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Abstract Fact checking, which verifies whether a given statement is true, could
play a vital role in fake news detection. For example, for a given piece of news,
a potential solution could involve a series of steps, including extracting statements
from the news via text parsing, checking the validity of the extracted statements
(i.e., fact checking), and classifying the news as fake if some statements have
been confirmed to be false and performing further fake news detection processes
otherwise. Considering that knowledge graphs are a popular way of representing
knowledge, which could be used for verifying or counter-verifying statements,
several solutions have been proposed that make use of knowledge graphs for fact
checking. In this chapter, recent studies on fact checking with the help of knowledge
graphs are reviewed, and three representative solutions, namely, Knowledge Linker,
PredPath, and Knowledge Stream, are introduced with some details. Specifically,
Knowledge Linker utilizes the semantic proximity metrics for mining knowledge
graphs, PredPath employs the link predictionmethod and introduces a newly defined
metric, andKnowledge Streammodels the fact-checking problem as an optimization
problem and uses flow theory for solving the problem.

Keywords Fact checking · Knowledge graph · Knowledge linker · Predicate
path · Knowledge stream

1 Introduction

Rumors, misinformation, and fake news fill the Internet and social media these days,
mostly due to the inability to identify fake news in large amounts of data quickly
and accurately. These rumors and fake news will not only have negative impacts
on public opinion but also affect people’s judgment if they cannot be identified and
corrected in a timely manner [13, 18, 23]. In order not to be misled, it is important
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to separate true news from a large scale of information mixed with fake news.
Dozens of methods or models have been proposed to detect and prevent the

spread of rumors or fake news [47]. Most approaches are based on the contextual
indicators of fake news for detecting the veracity of information, such as the
abundance of inquiry tweets, the credibility of the information source, and the
temporal patterns of news spread. A closely related issue is the evaluation of those
statements that are presented in news media. This issue is called fact checking.

In order to be able to utilize as much information or fact data as possible,
knowledge graphs (KGs) [31] are introduced to structure the existing knowledge
and facts. Several models have been proposed for the fact-checking problem, which
are based on knowledge graphs, including Knowledge Linker (KL) [11], PredPath
[37], Knowledge Stream (KS) [39], PRA [21], Katz [20], TransE [9], Adamic &
Adar [2], and Jaccard coefficient [24]. Most of these models rely on the traversal
of the knowledge graph. For example, PRA [21] utilizes random walk, Knowledge
Linker (KL) [11] employs the shortest path method, and PredPath [37] uses path
enumeration.

In this chapter, we first review some preliminary knowledge of knowledge
graphs and then introduce the three most recent and representative methods that
use knowledge graphs for fact checking.

2 Preliminaries

While the idea of the “knowledge graph” can be traced to 1972 [34], the modern
definition of the knowledge graph was first put forward by Google [42] in 2012.
There are further developments of knowledge graphs by other companies, such as
Facebook [30], LinkedIn [15], and Microsoft [40].

2.1 Knowledge Graph

A knowledge graph represents a data graph, which accumulates and transmits
knowledge gathered from a real-world database [8]. The nodes of knowledge
graphs denote entities, and each edge denotes the relationship between two entities.
Most knowledge graphs are extracted from external knowledge bases containing
numerous true statements. These statements can be divided into simple statements,
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such as “Sacramento is the capital of California,” and qualitative statements, such
as “capitals are cities.” Simple statements can serve as edges in knowledge graphs.

There are two types of knowledge graphs: open knowledge graph and enterprise
knowledge graph. Open knowledge graph refers to one that is published online and
is freely accessible. Some open knowledge graphs may accumulate data directly
from Wikipedia (such as DBpedia [22] and YAGO2 [16]), while others use crowd-
sourcing methods to gather knowledge from volunteers collaboratively (such as
Freebase [7] and Wikidata [46]). There are also some open knowledge graphs on
specific topics, such as government [35], news [33], tourism [25], and geography
[43]. The enterprise knowledge graph is mostly for internal use and/or commercial
purposes. Based on applications, enterprise knowledge graphs can be classified
into commerce (such as Uber1 and eBay 2 ), finance (such as Bloomberg3 and
Accenture4 ), social network (such as LinkedIn5 and Facebook [30]), etc.

2.2 RDF

To allow the computer to better understand the information contained in statements,
resource description framework (RDF) triples in the form of 〈subject, predicate,
object〉 have been proposed [27]. Predicate illustrates the binary relationship
between subject and object. For example, the statement “Sacramento is the capital
of California” could be represented by an RDF triple 〈Sacramento, CapitalOf,
California〉. RDF can build a labeled directed graph, where nodes denote entities
(i.e., subject and object) and directed edges denote predicates. Different edge labels
denote various predicates.

A formal definition of a knowledge graph constructed with RDF triples is as
follows.

Definition 1 (Knowledge Graph) A knowledge graph is a directed graph G =
(V ,E,R,O, g, h), where V denotes a node set, E denotes an edge set, R denotes
the relation set, andO denotes the ontology set. g: E → R is the labeling function,
which maps edges to predicates, and h: V → O is the function, which maps nodes
to ontologies.

1https://eng.uber.com/uber-eats-query-understanding/.
2https://www.ebayinc.com/stories/news/cracking-the-code-on-conversationalcommerce/.
3https://speakerdeck.com/emeij/understanding-news-using-thebloomberg-knowledge-graph.
4https://www.accenture.com/us-en/insights/digital/data-to-knowledge.
5https://engineering.linkedin.com/blog/2016/10/building-the-linkedin-knowledge-graph.

https://eng.uber.com/uber-eats-query-understanding/
https://www.ebayinc.com/stories/news/cracking-the-code-on-conversationalcommerce/
https://speakerdeck.com/emeij/understanding-news-using-thebloomberg-knowledge-graph
https://www.accenture.com/us-en/insights/digital/data-to-knowledge
https://engineering.linkedin.com/blog/2016/10/building-the-linkedin-knowledge-graph
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Fig. 1 A directed edge-labeled graph of companies that offer flights between Santiago and Arica
[17]

Figure 1 shows an example of a knowledge graph constructed with triples.

3 Models

Quite a few models have been proposed to mine the knowledge graph for fact check-
ing, includingKnowledge Linker (KL) [11], PredPath [37], Knowledge Stream (KS)
[39], PRA [21], Katz [20], TransE [9], Adamic & Adar [2], and Jaccard coefficient
[24]. In this chapter, three models, namely, KL, PredPath, and KS, are introduced.
KL utilizes the semantic proximity metrics for mining knowledge graphs. While it
uncovers relationships among some nodes, it neglects the predicate between each
pair of nodes. Sometimes, the results are difficult to interpret. PredPath employs the
link prediction method and introduces a newly defined metric. KS models the fact-
checking problem as an optimization problem and uses flow theory for solving the
problem.

4 Knowledge Linker

The model Knowledge Linker (KL) [11] is based on the simple idea that fact
checking on a knowledge graph aims to check whether the statement serves as an
edge of the knowledge graph or if there exists a path to connect the target’s subject
and its object in the knowledge graph.

When checking a statement, it is seldom the case that a corresponding edge exists
in the knowledge graph. Therefore, it is important to deduce the relation between
the subject node and the object node by effectively mining the connectivity of
the knowledge graph. KL adopts the epistemic closure theory [26]. The epistemic
closure theory refers to a set of entities closed under logical implication, which
means that a given statement could be deduced to be true through the entailment
from what is already known. Generally, it can be regarded as a specific example of
link prediction in knowledge graphs [29].
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Semantic Proximity After establishing the link prediction method for fact check-
ing in knowledge graphs, the next question is how to define the “path length” of
different paths that connect the subject node and the object node. A path containing
a lot of generic entities may sometimes provide weak information or even the wrong
information. To illustrate, consider the following example.

The paths connecting entities “Sacramento” and “California” can be as fol-
lows:

. {Sacramento} CityOf−−−−→ {the United States} StateOf←−−−−− {California}

. {Sacramento} Headquarter←−−−−−−−− {California State Police Department} Jurisdict ion−−−−−−−→
{California}
The entity “the United States” is a generic one, which means it can be related

to many entities, thus providing little information. For any city in California or
even in the United States, the first path could connect two entities, such as “Los
Angeles” and “California” or “Chicago” and “California.” Subsequently, the paths
made in this way are of little value for checking the statement “Chicago is a city of
California.”

In the second path, however, two entities are connected to the middle entity,
“California State Police Department.” In addition, the entity “California State Police
Department” has much fewer entities associated with it than the entity “the United
States.” Therefore, the second path depicts the special correlation information
between these two entities. In fact, the statement “Chicago is a city of California”
would be confirmed as a false statement with the second path.

From the example above, the length of a path can be defined by the generality
of the nodes that comprise it. When a node is related to many nodes, such as “the
United States,” it has a higher generality score. There are three possible ways to
illustrate whether two nodes are related:

1. If they are connected with the specific edge in the knowledge graph
2. If there exists a path connecting the two nodes in the knowledge graph
3. If the shortest path connecting the two nodes in the knowledge graph has a shorter

length than the preset threshold

For the first way, the relation established contains less information and is incon-
sistent with the epistemic closure principle. The second and third ways both
use intermediate nodes to establish relations. In addition, the third way takes
into account the fact that the relevance decreases as the number of intermediate
nodes increases, which seems to be more rational than the first way, but it is too
computationally intensive to be practical and the threshold may be difficult to preset.
Therefore, the second way is adopted in [41].

Since KL is based on the epistemic closure theory, when KL considers the
relations, it does not care much about the predicate, and it models the knowledge
graph as an undirected graph G = (V ,E), where V and E are the same as in
Definition 1.
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Definition 2 (Transitive Closure) G = (V ,E) is an undirected knowledge graph.
Two nodes a, b ∈ V are regarded as adjacent if there exists an edge e = (a, b) ∈ E.
Two nodes a, b ∈ V are regarded as connected if there is a sequence of nodes
(a = v1, v2, . . . , vn = b) connecting a and b (n ≥ 2). G∗ = (V ,E∗) is the
transitive closure of G. The node sets of G and G∗ are the same. Two nodes in G∗
are determined to be adjacent iff the two nodes are connected in G.

A statement in the form of RDF triple c =< s, p, o >, where s denotes a subject,
o denotes an object, and p denotes a predicate, is extracted from the transitive
closure G∗ of an undirected knowledge graph G. A path connecting subject s and
object o is denoted as Ps,o = (s = v1, v2, . . . , vn = o). The length of the path Ps,o

is defined as follows:

L (
Ps,o

) = L (v1 . . . vn) =
[

1 +
n−1∑

i=2

log k (vi)

]−1

,

where k(vi) represents the entity vi ’s degree, which means the number of appear-
ances of the statement in the knowledge graph. With the help of the degree, the
generality of an entity in the knowledge graph is defined. If c truly exists as an edge
connecting entity s and entity o in the knowledge graph, then the corresponding
value surely should be assigned the maximumvalue, i.e.,L(Ps,o) = 1. The semantic
proximity L would be assigned the value 1 iff n = 2 since there are no nodes
between the subject and the object.

When considering an alternative principle the widest bottleneck of the optimiza-
tion problem, the length of the path Ps,o could be measured with a new method:

L′ (
Ps,o

) = L′
(v1 . . . vn) =

{
1 n = 2
[
1 + maxn−1

i=2 {log k (vi)}
]−1

n > 2,

where the function k(vi) has the same definition as above.
Since there could be several paths between the subject and the object, the truth

value of a statement c =< s, p, o > could be measured by finding the shortest path
between the subject s and the object o [5, 28]. Formally, it is defined as follows:

τ (c) = maxL (
Ps,o

)
(or maxL′ (

Ps,o

)
).

Figure 2 shows an example of a path on the knowledge graph for a statement which
has a low truth value.

Case Study Results Wikipedia Knowledge Graph (WKG) is built upon three
datasets, namely, the DBpedia ontology dataset, the properties dataset, and the
types dataset. The triples in the DBpedia ontology dataset all have the predicate
“SubClassOf.” The triples in the properties dataset are extracted from the Wikipedia
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Fig. 2 The shortest path of
statement “Barack Obama is
a Muslim.” Numbers beside
nodes represent their degrees.
This path traverses nodes
with high degrees, i.e.,
generic entities, such as
“Canada,” and thus it is
assigned a low value [11]
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infoboxes.6 The triples in the types dataset are all in the form of 〈subject, is-a,
Class〉, and Class is derived from the DBpedia7 ontology.

The experiment is to compute the truth values of different statements such as “a
belongs to b,” where a is a US Congress member and b is an ideology. A matrix
M = {vi,j }n×m is defined, where n rows represent n members of Congress and m

columns represent m ideology nodes in the WKG.
The matrix is computed by the definition of L(.) with the help of a force-directed

layout [19]. The paths connecting blue or red nodes with gray nodes shown in Fig. 3
are all ranked in the top 1% of the truth value. The results shown in Fig. 3 are very
much consistent with the results derived from blogs [3] and Twitter [12].

5 PredPath

As discussed in Sect. 3.1, the fact-checking problem based on the knowledge
graph can be translated into a link prediction problem. The model Predicate Path
(PredPath) [37] (KL) takes the connectivity (i.e., the degree of correlation between
the nodes in a knowledge graph) and type information (i.e., the ontologies of each
node) into consideration. Specifically, KL mines the knowledge graph based upon
not only the connectivity and type information but also the interactions of predicates.
The model aims to extract a set of discriminative paths that could illustrate the
correlation between two entities uniquely in the knowledge graph.

Note that there exist some association mining methods [1, 14] and link prediction
methods [6] on the knowledge graph, but when applied in fact checking, these
methods would have drawbacks where in the derived results are general and lack
specificity. For example, consider the predicate CapitalOf between two entities.
Both the link prediction methods and the association mining methods would return
the result that the predicate LargestCityOf is most related to the predicateCapitalOf.
To some extent, the predicate LargestCityOf can be an alternative to the predicate
CapitalOf. For example, given the statement “Columbus is the capital of Ohio,”
Columbus is truly the largest city and capital of Ohio. However, because the
statement “Los Angeles is the largest city of California” is true does not mean that
the statement “Los Angeles is the capital of California” is true. In fact, California’s
capital is Sacramento. The PredPath model could derive a discriminative path for
statements where cities are capitals of states. If the intermediate nodes in a path
have the city’s headquarters and own jurisdiction in the located state, we can say
that it is equal to the predicate CapitalOf.

. {Columbus} LargestCityOf−−−−−−−−−→ {Ohio} �⇒ {Columbus} CapitalOf−−−−−−→ {Ohio}

6https://en.wikipedia.beta.wmflabs.org/wiki/Infobox.
7https://wiki.dbpedia.org/.

https://en.wikipedia.beta.wmflabs.org/wiki/Infobox
https://wiki.dbpedia.org/
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Fig. 3 Ideological map of Congress members [11]. The blue nodes represent the members of the
Democratic Party and the red nodes represent the members of the Republican Party. The gray nodes
denote the ideologies and the white nodes denote the intermediate nodes. The nodes’ positions are
calculated by a force-directed layout [10]. Only the most significant paths whose truth values rank
in the top 1% are shown

. {Los Angeles} LargestCityOf−−−−−−−−−→ {California} /
⇒ {Los Angeles} CapitalOf−−−−−−→
{California}

. {Sacramento} Headquarter←−−−−−−−− {California State Police Department} or {California
State Department of Transportation} etc. Jurisdict ion−−−−−−−→ {California}

�⇒ {Sacramento} CapitalOf−−−−−−→ {California}
To determine a statement’s truthfulness, PredPath mines the connectivity char-

acteristics of a knowledge graph by employing the principles of network closure,
similarity search, and link prediction. There exist approaches which are based
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on meta paths and use the similarity property of paths in a knowledge graph.
These approaches show brilliant results for solving problems such as clustering,
recommendation, and classification [21, 38, 44, 45]. However, they all require users
to know the domain of the problem in advance and the relevant meta paths before
conducting the analysis [44]. PredPath can obtain a set of discriminative paths,
which describe the relationship between two entities in a path of a knowledge graph
uniquely.

Definitions Based on the previous definition of knowledge graph G, an entity in
the knowledge graph can be mapped to multiple ontologies. When knowledge bases
such as DBpedia8 are used to build the knowledge graph, entities such as Columbus,
Los Angeles, and Sacramento form the node set V ; predicates such as CapitalOf and
LargestCityOf form the predicate set R; type labels such as state and city form the
ontology set O; and the edge set E represents the set of links each between two
nodes in the knowledge graph G.

With the type information in the knowledge graph, an intensive set of connections
named meta path to depict how the type labels can connect entities is defined as
follows.

Definition 3 (Meta Path) A meta path Mn in the knowledge graph G is denoted

as a typed, directed sequence of entities and edges: o1
p1−→ o2

p2−→ . . .
pn−1−→ on,

where oi represents the ontology of entity ei, pi denotes the predicate that links
entity ei to ei+1, and n represents the generalized length of the meta path.

To reduce storage and computational complexity, the intermediate type nodes in
a meta path are ignored, but the predicates and endpoints are reserved. An anchored
path vividly illustrates the structure of the path, which comprises the start node, the
end node, and the predicates linking them.

Definition 4 (Anchored Path) The anchored path An of a meta path Mn is
denoted as a directed path with typed sequences of edges and only the typed

endpoints:An = o1
p1−→ p2−→ . . .

pn−1−→ on.

Discriminative predicate paths are targets of the PredPath model, which are
defined as follows.

Definition 5 (Discriminative Predicate Path) We use Dn(ou, ov) to represent the
set of discriminative predicate paths. It consists of all those anchored paths which

could express the given statement ou
p−→ ov alternatively, and the paths’ maximum

generalized length is k.

Consider an example for illustration. One meta path that links the two entities

“Sacramento” and “California” could be M : {city} Headquarter−1

←−−−−−−−−− {state

8See footnote 7.
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agency} Jurisdict ion−−−−−−−→ {state}. The anchored path A anchored by {city} and
{state} for this meta path is 〈 Headquarter−1, Jurisdiction〉. The corresponding
discriminative predicate path set comprises many other anchored predicate paths
connecting {city} and {state}.

The meta paths tend to own more type label information and can thus be more
prone to involve labeling error. Therefore, anchored paths are used since they are
more tolerant of labeling error.

PredPath solves the fact-checking problem by performing a supervised link
prediction task, i.e., it determines a statement triplet c =< s, p, o > to be true or not
by first computing the discriminative path set Dk(ou, ov), where the subject s’s and
the object o’s ontologies are ou and ov , respectively, and then checking whether the

edge s
p−→ o can be implied in the knowledge graph G. If p ∈ R, then the positive

path set H+ and the negative path set H− can be generated as the node pair sets,

where H+ = {(u, v)|u p−→ v ∈ G}, H− = {(u, v)|u p−→ v /∈ G}, ou = os , and
ov = oo. When p /∈ R, H+ and H− ought to be provided by humans.

PredPath considers both the generality and the context dependency of paths for
discovering the most discriminative paths. Generality means whether the entities
connected by the predicate p are of the same or similar type. The context
dependency represents the similarity of different paths, which link the entities of
the same or similar type.

Path Extraction Most existing meta path-based models need hand annotation [38]
or exhaustive enumeration [21] when extracting the paths from knowledge graphs.
In contrast, PredPath can extract the paths automatically, employing a constrained
graph traversal algorithm. Though the amount of data in a knowledge graph can
be massive, only a small part of the data is truly useful for the given task. Among
the extracted meta paths, there are only a few discriminative paths for a certain
predicate. When it checks the fact “Sacramento is the capital of California,” it
only considers those meta paths which start from the ontology city and end at the
ontology state. A constrained graph traversal algorithm extracts anchored paths by
traversing the graph from the subject entity to the object entity with the length less
than k instead of traversing all the possible paths.

The anchored path sets A+
(ou,ov) and A

−
(ou,ov) are extracted separately by using

the depth-first traversal algorithm. This algorithm is implemented with the help of a
closure function C:

Cp(v) = {
v′| (v, p, v′) ∈ G

} ∪ {
v′| (v′, p, v

) ∈ G
}
,

where v denotes an entity in a knowledge graph and p represents the predicate
related to the closure. The function C returns all the entities that can be reached
by v from predicate p or p−1. With the definition of closure function, a transition
function T(vi) could be defined, which returns all the next nodes vi+1 of entity vi .
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T(v) returns all the entities that can be reached from Cp(v) without those that have
already been visited:

T (vi) =
{
∪p∈RCp (vi) \ ∪i

j=1

{
vj

}}
.

With the definitions of functions Cp(v) and T(vi), the path set P could be derived
with all the paths whose lengths are less than n: P = ∪n

i=1P
n, where

P
n = {s,T (v1) ,T (v2) , . . . ,T (vn−2) , o|

(s, o) ∈ T, v1 = s, vi ∈ T (vi−1) , o ∈ T (vn−1)} .

The next issue is how to measure the importance/helpfulness of a path. This
problem is tackled with a regression model.

Path Selection Given the predicate path sets P+ and P−, the aim is to select the
most discriminative predicate path set D. The training matrix is defined as X, where
the i-th row of matrix Xn×m denotes an instance anchored by u and v such that
ou = os and ov = oo. Every member Xi,j of the matrix X represents the number of
anchored paths Pj anchored by u and v.

The goal for the path selection lies in deriving a new matrix X′
n×m

′ , where the

columns for the new matrix X
′
only contain the most discriminative paths’ power:

X′ = f (X,w, δ) = X1:n,{j |j∈1:m,wj ≥δ},

where w is a feature importance vector with m dimensions and δ represents a
threshold that controls importance.

The element wj ∈ w is the important vector of an anchored predicate path Pj ∈
P, which is defined by the information gain of X:,j and y:

I
(
X;j : y) =

∑

xi,j ∈Xi,j

∑

yi∈y
p

(
xi,j

)
p (yi) log

(
p

(
xi,j , yi

)

p
(
xi,j

)
p (yi)

)

,

where y is the label vector for the feature vector X:,j , xi,j denotes the value of
element Xi,j [32], and the threshold δ is set empirically.

With the definition of matrix X
′
, the validation of the statement of a fact can be

solved by a logistic regression model [36].

Fact Interpretation Not all paths are intuitive enough to describe important
information. For example, the statement of fact 〈Sacramento, CapitalOf, California〉
may generate some meaningless predicate paths such as 〈location−1,location〉 and
〈deathPlace−1,deathPlace〉, which represent the statements that “a capital’ s location
is in the state” and that “City is place of death for a person who died in the state.”
In this example, the paths generated do not provide much information related to
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“CapitalOf.” Therefore, it is necessary to select those vital discriminative predicate
paths that only depict the predicate in question.

This could be done by sorting out the predicate paths with the importance vector
w: Pi ≺ Pj if and only if wi ≥ wj . After ranking the predicate paths, we can
remove those unimportant and off-topic predicate paths:

D∗ =
{

P

∣
∣∣
∣
∣
P ∈ D\

{

Pj |Pj ∈ P−,

i=n∑

i=0

Xi,j ≥ θ

}}

,

where θ represents the threshold, which is chosen empirically between 10 and
20. The function introduced above is able to select a discriminative path set D∗,
which contains the paths that can specifically define the predicate provided. The
discriminative predicate paths in the top 5 for the predicate “CapitalOf” are listed in
Table 1.

Comparison Between Meta Path and Predicate Path Different from those
existing studies which use meta paths on heterogeneous networks, PredPath uses
the anchored predicate paths. As a knowledge graph can be much more compli-
cated, an entity in the knowledge graph can own multiple labels. For example,
Boston’s type label is {city, settlement, populated place}, and Sacramento’s type
label is {settlement, populated place}, though they are, respectively, the capital of
Massachusetts and California. Because the type labels do not match exactly, the

Table 1 Top discriminative paths for “CapitalOf”

Rank Meta Path M
1 {city, settlement} location−1−−−−−−→ {state agency} location−−−−−→ {state}
2 {city, settlement} deathP lace−1−−−−−−−−→ {person} deathP lace−−−−−−−→ {state}
3 {city, settlement} headquarter−1

−−−−−−−−−→ {state agency} jurisdiction−−−−−−−→ {state}
4 {city, settlement} location−1−−−−−−→ {state agency} jurisdiction−−−−−−−→ {state}
5 {settlement} location−1−−−−−−→ {state agency} jurisdiction−−−−−−−→ {state}

Anchored Path D
1 〈headquarter−1 , jurisdiction〉
2 〈location−1, jurisdiction〉
3 〈headquarter−1 , regionServed〉
4 〈garrison−1, country〉
5 〈deathPlace−1, deathPlace〉

Discriminative Anchored Path D8

1 〈headquarter−1 , jurisdiction〉
2 〈location−1, jurisdiction〉
3 〈garrison−1, country〉
4 〈headquarter−1 , parentOrganisation〉
5 〈location−1, parentOrganisation〉
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Fig. 4 Comparison experiment between Meta Path and Predicate Path [37]

PredPath model will treat the two paths differently, which could result in high
overlap.

As shown in Fig. 4, the performance of four models for fact checking on
DBpedia,9 namely, Meta Path, Meta Path Subset, Predicate Path, and Predicate
Path Subset, is shown. Meta Path Subset and Predicate Path Subset both represent
the paths selected by the function mentioned above.

According to these results, the predicate path performs almost as accurately or
even better than the meta path, though it has fewer features with entities removed.
The subset selected by the importance selection function performs better than the
original set.

6 Knowledge Stream

Knowledge Stream (KS) [39] is based on a novel and unsupervised network flow
framework for fact checking. The model measures the trustworthiness of a statement
in the form of a RDF triple. For the problem of fact checking on knowledge graphs,
many approaches involve some traversal on knowledge graphs. Knowledge Linker
utilizes the shortest path algorithm, and PredPath utilizes the path enumeration
algorithm. KS is based on the fact that the information carried by multiple paths
can provide more semantic context information than a single path as the non-
disjoint paths may send additional flow on the knowledge graph. The KS model can

9See footnote 7.
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automatically extract the meaningful patterns and contextual facts with a broader
structure.

As shown in Fig. 5, the paths drawn in different colors form a stream of
knowledge for the RDF triple 〈David and Goliath, WrittenBy, Malcolm Gladwell〉.
To visually represent the flow of information on the knowledge graph, each path
has been assigned a different width based on the amount of evidence it can offer for
the RDF triple. KS would assign larger flows to those paths that provide more and
discriminative information.

KS can be vividly interpreted as a network flow model. Given an RDF triple
(s, p, o), it could be regarded as the knowledge flow starting from the subject entity
s through the network and ending up at the object entity o. The remaining issue is to
quantify the capacity and cost for each edge in the network. The capacity quantifies
the amount of knowledge or information carried related to statement (s, p, o). The
cost can be regarded as a constraint for the knowledge to pass a certain edge, which
ensures that the paths extracted by KS are short. KS aims to extract the set of paths
which can provide maximum flow of knowledge and minimize the cost.

The capacity of each edge e′ ∈ E in a knowledge graph can be intrinsic. With
the definition above, the edge e′ will be mapped to a certain predicate p′. For the
statement (s, p, o) to be checked, the capacity of each edge in the knowledge graph
is quantified as the relevance or similarity between the target predicate p and p′ in
the knowledge graph. The more relevant or similar p is p′, and a higher capacity can
be assigned to edge e′. It then measures the capacity of each path by the minimum
capacity of all the edges on the path, i.e., the bottleneck [4]. The bottleneck can be
interpreted as the least relevant or similar triple to the target statement in the path.
Since there could be many paths connecting subject entity s and object entity o, the
sum of their bottlenecks corresponds to the upper bound of knowledge flow through
these paths. For KS, the path length is defined by not only the number of entities in
the path but also the degrees of the connections from entities to other entities in the
graph [11].

Relational Similarity Different from the models Knowledge Linker and PredPath,
Knowledge Stream treats the knowledge graph as an undirected graph, only
considering whether two entities are connected. The line graph L(G) = (V ′, E′)
is defined on the undirected graph G = (V ,E). The node set V ′ of L(G) is defined
as V ′ = E, in which two new nodes are adjacent if and only if the corresponding
edges in set E are connected by the same node in G, i.e., E′ = {(e1, e2)|e1, e2 ∈
E, e1 ∩ e2 �= φ}. With the definition of line graph, the edge-labeled graph G could
be transformed into a node-labeled graph L(G). In addition, a contracted line graph
L∗(G) could be defined, which is an edge-weighted graph that substitutes two nodes
with a new node if the new nodes’ set of neighbors corresponds to the union of the
sets of the two nodes’ neighbors. For illustration, an example is shown in Fig. 6.

An adjacency matrix C ∈ NR×R is defined for the contracted line graph L∗(G),
where R = |R|. Matrix C is defined as the co-occurrence matrix of R. The
similarity between two relationships is measured by computing the cosine value
between two corresponding rows of vectors in C. Similar to information retrieval,
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Fig. 6 Example of line graph and contracted line graph [39]

IF and IDF terms could be defined based on matrix C:

TF
(
ri , rj

) = log
(
1 + Cij

)
,

IDF
(
rj ,R

) = log
R

∣
∣{ri | Cij > 0

}∣∣ ,

C′ (ri, rj ,R
) = TF

(
ri , rj

) · IDF (
rj ,R

)
,

where Ci,j denotes the count of co-occurrences between ri , rj ∈ R, as discussed
before. Then, the relational similarity u(ri, rj ) is computed as the cosine value
between i-th and j -th rows of C′.

Fact Checking as a Network Flow Problem As discussed before, the fact-
checking problem can be viewed as a problem of finding an optimal approach to
transfering the knowledge across the knowledge graph under certain constraints,
which could be modeled as a minimum cost maximum flow problem.

The next question lies in how to specifically utilize the knowledge stream for
fact checking. As the long chain path may lead to a general or obvious result, we
need to define the specificity of a path Ps,p,o. The specificity S(Ps,p,o) is defined
proportionally to the inverse of the sum of degrees:

S (
Ps,p,o

) = 1

1 + ∑n−1
i=2 log k (vi)

.

Combined with the definitions above, the net flowW(Ps,p,o) of a path Ps,p,o can
be set as the product of its bottleneck and specificity:

W (
Ps,p,o

) = β
(
Ps,p,o

) · S (
Ps,p,o

)
.
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To check whether the statement triple (s, p, o) is true or not, KS derives the truth
score τKS(s, p, o) of the triple by summing all the paths’ flow in the net together:

τKS(s, p, o) =
∑

Ps,p,o∈Ps,p,o

W (
Ps,p,o

)

=
∑

Ps,p,o∈Ps,p,o

β
(
Ps,p,o

) · S (
Ps,p,o

)
.

7 Conclusion and Future Work

In this chapter, three methods, namely, Knowledge Linker (KL), Predicate Path
(PredPath), and Knowledge Stream (KS), which utilize knowledge graphs for fact
checking, are introduced. There are quite a few future research directions. One
possible future direction is to introduce deep learning models such as GNN into
the fact-checking problem on knowledge graphs given that deep learning has been
used successfully for many complex problems such as those in computer vision,
natural language processing, and control. In addition, it seems necessary to bring
the temporal dimension into consideration for fact checking. Take the capital of the
Roman Empire, for example; the statement “Roman Empire’s capital is Rome” is
correct only before 323 CE, because the capital was later changed to Constantinople.
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