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Abstract. Paradigms such as smart factory and industry 4.0 enable the
collection of data in enterprises. To enhance decision making in design,
computational support that is driven by data seems to be beneficial.
With this respect, an identification of data-driven use cases is needed.
Still, the state of practice does not reflect the potential of data-driven
design in engineering product development. With this respect, a method
is proposed addressing the business and data understanding in industrial
contexts and corresponding Product Lifecycle Management (PLM) envi-
ronments. This allows to identify use cases for data-driven design taking
into account business processes as well as the related data. In the pro-
posed method, first the main process tasks are analyzed using a SIPOC
analysis that is followed by a process decomposition to further detail and
highlight corresponding applications using Enterprise Architecture prin-
ciples. Following this, value stream mapping and design process failure
mode effect analysis are used to identify sources of waste and the related
causes. With this, a feature analysis of given data is proposed to iden-
tify use cases and enable to further use standard data science methods
like CRISP-DM. The method is validated using the infrastructure of the
Pilotfabrik at TU Vienna. The use case shows the applicability of the
method to identify features that influence the cost of a product during
the manufacturing without changing the functional specifications. The
results highlight that different methods need to be combined to attain
a comprehensive business and data understanding. Further, a compre-
hensive view of the processes is yielded that enables to further identify
use cases for data-driven design. This work lays a foundation for future
research with respect to data-driven design use cases identification in
engineering product development.

Keywords: Data-driven-design - PLM - Enterprise architecture -
ArchiMate - SysML

This work has been partially supported and funded by the Austrian Research Pro-
motion Agency (FFG) via the “Austrian Competence Center for Digital Production”
(CDP) under the contract number 854187.

© IFIP International Federation for Information Processing 2020

Published by Springer Nature Switzerland AG 2020

F. Nyffenegger et al. (Eds.): PLM 2020, IFIP AICT 594, pp. 680-694, 2020.
https://doi.org/10.1007/978-3-030-62807-9_54


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62807-9_54&domain=pdf
https://doi.org/10.1007/978-3-030-62807-9_54

Participative Method to Identify Data-Driven Design Use Cases 681

1 Introduction

Approximately 70% of the product costs are determined during the design stage,
making it crucial to come to informed decisions at this stage of product develop-
ment [2,9,10]. In this respect, the use of computational methods and tools has
shown to be an enabler to increase design performance [14] regarding efficiency
and effectiveness of product development [29,33]. Nevertheless, state of prac-
tice still does not reflect the opportunities computational methods provide in
the early stages of engineering design [28]. Still, recent trends such as Industry
4.0 [1,23,24] push enterprises towards implementation of smart factories that
enable collection of data from Industrial Internet of Things (IToT) [12] devices
during the manufacturing process [7]. Furthermore, the advancement of mechan-
ical engineering products towards smart cyber physical systems [37] due to the
integration of IoT (Internet of Things) technologies provides information about
the usage and status of a product in use [20]. The resulting sets of data from IToT
and IoT can be considered relevant data from the product lifecycle and can be
used as an enabler for data-driven technologies in the design stage such as data-
driven design. Data-driven refers to the application of computational methods
that support decision-making in design based on data instead of intuition [5].
Hence, applications of data-driven design can rely on previous design revisions
and related PLM data or other designs that feature similar characteristics. How-
ever, there is a lack of methods supporting the identification and formalization
of use cases for data-driven design in the context of established product lifecycle
management (PLM) strategies [32].

In response to this need, this work presents a method that enables the identi-
fication and formalization of data-driven design use cases in engineering compa-
nies based on participative workshops with the designers to analyze engineering
processes and its supporting technological environments. It builds upon a PLM
process decomposition by using Enterprise Architecture methods [4] tool and
applies lean engineering methods for design process analysis [22]. In order to
contextualize data artefacts with design features, a detailed analysis of the sys-
tems and data features is performed based on the Systems Modelling Language
(SysML) [35]. The method is validated with a case study focusing on design
and manufacturing of chess figures like in Fig. 1 using the infrastructure of the
Pilotfabrik [15]. This paper is structured as follows: Sect. 2 analyzes the related
literature with respect to existing case studies for data-driven design, method-
ologies to derive requirements for data mining and finally highlight research gaps
in a summary. Section 3 proposes the new method which is evaluated in Sect. 4.
Finally, a critical discussion with respect to validation and limitations is given
which is finalized in Sect. 6 that highlights the conclusion and future work.

2 Background

In the following subsections, recent case studies with respect to data-driven
design are reviewed. Following this, the state of the art for methodologies to
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enable data-driven applications in engineering companies is analyzed. Next,
an overview of modelling languages is given in order to support process and
data mining. Finally, the state of the art is summarized and research gaps are
highlighted.

2.1 Case Studies for Data-Driven Applications

Recent scientific publications show different use cases
according to the use of data-driven design with different
level of details. The use cases comprise reports from vari-
able selection over knowledge acquisition to decision mod-
elling techniques. The data-driven design use case given in
[18] shows a study that uses parameterized numerical sim-
ulation models and surrogate models to enable optimiza-
tion based on a genetic algorithm. Since this approach not
suggest a variable selection approach, the selection use case
study of [17] is applicable. Here, all available high speed
train design variables are analyzed each with respect to the
relative importance based on previous engineering design-
ers knowledge. For a more systematic approach to acquire
the knowledge of a designer and formalize it for an impact Fig. 1. 3D Model of
estimation, [42] proposes to use focus groups studies. If 2 bishop chess figure
the domain expert assignment of influence variables is not sufficient enough, an
indication- and pattern-based method could be additionally used [13]. Since the
data amount grows through the design process and data is rare at initial design
steps, [21] recommends to start data-driven approaches in later design stages
caused by the transformation from knowledge to data during the design pro-
cess. The proposed framework support to numeralize different types of available
variables and derive a decision tree based on subjective knowledge and previous
data. As well, [8] suggests to build a decision tree based on geometrical behaviour
to define the design space and reduce the complexity. The resulting decision tree
builds a basis for rule based design tool support. A similar approach is given by
[30], which focuses on minimizing the influence of uncontrollable (noise) vari-
ables. Here, a meta-heuristic is used to optimize the controllable variables to
minimize the influence of the noise ones. The literature shows that case studies
have been realized indicating the potential of data-driven design methods. How-
ever, these studies lack by using methodologies driving decisions with respect to
data-driven design use cases, selection of data and traceability. Further, there is
a lack of systematic evaluation of data-driven approaches in industrial practice
based on metrics/key performance indicators.

2.2 State of the Art for a Data-Driven Methodology

An open standard process for data mining is Cross-industry standard process
for data mining, known as CRISP-DM [40] is shown in Fig. 2. The methodology
guides data mining project in industrial projects from the business understand-
ing until the implementation of an application. More specifically tailored towards
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Fig. 2. CRISP-DM standard process [27]

data science in the context of digital factories, the DMME builds an extension
to CRISP-DM and proposes methods for data acquisition to detail the under-
standing of how machine, material, tools and product properties are related.
Thereby, focus is put on identification and interrelation of different sources of
data, e.g. sensor and machining data [16,39]. A similar approach for the usage
of data from manufacturing can be found in [31]. The methodology proposes to
use a failure mode analysis combined with a quality function deployment to pre-
select influencing variables. However, the methodologies support on some points
for data science projects while a comprehensive methodology for engineering
design considering PLM, data back propagation and different types of sources is
missing.

2.3 Modelling Languages

With respect to the process of CRISP-DM, business structure and processes
needs to be collected to increase the business understanding. According to lit-
erature, enterprise architecture (EA) seems to be beneficial [19,34]. One of the
main advantages of EA is the visual interrelation between the business and the
application layer. However, the benefit of EA models is given, but a detail level
selection is needed to reduce the amount of elements that needs to be drawn.

In order to model systems in the context of software applications, Systems
Modeling Language (SysML) is widely used [35]. SysML is defined as an exten-
sion for Unified Modeling Language (UML) which is also an project by the
object management group (OMG) [11]. One of the aims of SysML is to support
the communication between interdisciplinary workers. Additionally, diagrams
like the data-flow diagram supports in a validation process whether all needed
interfaces are implemented.
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2.4 Summary

The review of related literature shows that use cases are investigated for data-
driven design applications in industrial contexts. However, the reviewed works do
not highlight the applied methodology pursued for development of the use case.
Hence, the presented use cases of data-driven design are difficult to trace and
lack systematic evaluation of the potential in industrial contexts. In this respect,
the application of methodologies to guide the integration and implementation
of data-driven methods in design practice would lead to better comparability
of published results and more comprehensive decision making in the evalua-
tion of potential use cases for data-driven design. To reduce these shortcomings,
this work further elaborates on the CRISP-DM methodology and refines it with
respect to the details required for identification of use cases for data-driven design
in established PLM environments. More specifically, focus is put on the formal-
ization of the initial steps “business understanding” and “data understanding”
of the CRISP-DM to provide the necessary context to comprehensively evalu-
ate use cases for data-driven design. The refined steps apply methods stemming
from enterprise architecture and systems engineering domains to leverage com-
prehensive analysis on both the (PLM) process as well as the system levels.

3 Method

In response to the needs highlighted in Sect. 2, this section proposes a partic-
ipative method for identification of data-driven design use cases in engineering
design while comprehensively taking the PLM into account with its technological
environments as well as related data. The method builds upon the CRISP-DM
methodology and extends its first two steps for business and data understanding
as illustrated in Fig. 3 in order to make it applicable in an engineering design
context.

Following CRISP-DM Steps Al

2. Data Understanding

____________________________________

Fig. 3. Method embedding in the CRISP-DM methodology

According to the figure shown in Fig. 3, the definition of goals is proposed
as a first step to establish a business understanding and formalize the needs
for design performance improvement. Further, goals are building the basis for
the subsequent steps of identification and evaluation of data-driven design use
cases. Next, one or multiple SIPOC analysis need to be conducted within par-
ticipative workshops to define the scope of the investigated aspects of PLM. The
workshops are conducted with engineers, designers and a workshop leader who
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guides the re-engineering of the product lifecycle process steps and is familiar
with the method that is presented in this paper. The yielded STIPOCS are then
further refined using EA modelling to investigate the processes as well as the
supporting technological environments and related data. Therefore, the relevant
aspects of PLM can be comprehensively analyzed. In this respect, design process
value stream mapping (VSM) [22] is applied to identify potential shortcomings
that can be resolved using data-driven design, e.g. a lack of information back-
flow. Additionally, design process failure mode effect analysis (dpFMEA) [6] is
used to guide metrics derivation as proposed in [28]. Based on these sources of
information, relevant data objects can be identified and contextualized with the
initially identified goal. In particular, the SysML is used to link features of the
data to the goals. Therefore, the necessary data understanding can be achieved
which is required for the subsequent steps of the CRISP-DM methodology that
address the mathematical modelling and identification of respective computa-
tional methods. In the following, the newly proposed steps are detailed.

3.1 Goals - Definition of Operative Goals

Once a system or a process to optimize is selected, a goal needs to be defined in
order to guide the subsequent steps for identification of use cases for data-driven
design. This is well aligned with existing approaches for metrics definition that
state that goals need to be defined prior to selection of metrics and correspond-
ing actions, e.g. the Goal-Question-Metric method [3]. Hence, goals can refer
to specific design artefacts such as “improve lifetime of feature XY” or more
generally to (parts of) the design process, e.g. “use less narrow tolerancing in
detail design without losing functionality”. Additionally, the desired goal speci-
fies whether data-driven design can rely on previous design revisions and related
PLM data or other designs that feature similar characteristics.

3.2 SIPOC

The second step comprises the identification of the processes that are related to
the previously identified goal. More particularly, all aspects of the product lifecy-
cle that impact or are impacted by the investigated design artefact/process need
to be comprehensively assessed. To acquire the knowledge about the related
processes, a Supplier-Input-Process-Output-Customer (SIPOC) [41] is applied
within participative workshops with the related engineers to gain a high-level
overview of the processes and define the scope of investigations. Graphical mod-
elling is applied to enable direct validation of the generated models by the partic-
ipants. The STPOC process captures the process in three to five main tasks (P),
the related input (I) and output data (O). The main suppliers (S) and recipients
(C) are connected considering read and/or write access with the input/output
data. Figure 4 shows a generic example process with two tasks structured accord-
ing to the STIPOC schema. Depending on the formalized goals, multiple SIPOC
analysis might be needed to capture all related processes of the product lifecycle.
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3.3 EA - Detailed Process Modelling

The results from the SIPOC analysis are used as a basis to further detail the
processes by decomposition of the tasks to yield single (design) activities [14].
In this respect, the ArchiMate modelling language [36] is applied to graphically
model the specifics of the business processes, the related applications as well as
the infrastructure including all the interrelations. The modelling expert guides
the workshops by successive detailing of the main tasks from the STPOC anal-
ysis based on a directed question-answer-talk. After modelling the design and
business processes, the related applications are mapped to the activities. In par-
ticular, the main tasks are split up so to yield distinct design activities that are
supported by a single application, e.g. “define initial 3D layout” that is supported
by the CAD modelling application. Following this, the infrastructure needs to
be modelled so that a comprehensive model of the enterprise architecture [19]
is yielded. Particular focus is put on identification of data sources including its
specific formats and accessibilities. Within this model, data artefacts and related
tools can be directly contextualized with the business processes.

3.4 Value Stream Mapping/dpFMEA

To further strengthen the business understanding, information wastes are iden-
tified within the previously yielded model of the enterprise architecture using
a design process value stream mapping [22]. Using a design process FMEA [6],
effects and causes can be associated to the identified sources of information waste,
e.g. redundant data generation that causes time to maintain and synchronize.
This allows to derive related metrics [29] that can be used to validate the initially
defined goal. In addition, the identified sources of waste permit to narrow down
the amount of relevant data that needs to be investigated, e.g. when engineers
identify unused information within artefacts.

3.5 SysML - Identification of Data Enabling Data-Driven Design

Based on the established business understanding and the yielded information
about available data artefacts within the derived enterprise architecture model,
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relevant sources of data can be identified so to potentially enable data-driven
design. In particular, data attributes are identified and visualized using SysML
block-definition diagrams [35]. Dependencies within the data can be highlighted
based on data dependency interrelations that are used to focus explicitly on
semantic dependencies within data objects, e.g. depth of a drilling hole and
length of the selected drill. These data interrelations are visualized by adding
information flows using the SysML “Item flow” relationship to the block-
definition diagram. This data analysis based on decomposition and association
of data artefacts to goals yields a comprehensive view of relevant data attributes.
Hence, the data understanding is established. After an SysML expert modelled
the diagram, another participative workshop is conducted to double check the
results and to complete the interrelations. With the yielded results, influencing
data sources can be identified to build the basis for systematic implementation of
data-driven design. Building upon these findings, methodologies like CRISP-DM
can be followed to support data preparation, modelling etc.

4 Validation

In this section, the method validation is presented with a use case taking design
and manufacturing of bishop chess figures into account. The case study is con-
ducted at the Pilotfarik of the TU Vienna [15].

In the following, the results of each step are presented:

4.1 Goals - Definition of Operative Goals

The goal of the investigations for application of data-driven design is defined as to
reduce the manufacturing time of a bishop chess figure during the turning process
without changing its functional specifications or changing the chess figure shape.
The desired data-driven design support has to affect the design attributes of a
product and not the manufacturing parameters. Since the tolerance of a feature
is not design specific, data is usable from other designs as well. Consequently,
data is collected from multiple designs and revisions.

4.2 SIPOC

Since the Pilotfabrik corresponds to the prototype of a smart factory for
demonstration scenarios, the supporting PLM processes such as the adaptive
design process are not formalized. Hence, in this work, a generic design process
according to [25] is assumed. Figure 5 indicates the corresponding STPOC with
In/Outputs and Suppliers and Customers as given in the context of the Pilot-
fabrik. The adaptive design process describes the optimization of an already
existing design.
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4.3 EA - Detailed Process Modelling

To accomplish a detail process model, first, a workshop was conducted visiting
the shopfloor and analyzing the processes of a design expert. The main process
tasks and the related tools were identified and the subjective worker view was
modelled using a EA. Next, the process manager further detailed the EA model
process tasks. The result of the two workshops yields in a EA model describing
the current adaptive design process with the related application. Following this,
the EA expert post processed the EA model with respect to readability and
additionally annotated open questions, e.g. “Where is the CAD file stored?”.
Finally, a workshop was conducted to answer the identified questions and to
double check the model correctness. Figure 6 shows a subsection of the yielded
workshops results. It shows the main design process tasks with its relation to the
used applications and corresponding manufacturing data. The identified applica-
tions are SolidWorks for CAD, HyperMill for CAM and Centurio.works for data
logging and orchestration usin Business Process Model and Notation (BPMN)
[26,38] (blue) which are both stored on the network drive (green).
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Fig. 6. Detail PLM process with respect to the SIPOCs (Color figure online)
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4.4 Value Stream Mapping/dpFMEA

The EA expert, the design expert and the process manager participated in
a workshop to identify sources of waste using a value stream mapping. With
respect to this, the EA expert used to ask questions and guided the workshop
to yield the result that is visualized (purple) in the EA model Fig. 6. Thus, a
dpFMEA was conducted during the workshop to identify causes and effects. The
method to acquire the causes and effects was equal to the value stream mapping
method, based on a question-answer-talk.

The result of the workshop yields in two sources of waste. The details accord-
ing to the cause and effects are visualized in Table 1.

Table 1. dpFMEA result to identify further method steps

Activity Failure mode | Effects Causes
Detailing | Static Increase in cost caused by narrow | Lack of tool support
the design | tolerance tolerances or roughness, time for dynamic
rules waste caused by missing tolerance | tolerance and
selection support, additional roughness rules

iterations because of not
manufacturable tolerances

CAM pro- | Definition of | Inefficient machining code, Lack of tool support
gramming | infeasible additional iterations on failing for NC Code
machining machining code, no tolerance simulation
code evaluation according to
manufacturability

4.5 SysML - Identification of Data Enabling Data-Driven Design

Based on the previous findings, the detail data understanding is improved during
a analysis of data attributes. The findings of the dpFMEA is used to limit the
amount of data objects from the EA process. The SysML model was created by
analyzing the data object on a data format level by reviewing the API docu-
mentation of SolidWorks. The result was a comprehensive model on an attribute
level without interrelations including possible redundancies. Next, a participative
workshop was conducted to successively check attributes according to relevance
and interrelations with other attributes. The result is presented in Fig. 7. The
grey blocks are passive influencing the data-driven design. The yellow data block
(dimension) is the object that mainly influences the desired data-driven design
goal. The tolerance is influencing (red dashed arrow) the tool and corresponding
turn feature specific parameters. The BPMN model and the QS model are both
generated during the manufacturing task and are used for further implementa-
tion of the data-driven design support following further CRISP-DM steps.
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5 Discussion

In this section the findings of this paper are discussed and assessed. The intro-
duced method aims to be applicable in different engineering fields and validated
based on a case study in the Pilotfabrik. The validation shows, that the method
is valid for the identification and formalization of data-driven design use cases
in mechanical engineering, more specific, with a turned part. The goal definition
was beneficial to guide the participative workshops and sharpen the aim of the
data-driven design approach. Additionally, a first idea of how the data-driven
design use case might look like is given. The conducted SIPOC showed to be
beneficial to share the business understanding between domain experts with dif-
ferent engineering background. During the workshops the graphical modelling
of the main process tasks was helpful since all participants were able to follow
the task modelling process and assess whether another process task is missing.
Further, the EA modelling to create a more detailed view of the process and the
related applications helped to introduce a first consolidated data understanding
between the EA expert and the design expert. The question-answer-talk was use-
ful to identify the detail tasks and related applications and the corresponding I'T
infrastructure. However, the modelling without EA templates caused difficulties
in the level of detail which depends on the experience of the EA expert. The tem-
plates have to provide a generic process step with its corresponding application,
functions and interface on the infrastructure level and a Information supplier
and consumer on a business level. Next, the model proved to be a solid basis for
the subsequent design process value stream mapping. The participants were able
to identify information waste based on the diagram without further details that
proved the aim of the EA model to increase the data understanding. Further,
the dpFMEA was used to identify effects and causes with respect to the specific
goal defined in method step one. This enabled to derive metrics to quantify the
potential benefit of data-driven design and to narrow down the amount of rele-
vant data that needs to be investigated in the following SysML step. With the
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yielded result from the previous steps, the data understanding on a data level is
improved during a data object decomposition with SysML. Feature of the data
are identified with a data object analysis and, again, the visualization was ben-
eficial to communicate between different domain experts. Still, a more detailed
guidance of how to conduct the data object analysis with SysML is needed.
Therefore, an abstraction of different data attributes needs to be introduced due
to the possibly complicated interpretation of attributes which needs to be seen
in context with other attributes. This work shows that a PLM processes decom-
position is beneficial to generate a comprehensive view to identify data-driven
design use cases. Corresponding, enterprises are able to introduce different appli-
cations that support the design process. From a scientific point of view, this work
contributes by the introduction and evaluation of a new method to identify and
formalize data-driven design use cases in engineering enterprises. More specific,
knowledge is consolidated from different scientific communities like data science,
engineering and lean management. The method contributes to industry by sup-
porting the identification and formalization of data-driven design use cases while
taking the experience of different domain experts into concern and giving the
opportunity to derive metrics. Even though the validation highlights the bene-
ficial effects of the method in a case study focusing on manufacturing of turned
parts, the method requires further validation in different industrial contexts.

6 Conclusions

This paper contributes by presenting a new method to identify data-driven
design use cases in engineering companies. The method is presented and vali-
dated with a case study in a smart factory with respect to design and manufactur-
ing of turned chess figures. The method builds upon a systematic decomposition
of related PLM processes using SITPOC analysis and enterprise architecture mod-
elling to analyse business processes and the related infrastructure. To identify
sources of waste and increase the business understanding, design process value
stream mapping and dpFMEA are used. Additionally, a systematic analysis of
systems and related data features is conducted using the graphical modelling
language SysML. This supports the identification of data interrelations required
to establish a profound data understanding to implement a data-driven method.
The validation with experts with different engineering background that were
involved in the case study shows that this method establishes a shared business
and data understanding required to successfully identify and implement data-
driven design in industry. Future work will focus on further industrial validation
to validate the genericity of the approach for different domains and PLM strate-
gies. Further, additional work needs to focus on development of templates and
supporting tools to enhance usability of the method.
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