
Chapter 9

CYBER-RESILIENT SCADA SYSTEMS
VIA SECURE STATE RESTORATION

Zachary Birnbaum, Matthew Davis, Salman Salman, James Cervini,
Lanier Watkins, Saikiran Yamajala and Shruti Paul

Abstract Supervisory control and data acquisition (SCADA) systems are widely
used in the critical infrastructure. These systems are high risk targets
for cyber attacks due to their criticality, interconnectedness and Internet
accessibility. SCADA systems employ programmable logic controllers to
monitor and issue control instructions to other devices. Unfortunately,
programmable logic controllers are typically configured in a persistent
manner – they are configured once and designed to operate continuously.
They are, therefore, ill-suited to operate in virtual, dynamic and cyber-
resilient environments. SCADA systems must employ cyber-resilient
architectures to enable them to endure and recover from cyber attacks.

This chapter describes a secure methodology for storing SCADA sys-
tem states that can be used by redundant, non-persistent devices dur-
ing operations and recovery. The proposed methodology realizes a non-
persistent, Byzantine fault-tolerant, virtual industrial control system ar-
chitecture whose state and function can be stored and restored securely,
contributing to its cyber resilience. Implementation of the methodology
in a SCADA environment incorporating non-persistent programmable
logic controllers reveals that cyber attacks are identified quickly and se-
cure restoration can occur without loss of state or functionality. Math-
ematical and timing analyses demonstrate the applicability and efficacy
of the methodology in creating cyber-resilient SCADA systems.

Keywords: SCADA systems, non-persistence, fault tolerance, cyber resilience

1. Introduction
Supervisory control and data acquisition (SCADA) systems are essen-

tial to monitoring and controlling industrial operations across the critical
infrastructure. Unlike many enterprise computing systems, these com-

c© IFIP International Federation for Information Processing 2020,

Published by Springer Nature Switzerland AG 2020

J. Staggs and S. Shenoi (Eds.): Critical Infrastructure Protection XIV, IFIP AICT 596, pp. 183–207, 2020.

https://doi.org/10.1007/978-3-030-62840-6_9

The original version of this chapter was revised: the name of the fourth author was changed. The
correction to this chapter is available at https://doi.org/10.1007/978-3-030-62840-6_17

corrected publication 2022

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62840-6_9&domain=pdf


184 CRITICAL INFRASTRUCTURE PROTECTION XIV

plex cyber-physical systems have tight real-time constraints due to their
interactions with the physical world.

The critical and interconnected nature of SCADA systems makes them
attractive targets for cyber attacks. The Stuxnet attacks [19] demon-
strated the vulnerabilities of SCADA systems and the irreparable dam-
age that can be caused. Stuxnet, a self-replicating computer virus, in-
fected programmable logic controllers (PLCs) used in Iran’s nuclear pro-
gram, destroying more than 1,000 uranium enrichment centrifuges and
significantly impacting Iranian nuclear ambitions.

Securing SCADA systems from cyber attacks is challenging. Classi-
cal defensive techniques such as encryption, firewalls, anomaly detection
and patching are difficult to apply in SCADA environments. Something
as simple as applying a system update, which occurs with regularity in
enterprise environments, is challenging due to the high availability de-
mands of SCADA systems. Additionally, many SCADA systems were
designed and integrated years ago and, therefore, have limited comput-
ing, memory and networking resources that hinder the ability to imple-
ment modern security mechanisms.

Applying conventional cyber defense and attack prevention solutions
such as encryption, authentication and anomaly detection to SCADA
systems may not be enough to deter skilled and determined adversaries.
Therefore, SCADA systems must rapidly recover their functionality after
they are degraded or disrupted. Cyber resilience is the ability to contin-
uously deliver the intended outcomes despite adverse cyber events – it
goes beyond attack prevention by ensuring continuity of operations. A
National Institute of Standards and Technology special publication [24]
lists 14 resilience techniques, including diversity, unpredictability, non-
persistence and redundancy.

Virtualization is a promising technology for implementing defensive
and cyber resilience techniques in SCADA environments. Many vendors
and integrators now offer virtual SCADA and industrial control sys-
tem components. In fact, during new integrations and upgrades, older
SCADA components are increasingly being replaced by their virtual
counterparts. Due to the increased computing power, memory and net-
work bandwidth, virtualization enables security techniques to be applied
in SCADA environments. Unlike physical systems, virtual systems can
be rebooted on demand. Rebooting a system, a simple cyber-resilient
(and defensive) action that manifests non-persistence, is effective against
certain types of malware [15].

Unfortunately, applying cyber resilience techniques in SCADA envi-
ronments is challenging, primarily due to their real-time nature, high
availability requirements and criticality. For example, when manifest-



Birnbaum et al. 185

ing non-persistence via a system reboot, it is important to minimize the
downtime. Applying non-persistence techniques to SCADA systems is
also challenging; rapidly regaining positive control is vital, but positive
control often requires knowledge of the current inputs as well as past
inputs and outputs. The reliance on historical data directly conflicts
with non-persistence. Other resilience techniques, such as redundancy
and heterogeneity, are easily integrated in cyber-resilient solutions for
SCADA systems without this concern.

Novel solutions must be developed to imbue cyber resilience in SCADA
systems. This chapter describes a secure methodology for storing system
states that can be used by redundant, non-persistent devices during op-
eration and recovery. The methodology realizes a non-persistent, Byzan-
tine fault-tolerant, virtual industrial control system architecture whose
state and function can be stored and restored securely, contributing to
its cyber resilience.

2. Background
This section briefly discusses important aspects of control theory,

SCADA system virtualization and cyber resilience.

2.1 Control Theory
The primary objective of a SCADA system is to produce outputs

(control commands to actuators) in the face of input disturbances [26].
Outputs are computed via feedforward or feedback mechanisms. Feed-
forward control reduces the effects of measured input disturbances by
adjusting the control effort based on the input disturbances [21]. Feed-
back control measures the difference between the true and desired system
states and uses the error to adjust the control effort [2]. This section
considers feedback systems, but a similar treatment can be applied to
feedforward systems.

Control systems are typically designed in the Laplace domain that
transforms hard-to-solve continuous time-domain differential equations
to their simple frequency domain equivalents [26]. The designed solu-
tions are then converted to discrete time difference equations for imple-
mentation in modern controllers.

For example, a third-order continuous time-domain controller can be
represented in the Laplace domain L as:

H(s) =
a2s

2 + a1s + a0

b3s3 + b2s2 + b1s + b0
(1)



186 CRITICAL INFRASTRUCTURE PROTECTION XIV

where ai and bi are constants, and s is a complex number frequency
parameter.

Assuming a constant time step Δt and adjusting for causality, the
equivalent representation in the discrete time domain Z is:

H(z) =
α2z

−1 + α1z
−2 + α0z

−3

1 + β2z−1 + β1z−2 + β0z−3
(2)

where αi and βi are constants, and z is the discrete complex time pa-
rameter.

The corresponding Z domain controller is represented by the following
difference equation:

y(k) = − β2y(k − 1) + −β1y(k − 2) + −β0y(k − 2)+
α2x(k) + α1x(k − 1) + α0x(k − 2)

where αi and βi are constants, and y(k) is the output at the discrete
time step k.

This difference equation is easily implemented by a controller that
transforms inputs to outputs consistent with the system design. Even
in this fairly simple control system example, previous input and output
states are key to computing the new output. The controller can then
be integrated in a standalone physical control device or virtualized in a
modern industrial control system architecture.

2.2 SCADA System Virtualization
The concept of a virtual SCADA environment is still novel and its

utility is actively discussed in the industrial community. In a virtual
SCADA system deployment, a single hypervisor typically contains mul-
tiple virtual programmable logic controller instances.

Johansson [18] discusses the benefits and disadvantages of SCADA
system virtualization. The benefits include:

Number of Physical Devices: Co-locating multiple virtual pro-
grammable logic controllers and human-machine interfaces reduces
the physical footprints of SCADA systems.

Software Development and Disaster Recovery: Virtual ma-
chine snapshots facilitate quick system rollbacks to saved copies
after failures due to software errors, cyber attacks and catastro-
phes.

Security Architecture Testing: Virtual security solutions are
readily deployed in SCADA environments. Security can be inte-



Birnbaum et al. 187

grated in hypervisors and standard host-based solutions can be
incorporated directly in virtual programmable logic controllers.

System Updates: Virtual systems are easier to update and patch
compared with their physical counterparts. A patch can be tested
and integrated in a virtual environment upon verification of func-
tionality and the system can be rolled back to a saved image in
the event of a failure.

The disadvantages of SCADA system virtualization include:

System Complexity: Adding new technology to a system makes
it more difficult to identify the origin of a system problem or failure.

Non-Standard Physical Interfaces: Many SCADA environ-
ments use proprietary or outdated physical devices to interface
with sensors and actuators. Interfacing these devices with com-
modity server equipment is challenging.

Cyber Attack Surface: Hypervisors increase the attack surface.
Successfully compromising a hypervisor may provide an attacker
with root privileges to all the running virtual machines [4]. Devel-
oping cyber secure hypervisors with reduced attack surfaces is an
active area of research [27].

The proposed methodology is designed for virtual SCADA systems.
The benefits of virtualization outweigh the disadvantages, which can
be mitigated by technical maturity and careful adoption [25]. Addi-
tionally, advancements have been made in virtual SCADA devices and
testbeds [22, 23]. The application of virtualization to SCADA systems
enhances cost savings and the ease of integration. This chapter demon-
strates that SCADA system virtualization increases cyber resilience.

2.3 Cyber Resilience
Cyber resilience is a relatively new concept in the cyber security field.

It involves several key characteristics [6]:

Inhibit: While inhibit capabilities are technically not an official
characteristic of cyber resilience, they prevent an adversary from
having a cyber impact on a system. Traditional security techniques
are often employed to enhance the overall cyber resilience.

Endure: Endure capabilities enable a system to provide a mini-
mum level of functionality when it is under cyber attack.



188 CRITICAL INFRASTRUCTURE PROTECTION XIV

Figure 1. Cyber resilience capabilities timeline.

Recover: Recover capabilities enable actions to be undertaken to
respond to degraded system performance.

Restore: Restore capabilities help regain complete system func-
tionality.

Improve: Improve capabilities support enhanced cyber resilience
design and implementation to mitigate anticipated threats.

Figure 1 shows the placement of the five cyber resilience characteris-
tics in an operational timeline. Inhibit technologies keep a system fully
functional. However, if a cyber effect is realized despite the defenses,
endure capabilities ensure that the system can still provide minimum
functionality. Recover capabilities ensure that, even if the system func-
tionality falls below an acceptable threshold, adequate functionality will
become available in an acceptable timeframe. Finally, restore capabili-
ties ensure that the system will regain full functionality.

Cyber resilience capabilities are realized through the application of
several techniques. Bodeau and Graubart [6] have identified the follow-
ing cyber resilience techniques:

Applied Analytics and Monitoring: This refers to the con-
tinual collection and analysis of system data to identify possible
vulnerabilities, adversarial activities and negative system impacts.

Heterogeneity: This refers to the utilization of diverse cyber
technologies to minimize the impacts of attacks and force an ad-
versary to attack different technologies with different vulnerabili-
ties.



Birnbaum et al. 189

Distributed Allocation: This refers to the positioning of critical
assets to provide an unpredictable attack surface to an adversary.

Non-Persistence: This refers to the retention of systems for a
limited time, reducing the ability of an adversary to act maliciously
and establish a persistent foothold. A persistent system is gener-
ally configured once and accessed only if troubleshooting or main-
tenance is required. A non-persistent system is designed to support
repeated shutdown, destruction, re-creation and initialization.

Redundancy: This refers to the presence of multiple protected
instantiations of a system, forcing an adversary to achieve cyber
effects on multiple targets simultaneously.

3. Related Work
Cardenas et al. [7] have provided an overview of the challenges in-

volved in securing SCADA systems. Many challenges arise from the
unique properties of SCADA systems compared with enterprise environ-
ments, namely their legacy nature and real-time operational constraints.

Melin et al. [20] have demonstrated that traditional cyber security
techniques can be applied to SCADA systems, but the systems must be
designed to be cyber resilient. Their work focuses on a framework and
testing criteria for system resilience. A key finding is that resilience is
greatly increased by eliminating the ability to remotely program indi-
vidual programmable logic controllers. This is because an attacker is
limited to adjusting only the system reference, which is easily detected.

Cox et al. [10] have demonstrated that heterogeneity provides cyber
resilience. Their framework executes heterogeneous system variants with
the same inputs and monitors their behavior to detect anomalies; this
technique forces an attacker to compromise multiple system variants to
achieve the desired effects. Gearheart et al. [14] have specified diversity
metrics and have demonstrated that text-based features can effectively
differentiate software diversity strategies implemented in open-source
diversifying compilers.

Byzantine fault-tolerant systems, which employ a form of distributed
allocation or redundancy, are also effective at enhancing cyber resilience.
Considerable work has been done in this area, especially coupled with
virtualization and other resilience enabling technologies.

Ahmed and Bhargava [1] have demonstrated that Byzantine fault
avoidance can be implemented in cloud environments using OpenStack
and software defined networking by allowing replicas to live for a short
time on computing platforms (hypervisors, hardware and operating sys-
tems) as a form of moving target defense. They present a fault avoidance



190 CRITICAL INFRASTRUCTURE PROTECTION XIV

architecture that leverages cloud platform technologies, providing replica
refresh algorithms to control the exposure of platforms to attacks, and
a scheme that preserves state while undergoing failure avoidance.

A Byzantine architecture employs a set of replicas for failure avoid-
ance. Within the replicas, a primary node exchanges consensus mes-
sages with a specific replica. The replica node then prepares a reply
and commits the response. The node is selected from a pre-prepared
virtual machine pool, which is refreshed after a set amount of time or
after completing a specific number of transactions. The primary benefit
is that the time advantage to a potential attacker is eliminated by not
having a virtual machine operate indefinitely. By dynamically using a
cloud software stack, Ahmed and Bhargava [1] were able to minimize the
virtual machine attack exposure window and boot new virtual machines
in under 12 seconds. Unfortunately, while the approach has its benefits,
a 12-second recovery time is often unacceptable in real-time SCADA
environments.

Babay et al. [3] have created an intrusion-tolerant SCADA system that
is resilient to system-level compromises and network attacks. Their ap-
proach uses the Spines messaging framework, which provides automatic
reconfiguration and network flexibility [12]. Core SCADA functionality
is distributed across 3f + 2k + 1 heterogeneously-compiled (multicom-
piler) replicas, where f is the number of simultaneous acceptable failures
and k is the number of proactive recoveries (with no failures detected).
The replicas themselves are distributed across multiple cloud servers.
The SCADA system was employed in a power grid experiment, where it
met all the power and latency requirements. However, Babay and col-
leagues do not address how programmable logic controller failures are
detected and how the system state can be transitioned correctly to new
environments.

Yamamoto et al. [29] have employed a customized intrusion detec-
tion solution and virtualization technologies to enable SCADA system
recovery. Running multiple virtual programmable logic controllers si-
multaneously supports seamless transition from an anomalous virtual
programmable logic controller to another virtual controller. Regions of
acceptable behavior are defined to enable anomaly detection and trig-
ger a transition to the backup virtual programmable logic controller.
However, Yamamoto and colleagues do not address the inherent issues
associated with homogeneity and cyber attacks – if the primary and
backup systems are homogeneous (because they use the same baseline
virtual image), an attack launched against the primary system would
also impact the backup system. Additionally, Yamamoto et al. do not



Birnbaum et al. 191

Figure 2. Proposed cyber-resilient architecture.

address state restoration directly; they simply assume it will be main-
tained by the failover system.

Cyber-resilience techniques have been developed for enterprise and
SCADAsystem applications in standard and virtual environments. How-
ever, the proposed cyber resilience methodology is unique in that it fo-
cuses on SCADA system endurance and restoration in non-persistent,
redundant virtual environments.

4. Proposed Methodology
This section describes the methodology for achieving cyber resilience

in SCADA systems using state restoration.

4.1 Overview
Rapid and reliable state restoration are important requirements for

cyber-resilient SCADA system architectures with non-persistence. Em-
ploying redundancy further increases cyber resilience. The proposed
cyber resilience methodology involves state storage and restoration in a
non-persistent, redundant SCADA environment.

Figure 2 shows the key features of the proposed cyber-resilient archi-
tecture. These include:



192 CRITICAL INFRASTRUCTURE PROTECTION XIV

State Capture: The system state is identified and captured with-
out negatively impacting performance.

State Storage: After the state has been captured, it is stored in
a secure, immutable and decentralized manner.

State Recovery: When a new, non-persistent SCADA device
is added to the system, the state is pushed promptly to the new
device to ensure continued operation.

I/O Aggregation and Distribution: The inputs and outputs
to and from the redundant, non-persistent SCADA components
are processed securely.

Non-Persistence: Non-persistent redundant programmable logic
controllers and other devices are started, stopped and restarted
with relatively little effort.

Implementing these features requires a complex and capable archi-
tecture. The proposed architecture enables continuity of normal opera-
tions due to component redundancy and ensures rapid state recovery of
SCADA components when required. To simplify the presentation, but
without any loss of generality, it is assumed that programmable logic
controllers are the only SCADA devices that have non-persistent and
redundant capabilities.

The new architecture functions as follows during normal operations:

1. Input is sent to the I/O aggregator and distributor via normal com-
munications paths. Communications in a SCADA environment
may use a point-to-point serial protocol, Ethernet or wireless.

2. The I/O distributor sends inputs to multiple programmable logic
controllers for processing. Ideally, these programmable logic con-
trollers would be heterogeneous, further enhancing cyber resilience.

3. After a programmable logic controller completes its scan and com-
putes its output, the internal programmable logic controller data
structures andmemory are saved to a state storage database (block-
chain) [28].

4. The I/O aggregator processes the output from each programmable
logic controller using a Byzantine fault-tolerant algorithm to de-
termine consensus [3].

5. The I/O aggregator stores the input data, consensus and associ-
ated metadata in the blockchain.



Birnbaum et al. 193

6. The resulting consensus state is converted to an output, which the
I/O aggregator transmits to an actuator to implement a control
action.

A state restoration procedure is executed when any of the following
conditions hold:

An intrusion or cyber attack is detected on a non-persistent pro-
grammable logic controller.

A programmable logic controller does not agree with the output
of the consensus voting scheme.

A programmable logic controller is randomly selected to be restar-
ted based on another factor (e.g., random sampling, time-alive or
pre-determined schedule). In order to prevent an adversary from
obtaining access to all the programmable logic controllers prior
to launching an attack (which would not be detected by the fault-
tolerant voting scheme), the virtual programmable logic controllers
should be destroyed and restored at irregular, but operationally-
small, time intervals to ensure non-persistence.

The state restoration procedure, which is executed on every pro-
grammable logic controller, has the following steps:

1. The virtual programmable logic controller is destroyed, a trivial
task in a virtual environment.

2. A new programmable logic controller is initialized to a default state
containing no internal data. Ideally. the new programmable logic
controller should be heterogeneous compared with the previous
version, limiting the likelihood that a previous cyber attack would
be successful.

3. The last known good state of the system is identified using the state
database and the corresponding programmable logic controller in-
ternal memory and data are pushed by the state restoration engine
to the new programmable logic controller.

The remainder of this section describes how the system state is cap-
tured, determined, stored and restored in a secure manner.

4.2 Capturing State
Before capturing the complete SCADA system state, it is necessary

to identify the locations where the data resides. Figure 3 shows the



194 CRITICAL INFRASTRUCTURE PROTECTION XIV

Figure 3. Programmable logic controller components.

components of a standard programmable logic controller. In order to
capture the system state, it is necessary to collect input data, output
data and data residing in internal memory structures.

Since modern SCADA systems employ enterprise components for com-
munications [16], the costs of capturing input and output information
are minimal. If standard Ethernet is used, a physical network tap or
modified switch can be used to monitor data going to and from devices.
If the device is virtual, equivalent software solutions are available to cap-
ture network data. Regardless of the approach used, it is important that
state capture does not negatively impact SCADA system operations.

The process for capturing internal programmable logic controller data
varies according to the vendor hardware. For example, if the Modbus
communications protocol is used and internal data is mapped to holding
registers, it is straightforward to request internal programmable logic
controller data over a network connection [9].

Programmable logic controllers have very predictable scan cycles, with
each cycle taking several milliseconds. Each scan cycle has input, pro-
gram and output stages [28]:

Input Stage: Input is read by the programmable logic controller
CPU from the input modules.

Program Stage: Input and current internal data and memory
structures are modified as necessary.

Output Stage: Required changes to the output modules are
made.

The state capture must operate after every scan cycle without degrad-
ing system performance.



Birnbaum et al. 195

4.3 Determining State
After the I/O and internal state of each device have been captured, the

overall system state is computed for each device and anomalous states
and devices are identified. The Byzantine fault tolerance algorithm of
Castro and Liskov [8] with 3f + 1 replicas is employed to determine
consensus (f is the maximum number of possible faulty nodes).

The following procedure computes the consensus state and identifies
anomalous devices for destruction and restoration:

1. Collect the output information state from 3f + 1 devices.

2. Determine the consensus state as the state common to at least
f + 1 devices.

3. Identify the non-consensus devices for restoration.

4. Save the consensus state in the blockchain.

4.4 Storing State
After the system state has been determined via secure means, it must

be stored in a secure manner. Specifically, it is necessary to ensure that
the stored system state can be recovered at any future point in time
with the assurance that it was not modified.

A blockchain can be used to ensure non-repudiation and immutabil-
ity [11]. Each iteration involving state capture, consensus determination
and metadata addition results in a data block. Decentralized operation
prevents an attacker from modifying the shared history from a single
location, which enhances security. Different blockchains are used for the
I/O aggregator and distributor, and for each programmable logic con-
troller. If the programmable logic controllers are heterogeneous, then
a separate blockchain must be maintained for each programmable logic
controller. If the programmable logic controllers are homogeneous, then
all the internal data structures and memory are identical, and a single
blockchain may be used.

Each I/O aggregator data block contains the following information:
(i) input value; (ii) consensus state; (iii) time; (iv) iteration number; (v)
hash value of the previous block; (vi) hash value of all the current block
data; (vii) programming logic controllers that agree with the consensus;
and (viii) programming logic controllers that disagree with the consensus
(i.e., devices that have to undergo state restoration).

Each programmable logic controller data block contains the following
information: (i) input value; (ii) output value; (iii) internal data and



196 CRITICAL INFRASTRUCTURE PROTECTION XIV

memory; (iv) time; (v) iteration number; (vi) hash value of the previous
block; and (vii) hash value of all the current block data.

After the block information has been computed, the block is appended
to the corresponding blockchain that contains all the preceding blocks.
At this point, the system state is securely stored in an immutable manner
and is ready to be restored when required.

4.5 Restoring State
After each data block is appended to the I/O aggregator chain, the

virtual programmable logic controllers that were identified as having
disagreed with the consensus are destroyed. Such destruction is a routine
and timely procedure in virtual environments.

A new virtual programmable logic controller is then initialized. How-
ever, before it can process any input, the blank internal structures are
updated with historical consensus data. Note that the restored state is
independent of the specific programmable logic controller instance; in-
stead, it represents the consensus of all the participating programmable
logic controllers.

The following steps are involved in initializing a new programmable
logic controller:

1. Identify the last several consensus states required for successful
programmable logic operation.

2. For each identified state, select a random programmable logic con-
troller with an output equal to the consensus state.

3. For each identified state, pull the appropriate internal information
from the blockchain of the selected programmable logic controller
and save the information in the internal data structures of the new
programmable logic controller.

These steps assume that the programmable logic controllers are ho-
mogenous. Depending on the programmable logic controller vendor,
virtualization technology and other factors, writing to the internal pro-
grammable logic controller structures has a varying degree of difficulty.
If the Modbus protocol is used, it is possible to write directly to the pro-
grammable logic controller data structures via normal communications
protocols; this task can be more challenging for other programmable
logic controllers.



Birnbaum et al. 197

Figure 4. Iteration flow of the architectures.

5. Experimental Verification
The experimental verification involved two types of analyses. The first

was a mathematical analysis to verify that the proposed methodology
increases cyber resilience. The second involved a timing analysis to
determine the overhead induced by the architecture.

5.1 Mathematical Analysis
Three SCADA system architectures were analyzed to assess the effi-

cacy of the proposed methodology:

Single standard programmable logic controller without redundancy
and state restoration.

Byzantine fault-tolerant architecture without state restoration.

Byzantine fault-tolerant architecture with state restoration.

Each architecture was analyzed as a process over time to determine
when a failure threshold of pt(x) was reached. Each iteration of the archi-
tecture assessed the ability to produce a correct output while assuming
a constant failure probability of pf (x). Assuming that the probability
of architecture failure pf (x) was greater than zero meant that, at some
point in time t or after a certain number of iterations, the overall process
failure probability would be greater than the failure threshold pt(x).

Figure 4 shows the iteration flow of the architectures. As an architec-
ture becomes more resilient, the probability of an iteration being success-
ful increases, which increases the expected longevity of the architecture.
The overall process can be analyzed using the following equation:

pt(x) < 1 − (1 − pf (x))i (3)

where i is the number of expected iterations until system failure.
In the case of the Byzantine architectures, at least f +1 of the 3f +1

individual programmable logic controller operations had to succeed in
order for an overall iteration to be successful. Therefore, the following



198 CRITICAL INFRASTRUCTURE PROTECTION XIV

Table 1. Expected iterations to failure for various architectures (pt(x) = 0.99).

Architecture Failure Redundant Expected Iterations
Probability PLCs to Failure

Single PLC 0.1 0 44
Single PLC 0.2 0 21
Single PLC 0.4 0 10
Byzantine 0.1 1 1,243
Byzantine 0.2 1 167
Byzantine 0.4 1 24
Byzantine 0.1 3 504,862
Byzantine 0.2 3 5,326
Byzantine 0.4 3 82
Byzantine 0.1 5 170,381,911
Byzantine 0.2 5 141,198
Byzantine 0.4 5 239

modified computation of pf (x) was performed:

p(at least m out of n) =
n∑

i=m

(
n

i

)
pi(1 − p)n−i (4)

where f is the number of tolerable failures, m = f + 1, n = 3f + 1,
p = 1 − pf (x) and i is the number of expected iterations until system
failure.

Two variables were analyzed while also varying the architectures: (i)
probability of architecture failure pf (x) during a single iteration; and
(ii) number of redundant programmable logic controllers in a Byzantine
fault-tolerant architecture.

Table 1 shows the results. As the probability of an individual iteration
failure increased, the expected system longevity decreased. Furthermore,
the Byzantine architectures without state restoration were more resilient
than the single programmable logic controller architectures without re-
dundancy and state restoration.

It is important to note that the expected iterations until failure for the
Byzantine architectures with state restoration could not be computed.
This is because every programmable logic controller failure was corrected
after an interaction and the architecture was restored to the correct state
before it received any subsequent inputs. Therefore, each iteration was
effectively independent and the overall probability of system failure as
inputs were processed was never greater than pf (x) regardless of the



Birnbaum et al. 199

number of iterations or system uptime. Additionally, the overall system
probability was less than pt(x).

However, the increased resilience using state restoration did not come
without a cost. Additional computing resources and time were required
to successfully identify and restore the anomalous programmable logic
controllers.

5.2 Timing Analysis
A timing analysis of the architectures was conducted to assess the

impact of the cyber resilience methodology. Three components were in-
stantiated using Python programs: (i) programmable logic controllers;
(ii) fault-tolerant I/O aggregator and distributor; and (iii) secure system
and component state historian. The individual components communi-
cated using the Flask micro web framework [17].

The environment did not adhere strictly to real-world SCADA system
and programming logic controller restrictions, but it did incorporate the
same building blocks used in real systems. The simulated programmable
logic controllers processed difference equations much like their real-world
counterparts. The other virtual components had no readily-available
industry equivalents, so simulated Python representations were utilized.

Architecture Complexity. The complexity of the architecture was
assessed using three variables:

Programming Logic Controller Complexity: The length of
the difference equation used by a programmable logic controller
was used as a pseudo-approximation of its complexity.

System Redundancy: The number of tolerable programmable
logic controllers in a Byzantine fault-tolerant system was used to
approximate system redundancy.

Blockchain State Storage Enabled: A Boolean value indicated
if the states of a programmable logic controller and I/O aggregator
and distributor were committed to a blockchain.

The first timing analysis experiment examined the timing impacts
of the programmable logic controller complexity variable. The other
two variables were held constant. Table 2 shows the results – as the
programmable logic controller complexity increased, so did the expected
execution time.

The second timing analysis experiment assumed a Byzantine fault-
tolerant architecture with a variable number of tolerable failed pro-
grammable logic controllers. All the other variables were held constant.



200 CRITICAL INFRASTRUCTURE PROTECTION XIV

Table 2. Execution times of a single programmable logic controller.

PLC Coefficients Execution Time
(seconds)

1 0.011806
10 0.012572
100 0.013346

1,000 0.022429

The number of coefficients (i.e., programmable logic controller complex-
ity) was set to 100 and blockchain state storage was not employed.

Table 3. Execution times of the I/O aggregator and distributor.

Tolerable PLC Execution Time
Failures (seconds)

0 0.020581
1 0.040104
2 0.061726
4 0.105565
8 0.186051

Table 3 shows that, as the number of nodes required for the Byzantine
fault-tolerant system increased, so did the time required to process a
single input. Also, a Byzantine fault-tolerant system with zero tolerable
failures had an overhead of 54.2% compared with a single programmable
logic controller of equal complexity.

The third timing analysis experiment examined the impact of state
restoration. The single programmable logic controller and Byzantine
fault-tolerant architectures were assessed with and without state saving
after every scan cycle. In the experiment, the number of programmable
logic controller coefficients was fixed at 100 and the number of tolerable
failures was set to zero.

Table 4 shows that committing the system state to the blockchain
after every iteration caused significant overhead. The overhead for a
single programmable logic controller was 44.2% whereas the overhead
was 88.8% for the Byzantine architecture. The increased overhead of the
Byzantine architecture was caused by two commits to the blockchain,
once for the programmable logic controller in the architecture and once
after consensus was reached.



Birnbaum et al. 201

Table 4. Execution times of the secure state storage.

Experiment Secure Storage Execution Time
(Blockchain) Used (seconds)

PLC No 0.009254
PLC Yes 0.013346
Byzantine No 0.020581
Byzantine Yes 0.038867

Restoration Analysis. The previous experiments assessed the archi-
tectural complexity, not resilience in the face of failures. This section
discusses the experiments conducted to assess the timing impacts of
restoration where the Byzantine fault-tolerant and state capture systems
were enabled. When simulating an attack against a single programmable
logic controller, it was assumed that the attack probability was constant
and that each programmable logic controller iteration was equally likely
to be attacked. Since the goal was not to determine when an architecture
would fail, but to assess the timing impacts, it was assumed that only
a maximum of f programmable logic controllers could fail where f is
the number of tolerable programmable logic controller failures. Because
at most only f programmable logic controllers failed, every architecture
always returned the correct result.

Each architecture in the experiments had a predetermined probability
of failure that was propagated to the programmable logic controllers. To
determine if a programmable logic controller failed during each iteration,
f programmable logic controllers generated a random value between
zero and one. If the value was less than the probability of failure, the
(anomalous) programmable logic controller yielded an incorrect result,
forwarding the wrong answer to the I/O aggregator. After each iteration,
the anomalous programmable logic controllers were restored.

Table 5 shows the results obtained when the number of tolerable pro-
grammable logic controller failures was varied while keeping the proba-
bility of a single failure constant at 40%. As expected, the greater the
number of redundant devices, the greater the expected execution time.
This was due to the increased number of queries that the I/O aggregator
had to issue in order to achieve consensus and the increased number of
commits to the blockchain.

Table 6 shows the results obtained when the probability of f pro-
grammable logic controllers failing was varied while holding all the other
variables constant. The number of tolerable programmable logic con-
troller failures was set to four and the number of programmable logic



202 CRITICAL INFRASTRUCTURE PROTECTION XIV

Table 5. Execution times of the I/O aggregator and distributor with secure storage.

Tolerable PLC Execution Time
Failures (seconds)

1 0.076437
2 0.100038
4 0.165552
8 0.297060

Table 6. Execution times of the I/O aggregator and distributor with secure storage.

PLC Failure Execution Time
Rate (seconds)

0 0.151104
0.05 0.152491
0.1 0.153756
0.2 0.156992
0.4 0.165552
0.8 0.190867
1 0.194210

controller coefficients was 100. The table reveals that the expected exe-
cution time increased with the probability of failure, but the failure rate
did not incur as much overhead as the other variables. These results
indicate that the timing cost to restore a programmable logic controller
was fairly low. Comparing the results for the architecture with 0% fail-
ure probability to the one with 100% failure probability reveals that
restoring all f programmable logic controllers required only 28.5% over-
head.

5.3 Summary
The mathematical analysis demonstrated that incorporating two re-

dundant programmable logic controllers in a Byzantine fault-tolerant
scheme along with state storage and restoration capabilities rendered
each system iteration independent. This is important because pro-
grammable logic controllers use difference equations, so past computa-
tions are important for present and future computations. A key benefit
of the cyber resilience methodology is that past failures cannot propa-
gate to future operations.



Birnbaum et al. 203

The timing analysis demonstrated that implementing redundancy and
blockchain state storage increased overhead. However, the overhead in-
volved in restoring state to failed programmable logic controllers was
comparatively fast.

6. Discussion
This section discusses the strengths and limitations of the proposed

cyber resilience methodology.

6.1 Strengths
The primary strength of the methodology is that it realizes a cyber-

resilient SCADA architecture that can mitigate the negative effects of a
number of common cyber attacks. Due to non-persistence, redundancy
and state restoration, an attack against a single programmable logic con-
troller would not cause irreparable damage. The methodology supports
the endurance and recovery phases of cyber resilience. Moreover, the
architecture is simple to implement and could easily be retrofitted to ex-
isting SCADA systems. Additionally, the use of blockchain technology
and fault-tolerant consensus ensures that the system state is computed
and stored in a secure manner, which enhances cyber resilience.

Experimental evaluations of the methodology suggest that the imple-
mentation impact is fairly minimal given virtualization and modern com-
puting resources, provided that the infrastructure exists in the SCADA
environment. Most deployed industrial control systems have outdated
physical hardware. As new systems are designed and integrated, tran-
sitions to modern virtual environments are likely to occur due to their
reduced physical footprints, ease of upgrade and service co-location com-
pared with physical environments. Thus, the proposed cyber resilience
methodology is expected to see increased applications in future SCADA
environments.

6.2 Limitations
The proposed methodology eliminates the reliance on single program-

mable logic controllers to enhance cyber resilience, but this increases
the cyber attack surface. Instead of targeting a programmable logic
controller, an attacker could target the consensus algorithm, blockchain
and virtual programmable logic controller destruction and restoration
procedures. Therefore, it is vital that all the additional components
in a cyber-resilient SCADA architecture incorporate cyber security best
practices to the extent possible. Certain improvements can be made to
mitigate the increased cyber attack surface. For example, the blockchain



204 CRITICAL INFRASTRUCTURE PROTECTION XIV

could be distributed and made non-persistent, ensuring that it could be
restored from a distributed replica if it was attacked.

Creating virtual programmable logic controllers and other SCADA
devices is by no means easy. Not all SCADA devices can be virtualized at
this time and additional research is required. The proposed methodology
was implemented and tested using standard enterprise equipment (i.e.,
laptops running Python code); the experiments did not engage industry-
grade physical or virtual programmable logic controllers, let alone an
industrial control system testbed. Further research is needed to evaluate
the methodology in realistic SCADA environments. State restoration for
virtual programmable logic controllers would vary greatly from vendor
to vendor. Additional research is required to evaluate data writing to
industry-grade programmable logic controllers.

While the experimental results indicate that the overhead of imple-
menting cyber resilience is modest, a realistic SCADA testbed implemen-
tation may exhibit increased latency. SCADA environments have rigid
time constraints, so the methodology would have to scale to large real-
world systems. Also, limited computing resources in industrial SCADA
environments would require additional computing equipment to be in-
stalled for virtualization. The utilization of Byzantine fault tolerance,
which is known for its overhead in terms of communications bandwidth
and number of replicas, would exacerbate the implementation challenges
in real SCADA environments.

The proposed methodology focuses on a small subset of cyber re-
silience techniques and improves some characteristics. Moreover, non-
persistence introduces new risks. For example, a device that has been
repeatedly re-initialized could fail permanently; this risk could be miti-
gated by having redundant non-persistent devices. Additionally, if vir-
tualization is utilized, the hypervisor should assume the role of mon-
itoring and verifying the successful initialization of non-redundant de-
vices. Layering additional techniques such as distributed allocation and
heterogeneity would increase the overall effectiveness. For example, in-
stead of using homogeneous programmable logic controllers, heteroge-
neous equivalents could be used that would further limit the likelihood
of successful cyber attacks. Future research will explore the integration
of these and other novel techniques in the cyber resilience methodology.

7. Conclusions
Cyber-resilient systems are becoming increasingly important in the

current threat environment. Several resilience techniques are available
that can provide useful capabilities in SCADA environments. How-



Birnbaum et al. 205

ever, some techniques, such as non-persistence, are challenging to imple-
ment given the tight real-time constraints imposed on SCADA systems.
The proposed methodology addresses this challenge by securely storing
SCADA system state for use by redundant, non-persistent devices dur-
ing operation and recovery. The methodology realizes a non-persistent,
Byzantine fault-tolerant, virtual industrial control system architecture
whose state and function can be stored and restored securely, contribut-
ing to its cyber resilience. Implementation of the methodology in a
SCADA environment incorporating non-persistent programmable logic
controllers reveals that cyber attacks can be identified quickly and secure
restoration can occur without loss of state or functionality. The mathe-
matical and timing analyses demonstrate the applicability and efficacy
of the methodology in creating cyber-resilient SCADA systems.

Future research will focus on integrating additional resilience tech-
niques such as heterogeneity. Successful application of resilience tech-
niques is vital to mitigating threats to SCADA systems and the critical
infrastructure assets they operate.

References

[1] N. Ahmed and B. Bhargava, From Byzantine fault-tolerance to
fault-avoidance: An architectural transformation to attack and fail-
ure resiliency, to appear in IEEE Transactions on Cloud Computing.

[2] K. Astrom and R. Murray, Feedback Systems: An Introduction for
Scientists and Engineers, Princeton University Press, Princeton,
New Jersey, 2008.

[3] A. Babay, J. Schultz, T. Tantillo and Y. Amir, Toward an intrusion-
tolerant power grid: Challenges and opportunities, Proceedings of
the Thirty-Eighth IEEE International Conference on Distributed
Computing Systems, pp. 1321–1326, 2018.

[4] J. Barrowclough and R. Asif, Securing cloud hypervisors: A survey
of the threats, vulnerabilities and countermeasures, Security and
Communication Networks, article no. 1681908, 2018.

[5] F. Bjorck, M. Henkel, J. Stirna and J. Zdravkovic, Cyber resilience
– Fundamentals for a definition, in New Contributions in Informa-
tion Systems and Technologies, Volume 1, A. Rocha, A. Correia,
S. Costanzo and L. Reis (Eds.), Springer, Cham, Switzerland, pp.
311–316, 2015.

[6] D. Bodeau and R. Graubart, Cyber Resiliency Engineering Frame-
work, MITRE Technical Report MTR110237, MITRE Corporation,
Bedford, Massachusetts, 2011.



206 CRITICAL INFRASTRUCTURE PROTECTION XIV

[7] A. Cardenas, S. Amin, B. Sinopoli, A. Giani, A. Perrig and S. Sastry,
Challenges for securing cyber-physical systems, presented at the
Workshop on Future Directions in Cyber-Physical Systems Security,
2009.

[8] M. Castro and B. Liskov, Practical Byzantine fault tolerance, Pro-
ceedings of the Third Symposium on Operating Systems Design and
Implementation, pp. 173–186, 1999.

[9] Control Solutions Minnesota, Modbus 101 – Introduction to Mod-
bus, St. Paul, Minnesota (www.csimn.com/CSI_pages/Modbus101.
html), 2020.

[10] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson,
J. Knight, A. Nguyen-Tuong and J. Hiser, N-variant systems: A
secretless framework for security through diversity, Proceedings of
the Fifteenth USENIX Security Symposium, article no. 9, 2006.

[11] M. Crosby, Nachiappan, P. Pattanayak, S. Verma and V. Kalya-
naraman, Blockchain technology: Beyond Bitcoin, Applied Innova-
tion Review, vol. 2016(2), pp. 6–10, 2016.

[12] Distributed Systems and Networks Laboratory, Spines, Department
of Computer Science, Johns Hopkins University, Baltimore, Mary-
land (www.spines.org), 2020.

[13] G. Engel and M. Mumcouglu, Method for Detecting Anomaly Ac-
tion within a Computer Network, U.S. Patent No. 0165207 A1, June
12, 2014.

[14] A. Gearhart, P. Hamilton and J. Coffman, An analysis of automated
software diversity using unstructured text analytics, Proceedings of
the Forty-Eighth Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshops, pp. 79–80, 2018.

[15] D. Goodin, FBI tells router users to reboot now to kill malware
infecting 500K devices, Ars Technica, May 25, 2018.

[16] K. Gordon, M. Davis, Z. Birnbaum and A. Dolgikh, ACE: Advanced
CIP evaluator, Proceedings of the Workshop on Cyber-Physical Sys-
tems Security and Privacy, pp. 90–101, 2018.

[17] M. Grinberg, Flask Web Development: Developing Web Applica-
tions with Python, O’Reilly Media, Sebastopol, California, 2018.

[18] E. Johansson, Virtualization in control systems: Possibilities and
challenges, presented at the SANS European Community SCADA
and Process Control Summit, 2009.

[19] D. Kushner, The real story of Stuxnet, IEEE Spectrum, vol. 50(3),
pp. 48–53, 2013.



Birnbaum et al. 207

[20] A. Melin, E. Ferragut, J. Laska, D. Fugate and R. Kisner, A math-
ematical framework for the analysis of cyber-resilient control sys-
tems, Proceedings of the Sixth International Symposium on Resilient
Control Systems, pp. 13–18, 2013.

[21] P. Nachtwey, Feed forwards augment PID control, Control Engi-
neering, vol. 52, pp. 42–45, March 31, 2015.

[22] T. Rodrigues Alves, M. Buratto, F. de Souza and T. Rodrigues,
OpenPLC: An open-source alternative to automation, Proceedings
of the IEEE Global Humanitarian Technology Conference, pp. 585–
589, 2014.

[23] T. Rodrigues Alves, R. Das and T. Morris, Virtualization of indus-
trial control system testbeds for cyber security, Proceedings of the
Second Annual Industrial Control System Security Workshop, pp.
10–14, 2016.

[24] R. Ross, M. McEvilley and J. Oren, Systems Security Engineer-
ing: Considerations for a Multidisciplinary Approach in the Engi-
neering of Trustworthy Secure Systems, NIST Special Publication
800-160, Volume 1, National Institute of Standards and Technology,
Gaithersburg, Maryland, 2016.

[25] J. Sahoo, S. Mohapatra and R. Lath, Virtualization: A survey of
concepts, taxonomy and associated security issues, Proceedings of
the Second International Conference on Computer and Network
Technology, pp. 222–226, 2010.

[26] V. Skormin, Introduction to Automatic Control, Volume I, Linus
Publications, Ronkonkoma, New York, 2009.

[27] J. Szefer, E. Keller, R. Lee and J. Rexford, Eliminating the hy-
pervisor attack surface for a more secure cloud, Proceedings of the
Eighteenth ACM Conference on Computer and Communications Se-
curity, pp. 401–412, 2011.

[28] Technology Transfer Services, The Basics of PLC Operation, Tech-
nology Transfer Blog, Tampa, Florida (www.techtransfer.com/
blog/basics-plc-operation), September 9, 2014.

[29] S. Yamamoto, T. Hamaguchi, S. Jing, I. Koshijima and Y.
Hashimoto, A hot-backup system for backup and restore of ICS
to recover from cyber attacks, in Advances in Human Factors, Soft-
ware and Systems Engineering, B. Amaba (Ed.), Springer, Cham,
Switzerland, pp. 45–53, 2016.


	9 CYBER-RESILIENT SCADA SYSTEMS VIA SECURE STATE RESTORATION
	1. Introduction
	2. Background
	2.1 Control Theory
	2.2 SCADA System Virtualization
	2.3 Cyber Resilience

	3. Related Work
	4. Proposed Methodology
	4.1 Overview
	4.2 Capturing State
	4.3 Determining State
	4.4 Storing State
	4.5 Restoring State

	5. Experimental Verification
	5.1 Mathematical Analysis
	5.2 Timing Analysis
	5.3 Summary

	6. Discussion
	6.1 Strengths
	6.2 Limitations

	7. Conclusions
	References




