surface
normal can be neglected with respect to the derivatives in the in-plane directions,
i.e. ∂u/∂y � ∂u/∂x , ∂u/∂z. The elastodynamic equations of motion for a thin film
with a surface normal in the y-direction are then given by

ρ
∂2ux
∂t2

= C11
∂2ux
∂x2

+ C44
∂2ux
∂z2

+ (C12 + C44)
∂2uz
∂x∂z

ρ
∂2uy
∂t2

= C44

(
∂2uy
∂x2

+ ∂2uy
∂z2

)

ρ
∂2uz
∂t2

= C11
∂2uz
∂z2

+ C44
∂2uz
∂x2

+ (C12 + C44)
∂2ux
∂x∂z

.

(12.51)
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The above set of linear differential equations has wave-like solutions of the form [15,
37]

u(r, t) =
⎡
⎣ux
uy
uz

⎤
⎦ ei(ωt+k·r) . (12.52)

To determine the dispersion relation of elastic waves in thin films, (12.52) is substi-
tuted into the wave equations (12.51). Rewriting the system in matrix notation and
considering that the wavevector k points along the x-direction, results in

⎡
⎣ω2 − v2l k

2 0 0
0 ω2 − v2t k

2 0
0 0 ω2 − v2t k

2

⎤
⎦

⎡
⎣ux
uy
uz

⎤
⎦ = 0 (12.53)

with vl = √
C11/ρ the velocity of the longitudinal wave, vt = √

C44/ρ the velocity
of the transversal wave, and ω the angular frequency of the elastic wave. As a result,
three independent elastic waves are found, which correspond to the three components
of the displacement vector.

When only the ux component is nonzero, longitudinal waves are formed since
the displacement oscillation is in the same direction as the wavevector. This wave is
also called a compressional or dilational wave. The dispersion relation, ωl(k), of this
wave is easily found from (12.53) to beωl = vlk [15, 36, 37]. The dispersion relation
is linear, and thus the group velocity vl equals the phase velocity, independently of
frequency.

Waves with nonzero displacement components uy and uz oscillate perpendicular
to the propagation direction. Therefore, thesewaves are transversal waves, also called
shear or rotational waves. Their dispersion relation is also linear and equals ωt = vtk
[15, 36, 37]. The phase and group velocities are thus both equal to vt . It is further
possible to classify these waves based on their polarization with respect to the film
surface. The uy component corresponds to shear vertical (SV) waves and the uz
component corresponds to shear horizontal (SH) waves. It is important to note that
the velocity of the longitudinal wave is always larger than the velocity of the shear
waves because C11 > C44 [36, 37].

The energy of elastic waves oscillates between the elastic potential energy and
the kinetic energy. The elastic energy density is given by [15, 36, 37]

Eel = 1

2
σ̄ : ε̄ = 1

2
Ci jklεi jεkl = 1

2

3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

Ci jklεi jεkl (12.54)

or in Voigt notation

Eel = 1

2
σ̄ : ε̄ = 1

2
Ci jε jεi , (12.55)

whereas the kinetic energy density is given by
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Ekin = ρ||v||2
2

with v = ∂u
∂t

. (12.56)

Hence, for an elastic wave, the total energy is Etot = Eel + Ekin and Eel = Ekin.

12.4 Magnetoelastic Waves

In the two previous sections, magnetic and elastic waves in thin films were stud-
ied. This section connects the two previous sections by introducing magnetoelastic
interactions. In the first part of this section, the magnetoelastic interaction terms are
described, which couple magnetic and elastic waves. In the second part, the proper-
ties of these magnetoelastic waves are derived and explained. Magnetoelastic waves
have been studied in detail in bulk materials [8–10], at free surfaces [39–41], and in
infinitesimally thin films [11, 12]. This section reviews the most important aspects
of these magnetoelastic waves together with the corresponding equations. Beyond
this review, we subsequently derive the influence of finite film thickness on the prop-
erties of the magnetoelastic waves by taking into account the appropriate dipolar and
exchange fields.

12.4.1 Magnetoelastic Interactions

Magnetoelastic interactions can be separated in two different effects: firstly, the influ-
ence of the direction of the magnetization on the internal strain in a ferromagnet,
called the magnetostrictive effect; and secondly, the effect of strain on the magneti-
zation state, called the Villari effect. If both effects are considered simultaneously,
one speaks about magnetoelasticity.

12.4.1.1 Magnetostriction

Magnetostriction describes how the magnetization affects the elastic behavior of
a material. Therefore, in a magnetostrictive material, different magnetization states
result in different strain states. For amaterialwith cubic symmetry, themagnetoelastic
energy density is given by [8]

Emel = B1

M2
s

(
εxx

(
M2

x − 1

3

)
+ εyy

(
M2

y − 1

3

)
+ εzz

(
M2

z − 1

3

))

+ 2B2

M2
s

(
εxyMxMy + εyzMyMz + εzxMxMz

) (12.57)
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with B1 and B2 the linear isotropic and anisotropic magnetoelastic coupling con-
stants, respectively (Jm−3). It is worth noting that the magnitude of the saturation
magnetization has no influence on themagnetoelastic energy or strain state, which are
rather determined by the orientation of the magnetization vector. The magnetization
orientation is defined by the vector

ζ =
⎡
⎣ζx

ζy
ζz

⎤
⎦ = 1

Ms

⎡
⎣Mx

My

Mz

⎤
⎦ . (12.58)

Substituting this into (12.57) leads to

Emel =B1

(
εxx

(
ζ 2
x − 1

3

)
+ εyy

(
ζ 2
y − 1

3

)
+ εzz

(
ζ 2
z − 1

3

))

+ 2B2
(
εxyζxζy + εyzζyζz + εzxζxζz

)
.

(12.59)

Based on this expression for the magnetoelastic energy density, it is possible to
calculate the magnetostrictive body force, which is given by

fmel = ∇ · σ̄mel = ∇ ·
(
dEmel

dεij

)
, (12.60)

leading to

fmel = 2B1

⎡
⎢⎢⎢⎢⎣

ζx
∂ζx
∂x

ζy
∂ζy

∂y

ζz
∂ζz
∂z

⎤
⎥⎥⎥⎥⎦ + B2

⎡
⎢⎢⎢⎢⎣

ζx

(
∂ζy

∂y + ∂ζz
∂z

)
+ ζy

∂ζx
∂y + ζz

∂ζx
∂z

ζy

(
∂ζx
∂x + ∂ζz

∂z

)
+ ζx

∂ζy

∂x + ζz
∂ζy

∂z

ζz

(
∂ζx
∂x + ∂ζy

∂y

)
+ ζx

∂ζz
∂x + ζy

∂ζz
∂y

⎤
⎥⎥⎥⎥⎦ . (12.61)

There are three important parameters that determine the strength of themagnetostric-
tive body force: themagnetoelastic coupling constants, themagnetization orientation,
and the gradient of the magnetization orientation.

The magnetostrictive body force affects the elastodynamics and thus needs to be
added to the elastodynamic equation (12.44) in magnetostrictive media. This allows
for the analytical description of the influence of the magnetization direction on the
elastodynamics and the properties of (magneto-)elastic waves.

Another important quantity is the magnetostrictive strain, which is the additional
strain originating from the magnetostrictive effect. For a material with cubic sym-
metry, the magnetostrictive strain is given by [24, 42, 43]

ε̄mel = 3

2

⎡
⎢⎣

λ100
(
ζ 2
x − 1

3

)
λ111ζxζy λ111ζxζz

λ111ζyζx λ100

(
ζ 2
y − 1

3

)
λ111ζyζz

λ111ζzζx λ111ζzζy λ100
(
ζ 2
z − 1

3

)

⎤
⎥⎦ . (12.62)
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with λ100 and λ111 the magnetostriction coefficients representing the maximummag-
netostrictive strain for fully-saturated magnetization along the 〈100〉 or 〈111〉 crys-
tallographic directions, respectively.

The magnetostriction coefficients are related to the magnetoelastic coupling con-
stants by

λ100 = 2

3

B1

C12 − C11
, λ111 = − B2

3C44
. (12.63)

Hence, it is also possible to express the magnetostrictive body force as a function of
the magnetostrictive strain via

fmel = ∇ · σ̄mel = ∇ ·
( ¯̄C : ε̄mel

)
. (12.64)

Note that for an isotropic material, λ100 = λ111 = λeq and B1 = B2 = B.

12.4.1.2 The Villari Effect

The Villari effect describes how elastic strain affects the magnetization state and is
also called the inverse magnetostrictive effect. Strain in a magnetostrictive material
results in an effective magnetoelastic field, which can be derived from (12.2) and
(12.57). For a material with cubic symmetry, the magnetoelastic effective field is

Hmel = − 1

μ0

dEmel

dM
= − 2

μ0Ms

⎡
⎣B1εxxζx + B2(εxyζy + εzxζz)

B1εyyζy + B2(εxyζx + εyzζz)

B1εzzζz + B2(εzxζx + εyzζy)

⎤
⎦ (12.65)

with ζi the normalized magnetization components, as defined by (12.58). The result-
ing magnetization dynamics are described by the LLG equation (12.1), including the
above magnetoelastic field as a contribution to Heff .

12.4.2 Magnetoelastic Waves in Thin Films

When the magnetoelastic interaction terms fmel and Hmel are combined with the
magnetodynamic equation (12.1) and the elastodynamic equation (12.51), a set of
coupled differential equations is obtained. Formally, these differential equations are
nonlinear because the terms originating from the magnetoelastic interaction show
a quadratic dependence on the magnetization and the displacement. Therefore, the
magnetoelastic effect formally results in a nonlinear interaction. However, when the
dynamic components are assumed to be weak, the differential equations can be lin-
earized. In this case, wave-like solutions for the magnetization and the displacement,
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given by (12.14) and (12.52), exist for the coupled set of equations. These solutions
correspond to magnetoelastic waves. However, it is important to keep in mind that
for large dynamic components, a system of nonlinear differential equations has to be
solved, including nonlinear magnetoelastic interaction effects.

To reduce the complexity of the calculations, a homogeneous and isotropic mate-
rial is assumed. The geometry of the structure remains the same as in the previous
sections with the film in the xz-plane and the y-direction normal to the film surface.
The static magnetization and the static external field are chosen along the z-direction,
as in Sect. 12.2.3. Then, substituting thewave-like ansatz into the equations ofmotion
and neglecting terms quadratic in m or u, leads to the following linearized system
of equations:

−ρω2ux = −C11k
2
xux − C44k

2
zux − (C12 + C44)kxkzuz + B2

Ms
ikzmx

−ρω2uy = −C44
(
k2xuy + k2zuy

) + B2

Ms
ikzmy

−ρω2uz = −C11k
2
zuz − C44k

2
xuz − (C12 + C44)kxkzux + B2

Ms
ikxmx

iωmx = −ωfymy − γ B2ikzuy
iωmy = ωfxmx + γ B2i (kzux + kxuz) .

(12.66)

Assuming that the elastic properties of the thin film are isotropic, the C12 stiffness
constant can be replaced by C12 = C11 − 2C44. Moreover, as discussed above, two
types of elasticwaves exist in in an isotropicmaterial, i.e. longitudinal and transversal
waves. Therefore, it is convenient to define new displacement variables parallel (ul )
and perpendicular (ut) to the propagation direction such that

ux = ul sin(θ) + ut cos(θ) , uz = ul cos(θ) − ut sin(θ) . (12.67)

Here, θ is the angle between the staticmagnetizationM0 and thepropagationdirection
k. Substituting these redefined displacement components into the dynamic equation
of motion together with kx = k sin(θ) and kz = k cos(θ) results in

(ω2 − ω2
l ) sin(θ)ul + (ω2 − ωH) cos(θ)ut + i Bk cos(θ)

ρMs
mx = 0

(ω2 − ω2
V)uy + i Bk cos(θ)

ρMs
my = 0

(ω2 − ω2
l ) cos(θ)ul − (ω2 − ω2

H) sin(θ)ut + i Bk sin(θ)

ρMs
mx = 0

iγ Bk cos(θ)uy + iωmx + ωfymy = 0

iγ Bk sin(2θ)ul + iγ Bk cos(2θ)ut + ωfxmx − iωmy = 0

(12.68)
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with ω the angular frequency of the magnetoelastic wave, ωl = vlk =
√

C11
ρ
k the

dispersion relation of longitudinal elastic waves, ωH = vtk =
√

C44
ρ
k the dispersion

relation of horizontally-polarized (in-plane) transversal elastic waves, and ωV =
ωH the dispersion relation of vertically-polarized (out-of-plane) transversal elastic
waves. Here, the distinction between ωV and ωH is made to keep track of the origin
of different terms in the equations of motion.

Note that this set of equations describes magnetoelastic waves in thin films with
finite thickness. The finite thickness of the film changes the dipolar field according to
(12.30) and consequently also the properties of the magnetoelastic waves. The thick-
ness influence is captured by the parameters ωfx and ωfy. In the following, different
cases and geometries of magnetoelastic wave solutions of the coupled equations of
motion are discussed.

12.4.2.1 Wave Propagation Perpendicular to the Magnetization

We first consider the case in which the wave propagation direction is perpendicu-
lar to the static equilibrium magnetization, i.e. θ = π/2. In this geometry, (12.68)
indicates that the magnetoelastic body force fmel only acts on the ut component of
the displacement. Conversely, only the displacement component ut generates a mag-
netoelastic field that interacts with the magnetic system. Hence, only the in-plane
transversal elastic wave couples to surface spin waves and vice versa. This means
that the longitudinal and out-of-plane transversal elastic waves are independent of the
magnetic system in a first-order approximation. As a consequence, their dispersion
relations remain unchanged, i.e. ωl = vlk and ωV = vtk, respectively, as described
in Sect. 12.3.

Eliminating all uncoupled equations and using θ = π/2 in (12.68), the system
becomes ⎡

⎣ω2 − ω2
H

i Bk
ρMs

0
−iγ Bk ωfx −iω

0 iω ωfy

⎤
⎦

⎡
⎣ ut
mx

my

⎤
⎦ = 0 (12.69)

withω the angular frequency of themagnetoelastic wave andωH = vtk the resonance
frequency of the uncoupled horizontally-polarized transversal elastic wave. Note that
in this geometry, the in-plane transversal displacement component is fully aligned
in the z-direction, i.e. ut = uz. To obtain nontrivial solutions, the determinant of the
linear system must vanish, which leads to the condition

(ω2 − ω2
H)(ω2 − ω2

fm) − Jk2ωfy = 0 (12.70)

with

J = γ B2

ρMs
(12.71)
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Fig. 12.2 Magnetoelastic wave dispersion relations according to (12.70) for a 30nm thick Ni film
and propagation direction perpendicular to the magnetization (red lines). The external magnetic
field is μ0Hext = 50mT. For comparison, the dispersion relations of longitudinal and transversal
elastic waves (brown and green lines, respectively) as well as uncoupled spin waves (blue line) are
also shown

andωfm = √
ωfxωfy the uncoupled spin wave resonance frequency. Equation (12.70)

has the general form of a dispersion relation of two interacting waves. Here, the
first wave is a transversal elastic wave characterized by ω2 − ω2

H = 0 and the second
wave is a spin wave characterized by ω2 − ω2

fm = 0. The interaction between these
two waves is quantified by Jk2ωfy. As expected, setting the magnetoelastic coupling
constant B to zero leads to the original dispersion relations of uncoupled elastic and
magnetic waves.

Equation (12.70) has two physically-meaningful solutions for ω, which are given
by

ω2
± = ω2

H + ω2
fm

2
±

√(
ω2
fm − ω2

H

2

)2

+ Jk2ωfy . (12.72)

These two solutions represent the dispersion relations of the resulting magnetoe-
lastic waves. These dispersion relations together with the dispersion relations of
the uncoupled elastic waves are plotted in Fig. 12.2 for a 30nm thick Ni film. The
magnetic parameters are the same as used in Fig. 12.1. The magnetoelastic coupling
constant is B = 10 MJ/m3 [44, 45], the stiffness constants are C11 = 245 GPa and
C44 = 75 GPa [46], and the mass density is ρ = 8900 kg/m3 [47]. The two linear
dispersion relations correspond to the uncoupled elastic waves whereas the two red
curves represent the dispersion relations of the magnetoelastic waves.
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Figure12.2 clearly shows that the two branches of the magnetoelastic wave dis-
persion relations do not cross each other. If the transversal elastic waves and the spin
waves were not interacting, their dispersion relations would intersect. However, due
to the magnetoelastic interaction, this crossing is avoided, leading to a gap between
the two curves. This so-called anticrossing behavior of the dispersion relations is a
typical characteristic of interacting waves [15, 16].

The gap formation is also visible in the equation of the dispersion relations,
i.e. (12.72). At the point in reciprocal space where the dispersion relations of the
uncoupled waves would intersect, i.e. (ωcross, kcross), the term ω2

fm − ω2
H vanishes.

At this condition, the interaction coefficient Jk2ωfy has a strong influence on the
dispersion relation.When Jk2ωfy � ω2

fm − ω2
H, the interaction between themagnetic

and elastic system is strong, leading to the formation of coupled magnetoelastic
waves. As a result, the anticrossing is formed, with a frequency gap that quantifies
the strength of the interaction. This frequency gap is, to first order, given by

�ω(kcross) ≈
√
Jk2crossωfy

ωcross
=

√
γ B2ωfy

C44M0
(12.73)

where the relation ωcross =
√

C44
ρ
kcross was used. Note that ωfy also depends on kcross

and that this approximation is only validwhen�ω(kcross) < ωcross. On the other hand,
when Jk2ωfy � ω2

fm − ω2
H, the interaction term can be neglected, leading to nearly

uncoupled elastic and magnetic waves. In this regime, the waves are called quasi-
elastic or quasi-magnetic [15, 16]. Hence, the interaction between the elastic and
magnetic waves is strongest when they are (nearly) degenerate, resulting in coupled
magnetoelastic waves. By contrast, quasi-noninteracting waves are obtained when
their frequencies and/or their wavelengths differ strongly.

The wavenumber at the crossing, kcross, can be found by equalizing the dispersion
relations of the noninteracting systems, i.e. ωH(kcross) = ωfm(kcross), and solving for
kcross. For the geometry considered here, the noninteracting dispersion relations are
equal when

vtkcross = (ω0 + ωMλexk
2
cross)

2 + ωM
(
ω0 + ωMλexk

2
cross + ωM(1 − P)P

)
,

(12.74)
which needs to be solved iteratively. Note that P is also a function of kcross according
to (12.30). Once kcross is determined, the interaction coefficient Jk2ωfy and the gap
amplitude can be calculated. In general, the coupling increases strongly for higher
wavenumbers kcross. This originates from the behavior of the magnetostriction and
the Villari effect: a shorter wavelength leads to larger gradients of both displacement
and magnetization. As a result, the magnetoelastic body force in (12.60) and the
magnetoelastic field in (12.65) increase, leading to stronger interactions for higher
kcross values. This behavior opens possibilities to control the interaction strength by
external parameters. For example, increasing an external magnetic field shifts the
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spin wave dispersion relation to higher frequencies, leading to a larger value of kcross
and thus a stronger magnetoelastic coupling.

According to the dispersion relation in (12.72), two different wave-like solutions
exist that correspond to two different magnetoelastic waves. To describe the charac-
teristics of these waves, the corresponding eigenstates need to be calculated. They
are given by

⎡
⎣ ut
mx

my

⎤
⎦ = N

⎡
⎢⎣

1
i ρMs

Bk (ω2± − ω2
H)

ρMsω±
Bkωfy

(ω2± − ω2
H)

⎤
⎥⎦ = N

⎡
⎢⎣

1
i γ Bkωfy

ω2±−ω2
fm

γ Bkω±
ω2±−ω2

fm

⎤
⎥⎦ (12.75)

with N a dimensionless normalization factor. Note that the polarization of the two
magnetization components, for both casesω+ andω−, is clockwise (right-hand) ellip-
tically polarized with ellipticity ε = |mx|/|my| = ωfy/ω±. The precession described
by the ut displacement and the mx magnetization components is clockwise or coun-
terclockwise (right-hand or left-hand) polarized, depending on the eigenstate ω+ or
ω−.

Based on the eigenstate, it is possible to determine the variation of the energy
associated with the different wave components during propagation. There is always
a phase difference of π/2 between mx and my as well as mx and ut . This indicates
that, during propagation, the energy in the mx component is transferred partially to
the my and partially to the ut component. Hence, for magnetoelastic waves, there is
resonant energy transfer between the elastic and magnetic domains.

The three different regimes described by the dispersion relation in (12.72), i.e. the
quasi-elastic, quasi-magnetic, and magnetoelastic regimes, are also seen from the
eigenstates. In the quasi-elastic regime, the dispersion relation approaches the linear
dispersion of the elastic waves, i.e. ω2± − ω2

H ≈ 0 and thus mx,my ≈ 0 according
to (12.75). In other words, in the quasi-elastic regime, the total energy is almost
completely dominated by the elastic energy [15, 16] and the energy transfer to the
magnetic system during propagation can be neglected. On the other hand, in the
quasi-magnetic regime, the dynamic displacement component ut is very small and
thus the total energy is dominated by the magnetic energy. In the magnetoelastic
regime near the anticrossing, the total energy of the wave is distributed between the
magnetic and elastic systems. Hence, a large part of the total wave energy resonantly
oscillates between the magnetic and elastic domains [15, 16]. This is also seen in
Fig. 12.3, which shows the magnetization components for the two branches of the
dispersion relation, ω+ and ω−, as a function of the frequency. In keeping with
the above discussion, the magnetization components have strong amplitudes in the
quasi-magnetic and weak amplitudes in the quasi-elastic regime.
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Fig. 12.3 Frequency dependence of the dynamic magnetization components of magnetoelastic
waves in a 30nm thick Ni film. The propagation direction is perpendicular to the magnetization, as
shown in the inset. The dashed lines represent the mx and my components of the ω+ state, whereas
the solid lines represent the mx and my components of the ω− state. The external magnetic field is
μ0Hext = 50mT

12.4.2.2 Wave Propagation Parallel to the Magnetization

When the propagation direction of the magnetoelastic wave is parallel to the equilib-
riummagnetization direction, i.e. θ = 0 in (12.72), the magnetic body force fmel acts
on both the in-plane ut and out-of-plane uy transversal displacement components.
Note that in this geometry, the transversal in-plane displacement component is fully
aligned along the x-direction, i.e. ut = ux. Analogously, both the in-plane and the
out-of-plane transversal elastic waves generate magnetoelastic fields that interact
with the dynamic magnetization. Hence, both transversal displacement components
couple to backward volume spin waves and only the longitudinal elastic wave is
decoupled from the magnetic system. Neglecting longitudinal elastic waves, the sys-
tem of equations in matrix notation becomes

⎡
⎢⎢⎣

ω2 − ω2
H 0 i Bk

ρMs
0

0 ω2 − ω2
V 0 i Bk

ρMs

iγ Bk 0 ωfx −iω
0 iγ Bk iω ωfy

⎤
⎥⎥⎦

⎡
⎢⎢⎣
ut
uy
mx

my

⎤
⎥⎥⎦ = 0 . (12.76)

It is worth noting that both transversal elastic waves have the same dispersion relation
and thus ωH = ωV = vtk, as discussed earlier.
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Again, the homogeneous linear system has only nontrivial solutions when its
determinant is zero. This condition leads to the dispersion relation of the resulting
magnetoelastic waves, given by

(ω2 − ω2
fm)(ω2 − ω2

H)(ω2 − ω2
V) − Jk2[ωfx(ω

2 − ω2
H) + ωfy(ω

2 − ω2
V) + Jk2] = 0 .

(12.77)

Three different interaction terms can be identified in this equation. The first inter-
action term Jk2ωfx(ω

2 − ω2
H) represents the interaction between the out-of-plane

uy transversal elastic wave and the backward volume spin wave. The second term
Jk2ωfx(ω

2 − ω2
V) characterizes the interaction between the in-plane ut transversal

elastic wave and the backward volume spin wave. As a result, these two terms induce
an anticrossing near the point where the dispersion relations of the noninteracting
elastic and magnetic waves would intersect each other. The third interaction term
J 2k4 couples all three different components with each other and thus also generates
an interaction between the two transversal elastic waves.

Figure12.4 shows the different dispersion relations for material parameters cor-
responding to Ni, as mentioned above. To better understand their behavior, the cor-
responding eigenstates of the different magnetoelastic waves are calculated. The
eigenstates are given as a function of the angular frequency of the magnetoelastic
wave, ω, by

Fig. 12.4 Magnetoelastic wave dispersion relations (red lines) according to (12.77) for a 30nm
thick Ni film and propagation directions parallel with the magnetization, as shown in the inset. The
external magnetic field isμ0Hext = 50mT. For comparison, the dispersion relations of longitudinal
elastic waves (brown line) and uncoupled spin waves (blue line) are also shown
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⎡
⎢⎢⎣
ut
uy
mx

my

⎤
⎥⎥⎦ = N

⎡
⎢⎢⎣

−i
ω(ω2−ω2

H)
(ωfy(ω

2 − ω2
V) + Jk2)

1
− ρMs

Bkω (ωfy(ω
2 − ω2

V) + Jk2)
i ρMs

Bk (ω2 − ω2
V)

⎤
⎥⎥⎦ (12.78)

with N a dimensionless normalization constant. The different displacement com-
ponents of such magnetoelastic waves are plotted in Fig. 12.5 as a function of fre-
quency, whereas Fig. 12.6 shows the magnetization components. As above, Ni mate-
rial parameters were assumed, and the external magnetic field was μ0Hext = 50mT.

In the following, the different eigenstates and their properties are discussed. The
upper ω+ and lowerω− branches of the dispersion relation both correspond to clock-
wise (right-hand) elliptically polarized waves for the magnetization and displace-
ment, i.e. my/mx = i |my|/|mx| and uy/ux = i |uy|/|ux| [15, 16]. In both cases, the
in-planemagnetization component is always larger than the out-of-plane component,
i.e. mx > my, since the demagnetization field is strongest in the out-of-plane direc-
tion. Concerning the displacement components, the two branches behave differently.
For the ω+ eigenstate, the in-plane and out-of-plane displacement components have
the same order of magnitude at GHz frequencies. On the other hand, for the ω− state,

Fig. 12.5 Frequency dependence of the dynamic displacement components for the different mag-
netoelastic waves in a 30nm thick Ni film and an external magnetic field of μ0Hext = 50mT. The
propagation direction is parallel to the magnetization, as shown in the inset. All displacement values
are normalized to the out-of-plane component of the displacement uy (yellow line). The blue, green
and red lines correspond to the in-plane displacement components of the ω+, ω− and ω∼ modes,
respectively
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Fig. 12.6 Frequency dependence of the dynamic magnetization components of magnetoelastic
waves in a 30nm thick Ni film for an external magnetic field of μ0Hext = 50mT. The propagation
direction is parallel to the magnetization, as shown in the inset. The dashed blue and green lines
correspond to theω− mode, whereas the dashed red and black line correspond to theω+ modes, and
the solid lines correspond to the ω∼ mode. Note that the magnetization components corresponding
to the ω∼ mode are multiplied by a factor of 103

ut is dominant at low frequencies, whereas uy becomes dominant at high frequencies.
This behavior is also visualized in Fig. 12.5.

The dispersion relation corresponding to the third magnetoelastic eigenstate is
also shown in Fig. 12.4, labelled ω∼. This dispersion relation is nearly linear and
falls slightly below the dispersion relation for uncoupled transversal elastic waves,
which was discussed in Sect. 12.3 [15, 16]. The magnetization and the displace-
ment components corresponding to this state are both counterclockwise (left-hand)
elliptically polarized. For uncoupled backward volume spin waves, counterclock-
wise polarization corresponds to evanescent spin waves. However, such evanescent
spin waves can still couple to left-hand polarized displacement waves, resulting in
left-hand polarized propagatingmagnetoelastic waves. Nonetheless, the magnetiza-
tion components for this magnetoelastic mode remain very weak. This is also seen in
Fig. 12.6, where the magnetization components corresponding to theω∼ branch have
three orders of magnitude lower amplitude than the magnetization components of
the ω+ and ω− branches. In terms of displacement, the uy displacement component
is dominant for the ω∼ mode for a wide frequency range. This is also illustrated in
Figs. 12.5 and 12.6.

Because of the coupling to the spinwave system,magnetoelasticwaves show some
peculiarities in the quasi-elastic regime, where the wave energy is largely dominated
by the elastic energy. As shown above, the J 2k4 interaction term couples all waves
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with each other. Consequently, the two transversal elastic waves become also cou-
pled. For interactingwaves, it is impossible to share the same frequency–wavenumber
couple, i.e. it is impossible to have degenerate points in the dispersion relations. As
a result, the two quasi-elastic branches do not overlap anymore which is in con-
trast to their original behavior without magnetoelastic interactions (see Sect. 12.3).
Therefore, at all frequencies, a small wavenumber shift remains present between
the two quasi-elastic branches, even in the quasi-elastic regime where the displace-
ment components are large and magnetization components are weak. Hence, even
though almost all the wave energy is in the elastic system, the interaction between
the two transversal displacement components is mediated by the magnetic system,
leading to an indirect coupling of the two elastic waves via the magnetic system.
This interaction is proportional to k4 and thus strongly depends on the wavelength.

Moreover, the polarization of the displacement in the quasi-elastic regime also
shows a peculiar behavior. One of the two waves in the quasi-elastic regime corre-
sponds to a clockwise (right-hand) polarizedwave and the other to a counterclockwise
(left-hand) polarized wave, as discussed above. Hence, excitation at a single angular
frequency ω in the quasi-elastic regime leads to two different magnetoelastic waves
with different wavelengths and opposite polarization. Their amplitudes as a function
of time and space can be written as

u± =
[ |ut±|
i |uy±|

]
eiωt+k±z and u∼ =

[ |ut∼|
−i |uy∼|

]
eiωt+k∼z (12.79)

with ut± = ut(k±) and ut∼ = ut(k∼) given by (12.78). The total wave is the sum of
both individual waves:

utot =
[ |ut±|eik±z + |ut∼|eik∼z

i
(|uy±|eik±z − |uy∼|eik∼z

)] eiωt . (12.80)

The difference in amplitude between the clockwise and counterclockwise polarized
components results in an elliptical polarization of the total displacement. The differ-
ent wavenumbers of the two individual waves (k± and k∼) results in the rotation of
the major and minor axes of the ellipsoid described by the tip of the displacement
vectors during wave propagation [48, 49]. This is similar to the Faraday effect for
electromagnetic waves and also called acoustic wave rotation.

The dispersion relation of backward volume spinwaves is rather flat in the dipolar–
exchange regime, leading to an interesting property of magnetoelastic waves in this
geometry. As shown in Fig. 12.4 at frequencies around 4–5GHz, the magnetoelas-
tic coupling leads to the formation of a pseudobandgap for clockwise (right-hand)
polarized elastic waves at the anticrossing. On the other hand, due to the flatness of
the dispersion relation, counterclockwise (left-hand) polarizedmagnetoelastic waves
can still exist in this pseudobandgap. Hence, in this frequency range, only pure mag-
netoelastic waves or quasi-magnetic waves with weak displacement components can
be excited. This pseudobandgap formation is a general result when waves with a
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rather flat dispersion relation interact with waves with a steep dispersion relation
near the crossing point.

12.4.2.3 Arbitrary Propagation Direction

We now consider an arbitrary propagation direction of the magnetoelastic wave with
respect to the equilibrium magnetization. In this case, the magnetoelastic body force
interacts with all displacement components. Conversely, all displacement compo-
nents generate magnetic fields that interact with the magnetization. Hence, all mag-
netization and displacement components become coupled with each other. Again,
nontrivial wave-like solutions only exist when the determinant of the linear system
in (12.68) is zero, which leads to the dispersion relation

(ω2 − ω2
l )[(ω2 − ω2

t )
2(ω2 − ω2

fm)

−(ω2 − ω2
t )Jk

2(ωfx cos
2(θ) + ωfy cos

2(2θ)) − J 2k4 cos2(2θ) cos2(θ)]
−(ω2 − ω2

t )Jk
2[ωfy(ω

2 − ω2
t ) sin

2(2θ) + Jk2 sin2(2θ) cos2(θ)] = 0 .

(12.81)

Note that for θ = π/4, the coupling between themagnetic and the longitudinal elastic
wave reaches a maximum, whereas for θ = 0 and θ = π/2, this coupling is zero.

The dispersion relations of the resulting magnetoelastic waves are plotted in
Fig. 12.7 for material parameters of Ni and θ = π/6. For each frequency, multiple
magnetoelastic waves exist with different wavelengths. Since the system of equa-
tions is reduced to a set of linear differential equations by assuming weak dynamic
components, every linear combination of these different magnetoelastic waves is
also a solution of the system. The waves can be excited by dynamic magnetic fields
and/or mechanical forces. Therefore, it is possible to generate elastodynamics via
the magnetization or, vice versa, magnetization dynamics via the displacement in
magnetostrictive materials.

It can also be seen from the dispersion relations that the group velocity of the
magnetoelastic waves is different from the group velocity of the magnetic and elastic
waves. As mentioned earlier, the group velocity is defined as vg = ∂ω/∂k and thus
proportional to the slope of the dispersion relation. Hence, near the anticrossing, this
change in group velocity is most pronounced. On the other hand, the group velocity
of quasi-elastic and quasi-magnetic waves is nearly the same as their purely elastic
and magnetic counterparts, respectively.

The total energy of a magnetoelastic wave consists of several contributions. The
magnetic energy contribution is determined by the dynamic components mx and
my. In this chapter, only dipolar, and exchange energy interactions were considered,
although other magnetic interactions, such as the magnetocrystalline [40, 41, 50] or
the Dzyaloshinskii–Moriya interaction [51] may also contribute to the total energy.
Themagnetic energy is complemented by the energy of the elastic waves, which con-
sists of both elastic and kinetic energy contributions and is fully determined by the



12 Magnetoelastic Waves in Thin Films 317

Fig. 12.7 Magnetoelastic wave dispersion relations (red lines) according to (12.81) for a 30nm
thick Ni film nm and an angle of 30◦ between the propagation direction and the magnetization. The
external field is μ0Hext = 50mT. For comparison, the dispersion relations of longitudinal elastic
waves (brown line) and uncoupled spin waves (blue line) are also shown

displacement components and their time and space derivatives, as given by (12.54)
and (12.56), respectively. A third energy contribution stems from the magnetoelastic
interaction, as described by (12.57). Just as spin waves (cf. (12.41)), magnetoelas-
tic waves also comprise an electric field component. However, at GHz frequencies,
the magnetostatic approximation is typically valid and therefore the energy contri-
bution of the electric field is small and can be neglected. Nonetheless, this ceases
to be accurate when frequencies approach the THz range where the magnetostatic
approximation no longer holds.

During the propagation of a magnetoelastic wave, the energy oscillates between
the different energy contributions. For strongly interacting waves near the anticross-
ing point, a large part of the energy resonantly oscillates between the elastic and
magnetic domains. This energy transfer is characterized by a specific energy trans-
fer length L t which describes the distance necessary to transfer all energy from the
elastic to the magnetic system and vice versa [52]. On the other hand, the time
necessary for a complete magnetoelastic energy oscillation between the elastic and
magnetic domain is given by � = 2/� f with � f the frequency gap between the
two dispersion relations (cf. (12.73)) [53]. By contrast, in the quasi-elastic regime,
most of the energy remains in the elastic system during propagation, whereas in the
quasi-magnetic regime most energy remains in the magnetic system [15, 16].

In this chapter, it was assumed that the wavelength of the magnetoelastic wave is
much larger than the thickness of the film. In this case, the dynamic magnetization
and displacement are approximately uniform over the film thickness. However, if
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the thickness becomes comparable to the wavelength, different thickness modes
can arise. In the magnetic domain, these are called perpendicularly standing spin
waves and in the elasticity domain, these are called Lambwaves. The magnetoelastic
coupling of such waves is beyond the scope of this chapter and will generally require
numerical calculations.

12.4.3 Damping of Magnetoelastic Waves

So far, all waves have been considered to be lossless and their intrinsic damping was
neglected. However, in real systems, magnetoelastic waves are expected to decay
during propagation. Since their decay length is of great practical interest, we will
present in this last part a brief introduction on the damping of magnetoelastic waves.
More detailed discussions can be found in [54–58].

Several different energy loss mechanisms exist, which dampen the magnetiza-
tion and displacement dynamics. In the semi-classical continuum theory used in this
chapter, it is common to subsume all different loss mechanisms in a single phe-
nomenological damping term, which is then included in the equation of motion.
The damping of the magnetization dynamics is captured by the damping term in the
LLG equation, characterized by the phenomenological Gilbert damping parameter
α. Analogously, for elastic waves, damping can be introduced into the equations of
motion via phenomenological complex stiffness constants.

The addition of the damping terms to the equations of motion results in energy
dissipation of the dynamic system. As a consequence, the amplitude of the plane
waves considered above decays in time and space. Therefore, the plane wave ansatz
to solve the equations of motion needs to bemodified by adding an exponential decay
factor. This damping factor can be seen as originating from the complex frequency,
i.e.

w(r, t)ei((ωr+iωi )t+k·r) = w(r, t)e−t/τ ei(ωr t+k·r) = w(r, t)e−x/δei(ωr t+k·r) (12.82)

with τ = 1/ωi the lifetime, δ = vgτ the mean free path or attenuation length, and
w(r, t) = [ux, uy, uz,mx,my]T the dynamic components of the wave. Note that the
lifetime characterizes the decay of the wave in time and the mean free path charac-
terizes the attenuation of the wave in space.

To determine the decay characteristics of a wave, the imaginary part of its fre-
quency needs to be assessed. This can be achieved within the above approach, which
is based on finding nontrivial solutions of homogeneous linear systems by calcu-
lating the roots of their determinants. The real part of the resulting frequency still
represents the dispersion relation, whereas the imaginary part originates from the
additional damping terms and represents the inverse of the lifetime.

For spin waves in a ferromagnetic medium, the lifetime can be found by solving
the LLG equation and is given by
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τfm = 2

α(ωfx + ωfy)
. (12.83)

The lifetime at GHz frequencies is typically of the order of ns in metallic ferromag-
nets, such as Ni considered in this chapter, and of the order of μs for low-damping
magnetic insulators such as Yttrium Iron Garnet (YIG). On the other hand, much
less is know for elastic waves at GHz frequencies although estimates suggest that
the lifetime is similar to that of spin waves. Experimentally, it is typically found that
the mean free path of (surface) elastic waves at these frequencies is somewhat larger
than these of spin waves [40, 51, 52, 59], however, the topic still requires further
research.

In the case of magnetoelastic waves, analytical derivations of the lifetimes and
decay lengths are rather complex. In the quasi-elastic regime, it is clear that the
lifetime is strongly determined by the lifetime of the elastic wave. The energy of
quasi-elastic waves is almost completely stored in the elastic system, with only a
negligible part in the magnetic system. Hence, the dissipation due to the magnetic
loss has negligible influence on the overall dissipation. An analogous argument can
be made for the quasi-magnetic regime, where magnetic properties and lifetimes
should determine the decay of the magnetoelastic waves.

In the strongly coupledmagnetoelastic regime, i.e. near the anticrossing, no simple
conclusion can be drawn. In this regime, the energy is distributed between magnetic
and elastic domains and is transferred forth and back during propagation. Therefore
both magnetic and elastic losses contribute to the total energy dissipation. One may
expect in such a case that the lifetime of a magnetoelastic wave is given by a suit-
able weighted average of the lifetimes of magnetic and elastic waves. In general, the
lifetime depends on multiple parameters, such as the orientation of the static magne-
tization, the interaction coefficient, the wavenumber, etc.. Further work is required to
fully understand in particular the effect of the magnetoelastic interactions on the life-
time of strongly coupled magnetoelastic waves. By contrast, the group velocities of
magnetoelastic waves are well understood and can be calculated from the dispersion
relations, so the assessment of mean free paths is straighforward once the lifetime is
known.

12.5 Conclusion

The first part of this chapter presented a review of magnetic and elastic interactions
as well as the formation of magnetic (spin) and elastic waves. It has been shown
that the dynamic behavior of the magnetization and displacement can be seen as an
eigensystem with eigenvalues corresponding to the dispersion relations and eigen-
states describing the polarization and ellipticity of the resulting waves. Based on this
formalism of eigensystems, both magnetic and elastic waves have been studied in
bulk and thin film materials. For magnetic (spin) waves, different regimes have been
identified and their correlation with Maxwell’s equations has been explained.
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In the second part of this chapter, the coupling between magnetic and elastic
waves, due to the direct and inverse magnetoelastic interactions, was described.
By combining the magnetoelastic interaction terms with the magnetodynamic and
the elastodynamic equations, the magnetoelastic eigensystem has been derived for
an arbitrary in-plane magnetization orientation. Within this framework, both the
exchange and dipolar interaction have been taken into account. Previous descrip-
tions of magnetoelastic waves in infinitesimally thin films have been extended to
thin films of finite thickness by considering the appropriate dipolar field based on
the magnetostatic Green’s function. Two limiting cases, i.e. static magnetization per-
pendicular or parallel to the propagation direction, have been studied in more detail
and their dispersion relations and eigenstates have been mathematically and graphi-
cally described. In addition, several properties of magnetoelastic waves, such as the
energy transfer length and the magnetoelastic bandgap, and concepts, such as wave
anticrossings and polarization rotations, have been discussed in detail. The funda-
mental framework of magnetoelastic phenomena and waves described in this chapter
can be utilised for the theoretical description and modeling of the next generation of
magnetoelectric transducers. These transducers need to operate at GHz frequencies
and should be miniaturized to the nanometer scale. Despite the technical challenges,
such transducers show high potential for efficient energy transfer between the electric
and magnetic domains.
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