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ENGAGING EMPIRICAL DYNAMIC
MODELING TO DETECT INTRUSIONS
IN CYBER-PHYSICAL SYSTEMS

David Crow, Scott Graham, Brett Borghetti and Patrick Sweeney

Abstract Modern cyber-physical systems require effective intrusion detection sys-
tems to ensure adequate critical infrastructure protection. Developing
an intrusion detection capability requires an understanding of the be-
havior of a cyber-physical system and causality of its components. Such
an understanding enables the characterization of normal behavior and
the identification and reporting of anomalous behavior.

This chapter explores a relatively new time series analysis technique,
empirical dynamic modeling, that can contribute to system understand-
ing. Specifically, it examines if the technique can adequately describe
causality in cyber-physical systems and provides insights into it serving
as a foundation for intrusion detection.
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1. Introduction
Intrusion detection systems are commonly used to defend against

cyber-physical system attacks and protect critical infrastructure assets.
These systems monitor computer systems and networks, and report ma-
licious activity to system administrators. In the cyber-physical system
domain, an intrusion detection system can identify attempts by attackers
to modify or misrepresent physical processes.

Consider an automobile as an example of a cyber-physical system.
If an attacker intends to have the driver receive a speeding ticket, the
attacker could inject packets that specify a lower speed to cause the
speedometer to display incorrect information. In this case, an effective
intrusion detection system would notice that the speed data does not
conform to the expected behavior indicated by the related physical pro-
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cess data such as engine and wheel rotational velocities, throttle position
and fuel efficiency. In other words, the intrusion detection system would
notice that the speedometer readings are anomalous.

In another example, if an intrusion detection system knows that a sub-
stantial increase in the automobile’s brake pressure likely precedes a rel-
ative decrease in velocity, it could assert that no change, a small change
or an increase in velocity (after the application of significant brake pres-
sure) are anomalous. Of course, this requires the intrusion detection
system to determine the expected behavior and identify anomalies.

Designing an effective intrusion detection system for a vulnerable
cyber-physical system requires insights into the system dynamics or pat-
terns, including how the current system state enables predictions about
future states. An adequate quantity of data obtained under normal op-
erating conditions is required to establish normal behavior. A process is
needed to determine whether new traffic conforms to normal behavior.
Also, an alerting system is necessary to report abnormal traffic behavior.

Intrusion detection architects need a strong understanding of cyber-
physical systems or powerful computational resources to model system
dynamics. However, the latter is often infeasible because many cyber-
physical systems have limited hardware or are constrained by standards
and regulations. Modern automobiles, for example, utilize small net-
work packets and fairly simple hardware. For this reason, the former
is often more attainable. A solid understanding of system dynamics –
specifically, causality, such as how one signal affects another and how a
current state predicts future states – is required to identify anomalous
traffic, assuming that an ample quantity of normal data is available.

This research examines empirical dynamic modeling, an emerging
technique that supports sophisticated time series analyses. Empirical
dynamic modeling can contribute to the understanding of cyber-physical
systems, and this research evaluates the feasibility of using the technique
to detect intrusions in cyber-physical systems.

Two datasets are employed in the evaluation. The first is based on
a simple linear model of the relationship between the steering wheel of
an automobile and the relative velocities of its two front wheels. The
second dataset was generated using a nonlinear flight simulator called
the avionics vulnerability and assessment system (AVAS).

2. Background
This section discusses cyber-physical systems and time series, along

with empirical dynamic modeling, an emerging technique for nonlinear
forecasting and causality analysis.
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2.1 Cyber-Physical Systems and Time Series
The journal ACM Transactions on Cyber-Physical Systems [1] defines

cyber-physical systems as:

“... systems where the cyber parts, i.e., the computing and commu-
nications parts, and the physical parts are tightly integrated, both at
the design time and during operation. Such systems use computations
and communications deeply embedded in and interacting with physi-
cal processes to add new capabilities to physical systems ... There is
an emerging consensus that new methodologies and tools need to be
developed to support cyber-physical systems.”

Analyses of cyber-physical systems require high-fidelity models. How-
ever, the models are often difficult to articulate and replicate. For this
reason, it is necessary to analyze the inputs and outputs of a cyber-
physical system to develop a model of the system.

Often, the output of a cyber-physical system is time series data that
expresses the values of its processes over time. An example time series
in the case of an aircraft is the instantaneous revolutions per minute
(rpm) of the propeller over time as measured by the aircraft sensors.
The National Institute of Standards and Technology (NIST) [9] observes
that “[t]ime series analysis accounts for the fact that data points taken
over time may have an internal structure (such as autocorrelation, trend
or seasonal variation) that should be accounted for.”

Kotu and Deshpande [6] differentiate between time series analysis and
time series forecasting. Time series analysis involves the extraction of
meaningful non-trivial information and patterns from time series. Time
series forecasting involves the prediction of future time series data based
on past observations and other inputs.

Most time series analysis and forecasting techniques require data sta-
tionarity for the time series in question. A stationary process has the
property that the mean, variance and autocorrelation do not change
over time; the time series data is flat without trends, and has constant
variance over time, constant autocorrelation over time and no periodic
fluctuations (seasonality) [9].

Figure 1 presents examples of time series plots [5]. Figure 1(a) shows
Google stock prices over 200 consecutive days. Figure 1(b) shows the
annual numbers of labor strikes in the United States. Figure 1(c) shows
the annual prices of a dozen eggs in the United States (constant dol-
lars). Figure 1(d) shows the monthly totals of pigs slaughtered in Vic-
toria, Australia. Figure 1(e), which represents a stationary time series,
shows the annual totals of lynx trapped in the McKenzie River Dis-
trict of Northwestern Canada. Figure 1(f) shows the monthly electricity
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Figure 1. Example time series plots [5].

production in Australia. These plots demonstrate the diversity of time
series models.

Time series data generated by the cyber-physical systems of an air-
craft are non-stationary, so analysis and forecasting techniques that re-
quire stationarity are not viable. However, empirical dynamic modeling
supports non-stationary time series analyses and forecasting.

2.2 Empirical Dynamic Modeling
Takens [16] introduced the delay embedding theorem in 1981. The

theorem deals with mathematical attractors, where an attractor is the
value or set of values that a system settles towards over time. Empirical
dynamic modeling is an application of the delay embedding theorem.
Sugihara et al. [15] state that empirical dynamic modeling “is based on
the mathematical theory of reconstructing system attractors from time
series data.” In practice, empirical dynamic modeling is used to capture
nonlinear dynamical systems with observational time series data.

Figure 2 provides visual representations of the main ideas underly-
ing Taken’s delay embedding theorem and empirical dynamic model-
ing [15, 19]. Figure 2(a) shows a Lorenz attractor, a set of solutions to
a Lorenz dynamical system that is modeled as a set of ordinary differ-
ential equations [8]. The attractor manifold M is the set of states that
the system progresses through time. The figure shows that a time series
for a given dimension can be identified by recording observations in the
dimension over time.
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Figure 2. Lorenz attractor and shadow manifold [15, 19].

Figure 2(b) shows how a univariate time series can be converted to a
higher dimensional representation using time-lagged versions of itself as
additional dimensions [15, 19]. Projecting the system states from M to
the coordinate axis X generates a time series. The time series is not the
manifold, but it is used to create it using lags. The figure shows how lags
of the time series X are used as coordinate axes to construct the shadow
manifold MX . The visual similarity between MX and M is apparent.
Takens [16] showed that the shadow manifold MX is diffeomorphic (maps
one-to-one) to its original attractor manifold M .

Sugihara et al. [14] have also shown that the diffeomorphic property
between M and its shadow manifolds – one for each dimension – implies
that the shadow manifolds are diffeomorphic with respect to each other;
the opposite is also true. Thus, if two shadow manifolds are diffeomor-
phic with respect to each other, it can be assumed that they belong
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Figure 3. Convergent cross-mapping.

to the same dynamical system. Convergent cross-mapping (CCM), a
mathematical technique developed by Sugihara et al. [14], can then be
used to identify and quantify the causality between the two original time
series. In short, convergent cross-mapping seeks to determine whether
an arbitrary point and its nearest neighbors in one shadow manifold can
accurately predict a point and its neighbors in another shadow manifold.

Figure 3 summarizes these concepts. Convergent cross-mapping tests
the correspondence between shadow manifolds. The figure shows the
attractor manifold of the original Lorenz system in three-dimensional
space and two shadow manifolds, MX and MY , constructed via lagged
coordinate embeddings of X and Y , respectively. The arrows between
the manifolds represent the diffeomorphic properties of the attractors.
Because X and Y are dynamically coupled, nearby points in MX corre-
spond temporally to nearby points in MY . This enables the estimation
of states across manifolds using Y to estimate the state of X, and vice
versa, using the nearest neighbors. In the case of longer time series,
the shadow manifolds become denser and the neighborhoods (ellipses
of the nearest neighbors) shrink, allowing more precise cross-mapping
estimates [14, 19]. Sugihara et al. [14] have shown that increasing the
sample sizes of shadow manifolds improves the predictive power of con-
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vergent cross-mapping and that the predictive power converges to some
maximum as the sample size increases to infinity.

2.3 Related Work
A survey of the literature reveals that no published research has fo-

cused on applying empirical dynamic modeling to automobile or air-
craft time series data, or even cyber security problems in general. The
vast majority of applications are in the areas of economics and natu-
ral sciences. For example, the Sugihara Lab [15], where empirical dy-
namic modeling originated, primarily applies the technique to problems
in ecology. This research explores the application of empirical dynamic
modeling to intrusion detection in cyber-physical systems.

3. Proposed Methodology
The proposed methodology employs empirical dynamic modeling, a

relatively new statistical analysis tool, to obtain insights into the char-
acteristics of cyber-physical systems, including their nonlinearity, deter-
ministic chaos and causality. This section discusses the nature and ori-
gins of the experimental data. Additionally, it describes the techniques
used to analyze the data.

3.1 Datasets
This research has employed datasets generated from two simulated

cyber-physical systems, an automobile and an aircraft. The two datasets
are employed to evaluate empirical dynamic modeling techniques on lin-
ear and nonlinear cyber-physical systems.

The first dataset is based on simple relationships between the steering
wheel of an automobile and the relative velocities of its two front wheels.
The steering dataset is considered to be linear because the relationships
between the pairs of time series are linear or nearly linear. Specifically,
the relationship between the velocities of the two front wheels is linear
and the relationships between the steering input and the velocity of
each of the two wheels are almost linear. The latter two relationships
are linear for steering wheel angles of small magnitude, but grow in
nonlinearity as the steering wheel angle increases.

The second dataset was generated using the AVAS nonlinear flight
simulator that employs real-world physics and flight dynamics for re-
search purposes. Since the focus was on airplane airspeed, altitude and
pitch, simulated data pertaining to airspeed, angle of attack, position,
heading and wind angle was collected. The dataset is nonlinear because
the relationships between the time series are nonlinear.
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Figure 4. Plots of the steering system time series.

Linear Data. Linear data corresponding to the steering wheel angle
and front wheel velocities of a passenger vehicle was employed to assess
empirical dynamic modeling techniques. The time series were gener-
ated for a vehicle with 30-inch wheel radius including the tires, 72-inch
wheelbase, 60-inch track, maximum steering wheel turning angle of 360◦,
steering ratio of 8:1 (maximum wheel angle of 45◦) and constant forward
speed of 25 mph.

Under the assumptions, a sum of sines function loosely represents a
hypothetical driving scenario. That is, the steering line in Figure 4 serves
as a potential steering wheel angle time series, and the inside and outside
wheel velocities (in rpm) are computed using the following equations:
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Note that, when the steering wheel angle θ is less than zero, the left wheel
corresponds to the inside wheel; otherwise, the right wheel corresponds
to the inside wheel.

Table 1 describes the variables used in Equations (1) and (2) and
specifies their values.

The automobile steering system model is rather rudimentary. It does
not account for the physical properties of the real system and the effects
of other relevant variables. Despite its simplicity, it is possible to draw
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Table 1. Automobile steering system variables.

Variable Description Defined Value

r Wheel radius 15 in
b Wheelbase 12 in
k Track 60 in
t Steering ratio 8:1
s Forward speed 25mph
θ Current steering wheel angle NA

conclusions about the applicability of empirical dynamic modeling to
linear cyber-physical systems.
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Figure 5. Scatter plots of the relationships between steering system variables.

Figure 5 shows the scatter plots of the relationships between the steer-
ing system variables, confirming that the time series are fairly linearly
related. The somewhat nonlinear behavior between the steering wheel
and each front wheel is due to the mechanics of the standard Acker-
mann automobile steering mechanism. The values of the variables cover
significantly different ranges. For this reason, all the variables were stan-
dardized using the scale function in the R programming language to
ensure that each variable would be equally important in the analysis.
Given a time series as input, the scale function z-scales it by subtract-
ing its mean and dividing by its standard deviation.

Nonlinear Data. The second dataset was created by guiding an AVAS-
simulated aircraft through takeoff, low-altitude cruising and multiple
shallow banked turns. The data collection yielded 7,582 observations
from a 14-minute flight. Each observation included eight flight metrics
with a timestamp relative to the start of the simulation. The metrics
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Figure 6. Plots of the selected AVAS time series.

included roll (deg) and pitch (deg), altitude (ft) and airspeed, vertical
velocity and velocity along each of the three coordinate axes (ft/s). The
roll and pitch values ranged from −180◦ to 180◦. Altitude, airspeed
and the directional velocities were floating point values (airspeed and
altitude were nonnegative values). Note that yaw was excluded because,
in the simulator, it is simply a measurement of aircraft heading relative
to north, not a characteristic of aircraft dynamics.

The variables in the nonlinear dataset were also z-scaled using the
scale function in R. A subset of variables – airspeed, altitude and pitch
– were selected before conducting the analysis. Other subsets of the
eight variables likely exhibit the desired dynamics, but the three selected
variables were expected to best demonstrate a tightly-coupled system.

Figure 6 presents the three time series prior to scaling. Figure 7
shows the scatter plots of the relationships between each pair of AVAS
variables, clearly demonstrating that the system is highly nonlinear.

3.2 Empirical Dynamic Modeling Techniques
Ye et al. [19] suggest that the following empirical dynamic modeling

techniques be applied in sequence to best interpret the characteristics of
a dataset:

1. Conduct nearest neighbor forecasting via simplex projection to
identify the embedding dimension E that maximizes the forecast
skill ρ [13].

2. Use simplex projection and E to determine whether the system
exhibits deterministic chaos.

3. Employ sequential locally-weighted global linear maps (S-maps) to
characterize the nonlinearity of the data [12].
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Figure 7. Scatter plots of the relationships between each pair of AVAS variables.

4. Use convergent cross-mapping to generate shadow manifolds, eval-
uate predictive accuracy and quantify causality [14].

A simplex is a generalization of a triangle or tetrahedron to an ar-
bitrary number of dimensions. Simplex projection iteratively selects a
point Yt in a shadow manifold and b other points whose histories over
time t are most similar to the selected point [7, 11, 13]. The weighted
averages of the future values of the b other points are used to make
predictions about future values of Yt. The differences between these
predictions and the actual future values give the forecast skill ρ. By re-
peating this process with shadow manifolds of different dimensionalities,
the embedding dimension E that optimizes ρ is determined [3].

The (strong) Whitney embedding theorem states [17]:

Theorem 1. Any m-manifold of class Cr (r ≥ 1 finite or infinite) may be
embedded by a regular Cr-map in E2m and by such a map in a one-one
manner in E2m+1.

Stated simply, the embedding dimension E of an attractor manifold
has an upper bound of 2D + 1 where D is the true dimension (number
of variables) of the system [3, 11]. Thus, simplex projection can be used
to definitively identify the optimal E in a finite amount of time.

S-map projection is also an iterative process, but it uses all the neigh-
boring points to create linear regression vectors. Aggregating the regres-
sion vectors yields an approximation of an n-dimensional spline. This
spline is compared against the shadow manifold attractor to obtain ρ [3,
7, 12]. When generating the regression estimates, a nonlinear tuning pa-
rameter θ is used to weigh the neighbors with respect to their distances
to the current focal point Yt. Finally, the time series is determined to
belong to a simple linear system if ρ is maximized when θ = 0; otherwise,
it is a nonlinear system [3, 11, 12].

Stone et al. [11] claim that this process provides insights into the
true dimensionality of the system that generates the observational data
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without having a complete understanding of the system itself. Accu-
rate knowledge of E is a prerequisite to effectively applying convergent
cross-mapping to multiple time series to detect causality. Alternatively, a
proper S-map analysis of time series relationships may indicate whether
the relationships correspond to a simple linear system. If so, compu-
tationally simpler methods such as Granger causality or autoregressive
linear models could replace the more complex convergent cross-mapping
technique in order to detect causality [4, 12, 19]. Finally, knowledge
of the dimensionality of a system may assist in creating a high quality
model of the system. Such a model – and the results of causality anal-
ysis – could enable the development of an effective intrusion detection
capability for a cyber-physical system.

The analysis was conducted using the rEDM repository on GitHub [18,
19]. The codebase enables empirical dynamic modeling analysis using
the R programming language. It includes the following functions (among
others):

Function simplex, which corresponds to the first and second em-
pirical dynamic modeling techniques.

Function s map, which corresponds to the third empirical dynamic
modeling technique.

Functions ccm and ccm means, which correspond to the fourth em-
pirical dynamic modeling technique.

These functions, along with some helper functions, facilitate effective
empirical dynamic modeling analyses.

Interested readers are referred to [10] for a detailed presentation of em-
pirical dynamic modeling, including the mathematics underlying simplex
projection, S-map analysis and convergent cross-mapping.

4. Analysis Results
This section presents the results of the empirical dynamic modeling

analyses of the linear and nonlinear datasets.

4.1 Linear Data
Knowledge of the optimal embedding dimension E for each time series

of a system is required to effectively apply convergent cross-mapping to
make predictions and quantify causality. The optimal value is identi-
fied by iteratively utilizing simplex projection to quantify the predictive
accuracy at different values of E.
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Figure 8. Optimal embedding dimensions for the steering system time series.

Figure 8 illustrates the results of applying this process to each steer-
ing system time series. The plots show that the forecast skill (ability to
forecast future values of a time series) is maximized when E is greater
than one. The value of E is fixed at two for the empirical dynamic
modeling techniques in this section because a lower dimensionality re-
duces complexity and processing time. To be clear, setting E = 2 means
that the techniques construct a two-dimensional shadow manifold where
each dimension is a time series lagged by some multiple of τ . When pre-
dicting the steering wheel angle, for example, the technique constructs
a shadow manifold using the steering wheel angle and one copy of the
steering wheel angle where the copy is lagged by τ . The lag τ is assumed
to be equal to one second in the analysis.

Figure 9. Deterministic chaos present in each steering system time series.

If E is kept constant and the time to prediction tp is varied, simplex
projection enables an analysis of the deterministic chaos of the system.
Figure 9 shows the deterministic chaos present in each steering system
time series. Specifically, it shows how ρ decreases as tp increases for
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Figure 10. Nonlinearity of each steering system time series.

each of the three time series. In other words, predictions further in
the future are much worse than those closer in time, which indicates
chaotic behavior of the three variables. This is due to the nature of
driving – without knowledge of the route taken by an automobile, it is
practically impossible to predict the steering wheel angle. The simulated
data conforms to this interpretation of driving behavior. However, the
difference in the values of ρ at tp = 0 and tp = 10 is only about 0.0008;
thus, the chaotic behavior in the system is minuscule. Empirical dynamic
modeling does not support a deeper analysis of the chaos of the system.

S-map analysis fits local linear maps to a system to describe its non-
linearity. This is different from simplex projection, which analyzes the
nearest neighbors of each point. The plots in Figure 10 were obtained
by varying the nonlinearity tuning parameter θ in the S-map function
call and plotting the value of ρ. When θ = 0, S-map equally weights all
the points – as θ increases, the function places more weight on points
close to the point under analysis. Thus, when θ is higher, the function
assumes that the system has more nonlinearity. For all three time series,
ρ is the greatest when θ is high, which indicates the presence of nonlin-
earity in each time series; however, the trends are miniscule. Indeed, it
appears that nonlinearity analysis using empirical dynamic modeling is
not particularly useful for a linear system.

Empirical dynamic modeling also enables next-point predictions. Fig-
ure 11 overlays the predictions on each time series. Clearly, the predic-
tions are extremely accurate, which indicates that the three variables do
not change significantly from one observation to the next. Each plot also
shows the prediction variance using a shaded polygon, but the variances
are so low that the polygons are all but invisible. In fact, the plots in
Figure 9 have already implied this – when tp is small, ρ is very high.
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Figure 11. Next-point predictions for each steering system time series.

Figure 12. Next-point prediction errors for each steering system time series.

Additionally, a naive prediction model was created that simply pre-
dicts that a point at time t + 1 has the same value as the point at time
t. In other words, the model predicts no change in the next value. Fig-
ure 12 shows the next-point prediction errors (residuals) for the naive
model and empirical dynamic model. The majority of the errors are
small, especially for the empirical dynamic model.

Table 2. Root-mean-square errors for each steering system time series.

Time Series Naive Model Empirical Dynamic Model

Steering wheel angle 0.009424 0.003351
Left wheel rotational velocity 0.005742 0.003893
Right wheel rotational velocity 0.005742 0.003893

Table 2 compares the root-mean-square errors for the naive and em-
pirical dynamic models. Note that the root-mean-square error was used
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Figure 13. Causality between each pair of steering system time series.

in order to penalize large mispredictions heavily because such errors
strongly affect intrusion detection system performance. As the table
illustrates, the empirical dynamic model outperforms the baseline pre-
dictor for each time series. The time series are incapable of large, in-
stantaneous changes, so accurately predicting the next point is not im-
pressive nor it is very useful in practical applications. However, it could
still assist in designing intrusion detection systems with low complexity.
Of course, methods other than empirical dynamic modeling would also
suffice for linear systems.

Figure 13 shows the inter-variable dynamics in the automobile steer-
ing system. Specifically, it plots the cross-mapping skill ρ against the
library size (number of points) used to compute ρ for each pair of vari-
ables. The cross-mapping skill quantifies the ability to use one shadow
manifold to identify values in another. Each plot has two lines, one for
X xmap Y and one for Y xmap X. X xmap Y refers to the convergent
cross-mapping analysis technique, which uses the shadow manifold of X
to forecast the shadow manifold of Y . The value of ρ obtained for a
given library size indicates this predictive capability. The three plots
show that ρ is equivalent across library sizes and in both directions for
every pair of time series. This means that the steering angle data is en-
coded in the wheel velocity data and the wheel velocity data is similarly
encoded in the steering angle data, which in turn imply an expected
causal effect in both directions. Unfortunately, it appears that empirical
dynamic modeling does not provide insights about pairwise causality for
this linear dataset.

Figure 14 shows the system causality over time. The plots again
show the results of using X to forecast Y , but ρ is plotted against tp.
According to Ye [18], negative values of tp indicate that past values of
Y are best cross-mapped from the reconstructed state of X. Ye also
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Figure 14. Causality predictions for selected pairs of steering system time series.

suggests that a signal appearing first in Y and later in X is consistent
with Y causing X. The opposite is true when tp is positive. In the case
of the automobile steering system, regardless of tp and the variables in
question, ρ is approximately equal to one. Thus, according to empirical
dynamic modeling, each variable has a strong causal effect on every
other variable regardless of the time to prediction. This is unlikely and
it bolsters the claim that empirical dynamic modeling does not support
sophisticated analyses of linear system causality.

Figure 15. Optimal embedding dimensions for selected AVAS time series.

4.2 Nonlinear Data
Figure 15 presents the forecast skill ρ for various embedding dimen-

sions E for three AVAS time series. The visual differences in ρ are mi-
nuscule, but the optimal embedding dimension was two for each series.
Thus, E = 2 was used in the empirical dynamic modeling techniques in
this section. Additionally, the time interval τ between two observations
in a given time series was set to one second.
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Figure 16. Deterministic chaos present in each selected AVAS time series.

Figure 16 plots the forecast skill ρ against the time to prediction tp
to illustrate the deterministic chaos in the system. For each time series,
predictions further in the future are much less accurate than earlier
predictions. The effects are strongest for pitch and weakest for altitude.
Regardless, this is evidence of chaotic behavior for all three variables.

Figure 17. Nonlinearity of each selected AVAS time series.

Figure 17 plots ρ against θ to characterize the nonlinearity of each vari-
able. In the case of airspeed and pitch, ρ is greatest when the function
assumes the most nonlinearity; this is indicative of nonlinear dynamics.
In the case of altitude, the S-map analysis implies the absence of non-
linear dynamics in the time series, but it is important to note that the
change in ρ in all three plots is extremely small regardless of θ. For this
reason, it is not possible to definitively claim the presence or absence of
nonlinear dynamics.

Figure 18 presents the next-point predictions of empirical dynamic
modeling for each time series. Unsurprisingly, the variances of the pre-
dictions – as exemplified by the nearly imperceptible shaded polygons –
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Figure 18. Next-point predictions for each selected AVAS time series.

are small. As Figure 16 strongly indicated, none of the variables change
significantly between a pair of observations.

Figure 19. Next-point prediction errors for each selected AVAS time series.

Figure 19 shows the next-point prediction errors (residuals) for the
naive and empirical dynamic models. The results confirm that the em-
pirical dynamic model is highly accurate and once again outperforms
the naive model.

Table 3. Root-mean-square errors for each AVAS time series.

Time Series Naive Model Empirical Dynamic Model

Airspeed 3.907005 0.070161
Altitude 18.192201 0.001535
Pitch 0.013749 0.019748

Table 3 compares the root-mean-square errors for the naive and em-
pirical dynamic models. The empirical dynamic model vastly outper-
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Figure 20. Causality between selected pairs of AVAS time series.

forms the naive model for two of the three time series. Although the
naive model is a better predictor of the remaining pitch variable, the
difference in root-mean-square errors is insignificant. Once again, it is
possible that even these short-term predictions could assist in intrusion
detection. However, the empirical dynamic model has a clear limitation
– it cannot foresee values that are not in the library. This explains the
large outlier predictions.

Figure 20 shows the cross-mapping skill for each pair of time series.
The leftmost plot shows that the airspeed manifold can effectively fore-
cast altitude but the opposite is noticeably weaker. The middle plot
shows that the difference in cross-mapping skills between airspeed xmap
pitch and pitch xmap airspeed decreases as the library size increases.
The rightmost plot shows a more extreme case – above a certain library
size, an inversion occurs in the difference in cross-mapping skills. In all
three cases, the results indicate diminishing returns when attempting to
improve ρ by increasing the library size. However, it is still possible that
the analysis can improve intrusion detection system design.

Finally, Figure 21 plots the cross-mapping skill against time to predic-
tion. Consider, for example, airspeed xmap pitch. When tp is slightly
less than zero, ρ is maximized. This implies that airspeed best pre-
dicts pitch when lagged by about one second. In other words, pitch
strongly affects airspeed after about one second. This behavior is ex-
pected. When tp is positive, ρ quickly decreases, and it can be asserted
that airspeed does not have a strong causal effect on pitch. This is
consistent with the standard interpretation of airplane mechanics.

5. Conclusions
The study of empirical dynamic modeling demonstrates that it can

quantify the behavior of linear systems, but the results are limited and
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Figure 21. Causality predictions for selected pairs of AVAS time series.

may not assist in developing intrusion detection systems. In contrast,
empirical dynamic modeling provides easy-to-use techniques that yield
detailed insights about the behavior of nonlinear systems, which could
advance intrusion detection efforts.

While empirical dynamic modeling may not be well suited to linear
systems, it is important to note that cyber-physical systems are often
highly nonlinear. Moreover, the linear system considered in this work
is not fully representative of a real-world linear system. For this rea-
son, future research should verify the applicability of empirical dynamic
modeling to robust linear systems.

The nonlinear system analysis provided by empirical dynamic mod-
eling is clearly useful for intrusion system design. In particular, it ef-
fectively quantifies causality in nonlinear systems. However, realizing
the true potential of empirical dynamic modeling requires analyses of
more realistic and complex datasets covering a variety of cyber-physical
systems. It is hoped that this research will stimulate further investiga-
tions into the applicability of empirical dynamic modeling to intrusion
detection and cyber security problems in general.

The views expressed in this chapter are those of the authors, and do
not reflect the official policy or position of the U.S. Air Force, U.S. De-
partment of Defense or U.S. Government. This document has been ap-
proved for public release, distribution unlimited (Case #88ABW-2020-
049).
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