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Preface

In this book, the reader will find a wide range of problems related to properties of
symmetry in the study of electromagnetic fields, materials, and the field-matter inter-
actions. The book contains 19 chapters covering various aspects of these effects. The
chapters are written by international experts who have contributed to the advance-
ment of science and engineering of the chirality, magnetism, and magnetoelectricity
in optical and microwave systems. What problems and challenges are analyzed and
discussed in the book? The fields of the studies are new and certain statements may
be disputable. The reader can see that current research leaves some questions open
to further discussion. Some chapters discuss similar issues from different physical
points of view. In this book, we aim to provide the reader with an overview of
the interdisciplinary research. Since many studies in these areas do not fit into a
well-established classification, we do not separate chapters into topical sections.

The most interesting physical phenomena arise from effects associated with
combinations of different types of symmetry and symmetry breakings. It is known
that chirality is a geometric property. An object is called chiral when it exists in two
enantiomeric forms, which can be superimposed only by a parity operation (mirror
image). Chirality properties can be observed both in material structures and in novel
types of engineered fields. It is also known that ferromagnetism breaks time-reversal
symmetry. The spin momentum of magnons is based on the time-reversal symmetry
breaking of the magnetic order. However, the magnetic dipole precession has neither
left-handed nor right-handed quality, that is to say, no chirality.Where frommagnetic
symmetry can inherit chirality?Oneof the important issues is thatmagnetic symmetry
can derive chirality from the crystal structure. Inmagnetism, the curvilinear geometry
manifests Dzyaloshinskii–Moriya-like interaction. For magnons, the Dzyaloshin-
skii–Moriya interaction accounts for spin–orbit interaction and causes a nontrivial
topology.

The hybridization of magnetism and topology is a significant problem. It is
related to various topological structures of magnetic moments (spins), known as
spin textures. This is related also to the question of topological phases. Whereas the
topological phases were initially proposed for electron waves, then it became evident
for other types of waves. The topological phase is of particular importance for the
topologically nontrivial edge modes. Topological spin waves have been predicted to
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occur in mesoscopic crystals with artificial patterned ferromagnetic structures and
also in atomic scale magnetic insulators with the kagome-lattice structures. Such
structures can topologically protect unidirectional surface spin waves inside spin-
wave band gaps. Chiral edge states arise due to broken time-reversal symmetry.
These are the “one-way waveguides” which allow energy to flow in one direction
only. In this book, the question of unidirectional propagation of energy of spin waves
is discussed in Chaps. 1 and 14. In Chap. 1, the authors consider unidirectional spin
waves generated by chiral spin pumping. In Chap. 14, the authors analyze unidirec-
tional surfaces spin waves topologically protected by the band gap in the reciprocal
space.

One of the questions that the reader may have in these studies is that in the
case of unidirectional propagation of energy in structures with broken time-reversal
symmetry, certain constraints should be imposed due to a joint analysis of the
reciprocity and unitarity relations.

In chiral materials, magnetic moments (spins) can form various structures known
as spin textures. Chapter 14 is devoted to general consideration of such topological
spin textures. In Chap. 7, we have a good review on the mechanisms of manipulation
of magnetic textures via spin-transfer and spin–orbit-torques. In Chap. 8, the author
has presented the reader with recent theoretical studies on the microwave-induced
physical phenomena and device functions of magnetic skyrmions. It is demonstrated
that the spin-wave excitations give rise to translational motion of the skyrmions. New
aspects of topological dynamics of spin texture-based metamaterials are considered
in Chap. 15. In Chap. 16, the authors provide the reader with new studies on antifer-
romagnetic skyrmions and bimerons. These topological spin textures have attracted a
lot of attentions because they have small size and low depinning current. For creation
of newmagneticmaterials with specific engineered properties, a newfield of research
based on Floquet engineering is presented in Chap. 11. It is shown that such basic
quantities ofmagnetic insulators asmagnetization, spin chirality, and spin current can
be controlled by the Floquet technique. In Chap. 3, the authors discuss plasmon reso-
nances of spin-polarizedmagnetic nanoparticles. Interesting results of this studymay
raise the reader’s question: can the coupling between linear (plasmon) and angular
momenta (electron spin) cause the appearance of intrinsic chiral wavefunctions?

In the book, the chiral interaction between light andmatter is considered in various
aspects of research, concerning both non-magnetic and magnetic chiral matter.A lot
of attention is paid to plasmonic chiral metasurfaces and superchiral optical near-
fields for effective detection and differentiation of enantiomers. It is discussed that
chiral sensitive techniques can be used to probe the fundamental symmetries. In
Chap. 2, the authors demonstrate how surface plasmon resonance can be employed
as a new research tool for chiral sensing. The interactions of chirality of light and
plasmonic chiral metasurfaces are studied in Chap. 4. The author shows that the
phase and amplitude of the circularly polarized light can be effectively modulated
by optical chiral metasurfaces. In Chap. 5, the authors argue that the optical response
of matter manifests itself not only in the form of optical signals, but also in the form
of a mechanical force acting on the system of matter. Consequently, the plasmonic
near field with a nano-scale radius of rotation is intended to control the motion of
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the center of mass of nano-objects. They show that all the basic elements of motion
control of nano-objects can be realized using optical manipulation. Recent advance-
ments in nano- and micro-fabrication technology have allowed the realization of
artificially structured materials with strong electromagnetic chirality, far-exceeding
natural chiral materials. Implementation of artificial chirality in micro-/nano-scale
three-dimensional plasmonic structures is the subject of Chap. 10. Chiroptical light-
matter interaction is largely boosted in the surroundings of complex-shaped metallic
nanostructures. Theoretical generalization of the optical chirality to the case of arbi-
trary dispersive and lossy optical media is a subject of studies of Chap. 13. In Chap. 9,
the authors are aimed to create the background for establishing a connection between
the optics of chiral metamaterials and magnonics. This is a challenging task. Using
formal similarity of the electromagnetic field and spin waves in an antiferromag-
netic insulator, the authors discuss the possibility to generalize the notion of optical
chirality in antiferromagnets with broken chiral symmetry. Concerning the studies of
light-matter interaction, it is very important to note that when analyzing the interac-
tion of chiral light with a helical wavefront (due to spin and orbital angular momenta)
with chiral nanostructures, it is necessary to keep in mind the effects of nonlocality.
The reader may find that simple models based on the dipole approximation are inap-
plicablewhen analyzing such nonlocal optical response effects. It is alsoworth noting
that while in optics, a possible way to detect the effect of material chirality is through
the transmission and reflection of polarized light, inmicrowaves, chirality parameters
are obtained via far-field measurement of the scattering-matrix characteristics.

Any coupling between the magnetic and the electric properties of a material is
denoted, in its most general form, as the magnetoelectric (ME) effect. The efficient
energy conversion from the electric to the magnetic domain and vice versa still
remains challenging. Chapter 12 is devoted to study of one of the most promising
devices for this conversion: ME transducers, consisting of composite materials with
piezoelectric and magnetostrictive layers. In Chap. 6, the authors have presented
the reader with the role of chirality as the key factor in magnetoelectric phenomena
observed in magnetic structures with various topological properties. In Chap. 17,
the authors present the theoretical framework that allows to describe the electro-
magnetic response of magnetoelectric media by means of axion-like extended elec-
trodynamics. In Chap. 19, it is shown that topological singularities originated from
magnetic dipolar mode oscillations in ferrite disk particles have unique properties
of the magnetoelectric near-fields. Quantized ME fields suggest a conceptually new
microwave functionality for material characterization.

The studies shown in the book are enriched by Chap. 18. The analysis of the
Purcell effect in PT-symmetric waveguides presented in this chapter is a valuable
contribution in terms of basic aspects of symmetry in electromagnetic systems.

Wemayhope that the bookwill be a valuable aid to understand the current research
of chirality, magnetism, and magnetoelectric phenomena in metamaterial structures
for scientists, researchers, and graduate students working in the fields of electronic
engineering, material science, and condense matter physics.

Beer Sheva, Israel Eugene Kamenetskii
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Chapter 1
Chiral Coupling to Magnetodipolar
Radiation

Tao Yu and Gerrit E. W. Bauer

Abstract We review and extend the theory of chiral pumping of spin waves by
magnetodipolar stray fields that generate unidirectional spin currents and asymmet-
ric magnon densities. We illustrate the physical principles by two kinds of chiral
excitations of magnetic films, i.e., by the evanescent Oersted field of a narrow metal-
lic stripline with an AC current bias and a magnetic nanowire under ferromagnetic
resonance.

1.1 Introduction

“Handedness” or “chirality” of wave propagation is a lively research topic in optics,
acoustics, and condensed matter physics. The “spin” of magnons is rooted in the
time-reversal symmetry breaking of the magnetic order and leads to chiral coupling
with other excitations when locked to the momentum. This phenomenon is governed
by non-universal selection rules. This chapter clarifies a specific mechanism, viz.
evanescent microwaves that can efficiently generate chiral dynamics.

Magnonics andmagnon spintronics [1–4] are emergent fields that hold the promise
of a next-generation low-power and scalable information processing and communi-
cation technology. The generation of coherent and propagating spinwaves is a crucial
ingredient, which can be realized by magnetic fields generated by microwave anten-
nas such as current-biased metallic striplines. In order to generate stray fields with
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high-momentum Fourier components these must be small in size and placed close to
the magnetic medium. Not only the amplitude, but also the direction of the excited
spin waves depend on the excitation conditions that obey right-hand rules and are
therefore chiral.

In this chapter, we focus on the chirality of the dipolar coupling between the
magnetization dynamics in ferromagnetic heterostructures [5–10], while those in
optics [11–17], plasmonics [18, 19], and magnetic structures with Dzyaloshinskii–
Moriya interaction are treated in other chapters. We focus on the favorite material
of magnonics, viz. the ferrimagnetic insulator yttrium iron garnet (YIG) with high
Curie temperature and outstanding magnetic and acoustic quality [20]. Its magnons
can be excited electrically by heavy metal contacts [21], acoustically [22], as well
as by a large spectrum of electromagnetic waves from gigahertz (microwaves) to
petahertz (light). Magnonic transducers with spatially separated contact that excite
and detect magnons [5, 21, 23–29] are sensitive probes to study magnon transport.
We illustrate the chiral physics for thin YIG films with in-plane magnetizations, but
other materials and configurations can be treated by changing the model parameters.

The spin waves of in-plane magnetized films can be classified by the interac-
tion that governs their dispersion as a function of wave vector, into the dipolar,
dipolar-exchange and exchange type with energies ranging from a few gigahertz to
many terahertz [1–4, 23]. The long-wavelengthmodes are dipolar, whereas the short-
wavelength ones are exchange. Bulk volume modes and surface (Damon–Eshbach)
modes propagate along or perpendicular to themagnetization direction with different
dispersion relations [30–33]. Moreover, the surface modes are chiral: their propaga-
tion direction (linear momentum) is fixed by the outer product of surface normal and
magnetization direction, allowing unidirectional spin current generation by domi-
nantly exciting one surface of a magnetic film [34–37]. However, Damon–Eshbach
spin waves are not well suited for applications—their group velocity tends to be
zero when the linear momentum is larger than the inverse of film thickness, leading
to a small spin conductivity. They are also very sensitive to dephasing by surface
roughness [38], and do not exist in sufficiently thin films.

An alternative to intrinsically chiral spin waves is the chiral excitation of non-
chiral ones.Micromagnetic simulations [5] revealed that the AC dipolar field emitted
by a magnetic nanowire on top of an in-plane magnetized film with magnetization
normal to the wire can excite unidirectional spin waves. We have been motivated by
experiments on an array of magnetic nanowires on top of an ultrathin YIG film that
generated unidirectional spin waves parallel to the surface and perpendicular to the
nanowires [7] to develop a general theory of coherent and incoherent chiral excitation
of magnons [6, 8] by the dipolar interaction between the dynamics of a magnetic film
and a magnetic transducer. The chirality can be traced to the different stray fields
generated by spin waves with opposite polarization and propagation. By angular
momentum conservation electromagnetic waves with particular polarization emitted
by a magnetic transducer couple only the circularly polarized component of a spin
wave with a certain propagation direction [11]. When dipolar or crystal anisotropy
mixes the right and left circularly polarized components, magnons are still excited
preferentially, but not exclusively, in one direction. Finally, a (short-range) exchange
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coupling between film and transducer is not sensitive to the propagation direction,
and reduces the chirality.

Recently, two remarkable experiments confirmed our predictions. By NV mag-
netometry Bertelli et al. [39] observed chiral pumping of spin waves by a stripline
antenna. Wang et al. [40] measured unidirectional microwave transmission mediated
by two magnetic wires on top of a thin magnetic film, i.e. chiral magnon-magnon
coupling.

The chiral coupling to spin waves enables the generation and control of spin
currents [6–8] or spin accumulations [9, 10] in ferromagnetic insulators, which is
beneficial for spintronic devices. In this short review, we comprehensively illustrate
two kinds of chiral coupling to the magneto-dipolar radiation, including the evanes-
cent field of a thin stripline that carries anACcurrent (Sect. 1.2) and that of amagnetic
wire under resonant excitation (Sect. 1.3).

1.2 Chiral Excitation of Spin Waves by Metallic Stripline

We call a wave “chiral” when it propagates with handedness, i.e. in a certain direction
that is determined by two other control vectors, such as surface normal and magnetic
field. A rotating electrical dipole [41, 42] excites surface plasmon polaritons in
one direction only [18, 19, 41], while a precessing magnetic dipole excite magnons
unidirectionally [43, 44]. Here we analyze solutions of the combined Maxwell and
Landau–Lifshitz–Gilbert equations that explain the available experimental evidence.
We analyze the near microwave field from a normal metal strip line in Sect. 1.2.1 and
its effect on a thin magnetic film in Sect. 1.2.2 (see Fig. 1.1). We focus for simplicity
on a configuration in which the film normal is along the x-direction, ẑ is parallel to
a stripline that is assumed to be very long, and the excited spin waves propagate in
the y-direction.

1.2.1 Oersted Magnetic Fields

We first demonstrate that even though the magnetic field of a stripline is linearly-
polarized in real space (see Fig. 1.1), it is chiral in momentum space. Ampere’s Law
states that the current density J(r) generates the vector potential [42]

A(r, t) = μ0

4π

∫
dr′dt ′

J(r′, t ′)
|r − r′| δ

(
t ′ + |r − r′|

c
− t

)
, (1.1)

where μ0 is the vacuum permeability and the delta-function represents (non-
relativistic) retardation. For a harmonic source J (t) ∼ J(ω)e−iωt ,
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A(r, ω) = μ0

4π

∫
dr′J(r′, ω)

eik|r−r′|

|r − r′| , (1.2)

where k = ω/c. The current in the stripline is uniform over the cross section of
widthw and thickness t as well as length L � c/ω. In the long wavelength limit and
square cross section J(r, ω) � δ(x)δ(y)J (ω)ẑ,whereJ is the total electric current,
leading to

A(r, ω) = μ0

4π
J (ω)ẑ

∫ ∞

−∞
dz′ eik

√
x2+y2+z′2

√
x2 + y2 + z′2 , (1.3)

which does not depend on z. Substituting the Weyl identity [41]

eik
√

x2+y2+z2√
x2 + y2 + z2

= i

2π

∫
dkydkz

eikx |x |+iky y+ikz z

kx
, (1.4)

where k =
√
k2x + k2y + k2z and kx = |a| + i |b| is complex, into (1.3) yields

A(x, y, ω) = iμ0

4π
J (ω)ẑ

∫
dky

eikx |x |+iky y

kx
. (1.5)

The magnetic field H(r) = ∇ × A(r)/μ0 = (∂y Az,−∂x Az, 0
)
/μ0 is transverse to

the wire, see Fig. 1.1. Below the stripline (x < 0),

r
1

x

y
z

phase-matched spin-waves

Fig. 1.1 (Color online) Chiral excitation of spin waves in a magnetic thin film by the near field of
a stripline antenna. The ac magnetic field is axially symmetric with an oscillating modulus and in
the film a position-dependent linear polarization. It excites spin waves with the same frequency and
phase-matched spatial amplitude. The film magnetization direction (here parallel to the stripline)
can be tuned by a static magnetic field



1 Chiral Coupling to Magnetodipolar Radiation 5

Hx (x, y, ω) ≡
∫

dkye
iky y Hx (x, ky) = −

∫
dkye

iky y
J (ω)

4π

ky
kx

e−ikx x ,

Hy(x, y, ω) ≡
∫

dkye
iky y Hy(x, ky) = −

∫
dkye

iky y
J (ω)

4π
e−ikx x , (1.6)

where kx =
√

(ω/c)2 − k2y . Directly above or below the wire Hx (x, y = 0, ω) =
0, i.e. the magnetic field is linearly-polarized along y. The polarization rotates as
a function of y until Hy (0, y → ∞, ω) = 0. Surprisingly, a circular polarization
emerges in the Fourier components

Hx (x, ky, ω) = −J (ω)

4π

ky
kx

e−ikx x ,

Hy(x, ky, ω) = −J (ω)

4π
e−ikx x . (1.7)

For an evanescent field with ky > ω/c ≡ k, kx = i
√
k2y − k2 and x < 0

Hx (x, ky, ω) = iJ (ω)

4π

ky√
k2y − k2

e
√

k2y−k2x
,

Hy(x, ky, ω) = −J (ω)

4π
e
√

k2y−k2x
. (1.8)

At microwave frequencies ω/(2π) ∼ 10GHz, k ≡ ω/c ∼ 200m−1 and wave-
lengthλ = 2π/k ∼ 3cm.The spinwavelength at the same frequency ismuch smaller

with
√
k2y + k2z 
 ω/c, so we are in the near-field limit. The magnetic field compo-

nent Hx → isgn(ky)Hy is then circularly polarized with a sign locked to its linear
momentum.

For a finite rectangular cross section with 0 < x < t and −w/2 < y < w/2 the
Fourier components of the magnetic field read

Hx (x, ky, ω) = i
J (ω)

4π
F(t, w)

ky√
k2y − k2

e
√

k2y−k2x
,

Hy(x, ky, ω) = − J (ω)

4π
F(t, w)e

√
k2y−k2x

, (1.9)

which differ from the previous results only by the form factor

F(t, w) = 4

kxky
eikx

t
2 sin

(
kx

t

2

)
sin
(
ky

w

2

)
. (1.10)

Irrespective to the shape of the stripline, the magnetic field components are circularly
polarized when

∣∣ky∣∣
 ω/c but oscillate now as function of the wave vector.
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1.2.2 Chiral Excitation of Spin Waves

We focus here on thin YIG filmswith thickness d ∼ O(10 nm), which allows an ana-
lytical treatment of the dispersion and spin wave amplitudes in the dipolar-exchange
regime [6]. An applied magnetic field Happẑ parallel to the stripline corresponds to
the Damon–Eshbach configuration, but we stress that for ultrathin films there are no
Damon–Eshbach surface modes. The spin wave energy dispersion [6]

ωk = μ0γ Ms

√[
�H + αexk2 + 1 − f (|ky|)

] [
�H + αexk2 + (k2y/k

2) f (|ky|)
]
,

(1.11)
where−γ is the electron gyromagnetic ratio,Ms denotes the saturatedmagnetization,
αex is the exchange stiffness, �H ≡ Happ/Ms , and

f (|ky|) = 1 − 1

|ky|d + 1

|ky|d exp(−|ky|d), (1.12)

is highly anisotropic. The spin waves amplitudes across sufficiently thin films are
constant [6]:

mx =
√

B + 1

4d(B − 1)
,my = i

√
B − 1

4d(B + 1)
, (1.13)

where we chose the normalization [38, 45, 46]

∫
dr
[
mx(r)m∗

y(r) − m∗
x (r)my(r)

] = −i/2, (1.14)

and

B = 1/2 − (1/2)
(
1 + k2y/k

2
)
f (|ky|)

ωk/(μ0γ Ms) − (�H + αexk2y + 1/2
)+ (1/2)

(
1 − k2y/k

2
)
f (|ky|) . (1.15)

When ky → 0: f (|ky|) = 0, limky→0 ωk = μ0γ Ms
√

�H (�H + 1), B → −1 −
2�H − 2

√
�H (�H + 1). When �H → 0 with a small static magnetic field, B →

−1 − 2
√

�H ,
∣∣my

∣∣
 |mx |, so the Kittel mode is (nearly) linearly polarized. In the
opposite (exchange) limit of

∣∣ky∣∣ d 
 1 and αexk2 
 1, f (ky) → 1, |B| 
 1, and
the spin waves are right-circularly polarized with my = imx .

The Oersted magnetic fields from the stripline interact with spin waves by the
Zeeman interaction [47]

Ĥint = −μ0

∫
M(r) · H(r)dV . (1.16)

The excited magnetization in the film can be expressed by time-dependent perturba-
tion theory [48]
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Mα(x, ρ, t) = −i
∫ t

−∞
dt ′
〈[
M̂α(x,ρρρ, t), Ĥint(t

′)
]〉

. (1.17)

in terms of the retarded spin susceptibility tensor

χαδ(x, x
′; ρ − ρ ′; t − t ′) = i�(t − t ′)

〈[
Ŝα(x, ρ, t), Ŝδ(x

′, ρ ′, t ′)
]〉

, (1.18)

where Ŝα = −M̂α/(γ �)is the spin operator and a sum over repeated indices is
implied. Hence [6–8],

Mα(x, ky, ω) = μ0(γ �)2
∫ 0

−d
dx ′χαβ(x, x ′, ky, ω)Hβ(x ′, ky, ω), (1.19)

where

χαβ(x, x ′,k, ω) = −2Ms

γ �
m(k)

α (x)m(k)∗
β (x ′)

1

ω − ωk + i�k
. (1.20)

Here,�k = 2αωk is the reciprocal lifetime in termsof theGilbert damping constantα.

The excitation efficiency is determined bym(ky)∗
β (x ′)Hβ(x ′, ky, ω), so the excitation

of circularly polarized spin waves is chiral (or unidirectional) by the polarization-
momentum locking with the stripline magnetic field. Since the amplitudes across
thin films are constant for kd � 1, the excited magnetization in time domain and
position space is the real part of the inverse Fourier transform (q ≡ ky),

Mα(x, y, t) =
∑
q

eiqy−iωtMα(x, q)

≈ 2iμ0γ �dMsm
(qω)
α m(qω)∗

β

1

vqω

e−iωt
{

eiqω y−δω y Hβ(qω, ω)

e−iqω y+δω y Hβ(−qω, ω)
for

y > 0
y < 0

,

(1.21)

where qω + iδω is the positive root of ωq = ω + i�q , and vqω
is the modulus of the

group velocity |∂ωq/∂q|qω
. The polarization-momentum locking of the stripline field

generates two different magnetization dynamics. When the excited spin waves are
circularly polarized, they not only propagate in one direction only, but the excitation is
also spatially limited to half of the film, i.e. the chirality is perfect.We can understand
this phenomenon in terms of the interference between the spinwaves and the stripline
magnetic field that is constructive and destructive on opposite sides, as illustrated in
Fig. 1.1.

The dominant excitation direction can be switched with the film magnetization.
For a finite angle θ between the saturatedmagnetization and the stripline, the situation
becomes complicatedby the reduced symmetry. It is advantageous to transform (1.21)
following the Supplements of [7, 8]:

m
(ky)
x → m(l)

x , m
(ky)
y → cos θm(l)

y
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Fig. 1.2 Calculated
magnetization amplitude
profile

∣∣My (y)
∣∣of a YIG film

with ground state
magnetization alongz,
d = 20nm, and α = 10−4,

excited by a metal stripline
with t = 100nm, w = 1µm,
carrying an AC current with
excitation frequencies
ω/(2π) = 3, 5, and 10GHz.∣∣My (y)

∣∣is proportional to
the current density, which is
here normalized by its
maximum value for
ω/(2π) = 3GHz

 0

 0.2

 0.4

 0.6

 0.8

 1

-300 -200 -100  0  100  200  300

|M
y|

y (μm)

α=10-4

3GHz

5GHz

10GHz

where l = (0, q cos θ, q sin θ) and q is determined by ωl + i2αωl = ω. Even for
circularly polarized spin waves, the chirality is not perfect anymore while situation
is complicated for elliptical spin waves since their polarization depends on the wave
vector. For θc = π/2 the chirality always vanishes. Since mirror symmetry is broken,
the two roots

∣∣q(+)
ω + iδ(+)

ω

∣∣ = ∣∣−q(−)
ω − iδ(−)

ω

∣∣for θ = 0, θc. The wavelength and
propagation direction of the excited spin waves may therefore be different on the
two sides of the stripline.

Figure1.2 is a plot of the calculated excited magnetization profile for a YIG mag-
netic film for constant current density but different excitation frequencies ω/(2π).
At low frequencies the excitation efficiency is high, but since the dipolar interaction
renders the spin wave precession elliptical, the chirality is relatively weak. At high
frequencies the chirality improves, but the magnetization amplitude is suppressed
by the form factor sin(kyw/2) that favors spin waves with wavelengths around w.
A narrower stripline helps to excite spin waves with short wavelengths and higher
chirality. The spatial decay on both sides of the stripline is governed by the Gilbert
damping. Chiral spin waves can also be generated by magnetic striplines with high
coercivity that allow efficient excitation and almost perfect chirality at frequencies
>10GHz. The physics is quite different, however, and explained in the following
section.

1.3 Chiral Spin Wave Excitation and Absorption by a
Magnetic Transducer

Coherent exchange-dipolar spinwaveswith shortwavelengthsλ < 100nmare attrac-
tive information carriers by their long lifetime and high group velocity. According
to the discussion above their excitation is difficult because striplines cannot be fabri-
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x̂

ŷ

ẑ

nortcele sag2D

YIGM

YIG

w s

Co

YIG

CoM

d

microwave

Fig. 1.3 Amagnetic (Co) nanowire transducer separated by a non-magnetic spacer (optional) from
a YIG film. The dipolar coupling is maximized for the antiparallel magnetization. The direction of
the magnon spin currents pumped into the ±ŷ-directions is indicated by the green arrows, whose
size indicates the magnitude of the magnon currents. The black arrows indicate the (nearly uniform)
microwave input to the magnetic nanowire

cated much finer than this wave length. A small stripline cross section also increases
Joule heating and thereby limits the maximum applicable currents. A new strategy is
to use magnetic nanowires with high coercivity and resonance frequencies that can
be fabricated with the same feature sizes as normal metal ones. Rather than applying
anAC current directly, magnetic nanowires can be used as “antennas” that are excited
by proximity coplanar wave guides [5, 25–29]. A direct contact between film and
nanowires can suppress chirality by the interface exchange interaction and associated
spin transfer [6], but an insulating spacer of a few atomic monolayers strongly sup-
presses exchange without much affecting the dipolar interaction. Figure1.3 shows a
typical configuration with a Co nanowire on top of the YIG film.

1.3.1 Chiral Magnetodipolar Field

The dipolar field from themagnetic nanowire fundamentally differs from the Oersted
field of the AC current-biased normal metal wire discussed above. The precessing
magnetization is a magnetic dipole and generates a rotating dipolar field rather than
the oscillating axially symmetric field of the normal metal wire sketched in Fig. 1.1.
The amplitudes of dipolar waves decay faster than that of (monopolar) current-
induced ones, but are still long-ranged compared to e.g. the exchange interaction. The
nanowire and its equilibrium magnetization are parallel to the z-direction as shown
in Fig. 1.3. When driven with a frequency ω, the macrospin (Kittel) magnetization
dynamics of a wire with thickness d and width w is the real part of

M̃x,y(r, t) = m̃x,y�(x)�(−x + d)�(y + w/2)�(−y + w/2)e−iωt , (1.22)

where �(x) is the Heaviside step function and m̃x,y are constant amplitudes that
depend on the geometry and the excitation power. The corresponding dipolar mag-
netic field [47]
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h̃β(r, t) = 1

4π
∂β∂α

∫
M̃α(r′, t)
|r − r′| dr′

= 1

4π
∂β∂α

∫
dz′
∫ d

0
dx ′
∫ w

2

− w
2

dy′ m̃αe−iωt√
z′2 + (x − x ′)2 + (y − y′)2

. (1.23)

We use the Coulomb integral [6, 41]

1√
z′2 + (x − x ′)2 + (y − y′)2

= 1

2π

∫
dkxdky

e−|z′ |√k2x+k2y√
k2x + k2y

eikx (x−x ′)+iky(y−y′),

(1.24)
a variation of the Weyl identity used in (1.4), to express the magnetic field below the
nanowire (x < 0) with partial Fourier components ky

h̃β(ky, x, t) =
∫

hβ(r, t)e−iky ydy

= 1

π

∫
dkx (kx m̃x + kym̃ y)kβe

ikx x−iωt 1

k2x + k2y

1 − e−ikxd

ikx

sin(kyw/2)

ky
.

(1.25)

Closing the contour of the kx integral in the lower half of the complex plane yields

(
h̃x (ky , x, t)
h̃ y(ky , x, t)

)
= − i

4π
e|ky |x (1 − e−|ky |d )

2 sin(kyw/2)

ky
∣∣ky ∣∣

( ∣∣ky ∣∣ iky
iky − ∣∣ky ∣∣

)(
m̃x
m̃ y

)
e−iωt .

(1.26)
The perfectly right-circularly polarized wire dynamics of the Kittel mode in rect-
angular wires (m̃ y = i m̃x when w = d) implies that the Fourier components of h̃
with ky > 0 vanish. The Fourier component with ky < 0 is then perfectly left cir-

cularly polarized
(
h̃ y = −i h̃x

)
. Above the nanowire, the magnetic field direction

and polarization are reversed, as sketched in Fig. 1.4. The elliptical polarization of
the Kittel mode in rectangular nanowires breaks the perfect chirality. Analogous
expressions can be derived for arbitrarily shaped magnetic transducers such as discs,
but analytical expressions become complex or may not exist when the symmetry is
reduced.

Equation (1.21) can be used also for magnetic fields h̃ generated by a magnetic
transducer, i.e. (1.26), a left-circularly polarized dipolar field that propagates to the
left. An ellipticity of the spin waves in the film does not affect the chirality since
the excited magnetization still propagates to the left and lives only in the left half-
space, but it reduces the excitation efficiency. The same holds when the Kittel mode
in a rectangular nanowire is elliptical and the spin waves in the film are circularly
polarized. We illustrate these conclusion below from different viewpoint.

Let us compare the dipolar stray fields h̃ emitted by the excited magnetic wire
and H generated by a stripline as discussed in the previous section. The main dif-
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M

hd

wire

Fig. 1.4 Dipolar magnetic field h̃ generated by a Kittel mode excitation of a magnetic nanowire
(‖ ẑ). The thick red and thin blue arrows indicate the propagation and precession directions of h̃,

respectively, both above and below the wire

ference between these “Oersted” versus “dipolar” radiation is that the latter has
additional chirality that induces a circularly-polarized magnetic field in real space,
in contrast to the linearly-polarized magnetic field of the former. Equation (1.26) can
be summarized as h̃x ∝ |ky|(m̃x + isgn(ky)m̃ y) and h̃ y ∝ iky(m̃x + isgn(ky)m̃ y).

h̃ y = isgn(ky)h̃x is the polarization-momentum locking in reciprocal space, which
is the same as that of the evanescent Oersted field. However, the magnetic chirality
affects m̃x + isgn(ky)m̃ y : for right circularly-polarized (when w = d) m̃ y = i m̃x , h̃
simply vanishes for positive ky . Thus, the magnetic field is unidirectional with linear
momentum components normal to the wire that are negative, which is more than just
a locking between polarization and momentum. h̃ therefore couples chirally to spins
with arbitrary polarizations.

The Zeeman interaction ∼M · H̃ between the wire and film is governed as used
above is completely equivalent to the interaction∼M̃ · h, where M̃ is thewiremagne-
tization and h the dipolar field generated by the spin waves in the film. It is instructive
to discuss the physics from this second viewpoint. We assume again that the equilib-
rium wire magnetization is fixed by the form anisotropy to the z-direction. A suffi-
ciently soft filmmagnetization can be rotated in the x-z plane by an applied magnetic
field, but we address here only (anti)parallel magnetizations but general wave propa-
gation direction [7, 8].We allow for the elliptical spinwave polarization in themagne-
tostatic regime. At frequency ω and in the coordinate system defined in Fig. 1.3 with
in-plane wave vector k = ky ŷ + kz ẑ, we define Mx (r, t) = m(k)

R (x) cos(k · ρ − ωt)
and My(r, t) ≡ −m(k)

R (x) sin(k · ρ − ωt), where m(k)
R (x) is the time-independent

amplitude into the film and ρ = yŷ + zẑ. The dipolar field outside the film with
α, β = {x, y, z} [47],

hβ(r, t) = 1

4π
∂β∂α

∫
dr′ Mα(r′, t)

|r − r′| , (1.27)

then reads
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⎛
⎝ hx (r, t)
hy(r, t)
hz(r, t)

⎞
⎠ =

⎛
⎜⎜⎝

(
k + ηky

)
cos (k · ρ − ωt)(

k2y
k + ηky

)
sin (k · ρ − ωt)

kz
(
ky
k + η

)
sin (k · ρ − ωt)

⎞
⎟⎟⎠ 1

2
e−ηkx

∫
dx ′mk

R

(
x ′) eηkx ′

,

(1.28)
where x > 0 (x < −s) indicates the dipolar field above (below) the film, η = 1 (−1)
when x > 0 (x < −s), k = |k|, and the spatial integral is over the film thickness.

When kz = 0, ky = 0 spin waves propagate normal to the wire and hz = 0. The
distribution of the dipolar field above and below the film then strongly depends on
the sign of ky : the dipolar field generated by the right (left) moving spin waves only
appears above (beneath) the film [6–8] and precesses in the opposite direction of
the magnetization. These features provide an alternative explanation of the chiral
coupling between these spin waves and any magnet close to the film surface [6, 7].
The chiral dipolar coupling is most pronounced when the magnetizations of the film
and wire are antiparallel [6–8].

When the film magnetization is rotated by 90◦ in perpendicular to the wire,
the wire magnetization excites spin waves that propagate parallel to the magneti-
zation (ky = 0, hy = 0), which for thick films correspond to the backward mov-
ing bulk modes. Surprisingly, these also couple chirally to the wire dynamics,
but by a different mechanism. According to (1.4), hx ∝ |kz| cos (kzz − ωt) and
hz ∝ ηkz sin (kzz − ωt). The dipolar fields generated by spin waves with positive
(negative) kz are left (right) circularly polarized, respectively, while below the film,
the polarizations are reversed. These spin waves chirally interact with the transducer
magnet since the polarization of the transverse magnetization dynamics of the latter
has to match that of the stray field h [5].

Therefore, two mechanisms contribute to the chiral excitation, depending on the
magnetic configuration. When spin waves propagate perpendicular to the magneti-
zation with opposite momenta, their dipolar fields vanish on opposite sides of the
film; when propagating parallel to the magnetization, their dipolar field is chiral,
i.e., polarization-momentum locked. Purely chiral coupling between magnons can
be achieved in the former case without constraints on the polarization of the local
magnet, but in the latter case elliptical polarization of the wire leads to partial chi-
rality.

The resonance frequency of a magnetic nanowire can be tuned by an applied
magnetic field and excites spin waves in a frequency window that is governed by the
wire form factor. The magnetodipolar field emitted by a coherently excited magnetic
nanowire array can also be chiral [6, 7]. However, such a nanowire grating with
period a and translational symmetry naŷ excites discrete spin waves with momenta
(mπ/a)ŷ, where {m, n} ∈ Z0 that are observable as sharp and intense feature in the
microwave transmission (more details are shown below).
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1.3.2 Non-local Detection

Here we illustrate the principle of non-local excitation and detection of magnons by
a device consisting of two magnetic nanowires on top of a YIG film. The generation
of DC currents by AC forces in the absence of a DC bias is generally referred to
as “pumping” [49]. Spin pumping is the injection of a spin current by the magneti-
zation dynamics of a magnet into a normal metal contact by the interface exchange
interaction [50, 51]. Chiral spin pumping is the generation of unidirectional spin
waves by the dynamics of a proximity magnetic wire as discussed above. Its inverse
is the chiral spin absorption, i.e. the wire dynamics induced by the stray fields
caused by spin waves in the film. We develop below a semi-analytic theory of chi-
ral spin pumping/absorption for antiparallel magnetic configurations and describe
two effects—non-reciprocal microwave transmission and chiral spin Seebeck effect.
Whereas the former is due to coherent pumping by applied microwaves, the latter
represents the incoherent (thermal) pumping by a temperature difference [52–55].
Both effects can be observed in terms of the magnon population or temperature in
the detector, e.g., inductively or by light scattering.

We switch from a purely classical picture of previous sections to a quantum
description of the chiral coupling in terms of Hamiltonian matrix elements between
generalized harmonic oscillators. This does not introduce new physics since we can
simply replace operators by classical amplitudes, but it provides a compact formalism
used in many other fields such as nanomechanical systems and optics, and prepares
the stage for the treatment of real quantum problems. For simplicity, we focus on the
antiparallel magnetic configuration with maximized dipolar coupling (for arbitrary
magnetization directions see [8]). The dipolar coupling of the wire magnetization M̃
with that of a filmM is governed by the Zeeman interaction with the respective stray
magnetic fields h and h̃ [47]

Ĥint/μ0 = −
∫

M̃(r, t) · h(r, t)dr = −
∫

M(r, t) · h̃(r, t)dr, (1.29)

where h and h̃ have been introduced in (1.28) and (1.26). The magnetization dynam-

ics of film (M̂) and nanowire ( ˆ̃M) are now interpreted as operators with Cartesian
components β ∈ {x, y}. To leading order of the expansion in magnon creation and
annihilation operators [38, 45, 46],

M̂β(r) = −√2Msγ �

∑
k

[
m(k)

β (x)eik·ρρρα̂k + H.c.
]
,

ˆ̃Mβ(r) = −
√
2M̃sγ �

∑
kz

[
m̃(kz)

β (x, y)eikz zβ̂kz + H.c.
]
, (1.30)

whereMs and M̃s are the respective saturationmagnetizations,m(k)
β (x) and m̃(kz)

β (x, y)

are the spin wave amplitudes across the film and nanowire, and α̂k and β̂kz denote
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the magnon (annihilation) operator in the film and nanowire, respectively. The total
system Hamiltonian then reads

Ĥ/� =
∑
k

ωkα̂
†
kα̂k +

∑
kz

ω̃kz β̂
†
kz
β̂kz

+
∑
k

(
gke

−iky y0 α̂
†
kβ̂kz + g∗

ke
iky y0 β̂

†
kz
α̂k

)
, (1.31)

where ωk and ω̃kz are the frequencies of spin waves in the film and nanowire and the
coupling

gk = F(k)
(
m(k)∗

x ,m(k)∗
y

) ( |k| iky
iky −k2y/|k|

)(
m̃(kz)

x

m̃(kz)
y

)
, (1.32)

with F(k) = −μ0γ

√
Ms M̃s/Lφ (k). The form factor φ (k) = 2 sin(kyw/2)(1 −

e−kd)(1 − e−ks)/(kyk2) couples spin waves with wavelengths of the order of the
nanowire width (mode selection) and lim k→0 φ (k) = wsd. Pure exchange waves
are right-circularly polarized with m

(ky)
y = im

(ky)
x and their coupling is perfectly chi-

ral since g−|ky | = 0 and g|ky | = 0.
Equations (1.11) and (1.13) give the spin-wave dispersion and amplitudes in the

thin film. The spin waves propagate in the nanowire along ẑ with amplitudes [6, 8]

m̃kz
x =
√

1

4D(kz)wd
, m̃kz

y = i

√
D(kz)

4wd
, (1.33)

where

D(kz) =
√√√√Happ + Nxx M̃s + λ̃exk2z M̃s

Happ + Nyy M̃s + λ̃exk2z M̃s

. (1.34)

Happ and λ̃ex are the appliedmagnetic field and the exchange stiffness of the nanowire,
respectively. The demagnetization factors Nxx � w/(d + w) and Nyy = d/(d + w)

[6] also govern the spin waves frequency

ω̃kz = μ0γ

√
(Happ + Nyy M̃s + λ̃exk2z M̃s)(Happ + Nxx M̃s + λ̃exk2z M̃s). (1.35)

When the magnetic field is antiparallel to the nanowire magnetization we require∣∣Happ

∣∣ < min{Nyy M̃s, Nxx M̃s}. The ellipticity of the Kittel mode with kz = 0 is
strongly affected by the shape anisotropy when the applied field is sufficiently small
and the aspect ratio large: when d � w, Nxx → 1, Nyy → 0,D is large and themode
is nearly linearly-polarized. On the other hand, when d ≈ w, D → 1, and the Kittel
mode is circularly polarized. When d � w, and the Kittel mode traces an elliptical
orbit. Figure1.5 illustrates the chirality of the coupling parameter gk of the kz-Kittel
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Fig. 1.5 Momentum
dependence of the dipolar
coupling strength |gk| of a
magnetic nanowire and film
(parameters in the text) [8]
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mode in a nanowire of dimensionsw = 70nm and d = 20nm and magnons in a film
of thickness s = 20nmwithwave vector k = (0, ky, kz) [8]. The couplingmaximum
can be shifted to larger momenta by a smaller feature size of the wire. The excitation
of such short-wavelength spin waves is possible with a magnetically hard transducer
that has a high ferromagnetic resonance frequency [5, 25–29].

1.3.3 Coherent Chiral Spin Wave Transmission

The quantum description leads to expressions that are fully equivalent with (1.21)
obtained from the classical description [56, 57]. The excitation of magnons saps
nanowire energy and angular momentum, thereby contributing to the magnetization
damping, which can be observed as an increased linewidth of the ferromagnetic
resonance spectrum. In the quantum description, this broadening is determined by
the imaginary part of the magnetic self-energy, which in the first Born approximation
or the Fermi-golden rule reads

δκ̃kz = 2π
∑
ky

|gk|2δ(ω̃kz − ωk). (1.36)

We predict a very significant additional damping for a Co nanowire with width w =
70nm, thickness d = 20nm, magnetization μ0M̃s = 1.1T [7, 29], and exchange
stiffness λ̃ex = 3.1 × 10−13 cm2 [58]. We adopt a YIG film s = 20nm with mag-
netization μ0Ms = 0.177T and exchange stiffness λex = 3.0 × 10−12 cm2 [7, 29,
38]. A magnetic field μ0Happ = 0.05T is sufficient to switch the film magnetiza-
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tions antiparallel to that of the wire to maximize the effect [28, 29]. The calculated
additional damping of nanowire Kittel dynamics is then δαCo = δκ̃kz=0/(2ω̃kz=0) =
3.1 × 10−2, which is one order ofmagnitude larger than the intrinsicGilbert damping
coefficient αCo = 2.4 × 10−3 [59].

Almost perfect chiral pumping by a nanowire array has been observed by the
microwave transmission and Brillouin light scattering in [7]. We here focus on the
new features in the broadband non-local excitation-detection by two nanowires. The
magnetic order in two nanowires located at r1 = R1ŷ and r2 = R2ŷ act as transducers
for microwaves that are emitted or absorbed by local microwave (normal metal)
antennas such as coplanar wave guides. The observable is the scattering matrix of
the microwaves with excitation (input) at R1 and the detection (output) at R2, which
can be formulated by the input-output theory [56, 57]. The equation of motion of
magnons localized at R1 and R2 with operators m̂L and m̂R and coupled by the film
magnons with operators α̂q (not to be confused with the Gilbert damping constant)
read

dm̂L

dt
= −iωKm̂L(t) − i

∑
q

gqe
iqR1 α̂q(t) −

(κL

2
+ κp,L

2

)
m̂L(t) − √

κp,L p̂
(L)
in (t),

dm̂R

dt
= −iωKm̂R(t) − i

∑
q

gqe
iqR2 α̂q(t) − κR

2
m̂R(t),

dα̂q

dt
= −iωq α̂q(t) − igqe

−iq R1m̂L(t) − igqe
−iq R2m̂R(t) − κq

2
α̂q(t). (1.37)

Here, κL and κR are the intrinsic damping of the Kittel modes in the left and right
nanowires, respectively, κp,L is the additional radiative damping induced by the
microwave photons p̂(L)

in , i.e. the coupling of the left nanowire with the microwave
source, and κq denotes the intrinsic (Gilbert) damping of magnons in the films. In
frequency space:

α̂q(ω) = gqGq (ω)
[
e−iq R1m̂L(ω) + e−iq R2m̂R(ω)

]
,

m̂R(ω) = −i
∑

q g
2
qGq (ω) eiq(R2−R1)

−i(ω − ωK) + κR/2 + i
∑

q g
2
qGq (ω)

m̂L(ω),

m̂L(ω) = −√
κp,L

−i(ω − ωK) + (κL + κp,L)/2 + i
∑

q g
2
qGq (ω) − f (ω)

p̂(L)
in (ω),

(1.38)

with spin wave propagator Gq (ω) = [(ω − ωq) + iκq/2
]−1

and

f (ω) ≡ −
(∑

q g
2
qGq (ω) eiq(R1−R2)

) (∑
q g

2
qGq (ω) eiq(R2−R1)

)

−i(ω − ωK) + κR/2 + i
∑

q g
2
qGq (ω)

. (1.39)
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The excitation of the left nanowire propagates to the right nanowire by the spin waves
in the film. When chiral coupling is perfect, f (ω) vanishes without the back-action.
The microwave output of both left and right nanowires as inductively detected by
coplanar wave guides are denoted p̂(L)

out (ω) and p̂(R)
out (ω) with input-output relations

[56, 57]

p̂(L)
out (ω) = p(L)

in (ω) + √
κp,Lm̂L(ω),

p̂(R)
out (ω) = √

κp,Rm̂R(ω), (1.40)

where κp,R is the additional radiative damping induced by the detector. Therefore,
the elements in the microwave scattering matrix describing reflection (S11)and trans-
mission (S21) amplitudes become

S11(ω) ≡ p̂(L)
out

p̂(L)
in

= 1 − κp,L

−i(ω − ωK) + (κL + κp,L)/2 + i
∑

q g
2
qGq (ω) − f (ω)

,

S21(ω) ≡ p̂(R)
out

p̂(L)
in

= [1 − S11(ω)]
√

κp,R

κp,L

i
∑

q g
2
qGq (ω) eiq(R2−R1)

−i(ω − ωK) + κR/2 + i
∑

q g
2
qGq (ω)

.

(1.41)

The real parts of S11 and S12 at different magnetic fields and microwave frequencies
are illustrated in Fig. 1.6 for antiparallel magnetizations. The frequency of the Co
Kittel mode decreases with increasing magnetic field until its direction is reversed
to the magnetic-field direction (here

∣∣Happ

∣∣ � 200mT). The interference pattern on
the Kittel resonance in Fig. 1.6b reflects the transmission phase delay eik(R1−R2) in
(1.41).We note that in ourmodel the nanowires do not reflect spin waves, the features
should therefore not be interpreted in terms of standing spin waves.

1.3.4 Incoherent Chiral Pumping

A temperature gradient between the magnetic nanowire and film also injects unidi-
rectional magnon currents, i.e., causes a chiral spin Seebeck effect [52–55] . Here we
consider again two identical transducers, i.e., a magnetic nanowire at r2 = R2ŷ that
detects magnons, which are now thermally injected by the nanowire at r1 = R1ŷ and
R1 < R2. This is the configuration of the non-local spin Seebeck effect as detected
electrically in many experiments starting with [21]. The magnons in those experi-
ments are believed to be injected by the interface exchange interaction or generated
by a temperature gradient in the bulk and results are interpreted by spin diffusion
models. Here we consider the regime in which the exchange effect is suppressed,
magnon propagation is ballistic and we disregard the bulk spin Seebeck effect due
to possible temperature gradients. We predict a spin non-local spin Seebeck effect
that is caused exclusively by dipolar fields and carried by magnons with long wave
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Fig. 1.6 Microwave
reflection ReS11 (a) and
transmission ReS12 (b)
amplitudes, (1.41), for a
system of two Co nanowires
on a YIG film as a function
of frequency ωin. The
radiative damping of both
nanowires is
κp/(2π) = 10MHz and
other parameters are given in
the text
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lengths and lifetimes. We focus on the Kittel magnons in the wires since the dipolar
coupling between the film and higher bands in the nanowire is very small. The cou-
pling strength |gk| in Fig. 1.5 illustrates that magnons with wavelength around half
of the nanowire width (here π/w = 0.045nm−1) dominate the coupling. Pumping
from other than the those modes can therefore be disregarded even at elevated tem-
peratures. Furthermore, the spin current in the film is dominated by spin waves with
small momentum and long mean-free paths, so the effects of magnon-magnon and
magnon-phonon interactions that otherwise rendermagnon transport phenomena dif-
fuse [21] should be negligibly small. The narrow-band thermal injection requires an
inductive (or optical) detection of the magnons accumulated in the detector contact,
since the inverse spin Hall effect with heavy metal contacts is very inefficient.
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The equation of motions of the Kittel modes in the nanowire and film spin waves
with momentum q in the coupled system read

dm̂L

dt
= −iωKm̂L −

∑
q

ig∗
qe

iqR1 α̂q − κ

2
m̂L − √

κ N̂L ,

dm̂R

dt
= −iωKm̂R −

∑
q

ig∗
qe

iqR2 α̂q − κ

2
m̂R − √

κ N̂R,

dα̂q

dt
= −iωq α̂q − igqe

−iq R1m̂L − igqe
−iq R2m̂R − κq

2
α̂q − √

κq N̂q , (1.42)

where κ is caused by the same Gilbert damping in both nanowires, and N̂L and N̂R

represent the thermal noise in the left and right nanowires, with 〈N̂ †
η (t)N̂η′(t ′)〉 =

nηδ(t − t ′)δηη′ . Here, η ∈ {L , R} and nη = 1/
{
exp
[
�ω̃K/(kBTη)

]− 1
}
and TR is

also the film temperature. Integrating out the spin-wave modes in the film, we obtain
equations for dissipatively coupled [60, 61] nanowires. In frequency space,

(
−i(ω − ωK) + κ

2
+ �1 + �2

2

)
m̂L(ω) + �2e

iq∗|R2−R1|m̂R(ω) (1.43)

=
∑
q

ig∗
qe

iqR1
√

κqGq(ω)N̂q(ω) − √
κ N̂L(ω),

(
−i(ω − ωK) + κ

2
+ �1 + �2

2

)
m̂R(ω) + �1e

iq∗|R2−R1|m̂L(ω)

=
∑
q

ig∗
qe

iqR2
√

κqGq(ω)N̂q(ω) − √
κ N̂R(ω), (1.44)

where �1 = |gq∗ |2/vq∗ and �2 = |g−q∗ |2/vq∗ are assumed constant (for the Kittel
mode). Here, q∗ is the positive root of ωq∗ = ω̃K.

For perfectly chiral coupling with �2 = 0 the solutions of (1.44) read

m̂L(ω) =
∑

q ig
∗
qe

iqR1
√

κqGq(ω)N̂q(ω) − √
κ N̂L(ω)

−i(ω − ωK) + κ
2 + �1

2

,

m̂R(ω) =
∑

q ig
∗
qe

iqR2
√

κqGq(ω)N̂q(ω) − √
κ N̂R(ω) − �1eq∗(R2−R1)m̂L(ω)

−i(ω − ωK) + κ
2 + �1

2

.

(1.45)

With m̂L ,R(t) = ∫ e−iωt m̂L ,R(ω)dω/(2π), the Kittel modes are occupied according
to
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ρL ≡ 〈m̂†
L(t)m̂L(t)〉 = nL +

∫
dω

2π

κ

(ω − ωK)2 + (κ/2 + �1/2)2
(nq∗ − nL),

(1.46)

ρR ≡ 〈m̂†
R(t)m̂R(t)〉 = nR +

∫
dω

2π

�2
1κ[

(ω − ωK)2 + (κ/2 + �1/2)2
]2 (nL − nq∗),

(1.47)

where the damping in the high-quality film has been disregarded
(
κq → 0

)
. In the

linear regime the non-local thermal injection of magnons into the right transducer
by the left one then reads

δρR =
{
SCSSE(TL − TR)

0
when

TL > TR

TL ≤ TR
,

SCSSE =
∫

dω

2π

�2
1κ[

(ω − ωK)2 + (κ/2 + �1/2)2
]2 dnL

dT

∣∣∣∣
T=(TL+TR)/2

. (1.48)

where we defined the chiral (or dipolar) spin Seebeck coefficient SCSSE.

The device therefore operates as a heat diode, apparently acting as a “Maxwell
demon” that rectifies the thermal fluctuations at equilibrium. However, in thermal
equilibrium all right and left moving magnons are eventually connected by reflection
of spin waves at the edges and absorption and re-emission by connected heat baths.
The Second Law of thermodynamics is therefore safe, but it might be interesting to
search for chirality-induced transient effects.

1.4 Conclusion and Outlook

Handedness or chirality of wave propagation is a popular research topic in optics,
acoustics, and condensedmatter physics.Herewecontribute by a theory for the coher-
ent and incoherent chiral pumping of spin waves into thin magnetic films through the
chiral magnetodipolar radiation generated by the Oersted field of metallic striplines
and dipolar field of magnetic nanostructures. Spin waves excited coherently in the
film under magnetic resonance of the nanowire are unidirectional, generating a non-
equilibriummagnetization in only half of the film. A temperature gradient between a
local magnet and a film leads to the unidirectional excitation of incoherent magnons,
i.e., a chiral spin Seebeck effect.

PT symmetry has been predicted to amplify unidirectional response [62–64].
Even though our system is dissipative and therefore not PT symmetric, the nonre-
ciprocal coupling of the two wires still allows directional amplification [9, 10]. It
would be interesting to introducePT symmetry into our system via gain in one wire
that compensates the damping in the other, possibly leading to enhanced effects.
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Magnons can interact remotely by their chiral dipolar magnetic fields with other
quasiparticles including other magnons, photons, phonons, and conduction electron
spins. Strong chiral coupling betweenmagnons and photons exist, e.g., in microwave
waveguides or cavities that contain chains of small magnets on special lines [9, 10].
Large magnon numbers accumulate at one edge of a chain of magnets when excited
by local antennas [9, 10]. Spin currents by electrons or phonons may be generated by
the chiral magnetodipolar radiation as well. Chirality is a functionality that has not
yet been employed much in spintronics, but could be the basis for a new generation
of spin-based devices made from conventional materials.
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Chapter 2
Surface Plasmons for Chiral Sensing

Sotiris Droulias and Lykourgos Bougas

Abstract Chiral sensitive techniques have been used to probe the fundamental sym-
metries of the universe, study biomolecular structures, and even develop safe drugs.
The traditional method for the measurement of chirality is through optical activ-
ity, however, chiroptical signals are inherently weak and often suppressed by large
backgrounds. Different techniques have been proposed to overcome the limitations
of traditionally used optical polarimetry, such as cavity- and/or nanophotonic-based
schemes. In this chapter we demonstrate how surface plasmon resonance can be
employed as a new research tool for chiral sensing, which we term here as CHIral
Surface PlasmonResonance (CHISPR).We present how surface plasmons at ametal-
chiral interface are sensitive to the chirality parameter of the chiral medium and how
their properties can be exploited to reveal information not easily accessible using
standard polarimetric/nanophotonic approaches. We then present an experimental
realisation of CHISPR, an angle-resolved measurement scheme, and demonstrate
how can one detect the complete chirality (handedness and magnitude) of a chiral
sample while being also sensitive to both the real and imaginary part of a chiral
sample’s refractive index. We present analytical results and numerical simulations of
CHISPR measurements, predicting signals in the mdeg range for chiral samples of
<100nm thickness at visible wavelengths. Finally, we present a theoretical analysis
that clarifies the underlying physics of the near-field chiral interactions and their
far-field manifestation. In overall, CHISPR builds upon the strengths of standard
SPR: does not require elaborate fabrication and has the advantage of being directly
implementable on existing SPR instrumentation, making it, thus, an ideal modality
for studying chirality dynamics on surfaces.
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2.1 Introduction

Chirality, the geometric property of an object that is non-superimposable with its
mirror image, is a foundational property of life: the weak interaction between fun-
damental particles violates parity [1]; biomolecular structures fundamental to life,
such as amino acids, sugars, RNA and DNA, are both chiral and single-handed (i.e.
homochiral) [1]; the chemistry of life and the functionalities of its building blocks
are largely stereospecific [2]; organisms ranging from protists to plants and ani-
mals possess morphological asymmetries with respect to their left-right axis [3]. The
development of sensitive chiral sensitive techniques has, therefore, been vital for
this wide range of scientific disciplines, and has enabled the study of fundamental
symmetries of the universe [4], determination of biomolecular structures [5–7], and
even the development of safe and effective drugs [8, 9], to name few of its most
prominent applications.1

2.1.1 Chirality and Optical Activity

Starting from the observation by Arago in 1811 of colours in the sunlight as seen
through the optic axis of a quartz crystal placed between crossed polarizers, and the
observation of optical rotation in organic liquids such as lemon oils and turpentine
by Biot in 1815, the polarimetric techniques of optical rotatory dispersion (ORD)
and circular dichroism (CD) have remained as the most widely used research tools
in science for chiral sensing [11]. By 1825, Fresnel had discovered that linearly
polarized light can be regarded as a superposition of the two possible forms of
circularly polarized light [right (RCP) and left (LCP)], which lead to his proposal
of the first phenomenological theory about optical activity, i.e. the ability of a chiral
medium to rotate linearly polarized light travelling through it. His theory correctly
attributed this effect to the propagation at different speeds in the optically active
medium of the left- and right-circularly polarized components of the incident linearly
polarized light. The expression for optical activity as proposed by Fresnel has the
general form:

ϕ = πl

λ
(n− − n+), (2.1)

where n± are the (complex) indices of refraction of a chiral medium for RCP and
LCP light, respectively, λ is the vacuum wavelength of light, and l the length of the
medium.

With the advent of electromagnetism, a description of natural optically active
materials on the macroscopic level became possible and is now contained in the

1Portions of this chapter have been reprinted with permission from [10]. Copyright 2019 American
Chemical Society.
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material parameters of the constitutive relations. In particular, these, along with
Maxwell’s equations, can be written as (according to Condon [12, 13], in the e−iωt

convention):

∇ × E = iωB, (2.2)

∇ × H = −iωD, (2.3)

D = ε0εrE + i (κ/c)H, (2.4)

B = μ0μrH − i (κ/c)E, (2.5)

where ε0,μ0 are the vacuumpermittivity and permeability, εr ,μr the relativematerial
permittivity and permeability, respectively, and c is the vacuum speed of light; κ is the
chirality (also known as ‘Pasteur’) parameter, which expresses the chiral molecular
response. The eigenwaves of such a medium are RCP/LCP (or ±) waves, which
propagate with refractive indices n± = nc ± κ , respectively, where (n+ + n−)/2 =
nc ≡ √

εrμr is the average (background) refractive index.
Considering all the above, we can now see that ϕ = (2πl/λ) · κ , and that the real

part of κ , i.e. Re(κ), is associated with effects of circular birefringence, while the
imaginary part of κ , Im(κ), with circular dichroism.

2.1.2 Chiral Sensing Techniques

The polarimetric techniques of ORD and CD allow for the direct detection of the real
part and the imaginary part of ϕ, and, thus, of the chirality parameter κ of a natural
optically active medium. A typical ORD/CD spectro-polarimeter generally consists
of a light source, a set of polarizers for state preparation and analysis, and a spectral
analysis and detection stage. Yet, two separate instruments are actually designed
to perform, separately, ORD and CD measurements. Only in the recent years, new
approaches towards generalized polarimetry, such as the technique ofMuellerMatrix
polarimetry, have been demonstrated, which enable a complete characterization of
the optical properties of a medium and the simultaneous detection of both its circu-
lar birefringence and dichroism [14]. Notwithstanding, spectropolarimetry is being
extensively used in basic research and remains the established analytical technique
for quality and process control in the pharmaceutical, chemical, and agricultural
industries. Despite their extensive use, though, the sensitivity limits of commercially
available optical spectro-polarimeters, circular dichroism and optical rotation mod-
ules, are at the∼10–100µdeg levels corresponding to analyte concentration detection
limits at the (sub)-micromolar levels, constraining, thus, the extension of polarime-
try to a wide range of important research and industrial applications that require
improved sensitivity levels (e.g. sub-nM sensitivities). To overcome the limitations
of traditional polarimetry in chiral sensing, different techniques have been proposed
in the recent years. These techniques, which aim to enhance the matter-wave chiral
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interaction, can in principle be arranged into twomain categories, as they rely mainly
on either (a) path-length enhancement or (b) chiral-field enhancement.

Path-length enhancement techniques typically rely on the use of optical mirrors
to create either multipass cells or optical cavities, where in both cases spectro-
polarimetric signals are enhanced by the average number of passes through the
medium. Multipass cells [15, 16] are technically easy to construct and implement,
and optical path-length enhancements as large as ×500 have been demonstrated
[17, 18]; crucially though, multipass techniques cannot be, in principle, employed
for the measurement of optical activity (owing to the effective round-trip cancella-
tion of the polarization effects [19]). The solution is to use stable optical cavities
[20–24], with which one can achieve path-length enhancements of up to 105 using
state-of-the-art high quality mirrors, with effective path-lengths of up to several
hundred kilometers (one needs to compare this to the 10cm-long sample cell in a
single-pass commercial polarimeter), enabling record sensitivities for measurements
of absorption and birefringence (CD and ORD, respectively). Importantly, optical
cavities can easily be made compact and allow for wave-matter interactions in small
volumes. However, cavity-enhanced techniques become inadequate in systems with
losses originating from absorption and/or scattering (e.g. chiral molecules within
complex matrices, thin films, liquid and/or solid systems), because losses hinder the
path-length enhancement. For the case of CD, in particular, path-length enhancement
techniques can be mainly used to probe weak molecular transitions [20, 22, 25].

Chiral-field-enhancement techniques rely primarily on generating probing elec-
tromagnetic fields with chiral densities higher than circularly polarized plane waves,
i.e. superchiral fields [26–32]. Chiral and/or achiral nanophotonic systems, such
as plasmonic/dielectric nanostructures and metamaterials, can generate contorted
intense near-fields with high chiral densities around a resonance frequency of the
nanosystem, thus, amplifying the chiral-chiral interactions between them and a
molecule. In general, nanophotonic approaches have proven to be a powerful means
for granting access to weak chiroptical signals not previously attainable with tradi-
tional polarimetric techniques, however, the general principle of operation behind
(almost) all contemporary nanophotonic chiral-sensing approaches primarily relies
on the detection of enhanced CD signals in the presence of an optically active chi-
ral substance. To achieve this, right- and left-circularly polarized waves are used
to excite the system and generate these superchiral fields, and enable the ability to
perform CD measurements in transmission. While several works have attributed the
resulting CD signal to be proportional only to the imaginary part of the chirality
parameter, i.e. Im(κ) (see, e.g., [31–33]), in reality, as supported by past and recent
experimental and theoretical results [34–37] the observed CD signals depend on both
the real and the imaginary part of κ [Re(κ) and Im(κ), respectively]. Thus, with most
contemporary nanophotonic approaches, sensing of the magnitude and sign of both
the real and imaginary part of the chirality parameter of a natural optically active sub-
stance (completemeasurement) has not been possible, while elaborate fabrication is
required and the employed nanosystems typically have intrinsic chiroptical responses
that contribute to the total signal, often precluding direct quantitative measurement
of chirality [26–31].
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Considering, therefore, the importance of chiral sensing in research, it is vital
to develop alternative schemes that overcome the above-mentioned limitations of
path-length enhancement and/or chiral-field enhancement techniques. In particular,
it is apparent that a general chiral sensing scheme should be able to discriminate
between the contributions ofRe(κ) and Im(κ), especially far from the chiralmolecular
resonances, where Im(κ) is weak and Re(κ) is dominant. Additionally, it should be
sensitive to both the magnitude of the chirality parameter, |κ|, and its sign sgn(κ), as
|κ| is a function of the molecular properties (i.e. polarizability) and its concentration,
while sgn(κ) depends on the handedness of the medium.

In this chapter we discuss how surface plasmon resonance (SPR) allows for the
complete measurement of chirality (handedness and magnitude) of a chiral system.
SPR has become an important technology in the areas of biochemistry, biology, and
medical sciences because of its real-time, label-free, and noninvasive nature (see,
e.g., [38, 39]). We demonstrate how chiral-sensitive SPR, i.e. CHISPR, is able to
quantitatively detect both the real and imaginary part of the refractive index of a chiral
substance (responsible for the refraction and absorption, respectively), contrary to
most demonstrations that employ nanophotonic structures. We show that CHISPR
is particularly suitable for chiral sensing from thin samples which are not easily
measurable using alternative polarimetric techniques, and that it makes use of the
advantage of being applicable directly on existing SPR instrumentation without the
need for additional elaborate fabrication.

2.2 Surface Plasmon Resonance (SPR)

Surface plasmon resonance (SPR) refers to the resonant excitation of a surface plas-
mon polariton (SPP) at the interface between a metal and a dielectric (or, in general,
between two materials, one with negative and one with positive permittivity). SPPs,
in particular, are electromagnetic excitations that propagate along themetal-dielectric
interface and are evanescently confined in the perpendicular direction. They involve
the collective oscillation of conduction electrons at the surface of themetal (hence the
term ‘surface plasmon’) and they arise via the coupling of the electromagnetic fields
to the surface plasmon (hence the term ‘polariton’). SPPs are TM (or ‘p’)-polarized
waves, i.e., their magnetic field lies entirely on the metal-dielectric interface.

SPR is the basis for many biosensor applications and different lab-on-a-chip sen-
sors, owing to the sensitive dependence of the SPP characteristics on the permittivity
of the dielectric region extending over the metal. In essence, slight changes in the
permittivity of the dielectric lead to different propagation characteristics in the SPP
and therefore a frequency shift in its resonance. By measuring such frequency shifts,
one can detect the material changes occurring at the metal-dielectric interface.

Typical SPR setups involve a thin metallic layer (usually Ag or Au in the order
of 50nm) placed directly on a glass substrate, as shown in Fig. 2.1a in the well-
known Kretschmann configuration (see [40, 41] for other customary setups). In this
configuration themetallic layer extends along the xy-plane and SPP propagates along
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Fig. 2.1 SPR principle of operation. a Experimental implementation for SPR measurements
(Kretschmann configuration). b Explanation of SPP excitation. The glass substrate is used to pro-
vide the necessary tangential wavenumber (kinc) to match that of the SPP (kSPP). This is shown as
a crossing between the SPP dispersion (solid) and the light line in glass (dashed) (the light line in
the dielectric is also shown). c Excitation of surface plasmons in the Kretschmann configuration
for a Au-H2O interface at 633nm. The shaded area marked with ‘TIR’ (Total Internal Reflection)
denotes the region below the critical angle (41.8◦)

the x-direction at the interface between the metal and the dielectric medium located
above; the evanescent field is confined in the z-direction, as also shown schematically
in Fig. 2.1a. To excite theSPPwave, first an incidentwavemustmatch the polarization
properties of theSPPand, therefore, aTM(p)-polarizedwave is required (components
Ex , Hy , Ez). Second, the incident wave must also match the tangential wavenumber
of the SPP, kSPP; this is provided by the substrate, as shown schematically in Fig. 2.1a
and explained in Fig. 2.1b. There it is shown that the dispersion of the SPP lies below
the lightline in the dielectric (kSPP > kd; kd :wavenumber in the dielectric) and, hence,
the incident wave must have a high tangential wavenumber kinc to match kSPP and
achieve efficient power transfer to the SPP wave. This can be achieved, for example,
via the incident angle θ in an angle-resolved experiment, as shown in Fig. 2.1c. For
this example the wavelength of the incident wave is 633nm, a typical wavelength
employed in SPR spectroscopy, and the calculations have been performed for H2O
on a 50nm Au layer and a prism of refractive index nsub = 1.5 used as substrate. By
expressing the tangential wavenumber of the incident wave as kinc = k0 · nsub · sin θ ,
where k0 is the free-space wavenumber, it becomes clear that kinc can be controlled
by both by θ and nsub. Therefore, as θ is scanned, maximum power transfer from the
incident wave to the SPP wave can be achieved at a certain angle where the condition
kinc = kSPP is met. At this angle, the excitation of the SPP wave becomes the most
efficient and the reflected optical power is therefore minimized. This is manifested
as a dip in the angle-resolved measured reflection.

The CHISPR sensing scheme is an extension of the typical SPR configuration, in
which the dielectric layer is replaced by a chiral medium. Therefore, to understand
the principles of CHISPR it is instructive first to examine the properties of SPPs
at a metal-dielectric interface and how these are modified when the dielectric layer
becomes chiral.
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2.2.1 SPPs at a Metal-Dielectric Interface

The propagation characteristics of SPPs and their associated effects on the SPR
have been widely discussed in many textbooks [41–43] and papers [42, 44–52]. To
find the analytical form of the SPP, one starts with solving Maxwell’s equations for
the simple case of a flat interface between two semi-infinite spaces (conductor and
dielectric), i.e. (2.2)–(2.5) with κ = 0. Although realistic systems do not involve
semi-infinite material regions, the results are directly applicable to metallic films of
finite thickness, because the field penetration inside the metallic region is usually
much smaller than the thickness of the finite metallic layer (i.e., the film is is seen
by the wave as having effectively infinite thickness).

Let us assume that the metallic layer extends along the xy-plane and SPP prop-
agation occurs along the x-direction, with the evanescent field being confined in
the z-direction, as shown schematically in Fig. 2.2. Both regions are non-magnetic
(μr = 1) and we may denote the relative permittivity εr of the metal and dielectric
as εm and εd , respectively.

Due to the homogeneity of the geometry along the y-direction (∂/∂y = 0),
Maxwell’s equations are decomposed in two sets, one involving only Hx , Ey , Hz

components (TE mode) and one involving only Ex , Hy , Ez components (TMmode).
As also shown in [42], the SPP is a TM mode (it cannot exist for TE polarization)
and, assuming propagation along the x-direction with propagation constant kSPP,
Hy ∼ eikSPPx , (∂/∂x = ikSPP), the y-component satisfies the wave equation in both
regions:

∂2Hy

∂z2
+ (k20εm,d − k2SPP)Hy = 0, (2.6)

where εm,d denotes εm or εd , depending on the material region this equation refers
to. The solution for both sub-spaces is written in the form:

Fig. 2.2 Properties of SPPs at a metal-dielectric interface. a Geometry for SPP propagation
b Field components of SPP wave at a Au-H2O interface at 633nm. The electric field components
are normalized with ζ the wave impedance in H2O and the penetration distance z is normalized
with λSPP = 2π/Re(kSPP), the SPPwavelength. The SPP is studied analytically in the configuration
shown in a, however the results are directly applicable to real SPR experiments with metallic films
of finite size, as the field penetration inside the metal is usually much smaller than its thickness
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Fig. 2.3 SPP properties at a single interface between Ag-H2O (grey lines) or Au-H2O (black lines).
a Dispersion relation. b Propagation length, LSPP. c Penetration depth, δSPP. In all cases the dotted
line marks the operation wavelength of 633nm

Hy(z) =
{
H0eikSPPxe−kd z, z ≥ 0
H0eikSPPxe+km z, z < 0

, (2.7)

with

km,d =
√
k2SPP − k20εm,d , (2.8)

where H0 is a complex constant common to both branches in (2.7)—satisfying the
continuity of Hy at the interface—and km,d is the wavenumber in the perpendicular
direction that expresses the confinement in the metal (subscript ‘m’) or dielectric
(subscript ‘d’) (the remaining Ex , Ez components are directly calculated from Hy

using Maxwell’s equations). The continuity of the tangential electric field, Ex , dic-
tates that kd/km = −εd/εm , which in combination with (2.8) leads to the dispersion
relation of SPPs propagating at the interface between the two half-spaces:

kSPP = k0

√
εdεm

εd + εm
. (2.9)

This dispersion relation is associated with several important properties, see dis-
cussions in [44–46]. As an example, in Fig. 2.3a we plot (2.9) for a Ag-H2O (grey
line) and a Au-H2O (black-line) interface (the material parameters for Ag and Au
taken from [53], and for H2O we use a constant nd = √

εd = 1.33, the refractive
index of water in the visible). The qualitative difference between the dispersion in
Fig. 2.1b and both curves in Fig. 2.3a (i.e., the absence of a horizontal asymptote)
is due to the high metallic losses of Ag and Au, which damp the propagating SPPs
(see [45, 50, 54] for further details). The propagation distance of a SPP, LSPP, is
usually defined as the distance over which the mode can propagate along the sup-
porting interface until the field amplitudes drop to 1/e of their initial magnitude, i.e.
LSPP = 1/Im[kSPP] [50]. This is shown in Fig. 2.3b for the two cases considered here
(LSPP is typically between 10 and 100µm in the visible regime, depending on the
particular metal/dielectric material properties). In relevance to the SPR experiments
that we are concerned here, the most important feature of (2.9) is that the dispersion
branch related to the propagating SPP (a) lies below the lightline (i.e. the SPP is
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confined to the interface) and (b) acquires high k-values with increasing frequency
(i.e. the confinement becomes stronger); note that the SPP fields in the dielectric fall

off as e−|kd ||z| with kd =
√
k2SPP − k20εd [see (2.7), (2.8)]. The field-penetration depth

δSPP = 1/Im[kd], i.e. the distance over which the field amplitudes drop to 1/e of
their initial magnitude, is shown in Fig. 2.3c for both cases. As shown, δSPP is in the
range of a few nm and, therefore, SPPs are ideal for sensing material changes partic-
ularly close to the metal-dielectric interface, such as those from thin-subwavelength
in size-films.

2.2.2 SPPs at a Metal-Chiral Interface

The introduction of chirality in the dielectric medium that comprises the metal-
dielectric system imposes changes in the features of the SPP, as examined in detail
in the work of Mi and Van [51]. With chirality, SPPs are still supported at a metal-
chiral interface, however both their field components and their dispersion change. Let
us consider such an interface, where the chiral medium is characterized by permit-
tivity εc, permeability μc, and chirality (Pasteur) parameter κ . Chirality introduces
magneto-electric coupling by means of κ and, as a result, in the chiral medium the
fields satisfy the coupled wave equations:

∇2

[
E
H

]
+ k20(n

2
c + κ2)

[
E
H

]
+ 2k0κ

[+iωμcH
−iωεcE

]
=

[
0
0

]
, (2.10)

where nc = √
εcμc is the average (background) refractive index of the chiralmedium.

For propagation along the x-direction [E,H ∼ eikSPPx (∂/∂x = ikSPP)] and homo-
geneity along the y-direction (∂/∂y = 0), this system simplifies to:

∂2

∂z2

[
E
H

]
+ (k20(n

2
c + κ2) − k2SPP)

[
E
H

]
+ 2k0κ

[+iωμcH
−iωεcE

]
=

[
0
0

]
. (2.11)

From the form of (2.11) it is evident that due to κ , each E-field component now
couples with the respective H -field component and, therefore, all three components
of the electric and magnetic field exist in both the metal and the chiral medium. The
requirement for continuity of the tangential field components leads to the dispersion
relation:

(
ζckz,c+
kc+

+ ζmkz,m
km

)(
kz,c−
ζckc−

+ kz,m
ζmkm

)
+

(
ζckz,c−
kc−

+ ζmkz,m
km

)(
kz,c+
ζckc+

+ kz,m
ζmkm

)
= 0,

(2.12)
where ζc = √

μc/εc, ζm = √
μm/εm is the wave impedance in the chiral medium

and the metallic region, respectively and
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Fig. 2.4 Chiral SPP properties at a single Au-H2O interface. aDispersion relation for κ = 0 (black
line) and κ = ±0.1 (grey line). Chirality shifts the dispersion to higher in-plane wavenumbers,
independent of the sign of κ . This is also seen at the points marked with open circles, denoting
operation at 633nm. b Plots of Hy and Ey for κ = −0.1, κ = 0 and κ = +0.1. Chirality induces
a non-vanishing Ey-component, with phase depending on the sign of κ . The open dots correspond
to the dispersion points shown in a. c Magnitude of chiral-induced Ey-component in terms of |κ |,
normalized with the magnitude of Hy-component (ζ : wave impedance in water)

kz,c± =
√
k2SPP − k2c±, kc± = k0n±, (2.13)

kz,m =
√
k2SPP − k2m, km = k0nm, (2.14)

with n± = √
εcμc ± κ , nm = √

εmμm being the refractive index in the chiralmedium
and the metallic region, respectively.

This is the dispersion relation of SPPs propagating at a chiral-metal interface. Note
that, in the limit κ → 0, kz,c+ → kz,c− ≡ kz,c, and the above relation reduces to the
familiar dispersion of SPPs at an achiral dielectric-metal interface, which supports
only the TM polarization (in this case εc is simply εd , as considered previously for
the typical metal-dielectric interface). The chiral dispersion relation is also presented
in the work of Mi and Van [51], however in a slightly different notation, due to the
different formulationof the constitutive relations [52] (there, the chirality parameter is
denoted as ξ and is related to κ as κ = ζ0ξ , where ζ0 is the vacuumwave impedance).

Using this dispersion relation, in Fig. 2.4 we examine the SPP properties at a
single Au-H2O interface, where a chiral medium is dispersed in the water region.
To emphasize our findings, we assume a large chirality parameter (κ ∼ 0.1). In
Fig. 2.4a we present plots of the dispersion relation for κ = 0 (black line) and κ =
±0.1 (grey line), which demonstrate how chirality induces a shift to higher in-plane
wavenumbers (k). This is also seen at the points marked with open circles, denoting
operation at 633nm; therefore, in an angle-resolved SPR experiment, chirality is
expected to manifest as a shift of the reflectance dip at higher angles. Note that the
k-shift does not depend on the sign of κ and, therefore, a typical SPR measurement
cannot distinguish between left and right enantiomers. For the dispersion points
marked with the open circles in Fig. 2.4a, in Fig. 2.4b we plot Re(Hy) and Re(Ey).
We present individually three cases, namely for κ = −0.1, κ = 0 and κ = +0.1.
From this plot it is evident that chirality modifies the pure-TM character of the SPP,
thereby inducing a non-vanishing Ey-component. Most importantly, the phase of Ey

depends on the sign of κ; as we will see in the next section, this is a key element
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to our CHISPR protocol. Last, in Fig. 2.4c we plot the magnitude of Ey in terms of
the magnitude of κ . To quantify the results with respect to the magnitude of Hy , we
normalize Ey with the wave impedance ζ in water. The plot is shown in logarithmic
scale, starting from realistic values of |κ|(∼ 10−5) up to |κ| = 0.1, the value used in
the examples of Fig. 2.4a, b. The linearity of this scaling is a second key element to
our CHISPR protocol, as we will discuss in Sect. 2.3.

2.3 CHISPR

To demonstrate the principles of CHISPR we start by considering a standard angle-
resolved SPR setup in the Kretschmann configuration [40] where a Au layer is
deposited on a prism surface upon which a chiral substance dispersed in water is
placed. A realistic rendering of such a setup is shown in Fig. 2.5.

To excite the SPP wave at the metal-chiral interface, a TM (p)-polarized wave is
incident from the prism side (Figs. 2.1 and 2.5). For the case of a single metal-chiral
interface we saw previously that the presence of the chiral layer qualitatively changes
the SPP wave by generating an s-wave and by shifting the SPP dispersion to higher
in-plane wavenumbers. Therefore, the properties of the chiral layer itself should be
observable through angle-resolved SPR measurements; as discussed in the previous
section, these are expected as an angular shift in the reflectance dip. In Fig. 2.6 we
present the results of a simulated angle-resolved SPR experiment in the presence

Fig. 2.5 CHISPR experimental setup (Kretschmann configuration) for the detection of chirality
from thin (sub-wavelength) chiral layers: A linearly TM(p) polarized beam incident on a thin gold
layer (Au layer thickness ∼50nm) excites a surface plasmon polariton (SPP) (indicated by the
evanescent wave) at a particular angle, θ , which propagates along the metal-chiral interface. The
SPP wave is modified by the chiral environment, resulting in an outgoing optical chirality flux
which can be used to infer the properties of the chiral layer (see text for details). Figure reprinted
with permission from [10]. Copyright 2020 American Chemical Society
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Fig. 2.6 SPR reflectance under the presence of a chiral layer (nc = 1.33, 100nm thickness). The
SPR is excited with a TM(p)-polarized wave and the reflected power is analyzed into a p- and s-
components, Rp , Rs , respectively (same for κ = ±0.1), and RCP(+) and LCP(-) components, R+,
R−, respectively for b κ = +0.1 and c κ = −0.1. The effect of chirality appears in (a) as a enantio-
independent angular shift of Rp , accompanied by nonzero Rs and in (b)&(c) as a chiral-dependent
angular split (θ = θ+ − θ−) between R+ and R−. The magnitude and sign of θ depends on |κ|
and sgn(κ), respectively. In all subplots, the vertical dashed lines denote the angle of minimum Rp ,
i.e. the SPR angle, and the shaded areas denote the region below the critical angle (41.8deg)

of a thin chiral layer, where, to clarify our findings, we again use a large chirality
parameter κ and consider both possibilities for the sign, i.e. κ = ±0.1.

We analyze the reflected wave in terms of s and p components and calculate
the power at each polarization, namely Rs , Rp. Additionally, we analyze the total
reflected power Rs + Rp in terms of +/− components, which we denote as R± =
|r±|2, where r+ (r−) is the complex amplitude of the RCP (LCP) wave (that is,
R+ + R− = Rs + Rp). In an actual experiment, measurement of Rs/p and R+/− can
be easily performed with the incorporation of a Stokes polarimeter at the analysis
stage.

In Fig. 2.6a we show the reflected power measured in terms of s/p waves, as is
typically performed and presented in SPR experiments. The Rp curve has a pro-
nounced reflection-dip at 60.3deg, indicating the excitation of a SPP wave, while
we also observe a nonzero Rs peaking at 59.5deg [Fig. 2.6a, inset], as now part of
the p-wave is transferred to the s-wave due to the presence of the chiral layer. We
note here that, in accord with our analysis in Sect. 2.2.2, κ induces a shift on Rp

towards larger angles and this shift is identical for both κ = ±0.1 [for κ = 0, the
Rp reflection-dip is located at 60.1deg, while Rs = 0, as also shown in Fig. 2.1c].
Thus, measurement analysis based on the s/p waves cannot differentiate between
left-handed and right-handed chiral substances. We also note that this measurement
modality has been used in previous works discussing the possibility of detecting
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chirality using SPR measurements [55, 56], but it is effectively insensitive to the
sign of the chiral parameter κ .

When we now analyze the reflected wave in terms of RCP/LCP (+/−) compo-
nents, we observe that the minima of the R+, R− reflectances do not coincide, but
are separated by an angle θ ≡ θ+ − θ−, where θ+ (θ−) denotes the angle of the R+
(R−) minimum [Fig. 2.6b, c]. Moreover, we observe that for κ > 0 (κ < 0), θ > 0
(θ < 0). Thus, the presence of a thin chiral layer results in a chiral-dependent angu-
lar split θ between the measured reflectances of R+ and R−, which has a distinct
behaviour depending on the sign and magnitude of κ . We wish to note here that our
polarimetric measurement scheme, where the reflected wave is analyzed in terms of
+/− components, is sensitive only to chiral effects and not to general spectral shifts
(possible if variations to the host refractive index are present), and moreover it is
equivalent to the chirality flux spectroscopy used to probe the chiral near-fields of
chiral nanosystems, as presented in [57].

2.3.1 Mechanism of Chiral-Dependent SPR-Reflectance
Angular Split

To understand the mechanism behind the chiral-dependent SPR-reflectance angular
split, we examine how the near-field properties of the SPP wave are associated with
the properties of the reflectedwave in the far-field.We start by analyzing theSPPwave
along its propagation direction (x) into+/− components, i.e.ASPP = Ay ŷ + Az ẑ =
A+
SPP(ŷ + i ẑ) + A−

SPP(ŷ − i ẑ), where A±
SPP = (Ay ∓ Az)/2 and A is any of the

electromagnetic field quantities E, H, B, D; then, we calculate the electric and
magnetic energy densities w±

e = (1/4)E±
SPP(D

±
SPP)

∗ and w±
m = (1/4)B±

SPP(H
±
SPP)

∗,
respectively, which we integrate to find the total energy stored in each of the two
(+/−) components, namely W± = ∫

V(w±
e + w±

m ) d3x [Fig. 2.7a]. Here, the integra-
tion volume V is the entire SPP volume extending above the metal (where the chiral
layer is to be probed). For κ = 0 we obtain W+ = W−, as the SPP wave has only an
Ez-component on the yz-plane, which is equally distributed between the two +/−
components (typical nonchiral SPR case). This is shown in Fig. 2.7b, where the
energy difference W+ − W− is normalized to the incident energy Sinc/2ω (ω is the
angular frequency and Sinc is the magnitude of the time-averaged Poynting vector).
However, the onset of chirality causes the emergence of an Ey-component [51] and,
hence, an unbalanced storage of the optical energy between the +/− components of
the SPP. In fact, for κ > 0 (κ < 0), RCP (LCP) components are favoured and, there-
fore, W+ > W− (W+ < W− ) [Fig. 2.7b]. This stored energy excess between +/−
SPP components in the near-field results in nonzero Rs reflectance in the far-field;
this is apparent in the fact that the peak of Rs coincides with the peak of W+ − W−
at 59.5deg which differs from the Rp minimum at 60.3deg [Figs. 2.6a and 2.7b].
In other words, the Ey-component that emerges in the near-field due to chirality,
is identified in the far-field as well, as power transfer from the outgoing p-wave
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Fig. 2.7 Mechanism of the R+, R− angular split. a The incident wave excites the SPP, which
we analyze in RCP/LCP (+/−) components along its propagation direction. The total energy
stored in each component is denoted as W± (see also text for details). b Stored energy difference
between RCP/LCP components of the SPP wave (normalized over the incident energy Sinc/2ω).
Chirality causes energy excess between RCP/LCP waves, which changes sign upon sign change of
κ (κ = ±0.1). cRatio of amplitude and phase of the reflected wave components for κ = +0.1 (solid
blue lines), κ = −0.1 (dashed red lines). We analyze the wave in terms of s/p components (left)
and RCP/LCP components (right). We present the amplitude in logarithmic scale to emphasize the
inversion symmetry of the ratio |E+/E−| upon sign change in κ . The vertical dashed line denotes
the angle of minimum Rp , i.e. the SPR angle. Figure adapted with permission from [10]. Copyright
2020 American Chemical Society

to the s-wave. When the total reflected wave in the far-field is analyzed in +/−
components as well, the reflectance splits into two parts, which have their minima
at different angles [Fig. 2.6b, c]. This angular split is mediated by the resonance of
the surface plasmon; the amplitude of the Ey/Ex ratio is symmetric around the SPR
angle [Fig. 2.7c], however, the phase arg(Ey/Ex ) undergoes a π -shift, favouring the
advance of either the Ex or the Ey component, depending on whether the angle of
incidence is below or above the SPR angle [Fig. 2.7c]. Consequently, the mixture of
the reflected RCP and LCP wave-components is weighted differently, resulting in
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an excess of either RCP or LCP waves below or above the SPR angle and, hence,
a reflectance split between R+ and R− waves. As for the magnitude of κ , it does
not significantly affect the arg(Ey/Ex ) (it induces a slight angular shift), however, it
notably changes the amplitude of Ey/Ex , which increases with increasing κ . Chang-
ing the sign of κ induces a π -shift of the Ey phase, without affecting Ex [Fig. 2.7c].
Hence, the sign of κ does not affect the amplitude of the ratio Ey/Ex but causes the
interchange between RCP/LCP components.

2.3.2 Sensitivity of Chiral-Dependent SPR-reflectance
Angular Split

Because the resonance of the SPP wave depends strongly on the material parameters
at the metal-chiral interface, it is expected that the strength of the SPR reflectance
angular split θ will depend, besides the chirality parameter κ , also on the chiral
substance’s refractive index, nc.

In Fig. 2.8 we show this dependence for the case of real κ (we discuss the case
of imaginary κ in a following section). Overall, we observe (a) a linear dependence
between the magnitudes of θ and κ , (b) a distinct correspondence between the
signs of θ and κ , and (c) a non-monotonic dependence of θ on nc. This non-
monotonic dependence is related to the interplay between the coupling strength of
the incident wave to the SPP wave and the interaction strength of the SPP wave with
the chiral layer. In particular, as nc increases, the SPR dispersion changes and the
reflection-dip is shifted to higher angles due to higher kSPP [Fig. 2.8a]. In turn, the
coupling of the incident wave to the SPP becomes stronger, leading to higherθ and,
hence, in increased sensitivity [Fig. 2.8b]. Eventually, for very high incident angles
the coupling of the incident wave to the SPP becomes weaker, leading to weaker
θ/κ accordingly. In addition, for angles close to the critical angle the effect
becomes the weakest. In reflection-based polarimetric measurements, the optical
rotation signals scale as ∼√

Re(κ) when approaching the critical angle (see [23, 24,
58, 59]), which is not the case here [Fig. 2.8b]. This is a consequence of the fact that
the measurement is mediated entirely by the SPP wave and is not associated with
direct polarimetric signals from the chiral layer. Thus, by measuring the magnitude
and sign of this chiral-dependent angular split, we obtain information about the
magnitude and sign of κ .

Furthermore, because the thickness of the chiral film is finite, the SPP interacts
both with the chiral film and the dielectric region above (air). In essence, the SPP
experiences an effective index in the chiral-air region, which depends on the chi-
ral film thickness; with increasing film thickness, the evanescent tails of the SPP
interact less and less with the air above, until this effective index converges to nc.
In our simulations so far we considered a chiral layer of 100nm thickness, which is
in the order of the calculated field penetration depth [see Fig. 2.3b]. For this reason,
in Fig. 2.9 we repeat the calculations of the measurement sensitivity (θ/κ) pre-
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Fig. 2.8 Measurement sensitivity of θ on the chirality parameter κ . a Angle-resolved Rp
reflectance denoting the SPR angle (θSPR) for the shown selected values of nc with κ = 0. bθ/κ

vs SPR angle. The solid black line represents a multitude of individual calculations, on which the
cases for nc shown in (a) are marked with dots of the same colour. c θ vs κ for the selected values
of the host index nc. The solid black line denotes the system of Fig. 2.6 with nc = 1.33

Fig. 2.9 θ/κ as a function of the chiral-layer thickness, for κ = 0.1. The dashed black line
represents the results shown in Fig. 2.8

sented in Fig. 2.8b, for chiral layers of variable thickness.We see that, with increasing
chiral layer thickness, the measurement sensitivity converges to the limit of chiral
substances of theoretically infinite extent (practically referring to electrically thick
samples). In addition, we observe that for small SPR angles this increase is mono-
tonic, but for large SPR angles the measurement sensitivity reaches a maximum level
for a thickness of∼100–150nm, beyond which it gradually drops until convergence.
Therefore, we see that due to the evanescent character of the SPPwave inside the chi-
ral region, one can achieve through measurements of θ similar levels of sensitivity
for a large range of chiral-layer thicknesses.

2.3.3 Differential Measurements

In the previous subsections we demonstrate how the presence of a thin chiral layer
results in a chiral-dependent angular split between the measured reflectances of R+
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and R−, which has a distinct behaviour depending on the sign and magnitude of κ .
However, as we show in Fig. 2.8, for small values of κ (κ < 10−3), this angular split,
θ , becomes similarly small and its detection can be hindered by background noise
sources. Despite this, there exist alternativemeasurements one can consider perform-
ing in a CHISPR scheme, thanks to the ability to obtain distinct chiral-dependent
signals. In particular, we can consider measurement configurations based on differ-
ential signals which are largely immune to signal fluctuations and drifts (a direct
analogy is the case of CD measurements, which are differential type of measure-
ments). Specifically, we consider two relevant quantities associated with the reflected
(outgoing) RCP/LCP waves: the amplitude and phase differential reflectances (DR),
namely ρDR and φDR, respectively. We define the DR signals as,

ρDR = |r+|2 − |r−|2
|r+|2 + |r−|2 , and φDR = Arg

[ r+
r−

]
. (2.15)

In Fig. 2.10 we present the DR signals, ρDR and φDR, respectively, for a value
of κ = ±10−5 as a function of the background index of the chiral layer, nc. We

Fig. 2.10 Differential reflectance (DR) signals for a 100nm thin chiral layer with κ = ±10−5, as a
function of the background index of the chiral layer (nc). The shown range is ∼(−6.3 . . . + 6.3) ×
10−2 × max(ρDR) in the ρDR plots and∼(−2.7 . . . + 2.7) × 10−2 × max(φDR) in the φDR plots to
emphasize the broadening with increasing SPR angle and the distinct association with the sign of κ .
Specific examples for nc = 1.33 are marked with horizontal dashed lines and are shown separately
below each panel. The vertical dashed line marks the SPR angle for the chosen value of nc
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emphasize here that this is a realistic value for the chirality parameter, correspond-
ing, for example, to the case of aqueous solutions of monosaccharides [23, 24] or
biomolecules [34–36]. For such a realistic value of κ , therefore, we observe ρDR

signals of the order of ∼10−4 and φDR signals of the order of a few ∼mdegs, both
within the sensitivity range of SPR instruments [60–62]. As a comparison, we note
that the optical rotation signal from a transmission measurement of a 100nm chi-
ral layer with κ = +10−5 at 633nm, is ϕ � 6 × 10−4 deg (2.1). Furthermore, we
observe that ρDR(−κ) = −ρDR(κ) and φDR(−κ) = −φDR(κ). Thus, using the DR-
dependent signals, we are able to quantify Re(κ) (magnitude and sign) with increased
sensitivity compared to measurements of the angular split, θ [61, 63, 64].

Another important feature of the differential signals, ρDR and φDR, is that these
decrease in amplitude as the plasmon resonance moves away from the critical angle,
contrary to θ/κ which we observe to increase (Fig. 2.8). This decrease is related
to the broadening of the SPR feature due to increased losses for higher kSPP, and
to the reduction of the Rs/Rp ratio, which expresses the strength of the p- to s-
wave conversion. In particular, in Fig. 2.11 we show the change in the Rs/Rp ratio
with increasing SPR angle (due to increasing nc). We observe that the Rs/Rp ratio
decreases while simultaneously broadening, which yields, thus, reduced differential
signals.Moreover, the peak-to-peak values of ρDR andφDR [ρDR andφDR, respec-
tively; Fig. 2.11b], qualitatively follow a similar trend indicating a strong connection
with the strength of Rs/Rp. Furthermore, we observe that the variation of Rs/Rp

(and consequently of ρDR and φDR) is non-monotonic and it generally depends
on the properties of the particular metal. Despite these, it is apparent that regardless
of the exact variation, the differential signals of ρDR and φDR allow for unambiguous
determination of κ .

Fig. 2.11 Effect of coupling strength between s− and p−waves due to chirality on differential
reflection measurements. a Rs/Rp ratio as function of nc for κ = ±10−5. b Peak-to-peak values
of the differential signals ρDR and φDR [ρDR (top) and φDR (bottom), respectively]. The solid
black lines represent a multitude of individual calculations, on which the cases for nc shown in a
are marked with dots of the same colour. In addition, the marked cases in a, b correspond to the
cases shown in Fig. 2.8 using the same colour-code
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2.4 Complete Measurement of Chirality

So far we have examined CHISPR signals assuming only a real-valued chirality
parameter κ . Under realistic experimental conditions, this is a valid approximation
for interpreting the results when one performs measurements at optical frequen-
cies far detuned from any molecular resonances where chiral-dependent differential
absorption (i.e. circular dichroism), which is proportional to Im(κ), is negligible
[11]. However, when the optical frequency of an SPR instrument is near a molecular
transition, both circular birefringence and circular dichroism [proportional to Re(κ)
and Im(κ), respectively] become substantial and the proposed measurements should
be interpreted with care.

To examine circular dichroism effects we introduce a nonzero imaginary part in
the chirality parameter κ and demonstrate its effect on the CHISPR signals. However,
to appropriately examine the case of circular dichroism (by introducing an imaginary
part in the chirality parameter κ) without violating the passivity, we must ensure that
Im(nc ± κ) > 0. For this reason, we introduce artificial loss in the average refractive
index of the chiral layer, i.e. nc = 1.33 + 0.01 i .

We start by demonstrating how each CHISPR signal (θ and DR signals) change
under the influence of an imaginary-valued chirality parameter. In Fig. 2.12a we
present the chiral-dependent angular split θ as a function of Re(κ) for Im(κ) =
−10−3, 0, 10−3. We see that in the presence of absorption [Im(κ) �= 0] the angular
split θ obtains a linear chiral-dependent offset, and the effects of Re(κ) and Im(κ)
appear as linear superpositions in the total θ . Moreover, in Fig. 2.12b we present
the change in the differential signals, ρDR and φDR, in the presence of absorption.
In particular, we calculate ρDR and φDR for κ = 10−5, κ = 10−5 i , and the sum of
the two individual signals. We also present the same signals for the case of κ =
10−5 + 10−5 i , which we show to coincide with the sums of the individual signals
[Fig. 2.12b]. In overall, we see that in the presence of absorption and birefringence,
the effects of the real and imaginary parts of the chirality parameter appear as linear
superpositions in the final CHISPR signals (θ and DR signals).

In Fig. 2.13 we examine the resulting DR signals for the cases of both chiral-
dependent refraction, κ = ±10−5, and absorption, κ = ±10−5 i . From the individual
simulations we observe a clear distinction in the DR signals between the four cases,
that is, CHISPR enables the detection of the magnitude and sign of both the real
and imaginary part of the chirality parameter, and discrimination of their contribu-
tion through the distinct CHISPR signals. In combination with the results shown in
Fig. 2.12, it becomes apparent that in the case where the SPR operational wavelength
is near the vicinity of a molecular resonance, where circular dichroism is accompa-
nied by an dispersive circular birefringence, i.e Re(κ) & Im(κ) �= 0 (Cotton effect
[11]), the resulting DR signals will be the result of a linear superposition of the indi-
vidual signals for the real and the imaginary part of the total chirality parameter (as
these are presented in Fig. 2.13).
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Fig. 2.12 CHISPR measurements in the presence of molecular absorption, i.e. Im(κ) �= 0. a θ

as a function of Re(κ) for Im(κ) = ±0.001i [dashed line corresponds to Im(κ) = 0]. To maintain
the passivity of the system, we add artificial loss to the chiral layer index, which now is nc =
1.33 + 0.01i .b Demonstration of linearity of the effects of Re(κ) and Im(κ) on the differential
signals ρDR and φDR. The calculations have been performed for κ = κ0 (left) and κ = i κ0 (middle)
separately, and for κ = κ0 + i κ0 (right), with κ0 = 10−5. Here we use: nc = 1.33 + 10−3i . Figure
adapted with permission from [10]. Copyright 2020 American Chemical Society

Fig. 2.13 Complete sensing of total chirality via measurements of the differential signals ρDR and
φDR. Left column: κ = ±10−5 (purely real). Right column: κ = ±10−5i (purely imaginary). Here
we use: nc = 1.33 + 10−3i

2.5 Optical Chirality Conservation

The fact that the presence of the chiral layer modifies the evanescent field of the
SPP, naturally raises the question of whether the reflectance measurements in the
far-field can provide information about the chiral near-field features. To relate the
two quantities, we utilize the conservation law of optical chirality density [65–70],
which in the time-averaged, time-harmonic case is written as:
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− 2ω
∫
V

Im(χe − χm) d3x +
∫
V

Re(∇ · F) d3x = 0, (2.16)

whereχe andχm are the electric andmagnetic optical chirality densities, respectively,
and F is the corresponding chirality flux:

χe = 1

8

[
D∗ · (∇ × E) + E · (∇ × D∗)

]
, (2.17)

χm = 1

8

[
H∗ · (∇ × B) + B · (∇ × H∗)

]
, (2.18)

F = 1

4

[
E × (∇ × H∗) − H∗ × (∇ × E)

]
. (2.19)

Similarly to as we performed in Sect. 2.3.1, here we again analyze the SPP wave
along its propagation direction (x) into +/− components. For κ �= 0 the inte-
gral of the total chirality density χ = χe + χm across the SPP volume, X , is
unequally stored between the +/− SPP components, i.e. |X+| �= |X−|, where
X± = ∫

V(χ±
e + χ±

m ) d3x . Because X+ and X− are associated with waves of the
opposite handedness, they possess opposite sign and, hence, the total X , which is
the sum X+ + X−, is written as |X+| − |X−|, which expresses a chirality excess
between the +/− components. In Fig. 2.14 we plot the integrated optical-chirality-
density excess |X+| − |X−|, and to directly relate it with the simulations we present
in Fig. 2.6 we choose κ = 0, ±0.1. We see that the result is qualitatively similar to
W+ − W−, as shown in Fig. 2.7b. Due to the chirality conservation law (2.16), this
unbalance results in a chirality flux F in the far-field, manifested as unequal RCP and
LCP components and observed through the angular split or the DR signals. In fact,
as shown in [70] the chirality flux F of a certain propagating wave is proportional to
the third Stokes parameter, and also related to the Poynting vector S = 1

2 (E × H∗),
via F± = ∓(ω/c)S± (where c is the speed of light in the medium, and F± and
S± are the magnitudes of F and S with the signs +/− corresponding to RCP/LCP
waves, respectively). Therefore, in the CHISPR measurement protocol, there must
be a connection between the measurable reflectances R+, R− and the far-field chiral
quantities.

To find this connection, we start by analyzing the incident wave in +/− com-
ponents. We calculate the magnitudes of the power flux S±

inc and chiral flux F±
inc

for each component and, because the incident wave is linearly polarized (p-wave),
we find that these quantities are equally distributed between the +/− components,
i.e. S+

inc = S−
inc ≡ Sinc/2 and F+

inc = F−
inc ≡ Finc/2, where Sinc and Finc are the mag-

nitudes of the total incident power and chiral flux, respectively. In fact, because
the incident wave is linearly polarized, the total incident chirality flux is zero, i.e.
Finc = F+

inc + F−
inc = 0. However, because the individual fluxes have nonzero magni-

tude (and equal; they correspond to circularly polarized waves of equal amplitude),
we define the incident flux magnitude as Finc = |F+

inc| + |F−
inc| = 2|F±

inc| ≡ 2F±
inc.
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Fig. 2.14 Top row: Integrated optical chirality density excess X+ − X− between RCP/LCP (+/−)
components of the SPPwave, normalizedwith the incident Finc/2ω. Middle row: Reflected chirality
flux F± (solid blue/red lines), normalized with the incident chirality flux Finc, and reflectance
R± (dashed/dotted lines). Bottom row: differential flux δF and differential reflectance amplitude
ρDR. For these simulations we use a 100nm thin chiral layer with nc = 1.33 and κ = −0.1 (left
column), κ = 0 (middle column) and κ = +0.1 (right column). In all panels, the SPR angle (angle
of minimum Rp) is marked with a vertical dashed line. Figure adapted with permission from [10].
Copyright 2020 American Chemical Society

Next, after following a similar analysis for the reflected wave, we associate the
quantities related to both the incident and reflected +/− components as,

F±
inc = ∓ω

c
S±
inc, F±

refl = ∓ω

c
S±
refl, (2.20)

and hence
F±
refl

F±
inc

= S±
refl

S±
inc

⇒ F±
refl

Finc
= S±

refl

Sinc
≡ R±, (2.21)

or simply F±/Finc = R±. As a result, we find that the reflected chirality flux F±,
normalized by the incident optical chirality flux Finc, is equal to the reflectance R±
in the CHISPR measurement protocol. To emphasize this equivalence, in Fig. 2.14
we present calculations of F±/Finc and R± for the three cases considered, namely
κ = 0, κ = ±0.1. Therefore, we see that our proposed measurement scheme results
in a direct measurement of the optical chirality flux, which is directly connected with



2 Surface Plasmons for Chiral Sensing 47

the near-field optical chirality density [65–70]. Moreover, using F±/Finc = R± it
follows that:

δF = F+ − F−
F+ + F−

= R+Finc − R−Finc

R+Finc + R−Finc
= R+ − R−

R+ + R−
= ρDR, (2.22)

i.e. the differential chirality flux δF is equal to ρDR, as we also demonstrate in
Fig. 2.14.

2.6 Discussion and Conclusions

In this chapter, we start from the observation that plasmonic near fields at metal-
chiral interfaces exhibit non-vanishing optical chirality density, which generates a
far-field chirality flow. By measuring this chirality flow, which we show to be simply
the reflectance in our measurement protocol, we are able to detect changes in the
near-field chirality and we demonstrate how this can be exploited for chiral-sensitive
measurements using SPR instrumentations. From this, we proceed to demonstrate
the following: (a) how chiral-sensitive SPR measurements allow for the complete
determination of chirality of a natural optically active substance (handedness and
magnitude) and for the detection of the near-field wave at the metal-chiral interface;
(b) how CHISPR is able to detect both the real and imaginary part of the chiral index
of refraction, i.e. detect both circular birefringent and circular dichroism effects; and
(c) howCHISPR is particularly sensitive for the case of sub-wavelength chiral layers,
for which traditional (commercial) polarimetry has typically insufficient sensitivities
to detect. A particularly significant advantage of the angle-resolvedCHISPRprotocol
we present here, is that it can be employed for spectroscopy of a molecule simply by
tuning the frequency of the incident laser radiation over a molecular absorption line
[71, 72]. In this case, one can record either the output of an angular split (Figs. 2.6
and 2.8) or a differential measurement (Fig. 2.10) as a function of frequency, and
the outcome of such an experiment would be the molecular spectrum of a chiral
molecule through angle-resolved CHISPR measurements. Furthermore, in a SPR-
based chiral-sensing scheme the whole evanescent-wave volume is sensitive to the
probed chiral substance (due to the mobility of the propagating SPPs), contrary to
contemporary chiral-sensing nanophotonic schemes that typically rely on localised
surface plasmons, where the sign and magnitude of the chiroptical response can pos-
sess a complex dependence on sample geometry [26–31, 73]. Crucially, the CHISPR
signals we demonstrate are within the sensitivity of current SPR instrumentation for
the realistic values of the chirality parameter we consider and, therefore, CHISPR
measurements can be directly realized on existing SPR measurement instrumenta-
tions with slight modifications on the analysis stage. As a final remark, we wish to
emphasize here that since the observed relationships between κ and the measured
quantities (θ , ρDR and φDR) will effectively impose a lower limit of chiral detec-
tion, we expect that this can be further improved by enhancing the local fields, for
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example via modification of the thin metal layer, e.g. via perforation, in order to take
advantage of the strong evanescent fields at the gaps.

In overall, we expect our findings to be of great interest for chiral-biosensing
applications, considering also that an angle-resolved CHISPR sensing scheme is a
surface-sensitive measurement and differs from conventional chiral-sensing tech-
niques based on transmission measurements. Crucially, the CHISPR scheme and
its predicted signals we demonstrate are within, respectively, the capabilities and
sensitivity of current SPR instrumentation and, therefore, CHISPR measurements it
can be directly realized on existing SPR measurement instrumentations with slight
modifications on the analysis stage. Furthermore, CHISR has also the potential for
miniaturization and portable design [74–76] (we note here that recent developments
in nanophotonics have unveiled novel ways to develop nanoscale Stokes polarimeters
[77–79]), and such a possibility could enable compact devices for real-time sensing
of biological processes that occur in limited regions of space
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Chapter 3
Spin-Polarized Plasmonics: Fresh View
on Magnetic Nanoparticles

Vladimir P. Drachev, Maria Pogodaeva, Sergey V. Levchenko,
and Ali E. Aliev

Abstract Here we discuss effect of spin-polarization on plasmon excitation in deep
ultra-violet spectral range for Co nanoparticles with a single-domain magnetic struc-
ture. Structural, magnetic, and optical characterizations of Co nanoparticles shine a
light on a mechanism of the magneto-plasmonic response.

3.1 Introduction

It is a common belief that the quality of the plasmon resonance of magnetic nanopar-
ticles such as Co is quite low, which follows, in particular, from the experimental
data for permittivity of bulk cobalt by Johnson and Christy (J&C) [1]. Our recent
paper shows that for single-domainmagnetic nanoparticles the usual approach, based
on bulk permittivity, does not work, while used to work perfectly for nonmagnetic
nanoparticles [2]. Indeed, our experiments prove that Co nanoparticles with a single-
domain magnetic structure support a sharp plasmon resonance at about 280 nm with
the resonancequality comparable to gold nanoparticles. This typeof plasmons is quite
different from known plasmons in noble metals. Note that the plasmon resonance
of Co is in the deep ultraviolet spectral range, which is the range for bio-molecule
resonances [3], as it is shown in Fig. 3.1, and, therefore, attractive for bio-medical
applications in addition to its magnetic nature.

Deep ultraviolet (DUV) Raman spectroscopy selectively visualizes nucleotide
bases, monomeric units of deoxyribonucleic acids (DNA) and aromatic amino acids,
monomeric units of proteins, in cells due to the resonant effect (spectra are presented
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Fig. 3.1 Absorption spectra of DNA (black) and aromatic proteins (gray) (from [3] © Institute
of Physics and Engineering in Medicine. Reproduced by permission of IOP Publishing. All rights
reserved). The CoNP plasmon resonance in absorption is shown in red, optical density in arbitrary
units (from [2] with permission licensed under CC BY 4.0 https://creativecommons.org). The red
bar shows the Raman shift range at the laser excitation wavelength 266 nm. The enhancement of
the CoNPs will cover this range

in Fig. 3.1, black and gray lines correspondingly) [4–7]. In the resonant Raman
condition, where the electronic transition energy of amolecule corresponds to photon
energy of Raman excitation light, the Raman scattering intensity of the molecule is
enhanced by as much as 106 compared to the non-resonant Raman scattering [5].
Because other biological compounds in cells, such as lipids and sugars, are not in the
resonant condition at the DUV, Raman scattering from nucleotide bases and aromatic
amino acids [4–7] are selectively enhanced in theDUV resonant Raman spectroscopy
of cells. Main obstacle of the current resonance Raman approach is that the UV light
overdose is harmful to the cells viability and biomolecules functionality [5]. Surface-
enhanced resonance Raman scattering (SERRS) will strongly reduce the required
energy density for robust detection. Unique combination of plasmonic and magnetic
properties makes this platform appropriate for a combined approach of diagnostics
and therapy (theranostics). Magnetic nanoparticles represent an attractive tool for
medical applications based on their ability to be simultaneously functionalized and
guided by an external magnetic field [8–17]. Various biomedical applications of
magnetic nanoparticles include enhancing and targeting gene delivery by magnetic
force in vitro and in vivo [8, 9], magnetic fluid hyperthermia and cancer therapy [9,
10], cells separation [12], magnetic resonance imaging [13–15]. Biocompatibility
of magnetic nanoparticles is under extensive studies and can be achieved by an
appropriate coating [16, 17].

Currently plasmonic applications in bio-sensing involve noble metals, Ag or Au,
since the quality of their plasmon resonance is highest [18–20]. The SERS protocols
based on Ag and Au nanoparticles are demonstrated for tag free protein-protein

https://creativecommons.org
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binding detection, the feasibility of using SERS to distinguish protein conformational
states, which was shown for human insulin and its analog insulin lispro [21–24]. A
protocol has been developed to detect cell surface markers, CD44 and CD24, in
three breast cancer cell lines [25]. The dielectric functions Ag and Au for this type
of nanostructures were carefully studied as well [26–28].

However, Co nanoparticles (Co-NPs), under certain conditions can support an
excellent plasmon resonance at about 280 nm with a quality factor greater than
Al, In, and comparable to Au in the visible [2]. Importantly, this Co platform is
comprising both magnetic and plasmonic properties. A long lasting search for plas-
monic materials in the ultraviolet spectral range does not consider Co as a promising
candidate [29–32]. One of the criteria for a high quality plasmonic material is that the
number of electrons involved in interband transitions must be low, and at the highest
possible frequency. These criteria significantly reduces the number of materials that
are likely to have favorable optical properties, by the simple fact that all materials
with partially occupied d or f states are going to perform poorly across the visible due
to interband transitions [33]. Recent works pushed the plasmonics to high-energy
range using Al [33–35] and In [36].

The Mott model [37, 38] of conductivity in magnetic metals helps to qualitatively
explain observed phenomena for Co nanoparticles. Indeed, the electrical conduc-
tivity in metals can be described in terms of two largely independent conducting
channels, corresponding to the spin-up and spin-down electrons. Importantly, the
probability of spin-flip scattering processes in metals is normally small as compared
to the probability of the scattering processes in which the spin is conserved. This
means that the spin-up and spin-down electrons do not mix over long distances and,
therefore, the electrical conduction occurs in parallel for the two spin channels. Also,
the scattering rates in ferromagnetic metals of the spin-up and spin-down electrons
are quite different, whatever the nature of the scattering centers is. These two chan-
nels of conductivity with a distinct spin-dependent scattering is the primary origin
of giant magnetoresistance [39].

Here, we discuss the effect of spin polarization on plasmon oscillations of the free
electrons in nanoparticles, which is, crucial in many envisioned applications at the
cross road of magnetism and plasmonics.

3.2 Spin Polarization in Co Nanoparticles

Anew typeof plasmons is specific for spin-polarizedmagnetic nanoparticles.One can
expect two independent plasmons which co-exist in a spin-polarized metal nanopar-
ticle following Mott’s model. These two plasmons coexist in a particle at the same
frequency and polarizations of excitation, but for electrons of opposite spin. Inter-
nanoparticle interactions completely demolish plasmon quality resonance, which is
the probable reason why it was not observed previously and why the results for bulk
films [1] cannot be used for single domain nanoparticles evaluations. It is known
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that the exchange interaction of electrons splits the energy bands between spin-
up (majority) electrons and spin-down (minority) electrons. We suggest that a low
quality of the plasmon resonance for spin-down electrons is due to the large relax-
ation rate of the conduction electrons caused by high density of empty states in a
partially populated d-band. However, the majority electrons with a completely filled
d-band does not affect the relaxation rate and plasmon resonance of the conduction
spin-up electrons within magnetic nanoparticles.

Figure 3.2 shows spin polarization for bulk Co and Co nanocluster calculated
using density functional theory (DFT) simulations. Transitionmetals are challenging
for DFT, since standard exchange-correlation (XC) functional approximations, local
density approximation (LDA) and generalized gradient approximation (GGA) under-
estimate localization of valence d-electrons. This problem is commonly addressed
via ad hoc inclusion of a Hubbard correction to e.g. GGA with an effective U term
(GGA+U). The resulting GGA+U method has the same low computational cost
as GGA. U is a parameter that can be tuned to reproduce experimental results, in
particular lattice parameters and magnetic moments. Although optimal U have been
suggested in the literature for various metals including Co, [40, 41] not all properties
can be reproduced with good accuracy at the same time. Moreover, the value of theU
parameter depends on the coordination of metal atoms. Therefore, a different value
of U may be required to describe metal bulk and clusters.

In Fig. 3.2 projected density of states (DOS) for the bulk hexagonal close packed
(hcp) cobalt (panel b) and a 48-atom cluster (panel a) are shown. DOS for face-
centered cubic (fcc) crystal structure looks qualitatively similar. For this compar-
ison we used DFT with the Perdew–Burke-Ernzerhof (PBE) exchange-correlation
functional [42]. All calculations are done with all-electron full-potential electronic-
structure package FHI-aims [43–46] with “tight” numerical settings. The hcp lattice
constants were optimized with PBE. The initial atomic structure of the cluster is
obtained using Wulff construction for hcp Co, [47, 48] and then fully relaxed.
Projected DOS for the cluster is calculated using Gaussian width of 0.01 eV.

As can be seen in Fig. 3.2, the general shapes of DOS for bulk and particle for
both spin channels are similar, but there are also important differences. In particular,

Fig. 3.2 Projected density of states (DOS) for a 48-atom Co cluster and b bulk hexagonal close
packed (hcp) cobalt. Projections on valence s, p, and d orbitals of Co are shown. Spin-minority
DOS is shown with negative sign. Zero on the energy axis corresponds to the Fermi level
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more structure is observed for the particle both below and above the Fermi level
(corresponding to 0 eV). This is not surprising, since the particle has additional
states due to the presence of the surface. Notably, the pronounced peaks around the
Fermi level in both spin channels are discrete and broadened in the cluster compared
to bulk.

3.3 Methods

In this work, the oleic acid (OA) coated cobalt nanoparticles were fabricated by
the high temperature reduction of cobalt salt in the presence of trioctylphosphine
(TOP) as a surfactant and lithium triethylborohydride as a reducing reagent [49–
51]. Cobalt nanoparticles were synthesized using a method similar to that of Sun
and Murray [52]. The reduction of cobalt nanoparticles was conducted under inert
atmosphere. At room temperature, 0.13 g (0.019 M) of anhydrous cobalt chloride,
0.3 mL (0.018 M) of oleic acid and 30 mL (1.87 M) of dioctyl ether were mixed
together under purged nitrogen gas in the three-necked flask containing magnetic
stir bar and heated to 100 °C. Then 1.5 mL (0.063 M) of trioctylphosphine, which
was injected via syringe and the temperature raised to 205 °C. At this temperature, a
strong reducing reagent, 1.5 mL (0.236 M) lithium triethylborohydride, was added
in solution and the cobalt nanoparticles begin to grow immediately. The blue colour
of the solution turns to black upon nucleation and growth of cobalt nanoparticles.
The reaction was terminated by cooling the solution to room temperature and 20 mL
(4.8 M) of anhydrous ethanol was added to precipitate the particles. The solution
was aged overnight at room temperature in order to attach cobalt nanoparticles to the
magnetic stir bar in the flask. The cobalt nanoparticles are removed from a magnetic
stir bar and washed several times with ethanol by centrifugation. Finally, oleic acid
coated cobalt nanoparticles were suspended in 8 mL of hexane.

To address the mechanism of new type of plasmons specific for magnetic
nanoparticles our work involves the structural electron microscopy, superconducting
quantum interference device (SQUID) magnetometry, dynamic light scattering
(DLS), and spectroscopy of Co nanoparticles. The structural andmagnetic character-
izations prove the single-domain and superparamagnetic properties of nanoparticles
required for spin dependent channels of plasmon oscillations. The magnetic field
induced aggregation of nanoparticles in our experiments results in the suppression
of the resonance quality.

3.4 Structural Properties

The scanning electron microscopy (SEM) energy dispersive X-ray (EDX) image of
the cobalt nanoparticles synthesized by the high temperature decomposition of cobalt
salt (Fig. 3.3).
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Fig. 3.3 a SEM image of the Co nanoparticles. b Corresponding EDX spectrum. From [2] with
permission licensed under CC BY 4.0 https://creativecommons.org

We observed the large aggregates of cobalt nanoparticles instead of isolated parti-
cles because the circular magnet placed underneath the silicon substrate attracted the
magnetic nanoparticles from the solution. An energy dispersive X-ray (EDX) spec-
trum analysis has been obtained from the cobalt nanoparticle sample. This spectrum
clearly shows the presence of cobalt peaks. In addition, EDX spectrum also shows
the presence of nickel peaks because the sample was made conducting by coating
with nickel.

High resolution transmission electron microscopy (TEM) images were obtained
with the FEI Tecnai G2 F20 S-Twin 200 keV field emission scanning transmis-
sion electron microscope (S/TEM). The high magnification TEM image of spherical
cobalt nanoparticles shows the size distribution of cobalt nanoparticles ranges from
6 to 12 nm with average particle diameter of 8.7 nm. High resolution TEM images
show that our particles form both hcp and fcc crystal structure. Figure 3.4a shows

Fig. 3.4 a High resolution TEM pattern of [100] hcp crystal structure of Co nanoparticle. The
radius here measures 4.59 ±0.05 nm. b High resolution TEM pattern of [100]—[001] hcp crystal
structure of Co nanoparticle. Plane 1: 0.216 nm±0.05 nm, Plane 2: 0.223 nm±0.05 nm, interplanar
angle 91.8° ±3°. Calculated: [100] 0.217113, [001] 0.217113, [100]—[001] angle 90°

https://creativecommons.org
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TEM of [100] crystal structure of some cobalt nanoparticles have lattice spacing
2.102 Å and inter-planar angle 83.6° typical for hcp. Figure 3.4b shows high reso-
lution TEM image of [111] crystal structure of other cobalt nanoparticles has lattice
spacing 1.95 Å and inter-planar angle 25.63°, typical for fcc.

For calculation expressions explaining the basic crystallography of cobalt was
used [53]. Following by definition, if two planes have indices (hkl) the distance
perpendicularly between them is shown by the inverse of the magnitude of the lattice
vector.

dhkl = 1
∣
∣ha∗ + kb∗ + lc∗∣∣ (3.1)

Then:

∣
∣ha∗ + kb∗ + lc∗∣∣2 = (

ha∗ + kb∗ + lc∗) · (

ha∗ + kb∗ + lc∗)

= h2a∗2 + k2b∗2 + l2c∗2 + 2klb∗ · c∗ + 2lhc∗ · a∗ + 2hka∗ · b∗

= h2a∗2 + k2b∗2 + l2c∗2 + 2klb∗c∗ cosα∗ + 2lhc∗a∗ cosβ∗ + 2hka∗b∗ cos γ ∗

here, a∗,b∗, and c∗ are lattice vectors, α∗ is the angle between lattice vectors b∗ and
c∗, β∗ is the angle between c∗ and a∗. Knowing that cobalt is found primarily in two
phases, hexagonal close packed and face-centered cubic further expansion of this
formula was used only for those two overall structures. The lattice constants used
for cobalt are found in a variety of literatures. For hcp lattice constants of a = b =
0.2507 nm, c = 0.4069 nm. For fcc lattice constants of a = b = c = 0.35446 nm.

First calculations were done to families of standard planes for both fcc and hcp
structures. Hexagonal first:

α∗ = β∗ = 90◦, γ ∗ = 60◦ and a∗ = b∗, d2
hkl = 1

(h2 + k2 + hk)a∗2 + l2c∗2 (3.2)

cosφ = dhkldh′k ′l ′

[{

hh′ + kk ′ + 1

2
(hk ′ + kh′)

}

a∗2 + ll ′c∗2
]

In which:

a∗ = 2

a
√
3
, c∗ = 1

c

Next for cubic:

α∗ = β∗ = γ ∗ = 90◦ and a∗ = b∗ = c∗, d2
hkl = 1

(h2 + k2 + l2)a∗2 (3.3)
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cosφ = hh′ + kk ′ + ll ′√
h2 + k2 + l2

√
h′2 + k ′2 + l ′2

(3.4)

In which:

a∗ = 1

a

Using these equations [53] the calculated interplanar distances and then angles
were able to be deduced. These equations were used to code a simple Mathematica
program that would output both interplanar distances as well as angles.

The analysis of the TEM images showed and confirmed the likely structure of
cobalt. Though, a large amount of the images had planes and angles that were incon-
clusive the data definitely points most directly at hexagonal close packed to be the
average crystalline phase of the particles. The large amount of inconclusive inter-
planar angles are likely due to surface deformities, aswell as, small and unpredictable
tilts in the particles. This would allow for the interplanar angles and distances to be
skew, reduced in the case of the interplanar distances and increased up to 180° in the
case of the interplanar angles. In general, cobalt should not be found in face-centered
cubic crystalline phase below 400 °C. However, some nanoparticles in our case did
show possible indications of being in this phase.

3.5 Magnetic Response

Magnetic properties of Co-NP embedded into poly(methyl methacrylate) (PMMA)
host matrix were measured using direct current (DC) option of 7 Tesla SQUID
magnetometer (Magnetic Property Measurement Device, Quantum Design Inc.).
Figure 3.5 shows the step-by-step sample preparation for magnetic measurements:
Co-NP collected from magnetic stirring bar were dispersed in PMMA, deposited on
a substrate, dried, and then the PMMA film with embedded Co-NP were packed into
a gelatine capsule. To reduce the influence of the sample shape (demagnetization
effect), all Co-NP embedded sheets were placed in gelatine capsule parallel to the
applied magnetic field.

Fig. 3.5 Sample fabrication steps for magnetic measurements. From [2] with permission licensed
under CC BY 4.0 https://creativecommons.org

https://creativecommons.org
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Fig. 3.6 a Temperature dependence of magnetic moment for 8.8 nm Co-NP measured in FC (solid
blue circles) and ZFC (open blue circles) regimes at applied field of 20 Oe (sample #25). The
inset shows an expanded view at a peak of ZFC magnetization. The small bump at 52 K indicates
an oxygen contents in the sealed capsule. b Shift of ZFC magnetization peaks towards lower
temperatures for decreasing particle sizes: 8.8 nm for sample #25; 7.6 nm for sample #28; and 6.6
nm for sample #33, respectively. From [2] with permission licensed under CC BY 4.0 https://creati
vecommons.org

The temperature dependence of magnetization in field cooling (FC) and zero
field cooling (ZFC) regimes exploited to determine the blocking temperature (T b) at
which the ZFCmagnetization shows a pronounced peak. T b is the temperature below
which the magnetization curve shows the hysteresis and above superparamagnetic
properties [54]. The observed curves for FC and ZFC regimes shown in Fig. 3.6a, b
are typical for single-domain ferromagnetic nanoparticles.

For very small particles at finite temperatures the magnetic anisotropy energy,Ku,
becomes comparable to the thermal energy resulting in random flip of the magneti-
zation direction and in superparamagnetic (SP) relaxation. Thus, the T b is defined as
the temperature at which the SP relaxation time (response ofmagnetic dipole), equals
the timescale of the experimental technique used to study the magnetic properties,
ωτ = 1. The SP relaxation time τ, also called the Neel relaxation time, τN [54], given
by [55],

τ = τ0 exp

(
KuV

kbT

)

. (3.5)

was measured using ACMS option of Physical Property Measurement Device
(Quantum Design Inc.) in the frequency range of 10 ≤ f ≤104 Hz with alternating
current (AC)magnetic field amplitude of±10Oe.Here,Ku is themagnetic anisotropy
energy, V is the particle volume, kB is Boltzmann’s constant and T is the tempera-
ture. The value of τ0 extracted from the linear extrapolation of τ to zero 1000/T for
Co-NP with 6.6 nm in diameter is 4.1 × 10−14 s (see Fig. 3.7). Here we ignore the
temperature dependence of τ0, as it is small compared to the effect of the temperature

https://creativecommons.org
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Fig. 3.7 Thermal variation
of a relaxation time versus
reciprocal temperature for
d = 6.6 nm (sample #33).
The green dashed line is an
extrapolation of relaxation
time to 1000/Tb = 0. The
inset shows the ZFC
magnetization curves
measured for each frequency
(f = 1/2πτ) shown in the
main panel. From [2] with
permission licensed under
CC BY 4.0 https://creativec
ommons.org

through the exponential [56]. Hence, for DCmeasurements, where ln(τ/τ0)≈ 29, the
blocking temperature, above which the single domain Co-NP starts randomly flip
its magnetic moment and is small enough to display superparamagnetism, should
roughly satisfy the relationship

Tb ≈ KuV

29kB
. (3.6)

With a knowledge of average particle diameter from the precise analysis of TEM
images and dynamic light scattering measurements (d#25 = 8.8 nm, d#28 = 7.6 nm,
d#33 = 6.6 nm,) the magnetic anisotropy energy extracted from Fig. 3.6b (Ku

#25 =
2.74 × 106 erg/cm3, Ku

#28 = 3.73 × 106 erg/cm3, Ku
#33 = 3.9 × 106 erg/cm3) falls

between bulk fcc and hcp structures (2.7× 106 erg/cm3 for fcc and 4.7× 106 erg/cm3

for hcp), respectively.
The increase in anisotropy constant (energy) for small Co-NP and clusters is

resulted from strong contribution of surface atoms. The fraction of Co atoms on
the surface of nanoparticles increases with decrease in particle size, which results
in decrease of coordination number of surface atoms, increased spin and orbital
magnetic moments towards free atoms [57]. The anisotropy energy, Ku, is also
increases due to the reduction of spherical symmetry of small nanoparticles [58].

Above the blocking temperature the susceptibility is precisely follows the Curie
law, χ ~ C/T, where C = n(μ0μ)2/kB is the Curie constant, n is number of particles,
μ0 is magnetic moment of vacuum, andμ is the relative magnetic moment of Co-NP.
The linearity of χ ~ T c/T plot observed for studied Co-NP (see Fig. 3.8) also implies
a low interaction between nanoparticles. The interaction between nanoparticles is a
crucial parameter determining the strength of plasmon resonance in Co-NP.

The correctly measured T b should increase as a cub of the particle diameter, T b ~
V ~ D3. The deviation of T b dependence from cubic behaviour in Fig. 3.9a implies

https://creativecommons.org
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Fig. 3.8 ZFC and FC susceptibility (χ = M/H) for 8.8 nm Co-NP (#25) measured at applied
magnetic field of 20 Oe plotted versus reciprocal temperature, T c = 1394 K is the Curie temperature
for bulk Co. From [2] with permission licensed under CC BY 4.0 https://creativecommons.org

Fig. 3.9 a The particle diameter dependence of the blocking temperature, Tb. Dashed and dash-dot
curves show a fitting to the cub dependence, Tb ~ V. b The particle diameter dependence of the
anisotropy energy. The dot line is a fitting of reciprocal-cub dependence for [58] and our result. The
bulk value for fcc cobalt is shown by dashed (green) line. From [2] with permission licensed under
CC BY 4.0 https://creativecommons.org

the decrease of anisotropy energy. On the other hand, the increase of particle size
above single-domain size should bring the anisotropy constant towards the balk value
[58]. Figure 3.9b shows that for particles larger than 8 nm the anisotropy energy is
close to the bulk fcc value, 2.7 × 106 erg/cm3.

Conanoparticles coatedwithCoO (or partially oxidizedduring fabrication) should
exhibit exchange anisotropy due to an interfacial interaction between ferromagnetic

https://creativecommons.org
https://creativecommons.org
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Fig. 3.10 a The shift of magnetization loops for sample #25 cooled in field+1 T (open red squares)
and−1 T (open green triangles), T = 10 K. b Themagnetization loop for the same sample cooled in
zero field is symmetrical. The diamagnetic slope of m(H) curves beyond the hysteresis loop comes
from a PMMA matrix. From [2] with permission licensed under CC BY 4.0 https://creativecomm
ons.org

Co metal and antiferromagnetic CoO. The shift of the symmetry of hysteresis loop
measured at low temperatures (10 K), after the sample was cooled in a magnetic
field of 1 T (FC), implies that CoO shell was formed on the particle surfaces (see
Fig. 3.10a). At the same time, the ZFC cooled sample shows quite symmetrical
hysteresis loop at T = 10 K (see Fig. 3.10b). These measurements were taken for
samples #25 (8.8 nm) fourmonths later frompreparation date. Since the sampleswere
embedded into PMMA matrix, the oxidation, perhaps, comes from the surfactant
shell on the surface of Co-NP. However, as prepared samples measured within 2–3
weeks do not show any shift of the hysteresis loop.

The high-field magnetic moment for 8.8 nm Co-NP (#25) measured at 5, 100
and 298 K are shown in Fig. 3.11a. The analysis of saturation magnetization (Ms)
at 5 K (the diamagnetic contribution of PMMA matrix was subtracted) shows that
the Co-NP exhibit no-saturation behaviour up to highest available field of 7 T. The
saturation magnetization obtained from the extrapolation of M versus 1/H line to
0 gives ~10 emu/g, which is close to the value obtained for 7.8 nm Co-NP having
fcc structure produced by the Kraschmer carbon arc process [59]. At the same time,
this value is one order lower than for bulk fcc Co (162 emu/g, or 175 emu/g, see in
[60]). The reduced remanence, Mr/Ms = 0.02, is far below of theoretical values for
nanocrystals having uniaxial anisotropy such as cobalt in the hcp form (0.5) or in the
fcc form (0.8) [60].

Among the possible explanations for the reduced saturation magnetization and
remanence is the multiphase (fcc–hcp) crystalline domain structure of single particle
separated by amorphous cobalt and the exchange coupling between adjacent Co-NP.
The dipole coupling enhancements are attributed to the long-range order of the 2D
lattice (particles are embedded into thin PMMA film) and collective “flips” of the

https://creativecommons.org
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Fig. 3.11 a The field dependence of magnetic moment of Co nanoparticles (0.69 mg) dispersed
in 10.31 g PMMA matrix taken at 5 K (blue line), 100 K (green line) and 298 K (red line).
b The field dependence of magnetization for 5 K and 298 K. Main panel shows magnetization
of Co-nanoparticles with subtracted diamagnetic contribution of PMMA host material. Top-left
inset shows as-measured magnetization at 5 and 298 K. Green dashed line shows the reference
line for diamagnetic contribution of host material. Bottom-right inset shows expanded view of
magnetization at low fields. From [2] with permission licensed under CC BY 4.0 https://creativec
ommons.org

magnetic dipoles. On the other hand, the coercive field at T = 5 K, Hc = 0.145 T, is
comparable to reported fcc CoNP [60].

The magnetic moment per particle was calculated for 8.8 nm Co-NP (#25) from
the susceptibility χ above the blocking temperature at low field using following
equation [58]

χ = Msμ

3kbT
, (3.8)

whereμ is the magnetic moment per particle,Ms is the saturation magnetization, and
kb is Boltzmann’s constant. The diamagnetic susceptibility of the PMMAmatrix was
measured and subtracted to obtain these results: At 214 K contribution of diamag-
netic part (PMMA) for sample #25 is 0.45 × 10−6 emu; Magnetic moment, m =
(18.8−0.45) × 10−6 emu = 18.35 × 10−6 emu; Saturation magnetizationMs at T =
298 K (the same at 214 K):Ms = 0.57 emu/g. Susceptibility χ measured for applied
field H = 20 Oe at 214 K: χ = m/(mρ· H) = 18.35 × 10−6/(0.69 × 10−3 × 20 Oe)
= 1.33 × 10−3 emu/g Oe. Here mρ = 0.69 mg is the mass of Co nanoparticles in
PMMA host material (10.31 mg). Thus, the magnetic moment per particle above T
= 214 K:

μ = 3kBTχ

Ms
= 3 · 1.38 · 10−16 · 214 · 1.33 · 10−3

0.57
∼= 2.07 · 10−16 Erg/G (3.9)

https://creativecommons.org
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Number of Bohr magnetons: n = μ/μb = 2.07 × 10−16/9.27 × 10−21 = 22300,
which is ~0.687μb per atom.Number ofCoatoms in single particle,na,was calculated
as follows: m(Co atom) = mol. weight/NA = 58.933 g/mol/6.022 × 10−23 atom/mol
= 9.786 × 10−23 g/atom. Thus, na = mparticle/m(Co atom) = 3.175 × 10−18/9.786 ×
10−23 = 32444.

The above number of Bohr magnetons per atom in single 8.8 nm nanoparticle is
much lower than the number of Bohr magnetons per single atom in bulk cobalt (300
K), 1.67μb (fcc) and 1.73μb (hcp). Partially it is caused by demagnetization factor,
Nd = 1/3, for spherical, non-interacting particles. Note, the demagnetization does
not affect theMs in (3.8), but only χ measured at low fields, χ = χeff (1+Nd). Thus,
taking into account the demagnetization factor results in 0.96μb per atom.

3.6 Optical Resonance in Spin-Polarized Co Nanoparticles

Good quality plasmon resonance in absorption is proven below to be the prop-
erty of isolated Co nanoparticles. Indeed, we observe a complete suppression of
sharp plasmon resonance for aggregated Co nanoparticles, probably due to the inter-
particle interaction inducing a spin-flip electron scattering at the particle surface.
This behavior is reversible, i.e., the sharp resonance is totally restored for separated
nanoparticles after sonication, as shown below. Note, that the absence of cobalt oxide
shell, which could introduce an antiferromagnetic response, is controlled with the
low temperature SQUID measurements.

The ab-initio simulations of the relaxation constants performed for the giant
magnetoresistance show big difference for spin-up and spin-down electrons [61, 62].
Susceptibility of Co nanoparticles can be expressed as a sum of two terms coming
from two independent group of electrons, thus the total polarizability is given by:

α = r3(χ↑ + χ↓) = r3
(

1

X↑ + iδ↑
+ 1

X↓ + iδ↓

)

(3.10)

Here we use the spectral representation of the Drude-Sommerfield model [63,
64].

χi = εh − εmi

2εh + εmi
= 1

Xi + iδi
, εmi = ε0i − ω2

p

ω(ω + i2�)
, εh ≈ ε0, ω2

sp = ω2
p

ε0 + 2εh
(3.11)

Xi = ω2
sp−ω2

ω2
sp

, δi = ω2�i
ω2
sp
, 2�↑ = υF

/

λ↑ and 2�↓ = υF
/

λ↓, where λ↑ =
12 nm, λ↓ = 0.6 nm, Fermi velocity υF = 2.1 × 105 m/s, thus 2�↑ ≈ 72.4meV
and 2�↓ ≈ 1448meV [61, 62]. Extinction cross-section is kImα. Thus, the absorp-
tion spectra should look like a sharp resonance, due to spin-up electrons, plus a
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Fig. 3.12 Two plasmon
model for Co nanoparticles
absorbance. Ñsp is taken 280
nm. Green is the sum of red
(spin up) and blue (spin
down). Insert: a cartoon of
the projected density of
states typical for Co. From
[2] with permission licensed
under CC BY 4.0 https://cre
ativecommons.org

broad background coming from spin-down electrons (Fig. 3.12). Thus, as soon as all
possible electron scattering processes gowithout spin-flip,meaning that two group of
electrons are independent, one should expect sharp plasmon resonance. In particular,
it requires single domain nanoparticles, since inter-domainwalls increase probability
of spin flip electron scattering and thus two group of electrons are not independent
anymore.

3.7 Effect of Dimers

Experiments show sharp plasmon resonance for isolated, single-domain Co nanopar-
ticles (Co NPs). However, the plasmon resonance disappears, if small, two-three
particles aggregates were formed. The magnetization measurements by SQUID
system show superparamagnetic properties of the Co NPs at room temperature,
which indicates the single-domain structure. The temperature dependence of the
magnetization gives blocking temperature, which corresponds to the particle volume
of this size. Below the blocking temperature field dependence of the magnetization
has hysteresis behavior. The shift of the hysteresis loop cooled to 10 K at field +1
T and opposite shift for the sample cooled at −1 T allows to control the oxidation
level of nanoparticles. All the results below correspond to the particles without oxide
shell. Figure 13a demonstrates remarkable resonance quality of the representative
spectrum for CoNPs in hexane solution shown in red. The plasmon resonance quality
is about the same as for gold nanoparticles, which have resonance in the green spec-
tral range. Co-NPs are isolated due to surfactants, trioctylphosphine and oleic acid.
Dynamic light scattering data show an average size close to the mean size from TEM
images.

https://creativecommons.org
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Fig. 3.13 a Experimental absorbance of Co-NPs in hexane. As grown Co-NPs (red), after 1 h
sonication with external 130 mT DC magnetic field (blue), after 2.5 h sonication with external 130
mTDCmagnetic field (green, plasmon peak is demolished), magnetic field is off and 1 h sonication
(black). b Co-NPs size distribution measured with dynamic light scattering (red)-as grown; (green)
-2.5 h sonication with external 130 mT DC magnetic field; (black) after 1 h sonication without
magnetic field. From [2] with permission licensed under CC BY 4.0 https://creativecommons.org

Fig. 3.14 Dynamic light scattering (DLS) size distribution of Co nanoparticles (a), as grown
sample; (b), after 2.5 h sonication with external 130 mT DC magnetic field; and (c), after 1 h
sonication without external magnetic field. From [2] with permission licensed under CC BY 4.0
https://creativecommons.org

https://creativecommons.org
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Shown in Fig. 3.14 are dynamic light scattering (DLS) results on particle size
distribution of undiluted Co nanoparticles samples. As grown Co nanoparticles have
DLS average particle size 8.7 nm. Then, the solution was sonicated in the presence of
130 mT external DC magnetic field. The effective particles size has been increased
from 8.7 nm to 12 nm. This increase in particle size is due to agglomeration of Co
nanoparticles in the presence of magnetic field. To reverse the agglomeration, the
sample was sonicated for 1 h in the absence of an external DC magnetic field. The
particle size has been reduced down to 10 nm. When an external field is removed,
sonication isolates the nanoparticles and results in decreasing of the effective particle
size. TheDLSmeasurementswere performed at the same time as collected the optical
spectra and prepared sample for magnetometry like in Fig. 3.13.

The following experiment illustrates interaction of Co nanoparticles separated by
thin surfactant shell. To initiate aggregation, the 130 mT DC magnetic field together
with sonication were applied to the Co NP hexane suspension in a quartz cuvette.
After 1 h of “aggregation” the dynamic light scattering and absorption spectra were
collected. Figure 3.3 shows reduced plasmon peak (shown in blue). After 2.5 h soni-
cation in magnetic field plasmon peak disappeared (shown in green). The dynamic
light scattering shown in the Fig. 3.3b gives increase in the hydrodynamic parti-
cles size from 8.7 to 12–13 nm corresponding to small, two-three particles aggre-
gates. Remarkable, that the following up sonication, without external magnetic field,
separates aggregated particles and the plasmon resonance is restored. Thus, this
magnetic/sonication induced aggregation is a reversible process.

The magnetization of as grown, after aggregation, and after sonication without
magnetic field samples, shown in Fig. 3.15, also demonstrate a reversible behavior.
It first decreases after 2.5 h of sonication in magnetic field (Fig. 3.15 blue line), then
return to the initial value after sonication without magnetic field (Fig. 3.15 black
line).

Fig. 3.15 Magnetization of Co-NPs embedded in PMMA. As grown Co-NPs (red), after 2.5 h
sonication with external 130 mT DC magnetic field (blue), and 1 h sonication with magnetic field
off (black). From [2] with permission licensed under CC BY 4.0 https://creativecommons.org
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Fig. 3.16 Absorbance of the
Co NPs in hexane solution:
experiment (red) and
calculated (black) using J&C
data. 1 From [2] with
permission licensed under
CC BY 4.0 https://creativec
ommons.org

Note that calculated absorption spectrum for Co nanoparticles using J&C permit-
tivity for Co films does not show a pronounced resonance (Fig. 3.16 black line) in
contrast to the experimental spectrum for single-domain Co nanoparticles (Fig. 3.16
red line). For the nanoparticles with substantially sub-wavelength size the dipole
approximation reduces Mie’s theory to the following expression for the extinction
cross-section [29]:

σext = 9
ωε

1/2
h

c
V

εhε2(ω)

[ε1(ω) + 2εh]
2 + ε22(ω)

(3.12)

where ω is the light frequency, V is the volume of the spherical particle, εh is the
dielectric permittivity of the surrounding (host) medium, and c is the speed of light.
The spectrum of nanoparticles was calculated using bulk material complex permit-
tivity ε(ω) = ε1 + iε2 from J&C [1]. Note that, this approach for modeling nanopar-
ticles spectra works for nonmagnetic metals like Au, Ag , but cannot be used for Co.
One can see that the calculated spectrum using permittivity measured for Co films
has no good resonance. That is the reason why Co was not consider as a promising
candidate so far. Indeed, if the film has multi-domain structure, where neighbour
domains are typically disoriented, the electron scattering easily changes the spin
polarization. Thus, electrons with spin-up become with spin-down and immediately
got huge increase in relaxation rate due to available empty states in the d-band.
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3.8 Conclusions

Spin-polarizedmetals have two channels of conductivity resulted in interesting appli-
cations including the most known giant magnetoresistance. Magnetic nanoparticles
have unusual features compared to bulk materials. They manifest superparamagnetic
properties in case of single-domain size. They have discrete density of states due to
quantum size effect. Our experiments with Co nanoparticles clearly show a new type
of plasmon excitation. This type of plasmonhas unusual properties due to existence of
two independent groups of electrons with opposite spins providing weak interaction
so that all electron scattering processes occur without spin flip. Magnetic response of
the nanoparticles enables controlled and reversible aggregation accompanied by the
tailoring of optical absorption. Magnetic nature of the nanoparticles suggests a new
type of these plasmons. Magnetic response of Co nanoparticles shows less magnetic
moments per atom relative to the bulk value, namely 0.68 μb and taking into account
the demagnetization factor 0.96 μb per atom versus 1.7 μb. The exchange interac-
tion of electrons splits the energy bands between spin-up electrons and spin-down
electrons. It makes possible to coexist two independent channels of conductivity as
well as two independent plasmons in the same nanoparticle with very different elec-
tron relaxation. Indeed, the density of empty states in a partially populated d-band
is high, resulting in a large relaxation rate of the spin-down conduction electrons
and consequently in low quality of the plasmon resonance. In contrast, the majority
electrons with a completely filled d-band do not provide final states for the scattering
processes of the conduction spin-up electrons, therefore supporting a good quality
plasmon resonance. The scattering without spin flip is required to keep these two
plasmons independent.
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Chapter 4
Chirality and Antiferromagnetism
in Optical Metasurfaces

Kun Huang

Abstract In this chapter, wewill introduce optical chiralmetasurfaces thatmodulate
the phase and amplitude of the circularly polarized (CP) light by using orientation-
rotated artificial subwavelength structures. For high-efficiency dielectric chiral meta-
surfaces, the nanostructures work as nanoscale half-waveplates that hold the physical
origins of antiferromagnetism by inducing multiple anti-parallel magnetic dipoles.
The interaction between metasurfaces and chiral CP light (carrying the spin angular
momentum) enables polarization meta-optics for the applications such as lens,
grating and hologram. In addition, the optical vortex beams carrying the orbital
angular momentum of light is introduced as another chiral light because the helical
wavefronts with opposite handednesses exhibit the mirror symmetry. Such a chiral
feature of optical vortex beam is used to probe the chirality of micro-structures, i.e.,
helical dichroism (HD), which works as a counterpart of circular dichroism (CD)
created by the interaction between CP light and chiral molecules. The concluding
remarks about the interaction between chiral light and nano-/microstructures are
made at the end of this chapter.

4.1 Introduction

Light is a kind of electromagnetic radiation that carries the detectable energy with
high oscillating frequencies of hundreds of terahertzs for various usages such as
animal vision, illumination and display, information transform, material processing,
optical imaging, energy transfer and storage in plants, heating, nano-fabrication,
remote sensing and medical surgery. Due to the rich diversity in these applications,
the requirement of manipulating light in a highly customized and arbitrary way
increases rapidly with the development of modern technology. The fundamental
physics of tailoring light is the interaction of light with natural or artificial materials
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at the different scales ranging from macroscopic bulky crystals, to man-made nano-
structures, tomicroscopicmolecules and atoms. Recently, optical metasurfacesmade
of artificial subwavelength structures has drawn great attention due to its capacity of
tailoring the amplitude, phase and polarization of light in a subwavelength thickness.
It therefore offers the opportunity to integrate optical elements (Sect. 4.1.1) within a
compact volume. The rapid development of optical metasurfaces (Sect. 4.1.2) bene-
fits frommatured nanotechnology, which enables the fabrication of optical subwave-
length structures. These nanostructures could confine nanoscale resonating modes
that behave like electric and magnetic dipoles or multipoles. The electromagnetic
resonances of the confined nanomodes are modified through changing the dimen-
sion or geometry of the nanostructures, hereby realizing the required modulation
of light. Based on these fundamental origins, metasurfaces can be mainly catego-
rized into shape-varied metasurfaces, geometric metasurfaces, Huygens metasur-
faces. In this chapter, we only focus on geometric metasurfaces composed of size-
fixed orientation-rotated nanostructures that control the phase of circularly polarized
light, which carries the spin angular momentum (SAM) of light and exhibits the
polarization chirality of light (Sect. 4.2.1). In addition, the orbital angular momentum
(OAM)of light carried byoptical vortices beamswith a helicalwavefront (Sect. 4.2.2)
characterizes the phase chirality of light. Due to the strong response to the polariza-
tion chirality of light, the geometric metasurfaces can also be called as chiral meta-
surfaces (Sect. 4.3). According to their material platforms, chiral metasurfaces are
discussed in terms of plasmonic chiral metasurfaces (Sect. 4.3.1), chiral nanosieves
(Sect. 4.3.2), and dielectric chiral metasurfaces (Sect. 4.3.3). In the transmission
mode, the dielectric chiral metasurfaces have much higher efficiency than plasmonic
metasurfacea and chiral nanosieves, due to the low absorption of dielectrics. In the
configurationof dielectricmetasurfaces, the nanostructures could support the induced
antiparallel magnetic dipoles, implying the antiferromagnetic resonances. Such a
concept of antiferromagnetism is used to explain the physics governing dielectric
nano-halfwaveplates, which is the functionality of nano-structures in chiral metasur-
faces. Finally, the applications of chiral light and chiral metasurfaces (Sect. 4.4) are
introduced by addressing the exciting topics such as circular dichroism and helical
dichroism (Sect. 4.4.1), and chiral meta-optics (Sect. 4.4.2), followed by a brief
conclusion in Sect. 4.5.

4.1.1 Optical Elements

Before 1900, the optical elements such as lenses, glasses, gratings, birefringent crys-
tals, polarizers, mirrors and filters have been well developed with the help of tradi-
tional technology of coldmachining, thus forming the cornerstone of geometry optics
where the dimension is much larger than the operating wavelengths. Light in geom-
etry optics is simplified into a ray of light so that the intensity of an optical beam can
be taken as the density of the rays at its cross section. The manipulation of light orig-
inates mainly from the refraction and refraction of the ray at the interface between
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two media with different refractive indices, where the curvature of the interface and
the index difference between two media are the main parameters to tailor the ray
of light. The disadvantage of geometry optics comes from the fact that the other
variables such as phase, polarization, coherence and diffraction of light are ignored
completely due to the model of the ray, so that its applied territory is quite limited.

When the optical elements have the feature size at the level of wavelength, the
diffraction and interference dominate its propagation of light and the light-matter
interaction due to the wave properties of light. The well-developed lithography
enables us to acquire the micro- or nano-scale elements such as optical fibers [1],
holograms [2], photonic crystals [3], plasmonic devices [4], optical metamaterials [5,
6] and metasurfaces [7–11], quantum devices, where their feature sizes range from
tens of microns to several nanometers. The diffraction effects in micro-devices is
weak, which is a good issue for optical fibers during the long-distance propagation.
But, the weak diffraction makes micro-pixelated traditional holograms with small
field-of-view, leading to the limited applications. Meanwhile, the micro-pixel pitch
in traditional holograms allows only the phase and amplitude modulation of light.

When the pixels of devices are below the subwavelength, the polarization effect is
important because the subwavelength structures have different electromagnetic reso-
nances for transverse electric and magnetic fields. The photonic crystals with peri-
odic subwavelength pixels could prohibit the motion of photons through confining
the electromagnetic modes within the index-contrast structures, hereby creating the
forbidden states at the designed frequencies. A well-designed photonic crystal could
support the simultaneous oscillation of multiple modes with different polarizations,
which is useful to generate the cylindrical vector beams with spatially variant states
of polarization in active nanolasers [12]. As its killer-man application, the photonic
crystal fibers offer thewell-confinedmodes that are impossible in conventional fibers.
However, the periodic propertiesmake photonic crystals incompetent atmanipulating
the phase of light at the transvers plane vertical to the propagation direction. Such
a situation also exists at the periodic meta-materials with the pixel pitches much
smaller than one wavelength, where the effective medium theory can be used to
approximate its optical properties. For visible light with the wavelengths ranging
from 400 nm to 800 nm, the pixel pitches in metamaterials is too small for the state-
of-art nanolithography to fabricate a three-dimensional structure, so that the novel
properties of metamaterials are frequently demonstrated at the micro-wave and radio
frequencies [13].

Fortunately, we can realize two-dimensional meta-materials made of high-
refraction-index dielectric or metal-based plasmonic nano-structures with the pixel
pitches around a half of wavelength [14], facilitating the fabrication issue by using
electron-beam or focused ion lithography. Instead of effective-medium approach in
three-dimensional metamaterials, two-dimensional metamaterials have the distinct
working principle of controlling the polarization, amplitude, phase and wavelength
of light through the electromagnetic responses of the confined nanomodes, which
oscillate between two lower-refraction-index media (i.e., substrate and surrounding
medium) [15]. Due to its planarity and ultrathin thickness of smaller than one
wavelength, two-dimensional meta-materials are usually phrased as “metasurfaces”,
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which can be realized easily by using one-step top-down lithography that is a
matured technology of manufacturing mass-product integrated circuits in semicon-
ductor industry. Since it could realize full control of light arbitrarily in a compact
volume, metasurface-based devices are drawing the increasing attention in integrated
opto-electronics and portable devices. Therefore, optical metasurfaces are the main
topic that we will focus in this chapter.

From the viewpoint of functionality, themain contribution of optical metasurfaces
to optics community is to introduce arbitrary polarization manipulation of light, in
addition to amplitude and phasemodulation. It allows us tomanipulate the local states
of polarization at any pixel of interest across an entire meta-device, and simultane-
ously customize the corresponding amplitude and phase in a high accuracy, which is
not possible for all the previous optical elements. For a polarized light, two commonly
used orthogonal bases such as linear polarization (i.e., ex and ey, where x and y are the
transverse coordinates that are perpendicular to the propagating direction of light)
and circular polarization (i.e., ex±iey) can be used to characterize its polarization
property. The circular polarization is a simple combination of two orthogonal linear
polarizations with an additional phase delay of ±π /2, which leads to the rotating
vector of electric field in circularly polarized light. Determined by the sign of delayed
phase, the rotation is along the clockwise or anti-clockwise direction, which is related
with the chirality of light. Optical geometric metasurfaces could transfer a circularly
polarized light into its cross-polarization, meanwhile imprint an additional phase that
is two times of the rotating angle of the size-fixed rectangle-shape nanorodes. The
rectangle nanorodes operate as a miniaturized half-waveplate that provides a phase
delay of π between two orthogonal components of electric fields. The mechanism
of these half-waveplates depends on the materials: the metal-based plasmonic nano-
halfwaveplates hold the physical origin of electric dipole resonances [16], while the
high-refraction-index dielectric nano-halfwaveplates originate from the antiferro-
magnetic resonances [15]. The interaction between chiral light and geometric meta-
surfaces increases significantly the full manipulation of circular polarized light, and
therefore results in many intriguing applications such as polarization meta-optics,
spin Hall effects of light [17, 18], beam shaping of chiral light, detection of chirality,
which forms the primary configuration of this chapter.

4.1.2 History of Optical Metasurfaces

Ultrathin metasurfaces could full control of electromagnetic waves by using the
spatially varied subwavelength structures [11, 13, 14, 19–23] that supports the local
responses of well-confined modes, which are commonly used elements at its long-
wavelength spectrum. For example, the antennas at the radio andmicrowave frequen-
cies are designed at the scale of subwavelength for sending or receiving the signals.
However, optical metasurfaces have much shorter history because the fabrication
and simulation issue of subwavelength structures at the visible or infrared wave-
lengths cannot be well-solved until the personal computers with powerful scientific
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computing capacities are popularized to assist the design and manufacture of optical
nano-structures. The first optical metasurfaces were reported in 1998 by Simion
Astilean, Philippe Lalanne and their collaborators to demonstrate the blazed grat-
ings with spatially varied subwavelength features of TiO2 on a quartz substrate at
the working wavelength of 633 nm [7, 8]. The phase modulation is controlled by
the filling factor of size-varied subwavelength structures in a pixel pitch, with the
guidance of effective medium theory. The measured efficiency of 1-order diffrac-
tion is 83%, which is slightly larger than the theoretical prediction and indicates a
fundamental breakthrough as a novel element. Although further demonstration of
meta-lenses is also done with good agreement, the potential of these subwavelength
structures has not been fully recognized due to the rough design tools of effective
medium theory that ignores the local response of confined nanomodes and the unpo-
larized illumination that excludes the deep investigation into polarization effects. In
addition, the product yield of these devices is lower due to the challenging fabrication
at that moment. As a result, these excellent works at their group terminate so that
they are not widely exposed among the optics community until recently.

Since 2000, Hasman group reported a series of works that utilized the rotating
subwavelength metal or dielectric nanorods to control the phase and polarization of
light by introducing the important concept of geometric phase or Berry phase [9,
10, 24–26]. Compared with the size-varied subwavelength structures developed by
Philippe Lalanne et al., geometricmetasurfaceswith size-fixed nanorodes offermuch
higher level of phase modulation because the geometric phase is determined by the
rotating angle of nanorodes without changing their dimension, hereby facilitating
the fabrication due to uniformly distributed nanostructures. With this powerful plat-
form of geometric metasurfaces, Hasman group demonstrated many novel devices
such as cylindrical vector beams, polarization-dependent hologram and lenses at
the infrared wavelengths. These works highlight the significance of subwavelength
devices and therefore play an important role in developing and popularizing various
optical meta-devices with polarization features. Considering that the dominated elec-
tromagnetic resonances existing in geometric metasurfaces were not unveiled clearly
at that moment, these metal or dielectric geometric metasurfaces, operating in a
transmission mode that is preferred in most optical equipment and systems, were
not designed with the suitable geometry and materials, leading to low efficiency for
practical applications.

With the rapid development of metamaterials for applications such as perfect lens
and electromagnetic cloaking, the interest of utilizing subwavelength structures to
control the waves increases quickly among the entire electromagnetic community.
The related computing algorithms such as finite-element method (FEM) and time-
domain finite-difference (FDTD) method are available at low cost and carried out
even at a personal computer, which extremely decreases the threshold of simulating
the electromagnetic responses of optical nano-structures. In 2011, Federico Capasso
et al. developed size-varied V-shape structures with deep-subwavelength features to
tailor the discrete phase of a linearly polarized light (perpendicular to the incident
polarization) for blazed gratings and vortex generation at the mid-infrared wave-
lengths [11]. It offers the first time demonstration of manipulating the phase and
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amplitude of scattering light with linear co-polarization, and completely releases the
ability of subwavelength structures in shaping the polarized light arbitrarily. The
successive works by Capasso group refresh the concept of traditional optics [20,
27–32], which leads to the persistent burst of optical metasurfaces from infrared and
visible to ultraviolet regions.

After the consequent development around 10 years, optical metasurfaces, nowa-
days, have the clear physics that shapes light through the electromagnetic inter-
action with subwavelength structure in terms of the interference of the confined
nanomodes. In theory, we can categorize optical metasurfaces into gradient meta-
surfaces with sized-varied geometry [11], geometric metasurfaces [16, 33], Huygens
metasurfaces [34–36], nanosieve metasurfaces with amplitude modulation [37–40].
The working principle of gradient and geometric metasurfaces have been introduced
above. Huygens metasurfaces support the simultaneous resonances of two trans-
versely located electric and magnetic dipoles having the crossed directions and the
equal amplitudes, so that every meta-atom or nanostructure in Huygens metasurfaces
can be taken as an ideal Huygens point source that has the forward transmission of
1 but the backward scattering of 0, thus offering another strategy of high-efficiency
metasurfaces. Photon nanosieves are one kind of amplitude metasurfaces that shapes
the binary transmission of light with the etched holes on an opaque thin film. They
become the only choice of meta-devices at the extremely short wavelengths such as
extreme ultra-violet light and soft-X ray, where all the materials are absorbing [41]
so that the electromagnetic resonances of nanomodes cannot exist.

From the viewpoint of structure, optical metasurfaces could utilize the unit cell of
any geometric shape for controlling light. The size-varied circular, V-shape and rect-
angle nano-structures are frequently used in gradient metasurfaces [11, 42], while
the orientation-rotated rectangle structures are much preferred in geometric metasur-
faces [16, 33] due to the limitation of its mechanism. Optical Huygens metasurfaces
frequently adopt the circular dielectric nanodisks to excite the electric and magnetic
dipoles [34–36]. Nanosieve metasurfaces generally use the circular or rectangle
apertures to modulate the amplitude or geometric phase of light [37–40].

Efficiency of optical metasurfaces is a key parameter for their practical appli-
cations in industry. Due to the intrinsic properties of electromagnetic resonances,
optical metasurfaces have the efficiency determined mainly by the material plat-
form. The reflective metasurfaces could exhibit the total efficiency of ~90% by using
metals or a combination of metallic and dielectric materials with low absorption at
the wavelengths of interest [15, 42, 43]. However, the metals are not preferred in an
optical transmissive metasurface because of their strong ohmic loss and low polar-
ization conversion [44]. High-efficiency optical metasurfaces in the transmission
mode usually uses the refraction-index and large-bandgap dieletric nano-structures
sitting on a low-index and transparent substrate, creating a well-confined dielectric
nano-cavity that has much higher refractive index than the surrounding environ-
ment. This conclusion is valid for all gradient, geometric and Huygens metasurfaces
in transmission. Since most of optical equipment and systems work in a transmission
mode, optical dielectric metasurfaces with high efficiency are the hotspot among the
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Fig. 4.1 The summary
about the efficiency limits of
optical metasurfaces. The
limit for metasurfaces
supporting either electric or
magnetic resonance is 25%,
while the high aspect-ratio
dielectric and multilayer
metasurfaces have the
efficiency limit of 100%

current metasurface community. To achieve high efficiency, optical reflective meta-
surfacecs employ the gold (Au) at the near-infrared frequencies, silver (Ag) at the
visible wavelengths and aluminum (Al) at the ultrav-violet spectrum, while transmis-
sion metasurfaces prefer the silicon (Si) for the near-infrared light, titanium dioxide
(TiO2), gallium nitride (GaN), silicon nitride (Si3N4) and gallium phosphide (GaP)
for visible light, niobium pentoxide (Ni2O5), hafnium dioxide (HfO2) and diamond
for ultra-violet light. Figure 4.1 shows a brief summary about the efficiency limit of
optical metasurfaces with electric and magnetic resonances.

Optical devices demonstrated by metasurfaces are frequently called as meta-
optics. Comparedwith traditional optics, meta-optics such asmetalenses [33, 45, 46],
meta-holograms [37, 38, 43, 44, 47–50], meta-gratings [51–54], beammeta-splitters
[55, 56], vortex meta-generators [57, 58], meta-retroreflectors [59], meta-biosensors
[60] and image meta-processors [61] have the advantages of compact volume, polar-
ization sensitivity, multiplexing functionality, large degree of freedom, high integra-
tion and light weight for portable devices. Benefitting from these novel properties,
meta-optics could be used in high-resolution imaging, display, nano-lasing, beam
shaping, information recognition, nonlinear optics, quantum physics, bio-sensing,
spectroscopy and augmented reality. Note that, this technology of optical metasur-
faces is hunting for its killer-man applications where only meta-optics can solve the
relative problems so that the meta-devices cannot be substituted by others. Before
reaching this goal, we speculate that optical reconfigurable metasurfaces might be
the most important issue that should be steadily solved, although many intriguing
proposals [62–69] have been reported in a limited or imperfect functionality for the
practical usage.
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4.2 Chirality of Light

Chirality refers to an object or system cannot be superposed or brought to coincide
with itself by its mirror image. It exists in our daily life (left and right hands), physics
(spin of a particle), optics (circularly polarized light, optical vortices with opposite
topological charge) and chemistry (molecules). The interaction between chiral light
and matter dominates the dichromic responses of microscopic particles, molecules
and nano-structures, which becomes an efficient tool to detect or characterize the
properties of interested objects in both physics and chemistry. Here, the chirality
of light and optical metasurfaces and their interactions will be highlighted in this
chapter.

4.2.1 Spin of a Photon and Spin Angular Momentum

A circularly polarized (CP) monochromatic light contains two orthogonal compo-
nents in its vector potential that can be expressed as [70]

A = u(x, y, z)ei(kz−ωt) · (ex + σ iey), (4.1)

where the item σ = ±1 denotes the spin or chirality of light, the wave number is
k = ω/c, ω is the angular frequency and c is the speed of light in vacuum, ex and
ey are the unit vectors along x and y directions, respectively. Its vector rotates in
an anti-clockwise or clockwise way, which is determined by σ . Generally, σ = 1
indicates the left-handed circular polarized light while σ = −1 for the right-handed
CP light, as sketched in Fig. 4.2. The vectors show the mirror symmetry, implying
the feature of chirality. Under the Lorentz gauge, we have the electric and magnetic
fields [71]

Fig. 4.2 Sketched vectors of electric fields in left- (a) /right- (b) handed CP light
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where the paraxial approximation is employed by ignoring the two-order derivations.
As suggested by Allen et al., the spin angular momentum (SAM) of a CP Gaussian
beam can be evaluated by using [72]

Jz
W

= ∫ ∫(r × E × B)zrdrdϕ

∫ ∫ cE × Bzrdrdϕ
= σ

ω
, (4.4)

where only the SAMof light is considered because theGaussian beam takes no orbital
angular momentum (OAM). Equation (4.4) means that the SAM of a photon orien-
tates in the positive or negative z direction, which is labelled by the sign of σ . Light
carrying the SAM can be used to control the rotation of an object such as birefringent
crystals. More frequently, the CP light with SAMs is used to interact with micro-
scopic chiral molecules that have the distinguished absorption of the left-handed
and right-handed light, the phenomena of which is named as “circular dichroism
(CD)’. By using circular dichroism, one can distinguish the chirality of molecules
that cannot be resolved by using the traditional microscopy due to the diffraction
limit. Currently, the CD spectroscopy has been widely used in physics, chemistry
and biology.

Generally, the CP light is taken to be chiral because of its unique response to
chiral objects. However, the chirality of CP light has not been well understood from
the viewpoint of electromagnetic waves until the definition of chirality for electro-
magnetic waves is defined elegantly by Tang and Cohen [73]. For an electromagnetic
wave with the fields E and B, its chirality is proposed to be expressed by [73, 74]

C ≡ ε

2
E · ∇ × E + 1

2µ
B · ∇ × B, (4.5)

where ε andμ are the permittivity and permeability of the surroundingmedium.After
introducing (4.2) and (4.3) into (4.5), we have its chirality C = σεkω2u2, which
is related with the spin σ and the intensity density u2 at the position of interest.
Therefore, (4.5) is also referred as the local chirality density. Once the CP light
interacts with the plasmonic structures, the local intensity might be much higher
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than the incident light due to the enhancement of local electric fields, leading to a
larger C than σεkω2u2. Such a phenomena is named as superchiral, which is also
found in the standing waves generated by the interference between two beams with
the equal amplitude and opposite propagating directions. Although the superchiral
phenomena can enhance the CD response, the value of CD is still located at the level
of micro-degrees when the CP light is used to detect the molecules. The possible
reason might come from the mismatch between the dimension of molecules and the
operating wavelength of light. In contrast, the interaction between the CP light and
the subwavelength structures in optical metasurfaces is quite strong so that it can
be used to induce the giant spin Hall effects of light [13] or demonstrate the spin-
dependent meta-optics [44] (see more details in Sect. 4.2). In addition, it has been
recently discovered that the topological structure of the CP light plays an important
role in enhancing the CD responses because the symmetry of the beam is changed
when the optical vortices with helical wavefronts are introduced [75].

4.2.2 Optical Vortices and Orbital Angular Momentum

Beams carrying a helical wavefront exhibit the vortex-like energy flow, alike the case
of vortices in water, and therefore are called optical vortex beam. The paraxial vortex
beams such as Laguerre-Gaussian and Bessel beams have the singularities at their
centers. Along the arbitrary closed curve containing the singularity, the accumulated
phase difference divided by 2π is an integer of l, which is the topological charge of
optical vortices and corresponds to the topological feature such as the self-healing
effects. Thus, an optical vortex beam takes an angle-dependent phase profile of
eilϕ , which generates the helical wavefront and the axis-symmetry doughnut-shape
intensity profile (see Fig. 4.3). In 1992, Allen et al. found that such kind of optical
vortex beams under the paraxial approximation have the orbital angular momentum

Fig. 4.3 Intensity and phase profiles of optical vortex beams with the opposite-handedness
wavefronts: l = 4 (a) and l = −4 (b)
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of lè per photon, where è is the reduced Planck constant [72]. It thus connects
the microscopic quantity of OAM with the macroscopic phase profile of eilϕ . The
mathematical proof of the OAM carried in optical vortex beam can be found easily
by using a circularly polarized Laguerre-Gaussian beam with its vector potential of
A = u(r,z)eilϕ•ei(kz-ωt)• (ex+σ i ey), where the amplitude part is angle-independent,
r and ϕ are the polar coordinates. The Lorentz gauge yields the similar electric and
magnetic fields in (4.2) and (4.3) after u(x, y, z) is substituted by u(r, z)eilϕ . By using
(4.4) under the paraxial approximation, we have the total angular momentum

Jz
W

= l + σ

ω
, (4.6)

where the spin item σ refers to the SAM of the circular polarized light and l is
related with the OAM of light. For a linearly polarized vortex beam, its SAM is zero,
leaving theOAMof lè per photon.Considering that theOAMof light is amicroscopic
variable, optical vortices with the OAM has been intensely investigated in quantum
physics. From the helical phase profiles, one can find that the orthogonality between
two arbitrary OAM states is extremely good, so that it can be used for the purpose of
communication. In quantum entanglement [76] and optical communication [77–79],
the OAM channel could provide the low crosstalk for high-fidelity data transmission.
Meanwhile, because the integer l can take any value, the number of OAM channels
in communication is unlimited, which therefore could increase the capacity of data
transmission.

As denoted in (4.6), the OAM in an optical vortex beam can take the positive or
negative value, which presents its direction of z or –z, respectively. It means that the
energy flow in the vortex beam moves clockwise or anti-clockwise, behaving like
the spin of a photon in a CP beam. When a tightly focused OAM is used to trap the
micro-particles within the ring-shape intensity, theOAMof the photons is transferred
to micro-particles, leaving a clockwise or anti-clockwise moving trajectory that is
determined by the sign of l. All these phenomena suggest the chiral behavior of
optical vortices, which is therefore expected to have the strong interaction with
chiral objects. However, a plethora of theoretical and experimental works show no
obvious interaction with chiral molecules [80]. The rigorous theory proves that the
OAM states can respond to the electric quadrupole excited in molecules [81], but its
corresponding excitation rate is extremely low in real world. With the help of unique
nanoparticle aggregates that could excite the electric quadrupole efficiently, a recent
work has reported the first observation of discriminating two chiral enantiomers
by the optical vortices with opposite topological charges [82]. Note that, since the
electric quadrupoles are excited by the third part, the resulting scattering induced by
two vortices has the little difference, leading to a quite weak helical dichroism (HD)
of 0.8% [82]. From the viewpoint o practical applications, such a tiny HD cannot be
used to detect the chirality of objects in a steady way. More efforts should be made
to enhance the HD for the wide usage. An experimental attempt to solve the problem
[83] is provided under the theoretical consideration in Sect. 4.4.
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4.3 Optical Chiral Metasurfaces

As introduced in Sect. 2., optical metasurfaces contain many types of structures that
are employed to control light with different polarizations. Considering the limita-
tion of the topic about chirality, we constrain ourselves to discuss the chiral meta-
surfaces that manipulate the circularly polarized light with the geometric phase.
All the chiral metasurfaces follow the same mechanism of realizing the geometric
phase. We start by giving a universal introduction about geometric metasurfaces
containing the birefringent nanostructures that havedifferent responses to twoorthog-
onal components of an incident circularly polarized light. Without the loss of gener-
ality, we define the scattering Jones matrix of the non-rotating nanostructure by using

S(ϕ = 0) =
[
sx 0
0 sy

]
, where the scattering factors sxand sy stand for the complex

modulation of x- and y-components of the incident polarized light, respectively. The
anti-diagonal elements are fixed to zeros under the assumption that the optical scat-
tering by the nanostructures will not generate a new electric component orthogonal
to the incident one, which is usually valid for rectangle-shape nanostructures. If the
nanostructure has a rotating angle of ϕ with the x-axis, its scattering matrix is

S(ϕ) = R(−ϕ)

[
sx 0
0 sy

]
R(ϕ) (4.7)

where the rotation matrix R(ϕ) =
[

cosϕ sin ϕ

− sin ϕ cosϕ

]
. When a circularly polarized

beam with the electric field of Eσ = E•(ex+σ iey) is incident on the nanostructure,
the scattering light has the electric field

Es = S(ϕ)Eσ = E

[
cosϕ −sinϕ
sinϕ cosϕ

][
sx 0
0 sy

][
cosϕ sinϕ
−sinϕ cosϕ

][
1
σ i

]

= sx + sy
2

Eσ + sx − sy
2

e2iσϕE−σ ,

(4.8)

where E±σ = E•(ex±σ iey). In (4.8), the left item refers to the co-polarized part that
is usually taken as the background in the scattering light, while the right one implies
that the scattering light contains a cross-polarized part with an additional phase
modulation of e2iσϕ . Such geometric phase depends on both the chirality of incident
light and the rotating angle ϕ of the nanostructures. It means that the geometric
metasurfaces respond to the chiral part in a polarized light, which is therefore named
as chiral metasurfaces in this chapter. In addition, the geometric phase arises from the
rotation of spatial coordinates, which is thus valid for any birefringent nanostructures
(such as chiral metasurfaces and the molecules of liquid crystal) or bulky crystals
(such as half-waveplates).
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For optical chiral metasurfaces, the total scattering Es can be tuned by controlling
the parameters sx and sy, which are determined by the geometry of nanostructures,
materials and working mode. In (4.8), the item |sx−sy|/2 is related with the efficiency
of metasurfaces. For the passive nanostructures without gain, we have |sx|≤1 and
|sy|≤1. To achieve high efficiency, one should maximize |sx-sy|/2 and minimize the
co-polarization part |sx+sy|/2. Mathematically, the highest conversion efficiency is 1
by setting sx = −sy=1, whichmeans that the nanostructures have the equal amplitude
of 1 and the phase delay of π between two orthogonal components of the scattering
light. Correspondingly, the conversion efficiency is 0 when sx = sy, implying that
the nanostructures have the isotropic responses for the Ex and Eypolarized light.
The zero-efficiency case usually appears in the circular and square nanostructures.
Therefore, most of the demonstrated geometric metasurfaces adopt the nanostruc-
tures with anisotropic geometry, such as rectangle shape. On the basis of working
principles, they are classified into plasmonic chiral metasurfaces, helical nanosieves,
and dielectric chiral metasurfaces, where the nano-structures work as miniaturized
half-waveplates that holds the physical origins of electric dipole resonances, birefrin-
gent transmission and antiferromagnetic resonances, respectively. In practical design
of nanostructures, one tune the parameters sx and sy that are controlled by the geom-
etry of nanostructure for a give material platform and numerically simulated with
the help of electromagnetic numerical calculation methods such as finite-element
method (FEM) and finite-difference time-domain (FDTD) methods. Both electro-
magnetic simulation methods are important in designing optical metasurfaces and
the relative sources can be found easily, so that we will not introduce them here.

4.3.1 Plasmonic Chiral Metasurfaces

Figure 4.4 sketches plasmonic chiral metasurfaces in a transmission and reflective
mode. The working principle is the anisotropic resonances of the electric dipoles
inducedby the circularly polarized incident light.With the illuminationby the circular
polarized light, the metal nanorodes have the plasmonic resonances at the designed
wavelengths. Considering that the feature size of nanorode is smaller than one wave-
length, the plasmonic resonances induced byEx andEy components could be approx-
imated theoretically as optical responses of two electric dipoles orientated along x
and y directions, respectively. For the transmission mode as shown in Fig. 4.4a, the
single-layer nanostructures can excite the transversely located electric dipoles that
have both the forward and backward radiation. But, only the forward radiation is
useful for controlling the sx and sy parameters, which refer to the transmittance rx
and ry in the transmission mode. In addition, due to small filling factor of nanos-
tructures, most of the incident light has no any interaction with nano-structures and
directly passed through the substrate, leaving the background with co-polarization
in the transmitted light. Therefore, the transmissive plasmonic chiral metasurfaces
have the low conversion efficiency. The rigorous electromagnetic theory predicts that
the highest conversion efficiency is 25% for metasurfaces that support only electric
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Fig. 4.4 Sketch of plasmonic chiral metasurfaces working in the transmission (a) and reflective
(b) mode

or magnetic resonances [84], while the efficiency limit is 100% if both electric and
magnetic resonances exist in the nanostructures [85]. In this transmissive plasmonic
chiral metasurfaces, only the electric dipoles are excited, implying its theoretical
limitation of 25% in the transverse efficiency.

To enhance the efficiency, the reflective plasmonic chiral metasurfaces have been
proposed as shown in Fig. 4.4. In this configuration, the reflective metasurfaces are
composed of a single-layer nanostructures, a transparent spacer and a single-layer
high-reflectivity metal film on the substrate. Although the plasmonic resonances
are similar with the transmission case, the reflective architecture allows two-time
interaction between light and nanostructures during the incidence and reflectivity of
light. Equivalently, the reflective metasurfaces behave like two-layer meta-materials
with the same top and bottom nano-structures, which are separated by the transparent
spacer with twofold thickness. The area of transparent spacer sandwiched by the
metallic nanostructures and films allows for themagnetic resonances that are induced
by the electric responses. Figure 4.5 shows the simulated intensity profiles of such
reflective metasurfaces, where the metal is gold and the transparent spacer is made
of silicon dioxide (SiO2). One can clearly observe that both electric and magnetic
dipoles oscillate in a unit cell, which offer much higher conversion efficiency of 80%
at the visiblewavelengths [43]. Such a conclusion implies that, the chiralmetasufaces
working in a transmission mode could also provide high conversion efficiency if the
magnetic dipoles are also induced by constructing a three-dimensional metal-ring
structure, which is, however, challenging to be fabricated due to the small footprint
of hundreds of nanometers for optical metasurfaces.
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Fig. 4.5 Electric and magnetic fields of scattering light by the reflective plasmonic chiral meta-
surfaces. The reflective chrial metasurfaces are composed of an 80 nm * 250 nm * 30 nm gold
nanostructure, a single-layer SiO2 film of 90 nm thickness and a reflective gold film of 130 nm on a
quartz substrate, as sketched in (a). The simulated electric andmagnetic fields under the illumination
of Ex and Ey polarization are provided in (b) and (c), respectively

4.3.2 Chiral Nanosieves

Photon sieves are the etched micro-apertures on an opaque film and have been
proposed to control light in 2001 due to their advantages of suppressing the side-
lobes of a focal spot in optical focusing [86]. In 2015, this concept of photon sieves
was introduced into nano-optics by using the nano-apertures, i.e., nanosieves [37],
which were used as one kind of typical amplitude metasurfaces to generate a tight
spot beyond the diffraction limit and construct a high-uniformity ultra-broadband
holographic image [38]. The interference between the diffracted light from these
nanosieves will yield the expected intensity profiles by optimizing the locations
of nanosieves. Since these nano-apertures is subwavelength, the vector features of
diffracting light by themmust be taken by using vector electromagnetic analysis that
combines the coupled-mode theory and the multipole expansion, yielding an analyt-
ical solution of optical diffraction by a circular hole [37]. Due to the axis-symmetry
feature, the circular nanosieves have no any dependence on the polarization of inci-
dent light, which is good for robust manipulation of arbitrarily polarized light. On
the other hand, the circular nanoiseves lose the polarization and phased degree of
freedom during the manipulating of light. So, the rectangle nanosieves are proposed
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Fig. 4.6 Sketch of chiral
nanosieves that contains the
rectangle holes etched on an
opaque film

to shape the amplitude, phase and polarization of light simultaneously [39, 87]. Here,
we just discuss the chiral nanosieves with rotating rectangular apertures, which can
be used to control the chiral light that is focused in this chapter.

Figure 4.6 shows the sketch of chiral nanosieves that work in a transmissionmode.
In appearance, the chiral nanosieves are the complementary structures of transmis-
sive plasmonic chiral metasurfaces (Fig. 4.4a). But, the working principle of chiral
nanosieves depends on the anisotropic transmission of x- and y-polarized light, that
is, the parameters sx and sy refer to tx and ty that are mainly determined by the
dimension of the hole. It means that the plasmonic resonances are not mandatorily
required in chiral nanosieves, which holds the significant difference from the trans-
missive plasmonic chiral metasurfaces. Such a fundamental difference makes the
chiral nanosieves more useful than plasmonic chiral metasurfaces because the plas-
monic resonances are absent at the short-wavelength electromagnetic waves such as
extreme ultraviolet light and soft-X rays, where all the materials are absorbing [40].
Thus, the chiral nanosieves become the good candidate to shaping the spin of EUV
and soft-X photons in an easier way than the traditional reflective [41] and refractive
[88] elements. The recent experimental results have revealed that the phase modula-
tion of chiral nanosieves is valid in the absence of plasmonic resonances [40]. The
conversion efficiency of chiral nanosieves is around 0.4% without plasmonic reso-
nances, which confirms the feasibility of manipulating the EUV and soft-X photons
by using chiral nanoisieves. In comparison with some high-efficiency elements, the
chiral nanosieves are incompetent at the visible frequencies.
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4.3.3 Dielectric Chiral Metasurfaces and Anti-ferromagnetic
Resonances

Both transmissive chiral metasurfaces mentioned above cannot obtain high conver-
sion efficiency. According to (4.8), high-efficiency chiral metasurfaces should maxi-
mize sx and sy, which is determined by the simultaneous oscillation of electric and
magnetic nanomodes. For the plasmonic chiral metasurfaces and chiral nanosieves,
both resonances cannot be satisfied due to either the single-layer induced electric
responses or the strong ohmic loss of metallic materials [44]. In addition, the phase
delay of π between sx and sy should also be met to realize the polarization conver-
sion, and any deviation from π will lead to the existence of co-polarized light even if
both sx and sy approaches 1. Although the reflective plasmonic chiral metasurfaces
[43] offers high conversion efficiency that can only be checked by numerical simu-
lations, it is difficult to explain the fundamental reason of generating the phase delay
of π, which is usually ignored in most literatures. In addition to the reflective plas-
monic chiral metasurfaces, dielectric chiral metasurfaces could also generate high
conversion efficiency by employing the low-loss and high-refractive-index high-
aspect-ratio dielectric nanostructures, which support the simultaneous electric and
magnetic dipoles [35]. The magnetic dipoles are generated by the induced circle-
shape electric displacements with alternating handedness. Thus, both resonances of
electric and magnetic dipoles promise the large sx and sy that approach 1. Due to the
high refractive index, the effective wavelength in dielectric nanostructures is much
smaller than the vacuum wavelength, thus allowing multiple electric and magnetic
dipoles in nanostructures. It leads to the existence of antiferromagnetic modes that
contain a series of vertically locate antiparallel magnetic dipoles [15], which holds
the fundamental physics of generating the phase delay of π.

By following our previous work about ultra-violet dielectric chiral metasurfaces,
we will discuss the roles of antiferromagnetic nanomodes [15]. Figure 4.7 plots the
sketch of the chiral metasurfaces and their optical performance with the simulated
efficiency as high as 80% at the designed wavelength of 355 nm. The material of
niobium pentoxide (Nb2O5) offer high refractive index of 2.2 and low absorption
at the wavelengths ranging from 350 nm to 400 nm, hereby enabling the ultraviolet
metasurfaces. To reveal the underlying physics, we investigate the detailed electro-
magnetic responses of dielectric chiral metasurfaces with the maximum conversion
efficiency of 80% when the nanostructure has the dimension of L = 150 nm, W =
70 nm and H = 430 nm.

Figures 4.7d, e show the simulated electric and magnetic fields induced by Exand
Ey components of the incident polarized light. For Ex component in Fig. 4.7d, the
induced electric displacements contain four alternative circular currents in clockwise
and anti-clockwise directions,which could generate the relative antiparallelmagnetic
dipoles (AMPs) sitting vertically along z axis. This staggered magnetization has the
similar behavior with one-dimensional antiferromagnetic chain, which has recently
been reported in plasmonic nano-disks and hybrid metamaterials. The antiferromag-
netic modes have the even electric circle-shape currents with alternative directions,
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Fig. 4.7 a Sketch of dielectric chiral metasurfaces that use Nb2O5 to manipulating the ultraviolet
light. b The simulated conversion efficiency of Nb2O5-base chiral metasurfaces at the interested
wavelength of 355 nm. Considering the limitation of fabrication issue, the width is set to be 70 nm.
The simulation is carried out by scanning the length and height of nanostructures with the help of
FDTD methods. c The broadband response of the optimized nanostructures with W = 70 nm, L =
150 nm andH= 430 nm.d–eThe simulated electric andmagnetic fields under the illumination of Ex
and Ey-polarization light. The inserts show the simplified sketches of magnetic dipoles. Reproduced
with the permission from 2019 WILEY-VCH Verlag GmbH [15]

which thus enable the same orientation of both the electric vectors at the bottom and
top ends of nanostructure (see Fig. 4.7d). It means that the x-component of CP light is
not changed after the electromagnetic interaction with nanostructures. However, for
Ey component, the antiferromagnetic mode is induced with three AMPs, leading to
the odd circular currents that could reverse the electric vector of light at the terminal
of transmission, as observed in Fig. 4.7e. It indicates a phase delay of π, which is
desired for realizing high conversion efficiency. As a result, the transmitted light has
the orthogonal polarization to the incident light, which is highly deserved in high-
efficiency meta-devices [15]. Figure 4.8 sketches the details during the entire optical
process intermediated by antiferromagnetic modes during the realization of circular
polarization conversion into its cross-polarization.

Two coupling effects dominates the electromagnetic interaction between the oscil-
lating nanomodes and the designed nanostructures [15]. Firstly, the number of the
reduced magnetic dipoles in the antiferromagnetic nanomode is determined by the
coupling between the volume modes and the dimension of nanostructures. Along the
long axis (i.e., x axis) of nanostructures, the volume of magnetic dipole moments is
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Fig. 4.8 Working principle
of antiferromagnetic modes
in realizing the polarization
conversion

larger than the y-orientated magnetic dipoles. The limited volume of a nanostructure
leads to the fact that, y-orientated magnetic dipoles are larger than the x-orientated
ones, leading to the even and odd AMPs for realizing the phase delay ofπ. Secondly,
every magnetic dipole coupled in an identical antiferromagnetic mode will compete,
leading to the different magnetic momenta that influence the total magnetic field
[15].

4.4 Applications of Chiral Light and Metasurfaces

In this section, we will discuss the applications of chiral light and chiral metasurfaces
in various fields such as detecting the chirality of microscopic objects, optical spin
Hall effects and polarization meta-optics.
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4.4.1 Circular Dichroism and Helical Dichroism

In chemistry and biology, many molecules have the same compound of different
atoms but are assembled with different chirality, which can be distinguished by their
circular dichroism (CD) spectroscopy that measures the absorption difference of the
right-handed and left-handed circularly polarized light over a wide range of wave-
lengths. The fundamental physics is that, the chiral enantiomers have the different
extinction coefficients for right- and left-handed circular-polarization light. The CD
topic has been discussed in many literatures and therefore is ignored here, so that
we can focus the detection of chirality by using another chiral light with orbital
angular momentum as introduced in Sect. 3. The OAM-based chiral detection draws
the increasing attention because the traditional CD spectroscopy has the disadvan-
tages of the weak CD responses at the level of micro-degrees and the broadband
illumination, which imposes the requirement on the optical detectors and the lasers.

One of our recentworks has addressed the issue aboutOAM-based chiral detection
of micro-objects [83], as sketched in Fig. 4.9. Since the beams carrying the OAM of
light have the doughnut-shape intensity profile, the light-matter interaction happens
in a ring of intensity profile, where the energy of photons flows along a helical
trajectory of micro-sized radius under the tightly focusing condition. It determines
the interacting dimension of OAM at the level of microns. It is different from the
spin of a circularly polarized light which the chirality of the photon is local at the
cross section of entire beam, implying that a spinning photon has strong interaction
dimension at the level of operating wavelengths. Therefore, we infer that the OAM
can be used to detect the chirality of micro-sized objects. Figure 4.9 sketches the
interaction between optical vortices and chiral micro-objects. Due to the helical
wavefront of optical vortices, the incident angle generated by two optical vortices
with opposite topological charges is different as illustrated in Fig. 4.9, leading to the
differential reflectivity between these two optical vortices. During this procedure, the
polarization issue is ignored so that we can define the differential scattering induced
by OAM as [83]

VDS = Rl,s − R−l,s

(Rl,s + R−l,s)/2
, (4.9)

Fig. 4.9 Working principle of OAM-based chirality detection
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where R is the optical reflectivity, l denotes the topological charge of optical vortices,
the spin s of the incident beam is set to be identical for avoiding the CD effect. The
definition of vortical differential scattering (VDS) emphasizes the importance of
optical vortices by evaluating the OAM-induced dichroism between the topological-
charge-opposite vortices. We have to emphasize that, the VDS has the fundamental
difference fromCD, because the VDS refers to the scattering difference between two
chirality-opposite vortices while the CD comes from the difference of absorption to
both circularly polarized light [83].

Based on the definition of VDS, the experimental setup is proposed to charac-
terize the reflectivity difference induced by the chirality-opposite vortices [83]. A
femtosecond laser with linear polarization is used here to generate the chirality-
opposite optical vortices with a spatial light modulator. The optical vortices are
focused by a high numerical aperture objective lens and then illuminate the chiral
microstructures. The scattering signals that reflect from the chiral microstructures
are collected by the focusing objective lens and later recorded by a CCD camera.
The achiral structure of circular disk is used as a control of experiment. The recorded
signals at the different topological charges of |l| clearly shows the difference between
the optical vortices with the opposite wavefronts (RHW and LHW) for the chiral
micro-structures. In comparison, the controlled experiment gives nearly the same
reflectivity from both optical vortices. All these experimental observations have
suggested that the optical vortices with opposite topological charges can be used
to distinguish the chirality of micro-structures due to the difference of the scattering
light. To check its VDS further, we carried out the numerical calculation by using
the experimental data. It exhibits that the VDS is positive for left-handed structures,
negative for right-handed structures and zero for achiral structures. It gives the proof
that the chirality of microstructures has been discriminated by using VDS, which
therefore provides another method of detecting the chirality of objects in addition to
the traditional CD spectroscopy [83].

Compared with CD method, the VDS has the following properties. Firstly, VDS
operates at a single wavelength, and therefore releases the requirement of broadband
sources in CD spectroscopy. Secondly, the strong VDS happens when the micro-
structures have the dimension larger than the operating wavelength. Such a feature is
determined by the large interacting area of optical vortices due to the doughnut-shape
intensity profiles. Thirdly, the topological charges of optical vortices are unlimited
so that it provides the infinite dimension of chiral OAMs, implying that the VDS has
much larger degree of freedom than the CD with two spins of photons in a circularly
polarized light [83].

4.4.2 Chiral Meta-Optics

By using (4.8), one can find that the arbitrary manipulation of chiral light could
be realized by customizing the spatially varied phase profiles to meet the special
requirement in practical applications.Here,we introduce three kinds of phase profiles
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to demonstrate lenses, holograms and gratings for optical imaging, vectorial holo-
graphic anticounterfeiting and beam splitter. In addition, when illuminated by a
linearly polarized beam, the chiralmetasurfaceswill induce the spin-dependent shifts
of beam centroids, which is usually related with the spin Hall effects of light [17].

I. Metalenses and imaging
To realize a focusing spherical-aberration-free lens by using chiral metasurfaces,

the phase profiles have the function of [33, 46, 89]

φ(x, y) = 2π

λ

(
f −

√
r2 + f 2

)
, (4.10)

where f is the focal length of the lens, r2 = x2+y2, λ is the wavelength. Correspond-
ingly, the rotation angle of every nanostructure is ϕ(x, y) = φ(x, y)/2. From (4.8),
we can see that the real focusing length depends on the spin of the incident circularly
polarized light. It means that a metalens with the phase profile in (4.10) can offer the
convergent or divergent functionality, which can be switched by changing the spin
of incident light.

The focusing spot generated by such a metalens gives the Airy-like intensity
profile that obeys the diffraction limit of 0.515λ/NA [46], where NA is the numerical
aperture of the metalens. Therefore, the metalens can give the diffraction-limited
imaging, which, however, suffers from the off-axis and achromatic aberrations. The
off-axis aberration has been solved by a meta-doublet. One singlet is responsible
for the aberration correction [90] and the other is used to realize the functionality
of focusing. To solve the achromatic aberration, the hybrid nanostructure [91] or
ultrahigh aspect-ratio dielectric nanorod [89] has been proposed and demonstrated
experimentally in a low-NA lens,which behaves better than the uncorrectedmetalens.
However, it should be noted that the aberration is much more severe in a high-NA
lens than the low-NA one. Especially, a high-NA metalens has a phase cycle of 2π
over the radial distance of one wavelength at the outmost rings. Since the pixel pitch
of current metalens is around half a wavelength [46], there is only two nanostructures
along the radial direction of the metalens so that the aberration cannot be eliminated
completely.

II. Meta-gratings and beam splitters
Benefitting from the subwavelength pixel pitch, the chiral meta-gratings usually

have the form of blazed gratings with a linearly varied phase. Similarly, a circularly
polarized light passing through the metagratings deflects in one direction, while
the opposite-spin light runs out in the other direction. When a linearly polarized
light works as the incident light, these both deflecting beams can be generated with
different spins, which refers to the spin Hall effects of light [92]. It means that the
chiral meta-gratings can be used to filter out the spin components of a polarized light.
If the chiralmeta-gratings are combinedwith the linear-polarizationmetagratings, the
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diffracted beam could contain four parts: two orthogonal linear-polarization compo-
nents and two spin components, which can be used to reconstruct the state of incident
polarization. It holds the working principle of a metasurface-based polarimetry [54].

III. Chiral meta-holograms and vectorial anticounterfeiting
If the encoded phase profile in (4.8) is used to generate a holographic image,

such a metasurface is called as meta-hologram that is different from the traditional
holograms. Due to the distinct polarization response in a subwavelength pixel, the
chiral meta-holograms could generate the spin-dependent or vectorial images in a
large angle-of-view, without the high-order diffraction and twin-image issues that
exists in the traditional holograms. For a chiral meta-hologram, the generated image
also has a spin-dependent behavior. If the chiral meta-hologram works in a Fresnel
distance, it will generate a real holographic image along the propagating direction
of the circularly polarized incident light with one spin but form a virtual image
for the other spin [44]. However, a Fraunhofer metahologram illuminated by the
circularly polarized light with both spins will create the real images with center-
symmetry properties [49]. Both Frensnel and Fraunhofer metaholograms have been
experimentally demonstrated with the good agreement.

In fact, both cases can be mathematically derived. For a Fresnel metahologram
with a phase profile of φ(x, y) for the circularly polarized light with its spin σ =
1, it generates a holographic image at the z = z′, where the electric field with the
paraxial approximation can be expressed as [44, 93]

Eσ

(
x, y, z′) = exp(ikz)

iλz
∫ ∫ A(x0, y0)e

iφ(x0,y0)

exp

{
i
k

2z′
[
(x − x0)

2 + (y − y0)
2
]}

dx0dy0,
(4.11)

where the amplitude A of incident light is considered without the phase (thus A =
A*), k = 2π /λ, λ is the operating wavelength. If the same hologram is illuminated
by a circularly polarized light with the other spin σ = −1, we have the electric field
as

E−σ

(
x, y, z′) = exp

(
ikz′)

iλz′ ∫ ∫ A(x0, y0)e
−iφ(x0,y0)

exp

{
i
k

2z′
[
(x − x0)

2 + (y − y0)
2
]}

dx0dy0.

(4.12)

Its relative intensity profile has the form of



98 K. Huang

I−σ (x, y, z) = ∣∣E−σ

(
x, y, z′)∣∣2 = ∣∣E−σ

(
x, y, z′)∗∣∣2

=
∣∣∣∣∣
exp

(−ikz′)
iλ(−z′)

∫ ∫ A∗(x0, y0)eiφ(x0,y0)exp

{
i

k

2(−z′)
[
(x − x0)

2 + (y − y0)
2
]}

dx0dy0

∣∣∣∣∣
2

=
∣∣∣Eσ

(
x, y,−z

′)∣∣∣2 = I−σ

(
x, y,−z

′)
(4.13)

which means that the holographic image for the inverse spin is located at z = −z′,
i.e., a virtual image.

For a Fraunhofer meta-hologram illuminated by a circularly polarized light with
σ = 1, its intensity at the target plane can be expressed as [49]

Iσ
(
x, y, z

′) = 1(
λz ′)2

∣∣∣∣
∫ ∫

A(x0, y0)e
iφ(x0,y0)exp

[
−i

k

z ′ (xx0 + yy0)

]
dx0dy0

∣∣∣∣
2

.

(4.14)

When it is illuminated by a circularly polarized light with σ = −1, the intensity
profile is

I−σ

(
x, y, z′) = 1

(λz′)2

∣∣∣∣∫ ∫ A(x0, y0)e
−iφ(x0,y0)exp

[
−i

k

z′ (xx0 + yy0)

]
dx0dy0

∣∣∣∣
2

= 1

(λz′)2

∣∣∣∣∫ ∫ A∗(x0, y0)eiφ(x0,y0)exp

[
−i

k

z′ (−xx0 − yy0)

]
dx0dy0

∣∣∣∣
2

= Iσ
(−x,−y, z′)

= 1

(λz′)2

∣∣∣∣∫ ∫ A∗(x0, y0)eiφ(x0,y0)exp

[
−i

k

−z ′ (xx0 + yy0)

]
dx0dy0

∣∣∣∣
2

= Iσ
(
x, y,−z

′)
,

(4.15)

which means that the Fraunhofer metahologram could give two images. One is
the same with the Fresnel metahologram and the other refers to a real image with
centrosymmetric feature, although the Fraunhofer metahologram is observed by the
second case.

In addition, when the sparse meta-holograms are introduced [15], one can realize
a vectorial holographic image by combining two sparse metaholograms that generate
two complementary images with the dependence of spin. Such a concept has been
demonstrated at the ultra-violet region for the applications of optical vectorial
anticounterfeiting [15].
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4.5 Conclusions

In summary, we have discussed the chirality of light and optical metasurfaces and
introduced their properties, working principles, the spin-structure interaction and
applications in various fields. The involved antiferromagnetism existing in dielectric
nanostructures helps us to explain the underlying physics of nanoscale halfwaveplates
in terms of the well-confined electromagnetic modes, which is a good attempt to
investigate and unreal the novel phenomena in nanophotonics by using classical
electrodynamics. The chirality detection by using the orbital angular momentum of
light is also discussed with the experimental proofs, which, we believe, will excite
more interesting researches in the near future. Furthermore, the interaction between
chiral light, chiral nanostructures, and macroscopic external electric and magnetic
fields has not been well investigated with many unanswered problems, which might
stimulate the potential applications.
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Chapter 5
Light-Nanomatter Chiral Interaction in
Optical-Force Effects

Hajime Ishihara, Masayuki Hoshina, Hidemasa Yamane,
and Nobuhiko Yokoshi

Abstract The interaction between chiral objects and chiral environment is a funda-
mental topic in various research domains such as chemistry, material physics, optics,
and bioscience. Particularly, the chiral interplay between light and nanostructures has
been a fascinating topic because of its potential applications in chemical analyses,
molecular sensing, novel light sources, and optical manipulations with high degree
of freedom. Further, the study of relevant subjects will shed light on the unconven-
tional fundamentals of light–matter interaction where the nanoscale spatial correla-
tion between the light and matter geometries plays an essential role therein, which
is beyond the conventional picture of optical response based on the long wavelength
approximation of light or dipole approximation of matter systems. In this chapter,
we introduce the recent theoretical studies on light–nanomatter chiral interactions,
focusing on two topics in optical-force effects. The first topic is a scheme to mea-
sure the circular dichroism (CD) of the chiral near field in the vicinity of metallic
nanostructures. This scheme evaluates the CD by measuring the optical force that
acts on the probe tip with the circularly polarized lights irradiated. The second topic
is the proposal of the rotational-motion control of nanoparticles in a nanoscale area
by using the optical force generated through the interaction between a chiral light
field (optical vortex) and a metallic nanocomplex. The results revealed the unique
role of the optical force in the studies of the light–nanomatter chiral interaction.
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5.1 Introduction

Chirality is the property that the spatial geometries of matters, fields, and motions
cannot be identical to their mirror images. There exist various kinds of chiral struc-
tures or phenomena for different objects such as nucleons, amino acids, and liquid
crystals. The chiral interaction between light and matter, especially, has been an
important subject in various research domains. For example, the circular dichro-
ism (CD) of materials, which is a difference between the absorptions of left- and
right-circularly polarized lights, has been a standard measure of matter chirality for
a long time. However, the chirality of light is also affected by the interaction with
matter. Optical rotation and circularly polarized luminescence are typical examples.
Recently, chiral interaction has been applied to the generation of light with orbital
angular momentum, sometimes referred to as optical vortex. Accordingly, chiral
interactions have been one of the fundamental principles in germinating, probing,
and designing the nature and the function of matter and light.

Recently, the research on chiral interactions has taken a new step because of the
rapid development of nanofabrication technologies and characterization techniques
of few-molecule systems. For example, the high-accuracy fabrication of metallic
structures enables us to control the localized electric field in nanoscale areas owing
to localized surface plasmon (LSP). By using LSP effect, we can realize circularly
polarized fields with significantly reduced pitch of polarization rotation, i.e., the
so-called superchiral fields [1]. In the past 20 years, various nanostructures have
been reported to generate superchiral fields [2–9]. In addition, the CD signal of
the plasmonic near field was measured via photon scanning tunneling microscopy or
near-field scanning opticalmicroscopy (SNOM) [10–13]. Superchiral fields boost the
molecular CD signal, although the signals of individual molecules, such as proteins,
DNA, and carbon nanotubes, are generally small. The superchiral field is expected
to be a promising tool for performing the sensitive enantioselective detections of
chiral molecules [14–17]. Another interesting application of LSP is the conversion
between the spin angular momentum and orbital angular momentum. A plane wave
light with circularly polarization has spin angular momentum, but not orbital angular
momentum. However, when it is radiated onto metallic nanocomplexes, the induced
plasmonic near field can exhibit optical current with orbital angular momentum [18].
The optical response of a matter manifests not only as optical outputs but also as a
mechanical force exerted on the matter system. Therefore, the plasmonic near field
with the nanoscale radius of gyration is expected to enhance the degree of freedom
to manipulate the center-of-mass motion of nanoobjects.

For the analyses of light–mater chiral interactions, we should note that the conven-
tional scheme of light–mater interaction based on the longwavelength approximation
(LWA)of light or dipole approximation (DA) ofmatter does notwork because the chi-
ral nanostructures have a nanoscale polarization configuration. Moreover, the chiral
light induces non-dipole polarization structures of matter systems. Thus, the non-
local response is important in nanoscale chiral light–matter interactions, in which
the nanoscale spatial correlation between light and matter plays an essential role.
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Anomalous optical responses of nanostructures due to the nonlocal characteristics
of the response were theoretically proposed [19, 20], and have been experimen-
tally demonstrated as the giant nonlinear response of quadrupole excitons [21], the
optical forbidden electronic transition of a single-wall carbon nanotube [22], and
the ultra-short radiative decay time in the femtosecond regime [23, 24], etc. Chiral
interaction of light–nanomaterials is another frontier wherein the nonlocal optical
response induces anomalous effects beyond LWA or DA.

Based on the nonlocal scheme, we have focused on the mechanical force (optical
force) associated with the chiral interaction between plasmonic near-field and mat-
ter. Specifically, the following two issues are introduced. The first issue is the three-
dimensional (3D) near-field CD during the optical-forcemeasurement. As aforemen-
tioned, the aperture-type SNOM is a powerful tool to unveil the chiral near field [13].
However, it is difficult to elucidate the 3D structure of a superchiral field, especially
around the edges of metallic structures, as the longitudinal component is dominant
there. We show that if we measure the optical-force between the dipoles induced on
the sample and the probe tip irradiated by light, we can observe the 3D distribution of
the electric-field intensity to evaluate the 3D near-field CD (3D NF-CD). The other
issue is the optical manipulation of nanoparticles (NPs) near metallic nanocomplexes
with a high degree of freedom. We show that the flexible rotational optical manipu-
lation, such as the rotation control in nanoscale area and switching of the rotational
direction, of nanoobjects can be achieved. This means that all the basic elements
of nanoobject-motion control (i.e., pushing, pulling, and rotating) are realized in
principle.

The remainder of this chapter is organized as follows: In Sect. 5.2, we discuss the
manner in which we can observe the chiral near field in the vicinity of metallic chiral
structures. In addition, we propose a scheme to measure the 3D NF-CD using the
optical force that visualizes CD with nm resolution by numerically demonstrating
the CDmap of the observed force on the gammadion metallic structures. In Sect. 5.3,
we demonstrate that the NPs can be mechanically rotated and manipulated using the
designed chiral field by plasmonic structures [25]. In this demonstration, we specif-
ically consider that utilizing the nonlinear optical response considerably enhances
the degree of freedom to manipulate NPs.

5.2 3D Near-Field CD by Optical-Force Measurement

One of the goals of analytical chemistry is to determine the structures of isolated
single molecules. Accordingly, the single-molecule chiral analysis gains importance.
To that end, the superchiral field is a promising tool [14–17], and its electromagnetic-
field analysis is essential. However, in the aforementioned studies, the far-field CD
(FF-CD) was evaluated based on the extinction of the light propagating through
the target. The FF-CD signal is a convenient indicator that provides macroscopic
information on the integrated target ensemble. However, nanoscale structures such
as single molecules are averaged together with the information of the microscopic
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surrounding environment. Therefore, to maximize the potential of superchiral fields
for measuring single molecules, we must develop a measuring device for the in-situ
evaluation of the near field.

Recent studies reported the NF-CDs for various nanostructures and obtained char-
acteristic signals that reflected their local geometry [10–13]. However, these studies
measured the 2D projections of the NF-CD, which are the images of the propagated
component of the scattered light in the vicinity of the target. Therefore, it is difficult
to obtain the information regarding the localized longitudinal field, which is a signifi-
cant component of the near field. Hence, we propose another scheme that uses optical
force under laser illumination. If the targeted sample and the probe tip of the atomic
force microscope are irradiated by light, dipole-dipole interaction occurs between
them, and the near-field profile around the sample can be obtained by detecting the
induced force, which is proportional to the gradient of the field intensity. This tech-
nique is called photoinduced force microscopy (PiFM) [26]. Because this scheme is
sensitive to the longitudinal component of the polarization of the chiral near field, it
can simultaneously acquire the 3D profile of the near field, i.e., the transverse and
localized longitudinal components. To examine the validity of the scheme, for the
superchiral field near the specific metallic structure, the force-measurement calcula-
tion results are compared with the electromagnetic-field calculation results.

5.2.1 Model and Method

The system under consideration is depicted in Fig. 5.1. In our numerical demonstra-
tion, the metallic structure, which comprises four gold gammadions, is set on the
dielectric substrate. This structure exhibits large FF-CD [4] and boosts the FF-CD
of a few molecules [14, 15]. The tip probe is modeled using a gold hemisphere and
is scanned at 5nm above the metallic structure. The circularly polarized plane wave
lights are illuminated from below the substrate and propagate along the z-axis. We
calculated the total electric field near the metallic gammadion and probe tip to detect
the optical force.

Based on linear response theory, we can express the induced polarization P(ri , ω)

= χ(ri , ω)E(ri , ω) at the position ri , i.e., the i-th cubic cell of the volume Vc, where
E(ri , ω) denotes the total electric field.We set the local susceptibility in the substrate
to χ(r, ω) = εs − 1 with the relative permittivity set as εs = 2.25. On the other
hand, the gold gammadion structures and the probe tip are composed of cells, whose
dielectric constant is represented using the Drudemodel [27]. The dielectric function
here is Drude-type, i.e.,

χmetal(ω) = εmetal(ω) − 1 = εb − 1 − (��pl)2

�2ω2 + i�ω(��bulk + �vf
Leff

)
, (5.1)
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Fig. 5.1 Incident light condition andmetallic structure on the dielectric substrate. The incident light
is a circularly polarized plane wave and propagates along the z-axis. We allocate a calculation space
of 1000 × 1000 × 250nm3 and discretize the space using cubes of the volume Vc 5 × 5 × 5 nm3.
The CD signal is the summation of the field intensity of the sample surface. The top view (a) and
side view (b) of the gammadion structure on the substrate. The length of each gammadion arm is
illustrated, and the thickness is 100nm. The relative permittivity and thickness of the substrate are
set to 2.25 and 15nm, respectively. The gammadion structure is aligned at the intervals of 500nm.
The scanning probe illustrated in (b) is a gold hemisphere of radius 50nm. The size of the center
gap is 75 × 75 nm2. The scanning area is 90 × 90 nm2

where εb denotes the background dielectric constant of themetal,�pl the bulk plasma
frequency, �bulk the electron-relaxation constant of the metal, Vf the Fermi velocity,
and Leff the effective mean free path of the electrons. We have used the following
parameters for the gold cells: εb = 12.0,��pl = 8.958 eV,��bulk = 72.3meV,�vf =
0.9215 eV·nm, and Leff = 20 nm [27]. In the calculations, we have used the discrete
dipole approximation (DDA) method [28] to solve Maxwell’s equation. We solved
the following discretized integral equation:

E(ri , ω) = E0(ri , ω) +
∑

j

G0(ri , r j , ω)Pmetal(r j , ω)Vc, (5.2)

where E0 is the electric field of the incident light, and G0 the Green’s function of
the electric field vector in vacuum. In the preceding equation, we take the sum for
all the cells including the dielectric substrate, gammadion structures, and probe tip.
Therefore, the calculated response field takes into account the nonlocal response,
and the influence of the shape of the metals.

Notably, the definition of the circularly polarized light is not clear in case of
electric fields that contain much localized components. To evaluate the circularly
polarized components along the z-, y- and x-directions, the following projections
were employed:
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Exy∓(ri , ω) = 1√
2
(1,±i, 0)E(ri , ω), (5.3)

Exz∓(ri , ω) = 1√
2
(1, 0,±i)E(ri , ω), (5.4)

Eyz∓(ri , ω) = 1√
2
(0,±i, 1)E(ri , ω). (5.5)

The “-” and “+” signs denote the left-handed circularly polarized (LCP) component
and right-handed circularly polarized (RCP) component, respectively, of the electric
field. In Fig. 5.2, we havemapped each electric-field polarization component directed
along each direction just above the metallic structures (i.e., at z = 5nm). Here, the
incident light is the RCP light, and the electric-field intensity is normalized using
the incident-light intensity |E0|2. The LCP component of the near field in the xy-
plane is small at the center gap of the gammadion metallic structure, while the RCP
component is remarkably enhanced there (see Fig. 5.2 a, b). In Fig. 5.2 c, d, we show
the circularly polarized components in the xz-plane; these components include the
longitudinal component of the near field. Comparedwith the case in the xy-plane, the
longitudinal component appears more locally at the edges of the metallic structures.
In the yz-plane, similar maps are obtained (no figure). Notably, a considerable part
of the electric field is occupied by the longitudinal near-field component, and the
polarizations do not changewith propagation unlike those in the case of the circularly
polarized plane wave. This implies that the longitudinal component of the near field
in NF-CD must be a significant component of the superchiral field.

The proposed measurement scheme uses the time-averaged optical force on the
scanning probe tip, as depicted in Fig. 5.1b. We derive the optical force on the probe
tip as follows [29]:

〈F(ω)〉 = 1

2
Re

[∫

Vtip

dr[∇E(r, ω)∗] · Pprobe(r, ω)]] = Fz(ω) + Fxy(ω), (5.6)

where the integration range is within the volume of the probe tip Vtip. In the present
setup, a strong and steep localized field gradient appears between the tip and the
metal. Thus, the gradient force is dominant in the optical force, where the vertical
force Fz(ω) is proportional to the gradient in the z-direction of the probe-target
potentialU (r), and proportional to |E(r, ω)|2. In addition, the lateral photo-induced
force Fxy is approximated by the differentiation ofU (r) in the lateral xy-plane [30].
Here, the electric field E(r, ω) includes the field scattered by the gold probe tip,
and it considerably differs from the one that is observed when only the metallic
structures are set. The numerical simulations presented in the following subsections
show that the optical force well reproduces the CD of the superchiral field near the
metal structure, despite the change in the electric field profile with and without the
probe tip.
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Fig. 5.2 Circularly polarized components are mapped along each direction at 5nm above the top
plane of the metallic structure. As the incident field, the RCP light at 1.65 eV is employed. a, b The
intensity map of the LCP component (a) and RCP component (b) in the xy-plane. c, d The intensity
map of the LCP component (c) and RCP component (d) in the xz-plane. The color bars indicate
the intensity of each circularly polarized component normalized using the incident-light intensity

5.2.2 CD Spectra and NF-CD Maps

Prior to calculating the optical force, we analyzed the CD of the electric field to
be referenced. We allocated a computational space of 1000 × 1000 × 1125nm3 and
discretized it into the cubes of 5 × 5 × 5 nm3. Since the localized field is consider-
ably attenuated at z ∼ 1000nm, the influence of the boundary of the computational
space on the superchiral field is negligibly small. Throughout this work, we defined
the NF-CD signal as �T = TRCP − TLCP, where TRCP and TLCP denote the transmit-
ted field intensities of the RCP and LCP optical signals, respectively. This is because
we considered the in-situ CD of the superchiral field, and could not evaluate the CD
from the difference in the extinction far from the metal structures.

As illustrated in Fig. 5.3 a, b, we investigated the CD spectra both at 5 and 1000nm
above the top plane of the metallic structure, respectively. We have plotted �T ,
which is the average of �T in each z over an area of 1000 × 1000nm2. To better
examine the effect of the longitudinal field on the CD, we decomposed the CD into
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Fig. 5.3 CD spectra of the a xy component and b z component. The CD spectra at 5nm (broken
line) and 1000nm (solid line) above the top plane of the metallic structure

the in-plane component (normal to the incident propagation) �Txy and z component
�Tz , and both are compared with each other. Here, �Ti denotes the intensity of the
i-component of the transmitted light, and �Txy = �Tx + �Ty . At a considerably
distant region above the metal (i.e., z = 1000nm), the intensity of the longitudinal
z-component becomes approximately 10 times smaller than that of the in-plane one.
In the conventional FF-CDmeasurement, the distance between the probe and sample
is more than 1mm; hence, the longitudinal component can be safely neglected.
However, at z =5nm above the sample, the longitudinal CD intensity is of the same
order of magnitude as the in-plane one. Moreover, even for the in-plane component,
the NF-CD spectra (z =5nm) are fairly different from the those at z =1000nm. This
clearly indicates that we cannot estimate the NF-CD spectra from the FF-CD ones,
as confirmed by the experiment [13].

In Fig. 5.4 a–d, we present the NF-CD contour maps of the transmitted in-plane
intensity �Txy and the vertical longitudinal one �Tz at z =5nm. The incident RCP
light has the energy of 1.65 eV (wavelength of approximately λ =750nm), where
we observe the CD peak in Fig. 5.3. Because half of the wavelength is as long as
each gammadion, the NF-CD maps should reflect well the geometrical figure of the
system. Notably, the in-plane NF-CD distributes differently than the longitudinal
one. The in-plane components of the NF-CD appear mainly in the gap between
the metallic structures, while the longitudinal components are concentrated on the
gammadion edges. Therefore, while examining the spatial structure of the NF-CD,
it is difficult to estimate the structure of its longitudinal component by using the
structure of the in-plane component.

5.2.3 CD of Optical Force

As can be seen in the previous subsection, observing the 3D figure, as well as the
longitudinal component of the superchiral field, for individual metallic structures
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Fig. 5.4 NF-CD maps about the xy- and z-components on sample planes. a, b NF-CD maps about
the xy- and z-component at z =5nm. The grayscale bar indicates the CD intensity normalized using
the incident-light intensity. c, d Enlarged view near the center gap of the metallic structure in (a,
b). The grayscale bar indicates the CD intensity normalized using the incident-light intensity |E0|2

is fairly important. We simulated the 3D NF-CD measurement by calculating the
time-averaged optical force that acts on the metallic probe tip [29, 31]. Using a state-
of-the-art technique of PiFM, the spatial resolution of 1nm was achieved [32]. In
addition, the technique enables 3D vector force imaging [30].

When the probe tip is scanned on the gap area of the four gammadions in Fig. 5.1 a
at z = 5nm,we calculated the difference between the optical forceswhen illuminated
with the LCP and RCP lights. We set the incident light intensity to 1 kW/cm2 and
the energy is the same as that in the previous subsection. The computational space is
1000 × 1000 × 250nm3, which is smaller in the z-direction compared to the space
defined in the previous subsection. Since the localized field between the probe tip
and metal structure is the dominant contributor to the photo-induced force, we can
ignore the influence due to the space boundary. The difference of the z-component
of the optical force is plotted in Fig. 5.5 a. The gradients along the z-direction of
�Txy and �Tz are depicted in Fig. 5.5b, c. If the vertical force Fz(r) on the probe
is integrated over z, we can obtain the field intensity and the probe-target potential
U (r). Instead of performing the aforementioned integration, we have depicted the
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Fig. 5.5 a Contour map of the difference between the z-directed photo-induced forces on the probe
under the RCP illumination and those under the LCP illumination. b–d The differentiations in the
vertical direction ∇z of the in-plane CD, longitudinal CD and their summation are mapped

gradient of the field intensities in Fig. 5.5b, c and compared them with the forces
depicted in Fig. 5.5 a.

Notably, the map in Fig. 5.5 a resembles that in Fig. 5.5b inside the gap area, as
the longitudinal component is weak in this region. However, at the corner regions,
the gradient of the longitudinal component becomes remarkably large, as depicted in
Fig. 5.5 c. This situation is well reflected in the corner regions in Fig. 5.5 a. Specifi-
cally, thefield gradient at the corner regions isweak for the xy-component, as depicted
in Fig. 5.5b, whereas the induced force at the corner regions becomes strong, as
depicted in Fig. 5.5 a. This situation becomes clearer if we note that the map of the
gradient of sum �Txyz = �Txy + �Tz shown in Fig. 5.5d is very similar to the map
in Fig. 5.5 a. Therefore, the force map successfully provides information including
the contribution of the longitudinal component that cannot be observed using the
aperture-type scanning near-field optical microscope.

Finally, the feasibility of this proposal warrants a mention. The sensitivity of the
optical force enables the application of the present scheme in the state-of-the-art tech-
nology of optical-forcemicroscopewith reasonable incident intensity [32]. However,
the question may arise whether the probe tip might change the image from the actual
field strength profile in our proposal. In practice, the force map blurs slightly, as the
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probe-tip diameter, i.e., 100nm, is greater than the gap spacing between the gam-
madions in Fig. 5.5b, c. However, when the spacing between the gammadions and
probe tip is small, the electric-field enhancement is determined only by the structure
near the probe tip. Therefore, the difference between the profile of the electric field
and the one measured using the force is not significant. In actual experiments using
optical-force microscope, the tip-sample spacing is less than 1nm. Therefore, we
can obtain satisfactory correspondence between the optical force and field gradients
in actual experiments, as well as obtain further enhanced optical force. The informa-
tion obtained provides significant insight into the spatial structures of the 3DNF-CD.
For the cases in the presence of targeted molecules on the metallic structures, more
detailed analyses of the force map to obtain the 3D NF-CD information are desired.

5.3 Optical Force to Rotate Nano-Particles in Nanoscale
Area

According to Maxwell’s theory of electromagnetism, both traveling and standing
light waves can exert mechanical force on targets because of scattering and absorp-
tion. This force is sometimes called the “optical force”. The optical force is classified
as a dissipative force, which arises from the transfer of optical momentum to a sub-
stance by absorption and scattering, and a gradient force due to the electromagnetic
interaction between the induced polarization and the incident light. The dissipative
force usually pushes and transports particles, and the gradient force can be used to
attract and trap particles. One of the most impressive applications of this force is an
optical tweezer with a focused laser, as proposed by Ashkin et al. [33]. This opti-
cal force is attributed to the transfer of momentum from light to the matter target.
Similarly, the spin and orbital angular momenta of light also can be transferred to
the mechanical motion of small particles. The light with orbital angular momentum,
such as a Laguerre–Gaussian (LG) beam [34], is considered to result in the orbital
rotation of targets. Notably, micro-particles are swirled along a ring-shaped region,
where the field intensity of the LG beam is strong [35]. However, presently, it is not
known how the optical manipulation for the rotational control in a nanoscale area
can be performed.

This section is devoted to discussing the chiral interaction between light and
metallic nanocomplexes, wherein the chiral interaction induces rotational motion
of nano-particles (NPs) in a nanoscale region. In recent years, the target of optical
manipulation has shifted to the nanometer-scale. However, within the Rayleigh scat-
tering regime, the optical force is approximately proportional to the volume of the
object, hence, the induced force is quite weak. To enhance the force to overcome the
disturbance due to the environment ofNPs, the use of the evanescent fieldwith a steep
gradient of the electric field has been proposed [36, 37], and recently, the trapping of
NPs associated with LSP resonance has been extensively studied [38–44]. Another
approach is the use of resonance with transitions between the electronic levels in
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Fig. 5.6 System setup. The image of super-resolution rotational optical manipulation inside the
tetramer metallic structures with a circularly polarized plane wave. The nanostructures are assumed
to be four gold panels that form nanogaps on the glass substrate. The size of each panel is
75×60×20nm3, and the gaps are

√
102 + 102 	 14 nm. The NP is assumed to have three lev-

els as depicted in the inset. The size of the NP is set to be 5×5×5nm3. (The entire system is
divided into cells of size 5×5×5nm3 for the DDA calculation.) In both the cases, the incident
lights propagate along the negative z-axis. See, [25]

NPs [31, 45–49]. In general, nanostructures have quantized electronic levels. Thus,
the optical force can be resonantly enhanced if the frequency of the incident light
coincides with their transition energies. Successful trapping and transport of NPs
using resonant laser light have been previously reported [50–54]. Herein, we have
demonstrated a scheme to realize rotation and the switching direction of NPs in a
nanoscale region usingmetallic nanocomplexes with LSP resonance and the resonant
optical response of NPs [25]. In particular, optical nonlinearity is key to realizing
the rotational motion of NPs. Using the resonant optical response often results in
optical nonlinearities, thereby enhancing both the trapping efficiency and the degree
of freedom of NP manipulation [49, 55, 56]. We have shown that by introducing the
optical nonlinearity of NPs due to LSP resonance, nanoscale NP rotation, and the
switching of the direction is possible. The transfer of the orbital angular momentum
of light to a small object has potential applications in various technologies such as
nanoelectromechanical systems and chiral sensing [57, 58].

5.3.1 Model and Method

We assumed a metallic nanocomplex as a platform for rotating the NP within the
nanoscale region, as illustrated in Fig. 5.6. When it is irradiated using a circularly
polarized light with the spin angular momentum of s = ±1, a nano-optical vortex,
which is connected to the LSPs near the metal, is generated. Recent theoretical works
revealed that the excited plasmon modes inside the gap of the metallic nanocomplex
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Fig. 5.7 Optical-force map inside the metallic nanocomplex. The black arrows indicate the force
vectors in the x-y plane. The grayscale bars represent the magnitude of the optical force. The
manipulation light and pump light energies are resonant to the 0–1 and 0–2 transitions, respectively.
a The case that contains only the RCP manipulation light with the spin angular momentum of s
= +1. The intensity is 100 kW/cm2. b The case that contains both the RCP pump light and RCP
manipulation light with the intensities of 100 kW/cm2. c The case that contains both the LCP pump
light and RCP manipulation light with the intensities of 100 kW/cm2. In this case, the manipulation
light energy is slightly red-detuned (1.798 eV). The arrows that draw circle below b, c show the
rotation direction of the radiation force due to the pump light and manipulation light, respectively.
(Reprinted with permission from [25] ©The Optical Society.)

can be determined using the symmetry of the metallic structures and orbital angular
momentum of the incident light [18]. Notably, we employed the tetramer structure
because of its satisfactory matching with the modeling in the DDA method [28].

To calculate the optical force that acts on the NP, we considered two features.
One is to assume a specific metal structure using the DDA method, as done in the
previous section. The other is to assume a three-level NP with levels {0, 1, 2} as
depicted in Fig. 5.6 and to incorporate the nonlinear optical response there. Further,
we ignored the nonlinear effect and temperature dependence of the dielectric constant
in the metal. This is because the effects of possible saturation or broadening do not
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change the nature of the results of the intensity regions considered, and only slight
quantitative corrections are expected [59, 60].

The expression of the time-averaged optical force is the same as (5.6), where
Pprobe(r, ω) should be replaced byPNP(r, ω), which denotes the induced polarization
of the NP. The integration was performed over the volume of the NP. We calculated
the electric field E and polarization PNP according to the following process. We
obtained the simultaneous master equations of the three-level NP and Maxwell’s
equations. To solve the Maxwell’s equations, we solved the same equation as (5.2)
with (5.1) by using the same parameters of gold used in the previous section. The
formal solution of the total electric field in the presence of the NP is expressed as
the following integral equation:

E(ri , ω) = Eb(ri , ω) +
NP∑

j

G(ri , r j , ω)PNP(r j , ω)Vj , (5.7)

where G denotes the renormalized Green’s function that includes the geometrical
information of the metallic structures. To derive the renormalized Green’s function
of arbitrary-shaped metallic structures, we solved the following integral equation:

G(ri , r j , ω) = G0(ri , r j , ω) +
metal∑

k

G0(ri , rk, ω)χmetal(ω)G(rk, r j , ω)Vk, (5.8)

where G0 denotes the free-space Green’s function.
The NP polarization should be determined using the total electric field. Accord-

ingly, we assumed the following Hamiltonian of NP with isotropic dipole moments:

Ĥ(t) =
∑

a=1,2

�ωa σ̂aa −
∫

V
dr P̂NP(r)|E(r, t)|, (5.9)

where index a represents the excited levels of the NP, �ωa the transition energy
between the ground state 0 and state a of the NP, and σ̂aa the population of state a.
Further, we described the induced polarization as follows:

P̂NP(r) =
∑

k<l

dkl σ̂klδ(r − rp) + h.c., (5.10)

where dkl denotes the matrix element of the dipole moment. In addition, σ̂ denotes
the dimensionless polarization operator, rp its position, and indices k = {0, 1} and
l = {1, 2} its energy levels. The Markovian master equation for the three-level NP
is described using the following equation [61]:
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d

dt
ρ(t) = − i

�
[Ĥ(t), ρ(t)] +

∑

k<l

γkl

2
[2σ̂klρ(t)σ̂lk − {σ̂lk σ̂kl, ρ(t)}]

+
∑

(l 
=m)

γpl

2

[
(σ̂ll − σ̂mm − σ̂00)ρ(t)(σ̂ll − σ̂mm − σ̂00) − ρ(t)

]
, (5.11)

where ρ denotes the density matrix of the NP and γ (γp) a nonradiative population
damping constant (pure dephasing constant). Notably, the radiative decay rate of
the NP is automatically incorporated into the calculation by using the renormalized
Green’s function. Using (5.11), we derived the equations of motion for the polar-
ization operator 〈σkl〉, and expanded via the Fourier components with respect to the
incident frequencies.

Using the mean-field approximation, we solved 〈σkl〉 and E(ri , ω) in a self-
consistent manner; thus, we obtained the NP polarization and total electric field.
In the calculation, the Green’s function was expanded into the Fourier components,
as well as the polarization, and we considered only the frequency components near
the plasmon resonance. In addition, we assumed that the directions of the dipole
moments of the NP coincide with those of the background electric-field resonant to
each transition. In this solution, if we consider up to the higher-order correlations
in the master equation, we can take into account the effects of the nonlinear optical
response in the NP beyond the perturbation regime, so that the population inversion
can be treated. Substituting the obtained E and P in (5.6), we obtained the optical
force, as well as the nonlinear effect of the NP.

5.3.2 Optical Force to Rotate the NP

In the numerical simulation, we employed the parameters by considering fluorescent
dyes; the resonance energies for the 0–1 and 0–2 transitions were 1.80 and 1.85
eV, respectively. The dipole moments of the NP were set to 10 Debye for the 1–
0 and 2–0 transitions, and this is realistic for the molecular aggregate of size 53

nm3. The nonradiative population decay constants for the 1–0 and 2–1 transitions
were set to 1μeV and 20 meV, respectively. The pure dephasing constant for the
excited levels was 2 meV. As for the incident lasers, we considered two plane waves
with circular polarization, and these waves were irradiated from above. The incident
waves, hereinafter referred to as manipulation light and pump light, had spin angular
momentum s = ±1 and energies resonant to the 0–1 and 0–2 transitions, respectively.
The rotation direction of the NP depends on its spin angular momentum. Notably,
the spin angular momentum of light can result in the orbital motion of the NP by
utilizing the metallic nanocomplex.

In Fig. 5.7a, we depict the force map inside the tetramer structure in the x-y plane,
where only the RCPmanipulation light is irradiated with the spin angular momentum
s = +1, and the intensity is 100 kW/cm2. In this case, the dissipative force to rotate
the NP saturates because of the nonlinearity, and the gradient force becomes the



120 H. Ishihara et al.

Fig. 5.8 Optical current
map inside the metallic
nanocomplex. The black
arrows denote the optical
current vectors. The
grayscale bars show the field
intensity. a Incident energy
is 1.80 eV, and the spin
angular momentum is s = +1.
b Incident energy is 1.85 eV,
and the spin angular
momentum is s = +1.
(Reprinted with permission
from [25] ©The Optical
Society.)

dominant force to move the NP. Therefore, the rotational force is suppressed, and
the NP is attracted toward the gaps where the field intensity is strong. However,
when the pump light is switched on, the pump intensity enables us to adjust the ratio
of the dissipative force to gradient force. The criterion to adjust this ratio by using
nonlinearity is explained in Appendix 1.

In Fig. 5.7b, we depict a force map, in which the pump light has the same spin
angular momentum and intensity as those of the manipulation light. In this case,
the 0–2 transition by the strong LSP field easily makes the population of the 1 state
exceed 0.5; i.e., population inversion occurs. This inversion reverses the force vector
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induced by the manipulation light [49]. Consequently, although both the incident
lights have the same spin angular momentum, the rotation direction of the manip-
ulation light becomes opposite to that of the pump light. Therefore, their rotational
forces (dissipative forces) eliminate each other and, hence, the optical force to rotate
the NP is not induced, although the spin directions of both the lights are parallel.
Subsequently, we examined the case in which the LCP pump light has different spin
angular momenta. In this case, the rotational forces reinforce each other. Therefore,
the rotational force of the NP was realized as depicted in Fig. 5.7c. Notably, we can
avoid pointing the optical force outward by slightly red-detuning the manipulation-
light energy to the resonance of the 0–1 transition (see Appendix 2). This rotational
force is sufficiently strong because of the LSP. Therefore, one can realize the rota-
tional manipulation at the nanometer scale and can selectively control the rotational
direction by switching the pump light.

Fig. 5.9 a Sample position of the NP inside the tetramer structure in calculating susceptibility
χ1(2), which is induced by the manipulation light. The coordinates of the position are set to be
(x, y, z)=(−20nm,−20nm, 25nm). b–d Spectra of susceptibility χ1 (gray line) and χ2 (black line)
as the functions of the manipulation light energy. b Case with weak excitation. The intensity of the
manipulation light is 1W/cm2. c Case with strong excitation. The intensity of the manipulation light
is 100 kW/cm2. d Case with stimulated emission. The pump light energy and intensity are 1.85 eV
and 100 kW/cm2, respectively. The intensity of the manipulation light is 100 kW/cm2. (Reprinted
with permission from [25] ©The Optical Society.)
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5.3.3 Optical Current

To gain a better understanding of the optical force that rotates the NP inside the
metallic nanocomplex, we considered the x-y component of the Poynting vector,
which is zero for plane wave light. This vector, which is also referred to as optical
current, contributes to the dissipative force exerted on the NP [62, 63]. The optical
current is classified into orbital and spin parts [63]. In Fig. 5.8 a, b, we depict the
orbital part of the time-averaged optical current inside the metallic nanocomplex
when the circularly polarized light with s = +1 is irradiated. Whether irradiating
only the manipulation light (resonant to the 0–1 transition) or only the pump light
(resonant to the 0–2 transition), the optical current flows clockwise inside themetallic
nanocomplex. These results are consistent with the rotational force discussed in
Fig. 5.7c, and also with the relation between population inversion and the rotational
direction of the NP. In addition, it is observed that the direction of the rotational flow
in the metallic nanocomplex depends on the direction of the optical current at the
four gap positions. If the manipulation scheme suggested here is realized, the basic
elements of manipulating the NP (pushing, pulling, and rotating) are also achieved.
This will introduce new technologies not only for nanofabrication but also for nano-
optomechanics that involve chiral materials and highly sensitive and selective chiral
sensing.

5.4 Summary

Light–nanomatter chiral interaction has been a central subject of research in vari-
ous domains for a long time. The development of nanofabrication technologies and
single-molecular detection techniques take the study of this domain to a new stage.
Particularly, the chiral interaction between light and metallic nanostructures has gar-
nered attention because of its wide potential applications. Further, this phenomenon
is the basis of our understanding of the nonlocal optical response, which is beyond the
conventional model based on LWA or DA. For example, a strong CD of the localized
field appears due to the geometric effect of the entire structure of the samples. The
conversion of the spin angular momentum of light to orbital angular momentum via
multipole excitation of nanoscale metallic complexes is also a peculiar manifestation
of nonlocalty.

One of the interesting aspects of optical response is the fact that its manifestation
appears not only as optical signals but also as mechanical force induced on matter
systems. Accordingly, in this chapter, we discussed the chiral interaction between
light and metallic structures visualized and appearing in optical-force effects.

The first topic is the manner in which we can visualize the 3DNF-CD that appears
in the vicinity of chiral metallic structures. The aperture-type scanning near-field
optical microscope is a powerful tool to unveil the chiral near field. However, it
is difficult to elucidate the 3D structure of superchiral field, especially around the
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edges of metallic structures, as the longitudinal localized component is dominant
there. However, optical force is significantly sensitive to the spatial distribution of
the field, which includes both the transverse traveling component and longitudinal
localized one. This sensitivity feature can be utilized to observe the 3D field distribu-
tion by using a microscope. Our numerical simulations showed that the optical-force
microscope satisfactorily visualized the 3D NF-CD.

The second topic is the rotational-motion control of NPs in the nanoscale area,
and this control is realized using the chiral interaction between the circularly polar-
ized light and metallic nanocomplex. We theoretically demonstrated that the con-
version between the spin angular momentum and orbital angular momentum using
the aforementioned interaction induced the rotational motion of NPs. Furthermore, it
was shown that by performing the balance control between the dissipation force and
gradient force via nonlinear optical responses, we could switch the rotation direction
of NPs.

The studies introduced in this chapter confirmed the essential roles of optical-force
effects to research the chiral interactions at the metallic nanostructures that sustain
LSP. It is important for various kinds of technologies to analyzemolecular substances
and control the mechanical motion of nanostructures via chiral interactions. The
present results might stimulate further study of microscopic chiral interactions in
various research domains.
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Appendix 1

Balance Between Dissipative Force and Gradient Force Under a Strong Near
Field [25]
To understand the balance between the dissipative force and gradient force exerted
on an NP under a strong near field, we considered the time-averaged optical force as
follows:

〈F(ω)〉 = 1

2
Re

[∫

V
dr[∇E(r, ω)∗] · PNP(r, ω)

]
. (5.12)

Here, we consider an evanescent field with a simple profile as follows:

E(r, ω) = E(x, y)ei(k1+ik2)z, (5.13)

where k1 and k2 denote the wavenumber and extinction coefficients along the z-
direction, respectively. The induced polarization is represented using complex sus-
ceptibility as follows:
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PNP(r, ω) = (χ1 + iχ2)E(r, ω) = (χ1 + iχ2)E(x, y)ei(k1+ik2)z . (5.14)

The real (imaginary) part of NP’s susceptibility is given by χ1(2). Substituting (5.13)
and (5.14) in (5.12) and regarding the induced polarization as the point dipole, the
optical force is written as follows:

〈F(ω)〉 = 1

2
VNP

[
1

2
χ1∇x,y |E|2 − χ1k2|E|2nz + χ2k1|E|2nz

]
e−2k2z, (5.15)

where VNP denotes the volume of the NP, ∇x,y a 2D gradient, and nz a unit vector
along the z-axis.

We classified the terms of (5.15) into dissipative and gradient forces. The first
and third terms in the right hand side denote the conventional gradient force and
dissipative force, respectively. In the presence of a finite k2, we should also regard
the second terms as the gradient force. Notably, under the LSP near-field, the gradient
and dissipative forces depend on χ1 and χ2, respectively. This means that one can
control over the trapping/exclusion of the NP by adjusting the balance between χ1

and χ2 and by tuning the laser frequencies.

Appendix 2

Dissipative and Gradient Forces Induced by the Detuned Light [25]
When the non-resonant light is radiated,χ1 andχ2 are constant for light energy. How-
ever, the resonant polarization in the linear optical response results in dispersion-type
χ1 and Lorentz-type χ2. Therefore, their ratio drastically changes near the resonant
energy of NP. Moreover, strong nonlinear optical effects such as absorption satura-
tion and population inversion can result in the sign inversion of χ1 and χ2. Here, we
have regarded the ratio of χ1 to χ2 as that of gradient force to dissipative force, and
demonstrated it for the following three cases: weak excitation, strong excitation, and
stimulated emission.

In Fig. 5.9b–d, we depict the real and imaginary parts of the induced polarization
of the NP at the sample position indicated in Fig. 5.9a. The polarization includes the
resonant and non-resonant elements for the 0–1 and 0–2 transitions that are induced
by the manipulation light. The parameter of the NP is the same as that in the main
text. Under the weak excitation, the nonlinear optical effects are negligible, and the
polarization obeys the linear optical response. Notably, the resonant energy (e.g.., the
peak energy of χ2) is slightly red-shifted because of the metal-NP interaction. Under
strong excitation, χ2 is approximately zero, as the absorption and emission balance
with each other owing to the absorption saturation. With respect to χ1, it becomes
large as the manipulation light energy increases. This is because the absorption satu-
ration effect suppresses the polarization with the 0–1 transition, and the polarization
with the 0–2 transition starts to appear. In addition, in the presence of the pump light,
the sign of the susceptibility is inverted, compared with the weakly excited case. The
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negative value of χ2 does not indicate reduction but gain. In other words, the negative
value indicates the generation of the stimulated emission. The stimulated emission
also results in the sign inversion of χ1. Inside the tetramer structure, the dissipative
force induces orbital motion, and the gradient force points toward the hotspots at gap
areas. In Fig. 5.7b, we have employed the red-detuned manipulation light and utilize
the repulsive force (negative value of χ1) from the hotspots, as depicted in Fig. 5.9d.
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Chapter 6
Magnetoelectricity of Chiral
Micromagnetic Structures

A. P. Pyatakov, T. T. Gareev, A. S. Kaminskiy, K. S. Antipin, E. P. Nikolaeva,
D. P. Kulikova, A. S. Sergeev, and A. V. Nikolaev

Abstract The concept of chirality has profound implications throughout science,
from elementary particle physics to biology. In this review, we will refer to chirality
as a rotational sense of spin structures such as spin cycloid in spiral magnets, micro-
magnetic structure in curved magnetic film, twisted spin space of 2D electron gas
in an ultrathin magnetic metal film, and micromagnetic structures observed in iron
garnet samples. It will be shown that chirality plays the key role in magnetoelec-
tric phenomena observed in iron garnet films: the electric field-induced generation,
motion and annihilation of magnetic topological defects such as magnetic bubble
domains, domain walls and vertical Bloch lines. As a new degree of freedom that
can be controlled by electric and magnetic field, the chirality is an important issue
for spintronic applications.

The whole of my physics is nothing other than geometry

R. Decartes

6.1 Introduction. Chiral Structures of an Order Parameter

The idea of electromagnetic properties defined by the geometry of structure rather
than its chemical composition is a cornerstone of the concept of metamaterial.
However the notion of geometry-defined physical properties can be also useful while
considering many other problems in condensed matter science, in particular, dealing
with noncollinear ordering in magnets [1, 2] ferroelectrics [3], and liquid crystals
[4, 5].
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In the case of magnetically ordered media the order parameters can be magne-
tization (for ferro- and ferrimagnets), antiferromagnetic vector (for antiferromag-
nets) and toroidal moment (for ferrotoroidal media). In ferroelectrics the analogue
of magnetization is electric polarization. In the case of liquid crystals the role of the
order parameter is played by the director, i.e. the average molecular orientation.

The regular structures with spatially varying order parameter direction can be
represented as a superposition of two basic classes: the cycloidal and helicoidal ones
(Fig. 6.1). The former has the axis of order parameter rotation that is perpendicular
to the direction of spin modulation k (Fig. 6.1a) while the latter is a proper screw
with the rotation axis parallel to the wave vector k (Fig. 6.1b).

From the standpoints of symmetry, the cycloid is analogous to the bending of
the crystal (compare Fig. 6.1a, c). The bending results in the strain gradient (upper
layers are stretched and the bottom layers are shrunk) pointing a polar direction in the
crystal that is a prerequisite for the appearance of electric polarization (Fig. 6.1c).
This phenomenon of the electric polarization induced by strain gradient is called
the flexoelectric effect (from Latin flexura, meaning “bending”) [6, 7]. Another type
of spatially modulated structure, the helicoid, is symmetrically equivalent to the
twisting deformation (compare Fig. 6.1b, d). In contrast to cycloid, the helicoid does

а) b)
c) d)

Fig. 6.1 The analogy between the spatially modulated order parameter structures and mechanical
deformations. a the cycloid, b the helicoid, c flexural distortion, d twisting distortion
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Fig. 6.2 The analogy
between the structures of
various nature: a spin
cycloidal ordering of ion
spins in antiferromagnet;
b molecular structures in
nematic liquid crystals

a)                  b)                       

not single out the polar direction in the crystal and cannot be the single cause of the
electric polarization.

The sense of rotation of order parameter in these spatially modulated structures
is often called chirality [8]. Chirality is a general term for asymmetry with respect
to the mirror symmetry and plays an important role in natural science from biology
to optics of metamaterials, in particular, the magnetoelectric ones (see, for example
[9, 10]). The chirality of spatially modulated structures can be controlled either
through interface engineering [11] or by external field: magnetic [12–14] and electric
one [15–17]. As will be shown below chirality is a key feature that determines the
magnetoelectric properties of the magnet, i.e. the cross-coupling between magnetic
and ferroelectric subsystems in crystal.

The certain chirality of a spatially modulated spin structure lowers the symmetry
of amagnet. The spin cycloid is symmetrically equivalent to the fan-shapedmolecular
pattern that is formed in nematic liquid crystals in response to the electric field (see
Fig. 6.2) [4]. In both cases, there is a kind of “bending” of order parameter distribution
(the magnetization or director, respectively) whose symmetry is equivalent to the
flexural strain. Conversely, the flexural deformation in solids results in appearance
of electric polarization in the crystal (Fig. 6.1c). That is why all these phenomena
are described by an umbrella term of flexo-effects (Fig. 6.3) [4].

In the case of flexoelectric effect, the strain gradient ∇Uij induces the electric
polarization P. In a similar way the spatial modulation of magnetization gener-
ates the ferroelectricity in spiral multiferroics due to the flexomagnetoelectric effect
[1]. The modulated spin structures like domain walls [18, 19], magnetic vortices
[20], magnetic skyrmions [2] and other magnetic topological defects [21], can be
the sources of local ferroelectricity. The converse flexomagnetoelectric effect [22]
implies themodification ofmagnetic state due to the presence of electric field gradient
(for example, from the charged tip of scanning probe microscope), in the same way
as the polarization gradient induces the strain in the case of converse flexoelectric
effect (Fig. 6.3) [6].

Flexomagnetoelectric effects can be mediated by mechanical deformation but
the real bending of the crystal lattice is not a prerequisite of their existence. The
bending in the magnetic subsystem, i.e. the spin cycloid (Fig. 6.1) also leads to
the inversion symmetry breaking and the onset of polar direction in crystal. The
flexomagnetoelectric interaction is described by the contribution to the free energy
in the form of Lifshitz-type invariant [4]:
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Fig. 6.3 Cross-type effects that couple the mechanical, magnetic and electric subsystems in
magnetic crystals: 1—direct flexoelectric effect and 2 is converse flexoelectric effect; 3,4 are the
direct and converse flexomagnetic effects; 5, 6 are direct and converse flexomagnetoelectric effects,
respectively. M, P, uij stand for magnetization, electric polarization and strain tensor components,
respectively

FFlexoME = γP · (ndivn − (n · ∇)n), (1)

where γ is the constant of flexo-type interaction, n is the unit vector of the order
parameter, P is electric polarization or another polar vector (in the case of the thin
film with chiral spin structure [23, 24] it is directed along the normal to the plane). In
the case of liquid crystals n stands for director [4], in magnets n is magnetization or
antiferromagnetic vector. The free energy term (1) is universal for multiferroic anti-
ferromagnets, thin films of ferromagnets or liquid crystals emphasizes the profound
analogy between various types of flexoelectric phenomena.

The switching of the chirality of the spatially modulated structure (the change of
the signs of spatial derivatives of the order parameter n in (1)) results in the reversal
of electric polarization P. This mechanism of switchable polarization is inherent to
the multiferroics like manganites [25–27], tungstates [28, 29], and hexaferrites [12,
30–32] whose ferroelectricity is induced by cycloidal magnetic order.

Spin flexoelectricity should not be confused with flexomagnetism [33–38], that
relates the strain gradient ∇u with magnetization M (Fig. 6.4) and, conversely, the
inhomogeneous magnetization distribution with homogeneous strain. For example,
the chirality of flux-closure domain structures in curved magnetic films [36] is deter-
mined by the sign of curvature (and consequently the sign of magnetization diver-
gence that influences on themagnetostatic energy). Themagnetismof curved surfaces
is considered in special review [39].
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a)  b)

Fig. 6.4 Flexomagnetism and spin flexoelectricity (flexomagnetoelectricity): a the bending of the
magnetic plate results in the vortex-like magnetization distribution whose chirality is determined by
the direction of bending; b “the bending” in magnetization distribution (being translated at a large
distance it converts to the spin cycloid in the bottom right corner) results in electric polarization in
analogy to the electric polarization induced by mechanical bending due to the flexoelectric effect

6.2 Microscopic Mechanisms of Spin Flexoelectricity

On the microscopic level, the spatial derivatives in Lifshitz-type invariant (1) corre-
spond to the cross product of spins of neighboring magnetic ions [S1×S2]. This type
of relativistic and antisymmetric exchange interaction that is proportional to the cross
product of the localized spins is called Dzyaloshinskii-Moriya interaction (DMI):

HDM = D · [s1 × s2], (2)

where s1, s2 are unit vectors of the magnetic moments of exchange coupled ions, D
is the Dzyaloshinskii vector.

In antiferromagnets, the DMI can have two macroscopic manifestations:

(i) a long-range chiral spin structure
(ii) a weak ferromagnetism: homogeneous magnetic state with non-zero net

magnetization.

In the three-site indirect exchange model of DMI [40, 41] these two cases can be
explained by Keffer formula for Dzyaloshinskii vector [42]:

D = V0[r1 × r2], (3)
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Fig. 6.5 (color online). The three-site ion model for DMI. a the unidirectional displacement of
ligand ions (blue balls) leads to the constant angle between the spins of magnetic ions (brown
balls). b the staggered displacements result in spin canting of antiferromagnetic sublattices

where V 0 is microscopic constant, r1, r2 are the magnetic ions position vectors
directed from ligand ion to the nearest magnetic ions (Fig. 6.5).

The existence of electric polarization in the crystal implies the uniform displace-
ment of the ligands that results in spin cycloid structure (Fig. 6.5a), at the same
time the staggered displacement of ligand ions corresponds to sign-alternating
Dzyaloshinskii vector D that results in antiferromagnetic ordering with non-zero
net magnetization (Fig. 6.5b).

The DMI interaction (2) can be represented in terms of small displacement of the
ligand ions p and spin canting δs = s1−s2 in the following way:

HDM = V0
([
p × a

] · [s1 × δs]
)
, (3)

where a is the primitive vector of crystal lattice and p is the polar displacement of
the ligand. The linear term in Taylor series expansion for the spin canting δs in (3)
gives the (1) (for details, see [43]).

It is noteworthy that the antisymmetric exchange expressed by (2) is not always
realized as superexchange interaction described by the three-ion model. Superex-
change is specific for magnetic dielectrics (oxides and fluorites) while in magnetic
metal films another mechanism of relativistic indirect exchange based on the
Ruderman-Kittel-Kasuya-Yosida (RKKY) model is possible.

RKKY interaction between localized spins is mediated by the conduction elec-
trons. In two-dimensional electron gas systems (2DEG) there is a precession of spins
due to the spin-orbit Rashba interaction. The electron propagation with precessing
spin is equivalent to motion in the “curved spin space” with spin quantization axis
changing its orientation in a way the normal to some curved surface changes its
direction (Fig. 6.6 inset).

In ultrathin metal films, Rashba interaction is caused by interfacial electric field
[44] while in bent magnetic nanostructures it is related to curvature-induced quantum
effects [45]. This is another manifestation of the profound analogy betweenmagnetic
media with chiral spin structures and bent surfaces.

The RKKY interaction in 2DEG with Rashba interaction is modified to the so-
called twisted RKKY interaction where the conventional scalar product of localized
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Fig. 6.6 (color online). The twisted RKKY interaction model. The cycloid structure in the single-
atom layer of magnetic metal atoms (the ions of two antiferromagnetic sublattices are shown with
different colors). The spatial rotation of spins and antiferromagnetic vector L takes place in the
xz plane. The ϕ is the angle antiferromagnetic vector spatial rotation, q is the wave vector of spin
cycloid. In the inset, there is an art representation of the curved spin space

spins S1, S2 is augmented with the cross product [46]:

Htwisted
RK KY = F(R)

{
cos θ(S1S2) + sin θ [S1 × S2]y

}
, (4)

where F(R) is an oscillating range function of RKKY interaction, and the angle
θ = 2kR(x1 − x2)(where x1 and x2 are the positions of interacting magnetic ions
[46]), the kR is the Rashba splitting of spin bands. For the case of 2D array of atoms,
the cross product of spins in the second term of (4) takes the form of the mixed
product of (3). The polar vector p in this case is directed along the surface normal
and related to the surface electric field. This fact implies that the voltage tuning of
Rashba splitting is possible [47].

6.3 Chirality Dependent Domain Wall Motion

An interface between the domains in magnets (a domain wall) is a region of gradual
reorientation of magnetic moments and, in this context, it can be considered as a spin
cycloid or a spin helicoid fragment that corresponds to the magnetization rotation
angle equal to 90° or 180° (depending on the domain structure). Being the mobile
interface, a domain wall is an ideal object to investigate the behavior under the
influence of various types of stimuli like magnetic field, spin polarized current and
electric field. The chirality of the domain wall plays a key role in the latter case since
it determines the direction of the domain wall motion.

The examples of two types of 180-degree domain wall: the Neel domain wall and
the Bloch one are shown in Fig. 6.7. They are analogous to the spin cycloid and the
helicoid, respectively. According to (1) the Neel type domain wall can host electric
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a) b)

Fig. 6.7 Domain walls in magnets: a Neel-type domain wall; b Bloch-type domain wall

polarization due to nonzero divergence of magnetization while for Bloch wall the
free energy term (1) remains zero.

The existence of domain wall magnetoelectricity was experimentally proven on
the domain structure in iron garnet films [48, 49] that was subjected to the influence of
gradient electric field from the tip electrode (Fig. 6.8). When the voltage was applied
between the tip electrode and the film substrate, the displacement of the domain
walls was observed. As soon as the voltage was turned off the domain wall came
back to the initial equilibrium position. Reversing the polarity of the voltage at the tip
resulted in the change of the direction of the displacement to the opposite (Fig. 6.8a).
The attraction/repulsion of the domain wall with respect to the tip depended only on
the electric polarity and was independent of the tip electrode position with respect
to the domain wall.

The electric field-induced magnetic domain wall motion has been proved to be
chirality dependent [13]: whether the domain wall attracts to or repels from the tip
depends on the sense of spatial rotation of magnetization across the wall. The sense
of rotation determines the sign of the spatial derivatives of magnetization in (1) and
therefore the electric polarity of the wall.

Fig. 6.8 The electric-field inducedmagnetic domainwall displacement at various electric polarities:
1 is the tip electrode, 2 is the domain wall right (blue) is the domain wall position at the negatively
charged tip, red (left) is for positive potential. The neutral position the wall is shown with a dashed
line (Sample 1 from the table in the Appedix is used). b, c) illustrate the influence of electrically
charged tip electrode on the stripe domain structure subjected to the in-plane magnetic bias field
perpendicular to the domain walls. The sample 2 from the table b) is the initial unperturbed stripe
domain structure c) represent the distortion of the structure: the nearest left with respect to the tip
domain wall repulse from the tip, the right one attracts to it, the attraction of the next to near left
domain wall is also seen
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a) b)

Fig. 6.9 The chirality dependent electric field-induced domainwall motion a if onemoves from left
to right the neighboring domain walls have an opposite sense of magnetization rotation: clockwise
and counterclockwise (due to external in-plane magnetic field that orients the magnetization in
domain walls), the surface charges are shown with «+» and «-»; b the top view of the domain
structure for both polarities of the electric and magnetic field: force acting on the domain wall
depends on the charge of the tip and the chirality of the wall (opposite chiralities shown with
red/blue colors)

In the absence of magnetic bias field, the domain walls have a built-in chirality. In
the external magnetic field, the magnetization direction in the center of the domain
wall tends to orient along the field, and as a result, the neighboring domain walls
have opposite chiralities (Fig. 6.9). In experiment these domain walls move in oppo-
site directions with respect to the tip: if one attracts to the electrode then the other
repels from it (Fig. 6.8c). The magnetic field reversal leads to the switching of the
domain wall chirality, as well as its electric polarity and the direction of displacement
(Fig. 6.9b) [13].

Remarkably, the domain wall chirality also determines the current-driven domain
wall motion in heavy-metal/ferromagnet multilayers [50, 51]. In this case, domain
wall motion is induced by spin-transfer torque produced by spin-Hall current from
the non-magnetic heavy metal substrate (Pt, Ta, Ir) [52], as shown in Fig. 6.10a. In
external in-plane magnetic field every second domain wall moves against an electron
flow (Fig. 6.10b). This counterintuitive behavior had been remained puzzling until the
chirality issue was considered [50]: since the chiralities of the neighboring domain
wall in the external magnetic field are opposite (Fig. 6.9a) the directions the chirality-
dependent forces acting on the domain walls are opposite as well (Fig. 6.10b).

6.4 Chirality Dependent Bubble Domain Generation

The chirality of the domain walls plays a key role in another type of magnetoelectric
phenomena: the electric field-induced bubble domain generation. It should be noted
that in the samplewith stripe domain structure (samples 1,2 from table in theAppedix)
the magnetic bubble state is unstable and cannot be induced solely with magnetic
fields. The bubble domain is nucleated at the electrically charged tip electrode in
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a)    b) 

Fig. 6.10 (Color online) The chirality dependent current-induced domain wall motion: a Spin Hall
effect in the bilayer of magnetic conducting material on non-magnetic heavy metal substrate: the
spin-Hall current injected from the substrate acts with a force F on the domain wall due to the
spin-transfer torque b the top view of the domain structure for various directions of current and
magnetic field: as in the case of Fig. 6.9 the neighboring domain walls have opposite chiralities

the presence of constant in-plane and out-of-plane magnetic fields near the phase
transition to the single domain state (Fig. 6.11b).

The role of the tip is not limited to just being the nucleation site of the bubble:
the increase of voltage at the tip leads to the inflating of the bubble (Fig. 6.12). This
effect may be interpreted in the light of the experiment with the in-plane magnetic
field (Fig. 6.8b, c). Indeed, the neighboring domain walls experience the opposite
electrostatic forces, therefore the bubbles in Figs. 6.11 and 6.12 are inflated by the
pair of forces acting on the opposite edges of the bubble: the boundary nearest to the
tip is attracted to it, the farthest one repels from the tip.

The mechanism of electric field induced magnetic bubble domain generation is
illustrated schematically in Fig. 6.13. The chirality is shown with circle arrows.

a) b)

Fig. 6.11 The electric field induced magnetic bubble domain generation: a the original stripe
domain structure in spontaneous state b The bubble domain nucleation at the electrically biased
AFM cantilever tip in single domain state. Sample 3 from the table in the Appedix is used
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Fig. 6.12 The dependence of the electric field generated domain size (the major semi-axis for
elliptical form) on the voltage applied to the tip electrode. Sample 3 from table in the Appedix is
used

Various configurations of in-plane and out-of-plane magnetic fields as well as the
tip electrode position with respect to the bubble are shown. It is noteworthy that
the chirality of the domain wall located under the tip remains the same in all these
situations.

In (210) iron garnet film (sample 2 from the Table) the bubble domain nucleation
was observed only at positively biased tip electrode while application of negative
voltage led to the shrinkage or even collapse of the nucleated bubble [53]. This can
be explained in terms of the “built-in chirality” of domainwalls in a spontaneous state
that makes all the domain walls attracting to the positively charged tip (Fig. 6.8a).
To generate the magnetic bubble domain with a negatively charged tip one needs to
overcome this inherent tendency of nucleation of the domain wall with this preferred
chirality that was presumably related to the magnetic film growth conditions.

In fact, it will be possible to achieve the bipolar nucleation of bubble domain walls
at accessible voltage value if the energy cost of domain wall generation is lower. For
example, this happens in the case of amagnetic domainwith 90-degree domainwalls.
The bubble generation induced by negatively biased tip was observed in (110) iron
garnet films (Fig. 6.14). According to the theory of spin flexoelectric interaction, the
switching of electric polarity of the tip results in the chirality reversal (the spatial
derivatives in (1) change signs). Indeed, according to Fig. 6.14, the chirality of the
domain wall located under the negatively biased tip electrode is always opposite to
the chirality of the domain wall under the positively charged tip.
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Fig. 6.13 Various scenarios of bubble domain nucleation corresponding to four points on magnetic
phase diagram with coordinates (H stands for in plane magnetic field, and H⊥ stands for out-of-
plane field). The magneto-optical images of the bubble domain nucleated at the tip as well as the
schematic pictures of micromagnetic configurations are shown in the insets. Sample 3 from table
in the Appedix is used

Fig. 6.14 The electric-field-induced domain nucleation with two electric polarities of the tip: in the
red insets the top-viewmagnetooptical images of the iron garnet film are shown. The corresponding
schematics of the magnetization distribution in the cross-section of the film and magnetic bias fields
are shown. H = 170 Oe, H⊥ = 16 Oe, the electric voltage at the tip is 500 V. The cantilever width
is 50 μm. Sample 2 from table in the Appedix is used
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Fig. 6.15 The reconstruction of the domain structure by electrically biased cantilever tips. The
images are taken in the absence of external magnetic field, the electric voltage between the tip and
the substrate is 500 V. Sample 4 from table in the Appedix. The white scale bar in the first frame
corresponds to the 50mum

The electric field-induced generation of magnetic inhomogeneities can be
observed in the spontaneous state with no magnetic bias as well (Fig. 6.15). The
newborn inhomogeneity modifies the domain structure pushing aside the neigh-
boring domain wall (the second frame in the series). The in-plane movement of
the cantilever tip leads to the merging of the inhomogeneity with the domain wall
(two central frames), and finally, to the radical reconstruction of the structure (the
appearance of a new dislocation captured in the last two frames).

6.5 Spin Flexoelectricity of Bloch Lines, Vortexes
and Skyrmions

The electric field can modify not only the shape and position of the domain wall
but also its internal micromagnetic structure. The evidence for that is the influence
of the electric field on the vertical Bloch lines. Bloch line is a kind of “boundary
in the boundary”: the region where the segments of the wall with the clockwise
and counter-clockwise rotation of the magnetization meet each other. The pair of
vertical Bloch lines (VBL) oriented along the normal to the plane are shown in the
figure (Fig. 6.16a). They have opposite polarities (the so-called σ-charges): one line

a)  b)  c) 

Fig. 6.16 Bloch line optical detection and electric control: a the schematic picture of a pair of
vertical Bloch lines with the opposite σ-charges. b the magneto-optical image of a pair of VBL.
c the image of the same region after the sweeping of the selected area in (b) with electrically charged
tip. Sample 5 from table in the Appedix is used. The tip voltage is 1kV
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a)   b)  

Fig. 6.17 Electric field-induced Bloch linemotion: a the initial position of the VBL, b the displace-
ment of VBL after the influence of electrically charged tip. Sample 5 from table in the Appedix is
used. The tip voltage is 1kV

corresponds to the head-to-head magnetization orientation while the other is tail-to-
tail VBL. Due to magnetostatic interaction of the VBL with the magnetic domain
stray fields the segment of the wall where the VBL is located is slightly tilted (by
an angle of several degrees) and the direction of the tilt depends on the σ-charge.
This enables visualization the VBL with a dark field technique [54] since the tilted
domain wall scatters light in a different way compared to the regular segment of the
wall (see Apendix for details of the anisotropic dark field observation used in the
experiments). Moreover, the lines with the opposite σ-charges due to the different
orientation of the domain wall plane with respect to the direction of the light ray can
be detected as a brighter or darker segment of the domain wall (Fig. 6.16b).

The sweeping of the domain wall that host VBLwith electrically charged tip leads
to the changes in themicromagnetic structure of thewall: the annihilation (Fig. 6.16c)
of the pair of VBL with the opposite σ-charges or the displacement (Fig. 6.17) of
the single VBL [55]. There were also reports on the broadening of VBL dark-field
images in the electric field of flat electrodes [56].

The domain wall is often considered as a magnetic topological soliton with the
magnetizationmodulated in one direction normal to the plane. The skyrmion [57, 58]
is another type of topological soliton with axisymmetric geometry: its crossection
in every radial direction mimics the magnetization distribution in the domain wall
provided that the full angle of rotation is 360°. In analogy to domain walls, the
skyrmions can be classified into two types: the Bloch and the Neel ones. Following
the same logic as in the case ofNeel domainwall, one can conclude that theNeel-type
skyrmion should be electrically polarized due to spin flexoelectricity. More accurate
consideration with the use of simulated annealing technique [2] shows that there are
two components of electric polarization: along the normal to the film and the radial
one (Fig. 6.18a). First one corresponds to the polarization of the Neel-like structure,
the second one arises due to the in-plane curvature of the skyrmion. The estimate
of the critical value of electric field strength required for skyrmion creation using
the parameters of the iron garnet film [2] gives the value ~1 MV/cm comparable
to the one used in our experiments with the bubble domain nucleation [53, 59] The
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a) b) c) 

Fig. 6.18 The vortex-like micromagnetic structures and corresponding electric polarization
distribution: a the skyrmion, b the magnetic vortex, c the magnetic antivortex

electric field-induced nucleation and annihilation of skyrmionwere actually observed
in experiment with the use of scanning tunneling microscopy probe [60] though its
mechanism is still under discussion.

Finally, in the case of the magnetic vortex structure there is the only radial compo-
nent of electric polarization (Fig. 6.18b). Due to the divergence of electric polariza-
tion the vortex core hosts a bound electric charge [20]. Its polarity does not depend
on whether the vortex has a clockwise or counter-clockwise rotation of magne-
tization. The vortex-like structure of opposite polarity corresponds to an antivortex
(Fig. 6.18c) [61]. Multiple vortex and antivortex generation should lead to the forma-
tion of a “magnetic atom” structure with a “nucleus” consisting of densely packed
vortices and “a shell” of distant antivortices [62].

6.6 Conclusion

All the magnetic textures considered above can serve as illustrations of the general
geometrical idea: the flexural deformation of order parameter distribution singles
out the polar direction in media. There are various physical consequences of this
fact including flexomagnetic phenomena, spin torque-driven domain wall dynamics
and spin flexoelectricity that the paper is focused on. The chirality of the micromag-
netic structure plays the key role in spin flexoelectricity: the electric polarity of the
magnetic topological defect and the direction of its motion changes to the opposite
upon the chirality switching. The magnetoelectric phenomena demonstrated, e.g.
field-induced generation, motion and annihilations of magnetic topological defects,
are interesting both from fundamental and applied points of view.
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Appendix: Experimental and Calculation Details

In our experiments, the Bi-substituted rare earth iron garnet films (BiR)3(FeGa)5O12

(R stands for rare earth) were used that were epitaxially grown on Gd3Ga5O12

substrate by liquid-phase epitaxy (for details see elsewhere [63]). Bi substitution
allows us to obtain a clear magneto-optical image of the domain structure.

The films grown on (111) substrate (sample 6 from the table) in spontaneous state
demonstrate labyrinth-type domain structure (Fig. A.1a) while (110) and (210) films
host stripe domain structure due to the in-plane magnetic anisotropy (Fig. A.1b).

No. of
the
sample

Chemical
composition

h
(μm)

p
(μm)

4πMs, G Ku
(erg/cm3)

Korth
(erg/cm3)

Kc
(erg/cm3)

1 (210) (BiLu)3(FeGa)5O12 7.4 44 77 732 5333 3208

2 (110) (BiLu)3(FeGa)5O12 11 40 – – – –

3 (210) (BiLu)3(FeGa)5O12 10 28 62 −498 3398 1813

4 (210) (BiLu)3(FeGa)5O12 11 35 44 1054 1830 1016

5 (111) (BiTm)3(FeGa)5O12 10 8,7 144 5400 NA* NA*

6 (111) (BiLu)3(FeGa)5O12 19 39 78 – NA* NA*

The table of samples parameters: h is the thickness of the film, p is the period of the domain structure
in the spontaneous state, Ms is the saturation magnetization, Ku, Korth, Kc are the constants of uniaxial,
orthorhombic and cubic anisotropies, respectively
*The easy directions of magnetization for uniaxial and cubic anisotropies are the same

Fig. A.1 Magneto-optical
images of domain structure:
a labyrinth type, b stripe type
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Fig. A.2 Schematic representation of the geometry of the experiment and the configurations of the
magnetic field, electric field and magnetization. The electric field is generated by the tip electrode
(1) in the iron garnet film (2) and theGGG substrate (3). (4) is the grounding electrode. The inductive
coils (5) produce the in-plane H and out-of-plane H magnetic field

The schematics of the experiment with the electric field applied to the iron garnet
film is shown in the Fig. A.2. The visual contact silicon cantilevers VIT_P_C-A
(NT-MDT production) were used as tip electrodes (Figs. 6.8b, c, 6.11, 6.14 and
6.15). In some cases (Figs. 6.12 and 6.13) the 10μm-diameter molybdenum wire or
50μm-diameter copper wire (Figs. 6.8a, 6.16 and 6.17) were used.

To visualize the VBL the polarized anisotropic dark field observation (PADO)
technique was used [64, 65]. The idea of PADO is to illuminate the domain wall at
some angle to the film normal and to collect the light scattered on it (Fig. A.3). In the
case of Figs. 6.15 and 6.16 the plane of laser light illumination was perpendicular to
the plane of the domain wall.

For calculations of Fig. 6.17 the exchange stiffness constant A= 10−7 erg/cm, and
spin flexoelectricity constant γ = 10−6 (erg/cm)1/2 (the material parameters typical
for iron garnet films [66]), as well as magnetization and magnetic anisotropy values
from table in the Appedix, were used.
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Fig. A.3 Schematics of
PADO (polarized anisotropic
dark field observation). VBL
is a vertical Bloch line. k0 is
the wave vector of the
incident light, the ki are wave
vectors of scattered light
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16. T. Srivastava, M. Schott, R. Juge, V. Křižáková, M. Belmeguenai, Y. Roussigné, A. Bernand-

Mantel, L. Ranno, S. Pizzini, S.M. Chérif, A. Stashkevich, S. Auffret, O. Boulle, G. Gaudin,
M. Chshiev, C. Baraduc, H. Béa, Nano Lett. 18, 4871 (2018)

17. J.A. Rodríguez-Velamazán, O. Fabelo, J. Campo, J. Rodríguez-Carvajal, N. Qureshi, L.C.
Chapon, Sci. Rep. 8, 10665 (2018)

18. V.G. Bar’yakhtar, V.A. L’vov, D. A. Yablonskii, JETP Lett. 37, 673 (1983)
19. A.P. Pyatakov, A.S. Sergeev, E.P. Nikolaeva, T.B. Kosykh, A.V. Nikolaev, K.a. Zvezdin, A. K.

Zvezdin, Uspekhi Fiz. Nauk 185, 981 (2015)
20. A.P. Pyatakov, G.A. Meshkov, A.K. Zvezdin, J. Magn. Magn. Mater. 324, 3551 (2012)



6 Magnetoelectricity of Chiral Micromagnetic Structures 145

21. A.P. Pyatakov, Phys. B Condens. Matter 542, 59 (2018)
22. A.F. Kabychenkov, F.V. Lisovskii, E.G. Mansvetova, JETP Lett. 97, 265 (2013)
23. A. K. Zvezdin, Bull. Lebedev, Phys. Inst. 29, 7 (2002)
24. M. Bode, M. Heide, K. von Bergmann, P. Ferriani, S. Heinze, G. Bihlmayer, a Kubetzka, O.

Pietzsch, S. Blügel, R. Wiesendanger, Nature 447, 190 (2007)
25. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Nature 426, 55 (2003)
26. Y. Tokura, S. Seki, Adv. Mater. 22, 1554 (2010)
27. A.P. Pyatakov, A.M. Kadomtseva, G.P. Vorob’ev, Y.F. Popov, S.S. Krotov, A.K. Zvezdin, M.M.

Lukina, J. Magn. Magn. Mater. 321, 858 (2009)
28. D. Meier, M. Maringer, T. Lottermoser, P. Becker, L. Bohatý, M. Fiebig, Phys. Rev. Lett. 102,

107202 (2009)
29. T. Finger, D. Senff, K. Schmalzl,W. Schmidt, L. P. Regnault, P. Becker, L. Bohat\‘y,M. Braden,

Phys. Rev. B 81, 54430 (2010)
30. S.H. Chun, Y.S. Chai, Y.S. Oh, D. Jaiswal-Nagar, S.Y. Haam, I. Kim, B. Lee, D.H. Nam, K.-T.

Ko, J.-H. Park, J.-H. Chung, K.H. Kim, Phys. Rev. Lett. 104, 37204 (2010)
31. Y. Kitagawa, Y. Hiraoka, T. Honda, T. Ishikura, H. Nakamura, T. Kimura, Nat. Mater. 9, 797

(2010)
32. M. Soda, T. Ishikura, H. Nakamura, Y. Wakabayashi, T. Kimura, Phys. Rev. Lett. 106, 87201

(2011)
33. E.A. Eliseev, A.N. Morozovska, M.D. Glinchuk, R. Blinc, Phys. Rev. B 79, 165433 (2009)
34. P. Lukashev, R.F. Sabirianov, Phys. Rev. B 82, 94417 (2010)
35. E. Eliseev, M. Glinchuk, V. Khist, V. Skorokhod, R. Blinc, A. Morozovska, Phys. Rev. B 84,

174112 (2011)
36. R. Hertel, Spin 3, 1340009 (2013)
37. J.H. Lee, K. Kim, B. Jang, A.A. Ünal, S. Valencia, F. Kronast, K. Ko, S. Kowarik, J. Seidel,

C. Yang, Phys. Rev. B 96, 64402 (2017)
38. B.A. Belyaev, A.V. Izotov, P.N. Solovev, N.M. Boev, Phys. Status Solidi RRL 2019, 1900467

(2019)
39. R. Streubel, P. Fischer, F. Kronast, V.P. Kravchuk, D.D. Sheka, Y. Gaididei, O.G. Schmidt, D.

Makarov, J. Phys. D Appl. Phys. 49, 363001 (2016)
40. T. Moriya, Phys. Rev. Lett. 4, 228 (1960)
41. A. Fert, P.M. Levy, Phys. Rev. Lett. 44, 1538 (1980)
42. F. Keffer, Phys. Rev. 126, 896 (1962)
43. A.K. Zvezdin, A.P. Pyatakov, EPL 99, 57003 (2012)
44. A.P. Pyatakov, A.K. Zvezdin, EPL (Europhysics Lett. 107, 67002 (2014)
45. P. Gentile, M. Cuoco, C. Ortix, Spin 3, 1340002 (2013)
46. H. Imamura, P. Bruno, Y. Utsumi, Phys. Rev. B 69, 121303(R) (2004)
47. S.E. Barnes, J. Ieda, S. Maekawa, Sci. Rep. 4, 4105 (2014)
48. A.S. Logginov, G.A. Meshkov, A.V. Nikolaev, A.P. Pyatakov, JETP Lett. 86, 115 (2007)
49. A.S. Logginov, G.A. Meshkov, A.V. Nikolaev, E.P. Nikolaeva, A.P. Pyatakov, A.K. Zvezdin,

Appl. Phys. Lett. 93, 182510 (2008)
50. S. Emori, U. Bauer, S. Ahn, E. Martinez, G.S.D. Beach, Nat. Mater. 12, 611 (2013)
51. P.P.J. Haazen, E. Murè, J.H. Franken, R. Lavrijsen, H.J.M. Swagten, B. Koopmans, Nat. Mater.

12, 299 (2013)
52. L. Liu, O.J. Lee, T.J. Gudmundsen, D.C. Ralph, R.A. Buhrman, Phys. Rev. Lett. 109, 96602

(2012)
53. D.P. Kulikova, T.T. Gareev, E.P. Nikolaeva, TB. Kosykh, A.V. Nikolaev, Z.A. Pyatakova, A.K.

Zvezdin, A.P. Pyatakov, Phys. Status Solidi - Rapid Res. Lett. 12, 1800066 (2018)
54. A. Thiaville, J. Miltat, J. Appl. Phys. 68, 2883 (1990)
55. A.S. Logginov, G.A. Meshkov, A.V. Nikolaev, A.P. Pyatakov, V.A. Shust, A.G. Zhdanov, A.K.

Zvezdin, J. Magn. Magn. Mater. 310, 2569 (2007)
56. V.E. Koronovskyy, Y.A. Vakyla, Phys. B Condens. Matter 547, 79 (2018)
57. A. Bogdanov A.N., Yablonskii, JETP 68, 101 (1989)
58. U.K. Rössler, a N. Bogdanov, C. Pfleiderer, Nature 442, 797 (2006)



146 A. P. Pyatakov et al.

59. D.P. Kulikova, AP. Pyatakov, E.P. Nikolaeva, A.S. Sergeev, T.B. Kosykh, Z.A. Pyatakova, A.V.
Nikolaev, A.K. Zvezdin, JETP Lett. 104, 197–200 (2016)

60. P. Hsu, A. Kubetzka, A. Finco, N. Romming, K. von Bergmann, R. Wiesendanger, Nat.
Nanotechnol. 12, 123 (2016)

61. A.P. Pyatakov, G.A. Meshkov, A.S. Logginov, Moscow Univ. Phys. Bull. 65, 329 (2010)
62. P.I. Karpov, S.I. Mukhin, Phys. Rev. B 95, 195136 (2017)
63. G.V. Arzamastseva, A.M. Balbashov, F.V. Lisovskii, E.G. Mansvetova, A.G. Temiryazev, M.P.

Temiryazeva, J. Exp. Theor. Phys. 120, 687 (2015)
64. A. Thiaville, F. Boileau, J. Miltat, L. Arnaud, J. Appl. Phys. 63, 3153 (1988)
65. A.S. Logginov, A.V. Nikolaev, V.V. Dobrovitski, IEEE Trans. Magn. 29, 2590 (1993)
66. A.P. Pyatakov, D.A. Sechin, A.S. Sergeev, A.V. Nikolaev, E.P. Nikolaeva, A.S. Logginov, A.

K. Zvezdin, EPL (Europhysics Lett. 93, 17001 (2011))



Chapter 7
Current-Induced Dynamics of Chiral
Magnetic Structures: Creation, Motion,
and Applications

Jan Masell and Karin Everschor-Sitte

Abstract Magnetic textures can be manipulated by electric currents via the mech-
anisms of spin-transfer and spin-orbit-torques. We review how these torques can be
exploited to create chiral magnetic textures in magnets with broken inversion sym-
metries, including domain walls and skyrmions. These chiral textures can also be
moved by (electric) currents and obey very rich dynamics. For example, magnetic
domain walls feature the famous Walker breakdown, and magnetic whirls are sub-
ject to the skyrmion Hall effect, which is rooted in their real-space topology. These
properties led to a variety of potential novel applications which we briefly overview.

7.1 Introduction

Magnetic materials have been studied over the centuries for various prospects, in
particular yielding the fundamental building blocks in computers that enable us to
store tremendous amounts of data and transcending our culture to the age of infor-
mation technology. Permanent magnetism as a key feature in these devices which
offers not only fundamentally interesting, but also application-wise impressive and
practical phenomena. The fact that magnets can be strongly influenced by external
magnetic fields is both, a blessing and a curse. On the one hand, localized mag-
netic fields can be used to easily manipulate magnetic states of matter. On the other
hand, magnetic devices are sensitive to invasive, external stimuli. Even nowadays,
where magnetic mass storages in the form of rotating hard disc drives are steadily
replaced by all-electric devices, magnetic recording media still appears throughout
our everyday lives. Besides their intrinsic advantage of being non-volatile, magnetic
recording media have to overcome some challenges such as increasing the speed
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Fig. 7.1 Schematic figures of a a Néel-type domain wall, b Bloch-type skyrmion, c antiskymion,
and d hopfion. The color code represents the direction of the normalized local magnetization. For
the hopfion, we sketch an isosurface of the magnetization, using the same color code as in (a–c)

for reading and writing information and reducing the energy consumption to be
competitive with nowadays all-electric information technology. For example, in the
1970s, some memories and computers used magnetic bubbles as mobile information
carriers which, however, by the 1980s were completely replaced by magnetic hard
drives or transistor-based controllers which turned out to be faster and better scal-
able. However, since the 1980s, research has unveiled a number of new effects and
novel ways to control the static and dynamic properties of magnetic materials. These
include most importantly (i) chiral magnetic systems and the ability to control their
relativistic asymmetric exchange interaction—the Dzyaloshinskii-Moriya interac-
tion (DMI) [1, 2]—and (ii) the ability to generate current-induced spin-torques, in
particular spin-transfer torques (STTs) [3, 4] and spin-orbit torques (SOTs) [5, 6].
These spin-torques can be used to manipulate the magnetization directly, providing
a new toolbox for potentially more competitive magnetic applications and opening
the door to a whole range of interesting new physical phenomena.

This book chapter is intended to serve as an overview over the basic theoretical
concepts in the context of chiral magnetic textures and their dynamics, in particu-
lar, when subject to spin-torques. Those spin textures which are stabilized, e.g., in
systems with DMI or in systems with strong frustration comprise the well-studied
magnetic domain walls, [7] but also the miniaturized versions of magnetic bub-
bles, i.e., magnetic skyrmions and antiskyrmions, [8–12] and magnetic hopfions [13,
14]. Representatives of such structures are shown in Fig. 7.1. We first review in
Sect. 7.2 the description of magnetic textures within a continuum (micromagnetic)
model, discussing their energy functional and their effective dynamic equation—the
Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation. In this part, we also address
the interaction of magnetic textures with electric currents, focusing on the origin and
effects of spin-torques. In Sect. 7.3 we review the most common magnetic textures.
In Sect. 7.4 we address how to create magnetic textures focusing on all-electrical
methods. In Sect. 7.5we review the recent progressmade in the analysis of themotion
of spin textures subject to spin-torques. In particular, we provide a detailed review
on one of the most important and yet simple theoretical concepts for the motion of
magnetic textures—the Thiele equation in its generalized form.We demonstrate how
to apply it to the dynamics of magnetic textures such as domain walls, skyrmions,
and hopfions. Finally, in Sect. 7.6, we give a brief overview over the plethora of
suggested possible applications for chiral magnetic textures.
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7.2 Continuum Model for the Magnetization

In this section, we present the continuum description of magnets and their interplay
with electric currents, which in a simplified form is known as the micromagnetic
model.

7.2.1 Magnetization Statics

The static properties of any magnet are well determined by an energy functional
whose form depends strongly on the symmetries of the system. The precise deter-
mination of this energy functional in all its components is a very hard task. For
sufficiently simple systems, the spin wave dispersion can be calculated with ab initio
methods and then be fitted to a model of localized magnetic moments {Si }. Such
treatments are very successful in describing magnetism on the atomic scale, which
often requires exchange interactions Si · S j beyond nearest neighbors and, poten-
tially, also more exotic interactions between multiple spins [15].

The magnetization in most chiral ferromagnets is, however, smooth, i.e., it is
polarized on the length scale of the atomic lattice and varies only on much larger
length scales. In this limit, the magnetic system can be well described by a phe-
nomenological Ginzburg-Landau theory where an effective energy functional for the
magnetization M is derived as a series expansion in powers of M and spatial deriva-
tives ∂α . Moreover, for temperatures far below the Curie temperature the magnetic
system is in an ordered state and the local magnitude of the magnetization corre-
sponds to the saturation magnetization Ms . The resulting energy functional can then
be expressed in terms of the normalized magnetization m = M/Ms in very general
terms as

E[m] =
∫
dr

[ − Bimi − Ki j mim j − Ki jkl mim jmkml

− Dα
i j mi∂αm j + Aαβ

i j ∂αmi∂βm j − Qαβ

i jk mi∂αm j∂βmk (7.1)

+ Aαβ

i jkl mim j∂αmk∂βml + Aαβγ δ

i j ∂α∂βmi∂γ ∂δm j − ...
]

where we implicitly sum over all spatial indices α, β and magnetization indices i, j .
The first term is usually written explicitly as B = μ0Ms(

1
2 Hd + H) where Hd is

the demagnetizing field and H is the externally applied magnetic field. All other
interaction tensors are material specific and their tensorial structure is determined
by the point group symmetry of the system. In principle, they can be completely
anisotropic and even non-local, similar to the demagnetizing field. For an effective
description of the low energy physics on large length scales, the infinite series in (7.1)
is restricted to only the most relevant terms. Higher order interaction processes are
usually small which suppresses terms which are higher order in the magnetization.
Higher orders of derivatives, moreover, are suppressed as they become increasingly
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irrelevant on larger scales. Other terms, such as the DMI term with Dα
i j , are only

non-vanishing because of the finite spin-orbit coupling, which is usually also small.
Here we list the most common and relevant examples focusing on magnetic systems
with their dominant lowest order chiral interaction

• For a time-reversal invariant system all terms with an odd power of m vanish.
• For an inversion symmetric system there is no chiral interaction, i.e. the DMI term
vanishes, Dα

i j = 0, and so do all terms with an odd number of derivatives.
• For a bulk chiral magnet with a cubic unit cell and a three-fold screw axis in
the [109] direction, like the prototypical chiral magnets MnSi or FeGe, the DMI
tensor simplifies to what is denoted as Bloch-type DMI in the literature, i.e.,
Dα

i j = Dεiα j , with εi jk being the Levi-Civita symbol. The exchange interaction

becomes Aαβ

i j = Aδi jδαβ + A′δi jδαβδiα with the Kronecker delta δi j . The last term
proportional to A′ reflects an anisotropic exchange coupling which can be present
in cubic systems, but for MnSi and FeGe it turns out to be negligible [16].

• In thin films ormonolayers, the inversion symmetry along the film normal (e.g., the
ẑ-direction) is explicitly brokenby the sandwich structure of thematerial or the sub-
strate, but is usually preserved in the other directions. In such a setup the DMI ten-
sor simplifies to what is known as Néel-type DMI, i.e. Dα

i j = D(δiαδ j z − δi zδ jα).

The exchange interaction simplifies to Aαβ

i j = Aδi jδαβ + Azδi jδi zδαβ . Besides
exchange and DMI, the term that is often relevant in such systems is the uni-
axial anisotropy Ki j = K δi jδi z . In combination with the demagnetizing field, it
can lead to the stabilization of magnetic bubbles.

• For systems with lower symmetry, the emerging terms and the corresponding
tensor entries become more and more complex. We still would like to highlight
systems with C2ν symmetry, where the two-fold rotational symmetry allows not
only to realize magnetic skyrmions but also antiskyrmions [17], see Fig. 7.1. In a
basis where the ẑ-axis is the two-fold rotational symmetry and the x̂ and ŷ-axes
are defined to be along the two reflection planes of the C2v point group [18], the
exchange parameters are Aαβ

i j ∂αmi∂βm j = Aiδi jδαβ and there are seven indepen-
dent DMI tensor components given by Dx

xz, Dx
zx , Dy

yz, Dy
zy, Dz

zz, Dz
xx , and Dz

yy .
For further interesting systems we refer to [19, 20].

To summarize, the specific systems determine which magnetic interaction scales
are relevant and which magnetic structures can be realized as (meta-)stable states.
Over the past century, magnets with strong uniaxial anisotropy have been in the
focus of material research, mostly application-oriented. With the advances made
over the past decades, more detailed engineering of the properties of magnetic mate-
rials became possible and experimental techniques were developed that enable the
observation of magnetic structures on the nanometer scale. With these new tech-
niques at hand, more exotic materials can be studied where other interactions are
dominant and stabilize new forms of magnetic textures.
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7.2.2 Magnetization Dynamics in the Presence of
Spin-Torques

The interplay of magnetism and currents is very complex and they mutually influ-
ence each other. For example, upon traversing a topologically non-trivial magnetic
structure, the electrons pick up a Berry phase [21] which then leads to a topological
Hall effect [12, 22–24] in addition to other Hall contributions such as the anomalous
Hall effect. In this part, we will focus on the effects that an electric current has on
the magnetization.

Within the micromagnetic framework, where the local magnitude of the magne-
tization is constant, the slow and smooth magnetization dynamics can be described
effectively within the LLGS equation [3]

dtm = −γ m × Beff + α m × dtm + τ, (7.2)

where γ is the (positive) gyromagnetic ratio, α is the dimensionless Gilbert damping
parameter, and Beff = −δE[m]/(Msδm) is the effective magnetic field due to inter-
actions in the magnetization. τ represents the current-induced magnetic torques. It
comprises STTs as well as SOTs, τ = τST T + τSOT. Their lowest order terms com-
prise each a field- and damping-like term [25]

τSTT = − (ve · ∇)m + β m × (ve · ∇)m (7.3a)

τSOT = −τFL m × σ − τDL m × (m × σ ), (7.3b)

where ve = −[PμB/eMs(1 + β2)] je is the effective spin velocity [26] with je the
electric current density, P the polarization, μB the Bohr magneton, and e > 0 the
electron charge. β is the non-adiabatic damping parameter. σ encodes the spin polar-
ized current: For the typical situation where the SOTs [5, 6] are generated by the spin
Hall effect at an interface between a ferromagnet and a heavy metal, it is σ = n̂ × je
where n̂ is the normal direction of the interface between the materials. The strengths
τFL and τDL for the field-like and damping-like terms are material dependent.

Note that the two torque expressions are not uniquely linked to STTs and SOTs,
respectively, and we use these labels mostly for a better distinction of the two math-
ematically different expressions. For example, Eq. (7.3b) also describes STTs in
layered systems where a current perpendicular to one layer is σ -polarized according
to the magnetization in the adjacent layer.
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7.3 Magnetic Solitons

In this part we review the most common magnetic structures focusing on chiral
solitons, shown in Fig. 7.1.

Magnetic domain walls are rather ubiquitous one-dimensional textures that connect
two distinctly polarized phases. The reason for this is that they do not require any
particular stabilization mechanisms; the two distinct ferromagnetic ordered phases
can be fixed by the boundary conditions. Therefore, magnetic domain walls have
been observed and studied already long ago and can be found in many different sam-
ples with different properties. By continuation in further dimensions, domain walls
can also be hosted in two-dimensional or three-dimensional systems. For example,
in symmetric thin films Bloch- or Néel-type domain walls can be stabilized. Their
helicity is determined by magnetostatic interactions and therefore depends on the
film geometry. For very thin films, Néel type domain walls are formed, where the
magnetization winds from one out-of-plane polarized state to the oppositely polar-
ized state in the plane spanned by the out-of-plane state and the direction of rotation,
as shown in Fig. 7.1. For thicker filmsmainlyBloch type domainwalls are realized. In
two-dimensional systems, domain walls can be effectively described as strings [27,
28] and closing this string leads to structures that are called magnetic bubbles. Fur-
thermore, domain walls can obey localized defects for example in the version of
Bloch lines, i.e., localized windings in the domain wall where the helicity switches
from one Bloch handedness to the other handedness.

Magnetic skyrmions are localized whirls in two dimensions which can be viewed
as a closed magnetic domain wall, embedded as defects in a surrounding background
phase or they can be ordered in a lattice. In three-dimensional systems, skyrmions
form extended strings. Skyrmions received lots of attention in particular due to their
non-trivial real-space topology. The two-dimensional winding number for skyrmions
(located in the xy-plane)

Q = 1

4π

∫
�

dr m · (∂xm × ∂ym) = 1

4π

∫
�

dr Fz ∈ Z (7.4)

evaluates to Q = −1 for the skyrmion and to Q = +1 for the antiskyrmion shown
in Fig. 7.1, when integrating over the open area � of the skyrmion. Note that Q only
evaluates to an integer if � is a closed surface, i.e. ∂� = 0, which can, however, be
mapped to an open area � with a topologically trivial boundary ∂�. In the second
equality we have introduced the solenoidal gyro-vector field F as

Fα = 1

2
εαβγm ·

(
m
∂rβ

× m
∂rγ

)
. (7.5)

While for the skyrmion only one component of this vector field is important, the
topological index in 3D—the Hopf invariant—involves all components, see below.
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Note that from a topological point of view, skyrmions and the earlier studied mag-
netic bubbles are equivalent. Even, given the various systems where such magnetic
whirl-like textures with a winding number of ±1 occur, a clear definition and full
disentanglement might not be possible. Here, wewill refer to magnetic bubbles when
the domain wall width of the topological whirl-like structure is small compared to its
the center area and to a skyrmion otherwise.While a strict differentiation between the
two is not possible, the static and dynamic properties of magnetic whirls do depend
on their detailed energy scales, and can be very different. In particular, skyrmions
are typically smaller and more stable such that they are potentially interesting for
future technological applications, see Sect. 7.6.

Roughly speaking, skyrmions occur in systems with competing interactions, of
which some favor the alignment of magnetic moments, and others prefer their twist-
ing. Inmost systems, however, it is amore complicated interplay that finally stabilizes
the topological magnetic whirls. Experimentally, skyrmions have first been observed
in bulk crystals with broken inversion symmetry as a result of a competition between
a uniform stiffness A, DMI strength D, an applied magnetic field B and strong
thermal fluctuations at temperatures slightly below the critical temperature [29]. By
now several other systems have been identified to host skyrmions, revealing alterna-
tive stabilization mechanisms such as spatial confinement and frustrated exchange,
e.g., via RKKY [30, 31]. Moreover, materials have been tailored to exhibit a strong
interfacial DMI to host skyrmions at room temperature [32, 33]. For an overview of
different material systems we refer to [11].

Typically, when discussingmagnetic skyrmions, it is assumed that these arewhirls
in an out-of-plane polarized background. However, just as domain walls, skyrmions
can be hosted by in-plane polarized backgrounds [34, 35] or even more complex
background phases such as conical backgrounds in 3d [36], or embedded inside a
helical phase [37].While skyrmions are effectively two-dimensional structures, there
is an ongoing search to find three-dimensional magnetic solitons.

A bit in the middle of two or three-dimensional structures are magnetic bob-
bers, [38] which, for example, occur in extended films. They look like a skyrmion on
the top surface and then turn into a Bloch point within thematerial. Chiral bobbers are
metastable states which are stabilized by the interplay of DMI and the boundary con-
dition. The DMI induces a repulsive force between the skyrmion at the surface and
the the Bloch point, wherefore the remaining skyrmion string is not expelled from the
material. Similar surface effects have been known to occur due to demagnetization
effects [39].

Magnetic hopfions are three-dimensional topological objects which, similar to the
relation between skyrmions and domain walls, can be viewed as a closed skyrmion
string, see Fig. 7.1. They can be characterized by the Hopf index H , which can be
calculated by the Whitehead formula [40]

H = − 1

4π2

∫
R3

(F · A) d r (7.6)
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with the vector field F defined above in (7.5) and A being an appropriate vector
potential ∇ × A = F. They have been predicted to occur in magnetic systems [13,
14] and recent progress in the development of new experimental techniques led to
the first experimental signatures of hopfions in magnetic multilayers [114].

Other topological magnetic textures apart from the above mentioned ones, are
predicted including those which have a more complex order parameter than just
the normalized magnetization. Several of them have not yet been observed experi-
mentally. However, the vast progress in recent years, allowing to engineer coupling
strengths and image magnetizations in more and more detail, might reveal more
exotic states in the future.

7.4 Creation of Magnetic Solitons

In this section we discuss, from a theoretical point of view, how to create mag-
netic solitons in different dimensions. These solitons comprise domain walls and
skyrmions, see Sect. 7.3, and can be introduced into a given magnetic background,
such as the ferromagnetic or helical state. Before discussing specific properties of
different creation mechanisms, we first comment on a few very generic principles.

A soliton is stable and does not decay into magnons if it is protected by a (free)
energy barrier. Vice versa, the creation of a soliton is also associated with an energy
barrier, otherwise the solitons would just spontaneously proliferate and trigger a
phase transition. As an example, Fig. 7.2 shows two possible mechanisms for the
creation/annihilation of a skyrmion in a finite-size two-dimensional system. On the
blue path, the magnetization twists at the edge and a skyrmion enters from outside

Fig. 7.2 Energetics of skyrmion creation in a finite size system with interfacial DMI. The energy
barrier depends on details of the interactions but also on the creation process which can, for example,
involve a continuous change of the winding number via the edge of the system (blue path) or a
discontinuous change via the creation of a skyrmion in the bulk (red path)
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the sample, while on the red path the skyrmion emerges between lattice points within
the sample and then grows. In either case, the energy (as function of time in arbitrary
units) has to rise above the bare energy difference between the initial and the final
state but the absolute height of the barrier depends on how the soliton is introduced.
Furthermore, introducing a soliton into the system requires to “twist” some parts
of the current magnetization state, i.e., exerting local torques on the magnetization
structure which are also very different for the two distinct paths shown in Fig. 7.2.
Thus, the different creation mechanisms can be classified by the effective dimen-
sionality of the magnetic soliton, its embedding background, and the origin of the
acting torques. While creating one and two-dimensional textures is explored quite
well, the controlled creation of three-dimensional magnetic structures is subject to
current and future research.

7.4.1 Creation of One-Dimensional Solitons

Amagnetic domain wall is an (effectively) one-dimensional magnetic soliton which
usually connects two oppositely polarized phases, see Sect. 7.3. Within a nanowire
with uniform magnetization, domain walls can only be created pairwise, as an odd
number of domain walls naturally leads to opposite background orientations on both
ends. To create such a pair of domain walls, one somehow has to locally flip the ori-
entation of themagnetization. Themost naive way is to locally apply amagnetic field
in the desired direction, see Fig. 7.3a. An alternative is to switch the magnetization
by means of locally applied spin-currents.

Single domain walls can be created at the edge of the sample. One can employ
similar techniques as mentioned above, but at the edge the restrictive condition of
having the same ferromagnetic state on both sides of the created magnetic texture
does not apply. Alternatively, one can utilizemagnetic inhomogeneities in the sample
which effectively act as the edge of a smaller subsample. When an inhomogeneity

Fig. 7.3 Possible mechanisms to create magnetic domain walls. a Pairwise creation in the middle
of a nanowire by a local magnetic field H or spin-currents (not shown). b Insertion of individual
domain walls at the end of the wire via the interplay of spin-torques and an inhomogeneity (white
spin fixed e.g. by strong perpendicular anisotropy)
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alters the local magnetization direction, the generation of domain walls is not neces-
sarily pairwise, see Fig. 7.3b. One idea is to exploit that the magnetic profile around
an inhomogeneity is twisted and, therefore, spin-torques can act on this part by both,
further twisting and pulling on the magnetic texture [41]. Increasing the applied cur-
rent will enhance the twisting until a domain wall structure is built, that at the critical
current density j ce rips off and travels along the system. Such a creation mechanism
also works in aminimal model consisting of exchange and anisotropy interaction and
basic STTs [41]. In this setup, domain walls are created periodically with a period
T that depends on the applied current strengths je, or respectively on the effective
spin velocity ve as

T ∼ (ve − vce)
−1/2 ∼ ( je − j ce )

−1/2, (7.7)

where the exponent is independent of themicroscopic details. This universal behavior
of the shedding period T can be proven by explicitly solving for the magnetic profile
and its shedding period in the one-dimensional model including only exchange and
anisotropy interactions. Furthermore, it is valid for a large class of magnetic systems
independent of the details of themicroscopicHamiltonian, including the applicability
for higher dimensions [42]. The required assumptions are (i) presuming a translation-
ally invariant model away from the inhomogeneity and (ii) neglecting non-adiabatic
spin-torque terms. The argument for the universal exponent in the shedding period
is based on combining three ingredients:

(1) the postulate of a critical current density j ce abovewhich therewill be no statically
stable solution and the created magnetic texture rips off the inhomogeneity,

(2) the behavior of the magnetic structure in the “just still static limit”, i.e., for
je � j ce and

(3) the “just dynamic limit”, i.e. for je � j ce .

For the last two, one employs that the magnetic profile at the critical point will not
differ too much in these two limits. The main influence on the magnetic structure
will be a (time-dependent) shift in the position x0 where the structure is centered
in combination with a mild perturbation on the profile. Solving the LLGS equation
in these two limits, yields for the “just still static” limit the relation j ce − j se ∼ x20
and for the “just dynamic limit” ∂t x0 = j de − j se , where j se is the current strength
in the just still static limit and j de in the just dynamic limit. These relations are
the simplest, that satisfy the expected behavior: (i) the velocity of the domain wall
depends linearly on the current strength beyond the threshold value and (ii) inverting
the direction of the current should, in principle, create the domain wall structure in
the opposite direction. Eliminating j se allows to calculate the period of the magnetic
texture formation T ∼ ( je − j ce )

−1/2 and thus explains the universal dependence.
Note that this universal behavior holds independent of the dimension, provided

the above mentioned assumptions are satisfied. In dimensions higher than one the
precise shape of the createdmagnetic texture cannot be calculated analytically. Based
on topology, one can, however, conclude that the winding number during the pro-
duction process must be conserved, opening up the possibility to shed more complex
topological structures and their anti-particles.
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Fig. 7.4 Possible mechanisms to create magnetic skyrmions in ferromagnetic background by creat-
ing them within the sample (blue box), at the boundary (orange box) or via an engineered geometry
(red box): a writing them locally, e.g. with spin-polarized electric currents, b creation of skyrmion-
antiskyrmion pairs due to the interplay of magnetic inhomogeneities and spin-torques. c a train of
skyrmions is created due to a particular sequence of applied magnetic fields. d a skyrmion is created
at a notch via spin currents. e current-driven domain wall pairs are fusing to skyrmions, and f at the
end of a constriction domain walls are chopped off to form skyrmions

7.4.2 Creation of Two-Dimensional Solitons

Examples of (effectively) two-dimensionalmagnetic solitons are skyrmions and anti-
skyrmions, see Sect. 7.3. To create skyrmions numerous methods exist, see for exam-
ple [11] for an overview. Similar to domain walls, their creation mechanisms can be
categorized by (i) being createdwithin the sample, (ii) at the boundary, or (iii) because
of a specialized geometry, see Fig. 7.4.

To create skyrmions within the sample in a ferromagnetic background one has
to invert the magnetization in a small region. This can be done for example by
local magnetic fields [43, 44], by local spin currents flowing perpendicular to the
material [25, 45] by electric fields induced, e.g., by spin-polarized STM [46, 47],
by effective local heating [48] or spontaneously by fluctuations [49]. Furthermore,
one can generate skyrmions dynamically by means of the interplay of spin-currents
and some inhomogeneity or defect, as indicated above when discussing domain
wall production. Increasing the spin-current density above a critical values allows to
produce skyrmion-antiskyrmion pairs dynamically by means of STTs [41, 42, 50,
51].While the creationmechanism itself is independent ofmicromagnetic details and,
in principle no twisting-like interactions such as DMI are required, in the subsequent
dynamics, only the (meta-)stable solutions will continue to exist. For example, in a
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materialwithBlochDMI, the antiskyrmionwill annihilate and only aBloch skyrmion
will remain. Similarly, skyrmions can be created by SOTs [52–54].

An alternative is to create skyrmions via exploiting the tailored geometry of the
material, see Fig. 7.4 for different options. For example, one can convert a domain
wall pair into a skyrmion [55] or one can generate skyrmions through what has
become known as “blowing bubble” technique [56] where a worm domain is sent
through constrictions and “chopped” into pieces, i.e. skyrmions, by means of the
diverging current upon leaving the constriction. Or skyrmions can be produced at
a notch [57]. The latter technique leads over to the another principal option, i.e. to
create skyrmions at the boundaries of a sample. Here the effect of the chiral surface
states are helpful in pre-twisting themagnetic configurations. Bymeans of a properly
chosen protocol of an applied field strength one can even generate a whole train of
skyrmions at the boundary [58].

While in a ferromagnetic background singlemagnetic skyrmions are (meta-)stable
states, magnetic skyrmions can be the ground state of a chiral magnet in the form of
skyrmion lattices under certain conditions [29]. To switch from the competing stripe
domain phase into the skyrmion phase several methods exist, including triggering
the magnetic material by means of AC field excitations [59].

7.5 Motion of Magnetic Solitons

Themicromagnetic dynamics of themagnetization aremainly governed by the LLGS
equation (7.2). This equation describes the local precession and relaxation of the
magnetization, formulated in terms of a local effectivemagnetic field which accounts
for the interaction of themagnetizationwith itself and its environment and,moreover,
additional torques due to current-induced STTs and/or SOTs. In general, these non-
linear dynamics lead to a complicated dynamical behavior which can even trigger
the creation of magnetic solitons as described in Sect. 7.4 and can usually only be
solved numerically.

However, once the solitons are created, they are influenced by the applied spin-
torques and other external forces, e.g., due to field gradients. The reaction of the
magnetization is most strongly expressed in the low energy degrees of freedom. An
effective and potentially more efficient description of the soliton dynamics can there-
fore be formulated by taking only a few collective coordinates into account. We will
review the derivation of these effective equations of motion, known as (generalized)
Thiele equations,1 in the following. We then show examples for their application
when we use them as the starting point for the discussion of the dynamics of current-
driven magnetic solitons.

1Note that the original equation that Thiele derived in his seminal works [60, 61] refers to the
steady-state motion of domain walls. By now the concept that Thiele used to obtain his equation
of motion for the domain wall has been generalized for any structure described by a finite set of
collective coordinates.
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7.5.1 A Collective Coordinate Approximation: Thiele
Equations of Motion

The main step to obtain the Thiele equations for a given magnetic structure is to
project the LLGS equation onto the corresponding collective coordinates. This said,
the first step is to select suitable collective coordinates for a givenmagnetic structure.
In principle, these collective coordinates can represent any property of the quasipar-
ticle. To achieve an accurate description of the system with only a few coordinates
it makes sense to choose coordinates which are related to zero modes or low energy
modes as these are most easily activated, and thus most relevant for the low-energy
physics of the system. A suitable choice of coordinates should therefore depend on
the symmetries of the entire setup: the quasi-particle itself, the energy landscape,
and the acting spin-torques.

To give an example for an appropriate collective coordinate, let us consider the
standard assumption of the standard Thiele approach, i.e., a translational invariant
model with a rigid magnetic texture. This means that the magnetic texture does not
change its shape when driven by an electric current. In this situation, the position
of the quasi-particle R(t) is a proper collective coordinate (or more generally, any
position of the rigid magnetic structure) and the magnetization behaves asm(r, t) =
m(r − R(t), 0).

For the derivation of the generalized Thiele equations, suppose that the time-
dependence of the magnetic texture m(r, t) is described by N collective coordinates
q(t) = {qi (t)}i=1,...,N . We first isolate the expression for the effective magnetic field
Beff by multiplying the LLGS equation (7.2), bym× from the left.2 Next, we project
the LLGS equation onto the translationalmode dm

dqi
of the i-th collective coordinate q i ,

where the projection P(qi ) is implemented by the scalar product P(qi ) = 〈 dmdqi | . 〉 =∫
dr( dm

dqi
· . ). Moreover, we explicitly use that all time-dependence is now expressed

in the collective coordinates to replace dtm = ∑N
j=1 q̇ j

dm
dq j

where q̇ j = dtq j . A com-
pact form of the i = 1, ..., N Thiele equations for an arbitrary magnetic texture with
both STTs and SOTs then reads

Fi (q) = Gi j q̇ j + αDi j q̇ j + GSTT
iμ ve,μ + βDSTT

iμ ve,μ + τFLGSOT
iμ σμ + τDLDSOT

iμ σμ

(7.8)
with implicit summation over both, the collective coordinates j = 1, ..., N and the
spatial dimensionsμ = x, y, z. The projection of the effective magnetic field Beff =
−δE[m]/(Msδm) can be interpreted as a force

Fi (q) = − γ

Ms

dE[q]
dqi

= − γ

Ms

∫
dm
dqi

· δE

δm
dr (7.9)

2We exploit that themagnetization is a normalized vector fieldwith |m(r)| = 1. Thus,m ⊥ ∂im and
m × (m × ∂im) = −∂im for all coordinates i = x, y, z, t . Moreover,m ⊥ Beff is always achieved
by adding a term λ(r)(1 − m2) = 0 to the energy functional which does not change the energy but
cancels all components of Beff that are parallel to m(r).
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acting on the i-th collective coordinate qi . Moreover (7.8) is implicitly non-linear
as, in general, all the matrices on the right hand side depend on q(t) and explicitly
read

Gi j = −
∫

m ·
(
dm
dqi

× dm
dq j

)
dr, Di j =

∫ (
dm
dqi

· dm
dq j

)
dr,

GSTT
iμ = −

∫
m ·

(
dm
dqi

× dm
dxμ

)
dr, DSTT

iμ =
∫ (

dm
dqi

· dm
dxμ

)
dr, (7.10)

GSOT
iμ = −

∫
m ·

(
dm
dqi

× (
m × x̂μ

))
dr, DSOT

iμ =
∫ (

dm
dqi

· (
m × x̂μ

))
dr.

Here xμ is the coordinate in the spatial directionμ and the corresponding unit vector is
x̂μ.Wewould like to emphasise that theThiele approach is only a good approximation
if sufficiently many relevant coordinates are considered. Furthermore, it is only of
practical quantitative use if the matrix elements can be computed with a reasonable
effort, which can also involve numerical simulations [62].

Note that for the above example of a translationally invariant system with a rigid
magnetic texture with q = R one obtains dm

dRi
= − dm

dxi
. Hence, the gyro-matrix G

and the STT-coupling matrix GSTT are directly related via GXY = −GSTT
Xy = −4πQ,

whereQ is the skyrmionwinding number, see (7.4). Similarly, in this standard Thiele
approach, the dissipation matrix D and the dissipative STT-coupling matrix DSTT

are related viaDi j = −DSTT
i j and their components resemble the magnetic stiffness

in the energy functional, see (7.1).
In the following, we apply the generalized Thiele equations to describe themotion

of magnetic solitons focusing on domain wall and skyrmion dynamics.

7.5.2 Magnetization Dynamics of Domain Walls in
Nanowires

Magnetic domain walls can be moved by various sources, including, in particular,
magnetic fields and spin-currents. The details of the motion as well as their pos-
sible maximal velocity typically depend on details of the system and the relevant
magnetic interactions. In systems without DMI, for example, the plane in which
the magnetization rotates when passing through the domain wall, i.e., domain wall
angle or helicity, is determined by magnetostatic interactions, which are a rather
weak effect. When increasing the driving magnetic field above a certain threshold
value, the helicity unpins and the magnetization inside the domain wall precesses.
This effect, known as the Walker breakdown [63], leads to a reduced domain wall
speed and is therefore detrimental for the application in information technology, as
discussed in Sect. 7.6. Nowadays, it is possible to design materials which have a
strong DMI that more strongly pins the helicity and, consequently, raises the barrier
for the activation of the Walker breakdown.
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The magnetic field-driven dynamics of one-dimensional magnetic domain walls
have been extensively studied over many decades and can be well described in the
Thiele framework. Also magnetic domain walls in higher dimensions can be well
described by this simple technique. Here, additionally to the one-dimensional case,
the position of the domain wall is not only a one-dimensional parameter, but charac-
terized by an extended line or surface. The additional degrees of freedom that then
typically become relevant is the tilting [39] or bending of the hyperplanes of the
domain walls.

To demonstrate the Thiele approach, let us consider a domainwall in an effectively
one-dimensional system. This means we assume that a domain wall is located in a
nanowire which is narrow compared to the length scale of the variations of the
magnetic texture. In such a system, a simple ansatz for the domain wall profile can
be written as

m (x − X, ψ) = (cosψ sin θ (x − X) , sinψ sin θ (x − X) , cos θ (x − X)) .

(7.11)
where X and ψ are the position and the helicity of the domain wall, respectively,
where ψ = ±π/2 describes a Bloch type wall and ψ = 0 or π describes a Néel type
wall. θ(x) is the azimuthal angle of the magnetization. Here we assumed that the
nanowire is along the x̂-direction and that the helicity is not spatially dependent.

Consider now the standard thin film setup as introduced in Sect. 7.2, where the
DMI is the relevant source of the twisting of the magnetization and magnetostatic
interactions only enters on the level of amodified uniaxial anisotropy. In its simplified
form, the only parameters that enter the energy functional (7.1) for a low energy
description are the uniform exchange A, interfacial DMI D > 0, and the easy-axis
anisotropy K > 0. In one spatial dimension, the energy functional then explicitly
takes the form

E[m] =
∫

A

(
dm
dx

)2

− D

(
mx

dmz

dx
− mz

dmx

dx

)
− K m2

z dx . (7.12)

A domain wall which connects two polarized phases m(−∞) = −ẑ and m(∞) = ẑ
minimizes this energy functional for the profile

θ(x) = −2 arctan
(
e−√

K/A x
)

and ψ = π . (7.13)

Here, the DMI term fixes the helicityψ = π while the other terms are independent of
ψ . In the following, we will use the ansatz, (7.11), and the profile, (7.13), to discuss
the current-driven motion of domain walls on the Thiele level.

Note that, in broader nanowires, the additional spatial dimension can allow for
more complex domain wall profiles and also dynamics. In particular, domain walls in
finite-width systems with DMI show a tilting of the domain wall normal [64] which
can be explained by the interaction with the edges of the system [65]. The dynamics
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of Bloch lines are also known to lead to more complex behavior [27]. However, these
effects go beyond the scope of this introduction.

7.5.2.1 Domain Wall Motion Due to Spin-Transfer Torques

In the continuum limit, without inhomogeneities the system is translationally invari-
ant, i.e., FX = 0. We will first consider the case of a small driving current which
can only activate the zero mode, i.e., the translational mode. Next we will discuss
the case of stronger driving which leads to the activation of the helicity degree of
freedom and, finally, to the Walker breakdown under STTs.

Pinned helicity. In the limit of a small STT ve = ve x̂, only the true zero modes
are activated. Therefore, for the one-dimensional domain wall, the only relevant
collective coordinate is the position X . Due to the lack of further spatial dimensions,
the only terms which contribute from (7.8) are the dissipation terms. SinceDXX =
−DSTT

Xx , however, the Thiele equation reduces to the simple expression

Ẋ = β

α
ve. (7.14)

In the limit of a rigid texture, the velocity Ẋ is directly proportional to the effective
spin velocity ve, and it is completely independent of details of the domain wall shape,
see Fig. 7.5.

Unpinned helicity. In a next step, we consider the role of collective coordinates
beyond the translational zero mode. The position X is still a zero mode with
FX (X, ψ) = 0 and, moreover, the off-diagonal dissipation matrix elements vanish,
i.e.,DXψ = DSTT

ψx = 0. Thus, the two coupled Thiele equations read

GXψψ̇ + DXX (α Ẋ − βve) = 0 , (7.15a)

GψX (Ẋ − ve) + Dψψ α ψ̇ = Fψ(X, ψ) . (7.15b)

With the ansatz from (7.11) and the solution for the profile in (7.13), the gyro-coupling
and dissipation matrices of the Thiele equations evaluate to

GψX = −GXψ = mz(∞) − mz(−∞) = 2 , (7.16a)

DXX =
∫ ∞

−∞
(θ ′(x))2 dx = 2

√
K/A , (7.16b)

Dψψ =
∫ ∞

−∞
sin2 θ(x) dx = 2

√
A/K . (7.16c)

For a non-equilibriumhelicity, i.e.ψ �= π , theDMI termyields a positive energy con-
tributionwhile the other terms remain unaffected.Relative to the energyof the domain
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Fig. 7.5 STT-driven domain wall motion. Shown is the average domain wall velocity 〈Ẋ〉 as
function of the effective spin velocity ve. Solid lines show Thiele results, see (7.14) and (7.21),
respectively. The dots are LLGS simulation results, see (7.2). We fixed α = 0.1 for various β, i.e.,
β = 3α, 2α, 3

2α (dark to light blue), β = α (gray dashed), and β = 2
3α, 1

2α, 1
3α (light to dark red)

wall in equilibrium, we therefore obtain the energy E(X, ψ) and force Fψ(X, ψ)

E(X, ψ) = πD(1 + cosψ) ⇒ Fψ(X, ψ) = − γ

Ms
∂ψE(ψ) = πγ D

Ms
sinψ

(7.17)
which completes the constituents of Eqs. (7.15a) and (7.15b). This set of coupled
non-linear differential equations can be solved analytically, in both cases, (i) below
and (ii) above the Walker-like breakdown.

Below theWalker breakdown, the helicity rotates away from its equilibrium position
and, in the long-time limit, assumes a constant value, i.e., ψ̇ = 0. In this limit (7.15a)
reduces to the simplified case (7.14) where the helicity dynamics are absent and the
velocity Ẋ is independent of details of the domain wall texture. From (7.15b), we
obtain the current-dependent helicity ψ(ve) of the driven domain wall which gives

ψ(ve) = π + arcsin

(
α − β

α

2Msve
πγ D

)
for |ve| ≤ vce = α

|α − β|
πγ D

2Ms
. (7.18)

For currents above the critical current vce the restoring force Fψ(X, ψ) cannot com-
pensate for the velocity anymore and, therefore, solutions with ψ̇ = 0 can no longer
be obtained. Consequently, vce marks the onset of the Walker breakdown.

Above the Walker breakdown, we can solve (7.15a) for Ẋ and make (7.15b) an
equation of only ψ and ψ̇ . This differential equation can be solved exactly for a
constant current density ve and the solutions can be written in the form
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Ẋ(ve, t) = β

α
ve +

√
A/K

α
ψ̇(ve, t) , (7.19a)

ψ(ve, t) = −2 arccot

(
u sign(α − β)

1 − √
u2 − 1 tan(ωψ t)

)
with u = ve

vce
≥ 1. (7.19b)

Here T = π/ωψ is the period of one helicity rotation and ωψ is the frequency given
by

ωψ = α

1 + α2

πγ D

4Ms

√
K

A

√( ve
vce

)2 − 1 . (7.20)

As can be seen from (7.19a), the velocity Ẋ of the domain wall is also periodic with
the frequency ωψ and shows a very complicated behavior as function of time. The
average velocity 〈Ẋ〉, however, can be obtained from the time-average of (7.19a)
where we can exploit the relation 〈ψ̇〉 = (2π/T ) sign(α − β). This yields

〈Ẋ〉 = β

α
ve + sign(α − β)

1 + α2

πγ D

2Ms

√( ve
vce

)2 − 1 for |ve| ≥ vce (7.21)

as the average velocity of the domain wall above the Walker breakdown, ve > vce , in
the Thiele framework. Interestingly, it turns out that above theWalker breakdown, for
β < α the domain wall speed does not get reduced but boosted instead. In Fig. 7.5,
we illustrate these different behaviors obtained from the Thiele approach, see (7.14)
and (7.21). For comparison, we also show data obtained from numerical simulations
of the full LLGS equation (7.2).

Despite the Walker breakdown there are other interesting effects for field-driven
domain walls and magnetic bubbles [39, 66]. For example, for a time-dependent
current, the coupled dynamics of the position and helicity degree of freedom (7.15a)
and (7.15b), lead to an effective mass similar to the Döring mass [67].

7.5.2.2 Domain Wall Motion Due to Spin-Orbit Torques

Spin-transfer torques act via gradients ve · ∇ only on local changes of the magne-
tization. This is very different for SOTs being characterized by a spin polarization
σ , where σ couples explicitly to the local direction of the magnetization. Therefore,
these can apply a torque also on a uniform magnetization and, moreover, induce a
helicity-dependence of the total forces. Upon including the helicity degree of free-
dom ψ as a collective coordinate for the description of the domain wall dynamics,
and using the ansatz from (7.11), we obtain the following Thiele equations for the
SOT-driven domain wall
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GXψψ̇ + τFLσ ·GSOT
X (ψ) + αDXX Ẋ + τDLσ ·DSOT

X (ψ) = 0 , (7.22a)

GψX Ẋ + τFLσ ·GSOT
ψ (ψ) + αDψψψ̇ + τDLσ ·DSOT

ψ (ψ) = Fψ(X, ψ) . (7.22b)

Here, for better readability, we have summarized the matrix products from (7.8) into
scalar products of σ with SOT gyro or dissipation vectors. For the SOT-independent
terms we refer to the previous section. For the domain wall ansatz in (7.11) together
with the solution in (7.13), these SOT-specific vectors read

GSOT
X (ψ) = ψ sin θ + ẑ cos θ |θ(+∞)

θ(−∞) = 2 ẑ , (7.23a)

GSOT
ψ (ψ) =

∫ ∞

−∞
− (ẑ×ψ) sin θ(x) dx = π

√
A/K (ẑ×ψ) , (7.23b)

DSOT
X (ψ) =

∫ ∞

−∞
(ẑ×ψ) θ ′(x) dx = π (ẑ×ψ) , (7.23c)

DSOT
ψ (ψ) =

∫ ∞

−∞
ψ cos θ(x) sin θ(x) − ẑ sin2 θ(x) dx = −2

√
A/K ẑ ,

(7.23d)

where we defined the helicity vector ψ = (cosψ, sinψ, 0) for a more compact
notation. For the standard setup with je = je x̂ and where the spin-polarization is
determined by the spin Hall effect, i.e., σ = ẑ × je = je ŷ, the contributions of gyro
and dissipation vectors GSOT

X (ψ) and DSOT
ψ (ψ) vanish. Moreover, for a Bloch-type

domain wall with ψ = ±π/2 the other scalar products also vanish and, hence, the
Bloch wall remains unaffected by the SOT. In contrast, for a Néel type domain wall,
the scalar products are maximized. The Néel wall with ψ = π then moves in the
direction of the current je with additional dynamics of ψ whereas it moves in the
opposite direction for ψ = 0. For additional information on SOT-induced dynamics
we refer to [68].

7.5.3 Magnetization Dynamics of Two-Dimensional Solitons

Skyrmions and related magnetic textures, see Sect. 7.3, are not only thought to have
an enhanced (topological) stability, but their non-zero winding number Q, see (7.4),
also leads to a gyromagnetic tensor element GXY = −4πQ in the Thiele equation,
(7.8). This gyromagnetic coupling induces a force, similar to the Magnus force
in Newtonian mechanics which acts on rotating bodies, leading to very particular
dynamics. These include a response perpendicular to extrinsic forces and an intrinsic
skyrmion Hall effect, which we both discuss in the following.

As for domain walls in one spatial dimension, to demonstrate the Thiele approach,
let us introduce an ansatz for a skyrmion-like profile in an out-of-plane polarized
background of the form
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m(r − R, ψ) = (cos(φ + ψ) sin θ, sin(φ + ψ) sin θ, cos θ) , (7.24)

whereφ = φ(r − R) sets the inplanemagnetic profile and θ = θ(r − R) determines
the mz profile. R is the position of the skyrmion and ψ is the helicity. For circular
skyrmions R is usually their center position, the profile only depends on the radial
coordinate ρ = |r − R| and φ depends only the axial coordinate χ of the cylindrical
coordinate system centered at R. In this convention, the Bloch-type skyrmion shown
in Fig. 7.1b is described by φ = χ , ψ = −π/2, and θ = θ(ρ) with θ(0) = π and
θ(∞) = 0. The antiskyrmion in Fig. 7.1c is described by φ = −χ , ψ = π/3. Other
skyrmion-like structures, e.g., higher order skyrmionswithQ = −N canbedescribed
by setting φ = Nχ , and the topologically trivial skyrmionium is characterized by
θ(0) = 2π and θ(∞) = 0.

7.5.3.1 Pinning and Deformation

At ultra low current densities all magnetic solitons are pinned bymaterial defects. For
skyrmion lattices, it has been shownexperimentally that the critical current density for
depinning is very low [69, 70]. Theoretically, the influence of disorder on skyrmion
lattices was studied in various micromagnetic simulations [71]. The micromagnetic
results agree well with particle model simulations which are based on the Thiele
equation of motion of skyrmions which interact with each other and with random
pinning sites [72]. Also for isolated skyrmions in the presence of defects, the pinning,
depinning, and motion has been studied experimentally [73] and can be described in
a generalized Thiele equation when taking deformations due to defects into account
[62]. For simplicity, however, we will neglect pinning effects in the following.

Deformations of moving solitons also occur in the absence of impurities, for
example, due to internal dynamics, as has been shown already in early studies in
magnetic bubble dynamics with Bloch lines [27]. For skyrmions, which do not have
Bloch lines, deformations can also arise due to spin-torques. In this case, the matrix
elements of the Thiele equation (7.10), become dependent on the current strength
which leads to non-trivial corrections of the particle-like motion [74]. These effects,
as well as deformations due to thermal fluctuations, interactions with defects or other
magnetic textures can induce an effective mass for two-dimensional solitons which
might potentially be described by the broader term automotion [27]. In the limit
where skyrmions can be treated as rigid objects, i.e., when the bound state excitation
gap of the skyrmion is large, deformation effects can be neglected, as we will assume
in the following.

7.5.3.2 Skyrmion Motion Due to External Forces

Historically, before spin-torques became an active research field, the motion of mag-
netic bubbles was studied intensively, for example, with pulsed field gradients. It
was found that the bubbles do not move along the direction of the external force, but
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along a deflected direction that depends on the winding number Q [27]. For both,
skyrmions and magnetic bubbles, the side-drift response can be understood within
the Thiele approach, (7.8). Moreover, this effect occurs not only for field gradients
but for all forces F(q) in the Thiele equation, e.g., due to field gradients or the inter-
action with defects and other magnetic structures. It is also the source of the unusual
Brownian motion of skyrmions which in two dimensions diffuse less if the Gilbert
damping α is reduced [37, 75, 76]. In the following, analog to the domain wall case,
we will first discuss the limit of a pinned helicity and then consider what happens
beyond this limit.

Pinned helicity. Consider a skyrmion with winding number Q and the position
R = (X,Y ) as the only collective coordinates for the Thiele approach. In a spatially
dependent energy landscape E(R), e.g., due to anisotropy gradients, magnetic field
gradients, defects, or other magnetic textures, R is not a true zero mode but can still
be a good collective coordinate. As the system is dissipative, the skyrmion will at
some point be trapped in a local minimum of E(R). An elegant form of the resulting
Thiele equation then reads

G × Ṙ + αD(R)Ṙ = F(R) (7.25)

where F(R) = −(γ /Ms)∇RE(R) is the force on the skyrmion, G = 4πQẑ is the
gyro-vector, and D(R) is the dissipation matrix. The gyro-vector G couples the
motion of the X and Y coordinates and leads to the side-deflection in the motion of
two-dimensional solitons with a finite topological charge. For a circular skyrmion,
using the notation in (7.24) and the angular dependence φ(χ) = Nχ , N ∈ Z, the
dissipation matrix reduces to a scalar with

D(R) = Ds(R) =
∫ ∞

0
πρ

(
N 2

ρ2
sin2 θ(ρ) + (

θ ′(ρ)
)2)

dρ (7.26)

where ρ is the distance to R, i.e., the center of the skyrmion. Usually, it is assumed
that the texture of the skyrmion does not change much with the position such that
Ds(R) ≈ Ds is a good approximation.

TheThiele equation, (7.25), can be solved for the skyrmion velocity Ṙ. Its absolute
value |Ṙ| and the direction relative to the force F, parameterized by the deflection
angle θd, then read

|Ṙ| = |F(R)|√
(4πQ)2 + α2D2

s

and θd = − arctan

(
4πQ
αDs

)
. (7.27)

In this formulation, the real-space topological nature of the side-deflection can be
identified as θd �= 0 only for Q �= 0. The deflection angle θd �= 0 is schematically
illustrated in Fig. 7.6 for various skyrmion-like textures and Gilbert dampings α.
Moreover, (7.27) reveals that a finite chargeQ reduces the (absolute) velocity |Ṙ|. The
dependence onQ should, however, be investigatedmore thoroughly as the dissipation
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scalar Ds depends explicitly on the vorticity N , see (7.26), and, hence, also on the
winding number. Furthermore, magnetic textures with different winding numbers
usually relax to different magnetization profiles and, thus, different values of Ds

[27].
Unpinned helicity. Let us assume now that the skyrmion is stabilized in a system
where the helicityψ is a zero mode and can, in principle, be activated. However, this
activation is not straightforward. In the Thiele equation, (7.8), all matrix elements
GXψ ,GYψ ,DXψ , andDYψ vanish for circular solitons. Therefore,ψ does not couple
to the position R or derivatives thereof, which seemingly suggests that the helicity
does not show any dynamics. However, this conclusion is wrong as, for example,
simulations with a magnetic field gradient show a steady rotation of the helicity
while the skyrmion moves towards the direction of the smaller field [77, 78]. In
the following, we discuss this example in more detail and show how to resolve the
apparent contradiction.

Consider a magnetic field of the form B(r) = (B0 + x δB) ẑ. Let us assume,
moreover, that the field gradient δB is a sufficiently small so that the skyrmion
profile is still approximately circular and the above arguments still hold. Due to the
field gradient, the position R is not a zero mode but still a good collective coordinate
which is subject to a force FR which drags the skyrmion towards regions with lower
field. While moving there, however, the skyrmion profile has to adapt to the local
magnetic field B(r), leading to an inflation of the skyrmion size ξ . Unlike R, the
collective coordinate ξ couples directly to the helicityψ via thematrices in the Thiele
equation but, due to the circular shape, ξ does not couple to R. In a compact form,
the four Thiele equations then read

G × Ṙ + αDs Ṙ = FR(R, ξ) , (7.28a)

Gψξ ξ̇ + αDψψ ψ̇ = 0 , (7.28b)

Gξψ ψ̇ + αDξξ ξ̇ = Fξ (R, ξ) . (7.28c)

All matrix elements with indices ψ or ξ are, in principle, dependent on ξ . This
dependence can be neglected on small time scales. The force Fξ (R, ξ) ensures that
the skyrmion size adapts to the local magnetic field. In a small field gradient δB, the
skyrmion moves slow enough that we can assume ξ to be close to the energetically
optimal value. Then its contribution to the force FR,ξ can be neglected and, to lowest
order in δB, this force is FR ∝ −δB x̂ . Now, (7.28a) is decoupled from the other
two equations of motion and the skyrmion moves according to the results of the pre-
vious section, (7.27). In particular, the parallel velocity is Ẋ ∝ −δB and, therefore,
ξ̇ ∝ Ḃ(R) = ẊδB ∝ δB2. Equation (7.28b) then yields the velocity of the helicity
ψ̇ ∝ δB2/α which continuously rotates while the skyrmion moves in magnetic field
gradient [77, 78], similar to the domain wall above the Walker breakdown [63].

We would like to point out that ψ̇ ∝ δB2/α is also the consequence of another
effect which we did not capture in the above discussion: So far, we assumed that
the skyrmion maintains its circular shape. In the field gradient B(R), however, the
skyrmion becomes slightly non-circular which adds a finite direct coupling DXψ ∝
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δB between the velocity Ẋ and ψ̇ to (7.28a) and (7.28b). For the full dynamics,
therefore, both the change of the skyrmion size and the its non-circular distortion
contribute.

In the following sections, we review the dynamics of current-driven instead of
force-driven skyrmions which follow the same basic concepts.

7.5.3.3 Skyrmion Motion Due to Spin-Transfer Torques

A standard example for the application of a Thiele equation is to model the motion
of spin-tranfer torque-driven skyrmions in chiral magnets. The Thiele formalism,
for example, provides a direct mean to explain the skyrmion Hall effect, where the
skyrmions move at an angle relative to the direction of the applied current density je.
We will discuss this in the following. Analog to the previous chapters we will first
discuss the limit of a pinned helicity and then explain briefly what happens beyond
this regime.

Pinned helicity. Let us consider a frequently used assumption for skyrmions in
chiral magnets, namely that the helicity is pinned by DMI to a fixed value ψ and
does not contribute to the dynamics. Consider,moreover, that the system is translation
invariant, i.e., the position R is a zero mode, and that the skyrmion can be described
by the ansatz in (7.24). The Thiele equation then reads

G × (Ṙ − ve) + Ds(α Ṙ − βve) = 0 (7.29)

where G = 4πQẑ is the gyro-vector, and the dissipation matrixD reduces to a scalar
Ds as in (7.26). In principle, this equation of motion can be solved for Ṙwhich yields
the skyrmion Hall effect. Alternatively, we can interpret the effect of the STTs from
a different perspective. By isolating all terms which originate from the STT on the
right hand side of (7.29), we effectively recover the Thiele equation for a skyrmion
driven by an external force, (7.25), with

FSTT = G × ve + βDsve . (7.30)

The skyrmion Hall angle θSTT
d is then the sum of (i) angle θSTT

F between the effective
STT-force FSTT and the direction of the current ve and (ii) the deflection angle θd for
a force-driven skyrmion, see (7.27), and reads

θSTT
d = arctan

(
4πQ
βDs

)
− arctan

(
4πQ
αDs

)
= arctan

(
4πQDs(α − β)

(4πQ)2 + αβD2
s

)
. (7.31)

The result reflects the trivial cases θSTT
d = 0 for α = β or for Q = 0 where the

magnetic texture just moves along with the current. In contrast to the deflection
angle θd in the previous section (7.27), the skyrmion Hall angle θSTT

d shrinks for
increasing Q and, for typical values of parameters, the maximal θSTT

d is at Q =
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Fig. 7.6 Deflection angle for force-driven and skyrmion Hall angles for STT-driven and SOT-
driven two-dimensional solitons. The force F = −(γ /Ms)∂RE and the electric currents je for both
STTs and SOTs point to the right, as indicated. For STTs we use β = 0.4 in all panels and for
SOTs we assume σ = ẑ × je. The direction of the velocity of the reacting soliton is indicated by
arrows in each panel, illustrating the Thiele results of (7.27), (7.31), and (7.34). A skyrmion with
Q = −1 and an antiskyrmion with Q = 1 are shown, both for three different helicities ψ = π/2 ,
0, and ψ0. The compensation helicity ψ0 is chosen such that the skyrmion Hall angle with SOT
vanishes for α = 0.2. The impact of the damping α is shown by various α = 0.6, 0.4, and 0.2,
where the skyrmion Hall angle in the second row vanishes (α = β). Moreover, we show a higher
order Q = −2 skyrmion and a Q = 0 skyrmionium, both with ψ = π/2. The Q = −2 skyrmion
is unaffected by SOTs and has slightly modified responses to forces and STTs, compared to the
skyrmion with Q = −1. The skyrmionium moves precisely in the direction of the force and STT,
while its reaction to SOTs is solely determined by its helicity
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±1. The properties of θSTT
d for different skyrmion-like solitons are schematically

summarized in Fig. 7.6.
The skyrmion Hall angle can change dramatically, for example, when considering

small random defects which additionally reduce the velocity [62, 72]. Extended
defects, such as the DMI-induced twisting at the edge of a sample, in turn, can speed
up the skyrmion motion∝ |Q|/α when STTs push the skyrmion into nonequilibrium
positions [71]. To accommodate the translationally non-invariant case in the Thiele
formalism one has to take a spatially dependent force in (7.29) into account.

Moreover, the STT-induced torques can distort the skyrmion profile on the level
of the LLGS equation which eventually leads to strong corrections to the skyrmion
Hall effect and, even more importantly, a speed limit above which the STTs destroy
the skyrmion [74]. The latter cannot be derived from a simple Thiele ansatz and
requires more rigorous models or numerical simulations of the LLGS equation.

Unpinned helicity. As discussed above in Sect. 7.5.3.2, for a circular skyrmion, the
coupling between the collective coordinates R and the helicityψ is absent. Similarly,
because of ∂Xm = −∂xm, STTs do not directly couple to the helicity. However, STT-
driven skyrmions can still show dynamics of the helicity, e.g., in an energy landscape
E(R, ψ) where the position and helicity are coupled. In this case, the helicity of the
moving skyrmion shows dynamics around the local optimum ψ0(R), potentially
showing features of an effective helicity mass [51]. Moreover, STTs can deform the
skyrmion which enables the coupling in the Thiele equation, leading to a steady
rotation of the helicity.

7.5.3.4 Skyrmion Motion Due to Spin-Orbit Torques

In contrast to STTs, SOTs couple directly to the magnetization texture and not
derivates thereof. Therefore, SOT induced dynamics are sensitive to the helicity
ψ of the magnetic soliton as we will discuss in more detail in the following. A
skyrmion Hall effect can also be derived for skyrmions with SOTs and was recently
also confirmed experimentally [73, 79].

Pinned helicity. In monolayers on heavy metal substrates or thin films of stacked
heterostructures, skyrmions can be stabilized by a strong DMI with extra stabilizing
support from dipolar interactions. These interactions usually pin the helicity such
that it does not contribute to the dynamics.

For the axially symmetric soliton with m(∞) = ẑ and φ = Nχ in the ansatz in
(7.24), the gyro-coupling SOT matrix evalutes to zero whereas the dissipative SOT
coupling matrix elements only vanish for |N | �= 1. Note that in this convention,
the relation Q = N (1 − mz(0))/2 implies that not only the skyrmion and the anti-
skyrmion, but also the topologically trivial skyrmionium can be driven by SOTs.
In turn, higher order skyrmions with |Q| > 1 do not react to SOTs within these
approximations. The Thiele equation for these |N | �= 1 objects can be written as

G × Ṙ + αDs Ṙ + τDL σ · DSOT
R (ψ) = 0 . (7.32)
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Here, we have introduced the 3 × 2 dissipation tensor (DSOT
R )μi , μ = x, y, z, and

i = X,Y , for the SOT-induces torque which reads

DSOT
R (ψ) =

(
ẑ × ψ,−Nψ

)
πδ|N |,1

∫ ∞

0
cos θ(ρ) sin θ(ρ) + ρθ ′(ρ) dρ (7.33)

with ψ = (cosψ, sinψ, 0). The Kronecker delta δ|N |,1 indicates that only solitons
with N = ±1 give finite contributions. The asymmetric N -dependence in only the
second column of DSOT

R is an artefact of the ansatz (7.24), which flips my → −my

for N → −N .
Similar to the discussion in Sect. 7.5.3.3, we can interpret the SOT-induced terms

as an external force FSOT and derive the skyrmion Hall angle from the direction of
this effective force. Assuming again the standard spin Hall setup for the SOT with
je = je x̂ and σ = ẑ × je = je ŷ, the skyrmion Hall angle θSOT

d becomes

θSOT
d (ψ) = −N

(
ψ + π − arctan

(
4πQ
αDs

))
with |N | = 1 , (7.34)

which is only well-defined for |N | = 1 as otherwise the soliton does not move. Note
that the skyrmion Hall angle θSOT

d is a function of the helicity ψ and can result in
a motion in arbitrary directions, including parallel to the current, by fine-tuning the
DMI [80]. This angular dependence is also schematically summarized in Fig.7.6 for
various soliton configurations and parameters.

Unpinned helicity. For circular two-dimensional solitons driven by SOTs, the same
physics arises as for the other driving mechanisms, namely that neither the collective
coordinates R couple directly to ψ nor do the Thiele matrices GSOT

ψ i andDSOT
ψ i yield

a finite coupling between σ and ψ (except for DSOT
ψz , which is usually not relevant

as σz = 0).
A distinguished feature of SOTs is that they tilt the background magnetization.

This naturally leads to deformations of the soliton, breaking the axial symmetry and
enabling a finite coupling of ψ and Ṙ, see Sect. 7.5.3.2. Thus, while moving with
velocity Ṙ at a skyrmion Hall angle θSOT

d (ψ), see (7.34), the helicity ψ changes
which feeds back on θSOT

d (ψ). Consequently, the skyrmion with an activated helicity
degree of freedom can end up orbiting around a fixed point [81] or, for sufficiently
asymmetric energy landscapes E(ψ), perform a trochoidal motion [82] which is a
combination of translation and orbiting.Moreover, once the helicity becomes dynam-
ical, it can also lead to an effective mass in the Thiele equation [51, 81].
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7.5.4 Magnetization Dynamics of Three-Dimensional
Hopfions

As magnetic hopfions in chiral magnets have only recently been proposed theoreti-
cally, see Sect. 7.3, their dynamics are a field that is still much under investigation.

In thin films of chiralmagnetswith perpendicularlymagnetized surfaces, hopfions
are predicted to be stabilized due to geometric confinement. The magnetic texture
of the hopfion is then fixed by the DMI such that only translational modes can be
activated easily. For such a setup, it was shown theoretically that the STT-driven
H = 1 hopfion behaves like a skyrmionium, i.e., it moves like a two-dimensional
soliton, straight along the applied current without any Hall angle [83].

More complex dynamics are predicted for three-dimensional frustrated magnets:
Here, the translation in all spatial dimensions and rotation around all axes are zero
modes. It was shown in a theoretical study by Liu et al. [84] that the STT-driven
H = 1 hopfion indeed rotates while moving with the current, adjusting such that
its skyrmionium-like cross-section aligns perpendicular to the current. Moreover,
inside the hopfion, regions with positive and negative skyrmion charge Q are present
which are subject to opposite skyrmion Hall angles. As a consequence, the STT-
driven hopfion either inflates or deflates, dependent on the direction of the current.
For a detailed description of the dynamics, featuring also a discussion in the Thiele
framework, we refer to [84].

7.6 Potential Applications

Based on the very rich playground of spintronics with chiral magnetic structures, sev-
eral potential applications have been proposed over the recent years. In the following
we will briefly introduce some of them.

7.6.1 Storage and Logic Technologies

Magnetic racetrack. The central idea behind the racetrack is that information is
encoded bymagnetic bits which are placed in a one-dimensional shift register device.
Data can be accessed or written at a particular point of the nanowire. It has the
great advantage that instead of moving mechanical parts, only the magnetic bits are
moved, e.g., by spin-currents. In the classically suggested version [85, 86], the bits are
magnetic domains, separated by domain walls. For the racetrack based on magnetic
skyrmions [87], the state of a bit can be represented by the presence or absence of a
skyrmion. The latter has the advantage to circumvent the impact of edge roughness
in the nanowire, as skyrmions opposed to domain walls do not necessarily touch the
edge. However, it has also some disadvantages. In particular, the skyrmionHall effect
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hinders the straight motion of the skyrmion through the nanowire. To enhance the
speed of the magnetic data, (synthetic) antiferromagnetic instead of ferromagnetic
materials have been studied within the recent years. An antiferromagnetic coupling
would also resolve the problemwith the skyrmionHall effect as in this case the forces
in the direction perpendicular to the current direction typically cancel [115, 116].
Moreover, similar devices with closely packed skyrmions or other similar solitons
have been suggested as the information encoded in not well-defined inter-skyrmion
distances is very fragile [88].
Bubble memory. In the 1970s and 1980s, before magnetic racetracks were dis-
cussed, memory devices exploiting magnetic bubbles have been commercially avail-
able. These are non-volatile two-dimensional shift register memories that exploit the
magnetic field-driven motion of small magnetized areas—the bubbles [89, 90].

Magnetic transistor. Transistors as key elements for controlling integrated circuits
and logic devices have also been proposed to be implemented based onmagnetic tex-
tures, such as a domain wall based transistor [91] or a skyrmion based transistor [92]
These exploit the gate-voltage controlled motion of the magnetic nanostructures.

Magnetic logic. Another key field in spintronics is the idea to create magnetic-based
logic gates [93]. This is, on the one hand, done by studying nano-magnetic logic,
where nano-magnetic islands with a uniaxial-anisotropy represent the zero and one
state based on their orientation with respect to this anisotropy direction, e.g., “up”
and “down”. The other idea is to send signals through an appropriately shaped device,
which represent the logical gates. This includes magnonic logic [94] as well as logic
based on chiral magnetic states such as skyrmions. An example of the latter was
suggested by Zhang et al. [95] which exploits the possibility to convert spin-torque
driven skyrmions into domain walls in narrow wires. In a convention where a logical
1 or 0 is represented by the presence or absence of a skyrmion, respectively, an
OR gate and AND gate have been simulated by properly designing the width of the
narrow wires.

Magnetic nano-oscillators. Oscillators exploit the system’s natural time scale and
responses to external sources to provide a tunable frequency source. In magnetic
texture based systems, these oscillators are naturally on the nano-scale and exploit, for
example, the current-driven self oscillation of domain walls [96] or skyrmions [97].
While for ferromagnets the frequencies are in the GHz regime and can be tuned,
e.g., by an externally applied magnetic field, they can be in the THz regime for
antiferromagnetic materials, thereby bridging the THz gap.

7.6.2 Unconventional Spintronics-Based Computing
Schemes

Within the recent years, more and more unconventional computational paradigms
are being explored. Based on their low-energy consumption, compact nanometer
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size scale, and manipulability, magnetic textures could play an important role in the
development of such novel computational technologies [98, 99].

Magnetic artificial neural networks. The vast progress within the field of artificial
intelligence is mainly based on the widely enhanced available hardware power, while
most of the concepts have been suggested already a few years ago. So as with deep
artificial neural networks, which nowadays are widely used for different types of AI
applications. However, so far they are mostly performed on the existing hardware
which, due to the classical segmentation in computational units and storage, are
not optimally suited for these types of applications as their power consumption
shows. Instead, alternative architectures which adjust to the deep neural network
structure are proposed,with a focus of creating their central components, i.e., artificial
synapses and neurons, in hardware. There are also several suggestions for magnetic
neuromorphic computing [99, 100] andhow to implement artificialneurons [101] and
synapses [102, 103]. In particular, memristors, [104] i.e., devices whose resistance
depends on the previous state, are suggested to function as a basis for synaptic
applications.

Spintronics based reservoir computing. Reservoir computing has the goal to
exploit the response of a reservoir to simplify, for example, spatial-temporal recog-
nition tasks. The reservoir itself projects the input into a higher dimensional space,
where it becomes easier to classify. For this concept to work, the reservoir needs to be
a non-linear, complex systemwith a short-termmemory, which is fulfilled by several
physical systems opening up the path for in-materio computing [105]. As spintronics
systems often naturally fulfill these criteria for the reservoir and additionally provide
a lot of tune-ability as well as complexity, together with their low energy consump-
tion, they do provide a promising hardware-based solution for reservoir computing
[106]. It has been proposed that skyrmion fabrics are very well suited for reservoir
computing applications [107].

Stochastic computing. The ansatz of stochastic computing is to trade speed for
accuracy, exploiting the law of large numbers where upon enhancing the number
of experiments the result converges to the expectation value. For example, one can
stochastically multiply two numbers in-between zero and one, when interpreting
them as a probability of having a one in a bit-string. For uncorrelated bit-strings
the multiplication of these two numbers can then be efficiently calculated as send-
ing the two bit-strings through an AND gate. Spintronics offers a potential ansatz
with respect to stochastic computing, as spintronics systems can naturally exhibit
stochastic behavior. Furthermore, recently a device which allows to reshuffle bit-
strings based on magnetic skyrmions has been realized [76, 108]. Such a skyrmion
reshuffler allows to restore the decoherence between signals which possibly syn-
chronized. A similar suggestion is to encode the information in probabilistic bits,
also called p-bits. These are bits that fluctuate between 0 and 1 and, in this sense,
interpolate between a classical bit and a q-bit. It has been suggested that magnetic
states naturally provide a realization for such p-bits [109].

Topological quantum computing. Even more exotically, chiral magnetic states
could contribute to topological quantum computing. It has been suggested thatMajo-
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rana modes localize at skyrmions [110] or compound structures of superconducting
vortices and skyrmions [111–113]. This might provide a path to perform the key
operation of topological quantum computing, i.e., braiding of the localized modes
with a non-Abelian statistics, via the manipulation of magnetic textures.

7.7 Conclusion

This book chapter presented an introduction to current-induced dynamics of chiral
magnetic structures. We briefly summarized the basic concepts for deriving a con-
tinuum theory of magnetization dynamics in Sect. 7.2 and introduced domain walls,
(anti-)skyrmions, and hopfions as examples for magnetic solitons in Sect. 7.3. In the
main part of this chapter, we focused on the manipulation of magnetic textures by
spin-troques, both due to spin-transfer and spin-orbit mechanisms. We reviewed (i)
selected creation processes for domain walls and skyrmions in Sect. 7.4 and (ii) the
motion of the above solitons in Sect. 7.5 with a particular focus on the generalized
Thiele method. Finally, in Sect. 7.6 we summarized already implemented or theoret-
ically suggested applications of magnetic textures which are manipulated by electric
currents.

The field of spintronics, which explores the interplay of electric currents and
the magnetization, has shown an enormous theoretical and experimental progress
in the past years and a vast variety of possible new routes have emerged, including
antiferromagnetic materials which are not discussed in this chapter. We can look
forward with excitement to the future of current-induced magnetization dynamics,
what new physics and which new quasi-particles will be revealed in the future, and
how spintronics might continue contributing to our everyday life.
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Chapter 8
Microwave-Driven Dynamics of
Magnetic Skyrmions Under a Tilted
Magnetic Field: Magnetic Resonances,
Translational Motions, and Spin-Motive
Forces

Masahito Mochizuki

Abstract Magnetic skyrmions, particle-like magnetic textures characterized by a
quantized topological invariant in magnets with broken spatial inversion symme-
try, are currently attracting enormous research interest in the field of spintronics.
Recent intensive studies have uncovered that magnetic skyrmions exhibit rich physi-
cal phenomena and device functions originating from their topological nature. In
this chapter, we discuss microwave-induced dynamical phenomena of magnetic
skyrmions associated with their peculiar spin-wave modes. In particular, we focus
on a situation that the magnetic skyrmions are confined in a quasi-two-dimensional
thin-plate magnet under application of a static magnetic field tilted from the perpen-
dicular direction. It is theoretically demonstrated that the spin-wave excitations of
these magnetic skyrmions by microwave irradiation give rise to translational motion
of the skyrmions and generation of the DC electric voltages. These phenomena
indicate that rich physics and functionalities are hidden in the microwave-driven
skyrmion dynamics under a tilted magnetic field.

8.1 Introduction

Magnetic skyrmions, topological magnetic entities carrying a quantized topological
invariant in magnets without spatial inversion symmetry, are currently attracting a
great deal of research interest [1–7]. In the early 1960s, an English theoretical physi-
cist, Tony Hilton Royle Skyrme, proposed a theoretical concept of Skyrmion as a
soliton solution of the nonlinear sigma model to account for the stability of hadron
in the nuclear physics [8, 9]. This originally proposed skyrmion is a hedgehog-
like particle composed of field vectors pointing in every direction wrapping a sphere
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(a) Hedgehog-type skyrmion

(c) Neel-type skyrmion (b) Bloch-type skyrmion

: Stereo projection

: Rotation (z-axis)

Fig. 8.1 a Hedgehog-type skyrmion originally proposed by Tony Skyrme in early 1960s. b Bloch-
type skyrmionwithmagnetizations rotatingwithin a plane normal to the radial direction. cNeel-type
skyrmion with magnetizations rotating within a plane parallel to the radial direction. These three
types of skyrmions are mutually related via a stereo projection and a rotation with respect to the z
axis

(Fig. 8.1a). About 30years later, Bogdanov and his coworkers theoretically predicted
realization of these conceptual objects in magnets as textures of magnetizations [10,
11]. They proposed that the magnetic skyrmions can emerge in magnets with spatial
inversion asymmetry as vortex-like (Fig. 8.1b) or fountain-like (Fig. 8.1c) magnetic
textures. These magnetic textures can be reproduced by a stereo projection of the
original hedgehog-type skyrmion onto a two-dimensional plane. This theoretical pre-
diction was indeed confirmed by experimental discoveries of magnetic skyrmions
in B20-type alloys [12–14]. In 2009, a small-angle neutron scattering experiment
reported a discovery of skyrmion crystals in which numerous magnetic skyrmions
are crystallized into a hexagonal form in a chiral-lattice magnet MnSi [12]. In 2010,
a Lorentz transmission electron microscopy reported an observation of real-space
images of skyrmion crystals in Fe1−xCoxSi [13]. This experiment also revealed that
magnetic skyrmions emerge not only as the crystallized form but also as isolated
defects in the ferromagnetic phase. Subsequently, the magnetic skyrmions have
been discovered in various magnetic systems such as other chiral-lattice magnets
(FeGe [14], Cu2OSeO3 [15], and βMn-type Co-Mn-Zn alloys [16]), polar magnets
(GaV4S8 [17], GaV4Se8 [18, 19], Mn1.4Pt0.9Pd0.1Sn [20], VOSe2O5 [21]), and mag-
netic heterostructures [3, 22–24].
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All the above-mentioned magnets and magnetic systems have structures with
broken spatial inversion symmetry. Consequently, the Dzyaloshinskii-Moriya inter-
action becomes active, which favors rotating alignment of magnetizations with a
pitch angle of 90◦ [25, 26]. This interaction strongly competes with the ferromag-
netic exchange interaction, which favors parallel alignment of magnetizations. The
keen competition between these two interactions results in the formation of helical
magnetic order with a moderate pitch angle. When an external magnetic field is
applied to this helical magnetic state, a skyrmion crystal appears on a plane normal
to the applied magnetic field. In each skyrmion constituting the skyrmion crystal,
the magnetizations at periphery are oriented along the external magnetic field so as
to maximize an energy gain of the Zeeman interaction. The magnetizations gradu-
ally rotate when we move from the periphery to the center along the radial direction.
Eventually, the magnetizations are oriented antiparallel to the external magnetic field
at the center. In bulk magnets, these two-dimensional skyrmions are stacked along
the three-dimensional direction to form tubular structures. It should also be men-
tioned that the magnetic skyrmions can be classified into several types according to
the way of the magnetization rotation. Skyrmions in which the magnetizations rotate
within planes perpendicular (parallel) to the radial direction are called Bloch type
(Neel type). The three types of skyrmions, i.e., the hedgehog-type, the Bloch-type,
and the Neel-type, are mutually related via the rotational operation with respect to
the z axis and the stereo projection (see Fig. 8.1).

Skyrmions are characterized by a quantized topological invariant, which repre-
sents a sum of the solid angles spanned by three neighboring normalized magneti-
zation vectors m(r),

∫
UC

dxdy

(
∂m
∂x

× ∂m
∂y

)
· m = 4πQ (Q = ±1). (8.1)

Here the integration is taken over the area of the unit cell (UC). Because the magne-
tization vectors constituting a skyrmion point in every direction wrapping a sphere,
the sum of the solid angles is identical to the surface area of a unit sphere (∓4π ).
Consequently, the quantity Q, which is called the topological charge or the skyrmion
number, becomes +1 or −1. The sign is positive (negative) when the magnetization
at the core points upward (downward). This number does not change upon con-
tinuous variation of the magnetization alignment. Because the value of Q is zero
for ferromagnetic and spiral magnetic orders, magnetic skyrmions belong to a dif-
ferent topological class from these magnetic structures. This means that magnetic
skyrmions cannot be created or erased in a uniform ferromagnetic state by continuous
variation of the magnetization alignment. Instead, a local flop of the magnetization
is needed to create and erase them, which necessarily requires a large cost of energy,
magnitude of which is comparable to the energy scale of the ferromagnetic exchange
interaction. The topological protection by this large energy barrier makes magnetic
skyrmions robust against external assitations and perturbations.

This significant stability is one of the advantageous properties of magnetic
skyrmions for spintronics application to ubiquitous magnetic devices in the coming
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IoT era. Future electronic devices sustaining the IoT society such as sensor, logic, and
storage devices are demanded to keep working normally with a little energy supply
in harsh environments such as weather-beaten places, extremely hot or cold areas,
places suffered from continuous mechanical shocks and vibrations, and outer spaces
exposed by cosmic rays. Therefore, the devices should have the resistance against
thermal assitations, the durability against radioactive rays, and the sustainability with
conserved electric power. From this viewpoint, the magnetic skyrmions have high
potentials as building blocks of the next-generation magnetic devices because they
have not only the topologically protected stability but also the nanoscale ultrasmall
size and the operability with ultralow energy consumption.

Aiming at the technical applications, magnetic skyrmions have attracted a great
deal of interest recently as a target of the spintronics research, and several intriguing
phenomena and useful devices functions have been discovered or proposed succes-
sively. In particular, the dynamical magnetoelectric phenomena and the microwave
devices functions associated with their peculiar microwave-active spin-wave modes
[27] are important examples [6, 7]. In this chapter, we discuss recent theoretical
studys on the microwave-induced physical phenomena and device functions of mag-
netic skyrmions by particularly focusing on theoretical proposals of the microwave-
driven translationalmotion [28–30] and the efficient conversion ofmicrowaves toDC
electric voltages [31] expected in the spin-wave excitations of magnetic skyrmions
in a quasi-two-dimensional magnet under a tilted external magnetic field.

8.2 Spin Model of the Skyrmion-Hosting Magnets

In this chapter,wedealwithmagnetic skyrmions confined in a quasi-two-dimensional
thin-plate magnet with broken spatial inversion symmetry. The simplest spin model
for such quasi-two-dimensional skyrmion-hosting magnets is given in a continuum
form as [32],

H0 =
∫

d r
[
J

2a
(∇m)2 + D

a2
m · (∇ × m) − 1

a3
H · m

]
(8.2)

By dividing the continuum space into cubic cells, the above continuum model is
reduced to a classical Heisenberg model on a square lattice as [33],

H0 = −J
∑
i,μ

mi · mi+μ̂ −
∑
i,μ

Dμ · (mi × mi+μ̂) − Hex ·
∑
i

mi . (8.3)

Heremi represents a normalized magnetization vector on the i th lattice site. The first
term represents the ferromagnetic exchange interaction,whereas the second term rep-
resents the Dzyaloshinskii-Moriya interaction. The third term depicts the Zeeman
coupling associated with an external magnetic field Hex. Types of the skyrmions are
determined by the structure of the Moriya vectors Dμ (μ = x, y). The Bloch-type
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Fig. 8.2 a Theoretical phase diagram of the spin model in (8.3) on a square lattice as a function
of the magnetic-field strength Hz when Hex = (0, 0, Hz) is applied normal to the plane. Here the
strength of the DM interaction is set to be D/J = 0.27. b Thin-plate specimen of chiral-lattice
magnet hosting a skyrmion crystal under a magnetic field Hex = (Hz tan θ, 0, Hz) with a tilting
angle of θ . c, d Skyrmion crystal under a perpendicular [tilted] Hex field with θ = 0◦ [θ = 30◦]. e,
f Magnetization configurations of Bloch-type and the Neel-type skyrmions under a perpendicular
[tilted] Hex field (Reproduced from [29].)

skyrmions are produced by Dx = (D, 0, 0) and Dy = (0, D, 0), whereas the Neel-
type skyrmions are produced by Dx = (0, D, 0) and Dy = (−D, 0, 0). Figure8.2a
shows a theoretical phase diagram of this spin model for D/J = 0.27 at T = 0 as
a function of the magnetic-field strength Hz when Hex = (0, 0, Hz) is applied per-
pendicular to the two-dimensional plane. This phase diagram exhibits the skyrmion-
crystal phase in a region of moderate field strength sandwiched by the helical phase
and the field-polarized ferromagnetic phase.

The lattice spacing of skyrmion crystal, i.e., the distance between cores of neigh-
boring skyrmions in the skyrmion crystal is determined by competition between
the Dzyaloshinskii-Moriya interaction and the ferromagnetic exchange interaction,
which favor rotating and parallel magnetization alignments, respectively. A stronger
Dzyaloshinskii-Moriya interaction causes more rapid rotation of the magnetizations,
which results in a smaller skyrmion size. Because φ ∼ D/(

√
2J ) holds for the



188 M. Mochizuki

Table 8.1 Unit conversion table when J = 1meV

Dimensionless quantity Corresponding value with units

Exchange int. J = 1 J = 1meV

Magnetic field H = 1 J/gμB = 8.64T

Time t = 1 �/J = 0.66 ps

Frequency f = ω/2π ω = 1 J/h = 241GHz

magnetization rotation angle φ, the spatial period in the skyrmion crystal becomes
λm ∼ 2πa/φ when Hex = 0 where a is the lattice constant. Even when Hex is finite,
this spatial period does not change so much although the magnetization rotation is
no longer uniform. Therefore, the ratio D/J = 0.27 gives λm ∼ 18nm if we assume
a typical lattice constant of a = 0.5nm, which corresponds to the experimentally
observed skyrmion size in MnSi [12, 34]. When J = 1meV is the energy units, the
dimensionless field strength Hz = 1 corresponds to∼8.64T. Therefore, the threshold
magnetic fields of Hc1 = 0.0168 and Hc2 = 0.0567 in the theoretical phase diagram
of Fig. 8.2a correspond to 0.145T and 0.49T, respectively. These values again coin-
cide well with the experimentally observed threshold magnetic fields of∼0.15T and
∼0.45T for MnSi at low temperatures [34]. The unit conversions when J = 1meV
are summarized in Table8.1.

We examine the cases in which the Hex field is tilted from the normal direction
(‖z) of the quasi-two-dimensional system towards the x direction. Themagnetic field
is given in the form,

Hex = (Hx , 0, Hz), (8.4)

with Hx = Hz tan θ , where the angle θ describes to what extent the Hex field is tilted
towards the x direction (Fig. 8.2b). In bulk materials, the magnetic skyrmions usually
appear on a plane normal to the Hex field and have a circularly symmetric shape.
This circular symmetry is kept even when a direction of the Hex field is changed
because the stackedmagnetic skyrmions can change their tubular orientations to keep
the skyrmion plane normal to the Hex field in the three-dimensional systems so as
to maximize the energy gain of the Zeeman interaction. On the other hand, when
the skyrmions are confined in a system of strong two-dimensionality, the situation
is no longer the same. Although the skyrmions have a circularly symmetric shape
when the Hex field applied perpendicular to the two-dimensional plane (Fig. 8.2c,
e), they become to have a disproportionate weight in the magnetization distribution
and lose their circular symmetry when the Hex field is tilted (Fig. 8.2d, f). In fact,
these deformed skyrmions under a tilted Hex field turn out to exhibit intriguing
microwave-related physical phenomena and device functions.

The microwave-induced dynamics of magnetic skyrmions are investigated by
the micromagnetic simulations based on the Landau–Lifshitz–Gilbert equation. The
equation is given by,
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dmi

dt
= −γmi × Heff

i + αG

m
mi × dmi

dt
. (8.5)

The first term of the right-hand side is the gyrotropic term where γ = gμB/� is the
gyromagnetic ratio. This term describes the precessional motion of magnetizations
mi around the effective local magnetic field Heff

i . The second term is the Gilbert-
damping term introduced phenomenologically to depicts the dissipation of gyration
energy. The effective magnetic field Heff

i , which acts on the local magnetization mi ,
is calculated from the Hamiltonian H = H0 + H ′(t) as,

Heff
i = − 1

γ �

∂H
∂mi

, (8.6)

where H0 is the model Hamiltonian given by (8.3). Here an additional term of the
Hamiltonian H ′(t) is introduced, which describes the dynamical coupling between
the skyrmion magnetizations and a time-dependent magnetic field or a microwave
magnetic field in the form,

H ′(t) = −H(t) ·
∑
i

mi . (8.7)

The initial magnetic configuration of a skyrmion crystal is prepared by the Monte-
Carlo thermalization at low temperatures and by further relaxing it in the micro-
magnetic simulation without applying a microwave magnetic field. The microwave-
induced dynamics are simulated by applying a microwave field to thus obtained
sufficiently converged skyrmion-crystal configuration.

8.3 Microwave-Active Spin-Wave Modes

A skyrmion crystal confined in a quasi-two-dimensional magnet exhibits character-
istic microwave-active spin-wave modes (Fig. 8.3a–c) [27]. An in-plane polarized
microwave magnetic field Hω‖x, y activates a pair of rotation modes, in which all
the skyrmions constituting the skyrmion crystal uniformly circulate in counterclock-
wise and clockwiseways. The counterclockwise rotationmode has a lower resonance
frequency and a larger intensity than the clockwise rotation mode. On the other hand,
an out-of-plane polarized microwave magnetic field Hω‖z activates the breathing
mode inwhich all the skyrmions in the skyrmion crystal uniformly expand and shrink
in an oscillatory manner. Then how are these spin-wave modes modulated when the
Hex field is tilted from the perpendicular direction?

The spin-wave modes and their resonance frequencies can be identified by calcu-
lating the dynamical magnetic susceptibility,
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Fig. 8.3 a–c Simulated snapshots of the three spin-wave modes of a skyrmion crystal confined
in a quasi-two-dimensional thin-plate magnet under a perpendicular Hex field. Here one skyrmion
in the skyrmion crystal is focused on because all the skyrmions oscillate uniformly in each mode.
The two rotation modes with counterclockwise (CCW) and clockwise (CW) rotation senses are
active to an in-plane microwave magnetic field Hω‖x, y, whereas the breathing mode is active
to an out-of-plane microwave magnetic field Hω‖z. d Calculated microwave absorption spectra
under perpendicular (θ = 0◦) and tilted (θ = 30◦) Hex fields as functions of the microwave angular
frequencyω for the in-planemicrowave field Hω‖x, y. e Those for the out-of-planemicrowave field
Hω‖z. Here the simulations are performed for J = 1, D/J = 0.27, Hz = 0.036, Hω = 0.0018,
and αG = 0.02 (Reproduced from [29].)
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χμ(ω) = �Mμ(ω)

μ0Hμ(ω)
(μ = x, y, z), (8.8)

where Hμ(ω) and �Mμ(ω) are the Fourier transforms of the time-dependent mag-
netic field H(t) and the simulated time-profile of the net magnetization �M(t) =
M(t) − M(0) with M(t) = 1

N

∑N
i=1 mi (t). In the calculations, a short rectangular

pulse is used for H(t) whose component is given by,

Hμ(t) =
{
Hpulse 0 ≤ t ≤ 1

0 others
(8.9)

where t = (J/�)τ is the dimensionless timewith τ being the real time. An advantage
of using the short pulse is that the Fourier component Hμ(ω) becomes constant being
independent of ω up to first order in ω�t for a sufficiently short duration �t with
ω�t 
 1. The Fourier component is

Hμ(ω) =
∫ �t

0
Hpulsee

iωt dt = Hpulse

iω

(
eiω�t − 1

) ∼ Hpulse�t. (8.10)

Consequently, we obtain the relationship χμ(ω) ∝ �Mμ(ω). The imaginary part of
thus calculatedχμ(ω) corresponds to themicrowave absorption spectrum.Figure8.3d
shows the spectra for the in-plane polarized microwave field Hω‖x, y under per-
pendicular (θ = 0◦) and tilted (θ = 30◦) Hext fields, whereas Fig. 8.3e shows the
spectra for the out-of-plane polarized microwave field Hω‖z [29]. When the Hext

field is perpendicular (θ = 0◦), two spectral peaks appear in Fig. 8.3d originating
from the two rotation modes, whereas a single peak appears in Fig. 8.3e originating
from the breathing mode, indicating that the in-plane (out-of-plane) microwave field
can activate the rotation modes (the breathing mode) only when the Hext field is
perpendicular. On the other hand, when the Hext field is tilted (θ = 30◦), three spec-
tral peaks appear in both Fig. 8.3d, e, indicating that all the three spin-wave modes
become active to both microwave polarization under the tilted Hext field.

8.4 Microwave-Magnetic-Field-Driven Translational
Motion of Skyrmion Crystal

The continuous spin-wave excitation by microwave irradiation under a tilted Hext

field can induce translational motion of a skyrmion crystal [28, 29]. Figure8.4 shows
simulated snapshots of a skyrmion crystal driven by an in-plane microwave field
Hω‖x (right upper panel) and the same skyrmion crystal driven by an out-of-plane
microwave field Hω‖z (right lower panel) at t = 400ns after the microwave irra-
diation commences. The figure also shows the initial configuration of the skyrmion
crystal at t = 0 (left panel) under application of the tilted magnetic field Hex =
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Fig. 8.4 Microwave-driven translational motion of a skyrmion crystal in a quasi-two-dimensional
system under a tilted Hext field with θ = 30◦. The system is irradiated by a microwave field
Hω

μ sinωt (μ = x, y, z) with Hω
μ = 0.0006. The skyrmion crystal moves approximately towards

the positive (negative) y direction when a microwave field Hω‖x (Hω‖z) with ω = 0.0494
(ω = 0.0666) activates the counterclockwise rotation (breathing) mode. Displacement vectors con-
necting the original position (dashed circles) and the position after 400-ns duration (solid circles)
are indicated by the thick arrows in the right panels. The simulations are performed for J = 1,
D/J = 0.27, Hz = 0.036, and αG = 0.04 (Reproduced from [29].)

(Hz tan θ, 0, Hz) with Hz = 0.036 and θ = 30◦. Here, the microwave field is given
by Hω

μ sinωt (μ = x, y, z) with Hω
μ = 0.0006. The displacement vectors connect-

ing the original position and the position at t = 400ns are indicated by thick arrows
shown in the right-side panels. When the microwave field Hω‖x with ω = 0.0494
activates the counterclockwise rotation mode, the skyrmion crystal propagates in a
direction close to the positive y direction, whereas the same skyrmion crystal prop-
agates in a direction close to the negative y direction when Hω‖z with ω = 0.0666
activates the breathing mode. It is also found that the travel distance in the former
case is much longer than that in the latter case, which indicates that the in-plane
microwave field Hω‖x drives much faster motion of the skyrmion crystal than the
out-of-plane microwave field Hω‖z.

Figure8.5a, b display the simulated microwave frequency dependence of the drift
velocity v = (vx , vy) of the driven skyrmion crystal under a tilted Hex field for
different microwave polarizations. Apparently, the velocities are enhanced to have
peaks at the resonance frequencies that correspond to the spin-wavemodes, indicating
that the resonant spin-wave excitations of skyrmion crystal indeed drive its quick
translational motion. The velocity is highest with vx ∼ 0.04m/s when the in-plane
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Fig. 8.5 Calculated microwave frequency dependence of the velocity v = (vx , vy) for translational
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α = 0.0006 whereω = 2π f is its angular frequency. The velocities

show peaks at the resonant frequencies of the spin-wave modes, while their signs vary depending
on the mode and the microwave polarization (Reproduced from [29].)

microwave field Hω ‖ x activates the counterclockwise rotation mode. It is also
found that the speed and the direction of this translational motion sensitively depend
on the excited spin-wave mode and the microwave polarization.

8.5 Microwave-Electric-Field-Driven Translational Motion
of Isolated Skyrmions

In this section, we discuss an efficient method to drive isolated magnetic skyrmions
embedded in ferromagnetic environment with microwave electric fields instead of
microwave magnetic fields [30]. As mentioned in the introduction section, the mag-
netic skyrmions appear not only as a crystallized form but also as isolated defects
in the ferromagnetic phase. Recently possible application of magnetic skyrmions to
high-performance memory devices are studied intensively. For the usage as informa-
tion carriers in memory devices, isolatedmagnetic skyrmions rather than crystallized
ones are recognized to be convenient. However, when a microwave magnetic field
is applied to a device to activate the isolated skyrmion defects, it is unavoidable to
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excite a vast majority of background ferromagnetic magnetizations, which hinders
the resonance modes of the skyrmion defects.

To solve this problem, itwas recently proposed theoretically that isolatedmagnetic
skyrmions can be selectively activated using microwave electric fields without excit-
ing ferromagnetic resonances, in contrast to conventional methods using microwave
magnetic fields. It was also demonstrated by numerical simulations that the selective
activation of a skyrmion can efficiently drive its translational motion in a ferromag-
netic nanotrack under application of a tilted Hext field.

We consider a magnetic bilayer system with a ferromagnetic layer fabricated on
top of a heavy-metal layer with strong spin-orbit interaction, where the
Dzyaloshinskii-Moriya interaction becomes active at their interface due to the spa-
tial inversion asymmetry to form Neel-type skyrmions. A tilted magnetic field
Hex = (Hx , 0, Hz) with Hx = Hz tan θ is applied to this bilayer system. To investi-
gate microwave-driven phenomena of skyrmions in this system, the following clas-
sical Heisenberg model on a square lattice was employed,

H = −J
∑

<i, j>

mi · m j − [Hex + H(t)] ·
∑
i

mi

+ D(t)
∑
i

[(mi × mi+x̂ ) · ŷ − (mi × mi+ŷ) · x̂], (8.11)

where mi is the normalized magnetization vector. In this Hamiltonian, a time-
dependent magnetic field or a microwave magnetic field H(t) = (0, 0, Hz(t)) with
Hz(t) = Hω

z sin(ωt) is taken into account via the Zeeman coupling term.On the other
hand, a time-dependent electric field E(t) = (0, 0, Ez(t)) with Ez(t) = Eω

z sin(ωt)
applied perpendicular to the sample plane is incorporated via the time-dependent
interfacial Dzyaloshinskii-Moriya interaction. The strength of this interaction can
be tuned by applying a gate electric field normal to the plane via varying the
extent of the spatial inversion asymmetry [35–37]. Importantly, the coefficient
D(t) = D0 + �D(t) has two components, specifically, a steady component D0 and
a E(t)-dependent component �D(t) = κEz(t) with κ being the coupling constant.

A time profile of the net magnetization Mz(t) = (1/N )
∑

i mzi (t) and�Mz(t) =
Mz(t) − Mz(0) are simulated by numerically solving the Landau–Lifshitz–Gilbert
equation after application of a short pulse Hz(t) or Ez(t) with duration of �t =
1. From its Fourier transform �Mω

z , the dynamical magnetic and electromagnetic
susceptibilities χmm and χ em are calculated as,

χmm(ω) = �Mω
z

μ0Hpulse
, χ em(ω) =

√
μ0

ε0

�Mω
z

Epulse
(8.12)

Note that the magnetic susceptibility χmm represents the response of the magnetiza-
tions to the microwave magnetic field H(t), whereas the electromagnetic suscepti-
bility χ em represents the response of the magnetizations to the microwave electric
field E(t).
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Fig. 8.6 a,bMicrowave absorption spectra Imχmm(ω) [Imχem(ω)] when a quasi-two-dimensional
ferromagnet with a skyrmion defect under perpendicular (θ = 0◦) and tilted (θ �= 0◦) Hext field is
irradiated with an out-of-plane polarized microwave magnetic [electric] field Hω‖z [Eω‖z]. The
spectra Imχmm(ω) for various angles θ indicate that the ferromagnetic resonance mode becomes
active to the microwave magnetic field Hω‖z when the Hext field is tilted, and its intensity becomes
rapidly enhanced as θ increases, although it is silent when the Hext field is perpendicular. In
contrast, the spectra Imχem(ω) indicate that the microwave electric field Eω‖z can selectively
activate resonance modes of the skyrmion defect without exciting the background ferromagnetic
magnetizations. c Schematic illustration of an experiment for the temporal variation of the interfacial
Dzyaloshinskii-Moriya interaction by application of a microwave electric field to the magnetic
bilayer system under a tilted Hext field. d Simulated snapshots of the translational motion of
the driven skyrmion defect. e Trajectories of a driven skyrmion defect for three different spin
modes activated by the microwave electric field. The simulations for d and e are performed for
J = 1, D0/J = 0.27, κEω

z = 0.05D0, Hz = 0.057, θ = 30◦, and αG = 0.04 (Reproduced from
[30].)

Figure8.6a displays imaginary parts of the calculated dynamical magnetic sus-
ceptibilities Imχmm of a ferromagnetic system with a single skyrmion defect under
application of the out-of-plane microwave magnetic field (Hω‖z) for various values
θ . The calculations are performed for a ferromagnetic system of 160 × 160 sites
with periodic boundary conditions, in which one skyrmion exists as a defect. When
θ = 0◦, only a single peak appears in the spectrum indicating that only the breathing
mode of the skyrmion defect is activated without exciting the background ferromag-
netic magnetizations. However, as θ increases, the intensity of the breathing mode
decreases, and, alternatively, a large spectral peak due to the ferromagnetic resonance
mode appears in the higher frequency regime. Namely, under the tilted Hext field,
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the microwave magnetic field cannot avoid activating the intense ferromagnetic res-
onance mode, which inevitably results in large loss of energy and significant rise of
temperature.

To drive isolated skyrmions in the ferromagnetic phase efficiently, it is nec-
essary to activate the skyrmions selectively avoiding the situation that the weak
skyrmion resonance modes are masked by the intense ferromagnetic resonance
mode. This seemingly impossible operation can be achieved by taking advantage
of the microwave electric field. More concretely, when a microwave electric field is
applied to a magnetic bilayer system or a thin-film specimen of chiral-lattice magnet
fabricated on insulating substrate, the isolated skyrmions can be selectively activated
through temporal variation of the extent of spatial inversion asymmetry and result-
ing temporal oscillation of the Dzyaloshinskii-Moriya interaction. The calculated
microwave absorption spectra (the imaginary parts of the electromagnetic suscepti-
bilities Imχ em) in this case are displayed in Fig. 8.6b, which clearly show selective
activations of the resonance modes of the skyrmion defect.

When the spin-wave modes of isolated skyrmions are activated in a system shown
in Fig. 8.6c with a microwave electric field, their translational motion can be driven
as shown in Fig. 8.6d. Figure8.6e displays trajectories of the skyrmion translational
motion when a microwave electric field with each resonance frequency is applied
for a certain duration (Note that the length scale is different between the horizontal
and vertical axes). Interestingly, the breathing mode turns out to drive the skyrmion
most quickly although the intensity of this mode is not so large.

Another interesting aspect to be mentioned is the trajectory is straight and exactly
parallel to the x axis (direction toward which the Hex field is tilted) when the coun-
terclockwise rotation mode is excited. It is recognized that one of the most promising
forms of the skyrmion-based magnetic memories is the skyrmion race track memory
based on the skyrmion motion in magnetic nanowires driven by a spin-polarized
electric current, which can be regarded as the race track memory with its ferromag-
netic domains being replaced with magnetic skyrmions. However, one of the critical
problems that hinders its realization is the skyrmion Hall effect. The current-driven
skyrmions have not only a velocity component parallel to the electric current but
also that perpendicular to it. Due to this effect, the skyrmion cannot avoid colliding
to the horizontal edges of devices, which results in absorption and pinning of the
skyrmions. In contrast to the current-driven case, we can achieve the translational
motion of skyrmions exactly parallel to the nanowire and thus can avoid this kind
of problem when we drive them by microwave irradiation under a tilted Hext field.
For the breathing mode and the clockwise rotation mode, the skyrmion moves in a
direction slanted from the tilting direction of the Hex field. Even in these cases, we
can achieve the skyrmionmotion exactly parallel to the nanowire by tuning the tilting
direction of Hex. It is always possible to realize the straight and parallel skyrmion
motion in a nanowire without collision to the edges in this way because the Hex field
can be oriented in an arbitrary direction in contrast to an electric current flowing
always along the nanowire.
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8.6 Electrically Driven Spin Torque and Dynamical
Dzyaloshinskii-Moriya Interaction

In the above section, we argued that the application of microwave electric field can
drives translational motion of isolated skyrmions embedded in a ferromagnetic back-
ground of magnetic bilayer system through inducing the temporal variation of the
interfacial Dzyaloshinskii-Moriya interaction. In this section, we discuss a theoret-
ical formulation of this electrically induced time-dependent Dzyaloshinskii-Moriya
interaction [35]. From a theoretical perspective, we demonstrate that the spin torques
can be exerted into magnetic bilayer systems via the Rashba spin-orbit interaction
by application of an AC electric voltage. The exerted spin torques turn out to resem-
ble the well-known electric-current-induced torques, i.e., the spin-transfer torque
and the nonadiabatic torque, providing similar controllability of magnetism with
microwave electric fields. The spin torques also turn out to work as an interfacial
Dzyaloshinskii-Moriya interaction, which contains both steady and oscillating com-
ponents and enables us to create and activate noncollinear magnetism like magnetic
skyrmions by application of a microwave electric field.

In themagnetic bilayer systemwith broken spatial inversion symmetry, theRashba
spin-orbit interaction becomes active. This interactionworks as an effectivemagnetic
field acting on the conduction-electron spins, through mediating mutual coupling
between spins and orbital momenta of the electrons [38, 39]. Importantly, strength
and direction of the effective magnetic field are determined by the momentum of
the electron. Therefore, the Rashba spin-orbit interaction can induce nontrivial spin
torques acting on the magnetizations through controlling the spin polarizations of
the conduction electrons which couple to the magnetizations via the exchange inter-
action. The strength of the Rashba spin-orbit interaction can be tuned by application
of a gate electric voltage normal to the interfacial plane [40], through modulating
the extent of the spatial inversion asymmetry. This suggests that an AC gate voltage
produces nontrivial Rashba-mediated dynamical spin torques.

We consider a magnetic bilayer system with a ferromagnet/heavy-metal interface
(Fig. 8.7), which is fabricated on an insulating substrate. The insulating substrate
prevents the electric-current flowand thus enhances the effects of gate electric voltage
acting on the ferromagnet/heavy-metal interface. The Hamiltonian for this system
has four terms as

H = HK + HR + Hex + Himp (8.13)

with

HK = 1

2me

∫
d2r

∣∣ pψ(r, t)
∣∣2 − EF

∫
d2r ψ†(r, t)ψ(r, t), (8.14)

HR = −αR(t)

�

∫
d2r ψ†(r, t)( p × σ )zψ(r, t), (8.15)

Hex = Jex

∫
d2r m(r) · ψ†(r, t)σψ(r, t), (8.16)
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Fig. 8.7 Schematic illustration of a magnetic bilayer system in which local magnetizations m(r)
couple to a conduction-electron system with the time-dependent Rashba spin-orbit interaction. The
strength of the Rashba interaction αR(t) is temporally varying under application of an AC gate
electric voltage. The insulating substrate prevents electric-current flows to enhance the effects of
electric voltage acting on the interface hosting the Rashba spin-orbit interaction (Reproduced from
[35].)

Himp =
∫

d2r vimp(r)ψ†(r, t)ψ(r, t), (8.17)

whereme and p denote, respectively, the mass and momentum of a conduction elec-
tron, EF the Fermi energy,σ the Paulimatrices, andψ† (ψ) the creation (annihilation)
operator of a conduction electron. The term HK represents the kinetic energies of
the conduction electrons, while the term HR describes the time-varying Rashba spin-
orbit interaction where αR(t) is the time-dependent coupling coefficient. The term
Hex represents the exchange interaction between the conduction-electron spins and
the local magnetization where Jex and m are the coupling constant and the normal-
ized local magnetization vector, respectively. The term Himp depicts the scattering
potentials from spatially distributed nonmagnetic impurities, which determine the
relaxation time τ of the conduction electrons.

The impurity potential is given by,

vimp(r) = uimp

∑
i

δ(r − r i ) (8.18)

where uimp is the strength of the impurity scattering, r i denotes positions of the
impurities, and δ(r) is the Dirac delta function. Taking averages over the impurity
positions as

vimp(r) = 0, vimp(r)vimp(r ′) = nimpu
2
impδ(r − r ′), (8.19)

the relaxation time of the conduction electrons is given by

τ = �/2πνenimpu
2
imp (8.20)

in the first Born approximation. Here, nimp denotes the concentration of impurities
and νe = me/2π�

2 is the density of state.
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The spin torque induced by the conduction-electron spins via the exchange inter-
action is defined as

T = Jexa2

�
m × s, (8.21)

where a is the lattice constant, s = 〈ψ†σψ〉 is the conduction-electron spin density,
and the brackets denote the quantum expectation value. The analytical formula of
the spin torque is given in the form,

T = T 1 + T 2 + T 3

= −a

�
D1(m × ∇)zm + a

�
D2(m × ∇)zm

−a

�
βRD2m ×

[
(m × ∇)zm

]
, (8.22)

where

D1(t) = �νea

2πτ

[
EF

Jex
ln

(
EF + Jex
EF − Jex

)
− 2

]
αR(t), (8.23)

D2(t) = νeaEFτ
J 2
ex(J

2
ex − η2)

(J 2
ex + η2)2

dαR(t)

dt
, (8.24)

βR = 2Jexη

J 2
ex − η2

, (8.25)

with η = �/2τ .
The above formula is derived from perturbation calculations based on some

assumptions summarized below:

• Metallic bilayer systems with Jex < EF,
• Slowly varying magnetizations with q 
 kF,
• Weak magnitudes αR with αRkF 
 EF,
• Low frequencies � for αR with �� 
 EF,

where q is the wavenumber of local magnetization and kF is the Fermi wavenumber.
The coefficients D1(t), D2(t), and βR are well defined when the relaxation time is
sufficiently long to satisfy the conditions EF � �/τ , Je � �/τ and EF − Jex � �/τ .
Note that D1 vanishes in the clean limit with τ → ∞ for the present quasi-two-
dimensional metallic system with Jex < EF, whereas it is known to survive in the
three-dimensional systems or in the half-metallic systems with Jex > EF even in the
clean limit. For details of the derivation, see [35].

The first two contributions in (8.22), T 1 + T 2, describe an effective
Dzyaloshinskii-Moriya interaction, which is given in the continuum form as

HDMI = D1 − D2

a
εαβz

∫
d2r (m × ∇αm)β . (8.26)
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Table 8.2 Typical material parameters for magnetic bilayer systems

Metallic systems Semiconducting systems

Lattice constant a 5 Å 5 Å

Fermi energy EF 4 eV 10 meV

Fermi wavenumber kF 1 Å−1 0.01 Å−1

Exchange int. Jex/EF 0.25 0.5

Relaxation time τ 10−14 s 10−12 s

Rashba parameter 1: α0 2 eV·Å 0.07 eV·Å
Rashba parameter 2: αext/α0 0.1 0.1

Frequency �/2π 1GHz 1GHz

(Note that m × (a2/�)δHDMI/δm leads to T 1 + T 2). The contribution D1, which is
proportional to αR, appears even with a steady Rashba spin-orbit interaction. In con-
trast, the contribution D2, which is proportional to ∂tαR, appears only in the presence
of a time-dependent Rashba spin-orbit interaction. This interfacial Dzyaloshinskii-
Moriya interaction is expected to be tuned by applying an electric gate voltage. More
interestingly, application of an AC voltage is expected to induce an oscillating com-
ponent of the Dzyaloshinskii-Moriya interaction. The Rashba parameter αR(t) in the
driven Rashba electron system is composed of both steady and time-dependent com-
ponents as αR(t) = α0 + αext(t) with αext(t) = αext sin (�t). Using typical mate-
rial parameters summarized in Table8.2 [40–42], the strength of this Rashba-
induced Dzyaloshinskii-Moriya interaction is roughly estimated as D1 ∼ 0.1 meV
and D2 ∼ 5 × 10−3 meV for metallic bilayer systems, while D1 ∼ 6 × 10−6 meV
and D2 ∼ 2 × 10−6 meV for semiconducting bilayer systems. The strength of the
Rashba-induced Dzyaloshinskii-Moriya interaction is relatively strong in metallic
bilayer systems, whereas it is rather weak in the semiconducting bilayer systems.

It should bementioned that themagnitude of D2 being proportional to ∂tαext(t) can
be tuned by varying the amplitude and frequency of theACgate voltage, although it is
usually small as compared to themagnitude of D1. The ratio D2/D1 is approximately
given by �εFτ

2/2π�, which takes ∼ 10−4 (10−2) for metallic (semiconducting)
bilayer systemswhen a typical frequency of� = 1GHz is assumed. The ratio D2/D1

tends to be larger for the semiconducting system, whereas the absolute value of D2

tends to be larger for the metallic system. An appropriate system should be chosen
depending on the purpose.

The last two terms in (8.22), both of which are proportional to D2, can be rewritten
as

T 2 + T 3 ∝ ( j s · ∇)m − βRm × ( j s · ∇)m. (8.27)

where
j s ≡ (e/�a)D2z × m. (8.28)
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When the time-dependent Rashba spin-orbit interaction αR(t) is induced by the AC
gate voltage, the vector quantity j s ∝ ∂tαR(t)z × m gives rise to AC spin torques.
In the clean limit with a long relaxation time (�/Jexτ 
 1), the coefficient βR in
the second term is reduced to �/Jexτ . Interestingly, the vector quantity j s defined
here can be regarded as a fictitious spin current because the above expressions of
T 2 and T 3 have equivalent forms with those of the spin-transfer torque and the
nonadiabatic torque in the presence of the real spin current js, respectively. It should
be noted, however, the present relaxation time τ corresponds to a different time scale.
Specifically, the relaxation time is governed by the coherence of the conduction-
electronmomenta in the present case,while in the current-induced case, it is governed
by that of the conduction-electron spins.

Assuming the material parameters for the metallic bilayer systems in Table8.2,
the values of js = (e/�a)D2 and βR are evaluated as ∼2 A/m and ∼0.07, respec-
tively. These values are large enough to induce the magnetization dynamics. Numer-
ical simulations in [35] indeed demonstrated that not only a skyrmion crystal with
hexagonally packed magnetic skyrmions but also isolated skyrmions embedded in
a ferromagnetic background can be excited resonantly through temporal variation
of the Dzyaloshinskii-Moriya interaction achieved by application of a microwave
electric voltage. This technique provides a means to drive magnetic skyrmions elec-
trically with a low energy consumption. Recently, a lot of ferromagnet/heavy-metal
bilayer systems hosting magnetic skyrmions have been reported. The above theoret-
ical proposals are anticipated to be realized by future experiments on these magnetic
bilayer systems.

8.7 Microwave-Induced DC Spin-Motive Force

We next discuss a proposed method to generate DC electric voltages by exploit-
ing the spin-wave excitations of magnetic skyrmions under a tilted Hext field [31].
It is well known that injection of spin-polarized electric currents can drive non-
collinear skyrmion textures in metallic magnets via the spin-transfer torque mecha-
nism, whereas the noncollinear skyrmion magnetizations inversely affect transport
properties of conduction electrons as exemplified by the topological Hall effect. The
spin-driven electromotive force (i.e., an emergent electric field induced by magneti-
zation dynamics) is another important example of the latter kinds of phenomena [43,
44]. It was proposed theoretically that spatially modulated magnetic textures such
as magnetic skyrmions, magnetic helices and ferromagnetic domain walls produce
effective vector potential acting on the conduction electrons via exchange coupling
with the conduction-electron spins, which is called non-Abelian gauge field. When
these magnetic textures are temporally varied by an applied time-periodic field such
as microwave electromagnetic fields, this effective vector potential also changes
temporally. This temporal variation of the vector potential gives rise to an effective
electric field which acts on the conduction electrons. The electric motive force due
to this effective electric field is referred to as the spin-motive force, which is one of
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Fig. 8.8 Relationship between the spin-transfer torque mechanism and the spin-motive force.
a Schematic illustrations of the spin-transfer torque mechanism. Translational motion of a magnetic
texture is driven by the angular-momentum transfer from conduction-electron spins of injected spin-
polarized currents to the noncollinear magnetizations. b Schematic illustrations of the spin-motive
force. Effective electromotive force acting on the conduction electrons is induced by the momen-
tum transfer from driven noncollinear magnetic texture to the conduction electrons via exchange
coupling, resulting in the generation of electric currents (Reproduced from [31].)

the important subjects of the recent spintronics research. This phenomenon can be
interpreted as the inverse effect of the spin-transfer torque mechanism (see Fig. 8.8).

An expression of this spin-induced effective electric field is given by,

Eμ(t) = �

2e
m · (∂μm × ∂tm) (μ = x, y, z), (8.29)

where m(r, t) is the normalized classical magnetization vector. This formula explic-
itly indicates that both temporal and spatial variations of magnetizations are required
to generate the spin-motive force. Several experimental reports have discussed the
generation and observation of the spin-motive force in ferromagnetic domain walls
and magnetic vortices activated by microwave fields [45, 46].

There has been a theoretical proposal that the microwave activation of skyrmion
crystal under a perpendicular Hex field gives rise to an enhanced spin-motive
force [47, 48]. However, the spin-motive force available in this way is a pure AC
voltage with an average of zero. In fact, there have been several theoretical propos-
als and experimental demonstrations of the generation of the AC spin-motive force.
However, a method to generate a stationary DC spin-motive force has long been
missing. One possible way to obtain a DC voltage is to use an AC-DC transducer to
convert the AC voltage to a DC voltage. But it is difficult to fabricate such a precise
device in nanometric systems. Moreover, significant reduction of the voltage cannot
be avoided in the conversion process, which can be a critical problem because the
spin voltage is originally very tiny. Therefore, it is highly desired to establish a simple
technique to generate a DC spin voltage for spintronics applications.

To solve this problem, it was recently proposed theoretically that an oscillating
spin voltage with a large DC component can be generated by exciting themicrowave-
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active spin-wave modes of skyrmion crystal on a quasi-two-dimensional thin-plate
magnet under a tilted Hex field in [31]. In this study, micromagnetic simulations
based on the Landau–Lifshitz–Gilbert equation were performed to trace the magne-
tization dynamics of a skyrmion crystal activated by amicrowavemagnetic field Hω.
Using the simulated data of the magnetization dynamics, the spatiotemporal profiles
of the spin-motive force E(r, t) were numerically calculated. For the numerical
calculations, it is convenient to rewrite (8.29) in discretized form as

Eμ,i (t) = �

2e
mi (t) ·

[
mi+μ̂(t) − mi−μ̂(t)

2a
× mi (t + �t) − mi (t − �t)

2�t

]
,

(8.30)

where μ = x, y and a(=5Å) is the lattice constant. Time profiles of the spin volt-
age were calculated by numerically solving the Poisson equation using the spatial
distribution data of the spin-motive force E(r, t) at each moment t .

The spin-motive force that contains a large DC component can indeed be gen-
erated by activation of the spin-wave modes of magnetic skyrmions under a tilted
Hext field. Figure8.9a–d show time profiles of the spin-motive force simulated for
a 50nm × 50nm squared system which contains a skyrmion crystal composed of
twelve skyrmions. When the Hex field is perpendicular, the generated spin-motive
force is of pure AC for the counterclockwise rotation mode (Fig. 8.9a) or constantly
zero for the breathing mode (Fig. 8.9b). On the contrary, a spin-motive force with a
large DC component of 0.5-1μV is generated when the Hex field is tilted by θ = 30◦
(Fig. 8.9c, d).

The simulated time profiles of spin voltages turn out to be well fitted by an
approximate formula of the forced oscillation with a damping.

Vμ = VDC
μ + V AC

μ (1 − e−t/τ ) sinωt, (8.31)

with μ = x, y. Here V DC
μ , V AC

μ , ω(= 2π f ), and τ are the DC component, the AC
amplitude, the angular frequency, and the decay rate of the induced temporally oscil-
lating spin voltage, respectively. Fig. 8.9e–f show the microwave-frequency depen-
dence of the DC component VDC

μ (μ = x, y) for different microwave polarizations,
which are evaluated by the fitting. Specifically, Fig. 8.9e shows V DC

x for Hω‖x, y,
Fig. 8.9f shows VDC

y for Hω‖x, y, Fig. 8.9g shows VDC
x for Hω‖z, and Fig. 8.9h

shows V DC
y for Hω‖z. The results show that the DC component is enhanced sig-

nificantly when the frequency of the microwave is tuned to an eigenfrequency of
the spin-wave modes, which converts the microwave power to a DC voltage with
high efficiency. The results also show that the sign of the DC voltage depends on the
excited spin-wavemode and themicrowave polarization,which indicates that the sign
of the voltage can be switched by tuning the microwave frequency or the microwave
polarization. Note that a large DC voltage is obtained for the counterclockwise rota-
tion mode activated by Hω‖x, y and for the breathing mode activated by Hω‖z,
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Fig. 8.9 a, b Calculated time profiles of spin voltages induced by a the counterclockwise (CCW)
rotation mode activated by a microwave field Hω‖x and b the breathing mode activated by a
microwave field Hω‖z of a skyrmion crystal confined in a quasi-two-dimensional magnet under a
perpendicular Hex fieldwith θ = 0◦. c,dThose under a tilted Hex fieldwith θ = 30◦. The amplitude
Hω and frequency ω of microwave are presented where ω(=2π f ) is fixed at the eigenfrequency
of the spin-wave mode. The DC component VDC

x evaluated by fitting the simulated time profiles
are shown as well. e–h Calculated microwave-frequency dependence of the DC component VDC

μ

(μ = x, y) of the spin voltage under a tilted Hex field with θ = 30◦, i.e., e VDC
x for Hω‖x, y,

(f) VDC
y for Hω‖x, y, (g) VDC

x for Hω‖z, (h) VDC
y for Hω‖z. The microwave amplitude is fixed

at Hω = 0.6 × 10−3 for e–h. The parameters are fixed at J = 1, D = 0.27, Hz = 0.036, and
α = 0.04, whereas the system of N = 96 × 111 sites with a skyrmion crystal composed of twelve
magnetic skyrmions is used for all the simulations (Reproduced from [31].)
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which indicates that these sets of microwave polarization and the spin-wave mode
are suitable for efficient conversion of microwaves to a DC electric voltage.

It should be also noted that an advantage of using a skyrmion crystal is that the
arrays of numerous magnetic skyrmions in a skyrmion crystal behaves as batteries
connected in series, which give a large electric voltage as a sum of each contribution.
We expect several orders of magnitude larger electric voltage by using a larger-sized
device, which offers a promising technique of an efficient conversion of microwaves
to DC electric voltages.

8.8 Concluding Remarks

To summarize this chapter, we have discussed several microwave-related phenomena
that magnetic skyrmions confined in a quasi-two-dimensional magnetic specimen
are expected to show under a tilted external magnetic field by particularly taking the
microwave-driven translational motion and the microwave-induced DC spin-motive
forces as topics. The researches on the dynamical phenomena and device functions of
magnetic skyrmions are now extended over a wide area. The researches on magnetic
skyrmions which bring technical applications into a scope can be classified roughly
into two categories. One category of the researches aims for application to magnetic
memories and storage devices and seek the elementary techniques to write, erase,
read, and drive magnetic skyrmions in controlled ways [3, 49]. Another category of
the researches focuses on the microwave-device functions of magnetic skyrmions
based on their peculiar spin-wave modes such as microwave generation, microwave
detection, microwave diode, and magnonic-crystal devices [4, 6, 7]. In addition,
magnetic skyrmions nowadays became to attract novel research interest as promising
building blocks of logic-gate devices [50] and brain-inspired computing devices such
as reservoir computing [51–53] and neuromorphic computing [54, 55]. It is yet to
be clarified what kinds of technical applications can be expected for the phenomena
discussed in this chapter. However, we naively anticipate that themagnetic skyrmions
under a tilted Hext field are still hiding a lot of intriguing phenomena, useful device
functions, and novel physics, which might be clarified in future studies.
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Chapter 9
Symmetry Approach to Chiral
Optomagnonics in Antiferromagnetic
Insulators

Igor Proskurin and Robert L. Stamps

Abstract We discuss several aspects of chiral optomagnonics in antiferromagnetic
insulators by considering common symmetries between the electromagnetic field and
spin excitations. This approach allows us to look at optical and magnetic materials
from similar perspectives, and discuss useful analogies between them. We show that
spin waves in collinear antiferromagnets and the electromagnetic field in vacuum are
both invariant under the same eight-dimensional algebra of symmetry transforma-
tions. By such analogy, we can extend the concept of optical chirality to antiferro-
magnetic insulators, and demonstrate that the spin-wave dynamics in these materials
in the presence of a spin current is similar to that of the light inside chiral meta-
materials. Photo-excitation of magnonic spin currents is also discussed from the
symmetry point of view. It is demonstrated that a direct magnonic spin photocurrent
can be exited by circularly polarized light, which can be considered as a magnonic
analogue of the photogalvanic effect. We also note that the Zitterbewegung process
should appear and may play a role in photo-excitation processes.

9.1 Introduction

Modern spintronics is now a well-developed area that aims at bringing new func-
tionality to conventional electronics by making use of the spin degrees of freedom
[1], which may help to overcome looming saturation of Moore’s Law [2]. There are
a number of different trends in the development of the spintronics today. Among
different materials, antiferromagnets play an important role, which brings us to the
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field of antiferromagnetic spintronics [3, 4]. Their abundance in Nature and zero net
magnetization make antiferromagnets potentially useful for applications, while the
existence of two or more magnetic sublattices allows one to explore various topo-
logical effects [4]. The focus on optical manipulation of the spin states in magnetic
insulators constitutes the scope of the optospintronics [5]. A prominent direction
in optospintronics is related to the application of microwave cavity resonators [6],
which has already seen a rapid development during the last several years [7].

Being interdisciplinary, spintronics in general, and optomagnonics in particular,
can benefit by looking at the concept of chirality. Chirality or handedness, which
according to the original definition given by Lord Kelvin in his Baltimore Lectures
is related to the lack of symmetry between an object and its mirror image [8]. It is a
universal phenomenon that has proved its significance in various scientific areas from
high-energy physics to life sciences and soft matter [9]. Kelvin’s definition, which is
purely geometric, was generalized later to accommodate dynamical phenomena by
Barron [10]. Thus, according to Barron’s definition, one should distinguish between
true and false chiralities. The former is to be found in the systems that break inversion
symmetry, but at the same time are invariant under a time-reversal transformation
combined with any proper rotation, while the latter is characterized by breaking
time-reversal and inversion symmetries simultaneously [11].

How can the concept of chirality be useful for the development of optospintron-
ics? A general observation is that the goal of the spintronics is manipulation and
transformation of pure spin currents, and spin currents are chiral. Indeed, in agree-
ment with the definition of true chirality, a flow of angular momentum reverses its
sign under spatial inversion, while it remains invariant under the time reversal trans-
formation, which reverses both velocities and spins. Thus, from the symmetry point
of view, pure spin currents are in the same category as, for example, natural optical
activity and circular dichroism in optics. This argument also suggests that materials
with structural chirality may have unique properties for hosting and transferring spin
currents that makes them interesting for applications, which is reflected in the rapid
development of molecular spintronics [12, 13] and related topics such as chiral spin
selectivity [14].

Another observation helpful to establish a link between optics and spintronics
is that not only geometric structures but also physical fields can be characterized
by chirality. Chirality density of the electromagnetic field, for example, has been
known for a long time. Lipkin first noticed that the Maxwell’s equations in vacuum
have a hidden conservation law for a chiral density, which he dubbed zilch due to
the lack of clear physical meaning of this quantity at that time [15]. Later, it was
demonstrated that this conservation law is closely related to electromagnetic duality
[16, 17]. This eventually led to the formulation of the nongeometric symmetries of
the Maxwell’s equations [18], i. e. the symmetries, which are not reduced to space-
time transformations. For several decades, the formal properties of optical chirality,
helicity, and dual symmetries were discussed [19–26] but it was not until Tang and
Cohen showed how electromagnetic chirality density can be used to characterize
dichroism in light interacting with a chiral metamaterial that this was understood for
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materials [27]. This revived interest in optical chirality [28–31], which has found a
number of applications in optics and plasmonics [32–37].

The results of Tang and Cohen [27] can be understood as follows. In order to
observe effects related to the chirality of light, we have to put the electromagnetic
field in contact with a chiral environment. This principle suggests a way for find-
ing similar effects in other systems. For example, spin-wave dynamics in collinear
antiferromagnets can be represented in a form that closely resembles the Silberstein-
Bateman formulation of the Maxwell’s equations. Since collinear antiferromagnets
have two magnetic sublattices, the concept of electromagnetic duality and nongeo-
metric symmetries can be generalized to transformations between the antiferromag-
netic sublattices [38]. This allows to establish a conservation law for a spin-wave
analogue of the optical chirality. Injection of a spin current into the antiferromagnet
in this case has an effect similar to a chiral environment for light-matter interactions
inside a metamaterial [38].

It is also remarkable that both the Maxwell’s equations [39] and the dynamics of
antiferromagnetic spin waves [40] allow a formulation in the form of the Dirac equa-
tion for an ultra-relativistic particle. Such particles are characterized by conserving
helicity—a projection of spin on the linear momentum [41], which also satisfies the
definition of true chirality. Breaking the symmetry between right and left, in this case,
corresponds to a Weyl material [42], wherein quasi-particles with different helicities
are spatially separated. Symmetry considerations suggest that as far as single particle
dynamics is concerned, there should be some analogy between opticalmetamaterials,
Weyl semimetals, and chiral antiferromagnets. There has been several proposals in
these directions. For example, one can emulate the chiral magnetic effect in metallic
antiferromagnets [43].

These arguments have a direct impact on optospintronics. Since optical chirality
and spin currents share the same symmetry properties, it is possible to use polarized
light to excite magnon spin-photocurrents in antiferromagnetic insulators [44]. Cir-
cular polarized light in this case creates a direct flow of magnon angular momentum,
whose direction is controlled by helicity of light. This effect resembles the circular
photogalvanic effect in metals [45], which recently attracted attention in topological
electron materials [46]. It has been demonstrated that for a separated Weyl node, the
photocurrent excitation rate is determined by the product of the topological charge
of the node and the helicity of light [46].

In this Chapter, we review chiral excitations in optics and antiferromagnetic insu-
lators together with their applications in optomagnonics. Our discussion is organized
as follows. In Sect. 9.2, we give a brief review of optical chirality and nongeometric
symmetries, which is generalized to antiferromagnetic spin-waves in Sect. 9.3, where
we discuss potential applications such as spin-current induced magnon dichroism.
Section9.4 is reserved for photo-excitation of magnon spin currents with polarized
light. Summary and conclusions are in Sect. 9.5.
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9.2 Optical Chirality and Nongeometric Symmetries of the
Maxwell’s Equations

Since the early developments of electrodynamics, it has beenwell established that the
electromagnetic field in vacuum can be characterized by conserving energy, momen-
tum, angular momentum, which reflects the invariance of the Maxwell’s equations
with respect to the translations and rotations in the four-dimensional space-time [18].
It was found almost by chance [15] that in addition to these conservation laws, the
electromagnetic field has another invariant given by a combination of the electric,
E, and magnetic, B, fields

ρχ(t, r) = ε0

2
E · (∇ × E) + 1

2μ0
B · (∇ × B), (9.1)

which is odd under the spatial inversion and even under the time reversal transforma-
tions (ε0 and μ0 are the vacuum permittivity and permeability respectively). For this
quantity, Lipkin coined a special term—optical zilch to emphasize the lack of a clear
physical interpretation at that time [15]. According to its symmetry properties, ρχ is
truly chiral [10], and can be considered as a chirality density of the electromagnetic
field.

Using theMaxwell’s equations, it is straightforward to demonstrate that in vacuum
ρχ satisfies the continuity equation

∂ρχ

∂t
+ ∇ · Jχ = 0, (9.2)

where

Jχ (t, r) = ε0

2
E × ∂E

∂t
+ 1

2μ0
B × ∂B

∂t
, (9.3)

determines the corresponding zilch flow.
In this section, we will show that this conservation law belongs to the class of

so-called “hidden” or nongeometric symmetries of the Maxwell’s equations. One of
these symmetries, which has been known since the time of Heaviside, Larmor, and
Rainich, is the duality symmetry [47, 48]. If we consider Maxwell’s equations in
free space

∇ × E = 0, ∇ × B = 0, (9.4)

∇ · E = 0, ∇ · B = 0, (9.5)

(we set c = 1 throughout this section) the electromagnetic duality is a symmetry
with respect to the rotation in the pseudo-space of the electric and magnetic fields,
which leaves Maxwell’s equations invariant
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E → E′ = E cos θ + B sin θ, (9.6)

B → B′ = −E sin θ + B cos θ, (9.7)

where θ is a real parameter of the transformation. This symmetry is usually broken
inside materials, unless we deal with a dual symmetric medium [49].

The existence of duality symmetry guarantees the conservation of optical helicity,
i. e. the projection of spin angularmomentum of the photon onto its linearmomentum
[16, 17, 23, 24]. It should be mentioned, however, that the formulation of helicity
conservation law in classical electrodynamics is not straightforward, because the
standard Lagrangian for the electromagnetic field is not dual symmetric [48]. Using
the dual symmetric representation for the electromagnetic Lagrangian combinedwith
the Noether’s approach, it is possible to express the optical helicity density in the
form similar to (9.1)

ρhel(t, r) = 1

2
[A · (∇ × A) + C · (∇ × C)] , (9.8)

where in addition to the magnetic vector potential A, we also introduced the electric
vector potential C , which satisfies the following equations, E = −∇ × C = −∂t A
and B = ∇ × A = ∂tC . These are invariant under the transformations in (9.6) and
(9.7) [47, 48].

The definition of electromagnetic helicity depends on a specific representation of
the Lagrangian. It suggests that it would be useful to have a general formalism for
deriving “hidden” symmetries and conservation laws directly from the equations of
motion formulated exclusively in terms of the electromagnetic fields, and indepen-
dent of any gauge choice. Such a formalism has been developed by Fushchich and
Nikitin [18]. Below, we give a brief review of this formalism, which is necessary for
further discussions.

9.2.1 Symmetry Analysis of the Maxwell’s Equations

For the symmetry analysis, it is convenient to formulate Maxwell’s equations in
the form that resembles the Dirac equation for a massless relativistic particle. This
representation is called the Silberstein-Bateman form [18]. In this form, the first
pair of the Maxwell’s equations in (9.4) is rewritten in terms of a Schrödinger-like
equation for the six-component vector column composed of the components of the
electric and magnetic fields φ = (E, B)T

i
∂φ(t, p)

∂t
= H( p)φ(t, p), (9.9)

where for convenience, wework in themomentum space, p, defined by the following
Fourier transformations
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E(t, r) = 1

(2π)3/2

∫
d3 pei p·r E(t, p), (9.10)

B(t, r) = 1

(2π)3/2

∫
d3 pei p·r B(t, p). (9.11)

The matrix on the right-hand side of equation (9.9) has the following structure

H( p) =
(

0 i(Ŝ · p)
−i(Ŝ · p) 0

)
, (9.12)

which can be considered as a direct product of the Paulimatrixσ2, which interchanges
E and B, and the “helicity” operator (Ŝ · p), where the matrices Ŝα (α = x, y, z)
form a representation of the three-dimensional rotation group, (Ŝα)βγ = iεαβγ , with
εαβγ being the Levi-Civita symbol.

The second pair of the Maxwell’s equations (9.5) in this formalism impose an
additional constraint on the components of φ(t, p) [18]

(Ŝ · p)2φ(t, p) = p2φ(t, p), (9.13)

which acknowledges transversality of the electromagnetic field in vacuum.

9.2.1.1 Invariance Algebra of the Maxwell’s Equations

Now, we can find the symmetry operations that transform a solution φ(t, p) of (9.9)
into another solution φ̃(t, p) = Q( p)φ(t, p). We look for these transformations in
the form of the six-dimensional matricesQ( p), whichmay depend on themomentum
p. Formal resemblance of our representation with the quantum mechanics implies
that these matrices should commute withH( p).

The problem of finding all such transformation becomes almost trivial if we trans-
form to the helicity basis, where H( p) is diagonal. This transformation is reached
by a combination of the rotation in the three-dimensional space

Û� =

⎛
⎜⎜⎜⎜⎜⎜⎝

− px pz + i py p√
2pp⊥

px pz − i py p√
2pp⊥

px
p

− py pz − i px p√
2pp⊥

py pz + i px p√
2pp⊥

py
p

p⊥√
2p

− p⊥√
2p

pz
p

⎞
⎟⎟⎟⎟⎟⎟⎠

, (9.14)

where p⊥=(p2x + p2y)
1/2, which diagonalizes the “helicity” operator, Û †

�(Ŝ · p)Û�=
diag(−p, p, 0) (it transforms to the basis where the electric and magnetic fields are
written in terms of circularly polarized components), with the SU (2) transformation
in the pseudo-space of electric and magnetic fields
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U2 = 1√
2

(
1 −i
−i 1

)
. (9.15)

The resulting transformationU = U2 ⊗ Û� diagonalizesH( p) so that in the trans-
formed frame

H̃ = U†HU = diag(−p, p, 0, p,−p, 0). (9.16)

The eigenvalues of H̃ correspond to the left and right polarized electromagnetic
modes with the linear frequency dispersion cp (we have recovered the speed of light
c here), which are degenerate in the absence of light-matter interactions.

Straightforward calculations show that in the diagonal frame, any matrix that
commutes with H̃ , and at the same time leaves (9.13) invariant, is parameterized by
eight parameters, a, …h, and has the following structure

Q̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

a 0 0 0 e 0
0 b 0 f 0 0
0 0 0 0 0 0
0 g 0 c 0 0
h 0 0 0 d 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (9.17)

The basis in the linear space of Q̃ can be chosen such as its basis elements, Q̃i , (i =
1, . . . , 8) form the algebra isomorphic to the Lie algebra of the group U (2) ⊗U (2)

Q̃1 = −σ2 ⊗ Ŝy, Q̃2 = −iσ3 ⊗ Î
Q̃3 = −iσ1 ⊗ Ŝy, Q̃4 = σ1 ⊗ Ŝx
Q̃5 = −σ0 ⊗ Ŝz, Q̃6 = σ2 ⊗ Ŝx
Q̃7 = σ0 ⊗ Î , Q̃8 = iσ3 ⊗ Ŝz,

(9.18)

where σ0 and Î denote 2 × 2 and 3 × 3 unit matrices respectively.
Returning into original frame and taking into account that Û� ŜzÛ

†
� = −(Ŝ ·

p)/p, we obtain the generators of the symmetry transformations in the following
form

Q1 = σ3 ⊗ (Ŝ · p̃)D̂, Q2 = iσ2 ⊗ Î ,
Q3 = −σ1 ⊗ (Ŝ · p̃)D̂, Q4 = −σ1 ⊗ D̂,

Q5 = σ0 ⊗ (Ŝ · p̃), Q6 = −σ3 ⊗ D̂,

Q7 = σ0 ⊗ Î , Q8 = iσ2 ⊗ (Ŝ · p̃),
(9.19)

where p̃ = p/p, and D̂ = −pÛ� Ŝx Û
†
�. These equations form the eight-dimensional

invariance algebra of the Maxwell’s equations in vacuum [18].
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9.2.1.2 Nongeometric Symmetries

The basis elements in (9.19) generate continuous symmetries that Fushchich and
Nikitin called the nongeometric symmetries of the Maxwell’s equations [18]

φ(t, p) → φ′(t, p) = exp(Qiθi )φ(t, p), (9.20)

where θi denotes the real parameter of the transformation.
Some symmetry generators have a clear physical meaning. For example, Q7 is

a unit element. Q2 interchanges electric and magnetic fields in φ(t, p), so that the
corresponding continuous transformation exp(iσ2θ) is the duality symmetry in (9.6)
and (9.7). Q5 has the form of the helicity operator. Q8 is proportional to H , which
means that similar to Q7 it commutes with every element of the algebra. It reflects
the symmetry with respect to ∂t (the time derivative of φ(t, p), which solves the
Maxwell’s equations, is again a solution for the same p). The basis elements Q2,
Q5, Q7, and Q8 form a trivial Abelian part of the algebra in (9.19). The existence of
non-Abelian elements is related to the degeneracy between left and right polarized
eigenvalues in (9.16).

The conservation laws that correspond to the symmetry transformations in (9.20)
can be conveniently written in terms of the bilinear forms by analogy with the
quantum-mechanics

〈Qi 〉 = 1

2

∫
d3 pφ†(t, p)Qiφ(t, p). (9.21)

It can be demonstrated that the electromagnetic field in vacuum can be characterized
by an infinite number of invariants generated from the eight symmetry transforma-
tions [18]. For example, the unit element Q7 in this formalism corresponds to the
conservation of the electromagnetic energy

〈Q7〉 = 1

2

∫
d3 pφ†(t, p)φ(t, p) = 1

2

∫
d3 p

(
E2 + B2

)
. (9.22)

9.2.1.3 Conservation Law for Optical Chirality

Using this formalism, optical zilch can be expressed as a conservation law for the
helicity operator Q5

Cχ =
∫

d3rρχ(t, r) = 1

2

∫
d3 pφ†(t, p)(Ŝ · p)φ(t, p). (9.23)

Using the fact that the helicity operator, duality symmetry, and ∂t are related to each
other by the algebraic property, pQ5Q2 = −iH = ∂t , we establish a relation between
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zilch conservation and duality symmetry as it was originally discussed in [16, 17],
which allows to write the conservation law above in the following equivalent form

Cχ = − i

2

∫
d3 pφ†(t, p)Q2∂tφ(t, p) = 1

2

∫
d3r

(
B · ∂E

∂t
− E · ∂B

∂t

)
. (9.24)

This expression can be easily generalized to accommodate higher order terms in
space and time derivatives. By replacing Q2∂t with −(i p)2nQ2(i∂t )2m+1, which is
again a symmetry operation, we can find a hierarchy of conserving zilches

C (m,n)
χ = 1

2

∫
d3r

(
B · ∇2n∂2m+1

t E − E · ∇2n∂2m+1
t B

)
, (9.25)

where 00-zilch corresponds to the optical chirality [23, 24, 31].
It is possible to derive the conservation law for the optical zilch using theNoether’s

formalism by applying a specific “hidden” gauge transformation to the Lagrangian of
the electromagnetic field [31], which leads to the same results as in (9.23) and (9.25).
The advantage of the approach discussed in this section, based on the symmetry
analysis of the Maxwell’s equations, is that it does not depend on any specific gauge
choice. This fact makes it easy to extend this formalism to other physical systems
with similar form of the equations of motion.

9.2.2 Optical Chirality in Gyrotropic Media

Having now a complete picture of the nongeometric symmetries in vacuum, we
discuss how this approach can be applied for the light-matter interactions. Electro-
magnetic field in dielectric medium is usually described by the material form of the
Maxwell equations

∇ × E = −∂B
∂t

, ∇ · B = 0, (9.26)

∇ × H = ∂D
∂t

, ∇ · D = 0, (9.27)

supplemented by the constituent relations between the fields E, H , D, and B. The
constituent relations impose additional constraints on the formof the symmetry trans-
formations for the electromagnetic field, which reflect the intrinsic symmetries of
the medium. This often leads to the reduction of the invariance algebra in (9.19)
to lesser number of elements [50]. In the case of common constituent relations,
D( p) = ε̂( p)E( p) and B( p) = μ̂( p)H( p), where ε̂( p) and μ̂( p) denote the elec-
tric permittivity and magnetic permeability tensors in the Fourier space, Maxwell’s
equations in (9.9) are replaced by
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i
∂

∂t

(
D( p)
B( p)

)
=

(
0 i(Ŝ · p)μ̂−1( p)

−i(Ŝ · p)ε̂−1( p)

)(
D( p)
B( p)

)
. (9.28)

The symmetry analysis of the previous sections can be generalized for this case (see
[50] for detailed discussion). In particular, for dual symmetric medium, the optical
chirality is given by

Cχ = 1

2

∫
d3 p

(
D∗( p)(Ŝ · p)ε̂−1( p)D( p) + B∗( p)(Ŝ · p)μ̂−1( p)B( p)

)
(9.29)

In the real space this expression becomes

Cχ = 1

2

∫
d3r (B · ∂t D − D · ∂t B) , (9.30)

which also acknowledges spatial dispersion of the electromagnetic field.
As an important example, let us consider propagation of the electromagnetic field

in chiral media where structural chirality of thematerial leads to the existence of such
physical phenomena as natural optical activity and circular dichroism. There exists
several approaches for the electrodynamics of chiral gyrotropic media [51–53]. One
of these approaches, which is frequently adopted for characterizing metamaterials
[54, 55], is based on the following constituent relations

D = εε0E + iκH, (9.31)

B = μμ0H − iκE, (9.32)

where κ characterizes chirality of the material. This approach requires complex
representation for the electromagnetic fields and can be derived from the relativistic
covariance principle [51, 56].

By applying our general formalism to the Maxwell’s equations (9.26) and (9.27)
with the constituent relations (9.31) and (9.32),weobtain the sameequation ofmotion
as in (9.9), where φ is replaced by for the vector column φ(t, p) = (D, B)T , and
the matrix on the right-hand side is now given by (we use the units εε0 = μμ0 = 1)

H( p) = − 1

1 − κ
2

(
κ(Ŝ · p) −i(Ŝ · p)
i(Ŝ · p) κ(Ŝ · p)

)
. (9.33)

Thismatrix can be diagonalized by a combination of the sameunitary transformations
as in (9.14) and (9.15) that yields the following diagonal form

H̃ = U†HU = diag(−p−, p−, 0, p+,−p+, 0), (9.34)

where p± = p/(1 ∓ κ).
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Lifted degeneracy between left (p−) and right (p+) polarized eigenmodes in
(9.34) leads to the reduction of the eight-dimensional invariance algebra to four
basis elements, which commute with each other

Q2 = iσ2 ⊗ Î , Q5 = σ0 ⊗ (Ŝ · p̃)
Q7 = σ0 ⊗ Î , Q8 = iσ2 ⊗ (Ŝ · p̃). (9.35)

These symmetries, however, still contain the duality transformationQ2, whichmeans
that the medium is dual-symmetric and supports the conservation of the electromag-
netic helicity [49] and, as a consequence, optical zilches.

Definition of the optical chirality density in chiral media requires some attention.
This situation is similar to the definition of the electromagnetic energy density where
one should take care of the continuity of the energy flow at the boundary between two
chiral media [51]. It can be demonstrated that chirality density in the medium with
constituent relations (9.31) and (9.32) that provides continuity of chirality flow at
the boundary of two chiral media with different κ can be introduced in the following
way [50]

ρχ = εε0

2
B∗ · ∂E

∂t
− μμ0

2
D∗ · ∂H

∂t
, (9.36)

This expression remains valid even if ε(r), μ(r), and κ(r) become position depen-
dent. In this case, it satisfies the continuity equation with a source term on the
right-hand side

∂tρχ + ∇ · Jχ = F(t, r). (9.37)

where
Jχ = ε0ε

2
E∗ × ∂t E + μ0μ

2
H∗ × ∂tH, (9.38)

and the source term contains only gradients of ε and μ, but does not depend on the
gradient of κ

F(t, r) = ε0

2
∇ε · E∗ × ∂t E + μ0

2
∇μ · H∗ × ∂tH . (9.39)

In order to understand the physical meaning of ρχ , let us look at energy absorption
in a dissipative gyrotropic medium with the constituent relations (9.31) and (9.32).
As was demonstrated in [27], the electromagnetic energy absorption rate in this
case has an asymmetric part, which has opposite signs for left and right polarized
electromagnetic waves. This part is proportional the product between the chirality
of the material, given by the imaginary part of κ, and the chirality density of the
electromagnetic field ρχ . The flow of optical chirality in (9.3), in this situation, can
be associated with the asymmetric components of the electromagnetic forces in the
medium, which can be used, for example, for optical separation of chiral molecules
[37].
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In the next section, we will show how these arguments can be generalized to spin
excitations in antiferromagnetic materials. Similar to the results of this section, the
symmetry analysis will play a principal role in our discussion.

9.3 Spin-Wave Chirality in Antiferromagnetic Insulators

The symmetry analysis developed in the previous section for Maxwell’s equations
can be generalized to other dynamical systems. Here, we develop such generalization
for spin-wave excitations in an antiferromagnetic insulator. A key observation that
helps us to draw the analogy between spin-wave dynamics and electrodynamics is
that the antiferromagnetic spin waves can be also characterized by two polarization
states. This stems from the fact that the magnetization dynamics in antiferromagnets
involves two coupled magnetic sublattices. We, therefore, examine the symmetry
transformation in the extended space that includes three-dimensional rotations and
transformations between the sublattices, in order to find an algebra of nongeometric
symmetries for spin waves equivalent to that of the electrodynamics.

9.3.1 Equations of Motion for Antiferromagnetic Spin Waves

We start our discussion with a simple case of a collinear antiferromagnet with two
equivalent magnetic sublattices M1(t, r) and M2(t, r). The energy for such antifer-
romagnet can be written in the following form

W =
∫

d3r

[
α

2

(
∂M1

∂xμ

· ∂M1

∂xμ

+ ∂M2

∂xμ

· ∂M2

∂xμ

)
+ α′ ∂M1

∂xμ

· ∂M2

∂xμ

+ δ

2
M1 · M2 − β

2

(
(M1 · n)2 + (M2 · n)2

)]
, (9.40)

where α, α′, and δ are the antiferromagnetic exchange parameters and β > 0
describes the uniaxial magnetic anisotropy with n being the unit vector along the
anisotropy axis [57]. In the ground state, the anisotropy stabilizes a uniformmagnetic
ordering along n where two sublattices compensate each other, M1 = −M2, so that
the total magnetization vanishes.

In the semi-classical limit, magnetization dynamics are described by the Landau–
Lifshitz–Gilbert equations of motion

∂M i

∂t
= γ M i × Heff

i − ηM i × ∂M i

∂t
, (i = 1, 2), (9.41)
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Fig. 9.1 Sublattice
magnetizations M1 and M2
precessing along the
anisotropy axis n;
m = m1 + m2 is the
resulting dynamic
magnetization, and
l = m1 − m2 shows the
dynamic part of the
antiferromagnetic vector

where γ is the gyromagnetic ratio, Heff
i = −δW/δM i is the effective field acting

on the magnetization on the i th sublattice and η is the Gilbert damping that takes
dissipation into account [57].

For small excitations around the ground state configuration a linear form of
the Landau–Lifshitz–Gilbert equations of can be used. This is reached by break-
ing the sublattice magnetizations into static Msn and dynamic mi (t, t) parts,
M i = (−1)i+1Msn + mi , and keeping only the linear terms in mi in the resulting
equations of motion (Ms denotes the saturation magnetization). For convenience, we
transformmi (r) to momentum space, such thatmi (t, r) = ∫

d3 p exp(i p · r)mi p(t),
and introduce the dynamic vectors of themagnetization,mp = m1 p + m2 p, and anti-
ferromagnetism, l p = m1 p − m2 p, see Fig. 9.1. The resulting linear system of the
equations of motions is given by

∂mp

∂t
= −ε(l)

p n × l p + ηn × ∂ l p
∂t

, (9.42)

∂ l p
∂t

= −ε(m)
p n × mp + ηn × ∂mp

∂t
, (9.43)

where ε(m)
p = γ Ms(δ + β + (α + α′)p2) and ε(l)

p = γ Ms(β + (α − α′)p2).
For the equations of motion (9.42) and (9.43), it is possible to find a representation

that is similar to the Silberstein-Bateman form of the Maxwell’s equations [38]. For
this purpose, we introduce a vector column ψ(t, p) = (mp, l p)T , which allows us
to rewrite the equations of motion for the spin waves in the form (9.9), where the
matrix in the right-hand side is now given by

Hm =
(

0 −ε(l)
p (Ŝ · n)

−ε(m)
p (Ŝ · n) 0

)
. (9.44)

Here, we omit damping terms, which we discuss later. In this form, the equations of
motion for the spin waves resemble the Maxwell’s equations in a dispersive medium
where the roles of the electric permittivity and magnetic permeability is played by
ε(m)
p and ε(l)

p .
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The matrix in (9.44) can be symmetrized by an appropriate choice of the
units that can be expressed in the form of the transformation ψ = Nψ̄ , where
N = diag([ε(m)

p ]−1/2, [ε(l)
p ]−1/2). In the symmetric units, the equation of motion for

the antiferromagnetic spin waves is written as

i
∂ψ̄(t, p)

∂t
= H0( p)ψ̄(t, p), (9.45)

where the matrix on the right-hand side becomes symmetric

H0( p) =
(

0 −ω p(Ŝ · n)

−ω p(Ŝ · n) 0

)
= −ω pσ1 ⊗ (Ŝ · n), (9.46)

with ω p =
√

ε
(m)
p ε

(l)
p .

This expression has a structure similar to H( p) in (9.12) for the Maxwell’s
equations. The important difference between H0 and H comes from their prop-
erties under spatial inversion (P) and time-reversal (T ) transformations. For exam-
ple, in the case of the time-reversal transformation, φ(t, p) in (9.9) transforms as
Tφ(t, p) → σ3φ(−t, p). The Pauli matrix σ3 appears on the right-hand side due
to the different transformation properties of the electric and magnetic field with
respect to T . In contrast, both components of ψ(t, p) are odd under T , so that
Tψ(t, p) → −ψ(−t, p). Thismeans that ifwewant to transform from the spinwave
dynamics to the electrodynamics, we should replace σ1 in (9.46) with σ2 = iσ1σ3 to
ensure correct properties under the PT transformations.

9.3.2 Nongeometric Symmetries for Spin-Wave Dynamics

Formal analogybetween the equations ofmotion for the antiferromagnetic spinwaves
and the Maxwell’s equations enables us to generalize the concept of nongeometric
symmetries.Wemay ask a question about all the transformations ψ̄(t, p) → ψ̄ ′(t, p)
that leave the equation of motion (9.45) invariant.

In order to find all such symmetries, one can repeat the steps of Sect. 9.2.1.1. First,
we have to transform to the basis where H0( p) is diagonal. For this purpose, we
make a unitary transformation ψ̄ = Umψ̃ , where the transformation matrix, Um =
U1 ⊗ Û�, is given by the rotation matrix to the helicity basis in (9.14) (where p is
replaced by n) combined with the SU (2) rotation in the subspace of mp and l p

U1 = 1√
2

(
1 1

−1 1

)
. (9.47)
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The resulting equation of motion for ψ̃ is given by (9.45) with the diagonal matrix
on the right-hand side

H̃0 = U†
mH0Um = diag(−ω p, ω p, 0, ω p,−ω p, 0). (9.48)

This describes two antiferromagnetic spinwaveswith an energy dispersionω p degen-
erate with respect to the two polarization states. In an antiferromagnet, magnetization
precession is locked in the real space to the direction of n, so that these polarization
states correspond to left and right circular polarizations along the anisotropy axis.
This is in contrast to electrodynamics, where we deal with real helicity—precession
around the direction of wave vector p.

Secondly, we have to find all the matrices Q that commute with H̃0, which can
be done precisely in the same way as in (9.17). It should be mentioned that in the
region (α − α′)p2 � β, antiferromagnetic spin waves have almost linear dispersion,
ω p = cs p, where the velocity is given by cs = γ Ms

√
δ(α − α′). This fact gives them

the appearance similar to the electromagnetic waves. However, we emphasize that
the linear dispersion is not essential for our symmetry analysis.

What is important is that the eigenvalues of H̃0 are degenerate. This fact allows
us find the eight-dimensional algebra of the symmetry transformations, which is
isomorphic to invariance algebra of the Maxwell’s equations. The generators of this
algebra can be chosen as follows

Q1 = iσ2 ⊗ (Ŝ · n)D̂, Q2 = σ1 ⊗ Î ,
Q3 = σ3 ⊗ (Ŝ · n)D̂, Q4 = iσ2 ⊗ D̂,

Q5 = σ0 ⊗ (Ŝ · n), Q6 = σ3 ⊗ D̂,

Q7 = σ0 ⊗ Î , Q8 = σ1 ⊗ (Ŝ · n),

(9.49)

where D̂ = 2[(Ŝ · n⊥)2 − Î3n2
⊥]/n2⊥ − (Ŝ · n)2, Î3 = diag(0, 0, 1), and n⊥ = (n1,

n2, 0). The interpretation of these basis elements is similar to that in (9.19). We have
the unit element Q7, Q8 up to the factor of ω p coincides with H0( p) and, therefore,
commutes with all the other basis elements, and Q5 generates rotations along n.

Remarkably, Q2 plays a role of the duality transformation of the electromagnetic
field. It generates a continuous symmetry transformation, the Bogolyubov’s rotation,
in the subspace of mp and l p

mp → m′
p = mp cosh θ +

√√√√ ε
(l)
p

ε
(m)
p

l p sinh θ, (9.50)

l p → l ′p = l p cosh θ +
√√√√ε

(m)
p

ε
(l)
p

mp sinh θ, (9.51)



222 I. Proskurin and R. L. Stamps

which leaves (9.42) and (9.43) invariant for any real parameter θ . Similar to the
electrodynamics, we have an algebraic property Q2Q2 = Q8, which establishes a
relation between the duality, the rotation symmetry along n, and ∂t .

9.3.3 Conserving Chirality of Spin Waves

The existence of the symmetry transformations makes possible a formulation of the
conservation laws that correspond to these symmetries. Conserving quantities can
be expressed in terms of bilinear forms similar to (9.21)

C = 1

2

∫
d3 pψ†(t, p)ρQψ(t, p), (9.52)

where Q is a symmetry transformation, which can be expressed as a linear com-
bination of Qi (i = 1, . . . , 8), and the measure ρ = diag(ε(m)

p , ε(l)
p ) is necessary for

transforming from the symmetric representation of the equations of motions in (9.45)
and (9.46) to the original units.

The conservation law for spin-wave chirality can be formulated similar to the
expression for the optical zilch in Sect. 9.2.1.3. Since the rotation symmetry is pre-
served only along the direction of n, we take the component of the spin wavemomen-
tum along this direction pn = ( p · n)n, and apply the conservation law in (9.52) for
the symmetry transformation pnQ5 = (Ŝ · pn). As a result, the expression for con-
serving spin-wave chirality is given by

C (m)
χ = i

2

∫
d3 p

[
ε(m)
p m∗

p · ( pn × mp) + ε(l)
p l∗p · ( pn × l p)

]
, (9.53)

which is a direct analogue of the Lipkin’s zilch for the electromagnetic field. In real
space, the chirality density for spin waves can be written as

ρ(m)
χ (t, r) = 1

2

(
∇nm · ∂ l

∂t
+ ∇n l · ∂m

∂t

)
, (9.54)

where ∇n = ∇ · n.
Physical meaning of C (m)

χ becomes clear if we rewrite the expression (9.53) in
terms of circularly polarized magnon operators. In this case, total spin wave chirality
is determined by the difference between the number of left (N (R)

p ) and right (N (R)
p )

polarized magnons [38]

C (m)
χ = 2

∑
p

pnω p
(
N (L)

p − N (R)
p

)
. (9.55)
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Similar expression exists for the Lipkin’s zilch written in terms of the polarized
photon modes [30]. For a monochromatic spin wave, C (m)

χ becomes proportional to
the spin angular momentum component along n, which in terms of magnon number
operators is given by S(n) = ∑

p(N
(L)
p − N (R)

p ) [30].

9.3.4 Spin-Wave Chirality in Dissipative Media

Bynow,we have established that spinwaves in antiferromagnets can be characterized
by the chiral invariantC (m)

χ , which is analogous to the Lipkin’s zilch in optics. Similar
to the optical case, we may ask a question: how can we make this chirality of the spin
waves visible? To answer this question, we should look at the symmetries. SinceC (m)

χ

is a pseudoscalar that is odd under P and even under T , we have to break the same
symmetries inside the antiferromagnet following the idea discussed in Sect. 9.2.2 for
the light-matter interactions in chiral metamaterials.

Since our model in (9.40) is not chiral, we should provide some symmetry break-
ing mechanism. One interesting possibility of such mechanism that is relevant for
spintronic applications is based on electron spin current [38]. The flow of spin angu-
lar momentum is odd under the spatial inversion and even under the time reversal
transformation, therefore, its interaction with antiferromagnetic spin waves is able
to provide the necessary symmetry breaking.

The microscopic mechanism beyond this symmetry breaking is as follows. Let us
consider an electron spin current flowing along the magnetic ordering direction n,
which can be injected into an antiferromagnetic insulator film by a proximity effect
or can be created in bulk metallic antiferromagnets. A pure spin current consists of
a number of spin majority electrons (↑) polarized along n flowing with the velocity
vs parallel to n balanced by the same amount of spin minority electrons (↓) moving
with the velocity −vs , so that the net electric charge transport is zero. Since the
spin-wave dynamics is slow with respect to that of the electrons, the latter are able
to exert a spin transfer torque on the magnetization dynamics via the Zhang-Li
mechanism [58]. If the local s-d interactions between the electrons and sublattice
magnetizations are in the exchange dominant regime [59], which means that we can
neglect the intersublattice electron scattering, the spin majority (minority) electrons
couple mostly to M1 (M2) sublattice magnetization. In this situation, the spin-↑
electrons create the spin transfer torque acting mostly on the magnetization M1

T1 = − 1

M2
s

M1 × (M1 × (vs · ∇)M1) − ξ

Ms
M1 × (vs · ∇)M1, (9.56)

where the first (second) term is the adiabatic (non-adiabatic) torque component, and
ξ � 1 is the dimensionless parameter [58, 59]. At the same time, spin-↓ electron
flow produce the spin transfer torque T2 = −T1 applied to M2. Therefore, a pure
spin current in the exchange dominant regime of the electron-spin interaction is able
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Fig. 9.2 Schematic picture of a pure spin current inside an antiferromagnet. Spin majority (minor-
ity) electrons moving with the velocity +vs (−vs ) create adiabatic spin torque applied to M1 (M2).
These torques Doppler shift the energy dispersion of the left, ω(L)

p , and right, ω(R)
p , polarized modes

in the opposite directions lifting the degeneracy between magnons of different polarizations

to create a pair of equal anti-parallel spin transfer torques T1 and T2 acting on
magnetizations M1 and M2 respectively, as schematically shown in Fig. 9.2.

9.3.4.1 Doppler Shift from a Pure Spin Current

The Landau–Lifshitz–Gilbert equations of motion for the magnetizations in the pres-
ence of the spin-transfer torques are written as follows

∂M1

∂t
= γ M1 × Heff

1 + ηM1 × ∂M1

∂t
− vs

M2
s

M1 × (M1 × ∇nM1), (9.57)

∂M2

∂t
= γ M2 × Heff

2 + ηM2 × ∂M2

∂t
+ vs

M2
s

M2 × (M2 × ∇nM2), (9.58)

where we neglect non-adiabatic contribution to the spin torque. Taking into account
that |M i | = Ms (i = 1, 2), these expressions can be rewritten as follows

(
∂

∂t
∓ vs∇n

)
M i = γ M i × Heff

i + ηM i × ∂M i

∂t
, (9.59)

where the upper (lower) sign is for i = 1 (i = 2). This expression shows that the role
of the adiabatic spin transfer torque is to produce a Doppler shift of the spin waves by
the velocity vs . This effect is well-known for ferromagnetic and antiferromagnetic
spin waves when the Doppler shift is caused by a spin polarized electric current [59–
61]. In our case, the pure spin current produces two Doppler shifts in the opposite
directions for the magnetization dynamics on each sublattice.

By solving the equations of motion (9.57) and (9.58), it is possible to show that in
the presence of the spin current, the degeneracy between left and right polarizations
in the dispersion relations for the spin waves propagating along n becomes lifted,
and it can be approximated as follows [38]
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ω(R)
p = cs |p − ps | + iη(�s − pvs), (9.60)

ω(L)
p = cs |p + ps | + iη(�s + pvs), (9.61)

where ps = γ Msvsδ/(2c2s ),� = γ Msδ/2, and p � ps is the wave vector of the spin
waves along n, see Fig. 9.2.

This effect is in contrast to the Doppler shift from a spin polarized current where
both modes are shifted in the same direction so that the degeneracy holds [59]. The
imaginary parts of the frequencies ω(R)

p and ω(L)
p also have contributions from the

spin current of the opposite signs for the waves with left and right polarizations. This
can be considered as a spin-current-induced circular dichroims of spin waves, which
occurs at the characteristic length scale �CD = cs/(ηvs p).

Interestingly, the effect of spin current on the spin waves in the linear approxima-
tion is analogous to the existence of the additional Dzyaloshinskii-Moriya interaction
(DMI) term in the antiferromagnetic energy in (9.40)

WDMI = vs
2γ Ms

∫
d3r [m1 · (∇n × m1) + m2 · (∇n × m2)] , (9.62)

between the magnetizations on the same sublattices.

9.3.4.2 Asymmetric Energy Absorption

Let us now look at the spin-wave energy absorption. The dissipation rate for the
magnetization dynamics can be expressed through the Rayleigh dissipation function

dW

dt
= − η

γ

∫
d3r

[(
∂M1

∂t

)2

+
(

∂M2

∂t

)2
]

. (9.63)

According to the equations of motion (9.57) and (9.58), in the presence of the spin
current we replace ∂t with ∂t − vs∇n for M1 and with ∂t + vs∇n for M2. The energy
dissipation rate in (9.63) in this case acquires the asymmetric contribution propor-
tional to vs that is written as

(
dW

dt

)
χ

= 2ηvs
γ

∫
d3r

(
∇nm1 · ∂m1

∂t
− ∇nm2 · ∂m2

∂t

)
. (9.64)

The expression in parentheses is nothing but the spin-wave chirality density ρ(m)
χ

written in terms of m1 and m2.
As a result, when a pure spin current is injected into an antiferromagnet, the

asymmetry in the spin-wave energy absorption rate becomes proportional to the
spin-wave chirality, (dW/dt)χ = 2ηvsγ −1Cm

χ . This result is a direct analogy with
the result of Tang and Cohen [27] for the electromagnetic energy absorption rate in
chiral metamaterials, see Sect. 9.2.2. In antiferromagnetic materials, the microscopic
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mechanism beyond this phenomenon can be based on the adiabatic spin transfer
torque from a pure spin current, or on the DMI between the same sublattices, which
breaks the inversion symmetry and lifts the degeneracy between the left and right
polarized magnon modes. In contrast to optical metamaterials, where the asymmetry
in light-matter interactions is related to structural chirality, the symmetry breaking
mechanism, which is based on the spin current, induces chirality of the material in
controllable way. For a spin current density js ≈ 1011 A/m2 (in the electric units), we
obtain vs = μB js/(eMs) ≈ 30 m/s for Ms ≈ 3.5 × 105 A/m. This parameter should
be compared to the typical velocity of the spin waves in antiferromagnetic insulators
cs ≈ 10−4 m/s, which gives vs/cs ≈ 10−3. The characteristic length of the magnon
circular dichroism, in this situation, �CD ≈ 5 mm for the magnon frequencies about
1 THz and η ≈ 104. Curiously, the effective strength of the DMI, Deff = �vs/(kBa0)
is about 0.5 K (a0 is the lattice spacing), which is comparable to a typical DMI
strength in magnetic materials.

9.4 Excitation of Magnon Spin Photocurrents with
Polarized Fields

Among the major goals of spintronics are generation of spin currents, their trans-
mission over large distances, and conversion from one form to another because the
spin angular momentum can be carried by different types of carriers. Since magnons
are able to carry spin angular momentum, spin excitations in low damping magnetic
insulators are good candidates for being spin current mediators. The absence of the
net magnetization and the existence of two polarization states per magnon make
antiferromagnetic insulators particularly suitable for applications as spin current
conductors. It was demonstrated that an introduction of a thin layer of the antifer-
romagnetic insulator can enhance the spin current transmission in interface systems
[62, 63].

Magnon spin currents in antiferromagnetic insulators can be excited by several
methods. For example, it can be done by pumping a magnon spin current from a
neighboring ferromagnetic layer [62]. Thermal excitation of spin currents via the spin
versions of the Seebeck and Nernst effects also has attracted considerable attention
[64–68]. The latter is especially interesting in low-dimensional materials, where it
is provided by topological terms in magnon dynamics [69–71].

Optical control of spin states in antiferromagnetic insulators [72, 73] is a feature
in the emerging field of antiferromagnetic optospintronics [5]. In this respect, it is an
intriguing problem to investigate whether it is possible to find some sort of magnon
photo-effect [44]. Symmetry considerations suggest that this is indeed possible. As
we have already mentioned, spin currents satisfy the definition of true chirality [11],
which can be directly seen from the conservation law for the μth component of the
spin density

∂sμ(t, r)
∂t

+ ∇ · jμ(t, r) = 0. (9.65)
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Since sμ(t, r) is T odd and P even, the spin current density jμ(t, r) has opposite
transformation properties. As we have seen in Sect. 9.2, the electromagnetic field can
be characterizedbyoptical chiralityρχ (t, r)with the same transformations properties
as jμ(t, r). Therefore,wemay expect that by exposing an antiferromagnetic insulator
to a circularly polarized electromagnetic field, we can excite a spin photocurrent,
which direction should be determined by the helicity of light.

In this section, we will consider these arguments in detail, and show that this
photo-excitation process requires the frequency of the electromagnetic field to be in
the region of the antiferromagnetic resonance. We begin with a semiclassical theory.
Nonlinear response and geometric effects in low dimensional materials are discussed
at the end of this section. First we consider an interesting phenomenon analogous to
the Zitterbewegung effect for magnons.

9.4.1 Magnon Spin Currents in Antiferromagnets

Equations (9.42) and (9.43) preserve rotation symmetry along the magnetic ordering
direction that warrants conservation of the total angularmomentum component along
n. From these equations, the time evolution of thenth component of themagnetization
M (n) = 1

2Ms
(m2

2 − m2
1) is written in the following form

∂M (n)(t, r)
∂t

= 1

4Ms

∑
pq

e−iq·rn ·
{(

ε
(l)
p−q − ε

(l)
− p

) [
l∗p−q × l p

]

+
(
ε

(m)
− p+q − ε(m)

p

) [
m∗

p−q × mp
]}

. (9.66)

In the limit q → 0, this equation can be rewritten in the form of a continuity equation
∂t M (n)

q + iq · J (n)
s = 0, where

J (n)
s = i

4Ms

∑
p

(
∂ε(m)

p

∂ p
m∗

p · (n × mp) + ∂ε(l)
p

∂ p
l∗p · (n × l p)

)
(9.67)

is the total magnon spin current. This expression looks similar to our definition of the
spin-wave chirality in (9.53), especially if we consider the spin current flow along
n. However, as we shall see below, in contrast to magnon chirality, J (n)

s does not
obey any conservation law. It should be mentioned that the same expression for the
spin current can be obtained directly from the antiferromagnetic Lagrangian using
Noether’s theorem (see Appendix).

It is interesting to discuss the analogy between antiferromagnetic magnon spin
currents and charge currents in pseudo-relativisticDiracmaterials. In the latter case, it
was demonstrated that interband effectsmake a significant contribution near theDirac
point and can explain, for example, the universal conductivity of graphene [74]. In the
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relativistic language, interband effects in the dynamics of an electron wave packet
correspond to the Zitterbewegung, or the trembling motion of an ultra-relativistic
particle [74]. TheZitterbewegung effect has also been proposed for antiferromagnetic
magnons [40]. It can be easily understood by looking at the time evolution of ψ̄ p(t)
calculated from (9.45) to (9.46)

ψ̄ p(t) = 1

2

{[
1 + σ1 ⊗ (Ŝ · n)

]
eiω pt +

[
1 − σ1 ⊗ (Ŝ · n)

]
e−iω pt

}
ψ̄ p(0), (9.68)

which is similar to the analogous equation for relativistic particles [74]. This expres-
sion contains the off-diagonal elements responsible for the mixing of mp and l p
components of ψ̄ p while evolving in time.

By applying (9.68) to the time evolution of the spin current in (9.67), we find
that the spin current has two contributions, J (n)

s (t) = J (n)
s0 + J (n)

s1 (t). The first con-
tribution is conserved part of the spin current. It does not depend on time and is
proportional to the group velocity of magnons v p = ∂ω p/∂ p. In our matrix nota-
tions, it can be written as

J (n)
s = 1

4Ms

∑
p

v pψ̄
†(0)(Ŝ · n)ψ̄ p(0). (9.69)

The second term in the spin current oscillates at the double frequency, and can be
attributed to the Zitterbewegung of magnons

J (n)
s1 (t) = 1

16Ms

∑
p

e2iω pt K pψ̄
†
p(0)

(
(Ŝ · n) 1

−1 −(Ŝ · n)

)
ψ̄ p(0) + H.c., (9.70)

where

K p = 1

ω p

(
ε(l)
p

∂ε(m)
p

∂ p
− ε(m)

p

∂ε(l)
p

∂ p

)
. (9.71)

The physical meaning of these terms becomes clear if we transform to the helic-
ity basis, ψ̃ p = (ψ̃(R)

p , ψ̃(L)
p )T , where we have well-defined left and right polarized

magnonmodes, see (9.14), (9.47) and (9.48). In this basis, the first term is determined
by the difference in numbers of magnons with opposite polarizations

J (n)
s = 1

4Ms

∑
p

v p
(
ψ̃∗(R)

p ψ̃(R)
p − ψ̃∗(L)

p ψ̃(L)
p

)
, (9.72)

while the second term is purely off-diagonal and corresponds to the interband pro-
cesses

J (n)
s1 (t) = − 1

8Ms

∑
p

ψ̃†
p(0)

(
0 K p Ŝze−2iω p Ŝz t

K p Ŝze2iω p Ŝz t 0

)
ψ̃ p(0). (9.73)
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It should be mentioned that the contribution of the oscillating term in total spin
current may seem insignificant. Indeed, in the theory the spin Seebeck effect only the
term given by (9.72) was taken into account in the definition of the spin current [65,
66]. In this case, the second term, which mixes magnons of different helicities, has
vanishing contribution. However, as we discuss below, such processes as the photo-
excitation require both terms being considered with equal attention. Moreover, the
contribution of the second term in (9.73) may become dominant in low-dimensional
systems where it may contain geometric phase effects.

9.4.2 Photo-Excitation of Magnon Spin Currents

Let us now turn to a semi-classical theory of photo-excitation of magnon spin cur-
rents. For this purpose, we add a magneto-dipole interaction between the magnetic
field component of the electromagnetic wave h(t, r) and the magnetization of the
antiferromagnet, so that the total energy is written as

Wt = W −
∫

d3r(M1 + M2) · h(t, r), (9.74)

where W is determined by (9.40). In this case, (9.43) acquires the additional term
−2γ Ms[n × hp(t)], where hp(t) is the Fourier component of themagnetic field. The
system of equations of motion (9.42) and (9.43) can be easily solved by transforming
the ω-domain, which gives

mp(ω) = 2γ Ms

ε(l)
p h p(ω)

ω2
p − ω2

, (9.75)

l p(ω) = 2iγ Ms
ω[n × hp(ω)]

ω2
p − ω2

. (9.76)

The Gilbert damping can be phenomenologically introduced in these equations by
considering complex parameters ε(α)

p → ε(α)
p − iηω (α = m, l). Using the definition

of the spin current in (9.67), we find the current excited by the magnetic field vector
(Fig. 9.3)

J (n)
s = iγ 2Ms

∑
pω

ε(l)2
p ∂ pε

(m)
p + ω2∂ pε

(l)
p(

ω2 − ω2
p

)2 h∗
p(ω) · [n × hp(ω)]. (9.77)

This expression shows that the direct spin current excited by the electromagnetic
wave is the second order effect in hp(ω), and is determined by the asymmetric com-
bination h∗

p × hp, so that the direction of the current is determined by helicity of the
electromagnetic wave. The effect is resonantly amplified near the antiferromagnetic
resonance ω ≈ ω p.
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Fig. 9.3 Schematic picture
of the magnon photocurrent
J (n)
s induced inside an

antiferromagnet by the
circularly polarized
electromagnetic wave
propagating along the
direction of magnetic
ordering

Photo-excitation of magnon spin currents in antiferromagnetic insulators shows
some similarity with the circular photogalvanic effect in noncentrosymmetric metals
[45]. In the latter case, a direct electric photocurrent is generated by the helical
combination the electric-field vector of the electromagnetic wave, E∗(ω) × E(ω),
so that the direction of the current is reversed whenever circular polarization of light
is switched to the opposite.

In order to have further insight into magnon spin photocurrents, let us consider a
quantum variant of our theory.

9.4.3 Microscopic Theory of Magnon Spin Photocurrents

The spin Hamiltonian for an antiferromagnetic insulator with two magnetic sublat-
tices A and B can be written in the following form

Ĥ =
∑
i j

1

2

(
Ji j S

(+)
i S(−)

j + J ∗
i j S

(−)
i S(+)

j

)
+

∑
i j

J ′
i j S

z
i S

z
j − K

∑
i

(Szi )
2, (9.78)

where Ji j and J ′
i j are the exchange interaction constants such as Re Ji j > 0 and

J ′
i j > 0 for the nearest neighboring sites on A and B sublattices, and K ∼ βa−3

0 is
the magnetic anisotropy that stabilizes the antiferromagnetic ordering along the z
direction. We do not specify any lattice configuration at this stage. However, we note
that Ji j may have a complex phase factors in the presence of DMI.

The spin-wave approximation for theHamiltonian (9.78) is conveniently expressed
by the Holstein–Primakoff transformation of the spin operators

S(+)
i A = √

2Sai , S(+)
i B = √

2Sb†i ,
S(−)
i A = √

2Sa†i , S(−)
i B = √

2Sbi ,
Szi A = S − a†i ai , Szi B = −S + b†b†i ,

(9.79)

where ai and bi are boson operators at the A and B sublattice respectively, which sat-
isfy boson commutation relations. By transforming these operators to the reciprocal
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space, ai = ∑
k exp(ik · r i )ak and bi = ∑

k exp(ik · r i )bk, we can rewrite (9.78) in
the following form

Ĥ =
∑
k

[
Ak

(
a†kak + b†−kb−k

)
+ Bkakb−k + B∗

ka
†
kb

†
−k

]
, (9.80)

where parameters Ak and Bk include microscopic details. For example, in the case
when the exchange interactions are limited by the nearest neighboring sites so
that Ji j = J

′
i j = J1, we obtain Ak = 2K S + Z J1S and Bk = J1S

∑
δ exp(−ik · δ),

where δ connects a site on the A sublattice with its Z nearest neighboring sites on
the B sublattice.

9.4.3.1 Magnon Spin Currents: Quantum Version

The expression for a magnon spin current can be derived following the same steps as
in Sect. 9.4.1. Considering the equation of motion for the z component of the local
spin density, n(r i ) = b†i bi − a†i ai , we find the total magnon spin current

Ĵ s =
∑
k

[
∂Ak

∂k

(
a†kak + b†−kb−k

)
+ ∂Bk

∂k
akb−k + ∂B∗

k

∂k
a†kb

†
−k

]
. (9.81)

This expression can be conveniently written in the matrix form

Ĵ s =
∑
k

χ
†
k

∂Hk

∂k
χk, (9.82)

where we introduced χk =
(

ak
b†−k

)
and Hk =

(
Ak B∗

k
Bk Ak

)
. Note that in this rep-

resentation, χk does not satisfy boson communication relations; instead one has
[χk, χ

†
k′ ] = σzδk,k′ , which should be kept in mind.

Let us find how Ĵ s transforms under the Bogolyubov’s transformation that pre-
serves boson commutation relations of magnon operators. In the matrix form, this
transformation is expressed as χk = Ukχ̃k, where the transformation matrix is deter-
mined by two real parameters θk and φk:

Uk =
(
cosh θkeiφk − sinh θk
− sinh θk cosh θke−iφk

)
. (9.83)

Since the definition of spin current involves ∂k, its transformation properties invoke
covariant derivativeswith respect toUk. Explicit calculations show that in an arbitrary
basis

Ĵ s =
∑
k

χ̃
†
k

∂H̃k

∂k
χ̃k − ∂ Â

∂t
, (9.84)
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where H̃k = U †
kHkUk is the Hamiltonian in the transformed basis, and

Â = ∑
k χ̃

†
kAkχ̃k with

Ak = −iσzU
−1
k

∂Uk

∂k
(9.85)

being the connection associated with the transformation Uk.
Among the various representations, there is one specific basis, where the Hamil-

tonian in (9.80) becomes diagonal. This basis is reached by choosing tanh 2θk =
|Bk|/Ak and φk = arg Bk, which gives

Ĥ =
∑
k

εk

(
α
†
kαk + β

†
−kβ−k

)
, (9.86)

where εk =
√
A2
k − |Bk|2 is the magnon energy dispersion. To find the expression

for the spin current in this basis, we notice that in (9.84)

− ∂ Â
∂t

= i[ Â, Ĥ ] =
∑
k

(α
†
k, β−k)

(
0 K ∗

k
K k 0

)(
αk

β
†
−k

)
, (9.87)

is purely off-diagonal with Kk = eiφk
[
ε−1
k (Ak∂k|Bk| − |Bk|∂kAk) − i |Bk|∂kφk

]
.

Therefore, the total magnon spin current is written as

Ĵ s =
∑
k

(α
†
k, β−k)

(
vk K ∗

k
K k vk

)(
αk

β
†
−k

)
, (9.88)

where vk = ∂kεk is the group velocity of magnons [44]. This expression generalizes
two contributions to the spin current in (9.72) and (9.73) identified earlier in our
semi-classical approach.

9.4.3.2 Nonlinear Response Theory for Magnon Spin Photocurrents

By using semi-classical equations of motion in Sect. 9.4.2, we have already demon-
strated that magnon spin photocurrent is the second order effect in the magnetic field
of the electromagnetic wave. Here, we show how the process of photo-excitation can
be described via the nonlinear response theory.

Considering interaction of magnons with the electromagnetic wave as a perturba-
tion, we can express the excited spin current using the second-order Kubo formula
[75]
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〈 Ĵ s(t)〉 = −
∑
ω1ω2

∫ t

−∞
dt1

∫ t1

−∞
dt2e

ε(t1+t2−t)eiω1t1+iω2t2

×
〈[[

Ĵ s(t), Ĥ
(ω1)
I (t1)

]
, Ĥ (ω2)

I (t2)
]〉

, ε → 0+, (9.89)

where the interacting part of the Hamiltonian is taken in the form of dipole inter-
action between the magnetic field vector Bk(ω) and the local magnetization of the
antiferromagnet, ĤI = −gμB

∑
i B(t, r i )(Si A + Si B), where g is the Landé factor.

In terms of magnon operators, it is expressed as

Ĥ (ω)
I = −gμB

√
S

2

∑
k

[
B

(−)

k (ω)
(
ak + b†−k

)
+ H.c.

]
. (9.90)

In (9.89), the operators are in theHeisenbergpicture, e.g. Ĥ (ω1)
I (t1) = exp(i Ĥ t1)Ĥ

(ω1)
I

exp(−i Ĥ t1), and the statistical average is with the density matrix of the noninteract-
ing system ρ0 = exp(−Ĥ/kBT ).

Straightforward algebra shows that the spin current is calculated from (9.89) as
follows [44]

〈 Ĵs(t)〉 = 1

4

∑
ωk

[
vkμk

(εk − ω)2 + �2 + vkμk

(εk + ω)2 + �2

+ λk K k
(εk − ω − i�)(εk + ω − i�)

+ λ∗
k K

∗
k

(εk − ω + i�)(εk + ω + i�)

]
h(−)
k (ω)h(+)

−k (−ω),

(9.91)

where h = −gμB

√
2SB, h(±) = hx ± hy , and the coefficient are given by

μk = Ak − |Bk| cosφk√
A2
k − |Bk|2

, (9.92)

λk = e−iφk

⎛
⎝ Ak cosφk − |Bk|√

A2
k − |Bk|2

− i sin φk

⎞
⎠ . (9.93)

This expression contains two kinds of terms. The first is proportional to the group
velocity of magnons, and, therefore, can be associated with actual motion of magnon
wave packets. The second, proportional to Kk, is related to intersublattice dynamics;
it contains the phase gradient, ∂kφk. This phase can be interpreted as an offset in
dynamics of the magnetizations on A and B sublattices given by ak(t) ∼ exp(iεkt)
and b†−k(t) ∼ exp(iεkt − iφk) respectively. It may be accumulated as a result of the
DMI combined with a specific lattice configuration [76], or be generated by the
external electric field via the Aharonov-Casher effect [77, 78].
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In the case when both vk and Kk are odd under the transformation k → −k, the
spin current is determined by the asymmetric part of h(−)

k (ω)h(+)

−k (−ω), which is
proportional to i[h∗

k(ω) × hk(ω)]z . In the limiting case � → 0 and φk = 0, we can
combine both kinds of terms in (9.91), which eventually gives

〈 Ĵ s(t)〉 = i

2

∑
ωk

q2
k∂k pk − ω2∂kqk

(ε2k − ω2)2
[h∗

k(ω) × hk(ω)]z, (9.94)

where pk = Ak + |Bk| and qk = Ak − |Bk|, which coincides with (9.77) obtained
from the semi-classical equations of motion [44].

9.4.4 Magnon Spin Photocurrents in Antiferromagnetic
Insulators and Low Dimensional Materials

We have demonstrated that in antiferromagnetic materials magnon spin currents con-
tain intraband terms, proportional to the group velocity of magnons, and interband
terms, which by analogy to the relativistic mechanics can be associated with the
Zitterbewegung effect of magnons. The latter is proportional to the fast-oscillating
factors, which makes these terms irrelevant as far as response to a static perturbation
is concerned. For the thermal excitation of spin currents, for example, the antiferro-
magnetic spin current can be taken in the form of (9.72) [65, 69, 70].

The response to a dynamic perturbation is different. Since spin photocurrent is
the second-order effect, the interband terms that oscillate at the double frequency
should be taken into account together with the intraband contributions, so that the
resulting response current is given by (9.94).

For practical applications, the most interesting frequency region is near the anti-
ferromagnetic resonance, ω ≈ εk. In this area, the response current is resonantly
amplified and determined by the damping of the material. In the case of bal-
listic magnon transport, when εk � �, we can replace ω − εk ± i� → ±i� and
ω + εk ± i� → 2ωr near the resonance ωr . In this limit, the dominant contribution
in (9.91) comes from the first term proportional to vk

〈 Ĵs〉res ≈ iqk
4�ωr

vk
�2

[h∗(ωr ) × h(ωr )]z, (9.95)

where we used monochromatic microwave field with hk(ω) [44]. This expression
allows to estimate the order of magnitude for the spin photocurrent excited with
circularly polarized light as 〈 Ĵs〉res ≈ χg2μ2

B J1S
2cs IB/(2a0c2�η2ωr ), wherewe take

� = �ηωr , χ = ± denotes helicity of the wave, IB = |B(ωr )|2 is intensity, and
linear magnon energy disperison is implied, |vk| = cs . For a typical material with
cs = 3 × 104 m/s, Js = 200 K, ωr = 3 × 1013 s−1, η = 10−4, and a0 = 0.5 nm, we
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Fig. 9.4 Two-dimensional antiferromagnetic insulator with two magnetic sublattices SA and SB
on the honeycomb lattice. Green arrows show the DMI configuration. The sign of Di j is positive
for i → j pointing from A to B

estimate 〈 Ĵs〉res ≈ 1.5 × 104 A/m2 (in electric units e/�) for the microwave field
strength |B| ≈ 10 mT.

Relative contributions of different terms in (9.91) depend on the lattice config-
uration and on the details of microscopic interactions. We may expect that in low-
dimensional antiferromagnets interband contribution determined by the phase gra-
dient becomes more significant. We can separate this contribution from (9.91) as
follows

〈 Ĵ s〉φ = 1

2

∑
ωk

|Bk| sin φk∂kφk

ω2 − ε2k
h(−)

k (ω)h(+)

−k (−ω). (9.96)

Let us find a model system where this term in the spin current can be excited
individually. For this purpose, we consider a two-dimensional antiferromagnet on
the honeycomb lattice, as schematically shown in Fig. 9.4. This model is interesting
because antiferromagnetic magnons on the honeycomb lattice have finite φk even
without DMI. Indeed, straightforward algebra shows that Bk = J1SCk, where the
structure factor is Ck = 2 cos(kx/2) cos(

√
3ky/2) − 1 + 2i sin(kx/2)[cos(kx/2) −

cos(
√
3ky/2)], which in the long-wavelength limit gives the phase φk ≈ kx (3k2y −

k2x )/8.
Note thatφk is oddunder k → −k. In order to break this symmetry,we add the spe-

cific DMI configuration Di j (Si × S j )z between the nearest neighboring sites i and j
on the honeycomb lattice, such as Di j = D if i ∈ A and j ∈ B, and Di j = −D oth-
erwise. Adding such term does not modify the energy dispersion, but instead leads to
the constant phase accumulation Bk = J1SCk exp(iφ0)where tan φ0 = D/J1. In this
case, sin(φk + φ0)∂kxφk remains finite even in the kx → 0 limit. Therefore, by using
(9.96), we are able to excite magnon spin current along x by the linearly polarized
electromagnetic wave propagating along the y axis, see Fig. 9.4. The magnitude of
the spin current is estimated as 〈J x

s 〉φ ≈ 3g2μ2
B J1S/(8�2c2) sin φ0 IBω2/(ω2 − ε2k),

and its sign is proportional to the sign of φ0.
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9.5 Conclusions

We have discussed how symmetry analysis can help to bring new ideas from optics
to antiferromagnetic spintronics. Our discussion started with an observation that a
formal similarity between the electromagnetic field and spin waves in an antiferro-
magnetic insulator allows to find a generalization of optical chirality. This forms
a background for establishing a link between optics of chiral metamaterials and
magnonics. For example, spin wave absorption in chiral antiferromagnets can be
described in the same terms as the electromagnetic energy dissipation in metamate-
rials.Moreover, in antiferromagnets a pure spin current can provide a chiral symmetry
breaking in a controllable way through the spin torque mechanism.

Fundamentally, this follows from the fact that spin currents are truly chiral; they
have the same PT transformation properties as e.g. optical chirality density. The
latter suggests that chiral electromagnetic fields can be used for magnon spin current
generation.We discussed that a direct magnon spin current appears as a second-order
response to the circularly polarized microwave field, which frequency is near the
antiferromagnetic resonance. The direction of the current is determined by helicity
of light that makes it similar to the circular photogalvanic effect in metals.

Lastly, we discuss how magnon spin currents in antiferromagnets have an inter-
esting dynamics that can come into play for photo-excitation. Besides the transport
terms proportional to the group velocity of the spin waves, there is a contribution
from the trembling motion of magnons, which can be identified by analogy with
motion of ultra-relativistic particles. Although these fast oscillating terms can be
safely omitted in some applications, they contribute to the photo-excitation process.

Acknowledgements R.L.S. acknowledges the support of the Natural Sciences and Engineering
Research Council of Canada (NSERC) RGPIN 05011-18.

Appendix: Magnon Spin Current Definition from the
Antiferromagnetic Lagrangian

Let us consider a classical spin model for an antiferromagnet with two sublattices
SA and SB with the energy given by

HAFM = J
∑
〈i j〉

Si · S j − K
∑
i

(Szi )
2, (9.97)

where J > 0 is a nearest neighboring exchange interaction, K is the anisotropy
constant along the z-axis, and summation is over the nearest neighboring sites on
the A and B sublattices. For simplicity of notations, we consider one-dimensional
arrangement of Si along x . Semi-classical dynamics of this model can be captured
from the following Lagrangian [79]
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L =
∫

dx

[
ρM ·

(
L × ∂L

∂t

)
− a

2
|M|2

−A
∂

∂x

[(
∂L
∂x

)2

−
(

∂M
∂x

)2
]

− �M · ∂L
∂x

+ β̃

2
(Lz)2

]
,

(9.98)

where M = 1
2S (SA + SB) and L = 1

2S (SA − SB), which satisfy the constraints M ·
L = 0 and M2 + L2 = 1. The parameters of the Lagrangian are as follows: ρ =
2�S, a = 8J S2, � = 2J S2a0, A = J S2a20 , and β = 4K S2. Note that this expression
contains so-called topological term proportional to �, which breaks the inversion
symmetry in the Lagrangian [79].

The expression for the spin current canbeobtained applying theNoether’s theorem
to the Lagrangian transformation under the local infinitesimal rotation around z

M → M + δφ( ẑ × M), (9.99)

L → L + δφ( ẑ × L), (9.100)

where δφ(x) is the local rotation angle. The corresponding change in the Lagrangian
is given by

δL = −
∫

dxδφ

{
ρ

∂

∂t

[
Mz(1 − |M|2)]

−A
∂

∂x

[
( ẑ × L) · ∂L

∂x
− ( ẑ × M) · ∂M

∂x

]
− �

∂

∂x

[
M · ( ẑ × L)

]}
,

(9.101)

which gives the following expression for the spin current density

j zs = −A ẑ
[(

L × ∂L
∂x

)
−

(
M × ∂M

∂x

)]
− � ẑ · (L × M). (9.102)

The first term in this expression is consistent with the expression for the spin current
obtained from the equations of motion. The second is the contribution from the
topological terms, which has different symmetry. In particular, it changes the sign if
we interchange SA and SB .
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Chapter 10
Realization of Artificial Chirality
in Micro-/Nano-Scale Three-Dimensional
Plasmonic Structures

Younghwan Yang, Yeseul Kim, Junho Gwak, Sunae So, Jungho Mun,
Minkyung Kim, Heonyeong Jeong, Inki Kim, Trevon Badloe,
and Junsuk Rho

Abstract Recent advancements in nano- and micro-fabrication technology have
allowed the realization of artificial structured materials with strong electromag-
netic chirality, far-exceeding natural chiral materials. This chapter categorizes the
fabrication methods for realizing chiral structures based on the feature sizes, which
closely relates to the operating wavelengths. Conventional top-down and bottom-up
approaches are discussed along with their respective advantages and disadvantages,
and the recently developed unconventional fabrication methods are also provided.
Additionally, the chiral responses of the fabricated structures are briefly introduced.
This chapter will contribute to the understanding of possible chiral structure designs
and help to develop further fabrication methods for improving chiroptical activity.

10.1 Introduction

Achiral object cannot be superimposed onto itsmirror image by only translations and
rotations. In general, a chiral object and its mirror image (enantiomer) have iden-
tical physical characteristics such as mass, so they cannot be distinguished easily
[1]. However, they may interact differently with other chiral objects; this feature
has significant implications in pharmaceutics and synthetic chemistry, because a
chiral molecule and its enantiomer have different chemical properties. Such chiral
objects interact enantioselectively with circularly-polarized light, i.e., the chiral
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objects interact differently with left-circularly-polarized (LCP) and right-circularly-
polarized (RCP) light. Their absorption difference under LCP and RCP incidences
is circular dichroism (CD), and the polarization rotation of light interacting with the
chiral objects is optical rotatory dispersion. However, naturally occurring materials
have intrinsically weak chiroptical responses, or circular birefringence, due to the
large mismatch between the wavelength and the sizes of chiral molecules. This weak
response hinders application of chiroptical properties.

Recent advances in artificial chirality in structured materials suggest a possibility
of generating materials that have strong chiroptical properties that far exceed those
found in natural materials, and chiral effects have been observed universally across
different length scales. According to the antenna theory [2], the resonant wavelength
of a single antenna is comparable to its geometric feature size. This principle also
applies to chiral effects; the working wavelength of the chiral effects becomes gener-
ally similar to the geometric feature size of the chiral antenna. Therefore, chiral
antennas that operate at wavelengths of micrometers or longer are relatively easy to
fabricate. This principle applies because the optical properties ofmetals at longwave-
lengths are well represented as conductor (metallic) [3]. However, the optical prop-
erties of metals near the plasma frequency become strongly dispersive and deviate
from those of a perfect conductor. Due to this feature, metallic antennas become
lossy at wavelengths near the visible regime. With these points in mind, fabrication
methods should be considered with regards to the desired working wavelength and
the properties of the material.

Recently, subwavelength metallic particles have been actively investigated for
surface-enhanced Raman scattering [4], photothermal effects [5], and optical
antennas [6] due to their strong near-field enhancement and scattering effects, which
originate from localized surface plasmon resonance (LSPR) coming the collective
oscillations of electrons and photons trapped on the surface of the small particles
[7]. When the particle size is much smaller than the wavelength, the LSPR can
be predicted using the quasistatic theory. Therefore, the metallic antennas near the
visible regime are distinguished from those at longer wavelengths as plasmonic
antennas. The wavelength scaling principle above does not apply to plasmonic
antennas [3], and subwavelength (~10 nm) chiral plasmonic nanoparticles (NPs)
have strong chiral effects in the visible spectrum. In addition, the LSPR wavelength
can be further redshifted without increasing the particle size by using high refractive
index core and plasmonic shell [8, 9].

In this chapter, we discuss a few fabrication methods of chiral structures and their
applications. Sections are divided according to the structure size, because it deter-
mines working wavelengths and the fabrication methods, and applications strongly
depend on the working wavelengths.
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10.2 Chirality at the Micrometer-Scale or Higher:
Top-Down Approach

This chapter will introduce chiral plasmonic structures and their realization in
micrometer-scale or beyond by using top-down fabrication. Artificial microscale
structures generally interact with electromagnetic (EM) waves of 1μm or more. The
wavelength range (λ > 1.0 μm) includes infrared and microwave regions; they can
be utilized for thermal detectors, light detection and ranging (LiDAR) devices, short-
range wireless communication antenna, and spectroscopy.With these applications in
mind, chiral plasmonic structures have been demonstrated from 1 μm size structures
to millimeter-scale chiral ones. In this subchapter, their fabrication methods will be
categorized by scales of artificial structures sizes; brief descriptions of chiroptical
phenomena will be added.

10.2.1 Direct Laser Writing

A fewmicrometer-scale chiral structures (e.g. helical structures) have been fabricated
using direct laser writing (DLW). This method can yield structures that have high
aspect ratio, and that demonstrate a multi-pitch helix (Fig. 10.1a–c). These structures
exhibit different chiroptical properties depending on how their helicities are designed.
For example, two-pitch helical structures have been investigated as metamaterials to
induce broadband, strong CD (Fig. 10.1a) [10]. In the wavelength range 3 ≤ λ ≤ 6.5
μm, chiral structures interact only with EM waves that have the same handedness of
polarization.

The corresponding structures are fabricated (Fig. 10.1d) by combining DLW and
electroplating with a positive-tone photoresist (PR). First, a substrate coated with

Fig. 10.1 SEM images and schematic of fabricationmethods with direct laser writing. This method
can fabricate a multi-pitch gold helixes, b tapered helixes and c handedness-converted helical
structures. d The illustration shows fabrication process of gold helixes by combining direct laser
writing and electroplating process. A positive photoresist is spun onto a substrate. And then, patterns
are exposed by direct laserwriting.Vacancies are filledwith goldwith electroplating.Gold structures
are finally fabricated with removing the residual photoresist. (a) and (d) from [10], (b) from [11],
(c) from [12]
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thin indium-tin-oxide (ITO) is prepared, and then a positive-tone PR is spin-coated
on it. The ITO has electrical conductivity, which is required to allow use of the
electroplating processes. Second, the positive-tone PR is polymerized using focused
photons, and the exposed spot is removed after the development process. Third,
electrochemical deposition is conducted to grow gold structures in the voids in the
polymer.Gold is a typicalmaterial for chiral plasmonics due to its high conductivity to
enable electron oscillations, and to its resistance to corrosion. Finally, the remaining
PR is removed using oxygen plasma etching to leave sophisticated gold structures.

The main strength of DLW is that three-dimensional printing induced by multi-
photon polymerization yields the highest degree of design freedom [13, 14]. DLW
can fabricate various helical structures, which have different chiroptical activi-
ties depending on the helical parameters and design. For example, tapered helical
structures [11] increase extinction ratio and broaden bandwidth simultaneously.
Handedness-converted helical structures achieve spin-conversion efficiency within
the frequency range of 50−90 THz (6 ≥ λ ≥ 3.33 μm) (Fig. 1d) [12]. However,
DLW has the disadvantage of limited resolution, so the wavelength band in which it
works has a lower limit. The method is also slow, so it cannot be used practically to
pattern large areas.

10.2.2 Buckling Process Using Focused Ion Beam

Thin-filmbuckling process enables curved surfaceswith sizes of tens ofmicrometers;
the curvature enables three-dimensional chiral structures. This thin-film-buckling
method includes cutting and foldingflat objects. Some three-dimensional chiral struc-
tures have gigantic chiral phenomena, compared to two-dimensional chiral structures
[15]. Furthermore, this buckling process does not require stacking and aligning,
which are necessary steps in multi-layer fabrications. The residual stress can be
induced by various stimuli, including temperature, mechanical forces, and capillary
forces [16–19]. In this subchapter, we will consider focused ion beam (FIB)-induced
buckling which is a recently emerging method.

Residual induced compressive forces have been evaluated as methods to create
chiral structures and strengthen their chiroptical responses [20]. One method to
generate residual stress in a surface of thin film is to use FIB to implant ions. This
technique requires only a single step, and has both high accuracy and high resolu-
tion, so the method can fabricate desirable chiral structures. For example [15], one
chiral structure that had a strengthened chiroptical response (Fig. 10.2a); to generate
plasmonic responses, the authors used a gold thin film in which residual stress was
imposed by global ion beam irradiation (Fig. 10.2b). Curvatures of the structures can
be modulated by controlling the dose intensity during irradiation, so chiral structures
can be shaped with quite high accuracy (Fig. 10.2c).

Compared to two-dimensional structures, buckled chiral techniques enable versa-
tile geometries. Chirality is derived from the difference in interaction depending
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Fig. 10.2 Understanding of buckled structures fabricated by focused ion beam, a The rosette
arrays are fabricated with buckling process with focused ion beam. Two different handedness can
be fabricated,bAglobal radiation buckle a thin films.Right image shows a pre-buckled structure. the
left-one shows post-bucked structures, c A film are buckled by global radiation, d measured chiral
reponses of bucked structures, e The buckling process dramatically increase an optical rotation.
(a–e) from [15]

Fig. 10.3 Artificial chiral structures using photolithography and electroplating. a SEM image
shows fabricated 3D chiral structures, b A unit-cell is consist of four-chiral structures and they are
composed of four differentmaterials, c SEM image shows a rotating arrangement of chiral structures
by consisting unit-cell. The rotating arrangement induces chiral responses, d Schematic shows a
fabrication process for chiral structures, e-f Handedness switch can be described by LC-circuit
interpretation. (a–f) from [21]

on the spin-states of the circularly-polarized light and can be expanded to three-
dimensional twisted structures. The different optical response is related to the elec-
tromagnetic coupling, which can be enhanced by three-dimensional structures [22].
Figure 10.2a, b show twisted chiral structures fabricated using a FIB, achieving a
strong chiral response from three-dimensional structures using the residual stress
of films. This method can be used to create versatile geometric structures with ion
beam dose splitting (Fig. 10.2c). The fabricated buckled structures have CD of ~0.5
at 1.45 μm that can be used in telecommunications (Fig. 10.2d). Buckled structures
have increased angles of optical rotation, compared to unbuckled structures in the
telecommunications region (Fig. 10.2e). These results imply that three-dimensional
fabrication methods can strengthen chiroptical phenomena.
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Chiral structures with sizes of 10–100 μm have been realized by combining
photolithography and electroplating methods. In the terahertz frequency range,
silicon can be used as the photoactive materials, and artificial silicon meta-atoms
may be described using inductor-capacitor (LC) circuits.

A device that had the above characteristics achieved active metasurfaces that
could switch the their handedness [21] (Fig. 10.3a–c); consisted of meta-atoms
composed of gold, silicon, aluminum oxide, and aluminum components that had
been fabricated using a combination of photolithography and electroplating. To fabri-
cate photoactive chiral metamaterials, firstly, a patterned silicon layer was deposited
using photolithography and reactive ion etching. Then aluminum was deposited by
sputtering. The aluminum was a conductive layer for electroplating, as the ITO
layer, which used in DLW. Sputtering was used due to its high step-coverage. Gold
layers were also deposited using photolithography with aligning processes. Gold
columns were fabricated using photolithography to exposure photoresist (PR) and
electroplating to infill vacancies. This process is similar to DLWwith electroplating,
but photolithography is more suitable than DLW to fabricate large-area metasur-
faces. Finally, the residual resist was removed using oxygen plasma etching, and
the aluminum also removed using aluminum etchant. Oxygen plasma etching is a
common method to remove PR in complex structures and it can be applied to other
processes (e.g. removing PR when helical structures are fabricated using DLW).

These chiral structures can switch the handedness of circularly-polarized light
without geometrical reconfiguration. The handedness modulation is achieved by
photoactive material and well-designed LC circuits (Fig. 10.3e–f). Gold acts as an
ideal conductor, and loops of gold respond as inductors. The gaps between bottom
gold plates function as capacitors, so the meta-atom has a resonance frequency like
an LC (Fig. 10.3e, MetaA). The short length of MetaB causes a resonant shift, which
leads to the chiral response of the meta-atom. The total atom can be interpreted
as fusion of a right-handed meta-atom and frequency-shifted left-handed meta-atom
(Fig. 10.3e).When photoexcitation of silicon is induced by near-infrared laser pulses,
electrons jump from the silicon pad to the conduction bands, so the silicon becomes
conductive. This change cancels the capacitance of MetaA, and including frequency
shifting of MetaB. As a result, the handedness of chirality is switched by photoactive
material property of Si and combination of fabrication methods (Fig. 10.3f).

10.3 Chirality at the Nanometer to Micrometer Scale

10.3.1 Electron Beam Lithography Overlay

The chiral behaviors in a chiral molecule can be explained by movements of elec-
tron clouds. Under illumination by circularly-polarized light, electron clouds of the
molecules are displaced; this change induces a magnetic moment. It has compo-
nents that are parallel to the electric dipole moment, and the interaction between
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these moments yields the chiral behaviors. This conceptual explanation of chiral
behaviors can be transferred to plasmonic molecules. In plasmonic chiral systems,
displacement currents are excited inside the plasmonic particles, where free elec-
trons are displaced. Accordingly, a strong chiral response can occur, especially when
the currents are accompanied by a resonant excitation of localized plasmons. One
way to realize plasmonic chiral molecules is to arrange plasmonic structures in a
‘handed’ way [21]. One straightforward method to realize such handed structures
is to use conventional electron beam lithography (EBL) techniques with a precise
overlay process. An accurate EBL overlay method that has sub-20 nm alignment
accuracy has been used to realize three-dimensional chiral structures on scales of a
few nanometers by stacking plasmonic structures layer-by-layer.

To realize sub-20-nm alignment accuracy, a precise patterning of well-designed
alignment mark is necessary. However, the EBL alignment process cannot be seen
directly, even using scanning electron microscope. Instead, the relative position of a
stage can be predicted byusing a set of alignmentmarks. Therefore, precise alignment
marks with sharp corners must be fabricated for use as reference points. Furthermore,
by defining alignment marks first, then using them at the beginning of fabrication
of the first layer, the alignment accuracy can be improved further. Stage movement
is almost identical for a given substrate, so the relative position of first layer and
second layer should be affected only by the alignment process. This EBL-overlay
process can be used to fabricate many different configurations of 3D nanostructures,
such as 3D suspended/connected, interlayered and hierarchical [23]. Artificial chiral
structures composed of mirror-symmetric suspended and connected nanostructures
show strong chirality at near-infrared (NIR) wavelengths of around 2.1–2.5 μm
[23]. The structure has a chiral resonator, in which gold structures form an artificial
LC circuit. A tilted metallic loop and the gap effectively function as EM circuit
components of an inductor and a capacitor, respectively. Inside the LC circuit, the
electric andmagnetic dipoles are excited simultaneously because they share the same
structural resonances. As a result, the structures can exhibit strong chiral response
under the same structural resonances. The structures may exhibit negative refraction
if the induced chirality is strong.

The similar idea an also be applied to design planarized chiral helical structures
[24]. Metasurfaces are sequentially stacked with a tailored rotational twist that forms
anisotropic arrays (Fig. 10.4). The structural anisotropy is effectively converted to
strong magneto-electric coupling, which is responsible for artificial chirality. The
twisted metasurface structure provides strong coupling between each pair of spaced
surfaces over a broad range. If the number of stack sequential layers is increased, the
bandwidth broadens, and the reflections of opposite waves increases.

Recently, the concept of chiral molecules to plasmonic structures has been trans-
ferred to realize effective chiral molecular structures using a precise EBL overlay.
In [25], four gold nano-disks are closely arranged in a handed fashion to form a
plasmonic oligomer (Fig. 10.5). The first three particles are placed in the first layer
to make an L-shape, and the fourth particle is located in the second layer. The hand-
edness is determined by the location of the last gold particle in the second layer, and
the structure exhibits configurational chirality. In this construction rule, the ligands
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Fig. 10.4 a SEM image of the hierarchical, interlayered 3D nanostructure with misalignment kept
below 20 nm. The scale bar indicates 500 nm. b–c Optical activity and ellipticity angle calculated
from artificial chirality simulation at NIR frequencies. d SEM images of the twisted metamaterial
multilayer, where each layer is revealed using FIB to show the corresponding layer of nanorods.
e Transmission of left and right-handed circularly polarized light through seven layers of twisted
nanoslab along the direction of propagation. (a–c) from [23], (d–e) from [24]

in chiral molecules can be represented by aligning the metal particles. However, this
study showed that the structural handedness is not sufficient to generate a strong
chiral response. Resonant plasmonic coupling is also an important prerequisite but
can only be accompanied by the interactions of particles with similar resonance
wavelengths. Therefore, due to weak coupling, the structures consisting of different
size of particles did not show a strong chiral response, despite their geometrical
handedness (Fig. 10.5).

The idea of transferring the concept of chiral molecules to plasmonic structures
have been extended to the more-complex chiral structures of diastereomers [27, 28].
Diastereomers are two molecules are not mirror images to each other but have chiral
centers that are not superimposable. The plasmonic analogue of diastereomers can
also be constructed by stacking gold particles, where two chiral centers consisting
of four gold NPs are added in a handed way (Fig. 10.5). The S-shaped first layer in
the combined structures already shows two-dimensional chirality, which results in
three-dimensional chiral structures regardless of the handedness. The additional gold
NP placed on top of the first layer allows breaking of mirror symmetry and results
in three-dimensional chirality. Interestingly, if diastereomers are weakly coupled to
each other, their optical properties can be decoupled into those of two chiral centers,
then added, i.e., the chiral response of the diastereomer is the sum of those of the
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Fig. 10.5 Quadrumeric structures consisting of two layers of particles fabricated with EBL, to
give chirality. The first layer consists of three particles arranged in an ‘L’ shape, and the second
layer has one particle of which its position determines the handedness of the superstructure in a
C4 symmetric arrangement. a, c Tilted SEM images of the chiral plasmonic molecules. Scale bar:
500 nm; inset scale bar: 100 nm. b Schematic illustrating that the designed plasmonic molecules
have chirality. d Process to fabricate plasmonic diastereomers. Each chiral center consists of four
identical particles with three in the first and one in the second layer. As two chiral centers merge,
the position of two particles in the second layer determine the chirality of the composite structure.
e Close-up tilted and normal view of SEM images of (L+R) molecules, showing good alignment.
(a–c) from [26], (d–e) from [27]

chiral centers (Fig. 10.5). However, this additivity of chiral responses does not occur
if the two chiral centers are close together, and thus strongly coupled.

10.3.2 Glancing Angle Deposition

The glancing angle deposition (GLAD) method uses a bottom-up approach that is
compatible with large-area fabrication, while retaining high-resolution capability
down to 20 nm. The GLADmethod utilizes a physical vapor deposition process with
several parameters controlled, such as nanoseed pattern, substrate rotation speed and
temperature. By changing these process parameters, many different shapes of 3D
nanostructures can be fabricated on a large area.

Due to the nature of GLAD, the material grows as it is being rotated, and a helical
nanostructure forms; this process allows easy fabrication of chiral nanostructures that
operate in the visible spectrum. A typical GLAD fabrication starts with nanoseed
fabrication fromblock copolymermicelles. Thegold-loadedblock copolymer is spin-
coated on the wafer; subsequent plasma treatments remove the polymer to leave and
array of gold dots with uniform size and spacing on the entire wafer surface. Then
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Fig. 10.6 a SEM image of gold nanodots regularly patterned on a wafer by micellar nanolithog-
raphy. bGold nanodots as nucleation sites during subsequent shadow growth. c Complex 3D struc-
ture can be designed on each nucleation site by manipulating the substrate angle and deposition
material. d TEM image of hybrid insulator-metal nanohooks. e Schematic of the designed structure;
inset: TEM image of a nanohook, suspended in a solution by using sonification. f Schematic and
g photograph of the solution. (a–g) from [26]

the target material is deposited on the substrate by physical vapor deposition with
grazing incidence. By manipulating the tilt angle and rotation speed of the substrate,
many different kinds of nanostructures can be fabricated, including bars, zigzags and
helices. Another advantage of GLAD technology is that the nanostructures made on
the wafer can be removed from the substrate and immersed in a solution for use in a
suspension, such suspensions in liquid may enable novel applications such as fluidic
(chiral) molecular sensors and nano-robotic systems (Fig. 10.6).

Helical plasmonic NPs offer diverse set of optical response depending on thier
geometrical parameters and their materials. Under irradiation, LSPR is generated
along the helical axis; the strength is proportional to the total length of the helix.
Therefore, nanohelices offer multiple variables for the manipulation of optical fields,
including structural features such as pitch length, total number of turns, and material
composition. However, fabrication of regularly shaped multi-turn helices in well-
defined orientation is a difficult task.

Therefore, plasmonic helical NPs have recently been evaluated, along with
advancement in fabrication techniques. Two-turn gold nanohelix structure shows
a strong chiroptical response (g-factor ~0.01) in visible light [26]. The structure has
34-nm pitch and 100-nm height, which is only 1/40 as large as the similarly-shaped
nanostructure fabricated by two-photon lithography, and is also smaller than the over-
lain structures fabricated by EBL (Fig. 10.7). To sculpt such complex helical struc-
tures and maximize their chiroptical response, requires a technique to cool them to



10 Realization of Artificial Chirality in Micro-/Nano-Scale … 251

Fig. 10.7 The chiroptical response of two-turn gold nanohelix. a Geometrical features of the
nanohelix structure. b Normalized circular dichroism spectra of left-handed and right-handed
nanohelices; inset: TEM image of the nanohelices. cCircular dichroism spectra of one-turn and two-
turn nanohelices grown under different cooling conditions. d Circular dichroism spectra simulated
using a model of (a). The inset shows the discrete dipole model used in the simulation. e Side-view
SEM images of left-handed (top left) and right-handed (bottom left) Mg nanohelices; scale bar: 200
nm. Right panel: top view of a left-handed array of nanohelices. f Extinction spectra in response
to unpolarized (ET) and circularly polarized light (EL, ER). g Circular dichroism spectra of 178-
nm-thick film containing nanohelices of left or right handedness in air. (a–d) from [26], (e–g) from
[29]

~170K, particularly formaterials that have high surface energy, such as noblemetals.
The fabricated wafer-scale helical nanostructure array (a 3 inch wafer can support
roughly 1011 particles) can be released in the solution and can form uniform/isotropic
chiral medium. The advantage of this approach is that the wavelength range in
which chiral properties occur can be controlled by using an appropriate material
for fabrication.

Magnesium (Mg)-based chiral NPs that work in the ultraviolet (UV) spectral
range have been demonstrated [29]. Mg is widely used as a UV plasmonic material
because in the UV region Mg has substantially high far-field absorption efficiency
and strong near-field enhancement. Furthermore, Mg has high diffusion rate, so the
Mgnanohelix structure should be sculpted in a far cooler condition ~100K.However,
Mg is highly reactive in air, so the nanohelix should be coated with a thin layer of
HfO2 or Al2O3 to prevent structural and chemical deformation (Fig. 10.7).

Multi-turn nickel and silver nanohelix structures show specular reflectance in the
visible-and-NIR spectrum [30]. The associated optical reflectance spectrum showed
minima at wavelengths that coincided with the total height of nanohelices; this result
demonstrates the existence of LSPR along the axis of nanohelices. This further
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confirmed that in the visible-and-NIR spectrum, the optical response was mainly
dominated by the scattering from individual nanohelies (Fig. 10.7).

10.3.3 Unconventional Approaches

Chiral planar or 3D structures with chirality has merits in a way that it can have
chiroptical responses. Conventional spectroscopy cannot easily detect enantiomers,
because they have the same chemical and physical properties. However, CD spec-
troscopy can distinguish enantiomers. When they interact with circularly polarized
light, the responses depend on the handedness of the molecules. This effect can be
exploited to distinguish enantiomers by their chiroptical responses. However, the EM
coupling of chiral molecules is typically weak, so they are commonly accompanied
by plasmonic NPs. When irradiated by an EMwave of frequency that coincides with
the surface plasmon frequency of the plasmonic NPs, the CD response is gener-
ated [31]. The CD response can be further improved when the coalesced plasmonic
particles are also chiral; this is the motivation for creating chiral plasmonic NPs.

Single-layered chiral plasmonic NPs were demonstrated first, but such planar
structures show very weak chiral response and typically require oblique incidence.
Chiral interaction between light and matter is naturally increased in proportion to
the propagation length of light, so a 3D structure that can offer structural variation
along the incident path shows a pronounced chiroptical response.

One possible fabrication method is EBL, which can create 3D geometries with
high precision. Examples include stacked gammadions, twisted crosses, and twisted
layers of nanorods. However, EBL can only generate plasmonic planar and 3D struc-
tures on areas of a few square micrometers, and the method is expensive. Commer-
cialization of chiral plasmonic NPs coupled with enantiomers requires large-area
fabrication at low cost.

Hole-mask lithography (HML) combined with tilted-angle rotation evaporation
has been proposed as a fabrication method (Fig. 10.8) [32]. HML is a derivative of
colloidal lithography [33] that patterns surfaces with nanostructures that are created
by evaporation through holes between close-packed colloidal polystyrene beads that
are self-aligned throughout a thin film mask. By rotating the tilt angle through which
the evaporated goldwas deposited on the substrate, 3D chiral gold nanostructures can
be fabricated on an area of a few square centimeters. The structure had the average
outer diameter of 260 nm and structure widths from 20 to 90 nm. Rotation of the
tilt angle with gradually increasing angular velocity in either positive or negative
directions yielded nanostructures that had right-handed and left-handed chirality.
The fabricated chiral nanostructures were illuminated with linearly polarized light in
x and y directions, and with RCP and LCP lights. The transmittance spectra showed
frequency modes at 150, 250, and 320 THz, which all matched simulation results.

A bilayered twisted-arc photonic metamaterial has plasmonic chiral structure
that exhibits CD in the NIR spectrum (Fig. 10.8) [34]. The unit cell is composed
of a pair of silver twisted arcs in different azimuthal orientation, situated on two
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Fig. 10.8 a Side-view SEM images of Ni and Ag nanohelices with multiple turns. b Reflectance
spectra of three different nanohelices at normal incidence. c Experimental reflectance spectra of
different helices at normal incidence. d Hole-mask lithography combined with tilted-angle evap-
oration. e Schematic of two parameters, rotation direction and velocity, that result in 3D structure
of different handedness. f–g SEM of 3D chiral structures fabricated on a large area of 1 cm2; blue:
left-handed sample; red: right-handed sample. h Structural geometry and SEM image of bilayered
chiral metamaterial; inset: a unit cell. i Top: transmission spectrum. Middle: polarization rotation
angle of a linearly polarized incident light and the resultant ellipticity. Bottom: difference in refrac-
tive indices for circularly polarized light of opposite handedness. j–k Induced current flow within
the structure. (a–c) from [30], (d–g) from [32], (h–m) from [34]

distinct transparent layers that have given height. The unit cell is essentially a pair of
planar structures, so it is fabricated using aligned EBL, in which three lithography
steps are used to consecutively deposit two silver arcs separated by a transparent
dielectric. The NIR transmission spectrum of LCP and RCP through the bilayered
lattices agreed with full-wave simulation, with minima occurring at 1.29 μm (LCP)
and 1.47 μm (RCP). The induced electric current in the dual-layered arcs generally
rotated along the curved arc path and showed chiral interaction between the structure
and circularly-polarized light. The plasmonic resonance modes of LCP at 1.29 μm
and RCP at 1.47 μm arise by different phenomena: the induced currents collide with
each other in LCP, but flow with coalescence in RCP. These features indicate that
an antisymmetric mode is excited in LCP, whereas a symmetric mode is excited in
RCP, and because antisymmetric resonance requires more energy than symmetric
resonance, the transmission minimum is lower in LCP than in RCP.
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10.4 Chirality at a Nanometer Scale: Bottom-Up Approach

Bottom-up techniques are versatile approaches to fabricate complicated nanostruc-
tures on a large scale [35–39]. These techniques have several advantages over top-
down methods such as lithography and direct writing, which enable patterning of
predefined structures, but can fabricate only 2D or stacked 2D structures, and are
impractically expensive. On the contrary, bottom-up methods can fabricate truly-3D
structures at reasonable cost. Bottom-up techniques can arrange NPs in a complex
configuration with high precision and can fabricate complicated 3D geometry. They
can also use diverse components including plasmonic NPs, organic materials and
quantum dots. Dynamic tunability and programmability also make the bottom-up
methods a powerful tool to realize 3D chiral nanostructures. In this section, we
describe several such bottom-up techniques to make 3D chiral nanostructures and
describe their optical characteristics.

10.4.1 Molecular Self-assembly

Molecular self-assembly is a bottom-up approach that exploits spontaneous assembly
of inorganicmaterials such asmetals, semiconductors, ceramics and biological mate-
rials including peptides, fibers and DNA [40, 41]. Synthesis from molecules in
solution gives rise to plasmonic NPs that have chiral morphology. NPs that had
broken mirror-symmetric geometry have been synthesized using thiolated chiral
biomolecules [42]. Tellurium and selenium bind strongly with the thiol group and
hence are transformed into chiral shape (Fig. 10.9a, b). Such NPs act as chiral
resonators and show polarization-dependent extinction rate in the visible spectrum
(Fig. 10.9c, d). The chiral telluriumnanostructures canbe transformed into chiral gold
and silver telluride nanostructures that have very large chiroptical activity, demon-
strating a simple colloidal chemistry path to realize chiral plasmonic and semicon-
ductor metamaterials. These materials are natural candidates for studies related to
interactions of chiral biomolecules with chiral inorganic surfaces, with relevance
to asymmetric catalysis, chiral crystallization and the evolution of homochirality in
biomolecules.

Chiral gold NPs can be synthesized with the aid of amino acids and peptides [43–
52]. During particle synthesis, amino acids and peptides interact with the particles
and produce twisted high-Miller-index surfaces (Fig. 10.9e). The handedness of the
input molecules determines the growth rates of chiral high-index planes that have
opposite handedness. Thus, the chiral morphology of the molecules is transferred to
the NPs (Fig. 10.9f). The chiral geometry of the NPs makes them interact differently
with LCP and RCP. CD is significantly increased near the resonant wavelength of
the gold NPs (Fig. 10.9g).

Chiroptical phenomena such as optical activity and CD do not necessarily require
chiral NPs. Achiral NPs that are arranged in a chiral pattern can also exhibit an
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Fig. 10.9 Molecular self-assembly to produce 3D chiral nanostructures. a, b Dark-field STEM
imaging of Te nanostructure with chiral shape. Experimentally-measured c extinction and d circular
dichroism spectra. e Schematic of asymmetric growth of high-index surfaces. f Schematics and
SEM images of chiral NPs from different view angles. g Circular dichroism spectra of particles
synthesized using peptides that have opposite handedness. (a–d) from [42] and (e–g) from [43]

optical resonance effect as a result of inter-particle interaction [53]. Chiral assembly
can be manufactured using self-organization of achiral molecules. Liquid crystals
spontaneously assemble helical structures (Fig. 10.10a) that exhibit high sensitivity
on plasmonic perturbation, in which handedness of the superstructure is determined
by whether NIR irradiation is exposed or removed [54]. Achiral particles can also
arranged in a mirror-symmetry broken pattern by using twisted fibers or layers called

Fig. 10.10 Molecular chiral self-assemblywith achiral NP. a Superstructures of chiral liquid crystal
and their handedness differ when NIR irradiation is on or off. b Chiral plasmonic structures with
layered CNC scaffold. c Assembly of gold NPs on peptide nanotube; arrows: opposite chirality.
d Gold NP double helices based on peptide superstructures. (a) from [54], (b) from [56], (c) from
[57], and (d) from [58]
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scaffolds [55]. Gold nanorods load on layered twisted cellulose nanocrystal scaf-
folds (Fig. 10.10b) [56]. The nanoclusters that self-assemble on peptide nanotubes
(Fig. 10.10c) assume either left-handed or right-handed chirality; this chiral arrange-
ment yields CD at the surface plasmon frequency [57]. Gold NP double helices
(Fig. 10.10d) are peptide-based superstructures that show plasmonic CD [58].

Molecular assembly provides a versatile route to synthesize complex 3D nanos-
tructures, of which final morphology is determined by individual NPs and chiral
symmetry groups [40]. As a result of complexity of shape, structures made bymolec-
ular assembly exhibit strong CD and chiroptical reactions. Also, the assembled plas-
monic structures have no resolution limit. However, molecular assembly has some
drawbacks. Control of inter-particle spacing is challenging in molecular assembly
[59]. Furthermore, tuning the plasmonic coupling strength is only adjustable by
particle concentration and average inter-particle range [60].

10.4.2 DNA Self-assembly

DNA, a biological molecule that is composed of double-stranded helices, can be
used in self-assembly [61]. A nanotechnology that uses DNA as a building block
to render 3D nanostructure is called DNA self-assembly and has unique molecular
recognition capabilities. Long single-strandedDNA (ssDNA) can be folded to form a
designated shape by using base pairing with short ssDNA. The long ssDNA is called
the scaffold and the short ssDNA is called the staple. This fabrication technique
yields 2D structure out of a 1D strand of DNA, and is often called DNA origami
[62].

When NPs are functionalized with thiol-modified ssDNA, the base pairing
provides 3D assembly of the NPs in a desired arrangement such as dimers [63,
64], trimers [64, 65], tetramers [66–68] and chains [69, 70]. A 3D chiral nanostruc-
ture composed of four gold NPs has been synthesized in a tetrahedral configuration
by using double-stranded DNA as a scaffold to link the NPs [67]. Mirror symmetry
of the tetrahedron was broken by assigning NPs with different sizes to each vertex
(Fig. 10.11a). However, different sizes of the NPs and relatively large inter-particle
spacing hinder efficient coupling of them, so CD was not observed.

Self-assembly of 3D chiral nanostructure can also be achieved by using a DNA
template to arrange NPs in a predesignated manner. DNA origami has been used to
fabricate 3D chiral nanostructures by positioning plasmonic NPs in a chiral arrange-
ment [59].ADNAorigami bundlewas used as a template to arrange gold nanospheres
in a helical geometry; the nanospheres were attached toDNA strands that are comple-
mentary to the staples, which therefore attached at specified positions (Fig. 10.11b).
The helically-arranged gold nanospheres yield strong CD in the visible spectrum
(Fig. 10.11c). A similar structure was fabricated by rolling up a rectangular DNA
sheet that had gold nanospheres attached [75]; the nanospheres were functional-
ized with ssDNA that was complementary with ssDNA attached to the DNA sheet.
The handedness of the arrangement can be adjusted by changing the position of the
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Fig. 10.11 3D chiral nanostructures synthesized by DNA self-assembly. a Schematics and TEM
images of a tetramer of four gold NPs assembled by double-stranded DNA. b An assemble of gold
NPs positioned by using a DNA origami bundle [59] and c its circular dichroism (top: measured,
bottom: simulated) [59]. d Four gold NPs bound in a chiral arrangement by using a DNA origami
sheet [71] and emeasured circular dichroism [71]. f Twisted layer of gold nanorods stacked by using
origami sheets [65]. g Schematics of a reconfigurable 3D chiral nanostructure [72]. h Schematics
of dynamic reconfiguration. The nanorods can be switched between a tightly folded state and an
extended state, and between two folded states with opposite handedness. (a) from [67], (b) and
(c) from [59], (d) and (e) from [71], (f) from [73], (g) from [72], (h) from [74]

dressed nanospheres. 3D chiral nanostructures have been also made with a small
number of nanospheres in a tetramer arrangement [71]; to realize a chiral geom-
etry, four binding sites were defined on a rectangular DNA origami template, i.e.,
three on the top surface and one on the bottom surface (Fig. 10.11d). The posi-
tion of the binding sites on the bottom surface breaks the mirror symmetry and
determines the handedness. Four gold NPs were functionalized using complemen-
tary DNA strands and positioned, then one was positioned at each binding site by
exploiting DNA hybridization. The fabricated structure showed CD in the visible
spectrum (Fig. 10.11e).
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The arrangement can be simplified by using plasmonic nanorods instead of
nanospheres. A nanorod has an anisotropic geometry, which can be used as an addi-
tional degree of freedom to break mirror symmetry. Two gold nanorods oriented
at 90° to each other, one on the top surface and the other on the bottom surface
of the DNA origami template, were fabricated using the base-pairing mechanism
[76]. The sample showed CD at λ ~ 730 nm. The CD was remarkably amplified
by increasing the number of nanorods [73]. To synthesize this structure, both sides
of the origami sheets were dressed with capture strands (Fig. 10.11f), which were
defined in a twisted manner to achieve the chiral geometry. The twisted layer of gold
nanorods had strong CD in the visible spectrum.

Tunability of chiroptical responses is an important goal. In most structures, these
responses are determined by the geometrical chirality of the 3D nanostructures.
Therefore, the chiroptical signal of a fabricated structure is static: its magnitude,
peak wavelength and handedness cannot be changed once the structure is formed.
However, DNA self-assembly facilitates programmable synthesis of particle assem-
bles and thus provides a pathway to produce reconfigurable and multifunctional
structures.

The first tunable 3D chiral nanostructure consisted of a twisted bilayer of gold
nanorods [72] (Fig. 10.11g), which were attached individually to two connected
origami bundles. The relative angle between two bundles and hence, the handedness
of the chiral structure was dynamically controlled by two DNA locks. Here, DNA
strands were used both as structural components, and as a tool to drive structural
change. The fabricated sample showed CD near a λ = 700 nm, and the sign of the
response could be flipped by applying external stimuli. Time-domain CD confirmed
the tunable and reversible chiroptical responses. Alternatively, the distance between
two nanorods, rather than the relative angle, can be adjusted to actively control
chiroptical responses [77]. Twonanorodswere positionedperpendicularly at opposite
sides of a double-layer DNA origami. One of the nanorods walked on the surface of
the sheet as a result of interacting fuel strands while the other was stationary.

Reconfigurable 3D chiral nanostructure has also been realized by folding a helical
assembly of gold nanorods [74] (Fig. 10.11h), which had been positioned heli-
cally by using self-assembledDNAorigami. DNA-toehold-mediated conformational
changes in the DNA template enabled conversion between a tightly-folded state and
an extended state, and between tightly-folded states with opposite handedness. The
transformation was reversible, but the recovery efficiency is low because of the
leakage of the strand-displacement reactions.

10.4.3 Block Copolymer Self-assembly

Block copolymer (BCP) self-assembly exploits phase separation and reconstruction
of block copolymers to make light-matter interacting plasmonic nanostructures. A
BCP consists more than one species of monomers, which are repeating units joined
by covalent bonds to a organize a polymer chain. BCPs are classified according to
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the number of blocks and the shape of the polymer. Segments of BCP aggregate to
reach thermal equilibrium, and this process leads to spontaneous assembly of BCPs.
For example, a chiral gyroid structure can be synthesized by controlling the volume
fraction of each block [78]. Even though the BCPs are composed of the same species
ofmonomer units, the finalmorphology of the assembledBCP after order-to-disorder
transition differs depending on the interaction between segments, the volume fraction
of the blocks, the polymer structures and the solution-processing routes.

Pure BCPs do not readily yield a plasmonic surface effect, so inorganic materials
must be combined with them. Two synthesis strategies have been used: templating
and coassembly.

Templating transfers polymer morphology into an inorganic phase by deposition
after BCP self-assembly. A non-centrosymmetric thin film plasmonic nanostructure
could be synthesized using a templatingmethodwith linear ABC triblock copolymer,
which has two end groups with single backbone chain and three distinct blocks
(Fig. 10.12). A chiral alternating gyroid network (GA), which has chiral spirals,
could be generated by manipulating the volume fraction of the block copolymer
(Fig. 10.12a) [79]. After an isoprene-block-styrene-block-ethylene oxide (ISO)
polymer is assembled as alternating gyroid structures on the substrate (Fig. 10.12b),
one of the gyroid networks is eliminated by selective UV and chemical etching
(Fig. 10.12c). The resulting space is back-filled by gold electrodeposition, then the
rest of the polymer is removed by plasma etching (Fig. 10.12d) to leave a continuous

Fig. 10.12 aABC triblock copolymermorphology diagram.The triblock copolymer corresponding
volume fraction of GA part self assembles as chiral alternating gyroid network. (b–e) BCP self-
assembled chiral plasmonic structure by templating method. b ISO polymers assembled into alter-
nating gyroid structures on the substrate. c Removing one gyroid by etching d Gold electrodeposi-
tion. e Final gyroid structure by templating. (f–g) BCP self-assembly chiral plasmonic structure by
coassemblymethod. f Triblock poly(isoprene-b-styrene-b-ethylene oxide) and introduced sol(black
particles) g Final gyroid structure by coassembly. (a) from [79], (b–e) from [78], and (f–g) from
[81]
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triple-periodic gold network (Fig. 10.12e) [80]. The templating approach has major
disadvantages that deposited amorphous materials may crystallize, and that strain
can accumulate.

Coassembly exploits intermolecular force to get an amphiphilic block copolymer
to interactwith inorganicmaterials in solution. Thismethod has been used to fabricate
an isoprene-block-styrene-block-ethylene oxide polymer with sol (black particles in
Fig. 10.12f); the intermolecular forces drive the particles into the hydrophilic PEO
blocks to yield an alternative gyroid structure [81] (Fig. 10.12g). The coassembly
approach has disadvantages that the amorphous assemblies can shrink and crack
during forming and crystallization, but it could be used to construct superlattices for
novel photonic applications.

Fabrication using BCP self-assembly is a solution process and uses inexpen-
sive constituent monomers, so it is less expensive than photolithography. Bottom up
BCP self-assembly has a great advantage to fabricate sub-wavelength highly ordered
nanostructures over large areas of a surface. These abilities are advantages over top-
down approaches such as lithography, which have resolution limits. In addition, BCP
self-assembly is much simpler sequences and requires fewer repeating units than
biological molecular assembly that uses DNA or peptides [78]. BCP self-assembled
plasmonic structure has been applied for organic solar cells, optoelectronics, andplas-
monic nanoantennas, and can help to fabricate subminiature drug delivery systems
and biosensing devices [82, 83].

10.5 Conclusion

In this chapter, fabricationmethods realizing three-dimensional chiral structureswere
discussed and categorized by their manufacturing feature sizes since the working
wavelength of enhanced artificial chirality is generally close to the feature sizes
of the chiral structures. Top-down approaches can be used to fabricate micron-
scale structures with high precision. Direct laser writing, focused ion beam, and
photolithography can be used to realize three-dimensional structures with a large
degree-of-freedom; however, they are time-consuming and expensive. Bottom-up
approaches are more suitablefor realizing nano-scale structures. Solution processing
and block copolymer self-assembly are cost-effective methods, but the achievable
morphologies are limited.
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Chapter 11
Floquet Theory and Ultrafast Control of
Magnetism

Masahiro Sato

Abstract The development of laser science and technology has stimulated the study
of condensed matter physics, especially, dynamical or non-equilibrium nature in
solids. The laser technique in terahertz (THz) regime, whose photon energy is com-
parable to those of typical collective modes in solids such as magnetic excitations,
phonons, etc., has remarkably proceeded in the last decade. Theoretical tools for
non-equilibrium states have also progressed. Thanks to these backgrounds, magneto-
optics, especially, the study of controlling magnetism with laser, now enters a new
stage. For such controls, Floquet engineering is a key concept, which means the
method of controlling static properties of targets with high-frequency external fields
like laser. I review the theoretical foundation of Floquet engineering and its appli-
cation to magnetic insulators. Basic magnetic quantities such as magnetization, spin
chirality, and spin current are shown to be controlled with intense THz laser or wave.

11.1 Introduction

Laser science and technology have continuously developed in the last decades. The
application of laser to solids is being one of the hottest topics in condensed-matter
physics. If we apply intense laser to materials, their quantum states quickly change
into a non-equilibrium one andwe can observe non-equilibrium or relaxation dynam-
ics, nonlinear responses to the intense AC field, ultrafast change of physical quanti-
ties, etc. In recent years, the significant development of terahertz (THz) laser science
in the range of ∼0.1–10 THz [1–4] (THz = 1012 Hz) has accelerated the study of
ultrafast control of magnetism with THz laser because its photon energy is compara-
ble to the energy of magnetic excitations, especially, those of antiferromagnets [5].
The maximum intensity of currently available THz laser has attained the electric-
field amplitude 1–10 [MV/cm] which corresponds to a few Tesla of the ACmagnetic
field amplitude. In addition to THz laser science, the magnetic resonance study with
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THz or gigahertz (GHz) waves (10 GHz–1.0 THz) have been long investigated [6,
7] (GHz = 109 Hz). The control of magnetism with laser or electromagnetic wave [5,
8] has also gathered much attention as a large branch of spintronics [9].

Recently, several theoretical methods for non-equilibrium systems have also
developed, and they have gradually becomewidespread in broad fields of condensed-
matter physics.Non-equilibriumGreen’s functionmethod [10–14], approaches based
on quantum master equation [15–19], and Floquet theory [20–23] are representative
of them. These techniques have a high potential to capture different aspects of laser-
driven non-equilibrium dynamics. In fact, with such methods, I and collaborators
have theoretically explored/proposed several ways of controlling physical properties
of materials, especially, focusing on magnetic systems [24–32].

Among studies for laser-driven phenomena, the concept “Floquet engineering”
has been an important keyword and provided us various research directions. This
terminology stands for controlling physical (especially static) properties of target
systems by applying an AC field whose frequency (photon energy) is much higher
than the energy scale of the systems. Excitations or quasi particles of focused systems
cannot be directly coupled to such ahigh-frequencyACfield, but it is known that static
or low-frequency properties of the systems can be changed through the nonlinear
effects of the AC field. This effect is theoretically formulated by Floquet theorem
and related techniques developed in recent years [20–23].

In this chapter, I would like to review the theoretical basis of Floquet engineering
and its application to simple, realistic magnetic systems. I will explain that basic
magnetic quantities such as magnetization, spin chirality, and spin current can be
controlled by application of intense THz laser or wave to magnets.

11.2 Floquet Engineering

This section is devoted to the explanation about the theoretical basis of Floquet
engineering [20–23]. As I mentioned, Floquet engineering means creating non-
equilibrium states with desirable (static) physical properties by periodically driving
(i.e., by applying an external AC field to) amaterial. This concept stems from Floquet
theorem, and so I start from the explanation about the theorem. Then I will derive the
Floquet effective Hamiltonian through so-called high-frequency (Floquet-Magnus)
expansion. The effective Hamiltonian is the most important instrument in Floquet
engineering from its conceptual viewpoint, and it describes slow dynamics of the
driven system. Finally, I will state some remarks on the physical meaning of Floquet
Hamiltonian.

As one will see soon later, the Floquet theory based on Floquet theorem assumes
that (i) the external AC field is treated as a classical number (not operator) in the
Hamiltonian considered, and (ii) the driven system is decoupled to any environment,
i.e., we consider “isolated” quantum systems. The assumption (i)might be sometimes
justified. For instance, if the intensity of applied laser is large enough, its AC electric
and magnetic fields can be approximated by classical external fields. The condition
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(ii) is too ideal, especially, if we consider usual materials such as solids, liquids, and
gases. However, as I will explain below, the ideal conditions (i) and (ii) enable us to
reveal a clear, simple picture of Floquet engineering. The engineering in dissipative
driven systems [14, 15, 19] is a front line of the non-equilibrium physics.

11.2.1 Floquet Theorem

Floquet theorem is an old mathematical result for a class of linear differential equa-
tions with a time periodic term, but in the field of physics, it has been recognized
as a theorem for Schrødinger equation (i.e., equation of motion) for periodically-
driven quantum systems. Following this convention, I will prove Floquet theorem
for quantum systems in this subsection. Hereafter, I will often use the unit of � = 1.

The statement of Floquet theorem is as follows. We start from the time-dependent
Schrødinger equation for a periodically driven quantum system

i
∂

∂t
�(t) = Ĥ(t)�(t). (11.1)

Here, we assume that the Hamiltonian Ĥ(t) is time periodic, Ĥ(t + T ) = Ĥ(t),
where T = 2π/ω is the period and ω is the (angular) frequency. If we focus on a
system driven by laser or electromagnetic wave, ω is the laser frequency. For this
driven quantum system, the theorem shows that the solution of (11.1) is given by

�(t) = exp(−iεt)�(t), (11.2)

where the “wave function” �(t) is a periodic one satisfying �(t + T ) = �(t) and
the real number ε is called Floquet quasi energy. Namely, Floquet theorem states that
the solution of Schrødinger equation for a periodically driven system is given by the
product of a plane wave e−iεt (i.e., solution of vacuum) and a periodic function�(t).
In this sense, Floquet theorem can be viewed as the time version of Bloch theorem
(See, e.g., [33, 34]) for spatially-periodic quantum systems.

Let us prove the above statement.We define the one-cycle time-evolution operator
as

Û (t + T, t) ≡ T
[
exp

(
− i

�

∫ t+T

t
dτ Ĥ(τ )

)]
, (11.3)

where the symbol T denotes time-ordered product. From the periodicity of the
Hamiltonian, Û (t + T, t) = Û (t + (n + 1)T, t + nT ) for n ∈ Z . If Û (t + T, t) acts
on i∂t�(t) = Ĥ(t)�(t) from the left in both sides, we obtain i∂t�(t + T ) =
Ĥ(t + T )�(t + T ) = Ĥ(t)�(t + T ). That is, �(t) and �(t + T ) both satisfy the
same Schrødinger equation. Therefore, for a solution �(t), there always exists
another solution �(t + T ) which is proportional to �(t): �(t + T ) = cT (t)�(t).
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The coefficient cT (t) is regarded as the eigenvalue of Û (t + T, t). Namely, we have

Û (t + T, t)�(t) = cT (t)�(t). (11.4)

Since Û (t + T, t) is unitary, its eigenvalue cT (t) is just a phase factor, |cT (t)| = 1.
First, I show that cT (t) is t-independent (cT (t) = cT ), i.e., a time-evolved state

�(t ′) = Û (t ′, t)�(t)with any t ′ is also the eigenstate of Û (t ′ + T, t ′)with the same
eigenvalue cT . To this end, let us make Û (t, t ′)Û (t ′, t) = 1̂ act on (11.4) from
the left side. The left hand side is calculated as Û (t, t ′)Û (t ′, t)Û (t + T, t)�(t) =
Û (t, t ′)Û (t ′ + T, t + T )Û (t + T, t)�(t) = Û (t, t ′)Û (t ′ + T, t)�(t) = Û (t, t ′)Û
(t ′ + T, t ′)�(t ′), where we have used the relation Û (t ′, t) = Û (t ′ + T, t + T ). The
right hand side is done as Û (t, t ′)Û (t ′, t)cT (t)�(t) = cT (t)Û (t, t ′)�(t ′). If we fur-
ther multiply both the sides by Û (t ′, t), then we obtain

Û (t ′ + T, t ′)�(t ′) = cT (t)�(t ′). (11.5)

Equations (11.4) and (11.5) reveal that cT (t) is independent of t .
Next, let us turn to the remaining part, the proof of cT = e−iεT . Thanks to the peri-

odicity of Ĥ(t + T ) = Ĥ(t), theHamiltonian and the one-cycle time-evolution oper-
ator Û (t + T, t) commute with each other: [Û (t + T, t), Ĥ(t)] = 0, which means
that Ĥ(t) and Û (t + T, t) can be simultaneously diagonalized. Moreover, the oper-
ator Û (t + T, t) follows the relation,

Û (t + (m + n)T, t + mT )Û (t + mT, t) = Û (t + mT, t)Û (t + (m + n)T, t + mT )

= Û (t + T, t)m+n

= Û (t + (m + n)T, t). (11.6)

This means that the eigenvalue cT of Û (t + T, t) satisfies cnT cmT = cmT cnT =
c(m+n)T = cm+n

T . Therefore, to realize this equality, cT has to be exponential, that
is, cT = e−iεT . Combining this eigenvalue and the nature of simultaneous diagonal-
ization, we can say that the solution �(t) follows

�(t + T ) = e−iεT�(t). (11.7)

If we introduce �(t) = eiεt�(t), �(t) is shown to be a periodic function as follows:

�(t + T ) = eiε(t+T )�(t + T ) = eiε(t+T )e−iεT�(t) = eiεt�(t) = �(t). (11.8)

We thereby arrive at (11.2).
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11.2.2 Discretized Fourier Transformation and Matrix Form
of Schrødinger Equation

Bloch theorem for solid crystals leads to their electron band structure [33, 34].
Following a similar manner, I here show that a generalized eigenvalue problem
appears by applying Floquet theorem to periodically-driven systems. It tells us a
basic physical picture of the driven systems.

The periodicity of Ĥ(t + T ) = Ĥ(t) and �(t + T ) = �(t) indicate that Ĥ(t)
and �(t) can both be Fourier-transformed along time direction in a discretized way.
We define their Fourier transforms as

Ĥ(t) =
∑
m∈Z

e−imωt Ĥm, �(t) =
∑
m∈Z

e−imωt�m . (11.9)

The inverse transformation is given by

Ĥm = T−1
∫ T

0
dt eimωt Ĥ(t), �m = T−1

∫ T

0
dt eimωt�(t). (11.10)

Substituting these and (11.2) into the Schrødinger equation, we obtain the following
generalized eigenvalue problem for {Ĥm} and {�m}:

∑
n∈Z

(Ĥm+n − mωδm,n)�n = ε�m . (11.11)

Therefore, with the set of Hamiltonians {Ĥm}, we can compute the wave functions
{�m} and the corresponding quasi energy ε (i.e., eigenvalue) in principle. Since the
real number ε is introduced in the formof e−iεT , its physical relevant range is ristricted
in the “Brillouin” zone −π�

T = −�ω
2 ≤ ε < �ω

2 = π�

T like crystal momentum k in
solids. Due to this periodicity, ε is called quasi energy. We emphasize that (11.11)
does not explicitly depend on time t , and in that sense, it may be called a static
eigenvalue equation.

In order tomore deeply understand this static equation, let us re-write it in amatrix
form. Equation (11.11) can be expressed as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .
. . .

· · · Ĥ0 − 2�ω Ĥ1 Ĥ2 Ĥ3 · · ·
· · · Ĥ−1 Ĥ0 − �ω Ĥ1 Ĥ2 Ĥ3 · · ·
· · · Ĥ−2 Ĥ−1 Ĥ0 Ĥ1 Ĥ2 · · ·
· · · Ĥ−3 Ĥ−2 Ĥ−1 Ĥ0 + �ω Ĥ1 · · ·

· · · Ĥ−3 Ĥ−2 Ĥ−1 Ĥ0 + 2�ω · · ·
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

�2

�1

�0

�−1

�−2
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ε

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

�2

�1

�0

�−1

�−2
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(11.12)
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Fig. 11.1 Images of a periodically driven quantum system and the mapped static system through
Floquet (Fourier) transform

Here we have explicitly restored the symbol �. The wave function �n on each line
is a vector living in a Hilbert space whose width is the same as that of the original
driven system. An image of this matrix representation is given in Fig. 11.1. We can
obtain an intuitive picture of the eigenvalue equation (11.12), i.e., (11.11) if the
external AC field is viewed as laser with photon energy �ω. From the diagonal com-
ponents of (11.12), we find that the energy decreases (increases) by �ωwhenever one
goes up (down) the lines one by one. Therefore, {· · · ,�−2,�−1,�0,�1,�2, · · · }
may be viewed as wave functions in subspaces with different photon numbers
{· · · , 2, 1, 0,−1,−2, · · · }, respectively. The diagonal part of the subspace with pho-
ton numbern is given by Ĥ0 + n�ω, where Ĥ0 = T−1

∫ T
0 dt Ĥ(t) is the time averaged

Hamiltonian. On the other hand, from the off-diagonal part of (11.12), we see that
Ĥ±n (n �= 0) connects two subspaces whose difference of photon numbers is n.

In summary, Floquet theorem enables us to exactly map a non-equilibrium quan-
tum systemwith periodic driving to a “static” eigenvalue problem (11.11) or (11.12).
As well known, various theoretical tools have been developed to analyze static many-
body (eigenvalue) problems thanks to the long history of equilibrium statistical and
condensed-matter physics (See e.g.., [35, 36]). In this sense, Floquet theory makes a
periodically-driven system transformed to an easier problem. However, we note that
instead of the emergent static nature, a new index n (photon number) appears, and it
means that the “spatial” dimension increases by unity if the direction of n is viewed
as a new spatial axis.
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11.2.3 Floquet-Magnus Expansion and Floquet Hamiltonian

It is known that one can compute an effective static Hamiltonian (called Floquet
Hamiltonian) [37, 38] acting on the original space of the Schrødinger equation (11.1)
from the eigenvalue equation (11.11) or (11.12). The approximation is based on the
power series expansion of 1/ω. There are several sorts of the expansions and they
are related with each other [39]. In general, they are called Floquet-Magnus (high-
frequency) expansion.

Here, I explain one of the expansionmethods which is based on degenerate pertur-
bation theory, bymaking use of thematrix representation (11.12) and Fig. 11.1. Since
the bra-ket notation is generally useful for the perturbation calculation, we re-write
wave functions �n and �(t) as |�n〉 and |�(t)〉, respectively, in this subsection.
We consider the case where the photon energy �ω is sufficiently larger than other
energy scales (i.e., all the eigenvalues of {Ĥn}). In this condition, the “distance” �ω

between neighboring subspaces is large enough and therefore the averaged Hamil-
tonian Ĥ0 and Fourier components Ĥ±n (n �= 0) connecting different subspaces
may be viewed as the perturbation with respect to the the diagonal photon energies
diag(· · · , 2�ω, �ω, , 0,−�ω,−2�ω, · · · ).

Below, I will construct the effective Hamiltonian for a subspace with a fixed pho-
ton number. Hereafter, we call the subspace with photon number n as nth subspace,
and ignore the unperturbed photon energies n�ω since they are just constants. In fact,
owing to periodicity of the quasi energy ε, we arrive at the same effectiveHamiltonian
in each subspace with photon number n, expect for the constant n�ω. We define the
orthonormal basis {|�−n〉 j } ( j = 1, 2, · · · , d) fornth subspace,whered is the dimen-
sion of the subspace. Let us introduce the photon-number state |n〉 that is convenient
for the perturbation calculation. With it, the projection operator P̂−n to the nth sub-
space may be expressed as P̂−n = ∑d

j=1 |�−n〉 j j 〈�−n| = |n〉〈n| × ∑d
j=1 |�〉 j j 〈�|.

The basis |�〉 j is common to all the subspaces and in that sense, two projection
operators P̂−n and P̂−m (n �= m) are equal to each other, P̂−n ∼ P̂−m , except for their
photon states. Similarly, the averaged Hamiltonian Ĥ0 in the diagonal part of (11.12)
should be represented as Ĥ0|n〉〈n|, and Ĥm(m �= 0) connecting nth and (n + m)th
subspaces as Ĥm |n + m〉〈n|. One can perform the perturbation calculation utilizing
these instruments.

The first-order Hamiltonian is equivalent to putting the perturbation term between
the projection operators. Therefore, we obtain

Ĥ (1) ≡ P̂−n Ĥ0 P̂−n = Ĥ0. (11.13)

Fourier components Ĥn �=0 all disappear due to the sandwich of P̂−n .We also note that∑d
j=1 |�〉 j j 〈�| is unity when we focus on a subspace with a fixed photon number.

Following the standard formula of the second-order perturbation, we write down the
second-order term as
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Ĥ (2) = P̂−n

∞∑
m=1

(∑
j

Ĥ+m |�−(n+m)〉 j j 〈�−(n+m)|Ĥ−m

n�ω − (n + m)�ω

+
∑
j

Ĥ−m |�−(n−m)〉 j j 〈�−(n−m)|Ĥ+m

n�ω − (n − m)�ω

)
P̂−n. (11.14)

The projection operator P̂−(n±m) in the intermediate process is also viewed as unity
except for the photon bra-ket |n ± m〉〈n ± m|. Therefore, we arrive at

Ĥ (2) = P̂−n

∞∑
m=1

(
− Ĥ+m Ĥ−m

m�ω
+ Ĥ−m Ĥ+m

m�ω

)
P̂−n = −

∞∑
m=1

[Ĥ+m, Ĥ−m]
m�ω

.

(11.15)

Namely, the second-order Hamiltonian is given by the sum of commutators between
two off-diagonal terms Ĥ±m .

Up to the second-order terms, the effective Hamiltonian (Floquet Hamiltonian) is

Ĥeff = Ĥ0 −
∞∑

m=1

[Ĥ+m, Ĥ−m]
m�ω

+ O
(
(�ω)−2

)
. (11.16)

The first term is the time averaged Hamiltonian and often identified with that before
applying the external AC field. The second and higher-order termswith power of 1/ω
emerge only when the AC field is applied. The formula (11.16) indicates that these
AC-field-driven terms can be controlled by tuning kinds, wave forms, and frequency
ω of the AC field. That is, the Hamiltonian can be desirably changed by applying a
high-frequency AC field in a clever way. This statement gives contrast to a stereotype
idea that the Hamiltonian is fixed for each material. Equation (11.16) clearly shows
the basic idea of Floquet engineering. In principle, we can compute higher-order
terms by continuing the degenerate perturbation theory. For instance, the third-order
term [39] is

Ĥ (3) =
∞∑

m=−∞
(m �=0)

[[Ĥ−m, Ĥ0], Ĥm]
2m2(�ω)2

+
∞∑

m=−∞
(m �=0)

∞∑
n=−∞
(n �=0,m)

[[Ĥ−m, Ĥm−n], Ĥn]
3mn(�ω)2

. (11.17)

Before ending this subsection, we shortly comment on another expansion method
[20–23, 39]. The eigenvalue of (11.12) is the quasi energy ε, and (as we already
mentioned) it is defined in the eigenvalue of the one-cycle time evolution operator
Û (t + T, t) as e−iεT . From these facts, the static Floquet Hamiltonian Ĥeff may seem
to be defined as

exp(−i ĤeffT ) = T
[
exp

(
− i

�

∫ T

0
dτ Ĥ(τ )

)]
= Û (T, 0). (11.18)
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If the phase factor of the right hand side can be expanded with respect to power of
1/ω, we obtain the series expansion formula of Ĥeff . It is known that if the time
evolution operator is assumed to be decomposed in the following form, one can
compute the expanded form of the effective Hamiltonian:

Û (t2, t1) = exp(−i Ĝ(t2)) exp
[ − iĤ (t2 − t1)

]
exp(i Ĝ(t1)). (11.19)

Here, Ĝ(t) is a periodic operator Ĝ(t) = Ĝ(t + T ), and the exponential exp(±i Ĝ(t))
describes the high-frequency fluctuation in one cycle T . Ĝ(t) is called kick operator
or micro-motion operator. On the other hand, Ĥ is the time-independent operator
describing the slow dynamics longer than the period T . Generally, Ĥ depends on
the initial time t1, but the t1 dependence is eliminated under the condition that Ĝ(t)
satisfies

∫ T
0 dtĜ(t) = 0. In this case, the high-frequency expansion of Ĥ is shown

to be equal to that of Ĥeff in (11.16). Similarly, the kick operator can be expanded
as Ĝ(t) = ∑

n=1 G
(n). The lower-order terms are given by

i Ĝ(1)(t) = −
∞∑

m=−∞
(m �=0)

Ĥm

m�ω
e−imωt , (11.20)

i Ĝ(2)(t) =
∞∑

m=−∞
(m �=0)

[Ĥm, Ĥ0]
m2(�ω)2

e−imωt +
∞∑

m=−∞
(m �=0)

∞∑
n=−∞
(n �=0,m)

[Ĥn, Ĥm−n]
2mn(�ω)2

e−imωt . (11.21)

11.2.4 Physical Meaning of Floquet Hamiltonian

In the previous subsection, I explained that the static Floquet Hamiltonian Ĥeff of
(11.16) is computed through the Floquet-Magnum high-frequency expansion. What
can we understand from Ĥeff ? One might expect that thermal equilibrium or ground
states of the “Hamiltonian” Ĥeff is realized by continuously applying an AC field.
However, such a naive expectation is not correct. Below, I will comment on a few
important results related with the Floquet Hamiltonian Ĥeff , focusing mainly on
many-body systems.

[Short time behavior] When one applies the expansion formulas of Ĥeff and Ĝ(t)
to a periodically-driven system, the Floquet-Magnus expansion should be termi-
nated at a certain order in a practical sense. If we focus on a small finite-size
system, the expansion is often well-defined. On the other hand, it is known that if
we consider a wide class of locally-interacting many-body systems, their Floquet-
Magnus expansion is usually of an asymptotic-expansion type like the perturbation
expansion of quantumfield theories. Let us define a truncatedFloquetHamiltonian
as Ĥq ≡ ∑q

k=0 Ĥ
(k). The following statements about Ĥq have been theoretically

shown for locally interacting many-body systems [40, 41]. (i) There is an optimal
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number q = q0 ∝ �ω/G which is the best truncation order of the Floquet-Magnus
expansion. Here, G is the typical local energy scale of the system including the
coupling between the system and AC field. (ii) Ĥq<q0 behaves as an almost con-
served quantity during a short time τ1 ∼ exp[O(�ω/G)]�/G from the beginning
of application of AC field. (iii) During a short time τ2 � τ1, the time evolution
operator can be approximated as

Û (t2, t1) ≈ exp
[ − i Ĥq<q0 (t2 − t1)

]
. (11.22)

as long as we focus on the slow dynamics longer than the period T . These state-
ments indicate that Ĥq<q0 is considered as the Hamiltonian for describing the
time evolution at least within a short time. If we attach a truncated kick operator
Gp(t) = ∑p

n=1 G
(n) to (11.22), a more accurate short-time evolution operator is

given by

Û (t2, t1) ≈ exp(i Ĝ p(t2)) exp
[ − i Ĥq<q0 (t2 − t1)

]
exp(i Ĝ p(t1)). (11.23)

From these arguments, the truncated Floquet Hamiltonian is physically relevant
in a short time.

[Heating effect] In the present Floquet-theory formalism, we consider isolated
(closed) quantum systems decoupled to any environment. It is believed that if we
apply an intense AC field to such a closed system for a long time, the system is
eventually heated up, except for a class of toy models including integrable sys-
tems. In fact, this feature is confirmed by theoretical studies for some concrete
models driven by AC fields [42, 43]. This result seems to be very natural because
if a crystal is irradiated by laser, it is generally heated and sometimes evapo-
rates. Namely, everyone knows that the heating effect of applied laser is usually
unavoidable. We also note that the heating effect of AC fields is consistent with
the above theoretical results (i)–(iii), because the results indicate that a long-time
Floquet engineering is generally impossible if we consider an isolated system.

[Efficient engineering] The form of the Floquet Hamiltonian (11.16) tells us that
the dimensionless expansion parameter is roughly given by A/(�ω), where A is
the typical energy scale of the local interaction between the system and the AC
field. In order to enhance the accuracy of predictions from theFloquetHamiltonian
truncated at a low order, one should increase AC-field frequency ω or decrease
the coupling strength A (i.e., tuning the value of A/(�ω)). On the other hand, for
a small value of A/(�ω), AC-field driven low-order terms such as Ĥ (0), Ĥ (1), and
Ĥ (2) are also weak. Namely, the change of physical quantities via Floquet engi-
neering is quite small for a small A/(�ω). Therefore, one should take a moderate
value of A/(�ω) to perform Floquet engineering in an efficient manner (although
the Floquet Hamiltonian gradually becomes invalid with increase of A/(�ω)).
The requirement of a large A is quite natural because the Floquet engineering is
a typical nonlinear phenomenon driven by a strong AC field. As I will mention
in the next section, it is not easy to increase A if one use laser or electromagnetic
wave as the driving field of Floquet engineering.
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From these statements, we see that the present Floquet theory can correctly predict
the short-time behavior when we consider isolated periodically driven many-body
systems. For a long-time driving, the systems are generally heated and the Floquet
theory does not work well. However, I emphasize that the forms of low-order terms
such as Ĥ (0), Ĥ (1), and Ĥ (2) are very important to qualitatively understand which
kinds of quantities can be controlled by anACfield. Amore quantitative computation
beyond Floquet Hamiltonian (e.g.., numerical analysis) is often necessary to more
accurately predict the values and time evolution of AC-field driven quantities, but
finding set of possible engineering observables is the most fundamental process to
propose a novel Floquet engineering.

11.3 Laser and Typical Excitations in Solids

Someparts of theoretical proposals for Floquet engineering have been experimentally
realized by using cold-atom systems [21, 22] inwhich one can prepare nearly isolated
(closed) quantum systems in a few (sub-)seconds. It means that Floquet engineering
in cold-atom systems has already grown to a certain degree, while that in materials
still offers various open issues. Therefore, now is the time to develop theories and
experiments for Floquet engineering in usual materials such as solids, liquids, and
gases. Use of usual materials has the advantage compared with cold atoms. For
instance, the lifetime of materials may be considered as infinity, and thereby one
can repeatedly perform Floquet-engineering process with single material. Floquet
engineering in materials can be done in a table-top manner by applying a suitable
AC field while that in cold atoms requires application of many sorts of tuned lasers
together with atom-trapping techniques.

As I mentioned in Introduction, I will review a few examples of the Floquet
engineering in solid crystals in the next section. A typical high-frequency field for
solids is electromagnetic wave or laser beams. Therefore, the information about
currently-available laser and excitations in solids is important. Below I discuss it
from a quantitative viewpoint.

Figure11.2 depicts typical excitations (quasi particles) of solids in a wide range
of laser frequency (photon energy). Magnetic (electron spin) excitations in solids are
usually distributed from 1GHz to 10 THz. Nuclear spin dynamics is much slower
than electron spinmotion and nuclear magnetic resonance (NMR) [6] is usually done
in a megahertz (MHz=106Hz) range. Phonons (lattice vibration) and molecular
oscillations are located from 1 THz to infrared wave (∼ 100 THz). Electron charge
excitations are around the visible-light regime (0.1 − 10 petahertz (PHz = 1015 Hz))
in both band and Mott insulators.

Electromagnetic waves and quasi-particle dynamics in MHz and GHz (low-
frequency) range have been widely used in electronics and spintronics [9]. In this
low-frequency regime, it is difficult to create intense coherent waves like laser beams
(although there exists maser technique), and instead various methods of generating
electromagnetic waves have been established. For instance, Gunn diode has been
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Fig. 11.2 Typical excitations in solids and their typical frequency (energy scales) in a wide fre-
quency range of electromagnetic wave

often used to create micro waves for electron spin resonance (ESR) experiments.
Techniques based on electromagnetic induction have been often used in NMR. On
the other hand, the high-frequency waves including infrared, visible and ultraviolet
light and the corresponding high-energy excitations in solids (various charge exci-
tations) have been central instruments in the research of photo science, optics, and
magneto-optics [8]. In the high-frequency regime, several methods of creating laser
beams have been established.

The laser science and technology in THz range (0.1–10THz), which is located
between the frequencies used in electronics (spintronics) and optics (photo science),
have massively proceeded in the last decades [1–5]. As shown in Fig. 11.2, their pho-
ton energy is comparable to the collective modes in solids like magnetic excitations,
phonons, molecular oscillations, Higgs modes in superconductors, etc. Therefore
we can now directly control these modes in ultrafast ways with intense laser. The
intensity of THz laser is still weaker than those of higher-frequency laser, but meth-
ods of controlling both intensity and shape of THz waves have been continuously
developed. In fact, non-equilibrium magnetic phenomena induced by THz laser or
wave have been actively investigated in various experimental groups [2, 44–49]. As
every one well knows, the strongest light-matter coupling is the interaction between
electric charge and electric field. Thus so far charge dynamics inmetals and semicon-
ductors has been the central target in photo physics and optics. However, thanks to the
development of THz laser science, non-equilibrium magnetic phenomena induced
by direct spin-light couplings have joined in photo science [5, 8].

Usually, laser beams stand for the strong, coherent electromagnetic wave prop-
agating for a long time. Such a beam is called continuous wave (CW). In addition
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Table 11.1 Properties of electromagnetic wave (or laser) with 1[MV/cm]. c is speed of light

Electric field of electromagnetic wave E0 =1MV/cm

Magnetic flux density, B0 = E0/c 0.33T

Energy flux, I 1.3× 109W/cm2 =1.3 GW/cm2

to CW, laser pulses with a short-time Gaussian envelop curve have been intensively
studied, especially, in condensed-matter physics. A few cycle, one-cycle and half
cycle pulses have been often utilized in the study of photo science. Particularly, as
I said, since it is difficult to make the intensity of THz laser strong compared to the
other lasers, the pulse techniques have been often used to create intense THz laser
pulse. This is very important to generate nonlinear laser-driven phenomena including
Floquet engineering in the THz range (0.1–10 THz). On the other hand, the Floquet
theory discussed in Sect. 11.2 is reliable for systems driven by CW. One thereby
carefully apply the Floquet approach to theoretically study Floquet engineering in
pulse-driven systems.

The laser intensity of 1 [MV/cm]may be viewed as a reference value for observing
nonlinear photo-induced phenomena, and the corresponding amplitude of the AC
magnetic field is ∼ 0.3T. See Table11.1. Let us here reminder that 1 [MV/cm]=0.1
[V/nm], Bohr radius aB = 0.0529 nm, and the energy levels of a hydrogen atom
are given by −13.6/n2[eV] (n = 1, 2, 3, · · · is the quantum number). Therefore, 1
[MV/cm] of electric field in an atomic size or lattice spacing of crystals (∼1nm) is
the same as about 10 % of a typical energy gap between neighboring atomic levels.
In addition, since typical strength of exchange interactions in magnetic insulators is
10–100 Tesla, the magnetic field of 0.3T is the order of 1–10% of typical exchange
interactions. I note that intensities of external electromagnetic waves used in usual
condensed-matter experiments are quite smaller than 1 [MV/cm] and 1T. Such a
weak field is sufficient to observe linear responses of materials, but is not enough to
do Floquet engineering. In the range of infrared and visible light, it is relatively easy
to generate strong laser with intensity 1.0–10 [MV/cm], while such a strong laser in
THz range is created only in the pulse form [1–4]. One should also note that (i) if we
apply a strong CW beam with more than 10 [MV/cm] to crystals, most of them burn
or evaporate, and (ii) the strength of external electric field usually become weaken
in materials due to the relative permittivity.

I summarize frequencies of electromagnetic wave and related physical quantities
(electric and magnetic fields) in Tables11.1 and 11.2. We have to carefully consider
these values of electromagnetic waves, when we propose a realistic set up of Floquet
engineering with a moderate value of A/(�ω) (See Sect. 11.3). For example, if
magnetic excitations are located in the range of 0.1–1 THz in a magnet considered,
visible light is not suitable to perform the Floquet engineering through the spin-light
coupling since A/(�ω) (See Sect. 11.2.4) is too small. Instead, an intense laser with
frequency of 2–3 THz would be better for the engineering.
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Table 11.2 Electromagnetic waves with frequencies 1GHz and 1THz and related physical quanti-
ties. Symbols of kB, g = 2, μB, c, e, and aB are respectively Boltzmann constant, electron g factor
in vacuum, Bohr magneton, speed of light, elementary charge, and Bohr radius

Electromagnetic wave 1THz 1GHz

Frequency, ω/(2π) 1012 Hz 109 Hz

Photon energy, �ω 4.1meV 4.1μeV

Temperature, T = �ω/kB 48K 48mK

Magnetic flux density,
B0 = �ω/gμB

36T 36mT

Electric field (vol. 1),
E1 = cB0

107MV/cm 107kV/cm

Electric field (vol. 2),
E2 = �ω/(eaB)

0.8MV/cm 0.8kV/cm

Finally, I comment onwave length and spatial distribution of laser beams. Usually,
the diffraction limit of electromagnetic wave is the order of its wave length. It is
generally difficult to spatially focus laser beams beyond their diffraction length. For
instance, 1THz wave has the wave length of ∼300 [μm] which is much larger than
lattice spacing of crystals. Therefore, AC electric ormagnetic fields of low-frequency
coherentwaves can be viewed as spatially uniformACfields for electrons in solids. In
otherwords, it is hard to introduce amicroscopic spatialmodulation in the THz range.
However, in recent years, techniques based on meta-material and plasmonics [50,
51] have made possible to tightly focus AC fields beyond their diffraction limit.
With these methods, it gradually becomes possible to create spatially modulated
THz waves in micro- to nano-scales [27, 51, 52].

11.4 Floquet Engineering in Magnets

In this section, I review two proposals of Floquet engineering in magnetic insulators
(quantum spin systems). Inverse Faraday effect in spin-orbit (SO) coupled elec-
tron systems [53], dynamical localization [54–57], and Floquet topological insu-
lators [58–61] are named as representative phenomena of Floquet engineering in
solids. Particularly, the prediction of Floquet topological insulators have triggered
the popularization of Floquet engineering in broad condensed-matter fields. Since
this prediction, plenty of Floquet theories for electron or quasi-particle systems have
been proposed.

On the other hand, since the spin-light coupling is generally much weaker than
the charge-light one, Floquet engineering in magnets had not been developed well.
However, as I discussed in Sect. 11.3, THz laser science has strikingly grown and
we can use intense THz laser pulses, which can be used to perform the Floquet
engineering with spin-light couplings. I will explain theories for the inverse Fara-
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day effect (ultrafast control of magnetization) with THz laser and ultrafast control
of Dzyaloshinskii-Moriya (DM) interaction [62–64] in a class of multiferroic sys-
tems [65–67], respectively, in Sects. 11.4.1 and 11.4.2.

11.4.1 Inverse Faraday Effect by THz Laser

In this subsection, I consider a wide class of standard magnetic insulators (quantum
spin systems) [24, 68]. As I discussed in Sect. 11.3, magnetic excitations are dis-
tributed from 1GHz to 10 THz, and thereby THz laser or wave are suitable for their
Floquet engineering. I concentrate on a generic quantum spin model under the appli-
cation of a static magnetic field and a circularly polarized wave, whose Hamiltonian
(See Fig. 11.3) is given by

Ĥmag(t) = Ĥmag − B · Ŝtot − B(t) · Ŝtot. (11.24)

Here, B = (0, 0, B) and B(t) = B0(sin(ωt),− cos(ωt), 0) respectively denote the
Zeeman coupling constants of the static field and circularly polarized AC one with
frequencyω. They are defined as B = gμBHdc and B0 = gμBHac (g,μB, Hdc and Hac

are respectively electron g factor, Bohr magneton, and the strength of the static and
ACmagnetic fields), and Stot = ∑

r Sr is the total spin of the system. The AC field is
in the x-y plane and it means that the laser is irradiated from the z direction. The first
term Ĥmag represents the static multiple-spin interaction and usually a Heisenberg-
type exchange interaction is dominant there.

For this driven system, only three Fourier components Ĥ0,+1,−1 are finite: Ĥ0 =
Ĥmag − BŜztot and Ĥ±1 = ∓ i

2 B0 Ŝ
±
tot. Here, we define operators Ŝ±

tot = Ŝx
tot ± i Ŝ y

tot.
The truncated Floquet Hamiltonian is thereby estimated as

Fig. 11.3 Set up of our model (11.24) of a quantum spin system under a circularly polarized THz
laser, and an image of Floquet mapping for the model
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Ĥeff = Ĥmag −
(
B + B2

0

2�ω

)
Ŝztot + O

(
(�ω)−2) . (11.25)

One finds that an effective Zeeman interaction −(B2
0/(2�ω))Ŝztot emerges owing to

the applied laser. The Floquet Hamiltonian indicates that circularly polarized THz
laser can change the value of magnetization 〈Ŝztot〉. An image of this Floquet theory
is depicted in Fig. 11.3. It is well known that if we apply a circularly polarized high-
frequency wave (such as visible light) to metallic systems with SO coupling, an
effective Zeeman interaction also appears through the combination between charge-
light and SO couplings. This Floquet engineering is called inverse Faraday effect [53]
and it has beenutilized in various studies of condensed-matter and applied physics [8].
Equation (11.25) shows that an inverse Faraday effect can also be generated even by
applying circularly polarized THz (low-frequency) laser through the direct spin-light
coupling.

However, we should note that if the spin Hamiltonian Ĥmag is SU(2)-symmetric
(i.e., spin-rotation symmetric) like the Heisenberg model

∑
〈r,r ′〉 Ŝr · Ŝr ′ , the static

(time averaged) magnetization 〈Ŝztot〉 does not change even under the existence of the
laser-driven Zeeman term [24]. This is understood by mapping the driven system to
that on a rotating frame via the Unitary transform

Û(t) = exp(i Ŝztotωt). (11.26)

This mapping has been often used in the study of magnetic resonance [6] and it
eliminates the time-periodic Zeeman coupling since the Unitary rotation has the
same frequency ω as the laser. After acting Û(t) to the Schrødinger equation from
the left side, the transformed Hamiltonian Ĥu = Û(t)Ĥ(t)Û†(t) − i Û(t)(∂t Û†(t)) is
given by

Ĥu = Ĥmag − BŜz + B0 Ŝ
y − �ωŜz = Ĥmag − Bu · Ŝ, (11.27)

where we have defined a new field Bu = (0,−B0, B + �ω). We note that the spin
Hamiltonian Ĥmag is invariant through the mapping due to the SU(2) symmetry. As
expected, the in-plane AC field is mapped to a static field B0 along the Sy axis, while
an additional Zeeman term −�ωŜz emerges. From this static model (11.27), we see
that the spin along the newfield Bu is conserved and therefore the staticmagnetization
cannot grow even by applying any circularly polarized laser. For instance, a magnetic
anisotropy such as single-ion terms Dz

∑
r(Ŝ

z
r )

2 and Ising ones 
z
∑

〈r,r ′〉 Ŝzr Ŝ
z
r ′ is

necessary to break this conservation. Such anisotropies stem from SO coupling and
after all it means that even the THz inverse Faraday effect requires an interaction
connecting real and spin spaces like the usual high-frequency inverse Faraday effect.
In [24, 68], the detailed condition for generating a large 〈Ŝztot〉 is discussed and its
value is numerically computed.
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11.4.2 Ultrafast Control of Spin Chirality and Spin Current
in Multiferroic Magnets

In this subsection,we consider another type ofmagnetic insulators, a class ofmultifer-
roic magnets [66, 67]. Multiferroics stands for the system with cross-correlated mul-
tiple ferro-type orders in the broad sense. Particularly, in the last decade, researchers
have actively studied a class of multiferroic magnetic insulators with a strong cou-
pling (called magneto-electric (ME) coupling) between magnetic moments and elec-
tric polarization. Therefore, recently the word “multiferroics” have been used as this
sort of magnets in a limited sense. In this subsection, I will use terminology “multi-
ferroics” according to this convention. In suchmultiferroic magnets, there are several
types of ME couplings and the electric polarization may be almost always approxi-
mated by a function of electron spins.

Whenwe theoretically analyze the essential aspects of the Floquet engineering for
multiferroics [25], it is enough to consider a simple two-spin multiferroic magnetic
model described by Fig. 11.4. In this model, two spins resides on the x-y plane and
circularly polarized THz laser propagates parallel to the z axis. The Hamiltonian is
given by

Ĥ2spin(t) = Ĥmag − B(t) · Ŝ − E(t) · P̂ . (11.28)

Thefirst term Ĥmag is the two-spin interaction like (11.24). The second and third terms
are driven by the circularly polarized laser: The second is the Zeeman interaction of
the AC field B(t) = B0(sin(ωt),− cos(ωt), 0) with B0 = gμBHac and the third is
the coupling between the AC electric field E(t) = E0(cos(ωt), sin(ωt), 0) and the
electric polarization P̂ . The symbol Ŝ = Ŝ1 + Ŝ2 is the sum of two spins Ŝ1,2, and
the strength of magnetic field Hac satisfies Hac = E0/c with c being speed of light.

Let us compute the truncated Floquet Hamiltonian for the model (11.28). The
Fourier components are given by Ĥ0 = Ĥmag and Ĥ±1 = − 1

2 (E0 P̂± ± i B0 Ŝ±),

where Ŝ± = Ŝx ± i Ŝ y and P̂± = P̂ x ± i P̂ y . Therefore, the effective Hamiltonian
up to the 1/ω order is

Fig. 11.4 Our two-spin
multiferroic magnet under a
circularly polarized THz
laser
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Ĥeff = Ĥmag − 1

2�ω

[
B2
0 Ŝ

z − i E2
0 [P̂ x , P̂ y] − i E0B0

(
[P̂ x , Ŝx ] + [P̂ y, Ŝ y]

) ]
.

(11.29)

This may be viewed as the generic formula for the Floquet Hamiltonian of multifer-
roic magnets under a circularly polarized laser [25]. The terms proportional to 1/ω
are all the laser-driven interactions. The first term with Ŝz corresponds to the inverse
Faraday effect discussed in the previous subsection. The other terms proportional to
E0B0 appear only in multiferroics with ME coupling, and they disappear in usual
magnetic insulators (See Sect. 11.4.1).

With this formula of (11.29), let us consider a multiferroic model with a concrete
ME coupling. Among several ME couplings, I here focus on so-called inverse DM
type coupling, in which the electric polarization is given by the outer product of two
neighboring spins V̂ = Ŝ1 × Ŝ2 (vector spin chirality) [66]:

P̂ = gmee12 × (Ŝ1 × Ŝ2), (11.30)

where gme is the ME coupling constant and generally depends on the frequency
ω. The vector e12 = (cos θ, sin θ, 0) is the unit vector connecting two spins as
shown in Fig. 11.4 and the symbol × denotes outer product. This inverse DM type
coupling is originated from SO coupling and is known to often emerge in multi-
ferroics with super-exchanges between a transition metal ion and an oxygen ion
(such as Mn oxides and Cu oxides) [65–67, 69, 70]. Substituting the polariza-
tion P̂ = gme(sin θ V̂ z,− cos θ V̂ z, cos θ V̂ y − sin θ V̂ x ) to the Floquet Hamiltonian
(11.29), we obtain

Ĥeff = Ĥmag − B2
0

2�ω
Ŝz − gmeE0B0

2�ω
e12 · V̂ . (11.31)

The final term is generated by the cross-correlation between E0 and B0, and may be
called a laser-driven DM interaction. DM interactions generally make two neighbor-
ing spins perpendicularly oriented with each other, while standard exchange inter-
actions prefer a collinear spin structure (parallel or anti-parallel). Therefore, the
co-existence of exchange and DM interactions usually creates a non-collinear spin
structure, in which neighboring spins take a certain angle φ �= 0, π . The effective
model (11.31) thus indicates that if we apply a circularly polarized laser to a multi-
ferroic magnet with inverse DM coupling, a non-collinear magnetic structure can be
created or annihilated.

It is straightforward to extend the result of (11.31) tomany-spinmultiferroicmod-
els. For instance, an one-dimensional (1D) multiferroic model along the x direction
under a circularly polarized laser is described by the following Hamiltonian

Ĥ1D =
∑
j

J Ŝ j · Ŝ j+1 − B · Ŝtot − B(t) · Ŝtot − E(t) · P̂ tot, (11.32)
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where S j is the electron spin on j th site, Stot = ∑
j S j is the total spin, and the

polarization is given by P̂ tot = gem
∑

j e × (Ŝ j × Ŝ j+1)with e = (1, 0, 0) being the
unit vector along the chain (x) direction. The first term is the 1D exchange interaction
between neighboring spins and the second is the static Zeeman interaction. The third
and fourth terms are generated by applied laser fields B(t) and E(t). After some
algebra, we arrive at the Floquet Hamiltonian

Ĥeff =
∑
j

J Ŝ j · Ŝ j+1 − B · Ŝtot − B2
0

2�ω
Ŝztot −

gmeE0B0

2�ω

∑
j

(Ŝ j × Ŝ j+1)
x .

(11.33)

The final term is the laser-driven uniform DM interaction which prefers a spiral spin
structure. A finite spin chirality 〈V x

tot〉 = ∑
j 〈(Ŝ j × Ŝ j+1)

x 〉 is shown [25] to be cre-
ated when we numerically solve the Schrødinger equation for the driven multiferroic
model (11.32). This is owing to the competition between exchange and laser-driven
DM interactions in (11.33). An image of this Floquet engineering is depicted in
Fig. 11.5.

A local spin chirality 〈V x
j 〉 = 〈(Ŝ j × Ŝ j+1)

x 〉 can be viewed as a local spin cur-
rent [9, 66]. From the equation of continuity of spin, one sees that a local spin
flow can appear if neighboring spin chiralities have different expectation values:
〈V x

j 〉 − 〈V x
j+1〉 �= 0. Such a spin current is numerically shown [25] to be created if

we apply a “spatially modulated” laser to the 1Dmultiferroic model. As I mentioned
in Sect. 11.3, spatially modulated THz laser could be generated with meta-material
techniques [50–52].

In addition to inverse DM interaction, the magneto-striction mechanism is also
famous as a representative of ways of generating ME couplings [67]. This mech-
anism usually stems from spin-phonon coupling and leads to a coupling between
a local electric polarization and a local exchange energy Ŝr · Ŝr ′ . Of course, it is
generally possible to propose a Floquet engineering with such a magneto-striction

Fig. 11.5 Floquet engineering of a multiferroic chain with inverse DM coupling under a circularly
polarized THz laser
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ME coupling. In fact, it has been predicted [26] that a topological spin liquid can be
created if we apply a circularly polarized laser to a honeycombKitaevmodel [71–73]
with a striction type ME coupling.

11.5 Summary and Outlook

In this chapter, I have reviewed the basic theoretical part of Floquet engineering [20–
23], focusing on isolated periodically-driven quantum systems. Floquet theorem,
Floquet-Magnus expansion for deriving the effective Floquet Hamiltonian, and its
physical meanings have been explained in Sect. 11.2. The truncated Floquet Hamil-
tonian can be used to correctly describe the short-time behavior of driven systems.
Then, in Sect. 11.3, I have discussed some information about currently-available
laser and electromagnetic waves which is important to perform Floquet engineering
in materials, especially, solids. The intensity of 1 [MV/cm] gives a reference ampli-
tude of AC electric field for effective engineering of physical quantities. Finally, I
have explained two examples of Floquet engineering in magnetic insulators: inverse
Faraday effect with THz laser in generic magnetic insulators [24, 68] and ultrafast
control of spin chirality in multiferroics [25].

Further development of Floquet theory is necessary to more accurately predict
Floquet engineered quantities in materials. An important research direction is the
development of sophisticated theories treating effect of environment (i.e., dissipa-
tion) because dissipation effect cannot be ignored in real materials driven by laser.
Approaches based on non-equilibrium Green’s function [12, 14] and quantum mas-
ter equation [15, 18, 19] have high potential to provide a deep insight to dissipative
periodically driven systems. These studies would also contribute to the development
of the fundamental of non-equilibrium physics.
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Chapter 12
Magnetoelastic Waves in Thin Films

Frederic Vanderveken, Florin Ciubotaru, and Christoph Adelmann

Abstract This chapter discusses the physics of magnetoelasticity and magnetoe-
lastic waves in thin films as well as their mathematical description. Magnetoelastic
waves occur as a result of strong coupling between spin waves and elastic waves
in magnetostrictive ferromagnetic media. In a first part, the basic behavior of spin
waves is reviewed in both bulk ferromagnets as well as in thin films. Next, elastic
waves are discussed with a focus on thin films. Then, the interactions between the
elastic and magnetic domains are described and it is shown how this results in the
formation of magnetoelastic waves. The description and themathematical formalism
of magnetoelastic waves in infinitesimally thin films is extended to magnetoelastic
waves in thin films with finite thickness. The dispersion relations and eigenstates
are derived and graphically visualised for such magnetoelastic waves. It is shown
that the behavior strongly depends on the geometry of the system, especially on the
polarization of the spin and elastic waves and the direction of the magnetization of
the magnetostrictive ferromagnetic medium.

12.1 Introduction

The coupling between different physical properties of a system is of great inter-
est for transducer elements. In recent years, the field of spintronics, which includes
applications of magnetism and magnetic materials in electronics, has gained enor-
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mous attention, which has led to the introduction of commercial magnetic memory
technologies. However, the efficient energy conversion from the electric to the mag-
netic domain and vice versa still remains challenging. Current magnetic memories
are based on spin-transfer or spin-orbit torques to switch the magnetization [1, 2];
however, these mechanisms depend on the current density in the device and require
typically energies on the order of (10 s of) femtojoules to reverse themagnetization of
a nanomagnet, despite amuch lower intrinsic energy barrier of the order of attojoules.
While femtojoule switching energies are promising for nonvolatile memories, they
are not competitive in other spintronic applications, such as spintronic logic circuits.
Therefore, much research has been devoted to developing more efficient transducers
between electric and magnetic subsystems of spintronic devices.

One of the most promising devices to efficiently couple electric and magnetic
properties in a spintronic system is the magnetoelectric transducer. Magnetoelectric
transducers consist of composite materials, which comprise piezoelectric and mag-
netostrictive layers [3–7]. Applying a voltage to the piezoelectric layer(s) leads to
the formation of strain in the compound. This strain introduces an effective magnetic
anisotropy field in the magnetostrictive ferromagnetic component, leading to an cou-
pling betweenvoltage (electric field) andmagnetization. The coupling is bidirectional
since rotating the magnetization of a magnetostrictive layer also induces strain in the
compound and consequently a polarization in the piezoelectric. Hence, such mag-
netoelectric schemes provide indirect coupling between electricity and magnetism
mediated by elastodynamics. Since generating large electric fields in the piezoelec-
tric layers can be energy efficiency, capacitive magnetoelectric transducers promise
a much higher energy efficiency than their current-based counterparts.

The coupling scheme of a magnetoelectric transducer can be split into two parts,
(i) piezoelectric coupling between electric and elastic domains, and (ii) magnetostric-
tive coupling between elastic and magnetic domains. Here, we investigate the second
part and focus especially on the behavior at GHz frequencies that are relevant for fast
electronic devices. In this frequency range, elastic waves (hypersound) interact with
magnetic waves (spin waves), forming hybrid magnetoelastic waves under resonant
conditions. The physics of the magnetoelastic resonance and the resulting magne-
toelastic waves have been described in bulk and infinitesimally thin films decades
ago [8–17]. However, modern applications of magnetoelastic waves in magneto-
electric and spintronic devices are based on nm-thick films. The finite thickness of
these magnetic films alters the dynamic dipolar field with respect to infinitesimally
thin films. Consequently, also the magnetoelastic coupling and the behavior of the
magnetoelastic waves change due to the finite film thickness. In this chapter, the
magnetoelastic theory and equations are extended to describe magnetoelastic waves
in thin films of finite thickness.

The chapter begins by introducing basic magnetic interactions and by review-
ing the properties of spin waves in bulk and thin film ferromagnets. The waves are
described by a general formalism to calculate the eigensystem. The effect of the
finite film thickness is then incorporated in this formalism. In the second part, linear
elasticity and elastic waves in thin films are discussed. In the third part, the mag-
netoelastic interactions together with the combination of the magnetodynamic and
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elastodynamic equations ofmotion are described. Finally, the fundamental properties
of magnetoelastic waves in thin films with finite thickness are derived and illustrated
both analytically and graphically for different magnetization orientations.

12.2 Spin Waves

Spin waves are collective excitations of the magnetization in magnetic materials.
The properties of spin waves are strongly affected by the geometry and the dominant
interactions inside the material. Hence, the relevant magnetic interactions will be
shortly introduced, followed by the derivation of the properties of spin waves in bulk
and thin film ferromagnets using the plane wave method.

12.2.1 Magnetic Interactions and Magnetization Dynamics

The magnetization dynamics in a ferromagnet can be described by the Landau–
Lifshitz–Gilbert (LLG) equation [18, 19]

dM
dt

= −γμ0(M × Heff) + α

Ms

(
M × dM

dt

)
(12.1)

with γ the absolute value of the gyromagnetic ratio (s−1T−1),μ0 the vacuum perme-
ability (TmA−1), α the Gilbert damping constant, Ms the saturation magnetization
(Am−1), and Heff the effective magnetic field (Am−1). The first term in the LLG
equation describes the precession of the magnetization around the effective magnetic
field. The second term in the LLG equation leads to the damping of themagnetization
precession towards the direction of the effective magnetic field.

Multiple magnetic interactions and effects exist that influence the magnetization
dynamics such as the exchange interaction, dipolar interaction, magnetocrystalline
effect, magnetoelastic effect, etc.. It is possible to derive a magnetic field that corre-
sponds to every interaction via

H = − 1

μ0

δU (M)

δM
and U (M) =

∫
V

E(M)dV (12.2)

with E(M) the corresponding energy density of that interaction. The total effective
magnetic field Heff , which is governing the magnetization dynamics in the LLG
equation, is given by the sum of all individual magnetic fields, including externally
applied fields. Below, the dipolar and exchange interaction are explained in more
detail since these lead to spin waves. Fully elaborated discussions of spin waves and
their properties can be found in [16, 20, 21].
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The dipolar interaction describes the direct interaction between magnetic dipoles.
Following (12.2), the interaction can be represented by a dipolar magnetic field. This
field is found by solvingMaxwell’s equations. For spinwaves atGHz frequencies, the
magnetostatic approximation is valid since the wavelengths of such spin waves are
several orders ofmagnitude shorter than those of electromagnetic waves in vacuum at
the same frequency, i.e. k0 � ksw with k0 thewavenumber of an electromagneticwave
in vacuum and ksw the wavenumber of a spin wave. This approximation implies that
the change in electric field over time, ∂E/∂t , has a negligible effect on the generation
of themagnetic field. Assuming further that no free charges and no electrical currents
are present inside the material, Maxwell’s equations become

∇ · E = 0 (12.3)

∇ · B = 0 (12.4)

∇ × E = −∂B
∂t

(12.5)

∇ × H = 0 (12.6)

with B = μ0(H + M) the magnetic induction (T). Hence, in the magnetostatic limit
(as in the electrostatic limit), electric and magnetic fields are decoupled from each
other. Equation (12.6) indicates that the curl of the magnetic field equals zero. This
allows for the definition of a magnetic scalar potential φ as

Hdip = −∇φ . (12.7)

Using (12.4), the definition of the magnetic scalar potential and the magnetic induc-
tion B, one finds the magnetic Poisson relation

∇2φ = ∇ · M . (12.8)

This relation indicates that the divergence of the magnetization ∇ · M, also called
the magnetic charge, acts as a source of the magnetic scalar potential and hence as a
source of the dipolar field. Two types of magnetic charges can be identified: first, a
surface charge, originating from surfaces between two materials with different mag-
netization magnitude or direction. Secondly, a magnetic volume charge, originating
from the change of the magnetization in the bulk of a ferromagnetic material. Both
surface and volume magnetic charges generate dipolar fields. The field outside the
magnetic material is called the stray field and the field inside the material is called
the demagnetization field.

By solving the magnetic Poisson equation (12.8) and using (12.7), it is possible
to derive a general expression for the demagnetization field given by [22, 23]

Hdemag = 1

4π

∫
V ′

D̄(r − r′)M(r′)dV ′ (12.9)
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with V ′ the volume of the magnetic material and D̄(r − r′) the tensorial magneto-
static Green’s function given by [16]

D̄(r − r′) = −∇r∇r′
1

|r − r′| . (12.10)

For uniform magnetization, the demagnetizing field is only generated by surface
charges, and (12.9) reduces to

Hdemag = 1

4π
M

∫
V ′

D̄(r − r′)dV ′ = −N̄ (r)M (12.11)

with N̄ (r) the demagnetization tensor, which only depends on the shape of the
magnetic volume. The anisotropy introduced by the demagnetization field is thus
often called the shape anisotropy.

The secondmagnetic interaction necessary to describe spin waves is the exchange
interaction between individual magnetic dipoles. This interaction gives rise to ferro-
magnetic coupling below the Curie temperature [24]. The exchange energy density
is given by

Eex = Aex

M2
s

[
(∇Mx)

2 + (∇My)
2 + (∇Mz)

2
]

(12.12)

with Aex the exchange stiffness constant (J/m). Following (12.2), the exchange field
is

Hex = 2Aex

μ0M2
s

�M = l2ex�M ≡ λex�M (12.13)

with � the Laplace operator and lex the exchange length (m). In ferromagnets,
the exchange interaction tries to keep the individual magnetic moments parallel.
The exchange length lex characterizes the competition between the dipolar and the
exchange interaction [21, 25]. At length scales below the exchange length lex, the
exchange interaction is dominant and magnetic moments align parallel with each
other. At length scales above the exchange length, the dipolar interaction is dom-
inant, and it becomes possible for domains to form. Analogously, the properties
of spin waves with short wavelengths are dominated by the exchange interaction,
whereas the dipolar interaction strongly affects the properties of spin waves with
large wavelengths.
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12.2.2 Spin Waves in the Bulk Ferromagnets

Consider a ferromagnetic material with static magnetic field Hext applied in the
z-direction. In absence of any anisotropy, the external field forces the equilibrium
magnetization along the z-direction. In such a system, stable wave-like excitations
exist, which can be described by weak perturbations of the equilibrium magnetiza-
tion. For a plane wave, the magnetization at a specific point in space and time can
be written as

M(r, t) = M0 + m(r, t) =
⎡
⎣ 0

0
M0

⎤
⎦ +

⎡
⎣mx

my

0

⎤
⎦ ei(ωt+k·r) (12.14)

with ω the angular frequency of the wave (rad s−1), and k the wavevector with norm
||k|| = k = 2π/λ (rad m−1) and direction perpendicular to the phase front. For weak
perturbations, i.e. ||m|| � M0, m(r, t) describes a wave-like perturbation which is
called a spin wave.

In (12.14), the z-component of the dynamic magnetization, mz, is neglected.
This approximation is only valid if the perturbations are weak. Since the angular
momentum, i.e. the norm of the magnetization vector, is conserved, the z-component
is given by m2

z = M2
0 − m2

x − m2
y. Therefore, the mz component can be considered

as a second order perturbation and is neglected in the remainder of this chapter.
For a uniform bulk material, the dipolar and exchange fields that correspond to

the perturbed magnetization state can be found via (12.9) and (12.13), respectively,
and are given by [26]

hdip(r, t) = −k · m(r, t)
||k||2 k = − 1

k2

⎡
⎣ k2x kxky 0
kxky k2y 0
0 0 0

⎤
⎦m(r, t) (12.15)

and

hex(r, t) = −λexk
2m(r, t) . (12.16)

The wavevector k = [kx , ky, kz] is determined by a single parameter θ because of
the axial symmetry around the magnetization vector. Hence, the wavevector can be
written as k = k[sin(θ), 0, cos(θ)] with θ the angle between the magnetization and
the propagation direction of the wave. With this substitution, the dipolar field can be
simplified to

hdip(r, t) = −
⎡
⎣sin2(θ) 0 0

0 0 0
0 0 0

⎤
⎦m(r, t) . (12.17)

The magnetization dynamics corresponding to the spin wave is found by solving
the LLG equation (12.1) including the perturbationm(r, t). Neglecting the damping
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term, the LLG equation becomes

d[M0 + m(r, t)]
dt

= −γ0[(M0 + m(r, t)) × (Hext + hdip(r, t) + hex(r, t))]
(12.18)

with γ0 = γμ0. Terms quadratic in m can be neglected because the perturbation is
assumed to be weak, which results in the linearized LLG equation given by

iωm(r, ω) = −γ0[M0 × (hex(r, ω) + hdip(r, ω)) + m(r, ω) × Hext] . (12.19)

Rearranging the terms and rewriting the system in matrix notation leads to

[
ωbx −iω
iω ωby

] [
mx

my

]
= 0 (12.20)

with

ωbx = ω0 + ωM(λexk
2 + sin2(θ)) (12.21)

ωby = ω0 + ωMλexk
2 (12.22)

ω0 = γ0Hext, andωM = γ0Ms. The parametersωbx andωby are related to the effective
magnetic fields that interact with the x- and y-components of the dynamic magneti-
zation, respectively.

The properties of the stable perturbations of themagnetization, i.e. the spin waves,
can be extracted by analyzing the eigenvalues and corresponding eigenstates of
(12.20). Equation (12.20) has nontrivial solutions only if its determinant is zero.
This condition can be utilized to obtain the dispersion relations of the spin waves.
Considering only positive frequencies, the spin wave angular frequency is given by

ω = √
ωbxωby =

√
(ω0 + ωMλexk2)[ω0 + ωM(λexk2 + sin2(θ))] . (12.23)

This equation is the dispersion relation for spin waves in bulk ferromagnets. It is also
called the Herring–Kittel equation.

Equation (12.23) indicates that there is a nonzero minimum frequency, above
which resonant magnetization dynamics are obtained. Exciting a ferromagnet at fre-
quencies below the spinwave resonance generates evanescentwaves. If the excitation
source is removed, these waves disappear after a certain time (their lifetime) even in
absence of intrinsic damping. Moreover, they do not propagate and thus do not con-
tribute to steady state wave patterns at distances from the excitation source that are
much larger than their wavelength. However, they are important to satisfy boundary
conditions and in transient regimes.

The eigenstates corresponding to the eigenvalues of the linearized LLG equation
are
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m(k) = N√
ωbxωby

[
iωby√
ωbxωby

]
(12.24)

with N a normalization constant. Note that ωbx and ωby both depend on k and thus,
via the dispersion relation, also on the frequency. The eigenstate indicates that the
precession of the magnetization (the polarization of the wave) is always clockwise
in the direction of propagation. Furthermore, the precession of the magnetization is
generally elliptical with an ellipticity equal to

εb = |mx|
|my| = ωby√

ωbxωby
. (12.25)

In the limit of small k, the exchange interaction can be neglected since λexk2 � 1,
and the dispersion relation becomes ω =

√
ω0(ω0 + ωM sin2(θ)). This dispersion

relation characterizes dipolar spin waves that are degenerate. Hence, in this limit,
multiple spin waves with different wavelengths exist at the same frequency. For
θ = 0, the dispersion relation becomes ω = ω0 and the effect of the dipolar self-
interaction disappears. In this case, the dynamic magnetization components only
interactwith the external field Hext. For θ = π/2, the interaction between the dynamic
dipolar field and the spin wave is strongest. In this case, the dispersion relation is
ω = √

ω0(ω0 + ωM). Therefore, the spin wave frequencies in the dipolar regime are
limited to a specific interval

ω0 ≤ ω ≤ √
ω0(ω0 + ωM) . (12.26)

On the other hand, in the limit of large k, when λexk2 � 1, a quadratic dispersion
relation is obtained

ω = ωMλexk
2 . (12.27)

This dispersion characterizes spin waves for which the exchange interaction is dom-
inant. It is worth noting that these exchange spin waves are isotropic with respect to
the propagation direction. By contrast, dipolar spin waves are anisotropic because
they depend on the propagation direction via the parameter θ .

12.2.3 Spin Waves in Ferromagnetic Thin Films

In the previous section, the properties of spin waves in an infinite bulk medium were
discussed. In this section, we introduce boundaries in the ferromagnetic medium and
derive the properties of spin waves in ferromagnetic thin films of finite thickness.

Consider an infinitemagnetic thin filmof thickness d with its normal parallel to the
y-direction. In the previous section, electrical currents were neglected in Maxwell’s
equations, which is only a good approximation for ferromagnetic insulators. How-
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ever, for thin films, this approximation is even valid for conductors as long as the
thickness of the film is sufficiently small with respect to the skin depth of the fer-
romagnet [27]. It should also be noted that in the derivations below, the dynamic
magnetization and the fields are averaged over the thickness of the film and are thus
uniform in the y-direction. This is a valid approximation when the wavelength is
much larger than the thickness of the film, i.e. kd � 1. If this is not the case, it
is possible for thickness modes to arise which have varying amplitude along the
thickness [16]. These thickness modes will however not be considered here.

The magnetization is again defined as in (12.14) with the magnetization satu-
rated in-plane along an external field Hext in the z-direction. The components of the
dynamic magnetization are in the x- and y-direction and form a plane wave, the spin
wave. The exchange field is not affected by the thin film boundaries and is given by
(12.13). As indicated by (12.8), the boundaries generate magnetic surface charges
and therefore act as a source of the dipolar field. Therefore, in contrast with the
exchange field, the dipolar field is affected by the boundaries.

For a thin filmof finite thickness, the dipolar field can be approximated by [28–30]

hdip(r, t) = −[P k · m
||k||2 k + (1 − P)(n · m)n] (12.28)

= −
⎡
⎣ P sin2(θ) 0 P sin(θ) cos(θ)

0 1 − P 0
P sin(θ) cos(θ) 0 P cos2(θ)

⎤
⎦m(r, t) (12.29)

with

P = 1 − 1 − e−kd

kd
, (12.30)

k2 = k2x + k2z , as well as θ the angle between the static magnetization M0 and
wavevector k. In the limit of an infinitesimally thin film, this simplifies to

lim
d→0

hdip(r, t) = −
⎡
⎣0
1
0

⎤
⎦m(r, t) (12.31)

and thus only the out-of-plane magnetization component contributes to the spin
wave dipolar field. Hence, for a thin film of finite thickness, the spin wave behavior
is markedly different as compared to a thin film of infinitesimal thickness.

The linearized LLG equation (12.19) with the modified dipolar field in (12.28)
can then be written as

[
ωfx −iω
iω ωfy

] [
mx

my

]
= 0 (12.32)

with
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ωfx = ω0 + ωM(λexk
2 + P sin2(θ)) (12.33)

ωfy = ω0 + ωM(λexk
2 + 1 − P) . (12.34)

Again, nontrivial solutions of this equation only exist when the determinant of the
matrix is zero. This condition leads to the dispersion relation of spin waves in thin
ferromagnetic films, given by [30, 31]

ω = √
ωfxωfy =

√
(ω0 + ωMλexk2)(ω0 + ωMλexk2 + ωMFm) (12.35)

with

Fm = 1 − P cos2(θ) + ωMP(1 − P) sin2(θ)

ω0 + ωMλexk2
. (12.36)

The corresponding eigenstate has the same form and properties as the eigenstate of
spin waves in bulk ferromagnets and is given by

m(k) = N√
ωfxωfy

[
iωfy√
ωfxωfy

]
(12.37)

with N a dimensionless normalization constant.
In the limit of large wavevectors, i.e. the exchange limit λexk2 � 1, the dispersion

relation reduces to (12.27) that was derived for bulk magnetic media. However, in
the dipolar limit of small k-values, λexk2 � 1, the dispersion relation differs from
that in bulk ferromagnetic media. Again, two limiting cases are found for θ = 0 and
θ = π/2.

For λexk2 � 1 and θ = 0, the dispersion relation becomes

ω2
BVW = ω0

(
ω0 + ωM

1 − e−kd

kd

)
. (12.38)

The propagation direction of these waves is parallel to the direction of the static equi-
librium magnetization. Their dispersion relation is plotted in Fig. 12.1 for a 30nm
thick Ni film with Ms = 480 kA/m [32], Aex = 8 pJ/m [33], and an external mag-
netic field of μ0Hext = 50mT. According to the dispersion relation, the frequency
decreases with increasing wavenumber, and thus the group velocity, which is defined
asvg = ∂ω/∂k, is negative.On theother hand, the phase velocityvp = kω/k2,which
describes the velocity and direction of the phase front, is positive. The energy flow
of a wave is always parallel to the group velocity, and thus in this geometry, the
energy flow and the group velocity are antiparallel to the wavevector and the phase
velocity. For this reason, such waves are called backward volume waves (BVWs). As
shown in Fig. 12.1, when the exchange interaction becomes non-negligible at larger
wavevectors, the dispersion relation shifts to higher frequencies. This effect increases
for higher k-values, finally reaching the limiting case of exchange-dominated spin
waves.
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Fig. 12.1 Spin wave dispersion according to (12.35) for a 30nm thick Ni film. Material parameters
areMs = 480kA/m and Aex = 8pJ/m, whereas the external magnetic field isμ0Hext = 50mT. The
solid red and blue lines correspond to dispersion relations of dipolar and dipolar–exchange surface
spin waves, respectively. The dashed red and blue lines correspond to dispersion relations of dipolar
and dipolar–exchange backward volume spin waves, respectively

In the dipolar limit (λexk2 � 1), the dispersion relation for θ = π/2 becomes

ω2
SW = ω0(ω0 + ωM) + ω2

M

(
1 − 1 − e−kd

kd

)
1 − e−kd

kd
. (12.39)

These waves are called surface waves since their amplitude decays exponentially
away from the surface. However, if the film is sufficiently thin, the magnetization can
be considered uniform over the film thickness as mentioned earlier. The dispersion
relations of spin waves both in the dipolar approximation and when the dipolar and
exchange interaction are simultaneously present are plotted in Fig. 12.1. The group
velocity of these waves is positive and thus points in the same direction as the phase
velocity.

It should also bementioned that spinwaves are accompanied by a dynamic electric
field. This electric field e is obtained from Maxwell’s equations (12.3) and (12.5)
which can be rewritten as

∇ · e = 0 (12.40)

∇ × e = −iμ0ω(hdip + m) = −iμ0ω
(
N̄dip + Ī

)
m (12.41)

with Ī the identity matrix. Equation (12.41) indicates that both the dynamic dipolar
field and the dynamic magnetization contribute to the generation of the dynamic
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electric field. However, in the magnetostatic limit when k0 � k, the effect of the
dipolar field is much smaller than that of the dynamic magnetization. Taking this
into account and solving Maxwell’s equations for plane waves results in

e = −μ0ω

k2
k × m (12.42)

for the dynamic electric field [20].
For spin waves at GHz frequencies in ferromagnetic media, the energy stored in

the electric field is much smaller than the energy stored in the magnetic system [20].
Therefore, the magnetostatic waves can be considered as “magnetization waves”.
Note that this applies to spin waves in both the dipolar and exchange regime. In
both cases, at GHz frequencies, the wavelength of a spin wave is much shorter
than the wavelength of an electromagnetic wave in vacuum and the magnetostatic
approximation is thus valid.

All calculations in this section are only valid at GHz frequencies in the magne-
tostatic limit. At higher frequencies near the THz regime, the spin wave wavelength
becomes comparable to the wavelength of the electromagnetic wave in vacuum,
ksw ≈ k0, and the magnetostatic approximation does not longer hold. At these higher
frequencies, the influence of the time-varying electric field alters the wave behavior.
This can be seen by considering both generation mechanisms of the magnetic field.
As mentioned earlier, the dipolar magnetic field can be generated by both varying
electric fields over time and by varying magnetization over space. The generation
mechanism via the time varying electric field is proportional to the regular electro-
magnetic wave wavenumber k0, whereas the generation mechanism via the magneti-
zation is proportional to the magnetization wavenumber ksw. Hence, the mechanism
which governs the highest wavenumber dominates the generation of the magnetic
dipolar field.

In the GHz regime and magnetostatic limit k0 � ksw, the dipolar field generation
is thus dominated by the variation of themagnetization over space. However, at much
higher frequencies near the THz regime, both wavenumbers are of the same order
and thus both generation mechanisms are of similar magnitude. This means that the
generation of the magnetic dipolar field by the time varying electric field cannot be
neglected anymore.

The frequency, for which themagnetostatic approximation breaks down,ωcrit , can
be found by relating the wavenumbers to the frequency via the dispersion relations.
The crossing point of the spin-wave dispersion relation, (12.27), with the linear
electromagnetic dispersion relation, ω0 = ck0, determines ωcrit and is given by

ωcrit = c2

ωMλex
(12.43)

with c the speed of light in vacuum. For frequencies ω � ωcrit , the magnetostatic
limit is valid and regular spin waves are obtained. For frequencies above ωcrit , spin
waves behave similarly to classical electromagnetic waves with a considerable frac-
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tion of energy stored in the dynamic electric field. As a result, besides the dipolar
and exchange regime, there also exist a regular electromagnetic regime at higher
frequencies, which corresponds to electromagnetic waves with a linear dispersion
relation.

12.3 Elastic Waves

In the previous section, the properties of spin waves in ferromagnetic media, both in
bulk materials and in thin films, have been discussed. In this section, we turn to the
properties of wave-like oscillations of the displacement, i.e. elastic waves. We start
with a short derivation of the fundamental equations of linear elasticity. Then, the
different types of elastic waves and their characteristics are described.

12.3.1 Elastodynamic Equations of Motion

The equation of motion for the displacement u is given by

ρ
d2u
dt2

= ∇ · σ̄ + fb (12.44)

with ρ the mass density (kgm−3), σ̄ the two dimensional stress tensor with compo-
nents σij (Nm−2), and fb the body forces acting on the material (Nm−3). For linear
elastic materials, the stress tensor is related to the strain tensor via Hooke’s law

σ̄ = ¯̄C : ε̄ or σij =
3∑

k=1

3∑
l=1

Cijklεkl . (12.45)

Here, ¯̄C is the fourth-order stiffness tensor and ε̄ is the second-order strain tensor.
The symmetries of the stiffness tensor allows to rewrite Hooke’s law in reduced
dimensionality [34, 35] as

⎡
⎢⎢⎢⎢⎢⎢⎣

σ11

σ22

σ33

σ12

σ13

σ23

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

symm. C55 C56

C66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ε11
ε22
ε33
2ε12
2ε13
2ε23

⎤
⎥⎥⎥⎥⎥⎥⎦

. (12.46)
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This is called the Voigt notation for Hooke’s law. Important to note is the notation
for the shear strain elements. In some works, this is given by the engineering strains
γij = 2εij which gives a factor of 2 difference with the real shear strains.

Equation (12.46) indicates that a material with a nonsymmetric (e.g. triclinic)
crystal structure is described by 21 independent stiffness coefficients [36, 37]. In a
crystal systemwith a certain symmetry, the number of independent stiffness constants
can be greatly reduced. For example, only three independent stiffness constants are
required to describe cubic crystal systems. The stiffness tensor then becomes

C̄cubic =

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C12 0 0 0
C11 C12 0 0 0

C11 0 0 0
C44 0 0

symm. C44 0
C44

⎤
⎥⎥⎥⎥⎥⎥⎦

. (12.47)

In this case, the residual anisotropy can be quantified by the Zener factor A, which
is given by

A = 2C44

C11 − C12
. (12.48)

A Zener factor of 1 indicates fully isotropic elastic properties. In this isotropic limit,
only two independent constants are necessary to describe the stiffness tensor. Note
that different combinations of parameters can be used to represent the isotropic case,
such as Young’s modulus and the Poisson ratio, Young’s modulus and the shear
modulus, or the Lamé moduli. All descriptions are fully equivalent [37, 38].

For small displacements, the relation between the strain and displacement is given
by [34, 36]

ε̄ = 1

2

(∇u + (∇u)T − ∇u (∇u)T
) ≈ 1

2

(∇u + (∇u)T
)

. (12.49)

Combining (12.44), (12.47), and (12.49) results in the elastodynamic equations of
motion with the displacement as the only variable. For a material with cubic sym-
metry, the equations are given by

ρ
∂2ux
∂t2

= C11
∂2ux
∂x2

+ C44

(
∂2ux
∂y2

+ ∂2ux
∂z2

)
+ (C12 + C44)

(
∂2uy
∂x∂y

+ ∂2uz
∂x∂z

)
+ fx

ρ
∂2uy
∂t2

= C11
∂2uy
∂y2

+ C44

(
∂2uy
∂x2

+ ∂2uy
∂z2

)
+ (C12 + C44)

(
∂2ux
∂x∂y

+ ∂2uz
∂y∂z

)
+ fy

ρ
∂2uz
∂t2

= C11
∂2uz
∂z2

+ C44

(
∂2uz
∂x2

+ ∂2uz
∂y2

)
+ (C12 + C44)

(
∂2ux
∂x∂z

+ ∂2uy
∂y∂z

)
+ fz .

(12.50)
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Note that the above equations do not contain any damping terms and the system
is assumed to be lossless. In practice, materials always possess some degree of
viscoelasticity. In this case, the energy in the elastic wave is lost by different mecha-
nisms such as phonon–phonon scattering due to the anharmonicity of the vibrational
potential or the scattering of phonons by impurities. This can be taken into account
by considering complex stiffness coefficients [37, 38]. However, in the following,
perfect elasticity without loss is assumed for simplicity.

12.3.2 Elastic Waves in Thin Films

In this section, we introduce the properties of elastic waves in an idealized thin film
with free surfaces. This corresponds to an isolated thin film in vacuum in which
the elastodynamics is perfectly confined inside the film. The perfect confinement
is achieved by large acoustical impedance mismatch between the film and vacuum.
Therefore, the model also approximately represents a thin film surrounded by mate-
rials with strongly different acoustic impedances, e.g. a film with a free top surface
and a large acoustic impedance mismatch with the supporting substrate. For more
realistic approaches, appropriate stress and velocity boundary conditions need to be
applied at the interfaces. In the next section, when the magnetoelastic interaction is
included, it is demonstrated that the magnetization dynamics also generate elastic
stresses, which further complicates the description at the boundaries. In such cases,
an analytical treatment of the system is difficult and accurate studies require numer-
ical simulations, e.g. by finite element methods. Nonetheless, the treatment of an
idealized system presented here provides analytical insights in the basic elastic (and
magnetoelastic) behavior. This insight will help in the understanding of the magne-
toelastic waves in the next section and can be used in the future to interpret numerical
simulations of more realistic systems.

For the case of thin films with free surface boundary conditions, the variation
of the displacement along the thickness of the film is much smaller than the in-
plane variation. Hence, the derivative of the displacement along the film surface
normal can be neglected with respect to the derivatives in the in-plane directions,
i.e. ∂u/∂y � ∂u/∂x , ∂u/∂z. The elastodynamic equations of motion for a thin film
with a surface normal in the y-direction are then given by

ρ
∂2ux
∂t2

= C11
∂2ux
∂x2

+ C44
∂2ux
∂z2

+ (C12 + C44)
∂2uz
∂x∂z

ρ
∂2uy
∂t2

= C44

(
∂2uy
∂x2

+ ∂2uy
∂z2

)

ρ
∂2uz
∂t2

= C11
∂2uz
∂z2

+ C44
∂2uz
∂x2

+ (C12 + C44)
∂2ux
∂x∂z

.

(12.51)
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The above set of linear differential equations has wave-like solutions of the form [15,
37]

u(r, t) =
⎡
⎣ux
uy
uz

⎤
⎦ ei(ωt+k·r) . (12.52)

To determine the dispersion relation of elastic waves in thin films, (12.52) is substi-
tuted into the wave equations (12.51). Rewriting the system in matrix notation and
considering that the wavevector k points along the x-direction, results in

⎡
⎣ω2 − v2l k

2 0 0
0 ω2 − v2t k

2 0
0 0 ω2 − v2t k

2

⎤
⎦

⎡
⎣ux
uy
uz

⎤
⎦ = 0 (12.53)

with vl = √
C11/ρ the velocity of the longitudinal wave, vt = √

C44/ρ the velocity
of the transversal wave, and ω the angular frequency of the elastic wave. As a result,
three independent elastic waves are found, which correspond to the three components
of the displacement vector.

When only the ux component is nonzero, longitudinal waves are formed since
the displacement oscillation is in the same direction as the wavevector. This wave is
also called a compressional or dilational wave. The dispersion relation, ωl(k), of this
wave is easily found from (12.53) to beωl = vlk [15, 36, 37]. The dispersion relation
is linear, and thus the group velocity vl equals the phase velocity, independently of
frequency.

Waves with nonzero displacement components uy and uz oscillate perpendicular
to the propagation direction. Therefore, thesewaves are transversal waves, also called
shear or rotational waves. Their dispersion relation is also linear and equals ωt = vtk
[15, 36, 37]. The phase and group velocities are thus both equal to vt . It is further
possible to classify these waves based on their polarization with respect to the film
surface. The uy component corresponds to shear vertical (SV) waves and the uz
component corresponds to shear horizontal (SH) waves. It is important to note that
the velocity of the longitudinal wave is always larger than the velocity of the shear
waves because C11 > C44 [36, 37].

The energy of elastic waves oscillates between the elastic potential energy and
the kinetic energy. The elastic energy density is given by [15, 36, 37]

Eel = 1

2
σ̄ : ε̄ = 1

2
Ci jklεi jεkl = 1

2

3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

Ci jklεi jεkl (12.54)

or in Voigt notation

Eel = 1

2
σ̄ : ε̄ = 1

2
Ci jε jεi , (12.55)

whereas the kinetic energy density is given by
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Ekin = ρ||v||2
2

with v = ∂u
∂t

. (12.56)

Hence, for an elastic wave, the total energy is Etot = Eel + Ekin and Eel = Ekin.

12.4 Magnetoelastic Waves

In the two previous sections, magnetic and elastic waves in thin films were stud-
ied. This section connects the two previous sections by introducing magnetoelastic
interactions. In the first part of this section, the magnetoelastic interaction terms are
described, which couple magnetic and elastic waves. In the second part, the proper-
ties of these magnetoelastic waves are derived and explained. Magnetoelastic waves
have been studied in detail in bulk materials [8–10], at free surfaces [39–41], and in
infinitesimally thin films [11, 12]. This section reviews the most important aspects
of these magnetoelastic waves together with the corresponding equations. Beyond
this review, we subsequently derive the influence of finite film thickness on the prop-
erties of the magnetoelastic waves by taking into account the appropriate dipolar and
exchange fields.

12.4.1 Magnetoelastic Interactions

Magnetoelastic interactions can be separated in two different effects: firstly, the influ-
ence of the direction of the magnetization on the internal strain in a ferromagnet,
called the magnetostrictive effect; and secondly, the effect of strain on the magneti-
zation state, called the Villari effect. If both effects are considered simultaneously,
one speaks about magnetoelasticity.

12.4.1.1 Magnetostriction

Magnetostriction describes how the magnetization affects the elastic behavior of
a material. Therefore, in a magnetostrictive material, different magnetization states
result in different strain states. For amaterialwith cubic symmetry, themagnetoelastic
energy density is given by [8]

Emel = B1

M2
s

(
εxx

(
M2

x − 1

3

)
+ εyy

(
M2

y − 1

3

)
+ εzz

(
M2

z − 1

3

))

+ 2B2

M2
s

(
εxyMxMy + εyzMyMz + εzxMxMz

) (12.57)
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with B1 and B2 the linear isotropic and anisotropic magnetoelastic coupling con-
stants, respectively (Jm−3). It is worth noting that the magnitude of the saturation
magnetization has no influence on themagnetoelastic energy or strain state, which are
rather determined by the orientation of the magnetization vector. The magnetization
orientation is defined by the vector

ζ =
⎡
⎣ζx

ζy
ζz

⎤
⎦ = 1

Ms

⎡
⎣Mx

My

Mz

⎤
⎦ . (12.58)

Substituting this into (12.57) leads to

Emel =B1

(
εxx

(
ζ 2
x − 1

3

)
+ εyy

(
ζ 2
y − 1

3

)
+ εzz

(
ζ 2
z − 1

3

))

+ 2B2
(
εxyζxζy + εyzζyζz + εzxζxζz

)
.

(12.59)

Based on this expression for the magnetoelastic energy density, it is possible to
calculate the magnetostrictive body force, which is given by

fmel = ∇ · σ̄mel = ∇ ·
(
dEmel

dεij

)
, (12.60)

leading to

fmel = 2B1

⎡
⎢⎢⎢⎢⎣

ζx
∂ζx
∂x

ζy
∂ζy

∂y

ζz
∂ζz
∂z

⎤
⎥⎥⎥⎥⎦ + B2

⎡
⎢⎢⎢⎢⎣

ζx

(
∂ζy

∂y + ∂ζz
∂z

)
+ ζy

∂ζx
∂y + ζz

∂ζx
∂z

ζy

(
∂ζx
∂x + ∂ζz

∂z

)
+ ζx

∂ζy

∂x + ζz
∂ζy

∂z

ζz

(
∂ζx
∂x + ∂ζy

∂y

)
+ ζx

∂ζz
∂x + ζy

∂ζz
∂y

⎤
⎥⎥⎥⎥⎦ . (12.61)

There are three important parameters that determine the strength of themagnetostric-
tive body force: themagnetoelastic coupling constants, themagnetization orientation,
and the gradient of the magnetization orientation.

The magnetostrictive body force affects the elastodynamics and thus needs to be
added to the elastodynamic equation (12.44) in magnetostrictive media. This allows
for the analytical description of the influence of the magnetization direction on the
elastodynamics and the properties of (magneto-)elastic waves.

Another important quantity is the magnetostrictive strain, which is the additional
strain originating from the magnetostrictive effect. For a material with cubic sym-
metry, the magnetostrictive strain is given by [24, 42, 43]

ε̄mel = 3

2

⎡
⎢⎣

λ100
(
ζ 2
x − 1

3

)
λ111ζxζy λ111ζxζz

λ111ζyζx λ100

(
ζ 2
y − 1

3

)
λ111ζyζz

λ111ζzζx λ111ζzζy λ100
(
ζ 2
z − 1

3

)

⎤
⎥⎦ . (12.62)
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with λ100 and λ111 the magnetostriction coefficients representing the maximummag-
netostrictive strain for fully-saturated magnetization along the 〈100〉 or 〈111〉 crys-
tallographic directions, respectively.

The magnetostriction coefficients are related to the magnetoelastic coupling con-
stants by

λ100 = 2

3

B1

C12 − C11
, λ111 = − B2

3C44
. (12.63)

Hence, it is also possible to express the magnetostrictive body force as a function of
the magnetostrictive strain via

fmel = ∇ · σ̄mel = ∇ ·
( ¯̄C : ε̄mel

)
. (12.64)

Note that for an isotropic material, λ100 = λ111 = λeq and B1 = B2 = B.

12.4.1.2 The Villari Effect

The Villari effect describes how elastic strain affects the magnetization state and is
also called the inverse magnetostrictive effect. Strain in a magnetostrictive material
results in an effective magnetoelastic field, which can be derived from (12.2) and
(12.57). For a material with cubic symmetry, the magnetoelastic effective field is

Hmel = − 1

μ0

dEmel

dM
= − 2

μ0Ms

⎡
⎣B1εxxζx + B2(εxyζy + εzxζz)

B1εyyζy + B2(εxyζx + εyzζz)

B1εzzζz + B2(εzxζx + εyzζy)

⎤
⎦ (12.65)

with ζi the normalized magnetization components, as defined by (12.58). The result-
ing magnetization dynamics are described by the LLG equation (12.1), including the
above magnetoelastic field as a contribution to Heff .

12.4.2 Magnetoelastic Waves in Thin Films

When the magnetoelastic interaction terms fmel and Hmel are combined with the
magnetodynamic equation (12.1) and the elastodynamic equation (12.51), a set of
coupled differential equations is obtained. Formally, these differential equations are
nonlinear because the terms originating from the magnetoelastic interaction show
a quadratic dependence on the magnetization and the displacement. Therefore, the
magnetoelastic effect formally results in a nonlinear interaction. However, when the
dynamic components are assumed to be weak, the differential equations can be lin-
earized. In this case, wave-like solutions for the magnetization and the displacement,
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given by (12.14) and (12.52), exist for the coupled set of equations. These solutions
correspond to magnetoelastic waves. However, it is important to keep in mind that
for large dynamic components, a system of nonlinear differential equations has to be
solved, including nonlinear magnetoelastic interaction effects.

To reduce the complexity of the calculations, a homogeneous and isotropic mate-
rial is assumed. The geometry of the structure remains the same as in the previous
sections with the film in the xz-plane and the y-direction normal to the film surface.
The static magnetization and the static external field are chosen along the z-direction,
as in Sect. 12.2.3. Then, substituting thewave-like ansatz into the equations ofmotion
and neglecting terms quadratic in m or u, leads to the following linearized system
of equations:

−ρω2ux = −C11k
2
xux − C44k

2
zux − (C12 + C44)kxkzuz + B2

Ms
ikzmx

−ρω2uy = −C44
(
k2xuy + k2zuy

) + B2

Ms
ikzmy

−ρω2uz = −C11k
2
zuz − C44k

2
xuz − (C12 + C44)kxkzux + B2

Ms
ikxmx

iωmx = −ωfymy − γ B2ikzuy
iωmy = ωfxmx + γ B2i (kzux + kxuz) .

(12.66)

Assuming that the elastic properties of the thin film are isotropic, the C12 stiffness
constant can be replaced by C12 = C11 − 2C44. Moreover, as discussed above, two
types of elasticwaves exist in in an isotropicmaterial, i.e. longitudinal and transversal
waves. Therefore, it is convenient to define new displacement variables parallel (ul )
and perpendicular (ut) to the propagation direction such that

ux = ul sin(θ) + ut cos(θ) , uz = ul cos(θ) − ut sin(θ) . (12.67)

Here, θ is the angle between the staticmagnetizationM0 and thepropagationdirection
k. Substituting these redefined displacement components into the dynamic equation
of motion together with kx = k sin(θ) and kz = k cos(θ) results in

(ω2 − ω2
l ) sin(θ)ul + (ω2 − ωH) cos(θ)ut + i Bk cos(θ)

ρMs
mx = 0

(ω2 − ω2
V)uy + i Bk cos(θ)

ρMs
my = 0

(ω2 − ω2
l ) cos(θ)ul − (ω2 − ω2

H) sin(θ)ut + i Bk sin(θ)

ρMs
mx = 0

iγ Bk cos(θ)uy + iωmx + ωfymy = 0

iγ Bk sin(2θ)ul + iγ Bk cos(2θ)ut + ωfxmx − iωmy = 0

(12.68)
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with ω the angular frequency of the magnetoelastic wave, ωl = vlk =
√

C11
ρ
k the

dispersion relation of longitudinal elastic waves, ωH = vtk =
√

C44
ρ
k the dispersion

relation of horizontally-polarized (in-plane) transversal elastic waves, and ωV =
ωH the dispersion relation of vertically-polarized (out-of-plane) transversal elastic
waves. Here, the distinction between ωV and ωH is made to keep track of the origin
of different terms in the equations of motion.

Note that this set of equations describes magnetoelastic waves in thin films with
finite thickness. The finite thickness of the film changes the dipolar field according to
(12.30) and consequently also the properties of the magnetoelastic waves. The thick-
ness influence is captured by the parameters ωfx and ωfy. In the following, different
cases and geometries of magnetoelastic wave solutions of the coupled equations of
motion are discussed.

12.4.2.1 Wave Propagation Perpendicular to the Magnetization

We first consider the case in which the wave propagation direction is perpendicu-
lar to the static equilibrium magnetization, i.e. θ = π/2. In this geometry, (12.68)
indicates that the magnetoelastic body force fmel only acts on the ut component of
the displacement. Conversely, only the displacement component ut generates a mag-
netoelastic field that interacts with the magnetic system. Hence, only the in-plane
transversal elastic wave couples to surface spin waves and vice versa. This means
that the longitudinal and out-of-plane transversal elastic waves are independent of the
magnetic system in a first-order approximation. As a consequence, their dispersion
relations remain unchanged, i.e. ωl = vlk and ωV = vtk, respectively, as described
in Sect. 12.3.

Eliminating all uncoupled equations and using θ = π/2 in (12.68), the system
becomes ⎡

⎣ω2 − ω2
H

i Bk
ρMs

0
−iγ Bk ωfx −iω

0 iω ωfy

⎤
⎦

⎡
⎣ ut
mx

my

⎤
⎦ = 0 (12.69)

withω the angular frequency of themagnetoelastic wave andωH = vtk the resonance
frequency of the uncoupled horizontally-polarized transversal elastic wave. Note that
in this geometry, the in-plane transversal displacement component is fully aligned
in the z-direction, i.e. ut = uz. To obtain nontrivial solutions, the determinant of the
linear system must vanish, which leads to the condition

(ω2 − ω2
H)(ω2 − ω2

fm) − Jk2ωfy = 0 (12.70)

with

J = γ B2

ρMs
(12.71)
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Fig. 12.2 Magnetoelastic wave dispersion relations according to (12.70) for a 30nm thick Ni film
and propagation direction perpendicular to the magnetization (red lines). The external magnetic
field is μ0Hext = 50mT. For comparison, the dispersion relations of longitudinal and transversal
elastic waves (brown and green lines, respectively) as well as uncoupled spin waves (blue line) are
also shown

andωfm = √
ωfxωfy the uncoupled spin wave resonance frequency. Equation (12.70)

has the general form of a dispersion relation of two interacting waves. Here, the
first wave is a transversal elastic wave characterized by ω2 − ω2

H = 0 and the second
wave is a spin wave characterized by ω2 − ω2

fm = 0. The interaction between these
two waves is quantified by Jk2ωfy. As expected, setting the magnetoelastic coupling
constant B to zero leads to the original dispersion relations of uncoupled elastic and
magnetic waves.

Equation (12.70) has two physically-meaningful solutions for ω, which are given
by

ω2
± = ω2

H + ω2
fm

2
±

√(
ω2
fm − ω2

H

2

)2

+ Jk2ωfy . (12.72)

These two solutions represent the dispersion relations of the resulting magnetoe-
lastic waves. These dispersion relations together with the dispersion relations of
the uncoupled elastic waves are plotted in Fig. 12.2 for a 30nm thick Ni film. The
magnetic parameters are the same as used in Fig. 12.1. The magnetoelastic coupling
constant is B = 10 MJ/m3 [44, 45], the stiffness constants are C11 = 245 GPa and
C44 = 75 GPa [46], and the mass density is ρ = 8900 kg/m3 [47]. The two linear
dispersion relations correspond to the uncoupled elastic waves whereas the two red
curves represent the dispersion relations of the magnetoelastic waves.
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Figure12.2 clearly shows that the two branches of the magnetoelastic wave dis-
persion relations do not cross each other. If the transversal elastic waves and the spin
waves were not interacting, their dispersion relations would intersect. However, due
to the magnetoelastic interaction, this crossing is avoided, leading to a gap between
the two curves. This so-called anticrossing behavior of the dispersion relations is a
typical characteristic of interacting waves [15, 16].

The gap formation is also visible in the equation of the dispersion relations,
i.e. (12.72). At the point in reciprocal space where the dispersion relations of the
uncoupled waves would intersect, i.e. (ωcross, kcross), the term ω2

fm − ω2
H vanishes.

At this condition, the interaction coefficient Jk2ωfy has a strong influence on the
dispersion relation.When Jk2ωfy � ω2

fm − ω2
H, the interaction between themagnetic

and elastic system is strong, leading to the formation of coupled magnetoelastic
waves. As a result, the anticrossing is formed, with a frequency gap that quantifies
the strength of the interaction. This frequency gap is, to first order, given by

�ω(kcross) ≈
√
Jk2crossωfy

ωcross
=

√
γ B2ωfy

C44M0
(12.73)

where the relation ωcross =
√

C44
ρ
kcross was used. Note that ωfy also depends on kcross

and that this approximation is only validwhen�ω(kcross) < ωcross. On the other hand,
when Jk2ωfy � ω2

fm − ω2
H, the interaction term can be neglected, leading to nearly

uncoupled elastic and magnetic waves. In this regime, the waves are called quasi-
elastic or quasi-magnetic [15, 16]. Hence, the interaction between the elastic and
magnetic waves is strongest when they are (nearly) degenerate, resulting in coupled
magnetoelastic waves. By contrast, quasi-noninteracting waves are obtained when
their frequencies and/or their wavelengths differ strongly.

The wavenumber at the crossing, kcross, can be found by equalizing the dispersion
relations of the noninteracting systems, i.e. ωH(kcross) = ωfm(kcross), and solving for
kcross. For the geometry considered here, the noninteracting dispersion relations are
equal when

vtkcross = (ω0 + ωMλexk
2
cross)

2 + ωM
(
ω0 + ωMλexk

2
cross + ωM(1 − P)P

)
,

(12.74)
which needs to be solved iteratively. Note that P is also a function of kcross according
to (12.30). Once kcross is determined, the interaction coefficient Jk2ωfy and the gap
amplitude can be calculated. In general, the coupling increases strongly for higher
wavenumbers kcross. This originates from the behavior of the magnetostriction and
the Villari effect: a shorter wavelength leads to larger gradients of both displacement
and magnetization. As a result, the magnetoelastic body force in (12.60) and the
magnetoelastic field in (12.65) increase, leading to stronger interactions for higher
kcross values. This behavior opens possibilities to control the interaction strength by
external parameters. For example, increasing an external magnetic field shifts the
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spin wave dispersion relation to higher frequencies, leading to a larger value of kcross
and thus a stronger magnetoelastic coupling.

According to the dispersion relation in (12.72), two different wave-like solutions
exist that correspond to two different magnetoelastic waves. To describe the charac-
teristics of these waves, the corresponding eigenstates need to be calculated. They
are given by

⎡
⎣ ut
mx

my

⎤
⎦ = N

⎡
⎢⎣

1
i ρMs

Bk (ω2± − ω2
H)

ρMsω±
Bkωfy

(ω2± − ω2
H)

⎤
⎥⎦ = N

⎡
⎢⎣

1
i γ Bkωfy

ω2±−ω2
fm

γ Bkω±
ω2±−ω2

fm

⎤
⎥⎦ (12.75)

with N a dimensionless normalization factor. Note that the polarization of the two
magnetization components, for both casesω+ andω−, is clockwise (right-hand) ellip-
tically polarized with ellipticity ε = |mx|/|my| = ωfy/ω±. The precession described
by the ut displacement and the mx magnetization components is clockwise or coun-
terclockwise (right-hand or left-hand) polarized, depending on the eigenstate ω+ or
ω−.

Based on the eigenstate, it is possible to determine the variation of the energy
associated with the different wave components during propagation. There is always
a phase difference of π/2 between mx and my as well as mx and ut . This indicates
that, during propagation, the energy in the mx component is transferred partially to
the my and partially to the ut component. Hence, for magnetoelastic waves, there is
resonant energy transfer between the elastic and magnetic domains.

The three different regimes described by the dispersion relation in (12.72), i.e. the
quasi-elastic, quasi-magnetic, and magnetoelastic regimes, are also seen from the
eigenstates. In the quasi-elastic regime, the dispersion relation approaches the linear
dispersion of the elastic waves, i.e. ω2± − ω2

H ≈ 0 and thus mx,my ≈ 0 according
to (12.75). In other words, in the quasi-elastic regime, the total energy is almost
completely dominated by the elastic energy [15, 16] and the energy transfer to the
magnetic system during propagation can be neglected. On the other hand, in the
quasi-magnetic regime, the dynamic displacement component ut is very small and
thus the total energy is dominated by the magnetic energy. In the magnetoelastic
regime near the anticrossing, the total energy of the wave is distributed between the
magnetic and elastic systems. Hence, a large part of the total wave energy resonantly
oscillates between the magnetic and elastic domains [15, 16]. This is also seen in
Fig. 12.3, which shows the magnetization components for the two branches of the
dispersion relation, ω+ and ω−, as a function of the frequency. In keeping with
the above discussion, the magnetization components have strong amplitudes in the
quasi-magnetic and weak amplitudes in the quasi-elastic regime.
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Fig. 12.3 Frequency dependence of the dynamic magnetization components of magnetoelastic
waves in a 30nm thick Ni film. The propagation direction is perpendicular to the magnetization, as
shown in the inset. The dashed lines represent the mx and my components of the ω+ state, whereas
the solid lines represent the mx and my components of the ω− state. The external magnetic field is
μ0Hext = 50mT

12.4.2.2 Wave Propagation Parallel to the Magnetization

When the propagation direction of the magnetoelastic wave is parallel to the equilib-
riummagnetization direction, i.e. θ = 0 in (12.72), the magnetic body force fmel acts
on both the in-plane ut and out-of-plane uy transversal displacement components.
Note that in this geometry, the transversal in-plane displacement component is fully
aligned along the x-direction, i.e. ut = ux. Analogously, both the in-plane and the
out-of-plane transversal elastic waves generate magnetoelastic fields that interact
with the dynamic magnetization. Hence, both transversal displacement components
couple to backward volume spin waves and only the longitudinal elastic wave is
decoupled from the magnetic system. Neglecting longitudinal elastic waves, the sys-
tem of equations in matrix notation becomes

⎡
⎢⎢⎣

ω2 − ω2
H 0 i Bk

ρMs
0

0 ω2 − ω2
V 0 i Bk

ρMs

iγ Bk 0 ωfx −iω
0 iγ Bk iω ωfy

⎤
⎥⎥⎦

⎡
⎢⎢⎣
ut
uy
mx

my

⎤
⎥⎥⎦ = 0 . (12.76)

It is worth noting that both transversal elastic waves have the same dispersion relation
and thus ωH = ωV = vtk, as discussed earlier.
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Again, the homogeneous linear system has only nontrivial solutions when its
determinant is zero. This condition leads to the dispersion relation of the resulting
magnetoelastic waves, given by

(ω2 − ω2
fm)(ω2 − ω2

H)(ω2 − ω2
V) − Jk2[ωfx(ω

2 − ω2
H) + ωfy(ω

2 − ω2
V) + Jk2] = 0 .

(12.77)

Three different interaction terms can be identified in this equation. The first inter-
action term Jk2ωfx(ω

2 − ω2
H) represents the interaction between the out-of-plane

uy transversal elastic wave and the backward volume spin wave. The second term
Jk2ωfx(ω

2 − ω2
V) characterizes the interaction between the in-plane ut transversal

elastic wave and the backward volume spin wave. As a result, these two terms induce
an anticrossing near the point where the dispersion relations of the noninteracting
elastic and magnetic waves would intersect each other. The third interaction term
J 2k4 couples all three different components with each other and thus also generates
an interaction between the two transversal elastic waves.

Figure12.4 shows the different dispersion relations for material parameters cor-
responding to Ni, as mentioned above. To better understand their behavior, the cor-
responding eigenstates of the different magnetoelastic waves are calculated. The
eigenstates are given as a function of the angular frequency of the magnetoelastic
wave, ω, by

Fig. 12.4 Magnetoelastic wave dispersion relations (red lines) according to (12.77) for a 30nm
thick Ni film and propagation directions parallel with the magnetization, as shown in the inset. The
external magnetic field isμ0Hext = 50mT. For comparison, the dispersion relations of longitudinal
elastic waves (brown line) and uncoupled spin waves (blue line) are also shown
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⎡
⎢⎢⎣
ut
uy
mx

my

⎤
⎥⎥⎦ = N

⎡
⎢⎢⎣

−i
ω(ω2−ω2

H)
(ωfy(ω

2 − ω2
V) + Jk2)

1
− ρMs

Bkω (ωfy(ω
2 − ω2

V) + Jk2)
i ρMs

Bk (ω2 − ω2
V)

⎤
⎥⎥⎦ (12.78)

with N a dimensionless normalization constant. The different displacement com-
ponents of such magnetoelastic waves are plotted in Fig. 12.5 as a function of fre-
quency, whereas Fig. 12.6 shows the magnetization components. As above, Ni mate-
rial parameters were assumed, and the external magnetic field was μ0Hext = 50mT.

In the following, the different eigenstates and their properties are discussed. The
upper ω+ and lowerω− branches of the dispersion relation both correspond to clock-
wise (right-hand) elliptically polarized waves for the magnetization and displace-
ment, i.e. my/mx = i |my|/|mx| and uy/ux = i |uy|/|ux| [15, 16]. In both cases, the
in-planemagnetization component is always larger than the out-of-plane component,
i.e. mx > my, since the demagnetization field is strongest in the out-of-plane direc-
tion. Concerning the displacement components, the two branches behave differently.
For the ω+ eigenstate, the in-plane and out-of-plane displacement components have
the same order of magnitude at GHz frequencies. On the other hand, for the ω− state,

Fig. 12.5 Frequency dependence of the dynamic displacement components for the different mag-
netoelastic waves in a 30nm thick Ni film and an external magnetic field of μ0Hext = 50mT. The
propagation direction is parallel to the magnetization, as shown in the inset. All displacement values
are normalized to the out-of-plane component of the displacement uy (yellow line). The blue, green
and red lines correspond to the in-plane displacement components of the ω+, ω− and ω∼ modes,
respectively



314 F. Vanderveken et al.

Fig. 12.6 Frequency dependence of the dynamic magnetization components of magnetoelastic
waves in a 30nm thick Ni film for an external magnetic field of μ0Hext = 50mT. The propagation
direction is parallel to the magnetization, as shown in the inset. The dashed blue and green lines
correspond to theω− mode, whereas the dashed red and black line correspond to theω+ modes, and
the solid lines correspond to the ω∼ mode. Note that the magnetization components corresponding
to the ω∼ mode are multiplied by a factor of 103

ut is dominant at low frequencies, whereas uy becomes dominant at high frequencies.
This behavior is also visualized in Fig. 12.5.

The dispersion relation corresponding to the third magnetoelastic eigenstate is
also shown in Fig. 12.4, labelled ω∼. This dispersion relation is nearly linear and
falls slightly below the dispersion relation for uncoupled transversal elastic waves,
which was discussed in Sect. 12.3 [15, 16]. The magnetization and the displace-
ment components corresponding to this state are both counterclockwise (left-hand)
elliptically polarized. For uncoupled backward volume spin waves, counterclock-
wise polarization corresponds to evanescent spin waves. However, such evanescent
spin waves can still couple to left-hand polarized displacement waves, resulting in
left-hand polarized propagatingmagnetoelastic waves. Nonetheless, the magnetiza-
tion components for this magnetoelastic mode remain very weak. This is also seen in
Fig. 12.6, where the magnetization components corresponding to theω∼ branch have
three orders of magnitude lower amplitude than the magnetization components of
the ω+ and ω− branches. In terms of displacement, the uy displacement component
is dominant for the ω∼ mode for a wide frequency range. This is also illustrated in
Figs. 12.5 and 12.6.

Because of the coupling to the spinwave system,magnetoelasticwaves show some
peculiarities in the quasi-elastic regime, where the wave energy is largely dominated
by the elastic energy. As shown above, the J 2k4 interaction term couples all waves
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with each other. Consequently, the two transversal elastic waves become also cou-
pled. For interactingwaves, it is impossible to share the same frequency–wavenumber
couple, i.e. it is impossible to have degenerate points in the dispersion relations. As
a result, the two quasi-elastic branches do not overlap anymore which is in con-
trast to their original behavior without magnetoelastic interactions (see Sect. 12.3).
Therefore, at all frequencies, a small wavenumber shift remains present between
the two quasi-elastic branches, even in the quasi-elastic regime where the displace-
ment components are large and magnetization components are weak. Hence, even
though almost all the wave energy is in the elastic system, the interaction between
the two transversal displacement components is mediated by the magnetic system,
leading to an indirect coupling of the two elastic waves via the magnetic system.
This interaction is proportional to k4 and thus strongly depends on the wavelength.

Moreover, the polarization of the displacement in the quasi-elastic regime also
shows a peculiar behavior. One of the two waves in the quasi-elastic regime corre-
sponds to a clockwise (right-hand) polarizedwave and the other to a counterclockwise
(left-hand) polarized wave, as discussed above. Hence, excitation at a single angular
frequency ω in the quasi-elastic regime leads to two different magnetoelastic waves
with different wavelengths and opposite polarization. Their amplitudes as a function
of time and space can be written as

u± =
[ |ut±|
i |uy±|

]
eiωt+k±z and u∼ =

[ |ut∼|
−i |uy∼|

]
eiωt+k∼z (12.79)

with ut± = ut(k±) and ut∼ = ut(k∼) given by (12.78). The total wave is the sum of
both individual waves:

utot =
[ |ut±|eik±z + |ut∼|eik∼z

i
(|uy±|eik±z − |uy∼|eik∼z

)] eiωt . (12.80)

The difference in amplitude between the clockwise and counterclockwise polarized
components results in an elliptical polarization of the total displacement. The differ-
ent wavenumbers of the two individual waves (k± and k∼) results in the rotation of
the major and minor axes of the ellipsoid described by the tip of the displacement
vectors during wave propagation [48, 49]. This is similar to the Faraday effect for
electromagnetic waves and also called acoustic wave rotation.

The dispersion relation of backward volume spinwaves is rather flat in the dipolar–
exchange regime, leading to an interesting property of magnetoelastic waves in this
geometry. As shown in Fig. 12.4 at frequencies around 4–5GHz, the magnetoelas-
tic coupling leads to the formation of a pseudobandgap for clockwise (right-hand)
polarized elastic waves at the anticrossing. On the other hand, due to the flatness of
the dispersion relation, counterclockwise (left-hand) polarizedmagnetoelastic waves
can still exist in this pseudobandgap. Hence, in this frequency range, only pure mag-
netoelastic waves or quasi-magnetic waves with weak displacement components can
be excited. This pseudobandgap formation is a general result when waves with a
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rather flat dispersion relation interact with waves with a steep dispersion relation
near the crossing point.

12.4.2.3 Arbitrary Propagation Direction

We now consider an arbitrary propagation direction of the magnetoelastic wave with
respect to the equilibrium magnetization. In this case, the magnetoelastic body force
interacts with all displacement components. Conversely, all displacement compo-
nents generate magnetic fields that interact with the magnetization. Hence, all mag-
netization and displacement components become coupled with each other. Again,
nontrivial wave-like solutions only exist when the determinant of the linear system
in (12.68) is zero, which leads to the dispersion relation

(ω2 − ω2
l )[(ω2 − ω2

t )
2(ω2 − ω2

fm)

−(ω2 − ω2
t )Jk

2(ωfx cos
2(θ) + ωfy cos

2(2θ)) − J 2k4 cos2(2θ) cos2(θ)]
−(ω2 − ω2

t )Jk
2[ωfy(ω

2 − ω2
t ) sin

2(2θ) + Jk2 sin2(2θ) cos2(θ)] = 0 .

(12.81)

Note that for θ = π/4, the coupling between themagnetic and the longitudinal elastic
wave reaches a maximum, whereas for θ = 0 and θ = π/2, this coupling is zero.

The dispersion relations of the resulting magnetoelastic waves are plotted in
Fig. 12.7 for material parameters of Ni and θ = π/6. For each frequency, multiple
magnetoelastic waves exist with different wavelengths. Since the system of equa-
tions is reduced to a set of linear differential equations by assuming weak dynamic
components, every linear combination of these different magnetoelastic waves is
also a solution of the system. The waves can be excited by dynamic magnetic fields
and/or mechanical forces. Therefore, it is possible to generate elastodynamics via
the magnetization or, vice versa, magnetization dynamics via the displacement in
magnetostrictive materials.

It can also be seen from the dispersion relations that the group velocity of the
magnetoelastic waves is different from the group velocity of the magnetic and elastic
waves. As mentioned earlier, the group velocity is defined as vg = ∂ω/∂k and thus
proportional to the slope of the dispersion relation. Hence, near the anticrossing, this
change in group velocity is most pronounced. On the other hand, the group velocity
of quasi-elastic and quasi-magnetic waves is nearly the same as their purely elastic
and magnetic counterparts, respectively.

The total energy of a magnetoelastic wave consists of several contributions. The
magnetic energy contribution is determined by the dynamic components mx and
my. In this chapter, only dipolar, and exchange energy interactions were considered,
although other magnetic interactions, such as the magnetocrystalline [40, 41, 50] or
the Dzyaloshinskii–Moriya interaction [51] may also contribute to the total energy.
Themagnetic energy is complemented by the energy of the elastic waves, which con-
sists of both elastic and kinetic energy contributions and is fully determined by the
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Fig. 12.7 Magnetoelastic wave dispersion relations (red lines) according to (12.81) for a 30nm
thick Ni film nm and an angle of 30◦ between the propagation direction and the magnetization. The
external field is μ0Hext = 50mT. For comparison, the dispersion relations of longitudinal elastic
waves (brown line) and uncoupled spin waves (blue line) are also shown

displacement components and their time and space derivatives, as given by (12.54)
and (12.56), respectively. A third energy contribution stems from the magnetoelastic
interaction, as described by (12.57). Just as spin waves (cf. (12.41)), magnetoelas-
tic waves also comprise an electric field component. However, at GHz frequencies,
the magnetostatic approximation is typically valid and therefore the energy contri-
bution of the electric field is small and can be neglected. Nonetheless, this ceases
to be accurate when frequencies approach the THz range where the magnetostatic
approximation no longer holds.

During the propagation of a magnetoelastic wave, the energy oscillates between
the different energy contributions. For strongly interacting waves near the anticross-
ing point, a large part of the energy resonantly oscillates between the elastic and
magnetic domains. This energy transfer is characterized by a specific energy trans-
fer length L t which describes the distance necessary to transfer all energy from the
elastic to the magnetic system and vice versa [52]. On the other hand, the time
necessary for a complete magnetoelastic energy oscillation between the elastic and
magnetic domain is given by � = 2/� f with � f the frequency gap between the
two dispersion relations (cf. (12.73)) [53]. By contrast, in the quasi-elastic regime,
most of the energy remains in the elastic system during propagation, whereas in the
quasi-magnetic regime most energy remains in the magnetic system [15, 16].

In this chapter, it was assumed that the wavelength of the magnetoelastic wave is
much larger than the thickness of the film. In this case, the dynamic magnetization
and displacement are approximately uniform over the film thickness. However, if
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the thickness becomes comparable to the wavelength, different thickness modes
can arise. In the magnetic domain, these are called perpendicularly standing spin
waves and in the elasticity domain, these are called Lambwaves. The magnetoelastic
coupling of such waves is beyond the scope of this chapter and will generally require
numerical calculations.

12.4.3 Damping of Magnetoelastic Waves

So far, all waves have been considered to be lossless and their intrinsic damping was
neglected. However, in real systems, magnetoelastic waves are expected to decay
during propagation. Since their decay length is of great practical interest, we will
present in this last part a brief introduction on the damping of magnetoelastic waves.
More detailed discussions can be found in [54–58].

Several different energy loss mechanisms exist, which dampen the magnetiza-
tion and displacement dynamics. In the semi-classical continuum theory used in this
chapter, it is common to subsume all different loss mechanisms in a single phe-
nomenological damping term, which is then included in the equation of motion.
The damping of the magnetization dynamics is captured by the damping term in the
LLG equation, characterized by the phenomenological Gilbert damping parameter
α. Analogously, for elastic waves, damping can be introduced into the equations of
motion via phenomenological complex stiffness constants.

The addition of the damping terms to the equations of motion results in energy
dissipation of the dynamic system. As a consequence, the amplitude of the plane
waves considered above decays in time and space. Therefore, the plane wave ansatz
to solve the equations of motion needs to bemodified by adding an exponential decay
factor. This damping factor can be seen as originating from the complex frequency,
i.e.

w(r, t)ei((ωr+iωi )t+k·r) = w(r, t)e−t/τ ei(ωr t+k·r) = w(r, t)e−x/δei(ωr t+k·r) (12.82)

with τ = 1/ωi the lifetime, δ = vgτ the mean free path or attenuation length, and
w(r, t) = [ux, uy, uz,mx,my]T the dynamic components of the wave. Note that the
lifetime characterizes the decay of the wave in time and the mean free path charac-
terizes the attenuation of the wave in space.

To determine the decay characteristics of a wave, the imaginary part of its fre-
quency needs to be assessed. This can be achieved within the above approach, which
is based on finding nontrivial solutions of homogeneous linear systems by calcu-
lating the roots of their determinants. The real part of the resulting frequency still
represents the dispersion relation, whereas the imaginary part originates from the
additional damping terms and represents the inverse of the lifetime.

For spin waves in a ferromagnetic medium, the lifetime can be found by solving
the LLG equation and is given by
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τfm = 2

α(ωfx + ωfy)
. (12.83)

The lifetime at GHz frequencies is typically of the order of ns in metallic ferromag-
nets, such as Ni considered in this chapter, and of the order of μs for low-damping
magnetic insulators such as Yttrium Iron Garnet (YIG). On the other hand, much
less is know for elastic waves at GHz frequencies although estimates suggest that
the lifetime is similar to that of spin waves. Experimentally, it is typically found that
the mean free path of (surface) elastic waves at these frequencies is somewhat larger
than these of spin waves [40, 51, 52, 59], however, the topic still requires further
research.

In the case of magnetoelastic waves, analytical derivations of the lifetimes and
decay lengths are rather complex. In the quasi-elastic regime, it is clear that the
lifetime is strongly determined by the lifetime of the elastic wave. The energy of
quasi-elastic waves is almost completely stored in the elastic system, with only a
negligible part in the magnetic system. Hence, the dissipation due to the magnetic
loss has negligible influence on the overall dissipation. An analogous argument can
be made for the quasi-magnetic regime, where magnetic properties and lifetimes
should determine the decay of the magnetoelastic waves.

In the strongly coupledmagnetoelastic regime, i.e. near the anticrossing, no simple
conclusion can be drawn. In this regime, the energy is distributed between magnetic
and elastic domains and is transferred forth and back during propagation. Therefore
both magnetic and elastic losses contribute to the total energy dissipation. One may
expect in such a case that the lifetime of a magnetoelastic wave is given by a suit-
able weighted average of the lifetimes of magnetic and elastic waves. In general, the
lifetime depends on multiple parameters, such as the orientation of the static magne-
tization, the interaction coefficient, the wavenumber, etc.. Further work is required to
fully understand in particular the effect of the magnetoelastic interactions on the life-
time of strongly coupled magnetoelastic waves. By contrast, the group velocities of
magnetoelastic waves are well understood and can be calculated from the dispersion
relations, so the assessment of mean free paths is straighforward once the lifetime is
known.

12.5 Conclusion

The first part of this chapter presented a review of magnetic and elastic interactions
as well as the formation of magnetic (spin) and elastic waves. It has been shown
that the dynamic behavior of the magnetization and displacement can be seen as an
eigensystem with eigenvalues corresponding to the dispersion relations and eigen-
states describing the polarization and ellipticity of the resulting waves. Based on this
formalism of eigensystems, both magnetic and elastic waves have been studied in
bulk and thin film materials. For magnetic (spin) waves, different regimes have been
identified and their correlation with Maxwell’s equations has been explained.
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In the second part of this chapter, the coupling between magnetic and elastic
waves, due to the direct and inverse magnetoelastic interactions, was described.
By combining the magnetoelastic interaction terms with the magnetodynamic and
the elastodynamic equations, the magnetoelastic eigensystem has been derived for
an arbitrary in-plane magnetization orientation. Within this framework, both the
exchange and dipolar interaction have been taken into account. Previous descrip-
tions of magnetoelastic waves in infinitesimally thin films have been extended to
thin films of finite thickness by considering the appropriate dipolar field based on
the magnetostatic Green’s function. Two limiting cases, i.e. static magnetization per-
pendicular or parallel to the propagation direction, have been studied in more detail
and their dispersion relations and eigenstates have been mathematically and graphi-
cally described. In addition, several properties of magnetoelastic waves, such as the
energy transfer length and the magnetoelastic bandgap, and concepts, such as wave
anticrossings and polarization rotations, have been discussed in detail. The funda-
mental framework of magnetoelastic phenomena and waves described in this chapter
can be utilised for the theoretical description and modeling of the next generation of
magnetoelectric transducers. These transducers need to operate at GHz frequencies
and should be miniaturized to the nanometer scale. Despite the technical challenges,
such transducers show high potential for efficient energy transfer between the electric
and magnetic domains.
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Chapter 13
Theoretical Generalization of the Optical
Chirality to Arbitrary Optical Media

J. Enrique Vázquez-Lozano and Alejandro Martínez

Abstract Chiroptical light-matter interaction is largely boosted in the surroundings
of complex-shaped metallic nanostructures. Multiple enhancement schemes have
been proposed, from twisted structures, such as spirals or helices, arrays of chiral
and even achiral plasmonic nanostructures, to stacked planar metasurfaces. Further-
more, there is a steadily growing trend in using assemblies of high-index dielec-
tric nanostructures, which are actually revealing promising results in terms of the
enhancement of chiroptical effects. At any rate, whatever the type of material is, the
effects of dispersion and absorption need to be accounted for, with the only exception
of the vacuum. These considerations are often neglected, presuming media with an
ideal lossless and dispersionless behavior. However, when matter is nanostructured
to achieve more complex behaviors, as for the case of metamaterials or plasmonic
nanostructures, the effects of dispersion and losses in chiroptical interactions cannot
be disregarded at all. Hence, as with the energy, the optical chirality should also be
generalized to the case of arbitrary dispersive and lossy optical media. This is the
matter of the present chapter; namely, a thorough derivation of the optical chirality,
extending it so as to include both dispersive and dissipative effects. For simplicity,
as well as for constructiveness, we shall elaborate this theoretical analysis upon the
basis of the most complete form of the conservation law for the optical chirality.

13.1 Introduction

Just by taking a glance at the current literature on optics and nanophotonics, one can
realize that optical chirality is an active research topic that often goes hand in hand
with plasmonics and metamaterials [1, 2]. These kind of systems are actually being
regarded as the best-suited platform for strengthening, and thus for investigating,
chiral light-matter interactions [3–9]. More recently, high-index dielectric nanopar-
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ticles, in very distinct arrangements, have also been suggested as suitable systems to
boost near-field chirality [10, 11]. Besides displaying lower absorption losses than
its plasmonic counterparts, dielectric resonators are proving to give promising results
with a number of important practical advantages for chiral applications such as sens-
ing, spectroscopy, and enantioselectivity [12]. Specifically, they can provide large
areas of high and uniform-sign chirality [13, 14], spectral accessibility and tunability
of chiral interactions [15], and switchability upon reversing the input polarization
[16]. Ultimately, all these approaches, either based on metallic or dielectric nanos-
tructures, have been strongly fostered on account of the early proposal of superchiral
fields [17], as they can be used to get high levels of resolution and sensitivity in order
to check and characterize the chirality of matter or nanostructures.1 This necessity of
enhancing chiroptical responses arises from the fact that interaction between chiral
light and chiral analytes (typically biomolecules such as sugars or proteins [20], or
artificial metamolecules at the micro or even nanoscale [21]) is in general extremely
weak. Indeed, leaving aside the complexity that the experimental arrangementsmight
entail by themselves, this smallness is mainly due to the large scale difference (and
the subsequent mismatch) between the operational wavelength of the input light and
the typical size of the chiral objects [22]. It is here where plasmonic nanostruc-
tures and metamaterials come into play, as they ease the full spatiotemporal control
of light-matter interactions [23], thereby leading to sculpted and highly contorted
three-dimensional electromagnetic (EM) fields [24]. In fact, it should be noted that
the main requirement for the occurrence of strong optical chirality, and thus for
enhancing the chiroptical interactions, actually lies on the complexity in the shapes
traced out by the EM field distributions [24–26].

It is very well known that plasmonic nanostructures and metamaterials are inher-
ently dispersive systems [27]. In fact, all the media andmaterials, except the vacuum,
are dispersive, and, consequently, feature absorption losses [28–30]. These charac-
teristics are to be accounted for when addressing dynamical properties such as, for
example, EM energy. Hence, as regards thematter we are concerned, the same should
be done for the optical chirality [31, 32]. However, it is certainly surprising that, in
most of the previous studies on optical chirality and its interaction with matter, con-
tributions of material dispersion as well as dissipation have mostly been ignored.
Rather, it is a common practice to apply the earliest definition originally derived for
monochromatic optical fields in free space [17, 31–33]:

Cvacuum(r, t) ≡ 1

2

[
ε0E · (∇ × E) + μ0H · (∇ × H)

]
, (13.1)

1It is worth pointing out that, superchirality (or superchiral light), is well defined only in the case
of plane-wave propagation in free space, because it is actually defined with respect to the chirality
of circularly polarized light. Notice that, for example, in the case of waveguiding systems, the term
of superchirality may be misunderstood, as it would depend on the specific structure [18]. So, in
lieu of superchirality, henceforth we shall refer to it simply as the enhanced chirality. In any case, it
is noteworthy to mention that there exists a subtle controversy regarding superchiral fields and its
apparent unlimited enhancement factor (for further details on this issue see, e.g., [19]).
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where ε0 and μ0 are, respectively, the permittivity and permeability of the vac-
uum, and E = E(r, t) and H = H(r, t) are the local, time-dependent electric and
magnetic fields. This definition for the optical chirality as given here, in the time-
dependent representation, has been successfully used in enhanced circular dichroism
spectroscopic measurements for the experimental detection and characterization of
chiral biomolecules [20], thus confirming its physical significance, and highlight-
ing its feasibility for practical applications. Notwithstanding, its applicability can
be highly questionable beyond the simplest case of the vacuum, even further when
used for looking into chiral effects either in metallic nanostructures or metamateri-
als, often regarded as the paradigmatic examples of dispersive media. That in itself
is reason enough for wanting to address a generalization of such a quantity. Fur-
thermore, recent advances in nanofabrication are opening up new possibilities for
the experimental measurement and investigation of dynamical properties such as the
EM energy-momentum, the optical orbital and spin angular momentum, and the EM
helicity, so far only accessible theoretically.2 This fact has likely led to reexamine both
the theoretical treatment and the formulation of these dynamical properties taking
into account their dispersive features [39–42]. As for the optical chirality, it should
be noted that there are also few works attempting to extend its original definition to
arbitrarily defined linear [19], gyrotropic [43], or dispersive media [44]. However, as
will be shown throughout this chapter, at the anomalous dispersion region, i.e., the
spectral range where the real part of the permittivity decreases abruptly, or, to put it
simply, near the resonance frequencies, the optical chirality can be strongly enhanced.
This evidences the important role played by the absorption losses of a given medium
in the analysis of the optical response by a dispersive material,3 in particular, as far
as chiral light-matter interactions are concerned. Hence, a full description of optical
chirality in dispersive media, extending it to account for the medium’s dissipative
effects as well would be highly valuable and enlightening.

There are many different ways in which one might want to conduct such a gen-
eralization; either from phenomenological aspects, just by fitting experimental out-
comes or via arguments stemming from the chiroptical responses; or directly through
a thorough theoretical analysis. The latter will be the approach followed up herein,
specifically, we shall take advantage of the underlying mathematical structure of
the corresponding continuity equation (or conservation law) for the optical chirality

2In this regard, it is noteworthy to mention the so-called Abraham-Minkowski dilemma, a long-
standing problem concerning with an ambiguity that arises from the real definition of the linear and
angular momentum for optical radiation inmedia [34]. Even though there are a number of influential
papers claiming to have solved it (see, e.g., [35, 36]), this challenging problem still remains as a
subject of current interest and debate [37, 38].
3Notice that, strictly speaking, dispersion is necessarily tied to dissipation. This connection is well
established by the so-called Kramers-Kronig relations [28], according to which the real and imag-
inary parts of the material parameters, i.e., the electric permittivity and the magnetic permeability
(ε(ω) = ε′ + iε′′ and μ(ω) = μ′ + iμ′′), appear to be coupled together. In addition, it has been
demonstrated that Kramers-Kronig relations underpin the fundamental principle of causality [45],
and hence, initial assumptions regarding dispersion and dissipation have to be carefully considered,
otherwise they may lead to misleading outcomes. Still, one can find many cases where is assumed
a dispersive medium neglecting the losses.
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[46]. Notice that just as much the energy, linear momentum, angular momentum, or
helicity, optical chirality is also a conserved quantity for free-space EM fields [31,
32, 47]. Upon this basis, in Sect. 13.2 we will recall some general aspects on conser-
vation laws, particularizing to the simplest case of EM energy. In Sect. 13.3 we will
elaborate on the most complete form of the continuity equation for the optical chi-
rality, without any restrictions on the nature of the medium. From this, and building
on previous approaches addressing the EM energy density considering dispersion as
well as dissipation, in Sect. 13.4, we will put forward an alternative derivation for the
optical chirality density in dispersive media, distinguishing between the lossless and
lossy cases [46]. Remarkably, our description will be completely general, i.e., it will
be valid for arbitrarily varying radiation fields, and will be applicable to any kind of
medium, including dielectrics, semiconductors, as well as highly dispersive material
systems such as metals (or plasmonic structures) and metamaterials [48]. Finally, in
Sect. 13.5, we will summarize the main results of this chapter and conclude with a
general outlook towards possible lines of future research.

13.2 Electromagnetic Energy Density in Dispersive and
Lossy Media: A General Approach from the
Continuity Equation

Aiming to provide a comprehensive and easy-to-follow guideline for generalizing
the optical chirality (and any other dynamical property), we will start by revisiting
basic aspects on the conservation laws focusing upon themostwell-knowndynamical
property: the EM energy. As will be seen below, this will enable a straightforward
procedure for obtaining a general expression of the EM energy density valid in any
kind of medium, either non-dispersive or dispersive, and, concerning this latter case,
extending it to both the lossless and the lossy approaches.

13.2.1 Poynting’s Theorem and Energy Density in
Non-Dispersive Media

Like Maxwell’s equations and the conservation of charge, the EM energy conser-
vation law, often referred to as the Poynting’s theorem, is a fundamental piece of
classical electrodynamics. It is in fact a recurring matter all over the main textbooks
on electromagnetism [28, 30], optics [49], nano-optics [29], and photonics [50]. For
our purposes, it will serve as a guideline for mathematics and also for the inter-
pretation when addressing the optical chirality density, specially those regarding
the source-like contributions, since its physical meaning in such a case may not be
so obvious [51, 52]. Notice that, even though it could seem quite burdensome, for
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the sake of completeness, as well as for teaching purposes, we start from the basic
foundations. Hence, a proficient reader might skip the following part of the section.

In time domain, Poynting’s theorem can be directly obtained from the vector
identity ∇ · (A × B) = (∇ × A) · B − A · (∇ × B), along with the structural (or
curl-like) Maxwell’s equations ∇ × E = −∂tB and ∇ × H = ∂tD + J :

∇ · S = −E · ∂tD − H · ∂tB − J · E, (13.2)

where S = S(r, t) ≡ E × H is the Poynting vector, representing the energy flux
density [53], and D = D(r, t), B = B(r, t), and J = J (r, t) are the time-
dependent electric displacement, magnetic induction, and electric current density,
respectively. This statement, typically dubbed as the differential form of Poynting’s
theorem, is an absolutely general result, i.e., it holds for any EM field that propagates
through any arbitrary medium, either lossy or lossless [28–30]. It establishes a local
energy balance over the whole system, thereby relating the rate of change of electric
and magnetic energy density stored in the EM fields, the EM energy flux density,
and the energy absorption losses, or gain, of the medium.

Notwithstanding, what is most usual to find in basic literature, is the expression
of the simplest case considering linear and non-dispersive systems. In such a case
it is implicitly presumed that D = ε0ε̃E and B = μ0μ̃H , with ε̃ and μ̃ being real
numbers. Therefore, instead of equation (13.2), one usually finds that

∇ · S + ∂tW = −J · E, (13.3)

where

W = W(r, t) ≡ 1

2

[E · D + H · B]
, (13.4)

is the local time-dependent EM field energy density, andJ · E stands for the power
loss (or gain) dissipated (or pumped) to (from) themediumowing to external currents.

We can further simplify the above expressions by considering EM fields with a
harmonic time dependence of the form e−iωt , i.e., those that can be written as

F = Re
[
Fe−iωt

] = 1

2

[
F−iωt + F∗eiωt

]
, (13.5)

where ω is the angular frequency and the asterisk denotes complex conjugation. It
should be noted that this consideration does not undermine the generality of the
treatment at all, since one can always express any arbitrary time-dependent EM field
from its spectral representation by means of the Fourier transform [28–30]:

F(r, ω) = 1

2π

∫ +∞

−∞
F (r, t)eiωt dt, (13.6)
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where F (r, t) and F(r, ω) stand, respectively, for the real-valued EM fields and
their corresponding complex-like counterparts. This way, we could consider inde-
pendently every spectral component as if each of them were a single monochromatic
wave. Of course, one can always turn back to the time-dependent representation via
the inverse Fourier transform:

F (r, t) =
∫ +∞

−∞
F(r, ω)e−iωt dω. (13.7)

Notice that, for the sake of clarity, throughout this chapter we will use the above
distinct notation either for the real-valued EM fields in the time domain, or for
the complex fields in the frequency domain, thus allowing us to omit, hereinafter,
the arguments in the field expressions so as to avoid cumbersome notation. After
outlining these basics, it is easy to see from (13.4) that the EM energy density of
each spectral component in non-dispersive media reads as follows

W = We + Wm = 1

4

[
ε0ε

(|E|2 + E2e−2iωt
) + μ0μ

(|H|2 + H2e−2iωt
)]

.

(13.8)
The last terms in both the electric and magnetic energy contributions have a relative
phase that is rapidly oscillating. Thus, for simplicity, one is usually interested in
dealing with dynamical properties, in this case, the EM energy density, averaged
over an optical cycle:

W ≡ 〈W〉T = 1

T

∫ 2π/ω

0

[We + Wm
]
dt = 1

4

[
ε0ε |E|2 + μ0μ |H|2] . (13.9)

This is the time-averaged form of the EM energy density in a non-dispersive medium
(i.e., strictly speaking, it only applies to the vacuum). It is actually the most familiar
expression for representing this dynamical property, likely, because it resembles its
time-dependent counterpart given in (13.4) (but taking care not to confuse or mix up
the real-valued EM fields in the time domain, with the complex field amplitudes in
the frequency domain). It should be remarked that this resemblance is because we
are assuming EM fields in linear and non-dispersive media, so ε and μ ought to be
real numbers independent of frequency, and hence, the corresponding constitutive
relations, accounting for the influence of the EM radiation on matter, have the same
form in both the time- and the frequency-dependent representations:

D = ε0ε̃E, ⇐⇒ D = ε0εE; (13.10a)

B = μ0μ̃H, ⇐⇒ B = μ0μH . (13.10b)

Notice the deliberate difference between the material parameters with and without
tilde, which are intended to distinguish between time- or frequency dependence.
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13.2.2 Electromagnetic Energy Density in Dispersive Media:
Lossless (Brillouin’s Approach) and Lossy (Loudon’s
Approach) Cases

The situation may become slightly trickier when the optical field is thought to propa-
gate through a dispersive medium. In the time domain field representation this means
that the material response is not instantaneous, but it relies on all the past history.
According to the basic properties of Fourier transform, this should be described in
terms of a convolution in the time domain of EM fields characterizing the material
influence [28, 29]. Specifically, the dynamic response of a time-dependent EM field
passing through a dispersive medium is to be expressed as [30]:

D(r, t) =
∫ t

−∞
ε̃(t − t ′)E(r, t ′)dt ′ =

∫ +∞

−∞
ε̃(t − t ′)E(r, t ′)dt ′; (13.11a)

B(r, t) =
∫ t

−∞
μ̃(t − t ′)H(r, t ′)dt ′ =

∫ +∞

−∞
μ̃(t − t ′)H(r, t ′)dt ′. (13.11b)

In the frequency domain, this behavior translates into a description in which the elec-
tric permittivity ε, and themagnetic permeability,μ, both depend on the frequencyω,
and, thus, D and B are simply described by the corresponding constitutive relations
(i.e., equations (13.10a) and (13.10b) in the case of linear media), which account for
the influence of the EM radiation on matter.

The above considerations are essential aiming to derive a general and closed
expression for the EM energy density in dispersive and lossy media. Indeed, it is
worth observing that equation (13.2), representing the most general form for the
conservation law of EM energy, involves time derivatives of the fields D and B,
which, in turn, ought to be written as the convolution integrals given in (13.11a) and
(13.11b). This fact entails the main difficulty in conducting the sought generalization
of the EM energy density (and, consequently, that for the optical chirality density).
Nevertheless, there are several routes to deal with this [54–65], each of them subject
to well distinct prescriptions concerning both the characteristics of the medium as
well as the time dependence of the EMfields. At this respect, it should be emphasized
that, even thoughwe are searching for an approach as general as possible, expressions
accounting for both the EM energy density stored and the dissipation, will crucially
depend upon the specific features of the model characterizing the medium. For prac-
tical purposes, we will focus on the treatment provided by Loudon [54], considering
an absorbing classical dielectric with a single resonance frequency, i.e., a Lorentz-
like medium. This approach has been further extended by many other authors to
account for dispersive magnetic permeabilities [55–59], as well as the possibility of
multiple resonance frequencies describing interband transition effects [60, 61]. For
completeness, and for convenience in subsequent analysis, in the rest of this section,
we shall take into account these considerations. Furthermore, for comparison, we
will also outline the classical procedure for determining the EM energy density in
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dispersive and lossless media, which leads to the so-called Brillouin formula [30,
65].

13.2.2.1 Characterization of Linear Dispersive Media: Drude-Lorentz
Model

Aphysically realistic description of dispersivemediawould require a careful analysis
of dissipative effects. In classical theory there are many models to characterize the
optical properties of a medium, i.e., the electric permittivity ε and the magnetic
permeability μ. In the simplest case of a linear medium, the most commonly used is
the Drude-Lorentz (D-L) model, which is generally described as a collection of N
oscillators coupled all together [27]:

εD−L(ω) = 1 − f0ω2
p

ω2 + iωγ0
−

N−1∑

n=1

fnω2
p

ω2 − ω2
n + iωγn

= 1 −
N−1∑

n=0

fnω2
p

ω2 − ω2
n + iωγn

,

(13.12)
where fn , ωp, ωn , ω and γn are, respectively, the relative strength of the oscillators,
the plasma frequency, the nth resonance (or restoring) frequency, the excitation fre-
quency, and the nth damping constant (or characteristic collision frequency). Notice
that the Drude model only holds for intraband effects, i.e., it only accounts for the
response owing to free electrons moving within the conduction band, so there is no
resonant behavior for the first term of (13.12), and thus ω0 ≡ 0. On the other side,
the Lorentz model allows us to complete this description by including bound carriers
giving rise to interband transitions.

Each oscillator, described as a pole in the dielectric function (13.12), actually
comes from the motion equation of a bound electron with undamped resonance
frequency ωn , experiencing a damping force, characterized by γn , and subjected to
a time-varying external electric field Eloc:

∂2rn
∂t2

+ γn
∂rn
∂t

+ ω2
nrn = − qe

me
Eloc, (13.13)

where me, qe and rn are the effective mass, charge, and the displacement of the elec-
trons, respectively. By treating each mode n as an electron gas of uniform density ρn ,
the collective effect emerging from all individual displacement leads to a polarization
fieldPn = ρnpn = (−qeρn) rn , where pn is the electric dipole moment associated to
the nth mode. Hence, (13.13) can be rewritten as

∂2Pn

∂t2
+ γn

∂Pn

∂t
+ ω2

nPn = ε0 fnω
2
pEloc, (13.14)

where ωp ≡ √
q2
eρe/(meε0), and fn ≡ ρn/ρe, with ρe being the total density of D-L

oscillators. For time-harmonic, monochromatic, EM fields, the individual contribu-
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tion of each oscillator is given by:

Pn = ρnα
(e)
n (ω)Eloc = ε0

[
fnω2

p

ω2
n − ω2 − iωγn

]

Eloc, (13.15)

where α(e)
n (ω) is the electric dipole polarizability. Therefore, every D-L pole con-

tributes to the electric permittivity given in (13.12) in such a way that

D = ε0

[

1 −
N−1∑

n=0

fnω2
p

ω2 − ω2
n + iωγn

]

E, (13.16)

where the total polarization field is defined as P ≡ ∑
n 〈Pn〉, and the macroscopic

electric field isE ≡ 〈Eloc〉, with the angular brackets indicating an average over space.
Notice that the external electric field, Eloc, is actually the local microscopic field
acting as a driving force [66, 67]. Thus, the corresponding macroscopic counterpart
arises when averaging over sufficiently large spatial distances [27–29].

The above procedure is specific for getting the electric permittivity in a linear
medium that is modeled as a combination of D-L oscillators [27]. As long as the
magnetic permeability can be properly tailored by Lorentzian line shapes (e.g., when
describing negative-index metamaterials such as split-ring resonator or fishnet-like
structures [68–71]), it might also be extended to magnetically dispersive media [55–
59]. For such a case, the corresponding dynamic equation for the magnetization field
Mn would read as:

∂2Mn

∂t2
+ γ̃n

∂Mn

∂t
+ ω̃2

nMn = f̃nω̃
2
nH loc, (13.17)

where, analogously to the previous case, ω̃n , γ̃n , and f̃n are, respectively, the nth
resonance frequency of the magnetic dipole oscillators, the nth magnetic damping
constant, and the magnetic-like oscillator strength. It should be noted that in ear-
lier works addressing magnetic dispersion, only a single Lorentzian resonance was
there. Nonetheless, for completeness, we shall express the magnetic permeability
by considering the possible presence of N magnetic oscillators. Therefore, each the
individual contribution to the magnetization field is of the form

Mn =
[

f̃nω̃2
n

ω̃2
n − ω2 − iωγ̃n

]

Hloc. (13.18)

Hence, if we define the total magnetization field as M ≡ ∑
n 〈Mn〉, and the macro-

scopic magnetic field H ≡ 〈Hloc〉, the magnetic permeability is given by
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μD−L(ω) = 1 −
N−1∑

n=0

f̃nω̃2
n

ω2 − ω̃2
n + iωγ̃n

. (13.19)

Notice that, alike to the electric case, the external magnetic field,H loc, stands for the
local microscopic field, and thus, the corresponding macroscopic counterpart turns
up when performing the spatial average [27–29].

Thismulti-resonantmodel for characterizing linear dispersivemedia byLorentzian
line shapes, has been proved to fit very well with experiments [72–74]. Since it is
applicable to any frequency, bandwidth, and material system, including dielectrics,
semiconductors, metals, as well as metamaterials, it may be regarded as completely
general, thereby providing a description as accurate and reliable as needed. As shown
below, these basics, along with the mathematical structure of the continuity equa-
tion, are going to be the key points to derive the most general expression of the EM
energy density in dispersive and lossy media, and, similarly, for carrying out the
corresponding generalization of the optical chirality.

13.2.2.2 Energy Density in Dispersive and Lossy Media: Loundon’s
Approach

Whatever the specific EM properties of the medium, it can always be represented in
terms of the polarization and the magnetization vector fields as follows:

D = ε0E + P; (13.20a)

B = μ0H + μ0M. (13.20b)

From these general relationships, the first two terms in the right-hand side of (13.2)
can be straightforwardly evaluated to give:

E · ∂tD = ε0E · ∂tE + E · ∂tP; (13.21a)

H · ∂tB = μ0H · ∂tH + μ0H · ∂tM. (13.21b)

By comparing the mathematical structure of the continuity equation, i.e.,

∇ · [FLUX] + ∂t [CONSERVED QUANTITY] = [SOURCE or SINK], (13.22)

with the general form of the Poynting’s theorem as given in (13.2), one can infer that
the above expressions should encapsulate both the energy density and the source-like
contributions. To determine which one is either accounting for the conserved quan-
tity or the source- or sink-like term, one should observe the time derivative operator,
which, according to (13.22), ought to precede the conserved quantity, namely, in this
case, the EM energy density. In the lossy approach, this identification should be per-
formed by means of the dynamic equations of the polarization and the magnetization
fields [i.e., (13.14) and (13.17)]. Then, attempting to find a total time derivative for
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the electric and the magnetic contributions, it can be demonstrated that (13.21a) and
(13.21b) can be recast as

E · ∂tD = ∂t

{
ε0

2
E2 +

N−1∑

n=0

1

2ε0 fnω2
p

[
(∂t 〈Pn〉)2 + ω2

n〈Pn〉2
]
}

+
N−1∑

n=0

γn

ε0 fnω2
p

(∂t 〈Pn〉)2; (13.23a)

H · ∂tB = ∂t

{
μ0

2
H2 +

N−1∑

n=0

μ0

2 f̃nω̃2
n

[
(∂t 〈Mn〉)2 + ω̃2

n (〈Mn〉)2
]
}

+
N−1∑

n=0

μ0γ̃n

f̃nω̃2
n

(∂t 〈Mn〉)2. (13.23b)

Equations (13.23a) and (13.23b) result in a total time derivative plus a residual term,
i.e.,

E · ∂tD = ∂t
[We

vac + We
med

] + Le; (13.24a)

H · ∂tB = ∂t
[Wm

vac + Wm
med

] + Lm. (13.24b)

Hence, from (13.23a) and (13.23b) it is easy to see that the electric and magnetic
contributions to the energy density are given by

We = We
vac + We

med = ε0

2
E2 +

N−1∑

n=0

1

2ε0 fnω2
p

[
(∂t 〈Pn〉)2 + ω2

n〈Pn〉2
] ; (13.25a)

Wm = Wm
vac + Wm

med = μ0

2
H2 +

N−1∑

n=0

μ0

2 f̃nω̃2
n

[
(∂t 〈Mn〉)2 + ω̃2

n (〈Mn〉)2
]
,

(13.25b)

where the contributions related to the vacuum and the medium, are, in turn, separated
from each other. Furthermore, the terms accounting for the power loss densities are

Le =
N−1∑

n=0

γn

ε0 fnω2
p

(∂t 〈Pn〉)2; (13.26a)

Lm =
N−1∑

n=0

μ0γ̃n

f̃nω̃2
n

(∂t 〈Mn〉)2; (13.26b)

Lc = −J · E. (13.26c)

Putting it all together, the EM energy conservation law finally reads as
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∇ · S + ∂t
[We + Wm

] = − [Le + Lm + Lc
]
. (13.27)

To complete this analysis, it only remains to obtain the corresponding time-
averaged form of the EM energy density. Under the assumption of time-harmonic
fields, the direct substitution of (13.15) into (13.25a), and (13.18) into (13.25b) gives

W e ≡ 〈We〉T = ε0

4

[

1 +
N−1∑

n=0

fn
(
ω2 + ω2

n

)
ω2
p

(
ω2
n − ω2

)2 + ω2γ 2
n

]

|E|2 = ε0εeff(ω)

4
|E|2 ;

(13.28a)

Wm ≡ 〈Wm〉T = μ0

4

[

1 +
N−1∑

n=0

f̃n
(
ω2 + ω̃2

n

)
ω̃2
n

(
ω̃2
n − ω2

)2 + ω2γ̃ 2
n

]

|H|2 = μ0μeff(ω)

4
|H|2 ,

(13.28b)

where the angle brackets indicate time averaging over one period of oscillation [see
(13.9)], and εeff and μeff are the real-valued effective material parameters (i.e., the
electric permittivity and magnetic permeability), which are defined as

εeff(ω) ≡ 1 +
N−1∑

n=0

(
χ ′
n + 2ωχ ′′

n

γn

)
; (13.29a)

μeff(ω) ≡ 1 +
N−1∑

n=0

(
ξ ′
n + 2ωξ ′′

n

γ̃n

)
, (13.29b)

with χ = ∑
n χn = χ ′ + iχ ′′ ≡ ε − 1 and ξ = ∑

n ξn = ξ ′ + iξ ′′ ≡ μ − 1 being
the electric and magnetic susceptibilities:

χn = fnω2
p

(
ω2
n − ω2

)

(
ω2
n − ω2

)2 + ω2γ 2
n

+ i

(
fnω2

pωγn
(
ω2
n − ω2

)2 + ω2γ 2
n

)

; (13.30a)

ξn = f̃nω̃2
n

(
ω̃2
n − ω2

)

(
ω̃2
n − ω2

)2 + ω2γ̃ 2
n

+ i

(
f̃nω̃2

nωγ̃n
(
ω̃2
n − ω2

)2 + ω2γ̃ 2
n

)

. (13.30b)

13.2.2.3 Energy Density in Dispersive and Lossless Media: Brillouin’s
Approach

Unlike in the lossy case, the lossless approach does not require any specific char-
acterization about the medium under consideration. Still, for the sake of simplicity,
the only assumptions made hereinafter are that the medium is linear, homogeneous,
and isotropic. This derivation simply involves the direct evaluation of the Fourier
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integrals. So, starting from the general form of the Poynting’s theorem as given in
(13.2), let us expand the right-hand side in the following form:

E · ∂tD =
∫ +∞

−∞
E(ω′)e−iω′t dω′ · ∂t

{∫ +∞

−∞
D(ω)e−iωt dω

}

=
∫ +∞

−∞

∫ +∞

−∞
(−iω)E(ω′) · D(ω)e−i(ω′+ω)t dω′dω. (13.31)

According to (13.24a), we now know that this is actually the time rate of change of
energy. The instantaneous distribution of the EM energy density can then be obtained
by integrating the latter expression over time:

We(t) =
∫ t

−∞

∫ +∞

−∞

∫ +∞

−∞
(−iω)E(ω′) · D(ω)e−i(ω′+ω)t ′dω′dωdt ′

=
∫ +∞

−∞

∫ +∞

−∞

[
ω

ω′ + ω

]
E(ω′) · D(ω)e−i(ω′+ω)t dω′dω, (13.32)

where it has been implicitly assumed EM fields tending sufficiently rapidly to zero
as t ′ → −∞. This is indeed a crucial assumption that necessarily restricts the appli-
cability of this procedure to the so-called slowly varying amplitude approximation
[29]. In linear, homogeneous and isotropic media, D = ε0εE, so that

We(t) = ε0

∫ +∞

−∞

∫ +∞

−∞

[
ωε(ω)

ω′ + ω

]
E(ω′) · E(ω)e−i(ω′+ω)t dω′dω. (13.33)

By regarding monochromatic optical fields, i.e., such that their complex amplitudes
are of the form E(ω) = [

E0δ(ω − ω0) + E∗
0δ(ω + ω0)

]
/2, it can be shown that

E(ω′) · E(ω) = 1

4

[
E2
0δ(ω

′ − ω0)δ(ω − ω0) + (E∗
0)

2δ(ω′ + ω0)δ(ω + ω0)
]

+ 1

4
|E0|2

[
δ(ω′ − ω0)δ(ω + ω0) + δ(ω′ + ω0)δ(ω − ω0)

]
.

(13.34)

Substituting this into (13.33) the time-averaged electric energy density is given by

W e ≡ 〈We〉T = ε0

2

[−ω0Re[ε(ω0)]

ω′
0 − ω0

]
|E0|2 , (13.35)

where only the terms in the second line of (13.34) effectively contribute to the time
average. Here it is noteworthy to observe that the expression (13.35) turns out to be
quite oddly written, as the numerator solely depends on ω0, and the denominator,
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for its part, have a double dependency on both ω0 and ω′
0. This distinction between

ω′
0 and ω0 is actually artificial, and it is intended to simplify the calculations. So, in

order to deal with this inconsistency, we make the following algebraic manipulation:

W e = ε0

4

[
ω′
0Re

[
ε(ω′

0)
] − ω0Re[ε(ω0)]

ω′
0 − ω0

]

|E0|2 . (13.36)

In this way, ω′
0 and ω0 are treated on equal footing, thus showing much more clearly

a singular behavior when ω′
0 = ω0. To overcome this issue one should take the limit

ω′
0 → ω0, transforming the above expression into a derivative with respect to ω. By

performing the same calculation for the magnetic contribution one obtains that

W e ≡ 〈We〉T = ε0ε̃eff(ω)

4
|E0|2

∣∣∣∣
ω→ω0

; (13.37a)

Wm ≡ 〈Wm〉T = μ0μ̃eff(ω)

4
|H0|2

∣∣∣
∣
ω→ω0

, (13.37b)

where ε̃eff and μ̃eff are the real-valued effective material parameters (i.e., the electric
permittivity and magnetic permeability), which are defined as

ε̃eff(ω) ≡ d
[
ωε′]

dω
, μ̃eff(ω) ≡ d

[
ωμ′]

dω
, (13.38)

with ε′ ≡ Re[ε(ω)] and μ′ ≡ Re[μ(ω)].
By comparing (13.37a) and (13.37b) with (13.28a) and (13.28b), respectively, one

can observe that the differences among them are found in the dispersion-modified
material parameters. After some lengthy but straightforward calculations it can be
shown that ε̃eff(ω) = εeff(ω) and μ̃eff(ω) = μeff(ω) if and only if (ω2 + ω2

n)γ
2
n = 0,

and (ω2 + ω̃2
n)γ̃

2
n = 0. Namely, if γn = 0 and/or ω = ±iωn , and γ̃n = 0 and/or

ω = ±iω̃n , for all n. Since ω must be real (otherwise one would deal with, a
priori, unphysical imaginary frequencies [64]), the only possible solution is that
γn = γ̃n = 0, i.e., a lossless media. Furthermore, (13.37a) and (13.37b) equal (13.9)
if and only if ε = ε′,μ = μ′, and they do not depend on frequency (which is certainly
redundant on account of the Kramers-Kronig relations, since non-dispersive neces-
sarily implies lossless, and vice versa). Hence, we can state that the sum of (13.28a)
and (13.28b), provide ultimately the most general definition of the EM energy den-
sity in dispersive and lossy media, since it allows us to recover the more particular
expressions successively, just by relaxing further assumptions.
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13.3 Generalizing the Conservation Law for the Optical
Chirality

As we have just seen, conservation laws, in particular, that for the EM energy, can
be straightforwardly treated from its corresponding continuity equation. From this
viewpoint, we have shown an insightful manner of identifying the corresponding
conserved quantity, the EM energy density. Yet, this task of digging out conserved
quantities typically relies upon the search of the underlying symmetry properties of
the physical system [75]. Indeed, as established by the Noether’s theorem, conserved
quantities and symmetries can be regarded as equivalent features [76]. For example,
the well-known conservation laws of energy, linear momentum and angular momen-
tum, are actually associated with continuous symmetries of the system, namely, they
follows from the invariance under the universal space-time transformations [77].
These theoretical concepts can be mathematically described by means of symmetry
groups, which are in turn related to the corresponding physical transformations [78].
Furthermore, drawing on a formalism resembling that often used in quantummechan-
ics [79], one can deal with the conserved quantities through differential operators
representing the generators of the corresponding infinitesimal symmetry transfor-
mations. For the above dynamical properties, i.e., the energy, the linear momentum,
and the orbital angular momentum, these generators simply involve first derivatives
with respect to the space-time coordinates acting on the EM fields, and are given by
{i∂t , i∇}, for the space-time translations [39], and i (r × ∇), for the spatial rotations
[40]. As for the optical chirality, it was demonstrated that its conservation is under-
pinned by i (∂t∇×) [44], but noticing that it must be applied to the vector potentials
[51]. Importantly, these generators allow us to find the corresponding eigenstates
associated to the conserved quantities. In this regard, one can find that the plane
waves are the eigenstates of the energy-momentum differential operator. Similarly,
for the optical chirality, it is found that the associated eigenstates are the circularly
polarized plane waves [44].

Noether’s theorem, therefore, constitutes a powerful tool for identifying and ana-
lyzing conserved quantities from the symmetries of the physical system. However,
this approach only holds in the absence of external sources. In the presence of sources
(i.e., external charges and/or currents), though, conservation laws and the subsequent
identification and analysis of the conserved quantities ought to be addressed through
the continuity equations [51, 52]. This would be the case if we wanted to analyze
a given dynamical property in a dispersive medium, wherein we also include the
presence of absorption losses. Hence, by building upon the sound and self-consistent
framework described above for the EM energy conservation law, we are now ready
to proceed with the generalization of the conservation law for the optical chirality.

Akin to the EM energy continuity equation, the procedure to derive the most
general form of the optical chirality conservation law starts from the definition of
the corresponding optical chirality flux density. In this regard, it is worth recalling
that the literature concerning optical chirality and its interaction with matter has
mostly dealt with EM fields in free space [31–33]. That is why one can often find
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several expressions for the chirality flux density wherein the fields B and H are
used interchangeably, yet leading to same results. However, this does not occur in
dispersive media, and special care should be taken in dealing with EM fields either in
free space (E andH), or within amedium (D andB). Be that as it may, for symmetry
reasons, one may heuristically assume that the chirality flux density actually reads
as

F ≡ 1

2

[E × (∇ × H) − H × (∇ × E)
]
. (13.39)

This authorative choice of the definition is in fact that used in [80], and coincides
with that originally introduced by Tang and Cohen [31] for EM fields in free space.
Following a similar procedure as for the EM energy conservation law, one can readily
calculate the divergence of the chirality flux density with the aid of the Maxwell’s
equations:

∇ · F = 1

2

[H · ∇ × (∇ × E) − E · ∇ × (∇ × H)
]

= −1

2

[H · ∂t (∇ × B) + E · ∂t (∇ × D) + E · (∇ × J )
]
. (13.40)

To find out the conserved quantity and its accompanying source-like term, one should
compare the latter expression with the mathematical structure of the continuity equa-
tion as given in (13.22), and identify the total time derivative operator. To this aim,
it follows that

E · ∂t (∇ × D) = ∂t [E · (∇ × D)] − ∂tE · (∇ × D) ; (13.41a)

H · ∂t (∇ × B) = ∂t
[H · (∇ × B)

] − ∂tH · (∇ × B) . (13.41b)

In this manner, (13.40) can be recast as a true continuity equation, i.e.,

∇ · F + ∂tC = S, (13.42)

where the optical chirality density and the source-like terms are defined as

C ≡ 1

2

[E · (∇ × D) + H · (∇ × B)
]
, (13.43)

S ≡ 1

2

[
∂tE · (∇ × D) + ∂tH · (∇ × B) − E · (∇ × J )

]
. (13.44)

It is worth pointing out that the above expressions represent themost general result
for the optical chirality conservation law, without any restrictions on the nature of
the medium. Nonetheless, they differ considerably from the previously established
for EM fields in free space [17, 31–33, 44, 77, 80]:

∇ · F vacuum + ∂tCvacuum = Svacuum, (13.45)
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where F vacuum ≡ F , but Cvacuum ≡ [
ε0E · (∇ × E) + μ0H · (∇ × H)

]
/2, i.e., that

given in (13.1), and Svacuum ≡ − [J · (∇ × E) + E · (∇ × J )] /2 being, respec-
tively, the chirality flux density, the optical chirality density, and the source-like
term in free space. Curiously, albeit (13.45) was initially posed for optical fields in
the vacuum, it has been widely used for investigating chiroptical effects occurring in
material systems, including metals (or plasmonic structures) as well as metamateri-
als. However, it can be demonstrated that the general result given in (13.42) reduces
to (13.45) only for linear and lossless media, i.e., when D = ε0E and B = μ0H ,
and assuming ε = μ = 1:

C = 1

2

[E · (∇ × D) + H · (∇ × B)
]

= 1

2

[
ε0E · (∇ × E) + μ0H · (∇ × H)

] = Cvacuum, (13.46)

and

S = 1

2

[
∂tE · (∇ × D) + ∂tH · (∇ × B) − E · (∇ × J )

]

= 1

2

[
ε0∂tE · (−μ0∂tH) + μ0∂tH · (ε0∂tE + J ) − E · (∇ × J )

]

= 1

2

[
μ0∂tH · J − E · (∇ × J )

]

= −1

2
[J · (∇ × E) + E · (∇ × J )] = Svacuum, (13.47)

where μ0∂tH = − (∇ × E). As one can see at a glance, the essential discrepancy
arises on account of the dispersion-related terms. This becomes much more evident
by rewriting the above expressions in terms of those for vacuum. Indeed, since

E · (∇ × D) = D · (∇ × E) + ∇ · (P × E) ; (13.48a)

H · (∇ × B) = B · (∇ × H) + μ0∇ · (M × H) , (13.48b)

the optical chirality density as given in (13.43) can be generally expressed as

C = 1

2

{D · (∇ × E) + B · (∇ × H) + ∇ · [P × E + μ0 (M × H)
]}

= 1

2
{ε0E · (∇ × E) + E · (∇ × P) + μ0H · (∇ × H) + μ0H · (∇ × M)}

= Cvacuum + Cmedium = Cvacuum + Ce
medium + Cm

medium, (13.49)

where the free-space contribution Cvacuum, i.e., the original expression as given in
(13.1), has been separated from the one accounting for the medium contribution,
Cmedium ≡ [E · (∇ × P) + μ0H · (∇ × M)

]
/2. Similarly, the source-like term can

also be recast as follows
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S = Svacuum + Smedium = Svacuum + Se
medium + Sm

medium, (13.50)

where Svacuum is the free-space contribution as given in (13.47), and Se/m
medium stand

for the electric and magnetic components due to the medium contribution:

Se
medium = 1

2
{∂tE · (∇ × P) − ∂tP · (∇ × E)} ; (13.51a)

Sm
medium = μ0

2
{∂tH · (∇ × M) − ∂tM · (∇ × H)} . (13.51b)

Therefore, the material systems brings about important corrections into the optical
chirality conservation law [compare (13.42) with (13.45)], and consequently into the
original expressions for the optical chirality density [compare (13.43) with (13.46)]
and its associated source-like contribution [compare (13.44)with (13.47)]. Of course,
these considerations should not be disregarded, and will be the subject under which
we focus on the rest of this chapter.

13.4 Optical Chirality Density in Linear Dispersive Media

So far, we have shown that the conservation law for the optical chirality established
up to now, i.e., that expressed in (13.45) (see, e.g., [17, 31–33, 44, 77, 80]), is only
valid for EM waves in free space. Starting from the definition of the optical chirality
flux density as given in (13.39), we have provided a detailed derivation showing
that there are also additional terms accounting for the presence of a material system,
which have often been neglected. Noteworthily, their dispersion characteristics lead
to important corrections into the original expressions of the optical chirality density
as well as the source-like terms appearing in the continuity equation, that should
be carefully considered. These kinds of theoretical implications have already been
demonstrated in other works generalizing the EM energy, the linear momentum, the
orbital and the spin angular momenta [39–41], and the EM helicity [42], to dis-
persive media. Likewise, in this section, we shall perform an alternative derivation
for the optical chirality density in dispersive media, considering both the lossless
and the lossy approaches. Specifically, as for the lossless case, the derivation will
be analogous to the classical procedure leading to the Brillouin formula for the EM
energy density in dispersive media [30, 65], i.e., just involving Fourier integrals [29].
On the other side, the corresponding expression for the optical chirality density in
dispersive media including the medium’s dissipation, will be tackled by following a
similar approach as already provided by Loudon [54] (and further extended by Rup-
pin [55]) for the EM energy. Herein, it is worth reminding that, just like for the EM
energy case outlined above, these results will be valid as long as the material param-
eters (i.e., the electric permittivity and the magnetic permeability) can be properly
fitted by Lorentzian line shapes. In this regard, the multi-resonant models for both
the permittivity, (13.12), and for the permeability, (13.19), have proven to fit very



13 Theoretical Generalization of the Optical Chirality to Arbitrary Optical Media 341

well with experiments [72–74], and thus, can be regarded as absolutely general for
characterizing the optical response of whatever material system, for any frequency
and bandwidth.

13.4.1 Optical Chirality Density in Dispersive and Lossless
Media: Brillouin’s Approach

By regarding the original definition of the optical chirality density in the time-
dependent representation, it is easy to show that, formonochromatic electric andmag-
netic fields in free space,E(r, t) = Re[E(r)e−iωt ] andH(r, t) = Re[H(r)e−iωt ], the
time-averaged optical chirality density is given by [31, 32]:

Cvacuum ≡ 〈Cvacuum〉T = ω

2c2
Im

[
E · H∗]. (13.52)

From this, it is straightforward to verify that the maximum value of C is achieved
when assuming freely propagating EM plane waves with circular polarization (CP),
i.e., corresponding to the eigenstates associated to the optical chirality [44]:

C (±)CP
vacuum = ± ω

2c2
1

Z0
|E|2 , (13.53)

where Z0 ≡ √
μ0/ε0 is the vacuum impedance, and the signs + and − correspond

to the left- and right-handed circular polarizations.
Now, the aim of this section is finding out a closed expression generalizing the

above to dispersive media in the lossless case. For simplicity, hereinafter it will be
assumed a linear, homogeneous and isotropic medium such that D = ε0ε(ω)E and
B = μ0μ(ω)H. Then, starting from the continuity equation as given in (13.40), and
taking into account the above discussion, let us expand the right-hand side by using
the Fourier integrals:

1

2
E · ∂t (∇ × D) = 1

2

∫ +∞

−∞
E(ω′)e−iω′t dω′ · ∂t

{
∇ ×

[∫ +∞

−∞
D(ω)e−iωt dω

]}

= −i

2

∫ +∞

−∞

∫ +∞

−∞
ωE(ω′) · [∇ × D(ω)] e−i(ω′+ω)t dω′dω;

(13.54a)

1

2
H · ∂t (∇ × B) = 1

2

∫ +∞

−∞
H(ω′)e−iω′t dω′ · ∂t

{
∇ ×

[∫ +∞

−∞
B(ω)e−iωt dω

]}

= −i

2

∫ +∞

−∞

∫ +∞

−∞
ωH(ω′) · [∇ × B(ω)] e−i(ω′+ω)t dω′dω.

(13.54b)
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According to the continuity equation (13.42), this is actually the time rate of change
of optical chirality. Still, one might guess that the electric and magnetic contri-
butions to the optical chirality density are indeed encoded in such a way that
E · ∂t (∇ × D) → ∂tCe and H · ∂t (∇ × B) → ∂tCm, respectively. Therefore, the
instantaneous distribution of the electric and magnetic contributions to the optical
chirality density can then be obtained by integrating the latter expression over time:

Ce(t) = −i

2

∫ t

−∞

∫ +∞

−∞

∫ +∞

−∞
ωE(ω′) · [∇ × D(ω)] e−i(ω′+ω)t ′dω′dωdt ′

= 1

2

∫ +∞

−∞

∫ +∞

−∞

[
ω

ω′ + ω

]
E(ω′) · [∇ × D(ω)] e−i(ω′+ω)t dω′dω;

(13.55a)

Cm(t) = −i

2

∫ t

−∞

∫ +∞

−∞

∫ +∞

−∞
ωH(ω′) · [∇ × B(ω)] e−i(ω′+ω)t ′dω′dωdt ′

= 1

2

∫ +∞

−∞

∫ +∞

−∞

[
ω

ω′ + ω

]
H(ω′) · [∇ × B(ω)] e−i(ω′+ω)t dω′dω.

(13.55b)

Notice that the integral convergence is constrained by the slowly varying amplitude
approximation [29], i.e., assuming that the EM fields tend sufficiently rapidly to zero
as t ′ → −∞. In linear, homogeneous and isotropic media, ∇ × D = iωε0μ0εμH,
and ∇ × B = −iωε0μ0εμE + μ0μJ, so that

Ce(t) = i

2c2

∫ +∞

−∞

∫ +∞

−∞

[
ω2ε(ω)μ(ω)

ω′ + ω

]
E(ω′) · H(ω)e−i(ω′+ω)t dω′dω;

(13.56a)

Cm(t) = −i

2c2

∫ +∞

−∞

∫ +∞

−∞

[
ω2ε(ω)μ(ω)

ω′ + ω

]
E(ω) · H(ω′)e−i(ω′+ω)t dω′dω

+ μ0

2

∫ +∞

−∞

∫ +∞

−∞

[
ωσ(ω)μ(ω)

ω′ + ω

]
E(ω) · H(ω′)e−i(ω′+ω)t dω′dω,

(13.56b)

where σ(ω) = iε0ω [1 − ε(ω)] is the complex-valued electric conductivity. There-
fore, by summing both the electric and magnetic contributions it follows that

C(t) ≡ Ce + Cm = i

2c2

∫ +∞

−∞

∫ +∞

−∞

[
ω2ε(ω)μ(ω)(ω′, ω)e−i(ω′+ω)t

ω′ + ω

]

dω′dω,

(13.57)
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where (ω′, ω) = E(ω′) · H(ω) − E(ω) · H(ω′). It should be noted that the above
expression only accounts for the first term of the right-hand side of (13.56b); the
second one involves a current-like contribution, and is skipped for the moment. In
this way, just by regarding monochromatic optical fields, it can be shown that

av(ω
′, ω) = i

2
Im

[
E∗ · H] [

δ(ω − ω0)δ(ω
′ + ω0) − δ(ω + ω0)δ(ω

′ − ω0)
]
,

(13.58)
where there are only outlined the terms contributing to the time average. Hence,
substituting this into (13.57) one find that the time-averaged optical chirality density
is given by

C ≡ 〈Ce + Cm〉T = 1

2c2
Re

[
ω2
0ε(ω0)μ(ω0)

ω′
0 − ω0

]
Im

[
E∗ · H]

, (13.59)

where it has been used that ε(−ω) = ε∗(ω) and μ(−ω) = μ∗(ω). Similarly to that
already pointed out in (13.35), this expression is oddly written, since the numerator
only involves ω0, whereas the denominator also brings in the corresponding primed
frequencies. This drawback can be readily overcome by means of an algebraic sym-
metrization procedure, in which the expression is split into two parts interchanging
ω0 ↔ ω′

0, to finally add them up together:

C = 1

4c2
Re

[
ω′2
0 ε(ω′

0)μ(ω′
0) − ω2

0ε(ω0)μ(ω0)

ω′
0 − ω0

]
Im

[
E · H∗]. (13.60)

Akin to the energy density in (13.36), this expression exhibits a singularity at ω′
0 =

ω0. Therefore, taking the limit ω′
0 → ω0, it can be nicely expressed in a compact

form as a derivative with respect to ω:

Clossless = 1

4c2
Re

[
d

[
ω2ε(ω)μ(ω)

]

dω

]

Im
[
E · H∗]. (13.61)

A more elegant form for expressing the above result may be made as follows

Clossless = Re
[
n(ω)ñ(ω)

]
Cvacuum = ω

2

Im[E · H∗]
vp(ω)vg(ω)

, (13.62)

where vp(ω) ≡ c/Re[n(ω)] and vg(ω) ≡ c/Re[ñ(ω)], are the phase and group veloc-
ities [81, 82], respectively, which can be in turn expressed in terms of the phase
refractive index, n(ω) = √

εμ, and the corresponding dispersion-modified group
refractive index, ñ(ω) ≡ n(ω) + ω [∂n(ω)/∂ω] [41, 42]. It should be noted that the
same expression for the optical chirality density in dispersive media has also been
obtained but using a more complicated formalism (see equation (33) in [44]). At any
rate, it is easy to prove that this definition, as given in (13.61) or (13.62), reduces to the
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original one for freely propagating optical fields, (13.52), when n = 1, as expected.
In addition, this simple relation provides important insights on account of the depen-
dence on the dispersion-related phase and group velocities. Indeed, it is easy to realize
that the stored optical chirality density may be naturally enhanced in artificially engi-
neered materials just by lowering both velocities. This is specifically accomplished
in the vicinity of the resonance frequency, i.e., in the anomalous dispersion region,
wherein the real part of the permittivity decreases abruptly. Notwithstanding, in a
dispersive and lossy media, there are, incidentally, some spectral ranges where the
precise physical meaning of the group velocity turns out to be somewhat unclear [30,
65]. Let’s see how to proceed on this matter.

13.4.2 Optical Chirality Density in Dispersive and Lossy
Media: Loudon’s Approach

According to the Kramers-Kronig relations [28], a physically realistic description
of dynamical properties in dispersive media would require careful considerations
of dissipative effects. As outlined above, this is very well known for the EM field
energy in metals, for which a general treatment has been developed [27, 29]. Herein
we shall do the same for the optical chirality density, thereby incorporating properly
these aspects to finally get a general expression. Starting from the continuity equation
as given in (13.40), we now expand both the electric and magnetic contributions as
follows:

1

2
E · ∂t (∇ × D) = 1

2
[ε0E · ∂t (∇ × E) + E · ∂t (∇ × P)] ; (13.63a)

1

2
H · ∂t (∇ × B) = μ0

2

[H · ∂t (∇ × H) + H · ∂t (∇ × M)
]
. (13.63b)

In these expressions each of the first term of the right-hand side can be recast as

ε0

2
E · ∂t (∇ × E) = ε0

2
{∂t [E · (∇ × E)] − ∂tE · (∇ × E)} ; (13.64a)

μ0

2
H · ∂t (∇ × H) = μ0

2

{
∂t

[H · (∇ × H)
] − ∂tH · (∇ × H)

}
, (13.64b)

leading to a total time derivative plus a residual term for each case. As shown below,
these residual terms exactly cancel to each other in the vacuum, thus recovering the
original expression for the optical chirality in free space. The second term in the right-
hand side of (13.63a) and (13.63b) are to be addressed from a material standpoint by
means of the dynamic equations for the polarization and the magnetization fields:
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1

2
E · ∂t (∇ × P) = ∂t

{
N−1∑

n=0

∂t 〈Pn〉 · (∇ × ∂t 〈Pn〉) + ω2
n〈Pn〉 · (∇ × 〈Pn〉)

2ε0 fnω2
p

}

−
N−1∑

n=0

ω2
n∂t 〈Pn〉 · (∇ × 〈Pn〉) + ∂t 〈Pn〉 · (∇ × ∂2

t 〈Pn〉
)

2ε0 fnω2
p

+
N−1∑

n=0

γn∂t 〈Pn〉 · (∇ × ∂t 〈Pn〉)
2ε0 fnω2

p

; (13.65a)

1

2
H · ∂t (∇ × M) = ∂t

{
N−1∑

n=0

∂t 〈Mn〉 · (∇ × ∂t 〈Mn〉) + ω̃2
n〈Mn〉 · (∇ × 〈Mn〉)

2 f̃nω̃2
n

}

−
N−1∑

n=0

ω̃2
n∂t 〈Mn〉 · (∇ × 〈Mn〉) + ∂t 〈Mn〉 · (∇ × ∂2

t 〈Mn〉
)

2 f̃nω̃2
n

+
N−1∑

n=0

γ̃n∂t 〈Mn〉 · (∇ × ∂t 〈Mn〉)
f̃nω̃2

n

. (13.65b)

Then, taking into account the structure of the continuity equation, (13.22), one can
readily identify the electric andmagnetic contributions of the optical chirality density
stored either by the fields or the medium, as well as the source-like terms accounting
for the loss (or gain) rate of the chirality [51, 52]:

1

2
E · ∂t (∇ × D) = ∂t

[Ce
vacuum + Ce

medium

] + Le; (13.66a)

1

2
H · ∂t (∇ × B) = ∂t

[Cm
vacuum + Cm

medium

] + Lm. (13.66b)

In order to compare these results with those obtained via the Fourier transform,
we should calculate the corresponding time average of the optical chirality density
by considering time harmonic fields in a linear medium. Therefore, from (13.64a),
(13.65a), (13.64b) and (13.65b), and with the aid of (13.15) and (13.18), it can be
demonstrated that

Ce ≡ 〈Ce
vacuum + Ce

medium〉T = ω

4c2
εeff(ω)Im

[
μ∗(ω)E · H∗]; (13.67a)

Cm ≡ 〈Cm
vacuum + Cm

medium〉T = ω

4c2
μeff(ω)Im

[
ε(ω)E · H∗], (13.67b)

where εeff and μeff are the real-valued effective material parameters defined in
(13.29a) and (13.29b), respectively. Hence, by summing both the electric and mag-
netic contributions shown above, one finally gets the generalization of the optical
chirality density to any arbitrary optical media [46]:

Clossy = ω

4c2
Im

[(
ε(ω)μeff(ω) + εeff(ω)μ∗(ω)

)
E · H∗]. (13.68)
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It should be noticed that, in the magnetic contribution, there would also be an
additional term associated with the current density J:

Cc
lossy ≡ 〈Cc

lossy−medium〉T = ω

4c2
μeff(ω)Im

[
(ε(ω) − 1)E · H∗]. (13.69)

In the lossless case, the corresponding term accounting for this current-related con-
tribution is included in the second line of (13.56b), that would lead to the following

Cc
lossless ≡ 〈Cc

lossless−medium〉T = 1

8c2
Im

[
d

[
ω2 (ε(ω) − 1) μ(ω)

]

dω
E · H∗

]

. (13.70)

This way, these terms allow one to complete the optical chirality conservation law:

∇ · F + ∂t
[Ce

vacuum+medium + Cm
vacuum+medium + Cc

medium

] = − [Le + Lm + Lc
]
,

(13.71)
where Lc = E · (∇ × J ) /2.

It is worth remarking that both developments for generalizing the optical chirality
density to dispersive lossless and lossy media, actually relies on the optical chirality
conservation law. Accordingly, the efforts were specially undertaken in order to
express the right-hand side of (13.40) in terms of total time derivatives. For simplicity,
we followed a similar treatment as the one already employed for the derivation of
the energy density in dispersive and lossless media [30, 65], and for lossy media
[54, 55]. However, in comparison with the energy case, the optical chirality exhibits
many curl-like terms, thus hindering the mathematics. Therefore, special care must
be taken with the residual terms so as to avoid misleading outcomes. In this regard,
it should be noted that, when combining the electric and magnetic contributions,
given in (13.63a) and (13.63b), respectively, one directly gets (13.64a) and (13.64b),
provided that the EM fields are assumed to propagate in free space, i.e., so that
P = M = 0. In such a case, it is straightforward to check that the residual terms,
∂tE · (∇ × E) and ∂tH · (∇ × H), cancel each other, so that

1

2

[E · ∂t (∇ × D) + H · ∂t (∇ × B)
] = ∂tCvacuum,

thus allowing us to recover the original expression for the optical chirality in free
space. Yet, looking at the electric and magnetic contributions to the optical chirality
density, (13.66a) and (13.66b), these residual terms, along with the corresponding
ones accounting for the material contribution (arising from the second and third
summation in (13.65a) and (13.65b)), should be generally interpreted as the loss
rate.

Equation (13.68) is the main result of this chapter. It provides the most general
definition for the optical chirality density in dispersive and lossymedia, i.e., it is valid
for EM fields with arbitrary time dependence, and it is applicable to any material
system, including dielectrics, semiconductors, as well as highly dispersive and lossy
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media, such as plasmonic nanostructures, and metamaterials [1]. It is important to
realize that this expression differs significantly from the standard formula for fields
in free space [31, 32], and even from other derivations claiming to work out the
optical chirality in dispersive media [44, 80]. The main difference essentially raises
on account of considering properly the dynamic response of the time-dependent EM
fields within a dispersive medium. In this regard, it should be noted that the time
derivative of the fields D and B, must be expressed as convolution integrals in the
time domain [28–30], as pointed out in (13.11a) and (13.11b). Notwithstanding the
foregoing, departing from this general expression (13.68), it is, of course, possible to
particularize it to the lossless case (13.62), aswell as to the original definition for free-
space EM fields (13.52), just by relaxing successively the corresponding conditions,
i.e., by imposing γn = γ̃n = 0, and ε(ω) = ε and μ(ω) = μ, respectively. Hence,
it can be concluded that this approach, relying upon the underlying mathematical
structure of the continuity equation, leads to a sound and self-consistent definition
for the optical chirality density in dispersive and lossy media [46, 48].

13.4.3 Brillouin’s Approach Vs Loudon’s Approach

The classical approaches put forward by Brillouin and Landau enable one to obtain
a closed expression for the EM energy density, (13.37a) and (13.37b), and likewise
for the optical chirality density, (13.62), which are only valid under the slowly vary-
ing amplitude approximation [29], i.e., in a relatively narrow frequency range where
the effects of material absorption can be considered as negligible. Therefore, those
expressions are suitable for describing such dynamical properties solely in lossless
dispersive media. In order to further include the dissipation, one should perform a
careful analysis from a material standpoint. This can be carried out by means of the
corresponding dynamic equations characterizing the polarization and the magneti-
zation fields, thereby introducing additional terms that must be explicitly accounted
for. By doing so, one finally is able to find the most general definition for the EM
energy density, (13.28a) and (13.28b), and the optical chirality density (13.68), thus
capturing analytically the effects due to dispersion, as well as the absorption, for a
complete and proper description of chiroptical interaction between light and matter.

Naturally, both approaches yield different behaviors, see Fig. 13.1. Indeed, assum-
ing a nonmagnetic medium (i.e., such thatμ = 1) whose permittivity is described by
a single Lorentz pole with ωp = ω0, one can observe that, whereas Clossless displays
both positive and negative values, the general expression Clossy remains always pos-
itive, with a minimum value of Cvacuum, that is reached in the high-frequency limit.
Importantly, the largest discrepancies are occurring close to the resonance frequency,
as expected. Still, the peaks for both approaches are almost equal in absolute value.
These signatures are actually better appreciated in Fig. 13.2, where we compare the
dispersion-dependent features of the optical chirality density in both approaches, the
lossless and lossy cases, for silver and silicon. Both materials have been modeled
using (13.12) with parameters taken from [72] and [73] (see the specific values listed
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Fig. 13.1 Optical chirality density in a lossless and b lossy dispersive media. Material parameters
correspond to a nonmagnetic medium (μ = 1), with ε being described by a single Lorentz pole
with ωp = ω0. Red, white and green dashed lines indicate the curves where the optical chirality in
the lossless case is −Cvacuum, 0, and Cvacuum, respectively

in Table13.1). From these results it is shown thatClossless overlaps almost exactlywith
Clossy for all frequencies, except in the vicinity of the region of anomalous disper-
sion, i.e., where dε′/dω < 0. Therein, the curves drastically separate fromeach other,
so highlighting the importance of considering dissipative effects. This fact should
therefore be carefully accounted for and reexamined in experiments considering chi-
roptical interaction between light and dispersive media such as metamaterials or
plasmonic systems.

To complete this analysis, let us check the condition under which the optical
chirality density for both the lossless and the lossy approaches exactly coincide with
each other. Indeed, it is easy to see that Clossless is equal to Clossy if and only if

2Re

[
ε(ω)μ(ω) + ωμ(ω)

2

∂ε(ω)

∂ω
+ ωε(ω)

2

∂μ(ω)

∂ω

]
= ε(ω)μeff + εeffμ

∗(ω).

(13.72)
Therefore, from the latter equation it is straightforward to observe that the imaginary
part of the right-hand side must be zero. This translates into the following condition,
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Fig. 13.2 Optical chirality
density for a silver, and b
silicon. Material parameters
describing ε are directly
taken from [72] and [73],
respectively (see Table13.1).
For comparison, the curves
for lossy (green solid lines)
and lossless (red dashed
lines) dispersive media are
represented in terms of
Cvacuum. The gray shaded
areas indicate the spectral
ranges showing anomalous
dispersion

Table 13.1 Material parameters characterizing the permittivity of silver [72] and silicon [73]
Ag [A. D. Rakić et al., Appl. Opt. 37, 5271 (1998)]

ε
(Ag)
D−L (ω) = 1 − f0ω2

p

ω2 + iωγ0
− f1ω2

p

ω2 − ω2
1 + iωγ1

− f2ω2
p

ω2 − ω2
2 + iωγ2

− f3ω2
p

ω2 − ω2
3 + iωγ3

ωp f0 γ0 f1 γ1 ω1 f2 γ2 ω2 f3 γ3 ω3

2178.61 0.845 11.61 0.065 939.63 197.31 0.124 109.29 1083.50 0.011 15.72 1979.12

Si [E. D. Palik (Academic Press, New York, 1985)]

ε
(Si)
D−L(ω) = 1 − f0ω2

0

ω2 − ω2
0 + iωγ0

− f1ω2
1

ω2 − ω2
1 + iωγ1

f0 γ0 ω0 f1 γ1 ω1

7.5 150 1000 3 50 830

χ ′′
n

(
1 + ξ ′

n

) − ξ ′′
n

(
1 + χ ′

n

) + 2ωχ ′′
n ξ ′′

n

(
1

γ̃n
− 1

γn

)
= 0, (13.73)

which is met when γn = γ̃n = 0 for all n. At the same time, one can verify that this
solution is indeed the only one, just by substituting it into the real part of (13.72).
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13.5 Conclusions and Outlook

In this chapter, we have put forward a step-by-step theoretical generalization of the
optical chirality density in arbitrary dispersive and lossy media, as well as a thorough
analysis addressing the corresponding conservation law in its most complete form.
All along thewhole exposure, we have always kept inmind the classical development
for the EM energy, whose conservation is dictated by the very well-known Poynt-
ing’s theorem [28–30, 53]. Even though these matters may seem somewhat trivial at
a first glance, simply the fact of considering EM waves propagating through a dis-
persive medium poses a challenge, making the mathematical treatment much more
complicated, but, at the same time, enriching the physics. Good evidence of this fact
is the number of papers on this issue that still continue being published nowadays
in renowned journals [54–64], wherein there is discussed and reexamined both the
fundamentals and the interpretation of the EM energy density in dispersive media.
This renewed interest in such seemingly basic aspects has likely been fostered by
recent progresses on left-handed materials [83, 84], and metamaterial photonics in
general [85–88].

In the same vein, as for the optical chirality, the latest efforts have been focused
on the design and fabrication of metamaterials and plasmonic nanostructures [1],
aiming to boost the chiral light-matter interactions for the development of advanced
chiroptical applications [10], such as sensing, chiral spectroscopy, or enhanced enan-
tioselectivity [5, 7, 8]. Surprisingly, however, from a theoretical point of view, contri-
butions ofmaterial dispersion, aswell as dissipation, havemostly been ignored; using
instead the original definition for the vacuum [31, 32], evenwhen its applicability can
be questionable. Now, a decade later, we have a more comprehensive understanding
and, a general and closed formulation for the optical chirality density [46, 48], which
will not only enable us to account for such features (dispersion and dissipation) from
now on, but it also would allow a thorough reexamination of prior results in order to
check their validity as well as their accuracy, e.g., by reconsidering the widespread
presumption that surface plasmons would have a null density of optical chirality
everywhere [89]. Furthermore, by including the presence of a material system, the
analysis of the continuity equation reveals the appearance of additional source-like
terms describing the loss (or gain) rate of optical chirality. Remarkably, whatever the
dynamical property is concerned, these contributions are important because enable
one to get deeper insights into fundamental aspects of light-matter interaction [51,
52]. For example, in the familiar case of EM energy, J · E, is directly related to the
power lost (or the work exerted) by the EM fields on the sources. However, in the
optical chirality case, the physical significance of its associated source-like terms is
not so obvious, thereby limiting to some extent the concept of source (or sink) of
optical chirality and thus hindering a proper interpretation. An in-depth understand-
ing of the meaning and the physical implications of these contributions remain as
yet unclear and would deserve further efforts [90, 91]. Finally, it is also worth to
be mentioned the controversial debate currently existing around the meaningfulness
and the differences between the EM helicity and the optical chirality [91–93]. In this
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regard, it is quite possible that a complete approach relying upon the role played by
the material absorption losses may shed some light on the solution of this and many
other intriguing questions.
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Chapter 14
Topology in Magnetism

X. S. Wang and X. R. Wang

Abstract In this chapter, we review recent developments of two usages of topology
in magnetism. One is to classify spin structures with different topological numbers
(topology in real space). The other usage is to distinguish normal magnetic materi-
als from those magnetic materials supporting topologically protected unidirectional
surface spin waves inside spin wave band gaps (topology in reciprocal space).

14.1 Introduction

Our knowledge about magnetic phenomena has a long history that can be traced
back to the 6th century B.C. when Thales of Miletus, one of the sages in ancient
Greece, told people that lodestones can attract iron. In the 4th century B.C., two
Chinese books, Master Lü’s Spring and Autumn Annual and Guiguzi reported the
same phenomenon [1]. Around 1000A.D., Chinese people already knew how to
magnetize a normal iron needle with a lodestone and make magnetic compass (vol.
24 ofMengxi Bitan by Kuo Shen). After the industrial revolution, our understanding
of magnetism had greatly advanced. Based on the studies of Coulomb, Ampère,
Faraday, and many others, James Clerk Maxwell wrote down the famous Maxwell’s
equations in 1861 [2],
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∇ · E = ρ

ε0
, (14.1)

∇ · B = 0, (14.2)

∇ × E = −∂B
∂t

, (14.3)

∇ × B = μ0

(
J + ε0

∂E
∂t

)
, (14.4)

which unify the optical, magnetic and electric phenomena. After entering the 20th
century, people realized that, besides magnetism from the motion of electric charges
in real space, spin, the intrinsic angular momentum of particles, can also generate
magnetic moments [3]. In 1888, Oberlin Smith proposed the idea of recording audio
on a magnetic wire [4], and in 1928, Fritz Pleumer developed the first magnetic tape
recorder capable of recording analog audio signal. The basic principle is to convert
a sound wave into a spatially dependent magnetization directions. After electrical
computers were invented, there was a great demand of high-density data storage.
The digital version of magnetic recording uses two distinct domains of different
magnetization directions to represent binary bits “0” or “1”. However, the recent
revival of nano-magnetism, or spintronics, is largely due to the discovery of giant
magnetoresistance (GMR) by Peter Grünberg and Albert Fert in 1988 [5, 6]. Peter
and Albert received the Nobel Prize in Physics in 2007 for this important discovery.
WithGMRandmuch improvedmaterial engineering, the storage density ofmagnetic
devices, hard disks, increases very fast in the 1990s and 2000s. However, the design
of hard disks requires mechanical components to locate the patterned areas, which
are susceptible to a tiny vibration. Furthermore, the superparamagnetic limit [7]
indicates that to achieve long-time and higher density storage, higher crystalline
anisotropy is required, which is challenging in material science [8]. Thus, people are
looking for other paradigms of magnetic storage that include (1) three-dimensional
(3D) racetrack memory, (2) to manipulate the data in a non-mechanical way and (3)
to find smaller data storage elements.

Traditional electronics uses electron charge to store as well as to process infor-
mation. The continuous demand of high computational capacity and miniaturization
require to integrate more and more transistors in a unit area. As a result, the Joule
heating becomes a bottleneck and electronics is reaching its limit [9]. Thus, it is
important to find other information carriers to replace electron charges, and one
promising candidate is the spin that can be non-volatile, and thus has much less
energy consumption. This is a main topic of spintronics [10]. The other possible
candidates include the charges of Cooper pairs (superconductivity) [11] and spins of
magnons (magnonics) [12]. Magnons are quanta of spin waves, the elemental excita-
tions in strongly-correlated spin systems such as ferromagnets, antiferromagnets, and
ferrimagnets. A magnon carries a spin of �, and the power consumption of magnon
current is much lower than that of electric current [13]. Thus, the manipulation of
magnons also becomes a hot topic in condensed matter physics.
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In the 18th century, Leonhard Euler studied Seven Bridges of Königsberg problem
and the properties of polyhedrons, which is considered as the birth of the topology
[14]. Topology became a well-accepted branch of mathematics in the early part of
the 20th century. The basic motivation of topology is to study preserved quanti-
ties and their possible relationships under continuous deformations, such as stretch-
ing/compressing and twisting, but not tearing or gluing. In 1940s, Shiing-Shen Chern
formulated the concept of Chern class and Chern numbers. The vector bundles on a
smooth manifold are classified into Chern classes with specific Chern numbers, and
within the same Chern class, the vector bundles are topologically equivalent. Almost
at the same time, physicists started to study gauge transformation and the gauge-field
origin of the fundamental forces in nature. For example, it was realized that nature
must have electromagnetic fields whose dynamics follows the Maxwell’s equation
if nature respects U (1) gauge symmetry. We know now that the gauge charges are
the Chern numbers of these fields [15]. In the 1970s and the 1980s, the interest on
topology proliferates from particle physics to condensed matter physics. David J.
Thouless, J. Michael Kosterlitz, F. Duncan M. Haldane and many others discov-
ered topological phase transitions and possible topological phases of matter. David,
Michael, and Duncan were awarded the Nobel Prize in Physics in 2016 for these
pioneering work. Simply speaking, topology provides a way to certain invariants in
nature. Within each class, some common properties exist and these properties are
robust against continuous deformations. This robustness is called topological pro-
tection [16]. In many circumstances, an extra cost (energy, time, force, defects, etc.)
has to be paid to break the topological protection. Thus, the topologically protected
excitations are extraordinarily useful in practice.

In summary, magnetism and topology are academically interesting and practically
useful. The hybridization of the two subjects is the central theme of this chapter. Here
we review recent developments of two usages of topology in magnetism based on
our own results. We focus on ferromagnets although there are increasing interest in
anti-ferromagnetic systems. In Sect. 14.2, we introduce spin/magnetic textures with
nontrivial topology in real space, including domain walls in one-dimensional (1D)
wires to 3D bulk magnets, vortices and skyrmions in two-dimensional (2D) films and
hopfions in 3Dmagnets. It should be emphasized that topological structures with var-
ious non-zero topological number does not necessarily imply stability although they
cannot be mapped to a single domain with zero topological number under a con-
tinuous deformation. Nature respects energy, but not the topological deformations.
In Sect. 14.3, we introduce topological spin waves (or magnons, in this chapter we
use this two terms interchangeably). Spin waves are the propagation of small spin
fluctuation, and we concentrate on unidirectional surfaces waves topologically pro-
tected by the band gap in the reciprocal space. These topological spin waves very
often imply robustness because they can only be destroyed when the bulk topological
charges are removed or annihilated through the external forces that consume a finite
amount of energy.
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14.2 Topological Spin Textures

The order parameter of ferromagnets is magnetization, M. The magnetization at
different locations are strongly correlated. Generally speaking, a system is an object
occupied a real space of R with real-space dimension d. The order parameter of the
system has a dimension d ′. d and d ′ are not related. d ′ ofM is 2 when a ferromagnet
is far below the Curie temperature, but it can be 3 near the Curie temperature or
smaller than 2 whenM is restricted. For ferrimagnets or anti-ferromagnets, the order
parameters can be more than one [17]. In the ambient conditions, thermodynamic
quantityM can be treated as a classical vector. WhenM at each point can take only
two discrete values of “up” and “down”, the system is usually called Ising-like with
dimension d ′ = 0. When M has a fixed magnitude and can only move in a plane or
on a surface, the magnet is XY-like with d ′ = 1 because M is on a 1D circle. For
most ferromagnets, M of fixed magnitude can point to any direction in real space
so their order parameters are unit vector direction m of M. d ′ = 2 and the system
can be modelled by a Heisenberg model or its generalizations consisting of various
anisotropies and all kinds of exchange interactions: symmetric or asymmetric, long-
or short-range interactions. The simplest spin texture is the onewith all spins pointing
to the same direction. Since the spins in an Ising model are discrete, there is no
continuous deformation and magnetizationm acts as an index to distinguish the two
states. For different d and d ′ ≥ 1, one can classify various structures according to
their topology, as shown in Fig. 14.1. Different topological indices are defined for
different dimensionality.

In this section, we discuss various spin structures for domain walls (Sect. 14.2.1),
vortices, skyrmions (Sect. 14.2.2), and hopfions (Sect. 14.2.3) in d = 1 to 3. We
consider the continuous limit where the length scale of excitations is much larger
than atom-atom distance. The order parameter, m(r, t), is governed by the Landau-
Lifshitz-Gilbert (LLG) equation [18],

∂m
∂t

= −γm × Beff + αm × ∂m
∂t

, (14.5)

where γ is the gyromagnetic ratio, Beff is the effective field due to all kinds of
anisotropic energies and exchange interactions, and α is the Gilbert damping. The
LLG equation describes generally the magnetization dynamics for an arbitrary d and
d ′ = 2.

14.2.1 Domain Walls

Domain walls (DWs) are transition regions between different domains. The minimal
model for a DW is on R

1 �→ M0, as shown in Fig. 14.1. In this case, the Ising DW is
a topological defect [19] of trivial structure without a well-accepted dynamics. We
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Fig. 14.1 Spin textures in different dimensionalities (DW = Domain Wall, BP = Bloch Point).
The structures with yellow background are the trivial repetitions of their (d − 1)-counterparty in
the additional dimension. The structures with blue background are continuous everywhere without
any singularity

start with 1D model on R
1 �→ M1, which describes a coplanar DW on a wire. Let

spin m− at the left end of a wire point to the +ẑ-direction and spin m+ at the right
end point to the −ẑ-direction, denoted respectively by the red and green dots on the
unit circle in Fig. 14.2. Any DW can be mapped to a path connecting the two points.
Within M1, there is an infinite number of topological distinct DWs. For instance,
the DWs shown in Fig. 14.2a–c are topologically different, because they cannot be
transformed to each other under continuous deformations. However, ifm is allowed
to tilt out of plane, i.e. consider the DWs in R

1 �→ M2 as shown in Fig. 14.2d–f,
each of the DW paths can continuously deform to another within the unit sphere
surface ofm, which can be intuitively visualized in the figure. Thus all the DWs are
topologically equivalent as long as the boundary values m± are the same.

How does the topology affect the dynamics of DWs? We consider a 180◦ DW
that separates two adjacent oppositely-oriented domains (m+ = −m−). Figure14.3a
shows three types of 180◦ DWs.Let us use the head-to-head/tail-to-tail (HH/TT)DWs
as an example. Use polar angle θ (with respect to z axis), we can define a winding
number or a charge as,
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Fig. 14.2 Schematic diagrams of DW topology. The top panel illustrates three DWs. a–c are
representative diagrams for three DWs in R
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Fig. 14.3 a Three types of 180◦ DWs. From the top to the bottom: heat-to-head/tail-to-tail, up-
down Néel/down-up Néel, up-down Bloch/down-up Bloch. b Schematic diagrams of DW racetrack
memory: in-plane storage and perpendicular storage
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Fig. 14.4 Comparison
between a DW in a magnetic
field and a charge in an
electric field

W = 1

2π

∫ +∞

−∞
dθ

dz
dz = θ(+∞) − θ(−∞)

2π
. (14.6)

W describes how many times m wraps the unit circle when the spatial coordinate
sweeps the whole magnetic wire. For the HH (TT) wall, W = 1/2 (W = −1/2). In
the presence of an external field along the wire, a DW of W = 1/2 (W = −1/2)
moves along (against) the field to lower the Zeeman energy. This is similar to a
positive (negative) charge in an electric field as illustrated in Fig. 14.4. In M1, θ
can be any real number. For fixed boundary values of m±, W can still differ by an
integer (θ can differ by an integer multiple of 2π). Thus, there is an infinite number
of topological distinct DWs. InM2, the range of θ is in [0,π], so all the DWswith the
same boundary values have the sameW . This example also shows how the dimension
of order parameter affect the kinetic paths from one structure to another. Therefore,
W is a topological index, which is consistent with the intuition. As a comparison, the
winding number of a single domain is 0, which is defined as topologically trivial.

The 180◦ DWs are basic building blocks of racetrack memory [20]. In a race-
track memory, magnetization directions of domains separated by a series of DWs
encode binary data in a patterned wire. All DWs are required to move simultane-
ously along the same direction at the same pace under a current to address the data,
as schematically illustrated in Fig. 14.3b. Thus efficient manipulations of DWs is a
technologically important topic. There are a lot of theoretical and experimental stud-
ies of DW motion, such as [21–28], to name a few. A magnetic field is traditionally
used to drive a DW to move. Our basic understanding of field-driven DW motion
comes from, one way or another, the exact Walker solution of a 1D LLG equation
[21]: Energy density functional of the model consists of an exchange energy A|∇m|2
with exchange stiffness A, a hard anisotropy Kxm2

x and an easy anisotropy −Kzm2
z

along x and z directions and the Zeeman energy −MsB · m due to external field B.
Here Kx and Kz are hard and easy anisotropy strengths, including the shape and
crystalline anisotropies, and Ms is the saturation magnetization. The temperature is
considered to be far below the Curie temperature. InWalker solution [21], a threshold
field of Bw = αKx/Ms (called Walker breakdown field) exists. For B < Bw, a DW
undergoes a rigid-body translational motion. Beyond Bw, the translational motion is
no longer allowed and the DW starts to rotate. DW speed v in this region oscillates
with time [29], and average v dramatically decreases. From energy consideration,
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one can rigorously prove that no static DW is allowed in a homogeneous nanowire
in the presence of an external magnetic field. A moving DW must dissipate energy
because of various damping mechanisms. Thus, energy conservation requires that
the dissipated energy comes from the energy decrease of the wire that should be
supplied by the Zeeman energy released from the DW propagation [30]. This is
the origin of DW propagation. The energy dissipation can come not only from the
Gilbert damping as in aforementioned Walker solution, but also from spin wave
emission [31, 32]. Somehow similar to theWalker solution, depending on Kx and B,
breathing or more complicated periodic transformations such as a DW drilling emit
spin waves. During the DW propagation, the energy dissipation rate due to the SW
emission is balanced by the Zeeman energy release. Spin wave emission persists in
the presence of Gilbert damping and make the usual Walker rigid-body propagation
solution unstable in a region below the Walker breakdown field [33]. In strong field
and low Kx , a broad DW undergoes a breathing motion. Both bow and stern SWs
are emitted by the periodical breathing of the DW width. The main frequencies of
the SWs are respectively of 3γB and γB in the domains along and opposite to the
field. When the sum of longitudinal and transverse anisotropy energies is of the same
order of the exchange energy, the DW goes into drilling motion when the DW plane
is greatly distorted. The DW propagates at a constant high speed, and stern waves
are mainly emitted.

As mentioned before in Fig. 14.4, a magnetic field drives DWs of W = 1/2 and
W = −1/2 tomove in opposite directions so that they can annihilate with each other.
Under a magnetic field, the data stored in the domain between the two annihilated
DWs would be destroyed. In a racetrack memory, all domain walls are required to
move in a synchronized way, regardless its topological charge. This requirement can
be realized by spin-polarized electric current through spin-transfer torque [23–27].
Different from the field-driven motion which originates from energy conservation,
the current-driven DW motion comes from the angular momentum transfer [34]. In
most FMmaterials, the electrons are spin-polarized along themagnetization direction
of the domain (with angular momentum �/2). After passing through a DW, electrons
can follow the local magnetization to reverse its spin (adiabatic process) to −�/2 if
the DW is wide enough. Thus there is a change in angular momentum of −�. Due
to angular momentum conservation, this change can be converted into the motion of
DW towards the direction of electron flow. The torque on the local spin is called the
spin-transfer torque (STT).Nomatterwhat the type of aDWis, STT always drives the
DW to propagate along the same direction. STT-drivenDWpropagation soon attracts
intensive theoretical and experimental studies due to the nice property, including
but not limited to [20, 23–27, 35, 36]. STT has both adiabatic and nonadiabatic
components[25, 37, 38] whose expressions are

τ = − (u · ∇)m + βm × (u · ∇)m, (14.7)

where the first term is the adiabatic torque and the second term is the non-adiabatic
torque with non-adiabaticity coefficient β. u = μB pgeJ/[2eMs(1 + β2)] has the
dimension of velocity that is proportional to electric current J. μB , p, ge, and e are
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respectively the Bohr magneto, the degree of current spin polarization, the electron
g-factor and the electron charge.

To achieve a high DW speed, a large electric current has to be used. Thus, a large
amount of Joule heat is produced [35] that is harmful to device performance. As
explained before, spinwaves can take the role of an electric current in theDWmotion.
Indeed, both electrons and magnons carry spins. A magnon carrying an angular
momentum of �. Similar to the STT from electrons to local magnetic moments, a
STT from magnons to a DW also exists. Since the spins carried by magnons are
always opposite to spins of the domain, magnon STT should drag a DW towards
the opposite direction of magnon flows. The magnonic STT has been predicted [39]
and experimentally verified [40, 41]. The magnons can not only be coherent ones
generated by oscillating electromagnetic fields but also be incoherent ones generated
by nonlinear effects or thermal gradients. The STT from thermal magnons also has
been predicted [42, 43] and experimentally observed [44]. Under a thermal gradient,
the hotter side has a larger magnon population than the colder side. So the magnons
diffuse from the hotter side to the colder side, forming a magnon flow. This flow
drags the DW towards the hotter side.

The d = 1 model is a good approximation for small diameter (much less than
exchange length and DWwidth) nanowires or very large bulky magnets whose mag-
netization varies only along one direction. For DWs in nanostrips which are usually
used in experiments and devices, a d = 2 model is necessary. We now discuss a
R

2 �→ M1 model, i.e. the 2D classical XY model, which is applicable to in-plane
magnetized strips [45]. The pioneering work of McMichael and Donahue [46] show
numerically that a HHDWcan be a transverse wall or a vortex wall, depending on the
width and the thickness of the strip, as shown in Fig. 14.5. To discuss the topology,
similar to the winding number defined in (14.6), we can define a winding number
along a path C in R

2,

WC = 1

2π

∫
C

∇θ · dr, (14.8)

where C is a closed loop inside a strip denoted as �, on which θ is continuum
and smooth. WC in this case is a bulk winding number that must be an integer. If
WC = 0, there is no singularity inside C . If WC = +1 (−1), there is a singularity
inside C , called a vortex (antivortex), as shown in Fig. 14.5 [45]. At the edge of the
strip denoted as ∂�, C can be a segment of ∂�, and the definition ofWC is modified
as

WC = 1

2π

∫
C

∇(θ − θC) · dr, (14.9)

where θC is the angle of the sample edge.WC of edge defects takes the values ±1/2,
as shown in Fig. 14.5. The sumof all thewinding numbers over� + ∂� is conserved.
Total winding number of

∑
WC is a topological invariant.

A transverse wall has a pair of edge defects of WC = ±1/2, and a vortex wall
with one vortex of WC = 1 has two edge defects of WC = −1/2. Both walls have
the same total winding numbers of 0. Thus the transverse wall and the vortex wall
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Fig. 14.5 Schematic diagrams of transverse wall and vortex wall, showing the bulk (red dot) and
edge (green dots) winding numbers. The blue lines are the paths of integral C

are topologically equivalent. The field-driven motion of transverse walls has a very
interesting dynamics [47]. Due to the dipolar interactions, the transverse wall has a
strawberry shape such that the width of the DW is not uniform along the width of
the strip. When the field is larger than a certain value but substantially below the
usual Walker breakdown field, a series of DW structure transformations, including
periodic birth and death of antivortices, are observed and explained. Two types of
antivortex evolution and their causes are identified for system with large damping
constant while only one type of evolution is found for system with small damping
constant.

For large damping and intermediate field, antivortices generated at the edge defect
near the tail of DW center line move along its DW center line to the other edge and
die there. At the same time the polarity of the transverse wall is reversed. Figure14.6
shows this DW transformations. As shown in the left plot of Fig. 14.6a, the initial
DW of polarity +1 is strawberry-like and it is located at the center of the strip. It
composes two edge defects whose winding numbers are 1/2 (the filled circle) and
−1/2 (the open circle) on the top and bottom edges, respectively. The DW center
line is parallel to y axis as illustrated by the black vertical line in the right plot of
Fig. 14.6a. After the field is applied along the +x-direction, the center line tilts its
direction away from y axis and elongates at the same time (Fig. 14.6b–e). As the
center line tilts far enough from the y axis as shown in the left plot of Fig. 14.6b, a
small antivortex (the blue dot) is born near the−1/2 edge defect, the tail ofDWcenter
line. Since the defects are topological objects with well-defined winding numbers,
edge defect of −1/2 winding number can only give birth to an antivortex of winding
number −1 and change itself to a +1/2 edge defect. This is illustrated in the right
plot of Fig. 14.6b with the blue dot representing the antivortex core and two filled
circles for the edge defects of +1/2 winding number. Then, this antivortex moves
toward the other side of the strip (Fig. 14.6c, d) along the DW center line. Later, the
antivortex reaches the top edge defect and dies there as shown in Fig. 14.6e. At the
same time, top edge defect changes its winding number from +1/2 to −1/2, and
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(a)

(b)

(c)

(d)

(e)

Fig. 14.6 a–eEvolution of theDWstructure during propagation for large damping and intermediate
field. The vortex core is indicated by a dot and the corresponding winding numbers are labelled.
Figure redrawn using the results in [47]

transversewall reverses its polarity from+1 to−1. After a transient period, the above
mentioned process will repeat again, starting from the top edge of the strip this time.
The birth-death process of antivortices repeats periodically while the transverse DW
propagates along the wire.

For larger field or smaller damping, the antivortex is not able to reach the other
edge of the strip because distortion of theDWcenter line is too large so that the corner
space is not large enough to accommodate the antivortex. Figure14.7 shows such
DW transformations. The left plot of Fig. 14.7a shows the initial spin configuration
of the strawberry-like transverse wall. The edge defects with corresponding winding
numbers and the DW center line are illustrated in the right plot of Fig. 14.7a. The
internal DW structure right before the generation of an antivortex at the edge defect
on the bottom edge, is shown in the left plot of Fig. 14.7b. The right plot of Fig. 14.7b
shows the corresponding DW center line and antivortex core (the blue dot) and two
edge defects of winding number +1/2. Different from the previous case, this newly
born antivortex cannot reach the other edge. As shown by the the DW configuration
(left) and the corresponding location of the antivortex, edge defects, as well as the
DW center line (right) in Fig. 14.7c, the antivortex makes a U-turn back to bottom
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(a)

(b)

(c)

(d)

(e)

Fig. 14.7 a–e Evolution of the DW structure during the propagation for smaller damping and
larger field. Figure redrawn using the results in [47]

edge. Together with two edge defects of winding number +1/2 at the bottom edge,
the antivortex detaches itself from the DW by creating an isolated defect region,
keeping the total winding number unchanged as shown in Fig. 14.7d. The isolated
defect eventually vanishes after dissipating its extra energy.As shown in in Fig. 14.7e,
a pure transverse DWappears again. This birth-death process of an antivortex repeats
itself periodically.

To manipulate DWs, one needs not only DW propagation but also DW pinning
and depinning [36]. The birth-death processes of (anti)vortices during the DW trans-
formation are also closely related to the depinning of DWs from notches [48, 49].
A transverse DW can be depined from a notch assisted by the birth of a vortex [48].
For a strip with periodic notches, the DW motion can be even faster than that in a
perfect strip due to the vortex birth-death processes [49].

We have also studied DW models in higher dimensions. Consider R
3 �→ M2

model where the DW is a plane in 3D space. Due to the well-known bound states
inside the DW and the spin wave phase shift after crossing a DW [39, 50], the density
of states of spin waves in a DW and in a domain is different. In the presence of a
DW, there is an increase in number of low-energy states and a depletion in number
of high-energy states, keeping the total number of states equals the total degree of
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freedom. For bosons with the Bose-Einstein distribution, the low-energy states are
always easier to be excited. Thus, the DW has a larger entropy S. The free energy of
the system is F = U − T S whereU is the internal energy and T is the temperature.
Therefore, when theDWhas higher temperature, the total free energy of the system is
lower. This theory also explains why the DWmoves to the hotter side in the presence
of a thermal gradient, which is consistent with the magnon STT theory [51].

14.2.2 Vortices and Skyrmions

In previous section, we discussed vortices in the context of vortex walls and winding
numbers in 2D XYmodel (d = 2, d ′ = 1). In this section, we discuss a more general
model on R

2 �→ M2. Since m is allowed to tilt out-of plane, the spin at vortex
(antivortex) center points perpendicularly out-of-plane rather than be singular as
discussed before. A new topological charge/number called skyrmion number on
R

2 �→ M2 can be defined [52–54], as a generalization of (14.6),

Q = − 1

4π

∫
m ·
(

∂m
∂x

× ∂m
∂y

)
d2r. (14.10)

Geometrically, the integrand is the solid angle spanned by m when one moves all
spins to the Bloch sphere center in the spin space. Thus, Q measures howmany times
the vector m wraps the unit Bloch sphere.

For vortices whosem are out-of-plane at the centers and in-plane at the periphery,
the skyrmion numbers are ±1/2 since all m can only wrap a hemisphere. Different
types of vortices are shown in Fig. 14.8, with ansatz profiles

�(φ) = cφ + ��, �(r) = π

2
(1 − pe−r/R), (14.11)

where r , φ are radial and angular coordinates of a point in R
2 centered at the vortex

center, and �, � are polar angle and azimuthal angle of m in M2. c takes integer
values, measuring howmany turnsm goes around the vortex center. p = ±1 denotes
the spin direction at the vortex center (p = 1 formz = 1 and p = −1 formz = −1). c
and p are usually called chirality and polarity of a vortex, respectively [55]. Equation
(14.10) can be written in polar coordinate with the ansatz (14.11) as Q = 1

2cp.
The topological charge Q can not only characterize the topology of a vortex, but

also directly enters the equation of motion. Thiele derived an equation of motion for
a spin texture, known as Thiele equation [54], under the assumption of a rigid-body
motion. After the discovery of STT [25], the Thiele equation including STT becomes
[37, 53, 56],

γ

Ms
T + G × (v − u) − ←→D · (αv − βu) = 0, (14.12)
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Fig. 14.8 Schematic diagrams for vortices of different chiralities and polarities

where v is the velocity of the texture; u = −μB pJ/[eMs(1 + β2)] is a vector with
the dimension of a velocity that is proportional to the current density J, in which

p is the spin polarization and e is the electron charge; G is the gyrovector;
←→D is

the dissipation tensor defined as Di j = ∫ ∂im · ∂ jmdV ; and T is the force on the

texture and its i ′th component is Ti = − ∂
∫ FdV
∂Xi

− ∫ ∂m
∂xi

· (m × τ )dV , where F is
the free-energy functional andX is the position of the texture center. The components
of gyrovector G is defined as

Gi =
∫

1

2
εi jkmi · (∂ jm × ∂km

)
d2r, (14.13)

where εi jk is the Levi-Civita symbol and i, j, k = 1, 2, 3 stand for x , y, z. For a 2D
film in the xy plane, only Gz is present, and it is easy to see Gz = 2πQ. The term
G × v says that a finite Q induces a transverse motion to the velocity, similar to the
Lorentz force or Magnus force.

Due to the non-zero winding number, an isolated vortex cannot be a localized
object in an infinite film. However, they can exist locally in confined geometries
such as nanodisks [57–63]. The vortices in vortex domain walls (VDWs) could also
be used as information carriers in a racetrack memory designs [46]. In the presence
of STT only [T = 0 in (14.12)], if α 
= β, the vortices not only move along the
electron flow, but also move in the transverse direction, which hinders the practical
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(a) (b)

Fig. 14.9 a Schematic diagram of superlattice VDW guide, and b bilayer VDW guide. α > β (A)
and α < β (B). Figure reproduced from [53]

application. Since Q is a topological invariant that is fixed, the direction of the
transverse motion depends on the relative magnitude of α and β. Although α = β
is unrealistic in practice, heterostructures made of α > β and α < β materials can
be used to build a VDW guide [53]. Figure14.9 shows two types of VDW guides.
The superlattice VDW guide (Fig. 14.9a) is made of superlattice of two materials
with α > β and α < β. It requires precise match between α, β and the superlattice
period. The vortex moves in a wavy trajectory. A more robust and simple design is
the bilayer VDW guide (Fig. 14.9b). The vortex is almost confined near the interface
of the α > β (A) and α < β (B) materials.

As mentioned above, vortices are not particle-like localized textures. Magnetic
skyrmions are localized topological spin textures that have attracted a lot of atten-
tions in recent years. Skyrmion is named after Tony Skyrme, who proposed a model
to explain why particles are stable in field theory [64, 65]. In the model, parti-
cles are topologically protected field configurations (skyrmions), so that they cannot
be deformed into trivial configurations topologically equivalent to the vacuum. A
topological charge called “Bayon number”, which is a winding number defined on
R

3 �→ M3, is defined as

B = 1

24π2

∫
εi jkTr

(
U †∂iUU †∂ jUU †∂kU

)
d3r, (14.14)

where U is the SU(2) matrix order parameter (a 3D version of m). In magnetic
systems, because of the 2D nature of m, magnetic skyrmion are 2D topological
textures with the topological charge (skyrmion number) Q defined in (14.10) [66].
To distinguish from the original skyrmion, the 2D version is sometimes called “baby
skyrmion” [67].

We consider a 2D ferromagnetic film of thickness d with perpendicular magnetic
anisotropy (PMA) and DMI. The total energy functional consists of the exchange
energy Eex, the DMI energy EDM, the anisotropy energy Ean, and the Zeeman energy
EZe,

E = Eex + EDM + Ean + EZe, (14.15)

where Eex = Ad
∫∫ |∇m|2dS, Ean = Kd

∫∫
(1 − m2

z )dS, and EZe = MsBd
∫∫

(1 −
mz)dS. The ground state is mz = ±1 single domain state. K = Ku − μ0M2

s /2,
where Ku is the perpendicular magnetocrystalline anisotropy, and −μ0M2

s /2 is
the thin-film shape anisotropy, which is a good approximation when the film
thickness d is much smaller than the length scale of magnetization variation. In
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Fig. 14.10 Schematic diagrams for different types of skyrmions

bulk noncentrosymmetric materials such as FeGe and MnSi, the DMI is bulk-like
EDM = ∫ Dbm · (∇ × m), where Db is the bulk DMI strength in units of J/m2 [52].
In inversion-symmetry-broken films such as Pt/Co/AlOx, the DMI is interfacial-like
EDM = Di

[
(ẑ · m)∇ · m − (m · ∇)(ẑ · m)

]
, where ẑ is the direction normal to the

film and Di is the interfacial DMI strength in units of J/m2 [68, 69].
Similar to the approximate vortex profile, skyrmion profile in isotropic films is

well described by
�(r,φ) = �(r), �(r,φ) = cφ + �φ. (14.16)

The skyrmion number (14.10) can be simplified as [52],

Q = − 1

4π

∫ ∞

0

∫ 2π

0

d�

dr

d�

dφ
sin�dφdr =

(
1

2
cos�

∣∣∞
0

)(
1

2π
�
∣∣2π
0

)
= cp,

(14.17)
where c is the chirality, and p is the polarity, similar to the vortices. However,
different from the vortices, the magnetization of skyrmions can wrap the whole unit
sphere so that the skyrmion number takes integer values. Skyrmions of negative
c such as c = −1 are often called antiskyrmions. The highly twisted skyrmions of
c ≤ 2 usually have higher energies. Figure14.10 shows different types of skyrmions.
The value of �φ depends on the form of DMI.

We now focus on c = 1 skyrmions which are observed in most experiments [52,
68, 70, 71]. The skyrmions can form lattices [72, 73] or be isolated [52, 68, 70,
71, 74, 75]. From the application point of view, the isolated skyrmions are more
useful since they can be manipulated individually so that reading and writing of data
[76, 77] are possible. It is very interesting to know the size of skyrmions in a given
material [78–83]. We present a theory for skyrmion size below.

As an example, we consider the interfacial DMI generally existed in heterostruc-
tures. Four energy terms in terms of � for c = 1 are
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Fig. 14.11 a Schematic diagram of a Néel skyrmion of radius R and wall (between the skyrmion
core and the outer domain) widthw in a 2D film. The arrows denote the spin direction. Spin orienta-
tions of the skyrmion along x axis are sketched below the main figure. b (Right axis) φ-dependence
of � (red circles) and (Left axis) radial (r ) distribution ofmz = cos� along the diameters of φ = 0
(crosses), 45◦ (triangles), and 90◦ (circles) for A = 15 pJm−1, D = 3.7 mJm−2, Ku = 0.8MJm−3,

and B = 0. The green solid line is the fit to �dw(r) = 2 arctan
[
sinh(R/w)
sinh(r/w)

]
with fitting parameters

of R = 25.77 nm and w = 4.94 nm. The blue solid line is � = φ. c–e Three typical equilibrium
states obtained in the numerical simulations for different parameters. c Isolated skyrmion. d Single-
domain state ofmz = 1 (ormz = −1). e Stripe domains. The pixel color encodes themz component
with the color bar shown in the figure. Figure reproduced from [84]

Eex = 2πAd
∫ ∞

0

[(
d�

dr

)2

+ sin2 �

r2

]
rdr, (14.18)

EDM = 2πDd cos�φ

∫ ∞

0

(
d�

dr
+ sin 2�

2r

)
rdr, (14.19)

Ean = 2πKd
∫ ∞

0
sin2 �rdr, (14.20)

EZe = 2πMsBd
∫ ∞

0
(1 − cos�)rdr. (14.21)

�φ = 0 or π minimizes the DMI term. This kind of skyrmions are called Néel
skyrmions or hedgehog skyrmions. Along a radial direction, the skyrmion profile
looks like a 360° Néel domain wall as illustrated in Fig. 14.11b. This leads us to
model a skyrmion profile by a 360° domain wall originally proposed by Braun [75,
85, 86],

�dw(r) = 2 arctan

[
sinh(R/w)

sinh(r/w)

]
. (14.22)

Whether this is a good approximation subjects to its comparison with micromagnetic
simulations. To test how good ansatz (14.22) is for a skyrmion, we use MuMax3
[87] to simulate various stable spin structures. A = 15 pJm−1, Ms = 580 kAm−1,
and perpendicular easy-axis anisotropy Ku = 0.8 MJm−3 [68] are used to mimic Co
layer in Pt/Co/MgO system. The initial state is mz = 1 for r > 10 nm and mz = −1
for r ≤ 10 nm. The final stable structures depend on the values of D and B. The
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lower left inset of Fig. 14.11 is three typical stable structures. Figure14.11c is a
skyrmion for D = 3.7 mJm−2 and B = 0. Figure14.11d is a single-domain state of
mz = 1 (or mz = −1) for D = 0 and B = 0. Figure14.11e is a stripe domains state
for D = 5 mJm−2 and B = 0. Figure14.11b shows the spatial distribution of mz of
the skyrmion in Fig. 14.11c along three radial directions, φ = 0 (the crosses), 45◦
(the triangles), and 90◦ (the circles). All three sets of data are on the same smooth
curve, showing that mz is a function of r , but not φ. The curve can fit perfectly to
(14.22) with R = 25.77 nm,w = 4.94 nm.We plotted also�(φ) at randomly picked
spins from the simulated skyrmion. All numerical data (red circles) are perfectly on
the curve of � = φ. These results not only confirm the validity of (14.22), but also
suggest that mz(r) ≡ cos[�dw(r)] follows the 360° DW profile (14.22) although it
is not exact since (14.22) does not satisfy nonlinear partial differential equations for
skyrmions [83].

The energy of a skyrmion can then be obtained from (14.18) by using the 360°
domain wall profile �dw(r). Substituting �dw(r) into (14.15) and (14.18), the total
energy is, in general, a function of R and w [instead of a functional of �(r) and
�(φ)] as

E(R, w) = 4πd

{
A

[
f1

(
R

w

)
+ f2

(
R

w

)]

+ Dw

[
f3

(
R

w

)
+ f4

(
R

w

)]

+ Kw2 f5

(
R

w

)
+ μ0MsBw2 f6

(
R

w

)}
, (14.23)

where fi (x) (i = 1 ∼ 6) are non-elementary functions defined as,

f1(x) =
∫ ∞

0

2 sinh2(x) cosh2(t)[
sinh2(x) + sinh2(t)

]2 tdt,
f2(x) =

∫ ∞

0

2 sinh2(x) sinh2(t)

t
[
sinh2(x) + sinh2(t)

]2 dt,
f3(x) = −

∫ ∞

0

t sinh x cosh t

sinh2 x + sinh2 t
dt,

f4(x) = −
∫ ∞

0

sinh x sinh t
(
sinh2 x − sinh2 t

)
(
sinh2 x + sinh2 t

)2 dt,

f5(x) =
∫ ∞

0

2t sinh2 x sinh2 t[
sinh2 x + sinh2 t

]2 dt,
f6(x) =

∫ ∞

0

sinh2 x

sinh2 t + sinh2 x
tdt.

The skyrmion size R and wall width w are the values that minimize E(R, w). In
[78], w was assumed to be a fixed value such as w = √

A/K that eventually leads
to a wrong skyrmion size. Figure14.12 is D− (a), A− (b), K− (c) and B− (d)
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Fig. 14.12 a–d The D (a), A (b), K (c) and B (d) dependence of the skyrmion size R (the left axis)
andwallwidthw (the right axis).Model parameters are A = 15 pJ/m, K = Ku − μ0M2

s /2 = 0.588
MJ/m3, D = 3.7 mJm−2, and B = 0. In each subfigure, one of these four parameters is treated
as a tuning parameter, and the other three parameters are fixed to above values. The symbols
are the micromagnetic simulation data. The solid lines are exact analytic results obtained from

minimising E of (14.23). The dashed lines are approximate results of R = πD
√

A
16AK 2−π2D2K

,

w = πD
4K [subfigures a–c] and solution of (14.25)(14.26) [subfigure d]. Vertical dashed lines are the

upper (lower) bound of parameters above (below) which a stable skyrmion cannot exist. e–h The
comparison of the skyrmion size R for the micromagnetic simulation (the black dots), our formula
(14.27) [or solution of (14.25) (14.26) for non-zero B] (the red lines), and previous studies [78]
(the green lines), [80] (the blue lines). Figure redrawn using the results in [84]
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dependences of the skyrmion size R (left y-axis) and the skyrmion wall width w

(right y-axis), with other parameters fixed to the values for Comentioned earlier. The
symbols are the micromagnetic simulation data [R is the size ofmz = 0 contour and
w is the fit of the skyrmion profile to�dw(r)]. The sample size used in the simulations
is large enough to avoid the boundary effects. Solid lines are numerical results from
minimising E of (14.23). The simulation results agree almost perfectly (except a
slight deviation in the D-dependence of w for smaller D) with our analytic results
of (14.23). Both micromagnetic simulations and analytical results clearly show that
the skyrmion can exist for D < 3.8 mJ/m2 in the current case. Above the upper
limit, the stable state is not a skyrmion, but stripe domains as shown in Fig. 14.11e
for D = 5 mJ/m2. E(R, w) of (14.23) has a minimum as long as |D| < 3.8 mJ/m2

that indicates existence of the skyrmion. However, micromagnetic simulations show
that the skyrmion can only exist in the window of 1.2 mJm−2 < D < 3.8 mJ/m2

when the skyrmion size is larger than 1nm in the current case. Below 1.2 mJ/m2,
the stable state is a single domain with all spins pointing up or down as shown in
Fig. 14.12d. This discrepancy is due to the discretization of continuous LLG equation
in micromagnetic simulations. There exists also a minimal A of around 14 pJ/m as
shown inFig. 14.12b and aminimal K of around 0.56MJm−3 as shown inFig. 14.12c,
below which the skyrmion does not exist, and the stable state is stripe domains as
shown in Fig. 14.11e. The skyrmion size decreases with B, which is consistent with
the experimental observations [70, 75, 88].

It is still unclear how R and w depend on A, D and K although (14.23) agrees
almost perfectly with the simulation results. Thus it is highly desirable to have simple
approximate expressions for R andw in terms of material parameters. The exchange
andDMI energies come from the spatialmagnetization variation rate. For a skyrmion,
themagnetization variation rates in the radial and tangent directions scale respectively
as 1/w and 1/R. The exchange energy is then proportional to the skyrmion wall area
of πRw multiplying the square of the magnetization variation rates 1/R2 + 1/w2,
i.e. Eex ∝ (R/w + w/R). The integrand of the second term (tangential term) of EDM

is proportional to sin 2� due to the triple product of the interfacial DMI vector (along
the radial direction), the tangential variation ofm (along the tangential direction), and
m itself. Because sin 2� is almost asymmetric about r = R (positivewhen r > R and
negative when r < R) and nonzero only near r = R, the second term in EDM is van-
ishingly small after integral over r . TheDMI energy is thenmainly contributed by the
first term (radial term), which is proportional to wall area (Rw) multiplying the mag-
netization variation rate along radial direction (1/w), i.e. EDM ∝ R. The isotropic
energy is mainly from the skyrmion wall area. Thus, Ean ∝ Rw. The Zeeman energy
of the skyrmion comes from the skyrmion core proportional to its area ofπ(R − cw)2,
where c is a coefficient depending on themagnetization profile, and from thewall area
proportional to its area of πRw. To obtain the proportional coefficients, one needs
to find approximate expressions for fi (R/w) (i = 1, . . . , 6) in (14.23). In the case
of R � w (or x ≡ R/w � 1), sinh(x) ≈ cosh(x) ≈ ex . Thus, function g(t, x) =
[2 sinh2(x) cosh2(t)]/[sinh2(x) + sinh2(t)]2 ≈ 2e2(x−t)/[e2(x−t) + 1]2 is positive and
significantly non-zero only near t = x , reflecting the fact that Eex, EDM, and Ean are
mainly from the skyrmion wall region that is assumed to be very thin. Furthermore,
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the area bounded by g(t, x)-curve and t-axis is 1 so that g(t, x) ≈ δ(t − x) resembles
the properties of a delta function. fi under this approximation are,

f1(x) ≈ x, f2(x) ≈ 1

x
,

f3(x) ≈ π

2
x, f4(x) ≈ 0,

f5(x) ≈ x f6(x) ≈ x2

2
+ π2

24
.

The total energy is then

E(R, w) = 4πd

[
A

(
R

w
+ w

R

)
− π

2
DR

+ KwR + MsB

(
R2

2
+ π2

24
w2

)]
. (14.24)

Due to the specific form of the magnetization profile of �dw(r), Rw-term in EZe

vanishes and EZe ≈ 4πMsB
(

R2

2 + π2

24w
2
)
. The skyrmion size and wall width are

then the values that make E(R, w) minimal, or

A

(
1

w
− w

R2

)
− π

2
D + Kw + MsBR = 0, (14.25)

A

(
− R

w2
+ 1

R

)
+ K R + π2

12
MsBw = 0. (14.26)

For B = 0, (14.25) and (14.26) can be analytically solved. The results are

R = πD

√
A

16AK 2 − π2D2K
, w = πD

4K
. (14.27)

The dashed lines in Figs. 14.12a–c are the approximate formulas that compare quite
well with simulation results too.When B 
= 0, the equation forw is a sextic equation,

432π2A2D2 − 3456πA2DKw + [−(1728 + 288π2 + 12π4)A2(MsB)2 + 6912 A2K 2]w2

+ [3456πADK 2 − (72 − 6π2)π3AD(MsB)2]w3 + [−6912K 2 + 576π2(MsB)2]AKw4

− 6π5(MsB)2DKw5 + π4(MsB)2[12K 2 − π2(MsB)2]w6 = 0, (14.28)

and R, in terms of w, is

R = π2MsBw3 ± w
√
576A2 − 576AKw2 + π4(MsB)2w4

24(A − Kw2)
. (14.29)
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The sextic equation does not have a closed-form solution, but their numerical solu-
tions are easily obtained as plotted in dashed lines in Fig. 14.12d. In summary, our
approximate formula agrees very well with the simulations for R � w as expected
from our approximation. For smaller skyrmions, the approximation is still not bad,
and qualitatively gives correct parameter dependence. We can also determine the
upper limit of D and lower limits of A, K , and B from the approximate formula.
Since R must be real and finite, we have

16AK > π2D2, (14.30)

for B = 0, so that the upper limit of D and lower limits of A and K are obtained
as D < 4

π

√
AK , A > π2D2

16K , and K > π2D2

16A . The limit is also the critical value sep-
arating the uniform state from helical state [89]. These critical values are plotted in
Figs. 14.12a–c as vertical dashed lines that agrees also well with simulations.

It is natural to extend our approach to Bloch skyrmions in the systems with bulk
inversion symmetry broken. The bulkDMI energy EDM = D

∫∫
m · (∇ × m)dS can

be rewritten as

EDM = 2πDd sin γ

∫ ∞

0

(
d�

dr
+ sin 2�

2r

)
rdr, (14.31)

where γ = ±π/2 gives minimal energy. Since all other discussions are the same
as those for Néel skyrmions, the formulas of R and w are applicable to the Bloch
skyrmions.

It is worth mentioning that the topological protection does not mean an absolute
stability. The energy barrier between a skyrmion state and the single domain state
is still finite. The skyrmions can be generated from the edges without breaking the
conservation of topology [90], and from the bulk with the conservation of topology
broken [70, 71].

The non-trivial topology of the skyrmions is a double-edged sword. Despite of
the better stability, similar to the vortices, the non-trivial topological number of
skyrmions leads to a finite gyrovector [54] in the Thiele equation (14.12), so there
is a Skyrmion Hall effect which means the existence of a transverse motion in a
longitudinal driving force [52, 68, 79, 91–93]. Thus, there exists a threshold current
density above which skyrmions can annihilate at the film edge [94]. This edge effect
strongly limits the speed of skyrmion propagation which is of vital importance for
real applications.

14.2.3 Hopfions

The 1D and 2D magnetic solitons have been discovered and studied for a long time.
A natural question is whether there are 3D solitons and how they behave. Of course,
there are transient states that can be regarded as 3D solitons, and some of them can be
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topologically non-trivial [95]. However, the existence of stable 3D solitons in mag-
netic systems is a highly non-trivial problem. TheDerrick theorem [96] indicates that
there is no stable solitons in three or higher dimension for Heisenberg ferromagnets.
However, the theorem does not forbid the existence of stable 3D solitons in the pres-
ence of DMI or higher-order exchange interactions. In addition, the Derrick theorem
is only applicable for infinite systems. In finite systems with boundary confinement,
stable 3D solitons are also possible.

The existence of 3D string-like topological solitons has been proposed by Ludvig
D. Faddeev [97] as a limit of the Skyrme model [64]. These 3D topological solitons
are known as Faddeev-Hopf knots [98] or hopfions, which are classified by a topolog-
ical charge called the Hopf index [99]. Hopfions have been discussed in many phys-
ical systems, such as gauge theories [97, 100], cosmic strings [101], ferromagnets
[95] (as a special case of dynamical vortex rings), low-temperature bosonic systems
[102–104], fluids [105], and liquid crystals [106–108]. Recently, stable magnetic
hopfions were numerically predicted in finite-size noncentrosymmetric FM systems
with Dzyaloshinskii-Moriya interaction (DMI) [109, 110] and interfacial perpen-
dicular magnetic anisotropy (PMA) [111–113] or higher-order exchange interaction
[114].

To study the statics and dynamics hopfions, we consider a film of thickness dt ,
and start with the energy functional [56],

F =
∫
V

[
Aex |∇m|2 + EDM

(
m,

∂m
∂xi

)
+ Kb(1 − m2

z )

+ BMs(1 − mz)

]
dV +

∫
z=±d/2

Ks(1 − m2
z )dS + Ed , (14.32)

where Aex is the exchange constant; EDM is the aforementioned DMI energy density
functional, which depends on the symmetry of the system; Kb and Ks are the bulk
PMA and the interfacial PMA, respectively; B is a perpendicular magnetic field; Ms

is the saturation magnetization; and Ed is the demagnetization energy.
Figures14.13a, b show the typical magnetization profiles of Bloch-type (cor-

responding to Bulk DMI) and Néel-type hopfions (corresponding to interfacial
DMI), respectively, obtained by numerical relaxation of the total energy using
conjugate gradient method [115]. The simulations are performed using MuMax3
[87] at zero temperature with mesh size 0.5nm×0.5nm×0.5nm. We consider a
128nm×128nm×16nm filmwith Aex = 0.16 pJ m−1 and Ms = 1.51 × 105 Am−1,
representing MnSi parameters [111]. No external field is applied. The Bloch-type
(Néel-type) hopfions are favorable in bulk (interfacial) DMI systems. In Fig. 14.13a,
we use Ks = 0.5 mJ m−2, Kb = 41 kJ m−3, and Db = 0.115 mJ m−2, while in
Fig. 14.13b, we use Ks = 0.5 mJ m−2, Kb = 20 kJ m−3, and Di = 0.115 mJ m−2.
The surface PMA is modelled by imposing a very strong PMA K = 106 J m−3 on
two additional layers attached to the top and bottom surfaces. This corresponds to a
surface anisotropy Ks = 0.5 mJ m−2 by multiplying the mesh size.
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(a) (b)

(c)

(d)

Bloch Néel Bloch

Néel

Fig. 14.13 a, b Midplane cross-sections in the xy-plane (the upper panel) and the xz-plane (the
lower panel) of a a Bloch-type hopfion and b a Néel-type hopfion. c, d The preimages of m =
(0, 0,−1), (1, 0, 0) and (0, 1, 0) for c a Bloch-type hopfion and d a Néel-type hopfion. The tori are
the isosurfaces of mz = 0. The colors of the arrows in a, b and the preimages in c, d depict the full
orientation of the corresponding m. The color sphere and the coordinate system are shown in the
insets. Figure redrawn using the results in [56]

Because the hopfions are non-isomorphic maps from R
3 ∪ {∞} to S

2, the topo-
logical invariant of hopfions, known as the Hopf index H , differs from the winding
number. This index is defined as

H = 1

(4π)2

∫
V
F · AdV, (14.33)

where Fi = εi jkm · (∂ jm × ∂km
)
/2, inwhich i, j, k = {x, y, z} and εi jk is the Levi-

Civita symbol, and A is a vector potential, which satisfies ∇ × A = F [116]. The
components of F are solid angle densities in different coordinate planes. F can be
understood as the gyrovector density [54], emergent magnetic field [117], or topo-
logical charge [52]. The Hopf index takes integer value for localized textures (i.e.
the order parameter is homogeneous at the infinity) [111, 118]. Geometrically, the
absolute value of Hopf index means how many times the close-loop preimages (the
constant-m lines) link with each other [119].

We first demonstrate that the Hopf index is well-defined for an infinite sys-
tem. Straightforward derivation shows that F is divergenceless (∇ · F = 0) when
|m| =constant such that the vector potential A exists. However, obviously, A is not
unique. For any continuous function ϕ(r), A′ = A + ∇ϕ is also a vector potential.
The corresponding Hopf index is

H ′ = 1

(4π)2

∫
F · A′dV = H + 1

(4π)2

∫
F · ∇ϕdV . (14.34)
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The integral in the extra term can be rewritten as

∫
F · ∇ϕdV =

∫
∇ · (ϕF)dV −

∫
ϕ∇ · FdV =

∮
ϕF · dS − 0 =

∮
ϕF · dS,

(14.35)
where Gauss’s theorem has been used and

∮
means the integration over the surface

of the volume. In an infinite system, the surface is infinitely far away, and the m
field should be homogenous such that, on the surface, F is 0, and the integral

∮
ϕF ·

dS vanishes. Thus, we have H ′ = H , meaning that the Hopf index is well-defined
independent of the choice of A.

The hopfion profile centered at a certain location can be expressed via �(r,φ, z),
�(r,φ, z), where (r,φ, z) are cylindrical spatial coordinates, and �, � are the polar
and azimuthal angles of the magnetization. For a rotationally symmetric system, it
is natural to assume that the hopfion profile following � is independent of φ, and
�(r,φ, z) = ��(r, z) + nφ, where n is an integer. This form means that the polar
angle (or z component) of m is independent of φ, and when transversing a whole
circle centered at the origin in real space (φ changes from 0 to 2π), the azimuthal
angle � of m uniformly rotates by 2nπ. With this assumption, we can write the F
field in cylindrical coordinates as

Fr = m ·
(

∂m
r∂φ

× ∂m
∂z

)
= −n

sin�

r

∂�

∂z
, (14.36)

Fφ = m ·
(

∂m
∂z

× ∂m
∂r

)
= sin�

(
∂�

∂z

∂��

∂r
− ∂�

∂r

∂��

∂z

)
, (14.37)

Fz = m ·
(

∂m
∂z

× ∂m
r∂φ

)
= n

sin�

r

∂�

∂r
. (14.38)

The vector potential A is

Ar = −(1 + cos�)
∂��

∂r
, (14.39)

Aφ = n

r
(1 − cos�), (14.40)

Az = −(1 + cos�)
∂��

∂z
. (14.41)

Then, the Hopf index is

H = 1

(4π)2

∫
F · AdV = n

4π

∫ +∞

−∞

∫ +∞

0
sin�

(
∂�

∂z

∂��

∂r
− ∂�

∂r

∂��

∂z

)
drdz.

(14.42)
Thus, the Hopf index equals the whirling number n along the φ direction multiplied
by the skyrmion number at the r z half plane [118].

We compute that the Hopf indices are 0.96 (Bloch) and 0.95 (Néel) for Fig. 14.13
[120]. The two types of hopfions are topologically equivalent. The upper and lower
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panels are the midplane cross-sections in the xy-plane and xz-plane. The magneti-
zation profile in each xy-midplane cross-sections is Bloch-type (a) or Néel-type (b)
skyrmionium or the target skyrmion [121, 122], while the xz-midplane cross-section
shows a pair of vortices with opposite chirality. The right (x > 0) xz-midplane con-
tains a vortex (antivortex) with chirality+1 (−1) for an H = +1 (H = −1) hopfion.
Outside the hopfions and at the center of the hopfions, the magnetization is along the
z direction, and the donut-shape transition region is chiral (for Bloch-type hopfions)
or hedgehog-like (for Néel-type hopfions). Figure14.13c, d show the corresponding
preimages (constant-m curves in real space) of Fig. 14.13a, b. The preimages link
with each other once, which is consistent with the Hopf index calculation, justifying
the hopfion nature of the textures in (a) and (b).

Unlike skyrmions, although the topology of a hopfion is nontrivial, the gyrovec-
tor G = ∫ FdV of a hopfion vanishes. Consequently, the main drawback of a FM
skyrmion racetrack memory, the skyrmion Hall effect, is absent in the hopfion race-
track memory. In addition to the numerical verification, the vanishing gyrovector of
a hopfion can be understood as follows. Consider a film that is isotropic in the xy
plane. In cylindrical coordinates, Fz = n sin�

r
d�
dr . We can rewrite Gz = ∫ FzdV as

Gz =
∫
V
Fzrdrdφdz = −2nπ

∫ d/2

−d/2

(
cos�

∣∣r=∞
r=0

)
dz. (14.43)

Since in a hopfion the magnetization directions are the same at both the periphery
(r = ∞) and the center (r = 0), Gz vanishes. Since the two vortices in any xz (or
yz) midplane cross-section have opposite chirality, as shown in the lower panels
of Fig. 14.13a, b, the integration of Fx (or Fy) over the volume gives a vanishing
contribution to Gx (or Gy). The components of G are invariant under continuous
deformation [52]; therefore, G = 0 applies to all the hopfions.

According to the Thiele equation (14.12), the direct consequence of the vanishing
gyrovector is the absent of Hall effect. Under spin transfer torque, the hopfions
move straightforward along the current. Under spin Hall torque which emerges in
the heavy metal/ferromagnet heterostructures, Néel-type hopfions move along the
current while the Bloch-type hopfions move transverse to the current.

14.3 Topological Spin Waves

Matter that possesses excitations with nontrivial band topology has attracted enor-
mous attention in recent years because of their interesting and exotic properties
[123–127]. One of such properties is the existence of unidirectional and topologi-
cally protected surface/edge states that are robust against internal and external per-
turbations. The study was initially exclusive for electron systems and was believed
to be a quantum phenomenon. It is now known that the topological states can exist in
classical mechanics [128] and photonics [129]. There are also intensive researches
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on topological magnetic states in recent years [130–146]. Magnons are quanta of
spin waves, which are the propagation of spin fluctuation. Magnons are useful parti-
cles/excitations due to their low energy consumption and long coherence distance, as
well as a control knob ofmagnetization dynamics [31, 33, 39]. Generation, detection,
andmanipulation ofmagnons is an emerging subfield calledmagnonics in condensed
matter physics [147–150], and topologically protected unidirectional surface spin
waves should be very useful in magnonics because they are highly non-susceptible
to external perturbations.

In this section,we consider amagnetic thin filmwhose bulk spinwaves are gapped,
but its edge spin waves are chiral and gapless. This is a magnonic counterparty of
quantum Hall systems or topological insulators [126, 127]. The film consists of a
set of perpendicularly magnetized ferromagnetic spins on a honeycomb lattice with
a nearest-neighbour (NN) pseudodipolar interaction and/or next-nearest-neighbour
(NNN)Dzyaloshinskii-Moriya interaction (DMI) aswell as the usualNNHeisenberg
ferromagnetic interaction. Although the magnons are bosons, the bulk spin wave
bands carry nontrivial Chern numbers so that one knows for sure the existence of
topologically-protected unidirectional (chiral) gapless spin waves at edges inside the
bulk gap according to the bulk-boundary correspondence [151, 152]. A staggered
sublattice anisotropy can change the system from a topologically nontrivial phase
to a trivial phse, and vice versa. It is also possible to tune the topological phase by
changing DMI. In 14.3.1, we show how to calculate the Chern number of the bosonic
spin wave bands, nontrivial spin wave bands of a finite sample and topologically
protected edge spin waves [153–155]. In 14.3.2, we go a step further to consider
3D magnets that are either magnonic weak topological insulators or magnonic Weyl
semimetals [156, 157].

14.3.1 Topologically Protected Edge Spin Waves

Variousmagnetic systems has been proposed for realizing nontrivial topology of spin
wave bands, such as kagome ferromagnet with NN DMI [132, 135, 137], dipolar
magnonic crystals [144, 145], honeycomb ferromaget with NNN DMI [142, 143],
and so on. We call them topological magnonic systems. Here, we provide the basic
ingredients and a theoretical framework for topological magnonic materials.

As a representative, we consider ferromagnetic spins on a honeycomb lattice as
shown in Fig. 14.14a. a1(2,3) are three neighbouring site-vectors of length a. The
blue and red arrows represent the magnetic moments μi = μmi of magnitude μ and
direction mi at site i of sublattices A and B, respectively. The system is described
by a Hamiltonian,
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Fig. 14.14 a Schematic diagram of ferromagnetic spins on a honeycomb lattice with perpendicular
anisotropy (along the z direction). The blue and red arrows denote magnetic moment vectors on A
and B sublattices. The green arrows are three neighbouring site-vectors a1,2,3, and the brown arrows
are next-nearest-neighbour vectors b1∼6. b Phase diagram of ground state in the K/J − F/J plane
when D = � = 0. The spin arrangements in these phases are shown in the insets, and the equations
of phase boundaries are indicated. c The left panel is the spin wave spectrum of an infinite system in
the first Brillouin zone (hexagon shape) for J = 0.1, F = 0.5 and M = 1.3 (in units of μ0μ

2/a3).
The right panel is a close-up view of the gap at K point (indicated by the red circle in the left panel)

H = − J

2

∑
〈i, j〉

mi · m j − F

2

∑
〈i, j〉

(mi · ei j )(m j · ei j )

− D
∑
〈〈i, j〉〉

νi j ẑ · (mi × m j
)−

∑
i

Ki

2
m2

i z, (14.44)

where the first term is the nearest-neighbour ferromagnetic Heisenberg exchange
interaction with J > 0. The second and third terms, arising from the spin-orbit cou-
pling (SOC) [109, 110, 158], are respectively the nearest-neighbour pseudodipo-
lar interaction of strength F and the next-nearest-neighbour DMI of strength D.
ei j is the unit vector pointing from site i to j , and νi j = 2√

3
ẑ · (eli × el j ) = ±1,

where l is the nearest neighbour site of i and j . the pseudodipolar interaction is the
second-order effect of the SOC that is important here because the nearest-neighbour
Dzyaloshinskii-Moriya interaction (DMI), the first-order effect, vanishes due to the
inversion symmetry with respect to the center of the A-B bond. The last term is
the sublattice-dependent anisotropy whose easy-axis is along the z direction with
anisotropy coefficients of Ki = K + � for i ∈ A and K − � for i ∈ B.

Hamiltonian (14.44) can be treated either classically or quantum-mechanically.
In the classical case, mi are classical unit vectors whose dynamics is governed by
the atomistic LLG equation,
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∂mi

∂t
= −mi ×

[
J
∑
j

m j + F
∑
j

(m j · ei j )ei j + Kmizez + Bez

]
, (14.45)

where ez is the unit vector along the z direction. The length, time, magnetic field
and energy are in units of a, a3(γμ)−1, μ0μ/a3 and μ0μ

2/a3, where γ and μ0 are
respectively the gyromagnetic ratio and the vacuum permeability. Out of the five
model parameters in Hamiltonian (14.44), J can be the natural energy unit. The
natural units of the time, length and magnetic field are μ0μ

γ J , a and J
μ0μ

. Using the
LLG equation, we first determine the ground state of the system by numerically
relaxing the spins to their stable state starting from an initial configuration in which
the spins are randomly and uniformly distributed in a cone with polar angle θ < 15◦.
For D = 0 and � = 0, the phase diagram of the model in the K/J − F/J plane
is shown in Fig. 14.14b. The system is in an out-of-plane ferromagnetic phase with
spins aligning along the z direction (the pink) when 3J + K > − 3

2 F and K > 3
2 F .

When 3J + K < − 3
2 F and F < −J (the green), the ground state has a chiral spin

structure in which spins lie in the xy plane with zero net magnetic moment on each
hexagon. As shown in the lower left inset, six spins on each hexagon form three
ferromagnetic pairs. The spins of each pair are perpendicular to the bond of the pair,
and the three pairs are in all-in or all-out spin structure (120◦ with each other). For
K < 3

2 F and F > −J (the cyan), the system prefers an in-plane ferromagnetic state
(the lower right inset).

Now we focus on the out-of-plane ferromagnetic phase. To obtain spin wave
spectrum, we can either expand m around its equilibrium state and keep only linear
terms in theLLGequation (14.45) in the absence of damping, or treat theHamiltonian
(14.44) quantum-mechanically and use the Holstein-Primakoff transformation. Both
methods lead to the same eigenvalue problem. To have an intuitive picture of spin
waves, we use the classical picture in the following discussions. We consider a

small deviation of mi from m0 = ez , mi = (δmix , δmiy, 1
)
, (
√

δm2
i x + δm2

iy � 1).

The eigen-solutions of linearized (14.45) have, according to the Bloch theorem,
the forms of δmix = XAei(k·RA−ωt), δmiy = YAei(k·RA−ωt) and δmix = XBei(k·RB−ωt),
δmiy = YBei(k·RB−ωt) for sublattices A and B. We define ψ±

A = (XA ± iYA)/
√
2,

ψ±
B = (XB ± iYB)/

√
2. From (14.45), the equation for the column vector �(k) =

(ψ+
A ,ψ−

A ,ψ+
B ,ψ−

B )T is
H(k)�(k) = ω(k)�(k), (14.46)

H(k) is a 4 × 4 matrix of following expression

H =

⎛
⎜⎜⎝
MA + d(k) 0 − f (k) g1(k)

0 −MA + d(k) −g2(k) f (k)

− f ∗(k) g∗
2(k) MB − d(k) 0

−g∗
1(k) f ∗(k) 0 −MB − d(k)

⎞
⎟⎟⎠ , (14.47)
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where Mα = Kα + B + 3J , d(k) = i D
∑

i (−1)i eik·bi , f (k) = (J + F
2

)∑
j e

ik·a j ,

g1(k) = F
2

∑
j e

2iθ j eik·a j , g2(k) = F
2

∑
j e

−2iθ j eik·a j (α = A,B; j = 1, 2, 3; i =
1 ∼ 6). θ j is the angle between a j and ex and ηi is the angle between bi and ex .
The solutions come in pairs±λ, obeying a particle-hole symmetry, so it is enough to
consider only the positive bands. Although H is not Hermitian, H can be expressed
as SH1 where H1 is Hermitian and S = σ0

⊗
σ3 (with σ0 being the 2 × 2 identity

matrix and σ3 the Pauli matrix), and all the eigenvalues of H are real as long as the
ferromagnetic state is a stable equilibrium state. H is pseudo-Hermitian with metric
S, expressed as [159],

H † = SHS−1. (14.48)

The metric S comes from the bosonic nature of system in the presence of the pseu-
dodipolar term [160]. Thus, for finite F , unlike previous studies [142, 143], this
model is exclusive in bosonic systems and has no counterparty in electronic systems.

The spin wave dispersion relation ω(k) is shown in Fig. 14.14c for J = 0.1,
F = 0.5,� = D = 0, andM ≡ 3J + K + B = 1.3 (in units ofμ0μ

2/a3). The band
gap at K and K′ points is �g = M −√M2 − 9F2/4, as shown in the right panel of
Fig. 14.14b. When F = 0, the bands linearly cross each other at K and K′ to form
Dirac cones, similar to electronDirac cones in graphene [161]. Thus, the pseudodipo-
lar NN exchange interaction plays a crucial role in the band gap opening.

We consider now a long strip of width 100a with zigzag edges along x direction
as shown in Fig. 14.14a. The density plot of the spectral function on the top edge is
shown in Fig. 14.15a, for the same parameters as those in Fig. 14.14b. The negative
slope of the dispersion curve (the bright line) of the top edge states in the band gap
proves that these states propagate to the left. Similarly, the states on the bottom edge
propagate unidirectionally to the right. The edge channels connect the upper and
lower bands and linearly cross each other in the momentum space. Figure14.15b
shows spatial distribution of the edge spin wave eigenstate of ω = 1.2 (γμ/a3). The
symbol shapes and sizes are the spin precession trajectory and the precession radius
at each site, respectively. The azimuthal angle φ of m at t = 0 is encoded by the
colors with the color ring shown in the inset. It is evident that the spin wave is mainly
localized on the outermost sites. Here we use a zigzag edge as an example, and the
existence of the topologically protected unidirectional edge states does not depend
on edge types.

To understand the Berry phase of a spin wave, we consider the time evolution of a
state of ϕk(t) with momentum k in an infinite sample. Without breaking the transla-
tional symmetry, k is a good quantum number that can be used to label eigenstates.
ϕk(t) must be the Bloch state in the nth band �n(k) multiplying a time dependent
phase, and satisfies following time-dependent linearized LLG equation, similar to a
Schrödinger equation,

i
μ0μ

γ

∂ϕk

∂t
= Hϕk. (14.49)

Note that the same expression can be derived from quantum-mechanical model by
usingBogoliubov transformation, given that μ0μ

γ
= s�where s is the total spin of each
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Fig. 14.15 a Density plot of the spectral function on the top edge. Gapless edge spin wave states
are clearly shown in the band gap. The colors (from dark to bright) encode the value of the spectral
function (from small to large) in logarithmic scale shown by the color bar. b Spatial distribution
of the spin wave edge eigenstate of ω = 1.2 (γμ/a3). The symbol shape traces the spin precession
trajectories, and the size of symbols denotes the amplitude of the spin wave at each site. The
azimuthal angles of spins on the lattice at t = 0 are encoded by the symbol colors with the color
ring shown in the inset. Figure reproduced from [153]

site [160]. Different from the Schrödinger equation, k-dependent 4 × 4 matrix H is
not Hermitian, but pseudo-Hermitian. The orthogonality and normalization relations
is given by �

†
i (k)S� j (k) = S [144, 145]. Following exactly the same procedure

as that in electron systems, the Berry connection of the nth band of our system is
defined as

An(k) = i
�†

n (k)S∂k�n(k)

�
†
n (k)S�n(k)

, (14.50)

and the Berry curvature �n(k) = ∇k × An(k). The Chern number of nth band is
defined as the integration over the Brillouin zone, similar to the electronic case. To
obtain a gauge-invariant formula, we use a bosonic version of projector, written as
[144, 145],

Pn = �TnS�†S, (14.51)

where� is the 4 × 4 eigenmatrix whose nth column is�n , and Tn is the 4 × 4matrix
with only (n, n) element 1 and other elements 0, selecting the nth column from �.
Note that for an Hermitian system, S = I and (14.51) goes back to the conventional
definition of projectors.

The Chern number is expressed in terms of P as [162],
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2

1

Fig. 14.16 Spin wave band structures of a zigzag strip for different � (� = 0, �g/2, and 0.63�g

from left to right, respectively). The light yellow areas are the bulk states and the color thick lines
are the edge states. The Chern numbers of the corresponding bulk bands are given for � = 0 and
� = 0.63�g . Figure redrawn using the results of [153]

Cn = i

2π

∫∫
dkxdkyTr

[
P

(
∂P

∂kx

∂P

∂ky
− ∂P

∂ky

∂P

∂kx

)]
, (14.52)

As long as F 
= 0, the Chern number of the lower band is +1 and that of the upper
band is−1, consistentwith the theorem that the sumof theChern numbers of all bands
must be zero [163]. The unidirectional spin wave edge states are similar to the chiral
electron edge states in the quantum Hall and quantum anomalous Hall systems, and
are robust against disorders. This nontrivial topological order can only be destroyed
by closing and reopening the band gap. To see this, we let sublattices A and B have
different anisotropy constants of KA = K − � and KB = K + �, respectively. The
band gap at the K point is in the range of

√
M2 − 9F2/4 + � < ω < M − �, while

the band gap at the K′ point is in the range of
√
M2 − 9F2/4 − � < ω < M + �. If

we gradually increase (decrease) � from 0, the band gap at the K (K′) point shrinks
and the gap closes at � = �g/2 (−�g/2), where �g = M −√M2 − 9F2/4. With
further increase (decrease) of �, the gap reopens and the whole spectrum becomes
fully gapped without topologically protected edge states. Figure14.16 shows the
band structures of zigzag strips for � = 0, � = �g/2 and � = 0.63�g , with other
parameters being the same as those in Figs. 14.14 and 14.15. The Chern numbers
of the corresponding bulk bands are also given. For |�| < �g/2, the edge states
cross each other inside the gap in the momentum space, and the topological order is
nontrivial, with Chern numbers C = ±1 for the lower and upper bands. For |�| >

�g/2, the system is topologically trivial with Chern numbers C = 0 for both lower
and upper bands. In the topologically trivial case, the edge states could still exist, but
do not cross each other, and are not topologically protected.
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t  = 10

t  = 30

t  = 50

t = 50

t  =100

t  = 200

(a) (b)Wave source Wave source

Fig. 14.17 a, b Snapshots of spatial distributions of the spin waves generated by a microwave pulse
of �t = 50 long in a 20

√
3a × 14a strip with irregular edges, for ω = 1.2 at t = 50, 100, 200 a

and ω = 2 at t = 10, 30, 50 b (from the top to the bottom). The radius of circles is proportional to

the spin wave amplitude of
√
m2

x + m2
y , and the colors encode the azimuthal angle φ shown by the

color ring in the inset. Figure redrawn using the results of [153]

To see the fundamental differences between the usual bulk spin waves and topo-
logically protected edge spin waves, we numerically solve (14.45) on a strip of
20

√
3a long and 14a wide. In order to see whether the edge states are robust

against defects, we introduce irregular edge to the sample as shown in Fig. 14.17a,
b. To excite spin waves, we apply a circularly polarized microwave field pulse of
h = h[cos(ωt)ex + sin(ωt)ey] in a time duration of 0 ≤ t ≤ 50, at the middle site
of the top edge indicated by the black arrows in Fig. 14.17a, b. For h = 0.01 (μ/a3)
and ω = 1.2 (inside the bulk band gap), Fig. 14.17a shows the snapshots of spin
wave distributions at various times of t =50, 100, 200. The size of the circles is

proportional to the local spin wave amplitude of
√
m2

x + m2
y , and the color encodes

the azimuthal angle φ. It is apparent that an edge mode is excited and is propagating
counterclockwise along the sample edges. Backward scattering and leakage into the
bulk can hardly be observed. For a comparison, we also excite spin waves of ω = 2
that is inside the upper bulk band. The snapshots of spatial distributions of the excited
spin waves at various times of t = 10, 30, 50 are shown in Fig. 14.17b. Clearly, the
spin wave propagates into the whole sample.

There exist topologically protected edge spin waves (TPESWs) in the band gap
that propagate unidirectionally for F 
= 0 and D = 0 when a bulk spin wave band
is topologically non-trivial. The TPESWs are protected by the band gap, and always
propagate counter-clockwise with respect to the magnetization direction. Let us fur-
ther include non-zero DMI in the model. The topological phase diagram in D/J -
�/J -F/J space is shown in Fig. 14.18. The topological phases are classified by
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Fig. 14.18 Topological
phase diagram in
D/J -�/J -F/J space.
Figure redrawn using the
results of [155]

1

0

0

Chern numbers Cl and Cu of lower and upper magnon bands. Cl + Cu = 0 satisfies
the zero sum rule [162, 163]. The magnon band Chern numbers change their values
when the magnon band gap closes and reopens at valley K or K′. Thus, the band
gap closing at K or K′ defines two phase boundary surfaces, which are derived to be
� = ±�c, where

�c = 1

2

[
(M − 3

√
3D) −

√
(M + 3

√
3D)2 − 9

4
F2

]
. (14.53)

When D = 0, �c = 1
2�g as discussed before. The two phase boundaries intersect

each other at the line of D = Dc ≡
√
3F2

16M in the plane of � = 0. In the non-trivial
phase denoted by O1 (O2), the TPESWs propagate counter-clockwise (clockwise)
with respect to the magnetization direction.

Utilizing the unidirectional property of TPESWs, one can design magnonic
devices such as diodes and beam splitters. A segment of sample edge can be used
as a spin wave diode and a DW of a strip can be used as a beam splitter. Since
the TPESWs propagate in opposite directions in the two domains, a TPESW beam
propagating towards the domain wall can neither penetrate it nor be reflected by it.
It must move along the domain wall. When the spin wave beam reaches the other
edge, it will split into two beams propagating in opposite directions, which is the
functionality of a beam splitter. The idea can be generalized to 1-to-n spin wave
splitting. A Mach-Zehnder-type spin wave interferometer can also be designed. A
spin wave beam is first split into two and recombined later to form an interference
pattern that varies periodically with the relative phase change of the two beams. The
details of these proposed devices can be found in [153, 154]. The TPESWs provide
a new paradigm for the design of magnonic devices, and open a new subfield of
topological magnonics.

The non-trivial distribution of Berry curvature also has an impact on magnon
transport. The Hall and the Nernst effects commonly refer to the generation of a
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transverse electric voltage or current by a longitudinal electric field or thermal gra-
dient in an electronic system. It is natural to ask whether there is a similar effect
for magnons. Magnons are charge neutral quasiparticles and do not have the usual
Lorentz force. However, moving magnons experience gyroscopic forces because of
nonzero Berry curvature of a magnetic system [130–134]. When the transverse com-
ponents of the currents due to opposite Berry curvatures do not cancel each other,
a net transverse magnon current is generated under a longitudinal force such as a
thermal gradient in the absence of amagnetic field, leading to the anomalous magnon
Nernst effect (AMNE) [155].

14.3.2 3D Topological Spin Waves

In the previous subsection, we have shown that a honeycomb ferromagnetic layer
supports topologically protected edge states. Since pure 2D system is difficult to
realize, it is useful to see whether a stacked 3D system can preserve the gapped
bulk band and TPESWs. We discuss now a 3D ferromagnet made from a directly
AA-stacking of honeycomb layers, as shown in Fig. 14.19a.

For simplicity and without loss of generality, we consider intralayer NN distance
a and interlayer distance d = a. The generic Hamiltonian of the system is

(b)

Г

A

K

H

K

H’

A H
H’

kx

ky
kz

Г

Z

Z

–

–

–

U–

U–

U–

U–

AB

(a)

a3

b1

b2

b3

x
y

z

a1
a2

Fig. 14.19 a AA-stacked honeycomb ferromagnet. b The corresponding Brillouin Zone
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H = −J
∑
〈i, j〉,l

mi,l · m j,l − F
∑
〈i, j〉,l

(mi,l · ei j )(m j,l · ei j )

−D
∑

〈〈i, j〉〉,l
d̂i j · (mi,l × m j,l) − Jσ

∑
i,〈l,l ′〉

mi,l · mi,l ′

−Kσ

2

∑
i,l

(mi,l · ẑ)2 − μB
∑
i,l

(mi,l · ẑ),

(14.54)

where i and j label lattice sites in the same honeycomb layers, and l and l ′ are layer
indices. ei j is the unit vector from site i to j , and ẑ is the unit vector along z direction.
As in the 2D case, J , F , D are intralayerNN exchange interaction, NNpseudodipolar
interaction, NNN DMI, respectively. Jσ is the NN interlayer exchange interaction,
and Kσ is the anisotropy. We define J ′ = (JA + JB)/2 and δJ = JA − JB; K =
(KA + KB)/2 and δK = KA − KB. Similar to the 2D case, the Hamiltonian H can
be treated either classically [153] or quantum mechanically [157]. The linearized
Landau-Lifshitz-Gilbert (LLG) equation [18] from the classical Hamiltonian and
the Shrödinger equation from the quantum Hamiltonian give identical eigenvalue
problem for magnon bands. The Brillouin zone is illustrated in Fig. 14.19b.

Theband structure of an infinite system for D = 0, K = 10J , J ′ = 0.4J , F = 6J ,
B = 0, and δJ = δK = 0 is shown in Fig. 14.20a. The main figure is the magnon
frequency along a path from (kx , ky, kz) = (0, 0, 0) (�) to ( 4π

3
√
3
, 0, 0) (K ); from

K to ( 2π
3
√
3
, 2π

3 , 0) (K ′); from K ′ to ( 2π
3
√
3
, 2π

3 ,π) (H ′); from H ′ to (0, 0,π) (A);
and then from A back to � (the red line in Fig. 14.19b). The frequency is in the

K K H A

2

1

0 0
kz

2

1

0 0/3 /3
ky

4.0

0

4.9
(a) (b)

Fig. 14.20 a Bulk magnon band structure along �-K -K ′-H ′-A-�. The left (right) inset: Band
structure in kx -ky (ky-kz) plane for kz = 0 (kx = 0). b Spectral function on the left (−x side)
surface of a slab infinite in yz plane and finite in x direction. The upper (lower) panel is the spectral
function along ky (kz) direction with kz = 0 (ky = 0). The color bar is shown in the middle
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units of γ J/μ where μ is the magnitude of magnetic moment of each spin. The
top-left (the low-right) inset is the band structure in kx -ky (ky-kz) plane for kz = 0
(kx = 0). The magnon band is globally gapped with an indirect gap between K and
H points. Figure14.20b shows the spectral function on the left (−x side) surface of
a slab infinite in yz plane and 15 unit cells in x direction). The brighter color means
larger local density of states. The upper (lower) panel is the spectral function along
ky (kz) direction with kz = 0 (ky = 0). A surface magnon band is clearly shown
inside the bulk band gap with a negative slope in ω-ky plane, which means a negative
group velocity and a unidirectional propagation along−y direction. Similarly, on the
rear surface, the surface modes propagate along +y direction (not shown). In other
words, the surface states propagate counterclockwise with respect to the ground
state magnetization direction. The Chern number of the system can be calculated
by the standard formula [145, 154, 157] to show that the system is a magnonic
weak topological insulator, so that the side surface states along xz or yz surfaces are
topologically protected.

To have a better picture about the surface spin waves, we numerically solve the
LLG equation with a small damping α = 0.0001. The sample contains 15 unit cells
in x direction, 10 unit cells in y direction, and 5 layers in z direction. A localized
circularly polarized microwave field h = h0[cos(ωt)x̂ + sin(ωt)ŷ] is applied on the
spin marked by the black arrow. The frequency is 1.25 which is in the bulk band
gap so that only surface modes are excited. Figure14.21a shows the snapshot of
spin waves after t = 100(γ J/μ)−1. The radius of the cone denotes the oscillation
amplitude, and the color of the cone encodes the azimuthal angle of each spin. One
can seen from the figure that a beam of spin wave is emitted from the source, and
propagate along the xz and yz surfaces unidirectionally.

We then study whether the stacked honeycomb ferromagnet can support Weyl
magnons. The Weyl magnon is the bosonic counterparty of a Weyl fermion [164–

h (b)

K D

J
D

(a)

Fig. 14.21 a Snapshot of spin waves at t = 100(γ J/μ)−1 in a finite sample. The radius of the
cone denotes the oscillation amplitude of each spin, and the color of the cone encodes the azimuthal
angle of each spin with the color ring shown at the corner. b Topological phase diagrams for D 
= 0,
F = 0
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167] in electronic systems, similar to Weyl points in photonic systems [168]. Weyl
magnons have also been identified in pyrochloremagnets [156, 169, 170]. For F = 0
and a finite D, the spin wave spectrum can be analytically solved. Two positive bands

are ω(k) = ω0(k) ±
√∑

β=x,y,z h
2
β(k), where ω0(k) = 3J + K + 2J ′(1 − cos kz),

hx (k) = −J
∑3

i=1 cos(k · ai ), hy(k) = −J
∑3

i=1 sin(k · ai ), and hz(k) = 2D
∑3

i=1
sin(k · bi ) + δK + 2δJ (1 − cos kz) (the frequency is in units of γ J/μ as before).
The negative bands are related to positive ones byω(−k) = −ω(k) and they actually
represent the same modes as the positive ones.

The twobands cross each other onlywhen hβ(k) = 0. The crossing points locate at

k±
η = (− 4π

3
√
3
, 0,± cos−1 fη), where η = 1, 2 and fη = δK

2δJ + 1 + (−1)η 3
√
3D

2δJ . The

requirement of
∣∣ fη∣∣ ≤ 1 yields the phase boundaries of δJ = ±3

√
3D and 4δJ +

δK = ±3
√
3D. Figure14.21b shows the phase diagram in δK/D − δJ/D plane.

In the green region, two bands do not cross each other, and each band has a non-
trivial Chern number. This is the weak topological insulator phase and topologically
protected surface modes exist on the side surfaces. The band is gapped (the dark
green) when |δJ | < 3

√
3D − J ′ (the dashed lines). This constraint plays a role only

when J ′ > 3
√
3D/2. Otherwise the whole green region is gapped. Thewhite regions

are topologically trivial. The rest of the regions belong to three different phases. In
the pink (yellow) regions there is one pair of band crossing points at k±

1 (k±
2 ). In the

blue regions, there are two pairs of band crossing points at k±
1,2.

To see whether the band crossing points are Weyl nodes (WNs), we calculate the
Berry curvatures of the magnon bands. We fix the model parameters to D = J ′ =
0.2J , K = 60J , and choose (δK , δJ ) = (0.2J, 0.5J ) and (−1.8J, 0.9J ) (the black
and the white dots in Fig. 14.21b). Energy bands in the kx − kz plane for fixed ky = 0
(the blue plane in Fig. 14.19b) of the WMs are shown in Fig. 14.22a, b in which one
and two pairs of WNs appear. The red and blue dots denote chirality ±1 of the WNs.
The corresponding Berry curvatures are shown in Figs. 14.22c, d, respectively, in
which the black arrows encode the direction of Berry curvatures projected onto the
kx − kz plane and the background color represents the divergence of Berry curvature
∇k · �k with red for positive and blue for negative. Thus, the red and blue spots in
Figs. 14.22c, d are indeed monopoles of Berry curvature and correspond to the WNs
in Figs. 14.22a, b. The spectral functions on the front (100) surface along Z̄ �̄ Z̄ of
the first (100) surface BZ (see Fig. 14.19b) are shown in Figs. 14.22e, f, respectively.
The surface states with high density (red color) on the front surface between WNs
can be clearly seen. Near the energy of WNs, these surface states form magnon arcs
(an analog to the Fermi arcs) on sample surfaces.

The Weyl magnons demonstrated above are type-I, in analogy to the type-I Weyl
electrons [171]. Two spin wave bands cross at WNs. When J ′ > δJ , the system
can also be type-II Weyl semimetals. Two bands of type-II semimetals intersect
with each other with a line called nodal-lines [171] so the constant-energy surface
passing through WN is a line. In an inhomogeneous electric field, the magnons can
also form Landau levels [157, 172]. Chiral anomaly for magnons results in the linear
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Fig. 14.22 a and b Band structures of WMs marked by the black and white dots in Fig. 14.19c,
respectively. The WNs of chirality ±1 are marked by red and blue dots. c and d Corresponding
Berry curvatures of the lowermagnon bands in panels (a) and (b). The arrows represent the direction
of Berry curvature vectors in the kx − kz plane with ky = 0. The background color denotes the
divergence of Berry curvature, where red and blue represent positive and negative values. e and f
Density plots of the front (100) surface spectral functions along Z̄ �̄ Z̄ for the energy bands in panels
(a) and (b). Figure reproduced from [157]

dependence of spin and heat conductance on the electric field gradient in mutually
perpendicular inhomogeneous electric and magnetic fields.

The studies above show that the honeycomb magnetic systems are good play-
groundwith rich physics for topological spinwaves. To specifically realize themodel,
the system needs not be a perfect honeycomb. A deformed honeycomb lattices with
two spins in one unit cell should be enough. Such a structure is quite common
in nature. The pseudodipolar interaction and the Dzyaloshinskii-Moriya interaction
exist in most magnetic materials in principle. Heavy-metal magnetic materials are
preferred because larger spin-orbit interaction. For example, in A2BO3 materials
(where A is an alkali metal and B is a transition metal), the B atoms form a honey-
comb structure normally with a strong spin-orbit interaction. Ferromagnetic order is
also possible for certain special elements combinations or some special lattice direc-
tions [173]. For example, β − Li2IrO3 is ferromagnetic and has a hyperhoneycomb
lattice structure [174] so it be a candidate for realizing the model studied here. AB3

(where A is a transition metal and B is a halogen) is another family of candidate
materials. A atoms form a honeycomb lattice in these materials. There are already
first-principle predictions of ferromagnetism in NiCl3 and OsCl3 monolayers [175,
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176], and the A-B-A bond is very promising for inducing a strong pseudodipolar
exchange interaction. Our model may also be realized in magnonic crystals in which
nanomagnets are arranged into a honeycomb lattice [177].

14.4 Conclusion

In conclusion [178], magnetism is an old and an important subject in physics. Our
long lasting interest on the subject in the past hundred years is mainly because the
studies of the subject keep providing us with new ideas, new concepts and new
principles, as well as because of its applications in modern information technolo-
gies. Topology, an old mathematical concept, is becoming a popular physics concept
since the recent discoveries of topologically protected surface states in both quantum
and classical systems. The concept of topology has been used in twoways in physics.
One is to classify structures of order parameters such as the magnetic domain walls,
vortices, skyrmions, etc., in magnetism. Namely, spin structures cannot bemapped to
a single magnetic domain under a continuous deformation of the structures. It should
be emphasized that nature does not respect topology, but the energy. Thus, a topolog-
ically non-trivial structure does not imply stability or a potential barrier between the
structure and other distinct ones. The second usage of topology refers to a class of
materials that support chiral surface states. These states can only be destroyed when
some topological charges existing in the bulk can be removed by external forces. This
second usage of topology leads to a new emerging field called topological materi-
als that include topological insulators and topological semimetals. The concept of
topological protection provides a paradigm for stabilizing structures and excitations
because the kinetic paths to topologically distinct structures are greatly reduced even
in the case of only a finite potential barrier between different structures. Last but not
least, concepts and principles reviewed here can also be applied to other fields of the
physics.
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Chapter 15
Topological Dynamics of Spin Texture
Based Metamaterials

Zhixiong Li, Yunshan Cao, and Peng Yan

Abstract Pursuing topological phase andmatter in a variety of systems is one central
issue in current physical sciences and engineering. Similar to other
(quasi-)particles, the collective gyration motion of magnetic spin textures (vortex,
bubble, and skyrmion etc.) can also exhibit the behavior of waves. In this chapter, we
review our recent work on topological dynamics of spin-texture basedmetamaterials.
We first briefly introduce the topological structures, properties, and applications of
magnetic solitons. Then we focus on the topological dynamics of spin texture lat-
tice, uncovering the first-order topological insulator in two-dimensional honeycomb
lattice of massive magnetic skyrmions, and the second-order topological insulator
in breathing kagome and honeycomb lattice of vortices. Conclusion and outlook are
drawn finally.

15.1 Introduction

In recent years, topological insulators (TIs) [1–3] are receiving considerable attention
for their exotic physical properties. Themost peculiar character of TIs is that they can
support chiral edge states which are absent in conventional insulators. Topological
edge states are modes confined at the boundary/surface of a system and generally
have a certain chirality which enables them to be immune from small disturbances
such as disorders and/or defects. Ever since its discovery in electronic systems [4, 5],
the topological edge state has been readily predicted and observed in optics [6–10],
mechanics [11–14], acoustics [15–18], and very recently in magnetics [19–22].

A conventional n-dimensional topological insulator only has (n − 1)-dimensional
(first-order) topological edge/surface modes according to the bulk-boundary cor-
respondence [1, 2]. Very recently, the concept of higher-order topological insu-
lators (HOTIs) was proposed [23–29] and confirmed by various experiments in
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photonic [30–35], acoustic [36–40], and electric-circuit [41–45] systems. Different
from first-order topological insulators (FOTIs), a HOTI has (n − 2) or even (n − 3)-
dimensional (second-order or third-order) topological boundary states, which goes
beyond the conventional bulk-boundary correspondence and is characterized by sev-
eral new topological invariants, such as the nestedWilson loop [46], Green’s function
zeros [47], the quantized bulk polarization (Wannier center) [25, 36, 37], and the
ZN Berry phase (quantized to 2π/N ) [48–52]. The HOTIs thus have broadened our
understanding on topological insulating phases of matter.

There are two important excitations in magnetic systems. One is the spin wave (or
magnon) [53, 54], i.e., the collective motion of magnetic moments. The topological
phase of magnons in magnetic materials is of great current interest in magnetism
because of its fundamental significance as well as in spintronics because of its prac-
tical utility for robust information processing [20, 22, 55–60]. The other one is the
collective oscillation of magnetic solitons (such as the magnetic vortex [61, 62],
bubble [63–65], skyrmion [66, 67], and domain wall [68–70]), which are long-term
topic in condensedmatter physics for their interesting dynamics and promising appli-
cation. These magnetic solitons generally have the characteristics of small size, easy
manipulation and high stability. The spintronic devices based on magnetic solitons
thus have advantages over other electronic devices. For example, the racetrack mem-
ory made of magnetic domain walls can greatly improve the data storage density and
the reading speed [71, 72]; the critical current density required for encoding informa-
tion can be significantly reduced by using the skyrmion as the carrier of information
[73, 74]; the magnetic oscillators based on vortices or skyrmions are very robust and
flexible [75–77]. On the other hand, it has been shown that the collective gyration
motion ofmagnetic solitons can exhibits the behavior ofwaves [78–82]. Furthermore,
the first-order topological chiral edge states based on two-dimensional honeycomb
lattices of magnetic solitons (vortices and bubbles) have been predicted by Kim and
Tserkovnyak [83]. In a word, the metamaterials based on topological spin texture are
attracting more and more attention for both fundamental interest and the potential
applications in spintronics and quantum computing [84–89].

In this chapter, we report the realization of TIs in magnetic soliton lattices. The
exposition is organized as follows: Sect. 15.2 introduces the topological structures,
properties, and applications of magnetic solitons; the first-order topological edge
states of skyrmion lattice are discussed in Sects. 15.3, 15.4 and 15.5 focus on the
second-order TIs in the breathing kagome and honeycomb lattices of magnetic vor-
tices, respectively. We summarise the results in Sect. 15.6.

15.2 Topological Structures, Properties, and Applications
of Magnetic Solitons

Topology is a study of geometry or space which can keep some properties invariant
under a continuous transformation. Topological magnetic soliton is an application
of topology in condensed matter physics. More precisely, magnetic solitons are the
spin textures characterized by a topological charge [83],
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Fig. 15.1 The micromagnetic structures of magnetic bubble (a), vortex (b), Néel-type skyrmion
(c), and Bloch-type skyrmion (d). Images are taken from [64, 83, 90]

Q = 1

4π

∫∫
dxdym · (

∂m
∂x

× ∂m
∂y

), (15.1)

which counts how many times the local magnetization m wraps the unit sphere.
Typical magnetic solitons include magnetic bubble, vortex, and skyrmion, with the
micromagnetic structures shown in Fig. 15.1, respectively. The topological charge
of magnetic bubble and skyrmion are ±1, while this value changes to ±1/2 for
vortex configuration. Topological charge is a topological invariant which indicates
the trivial structure (for example, ferromagnetic state) can not continuously deformed
into a topological spin texture because of the topological protection and the magnetic
solitons with the same topological charge are homotopic.

The low-energy dynamics of themagnetic vortex can be described by themassless
Thiele’s equation [83, 91] whithin the approximation of the rigid model:

Gẑ × dU j

dt
− αD

dU j

dt
+ F j = 0, (15.2)

where U j ≡ R j − R0
j is the displacement of the vortex core from its equilibrium

positionR0
j ; G = −4πQdMs /γ is the gyroscopic constant with Q is the topological

charge; d is the thickness of ferromagnetic layer; Ms is the saturation magnetization;
γ is the gyromagnetic ratio. αD is the viscous coefficient with α being the Gilbert
damping constant. The conservative force F j = −∂W/∂U j whereW is the potential
energy of the system. For a single vortex, the potential energy have the parabolic type:
W = W0 + KU2

j/2,whereW0 is the energy of systemwhen vortex core located at the
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center of the nanodisk and K is the spring constant. By neglecting the viscous force
term, we can derive the gyration frequency of an isolated vortex with ω0 = K/|G|.

However, it is well known that magnetic bubbles and skyrmions in particular
manifest an inertia in their gyration motion [63, 92]. The mass effect thus should
be taken into account for describing the skyrmion (or bubble) oscillation. Therefore,
the Thiele’s equation can be generalized as:

− M
d2U j

dt2
+ Gẑ × dU j

dt
− αD

dU j

dt
+ F j = 0, (15.3)

with M being the inertial mass of magnetic soliton. Similarly, we can calculate the
gyration frequency of skyrmion (or bubble) with:

ω± = −G/2M ±
√

(G/2M)2 + K/M . (15.4)

The positive and negative values of the ω in (15.4) indicate that there are two kinds
of gyration modes with clockwise and counterclockwise direction, respectively.

Magnetic skyrmions are typical magnetic solitons stabilized by Dzyaloshinskii
Moriya interactions (DMIs) [66, 93, 94]. They can be manipulated by spin-polarized
electrical current with extremely low density [73, 74]. Skyrmion also can be drived
by other external force, such as spin wave [95, 96], microwave field [97, 98], and
temperature gradient [99–101]. Interestingly, very recently, it has been proposed
that twisted photons [102] and magnons [103] carrying orbital angular momentum
(OAM) can act as “optical tweezers” and “magnetic tweezers” to drive the rotation of
skyrmion, as shown in Fig. 15.2 and Fig. 15.3, respectively. Theoretical calculation
and numerical simulation show that the topological charge of twisted photons (or
magnons) can determine both the magnitude and the handedness of the rotation
velocity of skyrmions.

Skyrmions are the ideal information carrier in spintronic devices. However, a
skyrmion can not move in a straight line along the driving current direction because
of the Magnus force which leads to the shift of its motion trajectory, such behavior is
called skyrmion Hall effect (SHE) [104, 105]. In practical applications, the skyrmion
may be destroyed when touching the device boundaries. To overcome this issue, a lot
of methods have been proposed. For example, X. Zhang et al. [106] showed that the
antiferromagnetically exchange-coupled bilayer system containing two skyrmions
with different polarities can suppress the SHE, leading to a perfectly straight trajec-
tory for skyrmion driven by a spin-polarized current.Moreover, the antiferromagnetic
(AFM) skyrmion can also avoid SHE [107, 108]. Interestingly, recent research shows
that the AFM skyrmion can emerge in a ferromagnet with gain (negative α) [109].
Figure15.4 shows the dynamical process of the formation of AFM skyrmion in fer-
romagnet (here α is set to be −0.01), with the initial magnetization profile being
random [see Fig. 15.4a]. At t = 0.035 ns, local magnetic moments quickly evolve to
an antiparallelly aligned state, as shown in Fig. 15.4b. Then, all spins inside a circle
of radius 5nm in the film center are randomized. At t = 0.14 ns, an AFM skyrmion
is stabilized (see Fig. 15.4d). When an in-plane spin-polarized electric current was
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Fig. 15.2 Schematic diagram of the rotational motion of a Néel-type skyrmion in a thin ferromag-
netic film driven by an optical vortex with radial index n = 1 and OAM quantum number l = 3. The
solid circle with a red core represents the skyrmion. The flower-like pattern (pink and blue spots)
sketches the induced magnetization profile by the optical vortex field shinning on the magnetic film.
Images are taken from [102]
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Fig. 15.3 Schematic illustration of a heterostructured nanocylinder exchange-coupled to a chiral
magnetic nanodisk hosting a Néel-type skyrmion. An external static field H is applied along the
z-direction. A spin-wave beamwith the wavevector k and OAM quantum number l = −5 is excited
by a localized microwave field B, leading to a steady skyrmion gyration around the disk center.
Images are taken from [103]
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Fig. 15.4 a Random spin configuration at t = 0 ns. b AFM state evolved at t = 0.035 ns. c Ran-
domizing spins inside the circle at t = 0.04 ns. d AFM skyrmion stabilized at t = 0.14 ns. (Inset)
Magnetization profile of the cross section of the AFM skyrmion. e Current-driven AFM skyrmion
motion. (Inset) Spatial distribution of the z component of the Néel vector li . f AFM skyrmion
annihilation at the film boundary. (Inset) Current dependence of the skyrmion velocity when it is
far from the edge. Images are taken from [109]

applied to drive the AFM skyrmion, the skyrmion trajectory is exactly along the
flowing direction of electrons, without the SHE. Besides, the method for the current-
driven skyrmion motion on magnetic nanotubes [110] can also make the skyrmion
away from the edge of system (avoid touching the edges of system), since the tube
is edgeless for the tangential skyrmion motion. A stable skyrmion propagation can
survive in the presence of a very large current density without any annihilation or
accumulation. The nanotube can be viewed as a seamless, hollow tubular structure
rolled from a planar strip, as illustrated in Fig. 15.5.

On the other hand, the magnetic skyrmions can be used to realize logical opera-
tion and thus have great potential application in logic devices [111–113]. Figure15.6
shows typical double-track logic AND gate and OR gate based on twisted skyrmions
[114]. The logical AND operation can be realized through the following pro-
cesses (Fig. 15.7a1–a5): two p = −1 skyrmions (encoding 1) are placed at the
left and right sides of the logic AND gate at t = 0. Here p represents the polar-
ity of the skyrmion core. Then, driven by an electric current, the two skyrmions
begin to move close to each other and become two twisted skyrmions, as shown
in Fig. 15.7a2. Next, the two twisted skyrmions move along the AFM boundaries
and merge into one twisted skyrmion at the intersection of the two boundaries,
see Fig. 15.7a3, a4. Finally, the twisted skyrmion is pushed out of the boundary.
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Fig. 15.5 a Schematic illustration of a Bloch-type skyrmion in a planar film. Green arrows refer
to the local spin directions. b Skyrmion on a nanotube by rolling up (a). Colors refer to the ρ-
component of the magnetization. The coordinate system is defined in the inset. Images are taken
from [110]
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Fig. 15.6 Schematic plot of a logic AND (a) and OR (c) gate with two input skyrmions (top view).
Truth table for the logic AND (b) and OR (d) gate. Images are taken from [114]
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Fig. 15.7 Snapshots of the working process of skyrmions logic AND gate (top view). a1–a5 Logic
operation “1 + 1 = 1”. b1–b5 “1 + 0 = 0”. c1–c5 “0 + 0 = 0”. Images are taken from [114]

Consequently, the final state is a skyrmion with p = −1 (encoding 1) such that
“1 + 1 = 1”, as shown in Fig. 15.7a5. Likewise, the other logical AND operations (“0
+ 1 = 0” and “0 + 0 = 0”) are plotted in Fig. 15.7b1–b5 and c1–c5, respectively.

15.3 The Topological Properties of Skyrmion Lattice

As mentioned in Sect. 15.1, Kim and Tserkovnyak have predicted theoretically the
chiral edge modes in two-dimensional honeycomb lattice of vortices and bubbles
by solving massless Thiele’s equation [83]. However, the higher-order terms are
important for describing the skyrmions (or bubbles) oscillation. In this section, we
will discuss the edge states of honeycomb lattice of massive magnetic skyrmions for
considering both a second-order inertial term of skyrmion mass and a third-order
non-Newtonian gyroscopic term.

15.3.1 Large-Scale Micromagnetic Simulations

A large two-dimensional honeycomb lattice consisting of 984 identical magnetic
nanodisks is considered to show the chiral edge states of magnetic soliton system.
Figure15.8a shows the sketch. Each disk contains a single magnetic skyrmion made
of MnSi [115] which supports the Bloch-type skyrmion (depicted in Fig. 15.8b) due
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Fig. 15.8 a Illustration of the honeycomb lattice with size 1070 × 1080 nm2, including 984 Bloch-
type skyrmions. A uniform magnetic field is applied along the z axis to stabilize the skyrmions.
Green and yellow crosses denote the positions of the driving fields in the center and at the edge
of the lattice, respectively. b Zoomed in details of a nanodisk containing a Bloch-type skyrmion.
c Time-dependence of the sinc-function field H(t). Images are taken from [125]

to the bulk Dzyakoshinskii-Moriya interaction (DMI) [93, 116]. Here, the distance
between nearest-neighbor disks is chosen to be equal to the disk diameter, indicating
that nearest-neighbor skyrmions can strongly interactwith each othermediated by the
exchange spin-wave. It is worth noting that the dipolar interaction can not efficiently
couple skyrmions when a physical gap between nearest-neighboring nanodisks is
left. The micromagnetic simulations are performed with MUMAX3 [117].

The dispersion relation of skyrmion gyrations can be obtained by computing
the spatiotemporal Fourier spectrum of the skyrmion positions over the lattice.
Figure15.9a shows the simulated band structure of skyrmion oscillation below a
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Fig. 15.9 The band structure of skyrmion gyrations when the exciting field is in the film center a
and at the film edge by evaluating the Fourier spectrum over the upper b and the lower c parts of
the honeycomb lattice. The constant a = 2

√
3r represents the distance between the second-nearest

neighboring nanodisks. Images are taken from [125]

cutoff frequency of 20GHz when the exciting field (sinc-function magnetic field)
locates in the lattice center. It can be seen that there is no bulk state in the gaps (areas
shaded in both yellow and green). However, when the driving field is located at the
edge of lattice, the situations are totally different. By implementing the Fourier anal-
ysis over the upper (W2/2 < y < W2) and the lower parts (0 < y < W2/2) of the
lattice, with results plotted in Fig. 15.9b, c, respectively, one can find that four edge
states emerge in the spectrum gaps, labeled as ES1–ES4. Moreover, By evaluating
the group velocity dω/dkx of eachmodewithω the frequency and kx the wave vector
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Fig. 15.10 Snapshot of the propagation of edge states with frequency f = 6.1 GHz (a), 12.62 GHz
(b), 15.3 GHz (c), and 16.65 GHz (d) at t = 40 ns. Since the oscillation amplitudes of the skyrmion
guiding centers are too small, we have magnified them by 10, 40 or 400 times labeled in each figure,
correspondingly. Images are taken from [125]

along x direction, the chirality of these edge states can be identified: three edge states
ES1, ES2 and ES4 (shaded in yellow) are unidirectional and chiral, in which ES1
and ES2 counterclockwise propagate, while ES4 behaves oppositely; ES3 (shaded
in green) is bidirectional and thus non-chiral.

We choose four representative frequencies to visualize the propagation of edge
wave by stimulating the dynamics of lattice under a sinusoidal field h(t) = h0 sin(2π
f t)x̂ on one disk at the top edge, indicated by the blue arrows in Fig. 15.10.
Figures15.10a, b, d show the propagation of chiral edge states. One can clearly
observe unidirectional wave propagation of these modes with either a counterclock-
wise manner (ES1 and ES2 shown in Fig. 15.10a, b respectively) or a clockwise one
(ES4 plotted in Fig. 15.10d). It’s very interesting and unique that multiband edge
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states with opposite chiralities coexist in a given soliton lattice. There is no analogue
in condensed matter system, to the best of our knowledge. In contrast, the propa-
gation of ES3 is bidirectional, as shown in Fig. 15.10c. This non-chiral mode can
be simply explained in terms of the Tamm-Shockley mechanism [118, 119] which
predicts that the periodicity breaking of the crystal potential at the boundary can
lead to the formation of a conducting surface/edge state. Furthermore, it is rather
straightforward to show the propagation of the chiral modes is immune from the
defects and robust against the type of boundary, while the Tamm-Shockley mode is
not.

15.3.2 Theoretical Model

We adopt the generalized Thiele’s equation to theoretically understand themultiband
chiral skyrmionic edge states carrying opposite chiralities. First of all, we assume
that the steady-state magnetizationm depends on not only the position of the guiding
center R(t) but also its velocity Ṙ(t) and acceleration R̈(t), and write m = m(r −
R(t), Ṙ(t), R̈(t)). After some algebra and by neglecting the damping term, one can
obtain the generalized Thiele’s equation including both a second-order inertial term
of skyrmionmass M [63, 92, 102] and a non-Newtonian third-order gyroscopic term
G3 [120–122]:

G3 ẑ × d3U j

dt3
− M

d2U j

dt2
+ Gẑ × dU j

dt
+ F j = 0, (15.5)

where U j and G share the same definition as (15.2). The conservative force can
be expressed as F j = −∂W/∂U j . Here W is the total potential energy for the
sum of single disk and the interaction energy between nearest-neighbor disks:
W = ∑

j KU2
j/2 + ∑

j �=k U jk/2 with Ujk = I‖U
‖
j U

‖
k − I⊥U⊥

j U
⊥
k [83, 123, 124].

I‖ and I⊥ are the longitudinal and the transverse coupling constants, respectively. By
imposing U j = (u j , v j ) and defining ψ j = u j + iv j , we have:

D̂ψ j = ωKψ j +
∑
k∈〈 j〉

(ζψk + ξei2θ jkψ∗
k ), (15.6)

where the differential operator D̂ = iω3
d3

dt3 − ωM
d2

dt2 + i d
dt , ω3 = G3/|G|, ωM =

M/|G|,ωK = K/|G|, ζ = (I‖ − I⊥)/2|G|, and ξ = (I‖ + I⊥)/2|G|, θ jk is the angle
of the direction ê jk from x axis with ê jk = (R0

k − R0
j )/|R0

k − R0
j |, and 〈 j〉 is the set

of the nearest neighbors of j (here Q = −1). We then expand the complex variable
to

ψ j = χ j (t) exp(−iω0t) + η j (t) exp(iω0t). (15.7)

For counterclockwise (clockwise) skyrmion gyrations, one can justify |χ j | � |η j |
(|χ j | � |η j |). Substituting (15.7) into (15.6), one can obtain the following eigenvalue
equation:
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Fig. 15.11 a Resonant spectrum of skyrmion gyrations when the exciting field is applied over the
whole system. Inset shows the chirality/handedness of the skyrmion guiding center of each mode.
b Band structure by solving (15.8). Images are taken from [125]

D̂ψ j = (ωK − 3ξ 2/2ω̄K )ψ j + ζ
∑
k∈〈 j〉

ψk − (ξ 2/2ω̄K )
∑
l∈〈〈 j〉〉

ei2θ̄ jlψl , (15.8)

with ω̄K = ωK − ω2
0ωM , θ̄ jl = θ jk − θkl the relative angle from the bond k → l to

the bond j → k with k between j and l, and 〈〈 j〉〉 the set of the second-nearest
neighbors of j .

The key parameters G3, M , K , I‖ and I⊥ can be determined from micro-
magnetic simulations in a self-consistent manner [125]. Figure15.11a shows the
spectrum of collective skyrmion oscillations with three strong resonance peaks at
ω0,1/2π = 6.1 GHz, ω0,2/2π = 12.6 GHz, and ω0,3/2π = 16.6 GHz above the
spin-wave band gap. Furthermore, Fig. 15.11b shows the computed band structure
of the skyrmion gyrations near the resonance frequencies ω0 = ω0,1, ω0,2, and ω0,3

by solving (15.8) with the periodic boundary condition along x direction and the
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zigzag termination at y = 0 and y = W2. The average vertical position of the modes
〈y〉 ≡ ∑

j R
0
j,y|U j |2/∑

j |U j |2 are also shown in Fig. 15.11, where R0
j,y is the equi-

librium position of the skyrmion projected onto the y axis, represented by different
colors: closer to magenta indicating more localized at the upper edge. It is interesting
to note that the chirality of ES4 is opposite to those of ES1 and ES2. An interpreta-
tion is as following: The direction reversal of the skyrmion gyration generates a π

phase accumulation in the next-nearest-neighbor hopping term of (15.8). The Chern
numbers of two neighbouring bulk bands then switch their signs, so that the chirality
of the edge state in between reverses.

15.4 Corner States in a Breathing Kagome Lattice of
Vortices

In previous sections, we have discussed the topological insulating phases inmagnetic
system. All these phases, however, are first order by nature. In this section, we will
discuss the higher-order topological edge states (corner states) in magnetic system,
and demonstrate their features in breathing kagome lattice of magnetic vortices.

15.4.1 The Theoretical Results and Discussions

A breathing kagome lattice of magnetic nanodisks with vortex states is considered.
Figure15.12a plots the lattice structure with alternate distance parameters d1 and
d2. We start with the generalized Thiele’s equation (15.6) to describe the collective
dynamics of vortex lattice:

D̂ψ j = ωKψ j +
∑

k∈〈 j〉,l
(ζlψk + ξl e

i2θ jkψ∗
k ), (15.9)

where the differential operator D̂ = iω3
d3

dt3 − ωM
d2

dt2 − i d
dt , ζl = (I‖,l − I⊥,l)/2|G|,

and ξl = (I‖,l + I⊥,l)/2|G|, with l = 1 (or l = 2) representing the distance d1 (or d2)
between the nearest neighbor vortices, here the topological charge Q = 1/2.

The coupling strengths I‖ and I⊥ are strongly dependon the parameterd (d = d ′/r
with d ′ the distance between two vortices and r being the radius of nanodisk) [127–
129]. The analytical expression of I‖(d) and I⊥(d) are essential for evaluating the
spectrum and the phase diagram of vortex gyrations. With the help of micromag-
netic simulations for two-vortex system with different combinations of vortex polar-
ities, one can obtain the best fit of the numerical data: I‖ = μ0M2

s r(−1.72064 ×
10−4 + 4.13166 × 10−2/d3 − 0.24639/d5 + 1.21066/d7 − 1.81836/d9) and I⊥ =
μ0M2

s r (5.43158 × 10−4 − 4.34685 × 10−2/d3 + 1.23778/d5 − 6.48907/d7 +
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Fig. 15.12 a Illustration of the triangle-shape breathing kagome lattice including 45 nanodisks of
the vortex state. d1 and d2 are the distance between two nearest-neighbor vortices. Arabic numbers
1, 2 and 3 denote the positions of spectrum analysis for bulk, edge and corner states, respectively.
b Zoomed in details of a nanodisk with the radius r = 50 nm and the thickness w = 10 nm. c Time
dependence of the sinc-function field H(t) applied to the whole system. Images are taken from
[126]

13.6422/d9), as shown in Fig. 15.13a with symbols and curves representing sim-
ulation results and analytical formulas, respectively. In the calculations, the mate-
rial parameters of Permalloy (Py: Ni80Fe20) [88, 130] was adopted, and G =
−3.0725 × 10−13 J s rad−1m−2. The spring constant K , massM , and non-Newtonian
gyration G3 can be obtained by analyzing the dynamics of a single vortex confined
in the nanodisk [126]: K = 1.8128 × 10−3 Jm−2, M = 9.1224 × 10−25 kg, and
G3 = −4.5571 × 10−35J s3rad−3m−2. Then, the eigenfrequencies of vortex gyra-
tions in the breathing kagome lattice can be obtained by solving (15.9) numerically.
Figure15.13b shows the eigenfrequencies of the triangle-shape system for different
values d2/d1 with a fixed d1 = 2.2r . The results of the spatial distribution of the
corresponding eigenfunctions show that corner states can exist only if d2/d1 > 1.2,
as indicated by the red line segment. Different choices of d1 gives almost the same
conclusion. Furthermore, the complete phase diagram can be calculated by sys-
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Fig. 15.13 a Dependence of the coupling strength I‖ and I⊥ on the vortex-vortex distance d
(normalized by the disk radius r ). Pentagrams and circles denote simulation results and solid curves
represent the analytical fitting. bEigenfrequencies of collective vortex gyration under different ratio
d2/d1 with the red segment labeling the corner state phase. c The phase diagram. dEigenfrequencies
of the breathing kagome lattice of vortices under different disorder strength. Images are taken from
[126]

tematically changing d1 and d2. It can be clearly seen that the boundary separating
topologically non-trivial andmetallic phases lies in d2/d1 = 1.2, while topologically
trivial and metallic phases are separated by d1/d2 = 1.2, as shown in Fig. 15.13c.
When d2/d1 > 1.2, the system is topologically non-trivial and can support second-
order topological corner states. The system is trivial without any topological edge
modes if d1/d2 > 1.2.Here, the trivial phase is the gapped (insulator) state, themetal-
lic/conducting phase represents the gapless state such that vortices oscillations can
propagate in the bulk lattice, and the non-trivial phase means the second-order cor-
ner state surviving in a gapped bulk. Besides, it is worth mentioning that the critical
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Fig. 15.14 a Eigenfrequencies of triangle-shape kagome vortex lattice with d1 = 2.08r and d2 =
3.60r . The spatial distribution of vortex gyrations for the bulk [(b) and (e)], edge (c), and corner
(d) states. Images are taken from [126]

condition (d2/d1 > 1.2) for HOTIs may vary with respect to materials parameters.
For example, the critical value will slightly increase (decrease) if the radius of the
nanodisk increases (decreases).

Topological corner states should be robust against disorders in the bulk. Figure
15.13d shows the eigenfrequencies of the triangle-shape breathing kagome lattice
of vortices under bulk disorders of different strengths, where d1 = 2.08r and d2 =
3.60r (d2/d1 = 1.73 > 1.2).Here, disorders are introduced by assuming the resonant
frequency ω0 with a random shift, i.e., ω0 → ω0 + δZω0, where δ indicates the
strength of the disorder and Z is a uniformly distributed random number between
−1 to 1. It can be seen from Fig. 15.13d that with the increasing of the disorder
strength, the spectrum of both edge and bulk states is significantly modified, while
the corner states are quite robust. What’s more, it can be further confirmed that these
corner states are also robust against defects.

The same geometric parameters as Fig. 15.13d are chosen to explicitly visualize
the corner states and other modes in the phase diagram. The computed eigenfrequen-
cies and eigenmodes are plotted in Fig. 15.14a–e, respectively. It is found that there
are three degenerate modes with the frequency equal to 927.6MHz, represented by
red balls. These modes are indeed second-order topological states (corner states)
with oscillations being highly localized at the three corners, see Fig. 15.14d. The
edge states are also identified, denoted by blue balls in Fig. 15.14a. The spatial dis-
tribution of edge oscillations are confined on three edges, as shown in Fig. 15.14c.
However, these edge modes are Tamm-Shockley type [118, 119], not chiral, which
can be confirmed by micromagnetic simulations [126]. Bulk modes are plotted in
Fig. 15.14b, e, where corners do not participate in the oscillations.

The higher-order topological properties can be interpreted in terms of the bulk
topological index, i.e., the polarization [131, 132]:
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Pj = 1

S

∫∫
BZ

A jd
2k, (15.10)

where S is the area of the first Brillouin zone, A j = −i〈ψ |∂k j |ψ〉 is Berry con-
nection with j = x, y, and ψ is the wave function for the lowest band. It is
shown that (Px , Py) = (0.499, 0.288) for d1 = 2.08r andd2 = 3.60r and (Px , Py) =
(0.032, 0.047) for d1 = 3r and d2 = 2.1r . The former corresponds to the topological
insulating phase while the latter is for the trivial phase. Theoretically, for breathing
kagome lattice, the polarization (Px , Py) is identical to Wannier center, which is
restricted to two positions for insulating phases. If Wannier center coincides with
(0, 0), the system is in trivial insulating phase and no topological edge states exist.
Higher-order topological corner states emerge when the Wannier center lies at (1/2,
1/2

√
3) [25, 36]. The distribution of bulk topological index is consistent with the

computed phase diagram Fig. 15.13c.
The other type of breathing kagome lattice of vortices (parallelogram-shape) also

supports the corner states, with the sketch plotted in Fig. 15.15a. Here, the same
parameters as those in the triangle-shape lattice are adopted. Figure15.15b shows
the eigenfrequencies of system. Interestingly, it can be seen that there is only one
corner state, represented by the red ball. Edge and bulk states are also observed,
denoted by blue and black balls, respectively. The spatial distribution of vortices
oscillation for different modes are shown in Fig. 15.15c–f. From Fig. 15.15e, one can
clearly see that the oscillations for corner state are confined to one acute angle and the
vortex at the position of two obtuse angles hardly oscillates. The spatial distribution
of vortex gyration for edge and bulk states are plotted in Fig. 15.15c, d, f. Further,
the robustness of the corner states are also confirmed [126].

It is interesting to note that the results of triangle-shape and parallelogram-shape
lattices are closely related. Two opposite acuted-angle corners in the parallelogram
are actually not equivalent: one via d1 bonding while the other one via d2 bonding;
see Fig. 15.15a. Only the d2 bonding (bottom-right) corner in the parallelogram-
shape lattice is identical to three corners in the triangle-shape lattice. Therefore, for
parallelogram-shape lattice, we can observe only one corner state.

15.4.2 Micromagnetic Simulations

Micromagnetic simulations are implemented to verify the theoretical predictions of
corner states above. The breathing kagome lattice consisting of massive identical
magnetic nanodisks in vortex states are considered, as shown in Figs. 15.12a and
15.15a, with the same geometric parameters as those in Figs. 15.14a and 15.15b,
respectively. Micromagnetic software MUMAX3 [117] is used to simulate the
dynamics of vortices.

Figure15.16a shows the temporal Fourier spectra of the vortex oscillations at dif-
ferent positions, with black, blue, and red curves denoting the positions of bulk, edge,
and corner bands, respectively. One can immediately see that, near the frequency of
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Fig. 15.15 a The sketch for parallelogram-shaped breathing kagome lattice of vortices. Arabic
numbers 1, 2 and 3 denote the position of spectrum analysis for bulk, edge, and corner states,
respectively. bNumerically computed eigenfrequencies for parallelogram-shaped system. The spa-
tial distribution of vortices oscillation for the bulk [(c) and (f)], edge (d), and corner (e) states.
Images are taken from [126]

940MHz, the spectrum for the corner has a very strong peak, which does not happen
for the edge and bulk. It can be inferred that this is the corner-state band with oscilla-
tions localized only at three corners. Similarly, one can identify the frequency range
which allows the bulk and edge states, as shown by shaded area with different colors
in Fig. 15.16a. Four representative frequencies are chosen to visualize the spatial
distribution of vortex oscillations for different modes: 940MHz for the corner state,
842MHz for the edge state, and both 769MHz and 959MHz for bulk states, and then
stimulate their dynamics by a sinusoidal magnetic field h(t) = h0 sin(2π f t)x̂ with
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Fig. 15.16 Micromagnetic simulation of excitations in triangle-shape structure. a The temporal
Fourier spectrum of the vortex oscillations at different positions. The spatial distribution of oscilla-
tion amplitude under the exciting field of various frequencies, 769MHz (b), 842MHz (c), 940MHz
(d), and 959MHz (e). Since the oscillation amplitudes of the vortex centers are too small, we have
magnified them by 2 or 10 times labeled in each figure. Images are taken from [126]

h0 = 0.1 mT to the whole system for 100 ns. Figures15.16b–e plot the spatial distri-
bution of oscillation amplitude. One can clearly see the corner state in Fig. 15.16d,
which is in a good agreement with theoretical results shown in Fig. 15.14d. Spatial
distribution of vortices motion for bulk and edge states are shown in Fig. 15.16b, c,
respectively. It is worth noting that vortices at three corners in Fig. 15.16e also oscil-
late with a sizable amplitude, which is somewhat quite unexpected for bulk states.
This inconsistency may come from the strong coupling (or hybridization) between
the bulk and corner modes, since their frequencies are very close to each other, as
shown in Figs. 15.14a and 15.16a.

The simulations of parallelogram-shaped lattice show similar results to triangle-
shaped lattice. The spectra are shown in Fig. 15.17a with the black, blue and red
curves indicating the positions of bulk (Number 1), edge (Number 2) and corner
(Number 3) bands, respectively. Shaded area with different colors denote different
modes. The spatial distribution of oscillation amplitude is plotted in Fig. 15.17b–e.
Figure15.17d shows only one corner state at only one (bottom-right) acute angle,
which is in a good agreement with theoretical results shown in Fig. 15.15e. Spatial
distribution of vortices motion for bulk and edge states are shown in Fig. 15.17b, c,
respectively. Interestingly, the hybridization between bulk mode and corner mode
occurs as well in parallelogram-shaped lattice, see Fig. 15.17e.
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Fig. 15.17 Micromagnetic simulation of excitations in parallelogram-shape structure. a The tem-
poral Fourier spectrum of the vortex oscillations at different positions. The spatial distribution of
oscillation amplitude under the exciting field with different frequencies, 767MHz (b), 844MHz (c),
940MHz (d), and 964MHz (e). The simulation time is 100 ns. Since the oscillation amplitudes of
the vortices centers are too small, we have magnified them by 2 or 10 times labeled in each figure.
Images are taken from [126]

15.5 Corner States in a Breathing Honeycomb Lattice of
Vortices

It is known that the perfect graphene lattice has a gapless band structure with Dirac
cones inmomentumspace [133].When spatially periodicmagnetic flux [134] or spin-
orbit coupling [135] are introduced, a gap opens at the Dirac point, leading to a FOTI.
Interestingly, the realization of gap opening and closing by tuning the intercellular
and intracellular bond distances has been demonstrated in photonic [31] and elastic
[136] honeycomb lattices, in which HOTI emerges. In this section, we show that the
higher-order topological insulating phase do exist in a breathing honeycomb lattice
of vortices.

15.5.1 Theoretical Model

Figure15.18 shows a breathing honeycomb lattice ofmagnetic nanodisks with vortex
states.We use (15.9) to describe the collective dynamics of the breathing honeycomb
lattice of vortices. For vortex (topological charge Q = +1/2) gyrations, one can jus-
tify |χ j | � |η j |. By substituting (15.7) into (15.9), we obtain the eigenvalue equation
of the system,
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Fig. 15.18 Illustration (top
view) of the breathing
honeycomb lattice of
magnetic vortices, with d1
and d2 denoting the
alternating lengths of
intercellular and intracellular
bonds, respectively. The
radius of each nanodisk is
r = 50 nm, and the thickness
is w = 10 nm. The dashed
black rectangle is the unit
cell used for calculating the
band structure, with a1 and
a2 denoting the basis vectors.
Images are taken from [137]

D̂ψ j = (ω0 − ξ 2
1 + 2ξ 2

2

2ωK
)ψ j + ζ1

∑
k∈〈 j1〉

ψk + ζ2
∑
k∈〈 j2〉

ψk

− ξ1ξ2

2ωK

∑
s∈〈〈 j1〉〉

ei2θ̄ jsψs − ξ 2
2

2ωK

∑
s∈〈〈 j2〉〉

ei2θ̄ jsψs, (15.11)

with ωK = ω0 − ω2
0ωM , θ̄ js = θ jk − θks is the relative angle from the bond k → s to

the bond j → k with k between j and s, 〈 j1〉 and 〈 j2〉 (〈〈 j1〉〉 and 〈〈 j2〉〉) are the set
of nearest (next-nearest) intercellular and intracellular neighbors of j , respectively.

For an infinite lattice, with the dashed black rectangle indicating the unit cell,
as shown in Fig. 15.18, a1 = ax̂ and a2 = 1

2ax̂ +
√
3
2 a ŷ are two basis vectors of

the crystal, with a = d1 + 2d2. The band structure of system can be calculated by
diagonalizing the Hamiltonian,

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

Q0 ζ2 Q1 Q2 Q3 ζ2
ζ2 Q0 ζ2 Q4 ζ1 exp(ik · a2) Q5

Q∗
1 ζ2 Q0 ζ2 Q6 ζ1 exp(ik · a1)

Q∗
2 Q∗

4 ζ2 Q0 ζ2 Q7

Q∗
3 ζ1 exp(−ik · a2) Q∗

6 ζ2 Q0 ζ2
ζ2 Q∗

5 ζ1 exp(−ik · a1) Q∗
7 ζ2 Q0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(15.12)
with elements explicitly expressed as
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Q0 = ω0 − ξ21 + 2ξ22
2ωK

,

Q1 = − ξ1ξ2

2ωK
exp(i

2π

3
)
{
exp[ik · (a2 − a1)] + exp(−ik · a1)

}
− ξ22

2ωK
exp(i

2π

3
),

Q2 = ζ1 exp[ik · (a2 − a1)],

Q3 = − ξ1ξ2

2ωK
exp(−i

2π

3
)
{
exp[ik · (a2 − a1)] + exp(ik · a2)

}
− ξ22

2ωK
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2π

3
),

Q4 = − ξ1ξ2

2ωK
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2π

3
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)[exp(ik · a2) + exp(ik · a1)] − ξ22
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exp(i
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)[exp(ik · a2) + exp(ik · a1)] − ξ22
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3
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{
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− ξ22

2ωK
exp(i

2π

3
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(15.13)

Topological invariants can be used to distinguish different phases. For any insu-
lator with translational symmetry, the gauge-invariant Chern number of bulk bands
[58, 138]

C = i

2π

∫∫
BZ

dkxdkyTr
[
P(

∂P

∂kx

∂P

∂ky
− ∂P

∂ky

∂P

∂kx
)
]

(15.14)

is often adopted for determining the FOTI phase, where P is projection matrix
P(k) = φ(k)φ(k)†, with φ(k) being the normalized eigenstate (column vector) of
Hamiltonian, and the integral is over the first Brillouin zone. However, to determine
whether the system allows the HOTI phase, another different topological invariant
should be considered.

In the presence of six-fold rotational (C6) symmetry, a proper topological invariant
is the Z6 Berry phase [48–52]:

θ =
∫
L1

Tr[A(k)] · dk (mod 2π), (15.15)

where A(k) is the Berry connection:

A(k) = i�†(k)
∂

∂k
�(k). (15.16)

Here,�(k) = [φ1(k),φ2(k),φ3(k)] is the 6× 3 matrix composed of the eigenvectors
of (15.12) for the lowest three bands. L1 is an integral path in momentum space
G ′ → � → K ′; see the green line segment in Fig. 15.19a. TheWilson-loop approach
is adopted for evaluating the Berry phase θ to avoid the difficulty of the gauge choice
[23, 24]. It is worth mentioning that the six high-symmetry points G, K , G ′, K ′, G ′′,
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Fig. 15.19 aThefirstBrillouin zone of the breathing honeycomb lattice,with high-symmetry points

�, G, M , and K located at (kx , ky) = (0, 0), ( 2π3a , 2
√
3π

3a ), ( π
a ,

√
3π
3a ), and ( 4π3a , 0), respectively.

Band structures along the loop �-M-K -� for different lattice parameters: d1 = 3.6r, d2 = 2.08r
(b), d1 = d2 = 3.6r (c), and d1 = 2.08r, d2 = 3.6r (d). Images are taken from [137]

and K ′′ in the first Brillouin zone are equivalent (see Fig. 15.19a), because of the C6

symmetry. Therefore, there are other five equivalent integral paths (L2 : K ′ → � →
G ′′, L3 : G ′′ → � → K ′′, L4 : K ′′ → � → G, L5 : G → � → K , and L6 : K →
� → G ′) leading to the identical θ . It is also straightforward to see that the integral
along the path L1 + L2 + L3 + L4 + L5 + L6 vanishes. Thus, the Z6 Berry phase
must be quantized as θ = 2nπ

6 (n = 0, 1, 2, 3, 4, 5). By simultaneously quantifying
the Chern number C and the Z6 Berry phase θ , the topological phases and their
transition can be determined accurately.

Corner states are of particular interest and are deeply related to the symme-
try of Hamiltonian (15.12). Below, we prove that the emergence of topological
zero modes is protected by the generalized chiral symmetry. First of all, because
(ξ 2

1 + 2ξ 2
2 )/2ωK � ω0, the diagonal element of H can be regarded as a constant

independent of d, i.e., Q0 = ω0, which is the “zero-energy” of the original Hamil-
tonian. Q1,2,3,4,5,6 are the next-nearest hopping terms. At first glance, the system
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does not possess any chiral symmetry to protect the “zero-energy” modes because
the breathing honeycomb lattice is not a bipartite lattice. Inspired by the explanation
of generalized chiral symmetry in the breathing kagome lattice [37, 139], the chiral
symmetry for a unit cell containing six sites can be generalized by defining

�−1
6 H1�6 = H2,

�−1
6 H2�6 = H3,

�−1
6 H3�6 = H4,

�−1
6 H4�6 = H5,

�−1
6 H5�6 = H6,

H1 + H2 + H3 + H4 + H5 + H6 = 0,

(15.17)

where the chiral operator �6 is a diagonal matrix to be determined, and H1 =
H − Q0I. Here, to prove the system has generalized chiral symmetry, we divide
the system into six subgroups with the components of matrix Hamiltonian being
nonzero only between different subgroups, such a property is essential for chiral
symmetry and indicates no interaction within sublattices. Therefore, the matrices
(H2, H3, etc.) are the subgroups used for explaining the chiral symmetry of sys-
tem. Upon combining the last equation with the previous five in (15.17), we have
�−1
6 H6�6 = H1, implying that [H1, �

6
6] = 0; thus, �6

6 = I, via the reasoning com-
pletely analogous to the Su-Schrieffer-Heeger model [140]. HamiltoniansH1,2,3,4,5,6

each have the same set of eigenvalues λ1,2,3,4,5,6. The eigenvalues of �6 are given by
1, exp(2π i/6), exp(4π i/6), exp(π i), exp(8π i/6), and exp(10π i/6). Therefore,
the matrix �6 can written as

�6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 e

2π i
6 0 0 0 0

0 0 e
4π i
6 0 0 0

0 0 0 eπ i 0 0
0 0 0 0 e

8π i
6 0

0 0 0 0 0 e
10π i
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (15.18)

in the same bases as expressing the Hamiltonian (15.12). By taking the trace of the
sixth line from (15.17), we find

∑6
i=1 Tr(Hi ) = 6Tr(H1) = 0, which means that the

sum of the six eigenvalues vanishes
∑6

i=1 λi = 0. Given an eigenstate φ j that has
support in only sublattice j , it will satisfy H1φ j = λφ j and �6φ j = exp[2π i( j −
1)/6]φ j with j = 1, 2, 3, 4, 5, 6. From these formulas and (15.17), one can find that∑6

i=1 Hiφ j = ∑6
i=1 �

−(i−1)
6 H1�

i−1
6 φ j = 6λφ j = 0, indicating λ = 0 for any mode

that has support in only one sublattice, i.e., zero-energy corner state.
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15.5.2 Corner States and Phase Diagram

Figure15.19b–d shows the bulk band structures under a variety of lattice parameters.
For d1 = d2 = 3.6r (see Fig. 15.19c), it can be found that the highest three bands and
the lowest three bands merged separately, leaving a next-nearest hopping-induced
gap centered at 927MHz. In this case, the FOTI phase was anticipated [83, 125].
However, the six bands are separated from each other when considering the other
two kinds of parameters (see Fig. 15.19b, d), indicating that the system is in the
insulating state. These insulating phases and the phase transition point can be further
distinguished by calculating Chern number and Z6 Berry phase.

Figure15.20a plots the dependence of the Chern number (C) and the Z6 Berry
phase (θ ) on the parameter d2/d1. Here the material parameters of Py (Ni80Fe20) [88,
130] are used and fix d1 = 2.5r . In addition, the eigenfrequencies of collective vortex
gyration under different ratios d2/d1 for a parallelogram-shaped (see Fig. 15.20b)
structure are also shown in Fig. 15.20c. By considering the topological invariants and
spectrum simultaneously, one can infer that the system is in the trivial phase when
d2/d1 < 0.9 and 1.08 < d2/d1 < 1.49, in the FOTI phasewhen 0.9 < d2/d1 < 1.08,
and in the HOTI phase when d2/d1 > 1.49. Haldane model is a well-known example
for breaking the time-reversal symmetry [134]. If we consider the limit case of
honeycomb lattice, i.e., d1 = d2, (15.9) can be exactly mapped to the Haldane model,
as shown in [83] and [125]. The very existence of the chiral edge state is thus naturally
expected. For a breathing honeycomb lattice, our (15.11) represents the generalized
form of the mapping, where the last two terms in the right-hand side are the next-to-
nearest hopping that breaks the time-reversal symmetry. The complete phase diagram
of system can be obtained by systematically changing d1 and d2, with the results
plotted in Fig. 15.20d: The regions labeled gray, white, and red represent the trivial,
FOTI, and HOTI phases, respectively. Importantly, we find that the boundary for
the phase transition between trivial and FOTI phases depends only weakly on the
choice of the absolute values of d1 and d2 but is (almost) solely determined by their
ratio, as indicated by dashed black lines (l1 : d2/d1 = 0.94 and l2 : d2/d1 = 1.05)
in the figure. However, the boundary for the phase transition between trivial and
HOTI phases is a linear function l3 : d2 = 2.24d1 − 1.88 (see the dashed red line
in Fig. 15.20d). It is worth noting that the topological charge of the vortex has no
influence on higher-order topology for the reason that the sign of topological charge
just determines the direction (clockwise or anti-clockwise) of gyration, see (15.5).
However, it indeed can affect the chiral edge state (first-order topology). Namely the
chirality of edge state will be reversed if the topological charge changes.

The existence of symmetry-protected states on boundaries is the hallmark of a
topological insulating phase. Figure 15.21b–d shows the energy spectrum of the
ribbon configuration with armchair edges (see Fig. 15.21a) for different choices of
d1 and d2. For d1 = 3.6r and d2 = 2.08r (black star in Fig. 15.20d), the system
is in the trivial phase without any topological edge mode (see Fig. 15.21b). For
d1 = d2 = 3.6r (blue star in Fig. 15.20d), the lattice considered is identical to a
magnetic texture version of graphene (the perfect honeycomb lattice). In contrast to



15 Topological Dynamics of Spin Texture Based Metamaterials 431

Fig. 15.20 a Dependence of the topological invariants Chern number and Z6 Berry phase on the
ratio d2/d1 when d1 is fixed at 2.5r . b Schematic plot of the parallelogram-shaped vortex lattice with
armchair edges. c Eigenfrequencies of collective vortex gyration under different ratios d2/d1 with
the red segment denoting the corner state phase. d Phase diagram of the system with pentagonal
stars of different colors representing three typical parameters of d1 and d2 for different phases
considered in the subsequent calculations and analyses. Images are taken from [137]

the gapless band structure for perfect graphene nanoribbons, the imaginary second-
nearest hopping term opens a gap at the Dirac point and supports a topologically
protected first-order chiral edge state [83, 125]. For d1 = 2.08r and d2 = 3.6r (red
star in Fig. 15.20d), one can clearly see two distinct edge bands, in addition to bulk
ones, as shown in Fig. 15.21d. These localized modes are actually not topological
because they maintain the bidirectional propagation nature, which is justified by
the fact that the wave group-velocity dω/dkx can be either positive or negative at
different kx points. Below, we will show that higher-order topological corner states
exactly emerge around these edge bands when the system is decreased to be finite in
both dimensions.
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Fig. 15.21 a Nanoribbon with armchair edges (closed boundaries in the x-direction and open
boundaries in the y-direction). The dashed black rectangle is the unit cell. Band dispersions with
different geometric parameters as denoted in Fig. 15.20d: d1 = 3.6r, d2 = 2.08r (b), d1 = d2 =
3.6r (c), and d1 = 2.08r, d2 = 3.6r (d). The dashed blue frame in (d) indicates the band of non-
chiral edge states. D is the width of the nanoribbon. Images are taken from [137]

A parallelogram-shaped vortex lattice is considered to visualize the second-order
corner states, as shown in Fig. 15.20b, where d1 = 2.08r and d2 = 3.6r . From the
spectrum (see Fig. 15.22a), one can clearly see that there exist a few degenerate
modes in the band gap. To distinguish these states, the spatial distribution of vortex
gyrations are plotted for each mode in Fig. 15.22b–f. Three types of corner states
are confirmed, all of which have oscillations highly localized at obtuse-angled or
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Fig. 15.22 a Eigenfrequencies of the finite system with parameters d1 = 2.08r and d2 = 3.6r for
the parallelogram-shaped structure (see Fig. 15.3b). The spatial distribution of vortex gyrations for
the bulk (b), corner (c, d and f), and edge (e) states of five representative frequencies. Images are
taken from [137]

acute-angled corners (see Fig. 15.22c, d, f), where corner states 1 (type I), 2 (type
II), and 3 (type III) are denoted by red, magenta, and green balls, respectively. Two
degenerate edge modes are denoted by blue balls, in which only two vortices on each
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edge participate in the oscillation, as shown in Fig. 15.22e. Figure15.22b shows the
bulk state with oscillations spreading over the whole lattice except the boundaries.
To judge whether these edge and corner states are topologically protected or not,
moderate defects and disorder are introduced into the system and we evaluate the
change of the spectrum. It can be found that the eigenfrequency of “zero-energy”
corner state 3 at the obtuse-angled corner (see Fig. 15.22f) is well confined around
927MHz, which means that this corner state is suitably immune from external frus-
trations. This feature is due to the topological protection from the generalized chiral
symmetry. However, the frequencies of other corner modes (Fig. 15.22c, d) have
obvious shifts, revealing that these crystalline-symmetry-induced modes are sensi-
tive to disorder. The origin of the edge state (Fig. 15.22e) is again attributed to the
so-called Tamm-Shockley mechanism [118, 119].

To figure out why the chiral symmetry-protected (CSP) corner modes emerge at
only obtuse-angled corners instead of acute-angled corners, the topological index
N = |N+ − N−| is introduced, which captures the interplay between the topology
of the bulk Hamiltonian and the defect structure [31, 141]. Here, N counts the
number of topologically stablemodes bound to corners, andN± are integers counting
the number of eigenstates of the chiral symmetry operator �̂ with eigenvalues +1
and −1, respectively. In the zero-correlation length limit d2 → ∞, the breathing
honeycomb lattice is then reduced to isolated dimers (see Fig. 15.23b). As long as
the gap is not closed, the symmetry and the Berry phase remain, as evidenced by the
topological invariant θ . When the system is in the HOTI phase, N+ = N− = 1 in
each edge unit cell and N+ = N− = 2 for acute-angled corners, such that N = 0,
indicating that there may exist non-CSP modes at acute-angled corners or edges.
However, a similar analysis results in totally different outcome for obtuse-angled
corners:N+ = 1 andN− = 2 orN+ = 2 andN− = 1, which leads toN = 1. Thus,
CSP or “zero-energy” modes must exist in each obtuse-angled corner. It is worth
noting that the “zero-energy” corner state appears at acute-angled corners rather
than obtuse-angled corners if the edges of lattice change to zigzag type. This result
also can be fully explained in terms of the topological index N (see Fig. 15.23d, e).

On the other hand, in the limit d1 → ∞ (see Fig. 15.23c, f), we find that there are
no uncoupled vortices. The six corners of the isolated hexagon are equivalent, with
no special edge or corner states.

15.5.3 Micromagnetic Simulations

The micromagnetic simulations are implemented to verify theoretical predictions.
Here, the parallelogram-shaped breathing honeycomb lattice of magnetic vortices
with an armchair edge is considered, as shown in Fig. 15.20b. All material parame-
ters are the same as those for theoretical calculations in Fig. 15.21d. The numerical
packageMUMAX3 [117] is used to simulate the collective dynamics of vortex lattice.

Figure15.24a shows the temporal Fourier spectra of the vortex oscillations at
different positions, with the black, red, blue, and green curves indicating the positions
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Fig. 15.23 The configuration of breathing honeycomb lattices of magnetic vortices with armchair
(a) and zigzag edges (d). (b) and (e) [(c) and (f)] are the corresponding configurations of (a) and
(d) in the zero-correlation length limit d2 → ∞ (d1 → ∞), respectively, which consist of isolated
dimers (hexamer). Green and black balls indicate eigenvalues of+1 and−1 of the chiral-symmetry
operator, respectively. Shaded areas represent the unit cell at different positions. Images are taken
from [137]
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Fig. 15.24 a The temporal Fourier spectra of the vortex oscillations at different positions marked
by dashed black rectangles in Fig. 15.20b. The gyration path for all vortices under excitation fields
with different frequencies, 872 MHz (b), 934 MHz (c), 944 MHz (d), and 948 MHz (e). Since the
oscillation amplitudes of the vortex centers are too small, we have magnified them by 2, 5 or 10
times, as labeled in each figure. Images are taken from [137]
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of acute-angled corner, obtuse-angled corner, edge, and bulk bands, respectively.
It can be seen that around the frequency of 944MHz (948MHz), the spectra for
acute-angled corner (obtuse-angled corner) have an obvious peak, which does not
happen for the spectra for edge and bulk bands. Therefore, these two peaks denote
two different corner states that are located at acute-angled or obtuse-angled corners.
Similarly, the frequency range for bulk and edge states is identified. Further, to
visualize the spatial distribution of the vortex oscillations for different modes, four
representative frequencies are chosen and are marked by green, blue, black, and red
dots: 872MHz for the bulk state, 934MHz for the edge state, 944MHz for the acute-
angled corner state, and 948MHz for the obtuse-angled corner state, respectively.We
then stimulate their dynamics by applying a sinusoidal field to the whole system. The
10 ns gyration paths of all vortices are plotted in Fig. 15.24b–e when the excitation
field drives a steady-state vortex dynamics. The spatial distribution of vorticesmotion
for the bulk and edge states are shown in Fig. 15.24b, c, respectively. We observe
type I corner state with vortex oscillation localized at the acute-angled corner in
Fig. 15.24d, which is in good agreement with the theoretical result. Interestingly, we
note a strong hybridization between the type II and type III corner states, as shown
in Fig. 15.22f, which is because their frequencies are very close to each other and
their wavefunctions have a large overlap (see Fig. 15.22).

15.6 Conclusion and Outlook

We have introduced the concept of topological insulator (both first-order and higher-
order) based on spin texture metamaterials. The emerging multiband chiral edge
modes possessing different handness in skyrmion lattice should be appealing for
designing future skyrmionic topological devices. Besides, the predicted second-order
insulating phase in vortex lattice can facilitate designing new functional devices
based on magnetic solitons. For instance, we can realize a magnetic imaging system
by designing one vortex lattice of the desired shape in the HOTI phase surrounded
by another vortex lattice in the trivial phase [142, 143]. It is noted that the unique
localization property of vortex gyrations strongly depends on the working frequency,
which would motivate us to devise magnetic nano-oscillators with high spatiotempo-
ral resolution. Furthermore, the multiband nature of corner modes (spectrum ranging
from sub GHz to dozens of GHz) is very useful to design broad-band topological
devices. In the present model, we have considered nanodisks with identical radius.
When the translational symmetry is broken, for instance, by introducing Kekulé dis-
tortions to disk sizes, one may realize novel devices supporting robust Majorana-like
zero modes localized in the device’s geometric center [144]. From an experimental
point of view, the fabrication of artificial vortex or skyrmion lattices is readily within
reach of current technology, e.g., electron-beam lithography [78, 79, 145] or X-ray
illumination [146]. By tracking the nanometer-scale vortex orbits using the recently
developed ultrafast Lorentz microscopy technique in a time-resolved manner [147],
one can directly observe the second-order topological corner states.
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Chapter 16
Antiferromagnetic Skyrmions
and Bimerons

Laichuan Shen, Xue Liang, Jing Xia, Xichao Zhang, Motohiko Ezawa,
Oleg A. Tretiakov, and Yan Zhou

Abstract The topological spin textures, such as magnetic skyrmions and bimerons,
are currently a hot topic in condensed matter physics. Magnetic skyrmions are
swirling spin textures, which can be stabilized in chiral magnets with perpendic-
ular magnetic anisotropy, while magnetic bimerons can be regarded as the coun-
terpart of skyrmions in magnetic systems with in-plane anisotropy. Both magnetic
skyrmions and bimerons have attracted a lot of attentions, because they have small
size and low depinning current, and can be used as nonvolatile information carries
in future spintronic devices. In this chapter, we mainly present and discuss recent
original results about the magnetization dynamics of antiferromagnetic skyrmions
and bimerons excited by currents and spatially non-uniform magnetic anisotropy. In
addition,we also explore possible applications based on antiferromagnetic skyrmions
and bimerons, and review some relevant results.

16.1 Introduction

Antiferromagnets are magnetically ordered spin systems, and antiferromagnetic
materials are promising for building advanced spintronic devices [1–4]. Considering
an antiferromagnet with two sublattices, its magnetization dynamics is governed
by the Landau-Lifshitz-Gilbert (LLG) equations [5], which can also describe the
dynamics of a ferromagnet. However, the dynamic equations of antiferromagnets are
coupled via the exchange interaction between sublattices, causing that the motion
equation of the order parameter is of second order with respect to time [2]. Thus, the

L. Shen · X. Liang · J. Xia · X. Zhang · Y. Zhou (B)
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172,
Guangdong, China
e-mail: zhouyan@cuhk.edu.cn

M. Ezawa
Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8656, Japan

O. A. Tretiakov
School of Physics, The University of New South Wales, Sydney 2052, Australia

© Springer Nature Switzerland AG 2021
E. Kamenetskii (ed.), Chirality, Magnetism and Magnetoelectricity,
Topics in Applied Physics 138,
https://doi.org/10.1007/978-3-030-62844-4_16

441

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62844-4_16&domain=pdf
mailto:zhouyan@cuhk.edu.cn
https://doi.org/10.1007/978-3-030-62844-4_16


442 L. Shen et al.

dynamic behavior of antiferromagnets should be similar to that described by the clas-
sicalNewton’s kinetic equation, and antiferromagnetsmay have richer dynamics than
ferromagnets. On the other hand, intrinsic resonance frequency of the ferromagnet is
typically on the order of gigahertz,while for the antiferromagnet it has high resonance
frequency (generally, terahertz) thanks to the presence of strong antiferromagnetic
exchange fields [6]. Therefore, the antiferromagnet can be used as an oscillator to
generate terahertz oscillation signal [7]. Additionally, the magnetic moments of anti-
ferromagnetic sublattices are compensated, which leads to nearly zero stray fields
and insensitivity to the perturbation due to magnetic fields. These advantages make
antiferromagnets active in condensed matter physics.

Magnetic textures, such as domain wall [8–10], skyrmion [11–16], bimeron [17–
21] and skyrmionium [22–25] have attracted a great deal of attention due to their rich
physics and important applications in information storage and computing devices.
In addition to ferromagnetic systems, these magnetic textures can exist in antiferro-
magnetic systems. Figure 16.1 shows the antiferromagnetic domain wall, bimeron,
skyrmion and skyrmionium,where antiferromagnetic texturesmay have some advan-
tages compared to ferromagnetic analogues. For example, the speed of a ferromag-
netic domain wall is limited by the Walker breakdown [26]. However, for a domain
wall in antiferromagnet, only when its speed is close to the spin wave velocity (it has
a very high value, about 10 km/s [9]), the domain wall will undergo the speed limit.
On the other hand, skyrmions are topologically protected spin textures that have been
experimentally observed in chiral materials, for example, MnSi [27] and Pt/Co/MgO
[28]. For a skyrmion in ferromagnet, it has an integer topological charge, so that the

Fig. 16.1. Antiferromagnetic a domain wall, b bimeron, c skyrmion and d skyrmionium
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Magnus force is always nonzero and leads to the skyrmion Hall effect [29, 30]. Such
a skyrmion Hall effect may cause the skyrmion to annihilate at the sample edge,
which is detrimental for practical applications. For an antiferromagnetic skyrmion,
it consists of two ferromagnetic skyrmions (one on each sublattice) with opposite
topological charges for magnetization, so that the net Magnus force is zero and the
fast-moving skyrmion will not be destroyed by touching the sample edge.

In order to understand physics of antiferromagnetic textures and explore their
applications, it is necessary to discuss their magnetization dynamics. In Sect. 16.2,
we discuss the current-induced creation, motion and chaos of antiferromagnetic
skyrmions and bimerons. In Sect. 16.3, we review and discuss of the spin torque
nano-oscillators based on antiferromagnetic skyrmions. In Sect. 16.4, we focus on
the study of synthetic antiferromagnetic skyrmions driven by the spin current. The
following two parts, i.e., Sects. 16.5 and 16.6, mainly present and discuss the magne-
tization dynamics of antiferromagnetic skyrmions in the presence of spatially non-
uniform magnetic anisotropy. In Sect. 16.5, we present the calculation results of
using a magnetic anisotropy gradient to drive antiferromagnetic skyrmions, where
the magnetic anisotropy gradient is applicable in both metals and insulators. Then,
in Sect. 16.6, the pinning and depinning processes of antiferromagnetic skyrmions
in a racetrack with a defect caused by the local variation of magnetic anisotropy are
studied. Finally, in Sect. 16.7, we make a summary of this chapter.

16.2 Current-Driven Creation, Motion, and Chaos
of Antiferromagnetic Skyrmions and Bimerons

In this section, we discuss the current-induced creation, motion and chaos of antifer-
romagnetic skyrmions and bimerons. Magnetic skyrmions are swirling spin textures
carrying an integer topological charge, and they can be stabilized in chiral magnets
with perpendicular magnetic anisotropy [11, 12]. Magnetic bimeron composed of
two merons can be regarded as a counterpart of magnetic skyrmion in systems
with in-plane magnetic anisotropy, which shares the merits of skyrmions, such as
nanoscale size, nontrivial spin structure and low depinning current [18, 19]. These
excellent characteristics make that both skyrmion and bimeron are promising candi-
dates as information carriers in future spintronic devices. In practical applications,
the controllable creation and manipulation of skyrmion and bimeron are crucial. In
2016, Zhang et al. [31] reported the creation of an antiferromagnetic skyrmion by
applying a vertical spin current. In addition, their calculations show that using a
junction geometry, the antiferromagnetic skyrmion is generated from a domain wall
pair, as shown in Fig. 16.2. Similar to the skyrmion, an isolated bimeron is created
in antiferromagnetic films by applying a vertical spin current to reverse the local
magnetic moments, as reported by Shen et al. [19]. It is worth mentioning that in
addition to the spin current, the time-dependent magnetic field can also induce the
generation of an isolated antiferromagnetic skyrmion [32].
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Fig. 16.2. Creation of an isolated antiferromagnetic skyrmion via a domain wall pair driven by a
vertical spin current. Reprinted with permission from [31]. CC BY 4.0

On the other hand,manipulatingmagnetic textures is indispensable in future infor-
mation storage and computing devices. Various methods have been proposed to drive
antiferromagnetic skyrmion and bimeron, such as using spin currents [19, 31, 33,
34], magnetic anisotropy gradients [35] and temperature gradients [32]. In particular,
the current-induced spin torque is a common way for manipulating magnetic mate-
rials. For current-induced spin-transfer torques including adiabatic and nonadiabatic
terms [34, 36], the speed of both antiferromagnetic skyrmion and bimeron is propor-
tional to the nonadiabatic spin-transfer torque parameter, and inversely proportional
to the damping constant [33]. For current-induced damping-like spin torque [34],
antiferromagnetic skyrmion and bimeron can be effectively driven to move, while
for field-like spin torque, their response is weak because perfect antiferromagnetic
materials are insensitive to a homogeneousmagnetic field. Thanks to the cancellation
of the Magnus force, current-induced spin torques can drive the antiferromagnetic
skyrmion and bimeron at a speed of a few kilometers per second without showing
any transverse drift, so that their motion trajectory is a perfect straight line along
the driving force direction and they are ideal information carriers in racetrack-type
memory [19, 25, 31, 33]. Note that in the high-speed region, a transverse expansion
will be present, as reported in [33, 37, 38]. In 2020, Salimath et al. [37] demonstrated
that such an expansion is reminiscent of the well-known Lorentz contraction, which
has been identified in antiferromagnetic domain walls [9].

Next, based on the equation ofmotion, the dynamics of antiferromagnetic bimeron
(or skyrmion) induced by the alternating current is discussed. As mentioned earlier,
for antiferromagnetic systems, the motion equation of the order parameter is related
to the second derivative with respect to time. On the other hand, the motion equa-
tion of the systems, such as the Landau-Lifshitz-Gilbert equation [5], is usually
nonlinear, resulting in the dynamic behavior being complex or even chaotic. Thus,
considering a skyrmion or bimeron in an antiferromagnetic nanodisk, its motion
can be described by the Duffing equation, where the nanodisk boundary provides a
nonlinear restoring force [19]. Note that for the chaos, the nonlinearity is a necessary
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condition rather than a sufficient condition, so that not all nonlinear systems will
exhibit chaotic behavior. Therefore, under the action of the alternating current, the
antiferromagnetic bimeron (or skyrmion) generally does periodic motion. Taking
certain parameter values, it shows chaotic behavior. The Lyapunov exponents (LEs)
are usually used to judge whether there is chaos [39]. If the largest LE is positive, it
means that two close trajectories will be separated. Namely, a small initial error will
increase rapidly, resulting in the motion of antiferromagnetic bimeron being sensi-
tive to initial conditions, and its motion behavior cannot be predicted for a long time,
i.e., the bimeron does chaotic motion. In 2020, based on the motion equation of an
antiferromagnetic bimeron (i.e., the Duffing equation), Shen et al. [19] calculated the
bifurcation diagram and LEs, as shown in Fig. 16.3. It can be seen that the periodic
and chaotic windows appear at intervals and a small damping constant can lead to
the chaotic motion. In addition, the current is also of great importance to induce the
occurrence of the chaos, as it can be easily tuned in experiment. Their calculation
shows that for small currents, the system exhibits a periodic motion. With increasing
currents, the period-doubling phenomenon takes place, and then the system shows
chaotic behavior. It is worth mentioning that the chaotic behavior reported by Shen
et al. [19] is subject to the boundary-induced restoring force, which depends on
both the geometric and magnetic parameters. Since the antiferromagnetic bimerons
show chaotic behavior, they can be used as chaotic oscillators, which are promising
for various applications, such as detecting weak signals [40], generating random
numbers [41] and building chaotic logic gates [42].

Fig. 16.3. a Calculated bifurcation diagram and b Lyapunov exponents (LEs) as functions of the
damping constant. cCalculated bifurcation diagram and dLEs as functions of the current. Reprinted
with permission from [19]. Copyright © 2020 American Physical Society
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16.3 Spin Torque Nano-oscillators Based
on Antiferromagnetic Skyrmions

The antiferromagnetic textures can be used not only as chaotic oscillators, but also
as microwave signal generators (or spin torque nano-oscillators). In this section, we
first review recent advances in skyrmion-based spin torque nano-oscillators, and
then focus on the discussion of the nano-oscillators based on antiferromagnetic
skyrmions. Spin torque nano-oscillators based on magnetic skyrmions have received
great attention, because they can excite microwave signals with small linewidth and
are expected to improve the output power [43–46]. In addition, the arrays of such
nano-oscillators can be used to perform the neuromorphic computing [47]. In 2015,
Zhang et al. [45] firstly demonstrated that applying a uniform current to the nano-
contact oscillators, the ferromagnetic skyrmion can be induced to move in a circular
motion, and then an oscillating signal is obtained by detecting the skyrmion posi-
tion and using the magnetoresistance effect. In 2016, Garcia-Sanchez et al. [44]
showed an alternative skyrmion-based nano-oscillator, in which a fixed layer with a
vortex magnetic configuration is used to generate the spin-polarized current with a
vortex-like polarization.

Generally, for the ferromagnetic skyrmion-based nano-oscillators, the oscillation
frequencies are low (about 1 gigahertz), because the fast-moving skyrmion results
in the presence of a large Magnus force and then the skyrmion will be destroyed
at the nanodisk edge. In order to overcome this obstacle, various methods have
been proposed. For example, in 2019, Feng et al. [48] showed that the oscilla-
tion frequency can be increased by 75%, where the nanodisk edge is enhanced
by applying high perpendicular magnetic anisotropy. In addition, modifying the
profile of Dzyaloshinskii-Moriya interaction can also lead to the increase in oscilla-
tion frequency [49]. Besides, in 2020, Jin et al. [50] showed that creating an annular
groove in the surface of the free layer, the frequency tunability of the nano-oscillators
reaches to 15.63 GHz. However, the above methods require sophisticated repro-
cessing and are not favorable from the point of view of device applications. Shen
et al. [51] proposed to use the circular motion of an antiferromagnetic skyrmion
to create the oscillation signal, where sophisticated reprocessing is not required. In
addition to the cancellation of the Magnus force, the antiferromagnetic skyrmion
obeys the inertial dynamics, as the motion equation of the antiferromagnetic order
parameter is of second order with respect to time (for ferromagnetic dynamic equa-
tion it is of first order). Thus, the motion behavior of the antiferromagnetic and
ferromagnetic skyrmions in a nanodisk is different, and the oscillation frequency of
the antiferromagnetic skyrmion (tens of gigahertz) is higher than that of the ferro-
magnetic skyrmion [51]. Figure 16.4 shows the comparison of ferromagnetic and
antiferromagnetic skyrmion-based nano-oscillators. We can see that the ferromag-
netic skyrmionmoves toward the nanodisk centerwhen the positive current is applied,
while for the negative current, the skyrmion is destroyed at the nanodisk edge. For
the antiferromagnetic skyrmion, it moves steadily in the nanodisk under the action
of the same currents, and its motion is independent of the sign of the applied current.
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Fig. 16.4. The comparison
of ferromagnetic and
antiferromagnetic skyrmions
in the nanodisk. The
trajectory for an
antiferromagnetic skyrmion
driven by positive (a) and
negative (b) currents. The
trajectory for a ferromagnetic
skyrmion driven by positive
(c) and negative (d) currents.
Reprinted from [51], with
the permission of AIP
Publishing.

16.4 Synthetic Antiferromagnetic Skyrmions Driven
by the Spin Current

In this section, we review and discuss the current-driven dynamics of magnetic
skyrmions in the synthetic antiferromagnetic system. Different from the above-
mentioned antiferromagnetic system, the synthetic antiferromagnet is made of ferro-
magnetic thin films but with antiferromagnetic interlayer exchange couplings [52,
53], which can be realized by the Ruderman-Kittel-Kasuya-Yosida (RKKY) interac-
tion mechanism [54]. A basic and simple synthetic antiferromagnetic system can be
constructed by a bilayer structure consisting of two antiferromagnetically exchange-
coupled ferromagnetic layers with identical material properties and thicknesses.
Namely, the total net magnetization of the bilayer system is equal to zero, leading to
the zero-stray-field nature of a perfect antiferromagnetic thin film. It should be noted
that an ultra-thin metal spacer is usually sandwiched between the two ferromagnetic
layers, of which the thickness is adjusted to give rise to the RKKY-type interlayer
antiferromagnetic exchange coupling.

The concept of skyrmions in synthetic antiferromagnets with zero net magnetiza-
tion is originated for the purpose of eliminating the so-called skyrmionHall effect [29,
30, 55]. The skyrmion Hall effect is a dynamic phenomenon associated with topolog-
ical number of the skyrmion [29, 30], that is, a current-driven ferromagnetic skyrmion
carrying an integer topological charge may experience a Magnus force and move at
an angle with respect to the driving current direction. Such a phenomenon could
result in the accumulation and/or even the destruction of skyrmions at sample edges,
which is detrimental for some skyrmion-based applications such as the skyrmionic
racetrack memory [52]. In a synthetic antiferromagnetic bilayer structure, such a
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Fig. 16.5. A magnetic skyrmion in the synthetic antiferromagnetic bilayer system. a The Magnus
forces acted on the top-layer and bottom-layer skyrmions will cancel each other, which results in the
elimination of the skyrmion Hall effect. b Current-driven motion of a synthetic antiferromagnetic
bilayer skyrmion. Reprinted with permission from [52]. CC BY 4.0

skyrmion Hall effect can be effectively eliminated as the skyrmions in the top and
bottom layers have opposite skyrmion numbers and therefore, the Magnus forces
acted on top and bottom skyrmions could cancel each other since they are identical
in magnitude but pointing toward opposite directions, as shown in Fig. 16.5. Conse-
quently, the synthetic antiferromagnetic bilayer skyrmion driven by a current moves
in a straight line along the driving force direction, as shown in Fig. 16.5.

The concept of synthetic antiferromagnetic bilayer skyrmion was first purposed
in a simulation work by Zhang et al. in 2016 [52]. In the same year, Zhang et al. also
studied the skyrmion dynamics in multilayer synthetic antiferromagnetic racetracks
[56]. It was found that the current-driven skyrmion shows no transverse motion in
multilayer synthetic antiferromagnetic nanotracks packed with even identical ferro-
magnetic layers. Namely, only when the total skyrmion number equals zero and
the system has zero net magnetization, the skyrmion Hall effect is truly eliminated.
Zhang et al. [56] also suggest that the synthetic antiferromagnetic skyrmion may
have a better thermal stability during its motion in nanotracks due to the absence of
skyrmion-edge interaction induced by the skyrmion Hall effect. In 2017, by using
micromagnetic simulations Tomasello et al. [57] further studied the performance of
racetrack memory based on the synthetic antiferromagnetic skyrmion. They pointed
out that the velocity of synthetic antiferromagnetic skyrmions and synthetic antifer-
romagnetic Néel-type domain walls are of the same order and can reach values larger
than 1200 m/s, which is promising for real applications.

It is worth mentioning that the formation and current-induced motion of synthetic
antiferromagnetic skyrmion bubbles have been realized in experiments by Dohi et al.
in 2019 [58] and the stabilization of antiferromagnetic skyrmions in synthetic anti-
ferromagnets at room temperature has also been experimentally realized by Legrand
et al. in 2020 [59]. The two experimental works demonstrated promising features of
synthetic antiferromagnetic skyrmions, that is, the thermal stable nanoscale size and
negligible skyrmion Hall effect, which highlight the possibility of using synthetic



16 Antiferromagnetic Skyrmions and Bimerons 449

antiferromagnetic skyrmions in future high-performance spintronic devices with
higher storage density and operation speed.

16.5 Antiferromagnetic Skyrmions Driven by the Magnetic
Anisotropy Gradient

Previous section shows that antiferromagnetic skyrmions can be driven by electric
currents. However, using the electric current as a driving source faces the issue of
Joule heating, and the dynamics of the insulating antiferromagnet cannot be excited
by an electric current. Therefore, alternative methods are crucial and have been
explored, for example, using a voltage-controlled magnetic anisotropy gradient. The
voltage-controlled magnetic anisotropy gradient is a promising method to drive the
magnetic textures, because it has ultralow power consumption and is applicable in
both metals and insulators. Recent studies experimentally and theoretically demon-
strate that such a voltage-controlled magnetic anisotropy gradient can be used to
manipulate the magnetic textures [35, 60–63]. Particularly, in 2019, Ma et al. [60]
experimentally presented the electric field-induced creation and motion of domain
walls and skyrmion bubbles. In this section, we first describe the calculation results
of using a magnetic anisotropy gradient to drive antiferromagnetic skyrmions, and
then compare the velocities of antiferromagnetic and ferromagnetic skyrmions.

Fig. 16.6. a The sketch of the voltage-controlled magnetic anisotropy device, where the magnetic
anisotropy K linearly decreases with the increase of the spatial coordinate x. b The evolution of
the skyrmion speed for an antiferromagnetic skyrmion induced by a magnetic anisotropy gradient
dK/dx = 100 GJ/m4. c The top view of the antiferromagnetic skyrmion motion, where the color
represents the out-of-plane component nz of the Néel vector. Reprinted with permission from [35].
Copyright © 2018 American Physical Society
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As shown in Fig. 16.6a, the magnetic anisotropy gradient (dK/dx = 100 GJ/m4) is
assumed to be induced by applying a voltage to the sample with a wedged insulating
layer. Taking such an anisotropy gradient, i.e., dK/dx = 100 GJ/m4, the motion
of the antiferromagnetic skyrmion is simulated by solving the dynamic equation
of antiferromagnet, and the time evolution of the skyrmion speed vx is shown in
Fig. 16.6b. We can see that the antiferromagnetic skyrmion is first accelerated to 450
m/s in 0.2 ns and then its speed increases slowly to 504 m/s by t = 0.5 ns [35]. The
speed cannot reach a constant value, as the decreasing magnetic anisotropy K gives
rise to the change of the skyrmion size. Namely, when the skyrmion moves in the
positive x direction, the decreasing K results in the increase of the skyrmion size,
so that the skyrmion speed will increase slowly. Fig. 16.6c shows the top view of
the skyrmion motion, from which we can see that the radius of the skyrmion at t =
0.5 ns is larger than that of the initial state. Such an effect also exists in the case of
ferromagnetic skyrmions driven by an anisotropy gradient, as reported by Tomasello
et al. [62].

On the other hand, in antiferromagnetic systems, themagnetic moments of sublat-
tices are compensated, so that the antiferromagnetic skyrmions do not show the
skyrmion Hall effect [29, 30] due to zero net Magnus force. However, for ferro-
magnetic skyrmions, there is a transverse drift, i.e., the skyrmion Hall effect. There-
fore, the motion behaviors of antiferromagnetic skyrmions driven by an anisotropy
gradient are different from that of ferromagnetic skyrmions. The velocities of antifer-
romagnetic and ferromagnetic skyrmions are calculated as functions of the magnetic
anisotropy gradient dK/dx and damping constant α, as shown in Fig. 16.7. It can be
seen that their velocities are proportional to dK/dx and 1/α, and owing to the cancel-
lation of the Magnus force, the speed of an antiferromagnetic skyrmion is larger than
that of a ferromagnetic skyrmion.

Fig. 16.7. Numerical (symbols) and analytical (lines) velocities of the antiferromagnetic and ferro-
magnetic skyrmions. a The velocities as functions of magnetic anisotropy gradient dK/dx, where
the damping constant is set as 0.1. b The velocities as functions of the damping constant, where the
magnetic anisotropy gradient dK/dx is 100 GJ/m4. Reprinted with permission from [35]. Copyright
© 2018 American Physical Society



16 Antiferromagnetic Skyrmions and Bimerons 451

As a result, adopting the magnetic anisotropy gradient to drive the skyrmion in
pure antiferromagnets, the skyrmion canmove at high speeds (up to 500m/s) without
any transverse drift. It is worth mentioning that using the anisotropy gradient as a
driving source can be introduced to antiferromagnetically coupled bilayer systems,
as reported by Qiu et al. [64]. The above results may open an alternative way
for the design of antiferromagnetic skyrmion-based devices, such as the horizontal
racetrack-type memory [65]. In addition, when these devices are chained together,
it can also be used to build the antiferromagnetic skyrmion-based diode [66].

16.6 Pinning and Depinning of Antiferromagnetic
Skyrmions

To understand more antiferromagnetic skyrmion physics and use it in future
nanoscale magnetic data storage and logic devices, it is essentially important to
know the pinning and depinning of antiferromagnetic skyrmions to defects. In this
section, we discuss the effect of defects caused by the local variation of perpendic-
ular magnetic anisotropy on the current-induced dynamics of an antiferromagnetic
skyrmion under the framework of micromagnetics.

From [67], the local magnetic anisotropy value in the defect area is specified
by K = K0

[
1.0 + λ/exp(|r − rd |/Rd)

2
]
, where K0 is the magnetic anisotropy

constant in the homogeneous area, |λ| denotes the amplitude of variation referred
as the strength of the defect, Rd represents its characteristic size (i.e., the radius) and
rd is the position vector of the defect center. Such an anisotropy profile to describe
the inhomogeneity induced by potential impurity sites, might be more realistic than
a simple step-like defect or a defect with a linear variation of anisotropy, and is
analogous to the model proposed by Kronmüller [68]. In addition, similar distribu-
tion of exchange interaction Jex has also been used to discuss the skyrmion-defect
interaction in ferromagnetic film [69, 70]. In all simulations, the coordinate of the
antiferromagnetic skyrmion center is represented by (Rx, Ry) with the initial position
(0, 0).

First let us consider the effect of the defect on the antiferromagnetic skyrmion
without any external driving force. The simulation results show that when the
skyrmion is placed at the area where the defect can interact with it, the skyrmion
will spontaneously move and eventually stop at the center or off-center of the defect.
Moreover, for the same defect, the skyrmion always be pinned at the same position. In
particular, the final pinned position depends strongly on the ratio of skyrmion size to
the defect size and is not sensitive to the strength of the defect. As shown in Fig. 16.8a,
when the radius Rd of defect is smaller than the antiferromagnetic skyrmion radius
Rsk, the skyrmion stops at the off-center of the defect, and the distance L gradually
decreases as Rd increases. When Rd is close to or exceeds Rsk, L drops sharply and
approaches 0, and the skyrmion will stay at the center of the defect. Such dynamic
pinning processes are also similar to those of ferromagnetic skyrmions [71].
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Fig. 16.8. a The distance L between the skyrmion final position and the defect center, as a function
of the radius of defect for different strengths, where the green dashed line represents the radius
of skyrmion; b The variation of the total energy with the skyrmion position Rx (with Ry = 0 nm)
is plotted for different defect sizes, where the defect is initially placed at 150 nm in front of the
skyrmion. Reprinted with permission from [67]. Copyright © 2019 American Physical Society.

To understand the physics behind the dynamic pinning process of the antiferro-
magnetic skyrmionmentioned above, Fig. 16.8b shows the total energy of the system
vs the skyrmion position when the strength λ of the defect is fixed at –0.5. It can be
found that there are two localminimal values near the defect centerwhenRd <Rsk, but
only one minimal value at the center of defect when Rd > Rsk. Note that the skyrmion
always prefers to be pinned at the low-energy place which related to the trough in
the energy curve. Besides, for the defects with the same size and different strength
(when λ < 0), the corresponding energy curves have the same shapes. Therefore, one
can understand why the skyrmion final position is not sensitive to the strength of the
defect, but mainly depends on its size.

We further discuss the motion of an antiferromagnetic skyrmion driven by the
spin- polarized current in a defective racetrack, and find the transition from a pinned
to a depinned state. Considering the force Fu arising from the defect is obtained by
Fu = −∇ε where ε (Rx, Ry) is the total potential energy of the system, the dynamic
behaviors of the antiferromagnetic skyrmion around defect will depend on both the
driving current density and the defect. As shown in Fig. 16.9, four motion behaviors
of the skyrmion will occur when λ = –0.5. It also can be found that for different
defect sizes, there will always be a critical depinning current density jc required
to drive the skyrmion passing through the defect area successfully along a straight
line. Reference [67] has shown that the critical current density not only increases
with increasing defect strength, but also is proportional to the radius of the defect.
Moreover, it is much larger than that of the homogeneous racetrack where λ = 0
(~106 A m−2), which implies that a proper understanding of how antiferromagnetic
skyrmions interact with defects is vital for the development and performance of
future spintronic devices.

Generally, the potential defects or impurities in real materials may also contribute
to the local increase of the magnetic anisotropy value, or even cause changes
in other magnetic parameters, such as the Heisenberg exchange stiffness and the
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Fig. 16.9. Overview of the different motion behaviors of an antiferromagnetic skyrmion. Note that
the black spot denotes the considered defect and the current density increases along the direction
of the arrow. Reprinted with permission from [67]. Copyright © 2019 American Physical Society.

Dzyaloshinskii-Moriya interaction constant.Reference [67] has systematically inves-
tigated the dynamic pinning and depinning processes of antiferromagnetic skyrmions
on a racetrack with different defects.

16.7 Summary

In this chapter, we have introduced and discussed the magnetization dynamics of
antiferromagnetic skyrmions and bimerons excited by currents and spatially non-
uniform magnetic anisotropy. In addition, we have also proposed possible appli-
cations based on antiferromagnetic skyrmions and bimerons, and reviewed some
relevant results. We have shown that spin currents can create and drive the antifer-
romagnetic skyrmions and bimerons. Due to the cancellation of the Magnus force,
the antiferromagnetic skyrmion and bimeron will not show the skyrmion Hall effect,
so that they are ideal information carriers in racetrack-type memory. In addition, in
the synthetic antiferromagnetic bilayer structure, the skyrmion also does not show
the skyrmion Hall effect and moves along the driving force direction. Besides, we
have demonstrated that the antiferromagnetic skyrmion can be driven by a magnetic
anisotropy gradient. Also, we have studied the pinning and depinning processes of
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antiferromagnetic skyrmions in a racetrack with a defect caused by the local varia-
tion of magnetic anisotropy. In addition to studying the dynamics of skyrmions in
an antiferromagnetic racetrack, we also discussed the dynamic behavior of antifer-
romagnetic skyrmions in a nanodisk. In particular, we pointed out that driving an
antiferromagnetic skyrmion to move in a circular motion on a nanodisk, one may get
an oscillation signalwith high frequencies (tens of gigahertz). These results are useful
for understanding skyrmion and bimeron physics in antiferromagnetic systems, and
may provide guidelines for building spintronic devices based on antiferromagnetic
textures.
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Chapter 17
Axion Electrodynamics in
Magnetoelectric Media

A. Martín-Ruiz, M. Cambiaso, and L. F. Urrutia

Abstract Topologically ordered media demand a new understanding of the emer-
gent properties of quantum matter. This is a fundamental and technological feat.
Topological insulators and Weyl semimetals are materials with topological order.
Here we will focus on how these materials interact with sources of the electromag-
netic field. We start from the effective field theory of Maxwell’s electrodynamics
extended by a so-called magnetoelectric term, namely axion electrodynamics and
summarize some results we have found exploiting a Green’s function approach to
solve for the electromagnetic fields. Signals of the magnetolectric effect are minute
compared with other electromagnetic responses, therefore precision measurements
are required for its detection. Our formulation can be used for topological insulators
and Weyl semimetals with planar, cylindrical and spherical geometries interacting
with general charges, currents and boundary conditions. Our formulation is exem-
plified by: (i) the issue of Casimir effect involving a planar topological insulator, (ii)
Vavilov-Cherenkov radiation produced in the forward- and backward-direction of a
charged particle traversing a planar interface of two magnetoelectric media and (iii)
the electromagnetic fields induced by a static electric charge near the surface of a
Weyl semimetal. All three applications can yield observable signals that are within
experimental sensitivities.
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17.1 Introduction

Classical and quantum electrodynamics summarize all our understanding of the inter-
action betweenmatter and radiation. Although these topics have been profusely stud-
ied in many different areas since their early discoveries, still today they constitute a
fruitful research discipline and an excellent arena with potential for new discoveries.
This is specially true when precision measurements are at hand and also when new
materials come into play whose novel properties, of ultimate quantum origin, result
in new possible forms of interaction between light and such materials. That is the
case with topological insulators, as well as other materials with topological order.

Interestingly enough, the interaction between matter characterized by topologi-
cal order and external electromagnetic fields can be described by an extension of
Maxwell’s theory. In fact, in electrodynamics there is the possibility of writing two
quadratic gauge and Lorentz invariant terms: the first one is the usual electromagnetic
densityLEM = (E2 − B2)/8π which yieldsMaxwell’s equations, and the second one
is the magnetoelectric termLθ = θ E · B, where θ is a coupling field usually termed
the axion angle.

Many of the interesting properties of the latter can be recognized from its covari-
ant form Lθ = −(θ/8)εμνρλFμνFρλ, where εμνρλ is the Levi-Civita symbol and
Fμν = ∂μAν − ∂ν Aμ is the electromagnetic field strength written in terms of the
connection Aμ. When θ is globally constant, the θ -term is a total derivative and has
no effect on Maxwell’s equations. This property, together with its invariance under
continuous changes in the connection Aμ, qualify P = −(1/8)εμνρλFμνFρλ to be a
topological invariant. Actually, P is the simplest example of a Pontryagin density
[1], corresponding to the abelian group U (1). This structure, together with its gen-
eralization to nonabelian groups, has been relevant in diverse topics in high-energy
physics such as anomalies [2], the strong CP problem [3], topological field theories
[4] and axions [5], for example.

It is interesting to recall that the coupling to a Pontryagin density has a long
story in the development of Yang-Mills theories, with its origin dating back to a
problem arising because the axial symmetry of the QCD Lagrangian, in the massless
limit, would imply the existence of lowmass nucleons with odd parity, which are not
found in nature [6]. The alternative realization of this symmetry in the spontaneously
broken mode is not possible either because the three lighter mesons in the spectrum
(the pions) do not match the required four pseudo Goldstone bosons. The absence
of a fourth pseudoscalar meson with a mass similar to that of the pions is what is
known as theU (1)A problem. A solution was proposed in [7, 8] grounded in a more
detailed study of the structure of the vacuum in aYang-Mills theory, which introduces
a superposition of topologically nonequivalent vacua as the true ground state of the
system: the θ vacuum. This superposition eliminates theU (1)A problem but requires
the CP violating coupling of the θ -vacuum to the non-abelian Pontryagin density
in the QCD Lagrangian. Unfortunately, this addition generates a new problem. In
particular, the resulting effective pion-nucleon interaction predicts an electric dipole
moment for the neutron given by dn ∼ 3.2 × 10−16θ e cm. Comparison with the
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experimental value (dn)exp < 3 × 10−26 e cm produces the naturalness problem:why
should θ ∼ 10−10 be so small. This is known as the strong CP problem. A solution
was proposed in [9, 10] through the introduction of a new field, the axion a(x),
and a new symmetry U (1)PQ realized again in the spontaneously broken mode. The
vacuum expectation value of a(x) can be chosen to cancel the previous CP violating
term, but a new pseudo Goldstone boson must appear. Estimations of the coupling
constant and mass of this new particle reveal extremely low values, thus making
its detection very difficult. The abelian sector of the axion coupling in the QCD
Lagrangian, Laγ γ = −gaγ γ a E · B, was proposed in [11] as a possibility to detect
the axion through its coupling with strong electromagnetic fields available in the
laboratory. The addition of this term to the usual electromagnetic Lagrangian, gives
rise towhat is now known as axion electrodynamics. Recently the axion is considered
as a candidate to describe darkmatter. Reference [5] contains a recent review of axion
physics, including the efforts made towards its detection.

Another subject related to the θ -coupling is the photon sector of the Standard
Model Extension (SME), designed to study possible violations of the Lorentz and
CPT symmetries [12–14]. There one considers the effective couplings (kF )κλμνFκλ

Fμν and (kAF )κεκλμν AλFμν where the constant tensors (kF )κλμν and (kAF )κ define
fixed directions in spacetime that break Lorentz symmetry. An alternative way to per-
form this breaking is by choosing spacetime dependent coupling parameters [15],
like (kF )κλμν = θ(x)εκλμν and (kAF )κ = ∂κθ(x), for example. Both cases yield a
version of the axion coupling described previously which can be used as effective
theories with real Lorentz symmetry breaking in matter. The point of this com-
ment is to observe that many of the techniques and of the numerous high-precision
experiments proposed to test Lorentz symmetry breaking could adapt to the case of
matter-photon interaction.

Recently, an important additional application of the Pontryagin extended electro-
dynamics has been highlighted in condensed matter physics, where a non-dynamical
axion angle θ provides an effective field theory describing the electromagnetic
response of some materials such as (i) magnetoelectric media [16, 17], (ii) meta-
materials when θ is a purely complex function [18], (iii) topological insulators (TIs)
when θ = (2n + 1)π , with n integer [19–22] and (iv)Weyl semimetals (WSM)when
θ(x, t) = 2b · x − 2b0t , where b is the separation in momentum space between the
Weyl nodes and b0 is their separation in energy [23]. Lately, the study of topological
insulating and Weyl semimetal phases, either from a theoretical or an experimental
perspective has been actively pursued [22–24].

We will devote this chapter to the study of the interaction between magnetoelec-
tric media and the electromagnetic field. To do so we will employ field theoretic
techniques predicated on the aforementioned model Lagrangian of Maxwell’s the-
ory extended by the magnetoelectric term. The chapter is organized as follows. In
Sect. 17.2 we present the general framework of electrodynamics in media charac-
terized by a parameter θ (to be called a θ -medium) and review some of the most
important features of magnetoelectric media regarding their electromagnetic prop-
erties. Section 17.3 contains a summary of our generalized Green’s function method
to construct the corresponding electromagnetic fields produced by charges, currents
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and boundary conditions in systems satisfying the following coordinate conditions:
(i) the coordinates can be chosen such that the interface between two media, with
different θ , is defined by setting to a constant only one of coordinates and (ii) the
Laplacian is separable in such coordinates. At the end of this section the particularly
simple case of planar symmetry is discussed. There the reader is referred to the anal-
ogous extensions to cylindrical and spherical coordinates. As a specific application
of our methods to the case of a planar interface, the Casimir effect between two
metallic plates with a topological insulator between them is considered in Sect. 17.4.
In Sect. 17.5, we study the problem of Vavilov-Cherenkov radiation produced by
an electric charge propagating perpendicularly to the planar interface between two
differentmagnetoelectricmedia to find that, besides the usual forward-directed radia-
tion, there is a backward-directed emission of radiation, a so-called reversed Vavilov-
Cherenkov radiation (RVCR), solely due to the magnetoelectric nature of the media.
As yet another application, in Sect. 17.6 we show how a static electric charge induces
unexpected electromagnetic fields when placed near the surface of aWeyl semimetal
and provide two experimental proposals, feasible for present-day sensitivities, that
could be performed to measure the effects associated with the topological character
of the WSM. Finally in Sect. 17.7 we present some concluding remarks, provide a
summary of important results and highlight the benefits of our approach for solving
the electromagnetic response of magnetoelectric media.

Our conventions are taken from [25], where Fμν = ∂μAν − ∂ν Aμ, F̃μν = εμναβ

Fαβ/2, Fi0 = Ei , Fi j = −εi jk Bk and F̃ i0 = Bi , F̃ i j = εi jk Ek . Also V = (V i ) =
(Vx , Vy, Vz) for any vector V. The metric is (+,−,−,−) and ε0123 = +1 = ε123.

17.2 Nondynamical Axion Electrodynamics

In this section we discuss the basic features arising from adding to Maxwell’s elec-
trodynamics the coupling of the abelian Pontryagin density to a pseudoscalar field
θ(x), leading to a theory that we call θ -electrodynamics (θ -ED), retaining the name
of axion-electrodynamics for the case where the axion field θ becomes dynamical.
We call the parameter θ(x) the magnetoelectric polarizability (MEP) of the medium,
which we consider in the same footing as its permittivity ε and permeability μ. The
nature of the MEP depends on the type of magnetoelectric material under consider-
ation and it is ultimately related to the magnetic symmetries of the substance [26,
27] and/or to the properties of its band structure [19–21]. It can be calculated from a
Kubo-type response formula, once a microscopic model Hamiltonian for the mate-
rial is adopted. The permittivity tensor ε is usually understood by the Drude-Lorentz
type of single resonance oscillator model [28].

Magnetoelectric media [16, 17] are naturally existing materials like antiferro-
magnets [30], topological insulators (TIs) [19–22] and Weyl semimetals [23, 24],
for example. Leaving aside the remarkable microscopic properties of different mag-
netoelectric media, we will concentrate on θ -ED as the effective macroscopic theory
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describing the electromagnetic response in the case of linear, isotropic and homoge-
neousmagnetoelectrics. Let us start from the general formulation of electrodynamics
in a material medium according to the Maxwell equations

∇ · D = 4πρ, ∇ · B = 0, ∇ × E + 1

c

∂B
∂t

= 0, ∇ × H − 1

c

∂D
∂t

= 4π

c
J,

(17.1)
together with the Lorentz force

FL = q
(
E + v

c
× B

)
. (17.2)

The characterization of a specific media is given by the constitutive relations which
define the displacement D and the magnetic field H in terms of the electric field
E and the magnetic induction B, which are the fundamental fields that define the
electromagnetic potentials according to the homogeneous equations in (17.1) [25].

The constitutive relations depend on the nature of the material and usually have
the formD = D(E,B) andH = H(E,B). For example, in linear nonmagnetoelectric
media they are Di = εi j E j y Bi = μi j Hj , where εi j is the permittivity and μi j is
the permeability tensors, respectively, which can depend on the position and time.
For isotropic and homogeneous materials εi j = εδi j and μi j = μδi j , with ε and μ

constants. In the case of magnetoelectrics we will consider media described by the
following constitutive relations

D = εE − θα

π
B, H = 1

μ
B + θα

π
E, (17.3)

where α = e2/�c � 1/137 is the fine-structure constant and the MEP θ is an addi-
tional parameter of the medium. The extension of these constitutive relations to the
anisotropic case, for the optical properties of the material (ε and μ) is direct and for
the MEP θ is also possible.

Substituting them in (17.1), we obtain the following modified non-homogeneous
Maxwell equations

∇ · (εE) = 4πρ + α

π
∇θ · B, ∇ × (B/μ) − 1

c

∂(εE)

∂t
= 4π

c
J − α

π
∇θ × E − 1

c

α

π

∂θ

∂t
B.

(17.4)
We observe that the above equations can be derived from the usual Maxwell action
extended by the coupling of the abelian Pontryagin density P to a non-dynamical
axion field θ(x, t)

S[�,A] =
∫

dt d3x
[

1

8π

(
εE2 − 1

μ
B2

)
− α

4π2
θ(x, t)E · B − ρ� + 1

c
J · A

]
.

(17.5)
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The electromagnetic fields E and B are expressed in terms of the electromagnetic
potentials � and A as

E = −1

c

∂A
∂t

− ∇�, B = ∇ × A, (17.6)

which solve the homogeneous equations in (17.1). An important consequence of
(17.4) is the so-called magnetoelectric effect (MEE), summarized in the appearance
of the following effective field dependent charge and current densities

ρθ = α

4π2
∇θ · B, Jθ = − cα

4π2
∇θ × E − α

4π2

∂θ

∂t
B, (17.7)

evidencing the ability of themagnetic (electric) fields to produce charge (current) den-
sities, respectively. This effect is one of the most remarkable physical consequences
of the additional θ coupling. It was predicted in [26] and subsequently observed in
[30]. For an updated review of the MEE see, for example, [31]. A universal topolog-
ical magnetoelectric effect has recently been measured in TIs [32]. Many additional
consequences of the MEE have been highlighted using different approaches. For
example, electric charges close to the interface between two θ -media induce image
magnetic monopoles (and vice versa) [33–36]. Also, the propagation of electromag-
netic waves across a θ -boundary have been studied finding that a non trivial Faraday
rotation of the polarizations appears [29, 34, 35, 37]. The shifting of the spectral
lines in hydrogen-like ions placed in front of a planar TI, as well as the modifications
to the Casimir Polder potential in the non-retarded approximation were studied in
[38]. The classical dynamics of a Rydberg hydrogen atom near a planar TI has also
been investigated [39].

We observe that the dynamical modifications in (17.4) depend on the spatial and
temporal gradients of the MEP, as required because the Pontryagin density P is a
total derivative. In this way, the coupling with θ does not affect the equations of
motion when the MEP is globally constant. The explicit dependence on θ , instead of
∂μθ , of the constitutive relations may erroneously induce the belief that a globally
constant θ could produce dynamical effects. Nevertheless, from this perspective one
would identify additional polarization Pθ = −σB and magnetization Mθ = −σE
with σ = θα/4π2. When θ is constant, the calculation of the effective sources

ρeff = ∇ · Pθ = σ∇ · B, Jeff = 1

c

∂Pθ

∂t
+ ∇ × Mθ = −σ

(1
c

∂B
∂t

+ ∇ × E
)
,

(17.8)
yields identically zero due to the homogeneous Maxwell equations.



17 Axion Electrodynamics in Magnetoelectric Media 465

17.3 The Green Function Approach to the Electromagnetic
Response of Linear Isotropic Homogeneous
Magnetolectric Media

The knowledge of the Green function (GF) of an electromagnetic system allows the
calculation of its response to arbitrary external sources, providing a definite starting
point for the algebraic or numerical approximations which are required in most
cases. This method supersedes the image approach, frequently used in the literature,
which is appealing for interpreting results in terms of the superposition of images of
charges and currents. Nevertheless, it requires a good amount of educated guesses
which are far from obvious in many interesting cases. We will focus on calculating
the GFs for the cases when materials with piecewise constant MEP’s exhibit planar,
cylindrical and spherical symmetries. Certainly one could solve for the electric and
magnetic fields from the modified Maxwell equations together with the boundary
conditions, however, just as in ordinary electrodynamics, there might be occasions
where information about the sources is unknown and rather we are providedwith data
of the 4-potential at some given boundaries. In these cases, the GF method provides
the general solution to such boundary-value problem (Dirichlet or Neumann) for
arbitrary sources.

As an important class of magnetoelectric media with constant MEP we single out
TIs, which serve to illustrate some of the phenomena discussed. Three dimensional
TIs are a class of topological materials that can host conducting helical surface states
each having the dispersion relation of a non-degenerate Dirac cone with a crossing
point at/close to the Fermi level. Nevertheless, TIs behave as insulators in the bulk
with a finite energy gap. The surface state is further topologically protected by time-
reversal symmetry and/or inversion symmetry, coupledwith spin-momentum locking
properties. The latter means that the spin orientation of the electrons on the surface
Dirac cone is always locked perpendicularly to their momentum. A distinguishing
feature of 3D TIs among magnetoelectrics, is that the MEP θ is of topological nature
and arises from the bulk band structure. It is given by a non-Abelian Berry flux over
theBrillouin zone [19]. For 3D time reversal invariant insulators in amanifoldwithout
boundaries there are only two possibilities: θ = 0 for normal insulators and θ = π

for TIs. In order to continuously connect both classes of insulators, time reversal
invariance should be broken at the interface. This can be achieved, for example, by
depositing a thin magnetic coating of a few nanometers at the interface. According to
the specific nature of the coating, theMEPof theTIwill bemodified to θ = π + 2nπ ,
where n is an integer [40].

From a macroscopic perspective we consider TIs as a class of magnetoelectric
media described by θ -ED and characterized by the choice of a constant MEP θ .
To illustrate the calculation of the GF it will be enough to consider the simplest
case where the (3 + 1) dimensional spacetime M can be split in such a way that
M = U × R, whereU is a three-dimensional manifold and R is the temporal axis.
Moreover, the space U is partitioned in two region U1 and U2, such that U1 and
U2 have a two-dimensional common interface �. In this way U = U1 ∪ U2 and
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Fig. 17.1 Region over
which the electromagnetic
field theory is defined,
(adapted from [43])

� = U1 ∩ U2, as shown in the Fig. 17.1.Alsowe assume that theMEP θ is piecewise
constant taking the values θ = θ1 in the regionU1 and θ = θ2 in the regionU2, which
is expressed by the characteristic function

θ (x) =
{

θ1 , x ∈ U1

θ2 , x ∈ U2
. (17.9)

The interface � is parametrized by a function F�(x) = 0, which yields nμ =
(0,n) = ∂μF�(x), as the normal vector to � which is external to the region U1.
In this setup, the action Sθ , corresponding to the second term on the right-hand
side of (17.5), is no longer a total derivative and the modified Maxwell equations
(17.4) acquire field dependent effective charges and currents with support only at the
interface (in the following we set c = 1)

∇ · (εE) = θ̃ δ (F�(x))B · n + 4πρ, (17.10)

∇ × (
B/μ

) − ∂(εE)

∂t
= θ̃ δ (F�(x))E × n + 4πJ. (17.11)

Here n is the vector normal to � external to the region U1 and θ̃ = α (θ1 − θ2) /π .
Equations (17.10)–(17.11) show that in the bulk regions U1,2 we recover the usual
Maxwell equations. The MEE shows up again in (17.10)–(17.11) and the realization
of such effect that can provide a way to measure the MEP of a medium, is one of the
main goals in the research related to TIs.

In the following we restrict ourselves to contributions of free sources only outside
the interface�, with no additional boundary conditions (BCs) besides those required
at �. Assuming that the temporal derivatives of the fields are finite in the neighbour-
hood of the interface, the field equations (17.10) and (17.11) yield the following
boundary conditions

�E · n∣∣
�

= θ̃B · n∣∣
�
, �B × n

∣∣
�

= −θ̃E × n
∣∣
�
, (17.12)

�B · n∣∣
�

= 0, �E × n
∣∣
�

= 0. (17.13)
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The notation �Vi

∣∣
�
stands for the discontinuity of the i component of the vector

V through the interface �, while V j

∣∣
�
indicates the continuous value of the j com-

ponent evaluated at �. The boundary conditions in (17.13) imply that the members
of the right hand side in (17.12) are correctly defined, representing field dependent
charge densities and surface currents respectively. Again, the magnetoelectric effect
is manifest in the boundary conditions (17.12). In order to emphasize the effects of
the topological coupling we consider the simplest media having θ1 �= θ2, but with
ε = 1 and μ = 1.

At this stage it is convenient to go back to the four dimensional notation:
Aμ = (�,A), Fμν = ∂μAν − ∂ν Aμ, F̃μν = 1

2ε
μναβFαβ, jμ = (ρ, J). In this way,

the
inhomogeneous Maxwell equations (17.10) and (17.11) are

∂μF
μν = θ̃ δ (F�(x)) nμ F̃

μν + 4π jν . (17.14)

In the Lorenz gauge ∂μAμ = 0, the 4-potential satisfies the equation of motion

[
ημ

ν∂
2 − θ̃ δ (F�(x)) nρε

ρμα
ν∂α

]
Aν = 4π jμ, ∂2 = ∂2

t − ∇2 (17.15)

together with the boundary conditions

�Aμ
∣∣
�

= 0, � (∂z A
μ)

∣∣
�

= −θ̃ ε3μα
ν (∂αA

ν)
∣∣
�
, (17.16)

which reproduce those written in (17.12)–(17.13) for the electric andmagnetic fields.
To obtain a general solution for the potential Aμ in the presence of arbitrary

external sources jμ(x), we introduce the GF Gν
σ

(
x, x ′) solving (17.15) for a point-

like source,

[
ημ

ν∂
2 − θ̃ δ (F�(x)) nρε

ρμα
ν∂α

]
Gν

σ

(
x, x ′) = 4πημ

σ δ4
(
x − x ′) , (17.17)

together with the boundary conditions derived from (17.16), in such a way that the
solution for the 4-potential in the Lorenz gauge is

Aμ (x) =
∫

d4x ′ Gμ
ν

(
x, x ′) jν (x ′) , (17.18)

up to homogeneous contributions.
As we will show in the following, a further simplification arises when the system

satisfies the following two coordinate conditions:(i) the coordinate system can be
chosen so that the interface � is defined by setting constant only one of them and
(ii) the Laplacian is separable in these coordinates in such a way that a complete
orthonormal set of eigenfunctions can be defined in the subspace orthogonal to the
coordinate defining the interface. Three cases show up immediately: (i) a planar
interface at fixed z, (ii) a spherical interface at constant r and (iii) a cylindrical
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interface at constant ρ. In all this cases the characteristic function θ (x) defined in
(17.9) can be written in terms of the Heaviside function H of one coordinate like
H(z − a), H(r − a) and H(ρ − a), respectively, with the associated unit vectors n̂
given by k̂, r̂ and ρ̂, in each of the adapted coordinate systems. Then (17.17) reduces
to

[
ημ

ν∂
2 − θ̃ δ (ξ − ξ0) ε

ξμα
ν∂α

]
Gν

σ

(
x, x ′) = 4πημ

σ δ4
(
x − x ′) , (17.19)

where ξ denotes the coordinate defining the interface at ξ = ξ0 and the coupling of
the θ -term is given by a one dimensional delta function with support only at ξ0. Also,
the unit vector n̂ will have a component only in the direction ξ .

Let us illustrate the procedure sketched above by taking the static case of a planar
interface located at z = a, separating two semi-infinite TIs, such that the MEP is
θ(z) = θ1H(a − z) + θ2H(z − a). In the Coulomb gauge the GF Gν

σ

(
x, x′) satis-

fies
[
−ημ

ν∇2 − θ̃ δ (z − a)) ε
3μα

ν∂α

]
Gν

σ

(
x, x′) = 4πημ

σ δ3
(
x − x′) , (17.20)

together with the boundary conditions (17.16). The coordinates are separated accord-
ing to ξ = z, ξ0 = a, plus the two remaining x and y defining the plane parallel to
the interface (i.e., perpendicular to the z-axis). The separation of the Laplacian is
direct

∇2 = ∂2

∂z2
+ ∇2

‖ , ∇2
‖ = ∂2

∂x2
+ ∂2

∂y2
, (17.21)

with the operator ∇2
‖ having the eigenfunctions

�p‖(x, y) = 1

2π
eip‖·x‖ , (17.22)

labelled by the momentum p‖ = (px , py) parallel to � and where x‖ = (x, y). Let
us emphasize that the subindex ‖ denotes objects living in the x − y plane, parallel
to the interface z = a. The eigenfunctions�p‖(x, y) are a complete and orthonormal
set in the x − y plane, satisfying [41]

∫
dxdy �∗

p‖(x, y)�p′‖(x, y) = δ2p‖,p′‖
,

∫
d2p‖�p‖(x, y)�

∗
p‖(x, y) = δ2(x‖ − x′‖).

(17.23)
We recall that in the full 3D-space we have d3x = dx‖ dz and δ3

(
x − x′) =

δ2(x‖ − x′‖)δ(z − z′). Invariance under translation in the x − y plane together with
the the properties in (17.23) allow us to simplify (17.20) introducing the reduced GF
gμ

ν

(
z, z′,p‖

)
, such that

Gμ
ν

(
x, x′) = 4π

∫
d2p‖
(2π)2

eip‖·(x−x′)‖gμ
ν

(
z, z′,p‖

)
. (17.24)
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For future usewedenote pα = (0, px , py, 0) = (0,p‖). Thus, the final representation
of the GF in (17.20) is given in terms of the Fourier transform of the reduced GF
in the directions x, y parallel to the plane � [43]. Due to the antisymmetry of the
Levi-Civita symbol, the partial derivative that appears in the second term of (17.20)
for the GF does not introduce derivatives with respect to z, but only in the parallel
directions. This allows us to write the equation of the reduced GF as

[
ημ

ν∇̃2 + i θ̃ δ (z − a) ε
3µα

ν pα

]
gν

σ

(
z, z′,p‖,

) = ημ
σ δ

(
z − z′) , (17.25)

with ∇̃2 = p2‖ − ∂2
z , pα pα = −p‖2 and |p‖| = p. In this way we transform the

calculationof the reducedGF into a one-dimensional problemwith a delta interaction.
Moreover, equation (17.25) can be integrated with the knowledge of an additional
reduced GF gμ

σ

(
z, z′,p‖

) = ημ
σg(z, z′,p‖), satisfying

(
p2‖ − ∂2

∂z2

)
g(z, z′,p‖) = δ

(
z − z′) , (17.26)

together with the required boundary conditions. This auxiliary GF results from the
limit θ̃ = 0 in (17.25) and we call it the free reduced GF of the problem, emphasizing
that ariseswhen the θ -media are absent. TheseGFs can be taken directly from the vast
literature on electrodynamics and constitute the basis for finding the electromagnetic
response of a system with the same symmetries, but now in the presence of a θ -
medium whose interface defines the corresponding coordinate system. In the planar
case of interest and with the usual BCs at infinity, the option is to take [42]

g(z, z′) = 1

2p
e−p|z−z′ |. (17.27)

As a first step in the solution of the (17.25) we obtain the integral equation

gμ
σ

(
z, z′) = ημ

σg
(
z, z′) − i θ̃ ε

3µα
ν pα

∫
dz′′g

(
z, z′′) δ(z′′ − a)gν

σ

(
z′′, z′) ,

(17.28)
where the integration over z′′ can be readily performed, reducing the problem to a
set of coupled algebraic equations. The solution to (17.28) is obtained as the result
of the following steps. First we split the index μ into μ = 0 and μ = j = 1, 2, 3
obtaining

g0σ
(
z, z′) = η0

σg
(
z, z′) − i θ̃ ε30i j pig (z, a) g j

σ

(
a, z′) , (17.29)

g j
σ

(
z, z′) = η

j
σg

(
z, z′) − i θ̃ ε

3 j i
0 pig (z, a) g0σ

(
a, z′) . (17.30)

Next we evaluate (17.30) at z = a and substitute g j
σ

(
a, z′) in (17.29), yielding
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g0σ
(
z, z′

) = η0σ g
(
z, z′

) − i θ̃ ε30i j piη
j
σ g (z, a) g

(
a, z′

) − θ̃2 p2g (z, a) g (a, a) g0σ
(
a, z′

)
.

(17.31)
Setting z = a in the above equation, we solve for g0σ

(
a, z′)whichwe substitute back

to obtain g0σ
(
z, z′) in terms of the free GF g

(
z, z′). The remaining components are

obtained after substituting g0σ
(
a, z′) in (17.30). The final result is

gμ
ν

(
z, z′

) = ημ
νg

(
z, z′

) + A
(
z, z′

) {
θ̃g (a, a)

[
pμ pν + (

ημ
ν + nμnν

)
p2

] + iεμ α3
ν pα

}
,

(17.32)
where nμ = (0, 0, 0, 1) and

A
(
z, z′) = −θ̃

g (z, a) g
(
a, z′)

1 + p2θ̃2g2 (a, a)
. (17.33)

Extending the above results to the case where one of the media has arbitrary ε,
keeping still nonmagnetic materials, we obtain a new version of the (17.32). Going
back to the coordinate representation by calculating the Fourier transform in (17.24)
we obtain

G0
0(x, x

′) = 1

ε(z′)

[
1

|x − x′| − sgn(z′) 2(ε − 1) + θ̃2

2(ε + 1) + θ̃2

1√
R2 + Z2

]
, (17.34)

Gi
0(x, x

′) = G0
i (x, x

′) = − 2θ̃

2(ε + 1) + θ̃2

ε0i j3R j

R2

(
1 − Z√

R2 + Z2

)
, (17.35)

Gi
j (x, x

′) =
ηi j

|x − x′| − θ̃2

2(ε + 1) + θ̃2

�i
j√

R2 + Z2
+ θ̃2

2(ε + 1) + θ̃2
�r

j ∂r K
i (x, x′).

(17.36)

where Z = |z − a| + |z′ − a|, R = (x − x ′, y − y′), R = |R|, �i
j = ηi

j + nin j ,
and

K i
(
x, x′) =

√
R2 + Z2 − Z

R2
Ri . (17.37)

We observe that the substitution of the free reduced GF (17.27) in the expression
(17.33) yields that the θ -dependent contribution to the full reduced GF is a function
of Z , instead of |z − z′| as it is in the θ̃ = 0 contribution. This property is clearly
manifest in the expressions written above for the GF components in coordinate space
and will have interesting consequences in the case of radiation to be discussed in
Sect. 17.5.

The details of the calculations already summarized are presented in [43, 44]. The
results for the staticGFwith spherical and cylindrical symmetries have been extended
to the case of ponderable magnetoelectric media with piecewise constant ε and μ in
[45, 46]. The MEE has also been explored in the static case by locating a conducting
sphere at constant potential in front of a planar TI [47]. Again, we mention that the
extension of the above to the case of anisotropic optical properties is possible, and
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so is the case for anisotropic MEP. Concretely, the antiferromagnet Cr2O3 possess
a θi j ∼ 1.26 × 10−3 (in non-rationalized CGS units), which is however small com-
pared to nonmagnetoelectric effects. LargerMEE signals can be found in the TbPO4,
whose coupling is ∼0.22 (in non-rationalized CGS units) and the search for giant
ME couplings continues mainly in composite multiferroics [48]. An early review of
numerous works on the study of infinite linear homogeneous bianisotropic media
can be found in [49], which deals mainly with the calculation of the Green functions
and the plane-wave propagation in various classes of these media. An alternative way
of taking into account magnetoelectric effects in such media would be to introduce
interfaces among them. This certainly requires an extension of the methods previ-
ously developed. Our GF approach precisely facilitates such extension and this has
been one of our motivations.

17.4 The Casimir Effect

The Casimir effect (CE) is one of the most remarkable consequences predicted by
quantum field theory as a result of the nonzero energy of the vacuum [50] and has
already been experimentally confirmed [51]. For a review of the subject see [52,
53]. Experimental access to probe distances of the order of microns, together with
the recent discovery of three-dimensional topological insulators provide additional
ground to study the CE [54].

The CE we consider is produced between two perfectly conducting flat surfaces
(plates) in vacuum, denoted by P1 and P2 and separated by a distance L . Inside this
device is placed a planar TI rigidly attached to the surface P2, as shown in Fig. 17.2.
The� interface of the TI, located at z = a < L , is covered by a very thin magnetized
layer. In order to explore the purely topological contribution of the MEP (θ̃ �= 0) we

Fig. 17.2 Schematic of the
Casimir effect in θ -ED,
(adapted from [57])
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take both media with ε = μ = 1, however, non trivial optical properties as well as
anisotropy effects can also be considered.

We follow a method similar to that of [42, 55] that begins with the calculation
of the corresponding GF, from which the renormalized energy-momentum tensor
in the region between the plates is obtained. A subsequent calculation yields the
Casimir stress in the interface � of the TI. We also consider the limit when the
plate P2 goes back to infinity (L → ∞) to obtain the Casimir stress produced by a
single conducting plate in front of a semi-infinite TI. The boundary conditions on the
plates P1 and P2 are the usual ones for a perfect conductor: nμ F̃μν |P1,2 = 0, where
n = (0, 0, 0, 1).

This calculation highlights two extensions of our method: (i) the inclusion of
time-dependence and (ii) the use of a convenient well-known free reduced GF to
obtain the full result. In the absence of free sources at the interface, the GF

Gμ
ν

(
x, x ′) = 4π

∫
d2p‖
(2π)2

eip‖·x‖
∫

dω

2π
e−iω(t−t ′)gμ

ν

(
z, z′) , (17.38)

satisfies the (17.19), together with the BC of (17.16). From here on we do not write
the dependence of the reduced GF gμ

ν onω and p‖. In the Lorenz gauge, the equation
for gμ

ν is

[
ημ

ν∂
2 + i θ̃ δ (z − a) ε

3µα
ν pα

]
gν

σ

(
z, z′) = ημ

σ δ
(
z − z′) , (17.39)

where now we have ∂2 = p‖2 − ω2 − ∂2
z and pα = (

ω,p‖, 0
)
.

The boundary contribution in z = L , which is not present in (17.39), is identically
zero in the distributional sense due to the BCs on the conducting plate P2. The next
step, which illustrates the flexibility of the method developed in the Sect. 17.3, is to
choose a free GF to integrate (17.39). It is clear that we must use the free reduced
GF corresponding to two perfectly conducting parallel plates located at z = 0 and
z = L , which is given by [42]

gC
(
z, z′) = sin [pz<] sin [p (L − z>)]

p sin [pL]
, (17.40)

where the suffix C is for Casimir, z> (z<) is the greater (smaller) value between the
coordinates z, z′, and p = √

ω2 − p2. Writting the solution of (17.39) as

gμ
ν

(
z, z′) = ημ

νgC
(
z, z′) + gμ

Cν

(
z, z′) . (17.41)

we realize that the first term corresponds to the absence of the TI between the plates,
while the second term, to be called the reduced θ -GF,
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gμ
Cν

(
z, z′

) = θ̃gC (a, a)
[
pμ pν − (

η
μ
ν + nμnν

)
p2

]
AC

(
z, z′

) + i ε
μ α3
ν pα AC

(
z, z′

)
,

AC
(
z, z′

) = −θ̃
gC (z, a) gC

(
a, z′

)

1 − p2θ̃2g2C (a, a)
, (17.42)

will be responsible for the effect we are looking for. The partition in (17.41) yields the
full GF as Gμ

ν

(
x, x ′) = ημ

νG
(
x, x ′) + Gμ

Cν

(
x, x ′), where each term arises from

the respective contribution in (17.41). Since the MEP modifies the behavior of the
fields only in the interface, the energy-momentum tensor (EMT) T μν in the bulk
retains the original expression of the unmodified Maxwell equations, failing to be
conserved only in the interface in the absence of free external sources [45]. Next
we determine the vacuum expectation value (VEV) of T μν , to be called the vacuum
stress (VE), according to the basic relation Gμν(x, x) = −i〈0|T Aμ(x)Aν(x ′)|0〉,
where T denotes time ordering. Following the standard point-splitting method we
obtain

〈T μν〉 = i

4π
lim
x→x ′

[
− ∂μ∂ ′νGλ

λ + ∂μ∂ ′
λG

λν + ∂λ∂ ′νGμ
λ

− ∂ ′λ∂λG
μν + 1

2
ημν

(
∂α∂ ′

αG
λ
λ − ∂α∂ ′

βG
β

α

) ]
. (17.43)

Again, we can write 〈T μν〉 = 〈tμν〉 + 〈
T μν

C

〉
. The first term is the contribution to

the VE in the absence of the TI, yielding the well-known result in [55], which is
independent of a. After some calculation, the second term

〈
T μν

C

〉
, to be called the

θ -vacuum stress (θ -VS), is

〈
T μν

C

〉 = i θ̃
∫

d2p‖
(2π)2

∫
dω

2π

(
pμ pν + nμnν p2

)
gC (a, a) lim

z→z′

(
p2 + ∂ ′

z∂z
)
AC

(
z, z′) .

(17.44)

Next we require the renormalized VS: 〈T μν〉ren = 〈T μν〉 − 〈TCμν〉vac, where the first
(second) term is the VS in the presence (absence) of conducting plates [55, 56]. We
obtain

〈
Tμν
C

〉
ren = − π2

720L4

(
ημν + 4nμnν

)
[u(θ, χ)H (a − z) + u(θ, 1 − χ)H (z − a)] ,(17.45)

u(θ, χ) = 120

π4

∞∫

0

θ̃2ξ3sh [ξχ ] sh3 [ξ (1 − χ)] sh−3 [ξ ]

1 + θ̃2sh2 [ξχ ] sh2 [ξ (1 − χ)] sh−2 [ξ ]
dξ. (17.46)

The notation is sh(x) = sinh(x) and χ = a/L with 0 < χ < 1. Our expression
(17.45) has the same tensorial structure as that in [55], except for a z dependence
because the EMT is not conserved at the interface, implying that the renormal-
ized θ -VS is constant in each bulk but has a discontinuity in z = a consistent with
∂z

〈
T 00
C

〉
ren ∝ δ(�).
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Fig. 17.3 Left panel: the ratio Eθ /EL . Right panel: the Casimir pressure at the interface in units
of FL . Both plots are in terms of the the dimensional parameter χ = a/L and for different values
of θ , (adapted from [57])

The Casimir energy E = EL + Eθ is defined as the energy per unit area stored by
the electromagnetic field in the region between the conducting plates. Let us recall
that EL = −π2/(720L3) is the Casimir energy in the absence of the TI. The relevant
contribution is

Eθ =
L∫

0

dz
〈
T 00
C

〉
ren = EL [χu(θ, χ) + (1 − χ)u(θ, 1 − χ)] . (17.47)

The first term is the energy stored between the plate P1 and the interface, while the
second term corresponds to the energy stored in the bulk of the TI. The Casimir
pressure Fθp on the interface is Fθp = −dEθ /da, yielding

Fθp

FL
= −1

3

d

dχ
[χu(θ, χ) + (1 − χ)u(θ, 1 − χ)] , FL = −π2/(240L4).

(17.48)
The ratiosEθ /EL (left panel) and Fθp/FL (right panel) as a function ofχ , for different
values of θ are plotted in Fig. 17.3 [57]. Our setup is a 3D analogue of the Casimir
piston [58], and we obtain the similar result that the Casimir pressure tends to pull the
interface towards the closest conducting plate, as shown in the right panel of the Fig.
17.3. When the plate P2 recedes to infinity, L → ∞, our setup describes the Casimir
interaction between a perfect conducting plate P1 at a distance a from a semi infinite
TI. The Casimir energy (17.47) is now EL→∞

θ = Ea R(θ), with Ea = −π2/720a3.
The function

R(θ) = 120

π4

∞∫

0

ξ 3 θ̃2

1 + θ̃2e−2ξ sinh2 ξ
e−3ξ sinh ξdξ, (17.49)

turns out to be independent of a and it is bounded by its limit θ → ±∞. In this way
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Table 17.1 The normalized pressure fθ = FL→∞
θ /Fa = R(θ) for different values of θ

θ ±7π ±15π ±23π ±31π ±39π

fθ 0.0005 0.0025 0.0060 0.0109 0.0172

R(θ) ≤ 120

π4

∞∫

0

ξ 3 e−ξ

sinh ξ
dξ = 1. (17.50)

Physically, this means that in the limit θ → ∞, the interface� behaves as a conduct-
ing plate. This is analogous to the Schwinger prescription that a perfect conductor
is obtained in the limit ε → ∞ of a dielectric material [42]. In the limit L → ∞ the
Casimir pressure is fθ = FL→∞

θ /Fa = R(θ), with Fa = −π2/240a4. In Table 17.1
we show some numerical results for fθ for different values of θ .

The θ dependence of the Casimir pressure could be used to determine the corre-
spondingMEP. This pressure has been measured for separation distances L between
the metal plates in the range of 0.5–3.0 µm [51], which will require to prepare TIs
with widths smaller than these amounts. In addition, the ratios for fθ indicated in
Table 17.1 allow us to estimate that an increase of several orders of magnitude would
be required in the experimental accuracy. The particular values of θ = ±7π,±15π
are suitable for a TI such as Bi1−xSex [59]. The CE could be explored in TIs with
higher values of θ̃ = (2n + 1)π , however these material features magnetoelectric
couplings that are not considered in our model based on θ -ED [60, 61].

As discussed above, the nondynamical axion electrodynamics can be seen as a
particular realization of the photon sector of the Standard Model Extension with
the identification (kF )κλμν = θ(x)εκλμν . The Casimir effect has also been analyzed
within the context of the SME, for arbitrary (kF )κλμν and (kAF )κ Lorentz-violating
couplings [62, 63].

17.5 Reversed Vavilov-Cherenkov (VC) Radiation in
Naturally Existing Magnetoelectric Media

In this section we summarize the discovery reported in the [64] of reversed VC
radiation (RVCR) in naturally occurring magnetoelectric materials. The usual VC
radiation is produced when a charge q propagates with velocity v > c/n in a medium
with refraction index n, i. e., with a velocity higher than the speed of light in themate-
rial [65, 66]. The first theoretical description of such radiation in the framework of
Maxwell’s theory, developed by Frank and Tamm in [67], revealed its unique polar-
ization and directional properties. In particular, VC radiation is localized in a forward
cone with opening angle α = arccos(vn/c). VC radiation has played a fundamental
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role in the study of high-energy particle physics, high-power microwave sources and
nuclear and cosmic-ray physics [68, 69], both theoretically and experimentally.

In 1968 Veselago theoretically proposed that RVCR could be produced in mate-
rials having simultaneously a negative permittivity and permeability, dubbed as left-
handed media (LHM). A medium is left-handed when the momentum k of a propa-
gating electromagnetic wave is antiparallel to its Poynting vector E × B, i. e., when
the group velocity and the phase velocity of the wave are antiparallel [70]. In this
case photons would be emitted in the backward direction with respect to the velocity
of the propagating charge. Since these materials are not found in nature, this proposal
has generated a great boost to the design and construction of metamaterials, that is,
artifacts built in the laboratory that can reproduce these properties in certain fre-
quency ranges. In recent years the study of RVCR has been of considerable interest
[71–79]. The realization of a LHM in an interface between an ordinary media was
experimentally proved in [80]. It is interesting that Reversed Cherenkov radiation
has also been found for sound in topological insulators in [81, 82].

Let us consider two semi infinite magnetoelectric media (θ1 �= θ2) separated by a
planar interface � located at z = 0. The setup is described by θ -ED according to the
conventions in Sect. 17.2 and the modified Maxwell equations are (17.4). This time
we take into account the permittivity of the media, but choose ε1 = ε2 = ε to avoid
the interference with transition radiation. Still we consider non-magnetic media with
μ1 = μ2 = 1. These choices provide a first approximation to the problemwhich aims
to single out the effects of the axion coupling, determined by θ̃ = α(θ2 − θ1)/π .

The electric and magnetic fields are obtained from (17.6) after the potential Aμ is
expressed in terms of the GF according to (17.18). The GF Gν

σ (x, x ′) satisfies the
equation

([
�2

]μ
ν
− θ̃ δ(z)ε3µα

ν∂α

)
Gν

σ (x, x′, t − t ′) = 4πημ
σ δ4(x − x ′) (17.51)

and its calculation is analogous to the static case in Sect. 17.3. The main differences
with respect to (17.20) arise in the inclusion of the time dependence together with set-

ting ε �= 1 and they are reflected in the changes −ημ
ν ∇2 → [

�2
]μ

ν
=

(
ε�2,�2δi j

)

with �2 = ε∂2
t − ∇2. An additional Fourier transform involving exp iω(t − t ′) in

(17.24) allows to write the GF in terms of the reduced GF gν
σ (z, z′,p‖, ω)which sat-

isfies an equation similar to (17.25). In this case, the free reducedGF,F0(z, z′;k‖, ω),
satisfies

(
p2‖ − ω2ε − ∂2

z

)F0(z, z′;k‖, ω) = δ(z − z′), plus the standard BCs at
infinity. The result is [87]

F0(z, z
′;p‖, ω) = ieikz |z−z′ |

2kz
, kz =

√
εω2 − p2‖. (17.52)

The solution of the subsequent coupled algebraic equations yields a result for
gν

σ (z, z′,p‖, ω) in terms of F0(z, z′;p‖, ω) whose θ -dependent contribution shows
a dependence on |z| + |z′|, as it was the case in the static situation. The knowl-
edge of the reduced GF yields the coordinate representation Gν

σ (x, x′, ω) in terms
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of a Fourier transform in the parallel momentum space, as indicated in (17.24),
whose components are explicitly given in (43) of [64]. The next step is to evaluate
the GF in the far-field approximation corresponding to the coordinate conditions
r ≡ ‖x‖ � ‖x′‖, R‖ ≡ ‖ (

x − x′)
‖ ‖ � ‖x‖‖, |z| + |z′| � |z|. In this approxima-

tion the required integrals yielding the Fourier transforms include rapidly oscillat-
ing exponential functions whose leading contributions are calculated in the steepest
descent method [83–85]. Also we make repeated use of the generic Sommerfeld
identity [86]

i

∞∫

0

k‖dk‖√
k̃20 − k2‖

J0(k‖R‖)e
i
√
k̃20−k2‖ |Z | = eik̃0R

R , k̃0 = √
εω, (17.53)

with R =
√
R2

‖ + Z2 and n = √
ε being the refraction index. Two cases appear: (i)

Z = |z − z′|, whereR is denoted by R, corresponding to the usual θ̃ = 0 contribution
and (ii) Z = |z| + |z′|, whereR is denoted by R̄ and which involves the effects of the
axion coupling. It is pertinent to emphasize an important difference in the phase of
the exponentials related to the source variables x′ in these two different cases. In the
choice (i) we encounter the exponential eik̃0R , which in the coordinate approximation
of the far-field zone produces the phase i k̃0(r − x̂ · x′

‖ − z′ cos θ) = i k̃0(r − x̂ · x′)
characteristic of radiation in standard electrodynamics [87]. Here x̂ = x/‖x‖. On the
other hand, the contributions to the GF involving the axion coupling arising from the
choice (ii) include the exponential eik̃0 R̃ with

R̃ =
√

(x − x′)2‖ + (|z| + |z′|)2 =
√

(x − x′)2 − (z − z′)2 + (|z| + |z′|)2
=

√
(x − x′)2 + 2(|zz′| + zz′) ∼ r − x̂ · x′

‖ + |z′ cos θ |, (17.54)

in the far-field approximation. From the square root in second line of (17.54) we
remark that whenever the sign of zz′ = r cos θ z′ is positivewewill have an additional
relative phase contributing to the GFs, which will show up in observable quantities as
the radiated power for example. The term (|z| + |z′|)2 can ultimately be traced back
to the formof the reducedGF, asmentioned before. In the followingwewill show that
RVCR arises precisely due to the contribution |z′ cos θ | in the phase of the GF. The
detailed calculation is presented in the Appendix of [64] and here we only summarize
the results emphasizing the phase dependence of the contributions. The full GF Gμ

ν

can be written in terms of the auxiliary function Ḡμ
ν = Ḡμ

ED ν + Ḡμ
θ̃ ν + Ḡμ

θ̃2 ν

such that G0
0 = Ḡ0

0/ε and Gμ
ν = Ḡμ

ν for the remaining cases. In the far field
approximation we find
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Ḡμ
ED ν(x, x

′; ω) = ημ
ν

eik̃0r

r
e−i k̃0 x̂·x′

,

Ḡμ

θ̃ ν
(x, x′; ω) = εμ α3

ν

2θ̃

4n2 + θ̃2

sα
| cos θ |

eik̃0r

r
e
i k̃0

(
−x̂·x′‖+|z′ cos θ |

)
,

Ḡμ

θ̃2 ν
(x, x′; ω) = θ̃2

4n2 + θ̃2

eik̃0r

r cos2 θ
Cμ

ν(θ, φ, n) × e
ik̃0

(
−x̂·x′‖+|z′ cos θ |

)
, (17.55)

Here sα = (1/n, x̂) and θ, φ are the standard spherical angles labelling the unit vector
x̂.

Now we choose our source by considering a point charge q moving with a con-
stant velocity vû in direction perpendicular to the interface � which is described

by the charge and current densities �(x′;ω) = q
v δ(x

′)δ(y′)eiω z′
v and j(x′;ω) = �vû,

respectively. Here û is the unit vector perpendicular to the the interface and directed
from the region z < 0 to the region z > 0. In the following we assume v > 0 and
consider the motion in the interval z ∈ (−ζ, ζ ), with ζ � v/ω, to then take the limit
ζ → ∞. After a long calculation in the far field approximation, we get the electric
field starting from the potential Aμ obtained from the convolution of the given source
with the GF resulting from (17.55). In this way we are in position to determine the
spectral distribution (SD) of the radiation given by

d2E/dωd� = (E∗ · E) nr2/4π2 (17.56)

in the limit r → ∞. The main point to stress is that the resulting E turns out to be
linear in the following integrals

I1(ω, θ) =
ζ∫

−ζ

dz′ei ωz′
v (1−vn cos θ) = 2 sin (ζ�−)

�−
, (17.57)

I2(ω, θ) =
ζ∫

−ζ

dz′einω|z′ cos θ |+iω z′
v = sin(ζ �̃−)

�̃−
+ sin(ζ �̃+)

�̃+
+ 2i

sin2( ζ
2 �̃−)

�̃−

− 2i
sin2( ζ

2 �̃+)

�̃+
. (17.58)

The notation is �− = ω
v (1 − vn cos θ) and �̃± = ω

v (1 ± vn| cos θ |). Moreover,
in the limit ζ → ∞, the right hand side in (17.57) and (17.58) yields contributions of
the type sin(ζ ρN )/(ρN )which behave like πδ(ρN ). This implies that the non-zero
contributions to the electric field arise from those terms whose arguments �− and
�̃± can take the value zero. With our previous conventions (vn > 0) this condition
eliminates the dependence on �̃+ as a possible candidate. The remaining possibilities
are (i) 1 − vn cos θ = 0 and/or (ii) 1 − vn| cos θ | = 0. The first case contributes to
the standardVC radiation yielding cos θC = 1/(nv). Case (ii) opens up the possibility
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that cos θ < 0 , yielding a radiation cone with angle θR = π − θC which signals the
reversed VC radiation. In other words, the term containing �̃− makes possible the
production of radiation in the backward direction with respect to the moving charge.
The total SD of the radiation is the sum of the following three contributions

d2E1
dωd�

= nω2q2

π2

(
1 − 1

v2n2

)
sin2 (ζ�−)

�2−
, (17.59)

d2E12
dωd�

= −nω2

π2
θ̃2q2

4n2 + θ̃2

(
1 − 1

v2n2

) sin (ζ�−) sin
(
ζ �̃−

)

�−�̃−
, (17.60)

d2E2
dωd�

= nω2

4π2
θ̃2q2

4n2 + θ̃2

(
1 − 1

v2n2

)⎡
⎣ sin2

(
ζ �̃−

)

�̃2−
+

sin4
(

ζ
2 �̃−

)

1
4 �̃2−

⎤
⎦ . (17.61)

Equation (17.59) gives the SD of standard VC radiation (cos θC = 1/(nv) > 0),
which acquires θ̃ -dependent corrections from the remaining contributions. Let us
observe that (17.60) contributes only to the forward radiation. The reversed VC
radiation, which is strictly zero for normal insulators, arises only from the term in
(17.61) which nevertheless also contributes to the forward output.

The total energy per unit frequency and per unit length radiated by the charge
on its path from −ζ to +ζ is calculated along the steps in [88] integrating the
solid angle and taking into account that the delta-like behavior of the integrands
shows that the radiation is sharply localized in a main lobe around the angles θC of
the forward/backward cone. Such lobes produce the final cones of radiation when
ζ → ∞. The results for the forward and reversed VC radiation are:

d2EFVCR

dω dL
= q2ω

(
1 − 1

v2n2

)[
1 − 1

2

θ̃2

4n2 + θ̃2

]
, (17.62)

d2ERVCR

dω dL
= q2ω

(
1 − 1

v2n2

)[
1

2

θ̃2

4n2 + θ̃2

]
, (17.63)

respectively. We have introduced the total length L = 2ζ travelled by the particle.
To illustrate our results, we consider medium 2 as the topological insulator

TlBiSe2, with n2 = 2, together with a normal insulator as medium 1, character-
ized by n1 = n2. We consider the radiation emitted at a frequency of ω = 2.5 eV
(500 nm), which constitutes an average in the Cherenkov radiation spectrum. The
angular distribution of the total radiation is shown in Fig. 17.4. In the left panel
we plot an enlargement of the angular distribution in the backward direction, which
shows the appearance of the reversed VC radiation and makes its suppression evi-
dent with respect to the forward output, which is given by the ratio θ̃2/8n2 between
the results (17.63) and (17.62). A comparison with measurements of reversed VC
radiation in metamaterials can be established by interpreting this suppression as
due to the detection of radiation at an effective frequency ωeff = ω θ̃2/8n2. Tak-
ing an average of 500 nm (2.5 eV) in the Cherenkov spectrum, we would expect
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Fig. 17.4 Angular distribution for the total radiated energy per unit frequency for the full VC
radiation for the choices for n = 2, ω = 2.48 eV and θ̃ = 11α. The dashed purple line corresponds
to v = 0.9 and ζ = 343 eV−1, and the solid cyan line to v = 0.5009 and ζ = 4830 eV−1. The scale
of the polar plot is in arbitrary dimensions and runs from 0 to 106. In the left side of the figure we
plot an enlargement in the backward direction showing the onset of the reversed VC radiation. Here
the radial scale goes from zero to 102. The charge moves from left to right, (adapted from [64])

the production of reversed VC radiation at effective frequencies ωeff in the range
from 4 × 10−3 meV for θ̃ = α to 0.5meV for θ̃ = 11α respectively, using TlBiSe2
as a θ -medium. Recent measurements of reversed VC radiation in metamaterials
show that this estimations are within the experimental capabilities. Reversed VC
radiation has been measured at a frequency of 2.85 GHz (1.2 × 10−2 meV), in
an all-metal metamaterial consisting of a square waveguide loaded with comple-
mentary electric split ring resonators [78]. Likewise, reversed VC radiation in the
range (3.4 − 3.9) × 10−2 meV has also been experimentally verified in a phased
electromagnetic dipole array used to model a moving charged particle [76]. We
have also estimated that d2ERVCR/dtdω = vd2ERVCR/dω dL is within the range
10−3 − 10−2 µW/eV for the frequency interval ω = 2 − 8 eV. Such values are
smaller by a factor of 10−4 − 10−3 than the maximum output of ∼ 10 µW/eV theo-
retically predicted to occur in the narrow interval of 5.7 − 6.5 eV in ametal-insulator-
metal waveguide [79]. In such a waveguide with a core thickness of a = 20 nm, sur-
face plasmon polaritons excited by an electron moving at v = 0.8 produce reversed
VC radiation.

The main features of the RVCR we have found are: (i) the threshold condition
v > 1/n must be satisfied as in the usual case, (ii) RVCR occurs for all frequencies
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in the Cherenkov spectrum and is always accompanied by forward radiation with
the same frequency, (iii) the angular distribution of the RVCR is suppressed with
respect to the forward emission by a factor θ̃2/8n2. The details of this development
are reported in [64].

17.6 Electromagnetic Response of Weyl Semimetals

In addition to the topological insulators, which are characterized by a gapped bulk
and protected boundary modes that are robust against disorder [19–22], we have
recently learned that gapless semimetallic states may be topologically nontrivial
in the same sense as gapped insulators. Weyl semimetals are topological states of
matter in which the 3D bulk containsWeyl points (band crossing points) protected by
crystalline symmetries and whose low-energy quasiparticles are linearly dispersing
massless Weyl fermions. Weyl semimetals possess protected gapless surface states
on disconnected Fermi arcs with end points at the projection of the bulk nodes onto
the surface Brillouin zone [24].

Besides their spectroscopic distinguishing features, WSMs also exhibit unusual
electromagnetic responses that are a direct macroscopic manifestation of the non-
trivial topology of their band structure. Mathematically, the anomalous Hall effect
and related effects to the chiral anomaly may be compactly expressed as an induced
θ term in the action of the electromagnetic field, when chiral fermions are integrated
out [89–91]:

Sθ = α

4π2

∫
θ(r, t)E · B dt d3r, (17.64)

where α = e2/�c is the fine-structure constant and θ(r, t) is the axion field, with the
following form

θ(r, t) = 2b · r − 2b0t, (17.65)

where 2b is the separation, in momentum space, between Weyl nodes and 2b0 their
separation in energy. Topological response of WSMs is thus described by an action
similar to that of axion-electrodynamics [36]. The relevant equations of motion are
obtained by varying the full action (Sθ plus the nontopological Maxwell action):

∇ · D = 4π
(
ρ − α

2π2
b · B

)
, (17.66)

and

∇ × H − 1

c

∂D
∂t

= 4π

c

(
J + α

2π2
cb × E − α

2π2
b0B

)
, (17.67)
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whereD = εE andB = μ̃H. Faraday’s law,∇ × E = −c−1∂B/∂t , and the equation
stating the absence of magnetic monopoles, ∇ · B = 0, remain unaltered. Here, as in
ordinary metals, ε = ε + iσxx (ω)/ω and μ̃ = 1 + χm , where ε is the static permit-
tivity, σxx (ω) is the longitudinal conductivity and χm is the magnetic susceptibility
that we assume is negligible for the WSM. Again, we will treat the WSMmaterial as
linear and isotropic, but the extension to the linear and anisotropic case is possible.

There are other distinguishing effects of Weyl semimetals not fully captured by
axion electrodynamics, such as the chiral magnetic effect and the chiral separation
effect. These can be derived by using, for example, the semiclassical Boltzmann
transport theory. In short, if we have chiral fermions in amagnetic fieldwith chemical
potentials μL and μR for left- and right-handed fermions, respectively, there are two
additional B-dependent current terms, namely,

J(B) = α

2π2
μ5B , J(B)5 = α

2π2
μB, (17.68)

whereμ5 = (μL − μR)/2 andμ = (μL + μR)/2 are the chiral and the electric chem-
ical potentials, respectively.

The anomalous Hall effect, which is expected to occur in a Weyl semimetal
with broken time-reversal (TR) symmetry, is described by the b-dependent terms in
(17.66) and (17.67). In addition, the b0-dependent term that arises inWeyl semimetals
with broken inversion symmetry, describes only one part of the celebrated chiral
magnetic effect, namely, the generation of an electric current driven by an applied
magnetic field. The second part is given by J(B) in (17.68), which arises from an
imbalance between chemical potentials of right- and left-handed fermions. The total
contribution to the chiral magnetic effect is thus given by JCME = α

2π2 (μ5 − b0)B,
that vanishes for b0 = μ5 in which case theWSM is said to be at the equilibrium state
[92]. The electric current JB5 in (17.68) is identified as the chiral separation effect,
which vanishes for μ = 0, condition that defines the neutrality point [92].

17.6.1 Electric Charge Near a Weyl Semimetal

Recent publications have tackled a number of physical effects on the basis of the
above theory. Among them we find the magneto-optical Faraday and Kerr rotations
[93] and the Casimir effect [94], as well as the appearance of plasmon polaritons
[95] and helicons [96] at the sample’s surface. Here, inspired by the image magnetic
monopole effect of topological insulators [33, 45, 97], we shall briefly discuss the
problem of a pointlike electric charge near the surface of a topological WSM in the
equilibrium state and at the neutrality point. This means that the material’s response
will be a direct consequence of the anomalous Hall effect in the bulk. Charge neutral-
ity is not an unrealistic assumption for WSMs, since it can be attained under specific
circumstances, as shown both theoretically and experimentally in [98].
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Let us consider a topologicalWeyl semimetal with a pair of nodes separated along
the kz-direction in the bulk BZ occupying the half-space z < 0. The region z > 0
is occupied by a dielectric fluid. An electric charge is brought near the surface that
does not support Fermi-arc electronic states, in this case the xy-plane for b = bêz .
Neglecting all frequency dependence on the conductivities (sincewe dealwith a static
problem), the electromagnetic response of theWSM is fully captured by (17.66) and
(17.67), with b0 = μ5 and μ = 0. Since θ(z = 0) = 0, there are no surface currents,
and the resulting material is just a bulk Hall medium with current responses given
by the transverse Hall conductivity

σxy = e2b

2π2�
. (17.69)

Due to the gauge invariance of the theory, we can introduce the electromagnetic
potentials as usual: E = −∇� and B = ∇ × A. In the Coulomb gauge ∇ · A = 0,
for a pointlike electric charge of strength q at r′ = z′êz with z′ > 0 (that is the
charge lies in the dielectric fluid), the electromagnetic potentials satisfy the coupled
equations of motion

−∇ · [ε(z)∇�] + 4π

c
σxy(z) êz · ∇ × A = 4πqδ(z − z′), (17.70)

−∇2A + 4π

c
σxy(z) êz × ∇� = 0, (17.71)

where σxy(z) = σxy H(−z) is the bulk Hall conductivity and ε(z) = ε1H(−z) +
ε2H(z) is the static permittivity of the system. The differential equations (17.70) and
(17.71), along with the appropriate boundary conditions at the interface z = 0 and at
the singular point z = z′, constitute a complete boundary value problem, which can
be solved with standard techniques of electromagnetism [42]. The solution is simple,
but not straightforward [99]. On the one hand, the final result for the electrostatic
potential beneath the surface is

�z<0 = 2q

∞∫

0

(λ+ + k) cos (λ−z) + λ− sin (λ−z)
ε1

(
λ2+ + λ2−

) + ε2k2 + kλ+ (ε1 + ε2)
k J0(kρ)eλ+z−kz′

dk, (17.72)

and, above the surface, we find

�z>0 = q

ε2

1√
ρ2 + (z − z′)2

+ q

ε2

ε2 − ε1

ε2 + ε1

1√
ρ2 + (z + z′)2

− 2qε1

ε1 + ε2

∞∫

0

λ2+ + λ2− − k2

ε1
(
λ2+ + λ2−

) + ε2k2 + kλ+(ε1+ε2)
J0(kρ)e−k(z+z′)dk.

(17.73)
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Fig. 17.5 Illustration of the electric (left) andmagnetic (right) fields (in units of q�2), as a function
of�z and�ρ, induced by an electric charge of strength q at z′ = 1/� (marked with the red sphere)
above the WSM TaAs (marked with the blue shaded region), (adapted from [99])

In these expressions λ2± = (k/2)
[√

k2 + �2 ± k
]
, � = 4πσxy/(c

√
ε1), ρ2 = x2 +

y2 and Jn is the nth order Bessel function of the first kind. We observe that in the
dielectric fluid, the electric potential can be interpreted as due to the original electric
charge of strength q at z′, an image electric charge of strength q(ε2 − ε1)/(ε2 + ε1)

at −z′, and an additional term arising from the nontrivial topology of the WSM.
Inside the material, the electric potential has no simple interpretation. However, as
evidenced by the exponential term in (17.72), it is attenuated inside the WSM due
to the metallic character of the material. This can also be seen in the limit ε1 → ∞,
for which �z<0 = 0, as in a perfect conductor.

The electric field is obtained from the above potentials as E = −∇�. The left
panel of Fig. 17.5 illustrates the electric field E (in units of q�2) generated by
an electric charge in vacuum (ε2 = 1) at z′ = 1/� (red sphere) close to the WSM
TaAs [100] as a function of the dimensionless coordinates �ρ and �z. We observe
that the electric field outside the WSM is similar to that generated by the original
electric charge, with deviations close to the interface due to the screening of the field
inside the material. This behaviour is similar to that produced by an electric charge
close to an ordinary metal or a dielectric, but the electric field beneath the surface is
more complicated than in these nontopological cases. For example, the electric field
within a uniform and isotropic dielectric is a radially directed field (with the charge
outside the material as its source); while the field inside an ordinary metal is zero. In
the present case, as shown in Fig. 17.5, the electric field is remarkably different as
evidenced by the curved field lines inside.

On the other hand, the resulting vector potential beneath the surface is
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Az<0 = 2qε1êϕ

∞∫

0

λ− cos (λ−z) − (λ+ + k) sin (λ−z)
ε1

(
λ2− + λ2+

) + ε2k2 + kλ+ (ε1 + ε2)
k J1(kρ)eλ+z−kz′

dk,

(17.74)

and, above the surface, we obtain

Az>0 = 2qε1êϕ

∞∫

0

λ−
ε1

(
λ2− + λ2+

) + ε2k2 + kλ+ (ε1 + ε2)
k J1(kρ)e−k(z+z′)dk.

(17.75)

The magnetic field is obtained as B = ∇ × A. The right panel of Fig. 17.5 shows
the magnetic field B (in units of q�2) induced by an electric charge in vacuum at
z′ = 1/� close to the WSM TaAs as a function of the dimensionless coordinates
�ρ and �z. We observe that in the present case, the behaviour of the field lines
is significantly different from the radially directed field lines appearing when the
charge is close to a TI. We will discuss this point later.

The physical origin of the magnetic field is the bulk Hall current circulating
around the symmetry axis, JHall = σxy

(
êρ · Ez<0

)
êϕ , which is induced by the in-

plane component of the electric field produced by the charge. In this way, each cross
section (perpendicular to the symmetry axis) of the bulk Hall current resembles the
surface Hall current induced by an electric charge near to a topological insulator.
This suggests that a 3D Weyl semimetallic phase can be understood as an infinite
number of 2+1 Dirac subsystems (one for each value of z in the bulk) supporting a
surface Hall current [100].

Now we go back to the discussion of the behaviour of the magnetic field lines in
Fig. 17.5. A close inspection reveals that below the surface of the WSM, centered
at the position of the image charge, the B-field lines wind in an axisymmetric way
as if about a loop of current, similar to those of a physical magnetic dipole. This
suggests that we consider a multipole expansion of the magnetic field and determine
the dominant contribution. Still, we recall that the source of the magnetic field is not
localized (since JHall is defined in the whole bulk), and hence the standard multipole
expansion for localized sources does not necessarily applies. In the far zone, the
integral in (17.75) can be approximated in powers of 1/r . The dominant contributions
are

A(1) ≈ 3

32

q

�

√
π

2

tan(θ/2)(13 + 3 cos θ)

r3/2
êϕ, A(2) ≈ − q

�

(
1 + ε2

ε1

)
sin θ

r2
êϕ,

(17.76)
where θ is the angle from the z-axis to the observation point, i.e. r cos θ = êz · r and
r = √

ρ2 + (z + z′)2.We observe that the leading term is a fractional multipole, with
no analogue in standard electromagnetism. The measurement of this contribution
would be a unique signature of the anomalous Hall effect in the bulk of 3D WSMs.
The second term can be successfully compared with the vector potential produced
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by a magnetic dipole of strengthm = −(q/�)(1 + ε2/ε1) located at the image point
−z′, thus confirming the qualitative expectation that a magnetic dipole is induced.

17.6.2 Experimental Proposals

Now we discuss two specific fingerprints of the induced magnetic field which could,
in principle, be measured.

Angle-resolved measurement

In the static case considered above, theWSMattracts the charge toward the surface in
the direction perpendicular to it with a force Fe = qEz>0(r′), where r′ = z′êz is the
position of the charge. However, interesting phenomena appear when we consider
the dynamics of the external charge. Let us consider, for instance, a steady electron
beam drifting at a distance z′ above the surface of the WSM. To make our solution
still valid, we have to consider the electrons slow enough with respect to the Fermi
velocity in the solid, in such a way that the induced polarization and magnetization
of the material rearranges infinitely fast. So, besides the electrostatic force Fe, if the
charge q moves with a uniform velocity v above the surface of theWSM, a magnetic
force of the form Fm = q v

c × Bz>0(r′) will also act on the charge due to the induced
magnetic field. For an electron beam moving along the x-direction (with velocity
v = vx êx ) we find

Fm = −2q2ε1(vx/c) êy

∞∫

0

k2λ− e−2kz′

ε1
(
λ2+ + λ2−

) + ε2 k2 + kλ+ (ε1 + ε2)
dk. (17.77)

Remarkably, this anomalous force is orthogonal to the electrons’ motion as well as to
the electric contribution Fe, and hence these effects can be distinguished from each
other. In fact, the effect of the anomalous force (17.77) on the electrons’ motion is
a deflection in the y-direction which could, in principle, be measurable. For a rough
estimate, we take vx ∼ 107 cm/s (which is appropriate for the steady electron beam
emitted from a low-energy electron gun) [101], z′ ∼ 1µm and L ∼ 1 cm for the
sample’s size. So, for a beam of electrons drifting above the WSM TaAs (for which
ε1 ∼ 6 and b ∼ 109 m−1 [100]), the resulting transverse drift would be 3.2µm. This
deflection can be easily traced by angle-resolved measurement [101]. If this exper-
iment were carried out with a Dirac semimetal by applying an external magnetic
field, instead of a genuineWSM such as the TaAs, the induced magnetic field will be
overwhelmed by the external one, and so would its contribution to the Lorentz force
on a moving charge. For example, by considering the Dirac semimetal Cd3As2 in
the presence of a magnetic field of 1T (for which b = 5 × 108m−1 and ε1 = 12), the
resulting transverse drift is 107 larger than the purely topological contribution, thus
making its detection challenging. We then conclude that an angle-resolved measure-
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ment is appropriate for experimental realization only if it were possible to consider
a genuine WSM, for which no external magnetic field is needed.

Scanning SQUID magnetometry

Scanning SQUID (Superconducting Quantum Interference Device) magnetometry
provides an alternative for measuring the induced magnetic field. SQUIDs are very
sensitivemagnetometers based on superconducting loops containing Josephson junc-
tions, and they are used to measure extremely low magnetic fields (of the order
of 5 × 10−18T [102]). In general terms, these devices measure the magnetic flux
through a loop (parallel to the surface) placed at a fixed distance above the material,
i.e. �B = ∫

S
B · dS, where S is the surface of the loop.

In the present case, a simple calculation produces �B(R, z) = 2πR êϕ · Az>0

(R, z), where R is the radius of the loop and Az>0 is given by (17.75). Of course,
�B = 0 at R = 0. Furthermore, since the magnetic field lines start at the WSM
surface and go back again to the surface (see the right panel of Fig. 17.5), we then
have �B → 0 as R → ∞. This behaviour implies the existence of a maximum
flux at a critical radius Rc, which can be determined in the usual manner (i.e. by
solving ∂R�B|R=Rc = 0 for Rc). For a numerical estimate of the magnetic flux we
consider a charge q = ne|e| placed at a distance z′ = 1µm above the surface of the
WSM TaAs and a SQUID of radius R = 10µm located at z = 10µm.We find �B ≈
7ne × 10−14T · cm2, which is measurable with present day attainable sensitivities of
SQUIDs [102]. One of the key challenges for the experimental detection of this flux
profile would be to find a way to fix and localize the charge above the surface.

If this experiment were carried out with a Dirac semimetal instead of a genuine
WSM, the required external magnetic field will overwhelm the topological contribu-
tion to the total magnetic flux, as before. Nevertheless, in this case it is still possible
to disentangle these effects by using the fact that the contribution to the flux produced
by the external magnetic field, say �ext

B , is constant in space and time, but not �B. A
sensitive magnetometer as the SQUID will be capable to measure small variations
of the flux which amounts to eventually measuring the induced electromotive force
E in the loop. Therefore, this allows for isolating the topological contribution, for
example, by producing a controlled displacement of the SQUID along the z-axis
at speed vz , namely: E = − d

dt

(
�ext

B + �B
) = −vz

d�B
dz , where the z-dependence is

read-off from (17.75).

17.7 Conclusions

In this chapter we have given an overview as to how the properties of magnetoelectric
media associated with topological order, that arise from subtleties in their electronic
structure, can be understood as macroscopic optical properties in regards to their
electromagnetic response. We have presented the reader with the theoretical frame-
work that allows to describe the electromagnetic response of magnetoelectric media
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by means of axion-like extended electrodynamics with a non-dynamical axion field
θ . Among the benefits of such effective field theory approach is that we can exploit a
Green’s function formulation to solve for the electromagnetic fields with rather arbi-
trary configuration of charges, currents, boundary conditions and/or combination of
these. Our tools and techniques have been applied to linear isotropic and homoge-
neous magnetoelectric media with mild coordinate restrictions that are, however,
plausible from an experimental point of view. Other benefit of the GF formulation is
that themethod canbe extended to the case of anisotropicmedia. To illustrate our tools
and techniques, we summarize some previously reported results that include: (i) a
detailed assessment of the boundary value problem of axion electrodynamics and the
modified boundary conditions for the electromagnetic fields across the magnetoelec-
tric interface; (ii) the application to the case of a topological insulator with planar
geometry located between two parallel conducting plates to compute the ensuing
modification to the Casimir effect; (iii) as an example on how to extend the formu-
lation beyond the static cases, we review some results showing that this technique
can be applied to the case of an electric charge traversing from one magnetoelectric
medium to another at a constant speed and perpendicular to the interface between
them to reveal that, besides the usual forward-directed Vavilov-Cherenkov emission
of radiation, a novel feature due entirely to the magnetoelectric effect is an additional
backward-directed radiation, termed reversedVavilov-Cherenkov radiation. Last (iv)
we employ the same approach to study the induced electromagnetic fields due to a
static electric charge near the surface of a Weyl semimetal in the equilibrium state
and at neutrality point to find that inside the WSMmedium the induced electric field
is nothing like inside a conductor nor insulator and the induced magnetic field out-
side the WSM has among its multipole contributions one term that corresponds to a
magnetic dipole field, as if below the surface of theWSM the electric charge induced
a stack of alternating axisymmetric circulating currents centered at the projection of
the electric charge. Two different experimental setups are proposed to measure dis-
tinctive characteristics of the induced magnetic field as smoking-gun signals of the
magnetoelectric effect in WSM and we argue that these observable signals could be
measured given the present-day experimental sensitivities available.

As mentioned in the beginning, the study of topological phases of matter is both
a fundamental and technological challenge. We think that with our exposition we
contributed in both fronts. Our approach allows to shed lights on the understanding
of the interaction of these new states of matter with electromagnetic radiation. At
the same time, and as a corollary of our approach, we have provided new means to
eventuallymeasure observable signals of themagnetoelectric effect using topological
insulators or Weyl semimetals. Though we have provided but a few examples, the
generality of the Green’s function method paves the way for new proposals to similar
ends.
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65. P.A. Čerenkov: Visible luminescence of pure liquids under the influence of γ -radiation. Dokl.
Akad. Nauk SSSR 2, 451 (1934)

66. S.I. Vavilov, On the possible causes of blue γ -glow of liquids. Dokl. Akad. Nauk SSSR 2,
457 (1934)

67. I.M. Frank, I.E. Tamm: Coherent visible radiation of fast electrons passing through matter.
Dokl. Akad. Nauk. 14, 107 (1937) [Compt. Rend. (Dokl) 14, 109 (1937)]

68. V.P. Jelley, Cherenkov radiation and its applications. Br. J. Appl. Phys. 6, 227 (1955)
69. V.P. Jelley, Cherenkov Radiation and its Applications (Pergamon, Oxford, 1958)
70. V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε

and μ. Soviet Physics Uspekhi 10, 509 (1968)
71. J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Extremely low frequency plasmons in

metallic mesostructures. Phys. Rev. Lett. 76, 4773 (1996)
72. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetism from conductors and

enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech. 47, 2075 (1999)
73. J. Lu, T.M. Grzegorczyk, Y. Zhang, J. Pacheco Jr., B.-I. Wu, J.A. Kong, M. Chen, Čerenkov
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Chapter 18
Purcell Effect in PT-Symmetric
Waveguides

Alina Karabchevsky, Andrey Novitsky, and Fyodor Morozko

Abstract This chapter overviews the principles of the spontaneous emission rate
increase, that is the Purcell effect, in relation to the photonic parity-time (PT) symme-
try. Being focused on the system of coupled PT-symmetric optical waveguides, we
consider behaviors of the Purcell factor in PT-symmetric and broken-PT-symmetric
regimes. Surprisingly, exceptional points in a coupled waveguide do not influence
on the Purcell factor.

18.1 Introduction

By exploring the interplay between loss and gain as well as the coupling mecha-
nism in waveguide-emitter systems, one can generate and control light on a chip.
This chapter introduces the underlying physics of Purcell effect for emitters in PT-
symmetric waveguides. In general, physical world exhibits symmetries lying behind
the conservation laws of physics. They help to control the structure of matter and
define interactions. The laws of physics are required to be invariant under changes
of redundant degrees of freedom dictated by the symmetries. There are several fun-
damental symmetries including the charge conjunction or C symmetry for a particle
and its anti-particle, parity or P symmetry for a system and its mirror image and time
reversal or T symmetry for the time running forward and backward. Despite the fact
that the laws of physics are dictated by symmetries, it is the symmetry breaking that
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Fig. 18.1 Schematics of
materials characterisation in
terms of loss and gain
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creates nontrivial physics by lifting the degeneracies. A number of intriguing proper-
ties in photonics are related to the PT-symmetry usually described by non-Hermitian
systems. Non-Hermitian Hamiltonians possessing parity-time (PT) symmetry that
is the symmetry with respect to the simultaneous coordinate and time reversal [1].
There is still a debate whether PT-symmetry is a fundamental feature or shares
common properties with naturally occurring symmetries. Also questionable is the
phenomenon of phase transition and it is important to understand the spectral degen-
eracies induced by PT-symmetry named exceptional points (EP) which is a point in
parameter space at which phase transition occurs.

Controlling the magnetic permeabilityμ and the real part of the dielectric permit-
tivity εr has enabled novel functionalities. PT symmetry and non-Hermitian photon-
ics open new possibilities by controlling the imaginary part of the dielectric permit-
tivity (εi ), and by considering gain and loss. Figure 18.1 schematically shows this
interplay when characterising materials in terms of the gain and loss.

The chapter is organised in the followingway: In Sect. 18.2, we introduce the prin-
ciples of PT-symmetry. PT-symmetric photonic devices are presented in Sect. 18.3
such as those based on coupled-mode theory, two-dimensional photonic waveguide
lattices, multilayer structures, and microresonators. Purcell effect in PT-symmetric
waveguides is described in Sect. 18.4. Eventually, the Sect. 18.5 summarises the
chapter and gives an outlook to future research.

18.2 Principles of PT Symmetry

In 1998 Bender and Bötcher [2] have shown that quantum systems with non-
Hermitian Hamiltonians can have entirely real spectra. Such Hamiltonians are
referred to as pseudo-Hermitian. The first known class of pseudo-Hermitian Hamil-
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tonians are PT-symmetric ones i.e. those commuting with P̂ T̂ operator where P̂ and
T̂ are correspondingly coordinate and time reversal operators

P̂ T̂ Ĥ = Ĥ P̂ T̂ . (18.1)

Operator P̂ changes sign of coordinates whereas T̂ operator changes sign of
time and performs complex conjugation [1]. This means that PT-invariance of the
Hamiltonian can be stated in the form

Ĥ(p̂, r̂, t) = Ĥ∗(p̂,−r̂,−t). (18.2)

For Hamiltonians of the form

Ĥ = p̂2

2m
+ V (r), (18.3)

where p̂ is the momentum operator, m is mass, and V is complex potential, action
of P̂ T̂ operator results in the Hamiltonian

P̂ T̂ Ĥ = Ĥ P̂ T̂ = p̂2

2m
+ V ∗(−r). (18.4)

Therefore, for the Hamiltonian (18.3) to be PT-invariant it is needed that potential
energy V (r) satisfies the condition

V (r) = V ∗(−r). (18.5)

In other words, real part of the potential energy must be even function of coordinates
whereas imaginary part must be odd function.

It can be shown that if the eigenfunctions |ψn〉 of the PT-symmetric Hamiltonian
Ĥ ,

Ĥ |ψn〉 = En|ψn〉, (18.6)

with the corresponding eigenvalues En are also eigenfunctions of the P̂ T̂ operator

P̂ T̂ |ψn〉 ≡ σn|ψn〉 (18.7)

with some (complex) eigenvalues σn , the eigenvalues En of the Hamiltonian are real.
Condition (18.7) is necessary and sufficient for eigenvalues of the Hamiltonian [1] to
be real. Hence, if the eigenvalues En are real, the eigenfunctions are PT-symmetric
and the system is considered to be in PT-symmetric regime (phase). Contrarily, if the
eigenvalues are complex, the eigenfunctions are essentially not PT-symmetric and
the system is in PT-symmetry-broken regime.

In contrast to Hermitian case, eigenfunctions of pseudo-Hermitian Hamiltonians
are not orthogonal under conventional inner product. Instead, they obeymore general
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biorthogonality relations. Orthogonality can be re-established bymodifying the inner
product. Discussion of quantum mechanics based on biorthogonal states is given in
[3–6].

18.2.1 Phase Transition in PT-Symmetric Systems

One of the most intriguing features of PT-symmetric systems is a phase transition
from the PT-symmetric to PT-symmetry-broken phase. If the Hamiltonian of the
system Ĥ(p̂, r̂, t, p) depends on some parameter p, the Hamiltonian can have real
as well as complex eigenvalues being, either in PT-symmetric or non-PT-symmetric
states, respectively. When due to variation of the parameter p the system’s spectrum
changes from real to complex and vice-versa, one can study the phase transition
related to the spontaneous breaking of PT symmetry. The point in parameter space
p = pc at which phase transition occurs is named as an exceptional point (EP). At
the EP, both eigenvalues and eigenfunctions coalesce.

18.2.2 PT-Symmetry in Optics

Quantum-mechanical concept of the PT symmetry can be realised in optics due to the
fact that Maxwell’s equations in case of two- and one-dimensional photonic struc-
tures can be reformulated into an equation formally coinciding with the Schrödinger
equation.

With light propagation along these structures it is convenient to introduce the
so called slowly varying envelope (SVE) field, where most of the electromagnetic
field variation is extracted by defining a suitably selected reference propagation
constant [7]. Specifically, if the structure is invariant in z, SVE e for electric field is
defined as

E(x, y, z) = e(x, y, z)e−ik0n0z (18.8)

where k0 = ω/c is the vacuum wavenumber and n0 is the reference (background)
refractive index. SVE h for magnetic field is defined analogously as

H(x, y, z) = h(x, y, z)e−ik0n0z . (18.9)

Within the slowly varying envelope approximation (SVEA) it is assumed that

∂2

∂z2

(
e
h

)
� 2k0n0

∂

∂z

(
e
h

)
(18.10)

and the second-order z-derivative terms are neglected. Due to z-invariance of the
structure transverse and longitudinal components of e and h decouple. The transverse
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components of SVE fields et and ht , hence, satisfy first-order equations with respect
to the z derivative. The above can be summarised in a Schrödinger-like equation

i
∂

∂z
|ψ〉 = Ĥ |ψ〉, (18.11)

for an optical state-vector |ψ〉 defined as

|ψ〉 =
(
et
ht

)
. (18.12)

Ĥ is an optical Hamiltonian governing the z-evolution of SVE fields. Generally, Ĥ
is represented by a 4 × 4 matrix joining operators describing evolution of et and ht .
Explicit form of these operators found in [7]. For waveguide structures with very
small index contrast in both transverse directions equation (18.11) can be reduced
to a scalar equation. Within the scalar approximation the Hamiltonian Ĥ takes the
form

Ĥ = 1

2k0n0

(
∂2

∂x2
+ ∂2

∂y2
+ V (x, y)

)
. (18.13)

Quantity
V (x, y) = k20

(
ε(x, y) − n20

)
(18.14)

can be associated with a potential of the Schödinger equation. From the condition
of the PT symmetry in quantum mechanics V (x, y) = V ∗(−x,−y) we arrive at the
similar condition in optics ε(x, y) = ε∗(−x,−y). Therefore, in optical systems the
PT symmetry can be established by judiciously incorporating gain and loss. Thus,
the refractive index profile now plays the role of the complex potential.

18.2.3 Inner Product for PT-Symmetric Optical Systems

We define the inner product as a cross product of the bra-electric and ket-magnetic
fields integrated over the cross-section z = const:

〈φ1|φ2〉 ≡
∫

(E1 × H2) · ẑdxdy (18.15)

Such a definition is justified by the non-Hermitian nature of PT-symmetric systems.
In the above and following relations we can drop t subscripts because z component of
the vector products depends only on transverse components and

(
Et,1 × Ht,2

) · ẑ =
(E1 × H2) · ẑ.

It is well known that the modes of Hermitian systems are orthogonal in the sense
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〈i | j∗〉 =
∫ (

ei × h∗
j

) · ẑdxdy ∼ δi j , (18.16)

where δi j is the Kronecker delta. Here and below |ψ∗〉 = (e∗
t ,h

∗
t )

T . Relation-
ship (18.16) is often referred to as power orthogonality, because 1

2 Re 〈i |i∗〉 is the
power carried by the mode |i〉. However, the loss and gain in the non-Hermitian sys-
tems break power orthogonality. In this case, one should use a non-conjugate inner
product [8–10] bringing us to the orthogonality relationship

〈i | j〉 =
∫ (

ei × h j
) · ẑdxdy = 2Niδi j , (18.17)

where Ni is a normalisation parameter. We want to stress that orthogonality rela-
tion (18.17) is valid not only for PT-symmetric but for arbitrary non-Hermitian sys-
tems.

Forward and backward transverse modal fields et,i and ht,i satisfy the symmetry
relations

et,−i = et,i , ht,−i = −ht,i (18.18)

both in the case of Hermitian and non-Hermitian systems.
This means that the inner product of the modes also meets the symmetry relations

for its bra- and ket-parts:

〈−i | j〉 = 〈i | j〉, (18.19)

〈i | − j〉 = −〈i | j〉. (18.20)

18.2.4 Petermann Factor

It is common to express non-orthogonality of the modes quantitatively in terms of
Petermann factor [11–15]. Petermann factor is defined as the squared ratio between
Hermitian and non-Hermitian norms. In our notation Petermann factor Ki of the
mode |i〉 reads as

Ki = |〈i |i∗〉|2
|〈i |i〉|2 . (18.21)

Petermann factor obviously equals to unity in Hermitian case since in this case
transverse modal fields always can be rescaled to be real. Hence, non-Hermitian
norm is equal to the Hermitian norm and to the power carried by the mode.
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18.2.5 Eigenmodes of PT-Symmetric Optical Systems

To get some insight on the eigenstates of photonic PT-symmetric systems, let us anal-
yse the system of two coupled waveguides using the coupled mode theory. Coupled
waveguides are the simplest systems proposed at the beginning of the era of optical
PT symmetry [16]. As schematically shown in Fig. 18.5a, they consist of gain and
lossy waveguides having identical geometrical parameters at a distance g one from
another. The waveguide can be either slab, rectangular, circular or gradient one, yet
the physics behind the coupling mechanism is the same.

We express the total field in the coupled system in terms of the modes |g〉 =
(eg,t ,hg,t )

T and |l〉 = (el,t ,hl,t )T of isolated gain and loss waveguides with corre-
sponding z-dependent amplitudes g and l as

|ψ〉 = g(z)|g〉 + l(z)|l〉. (18.22)

We assume that the overlap between the modes of isolated waveguides is negligible
(weak coupling condition), therefore, the modes are orthogonal and normalised as
follows

〈g|l〉 = 〈g|l∗〉 = 0, (18.23)

〈g|g〉 = 〈l|l〉 = 1. (18.24)

P̂ T̂ operator converts the mode of isolated lossy waveguide to the mode of the
isolated gain waveguide and vice versa, and so

P̂ T̂ |g〉 = |l〉, (18.25a)

P̂ T̂ |l〉 = |g〉. (18.25b)

Coupled mode theory for optical PT-symmetric systems can be formulated on the
basis of Lagrangian formalism [17] or by using Lorentz reciprocity theorem [18].

Spatial evolution of amplitudes is governed by the system of coupled equations

i
d

dz

(
g
l

)
=

(
Re (β + δ) − iα/2 κ

κ Re (β + δ) + iα/2

) (
g
l

)
(18.26)

where β is a propagation constant, κ is a coupling coefficient, δ is a correction to the
propagation constant, α is an effective gain (or loss). It can be shown that due to the
weak coupling and relations (18.25) the coupling constant κ is real [17, 18].

Matrix in the right hand side of (18.26) is the matrix of the system’s Hamiltonian
in the basis |g〉, |l〉.

The eigenvalues of this Hamiltonian are the propagation constants of the sytem’s
eigenmodes. They read as



500 A. Karabchevsky et al.

Fig. 18.2 Eigenvalues of the coupled waveguide system’s Hamiltonian versus non-Hermiticity
parameter α/2κ . Black curves correspond to the first supermode, grey curves correspond to the
second supermode. Solid curves correspond to real parts, dotted curves correspond to imaginary
parts

β1,2 = Re (β + δ) ±
√

κ2 − α2/4. (18.27)

Clearly, the system behaves differently depending on whether α/2 is less or greater
than κ . When α/2 is less than κ both propagation constants are real. When α/2
is greater than κ the eigenvalues constitute complex-conjugate pair and one mode
experiences gain whereas the other one experiences loss. When α = αc = 2κ modes
degenerate. Therefore the point α = αc corresponds to exceptional point (EP). The
situation when α passes through αc is called the phase transition. Phase diagram of a
PT-symmetric coupled waveguide system in Fig. 18.2 shows distribution of real and
imaginary parts of system’s eigenvalues. It illustrates a typical picture of the phase
transition in a PT-symmetric system.

In PT-symmetric regime, the eigenvalues can be written as

β1,2 = Re (β + δ) ± κ cos θ, (18.28)

where sin θ = α/2κ . With this parametrization supermodes take the form

|1, 2〉 = |g〉 ± e±iθ |l〉. (18.29)

It can be seen from (18.25) that the states (18.29) are indeed the eigenstates of
the P̂ T̂ operator

P̂ T̂ |1〉 = |l〉 + e−iθ |g〉 = e−iθ |1〉, (18.30)

P̂ T̂ |2〉 = |l〉 − e+iθ |g〉 = e+iθ |2〉. (18.31)
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In the PT-broken regime, eigenvalues can be written as

β1,2 = Re (β + δ) ± iκ sinh θ, (18.32)

where cosh θ = α/2κ . Supermodes then read as

|1, 2〉 = |g〉 + ie∓θ |l〉. (18.33)

The eigenmodes in PT-broken regime are not longer the eigenstates of the P̂ T̂
operator. Instead, in this regime P̂ T̂ operator relates |1〉 and |2〉 as follows

Fig. 18.3 Mode profiles in
PT-symmetric regime: a
mode |1〉 and b mode |2〉

Fig. 18.4 Mode profiles in
PT-symmetry-broken
regime: a mode |1〉 and b
mode |2〉

Fig. 18.5 Schematics of state-of-art PT-symmetric structures: a coupled waveguides, b two-
dimensional photonic lattices, c multilayer systems and d microresonators
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P̂ T̂ |1〉 = |l〉 − ie−θ |g〉 = ie−θ |2〉, (18.34)

P̂ T̂ |2〉 = |g〉 − ieθ |g〉 = −ieθ |1〉. (18.35)

Typical mode profiles for the coupled waveguide system (see Fig. 18.5a) in PT-
symmetric and PT-broken regimes are shown in Fig. 18.3 and in Fig. 18.4.

When the parameter α approaches the value αc = 2κ corresponding to the EP,
eigenmodes |1, 2〉 merge to become |g〉 + i|l〉. Interestingly, that the modes become
self-orthogonal as 〈1|1〉 = 〈2|2〉 = 0 at the EP. Self-orthogonality is responsible for
singularity of Petermann factor due to zero in denominator in (18.21).

18.3 PT-Symmetric Photonic Devices

Photonics is an excellent platform for experimental verification of the fundamental
concept of the parity-time symmetry discussed earlier. Novel photonic devices can be
fabricated using several basic types of PT-symmetric structures, such as waveguides,
multilayer systems and photonic crystals. A number of remarkable applications of
the PT symmetry have been proposed andwell studied including unidirectional invis-
ibility, lasing, sensing and coherent perfect absorption. In this section, we overview
the recent PT-symmetric photonic devices with the application perspective.

18.3.1 Coupled Waveguide Systems

Coupled waveguides were the first candidates for observation of the parity-time sym-
metry. In [19] it was fabricated a gradient-index system with balanced loss and gain,
the gain being guaranteed by the photorefractive nonlinearity of Fe-doped LiNbO3.
The detailed description of the physics of coupled waveguides has been provided
in the previous section. Here we discuss a gain-free technique for observation of
the PT symmetry demonstrated in practice in [20]. The idea behind the passive PT
symmetry is to carry out transformation of the fields in a purely lossy system with
the aim of reducing the governing equation to that describing PT-symmetric systems.
In fact, using the gauge transformation |ψ〉 = exp(−γ z)|ψ̃〉, we can rewrite (18.11)
of the passive system as

i
∂

∂z
|ψ̃〉 = ˆ̃H |ψ̃〉 (18.36)

Nowweclaim that (18.36) describes aPT-symmetric systemwith the effectiveHamil-

tonian ˆ̃H which corresponds to the system with the effective permittivity

ε̃(x, y) = ε(x, y) + 2i
n0γ

k0
. (18.37)
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ε̃ satisfies condition ε̃(x, y) = ε̃∗(−x,−y) and the permittivity of the passive system
meets

ε(x, y) = ε∗(−x,−y) − 4i
n0γ

k0
. (18.38)

Assuming that one of the waveguides is transparent (lossless) with εg = ε∗
g , one can

easily determine the permittivity of the lossy waveguide as εl = εg − 4in0γ /k0. In
spite of the gain-free system does not have a true PT symmetry, it still possesses
some features inherent in PT-symmetric systems as PT-symmetry breaking observed
in [20]. Passive PT symmetry is a smart technique to ease validation of PT-symmetry
effects and its applicability.

A number of surprising effects arise in guiding systems under gain-loss mod-
ulation in a PT-symmetric manner. The modulation shifts positions of exceptional
points resulting in the directional amplification, when the phase transition is made
with a threshold in one direction, being thresholdless in the opposite direction [21].
Similarly, on the boundary between the metallic substrate and PT-symmetrically
modulated dielectric slab, there is a unidirectional excitation of the surface plasmon-
polaritons [22]. In a waveguide as an isotropic slab sandwiched between oppositely
biased gyrotropic media, topologically protected guided modes arise. PT symmetry
in such a system introduces exceptional points, where electromagnetic modes are
slow-light and linearly-growing [23]. Slow light phenomenon is known to be asso-
ciated with degeneracy of the modes (matching of their propagation constants). In
PT-symmetric systems, the degeneration is realised at exceptional points of mode
coalescence [24].

PT-symmetric laser waveguide was fabricated in [25]. Gain and loss are electri-
cally controlled to achieve a lasing threshold in the range of PT-symmetry violation.
By interplay of two guided modes there were distinguished several phases, the lasing
within which being confirmed experimentally.

Twocoupledwaveguides experience optical forces originating fromexcited eigen-
modes. The forces qualitatively change at exceptional points and may result in push-
ing and pulling of one waveguide to another. When the forces deflect the waveg-
uides, they may induce the phase transition through changing a gap between them
[26]. An unusual power flow in the PT-symmetric coupled waveguide results in an
off-diagonal stress tensor components causing the shear along the mode propagation
direction [27].

18.3.2 Two-Dimensional Photonic Waveguide Lattices

An array of parallel waveguides can be arranged in nodes of a lattice as demonstrated
in Fig. 18.5b. Such a two-dimensional photonic crystal is a natural generalization of
a pair of coupled waveguides. To engage a PT symmetry in the lattice, the gain and
lossy waveguides should be disposed periodically. As other PT-symmetric systems,
the lattice has exceptional points bordering phases of broken and unbroken PT-
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symmetric states. At the same time, light beams propagating in lattices demonstrate
beam splitting, power oscillations, nonreciprocity and secondary emissions [28].
These diffraction properties are explained by nonorthogonality of the Floquet-Bloch
modes of the periodic structure.

In the systemof PT-symmetric periodically arranged cylinders situated at the inter-
face between two semi-infinite media, unidirectional transmission without reflec-
tion can be achieved. It was investigated in [29] using the perturbation and scat-
tering matrix theories. Photonic graphene lattice of waveguides described using the
coupled-mode techniques can be represented as the Dirac equation. The PT sym-
metry in such a system requires the corresponding Hamiltonian is non-Hermitian
exhibiting unbroken and broken PT-symmetry phases. These theoretical findings are
well confirmed in experiments [30]. In [31] photonic lattices were used for the proof
of existence of topological interface states on a defect waveguide between two PT-
symmetric media. The results propose a way of excitation of topologically protected
localised states. A PT-symmetric photonic crystal can be also designed as a group of
gain cylinders paired with a group of lossy cylinders. Then surface electromagnetic
waves emerge at the gain-loss interface, while exceptional points can be tuned to
coalesce forming higher-order exceptional points [32].

18.3.3 Multilayer Structures

To illustrate the basic principles of the PT symmetry, a simple multilayer systemmay
be harnessed. The PT symmetry in multilayer structures is introduced in direction
of the wave propagation, and multilayers as open systems can be described by a
scattering matrix. The scattering matrix connects the input and output channels.
For the multilayer system there are two input channels and two output channels as
demonstrated in Fig. 18.5c. The output fields ψR = tφL + rRφR and ψL = tφR +
rLφL can be arranged as

(
ψR

ψL

)
=

(
rR t
t rL

) (
φR

φL

)
or

(
ψL

ψR

)
=

(
t rL
rR t

)(
φR

φL

)
, (18.39)

where φL ,R are the input fields, t is the transmission coefficent and rL and rR are the
reflectrion coefficients to the left and to the right sides, respectively. Transmission
coefficient t does not depend on the direction of wave incidence owing to reciprocity
of the system.

Equation (18.39) shows that the scattering matrix as a matrix between input and
output fields can be defined in two different ways by means of the permutation of the
output channels. Such a nominal designation is expected to be unimportant. However,
since the scattering matrix eigenvalues are different for two matrices in (18.39), but,
as generally accepted, should predict exceptional points, a dilemma arises, which
scatteringmatrix is appropriate [33, 34]. The problem of uniqueness of the scattering
matrix of the PT-symmetric system has been successfully solved in [35] using the
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direct connection of the scatteringmatrix Ŝ with the PT-symmetric Hamiltonian Ĥ of
the one-dimensional multilayer system as Ŝ = exp(iĤ(t − t0)/�). Correct positions
of the exceptional points then read as s1,2 = t ± √

rLrR , where the scattering matrix
defined by the right-hand equation in (18.39) is employed. Exceptional points of
the scattering matrix with permuted channels given by the another scattering matrix
approximate the lasing onset.

PT-symmetric multilayer systems are widely studiedwith the aim of enhancement
of physical phenomena near exceptional points. A PT-symmetric bilayer exhibits
a giant Goos-Hänhen shift at specific angles of incidence [36]. The enhancement
is explained by excitation of surface modes at the interface between the gain and
lossy slabs facilitating the quasi-BIC (quasi-bound state in the continuum) states. An
ordinarily weak spin-orbit interaction of light can be also significantly intensified
in vicinity of exceptional points of the PT-symmetric bilayer. Interaction of light
spin and orbital momenta is coined as the spin Hall or Imbert-Fedorov effect and
results in a lateral shift of a light beam. Near exceptional points of the PT-symmetric
bilayer the reflection coefficient experiences negligible values and abrupt phase shift
enhancing the lateral beamdisplacement, though it takes zero value at the exceptional
point [37]. Graphene sheets in PT-symmetric multilayer systems can be used for
modulation of an exceptional point position via tuning their surface conductivity
[38]. Light also makes a bilayer to move. Optical forces exerting on PT-symmetric
multilayer structures can be both pushing and pulling depending on the direction of
light and realization of the broken or unbroken PT-symmetric phase [39].

A PT-symmetric multilayer structure can be used as a laser. More precisely, the
laser must be simultaneously a coherent perfect absorber [40, 41]. In the broken
PT-symmetry phase, an illumination from one side is normally amplified, while a
coherent illumination from both sides of the multilayer system is absorbed owing
to interference. Laser-absorber modes arise, when a pole and a zero of a scatter-
ing matrix approach each other on the real axis in the plane of complex frequency.
Finite-difference-time-domain (FDTD) calculations basically confirm predictions of
the transfer-matrix and scattering-matrix approaches and show an enormous increase
in the output intensity, when the laser threshold is achieved [35]. If the pole is not on
the real axis, the lasing onset is still feasible at a greater threshold. In realistic PT-
symmetric systems, realization of the gain occurs in quantum systems and requires
accounting for the saturation effect. This means that the PT-symmetric system has
to be nonlinear. In [42] it was considered a two-level resonant medium described
by the Maxwell-Bloch equations. Due to the saturation, the condition for PT sym-
metry is approximately valid and the system can be named as a non-Hermitian one
[43]. Saturation may result in novel effects, e.g., locking of the light propagation by
the PT-symmetry breaking [42]. Steady-state solutions for PT-symmetric multilayer
structures with nonlinear refractive indices of gain and loss media are investigated
in [44] using a modified transfer-matrix method. The bistable behavior of the trans-
mitted and reflected intensities was studied together with unidirectional invisibility
and coherent perfect absorption versus the input and saturation intensities.
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18.3.4 Microresonators

PT symmetry can be realised on a resonator platform promising for interesting appli-
cations on a chip. In Fig. 18.5d we show a typical system comprising two coupled
gain and loss cavities. It is shown in [45] that a non-Hermitian optical microring
resonator coupled to a waveguide can be used as an asymmetric absorber, if a mirror
is placed on one side of the waveguide. Robustness of the asymmetric absorption
is explained by the emergence of the chiral exceptional surface, which can be also
exploited for directional absorption control. Unidirectional lasing and coherent per-
fect absorption can be achieved using unidirectional destructive interferences being
realised with an asymmetrically coupled passive resonator chain [46]. Asymmetry
in coupling breaks the reciprocity in transmission due to the destructive interfer-
ence. A PT-symmetric side-coupled resonator can be realised using unidirectional
lasing together with perfectly absorbing resonators and can result in simultaneous
unidirectional lasing and perfect absorption effects. In a similar fashion, the spec-
tral singularities of scattering matrix can be investigated in a PT-symmetric two-arm
Aharonov-Bohm interferometer [46]. Such spectral singularities can be tailored to
realise symmetric, asymmetric and unidirectional lasing onsets.

Non-Hermitian resonators are widely used as extremely sensible sensors at excep-
tional points. The sensitivity can be evenmore increased for higher-order exceptional
points, at which more than two eigenvalues of a non-Hermitian Hamiltonian coin-
cide. In this case, the frequency splitting stems from a perturbation ε � 1 follows the
law ε1/N , where N is the order of the exceptional point [47]. Since the susceptibility
d(ε1/N )/dε diverges at ε = 0, the sensitivity can be arbitrarily high. This idea was
experimentally validated in a PT-symmetric ternary (loss-neutral-gain) micro-ring
system [48] and micro-toroid cavity [49], the non-Hermiticity of the latter being
introduced by a scatterer resulting in coupling eigenmodes of the cavity. Sensitiv-
ity of parameter estimation can be analysed using the formalism of quantum Fisher
information without referring to a specific measurement scheme. The average of all
merging eigenstates cancels out the divergence at the singularity resulting to a finite
value at the exceptional point [38].

PT-symmetric [50] and anti-PT-symmetric [51] optical gyroscopes were proposed
on the basis of ring resonators coupled to a waveguide. Frequency splitting and,
hence, sensitivity in gyroscopes are normally limited by the ring dimensions. In PT-
symmetric gyroscopes, the frequency splitting is independent of the ring radius and,
therefore, the phase shift of interference fringes is enhanced in vicinity of exceptional
points. A unique “superluminal” lasing may be used as a sensor and can be obtained
in a broken PT-symmetry phase of the white-light cavity that consists of gain and
lossy coupled micro-resonators [52].

Finally, PT-symmetric microcavities possess indispensable nanophotonic proper-
ties for suppression of spontaneous relaxation rate [53]. In the next section we will
discuss this subject in detail.



18 Purcell Effect in PT-Symmetric Waveguides 507

18.4 Purcell Effect in PT-Symmetric Waveguides

In 1946, E. M. Purcell predicted that the spontaneous emission rate of a light source
is not solely an intrinsic property of the source but is affected by the optical envi-
ronment [54]. This effect is now referred to as Purcell effect. The Purcell factor is
defined as

Fp = Psystem
P0

, (18.40)

where Psystem denotes the power of an emitter radiated into a particular optical system
and P0 is the power of the same emitter radiated into vacuum or free space. Purcell
factor is a common figure of merit to describe the emission enhancement induced by
feedback of the source with a particular optical system. Alternatively, Purcell factor
can be defined in terms of spontaneous emission rate

Fp = τ0

τsystem
, (18.41)

where τ0 is the spontaneous emission lifetime in vacuum and τsystem is the lifetime
of the emitter in the particular system of interest.

The interaction between the emitter and its environment is formally described
by Fermi’s golden rule which states that the probability for spontaneous emission
is proportional to the (photonic) local density of states (LDOS). LDOS, in turn,
is proportional to the imaginary part of Green’s dyadic Ĝ at the position of the
emitter [55]

ρp(r0, ω) = 6ω

πc2

[
p̂ Im Ĝ(r0, r0;ω)p̂

]
, (18.42)

where r0 is emitter position and p̂ denotes unit vector of the dipole orientation.
It is well known since the Purcell’s work [54] that the strong Purcell enhance-

ment occurs in resonant systems where the light is confined to small volumes. More
recent work suggests that giant enhancements can occur via the less familiar Peter-
mann effect [11, 12, 14]. The Petermann enhancement factor is a measure of non-
orthogonality of the modes in non-Hermitian systems and it appears to diverge when
two modes coalesce at an exceptional point (EP). In the work of Pick et al. [15]
authors develop a general theory of the spontaneous emission at exceptional points.
They show that traditional theories of spontaneous emission fail in case of degen-
erate resonances occurring at EPs and lead to infinite Purcell factors. Approach
presented in [15] is based on the perturbation theory which properly accounts for
degeneracies at EPs by using Jordan vectors. Within this approach authors prove that
actual enhancement factors is finite, but can still be significant (about hundreds) in
gain-aided and higher-order EP systems.

Interestingly, that not only enhancement but rather suppression of spontaneous
decay rate can occur in PT-symmetric systems. Akbarzadeh et al. in [53] show that
a PT-symmetric planar cavity is able to suppress the spontaneous relaxation rate of
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a two-level atom below the vacuum level. Recent work of Khanbekyan and Wiersig
reports on decay suppression of spontaneous emission of a single emitter in a high-Q
cavity at exceptional points [56].

The Purcell factor can be calculated separately for each of the discrete scatter-
ing channels. For instance, just a couple of years ago, the Purcell effect in the mode
of the basic element of PIC planar waveguide was introduced within the scattering
matrix formalism [57].

It has recently been shown in the context of single molecule detections that the
power emitted from a molecule into a single mode fiber can be elegantly calculated
using the reciprocity theoremof electromagnetic theory [58]. In thework [59] authors
propose a reciprocity approach to calculate the emission enhancement for emitters
coupled to arbitrary resonant or non-resonant openoptical systems.They calculate the
modal Purcell factor—the quantity which measures the power emitted by an emitter
situated in the vicinity of a device into a particular propagating mode normalised by
the power radiated by the same emitter into the free space.

18.4.1 Reciprocity Approach

In this section, we generalise the reciprocity approach formulated in [59] to the
case when the propagating modes are not orthogonal. We probe the method by
calculation of the modal Purcell factor in PT-symmetric coupled waveguide system.
In the following section we will obtain closed-form expressions for modal Purcell
factor describing the system in terms of coupled modes.

We consider a current source (current density distribution J1) situated in the vicin-
ity of some optical system with two exit ports at z1 and zn [59]. For brevity, we use
optical state-vector notation for 4-component vector joining transverse electric and
magnetic fields introduced in (18.12). In thiswaywe can describe the fields of guiding
(and leaking) modes. For the i th mode we write

|Mi (z)〉 =
(
Et,i (x, y, z)
Ht,i (x, y, z)

)
= |i〉e−iβi z, (18.43)

where

|i〉 =
(
et,i (x, y)
ht,i (x, y)

)
(18.44)

and (
Et,i (x, y, z)
Ht,i (x, y, z)

)
=

(
et,i (x, y)
ht,i (x, y)

)
e−iβi z . (18.45)

The fields excited by the current source J1 at the cross-section of exit ports can
be expanded into a set of modes as follows
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|ψ1(z1)〉 =
∑
i

Ai,z1 |i, z1〉,

|ψ1(zn)〉 =
∑
i

A−i,zn | − i, zn〉. (18.46)

Here Ai,z1 and A−i,zn are the amplitudes of the modes propagating forward to port z1
and backward to port zn , respectively, |i, z1〉, | − i, zn〉 are respectively eigenmodes
of ports z1 and zn propagating from the cavity.

In our notations the Lorentz reciprocity theorem

∫
δV

(E1 × H2 − E2 × H1) · ẑdxdy =
∫
V

(E2 · J1 − E1 · J2) dV . (18.47)

should be rewritten as

〈ψ1(z1)|ψ2(z1)〉 − 〈ψ2(z1)|ψ1(z1)〉 − 〈ψ1(zn)|ψ2(zn)〉 + 〈ψ2(zn)|ψ1(zn)〉
=

∫
V

(E2 · J1 − E1 · J2) dV, (18.48)

where δV is the surface enclosing the cavity volume V between two planes z = z1
and z = zn . In (18.48), J1 and |ψ1〉 are defined above, while the source J2 and the
fields |ψ2〉 produced by it can be chosen as we need. Let the source current J2, being
outside the volume V (J2 = 0), excite a single mode | − k, z1〉. In general, this mode
is scattered by the cavity V and creates the set of transmitted and reflected modes as
discussed in [59]:

|ψ2(z1)〉 =B−k,z1 | − k, z1〉 +
∑
i

Bi,z1 |i, z1〉, (18.49)

|ψ2(zn)〉 =
∑
i

B−i,zn | − i, zn〉. (18.50)

Using the orthogonality condition (18.17) and the symmetry relations (18.20) we
obtain the inner products of the fields

〈ψ1(z1)|ψ2(z1)〉 =
∑
i

Ai,z1B−k,z1〈i, z1| − k, z1〉 +
∑
i, j

Ai,z1Bj,z1〈i, z1| j, z1〉

= −2Ak,z1B−k,z1Nk + 2
∑
i

Ai,z1Bi,z1Ni,z1 . (18.51a)
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〈ψ2(z1)|ψ1(z1)〉 =
∑
i

Ai,z1B−k,z1〈−k, z1|i, z1〉 +
∑
i, j

Ai,z1Bj,z1〈i, z1| j, z1〉

= 2Ak,z1B−k,z1Nk,z1 + 2
∑
i

Ai,z1Bi,z1Ni,z1 . (18.51b)

〈ψ1(zn)|ψ2(zn)〉 = 〈ψ2(zn)|ψ1(zn)〉 =
∑
i, j

A−i,zn B− j,zn 〈−i, zn| − j, zn〉

= 2
∑
i

A−i,zn B−i,zn Ni,zn , (18.51c)

where Ni,z1(n)
the norm of the mode |i, z1(n)〉 as defined in (18.17).

By substituting these equations into (18.48), we arrive at the amplitude Ak,z1 of
the mode excited by the source current J1

Ak,z1 = − 1

4B−k,z1Nk,z1

∫
V

E2,−k · J1dV, (18.52)

where E2,−k = B−k,z1e−k(x, y)eiβk (z−z1) is the electric field created by the excitation
of the system with reciprocal mode | − k, z1〉 at the port z1.

As an emitter we consider a point dipole oscillating at the circular frequency ω

and having the current density distribution

J1 (r) = iωpδ (r − r0) , (18.53)

where p is the dipole moment of the emitter and r0 is its position. Then we are able
to carry out the integration in (18.52) and obtain

Ak,z1 = − iω

4B−k,z1Nk,z1

E2,−k (r0) · p. (18.54)

Here we observe a difference compared to the Hermitian case considered in [59].
This difference appears due to the fact that now the expansion coefficients Ak,z1 are
not directly related to the powers carried by the modes. Finding a power carried by a
specific mode is a challenge. To circumvent this challenge, we propose a calculation
of the total power carried by the set of modes as we describe below.

The power emitted by the current source J1 into the port z1 can be written as

P = 1

2
Re

∫
z=z1

(
E1 × H∗

1

) · ẑdxdy = 1

2
Re 〈ψ1(z1)|ψ∗

1 (z1)〉. (18.55)

Expanding the electromagnetic fields |ψ1(z1)〉 according to (18.46) we represent the
power transmitted through the port (18.55) as follows
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P = Re
∑
k,l

Ak,z1 A
∗
l,z1 Pkl, (18.56)

where Pkl is the so called cross-power equal to the Hermitian inner product of the
modal fields

Pkl,z1 = 1

2
〈k, z1|l∗, z1〉 = 1

2

∫
z=z1

(
ek,z1 × h∗

l,z1

) · ẑdxdy. (18.57)

For k = l the cross-power reduces to the mode power Pk = Re Pkk . By considering
the expansion coefficients (18.54) we rewrite the power (18.56) in terms of the
reciprocal fields E2,−k as

P = ω2

16
Re

∑
k,l

(E2,−k (r0) · p)(E∗
2,−l (r0) · p∗)

B−k B∗
−l Nk N ∗

l

Pkl

= ω2

16
Re

∑
k,l

(e−k (x0, y0) · p)(e∗
−l (x0, y0) · p∗)

NkN ∗
l

Pkl . (18.58)

The last equality is the consequence of the substitution ofE2,−k at the emitter position
r0 = (x0, y0, z0) considering the negligible dimensions of the cavity z1 ≈ zn ≈ z0.
Note that here we dropped z1 subscripts.

To find the Purcell factor we divide (18.58) by the power emitted by the same
dipole into the free space

P0 = μ0

12πc
ω4|p|2, (18.59)

where μ0 is the vacuum permeability and c is the speed of light in vacuum. The
dipole moment, located in the xy plane, can be presented using the unit vector p̂ as
follows

p = pp̂, (18.60)

therefore,
E2,−k(r0) · p = E2,−k(r0) · p̂p = Ep,k(r0)p. (18.61)

Here Ep,k denotes projection of the vector E2,−k onto the dipole orientation vector p̂

Ep,k = E2,−k · p̂. (18.62)

Then the Purcell factor reads

Fp = P

P0
= 3πc

4ω2μ0
Re

∑
k,l

ep,k (x0, y0) e∗
p,l (x0, y0)

NkN ∗
l

Pkl . (18.63)

It is convenient to rewrite (18.63) through the normalised fields as
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Fp = 3πc

4ω2μ0
Re

∑
kl

êp,k ê
∗
p,l Kkl P̂kl , (18.64)

where we have introduced normalised modal electric fields

ê2,i = e2,i√
Nh
i

(18.65)

and normalised cross-power coefficients

P̂kl = 1√
Nh
k N

h
l

Pkl (18.66)

Where Nh
i = 1

2 〈i |i∗〉 is the Hermitian norm of the mode |i〉 defined by the Hermitian
inner product (18.16).Herewe generalise the Petermann factor defined in Sect. 18.2.4

Ki = Kii (18.67)

defining cross-mode Petermann factor

Kkl = 〈k|k∗〉
〈k|k〉

〈l|l∗〉∗
〈l|l〉∗ . (18.68)

The modal Purcell factor can be naturally divided into two parts, the first of which is
the sum of all diagonal (k = l) terms, while the second part is the sum of off-diagonal
(k �= l) terms:

Fp = Fp,diag + Fp,off−diag =
∑
k

Fp,k +
∑
k �=l

Fp,kl , (18.69)

where

Fp,i = 3πc

4ω2μ0
|êp,k |2Ki , (18.70)

Fp,kl = 3πc

4ω2μ0
êp,k ê

∗
p,l Kkl P̂kl . (18.71)

In the Hermitian case, the off-diagonal terms (18.71) reduce to zero due to the regular
orthogonality of the modes expressed by P̂kl = δkl . That is why the Purcell factor
(18.64) applied to Hermitian systems coincides with the expression in [59].
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18.4.2 Modal Purcell Factor Within the Coupled Mode
Theory

PT-symmetric regime
To find the modal Purcell factor for the coupled waveguide system in PT-symmetric
regime we substitute the modes in the form (18.29) into expression (18.64).

One more assumption is introduced for the sake of simplicity:

〈g|g∗〉 = 〈l|l∗〉 = 1. (18.72)

It implies that the Hermitian norms of the isolated modes are equal to the non-
Hermitian norms or, in other words, the Petermann factors for the modes equal unity.

Then the quantities Kkl and P̂kl can be written in the closed form as

K1 = |〈1|1∗〉|2
|〈1|1〉|2 = 2

1 + cos 2θ
, (18.73a)

K2 = |〈2|2∗〉|2
|〈2|2〉|2 = 2

1 + cos 2θ
, (18.73b)

K12 = 〈1|1∗〉
〈1|1〉

〈2|2∗〉∗
〈2|2〉∗ = 2(1 + e−i2θ )2

(1 + cos 2θ)2
, (18.73c)

K21 = 〈2|2∗〉
〈2|2〉

〈1|1∗〉∗
〈1|1〉∗ = 2(1 + e+i2θ )2

(1 + cos 2θ)2
, (18.73d)

P̂12 = 〈1|2∗〉√〈1|1∗〉〈2|2∗〉 = 1

2
(1 − ei2θ ), (18.74a)

P̂21 = 〈2|1∗〉√〈1|1∗〉〈2|2∗〉 = 1

2
(1 − e−i2θ ). (18.74b)

Normalised field projections êp,k in the basis of isolated modes read

êp,1 = 1√
1
2 〈1|1∗〉

(êp,g + eiθ êp,l) = êp,g + eiθ êp,l , (18.75a)

êp,2 = 1√
1
2 〈2|2∗〉

(êp,g − e−iθ êp,l) = êp,g − e−iθ êp,l . (18.75b)

In above expressions êp,g and êp,l denote projections of the fields of backward-
propagating isolated modes onto dipole orientation. If the emitter dipole moment is
perpendicular to ẑ, projections of backward-propagating modal fields are equal to
the projections of forward-propagating ones.
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Performing calculation of themodal Purcell factor (18.64) using relations (18.73)–
(18.74) we obtain

Fp = Fp,diag + Fp,off−diag = 6πc

ω2μ0
(|êp,g|2 + |êp,l |2). (18.76)

Diagonal and off-diagonal terms separately take the form

Fp,diag = 3πc

4ω2μ0

4

1 + cos 2θ
(|êp,g|2 + |êp,l |2), (18.77a)

Fp,off−diag = − 3πc

4ω2μ0

2(1 − cos 2θ)

1 + cos 2θ
(|êp,g|2 + |êp,l |2). (18.77b)

It is curious that althoughbothdiagonal andoff-diagonal terms (18.77) are singular
at the EP corresponding to θEP = π/2 and cos 2θEP = −1, the singularities cancel
each other making the modal Purcell factor finite and independent of θ . The modal
Purcell factor (18.76) depends solely on the mode profiles of the isolated modes in
PT-symmetric regime.

PT-symmetry-broken regime
To obtain the modal Purcell factor in PT-symmetry-broken regime we substitute the
modes in the form (18.33) into expression (18.64).

Calculating the Petermann factors

K1 = coth2 θ, (18.78a)

K2 = coth2 θ, (18.78b)

K12 = − coth2 θ, (18.78c)

K21 = − coth2 θ, (18.78d)

normalised cross-powers

P̂12 = 1

cosh θ
, (18.79a)

P̂21 = 1

cosh θ
, (18.79b)

and reciprocal modal field projections

êp,1 = 1√
1
2 (1 + e−2θ )

(êp,g + ie−θ êp,l), (18.80a)

êp,2 = 1√
1
2 (1 + e2θ )

(êp,g + ieθ êp,l) (18.80b)
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we straightforwardly derive the diagonal and off-diagonal terms

Fp,diag = 3πc

4ω2μ0

2 cosh θ

sinh2 θ

(
(|êp,g|2 + |êp,l |2) cosh θ − 2 Im (ê∗

p,gêp,l)
)
, (18.81a)

Fp,off−diag = − 3πc

4ω2μ0

2

sinh2 θ

(|êp,g|2 + |êp,l |2 − 2 cosh θ Im (ê∗
p,gêp,l)

)
(18.81b)

as well as the modal Purcell factor

Fp = Fp,diag + Fp,off−diag = 6πc

ω2μ0
(|êp,g|2 + |êp,l |2). (18.82)

The main result of this section is that although diagonal and off-diagonal terms
of the modal Purcell factor diverge at the EP, the modal Purcell factor itself does not
exhibit a singular behavior when approaching to the EP either from the left or right
side.

Thoughwedonot carry out a rigorous analysis of the behavior at theEPaccounting
for the degeneracy of the modes as it was done in [15], the developed approach leads
to the well-defined expressions (18.76) and (18.82) for Fp at the exceptional point.

Fig. 18.6 Effectivemode indices versus the non-Hermiticity parameter γ . Black curves correspond
to the mode |1〉. Red curves correspond to the mode |2〉
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18.4.3 Numerical Example: PT-Symmetric Coupler

This section presents an example of utilising the theory developed in the previous
section. Here, we analyse an optical system consisting of two coupled rectangular
waveguides with width w and height h separated by the distance g as schematically
shown in Fig. 18.5a. We assume that the complex refractive indices of the left (Gain)
and right (Loss) waveguides are nl = nco + iγ and nr = nco − iγ respectively. nco
is the real part of the refractive index and γ > 0 is the gain/loss (non-Hermiticity)
parameter. Thus, the system of the coupled waveguides satisfies PT-symmetry con-
dition n(x, y) = n∗(−x,−y). The refractive index of the background is assumed to
be unity.

We take parameters of the waveguide coupler as g = 2 μm, w = 1 μm, h = 0.5
µm, and nco = 1.44. The coupler has two quasi-TE supermodes at this wavelength.
We calculated the field distribution of the guided modes of these waveguides, shown
in Figs. 18.3 and 18.4.

By increasing the gain/loss parameter γ the system passes through the regime of
propagation (PT-symmetric state) for two non-decaying supermodes to the regime
of decay/amplification (PT-symmetry-broken state). This behavior, shown by the
curves in Fig. 18.6.

Fig. 18.7 Purcell factor distribution in the plane (x , y) a for the Hermitian system characterised
by γ = 0, b in the PT-symmetric phase (γ = 1.02 × 10−3), c in the broken-PT-symmetric state
(γ = 2.5 × 10−3). Parameters of the waveguide coupler: g = 2.0 μm, w = 1 μm, h = 0.5 μm,
and nco = 1.44
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Fig. 18.8 Distribution of the Purcell factor a diagonal and b off-diagonal terms depending on the
emitter position x0 at y0 = 0 for different values of γ . Parameters of the coupled waveguide are
given in the caption of Fig. 18.7

For the studied system the value of γ corresponding to EP is γEP = 1.12 × 10−3.
Next, we explore the modal Purcell factor Fp for the pair of quasi-TE modes.

According to (18.63), the Purcell factor is defined by the fields of the reciprocal
modes at the dipole position (x0, y0, z0 ≈ z1 ≈ zn). In Fig. 18.7, we demonstrate the
Purcell factor for an x-oriented dipoles as a function of x0 and y0 for different values
of non-Hermiticity parameter γ .

From Fig. 18.7 we conclude that the modal Purcell factor is symmetric in (a) Her-
mitian regime as well as in (b) PT-symmetric and (c) PT-symmetry broken regimes.
In all three cases, the modal Purcell factor Fp distribution is the same and finite
(taking maximum value of approximately 0.085 in the middle of the waveguides)
despite the fact that both diagonal and off-diagonal terms experience enhancement
as shown in Fig. 18.8. According to the Eqs. (18.77) and (18.81) this enhancement is
direct consequence of non-orthogonality. Opposite signs and close absolute values
of diagonal and off-diagonal terms observed in Fig. 18.8 result in cancellation of
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Fig. 18.9 Distribution of the Purcell factor at the line y = 0 as function of the emitter position x
and non-Hermiticity parameter γ . Parameters of the coupled waveguide are given in the caption of
Fig. 18.7

divergent terms in modal Purcell factor. This explains small values of the modal Pur-
cell factor and its independence on the non-Hermiticity parameter γ demonstrated in
Fig. 18.9. Independence on the non-Hermiticity parameter also confirms the analyti-
cal predictions given by (18.76) and (18.82). Note: a tiny spike observed near the EP
is a numerical artefact. It arises due to amplification of terms Fp,diag and Fp,off−diag.

Such a behavior well agrees with the result obtained in Sect. 18.4.2 utilising the
coupled-mode theory, namely, the numerically observed distribution of the modal
Purcell factor is similar in Hermitian, PT-symmetric, and PT-symmetry broken
regimes.

18.5 Summary and Outlook

To summarise, one of the challenges in integrated photonics, is to develop on-chip
optical devices for efficient lightmanipulationfinding its use in emerging applications
such as data processing, quantum technologies, healthcare, security and sensing.
Purcell effects in PT-symmetry can be utilised in variety of applications on a chip for
instance for lasing. Lasing like behaviour can be realised based on multilayer system
releasing the pumped energy in the form of powerful pulses [60]. Similar approach
studied in [60] can be implemented on a chip. Figure 18.10 shows the concept of
Transmission and Reflection through the multilayered waveguide core, composed
from Loss and Gain media.

Although efficient on-chip lightmanipulation can be achieved by engineering arti-
ficial materials (metamaterials) with unique optical permittivities and permeabilities,
PT-symmetric photonics allows to tune the complex refractive index and control the
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Fig. 18.10 Schematics of the proposed concept with N-periods multilayer waveguide core of
alternating Loss and Gain media for on-chip lasing based on PT-symmetry effect

interplay between the phase (real part of complex refractive index) and attenuation or
loss (in case the imaginary part of complex refractive index is negative); or amplifica-
tion/gain in case the imaginary part of complex refractive index is positive. Themajor
advantage of PT-symmetric systems is to confine and guide light in coupled passive
waveguides as was first shown in [20]. Then, the active fully PT-symmetric system
with gain and loss was demonstrated using two coupled waveguides fabricated from
Fe-doped LiNbO3 [19] in such a way that the transmission always appeared at the
output of the activewaveguide regardless of the inputwaveguide. This effect is named
non-reciprocal meaning that power oscillations between the coupled waveguides are
asymmetric. The degree of non-reciprocity in such nonlinear devices depends on the
intensity of the signal. However in [19], Lorentz reciprocity still holds as long as no
nonlinearity builds up.

PT-optomechanics is another interesting way to go and explore the interaction
between the optical fields and mechanical option in PT-symmetric systems in pres-
ence of a quantum emitter. In coupled mechanical resonators with optically induced
loss and gain, a combination of nonlinear saturation and noise leads to preserved or
weakly broken PT-symmetry, and a transition occurs from a thermal to a lasing state
with small amplitude [16, 61].

Systems with exceptional points, particularly, PT-symmetric systems are known
to be able to enhance [15] and suppress [53, 56] the spontaneous emission rate in
optical systems when operating near exceptional point. Analysis of the spontaneous
emission enhancement and coupling to the guided modes of the PT-symmetric cou-
pled waveguide system shown that, interestingly, for this class of systems the modal
enhancement factor (modal Purcell factor) does not depend on the non-Hermiticity
even at the EP.
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In conclusion, although the PT symmetry and non-Hermiticity in integrated pho-
tonics research has already established novel ways of utilising gain, loss and their
coupling to control light transport, there is still a room for new direction to go, when
considering a Purcell effect in PT-symmetric waveguides.

Acknowledgements AK acknowledges the support of Israel Science Foundation (ISF) Grant no.
2598/20.
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Chapter 19
Magnetoelectric Near Fields

Eugene Kamenetskii

Abstract Similar to electromagnetic (EM)phenomena, described byMaxwell equa-
tions, physics of magnetoelectric (ME) phenomena deals with the fundamental prob-
lems of the relationship between electric and magnetic fields. The different nature
of these two notions is especially evident in dynamic regimes. Analyzing the EM
phenomena inside the MEmaterial, the question arises: What kind of the near fields,
originated from a sample of such a material, can be measured? Observation of the
ME states requires an experimental technique characterized by a violation of spatial
and temporal inversion symmetries in a subwavelength region. This presumes the
existence of specific near fields. Recently, such field structures, called ME fields,
were found as the near fields of a quasi-2D subwavelength-size ferrite disk with
magnetic-dipolar-mode (MDM) oscillations. The key physical characteristics that
determine the configurations of the ME near fields are the spin and orbital angular
momenta of the quantum states of the MDM spectra. This leads to the appearance of
subwavelength power-flow vortices. By virtue of unique topology, the ME quantum
fluctuations in vacuum are different from virtual EM photons. While preserving the
ME properties, one observes strong enhancing the near-field intensity. The main
purpose of this chapter is to review and analyze the studies of the ME fields. We
consider the near-field topological singularities originated from the MDM ferrite-
disk particle. These topological features can be transmitted to various types of
nonmagnetic material structures.

19.1 Introduction

Symmetry principles play an important role in the laws of nature. Maxwell added
an electric displacement current to put into a symmetrical form the equations which
couple together the electric and magnetic fields. The dual symmetry between electric
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and magnetic fields underlies the conservation of energy and momentum for elec-
tromagnetic fields [1]. Recently, it was shown that this dual symmetry determines
the conservation of optical (electromagnetic) chirality [2, 3]. Based on an analysis of
the interaction of chiral light and chiral specimens, new mechanisms of enantiomer
discrimination and separation in optics have been proposed [2–8]. Since chiroptical
effects are usually hampered by weak chiral light-matter interaction, it is argued
that to enhance the chiral effects it is necessary that the near field remains chiral
in the process. Different plasmonic and dielectric nanostructures have recently been
proposed as a viable route for near-field enhancement of chiral light-matter interac-
tions [9–11]. In a more general sense, one can say that this is an attempt to enhance
the near-field intensity while preserving the ME properties. However, the following
fundamental questions arise: Can one really observe effects of the near-field magne-
toelectricity in dynamic regimes. What are the symmetry properties of such dynamic
ME fields?

The question on relationships between magnetoelectricity and electromagnetism
is a subject of a strong interest and numerous discussions in microwave and optical
wave physics andmaterial sciences. The problem of the near-fieldmagnetoelectricity
in electromagnetism is a topical problem. Evanescent fields are oscillating fields
whose energy is spatially concentrated in the vicinity of the oscillating currents. In
classical electrodynamics we know only two types of local (subwavelength) electric
currents: linear and circular. These types of currents determine elementary electric
and magnetic dipole oscillations in matter. The electric polarization is parity odd
and time-reversal even. At the same time, the magnetization is parity even and time-
reversal odd [1]. These symmetry relation cast doubt on the idea of a local (subwave-
length) coupling of two, electric and magnetic, small dipoles. When the violation of
the invariances under space reflection parity and time inversion are necessary condi-
tions for the emergence of the ME effect, the same symmetry properties should be
observed for the near fields—the ME near fields.

The uniqueness of the proposedMEnear fields can be shownby analyzing vacuum
near fields originated from a scatterer made of aME structure. In this connection, it is
worth noting that in a case of usual (non-ME) material structures one can distinguish
two kinds of the EM near fields: (a) near fields originated from EMwave resonances
and (b) near fields originated from dipole-carrying resonances. The former fields,
abbreviated as EM NFs, are obtained based on the full-Maxwell-equation solutions
with use of Mie theory [12]. The latter fields, abbreviated as DC NFs, are observed
when the electric or magnetic dipole-carrying oscillations (such, for example, as
surface plasmons [13–15] and magnons [16–18]) take place. Notably, in accordance
with Mie theory one can observe EM NFs with magnetic responses originated from
small nonmagnetic dielectric resonators, both inmicrowaves [19] and optics [20–22].
In a case of DC NFs, strong coupling of EM waves with electric or magnetic dipole-
carrying excitations, called polaritons, occur [16, 23]. Importantly, the spatial scale
of the DC NFs is much smaller than the spatial scale of the EM NFs in the same
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frequency range. Due to strong coupling of EM waves with dipole-carrying exci-
tations and temporal dispersion of the material, polaritons display enhanced field
localization to surfaces and edges. Properties of vacuum near-fields originated from
a small non-ME (dielectric or magnetic) sample become evident when this sample
has sizes significantly smaller than the EM wavelength in all three spatial dimen-
sions. The matter of fact is that near such a scatter we can only measure the electric �E
or the magnetic field �H with accuracy. As volumes smaller than the wavelength are
probed, measurements of EM energy become uncertain, highlighting the difficulty
with performing measurements in this regime. There is Heisenberg’s uncertainty
principle binding �E and �H fields of the EM wave [13, 24].

Taking all this into account, let us consider now a subwavelength ME sample. The
near-field structure of such a point scatterer is dominated by two types of the fields:
the electric and magnetic fields, which are mutually coupled due to the intrinsic
properties of a ME material. This fact gives us much greater uncertainty in probing
of the fields. In total, such fields can be represented as the structures of cross �E × �H
or dot �E · �H products in a subwavelength region. Due to PT symmetry of ME
structure, the ME near fields of a subwavelength sample should be characterized
by a certain pseudoscar parameter. Moreover, supposing that in a subwavelength
region both structures of cross �E × �H and dot �E · �H products exist, one should
assume the presence of helicity properties of the fields. It is evident that such a near-
field structure—theME-field structure—is beyond the frames of the Maxwell theory
description [1].

When we are talking on ME dynamics, we have to refer also to an analysis of
artificial structures—bianisotropic metamaterials. The notion “bianisotropic media”
had been introduced to generalize different effects of coupling between magnetic
and electric properties [25]. The local bianisotropic media is supposed as the media
composed by structural subwavelength elements with “glued” pairs of electric and
magnetic dipoles. The consideration of high-order quadrupole and multipole tran-
sitions is actually an account of spatial dispersion [26, 27]. It is assumed that
bianisotropy (chirality) in metamaterials arises from a “local ME effect” [28–31].
Such a “first-principle”, “microscopic-scale” ME effect of a structure composed by
“glued” pairs of electric and magnetic dipoles raises a basic question on the ways
of probing the dynamic parameters, since the near field structure of such a probe
should violate both the spatial and temporal inversion symmetries. However, inmeta-
material bianisotropic (chiral) structures, the known experimental retrieval of the
cross-polarization parameters is via far-field measurement of the scattering-matrix
characteristics [32–34]. Far-field retrieved permittivity and permeability frequently
retain non-physical values, especially in the regions of the metamaterial resonances
where most interesting features are expected. Far-field retrieved cross-polarization
parameters of “bianisotropic particles” retain much greater non-physical value. The
observed far-field phenomena of bianisotropy (chirality) can be very weakly related
to the near-field manipulation effects. We can say that the cross-polarization prop-
erties of small “glued-pair” bianisotropic particles are incompatible with the effects
of Rayleigh scattering.
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In this chapter, we consider near fields originated from subwavelength resonators,
that are the systems with quantum-confinement effects of dipolar-mode quasistatic
oscillations.We analyze the possibilities of these resonances to exhibit near-fieldME
properties. An analysis of such dipole-carrying excitations allows finding a proper
way in realizing polariton structures with properties of strong ME interactions.

19.2 Subwavelength Resonators with Dipole-Carrying
Excitations

An interaction between the photon and medium dipole-carrying excitation becomes
strong enoughnear the resonance between the lightmode and themodeof themedium
excitation. At the resonance region, the dispersion curves of these modes transform
into two split polaritonic branches showing anticrossing behavior. The examples are
exciton polaritons, surface-plasmon polaritons, and magnon polaritons. Semiclassi-
cally, polaritons are described using Maxwell equations and constitutive relations
that include the frequency dependent response functions. Quantum mechanically,
polaritons are described as hybrid collective excitations that are linear superposi-
tions of matter collective excitations and photons. There are the effects of interaction
between real and virtual photons. When dipole-carrying excitations are observed
in a high-quality confined structure, the coupling modes can appear as composite
bosons. Strong long-range dipole-dipole interactions significantly modify the mean-
field predictions of the quantum phases of microscopic short-range excitations by
stabilizing the condensate phase. It can persist up to densities high enough to support
quantum liquidity with very long lifetimes. In exciton-polariton condensates, in
particular, this effect leads to sustained trapping of the emitted photon [35–39].

Excitons in semiconductor resonators are dipole-carrying oscillations. Plasmons
and magnons in confined structures are also dipole-carrying oscillations. Plasmons
are optical responses of metal structures arising from collective oscillations of their
conduction electrons. The microwave responses of ferrite samples—magnons—
arise from collective oscillations of their precessing electrons. Both plasmons and
magnons are bosons. In increasing the capabilities of the optical and microwave
techniques further into the subwavelength regime, small plasmon and magnon reso-
nant structures have attracted considerable interest. These oscillations in subwave-
length resonators, however, are not composite bosons, as in the case of exciton reso-
nances. No dipole-dipole plasmon condensate and dipole-dipole magnon conden-
sate in confined resonant structures are observed, to the best to our knowledge.
The problem of creating a condensate with linked (electric and magnetic) dipole-
carrying excitations confined in a high-quality resonant structure appears as a lot
more exotic. Is it even possible to observe tightly boundME excitations, which turns
into a composite boson (or fermion) and behaves as quasiparticle?Canwe, in general,
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solve the problem of creation of theME-polariton condensate? To answer these ques-
tions, we should analyze the possibility of finding ME properties in subwavelength
resonators with quasistatic (dipolar-mode) oscillations.

A. On the possibility to observe the quantum confinement effects of electro-
static and magnetostatic oscillations

Electromagnetic (EM) responses of plasmon oscillations in optics andmagnon oscil-
lations in microwaves give rise to a strong enhancement of local fields near the
surfaces of subwavelength resonators. We can classify these oscillations as electro-
static (ES) and magnetostatic (MS) resonances, respectively [18, 40]. In ES reso-
nances in small metallic samples, one neglects a time variation of magnetic energy
in comparison with a time variation of electric energy. It means that one neglects a
magnetic displacement current and an electric field is expressed via an ES potential,
�E = −�∇φ [40]. However, the Ampere–Maxwell law gives the presence of a curl
magnetic field. In like manner, in the case of MS resonances in ferrite samples, one
neglects a time variation of electric energy in comparison with a time variation of
magnetic energy. Itmeans that theMS-resonance problem is considered as zero-order
approximation of Maxwell’s equations when one neglects the electric displacement
current and expresses a magnetic field via a MS potential, �H = −�∇ψ [18]. While
Faraday’s law gives the presence of a curl electric field. Importantly, from a classical
electrodynamics point of view, one does not have a physical mechanism describing
the reverse effect of transformation of a curl magnetic field to a potential electric
field in the case of ES resonances. Also, one does not have a physical mechanism
describing the reverse effect of transformation of a curl electric field to a potential
magnetic field a case of the MS resonance [1, 41]. It means that, fundamentally,
subwavelength sizes of the particles should eliminate any EM retardation effects.
We can say that for an EM wavelength λ and particle of a characteristic size a, the
quasistatic approximation 2πa

/
λ � 1 implies the transition to a small EM phase.

What kind of the time-varyingfield structure one can expect to seewhen an electric
or magnetic displacements currents are neglected and so the electromagnetic-field
symmetry (dual symmetry) of Maxwell equations is broken? When one neglects a
displacement current (magnetic or electric) and considers the scalar-function [φ(�r , t)
or ψ(�r , t)] solutions, as the wave-propagation solutions, one has to accept the possi-
bility to observe the quantum confinement effects of electrostatic and magneto-
static oscillations. Such an analysis of quasistatic resonances is based on postu-
lates about a physical meaning of scalar function as a complex scalar wavefunction,
which presumes a long-range phase coherence in dipole–dipole interactions. These
solutions should be based on the Schrödinger-like equation.

For quasi-ES resonances in subwavelength metal structures characterised by non-
homogeneous scalar permittivity, we have Poison’s equation [42–45]

∇2φ + �∇ ·
(
(ε(�r) − 1) �∇φ

)
= 0. (19.1)
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At the same time, for quasi-MS resonances in subwavelength microwave ferrite
structures with tensor permeability ↔

μ, there is Walker’s equation [18, 46]:

∇2ψ + �∇ ·
(( ↔

μ

μ0
− ↔

I

)

· �∇ψ

)

= 0. (19.2)

Solutions of both these equations are harmonic functions. Nevertheless, it appears
that in spite of a certain similarity between (19.1) and (19.2), the physical properties
of the ES and MS oscillation spectra are fundamentally different in many aspects.
The most important factor distinguishing theMS resonance from the ES resonance is
the tensorial form of permeability and the presence off-diagonal gyrotropic elements
in this tensor.

In [47] it was discussed that in a case of the surface plasmon resonances in
subwavelength optical metallic structures no retardation processes characterized by
the electric dipole-dipole interaction and described exclusively by electrostatic wave
function φ(�r , t) take place. There is no possibility to describe these resonances by the
Schrödinger-equation energy eigenstate problem. Nevertheless, for MS resonances
in ferrite specimens we have bulk wave process, which are determined by a scalar
wave function ψ(�r , t). Due to the retardation processes caused by the magnetic
dipole-dipole interaction in a subwavelength ferrite particle, we have a possibility
to formulate the energy eigenstate boundary problem based on the Schrödinger-like
equation for scalar-wave eigenfunctionsψ(�r , t). Such a behavior can be obtained in a
ferrite particle in a form of a quasi-2D disk. The oscillations in a quasi-2D ferrite disk,
analyzed as spectral solutions for theMS-potential scalar wave functionψ(�r , t), have
evident quantum-like attributes. Quantized forms of such oscillations we call theMS
magnons or the magnetic-dipolar-mode (MDM) magnons. The macroscopic nature
of MDMs, involving the collective motion of a many-body system of precessing
electrons, does not destroy a quantum behavior. The long-range dipole-dipole corre-
lation in positions of electron spins can be treated in terms of collective excitations
of a system as a whole.

Analyzing the confinement effects of electrostatic and magnetostatic oscillations
in subwavelength resonators, it is also worth making another important remark.
Considering light interaction with photonic and plasmonic resonances, the authors
of review in [48] noted that as the optical mode becomes deeply subwavelength in all
three dimensions, independent of its shape, the Q-factor of the resonances is limited
to about 10 or less. As they argue, the reason is that in such small volumes, self-
sustaining oscillations are no longer possible between the electric-field andmagnetic-
field energies and, at the same time, no effects of the electric dipole-dipole oscillations
can be assumed. At the same time, in the case of a microwave MDMs in a deeply
subwavelength ferrite disk resonator, we have the Q-factor about several thousand
[49–51]. For suchMDM resonances, subwavelength sizes of the ferrite particle allow
eliminate any electromagnetic retardation effects and consider only the magnetic
dipole-dipole interaction effects.
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Tomake theMDM spectral problem analytically integrable, two approaches were
suggested. These approaches, distinguished by differential operators and boundary
conditions used for solving the spectral problem, give two types of MDM oscillation
spectra in a quasi-2D ferrite disk. These two approaches are conditionally called
as the G and L modes in the magnetic dipolar spectra [52–57]. The MS-potential
wave function ψ(�r , t) manifests itself in different manners for each of these types of
spectra. In the case of theG-mode spectrum, where the physically observable quanti-
ties are energy eigenstates, theMS-potentialwave function appears as aHilbert-space
scalar wave function. In the case of the L modes, the MS-potential wave function
is considered as a generating function for the vector harmonics of the magnetic and
electric fields.

B. Spectral problems for MDM magnetostatic oscillations: G modes

The MDM-resonance spectral solutions obtained from the second-order differential
equation—theWalker’s equation [18, 46]—are constructed in accordance with basic
symmetry considerations for the sample geometry. For an open quasi-2D ferrite
disk normally magnetized along the z axis, we can use separation of variables. In
cylindrical coordinate system (z, r, θ), the solutions are represented as [52–57]

ψp,ν,q = Ap,ν,qξp,ν,q(z)η̃ν,q(r, θ), (19.3)

where Ap,ν,q is a dimensional amplitude coefficient, ξp,ν,q(z) is a dimensionless
function of theMS-potential distribution along z axis, and η̃ν,q(r, θ) is dimensionless
membrane function. The membrane function η̃ is defined by a Bessel-function order
ν and a number of zeros of the Bessel function corresponding to a radial variations
q. The dimensionless “thickness-mode” function ξ(z) is determined by the axial-
variation number p.

In a quasi-2D ferrite disk, one can formulate the energy eigenstate boundary
problem based on the Schrödinger-like equation for scalar-wave eigenfunctions
ψ(�r , t) with using the Dirichlet-Neumann (ND) boundary conditions. The energy
eigenvalue problem for MDMs is defined by differential equation

Ĝ⊥η̃n = En η̃n, (19.4)

where Ĝ⊥ is a two-dimensional (on the r, θ disk plane) differential operator. The
quantity En is interpreted as density of accumulated magnetic energy of mode n.
This is the average (on the RF period) energy accumulated in the ferrite-disk region
of unit in-plane cross-section and unit length along z axis [52–57]. The operator Ĝ⊥
and quantity En are defined as

gμ0

4
μn∇2

⊥η̃n = En η̃n, (19.5)
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where

En = gμ0

4
(βn)

2. (19.6)

Here ∇2
⊥ is the two-dimensional (on the circular cross section of a ferrite-disk

region) Laplace operator, g is a dimensional normalization coefficient (with the
unit of dimension ψ2) for mode n and βn is the propagation constant of mode n
along the disk axis z. The parameter μn (which is a diagonal component of the
permeability tensor [18]) should be considered as an eigenvalue. Outside a ferrite
μn = 1. The operator Ĝ⊥ is a self-adjoint operator only for negative quantitiesμn in a
ferrite. For self-adjointness of operator Ĝ⊥, the membrane function η̃n(r, θ) must be
continuous and differentiable with respect to the normal to lateral surface of a ferrite
disk. The homogeneous boundary conditions—the ND boundary conditions—for
the membrane function are:

(η̃n)r=R− − (η̃n)r=R+ = 0 (19.7)

and

μ

(
∂η̃n

∂r

)

r=R−
−

(
∂η̃n

∂r

)

r=R+
= 0, (19.8)

where R is the disk radius. MDM oscillations in a ferrite disk are described by real
eigenfunctions: η̃−n = η̃∗

n . For modes n and n′, the orthogonality conditions are
expressed as

∫

Sc

η̃n η̃
∗
n′dS = δnn′ , (19.9)

where Sc is a square of a circular cross section of a ferrite-disk region and δnn′ is the
Kronecker delta. The spectral problem gives the energy orthogonality relation for
MDMs:

(En − En′)

∫

Sc

η̃n η̃
∗
n′dS = 0. (19.10)

Since the space of square integrable functions is aHilbert spacewith awell-defined
scalar product, we can introduce a basis set. A dimensional amplitude coefficient we
write as An = c′an , where c′ is a dimensional unit coefficient and an is a normalized
dimensionless amplitude. The normalized scalar-wave membrane function η̃ can be

represented as η̃ = ∑

n
an η̃n . The amplitude is defined as |an|2 =

∣∣
∣∣∣
∫

Sc

η̃η̃∗
ndS

∣∣
∣∣∣

2

. The
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mode amplitude can be interpreted as the probability to find a system in a certain
state n. Normalization of membrane function is expressed as

∑

n
|an|2 = 1 [52–57].

The analysis of discrete-energy eigenstates of the MDM oscillations, resulting
from structural confinement in a normally magnetized ferrite disk, is based on a
continuummodel. Using the principle of wave-particle duality, one can describe this
oscillating system as a collective motion of quasiparticles. There are “flat-mode”
quasiparticles at a reflexively-translational motion behavior between the lower and
upper planes of a quasi-2D disk. Such quasiparticles are called “light” magnons. In
our study we consider MS magnons in ferromagnet as quanta of collective MS spin
waves that involves the precession of many spins on the long-range dipole-dipole
interactions. It is different from the short-range magnons for exchange-interaction
spin waves with a quadratic character of dispersion. The meaning of the term “light”,
used for the condensed MDM magnons, arises from the fact that effective masses
of these quasiparticles are much less, than effective masses of “real” magnons—
the quasiparticles describing small-scale exchange-interaction effects in magnetic
structures. The effective mass of the “light” magnon for a monochromatic MDM is
defined as [53]:

(
m(e f f )

lm

)

n
= �

2

β2
n

ω
. (19.11)

In solving boundary value problems for MS resonances, one encounters some
questions when using boundary conditions. As is known, in solving a boundary
value problem that involves the eigenfunctions of a differential operator, the boundary
conditions must be in a definite correlation with the type of this differential operator
[58, 59]. In an analysis of MDM resonances in a ferrite disk, we used the homoge-
neous ND boundary conditions, which mean continuity of the MS wave functions
together with continuity of their first derivatives on the sample boundaries. Only in
this case the functions form a complete set of orthogonal basis functions and thus
the field expansion in terms of orthogonal MS-potential functions can be employed.

However, the ND boundary condition (19.7), (19.8) are not the EM boundary
conditions. While the considered above ND boundary conditions are the so-called
essential boundary conditions, the EM boundary conditions are the natural boundary
conditions [58]. For the EM boundary conditions, on a lateral surface of a ferrite
disk we have to have continuity of membrane function η̃ and a radial component of

the magnetic flux density Br = μ0

(
μ

∂η̃n
∂r + μa

1
r

∂η̃n
∂θ

)
. Here μ and μa are diagonal

component and off-diagonal components of the permeability tensor [18]. With such
EM boundary conditions, it becomes evident that the membrane function η̃ must not
only be continuous and differentiable with respect to a normal to the lateral surface of
a disk, but (because of the presence of a gyrotropy termμa) be also differentiablewith
respect to a tangent to this surface. There is evidence of the presence of an azimuthal
magnetic field on the border circle with clockwise and counterclockwise rotation
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asymmetry. In this case, the membrane functions η̃ cannot be considered as single-
valued functions, and the question arises of the validity of the energy orthogonality
relation for MS-wave modes.

To restore the ND boundary conditions and thus the completeness of eigenfunc-
tions η̃, we need introducing a certain surface magnetic current

(
j (m)
s

)
top circulating

on a lateral surface of the disk. This is a topological current, which compensates

the term
(
iμa

1
r

∂η̃

∂θ

)

r=R−
in the EM boundary conditions [55, 56, 60]. Evidently,

for a given direction of a bias magnetic field (that is, for a given sign of μa),
there can be two, clockwise and counterclockwise, quantities of the circulating
magnetic current. The topological current

(
j (m)
s

)
top is defined by the velocity of

an irrotational border flow. This flow is observable via the circulation integral of

the gradient �∇θ δ = 1
R

(
∂δ±
∂θ

)

r=R
�eθ , where δ± is a double-valued edge wave func-

tion on contour L = 2πR. On a lateral surface of a quasi-2D ferrite disk, one can
distinguish two different functions δ±, which are the counterclockwise and clock-
wise rotating-wave edge functions with respect to a membrane function η̃. The
spin-half wave-function δ± changes its sign when the regular-coordinate angle θ

is rotated by 2π . As a result, one has the eigenstate spectrum of MDM oscillations
with topological phases accumulated by the edge wave function δ. A circulation of
gradient �∇θ δ along contour L = 2πR gives a non-zero quantity when an azimuth
number is a quantity divisible by 1

2 . A line integral around a singular contour L:
1
	

∮

L

(
i ∂δ±

∂θ

)
(δ±)∗ dL =

2π∫

0

[(
i ∂δ±

∂θ

)
(δ±)∗

]

r=	
dθ is an observable quantity. Because

of the existing the geometrical phase factor on a lateral boundary of a ferrite disk,
MDM oscillations are characterized by a pseudo-electric field (the gauge field) .
The pseudo-electric field can be found as . The field is the Berry
curvature. The corresponding flux of the gauge field through a circle of radius 	 is

obtained as: , where
(
Ξ(e)

)
± are

quantized fluxes of pseudo-electric fields, K is the normalization coefficient. Each
MDM is quantized to a quantum of an emergent electric flux. There are the posi-
tive and negative eigenfluxes. These different-sign fluxes should be nonequivalent
to avoid the cancellation. It is evident that while integration of the Berry curvature
over the regular-coordinate angle θ is quantized in units of 2π , integration over the
spin-coordinate angle θ ′ (θ ′ = 1

2θ
)
is quantized in units of π . The physical meaning

of coefficient K concerns the property of a flux of a pseudo-electric field. The Berry
mechanism provides amicroscopic basis for the surfacemagnetic current at the inter-
face between gyrotropic and nongyrotropic media. Following the spectrum analysis
of MDMs in a quasi-2D ferrite disk one obtains pseudo-scalar axion-like fields and
edge chiral magnetic currents. The anapole moment for every mode n is calculated
as [55, 56, 60].
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(
a(e)

±
)

n
∝ R

d∫

0

∮

L

[( �j (m)
s (z)

)

top

]

n

· d�ldz, (19.12)

where d is the disk thickness. The edge magnetic current
(
j (m)
s

)
top is a persistent

current appearing due to the mesoscopic effect: the magnitude of such a resonant
current becomes appreciablewhen the parameters of the ferrite disk are reduced to the
scale of the dipole-dipole quantum phase coherence length of precessing electrons.
At the MDM resonances, one has the “spin-orbit” interaction between precessing
magnetic dipoles and a persistent orbital magnetic current. When the frequency of
the orbital rotation of MDM resonances in a ferrite disk is close to the ferromagnetic
resonance frequency, the precessing magnetic dipoles become strongly correlated
and one observers fermionization of the system composed of bosons. There are
the macroscopic quantum phenomena related to the collective motion of magnetic
dipoles coalescing into the same quantum state, described by a single coherent wave-
function of the condensate. This is a fundamentally distinctive feature from a boson
condensate created by small-scale exchange-interaction magnons [61].

It is worth noting that along with the circulation of the surface magnetic current(
j (m)
s

)
top caused by the edge wave function, there is also the quadratic-form circu-

lation due to this function. For the double-valued edge wave functions δ±, we have
the following orthonormality condition on contour L = 2πR [55]:

R
2π∫

0

[(
iμa

∂(δ±)n

∂θ

)(
δ∗
±
)
n′ − (δ±)n

(
iμa

∂(δ±)n′

∂θ

)∗]

r=R
dθ

= Rμa
[
(q±)n − (q±)n′

]
2π∫

0

[
(δ±)n

(
δ∗
±
)
n′
]
r=Rdθ = 0

. (19.13)

For mode n, there are the normalisation relations for the edge functions

2π∫

0

[
(δ+)n

(
δ∗
+
)
n

]
r=Rdθ = (N+)n (19.14)

and

2π∫

0

[
(δ−)n

(
δ∗
−
)
n

]
r=Rdθ = (N−)n (19.15)

where (N+)n and (N−)n are real quantities, which we characterize as surface power
flow density of the MDM mode. For a given direction of a bias magnetic field, the
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wave described by functions (δ+)n propagates only in one direction along the edge.
Also, the wave described by function (δ−)n—propagates in one direction (opposite
to the former case) along the edge. It is evident that a complex conjugate ‘particle’
configuration is an ‘antiparticle’ configuration and vice versa. This fact is related to
the existence of only a single edgemode excitation for each wavenumber q. In other
words, the ‘particle’ configurations are their own ‘antiparticle’ configurations. This
resembles the well-known properties of the Majorana fermions [62]. So, we have a
“chiral Majorana fermion field” [63, 64] on the lateral wall of the MDM ferrite disk.

Due to the presence of surface power flow density, membrane eigenfunction η̃

of every MDM rotates around the disk axis. When for every MDM we introduce

the notion of an effective mass
(
m(e f f )

lm

)

n
, expressed by (19.11), we can assume

that for every MDM there exists also an effective moment of inertia
(
I (e f f )
z

)

n
. With

this assumption, an orbital angular momentum a mode is expressed as (Lz)n =(
I (e f f )
z

)

n
ω. At the first approximation, let us suppose that the membrane eigenfunc-

tion η̃n is viewed as an infinitely thin homogenous disk of radiusR. In other words,
we assume that for everyMDM, the radial and azimuth variation of theMS-potential
function, are averaged. In such a case, we can write

(
I (e f f )
z

)
n = 1

2

(
m(e f f )

lm

)

n
R2d. (19.16)

and

(
L(e f f )
z

)
n = (

I (e f f )
z

)
nω = �

4
β2
nR2d. (19.17)

C. Spectral problems for MDM magnetostatic oscillations: L modes

In the above spectral analysis of the Gmodes, we used the ND boundary conditions.
To bridge this spectral problem with the EM boundary conditions, we introduced the
contour integrals determining surface magnetic current

(
j (m)
s

)
top and surface power

flow density of the MDMmodes. However, the MDM spectral can be solved directly
based on the EM boundary conditions. This approach is called the L-mode spectral
analysis. The solution for MS-potential wave function of a L-mode is written as

ψp,ν,q = Cp,ν,qξp,ν,q(z)ϕ̃ν,q(r, θ), (19.18)

where Cp,ν,q is a dimensional amplitude coefficient and ϕ̃ is a membrane function.
For solutions in a cylindrical coordinate system, one uses the following the boundary
condition on a lateral surface of a ferrite disk [52, 53, 55, 56]:

μ

(
∂ϕ̃

∂r

)

r=R−
−

(
∂ϕ̃

∂r

)

r=R+
+ i

μa

R

(
∂ϕ̃

∂θ

)

r=R−
= 0, (19.19)
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which are different from the boundary conditions (19.8). A function ϕ̃ is not a single-
valued function. It changes a sign when angle θ is turned on 2π . For any mode n,
the function ϕ̃n is a two-component sprinor pictorially denoted by two arrows:

ϕ̃↑↓
n (�r , θ) =

[
ϕ̃

↑
n

ϕ̃
↓
n

]
= η̃n(�r , θ)

[
e− 1

2 iθ

e+ 1
2 iθ

]

(19.20)

For MS waves in a ferrite medium, described by a L-mode scalar wave function
ψ(�r , t), we define a magnetic flux density: �B = ↔

μ · �H = −↔
μ · �∇ψ . In this case, the

power flow density can be viewed as a current density, is expressed as [55]:

�J = iω

4

(
ψ �B∗ − ψ∗ �B

)
. (19.21)

Such a power flow can appear because of dipole-dipole interaction of magnetic
dipoles. With use of separation of variables and taking into account a form of tensor
↔
μ [18], we decompose a magnetic flux density by two components:

�B = �B⊥ + �B||. (19.22)

The component �B⊥ are given as

�B⊥ = −↔
μ⊥ · �∇⊥ψ = −Cnξn(z)

[
↔
μ⊥ · �∇⊥ϕ̃n(r, θ)

]
�e⊥, (19.23)

where �e⊥ is a unit vector laying in the r, θ plane, and

↔
μ⊥ = μ0

[
μ iμa

−iμa μ

]
. (19.24)

For the component �B‖ we have

�B‖ = −μ0 · �∇||ψ = −μ0Cn
∂ξn(z)

∂z
ϕ̃n(r, θ)�ez, (19.25)

where �ez is a unit vector directed along the z axis.
The above representations allow considering two components of the power flow

density (current density). For mode n, we can write (19.21) as

�Jn =
( �J⊥

)

n
+

( �J‖
)

n
, (19.26)
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where
( �J⊥

)

n
= iω

4

[
ψn

( �B∗
⊥
)

n
− ψ∗

n

( �B⊥
)

n

]
and

( �J‖
)

n
=

iω
4

[
ψn

( �B∗
‖
)

n
− ψ∗

n

( �B‖
)

n

]
. Along every of the coordinates �r , �θ, and �z, we have the

power flows (currents):

( �Jr

)

n
= − iω

4
|Cn|2|ξn|2μ0

{
ϕ̃n

(
μ

∂ϕ̃n

∂r
+ iμa

1

r

∂ϕ̃n

∂θ

)∗

−ϕ̃∗
n

(
μ

∂ϕ̃n

∂r
+ iμa

1

r

∂ϕ̃n

∂θ

)}
�er , (19.27)

( �Jθ

)

n
= − iω

4
|Cn|2|ξn|2μ0

{
ϕ̃n

(
−iμa

∂ϕ̃n

∂r
+ μ

1

r

∂ϕ̃n

∂θ

)∗

−ϕ̃∗
n

(
−iμa

∂ϕ̃n

∂r
+ μ

1

r

∂ϕ̃n

∂θ

)}
�eθ , (19.28)

( �Jz

)

n
= − iω

4
μ0|Cn|2|ϕ̃|2

[
ξn

(
∂ξn

∂z

)∗
− ξ ∗

n

∂ξn

∂z

]
�ez, (19.29)

where �er , �eθ , and �ez are the unit vectors. We can see that for membrane function ϕ̃,
defined by (19.20), there is a non-zero real azimuth component of the power-flow
density. So, there is a non-zero quantity of the power flow circulation (clockwise or
counterclockwise) around a circle L = 2πr , where 0 < r ≤ R. At the same time,
homogeneous EM boundary conditions imposed on a ferrite disk on the r and z axes
give standing waves without real power flows.

19.3 Near Fields of MDM Oscillations—the ME Near
Fields

The L-modewave functionψ(�r , t) can define amagnetic flux density in a ferrite disk,
as shown above. This scalar wave function is considered as a generating function for
other types of the fields both inside and outside a ferrite disk. It allows analyzing
complex topological properties of vectorial fields, associated with orbital angular
momentum properties of MDM resonances.

When the spectral problem for the MS-potential scalar wave function ψ(�r , t),
expressed by (19.18), is solved, distribution of magnetization in a ferrite disk is
found as �m = −↔

χ · �∇ψ , where ↔
χ is the susceptibility tensor of a ferrite [18]. Based

on the known magnetization �m, one can find the magnetic field distribution at any
point outside a ferrite disk [1, 65]:



19 Magnetoelectric Near Fields 537

�H(�r) = 1

4π

⎛

⎝
∫

V

( �∇′ · �m(
r ′)

)(�r − �r ′)

|�r − �r ′|3 dV ′ −
∫

S

(�n′ · �m(
r ′))(�r − �r ′)

|�r − �r ′|3 dS′
⎞

⎠.

(19.30)

Also, the electric field in any point outside a ferrite disk is defined as [56, 65]

�E(�r) = − 1

4π

∫

V

�j (m)
(�r ′) × (�r − �r ′)

|�r − �r ′|3 dV ′, (19.31)

where �j (m) = iωμ0 �m is the density of a bulk magnetic current and frequency ω is
the MDM resonance frequency. In (19.30) and (19.31), V and S are a volume and a
surface of a ferrite sample, respectively. Vector �n′ is the outwardly directed normal
to surface S.

Depending on a direction of a bias magnetic field, we can distinguish the clock-
wise and counterclockwise topological-phase rotation of the fields. At the MDM
resonances, for the magnetic and electric fields defined by (19.30) and (19.31) one
can compose a vector

〈�SMDM

〉↑↓ ≡ 1

2
Re

( �E × �H∗
)
. (19.32)

The vector
〈�SMDM

〉
can be considered as a power flow density vector. Really,

based on the vector relation �∇ ·
( �E × �H∗

)
= �H∗ · �∇ × �E∗ − �E · �∇ × �H∗ with

taking into account equations �∇ × �E = −iω �B, �H = −�∇ψ and ∇ · �B = 0, one has

as a result �∇ ·
( �E × �H∗

)
= iω �∇ ·

(
ψ∗ �B

)
. The right-hand side of this equation is a

divergence of the power flow density of monochromatic MS waves [55]. So, vector〈�SMDM

〉
can be interpreted as the power flow density as well. Nevertheless, this is not

the “EM Poynting vector”. Compare to the case of EM wave propagation (with both
curl electric and curl magnetic fields), we have here the modes with curl electric and
potential magnetic fields. As we noted above, that there are no EM laws describing
transformation of the curl electric field to the potential magnetic field.

In the MDM resonance, the orbital angular-momentum of the power flow density
is expressed as

�Lz = 1

2
Re

[
�r ×

( �E × �H∗
)]

. (19.33)

Depending on a direction of a biasmagnetic field,we can distinguish the clockwise
and counterclockwise topological-phase rotation of the fields outside the ferrite disk.
The direction of an orbital angular-momentum �Lz is correlated with the direction of a
bias magnetic field �H0 (along +z axis or −z axis). The active power flow of the field
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Fig. 19.1 Analytically derived power-flow-density distribution for the main MDM inside a ferrite
disk of dimeter 3 mm (arbitrary units)

both inside and outside a subwavelength ferrite disk has the vortex topology. In [65–
67] it was shown that for every MDM mode, the power flow circulation calculated
by (19.28) have the same distributions on the r, θ plane, as the circulation of the

power flow vector
〈�SMDM

〉
. Such the analytically derived distributions coincide with

the numerical patterns of the power flows. The analysis was made for a YIG ferrite
disk of a 3 mm diameter and thickness of 0.050 mm at the frequency region 8–
9 GHz. Figure 19.1 gives an example of the analytically derived power-flow-density
distribution. Figure 19.2 shows some numerical patterns of the power flows. One
can see a strong confinement of the fields arising from the vortices of the MDM
resonances. In Fig. 19.3, we give a schematic representation of the circulation of the
power flow, depicted on the surface of the vacuum sphere and on the surface of the
solid angle. Direction of an orbital angular-momentum of a ferrite disk is correlated
with the direction of a bias magnetic field.

A persistent edge magnetic current circulating along the contour L = 2πR
on a lateral surface of ferrite disk determines an angular momentum—the anapole
moment. Another type of an angular momentum is associated with the power-flow
circulation. In a lossless ferrite disk, circulation of the power flow density can be
considered as a persistent current as well. The divergentless power-flow-density
persistent current, circulating on the r, θ plane, is an intrinsic property of the fields
at the MDM resonances unrelated to the rigid-body rotation of a ferrite-disk. In the
Introduction, we asked a question about the possibility of observing a dot product
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Fig. 19.2 Field confinement originating from the MDM vortices in a ferrite disk. a The Poynting
vector distributions for the field on plane A at the frequency (f= 8.5225 GHz) of the first resonance.
b The same at the frequency (f= 8.5871 GHz) between the resonances. c The same at the frequency
(f = 8.6511 GHz) of the second resonance. d The Poynting vector distributions inside a ferrite disk
at the frequency of the first resonance. e The same at the frequency between resonances. f The same
at the frequency of the second resonance. g The plane A is a vacuum plane inside a waveguide
situated above an upper plane of a MDM ferrite disk [67]

�E · �H together with a cross product �E × �H in the near-field region of a subwave-
length sample. This question concerned the samples with ME properties. When, for
MDM oscillations in a subwavelength ferrite disk, we observe the cross-product of
the fields, can we classify this field structure as the ME fields, which are also char-
acterized by the properties of PT -symmetry and dot-product �E · �H of the fields? In
[56] it was shown that in the near-field region adjacent to theMDM ferrite disk, there
exists also another quadratic parameter determined by the scalar product between
the electric and magnetic field components:

F = ε0

4
Im

[ �E ·
(
∇ × �E

)∗] = ωε0μ0

4
Re

( �E · �H∗
)

�= 0. (19.34)
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Fig. 19.3 Schematic representation of the circulation of the power flow, depicted on the surface of
the vacuum sphere and on the surface of the solid angle. Direction of an orbital angular-momentum
of a ferrite disk is correlated with the direction of a bias magnetic field

This effect is due to the presence of both the curl and potential electric fields in
the subwavelength region of the MDM ferrite disk. At the same time, the magnetic
near field is pure potential. Parameter F is the ME-field helicity density. It appears
only at theMDM resonances. A sign of the helicity parameter depends on a direction
of a bias magnetic field. Because of time-reversal symmetry breaking, all the regions
with positive helicity become the regions with negative helicity (and vice versa),
when one changes a direction of a bias magnetic field:

F
�H0↑ = −F

�H0↓. (19.35)

An integral of theME-field helicity over an entire near-field vacuum region should
be equal to zero [68, 69]. This “helicity neutrality” can be considered as a specific
conservation law of helicity. The helicity parameter F is a pseudoscalar: to come
back to the initial stage, one has to combine a reflection in a ferrite-disk plane and
an opposite (time-reversal) rotation about an axis perpendicular to that plane. The
helicity-density distribution is related to the angle between the spinning electric
and magnetic fields. Figures 19.4 and 19.5 show the magnetic and electric field
distributions on the upper plane of a ferrite disk for the first MDM resonance at
different time phases. For such a field structure one can observe both the cross
�E × �H and dot �E · �H products in the near-field region. The dot-product distributions
(the helicity density distributions) are showed in Fig. 19.6. When one moves from
the ferrite surfaces, above or below a ferrite disk, one observes reduction of the field
amplitudes and also variation of the angle between spinning electric and magnetic
fields. This angle varies from 0° or 180° (near the disk surfaces) to 90° (sufficiently
far from a ferrite disk). The “source” of the helicity factor is the pseudoscalar quantity
of the magnetization distribution in a ferrite disk at the MDM resonances [68]
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Fig. 19.4 Magnetic field distributions on the upper plane of a ferrite disk for the first MDM
resonance at different time phases

Im
∫

V (±)

[
�m ·

( �∇ × �m
)∗]

dV �= 0, (19.36)

where V (±) are volumes of the upper and lower halves of the ferrite disk. These
magnetization parameters are distributed asymmetrically with respect to the z-axis
(see Fig. 19.7). Thus, the distribution of the helicity factor is also asymmetric. The
regions with nonzero helicity factors we can characterize as the regions with nonzero
ME energies. The area with positive helicity factor F (+) is the area with positive ME
energy,W (+)

ME . The areawith negative helicity factor F
(−) is the areawith negativeME

energy,W (−)
ME . The total “ME potential energy” is related to the “ME kinetic energy”

of the power-flow rotation. It a symmetrical structure, we have “magnetoelectrically
neutral” condensate.

At the MDM resonances, both the power-flow vortices and the helicity states of
ME fields are topologically protected quantumlike states. In [69], it was shown that
the power-flow density and the helicity are the complex quantities. In the absence
of losses and sources, there exist also the vector Im �E × �H∗. This vector can be
classified as the reactive power flow density. Figure 19.8 illustrates the active and
reactive power flows distributions at the MDM resonance above and below a ferrite
disk. We can see that while the active power flow is characterized by the vortex
topology, the reactive power flow has a source which is originated from a ferrite
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Fig. 19.5 Electric field distributions on the upper plane of a ferrite disc for the firstMDM resonance
at different time phases

Fig. 19.6 The helicity density distributions above and below a ferrite disk at the MDM resonance
at two opposite directions of a bias magnetic field. The electric and magnetic fields outside a
ferrite disk are rotating fields which are not mutually perpendicular. The helicity parameter F is
a pseudoscalar: to come back to the initial stage, one has to combine a reflection in a ferrite-disk
plane and an opposite (time-reversal) rotation about an axis perpendicular to that plane. In a green
region F = 0: the angle between the electric and magnetic fields is 90◦

disk. The regions of localization of the active and reactive power flows are different.
While the active power flow is localized at the disk periphery, the reactive power
flow is localized at a central part of the disk. It was shown [69] that above and below
a quasi-2D ferrite disk, the real part of the helicity density (defined by (19.34)) is
related to an imaginary part of the complex power-flow density:
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Fig. 19.7 Pseudoscalar quantity of the magnetization in a ferrite disk as a “source” of the helicity
factor at the MDM resonance

Fig. 19.8 The active and reactive power flows of theME field at theMDM resonance. aAn upward
directed bias magnetic field; b a downward directed bias magnetic field. The active and reactive
power flows aremutually perpendicular. These flows constitute surfaces, which can be considered as
deformed versions of the complex planes, i.e., as Riemann surfaces. When one changes a direction
of a bias field, the active power flow changes its direction as well. At the same time, the reactive
power flow does not change its direction when the direction of a bias field is changed

1

2
Re

∣
∣∣ �E · �H∗

∣
∣∣ = 1

2
Im

∣
∣∣
[ �E × �H∗

]

z

∣
∣∣ (19.37)

The numerical results in [69] clearly show that in a vacuum region where the
helicity-density factor exist, the reactive power flow is observed as well. So, in a
region near a ferrite disk, the reactive power flow is accompanied by the helicity
factor or, in other words, by the ME-energy density.

The pseudoscalar parameter (19.36) and the helicity factor F, arise due to spin-
orbit interaction. Such PT-symmetric parameters, mixing electric and magnetic
fields, are associated with the axion-electrodynamic term, leading to modification of



544 E. Kamenetskii

inhomogeneous Maxwell equations [57, 70, 71]. It means that the ME fields appear
as the fields of axion electrodynamics. With such a unique topological structure
of ME near fields, two types of polaritons should be observed: right-handed ME
polaritons and left-handed ME polaritons. When an external microwave structure
is geometrically symmetrical, the two types of ME polaritons are indistinguish-
able. Otherwise, different microwave responses could be observed depending on the
direction of the bias magnetic field. When an external microwave structure contains
any elements with geometrical chirality, the right-hand and left-hand ME polaritons
becomes nondegenerate, and microwave responses depend on the direction of the
bias magnetic field. This fact was confirmed both numerically and experimentally
[56].

19.4 MDM Particles Inside Waveguides and Cavities

In microwaves, we are witnesses that long-standing research in coupling between
electrodynamics and magnetization dynamics noticeably reappear in recent studies
of strong magnon-photon interaction [72–76]. In a small ferromagnetic particle, the
exchange interaction can lead to the fact that a very large number of spins to lock
together into onemacrospinwith a corresponding increase in oscillator strength. This
results in strong enhancement of spin-photon coupling. In a structure of a microwave
cavity with a yttrium iron garnet (YIG) sphere inside, the avoided crossing in the
microwave reflection spectra verifies the strong coupling between the microwave
photon and the macrospin magnon. In these studies, the Zeeman energy is defined
by a coherent state of the macrospin-photon system when a magnetic dipole is in its
antiparallel orientation to the cavity magnetic field. Together with an analysis of the
strong coupling of the electromagnetic modes of a cavity with the fundamental Kittel
modes, couplingwith non-uniformmodes—theWalkermodes—in aYIG spherewas
considered. In the microwave experiments, identification of the Walker modes in the
sphere was made based an effect of overlapping between the cavity and spin waves
due to relative symmetries of the fields [77, 78]. Nevertheless, the experimentally
observed effects of strong magnon-photon interaction, cannot be described properly
in terms of a single magnon-photon coupling process. In a view of these aspects, the
theory based on solving coupled Maxwell and Landau-Lifshitz-Gilbert equations
without making the conventional magnetostatic approximation have been suggested
[79, 80]. Currently, the studies of strong magnon-photon interaction are integrated
in a new field of research called cavity spintronics (or spin cavitronics) [81].

The coupling strength in the magnon-photon system is proportional to the prob-
ability of conversion of a photon to a magnon and vice versa. An effective way for
strong coupling is to confine both magnons and photons to a small (subwavelength)
region.Long-range spin transport inmagnetic insulators demonstrates that the dipolar
interactions alone generate coherent spin waves on the scales that are much larger
than the exchange-interaction scales and, at the same time, much smaller than the
electromagnetic-wave scales. Because of symmetry breakings, theMDMferrite disk,
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Fig. 19.9 An interaction of a MDM ferrite disk with a microwave waveguide. The structure is
viewed as theP+Q space. It consists of a localized quantum system (theMDMferrite disk), denoted
as the region Q, which is embedded within an environment of scattering states (the microwave
waveguide), denoted as the regions P. The coupling between the regions Q and P is regulated by
means of the two “contact regions” in the waveguide space

being a very small particle compared to the free-space electromagneticwavelength, is
a singular point for electromagnetic fields in awaveguide or cavity.Whenwe consider
a ferrite disk in vacuum environment, the unidirectional power-flow circulationmight
seem to violate the law of conservation of an angular momentum in a mechanically
stationary system. In a microwave structure with an embedded ferrite disk, an orbital
angular momentum, related to the power-flow circulation, must be conserved in the
process. It can be conserved if topological properties of electromagnetic fields in the
entire microwave structure are taken into account. Thus, if power-flow circulation
is pushed in one direction in a ferrite disk, then the power-flow circulation on metal
walls of the waveguide or cavity to be pushed in the opposite direction at the same
time. It means that, in a general consideration, the model of MDM-vortex polaritons
appears as an integrodifferential problem. Figure 19.9 presents a schematic picture
of an interaction of a MDM ferrite disk with an external microwave structure. In
[68] it was shown that due to the topological action of the azimuthally unidirectional
transport of energy in a MDM-resonance ferrite sample there exists the opposite
topological reaction (opposite azimuthally unidirectional transport of energy) on a
metal screen placed near this sample. It is obvious that the question of the interaction
of a MDM ferrite disk with an external microwave structure is far from trivial. To
illustrate this nontriviality inmore details,we adduce here some topological problems
related to our studies.

A. On Rayleigh scattering by a thin ferrite rod

In the above studies of the MDM oscillation spectra in an open quasi-2D ferrite disk,
the separation of variables in a cylindrical coordinate system was used. Analytically,
we cannot apply a 2Dmodel to consider scattering of EMwaves by a subwavelength
ferrite disk. Nevertheless, based on a simple qualitative analysis of a 2D structure,
we can illustrate the role of topology in the EM-wave scattering by a ferrite sample.
For this purpose, we will view some properties of the EM-wave scattering by a thin
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Fig. 19.10 Schematic illustration of charges and currents on the cross-section of the rods at the
dipole-like scattering. a Electric charges and currents on a surface of a thin metal rod induced by RF
electric field in a r, θ plane. bMagnetic charges and currents on a surface of a thin ferrite rod induced
by RF magnetic field in a r, θ plane. Magnetic current of a polaritonic structure is conventionally
represented as a circle composed by the blue and red arrows. In this case, the entire cycle of rotation
corresponds to the π -shift of a dynamic phase

endless ferrite rod in comparison with the EM-wave scattering by a thin endless
metal rod.

In Fig. 19.10, we give a schematic illustration of charges and currents on the cross-
section of the rods at the dipole-like scattering. Let us consider, initially, Rayleigh
scattering by a thin endless cylindrical rod made from a perfect electric conductor
(PEC). A rod oriented along the z axis is acted upon by an external alternating
electric field in the plane r, θ of a plane electromagnetic wave. Assuming that the
rod diameter is much less than the EM wavelength, the analysis can be viewed
as a quasi-electrostatic problem. The electric field of the EM wave induces posi-
tive and negative electric charges on diametrically opposite points of the r, θ plane,
which cause two, clockwise (CW) and counter clockwise (CCW), azimuthal electric
currents on the rod surface. Creating an azimuthally symmetric structure, each of
these surface currents passes over a regular-coordinate angle π . In such a structure
we have both the azimuthal and time symmetries. In Fig. 19.10a, the +,− surface
electric charges correspond to the maximum, minimum of the charge distributions in
the azimuth coordinates. One can adduce other examples of the azimuthal and time
symmetries (the PT symmetry) at the dipole-like scattering from subwavelength
structures. This includes also the electric-dipole eigenmodes of the surface plasmon
resonances [82–84].

We consider now a thin endless cylindrical rod made from a magnetic insulator,
YIG. A plane EM wave propagates along the rod axis. The rod diameter is much
less than the EM wavelength and the analysis is considered as a quasi-magnetostatic
problem. The rod is axially magnetized up to saturation by a bias magnetic field
directed along the z axis. Due to the anisotropy (gyrotropy) induced by bias magnetic
field, the RF magnetic field of the EM wave, which lies in the r, θ plane, causes the
precessional motion of the alternating magnetization vector about the z axis. In this
structure,magnetic charges at diametrically opposite points of a ferrite rod can appear
due to the divergence of magnetization. It is known that at the ferromagnetic reso-
nance frequency in an infinite medium, no divergence of the magnetization exists.
Also, it is known that a divergence of theDCmagnetization exists in a ferrite ellipsoid
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(in an endless cylindrical ferrite rod, in particular) with the homogeneous-precession
mode (Kittel’s mode) [18]. The divergence of both the DC and RF magnetizations
may occur in a ferrite sample in a case of nonhomogeneous-precession modes. These
magnetic-dipole modes—Walker’s modes—in a thin endless cylindrical ferrite rod
were studied in [85]. For these eigenmodes, the RF magnetic field of the incident
EM wave induces a magnetic dipoles, which lies in the r, θ plane of a ferrite rod. In
Fig. 19.10b, the +(m),−(m) surface magnetic charges correspond to the maximum,
minimum of the charge distributions in the azimuth coordinates. Due to the time-
reversal symmetry breaking, these surfacemagnetic charges cannot cause two, clock-
wise (CW)and counter clockwise (CCW), azimuthalmagnetic currents. For the given
direction of bias magnetic field, we may have only CW or CCW induced magnetic
current, which passes over a regular-coordinate angle π at the time phase of π . In
Fig. 19.10b, this is shown as the CW blue-arrow current. We can suppose, however,
that there exists a polaritonic structure with an additional (non-electromagnetic)
phase shift, when the gradient of twisting angle plays the role of the phase gradient.
A global phase texture with coflowing an EM-wave induced magnetic current and
topological magnetic current will provide us with the possibility to have rotational
symmetry by a turn over a regular-coordinate angle 2π at the time phase of π . This
situation is shown in Fig. 19.10b, where the CW magnetic current of a polaritonic
structure is conventionally represented as a circle composed by the blue and red
arrows. It is worth noting, however, that one can view such a phenomenon not in a
ferrite rod, but in the r, θ plane of a ferrite disk with MDM oscillations, where the
non-electromagnetic torque is caused by the topological-phase effects. In the MDM
ferrite-disk resonator, the non-zero circulation of such a magnetic current, observed
at the time phase shift of π , results in appearance of a constant angular momentum
directed along the z axis. This is possible due to an additional phase shift of the
magnetic current along the z axis. The magnetic currents have a helical structure.
When such helical currents (and so helical waves) cannot be observed in a smooth
ferrite rod, they can be seen in a MDM ferrite disk [86].

B. Testing the topological properties of theME field with small metal rods and
rings in a microwave waveguide

In a structure of a MDM particle embedded in a microwave waveguide, photons
interact strongly and coherently with magnetic excitations. The creation of certain
non-classical states in such a macroscopic system can be observed with help of small
metallic elements placed inside a microwave waveguide near the ferrite disk. Here
we show some of the topological properties of theME field using small metallic rods
and rings.

A structure of microwave waveguide with a ferrite disk and small metallic rod,
shown in Fig. 19.11a, was studied experimentally in [87] and numerically in [88].
The rod is oriented along an electric field of a rectangular waveguide. Its diameter
is a very small compared to the disk diameter and to the free-space electromag-
netic wavelength. On the basis of a comparative analysis of experimental oscillation
spectra, it was argued in [87] that the fact that an additional small capacitive coupling
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Fig. 19.11 a A structure of microwave waveguide with a ferrite disk and small metallic rod.
b Electric field on a small PEC rod for the frequency far from the MDM resonance at different time
phases. There is a trivial picture of the fields of a small electric dipole inside a waveguide. c Electric
field on a small PEC rod in the MDM resonance at different time phases. A PEC rod behaves as
a small line defect on which rotational symmetry is violated. The observed evolution of the radial
part of polarization gives evidence for the presence of a geometrical phase in the vacuum-region
field of the MDM-vortex polariton

(due to a piece of a nonmagnetic wire) strongly affects magnetic oscillation proves
the presence of the electric-dipole moments (anapole moments) of the MDMs in a
quasi-2D ferrite disk. In numerical studies [88], a metal rod is made of a PEC. At
frequencies far from the MDM resonances, the field structure of an entire waveguide
is not noticeably disturbed. The electric field on the rod demonstrates a trivial picture
of the field induced on a small electric dipole inside a waveguide (Fig. 19.11b). At
the same time, in the case of the MDM resonance, there is a strong reflection of
electromagnetic waves in a waveguide. The PEC rod behaves as a small line defect
on which rotational symmetry is violated. The observed evolution of the radial part
of the electric polarization, giving, as a result, a circulating electric current, indicates
the presence of a geometrical phase in the vacuum-region field of the MDM-vortex
polariton (Fig. 19.11c).

Let us bend the metallic rod into a ring and rigidly connect the ends. At the MDM
resonance, rotating electric charges and circulating electric currents arise on a ring
placed above the ferrite disk. [89]. Figure 19.12 shows circulation of a surface electric
current along a PEC ring. The ferrite disk has a diameter of 3 mm. A metallic ring
made from a wire of a diameter of 0,05 mm, has a diameter of 1.5 mm. The ring is
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Fig. 19.12 a A structure of microwave waveguide with a ferrite disk and small metallic ring.
b Circulating surface electric current on a metallic ring. c The electric current on the surface of a
metallic ring has the spin degree of freedom

located above a ferrite disk at a distance of 0.05mm. The circulating current will give
an angular-momentum flux. The intensity of the flux is proportional to the gradient
of twisting angle, which plays the role of the phase gradient. A critical phase gradient
is required to enable the process. This occurs only at the MDM resonance. In this
case, the persistent charge current in the ring is correlated to the persistent magnetic
current in a ferrite disk. The electric current on the surface of the metallic ring has
the spin degree of freedom (see Fig. 19.12c). When using 2D models in our main
studies ofMDMoscillations, we can conclude now that, generally, an analysis ofME
fields should be made based on the 3D model. At the MDM resonance, the current
induces on a test metal ring is a topological soliton structure which is quantized
simultaneously in poloidal and toroidal directions. This 3D continuous vector-field
structure—a hopfion (or Hopf soliton)—cannot be unknotted without cutting [90,
91]. It is also worth noting that the helicity properties of the 3D structure of the ME
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field in vacuum reflect its own topologically nontrivial structure at each mode of the
MDM-oscillation spectrum.

It is worth noting that in a remarkable paper [92], the authors had measured the
low-temperature magnetization response of an isolated mescoscopic copper ring to
a slowly varying magnetic flux. They showed that the total magnetization response
oscillates as a function of the enclosed magnetic flux on the scale of half a flux
quantum. In our study, a numerical analysis made in [89] shows that the currents
induced on a metal ring at the MDM resonances, strongly perturb the electric, but
not the magnetic, field in a vacuum region above the ferrite disk. This means that the
ring is threaded mainly by an electric flux. Taking into account the above-analyzed
properties of the anapole, we have evidence of the presence of the enclosed electric
flux on the scale of half a flux quantum.

C. MDM cavity electrodynamics

For the case of MDM resonances in a small ferrite disk, characterizing by non-
uniform magnetization dynamics, the above-mentioned model of coherent states
of the macrospin/photon system in a ferrite sphere [72–76, 81], is not applicable.
In [57, 93], it was shown that multiresonance microwave oscillations observed in
experiments [49–51, 93], are related to the fact that magnetization dynamics of
MDM oscillations in a quasi-2D ferrite disk have a strong impact on the phenomena
associated with the quantized energy fluctuation of microwave photons in a cavity.
Figure 19.13 gives a sketch showing the relationship between quantized states of
microwave energy in a cavity and magnetic energy in a MDM ferrite disk. The

Fig. 19.13 A sketch showing the relationship between quantized states of microwave energy in
a cavity and magnetic energy in a ferrite disk. a A structure of a rectangular waveguide cavity
with a normally magnetized ferrite-disk sample. b A typical multiresonance spectrum of modulus
of the reflection coefficient. c Microwave energy accumulated in a cavity; w

(n)
RF are jumps of

electromagnetic energy at MDM resonances
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microwave structure is a rectangular waveguide cavity with a normally magnetized
ferrite-disk sample. The operating frequency, which is a resonant frequency of the
cavity, is constant. The only external parameter, which varies in the experiment,
is a bias magnetic field. The observed discrete variation of the cavity impedances
is related to discrete states of the cavity fields. Since the effect was obtained at a
given resonant frequency, the shown resonances are not conventional cavity modes
related to the frequency-dependent quantization of the photon wave vector. These
resonances are caused by the quantized variation of energy of a ferrite disk, which
appear due to variation of energy of an external source—the bias magnetic field.

At the regions of a bias magnetic field, designated in Fig. 19.13 as A, a, b, c, d,
…, we do not have MDM resonances. In these regions, a ferrite disk is “seen” by
electromagnetic waves, as a very small obstacle which, practically, does not perturb
a microwave cavity. In this case, the cavity (with an embedded ferrite disk) has good
impedancematchingwith an external waveguiding structure and amicrowave energy
accumulated in a cavity is at a certain maximal level. At the MDM resonances, the
reflection coefficient sharply increases (the states designated inFig. 19.13 bynumbers
1, 2, 3, …). The input impedances are real, but the cavity is strongly mismatched
with an external waveguiding structure. It means that at the MDM-resonance peaks,
the cavity receives less energy from an external microwave source. In these states
of a bias magnetic field, the microwave energy stored in a cavity sharply decreases,
compared to itsmaximal level in theA, a, b, c, d,…Since the only external parameter,
which varies in this experiment, is a bias magnetic field, such a sharp release of the
microwave energy accumulated in a cavity to an external waveguiding structure
should be related to the emission of discrete portions of energy from a ferrite disk.
This means that at theMDM resonances, a strong and sharp decrease in the magnetic
energy of the ferrite sample should be observed.

When speaking about the eigenstates of the microwave-cavity spectrum observed
at the bias-field variation and constant frequency, we should answer the question
about the eigenfunctions of this spectrum. In general, microwave resonators with
the time-reversal symmetry breakings give an example of a nonintegrable, i.e., path
dependent, system. The time-reversal symmetry breaking effect leads to creation
of the Poynting-vector vortices in a vacuum region the microwave resonators with
enclosed lossless ferrite samples [94–97]. In an analysis of the cavity eigenfunctions,
it makes no sense to consider the reflection of electromagnetic waves from magne-
tized ferrites from the standpoint of energy flow and ray propagation [98]. One cannot
use an interpretation which allows viewing the modes as pairs of two bouncing elec-
tromagnetic plane waves. This interpretation clearly shows that for a structure with
an enclosed magnetized ferrite sample given, for example, in Fig. 19.14, there can
be no identity between the rays 1 → F → 1′ and 1′ → F → 1 in the sense that
these rays can acquire different phases when are reflected by the ferrite.

At the same time, it is argued [99] that in quantum mechanics the distinction
between integrable and nonintegrable systems does not work any longer. The initial
conditions are defined only within the limits of the uncertainty relation�x�p ≥ 1

2�.
Since the Schrödinger equation is linear, a quantum mechanical wave packet can be
constructed from the eigenfunctions by the superposition principle.What do we have
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Fig. 19.14 The rays 1 → F → 1′ and 1′ → F → 1 acquire different phases when are reflected
by the ferrite

in our structure of a MDM ferrite disk in a cavity? We use the Walker equation for a
MS scalar wave function. It also allows to construct a wave packet from the eigen-
functions by the superposition principle. We have to use a description of the spectral
response functions of the system with respect to two external parameters—a bias
magnetic field H0 and a signal frequency ω— and analyze the correlations between
the spectral response functions at different values of these external parameters. It
means that, in neglect of losses, there should exist a certain uncertainty limit stating
that

� f �H0 ≥ uncertainty limit (19.38)

This uncertainty limit is a constant which depends on the disk size parameters
and the ferrite material property (such as saturation magnetization) [57]. Beyond the
frames of the uncertainty limit (38) one has continuum of energy. The fact that there
are different mechanisms of quantization allows to conclude that for MDM oscilla-
tions in a quasi-2D ferrite disk both discrete energy eigenstate and a continuum of
energy can exist. In quantummechanics, the uncertainty principle says that the values
of a pair of canonically conjugate observables cannot both be precisely determined in
any quantum state. In a formal harmonic analysis in classical physics, the uncertainty
principle can be summed up as follows: A nonzero function and its Fourier transform
cannot be sharply localized. This principle states also that there exist limitations in
performing measurements on a system without disturbing it. Basically, formulation
of the main statement of the MDM-oscillation theory is impossible without using a
classicalmicrowave structure. If aMDMparticle is under interactionwith a “classical
electrodynamics” object, the states of this classical object change. The character and
value of these changes depend on the MDM quantized states and so can serve as its
qualitative characteristics. The microwave measurement reflects interaction between
a microwave cavity and a MDM particle. It is worth noting that for different types
of subwavelength particles (ferrite disks), the uncertainty limits may be different.

The fact of the existence of the uncertainty limit (38) is indirectly confirmed
by the experimental results presented in [100]. In the microwave structure shown
in Fig. 19.15a, a ferrite disk is placed in a cavity with a very low Q factor. The
wide bandwidth is due to losses caused by the test samples embedded in the cavity.
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Fig. 19.15 a A structure of a rectangular waveguide cavity. bModification of the Fano-resonance
shape. At variation of a bias magnetic field, (H0)1 < (H0)2 < (H0)3, the Fano line shape of a
MDM resonance can be completely damped. The scattering cross section of a single Lorentzian
peak corresponds to a pure dark mode

Figure 19.15b shows how a bias magnetic field tunes the shape of the MDM reso-
nance. It can be seen that as one approaches the top of the cavity resonance curve,
the effect of Fano resonance collapses, the Fano line shape is completely decays,
and a single Lorentz peak is observed. The Lorentzian response is a narrow, highly
symmetric peak. The scattering cross section corresponds to a pure dark mode. All
this means that, within uncertainty limit (19.38), it is possible to carry out observa-
tions for a very wide linewidth of the cavity mode (� f is very big) and an extremely
narrow linewidth of the MDM resonance peak (�H0 is very small).

In the above studies, we considered the G modes (with a scalar MS membrane
function η̃ and the ND BC) and the L modes (with vector MS membrane function

Ṽ ≡
(

�̃B
ϕ̃

)

and the EM BC). The G-mode spectral analysis is more appropriate to

use at the regime of a constant frequency and the bias magnetic-field variation, while
the L-mode analysis—at a constant bias magnetic field and the frequency variation.
These two spectral problems are bridged within uncertainty limit (19.38).

19.5 Transfer of Angular Momentum to Dielectric
Materials, Metals and Biological Structures
from MDM Resonators

Due to unique structures of twisted ME near fields, one can observe angular
momentums (spin and orbital) transfer to electric polarization in a dielectric sample
(Fig. 19.16). Experiments [101, 102] show explicit shifts of the MDM resonance
peaks due to the dielectric loading of the ferrite disk. This effect was explained in
[56, 57, 102]. The mechanical torque exerted on a given electric dipole in a dielec-
tric sample is defined as a cross product of the MDM electric field and the electric
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Fig. 19.16 Angular momentums (spin and orbital) transfer to electric polarization in a dielectric
sample

moment of the dipole. The torque exerting on the electric polarization in a dielectric
sample due to the MDM electric field should be equal to reaction torque exerting on
the magnetization in a ferrite disk. Because of this reaction torque, the precessing
magnetic moment density of the ferromagnet will be under additional mechanical
rotation at a certain frequency Ω . The frequency Ω is defined based on both, spin
and orbital, momentums of the fields of MDM oscillations. It was shown experimen-
tally that the chiral structure of near-field ME provides the potential for microwave
chirality discrimination in chemical and biological objects [103].

Because of a chiral topology of near fields originated from MDM oscillations in
a ferrite disk, one has helical electric currents induced on a surface of a metal wire
electrode placed on a surface of a ferrite disk. On a butt end of a wire probe one can
observe twisted near fields (Fig. 19.17). The handedness of these fields depends on
a direction of a bias magnetic field applied to a MDM ferrite resonator [102]. Using
helical electric currents induced on ametal wire electrode, one can obtain the angular
momentum transfer to localized regions in dielectric samples (Fig. 19.18).

Fig. 19.17 aMicrowave probing structure with aMDM ferrite-disk resonator and a wire electrode.
b Schematic illustration of twisted near fields



19 Magnetoelectric Near Fields 555

Fig. 19.18 Angular momentum transfer to localized regions in dielectric samples

Due to strong reflection and absorption of electromagnetic waves in conductive
layers andbiological tissue, standardmicrowave techniques cannot be used for testing
such structures. Twisted microwave near fields with strong energy concentration,
originated from MDM ferrite disk with a metal wire electrode, allow probing effec-
tively high absorption conductive layers. This effect can be explained by a simple
physical model. When the electromagnetic wave incidents on a conductive material,
the induced electric current is almost parallel to the electric field (Ohm’s law). Joule
losses in conductive materials are defined by a scalar product of an induced electric
current and an electric field. When, however, a conductive material is placed in a
twisted microwave near field, the RF electric current and an RF electric field become
mutually nonparallel. It means that for Joule losses, one has �J · �E = J · E cos δ with
cos δ � 1. Extremely small Joule losses result in strong enlargement of a penetra-
tion length—the skin depth—in a sample. Figure 19.19 presents numerical results
illustrating the effect of penetration of the twisted-field microwave power through a
thin metal screen [104].

19.6 Conclusion

ME fields are subwavelength-domain fields with specific properties of violation of
spatial and temporal inversion symmetry.When searching for suchfields,we consider
near fields originated from subwavelength resonators, that are the systems with
quantum-confinement effects of dipolar-mode quasistatic oscillations. We show that
the near fields of a quasi-2D subwavelength-size ferrite disk with magnetic-dipolar-
mode (MDM) oscillations have the properties of ME fields. The ME fields, being
originated from magnetization dynamics at MDM resonances, appear as the pseu-
doscalar axionlike fields. Whenever the pseudoscalar axionlike fields, is introduced
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Fig. 19.19 Numerical results showing the twisted-field effect of penetration microwave power
through a thin metal screen

in the electromagnetic theory, the dual symmetry is spontaneously and explicitly
broken. This results in non-trivial coupling between pseudoscalar quasistatic ME
fields and the EM fields in microwave structures with an embedded MDM ferrite
disk.

Long range magnetic dipole-dipole correlation can be treated in terms of collec-
tivemagnetostatic excitations of the system. In small ferromagnetic-resonance ferrite
disk, macroscopic quantum coherence can be observed. In a case of a quasi-2D
ferrite disk, the quantized forms of these collective matter oscillations—the MDM
magnons—were found to be quasiparticles with both wave-like and particle-like
behaviors, as expected for quantum excitations. With use of MS-potential scalar
wave function ψ we formulate properly the energy eigenstate problem based on the
Schrödinger-like equation. We obtain currents (fluxes) for MS modes. We show that
in a subwavelength ferrite-disk particle one can observe an angularmomentum due to
the power-flow circulation of double-valued edge MS-wave functions. For incident
electromagnetic wave, this magnon subwavelength particle emerges as a singular
point carrying quanta of angular momenta. In a ferrite-disk sample, the magnetiza-
tion has both the spin and orbital rotations. There is the spin-orbit interaction between
these angular momenta. The MDMs are characterized by the pseudoscalar magneti-
zation helicity parameter, which can be considered as a certain source of the helicity
properties of ME fields.

Quantized ME fields arising from nonhomogeneous ferromagnetic resonances
with spin-orbit effect, suggest a conceptually newmicrowave functionality for mate-
rial characterization. Due to unique structures of twisted ME near fields, one can
observe angular momentums (spin and orbital) transfer to electric polarization in
a dielectric sample. The chiral structure of near-field ME provides the potential
for microwave chirality discrimination in chemical and biological objects. Twisted
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ME fields allow deep penetration of the microwave power into materials with high
conductivity.

References

1. J.D. Jackson, Classical Electrodynamics, 2nd edn. (Wiley, New York, 1975)
2. Y. Tang, A.E. Cohen, Optical chirality and its interaction with matter. Phys. Rev. Lett. 104,

163901 (2010)
3. K.Y. Bliokh, A.Y. Bekshaev, F. Nori, Dual electromagnetism: Helicity, spin, momentum and

angular momentum. New J. Phys. 15, 033026 (2013)
4. E. Hendry, T. Carpy, J. Johnston et al., Ultrasensitive detection and characterization of

biomolecules using superchiral fields. Nat. Nanotechnol. 5, 783 (2010)
5. M.M. Coles, D.L. Andrews, Chirality and angular momentum in optical radiation. Phys. Rev.

A 85, 063810 (2012)
6. R.P. Cameron, S.M. Barnett, A.M. Yao, Discriminatory optical force for chiral molecules.

New J. Phys. 16, 013020 (2014)
7. A. Canaguier-Durand, J.A. Hutchison, C. Genet, T.W. Ebbesen, Mechanical separation of

chiral dipoles by chiral light. New J. Phys. 15, 123037 (2013)
8. A. Canaguier-Durand, C. Genet, Chiral route to pulling optical forces and left-handed optical

torques. Phys. Rev. A 92, 043823 (2015)
9. E. Mohammadi, K.L. Tsakmakidis, A.N. Askarpour, P. Dehkhoda, A. Tavakoli, H. Altug,

Nanophotonic platforms for enhanced chiral sensing. ACS Photonics 5, 2669 (2018)
10. S. Droulias, L. Bougas, Surface plasmon platform for angle-resolved chiral sensing. ACS

Photon. 6, 1485 (2019)
11. T.V. Raziman, R.H. Godiksen, M.A. Müller, A.G. Curto, Conditions for enhancing chiral

nanophotonics near achiral nanoparticles. ACS Photon. 6, 2583 (2019)
12. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (John

Wiley & Sons, New York, 1983)
13. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424,

824 (2003)
14. E. Ozbay, Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science

311, 189 (2006)
15. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007)
16. M.I. Kaganov, N.B. Pustyl’nik, T.N. Shalaeva, Magnons, magnetic polaritons, magnetostatic

waves. Phys. Usp. 40, 181 (1997)
17. V.V. Kruglyak, S.O. Demokritov, D. Grundler, Magnonics. J. Phys. D Appl. Phys. 43, 264001

(2010)
18. A.G.Gurevich, G.A.Melkov,Magnetic Oscillations andWaves (CRCPress, NewYork, 1996)
19. S.B. Cohn, Microwave bandpass filters containing high-Q dielectric resonators. IEEE Trans.

Microw. Theor. Techn. MTT-16, 218 (1968)
20. J.C. Ginn, I. Brener, D.W. Peters, J.R. Wendt, J.O. Stevens, P.F. Hines, L.I. Basilio, L.K.

Warne, J.F. Ihlefeld, P.G. Clem, M.B. Sinclair, Realizing optical magnetism from dielectric
metamaterials. Phys. Rev. Lett. 108, 097402 (2012)

21. A.I. Kuznetsov, A.E. Miroshnichenko, Y.H. Fu, J.B. Zhang, B. Luk’yanchuk, Magnetic light.
Sci. Rep. 2, 492 (2012)

22. G.T. Papadakis, D. Fleischman, A. Davoyan, P. Yeh, H.A. Atwater, Optical magnetism in
planar metamaterial heterostructures. Nat. Commun. 9, 296 (2018)

23. J.M. Pitarke, V.M. Silkin, E.V. Chulkov, P.M. Echenique, Theory of surface plasmons and
surface-plasmon polaritons. Rep. Prog. Phys. 70, 1 (2007)

24. B. Bêchea, E. Gaviot, About the Heisenberg’s uncertainty principle and the determination of
effective optical indices in integrated photonics at high sub-wavelength regime. Optik 127,
3643 (2016)



558 E. Kamenetskii

25. J.A. Kong, Theorems of bianisotropic media. Proc. IEEE 60, 1036 (1972)
26. C.E. Kriegler, M.S. Rill, S. Linden, M.Wegener, Bianisotropic photonic metamaterials. IEEE

J. Select. Top. Quant. Electron. 16, 367 (2010)
27. N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, J. de

Rosny, Optical properties of metamaterials: Influence of electric multipoles, magnetoelectric
coupling, and spatial dispersion. Phys. Rev. B 85, 115138 (2012)
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