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This book’s initial title was “Tumor Microenvironment.” However, due to the 
current great interest in this topic, we were able to assemble more chapters 
than would fit in one book, covering tumor microenvironment biology from 
different perspectives. Therefore, the book was subdivided into several 
volumes.

This book Tumor Microenvironment: The Role of Chemokines – Part B 
presents contributions by expert researchers and clinicians in the multidisci-
plinary areas of medical and biological research. The chapters provide timely 
detailed overviews of recent advances in the field. This book describes the 
major contributions of different chemokines in the tumor microenvironment 
during cancer development. Further insights into these mechanisms will have 
important implications for our understanding of cancer initiation, develop-
ment, and progression. The authors focus on the modern methodologies and 
the leading-edge concepts in the field of cancer biology. In recent years, 
remarkable progress has been made in the identification and characterization 
of different components of the tumor microenvironment in several tissues 
using state-of-the-art techniques. These advantages facilitated identification 
of key targets and definition of the molecular basis of cancer progression 
within different organs. Thus, the present book is an attempt to describe the 
most recent developments in the area of tumor biology which is one of the 
emergent hot topics in the field of molecular and cellular biology today. Here, 
we present a selected collection of detailed chapters on what we know so far 
about the chemokines in the tumor microenvironment in various tissues. Nine 
chapters written by experts in the field summarize the present knowledge 
about distinct chemokines during tumor development.

Tracy O’Connor and Mathias Heikenwalder from Technical University of 
Munich discuss the role of CCL2  in the tumor microenvironment. Niradiz 
Reyes and colleagues from University of Cartagena describe CXCL3 signal-
ing in the tumor microenvironment. Sahana Asokan and Obul Reddy 
Bandapalli from Heidelberg University compile our understanding on 
CXCL8 signaling in the tumor microenvironment. Qun Gao and Yi Zhang 
from Zhengzhou University update us with what we know about CXCL11 
signaling in the tumor microenvironment. Weilong Chen and colleagues from 
Fudan University summarize current knowledge on the multi-faceted roles of 
CXCL12 signaling in the tumor microenvironment. Guang-Biao Zhou and 
colleagues from the Chinese Academy of Sciences address the importance of 
CXCL13 signaling in the tumor microenvironment. Sung-Jig Lim from 

Preface
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Kyung Hee University Hospital focuses on CCL24 signaling in the tumor 
microenvironment. Hina Mir and Shailesh Singh from Morehouse School of 
Medicine talk about the contribution of CCL25 signaling in the tumor micro-
environment. Finally, Miguel Martínez-Rodríguez and Carlos Monteagudo 
from the University of Valencia give an overview of CCL27 signaling in the 
tumor microenvironment.

It is hoped that the articles published in this book will become a source of 
reference and inspiration for future research ideas. I would like to express my 
deep gratitude to my wife Veranika Ushakova and Mr. Murugesan Tamilsevan 
from Springer, who helped at every step of the execution of this project.

Alexander BirbrairBelo Horizonte, Minas Gerais, Brazil
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CCL2 in the Tumor 
Microenvironment

Tracy O’Connor and Mathias Heikenwalder

Abstract

The C-C motif chemokine ligand 2 (CCL2) is 
a crucial mediator of immune cell recruitment 
during microbial infections and tissue dam-
age. CCL2 is also frequently overexpressed in 
cancer cells and other cells in the tumor 
microenvironment, and a large body of evi-
dence indicates that high CCL2 levels are 
associated with more aggressive malignan-
cies, a higher probability of metastasis, and 
poorer outcomes in a wide range of cancers. 
CCL2 plays a role in recruiting tumor-associ-
ated macrophages (TAMs), which adopt a 
pro- tumorigenic phenotype and support can-
cer cell survival, facilitate tumor cell inva-
sion, and promote angiogenesis. CCL2 also 
has direct, TAM-independent effects on tumor 
cells and the tumor microenvironment, 
including recruitment of other myeloid sub-

sets and non-myeloid cells, maintaining an 
immunosuppressive environment, stimulating 
tumor cell growth and motility, and promot-
ing angiogenesis. CCL2 also plays important 
roles in the metastatic cascade, such as creat-
ing a pre- metastatic niche in distant organs 
and promoting tumor cell extravasation across 
endothelia. Due to its many roles in tumori-
genesis and metastatic processes, the CCL2-
CCR2 signaling axis is currently being 
pursued as a potential therapeutic target for 
cancer.

Keywords

CCL2 · MCP-1 · Cancer · Tumor · 
Microenvironment · CCR2 · NFκB · 
Immunity · TAM · Macrophage · 
Angiogenesis · Extravasation · Metastasis · 
Immunosuppression · Invasion

1.1  Introduction

1.1.1  CCL2

The C-C motif chemokine ligand 2 (CCL2), also 
known as monocyte chemoattractant protein-1 
(MCP-1), was originally identified in a screen 
for platelet-derived growth factor (PDGF)-
inducible genes in mouse fibroblasts [15]. CCL2 
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was later discovered to be a potent monocyte 
 chemoattractant produced by primate aortic 
smooth muscle cells [111], human gliomas 
[123], and human monocytic leukemia cells 
[67]. CCL2, whose expression is triggered by 
transcription factors such as nuclear factor 
κ-light-chain-enhancer of activated B-cells 
(NFκB) and Specificity protein 1 (Sp1), can be 
produced by a wide variety of cell types, typi-
cally in response to local inflammatory stimuli 
and tissue-resident innate immune cells produc-
ing tumor necrosis factor α (TNFα), interleukin-
 1 (IL-1), or interferon γ (IFNγ), thereby 
promoting rapid infiltration of inflammatory 
monocytes and other blood-resident, CCL2- 
reponsive cells into affected tissues. Although 
many chemokine receptors bind multiple che-
mokines, rendering the functions of single che-
mokines largely redundant, Ccl2−/− mice exhibit 
significant defects in monocyte recruitment dur-
ing inflammatory responses, despite harboring 
normal levels of circulating lymphocytes and 
tissue- resident macrophages [64]. Thus, CCL2 
is the main chemokine responsible for pro- 
inflammatory monocyte recruitment during 
inflammation, and other chemokines cannot 
fully compensate for its actions. CCL2 produc-
tion and monocyte infiltration have been impli-
cated in a number of inflammatory conditions in 
humans, such as multiple sclerosis [68, 97], 
ischemia [61], rheumatoid arthritis [44], epi-
lepsy [118], atherosclerosis [73, 120], and lupus 
[56]. Moreover, infection of macrophages by 
human immunodeficiency virus (HIV) stimu-
lates CCL2 production [70], thereby promoting 
recruitment and infection of CCR2+ monocytes 
and T-cells. CCL2 is also produced by astro-
cytes [84] and other cells in the brain under neu-
roinflammatory conditions in order to recruit 
microglia, the tissue-resident macrophages of 
the central nervous system, and neural progeni-
tor cells [5] to sites of injury. CCL2 also 
enhances the permeability of brain endothelial 
cells (ECs) [100] to facilitate trafficking of 
blood-borne inflammatory monocytes across the 
blood-brain barrier.

1.1.2  CCR2

The receptor for CCL2 is C-C chemokine recep-
tor type 2 (CCR2), also known as CD192. Two 
CCR2 isoforms (CCR2A and CCR2B) exist in 
humans [12], whereas a single CCR2 isoform 
exists in mice [7, 46]. Expression of CCR2 is 
highest in the hematopoietic compartment, par-
ticularly on monocytes, as well as activated 
memory T-lymphocytes, some B-cell subsets [10, 
23, 25], immature dendritic cells (DCs) [99], nat-
ural killer (NK) cells [2], basophils [110], and 
microglia [6]. Besides CCL2, CCR2 ligands 
include CCL7 [16, 26], CCL8, CCL12 [92], 
CCL13 [29], and CCL16. Similar to Ccl2−/− ani-
mals, mice lacking CCR2 exhibit normal hema-
topoietic development but have defects in 
monocyte recruitment and host defense against 
bacterial pathogens [47]. Moreover, CCR2 can 
be utilized as a co-factor by HIV-1 to recruit and 
infect monocytes and T-cells [20].

1.2  CCL2 in the Tumor 
Microenvironment

1.2.1  Recruitment of Tumor- 
Associated Macrophages 
(TAMs)

The presence of so-called tumor-associated mac-
rophages (TAMs) is a ubiquitous histological fea-
ture of a wide variety of tumor types in humans 
[3, 32, 36, 37]. Moreover, a correlation was 
already drawn early on between a high level of 
TAMs and local tumor progression [9]. A number 
of earlier studies had already identified CCL2 as 
a monocyte chemoattractant being produced by 
tumor cells [8, 67, 69, 122, 125], strongly impli-
cating this chemokine as the effector of TAM 
recruitment in  vivo. This idea is supported by 
human studies which have drawn a correlation 
between the density of TAMs in human primary 
tumors and levels of CCL2 in breast cancer [28, 
90, 109] and ovarian cancer [72]. It was also 
recently reported that glioma cells directly trig-

T. O’Connor and M. Heikenwalder
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ger CCR2 expression on TAMs, thereby sensitiz-
ing them to the effects of CCL2 through the aryl 
hydrocarbon receptor [105]. Thus, CCL2 plays 
an important role in TAM recruitment during the 
pathogenesis of a number of malignancies. 
Nevertheless, the exact mechanisms of TAM 
recruitment are complex and remain an area of 
active investigation [49]. Other chemokines also 
contribute to TAM recruitment, and some TAMs 
may be tissue-derived. Moreover, it is now clear 
that CCL2 has other effects on the tumor micro-
environment that are unrelated to TAM recruit-
ment. To date, the presence of CCL2 has been 
reported in a wide range of human cancers, 
including breast carcinoma, hepatocellular carci-
noma, prostate cancer, cervical cancer, colon 
cancer, gastric cancer, medulloblastoma, and gli-
oma [19, 54, 65, 98, 106, 109, 121, 131], most 
indicating a negative effect of CCL2 on patient 
outcomes (Table 1.1). For example, high CCL2 
expression is associated with more advanced dis-
ease stage [98], early relapse [35, 109], as well as 
dissemination and metastasis in breast cancer 
[57]. Moreover, expression of a long non-coding 
mRNA which regulates CCL2 expression is cor-
related with an increased probability of brain 
metastasis in breast cancer patients [115]. CCL2 
expression is positively correlated with tumor 
aggressiveness in prostate cancer [65] and the 
likelihood of liver metastasis and hence poor out-
comes in colorectal cancer [121]. Higher CCL2 
levels are associated with lower frequencies of 
relapse-free survival in cervical cancer patients 
[131] and a higher probability of metastasis in 
colon cancer patients [117]. Patients with high 
CCL2 levels in pancreatic tumors have signifi-
cantly reduced survival times [91], and higher 

CCL2 levels are correlated with enhanced tumor 
vascularization in gastric cancer [77]. Finally, 
elevated CCL2 levels have recently been impli-
cated in the metastasis of medulloblastoma to the 
leptomeninges [30].

1.2.2  Mechanisms of CCL2 
Production by Tumor Cells

NFκB is an essential signaling pathway for the 
mobilization of the immune system in response 
to infections and tissue damage, allowing immune 
cells to rapidly proliferate and respond to inflam-
matory stimuli. Due to its central role in immune 
cell recruitment, CCL2 is a canonical transcrip-
tional target of the NFκB signaling pathway 
[108]. NFκB is frequently co-opted by tumor 
cells, and mutations leading to constitutive acti-
vation of the NFκB signaling pathway are com-
monly observed in human cancers, which 
enhances tumor cell survival, proliferation, and 
metastatic potential. In addition to NFκB, signal-
ing pathways controlling angiogenesis are asso-
ciated with enhanced CCL2 expression. For 
example, vascular endothelial growth factor 
(VEGF) expression stimulates CCL2 transcrip-
tion via the Activator protein-1 (AP-1) promoter 
region of the CCL2 transcript [119], and the 
CCL2 promoter contains binding sites for Sp1 
[108]. Moreover, it has been reported that the 
CCL2 promoter contains binding sites for 
hypoxia-inducible factor 1α (HIF1α) [71], the 
primary transcription factor responsible for acti-
vating angiogenic expression programs in 
response to the low-oxygen conditions frequently 
encountered by rapidly dividing tumor cells. 

Table 1.1 The effect of high CCL2 on the progression of different human cancers

Cancer Effect of elevated CCL2 References
Breast cancer Early relapse; enhanced dissemination and 

metastasis
Ueno [109], Heiskala [35], Linde [57],  
Wang [115]

Prostate cancer Enhanced tumor aggressiveness Lu [65]
Cervical cancer Lower relapse-free survival Zijlmans [131]
Colon cancer High probability of metastasis Wolf [117]
Pancreatic cancer Reduced survival Sanford [91]
Gastric cancer Enhanced tumor vascularization Ohta [77]
Medulloblastoma Enhanced metastasis to the leptomeninges Garzia [30]

1 CCL2 in the Tumor Microenvironment
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AP-1 is also activated downstream of major cell 
survival signaling pathways, such as extracellular 
regulated kinase (ERK) and protein kinase B 
(PKB, aka Akt) which may explain why upstream 
effectors of Akt signaling, such as Kras muta-
tions, also trigger CCL2 expression [1]. In addi-
tion, it was recently reported that CCL2 is 
expressed as a consequence of retinoblastoma 
(RB) gene inactivation – another major cell pro-
liferation pathway [55]. CCL2 is also a target of 
the transcription factors Twist1 [62] and Snail 
[38], which are involved in epithelial to mesen-
chymal transition (EMT) in cancer cells. CCL2 
expression was also recently shown to be influ-
enced by polycomb repressor complex 1 [103], a 
repressor of developmental genes which is fre-
quently dysregulated in cancer. Thus, CCL2 is 
transcriptionally regulated by a number of signal-
ing pathways linked to tumorigenesis (Fig. 1.1), 
which explains why this chemokine is frequently 
upregulated in a number of different cancer cell 
types compared to their non-neoplastic counter-
parts, including breast carcinoma [112], hepato-
cellular carcinoma [54], prostate cancer [65], and 
melanoma [34, 74]. However, cancer cells are not 
the only cells in the tumor microenvironment 

capable of producing CCL2. In addition to tumor 
cells, CCL2 expression has been reported to ema-
nate from a number of other cell types in the 
tumor microenvironment, including TAMs, ECs 
[112], tumor-associated fibroblasts (TAFs) [96], 
and T-cells [79].

1.2.3  Pro-tumorigenic Effects 
of TAMs

Intuitively, CCL2-mediated recruitment of 
immune cells to sites of tumorigenesis might be 
expected to facilitate the detection and elimina-
tion of tumor cells, and particular subsets of mac-
rophages within the tumor microenvironment 
may do so. For example, a high density of macro-
phages at the invasive edge of colorectal tumors 
has been reported to correlate with a better prog-
nosis and fewer hepatic metastases [24, 129]. 
Thus, TAMs may be phenotypically heteroge-
neous [78], with different macrophage popula-
tions exerting pro- and anti-tumorigenic effects 
simultaneously at different locations within the 
same tumor. Advances in single-cell expression 
analyses may help to shed further light on the 

Fig. 1.1 Several biological processes associated with 
cancer progression induce CCL2 expression. CCL2 is a 
canonical transcriptional target of NFκB signaling, which 
is frequently upregulated in cancer and confers cell sur-
vival and proliferation advantages to cancer cells. 
Transcriptional repressors of the epithelial phenotype in 
cancer cells, such as Snail and Twist1, which facilitate the 
epithelial to mesenchymal transition (EMT) in cancer, 

also upregulate CCL2. Snail activates CCL2 transcription 
in cooperation with CREB-binding protein (CBP), 
whereas Twist1 is known to become a transcriptional acti-
vator in combination with E12 [48]. CCL2 expression is 
also enhanced by transcription factors associated with 
angiogenesis, such as Activator protein 1 (AP-1) and 
Specificity protein 1 (Sp1)

T. O’Connor and M. Heikenwalder
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extent of in situ TAM heterogeneity in the future 
[66]. Nevertheless, the vast majority of in  vivo 
and human data indicate that, in general, a high 
density of TAMs is associated with more aggres-
sive malignancies, a higher probability of metas-
tasis, and poorer outcomes in a variety of cancers, 
including colon cancer [4], lymphoma [102], 
breast cancer [50], and melanoma [107]. This is 
most likely due to the ability of tumor cells to 
coerce newly recruited monocytes to adopt a phe-
notype that supports tumor cell survival and pro-
liferation. Many of the mechanisms by which 
TAMs promote tumorigenesis have been eluci-
dated. TAMs are known to be recruited to hypoxic 
regions within tumors [51, 72] in a HIF1α- 
dependent manner [21] where they stimulate 
local angiogenesis [11, 82] through the secretion 
of a variety of factors, including VEGF, PDGF, 
thymidine phosphorylase (TP), as well as a num-
ber of chemokines and cytokines [18]. TAMs 
also produce matrix metalloproteinase-9 (MMP- 
9) and other extracellular matrix (ECM)-
degrading enzymes, which further promote 
angiogenesis and facilitate tumor cell invasion 
[17, 21]. In addition, TAMs play an established 
role in suppressing cytotoxic T-cells through the 
expression or induction of the anti-inflammatory 
molecules programmed death-ligand 1 (PD-L1) 
[45], indoleamine 2,3-dioxygenase (IDO) [127], 
and arginine [95]. TAMs both produce and 
respond to transforming growth factor-β (TGF- 
β), which has immunosuppressive effects [101] 
and promotes EMT [126]. Moreover, TAMs have 
also been reported to recruit regulatory T-cells 
via CCL5 secretion, which further contributes to 
the immunosuppressive tumor microenvironment 
[93].

1.2.4  TAM-Independent Pro- 
tumorigenic Effects of CCL2

A number of studies have reported effects of 
CCL2 on the tumor microenvironment which 
may be as important if not more so than its role in 
TAM recruitment (Fig. 1.2). For example, CCL2 
can recruit other myeloid cell subsets, such as 
myeloid-derived suppressor cells (MDSCs). In 

melanoma, CCL2 attracts CCR2+ MDSCs, which 
promote tumor cell immune escape and acceler-
ated tumor growth due to the creation of an anti- 
inflammatory microenvironment. Thus, depleting 
CCR2+ MDSCs enhances cytotoxic CD8+ T-cell 
recruitment and slows tumor growth [52]. A simi-
lar mechanism has been described in a mouse 
model of colorectal cancer [14]. CCL2 has also 
been implicated in the recruitment of mesenchy-
mal stem cells to tumor sites [22], which enhance 
the motility and invasive capacity of cancer cells 
[41]. Some tumor cells, including prostate [65], 
bladder [13], and breast [39] cancer cells, express 
CCR2 themselves and can thus respond directly 
to CCL2. CCL2 directly augments cancer cell 
proliferation through activation of the phos-
phoinositide 3-kinase (PI3K)/Akt pro- survival 
pathway [59, 65, 89] and tumor cell motility and 
invasive capacity through activation of the Ras-
related cytoskeletal regulatory GTPases, RhoA 
and Rac [60, 113]. Autocrine CCL2 also influ-
ences the migratory behavior of tumor cells 
through activation of protein kinase C (PKC) sig-
naling and through phosphorylation of the focal 
adhesion adaptor protein, paxillin [13]. CCL2 
influences the immunosuppressive tumor envi-
ronment due to its ability to directly inhibit T-cell 
effector function in breast cancer models [114]. 
Moreover, investigators have shown that ECs 
express CCR2, ECs exhibit chemotactic activity 
toward CCL2, and CCL2 can directly promote 
angiogenesis in vivo independently of their role 
in TAM recruitment [31, 116]. Finally, CCL2 can 
also directly promote angiogenesis and support 
tumor cell invasiveness through induction of 
monocytic MMP-9 [85].

1.3  The Role of CCL2 in Cancer 
Metastasis

1.3.1  CCL2-Mediated Mechanisms 
in Metastasis

Consistent with the known roles of CCL2  in 
tumor cell invasiveness and angiogenesis, a 
strong association exists between CCL2 levels 
and the probability of tumor metastasis [76]. 

1 CCL2 in the Tumor Microenvironment
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CCL2 appears to exert its pro-metastatic effects 
through a variety of mechanisms. For example, a 
role was identified for CCL2 in the metastasis of 
colon and lung carcinoma cells to the liver. 
Consistent with the idea that the primary function 
of CCL2 is to attract circulating immune cells, 
the effect of CCL2 on liver metastasis appeared 
to involve the recruitment of a specific myeloid 
cell subset to the liver with no role for the adap-
tive immune system identified [128]. However, 
the same study failed to identify this myeloid cell 

population in melanomas that had metastasized 
to the liver. In another study where CCL2 block-
ing antibody administered to mice with non- 
small- cell lung cancer slowed tumor growth and 
reduced the incidence of metastasis, the effect of 
CCL2 on monocyte recruitment was minimal. 
Rather, the main effect of CCL2 appeared to be 
on TAM polarization state, which ultimately 
determined the efficiency of CD8+ T-cell recruit-
ment [27]. Thus, the mechanisms operating 
within a particular metastatic cascade may, in 

Fig. 1.2 The influence of CCL2 on the tumor microenvi-
ronment. CCL2 produced by tumor cells, tumor- associated 
macrophages (TAMs), tumor-associated fibroblasts 
(TAFs), leukocytes, and other local cells recruits myeloid 
cells, such as monocytes and myeloid-derived suppressor 
cells (MDSCs), and mesenchymal stem cells (MSCs), 
which support tumor cell survival, immunosuppression, 
and angiogenesis. CCL2 can also directly promote 

 angiogenesis through engagement of CCR2 on endothe-
lial cells. Stimulation of TAMs with CCL2 enhances 
metalloproteinase 9 (MMP-9) production, which pro-
motes tumor cell invasion. Some tumor cells express 
CCR2 and can further enhance their own motility by acti-
vation of RhoA, Rac, protein kinase C (PKC), and paxillin 
and their own survival and proliferation through the PI3K/
Akt pathway via autocrine CCL2 signaling

T. O’Connor and M. Heikenwalder
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some instances, be specific to the type of malig-
nancy and the metastatic site.

1.3.2  CCL2 in Tumor Cell 
Extravasation

Mechanistic studies have also identified a role for 
CCL2  in facilitating the extravasation of tumor 
cells across endothelia of potential metastatic 
sites. CCL2 derived from breast cancer cells can 
attract CCR2+ monocytes to the lung and bone 
[63]. In turn, these recruited monocytes promote 
breast cancer cell extravasation via VEGF secre-
tion [83] (Fig.  1.3). However, CCL2 also has 
myeloid cell-independent effects on the ability of 
tumor cells to traverse endothelia. For example, 
in a model of colon carcinoma metastasis to the 

lung, ablation of CCR2 on myeloid cells could 
not fully prevent lung metastasis, although CCR2 
expression was required [117]. Moreover, dele-
tion of CCR2 on endothelial cells was sufficient 
to significantly reduce the metastatic capacity of 
cancer cells [88]. CCL2 appears to directly 
engage CCR2 expressed on lung ECs, thereby 
enhancing vascular permeability [86, 87] through 
activation of JAK2/Stat5 and p38 signaling 
(Fig.  1.3) and EC contraction. Similar CCL2- 
driven mechanisms may drive transendothelial 
migration of multiple myeloma [40] and sarcoma 
cells [94]. However, consistent with reports that 
melanoma cells fail to recruit myeloid cells in 
liver metastases [128], melanoma cells appear 
not to require CCR2 signaling to metastasize to 
the lung [117], again highlighting the fact that 

Fig. 1.3 Roles of CCL2 in cancer metastasis to the bone 
and lung. (Left) CCL2 secreted by bone marrow epithelial 
cells (ECs) stimulates parathyroid hormone-related pep-
tide (PTHrP) production by tumor cells, which initiates 
CCL2 expression by osteoblasts. CCL2 produced by 
osteoblasts and ECs promotes angiogenesis and stimu-
lates osteoclast activity. Enhanced osteoclast activity 
leads to bone resorption, which facilitates the colonization 
of bone by tumor cells. (Right) Tumor cells circulating in 
the lung blood vessels attract blood-borne monocytes via 
CCL2. Recruited monocytes promote tumor cell extrava-

sation in the lung in a vascular endothelial growth factor 
(VEGF)-dependent manner. CCL2 secreted by tumor 
cells can directly engage CCR2 on ECs in the lung vascu-
lature, thereby facilitating their own extravasation. In 
addition, extracellular vesicles (EVs) released from the 
primary tumor can stimulate CCL2 secretion from ECs 
and subsequent monocyte recruitment via annexin-A6 
(ANXA6). The degree to which particular pathways and 
cell types are involved in the metastatic cascade likely 
depends on the type of malignancy and the tissue being 
colonized
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different malignancies may utilize distinct mech-
anisms for metastasis.

1.3.3  Prostate Cancer

CCL2 signaling plays a particularly prominent 
role in the progression and metastasis of prostate 
cancer. As noted above, prostate cancer cells 
express elevated CCL2 compared to non- 
neoplastic prostate cells, and CCL2 enhances 
both the proliferation and invasiveness of pros-
tate cancer cells [65]. In addition, parathyroid 
hormone-related protein (PTHrP) produced by 
prostate cancer cells can induce CCL2 produc-
tion in osteoblasts, thus stimulating osteoclast 
activity and promoting angiogenesis [53]. 
Elevated osteoclast activity enhances bone 
resorption, thereby creating a “pre-metastatic 
niche” in which the likelihood that bone tissue 
becomes colonized by prostate cancer cells is 
increased (Fig. 1.3). CCL2 can also be produced 
by bone marrow ECs, which attracts prostate 
cancer cells and induces their proliferation [59].

1.3.4  Breast Cancer

Cancer metastasis is a complex, multi-step pro-
cess. Therefore, studies at the organismal level 
that assess the contribution of an individual mol-
ecule or signaling pathway in specific cellular 
compartments are necessary to fully understand-
ing the roles of these molecules at each location 
and stage of the metastatic cascade. For example, 
CCL2 has different effects on the metastasis of 
breast cancer cells, depending on the source of 
CCL2 and which stage in the metastatic cascade 
it is expressed. Non-tumor cell-derived CCL2 in 
the hematopoietic compartment seems to pro-
mote metastasis of breast cancer cells to the lungs 
[124], whereas tumor cell-derived CCL2 in the 
primary tumor inhibits metastasis of breast can-
cer cells to the lung and bone [104] through the 
recruitment of neutrophils to potential metastatic 
sites [33]. However, once breast cancer cells are 
in circulation, tumor cell-derived CCL2 can also 
contribute to metastatic seeding of distant organs 

[124]. Extracellular vesicles (EVs) shed from 
breast cancer cells at the primary tumor are also 
capable of initiating CCL2 expression at meta-
static sites [42]. Breast cancer cells can also 
induce CCL2 secretion from osteoblasts [43, 
130], promoting bone loss and colonization by 
breast cancer cells in a manner similar to that 
which has been described for prostate cancer.

1.4  CCL2 as a Therapeutic Target 
in Cancer Immunotherapy

Cancer immunotherapy is a rapidly advancing 
field of research, and drugs which attempt to 
boost T-cell responses against tumors, such as 
immune checkpoint inhibitors, are already in 
regular clinical use. TAM-targeted therapies are 
also being pursued, including drugs that aim to 
modulate the CCL2-CCR2 signaling axis. A 
monoclonal antibody against CCL2 (i.e., car-
lumab) was tested for the treatment of metastatic 
prostate cancer but was eventually discontinued 
due to lack of clinical benefit [81]. A number of 
small molecule CCR2 inhibitors are currently in 
clinical development for the treatment of pancre-
atic cancer [80] and have had some success in 
stabilizing disease progression as a combination 
therapy [75]. Finally, other therapies, such as his-
tone deacetylase (HDAC) inhibitors, which are 
currently being pursued as cancer therapies, are 
thought to exert some of their anti-tumor effects 
via their ability to reduce endogenous CCL2 lev-
els [58].
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Abstract

Cancer progression is driven, to a large extent, 
by the action of immune cells that have been 
recruited to tumor sites through interactions 
between chemokines and their receptors. 
Chemokines of the CXC subfamily are 
secreted by both tumor and non-tumor cells 
within the microenvironment of the tumor, 
where they induce either antitumor or protu-
mor activity that fosters either clearance or 
progression of the tumor, respectively. 
Understanding the nature of these interactions 
is important to envisage novel approaches tar-
geting the essential components of the tumor 
microenvironment, increasing the odds for 
favorable patient outcomes. In this chapter we 
describe the involvement of the chemokine 
(C-X-C motif) ligand 3 (CXCL3) in the human 
tumor microenvironment and its effects on 
immune and non-immune cells. Because of 
the limited data on the CXCL3 signaling in 
the tumor microenvironment, we extend the 
review to other members of the CXC subfam-
ily of chemokines. This review also addresses 
the future trends or directions for therapeutic 

interventions that target signaling pathways 
used by these molecules in the tumor 
microenvironment.
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2.1  Introduction

In addition to tumor cells, solid tumors also con-
tain a variety of other cell types, and the multi-
tude of communications and interactions among 
all these cells help to create the tumor microenvi-
ronment (TME) [1, 2]. It is widely recognized 
that the TME actively participates in the 
 cancerous process, enhancing proliferation, sur-
vival, and migration of the tumor cells [3]. 
Crosstalk among the cells populating the micro-
environment of the tumor is driven by a complex 
and dynamic network of signaling pathways acti-
vated by cytokines, chemokines, and growth fac-
tors and by the action of inflammatory molecules 
and matrix remodeling enzymes [1, 2]. Among 
the non-malignant cells present in this complex 
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microenvironment, we can mention stromal cells 
(mainly fibroblasts), specialized cells such as 
endothelial cells and pericytes, and a number of 
infiltrating inflammatory cells (including neutro-
phils, macrophages, and lymphocytes). These 
non-malignant cells of the TME play a dynamic 
role at every stage of carcinogenesis and progres-
sion that eventually determines whether the pri-
mary tumor is cleared, undergoes apoptosis, 
senesces, grows, and/or metastasizes [4] 
(Fig. 2.1). Tumor cells and stromal cells, as well 
as the tumor-associated leukocytes and vascular 
endothelial cells, all contribute in different pro-
portion to the local production of chemokines 
inside the tumor. They also become the targets of 
chemokines that affect tumor cell proliferation, 
invasiveness, and metastasis [1, 2].

Chemokines are a family of chemoattractant 
cytokines that signal through cognate seven- 
transmembrane G protein-coupled receptors to 
mediate trans-endothelial leukocyte migration to 
sites of inflammation and to secondary lymphoid 
organs through interactions with selectins and 

integrins expressed on leukocytes [5, 6]. The 
complex network created by the interaction 
between chemokines and their receptors controls 
leukocyte migration, not only during infection 
and inflammation but also in tumor-related pro-
cesses, such as angiogenesis and chemoresis-
tance [7, 8].

The chemokine family has been subclassified 
into four subfamilies based on the position of 
the conserved cysteines in the amino-terminal 
end of these molecules: CXC, CC, CX3C, and C 
chemokine ligands, where X represents any 
amino acid [9]. Among the factors produced by 
both the tumor cells and non-transformed cells 
that are known to regulate angiogenesis, increas-
ing evidence supports the importance of the 
CXC chemokines in this critical process [10]. 
Most members of the CXC subfamily are 
induced by inflammatory stimuli, and they are 
further classified into two groups based on the 
presence of a conserved three amino acid motif 
(the “ELR motif”: Glu-Leu-Arg) preceding the 
first conserved C [11, 12]. The ELR-containing 

Fig. 2.1 Cellular crosstalk in the tumor microenviron-
ment. Besides tumor cells, solid tumors also contain a 
variety of other cell types, and the multitude of communi-
cations and interactions among all these cells help to cre-
ate the tumor microenvironment. Crosstalk among cells in 
the TME is driven by a complex and dynamic network of 
signaling pathways activated by cytokines, chemokines, 
and growth factors and by the action of inflammatory mol-
ecules and matrix remodeling enzymes. Among the non- 
malignant cells in this complex microenvironment are 
stromal cells (mainly fibroblasts, endothelial cells, and 

pericytes) and various infiltrating inflammatory cells 
(including neutrophils, macrophages, and lymphocytes). 
These non-malignant cells of the TME play a dynamic 
role at every stage of carcinogenesis and progression that 
ultimately determine whether the primary tumor is 
cleared, undergoes apoptosis, senesces, grows, and/or 
metastasizes. Tumor cells and stromal cells, as well as the 
tumor-associated leukocytes, all contribute in different 
proportion to the local production of chemokines inside 
the tumor. CAF (cancer-associated fibroblast), TAM 
(tumor-associated macrophage)
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(ELR+) CXC chemokines are potent promoters 
of angiogenesis, a process that is essential for 
the growth of tumors [10]. ELR+ CXC chemo-
kines include interleukin-8 (CXCL8), epithe-
lial-derived neutrophil- activating protein 78 
(CXCL5), granulocyte chemotactic protein 2 
(CXCL6), neutrophil- activating peptide 2 
(CXCL7), melanoma growth stimulatory activ-
ity alpha (GRO-α/CXCL1), melanoma growth 
stimulatory activity beta (GRO-β/CXCL2), and 
melanoma growth stimulatory activity gamma 
(GRO-γ/CXCL3) [11]. Chemokine action is 
also important for tumor initiation, promotion, 
and progression [5, 13] as breakdown in the 
control of leucocyte mobilization contributes to 
chronic inflammation, which in turn may favor 
the process of carcinogenesis by providing a 
microenvironment that is suitable for tumor cell 
development and growth [14, 15]. Inflammation 
is a promoter for neovascularization, also known 
as angiogenesis, a process that leads to forma-
tion of new vessels and that requires the action 
of angiogenic factors, which bind to specific 
receptors on the surface of endothelial cells of 
pre-existing blood vessels [16].

2.2  Cells and Chemokines 
in the Tumor 
Microenvironment

In addition to extracellular matrix components, 
tumors in general harbor both malignant and 
non-malignant cells. The tumor stroma contains 
specialized connective tissue cells, including 
fibroblasts, mesenchymal stromal cells, osteo-
blasts, and chondrocytes, and the extracellular 
matrix; it also includes other specialized cell 
types, such as endothelial cells, pericytes, adipo-
cytes, and immune cells [17]. After years of 
intense research, it has become clear that 
 non- malignant cells recruited from the local host 
stroma by the tumor cells themselves play a piv-
otal role in cancer development [18]. In addition 
to immune cells, non-malignant cells, such as 
CAFs and pericytes, are increasingly recognized 
as important cellular components of the tumor 
microenvironment [19]. Pericytes typically sur-

round blood vessels and communicate with the 
endothelial cells by paracrine signaling and phys-
ical contacts [20, 21]. They actively participate in 
the inflammatory response playing a leading role 
in angiogenesis, promoting endothelial cell sur-
vival and migration [20]. In response to proin-
flammatory stimuli, such as LPS 
(lipopolysaccharide), these perivascular cells 
express a multitude of inflammatory mediators, 
including the ELR+ CXC chemokines CXCL3, 
CXCL1, CXCL2, and IL-8 [22]. The specific 
receptors for these chemokines, CXCR1 and 
CXCR2, are expressed by endothelial cells and 
different types of tumor cells (Fig.  2.2). 
Reciprocal interactions among malignant and 
non-malignant cells (including stromal and 
inflammatory cells) lead to the activation of cel-
lular processes mediated by different growth fac-
tors, chemokines, and cytokines, which results in 
extracellular matrix remodeling, cell migration, 
neo-angiogenesis, invasion, drug resistance, and 
evasion of immunosurveillance [23]. Many can-
cers exhibit altered chemokine secretion profiles 
that favor the recruitment of protumorigenic 
immune cells while preventing the accumulation 
of anti-tumorigenic effector cells [24]. 
Chemokines in general attract different immune 
cells that express their cognate receptors, such as 
monocytes and neutrophils, inducing their migra-
tion into the microenvironment, where they dif-
ferentiate, respectively, into tumor-associated 
macrophages (TAMs) or tumor-associated neu-
trophils (TANs); these two cell types then con-
tribute to the regulation of the tumor immune 
responses in a spatiotemporal manner [13, 25]. 
Migration of neutrophils to tumor sites involves 
the interaction between CXCR2 expressed on the 
neutrophil surface and its ligands (CXCL1, 2, 3, 
5, 6, 7, and 8) released by cells in the TME [26] 
(Fig. 2.2).

Although TANs make up a significant part of 
the cells present in the TME, TAMs and the 
cancer- associated fibroblasts (CAFs) outnumber 
them by far [27, 28]. In fact, TAMs are the most 
abundant immune cells in the microenvironment 
of solid tumors, comprising up to 50% of the 
tumor mass, and their abundance is associated 
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with a poor clinical outcome in the majority of 
cancers [29].

During tumor development a number of phe-
notypically distinct TAM populations arise under 
the action of factors released by cancer cells, 
including cytokines, glucocorticoids, extracellu-
lar vesicles, and extracellular matrix components 
[30]. Most TAMs have the alternatively activated 
M2 phenotype and express multiple cytokines, 
proteases, and chemokines that promote tumor 
angiogenesis, in contrast to classically activated 
M1 macrophages that exhibit antitumor activities 
[29]. Several studies reported that TAMs release 
CXC chemokines that promote cancer growth 
and metastasis, such as CXCL1 and CXCL8, 
among others [31].

The other major cell type, CAFs, plays a piv-
otal role in tumorigenesis, actively participating 
in the growth and invasion of the tumor cells by 
sustaining a TME unique for each cancer type 
[27, 28]. CAFs are activated fibroblasts, and they 
comprise the major stromal component in the 
various types of malignancies [32]. Signaling 
crosstalk between CAFs and tumor cells may 
induce both types of cells to modify the sur-
rounding tissue components, such as the extracel-
lular matrix (ECM) and the basement membrane 
[27], favoring cancer progression [27]. CAFs 
originating from different cancers are highly het-
erogeneous among them [27], suggesting that 
cancer cells are able to induce specific subpopu-
lations of CAFs that enhance growth and pro-
gression of the particular tumor [33]. CAFs 

Fig. 2.2 CXCL3 and CXCR2 expression from cells in 
the TME.  Tumor cells, macrophages, neutrophils, and 
endothelial cells express CXCR2 and other chemokine 
receptors. Tumor cells, CAFs, and pericytes secrete 
CXCL3 and other chemokines leading to leukocyte 

 infiltration, including neutrophil and macrophage recruit-
ment. Tumor cells interact with cancer-associated fibro-
blasts (CAFs), tumor-associated macrophages (TAMs), 
neutrophils, and endothelial cells

N. Reyes et al.
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present in tumor regions are able to do this due to 
the variety of cell-cell interactions that they pro-
mote and the action of different secreted factors, 
including cytokines, chemokines, and various 
inflammatory mediators [19].

2.3  CXCL3 Signaling 
and Involvement in Cancer

CXC chemokines are secreted factors consis-
tently shown to affect tumor progression and 
spread [10, 34]. CXCL3 is a member of the CXC 
chemokine subfamily, and it is subclassified as a 
Glu-Leu-Arg (ELR+) CXC chemokine [11, 12]. 
This chemokine, along with CXCL1 and CXCL2, 
was originally identified in the supernatants of 
melanoma cell lines in culture [35], and they are 
collectively referred to as GROs (growth-related 
oncogenes) [12, 36]. These three chemokines 
originated from gene duplication events during 
the course of chemokine evolution [37]. Different 
combinations of CXC chemokines, including 
CXCL3 and other soluble factors, are released by 
TAMs, CAFs, and tumor cells present in the 
TME [13, 38, 39].

The protein encoded by the CXCL3 gene is a 
secreted growth factor that signals through its 
cognate receptor CXCR2, a 7-transmembrane G 
protein-coupled receptor [40]. This receptor is 
present on endothelial cells [41] and in a variety 
of other cell types also present in the TME, 
including neutrophils, monocytes and macro-
phages, eosinophils, mast cells, and oligodendro-
cytes [42–45]. CXCR2 is also expressed by 
different types of cancer cells, including prostate 
[46], lung [47], and melanoma [48], among 
others.

Paracrine and autocrine interaction between 
CXC chemokines and CXCR2 triggers intracel-
lular signaling pathways in cancer cells; upon 
ligand binding, the receptor becomes phosphory-
lated on serine/threonine residues at the 
C-terminus; it changes its conformation and acti-
vates the coupled heterotrimeric G protein [49]. 
Activation involves GTP binding to Gα subunit 
leading to disassociation from its Gβγ subunit 
partners, initiating the corresponding signaling 

pathways involving PI3K, p38/ERK, and JAK2/
STAT3 pathways, leading to the regulation of cell 
survival and migration [40, 50–52]. CXCR2 also 
drives immune escape and chemoresistance in 
several human cancers [53–56]. Several studies 
performed with CXCR2 knockout mice in malig-
nancies such as melanoma and prostate and renal 
cancers showed that these animals were less sus-
ceptible to spontaneous tumorigenesis [52, 57–
61]; thus, this receptor can be viewed as an 
attractive target for therapy.

CXCL3, through its binding to CXCR2, has 
been shown to be a chemoattractant for neutro-
phils [62], and its involvement in metastasis, 
angiogenesis, and wound healing has been previ-
ously mentioned [63, 64]. The cancer types 
affected by the action of CXCL3 (along with 
CXCL1 and CXCL2) include prostate cancer, 
pancreatic cancer, melanoma, lung cancer, hepa-
tocellular carcinoma, and gastric cancer [50, 65–
69]. In vitro studies indicated that CXCL3 
chemokine, besides CXCL1 and CXCL2, was 
expressed by prostate stromal cells in response to 
IL-1 secreted by epithelial cells, leading to the 
suggestion that these interactions might contrib-
ute to prostatic inflammation and progression at 
early stages of prostate cancer development [3]. 
The mechanism proposed for this effect implied 
that prostatic epithelial cells are able to secrete 
cytokines of the IL-1 family, which then activate 
the IL-1-signaling pathway in the stromal cells, 
triggering them to secrete this group of CXC che-
mokines. IL-1 has been previously shown to 
stimulate the NF-κB signaling pathway leading 
to the transcriptional activation of CXCL1, 
CXCL2, CXCL3 [70, 71], and CXCL8 [72], 
what is supported by the finding that the genes 
encoding CXCL1, CXCL2, and CXCL3 contain 
a conserved NF-κB-responsive element in their 
promoters [73].

In addition to stromal cells, epithelial cells 
from different cancer types, such as colon cancer 
[63], prostate cancer [69], and breast cancer [34], 
also display increased expression of CXCL3. In 
colon cancer, Doll et al. [63] reported increased 
transcript expression of CXCL3 along with 
CXCL2 and CXCL8 in resected colon carcinoma 
from a cohort of 97 patients. Compared to normal 
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colon tissue, colon cancer showed higher expres-
sion of these three chemokines; furthermore, 
evaluation of the three colon cancer cell lines 
(HT29, HCT116, and CaCO2) found that 
IL-1alpha strongly induced the expression of all 
the three chemokines by these cell lines, indicat-
ing a potential link to inflammatory processes 
[63]. Recent work also proposed that CXCL3 
might serve as a novel biomarker in the diagnosis 
and prognosis of colon cancer based on the find-
ing that high expression of CXCL3 was associ-
ated with considerably increased mortality in 
colon cancer patients [74].

In the prostate, studies have shown that pros-
tate cancer cell lines and prostate cancer tissue 
overexpress both the CXCL3 and its receptor 
CXCR2, which may suggest a role for the 
CXCL3/CXCR2 axis in prostate cancer progres-
sion and metastasis [69]. This is supported by 
studies showing that overexpression of CXCL3 
both in the aggressive PC-3 cell line and in pros-
tatic cancer tissue correlated with metastasis [69, 
75]. CXCL3 has been shown to function as a che-
moattractant for neutrophils to areas of brain 
injury [76] and for cerebellar progenitor cells 
[77]; however, it is not clear whether this chemo-
kine is chemoattractant or not for prostate cancer 
cells [69]. Decreased expression of CXCL3 has 
been found in PC-3 cells subjected to siRNA 
knockdown of the proteoglycan endocan (endo-
thelial cell-specific molecule-1/ESM-1), a marker 
for angiogenesis [78].

This chemokine has also been suggested as a 
potential therapeutic target for hepatocellular 
carcinoma (HCC), since this cancer overex-
presses this chemokine and HCC patients with 
higher CXCL3 expression correlated with a 
poorer prognosis [50]. Aggressive breast cancer 
cell lines also secrete high protein levels of this 
chemokine, and overexpression of its transcript 
levels has been identified in a large number of 
breast tumor samples, which prompted the 
 suggestion of CXCL3 as a potential target for 
breast cancer metastasis [79].

Despite all the published studies that have 
reported the expression of CXCL3 in different 
tumor types, we still lack detailed information 
about the biological role of CXCL3 in the tumor 
microenvironment and the underlying mecha-
nisms through which this chemokine affect tumor 
growth and spread. It is feasible that, after being 
released from different cells in the TME, CXCL3 
acts in a paracrine and autocrine fashion by bind-
ing to both tumor and immune cells bearing the 
CXCR2 receptor on their surface. Ligand binding 
then leads to the activation of signaling pathways 
involved in processes associated to cell prolifera-
tion, migration, immune escape, and 
chemoresistance.

2.4  Future Trends in Tumor 
Research

Development of effective therapies against can-
cer has been hampered by the tumor heterogene-
ity that arises during the progression of cancer 
[80–83]. This heterogeneity paves the way for 
resistance to arise since the different subpopula-
tions of cells within the tumor may express dis-
tinct molecular signatures with varied levels of 
treatment sensitivity [83]. Tumor heterogeneity is 
attributed in part to the dynamics of the surround-
ing microenvironment that greatly favors interac-
tions of CAFs with tumor cells in proliferation, 
facilitating selection of those tumor cells better 
suited to that particular microenvironment [84]. 
The last few years have witnessed an increased 
interest in targeting the tumor microenvironment 
as a therapeutic approach in cancer.

CXC chemokines and their cognate receptors 
are among the factors present in the TME that 
significantly affect tumor development and pro-
gression. These molecules have been proposed as 
prognostic factors, as biomarkers of response to 
therapy, and as drug targets. The CXCLs/CXCR2 
axis plays a vital role in the tumor microenviron-
ment, and it is a target of therapeutic strategies 
for cancer and related diseases [85, 86]. Blockade 
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of the CXCLs/CXCR2 in the TME shows prom-
ise as a therapeutic approach against several can-
cer types [38, 87]. Several preclinical models [55, 
88–91] and clinical trials [92] have been per-
formed for CXCR2 receptor in different types of 
cancers. CXCR2 antagonists have been sug-
gested as novel prophylactic or therapeutic anti-
cancer treatments [55, 57].

An ideal target for therapy in cancer patients is 
TAMs, due to their ability to polarize toward dif-
ferent phenotypes [93, 94]. They are able to 
switch from proinflammatory and antitumori-
genic (secreting cytokines to recruit T cells) to 
anti-inflammatory and protumorigenic (express-
ing transforming growth factor-β or secreting 
angiogenic vascular endothelial growth factors) 
[94].

Since approaches to eliminate protumorigenic 
TAMs from tumors have failed supposedly 
because of the concomitant elimination of antitu-
morigenic TAMs [95], the attention has focused 
toward the reprograming or re-education of 
TAMs. In this regard, a recent strategy that has 
been proposed to promote tumor inhibition is re- 
education of TAMs based on CXCR2 blockade 
[96]. Using either a selective antagonist of this 
receptor or an infusion of autologous CXCR2 
knockout (KO) monocytes in tumor models 
in  vivo has been shown to re-educate TAMs 
toward a TNFα-releasing pro-inflammatory phe-
notype, which resulted in induction of senes-
cence and tumor inhibition [96].

Research has shown that members of the CXC 
family of chemokine ligands, known to bind the 
CXCR2 receptor, were increased in prostate can-
cer and that their levels correlate with cancer pro-
gression, lending support to previous evidence 
demonstrating that the CXCL-CXCR pathway 
plays a substantial role in tumor development 
[96]. Thus, effective therapies aimed to disrupt 
pathways involved in CXC chemokine signaling 
may be critical for tumor treatment in many can-
cer types.
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Abstract

The tumor microenvironment represents a 
dynamic and complex cellular network involv-
ing intricate communications between the 
tumor and highly heterogeneous groups of 
cells, including tumor-supporting immune and 
inflammatory cells, cancer-associated fibro-
blasts, endothelial cells, tumor-associated 
macrophages, adipose cells, and pericytes. 
Associated with a variety of growth factors, 
chemokines, cytokines, and other signaling 
molecules, the interaction between the tumor 
microenvironment and the tumor cells empow-
ers aggressiveness of tumor by enhancing its 
survivability. CXCL8 (also known as 
Interleukin 8), a multifunctional proinflamma-

tory chemokine that was initially classified as 
a neutrophil chemoattractant, recently has 
been found to be a key contributor in tumori-
genesis. The upregulation of CXCL8 at the 
tumor invasion front in several human cancers 
suggests its interplay between the tumor and 
its microenvironment rendering tumor pro-
gression by enhancing angiogenesis, tumor 
genetic diversity, survival, proliferation, 
immune escape, metastasis, and multidrug 
resistance. The autocrine and paracrine modu-
lation of CXCL8 via the chemokine receptors 
CXCR1/2 promotes several intracellular sig-
naling cascades that fosters tumor-associated 
inflammation, reprogramming, epithelial- 
mesenchymal transition, and neovasculariza-
tion. Hence, decrypting the regulatory/
signaling cascades of CXCL8 and its down-
stream effects may harbor prognostic clinical 
prospects of a tumor microenvironment- 
oriented cancer therapeutics.
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3.1  Introduction

Tumor development and advancement relies on 
multiple genetic changes and parallelly can be 
largely defined by the variety of alterations in the 
surrounding normal tissues. These critical 
changes assure the survival of the cancer cells at 
the expense of the surrounding normal tissue. A 
suitable microenvironment is sculpted by repro-
gramming the surrounding cells, thereby facili-
tating the secretion of various cytokines, 
chemokines, and other favorable factors to sus-
tain its growth and other nutritional requirements. 
A close resemblance has been observed between 
the changes that occur during tumor formation 
and healing of chronic inflammation. During 
inflammation, the initial ischemic condition 
results in the infiltration of the immune cells at 
the site which later induces the angiogenesis for 
nourishing the repaired tissues [1]. Similarly, it 
has been found that the tumor cells elicit an 
inflammatory response on the host which have 
been confirmed by the presence of immune cells 
in the cancerous and pre-cancerous lesions. The 
tumor cells escape these immune surveillances 
by immune selection and immune evasion. 
Recent studies illustrate the role of chemokines 
and cytokines as critical autocrine and paracrine 
factors in recruiting and activating various 
inflammatory cells, thus helping the formation of 
tumor-related inflammatory microenvironment to 
help the cancer cells to evade immune destruc-
tion [2]. Several experimental evidences with 
solid scientific data support the role of chemo-
kines in attracting and maintaining the immune 
cells at the site of the tumor and inducing pro- 
tumorigenic actions, including cytoproliferative, 
proangiogenetic, and pro-metastatic effects.

Chemokines are a family of cytokines with 
structural homogeneity of 8–10  kDa proteins 
with conserved cysteine residues which function 
by interacting with a subset of seven- 
transmembrane, G protein-coupled receptors 
(GPCRs). These are secreted as chemoattrac-
tants in diverse tissue environments which con-
sequently signal for immune surveillance and 
thereby signal cell migration and inflammatory 
responses and play a key role in the development 

and maintenance of the homeostasis, thus pro-
viding the first-line host defense against micro-
organisms and tissue injury. Chemokines are 
identified based on their primary amino acid 
sequence and the orientation of the cysteine resi-
dues which form disulfide bonds, thus maintain-
ing the monomeric chemokine structure. This 
conserved structure comprises of a central three 
stranded β-sheet, C terminus α-helix, and a small 
unstructured N-terminus for receptor activation 
[3]. Based on the precise variation of the con-
figuration of the first two out of four sequentially 
conserved cysteine residues closest to the 
N-terminus, the chemokines are further grouped 
into four subfamilies: CC, CXC, CX3C, and 
XC. For instance, in chemokine CC, the cyste-
ines are directly juxtaposed; on the other hand, 
in chemokine CXC, a single variable amino acid 
is positioned in between the two cysteines. 
Similarly, in CX3C chemokine, three amino 
acids are found between the two cysteine resi-
dues. The XC chemokines lack the first and third 
cysteines of the motif, and one form is found in 
mice and two in humans. Despite the initial 
functional nomenclature of the chemokines, this 
systematic nomenclature based on the cysteine 
position was introduced in the early 2000s. The 
nomenclature of the cytokine is generally writ-
ten as subfamily designation (CC, CXC, CX3C, 
and XC) followed by the letter L (referring to the 
ligand) and a number denoting the genes which 
code for the specific chemokine [4]. Based on 
their prominent function, they are classified 
under two major groups: homeostatic chemo-
kines (CCL14, CCL19, CCL20, CCL21, CCL25, 
CCL27, CXCL12, and CXCL13) which are con-
stitutively expressed and involved in homeo-
static leukocyte trafficking and inflammatory 
chemokines (CXCL1, CXCL2, CXCL3, CXCL5, 
CXCL7, CXCL8, CXCL9, CXCL10, CXCL11, 
and CXCL14) which are induced by inflamma-
tion. Although they evolved to benefit the host, 
irregular chemokine/chemokine receptor expres-
sion, regulation, and utilization associate to or 
even cause array of pathological conditions and 
diseases [5].

The different chemokine receptor patterns 
have been exploited by the tumor cells for their 
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sustenance and maintenance of the metastatic 
potential to the target organs. It has been reported 
that the members of CXC family were among the 
first few chemokines identified to mediate tumor-
igenesis. Among the different members of the 
family, CXCL8 is found to be a prototypical che-
mokine responsible for the recruitment and acti-
vation of granulocytes and neutrophils at the site 
of inflammation [6]. It is one of the dominant 
transcriptional targets of the inflammatory 
signaling- mediated activation of nuclear 
factor-κB (NF-κB). CXCL8 triggers its signaling 
by interacting with specific G protein-coupled 
receptors (GPCR), CXCR1 and CXCR2 [7]. This 
oncogenetic chemokine is found to mimic the 
vascular endothelial growth factor (VEGF) func-
tion in activating VEGF-R2 for angiogenesis [8]. 
Studies have also found that CXCL8 helps in the 
enhancement of the proliferation and survival of 
the endothelial cells and the matrix metalloprote-
ases, MMP-2 and MMP-9 [9]. Furthermore, the 
upregulation of CXCL8 expression at the inva-
sion front of the tumor cells, multidrug resis-
tance, and its role in metastasis open new avenues 
for targeting CXCL8 as a potential therapeutic 
target.

Thus, the crosstalks between the proximal 
immune cells and the cancer cells and their repro-
gramming provides nourishment, thus fostering 
tumor growth, development, progression, prolif-
eration, and metastasis. Hence, a clear under-
standing of the series of events occurring at tumor 
microenvironment and analysis of the role of 
CXCL8 in the tumor microenvironment would 
provide great insights for the novel therapeutic 
approaches.

3.2  Tumor Microenvironment

Tumorigenesis is a complex and a multistep pro-
cess, driven by oncogene activation and tumor 
suppressor gene inactivation caused by the suc-
cessive mutations eventually resulting in the 
transformation of normal somatic cells into 
malignant tumor cells with enhanced prolifera-
tion and resistance to cell death. Decades of 

oncogenic studies have put forth several hall-
marks that have been commonly observed in 
most human tumor types, which includes suste-
nance of proliferative signals, growth suppressor 
evasion, cell death resistance, ability to induce 
angiogenesis, enabling replicative immortality, 
genome instability and mutation, activation of 
invasion and metastasis, reprogramming energy 
metabolism, immune destruction avoidance, and 
tumor-induced inflammation [10, 11]. Recent 
studies have shown that, despite the traditional 
known driving force of tumor development and 
progression, the intercellular communication 
between the malignant and non-transformed 
cells, which forms the tumor microenvironment 
(TME), also plays a dynamic role in the tumor 
progression [12]. It has been found that the tumor 
microenvironment comprises of the resident 
fibroblasts, pericytes, endothelial cells, leuko-
cytes, and extracellular matrix. The tumor cells 
can efficiently recruit stromal cells, immune 
cells, and vascular cells by secreting stimulatory 
cytokines, chemokines, growth factors, and 
inflammatory and remodelling enzymes, thereby 
building a suitable microenvironment [13–15]. 
Thus, new insights on tumor microenvironments 
would be potential targets for novel cancer thera-
peutic strategies.

3.2.1  Composition of Tumor 
Microenvironment

The composition and structure of the tumor 
microenvironment differ between the patients 
and also among different tumor types. Evidences 
from different studies have confirmed that the 
tumor cells recruit and reprogram the surround-
ing normal cells, mostly the fibroblasts, immune 
cells, and lymphatic and vascular cells, thus 
recruiting them at the primary tumor site building 
the tumor microenvironment, thereby contribut-
ing to tumor progression [16]. Based on the inter-
actions, the tumor cells can change the nature of 
its microenvironment, and conversely, the tumor 
microenvironment can itself affect how the tumor 
grows and spreads.
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3.2.2  Recruitment of Fibroblasts 
to the Tumor 
Microenvironment

A tumor is a highly complex tissue composed of 
stromal and neoplastic cells. Among the support-
ing cells, the fibroblasts represent the majority of 
the stromal cells in most types of human cancer. 
Activated fibroblasts inhibit the early stages of 
tumor progression with the help of simple gap 
junctions between IL-6 production and fibroblasts 
[17, 18]. Later, these fibroblasts could be modu-
lated by the tumor cells, thereby producing cancer-
associated fibroblasts (CAFs). Among the 
non-immune components of the tumor microenvi-
ronment, the CAFs are responsible for the forma-
tion and remodelling of the extracellular matrix 
and promote growth of the tumor cells by constitu-
ently supplying the growth factors [19]. These can 
be identified by expression of various biomarkers 
like vimentin, desmin, α-smooth muscle actin, and 
fibroblast-activated protein. Yet, the primary 
source of CAFs still remains controversial as they 
are crucially involved in promoting growth and 
angiogenesis, remodelling of the extracellular 
matrix (ECM), and also directing the cell-cell 
interaction [20]. Frequently, inactivated or mutated 
phosphatidylinositol-3,4,5- trisphosphate 3-phos-
phatase (PTEN) and p53 have been detected in 
CAFs around the primary tumor region [21]. The 
stimulated CAFs can secrete stromal cell-derived 
factor 1 (SDF-1) which facilitates the recruitment 
of circulating endothelial progenitor cells (EPCs) 
to stimulate angiogenesis into the tumor mass 
[22]. Certain studies also demonstrate that the 
CAFs also play a role in resisting the action of 
drugs such as tamoxifen in luminal breast cancer. 
Thus, further studies on the mechanism by which 
CAFs create a suitable tumor microenvironment 
would aid in new therapeutic approaches against 
tumor progression.

3.2.3  Recruitment of Vascular Cells 
to the Tumor 
Microenvironment

To meet the metabolic and nutrient needs for 
growth, cancer cells require the formation of vas-

cular networks. This is facilitated by the activa-
tion of several pathways and factors that can 
induce angiogenesis such as platelet-derived 
growth factors (PDGFs), VEGFs, and fibroblast 
growth factors (FGFs). This can be correlated 
from different studies that have demonstrated 
high expression levels of VEGF in various human 
cancers, including breast, lung, kidney, bladder, 
and ovarian [23–25]. The cancer cells induce the 
production of the predominant angiogenic factor, 
VEGF, either directly or indirectly through the 
PI3K/AKT/mTOR (phosphatidylinositol 
3-kinase/AKT/mammalian target of rapamycin) 
signaling pathway which leads to both hypoxia- 
inducible factor 1(HIF-1)-dependent and 
hypoxia-inducible factor 1(HIF-1)-independent 
VEGF secretions [26]. Advanced tumors also 
produce a range of other angiogenic factors as 
substituents for VEGF [27]. Recent studies also 
provide some insights on the essential roles of 
chemokine-stimulated endothelial cells and peri-
cytes in the “turn on” mechanism of angiogenic 
switch, i.e., during neovascularization, which 
plays a major role in cancer growth [27, 28].

3.2.4  Recruitment of Immune Cells 
to the Tumor 
Microenvironment

The immune components of the tumor microen-
vironment play dual role in proregulatory and 
antitumor immune response. The tumor- 
infiltrating immune cells like the myeloid-derived 
suppressor cells (MDSC), cytotoxic lympho-
cytes, tumor-associated macrophages (TAM), 
and certain chemokines and cytokines comprise 
the immune components of the tumor microenvi-
ronment [29, 30]. Among these, the TAMs, repre-
senting the higher percentage, play critical roles 
in tumor-related inflammation. These are 
recruited at the sites with the help of VEGF, mac-
rophage colony-stimulating factor (M-CSF), and 
monocyte chemotactic protein 1 (MCP-1) 
secreted by the tumor cells. The activation of toll- 
like receptor (TLR) pathways and the expression 
of immunosuppressive mediators like transform-
ing growth factor-β (TGF-β), indoleamine 
2,2-dioxygenase (IDO), interleukin (IL)-10, 
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VEGF, and programmed cell death ligand 1 (PD- 
L1) suppress antitumor immunity [31, 32].

Among the signaling molecules, the complex 
network of chemokine and chemokine receptors 
facilitates effective tumor cell metastasis. Among 
the CXC family, CXCR4/CXCL12 pair is 
expressed in a variety of solid tumors like blad-
der, esophageal, head and neck carcinoma, lung, 
gastric, ovarian, colorectal, prostate and pancre-
atic cancer, melanoma, osteosarcoma, glioblas-
toma, neuroblastoma, and acute lymphoblastic 
leukemia [33]. It has been shown that CXCL12 is 
involved in cancer cell trafficking to specific met-
astatic sites during the dissemination. The bind-
ing of ligands (CXCL6 and CXCL8) to CXCR1 
has displayed well-established role in initiating 
and mediating breast, prostate, and lung cancer, 
melanoma, and colorectal carcinoma [34]. The 
binding of ligands (CXCL1, CXCL2, CXCL3, 
CXCL5, CXCL6, CXCL7, CXCL8) to CXCR2 
receptor mainly promotes angiogenesis, survival, 
invasion, and metastasis of lung, pancreatic, 
colorectal, renal, and prostate cancer [35]. In 
addition, the aberrant or upregulated expression 
of receptors of CC family has also been found to 
correlate with metastases in cervical, lung, pros-
tate, and hepatocellular carcinoma, osteosar-
coma, multiple myeloma, and T-cell leukemia 
[34]. Studies have shown that CXCL8 binds with 
high affinity to both CXCR1 and CXCR2 recep-
tors, thus acting on leukocytes and endothelial 
cells promoting immune infiltration and angio-
genesis. Thus, inspecting the role of CXCL8 in 
the tumor microenvironment will provide more 
insights of survival and migration of the tumor 
cells from the primary site.

3.3  Role of CXCL8 in Cancer

CXCL8, alternatively known as Interleukin-8 (IL- 
8) and neutrophil-activating factor (NAF), 
belongs to the proinflammatory chemokines 
responsible for the recruitment and activation of 
neutrophil chemotaxis and degranulation. 
CXCL8 is secreted primarily by various cell 
types like the epithelial cells, endothelial cells, 
blood monocytes, alveolar macrophages, and 

fibroblasts, and its expression is induced by vari-
ous cytokines (CXCL12, IL-1, IL-6, and tumor 
necrosis factor α (TNFα)) and other factors like 
hypoxia, environmental stresses, reactive oxygen 
species (ROS), bacterial particles, and also tran-
scription factors like NF-κB and AP-1 [7]. A sim-
plified overview of the tumor microenvironment 
has been illustrated in Fig. 3.1.

Studies have shown the facilitation of 
CXCL8 in different types of cancer, among which 
colorectal cancer and its liver metastasis show 
significant elevation of CXCL8 signaling in the 
tumor microenvironment [36]. It has also been 
observed that CXCL8 induces the epithelial- 
mesenchymal transition (EMT), thus aiding the 
tumor cells to escape host immune surveillance 
and thereby promoting colonization of the tumor 
cells at distant metastasis sites. Studies show the 
upregulation of the expression level of CXCL8 at 
the invasion front of the tumor cells aids the 
colorectal liver metastasis and the corresponding 
expression of interfering (small hairpin) RNA 
(shRNA)-mediated CXCL8 knockdown shows 
decreased proliferation, migration, and invasion 
in vitro [37].

3.3.1  Intracellular Signaling 
Pathways of CXCL8

Several well-characterized signaling pathways 
have found to be activated downstream of CXCL8 
receptors in the tumor microenvironment which 
emphasizes the importance of CXCL8 in the pro-
gression of tumor. In this chapter, the key signal-
ing pathways and its cellular responses have been 
described. It has been found that CXCL8 pro-
foundly induces the expression of 
phosphatidylinositol- 3-kinase (PI3K) in most of 
its downstream intracellular signaling cascade 
which plays a critical role in modulating tumor 
cell survival, angiogenesis, and proliferation, by 
phosphorylating its substrate Akt [38]. Elevated 
CXCL8-induced Akt expression levels have been 
reported in androgen-independent prostate can-
cer (AIPC) cell lines [6]. CXCL8 also activates 
the classical Raf-1/MAP/Erk cascade in both 
normal and cancer cells [39, 40]. Activation of 
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MAPK signaling in neutrophils through PI3K 
and the transactivation of epidermal growth fac-
tor receptor (EGFR) by CXCL8 result in the Ras- 
GTPase activation in lung and ovarian cancer cell 
lines [41, 42]. CXCL8 activates the phospholi-
pase C (PLC)-dependent protein kinase (PKC) 
signaling pathway, thereby stimulating the migra-
tion of cancer cells [43]. The overview of the 
various CXCL8 signaling pathways has been 
illustrated in Fig. 3.2.

3.3.1.1  Activation of PI3K Cascade
Phosphatidylinositol-3 kinase (PI3K) is one of 
the key targets downstream of CXCL8/CXCR1 
and/or CXCL8/CXCR2 stimulation in both neu-
trophils and cancer cells which consequently 
leads to the increased phosphorylation of its sub-
strate PKB (protein kinase B, also known as Akt), 
a serine/threonine kinase [38, 44]. Phosphorylated 
Akt in turn phosphorylates a series of different 
proteins in the plasma membrane, nucleus, and 
cytosol which leads to cell proliferation, differen-
tiation, and survival and also leads to other cel-
lular responses. A major downstream effector of 
PI3K/AKT pathway is the activation of mTOR 
(mammalian target of rapamycin) which pro-
duces two complexes: mTORC1 and mTORC2. 
mTORC1 is found to be sensitive to rapamycin 
and is also activated by diverse stimuli like the 

growth factors, energy and stress signals, and 
other signaling pathways. Activated mTORC1 
further activates S6K1 (ribosomal protein S6 
kinase beta-1) and 4EBP1 (eukaryotic translation 
initiation factor 4E (elF4E)-binding protein 1) 
which are involved in mRNA translation, thereby 
controlling cell growth, proliferation, and inhibi-
tion of autophagy and thereby facilitating the sur-
vival of the cancer cells. mTORC2 is found to be 
insensitive to rapamycin and other nutrient and 
energy signals. It is found to activate PKC-α 
(protein kinase C alpha) and AKT and regulates 
actin cytoskeleton. CXCL8-stimulated activation 
of phospholipase C-dependent PKC signaling is 
found characteristic in different types of cancer 
[43]. Phosphatase and tensin homolog (PTEN) is 
found to be an important negative regulator of 
Akt signaling cascade functioning antagonistic to 
PI3K.  Dysregulation of multiple elements like 
PTEN mutation, PI3K amplification/mutation, 
and Akt, S6K1, 4EBP1, and eIF4E overexpres-
sion has been observed in different types of 
human cancers, especially in melanoma, where 
the alterations in major components of this path-
way have led to significant effects on tumor pro-
gression [45]. Anomalies of Akt were found in 
different types of human cancers; gene amplifica-
tions of Akt1 have been identified in glioblasto-
mas, gliosarcomas, and gastric carcinoma, while 

Fig. 3.1 Simplified overview of tumor microenvironment
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amplifications of Akt2 have been reported in pan-
creatic, ovarian, and breast cancers and in head 
and neck squamous cell carcinoma [46]. 
Upregulation of Akt3 has been described in stud-
ies of androgen-resistant prostate cancer cells, 
primary ovarian cancers, and also estrogen 
receptor- deficient breast cancer cells [47].

3.3.1.2  Activation of MAPK Cascade
The MAPK (mitogen-activated protein kinase) 
family consists of four major subfamilies of 
related kinases: ERK1/2 (extracellular signal- 
regulated kinases 1/2), JNK (c-Jun N-terminal 
kinases), p38, and ERK5 (extracellular signal- 
regulated kinase 5). CXCL8 activates the classi-

cal MAPK signaling cascade constituting a 
number of serine/threonine kinases colocalized 
with their interacting scaffold proteins proximal 
to the cell-surface receptors. This leads to the 
substrate-specific activation of signaling through 
the RAF/MAP/ERK cascade, which is the best 
studied of the mammalian MAPK pathways. The 
signals from the cellular surface receptors like 
EGFR (epidermal growth factor receptors), 
GPCR (G protein-coupled receptors), and RTK 
(receptor tyrosine kinases) in response to the 
extracellular stimulus (like the growth factors, 
stress, hormones, etc.) activate the Ras and small 
GTPase. This complex (Ras-GTP) facilitates the 
formation of A-Raf, B-Raf, and C-Raf homodi-

Fig. 3.2 Schematic figure illustrating various CXCL8-mediated signaling pathways
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mers or heterodimers by an intrinsic process 
which in turn activates MEK (MAPK and ERK 
kinase) (MEK1 and MEK2) and consequently 
catalyzes the activation of ERK (ERK1 and 
ERK2) by phosphorylation [48, 49]. This path-
way involves a cascade of proteins which com-
municate by phosphorylating dozens of the 
neighboring cytosolic and nuclear proteins, 
thereby acting as an “on” or “off” switch and has 
been found in both neutrophils and cancer cells 
[38, 39]. Typically, both cytokines and growth 
factors have been found to bind to the tyrosine 
kinase receptor (TKR) consequently activating 
ERK1/2, thereby transducing signals upstream of 
Ras/Raf/MEK cascade which, depending on the 
cell type, regulates processes like proliferation, 
differentiation, migration, survival, angiogenesis, 
and chromatin remodelling and deregulation of 
these is common in cancer [50, 51]. Dysregulated 
MAPK signaling has been identified in a wide 
range of cancers via numerous mechanisms like 
mutations leading to abnormal expression of 
receptors, activation of receptors, and down-
stream signaling molecules by CXCL8 and by 
other stimuli, which consequently leads to 
increased or uncontrolled proliferation of the 
cells and resistance to apoptosis, cell dissemina-
tion, and survival and confers resistance to che-
motherapy, radiotherapy, and other targeted 
therapies [52].

The c-Jun N-terminal kinases (JNKs) belong-
ing to the family of MAPK regulate several phys-
iological processes including inflammatory 
response, cell proliferation, differentiation, mor-
phogenesis, and cell survival and death and are 
produced in response to multiple stress factors 
like UV irradiation, osmotic shock, pathogens, 
growth factor deprivation, DNA-damaging 
agents, drugs, toxins, cytokines, and other stimu-
lus [53]. CXCL8 signaling may also be regulated 
indirectly through the key regulators of signaling 
pathway and transcription factors (like HIF-1, 
AP-1, and NF-κB) responsible for CXCL8 and 
CXCL8 receptor regulation and expression [54, 
55]. It has been found that the CXCL8 expression 
is upregulated by the transactivation of NF-κB 
and JNK pathways and the CXCL8 mRNA is sta-

bilized by p38, another subfamily of MAPK con-
sisting of four isoforms: α, β, γ, and δ [56]. 
Studies have shown that the crosstalk between 
the JNK and p38 pathways has emerged as a 
potent regulator of cellular responses and the 
expression of key inflammatory mediators, such 
as proteases and cytokines, which act as potent 
cancer enhancers [57]. Strategies targeting these 
signaling pathways and transcription factors can 
attenuate CXCL8 signaling in the cancer cells 
and thereby can function as a potent target to sen-
sitize the cancer cells to conventional 
therapeutics.

3.3.1.3  Activation of Rho GTPase 
Pathway and Non-receptor 
Tyrosine Kinase Pathway

The Rho family of GTPases, a family of small 
signaling G proteins (range between 20 and 
40  kDa in size), regulates the dynamics of the 
actin cytoskeleton, cell cycle progression, cell 
polarity, cell migration, metastasis, and invasion 
and aids in malignant transformation [58]. This 
family falls under the Ras superfamily and is 
divided into six subgroups: RhoA, RhoB, RhoC, 
Cdc42, Rac1, and Rac2. The Rho homologues 
were discovered earlier in the mammalian cells, 
while the later three, identified much later, were 
found to be functionally distinct yet shared a sig-
nificant amino acid sequence homology with the 
other Rho proteins [59, 60]. The Rho GTPases 
switch between an inactive GDP-bound state and 
an active GTP-bound state which is regulated by 
GTPase-activating proteins (GAPs), guanine- 
nucleotide exchange factors (GEFs), and 
guanine- nucleotide dissociation inhibitors 
(GDIs) which interact with the cell membrane 
phospholipids and facilitate the GDP-GTP 
exchange activity [61]. GEFs accelerate the 
release of the bound GDP and substitute it by 
GTP to aid in activating the GTPase. GAPs inac-
tivate the Rho GTPases by facilitating the hydro-
lysis of GTP, and the highly conserved arginine 
finger in the domain of 150 amino acids of the 
RhoGAPs has been identified to promote the 
catalysis of the GTPase activity [62]. GDIs moni-
tor the cycling of certain Rho GTPases between 
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the cytosol and the membranes and also regulate 
the mechanism of activation and inactivation of 
the Rho GTPases. The interaction between the 
Rho GTPases and these molecules can also be 
post-translationally modified and regulated [63]. 
Altered expression levels of these proteins and 
their mutation have been observed in certain 
types of human cancers such as melanoma; glio-
blastoma; neuroblastoma; lung, liver, and colon 
cancer; androgen-resistant prostate cancer; tes-
ticular cancer; ovarian cancer; and estrogen and 
progesterone receptor-positive breast cancer [64, 
65]. It has been observed that the chemotactic 
receptors CXCR1 and CXCR2 differentially acti-
vate the members of the Rho GTPase family. 
CXCR1 signaling promotes a quick induction of 
the Rho GTPase activity, while the CXCR2 sig-
naling induces the activity via a delayed response 
[66]. Consequently, CXCL8 activates the non- 
receptor tyrosine kinases like focal adhesion 
kinase (FAK) and Src by phosphorylating these 
protein kinases and thereby promoting cellular 
proliferation, motility, and invasion of the cancer 
cells and the facilitation of angiogenesis in them 
by activating the Rho-GTPase-induced polymer-
ization of the actin cytoskeleton [6]. Also, studies 
have shown that CXCL8 induces the phosphory-
lation and re-localization of FAK and also the 
β-tubulin, thereby correlating directly with the 
CXCL8-mediated migratory response [67]. 
These activated Rho GTPases induce highly 
motile phenotypes by promoting cell transforma-
tion and several downstream effectors, thereby 
directly involving in tumor growth and metasta-
sis, and their interaction with several signaling 
pathways aids in the regulation of extracellular 
matrix remodelling [68, 69]. Time-dependent 
regulatory studies of CXCL8-induced Rho 
GTPase activity on prostate cancer cells suggest 
the activation of their signaling pathway as 
 essential promoters of CXCL8-mediated cancer 
cell motility, invasion, and metastasis [6]. Also, 
Rho GTPases and their corresponding regulators 
have been studied as potent targets, and several 
drugs have been demonstrated to target these 
molecules to aid in the inhibition of cell prolifer-
ation, metastasis, and invasion [70].

3.3.1.4  Activation of Phospholipase C 
Pathway

Phospholipase C consists of a family of enzymes 
that can directly modulate three distinct signals, 
phosphatidylinositol 4,5-bisphosphate (PIP2), 
diacylglycerol (DAG), and inositol 
1,4,5- trisphosphate (IP3), and is classified into six 
different isoforms (β, γ, δ, ε, ζ, η) based on their 
structure. Of these DAG and IP3 function as sec-
ondary messengers regulating diverse cellular 
processes and substrates for different signaling 
pathways. Further, these secondary messengers 
facilitate the calcium mobilization and thereby 
activate the protein kinase C (PKC). It has been 
found that CXCL8 activates the PLC-dependent 
PKC signaling pathway and consequently pro-
motes cancer cell migration when coupled with 
increased calcium concentration by regulating 
the actin cytoskeleton [43]. It has also been inves-
tigated that the CXCL8 signaling facilitates the 
translational regulation of cyclin D in androgen- 
independent prostate cancer by activating PKCε 
[40]. In most human cancers, the PLCγ signaling 
has been identified, thus confirming its key role 
in facilitating cellular migration and invasion and 
thus portraying itself as a potent therapeutic tar-
get for effective cancer treatment.

3.3.1.5  Activation of Epithelial-to- 
Mesenchymal Transition

Epithelial-to-mesenchymal transition (EMT) is a 
dynamic process by which the epithelial cells 
acquire mesenchymal phenotype mostly during 
normal embryonic development, wound healing, 
tissue regeneration, and organ fibrosis. This phe-
nomenon has been widely found in several human 
cancers which confers stemness to the cancer 
cell, thereby playing a major role in conferring 
resistance to the therapeutics. However, unlike 
EMT in embryonic development, the cancer cells 
exhibit a partial EMT which further enhances 
their mobility, invasiveness, proliferation, sur-
vival, resistance to anti-cancer drugs and other 
stresses, inhibition of senescence and anoikis, 
acquisition of cancer stem cell (CSC)-like fea-
tures, and immunosuppression which have been 
confirmed by using specific markers like 
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E-cadherin, integrins, and cytokeratins as epithe-
lial markers and vimentin, N-cadherin, and fibro-
nectin as mesenchymal markers [71–74]. The 
cancer cells can also reverse the EMT by 
mesenchymal- to-epithelial transition (MET) 
which facilitates the cancer cells to develop a sec-
ondary tumor at a favorable metastatic niche.

A number of factors with complex underlying 
mechanisms have been identified to be associated 
with this process, such as CXCL8, VEGF, SNAIL, 
MMP, TNFα, TGFβ, TWIST, and many more. 
Several investigations have confirmed that over-
expression of CXCL8 induces EMT by activating 
the PI3K/Akt/NF-κB pathway, thereby enhanc-
ing cell proliferation, invasion, and migration of 
the colon cancer cells [75]. It has been identified 
that an autocrine loop exists between CXCL8 and 
EMT (Fig.  3.3) wherein the CXCL8 induces 
EMT which consequently promotes CXCL8 
secretion by activating the cytokine/growth fac-
tor cascade [76]. The CXCL8-induced EMT pro-
cess has been identified in different cancer types, 
such as lung carcinomas and colon, nasopharynx, 
breast, prostate, and ovarian cancers [77–79]. 
Thus, blocking CXCL8 signaling could be a 
potential therapeutic strategy to inhibit EMT and 
related consequences.

3.3.1.6  Activation of Angiogenesis
Angiogenesis is a multistep complex process 
which involves the formation of novel blood 
vessels from the pre-existing blood capillaries 
regulated by the intricate balance between the 
pro-angiogenic and anti-angiogenic factor. It is 
an eminent physiological and pathophysiologi-
cal mechanism which occurs during chronic 
inflammation, embryo development, and wound 
healing and is a striking feature in tumor growth. 
The “angiogenic switch” occurs at various 
stages of the tumor development and is activated 
by several factors like mechanical stress, 
hypoxia, hypoglycemia, and chronic inflamma-
tion [28]. This initial switching process involves 
various intricate transitions such as perivascular 
detachment and vessel dilation followed by 
angiogenic sprouting and new blood vessel for-
mation and development and finally recruitment 
of the perivascular cells, thereby leading to 

tumor neovascularization. This process is medi-
ated through several factors like increase in 
VEGF and reduction in IFNγ (interferon-γ) or 
through several other proteases degrading extra-
cellular matrix (ECM). Angiogenesis plays a 
critical role during the cancer cell development 
to obtain nourishment and also for tumor inva-
sion and metastasis. It has been found that the 
VEGF is highly expressed in several human 
cancers and is caused by several factors like 
inflammation, hypoxia, inflammatory cytokines 
(e.g., CXCL8), low pH, chemokines, activation 
of oncogenes, and inactivation of tumor sup-
pressor genes. The tumor cells possess a para-
crine VEGF action mechanism as they do not 
express cell-surface VEGF receptors and 
thereby depend on the endothelial cells, type 2 
pericytes, and various other host cells like the 
platelets, tumor-associated stromal cells, and 
muscle cells to drive tumor angiogenesis [80, 
81]. CXCL8 has a ELR (Glu-Leu-Arg) motif at 
the NH2 terminus and hence plays a major role 
as a potent promoter of angiogenesis unlike the 
ELR- molecules which act as potent angiostatic 
factors [82]. The role of CXCL8 in angiogenesis 
has been determined in various studies, thereby 
portraying itself as a strong angiogenic factor on 
endothelial cells both in vivo and in vitro [83]. 
Among the chemokines, the potent angiogenic 
activity was first identified by implanting 
CXCL8 into the rat cornea and was found to 
induce proliferation and chemotaxis of the 
HUVEC (human umbilical vein endothelial 
cells) [84]. It has been observed that besides the 
proinflammatory activity of the CXCL8, its 
expression has been highly correlated with vas-
cularity in several carcinomas like the nasopha-
ryngeal, lung hepatocellular, gastric, and colon 
cancers and its overexpression in hyperplastic 
mucosa adjoining the colon cancer reveals its 
direct and indirect angiogenic effects [85, 86]. 
Thus, CXCL8 serves as a novel target for anti- 
angiogenetic therapies against various human 
cancers. Nevertheless, the intrinsic balance 
between the angiostatic and angiogenic CXC 
chemokines determines the degree of angiogen-
esis and hence regulates the tumor progression 
in the tumor microenvironment.
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3.4  Conclusion

CXCL8 and CXCR1/2 signaling networks play a 
vital role not only in the immunological perspec-
tive but also in promoting tumor progression and 
development of resistance against the therapeu-
tics. As evident from several researches, CXCL8, 
a multifunctional chemokine, exerts multiple 

effects at various stages on the biological activity 
of the cancer cells including tumor growth, pro-
liferation, development, and metastasis in an 
autocrine or paracrine fashion and also by regu-
lating multiple signaling pathways, thereby por-
traying itself as a potent candidate for targeted 
therapeutic intervention. The high expression of 
CXCL8 and its receptors in certain human can-

Fig. 3.3 Schematic diagram illustrating the autocrine CXCL8 loop in EMT
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cers can be used as biomarkers for initial screen-
ing and evaluating the prognosis, drug efficacy, 
and drug responses in the patients. Further stud-
ies on the balance between the CXCL8, its recep-
tor, and other signaling partners in a tumor 
microenvironment could make it possible to 
determine the fate of the tumor, thereby aiding in 
the development of therapeutics. Furthermore, 
the development of antagonists, analogs, and 
other effective strategies to interrupt the signal-
ing pathways and other functions of CXCL8 may 
serve as an attractive and a useful targeted cancer 
therapeutic approach.

References

 1. Ribatti D, De Falco G, Nico B, Ria R, Crivellato E, 
Vacca A (2003) In vivo time-course of the angio-
genic response induced by multiple myeloma 
plasma cells in the chick embryo chorioallantoic 
membrane. J Anat 203(3):323–328. https://doi.
org/10.1046/j.1469- 7580.2003.00220.x

 2. Dhawan P, Richmond A (2002) Role of CXCL1  in 
tumorigenesis of melanoma. J Leukoc Biol 72(1):9–18

 3. Balkwill F (2004) Cancer and the chemokine net-
work. Nat Rev Cancer 4(7):540–550. https://doi.
org/10.1038/nrc1388

 4. Zlotnik A, Yoshie O (2000) Chemokines. 
Immunity 12(2):121–127. https://doi.org/10.1016/
s1074- 7613(00)80165- x

 5. Gerard C, Rollins BJ (2001) Chemokines and dis-
ease. Nat Immunol 2(2):108–115. https://doi.
org/10.1038/84209

 6. Waugh DJJ, Wilson C (2008) The Interleukin-8 path-
way in Cancer. Clin Cancer Res 14(21):6735–6741. 
https://doi.org/10.1158/1078- 0432.ccr- 07- 4843

 7. Brat DJ, Bellail AC, Van Meir EG (2005) The role of 
interleukin-8 and its receptors in gliomagenesis and 
tumoral angiogenesis. Neuro-Oncology 7(2):122–
133. https://doi.org/10.1215/s1152851704001061

 8. Zhu YM, Woll PJ (2005) Mitogenic effects of inter-
leukin- 8/CXCL8 on cancer cells. Future Oncol 
1(5):699–704

 9. Azenshtein E, Meshel T, Shina S, Barak N, Keydar I, 
Ben-Baruch A (2005) The angiogenic factors CXCL8 
and VEGF in breast cancer: regulation by an array of 
pro-malignancy factors. Cancer Lett 217(1):73–86

 10. Hanahan D, Weinberg RA (2000) The hallmarks of 
cancer. Cell 100(1):57–70. https://doi.org/10.1016/
s0092- 8674(00)81683- 9

 11. Hanahan D, Weinberg RA (2011) Hallmarks of can-
cer: the next generation. Cell 144(5):646–674. https://
doi.org/10.1016/j.cell.2011.02.013

 12. Hanahan D, Coussens LM (2012) Accessories to the 
crime: functions of cells recruited to the tumor micro-
environment. Cancer Cell 21:309–322. https://doi.
org/10.1016/j.ccr.2012

 13. Cheng L, Huang Z, Zhou W, Wu Q, Donnola S, Liu 
JK, Fang X, Sloan AE, Mao Y, Lathia JD (2013) 
Glioblastoma stem cells generate vascular pericytes 
to support vessel function and tumor growth. Cell 
153:139–152

 14. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V 
(2012) Coordinated regulation of myeloid cells by 
Tumours. Nat Rev Immunol 12:253–268

 15. Cirri P, Chiarugi P (2011) Cancer associated fibro-
blasts: the dark side of the coin. Am J Cancer Res 
1:482–497

 16. Joyce JA, Pollard JW (2009) Microenvironmental 
regulation of metastasis. Nat Rev Cancer 9:239–252. 
https://doi.org/10.1038/nrc2618

 17. Räsänen K, Vaheri A (2010) Activation of fibroblasts 
in cancer stroma. Exp Cell Res 316:2713–2722

 18. Lu C, Vickers MF, Kerbel RS (1992) Interleukin 
6: a fibroblast-derived growth inhibitor of human 
melanoma cells from early but not advanced stages 
of tumor progression. Proc Natl Acad Sci U S A 
89:9215–9219

 19. Bhowmick NA, Neilson EG, Moses HL (2004) 
Stromal fibroblasts in cancer initiation and progres-
sion. Nature 432(7015):332–337

 20. Leonardi GC, Candido S, Cervello M, Nicolosi D, 
Raiti F, Travali S, Spandidos DA, Libra M (2012) The 
tumor microenvironment in hepatocellular carcinoma 
(review). Int J Oncol 40:1733–1747

 21. Mayo LD, Dixon JE, Durden DL, Tonks NK, Donner 
DB (2002) PTEN protects p53 from Mdm2 and sen-
sitizes cancer cells to chemotherapy. J Biol Chem 
277:5484–5489

 22. Orimo A, Weinberg RA (2006) Stromal fibroblasts in 
cancer: a novel tumor-promoting cell type. Cell Cycle 
5:1597–1601

 23. Yoshiji H, Gomez DE, Shibuya M, Thorgeirsson UP 
(1996) Expression of vascular endothelial growth 
factor, its receptor, and other angiogenic factors in 
human breast cancer. Cancer Res 56:2013–2016

 24. Volm M, Koomägi R, Mattern J (1997) Prognostic 
value of vascular endothelial growth factor and its 
receptor FLT-1  in squamous cell lung cancer. Int J 
Cancer 74:64–68

 25. Olson TA, Mohanraj D, Carson LF, Ramakrishnan S 
(1994) Vascular permeability factor gene expression 
in normal and neoplastic human ovaries. Cancer Res 
54:276–280

 26. Karar J, Maity A (2011) PI3K/AKT/mTOR pathway 
in angiogenesis. Front Mol Neurosci 4:51. https://doi.
org/10.3389/fnmol.2011.00051

 27. Carmeliet P, Jain RK (2011) Molecular mechanisms 
and clinical applications of angiogenesis. Nature 
473:298–307. https://doi.org/10.1038/nature10144

 28. Bergers G, Benjamin LE (2003) Tumorigenesis and 
the angiogenic switch. Nat Rev Cancer 3:401–410

S. Asokan and O. R. Bandapalli

https://doi.org/10.1046/j.1469-7580.2003.00220.x
https://doi.org/10.1046/j.1469-7580.2003.00220.x
https://doi.org/10.1038/nrc1388
https://doi.org/10.1038/nrc1388
https://doi.org/10.1016/s1074-7613(00)80165-x
https://doi.org/10.1016/s1074-7613(00)80165-x
https://doi.org/10.1038/84209
https://doi.org/10.1038/84209
https://doi.org/10.1158/1078-0432.ccr-07-4843
https://doi.org/10.1215/s1152851704001061
https://doi.org/10.1016/s0092-8674(00)81683-9
https://doi.org/10.1016/s0092-8674(00)81683-9
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1016/j.ccr.2012
https://doi.org/10.1016/j.ccr.2012
https://doi.org/10.1038/nrc2618
https://doi.org/10.3389/fnmol.2011.00051
https://doi.org/10.3389/fnmol.2011.00051
https://doi.org/10.1038/nature10144


37

 29. Ostrand-Rosenberg S, Sinha P (2009) Myeloid- 
derived suppressor cells: linking inflammation and 
cancer. J Immunol 182(8):4499–4506

 30. Mantovani A, Schioppa T, Porta C, Allavena P, Sica 
A (2006) Role of tumor-associated macrophages in 
tumor progression and invasion. Cancer Metastasis 
Rev 25(3):315–322

 31. Ben-Baruch A (2006) Inflammation-associated 
immune suppression in cancer: the roles played by 
cytokines, chemokines and additional mediators. 
Semin Cancer Biol 16(1):38–52

 32. Gajewski TF, Meng Y, Harlin H (2006) Immune 
suppression in the tumor microenvironment. J 
Immunother 29(3):233–240

 33. Mukaida N, Sasaki S, Baba T (2014) Chemokines 
in cancer development and progression and their 
potential as targeting molecules for cancer treat-
ment. Mediat Inflamm 2014:1–15. https://doi.
org/10.1155/2014/170381

 34. O’Hayre M, Salanga CL, Handel TM, Allen SJ (2008) 
Chemokines and cancer: migration, intracellular sig-
nalling and intercellular communication in the micro-
environment. Biochem J 409(3):635–649. https://doi.
org/10.1042/bj20071493

 35. Liu Q, Li A, Tian Y, Wu JD, Liu Y, Li T et  al 
(2016) The CXCL8-CXCR1/2 pathways in cancer. 
Cytokine Growth Factor Rev 31:61–71. https://doi.
org/10.1016/j.cytogfr.2016.08.002

 36. Lee YS, Choi I, Ning Y, Kim NY, Khatchadourian 
V, Yang D et al (2012) Interleukin-8 and its receptor 
CXCR2  in the tumour microenvironment promote 
colon cancer growth, progression and metastasis. Br J 
Cancer 106(11):1833–1841. https://doi.org/10.1038/
bjc.2012.177

 37. Kumar A, Cherukumilli M, Mahmoudpour SH, 
Brand K, Bandapalli OR (2018) ShRNA-mediated 
knock-down of CXCL8 inhibits tumor growth in 
colorectal liver metastasis. Biochem Biophys Res 
Commun 500(3):731–737. https://doi.org/10.1016/j.
bbrc.2018.04.144

 38. Wang L-H, Cheng G, Park S, Shu S, He L, Kong W 
et  al (2008) Advances of AKT pathway in human 
oncogenesis and as a target for anti-cancer drug dis-
covery. Curr Cancer Drug Targets 8(1):2–6. https://
doi.org/10.2174/156800908783497159

 39. Knall C, Young S, Nick JA, Buhl AM, Worthen GS, 
Johnson GL (1996) Interleukin-8 regulation of the 
Ras/Raf/Mitogen-activated protein kinase pathway in 
human neutrophils. J Biol Chem 271(5):2832–2838. 
https://doi.org/10.1074/jbc.271.5.2832

 40. MacManus CF, Pettigrew J, Seaton A, Wilson C, 
Maxwell PJ, Berlingeri S et  al (2007) Interleukin-8 
signaling promotes translational regulation of 
cyclin D in androgen-independent prostate Cancer 
cells. Mol Cancer Res 5(7):737–748. https://doi.
org/10.1158/1541- 7786.mcr- 07- 0032

 41. Luppi F, Longo AM, de Boer WI, Rabe KF, Hiemstra 
PS (2007) Interleukin-8 stimulates cell prolifera-
tion in non-small cell lung cancer through epider-
mal growth factor receptor transactivation. Lung 

Cancer 56(1):25–33. https://doi.org/10.1016/j.
lungcan.2006.11.014

 42. Venkatakrishnan G, Salgia R, Groopman JE (2000) 
Chemokine receptors CXCR-1/2 activate mitogen- 
activated protein kinase via the epidermal growth 
factor receptor in ovarian cancer cells. J Biol Chem 
275(10):6868–6875. https://doi.org/10.1074/
jbc.275.10.6868

 43. Lang K, Niggemann B, Zanker KS, Entschladen F 
(2002) Signal processing in migrating T24 human 
bladder carcinoma cells: role of the autocrine inter-
leukin- 8 loop. Int J Cancer 99(5):673–680. https://doi.
org/10.1002/ijc.10424

 44. Knall C, Worthen GS, Johnson GL (1997) Interleukin 
8-stimulated phosphatidylinositol-3-kinase activity 
regulates the migration of human neutrophils inde-
pendent of extracellular signal-regulated kinase and 
p38 mitogen-activated protein kinases. Proc Natl 
Acad Sci 94(7):3052–3057. https://doi.org/10.1073/
pnas.94.7.3052

 45. Pópulo H, Lopes JM, Soares P (2012) The mTOR 
signalling pathway in human cancer. Int J Mol 
Sci 13(2):1886–1918. https://doi.org/10.3390/
ijms13021886

 46. Chalhoub N, Baker SJ (2009) PTEN and the PI3- 
kinase pathway in Cancer. Annu Rev Pathol Mech 
Dis 4(1):127–150. https://doi.org/10.1146/annurev.
pathol.4.110807.092311

 47. Nakatani K, Thompson DA, Barthel A, Sakaue H, 
Liu W, Weigel RJ, Roth RA (1999) Up-regulation of 
Akt3 in estrogen receptor-deficient breast cancers and 
androgen-independent prostate cancer lines. J Biol 
Chem 274(31):21528–21532. https://doi.org/10.1074/
jbc.274.31.21528

 48. Kolch W (2005) Coordinating ERK/MAPK signalling 
through scaffolds and inhibitors. Nat Rev Mol Cell 
Biol 6(11):827–837. https://doi.org/10.1038/nrm1743

 49. Roskoski R (2018) Targeting oncogenic Raf protein- 
serine/threonine kinases in human cancers. Pharmacol 
Res 135:239–258. https://doi.org/10.1016/j.
phrs.2018.08.013

 50. Dunn KL, Espino PS, Drobic B, He S, Davie JR 
(2005) The Ras-MAPK signal transduction pathway, 
cancer and chromatin remodeling. Biochem Cell Biol 
83(1):1–14. https://doi.org/10.1139/o04- 121

 51. Yoon S, Seger R (2006) The extracellular signal- 
regulated kinase: multiple substrates regulate diverse 
cellular functions. Growth Factors 24(1):21–44. 
https://doi.org/10.1080/02699050500284218

 52. De Luca A, Maiello MR, D’Alessio A, Pergameno 
M, Normanno N (2012) The RAS/RAF/MEK/ERK 
and the PI3K/AKT signalling pathways: role in can-
cer pathogenesis and implications for therapeutic 
approaches. Expert Opin Ther Targets 16(sup2):S17–
S27. https://doi.org/10.1517/14728222.2011.639361

 53. Weston C (2002) The JNK signal transduction path-
way. Curr Opin Genet Dev 12(1):14–21. https://doi.
org/10.1016/s0959- 437x(01)00258- 1

 54. Kim KS, Rajagopal V, Gonsalves C, Johnson C, 
Kalra VK (2006) A novel role of hypoxia-inducible 

3 CXCL8 Signaling in the Tumor Microenvironment

https://doi.org/10.1155/2014/170381
https://doi.org/10.1155/2014/170381
https://doi.org/10.1042/bj20071493
https://doi.org/10.1042/bj20071493
https://doi.org/10.1016/j.cytogfr.2016.08.002
https://doi.org/10.1016/j.cytogfr.2016.08.002
https://doi.org/10.1038/bjc.2012.177
https://doi.org/10.1038/bjc.2012.177
https://doi.org/10.1016/j.bbrc.2018.04.144
https://doi.org/10.1016/j.bbrc.2018.04.144
https://doi.org/10.2174/156800908783497159
https://doi.org/10.2174/156800908783497159
https://doi.org/10.1074/jbc.271.5.2832
https://doi.org/10.1158/1541-7786.mcr-07-0032
https://doi.org/10.1158/1541-7786.mcr-07-0032
https://doi.org/10.1016/j.lungcan.2006.11.014
https://doi.org/10.1016/j.lungcan.2006.11.014
https://doi.org/10.1074/jbc.275.10.6868
https://doi.org/10.1074/jbc.275.10.6868
https://doi.org/10.1002/ijc.10424
https://doi.org/10.1002/ijc.10424
https://doi.org/10.1073/pnas.94.7.3052
https://doi.org/10.1073/pnas.94.7.3052
https://doi.org/10.3390/ijms13021886
https://doi.org/10.3390/ijms13021886
https://doi.org/10.1146/annurev.pathol.4.110807.092311
https://doi.org/10.1146/annurev.pathol.4.110807.092311
https://doi.org/10.1074/jbc.274.31.21528
https://doi.org/10.1074/jbc.274.31.21528
https://doi.org/10.1038/nrm1743
https://doi.org/10.1016/j.phrs.2018.08.013
https://doi.org/10.1016/j.phrs.2018.08.013
https://doi.org/10.1139/o04-121
https://doi.org/10.1080/02699050500284218
https://doi.org/10.1517/14728222.2011.639361
https://doi.org/10.1016/s0959-437x(01)00258-1
https://doi.org/10.1016/s0959-437x(01)00258-1


38

factor in cobalt chloride- and hypoxia-mediated 
expression of IL-8 chemokine in human endothelial 
cells. J Immunol 177(10):7211–7224. https://doi.
org/10.4049/jimmunol.177.10.7211

 55. Shi Q, Le X, Abbruzzese JL, Wang B, Mujaida N, 
Matsushima K et  al (1999) Cooperation between 
transcription factor AP-1 and NF-kappa B in 
the induction of Interleukin-8  in human pancre-
atic adenocarcinoma cells by hypoxia. J Interf 
Cytokine Res 19(12):1363–1371. https://doi.
org/10.1089/107999099312821

 56. Zarubin T, Han J (2005) Activation and signaling of 
the p38 MAP kinase pathway. Cell Res 15(1):11–18. 
https://doi.org/10.1038/sj.cr.7290257

 57. Wagner EF, Nebreda ÁR (2009) Signal integration 
by JNK and p38 MAPK pathways in cancer devel-
opment. Nat Rev Cancer 9(8):537–549. https://doi.
org/10.1038/nrc2694

 58. Jaffe AB, Hall A (2005) RHO GTPASES: bio-
chemistry and biology. Annu Rev Cell Dev Biol 
21(1):247–269. https://doi.org/10.1146/annurev.
cellbio.21.020604.150721

 59. Madaule P, Axel R (1985) A novel ras-related 
gene family. Cell 41(1):31–40. https://doi.
org/10.1016/0092- 8674(85)90058- 3

 60. Ridley AJ, Hall A (1992) The small GTP-binding 
protein rho regulates the assembly of focal adhe-
sions and actin stress fibers in response to 
growth factors. Cell 70(3):389–399. https://doi.
org/10.1016/0092- 8674(92)90163- 7

 61. Tang Y (2008) Role of Rho GTPases in breast cancer. 
Front Biosci 13(13):759. https://doi.org/10.2741/2718

 62. Hall A (2012) Rho family GTPases. Biochem Soc 
Trans 40(6):1378–1382. https://doi.org/10.1042/
bst20120103

 63. Hodge RG, Ridley AJ (2016) Regulating Rho 
GTPases and their regulators. Nat Rev Mol Cell Biol 
17(8):496–510. https://doi.org/10.1038/nrm.2016.67

 64. Cook DR, Rossman KL, Der CJ (2013) Rho gua-
nine nucleotide exchange factors: regulators of 
Rho GTPase activity in development and dis-
ease. Oncogene 33(31):4021–4035. https://doi.
org/10.1038/onc.2013.362

 65. Del Pulgar TG, Benitah SA, Valerón PF, Espina C, 
Lacal JC (2005) Rho GTPase expression in tumouri-
genesis: evidence for a significant link. BioEssays 
27(6):602–613. https://doi.org/10.1002/bies.20238

 66. Schraufstatter IU, Chung J, Burger M (2001) IL-8 
activates endothelial cell CXCR1 and CXCR2 
through Rho and Rac signaling pathways. Am J Phys 
Lung Cell Mol Phys 280(6):L1094–L1103. https://
doi.org/10.1152/ajplung.2001.280.6.l1094

 67. Ha H, Debnath B, Neamati N (2017) Role of the 
CXCL8-CXCR1/2 Axis in cancer and inflammatory 
diseases. Theranostics 7(6):1543–1588. https://doi.
org/10.7150/thno.15625

 68. Stengel K, Zheng Y (2011) Cdc42  in oncogenic 
transformation, invasion, and tumorigenesis. Cell 
Signal 23(9):1415–1423. https://doi.org/10.1016/j.
cellsig.2011.04.001

 69. Clark EA, Golub TR, Lander ES, Hynes RO (2000) 
Genomic analysis of metastasis reveals an essential 
role for RhoC.  Nature 406(6795):532–535. https://
doi.org/10.1038/35020106

 70. McHardy LM (2005) Strongylophorine-26, a Rho- 
dependent inhibitor of tumor cell invasion that 
reduces actin stress fibers and induces nonpolarized 
lamellipodial extensions. Mol Cancer Ther 4(5):772–
778. https://doi.org/10.1158/1535- 7163.mct- 04- 0310

 71. Thiery JP, Acloque H, Huang RYJ, Nieto MA (2009) 
Epithelial-mesenchymal transitions in develop-
ment and disease. Cell 139(5):871–890. https://doi.
org/10.1016/j.cell.2009.11.007

 72. Saitoh M (2018) Involvement of partial EMT in can-
cer progression. J Biochem. https://doi.org/10.1093/
jb/mvy047

 73. Nieto MA (2017) Context-specific roles of EMT pro-
grammes in cancer cell dissemination. Nat Cell Biol 
19(5):416–418. https://doi.org/10.1038/ncb3520

 74. Furuya S, Endo K, Takahashi A, Miyazawa K, 
Saitoh M (2017) Snail suppresses cellular senes-
cence and promotes fibroblast-led cancer cell inva-
sion. FEBS Open Bio 7(10):1586–1597. https://doi.
org/10.1002/2211- 5463.12300

 75. Shen T, Yang Z, Cheng X, Xiao Y, Yu K, Cai X, Xia C, 
Li Y (2017) CXCL8 induces epithelial- mesenchymal 
transition in colon cancer cells via the PI3K/Akt/
NF-κB signaling pathway. Oncol Rep 37(4):2095–
2100. https://doi.org/10.3892/or.2017.5453

 76. David J, Dominguez C, Hamilton D, Palena C (2016) 
The IL-8/IL-8R Axis: a double agent in tumor immune 
resistance. Vaccine 4(3):22. https://doi.org/10.3390/
vaccines4030022

 77. Cheng X-S, Li Y-F, Tan J, Sun B, Xiao Y-C, Fang 
X-B et  al (2014) CCL20 and CXCL8 synergize to 
promote progression and poor survival outcome in 
patients with colorectal cancer by collaborative induc-
tion of the epithelial–mesenchymal transition. Cancer 
Lett 348(1–2):77–87. https://doi.org/10.1016/j.
canlet.2014.03.008

 78. Li X-J, Peng L-X, Shao J-Y, Lu W-H, Zhang J-X, 
Chen S et  al (2012) As an independent unfavorable 
prognostic factor, IL-8 promotes metastasis of naso-
pharyngeal carcinoma through induction of epithe-
lial–mesenchymal transition and activation of AKT 
signaling. Carcinogenesis 33(7):1302–1309. https://
doi.org/10.1093/carcin/bgs181

 79. Wang L, Tang C, Cao H, Li K, Pang X, Zhong L et al 
(2015) Activation of IL-8 via PI3K/Akt-dependent 
pathway is involved in leptin-mediated epithelial- 
mesenchymal transition in human breast cancer cells. 
Cancer Biol Ther 16(8):1220–1230. https://doi.org/10
.1080/15384047.2015.1056409

 80. Kut C, Mac Gabhann F, Popel AS (2007) Where is 
VEGF in the body? A meta-analysis of VEGF distri-
bution in cancer. Br J Cancer 97(7):978–985. https://
doi.org/10.1038/sj.bjc.6603923

 81. Birbrair A, Zhang T, Wang Z-M, Messi ML, Olson JD, 
Mintz A, Delbono O (2014) Type-2 pericytes partici-
pate in normal and tumoral angiogenesis. Am J Phys 

S. Asokan and O. R. Bandapalli

https://doi.org/10.4049/jimmunol.177.10.7211
https://doi.org/10.4049/jimmunol.177.10.7211
https://doi.org/10.1089/107999099312821
https://doi.org/10.1089/107999099312821
https://doi.org/10.1038/sj.cr.7290257
https://doi.org/10.1038/nrc2694
https://doi.org/10.1038/nrc2694
https://doi.org/10.1146/annurev.cellbio.21.020604.150721
https://doi.org/10.1146/annurev.cellbio.21.020604.150721
https://doi.org/10.1016/0092-8674(85)90058-3
https://doi.org/10.1016/0092-8674(85)90058-3
https://doi.org/10.1016/0092-8674(92)90163-7
https://doi.org/10.1016/0092-8674(92)90163-7
https://doi.org/10.2741/2718
https://doi.org/10.1042/bst20120103
https://doi.org/10.1042/bst20120103
https://doi.org/10.1038/nrm.2016.67
https://doi.org/10.1038/onc.2013.362
https://doi.org/10.1038/onc.2013.362
https://doi.org/10.1002/bies.20238
https://doi.org/10.1152/ajplung.2001.280.6.l1094
https://doi.org/10.1152/ajplung.2001.280.6.l1094
https://doi.org/10.7150/thno.15625
https://doi.org/10.7150/thno.15625
https://doi.org/10.1016/j.cellsig.2011.04.001
https://doi.org/10.1016/j.cellsig.2011.04.001
https://doi.org/10.1038/35020106
https://doi.org/10.1038/35020106
https://doi.org/10.1158/1535-7163.mct-04-0310
https://doi.org/10.1016/j.cell.2009.11.007
https://doi.org/10.1016/j.cell.2009.11.007
https://doi.org/10.1093/jb/mvy047
https://doi.org/10.1093/jb/mvy047
https://doi.org/10.1038/ncb3520
https://doi.org/10.1002/2211-5463.12300
https://doi.org/10.1002/2211-5463.12300
https://doi.org/10.3892/or.2017.5453
https://doi.org/10.3390/vaccines4030022
https://doi.org/10.3390/vaccines4030022
https://doi.org/10.1016/j.canlet.2014.03.008
https://doi.org/10.1016/j.canlet.2014.03.008
https://doi.org/10.1093/carcin/bgs181
https://doi.org/10.1093/carcin/bgs181
https://doi.org/10.1080/15384047.2015.1056409
https://doi.org/10.1080/15384047.2015.1056409
https://doi.org/10.1038/sj.bjc.6603923
https://doi.org/10.1038/sj.bjc.6603923


39

Cell Phys 307(1):C25–C38. https://doi.org/10.1152/
ajpcell.00084.2014

 82. Strieter RM, Polverini PJ, Kunkel SL, Arenberg DA, 
Burdick MD, Kasper J et al (1995) The functional role 
of the ELR motif in CXC chemokine-mediated angio-
genesis. J Biol Chem 270(45):27348–27357. https://
doi.org/10.1074/jbc.270.45.27348

 83. Hu DE, Hori Y, Fan T-PD (1993) Interleukln-8 stimu-
lates angiogenesis in rats. Inflammation 17(2):135–
143. https://doi.org/10.1007/bf00916100

 84. Koch A, Polverini P, Kunkel S, Harlow L, DiPietro L, 
Elner V et al (1992) Interleukin-8 as a macrophage- 
derived mediator of angiogenesis. Science 

258(5089):1798–1801. https://doi.org/10.1126/
science.1281554

 85. Kuniyasu H, Yasui W, Shinohara H, Yano S, Ellis 
LM, Wilson MR et al (2000) Induction of angiogen-
esis by hyperplastic colonic mucosa adjacent to colon 
cancer. Am J Pathol 157(5):1523–1535. https://doi.
org/10.1016/s0002- 9440(10)64790- 6

 86. Fox SH, Whalen GF, Sanders MM, Burleson 
JA, Jennings K, Kurtzman S, Kreutzer D (1998) 
Angiogenesis in normal tissue adjacent to colon 
cancer. J Surg Oncol 69(4):230–234. https://doi.
org/10.1002/(sici)1096- 9098(199812)69:4<230::aid- 
jso7>3.0.co;2- q

3 CXCL8 Signaling in the Tumor Microenvironment

https://doi.org/10.1152/ajpcell.00084.2014
https://doi.org/10.1152/ajpcell.00084.2014
https://doi.org/10.1074/jbc.270.45.27348
https://doi.org/10.1074/jbc.270.45.27348
https://doi.org/10.1007/bf00916100
https://doi.org/10.1126/science.1281554
https://doi.org/10.1126/science.1281554
https://doi.org/10.1016/s0002-9440(10)64790-6
https://doi.org/10.1016/s0002-9440(10)64790-6
https://doi.org/10.1002/(sici)1096-9098(199812)69:4<230::aid-jso7>3.0.co;2-q
https://doi.org/10.1002/(sici)1096-9098(199812)69:4<230::aid-jso7>3.0.co;2-q
https://doi.org/10.1002/(sici)1096-9098(199812)69:4<230::aid-jso7>3.0.co;2-q


41© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 
A. Birbrair (ed.), Tumor Microenvironment, Advances in Experimental Medicine and Biology 1302, 
https://doi.org/10.1007/978-3-030-62658-7_4

CXCL11 Signaling in the Tumor 
Microenvironment

Qun Gao and Yi Zhang

Abstract

CXCL11 which can bind to two different che-
mokine receptors, CXCR3 and CXCR7, has 
found a prominent place in current tumor 
research. In this chapter, we mainly discuss 
the current evidence on the role of the immune 
response of CXCL11 in tumor microenviron-
ment (TME). The diverse functions of 
CXCL11 include inhibiting angiogenesis, 
affecting the proliferation of different cell 
types, playing a role in fibroblast directed car-
cinoma invasion, increasing adhesion proper-
ties, suppressing M2 macrophage polarization, 
and facilitating the migration of certain 
immune cells. In addition, we discussed the 
application of CXCL11 as an adjuvant to vari-
ous mainstream anti-cancer therapies and the 
future challenges in the application of 
CXCL11 targeted therapies.

Keywords
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Cytotoxic T lymphocytes · Angiogenesis · 
Proliferation · Self-renewal · Tumorigenicity · 

Fibroblast migration · Cell adhesion · 
Polarization of immune cells · Immune cells 
migration · vvDD-CXCL11 · Tumor 
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4.1  Introduction

Chemokine (C-X-C motif) ligand 11(CXCL11), 
also termed IFN-inducible T cell 
a- chemoattractant (I-TAC) or interferon-gamma- 
inducible protein 9 (IP-9), is mainly expressed in 
the lung, pancreas, thymus, peripheral blood leu-
kocytes, spleen, and liver and is expressed at 
lesser levels in the intestine, placenta, and pros-
tate [10]. CXCL11 is located on human chromo-
some 4 and is mainly secreted by cancer cells, 
leukocytes, monocytes, dendritic cells, endothe-
lial cells, and fibroblasts [27, 34, 44] (Fig 4.1a). 
CXCL11 is usually expressed at low levels in 
homeostatic conditions, but is upregulated during 
cancer or infectious disease processes. Certain 
research results have shown that cytokines can 
enhance the secretion of chemokines from differ-
ent cells [15, 33]. Interferons have the ability to 
induce CXCL11 production among several cell 
lines including leukocytes, monocytes, endothe-
lial cells, and fibroblasts. CXCL11 is mainly 
induced by IFN-γ and IFN-β and is weakly 
induced by IFN-α [32]. Monocytes, fibroblasts, 
endothelial cells, and cancer cells may secrete 
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CXCL11 after the combined stimulation of IFN-γ 
and TNF-a [37]. In summary, the variety of cyto-
kines that can induce CXCL11 production are 
shown in Fig. 4.1b.

CXCL11 exhibits multiple effects in tumor 
biology that go far beyond its originally described 
function in leukocyte chemotaxis. It is associated 
with pleiotropic functions including chemotactic 
migration, regulation of cell proliferation and 
self-renewal, increasing cell adhesion, and mod-
ulation of angiostatic effects. A further under-
standing of the functions of CXCL11 could 
provide a gateway to more effective strategies in 
the treatment of cancer.

4.2  CXCL11 and Its Receptors

CXCL11 binds to two different chemokine 
receptors, CXCR3 and CXCR7. CXCR3, a 
well- established receptor for CXCL11, has been 
reported to regulate tumor growth and metasta-
sis in various solid tumors. CXCL9, CXCL10, 
and CXCL11 are three selective ligands that 
bind to CXCR3; however, CXCR3 binds to 
CXCL11 with higher affinity than CXCL9 or 
CXCL10 [10, 39]. The binding domain of 
CXCL11 and CXCR3 is located at different 
sites from the binding domains of CXCL9 and 
CXCL10 [11].

Fig. 4.1 (a) The different cells secrete CXCL11. (b) Cytokines induce CXCL11 production. (c) CXCL11 binds to dif-
ferent chemokine receptors. (d) CXCL11 has diverse functions

Q. Gao and Y. Zhang



43

Interestingly, certain reports have shown that 
CXCL11 has the opposite effect on tumor prolif-
eration and metastases [6]. This may be due to 
the different effects of the ligands on the variants 
of CXCR3 (CXCR3A, CXCR3B, and CXCR3- 
alt) (Fig.  4.1c). CXCR3-A is mainly expressed 
on epithelial cells, whereas CXCR3-B is primar-
ily expressed on fibroblasts and epithelial cells. 
CXCR3-A and CXCR3-B play reciprocal roles 
in triggering distinct signal transduction path-
ways. The binding of CXCR3-A to its ligands 
results in promoting cell proliferation through 
AKT activation and Ca2+ flux. In contrast, 
CXCR3-B-ligand binding leads to the inhibition 
of growth or cell death by dissociation of hetero-
trimeric Gs into Gαs and Gβγ subunits and acti-
vation of AC-cAMP-p38 MAPK signaling 
cascade [20, 29, 35]. Furthermore, the high 
expression of CXCR3-A in prostate cancer has 
been associated with increased tumor cell migra-
tion and invasion, as well as the downregulation 
of inhibitory signals via CXCR3-B. This research 
provided a possible explanation on how chemo-
kine CXCL11 may interact with CXCR3-A and 
suppress CXCR3-B expression through activat-
ing its downstream signaling cascades [20, 31]. 
CXCR3-B has been reported to mediate its inhib-
itory activity on human microvascular endothe-
lial cell growth through CXCL11. In addition, 
CXCL11 may be used as a member of vascular 
suppression to damage established tumor-related 
vascular systems and thus promote extensive 
tumor necrosis [4, 16, 23, 43]. Therefore, 
CXCL11 is considered as a useful therapeutic 
target in anti-cancer therapy.

Increasing evidence suggests that CXCL11 
can also bind with another chemokine receptor 
CXCR7 (RDC1), which is associated with inva-
siveness and reduces apoptosis of tumor cells. It 
has been previously reported that the chemokine 
receptor CXCR7 can also be engaged by CXCL12 
(SDF-1, stromal-derived growth factor); however 
CXCR7 binds to CXCL11 with a 10- to 20-fold 
lower affinity than CXCL12 [5]. CXCL11 binds 
to CXCR7 and can also directly modulate 
CXCR4 signals via CXCR7/CXCR4 heterodi-
merization in colorectal cancer and influence the 
metastasis of colorectal cancer cells [30]. Another 

study confirmed that if CXCL11 interacts with 
CXCR7 or CXCR3-A, it promotes proliferative 
signals, whereas CXCL11 binding to CXCR3-B 
results in the inhibition of growth functions [20]. 
Therefore, chemokines and their receptors are 
highly pleiotropic; a single chemokine may bind 
to multiple chemokine receptors and thus result 
in various functions. CXCL11 may have opposite 
functions depending on its binding to either 
CXCR3 or CXCR7. These opposing functions of 
CXCL11 also provide challenges in regard to 
possible therapeutics.

4.3  CXCL11 and Its Diverse 
Functions

4.3.1  Inhibit Angiogenesis

In general, CXC chemokines are classified into 
two groups: one group has an ELR (tripeptide 
Glu-Leu-Arg) motif, and the other group does 
not have an ELR motif [36]. Those with the ELR 
motif have an angiogenic effect, whereas those 
without the ELR motif primarily inhibit angio-
genesis. CXCL11 does not have an ELR (tripep-
tide Glu-Leu-Arg) motif and generally attenuates 
angiogenesis and thus leads to an antitumor 
effect.

4.3.2  Proliferation, Self-Renewal, 
and Tumorigenicity

CXCL11 and its receptor CXCR3 are signifi-
cantly upregulated in basal cell carcinomas 
(BCC) as compared with normal skin epithelium. 
In culture, primary BCC-derived cells or HaCaT 
cells expressing CXCL11 and CXCR3 signifi-
cantly increased in cellular proliferation [22]. In 
addition, CXCL11 and CXCR3 were reported to 
also be expressed in cells of the surrounding 
BCC stroma. Furthermore, CXCL11 and CXCR3 
affect the proliferation of different cell types such 
as endothelial cells and vascular pericytes [20].

Reportedly, CXCL11 plays an important role 
in the development of hepatocellular carcinoma. 
It was found that the expression of CXCL11  in 
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hepatocellular carcinoma was significantly 
higher than that in matched normal tissues. 
CXCL11 expression depends on autocrine mech-
anism in upregulating HCC tumor-initiating cells 
(TICs), in which the overexpressed CXCL11 of 
alpha2 delta1+ HCC TICs interacts with its recep-
tor CXCR3 expressed on HCC TICs, inducing 
the activation of ERK1/2 and subsequently regu-
lating its expression. Other signaling pathways, 
such as PI3K signaling pathway, may also par-
ticipate in CXCL11/CXCR3 signaling [45].

4.3.3  Fibroblast Migration

CXCL11 secreted from CD11b+ Gr1+cells has 
been reported to have some effects on fibroblast 
migration. The deletion of TGFβ receptor II on 
CD11b+ Gr1+cells resulted in reduced fibroblast 
migration through downregulating CXCL11 
expression. This study showed that CXCL11 
plays a role in the fibroblast directed carcinoma 
invasion mediated by TGFβ signaling [19].

4.3.4  Cell Adhesion

The novel CXCL11-binding protein CXCR7 (the 
seven-transmembrane receptor RDC1) does not 
cause cell migration or Ca2+ mobilization like 
many other chemokine receptors. Membrane- 
associated CXCR7 is expressed on many kinds of 
cells, such as tumor cell lines, activated endothe-
lial cells, and fetal liver cells. Burns et al. reported 
that CXCR7 confers a survival advantage to cells, 
a growth advantage, and increased adhesion 
properties [5].

4.3.5  Polarization of Immune Cells

CXCL11 decreases transcription of RORγ, lead-
ing to the polarization of type 1 regulatory T cells 
(Tr1) or type 2 helper T cells (Th2) from naive 
CD4+ T cells by stimulating p70 kinase/mTOR 
pathways [1, 3]. Another study showed that the 
CXCL11/CXCR3 axis has an impact on the 
polarization of tumor-associated macrophages 

(TAMs), which play modulatory roles in the 
TME [26]. CXCL11, as well as CXCR3 agonists, 
can potentially suppress M2 macrophage polar-
ization and thus lead to the regression of breast 
cancer tumors.

4.3.6  Migration of Immune Cells

Immune cells are regulated by many different 
chemokines and are trafficked in and out of tumor 
tissues depending on chemotactic gradients. 
Reportedly, CXCL11 promotes the recruitment 
of activated Th1 cells, CTLs, and NK cells in 
tumor tissues in vivo [7, 24]. All three CXCR3 
variants (CXCR3A, CXCR3B, and CXCR3-alt) 
are expressed on T cells, so CXCL11 can elicit 
directional migration responses of T cells to the 
focal sites. CXCL11 increases frequency of 
tumor-infiltrating lymphocytes and inhibits 
tumor growth in both T cell lymphoma and breast 
cancer [9, 28, 40]. CXCL11 has potent antitumor 
activity in  vivo through facilitating the infiltra-
tion of CD8+ T lymphocytes. Reportedly, a posi-
tive correlation was seen between CXCL11 and 
tumor-infiltrating CD8+ T cells in mice chal-
lenged with genetically modified CXCL11-EL4 
T cell lymphoma cells. Depletion of CD8+ T cells 
in vivo completely abrogated the antitumor effect 
of CXCL11. In addition, the increase in the pro-
duction of CXCL11  in transduced EL4 cells 
enhanced the infiltration of total CD8+ and 
CD8+CXCR3+ T lymphocytes and macrophages 
and had no effect on angiogenesis within EL4- 
CXCL11 tumors. This study provides the evi-
dence that the local release of CXCL11 
contributed to the induction of systemic tumor- 
protective immunity [18, 28]. Chheda et al. used 
a CXCR3 knock-out murine B16 melanoma 
model to demonstrate the critical role of 
CXCR3  in the recruitment of CTL cytotoxic T 
lymphocytes and revealed obvious tumor growth 
and decreased survival [8]. Furthermore, 
CXCL11 could attract Th1 cells and inhibit the 
migration of Th2 cells due to their ability to serve 
as one of three antagonists for CCR3 [41]. 
Interestingly, in a cutaneous T cell lymphoma 
model, benign T cells, characterized as 
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CD40+OX40+, could drive clinical skin inflam-
mation partially through CXCL11 after Psoralen 
plus UVA (PUVA) treatment [38]. Hypoxia 
induced the expression of CXCL11  in CRC 
(colorectal cancer)-derived macrophages 
(CD68+), thus enhancing the ability of CRC- 
derived CD68+cells to recruit Foxp3+IL-17+T 
cells, which have the capacity to induce cancer- 
initiating cell development [42].

More recently, researchers have shown that 
CXCL11 induces FOXP3-negative regulatory T 
cells (Tr1 cells) via CXCR3 in autoimmune enceph-
alomyelitis [46]. These findings have motivated 
researchers to further investigate the complex role 
of CXCL11 in tumors (Fig. 4.1d) (Table 4.1).

4.4  Anti-neoplastic Therapeutic 
Application of CXCL11

Hannesdottir et al. reported that doxorubicin and 
lapatinib can change the expression level of che-
mokine CXCL11 by affecting STAT1 pathway. 
Furthermore, they emphasized the role of the 
STAT1 pathway in the construction of an effec-
tive antitumor immune response, by affecting the 
migration and function of T cells. Downregulation 
of STAT1 will inhibit the expression of CXCL11, 
thus inhibiting the antitumor immune response 
[17]. The STAT1 level in TME links with differ-
ential response to chemotherapy in high-grade 
serous ovarian carcinoma (HGSC). Besides, the 
expression of CXCL11, STAT1 target genes 
which recruit intratumoral CD8+T cells, as well 
as STAT1 were highly expressed in chemosensi-
tive HGSC tumors [2]. Combining chemotherapy 
with immunotherapy has become a main trend in 
the applications of anti-neoplastic therapeutics. 
Another chemotherapy drug docetaxel (DOC) 
upregulated the expression of chemokine recep-
tor ligand CXCL11 in lung cancer TME and sub-
sequently increased the recruitment of CD8+T 
cells. The mechanism of the release of CXCL11 
was determined by HMGB1 via NF-κB signaling 
activation. The results demonstrated that DOC 
enhanced the recruitment of CD8+ T cells to the 
TME by inducing the secretion of HMGB1 and 
CXCL11, therefore indicating that modulating 
the HMGB1-CXCL11 axis might improve the 

antitumor efficacy for non-small cell lung cancer 
(NSCLC) treatment [14].

Liu et  al. armed a tumor-selective oncolytic 
vaccinia virus (vvDD) with CXCL11 (vvDD- 
CXCL11) and treated tumor-bearing mice in 
order to investigate if vvDD-CXCL11 would 
attract CXCR3+ CTLs and possibly NK cells to 
the TME. vvDD-CXCL11 enhanced the local 
trafficking of tumor-specific T cells and to a 
lesser extent enhanced the local trafficking of NK 
cells. Furthermore, vvDD-CXCL11 reduced the 
expression of several suppressive molecules, 
COX2, TGF β, and CCL22  in a murine AB12 
mesothelioma model, indicating the induction of 
antitumor immunity in TME [21].

Co-delivery of Fc-fused CXCL11 
(CXCL11-Fc) enhanced vaccine antigen-specific 
CD8+T cell frequencies and effector memory T 
cell (CD44hiCD62Llo) populations and was asso-
ciated with CD8+T cell proliferation. Taken 
together, these findings show that CXCL11 may 
be used as a strong genetic adjuvant to recombi-
nant adenovirus-based vaccination and selec-
tively improved antigen-specific CD8+T cell 
immunity in tumor cells of mice [25].

Additionally, the modulation of chemokines 
in the TME enhanced the therapeutic efficiency 
of oncolytic virus for colorectal cancer. The com-
bination of CKM (chemokine modulating drug 
cocktail), inducing a favorable chemokine pro-
file, and vvDD-CXCL11, inducing functional 
CXCL11 secretion from infected cancer cells, 
elicited potent antitumor immunity and enhanced 
the recruitment of more tumor-specific CD8+T 
cells and NK cells and enhanced antitumor effi-
cacy in the TME of MC38-luc tumor-bearing 
mice [13].

The expression of the chemoattractive cyto-
kine CXCL11 in colon cancer was also increased 
after protein inhibitor cobra venom factor (CVF) 
treatment in mice with colon cancer mice, and 
similar results were seen in complement inhibitor 
Staphylococcus aureus super antigen-like protein 
7(SSL-7)-treated mice. The FSC results showed 
a higher percentage of CD8+T cells, a decreased 
percentage of CD4+T cells, and a reduced immu-
nosuppressive environment shown by decreased 
myeloid-derived suppressor cells in CVF-treated 
mice [12] (Table 4.2).
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4.5  Conclusion

In conclusion, CXCL11 is a complex cytokine 
with multiple functions in different tumors. In 
order to better understand the anti-cancer appli-
cations of CXCL11, we need to know more about 
its expression and its coordination with other 
members in the tumor microenvironment. 
CXCL11, CXCL9, CXCL10, CXCL12, and their 
receptors CXCR7 and CXCR3 are all expressed 
in the TME by tumor cells, fibroblasts, and other 
cells. However, the ultimate biological effect of 
CXCL11 is determined by the crosstalk outcome 
of the receptor-ligand. The abovementioned fac-
tors pose challenges in developing future 
CXCL11 targeted cancer treatments and should 
be closely considered in future therapeutics.
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Abstract

Tumor microenvironment (TME) is the local 
environment of tumor, composed of tumor 
cells and blood vessels, extracellular matrix 
(ECM), immune cells, and metabolic and sig-
naling molecules. Chemokines and their 
receptors play a fundamental role in the cross-
talk between tumor cells and TME, regulating 
tumor-related angiogenesis, specific leukocyte 
infiltration, and activation of the immune 
response and directly influencing tumor cell 
growth, invasion, and cancer progression. The 
chemokine CXCL12 is a homeostatic chemo-
kine that regulates physiological and patho-
logical process such as inflammation, cell 
proliferation, and specific migration. CXCL12 
activates CXCR4 and CXCR7 chemokine 
receptors, and the entire axis has been shown 
to be dysregulated in more than 20 different 
tumors. CXCL12 binding to CXCR4 triggers 

multiple signal transduction pathways that 
regulate intracellular calcium flux, chemo-
taxis, transcription, and cell survival. CXCR7 
binds with high-affinity CXCL12 and with 
lower- affinity CXCL11, which binds also 
CXCR3. Although CXCR7 acts as a CXCL12 
scavenger through ligand internalization and 
degradation, it transduces the signal mainly 
through β-arrestin with a pivotal role in endo-
thelial and neural cells. Recent studies demon-
strate that TME rich in CXCL12 leads to 
resistance to immune checkpoint inhibitors 
(ICI) therapy and that CXCL12 axis inhibitors 
sensitize resistant tumors to ICI effect. Thus 
targeting the CXCL12-mediated axis may 
control tumor and tumor microenvironment 
exerting an antitumor dual action. Herein 
CXCL12 physiology, role in cancer biology 
and in composite TME, prognostic role, and 
the relative inhibitors are addressed.

Keywords

Cancer · Chemokines · Tumor microenviron-
ment · Chemokine receptors · CXCL12 · 
CXCR4 · CXCR7 · CXCR4- CXCL12- 
CXCR7 axis · Metastasis · Tumor progression 
· Angiogenesis · Immunotherapy · Checkpoint 
inhibitors · CXCL12 antagonist · Antitumor 
immune response

L. Portella · A. M. Bello · S. Scala () 
Microenvironment Molecular Targets, Istituto 
Nazionale Tumori - IRCCS - Fondazione G. Pascale, 
Naples, Italy
e-mail: s.scala@istitutotumori.na.it

5

Authors “Luigi Portella”, “Anna Maria Bello” have 
equally contributed to this chapter.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62658-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-62658-7_5#DOI
mailto:s.scala@istitutotumori.na.it


52

5.1  Introduction

Tumor microenvironment (TME) is the local 
environment of tumorigenesis and tumor growth, 
a dynamic space that determines cancer fate. It is 
composed of tumor and surrounding cells such as 
bone marrow-derived dendritic cells, 
mesenchymal stem/stromal cells, fibroblasts, 
pericytes, and immune cells [1, 2]. TME 
components support tumors, angiogenesis, and 
growth and represent the site of critical 
interactions mostly promoting tumor initiation, 
resistance, metastasis, and recurrence [3]. 
Chemokines, or chemotactic cytokines, are small 
chemoattractant secreted molecules regulating 
directed cell migration, proliferation, and survival 
with a role in physiological and pathological 
processes including cancer [4]. Structurally 
chemokines are classified on the basis of a 
specific cysteine motif at the N-terminal into CC, 
CXC, XC, and CX3C subfamilies: the CC 
chemokines have two adjacent conserved 
cysteine residues, XC chemokines have only one 
N-terminal cysteine residue, whereas CXC and 
CX3C chemokines have one or three other amino 
acids in between their conserved N-terminal 
cysteine residue; they accordingly bind to their 
respective chemokine receptor subfamilies CCR, 
CXCR, XCR, and CX3CR [5] (Fig.  5.1). 
Chemokines can be divided into inflammatory 
and homeostatic based on their prominent 
functions: mainly inflammatory chemokines, that 
are expressed during inflammatory  processes,   
are CXCL1, CXCL2, CXCL3, CXCL5, CXCL7, 
CXCL8, CXCL9, CXCL10, CXCL11, and 
CXCL14. On the other hand, homeostatic 
chemokines such as CCL14, CCL19, CCL20, 
CCL21, CCL25, CCL27, CXCL12, and CXCL13 
are constitutively expressed and regulate 
homeostatic leukocyte trafficking [6]. The 
chemokine system is complex with several 
chemokines that bind the same receptor with 
similar affinities and receptors that bind the same 
ligand. Nevertheless, the system is not redundant 
as cells dynamically express receptors at the cell 
membrane simultaneously or during different 
stages of their life [7]. Chemokines are expressed 
by neurons, glia, and neural progenitor cells, the 
major cell types of the nervous system, and are 

induced by neuroinflammatory responses [8]. 
Combined with the normal and/or pathological 
nervous system expression of chemokine 
receptors, chemokines potentially initiate a 
cascade of events leading to neuroinflammation 
[9]. The chemokines generated in association 
with neuroinflammation are crucial for the 
migration of leukocytes into inflamed neural 
tissue, just as in other parts of the body [10]. 
Chemokines also regulate the migration of 
mesenchymal stem cells (MSCs) to tumor sites 
where they promote tumor development and 
differentiate to tumor-promoting cancer- 
associated fibroblasts (CAFs). Moreover, 
chemokines expressed in metastatic sites are key 
players in attracting tumor cells that express the 
corresponding receptors [11].

Twenty-three human chemokine receptors and 
about 50 chemokines [12] have been identified. 
Chemokine receptors are G protein-coupled/
seven-transmembrane domain receptors. A new 
family of chemokine receptors named atypical 
chemokine receptors (ACKR) has recently 
emerged as important regulators of chemokine 
functions. The ACKRs are unable to trigger the 
canonical G protein-mediated signaling. Four 
chemokine receptors belong to ACKR: 1. 
ACKR1, previously called Duffy antigen receptor 
for chemokines (DARC); 2. ACKR2, also known 
as D6; 3. ACKR3, also called CXC-chemokine 
receptor 7 (CXCR7); and 4. ACKR4, previously 
called CC chemokine receptor-like 1 (CCRL1) 
[13]. In the TME chemokines can be expressed 
by tumor, immune, and stromal cells such as 
leukocytes, fibroblasts, pericytes, and endothelial 
cells crucial for tumor vascularization and 
metastatic spread [14].

CXCL12 is a homeostatic chemokine that 
binds CXCR4 and CXCR7 receptors and 
physiologically functions in hematopoiesis, 
leucocyte trafficking, cardiogenesis, and 
neurogenesis. CXCR4 (352 amino acids, 48 kDa) 
[15–17] is a G protein-coupled chemokine 
receptor encoded on chromosome 2.1 in human. 
CXCL12 binding to CXCR4 triggers multiple 
signal transduction pathways that regulate 
intracellular calcium flux, chemotaxis, 
transcription, and cell survival [18]. CXCR7 
binds with high-affinity CXCL12 and with lower- 
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affinity CXCL11, which binds also CXCR3 [19]. 
Although CXCR7 acts as a CXCL12 scavenger 
through ligand internalization and degradation 
[20], it transduces the signal mainly through 
β-arrestin with a pivotal role in endothelial and 
neural cells.

5.2   The CXCR4-CXCL12-CXCR7 
Axis

5.2.1  CXCL12

Initially known as stromal cell-derived factor-1α 
(SDF-1 α) or pre B-cell growth-stimulating 
factor (PBSF), CXCL12 is the most studied 

member of the chemokine family [21, 22]. 
CXCL12 gene in human is located on chromo-
some 10 (10q11.21) and recognizes seven iso-
forms deriving from alternative gene splicing (α, 
β, γ, δ, ε, θ) with α and β being the most studied 
[23] and three (CXCL12α to γ) in mice [24, 25] 
(Fig. 5.2). CXCL12α (89aa, 10 kDa) is the most 
common isoform produced in lymph nodes 
(LNs), brain, liver, colon, kidney, testis, lung, 
pancreas, skin, and placenta and by different cell 
types including stromal cells, osteoblasts, fibro-
blasts, dendritic cells, and monocytes, among 
others. CXCL12 is the major chemokine pro-
duced in the bone marrow (BM), where it regu-
lates quiescence, retention, and differentiation of 
hematopoietic stem cells (HSC) [26]. CXCL12 

ba
Receptor Ligand(s)
CCR1 CCL3, CCL3L1, CCL5, CCL7
CCR2A/B CCL2. CCL7, CCL8, CCL13
CCR3 CCL3L1, CCL5, CCL7, CCL11, CCL13, CCL28
CCR4 CCL17, CCL22
CCR5 CCL3, CCL3L1, CCL4, CCL4L1, CCL5
CCR6 CCL20
CCR7 CCL19, CCL21
CCR8 CCL1
CCR9 CCL25
CCR10 CCL27, CCL28

CC Receptors

Receptor Ligand(s)
CXCR1 CXCL6, CXCL8
CXCR2 CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, 

CXCL7, CXCL8
CXCR3A CXCL9, CXCL10, CXCL11
CXCR3B CXCL9, CXCL10, CXCL11, CXCL4
CXCR4 CXCL12
CXCR5 CXCL13
CXCR6 CXCL16

CXC Receptors

Receptor Ligand(s)
XCR1 XCL1, XCL2

XC Receptors

Receptor Ligand(s)
ACKR1 (DARC) CCL2, CCL5, CCL7, CCL11, CCL13, CCL14, 

CCL17; CXCL5, CXCL6, CXCL8, CXCL11
ACKR2 CCL2, CCL3, CCL3L1, CCL4, CCL5, CCL7, 

CCL8, CCL11, CCL12, CCL13, CCL17, CCL22
ACKR3 (CXCR7) CXCL11, CXCL12
ACKR4 CCL19, CCL21, CCL25; CXCL13

ACK Receptors

Receptor Ligand(s)
CX3CR1 CX3CL1

CX3C Receptors

c

Fig. 5.1 The chemokine and chemokine receptor super-
family. (a) The chemokine receptors’ subfamilies and 
ligands. (b) Schematic representation of chemokine struc-
ture according to cysteine residue position. (c) Schematic 
representation of chemokine and chemokine receptor 
interactions at cell surface. Heterotrimeric G proteins 
associate with the intracellular domains of chemokine 
receptors. Specific ligand-receptor interactions lead to 
triggering of the receptor and dissociation of the heterotri-

meric G protein complex into the Gα and Gβγ subunits. 
These second messengers then play a critical role in acti-
vation of the various signal transduction cascades, leading 
to migration and other responses driven by chemokines. 
(Panel (b) adapted from de Munnik S. et al. Modulation of 
cellular signaling by herpesvirus- encoded G protein-cou-
pled receptors Front. Pharmacol., 2015)
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half life is approximately 26 minutes. CXCL12 
is then degraded at the N-terminal by enzymes 
matrix metalloproteinase-2/9 (MMP-2/9) crucial 
to extracellular matrix (ECM) remodeling. 
CXCL12 is described classically as a homing 
chemokine as it exhibits chemoattraction of 
tumoral cells toward the target tissues [27]. 
CXCL12, although being homeostatic in classi-
fication, also takes inflammatory activities [28]. 
CXCL12 binds to glycosaminoglycans (GAGs) 
exposed on the surface of endothelial cells 
through a cluster of basic residues—the BBXB 
motif (B for basic amino acid and X any amino 
acid) generating its chemotactic gradients and 
promoting leukocyte/cancer cell migration [29–
31]. CXCL12-α is not present in blood due to 

enzymatic degradation [23], but it is expressed 
in adult BM, where it accounts for progenitor 
cell retention and chemotaxis of leukemia cells 
[32]. Unlike CXCL12α, CXCL12β (93aa, 10.6 
kDa) promotes angiogenesis [33], while 
CXCL12γ (119aa, 13.6 kDa) is highly expressed 
in less vascularized organs, such as the heart and 
brain [34]. CXCL12γ is poor chemotactic 
in vitro but the most active in vivo [35] and, due 
to a stable binding interaction, produces a pow-
erful inflammatory reaction in in  vivo mouse 
models [23]. Recently CXCL12γ has been found 
to interact with CXCR4 inducing cancer stem 
cell (CSCs), with neuroendocrine phenotypes 
and development of metastatic castration-resis-
tant prostate cancer (mCRPC) [36].

Fig. 5.2 CXCL12 isoforms. (a) The CXCL12 immature 
form, the propeptide, which includes the 21 amino acids 
at the N-terminal end that will be removed. (b) The 
mature CXCL12 form has undergone a proteolytic cut of 
21 amino acids at the N-terminal end. The first eight 
amino acids of the mature CXCL12 allow the receptor 
interaction; in particular, the first two, lysine and proline, 
activate the CXCR4 receptor, while the other six are used 

for the receptor binding. In addition, the “RFFESH” 
sequence allows the ligand-receptor binding. (c) 
Representations of all CXCL12 isoforms are shown. 
They all have the same starting sequence, but each one 
differs from the others in the terminal region length. 
(Adapted from Righetti A. et al CXCL12 and Its Isoforms: 
Different Roles in Pancreatic Cancer? Journal of 
Oncology [8]:1–13. (2019))
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5.2.2 CXCL12 Signaling

CXCL12 binds the seven α-helical transmem-
brane domains (7TM) G protein-coupled (GPCR) 
conventional receptor CXCR4, and the atypical 
receptor CXCR7 (also known as ACKR3) and 
plays a key role in physiological and pathological 
processes, including embryogenesis, hematopoi-
esis, angiogenesis, and inflammation, regulating 
the migration of hematopoietic progenitor and 
stem cells, endothelial cells, and leukocytes [7, 
37, 38] (Fig.  5.3). CXCL12 main receptor, 
CXCR4, also binds macrophage migration inhib-
itory factor (MIF), a cytokine involved in the 
regulation of innate immunity [39]. MIF binds to 
the N-terminal tail of CXCR4 and to the exterior 
side of TM helices, but not inside the TM pocket 
[39, 40]. MIF also binds to other receptors, 
including CXCR2, CD74/CD44, and ACKR3 
[41]. CXCL12 can also activate CXCR4 through 
heterodimers like HMGB1-CXCL12. High- 
mobility group box 1 protein (HMGB1) is the 
archetypal damage-associated molecular pattern 
(DAMP) released from dead or severely stressed 
cells to alert their microenvironment and the 
innate immune system. However, the conforma-
tional rearrangements of CXCR4 differ when 
triggered by CXCL12 alone or by 
HMGB1•CXCL12, and the complex is extremely 
more potent than CXCL12 alone in inducing cell 
migration [42]. Extracellular ubiquitin (eUb), 
also considered a DAMP, is a CXCL12 antago-
nist [41] that binds to CXCR4 inside the cavity 
delimited by TMs [43], but makes contact to 
CXCR4 residues that are not contributing to 
CXCL12 binding [44]. Beta-defensin-3 (HBD3) 
also competes with CXCL12 for CXCR4 binding 
and promotes CXCR4 internalization without 
inducing calcium flux, ERK phosphorylation, or 
chemotaxis. CXCL12- CXCR4 forms a complex 
with the Gαi subunit G protein, inhibiting the 
adenylyl cyclase-mediated cyclic adenosine 
monophosphate (cAMP) production and promot-
ing mobilization of intracellular calcium. 
Dissociation of the Gαi subunit from Gβγ leads to 
activation of multiple downstream targets, includ-
ing protein kinase B (Akt), c-Jun N-terminal 
kinase (JNK), mitogen- activated protein kinase 

(MEK), and extracellular signal-regulated 
kinase-1 (ERK1/2) effectors [45]. In addition, Gα 
subunit activates Ras and Rac/Rho pathways, 
leading to the phosphorylation of ERK and P38 
proteins, respectively [46]. CXCR4 homodimer-
ization results in G protein- independent activa-
tion of the JAK/STAT pathway that, in conjunction 
with other signaling pathways, promotes polar-
ization and chemotactic responses [47]. Recent 
evidence has shown CXCR4-dependent mTOR 
signaling in pancreatic, renal, and gastric cancer 
and T cell leukemia cells [18, 48]. CXCR7 homo- 
and heterodimerizes with CXCR4, and overall, 
the signaling properties of CXCR7 seem to be 
multifaceted and may be cell context-dependent. 
CXCR4-CXCR7 heterodimers regulate the sub-
cellular distribution of CXCR4, recruit 
β-arrestins, and modify CXCL12-driven 
responses through CXCR4 [49]. Emerging evi-
dence suggests that CXCR7 internalizes its 
ligands and is activated by CXCL12 to induce 
intracellular signaling and in particular Akt, 
MAPkinase (MAPK), and Janus kinase-signal 
transducer and activator of transcription (JAK/
STAT3) through β-arrestin [19] or in heterodi-
mers with CXCR4 [50, 51]. β-arrestin recruit-
ment to the CXCR4/CXCR7 complex enhances 
downstream cell signaling (ERK1/2, p38, SAPK/
JNK), which induces cell migration in response 
to CXCL12 [19]. CXCR4 is expressed by migrat-
ing cells, and CXCR7 acts by sequestrating 
CXCL12 from non-target areas, allowing the cor-
rect cell migration [20]. In the absence of 
CXCR7, migrating cells still respond to CXCL12, 
but their movement ends in undesirable sites due 
to the lack of a CXCL12 gradient required for a 
directional migration [67].  Continuous CXCL12 
stimulation desensitizes CXCR4-expressing cells 
promoting CXCR4 endocytosis, as uncoupling 
from G proteins by GPCR kinase (GRK)-
dependent phosphorylation and subsequent inter-
action of CXCR4 with β-arrestin, which mediates 
internalization of the receptor that is ubiquiti-
nated and degraded in lysosomes [52, 53]. 
Activated YY1, a transcription factor, can inhibit 
CXCR4 expression favoring C-terminal phos-
phorylation of Src kinase in breast cancer cells 
[54, 55]. The histone deacetylase CREB3 and the 
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Fig. 5.3 The CXCR4–CXCL12–CXCR7 transduction 
pathway. CXCL12 acts on two distinct receptors, CXCR4 
and CXCR7, which are seven-membrane GPCR receptors. 
CXCR4 and CXCR7 can form homodimers or 
heterodimers. CXCL12 shares CXCR7 binding with 
another chemokine, CXCL11, that is also a ligand for 
CXCR3. CXCR4 triggers preferentially G protein- 
coupled signaling, whereas activation of CXCR7 or the 
CXCR4-CXCR7 complex induces b-arrestin-mediated 
signaling. The Gai monomer inhibits the adenylyl cyclase 
activity regulating cell survival, proliferation, and 
chemotaxis. Although Gai triggers PI3K/AKT/mTOR and 
ERK1/2, the Gbg dimer triggers intracellular calcium 
mobilization through PLC. When CXCL12 binds CXCR7, 
the receptor signals through b-arrestin, inhibits G protein- 
coupled signaling, and activates the MAPK pathway. 
CXCR7 can also signal through PLC/MAPK to increase 

cell survival. The CXCR4-CXCR7 heterodimers-b- 
arrestin pathway can be activated through GRK-dependent 
phosphorylation to internalize CXCR4, scavenging 
CXCL12, and/or control cell survival through ERK1/2. 
CXCL12 also causes CXCR4 desensitization, uncoupling 
from G protein by GRK-dependent phosphorylation, and 
b-arrestin-dependent endocytosis. In contrast with 
CXCR4, when CXCL12 binds CXCR7, the interaction 
between b-arrestin and CXCR7 internalizes the receptor 
and subsequently recycles it to the cell membrane. Upon 
binding to CXCR4 or CXCR7, CXCL12 is internalized 
and subjected to lysosomal degradation. Activator signals 
are represented by straight lines. Inhibitory symbols are 
represented by dashed lines. (From Scala S., Molecular 
Pathways: Targeting the CXCR4-CXCL12 Axis--Untapped 
Potential in the Tumor Microenvironment. Clin Cancer 
Res;21 [19]:4278-85 (2015))
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Kruppel-like factor 2 can inactivate CXCR4 [56, 
57]. The oncogene Her2 can block CXCR4 ubiq-
uitination and degradation after CXCL12 binding 
in breast cancer cells [58, 59]. CXCL12 is con-
sidered a key molecule for normal development 
as 50% of the CXCL12-/- knockout mice die 
before birth around day 18.5 of embryogenesis 
and neonates die within an hour. CXCL12-/- mice 
show severely reduced B cell progenitors in fetal 
liver and bone marrow and myeloid progenitors 
virtually absent in the bone marrow. In addition, 
the mutants have a cardiac ventricular septal 
defect [60]. Similar defect was reported for 
CXCR4-/- mice suggesting a strong relationship 
between CXCR4 and CXCL12 [61]; moreover, 
in the CXCR4-/- mice, nervous system defects 
were also observed with the cerebellum charac-
terized by an irregular external granule cell layer, 
ectopically located Purkinje cells, and numerous 
chromophilic cell clumps of abnormally migrated 
granule cells within the cerebellar anlage [61]. 
CXCR4-/+ knockout mice presents few mature B 
and T cells within the peripheral lymphoid 
organs, impaired vascularization in various 
organs such as the intestines, stomach, and heart, 
and ventricular septal defect that occurs during 
embryogenesis [62]. CXCR7 has a role in the 
development of the central nervous system [50], 
angiogenesis [63], neurogenesis [64], and cardio-
genesis [65], while CXCR4 is involved in vascu-
larization, homing of immune cells in the bone 
marrow [62], and neurogenesis [66]. CXCR7-/- 
knockout mice die perinatally due to semilunar 
heart valve malformation and ventricular septal 
defects and show furthermore disrupted lymph 
angiogenesis and cardiomyocyte hyperplasia, 
while their hematopoiesis remains normal.

5.3  The CXCL12-CXCR4/CXCR7 
Axis in Cancer

The expression of CXCL12-CXCR4/
CXCR7  axis is mostly reported in aggressive 
tumors [68] and correlates with tumor recurrence 
[69, 70], poor prognosis and patient survival [16, 
71, 72]. CXCR4 is overexpressed in a wide range 
of tumors comprising prostate, brain, breast, 

lung, liver, gastric, colon, ovary, and pancreas 
[73–76]. CXCL12 confers several advantage to 
CXCR4-expressing cancer cells including a 
chemo-resistant phenotype via crosstalk with 
several pathways of survival, proliferation, 
tumorigenesis, epithelial to mesenchymal 
transition (EMT), and acquisition/maintenance 
of stem-like proprieties [36, 77–82]. In addition, 
CXCL12 hypermethylation was reported in 
gastric cancer [83], breast cancer [84, 85], colon 
cancer [86], lung cancer [87], as well as prostate 
cancer [88]. Within the TME, CXCL12/CXCR4 
regulates trafficking of immune and tumor cells 
promoting tumor-related inflammation and 
metastasis [47, 89, 90]. In addition, endothelial 
cells express both CXCR4/CXCR7 and CXCL12 
that facilitates intravasation and extravasation of 
cancer and immune cells as well as tumor 
angiogenesis [91]. CXCR4 facilitates 
angiogenesis by recruitment of endothelial 
progenitor cells or BM-derived accessory cells, 
while VEGF promotes sprouting angiogenesis by 
inducing tip cell filopodia and serving as an 
attraction cue [92]; the CXCL12/CXCR4 axis 
stimulates tip cells and migration in neovascular 
sprouting [93]. CXCR7 is highly expressed by 
most tumor-associated blood vessels of human 
breast and lung cancers as well as melanoma, but 
not by normal vasculature [49]. Overexpression 
of CXCR7 and its activation in the vascular 
endothelium enhance invasive and migratory 
ability toward breast, prostate, and lung cancer 
[94]. In ovarian cancer, estrogen induces CXCR7 
expression that favors tumor cell migration and 
invasion through CXCL11 [95], while CXCL12- 
stimulated EMT depends on CXCR4 [70]. 
Although CXCR7 is not considered a chemotactic 
receptor, addition of CXCL12 enhances 
CXCR4+/CXCR7+ cancer cell trans-endothelial 
migration toward CCL19 and CXCL13, 
chemokines expressed by endothelial cells inside 
the lymph nodes [96]. Moreover, in ovarian 
cancer CXCL12 stimulation reduced the 
expression of ARH-GAP10, a member of Rho 
GTPase-activating proteins considered a tumor 
suppressor gene [97].

MicroRNAs have been reported to play criti-
cal roles in regulating tumor progression through 
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CXCL12/CXCR4 axis [98]. MiR-302a decreased 
the invasion and metastasis of breast cancer cells 
by reducing CXCR4 production [99]. MiR-9 
reduced the proliferation of oral squamous cell 
carcinoma cells by the inhibition of CXCR4 via 
the Wnt/β-catenin signaling pathway [100]. MiR- 
146a down-modulated CXCR4 production in 
target cells [101]. CXCR4 was inhibited upon 
miR-451 treatment in lung cancer cells [102]. 
MiR-204-5p may function as an inhibitory RNA 
molecule in oral squamous cell carcinoma by 
targeting CXCR4 [103]. Artificial microRNA 
was demonstrated to effectively block invasion 
and metastasis of breast cancer cells by targeting 
CXCR4 [104]. MiR-126 may also act as a tumor 
suppressor by inactivating RhoA signaling via 
CXCR4 in colon cancer [105]. In addition, miR- 
101 was recently discovered to directly target 
CXCL12 in lung cancer cells [106].

CXCL12-CXCR4 axis mediates also chemo-
therapy-induced transition toward a mesenchy-
mal/stem cell phenotype. Cisplatin induces 
upregulation of both CXCR4 and CXCL12 
expression in NSCLC cells. In colon cancer, che-
motherapy or chemoradiotherapy induces 
CXCR4 expression as part of a mesenchymal 
transition [107]. Chemotherapy- induced cyto-
kines also have a direct effect on tumor cells. In 
vivo CXCL12 or S1p/S1PR1 inhibition prevented 
chemotherapy-enhanced metastasis in tumor-
bearing mice. In glioblastoma (GMB) CXCR4 
inhibition through Pep R impairs the metabolic 
activity and tumor growth of GMB cells in vitro 
and reduced tumor cellularity, promoted M1 fea-
tures of TAMs and astrogliosis, and hindered 
intratumor vasculature in orthotopic GMB model 
[108].

5.4  CXCL12 as Prognostic Factor 
in Cancer

In a meta-analysis of 38 studies involving 5807 
patients, high CXCL12 expression was associated 
with reduced overall survival in patients with 
esophageal, colorectal, gastric, pancreatic, 
ovarian, and lung cancer, while in breast cancer 
patients, high CXCL12 expression conferred an 

overall survival advantage [109]. In esophageal 
cancer patients’ meta-analysis, high expression 
of CXCL12 and its receptors (CXCR4 and 
CXCR7), CXCL8 and its receptor (CXCR2), 
CCL21 and its receptor (CCR7), or CCL20 was 
associated with worse prognosis [110]. CXCL12γ 
was detected only in breast cancers from patients 
with advanced disease suggesting CXCL12γ as a 
prognostic marker for breast cancer [34]. 
CXCL12γ, mostly expressed by carcinoma- 
associated fibroblasts, confers to CXCR4- 
positive breast cancer cells the ability to 
metastasize to the bone marrow through the 
expression of the receptor activator of NFκB 
ligand (RANKL) [33]. High levels of CXCL12 
and CXCR4 were reported in sinusoidal 
endothelial cells in hepatocellular carcinoma 
(HCC) specimens, breast tumors, metastatic lung 
cancer, bladder cancer, head and neck squamous 
cell carcinoma, glioblastoma, and pancreatic 
tumors [17, 100, 108, 111–115]. In metastatic 
germ cell tumors, CXCL12 is almost exclusively 
expressed in non-seminoma [116]. CXCL12/
CXCR4 axis is centrally involved in ovarian 
cancer progression since CXCL12 induces 
ovarian cancer cell migration and invasion and 
was reported as prognostic factor in ovarian 
cancer [117]. In lung cancer patients, CXCL12 
protein and mRNA expression levels were 
significantly higher in metastatic lymph nodes 
than in primary site. CXCL12 high expression in 
metastatic lymph nodes was associated with poor 
overall survival [118]. In another study on 63 
patients undergoing surgical resection for lung 
adenocarcinoma, CXCL12 overexpression was a 
significant poor prognostic factor in patients with 
surgical resected lung adenocarcinoma. In a 
study including 596 patients, CXCL12 and 
relative CXCL12-CXCR4 expression was 
independent prognostic factors for 5-year DFS in 
TNM stage III colon cancer [119]. In renal cancer 
(RCC) patients with high expression of CXCR4, 
CXCR7, and CXCL12 had shorter overall 
survival and recurrence-free survival than those 
with low expression [120]. Moreover, CXCR4 
and CXCR7 expression, alone and in combination, 
was prognostic in RCC [121]. Even if CXCL12 
was not prognostic, CXCR4 and CXCR7 
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correlate with poor prognosis in melanoma, 
hepatocellular carcinoma (HCC), and colorectal 
cancer (CRC) [122–125].

5.5  The CXCL12-CXCR4/CXCR7 
Axis in the Tumor 
Microenvironment

Tumor microenvironment is the tumor local 
environment composed of immune cells, fibro-
blasts, epithelial cells, extracellular matrix 
(ECM) proteins, blood and lymphatic vessels, 
metabolites, chemokines, and cytokines [1, 126]. 
TME is defined “hot” when it is highly infiltrated 
by T cell lymphocyte generating “inflamed” 
TME; in contrast, lack of T cells infiltrating the 
tumor characterizes “non-inflamed” or “cold 
tumors” in which other immune populations, 
like myeloid cells (mostly immunosuppressive), 
prevail. Tregs (regulatory T cells) and MDSC 
(myeloid-derived suppressor cells) prevail. Tregs 
and MDSCs (myeloid-derived suppressor cells) 
prevail in a COLD TME; moreover,  there are 
few TH1, NK, and CD8+ T cells and few func-
tional antigen- presenting cells (APCs) and it is 
enriched in immunosuppressive cytokines. Hot 
TME displays high PDL1 expression and is 
enriched in TH1- type chemokines, effector 
immune cells (TH1 cells, NK cells, and CD8+ T 
cells), and functional APCs [1, 126, 127]. Recent 
evidence showed that the CXCL12/CXCR4 axis 
can regulate the recruitment of specific immune 
cell populations within the TME (facilitating the 
access of immune cells with suppressive func-
tion and repelling immune effector cells) and 
drive the polarization of CXCR4-expressing 
immune cells toward an immunosuppressive 
phenotype (Fig.  5.4). CXCL12-CXCR4 signal-
ing mediates plasmacytoid DC trafficking into 
tumors and Treg cells homing to the bone mar-
row microenvironment [128]; moreover it has an 
anti- inflammatory role by mediating T cell 
polarization toward Tregs [129, 130] and gener-
ating poorly functional DCs to stimulate anti-
gen-specific T lymphocyte and macrophages 
expressing proangiogenic factors [131]. 
Cytokines produced by stromal cells such as 

TGF-β elicit epithelial CXCR4 expression that, 
activated by stromal CXCL12, mediates the acti-
vation of the Akt pathway in the epithelial cells 
promoting malignant progression [132]. 
CXCL12/CXCR4 signaling is central to the 
retention of neutrophils in the BM, mobilization 
from the bone marrow, and the homing back of 
senescent neutrophils [133]. Mice carrying a 
myeloid-specific deletion of CXCR4 (myeloid-
specific knockout (MKO) mice) display a 
marked redistribution of neutrophils from the 
bone marrow to the blood and spleen [134]. In a 
melanoma mice model, disruption of CXCL12/
CXCR4 signaling in myeloid cells via genetic 
knockout of CXCR4 inhibits the outgrowth of 
circulating B16 melanoma cells in the lung and 
inhibits tumor growth in an inducible BrafV600E/
PTEN null melanoma mouse model as IL18 
overexpression activates NK cells and enhances 
antitumor immunity [135]. BMDCs attracted at 
the tumor site produce CXCL12 that interacts 
with DC cells in an autocrine manner to promote 
DC maturation and survival [136, 137]. High 
numbers of plasmacytoid DCs have been 
observed in human ovarian carcinoma due to 
CXCL12 in malignant ascites that attracts DCs 
into the TME [138]. Intratumoral DC plays an 
important role in stimulating cytotoxic T cells 
and driving antitumor immunity. In metastatic 
ovarian tumor model, locoregional delivery of 
the CXCR4- antagonist- armed virus reduced the 
tumor load and the immunosuppressive network 
in the TME, leading to infiltration of CD103+ 
DC capable of phagocytic clearance of cellular 
material from virally infected cancer cells [139]. 
As natural and synthetic amines inhibit DC acti-
vation, CXCR4 has been identified as receptor 
used by amines to inhibit DCs [140]. Thus, 
CXCR4 was described as a potential “on-off” 
switch of DC activity with therapeutic potential 
[140]. Tregs are recruited at the tumor site by 
chemokines such as CXCL12 [141] and CXCR4 
overexpression by Tregs is reported in advanced 
cervical cancers [142], malignant pleural meso-
thelioma [143], ovarian [144] and renal cell car-
cinoma [145]. The CXCR4 antagonist AMD3100 
reduced intratumoral Treg by conversion of Treg 
cells into T-helper-like cells conferring survival 
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advantage to the ovarian tumor [144]. In ovarian 
cancer CXCR4 antagonism potentiates the PD-1 
blocking antibody activity impairing the recruit-
ment of immunosuppressive cell components 
and increasing tumor-specific cell- mediated 
immune responses [146]. AMD3100 alone and 
in combination with a mesothelin- targeted, 
immune-activating fusion protein VIC- 008 mod-
ulated immunosuppression in tumors inhibiting 
PD-1 expression on CD8+ T cells and promoting 
the conversion of Tregs into CD4+CD25–
Foxp3+IL2+CD40L+ helper-like cells [147]. Ex 
vivo treatment with the new developed CXCR4 
antagonist  R29 suppresses Treg function and 
restores T effector cell proliferation without 
affecting Treg viability  in RCC patients [145]. 
Nomura et. al demonstrated that transducing 
CXCL12 into two murine immunogenic tumor 
cells (fibrosarcoma and ovarian cancer, Meth A 

and HM-1) increased infiltration of CD4+ and 
CD8+ T cells and antitumor immune responses 
[148, 149]. However, CXCL12-overexpressing 
melanoma mice model (B16/OVA cells engi-
neered to overexpress CXCL12) demonstrated 
that CXCL12 has a bimodal effect on CXCR4- 
expressing T effector cell migration attracting 
them at low concentrations and repelling them at 
higher concentrations of the chemokine [150]. 
This mechanism is termed chemorepulsion or 
fugetaxis [150–152] and contributes to the phys-
iological process of T cell migration from the 
thymus, while repelling T effector cells inside 
the TME may represent a mechanism by which 
high CXCL12-expressing tumors evade the 
immune system [150–152].

Interestingly, recent studies are investigating 
the role of a novel component of TME: nerves. 
Nerves are gaining attention for their role in 
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Fig. 5.4 CXCL12  in the tumor microenvironment. 
CAF- produced CXCL12 acts on different TME cells and 
regulates the recruitment of immune cells. 1. CXCL12/
CXCR4 axis stimulates endothelial cells promoting neo-
vascularization, tumor growth, and metastatic progres-
sion. 2. CXCL12/CXCR4 axis regulates trafficking and 
tissue localization of human HSC in the bone marrow. 3. 
CXCL12/CXCR4 axis recruits bone marrow-derived 
myeloid cells promoting DC maturation and survival. 4. 
CXCL12 recruits immunosuppressive cells and 5. 

excludes effector cells designing a “colder” TME that 
impairs immunotherapy response. 6. CXCL12 also redi-
rects the polarization of effector Th1 cells into 
CD4+CD25−Foxp3−interleukin (IL) 10high regulatory T 
cells. 7. Neutrophils produce IL-18 which increases the 
NK cell population and their antitumor activity. Adapted 
from Luker et al: At the Bench: Pre-clinical evidence for 
multiple functions of CXCR4 in cancer (2021) J Leukoc 
Biol. 2021;109:969–989
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cancer as their presence in the TME correlates to 
cancer metastasis and poor prognosis [153]. 
Cancer-nerve crosstalk is based on perineural 
invasion (PNI, cancer cells invading and 
migrating along the perineurium) and tumor 
innervation (nerve fibers recruited by neoplastic 
tissues); both mechanisms cause pain, poor 
prognosis, and higher risk for recurrence and 
depend on the chemokine network [153]. In a 
PNI-associated pancreatic cancer model, in vitro 
and in vivo analyses revealed that the CXCL12/
CXCR4 signaling axis can promote PNI, which 
can be inhibited by AMD3100 or CXCR4 short 
hairpin RNA [154].

5.6  Targeting the CXCL12- 
CXCR4/CXCR7 Axis 
in Combination Therapy

Different CXCL12/CXCR4 antagonists have 
been developed and validated (Table  5.1), 
showing promising anti-cancer activities in 
several tumor types and can be divided in five 
major classes: (1) small modified peptides, 
including BKT140 [155], FC131 [156], T140 
[157], and POL6326 [158]; (2) small molecules, 
including the bicyclam AMD070 [159], 
AMD3100 [160], AMD11070 [161], MSX-122 
[162], GSK812397 [163], and KRH-3955 [164]; 
(3) antibodies, such as MDX-1338/BMS 93656 
[165]; (4) modified agonists and antagonists for 
CXCL12 such as CTCE-9908 [166]; and (5) 
microRNAs, such as miR-302a [98], miR-9 
[100], miR-204-5p [103], and miR-126 [105].

CTCE-9908 is a CXCL12 analogue which 
actually received the orphan drug status for 
osteogenic sarcoma treatment [166]; CTCE-9908 
showed in vivo and in vitro antitumor activity in 
different tumor models such as osteosarcoma, 
prostate, esophageal, and breast cancer [167–
171]. NOX-A12 (OLA-PEG) is a high-affinity 
anti-CXCL12 Spiegelmer which binds CXCL12 
blocking its interaction with both CXCR4 and 
CXCR7. OLA-PEG antitumor activity has been 
evaluated in multiple myeloma, leukemia, 
colorectal cancer, and glioma and in association 
with immune checkpoint inhibitors in pancreatic 
cancer and colorectal cancer (NCT03168139, 

NCT01521533, NCT01486797, NCT04121455) 
[172–175]. Combinations of OLA-PEG with 
other chemotherapeutic agents were investigated 
[176]. Peptide R and Peptide R54 are CXCR4 
inhibitors generated by rational design. Peptide R 
inhibits CXCL12-induced cell migration and 
lung metastasis development [177–180] and 
potentiates standard/immune therapy in colorectal 
cancer models in vivo [107, 181].

Several evidence showed that combinatorial 
blockade of CXCR4 and PD-1 greatly reduces 
specific cellular and functional elements within 
the immunosuppressive tumor microenviron-
ment and augments tumor-specific cell-mediated 
immune responses. Combined treatment with 
the Pep R and anti-PD-1 reduced tumor progres-
sion in two syngeneic murine models, anti-PD-1 
sensitive and resistant, increasing Granzyme+ 
and inhibiting Foxp3+ cell tumor infiltration. In 
addition Pep R54, a Peptide R derivative [182], 
synergizes with nivolumab in inhibiting the 
growth of the PD-1 expressing human PES43 
melanoma xenograft [181]. Fibroblast activation 
protein-α (FAP)-positive CAF are the major 
source of CXCL12 in TME that regulates TME 
exclusion of T cells. The conditional depletion 
of the FAP+ CAF permits immune control 
effects of both anti- PD- L1and anti-CTLA-4; 
administering AMD3100 induced rapid T cell 
accumulation in this autochthonous model of 
pancreatic ductal adenocarcinoma (PDA) [183, 
184]. Moreover, CXCL12 upregulation in HCC 
models increased hypoxia and the recruitment of 
immunosuppressive cells, PD-L1, regulatory T 
cells, and M2-type macrophages after treatment 
of sorafenib. PD-1 blockade combined with 
CXCR4 inhibition and sorafenib decreased HCC 
growth [185]. NOX- A12 in colon cancer spher-
oid increased numbers of T and NK infiltrating 
cells and reduces tumor growth in combination 
with anti-PD-1 compared with anti-PD-1 alone 
[172].

5.7  Future Trends or Directions

CXCL12 has two main interaction partners, 
specifically CXCR4 and CXCR7. CXCL12 is a 
crossroad molecule that modulates crucial 
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mechanisms such as proliferation and migra-
tion of  tumor and tumor microenvironment 
cells. CXCL12 targeting affects tumor primary 
growth, mesenchymal transition, and migration 
but also shapes the TME toward immunore-
sponsive TME, potentiates the efficacy of 

checkpoint inhibitors targeting drugs, and inter-
feres in building distant pre-metastatic niches. 
CXCL12- CXCR4 antagonists, although subop-
timal, need deeper evaluation in terms of 
patient’s selection, schedule, and combination 
therapies.

Table 5.1 CXCL12/CXCR4 axis antagonists in cancer clinical development

Drug name Phase Active indication Combination therapy Trial number
Small molecules
Plerixafor 
(AMD3100)

Phase 
2

Metastatic pancreatic cancer Cemiplimab NCT04177810

Phase 
2

Acute myeloid leukemia, 
acute lymphoid leukemia

Busulfan, cyclophosphamide NCT02605460

X4P-001 Phase 
1

Melanoma Pembrolizumab NCT02823405

Phase 
1/2

Renal cancer Axitinib NCT02667886

CX-01 Phase 
1

Myelodysplastic syndromes, 
acute myeloid leukemia

Azacitidine NCT02995655

Phase 
2

Acute myeloid leukemia Idarubicin, cytarabine NCT02873338

CXCL12 Spiegelmer
NOX-A12 Phase 

1/2
Glioblastoma Radiotherapy NCT04121455

Phase 
1/2

Metastatic colorectal cancer 
Metastatic pancreatic cancer

Pembrolizumab NCT03168139

CXCR4 peptide antagonists
Balixafortide Phase 

3
Metastatic breast cancer Eribulin NCT03786094

LY2510924 Phase 
1

Leukemia Idarubicin, cytarabine NCT02652871

BL-8040 Phase 
2

Metastatic pancreatic 
adenocarcinoma

Pembrolizumab NCT02826486

Phase 
2

Malignant neoplasms of 
digestive organs, metastatic 
pancreatic cancer

Pembrolizumab NCT02907099

Phase 
1/2

Pancreatic adenocarcinoma PEGPH20, cobimetinib, 
atezolizumab, gemcitabine, 
Nab-paclitaxel, oxaliplatin, 
leucovorin, fluorouracil

NCT03193190

Phase 
1/2

Gastric adenocarcinoma or 
gastroesophageal junction 
adenocarcinoma

PEGPH20, linagliptin, paclitaxel, 
ramucirumab, 5-FU, leucovorin, 
oxaliplatin, atezolizumab, 
cobimetinib

NCT03281369

Phase 
1/2

Carcinoma, non-small cell 
lung

Gemcitabine, carboplatin, 
pemetrexed, CPI-444, tazemetostat, 
atezolizumab, cobimetinib, 
RO6958688, docetaxel

NCT03337698

Anti-CXCR4 antibodies
Ulocuplumab 
(MDX-1338)

Phase 
1/2

Waldenstrom’s 
macroglobulinemia

Ibrutinib NCT03225716
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CXCL13 Signaling in the Tumor 
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Abstract

Chemokines have emerged as important play-
ers in tumorigenic process. An extensive body 
of literature generated over the last two or 
three decades strongly implicate abnormally 
activated or functionally disrupted chemokine 
signaling in liaising most—if not all—
hallmark processes of cancer. It is well-known 
that chemokine signaling networks within the 
tumor microenvironment are highly versatile 
and context-dependent: exert both pro-tumoral 

and antitumoral activities. The C-X-C motif 
chemokine ligand 13 (CXCL13), and its cog-
nate receptor CXCR5, represents an emerging 
example of chemokine signaling axes, which 
express the ability to modulate tumor growth 
and progression in either way. Collateral evi-
dence indicate that CXCL13-CXCR5 axis 
may directly modulate tumor growth by 
inducing proliferation of cancer cells, as well 
as promoting invasive phenotypes and pre-
venting their apoptosis. In addition, CXCL13-
CXCR5 axis may also indirectly modulate 
tumor growth by regulating noncancerous 
cells, particularly the immune cells, within the 
tumor microenvironment. Here, we review the 
role of CXCL13, together with CXCR5, in the 
human tumor microenvironment. We first 
elaborate their patterns of expression, regula-
tion, and biological functions in normal physi-
ology. We then consider how their aberrant 
activity, as a result of differential overexpres-
sion or co-expression, may directly or indi-
rectly modulate the growth of tumors through 
effects on both cancerous and noncancerous 
cells.
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6.1  Background

Significant progress has been, and is being, made 
in understanding the complex mechanisms by 
which the tumor microenvironment regulates 
cancer development and progression [1]. Indeed, 
a number of versatile intercellular and molecular 
cross talks and the accompanying signaling 
events have been recognized, which enable 
malignant cells and the corresponding stromal 
cells to coevolve with time and, thus, establish 
dynamic loop networks aiding tumor growth and 
progression [1]. In this regard, the tumor-/stroma-
derived chemokines, together with other 
extracellular mediators (growth factors, 
eicosanoids, etc.), have particularly gained 
attention in the last few years [2, 3]. Initially 
thought to orchestrate exclusively leukocyte 
recruitment, chemokines are now being regarded 
as central players in coordinating the complex 
tumor-stroma cross talks that dictate processes of 
cancer development and progression [2–4].

The term chemokines represents a large fam-
ily of small-molecular-weight (~8 to 12  kDa) 
chemotactic ligands that are further classified 
into four subgroups (CC, CXC, XC, and CX3C) 
based on the varying pattern of two of the four 
conserved cysteine residues located near the 
N-terminus of the mature ligand (Fig. 6.1a) [5]. 
Chemokines act via seven transmembrane-span-
ning G-protein-coupled receptors (GPCRs) and 
are best known for their ability to regulate 
directed migration of diverse cells in both 
physiological and pathological conditions [3, 5, 
6]. Functionally, they are either homeostatic or 
inflammatory depending upon the pattern of 
expression [7]. Chemokines play multiple roles 
in the normal physiology by mediating different 
cellular and biological processes, while their 
dysregulated or abnormal functioning may 
contribute to a variety of pathological disorders, 
including cancer [2, 4].

The research area concerning the fundamental 
roles of the chemokine system in cancer is very 
complex and dynamic [2, 7]. The existing data 
highlight the ability of many chemokine signaling 
pathways to express both pro-tumor and 
antitumor activities within the tumor 
microenvironment, although several are skewed 
toward cancer-promoting direction [2, 7]. The 
aim of this chapter is to specifically enlighten the 
role of chemokine C-X-C motif ligand 13 
(CXCL13), and its cognate receptor CXCR5, in 
the tumor microenvironment while alluding its 
involvement in both pro-tumorigenic and 
antitumoral responses. We first elaborate on 
current knowledge concerning their gene cloning, 
structure characterization, expression patterns, 
and functioning in physiological context of 
expression. We then discuss how their aberrant 
activity as a result of differential overexpression 
or co-expression may directly or indirectly 
modulate the growth of tumors through effects on 
both cancerous and noncancerous cells. For some 
recent reviews on this topic, the readers may also 
see references [8, 9].

6.2  CXCL13 and CXCR5: Genes, 
Proteins, and Regulation

CXCL13 is a 109-amino-acid protein that, in 
humans, is encoded by CXCL13 gene. The 
protein was initially termed B cell-attracting 
chemokine 1 (BCA-1) after its identification, in 
1998, as the first chemokine to be selective 
toward human B-lymphocytes [10, 11]. The 
name BCA-1 originated from its unique property 
of preferentially inducing B-lymphocyte 
chemotaxis, though it was able to promote 
migration of small numbers of T cells and 
macrophages as well [10, 11]. The BCA-1 protein 
was later renamed as CXCL13 based on the facts 
that (1) its sequence contained four cysteine 
residues in a typical C-X-C chemokine pattern 
(Fig. 6.1b) and (2) the gene CXCL13 was mapped 
on chromosomal location 4q21, a locus that is in 
close proximity to a cluster of other known CXC 
chemokine genes [12]. The main structural 
feature of CXCL13 is the typical “Greek key” 
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Fig. 6.1 (a) Schematic representation of the four sub-
groups in chemokine system. (b) Crystal structure of 
CXCL13 (PDB: 4ZAI). The four conserved cysteines are 

depicted in stick representation. The two cysteines of the 
typical C-X-C (CYS-11-ARG-12-CYS-13) motif are col-
ored magenta
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shape, in which a three-stranded β-sheet is 
overlaid by a C-terminal α-helix (Fig.  6.1b). 
Almost all chemokines share this structural 
feature owing to the presence of four conserved 
cysteine residues in their structure, which form 
disulfide bridges to stabilize this conformation.

CXCL13 is a homeostatic chemokine that is 
constitutively expressed by stromal cells in B 
cell-rich areas of secondary lymphoid tissues 
(follicles), such as the spleen, lymph nodes, and 
germinal centers in Peyer’s patches [11]. 
Transcriptionally, CXCL13 expression within all 
secondary lymphoid organs is regulated by 
lymphotoxin-beta receptor (LTβR) signaling 
[13], which involves the cooperation of multiple 
intracellular signaling cascades, including the 
canonical (RelA-p50) and noncanonical 
(RelB-p52) nuclear factor-kappa B (NF-kB) 
pathways and protein kinase C (PKC) activity 
[14]. The proximal promoter region of CXCL13 
gene contains a binding site for Rel/NF-kB (for 
inducible expression) and another site for the 
binding of transcription factor Sp1 (for basic 
transcription) [15]. Some recent studies have 
shown that Sox4 [16], androgen receptor (AR) 
[17], and reciprocal activity of RelA and Nrf2 
[18] may also control transcriptional expression 
of CXCL13 under disease conditions.

The receptor for CXCL13, CXCR5, was inde-
pendently identified several years back in 1992 
by the pioneering work of Dobner et al. [19], who 
isolated a cDNA encoding a novel member of the 
superfamily of GPCRs, originally designated 
BLR1 (Burkitt’s lymphoma receptor 1). The 
researchers observed exclusively high mRNA 
expression of BLR1 in Burkitt’s lymphoma cell 
lines and lymphatic tissues, but not in other cell 
lines either of the B-cell lineage (undifferentiated 
B-lymphocytes) or of other hematopoietic 
(myeloid, monocytic, erythroid, or 
T-lymphocytic) or non-hematopoietic origin 
[19]. In humans, the gene BLR1 maps on 
chromosome 11, at 11q23.3, and the encoded 
protein sequence shares ~40% amino acid homol-
ogy to CXCR1, a structurally well-characterized 
chemokine receptor for the cytokine interleukin 
(IL)-8 [19]. BLR1 was later renamed CXCR5 
(after identification of CXCL13) in agreement 

with the nomenclature rules for chemokine 
receptors [10]. CXCR5 is remarkably expressed 
by mature recirculating B-lymphocytes [20], a 
subpopulation of follicular B helper T cells (TFH) 
[21, 22], and antigen-bearing dendritic cells 
(DCs) [23], controlling their migration into sec-
ondary lymphoid organs toward the gradient of 
CXCL13 [10, 11, 23, 24]. With respect to tran-
scriptional regulation, Raf-1/nuclear factor of 
activated T cells c3 (NFATc3) and NF-kB tran-
scription factors have been found to control the 
CXCR5 gene expression in different cell types 
[25–27].

The CXCR5 interactions with CXCL13 obey 
the classical GPCR activation paradigms, which 
normally involve coupling to an intracellular 
heterotrimeric G-protein complex that is 
composed of Gα, Gβ, and Gγ subunits [28–31]. 
Previously, it has been shown that CXCR5 
characterizes unique structural constraints—
particularly the presence of specific sequence 
motifs in the intracellular domains and probably 
the transmembrane spanning regions—that are of 
utmost importance not only for coupling to the 
heterotrimeric G-proteins but also for fine-tuning 
the cellular response toward the stimulus [32]. 
However, the precise nature of CXCL13-CXCR5 
signal transduction mechanisms largely remains 
elusive. In the past, most of the functional studies 
of CXCL13-CXCR5 axis were carried out in 
cancer settings, characterizing its receptor 
coupling to divergent signaling events 
downstream of ligand binding (as will be 
discussed in later sections), which ultimately 
may induce a variety of responses in both cancer 
and immune cells.

6.3  Biological Functions 
of CXCL13-CXCR5 Axis

The primordial function of CXCL13-CXCR5 axis 
is the B-cell development and their architectural 
organization within lymphoid follicles (Fig.  6.2) 
[11, 20, 24, 33]. Lymphoid follicles represent B 
cell-rich compartments of lymphoid organs, which 
serve as sites of B-cell antigen encounter and dif-
ferentiation [34]. Generally, lymph organs com-
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prise two types of B cell-rich compartment: 
follicles containing follicular dendritic cells 
(FDCs) and areas lacking such cells [35]. A pre-
requisite step for the formation of B-cell lymphoid 
follicles is the clustering of circulating naïve B 
cells in the proximity of FDCs [34, 35]. CXCL13-
CXCR5 axis cooperates with members of the lym-
photoxin/tumor necrosis factor (LT/TNF) family 
to devise the stromal cell-B-cell signaling cas-
cades, which ultimately provide the underlying 
roads that circulating naïve B cells actively follow 
for localization within the specific anatomic com-
partments of the lymphoid follicles (Fig. 6.2) [10, 
24, 35, 36]. In brief, the B cell-derived LTα and 
LTβ cytokines interact with LTβ receptor (LTβR) 

on surrounding stromal cells which, in turn, leads 
to increased secretion of CXCL13 by stromal cells 
including FDCs [35]. In addition to mediating che-
moattraction, the signaling by stromal-derived 
CXCL13, via CXCR5, may reciprocally enhance 
the cell surface expression of LTα1β2 on B cells. 
The activated B cells with high LTα1β2 may then 
further induce expression of CXCL13 by stromal 
cells via LTβR signaling, eventually deriving the 
LTα1β2:CXCL13 positive feedback loop system 
that is crucial for the development of B-cell areas 
of secondary lymphoid tissues and homeostasis 
(Fig. 6.2) [10, 35].

Mice deficient in CXCR5 failed to form struc-
tured lymphoid organs, due to defective traffick-

Fig. 6.2 Schematics of the CXCL13-CXCR5-derived 
architectural organization of B cells within lymphoid 
follicles. Together with other cytokines, such as 
chemokine (C-C motif) ligand (CCL19), CCL21, and 
members of the lymphotoxin/tumor necrosis factor  

(LT/TNF) family, CXCL13-CXCR5 axis guides the cel-
lular arrangement of the follicular structure. Different gra-
dients of CXCL13 and CCL19/CCL21 induce segregation 
of B- and T-cells into specific compartments
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ing of mature B cells to lymphoid follicles [24]. 
This suggested an additional role of CXCL13-
CXCR5 axis in lymphoid organ development. 
Moreover, CXCL13-CXCR5 axis is also actively 
involved in lymphoid neogenesis, a process of 
events leading to the formation of organized lym-
phoid tissues or organs. The experimental data 
emerging from parallel mouse studies, involving 
LTα-, LTβ-, and CXCR5-deficient mice as well 
as the transgenic mouse models, indicate that 
LTα1β2 and CXCL13-CXCR5 act in a common 
pathway of lymphoid neogenesis [24, 37, 38].

Furthermore, CXCL13-CXCR5 axis mediates 
the development of B cell-mediated, T cell-
dependent or T cell-independent immune 
responses [39, 40]. For instance, CXCL13-
CXCR5-derived homing of B-1 B cells—a subset 
of recirculating B cells predominately found in 
peritoneal and pleural cavities [41]—to body 
cavities plays a dominant role in balanced 
development of IgM-based innate immune 
response against bacterial pathogens [39, 40]. 
Similarly, LT-expressing, B cell-derived CXCL13 
has been shown to attract CXCR5+ DCs and 
CD4+ T cells to sites of immune priming, leading 
to optimal development of TH2 effector cell 
responses against infection [23].

Altogether, CXCL13-CXCR5 axis plays 
important roles in B-cell terminal differentia-
tion, maintenance of lymphoid tissue microar-
chitecture, and the development of B- and 
T-cell-mediated immune responses.

6.4  Tumor Microenvironment 
and CXCL13-CXCR5 
Signaling Axis

Tumor microenvironment is the location in which 
cancer cells continuously interact with 
noncancerous cells, such as fibroblasts, immune 
cells, and endothelial cells, and thereby acquire 
proliferative and invasive properties that further 
facilitate tumor growth and metastatic spread 
[42]. Chemokines have the ability to affect both 
cancerous and noncancerous cells and, thus, may 
act as pro-tumoral or antitumoral regulators of 
malignancy [7]. Many of the chemokine signal-

ing pathways are more typically considered as 
pro-tumorigenic, even if at times they can have 
antitumor effects [7].

Looking from the perspective of CXCL13 and 
CXCR5, the differential overexpression and 
co-expression of both proteins have been linked 
to aggressive cancer biology in many tumor 
tissues [8]. Over the last two decades, considerable 
amount of experimental and clinical data have 
emerged which strongly implicate the 
dysregulated CXCL13-CXCR5 signaling in the 
initiation and progression of several human 
malignancies [8, 9]. These data also characterize 
biochemical, molecular biology, and genetic 
approaches-based investigations to unravel the 
biological roles of CXCL13-CXCR5 signaling 
within the tumor microenvironment. Such 
investigative attempts have provided a good 
interpretation of the important CXCL13-CXCR5 
functions, and the structural links of this pathway 
with other signaling cascades/proteins, in 
relevance to cancer and immune cell biology 
while manifesting that:

 1. CXCL13-CXCR5 axis may directly modulate 
tumor growth by inducing proliferation of 
cancer cells and preventing their apoptosis 
[43–46];

 2. CXCL13:CXCR5 interactions promote inva-
sive phenotypes and may direct tumor cell 
movement required for metastasis [46, 
47]; and

 3. CXCL13-CXCR5 axis may also indirectly 
modulate tumor growth by regulating 
noncancerous cells, particularly the immune 
cells, within the tumor microenvironment [48, 
49].

CXCL13-CXCR5 axis may indirectly assist 
growth of tumor cells by aiding their escape from 
T-effector cell immunity [48, 50, 51]. This effect 
is mediated by CXCL13-CXCR5-derived 
secretion of immunoregulatory cytokine IL-10 
by tumor cells or recruitment of 
immunosuppressive myeloid-derived suppressor 
cells (MDSCs) and T-regulatory (Treg) cells 
within the tumor microenvironment (pro-tumoral 
activity). On the other hand, CXCL13-CXCR5 
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axis also has the potential ability to induce 
antitumoral responses through formation of 
tertiary lymphoid structures (TLSs) [52]. TLSs 
are often associated with tumoral tissues, where 
they shape local adaptive immune responses [53]. 
Because of its ability to recruit circulating 
CXCR5+ B-cell and CXCR5+ CD4+ TFH-cell 
populations to the site, CXCL13 is considered as 
the critical triggering factor of TLS formation in 
tumor tissues [54]. In addition, the presence or 
absence of CXCR5 receptor seems to be crucial 
for antitumor activity of CD8+ cytotoxic 
T-lymphocytes (CTLs) [55–57]. CD8+ CTLs are 
key elements of the tumor immunosurveillance 
which kill tumor cells by lysosome/protease 
system (the perforin/granzyme B) and also 
through secretion of the tumoricidal lymphokines, 
such as interferon-gamma (IFN-γ) and tumor 
necrosis factor-alpha (TNF-α) [58].

In the later sections, we elaborate the role of 
CXCL13-CXCR5 axis within the tumor 
microenvironment of different human cancers 
while emphasizing its direct (on cancerous cells) 
and indirect (on noncancerous cells) effects to 
modulate tumor growth and progression.

6.5   CXCL13-CXCR5 Axis 
in Hematological 
Malignancies

Hematological malignancies mainly encompass 
the malignant tumors of the hematopoietic 
(leukemia) and lymphoid (lymphomas) tissues 
[59]. Differential overexpression of CXCR5 has 
been reported in B-cell lineage acute and chronic 
lymphocytic leukemia (B-ALL and B-CLL) cells 
[28, 45]. In addition, high CXCL13 serum levels 
were also found in CLL patients [28].

Imbalances in the CXCL13-CXCR5 axis may 
contribute to pathobiology of hematological 
malignancies. The leukemic cells, in particular, 
can take advantage of the CXCL13-CXCR5 
signaling axis for their inappropriate proliferation 
and resistance to apoptosis. It is well established 
that CXCL13-CXCR5 axis is intimately involved 
in the microenvironmental regulation of B-cell 
chronic lymphocytic leukemia (B-CLL) cells 

[28, 43, 60]. Distinct microanatomical 
environments in the bone marrow as well as the 
secondary lymphoid organs serve as the sanctuary 
sites and protective niches of leukemic cell pro-
liferation [61]. Given the fact that CXCL13-
CXCR5 axis is involved in B-cell terminal 
differentiation and maintenance of lymphoid 
tissue microarchitecture (discussed in last 
section), it is not surprising that enhanced 
expression of CXCR5 on B-CLL cells, and its 
stimulation by stromal-derived CXCL13, may 
induce the recruitment of leukemic cells to the 
putative proliferation and survival niches within 
the secondary lymphoid organs [28, 43]. Using 
the murine Emu-Tcl1 CLL model, Hopken and 
coworkers [43] have shown that CXCL13-
CXCR5-derived reciprocal stroma-leukemia 
cross talks may help in deriving a paracrine feed-
back loop network, in which CXCR5-dependent 
lodging of B-CLL cells stimulates resident mes-
enchymal stromal cells through LTβR activation 
and, thus, results in CXCL13 secretion and stro-
mal compartment remodeling. By identifying the 
marginal zone (MZ)-specific factors involved in 
migratory and adhesive behavior of leukemic 
cells, they further outlined that CXCL13-CXCR5 
interactions may facilitate the follicular tumor 
cell homing, shaping of a survival niche, and 
niche-specific retention and survival of B-CLL 
cells [43, 60].

Apart from inducing recruitment to survival 
niches, CXCL13-CXCR5 interactions may favor 
the leukemic cell resistance to apoptosis. Two 
earlier studies by Ticchioni et  al. [44] and 
Chunsong et  al. [45] manifested CXCL13-
CXCR5 axis as one of the homeostatic chemokine 
signaling networks, which can aid leukemic cell 
survival via inactivation of apoptotic machinery. 
By using the patient-derived leukemic cells, 
Ticchioni et  al. demonstrated that CXCL13 
enhances cell survival mainly through the Akt-
dependent inactivation of the proapoptotic 
transcription factor FOXO3a [44]. 
Mechanistically, CXCL13, along with other 
homeostatic chemokines (CXCL12, CCL19, and 
CCL21), induced the phosphorylation of 
mitogen-activated protein kinase (MAPK), 
extracellular signal-regulated kinase (ERK)1/2 
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and p90RSK, and Akt and its effectors GSK3 and 
FOXO3a [44]. Similarly, Chunsong et al. showed 
that CXCL13 and CCL19 together by means of 
frequent activation of CXCR5 and CCR7, 
respectively, upregulate the expression and 
function of paternally expressed gene 10 
(PEG10), which subsequently stabilize caspase-3 
and caspase-8 in B-ALL and B-CLL, and further 
rescue the cells from TNF-alpha-mediated 
apoptosis [45].

Elevated CXCL13 and/or CXCR5 expressions 
have also been implicated in the pathogenesis of 
different types of lymphomas, both of B- and 
T-cell origin. To name a few lymphoproliferative 
disorders in which aberrant overexpression of 
CXCL13 and/or CXCR5 has been linked to the 
tumorigenic process include gastric lymphoma 
[36, 62], cutaneous B- and T-cell lymphomas [63, 
64], follicular lymphoma (FL) [65], primary 
intraocular lymphoma [66], non-Hodgkin lym-
phomas (NHL) [67], angioimmunoblastic T-cell 
lymphoma (AITL) [68–70], and primary central 
nervous system lymphoma (PCNSL) [71]. In 
PCNSL, cell type-specific expression and the 
microenvironmental interactions of CXCL13 and 
CXCR5 have been shown to facilitate tumor 
development and localization to CNS [71, 72]. 
Moreover, elevated expression of CXCL13 has 
also been proposed as a diagnostic marker for cer-
tain lymphomas, with strongest correlations 
reported for AITL [73], PCNSL [74], human 
immunodeficiency virus (HIV)-associated NHL 
(AIDS-NHL) [75], and extranodal natural killer 
(NK)/T-cell lymphoma [76].

Pro-tumoral Effects Collateral evidence indi-
cate that CXCL13-CXCR5 axis may exert pro-
tumorigenic effects by inducing pleiotropic 
cytokine IL-10 secretion, as well as promoting 
the infiltration of immunosuppressive Treg cells 
within the tumor-immune microenvironment of 
both leukemic and lymphoproliferative disor-
ders. IL-10 is an immunoregulatory cytokine 
whose increased expression may contribute to 
pathogenesis and progression of malignant cells 
via immunosuppression [77]. Previously, it has 
been shown that CXCL13-CXCR5 axis may 
synergize with CCL19-CCR7 pathway to regu-

late interactions between B-ALL CD23+ CD5+ 
B-cells and CD8+ T cells which, in turn, resulted 
in IL-10 overexpression and impairment of 
tumor-specific cytotoxicity of syngeneic CD8+ 
T cells [50]. Likewise, in DLBCL, IL-10 secre-
tion by tumor cells also inhibited CXCR5-
expressing circulating CD4+ and CD8+ 
T-cell-mediated cytotoxicity, which subse-
quently assisted the growth and survival of 
malignant cells [78, 79]. With respect to immune 
cell infiltration, FL Treg cells have been found to 
autoregulate their own chemotaxis, via autocrine 
CXCL13-CXCR5 signaling mechanism, and 
thereby localize and accumulate within the 
malignant lymph node, where they suppressed 
effector T-cell activity to further facilitate malig-
nant cell growth and expansion [80]. Similarly, 
CD4+ CXCR5+ Foxp3+ follicular Treg cells 
suppressed the proliferation and cytokine expres-
sion by CD8+ T cells in the tumor microenviron-
ment of DLBCL [81].

6.6  CXCL13-CXCR5 Axis in Solid 
Tumors

6.6.1  CXCL13-CXCR5 Axis in Lung 
Cancer

Lung cancer is the leading cause of cancer-related 
mortality around the world. It is broadly classified 
into small cell lung carcinomas (SCLCs) and non-
small cell lung carcinomas (NSCLCs). CXCL13 
is included among the cytokine profiles that are 
elevated in NSCLC [82, 83]. Some studies have 
also identified CXCL13 as a predictive factor for 
risk of early-stage lung adenocarcinoma [83, 84] 
and as a part of secreted phosphoprotein 1 (SPP1) 
upstream invasive network module [85]. Singh 
et al. [86] reported the elevated serum CXCL13 
levels in lung carcinoma patients compared with 
healthy volunteers. They also found higher 
CXCR5 expression in human NSCLC tissues rel-
ative to nonneoplastic lung tissues. By using 
migration assays, they further revealed that a pro-
migratory phenotype in NSCLC cells could be 
stimulated by CXCL13 [86], thus suggesting the 
possible involvement of CXCL13-CXCR5 axis in 
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the tumorigenic and metastatic phenotypes of pri-
mary lung tumors [86].

One study has previously implicated CXCL13-
CXCR5 signaling axis in the benzo(a)pyrene 
(BaP)—a key carcinogen present in cigarette 
smoke and air pollution—induced lung carcino-
genesis [87]. While comparing the levels of cer-
tain proteins (which are linked to inflammation) 
in lung cancer patients, the authors found a clear 
link between cigarette smoke and CXCL13 
expression. BaP could induce CXCL13 expres-
sion in lung epithelial cells and cancer cells and 
in mice prior to development of detectable lung 
cancer, while CXCL13 or CXCR5 knockout sig-
nificantly attenuated BaP-induced lung cancer in 
mice [87]. Further experiments showed that 
CXCL13 is a direct target gene of aryl hydrocar-
bon receptor (AhR), a ligand-activated transcrip-
tion factor that can bind to a xenobiotic-responsive 
element (XRE) in the CXCL13 gene, and BaP 
induces CXCL13 production by facilitating AhR 
translocation to the nucleus [87]. From mecha-
nistic perspective, it was revealed that CXCR5 is 
highly expressed by CD68+ macrophages within 
the tumor site, and its interactions with overex-
pressed CXCL13 may induce the production of 
SPP1 by tumor-associated macrophages (TAMs) 
[87]. The CXCL13-CXCR5-induced SPP1 fur-
ther established a positive feedback loop network 
via activation and nuclear localization of 
β-catenin in epithelial and cancer cells, in turn 
promoting endothelial mesenchymal transition 
(EMT) and lung cancer progression [87]. 
Dexamethasone, a synthetic glucocorticoid, 
inhibited CXCL13 production by epithelial cells 
and SPP1 production by TAMs, which resulted in 
inhibition of EMT and tumor burden in mice 
[87]. Overall, the work demonstrated the causal 
link between CXCL13-CXCR5 axis and lung 
tumor initiation and progression.

Antitumoral Effects A limited evidence also 
hints on the potential role of CXCL13-CXCR5 
axis in devising antitumoral immune response 
against lung cancer. Indeed, CXCL13 is the 
known critical triggering factor of TLS forma-
tion, which can devise humoral and cell-mediated 
immune responses against tumors [54]. With 

functional TLSs in place, efficient antigen pre-
sentation and cell activation and differentiation 
occur for the development of both humoral and 
cell-mediated immune responses against tumors 
[53, 88]. Given this fact, CXCL13 has previously 
been characterized as an important component of 
specific gene expression signature that is associ-
ated with T cell presence in TLSs in human lung 
cancer [88]. Silina et al. [52] have recently identi-
fied a perivascular CXCL13-positive niche that 
supports TLS development in lung squamous cell 
carcinoma (LSCC) patients, with significant rel-
evance for patient survival. Through gene expres-
sion analysis, they found that CXCL13 expression 
correlates with intratumoral TLS density, which 
further correlated with GC formation and expres-
sion of adaptive immune response-related genes 
[52]. Additionally, steroid treatment showed a 
negative impact on TLS development and specifi-
cally on GC formation in LSCC patients [52]. 
Similarly, CXCL13-secreting CD8+ lymphocyte 
populations with high PD-1 expression from 
NSCLC patients have been shown to play a criti-
cal role in the recruitment of immune cell subsets 
to the tumor microenvironment, suggesting their 
possible involvement in the formation of TLSs 
[89]. Together these data imply that further stud-
ies ought to be endorsed in order to distinctly 
define the role of CXCL13-CXCR5 axis in anti-
tumor immunity against lung cancer.

6.6.2  CXCL13-CXCR5 Axis in Breast 
Cancer

Breast cancer is the most frequently diagnosed 
malignancy and the common cause of cancer 
death in women worldwide. Breast cancer exhib-
its one of the strongest relationships between 
CXCL13-CXCR5 axis and tumor progression. 
Many studies have reported significantly higher 
expressions of CXCL13 and/or CXCR5  in both 
tumor tissues and peripheral blood of breast can-
cer patients [47, 90–92] and also proposing their 
co-expression as a poor-prognosis marker [47]. 
Strong expressions of CXCL13 and CXCR5 have 
also been described in breast cancer cell lines 
such as MCF-7, MDA-MB-231, ZR-75, and 
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BT-20 [90]. The upregulation of CXCL13 and 
CXCR5 in breast tumors is governed by different 
mechanisms: CXCL13 expression is under the 
direct transcriptional control of RelA and Nrf2, 
while CXCR5 is epigenetically regulated (lack of 
CpG island methylation) within its promoter [18].

CXCL13-CXCR5 axis serves a pivotal role in 
breast cancer growth and lymph node metastasis 
(LNM). Tumorigenesis experiments, involving 
BALB/c mice inoculated with 4 T1 breast cancer 
cells, have demonstrated the involvement of 
CXCL13-CXCR5 signaling in tumor growth and 
progression via ERK-mediated production of 
inflammatory cytokines IL-1β and TNF [93]. 
Treatment of mice with an anti-CXCL13 anti-
body induced tumor cell apoptosis while attenu-
ating the activation of CXCR5/ERK pathway 
[93]. In another recent study, anti-CXCL13 anti-
body also effectively suppressed the proliferation 
and induced apoptosis of MDA-MB-231 cells 
through blockade of CXCR5/ERK pathway [94]. 
CXCL13 blockage significantly downregulated 
p-ERK/ERK, IL-1, and TNF-alpha levels in 
tumor cells [94]. Together these findings provide 
an evidence that CXCL13-CXCR5/ERK axis is 
involved in breast cancer growth and progres-
sion. Apart from this, two genetic knockdown 
studies, involving lack of functional p53 family 
members, have also linked elevated CXCR5 
expression to abnormal cell survival and 
CXCL13-directed migration in MCF-7 breast 
cancer cells [26, 95].

Similarly, a clear-cut evidence of CXCL13-
CXCR5 involvement in LNM was provided by 
Biswas et  al. [47], who demonstrated high 
expression of metastasis-associated mesenchy-
mal markers (Vimentin, N-cadherin), EMT regu-
lators (Snail, Slug), and matrix 
metalloproteinase-9 (MMP9) in CXCL13-
stimulated breast cancer cells through CXCR5 
signaling [47]. CXCL13-CXCR5 axis enhanced 
the expression of receptor activator of nuclear 
factor kappa-B ligand (RANKL), which is 
known to regulate MMP9 expression and, thus, 
induce breast cancer cell migration via c-Src-
mediated activation of the ERK and Akt signal-
ing pathways [47, 96]. By using p110α, PI3K, 
and Src kinase inhibitors, the authors confirmed 

that CXCL13-CXCR5-derived RANKL-Src axis 
may upregulate MMP9 and different EMT regu-
lators in breast cancer cells, which eventually 
promote their migration and invasion [47]. This 
study also documented that CXCL13-CXCR5 
co-expressing patients with LNM involvement 
displayed significant correlation to higher 
expression of various mesenchymal markers and 
regulators [47]. Nevertheless, the signaling 
events regulating CXCL13-CXCR5-induced 
RANKL expression in breast cancer cells still 
remain elusive.

Antitumoral Effects Tumor-derived CXCL13 
may enhance the antitumorigenic B- and 
T-lymphocyte trafficking to the tumor microen-
vironment. An interesting evidence in this regard 
is the IRF5 (interferon regulatory factor 
5)-induced expression of CXCL13 in mammary 
epithelial tumor cells where it orchestrated the 
recruitment of CD19+ CXCR5+ B cells and 
CD4+ CXCR5+ T cells to the tumor site [97]. 
These immune cells are critical to the formation 
of functional TLSs, which are known to confer 
better prognosis in breast cancer [53, 98, 99]. 
Likewise, tumor-infiltrating CXCL13-producing 
TFH cells (TFHX13) have been shown to poten-
tially trigger TLS formation at tumor site and 
thereby generate GC B-cell responses in human 
breast cancer [98]. It was further suggested that 
TFHX13 cell differentiation may be of crucial 
importance in converting Treg-mediated immune 
suppression to de novo activation of adaptive 
antitumor humoral responses in the breast cancer 
microenvironment [98]. Moreover, a recent 
study, aimed to investigate the prognostic impact 
of CD4+ T-cell subsets in early-stage breast can-
cer patients, has described an association 
between high CXCL13 and distant disease-free 
survival, thus providing evidence that humoral 
immunity influences the survival outcomes in 
these patients [100]. Taken together, one may 
infer that CXCL13-CXCR5 axis may facilitate 
shaping of favorable immune microenvironment 
that probably would inhibit breast cancer prog-
ress. This notion is further corroborated by the 
fact that CXCL13 has been included in several 
immune-related molecular profiles which  
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indicate better prognosis in breast cancer 
[101–103].

6.6.3  CXCL13-CXCR5 Axis 
in Prostate Cancer

Prostate cancer is the second leading cause of 
cancer-associated mortality in men. CXCL13-
CXCR5 axis promotes tumorigenesis, growth, 
malignant progression, and metastatic spread of 
prostate cancer cells [17, 29, 31, 46, 104, 105]. 
Significantly high levels of CXCL13 have been 
reported in the serum of prostate cancer patients 
[104]. In addition, CXCL13 has been found to be 
a better predictor of prostate cancer than prostate-
specific antigen (PSA) [104]. The transcriptional 
upregulation of CXCL13  in prostate cancer tis-
sues is driven by androgen-AR axis and nonca-
nonical NF-κB pathway [17, 46].The putative 
sites for canonical androgen-responsive element 
and a noncanonical NF-κB pathway have been 
identified in the CXCL13 gene promoter [46]. 
Differential expression of CXCR5 has also been 
described in prostate cancer tissues and cell lines 
[106, 107].

Prostate cancer represents a particular exam-
ple of solid tumor malignancies where the 
CXCL13-CXCR5-derived microenvironmental 
cellular cross talks, and the downstream molecu-
lar events, have been elucidated more compre-
hensively in relation to tumor initiation and 
progression. Earlier this decade, a series of stud-
ies by El-Haibi et al. [29–31, 105] revealed the 
involvement of divergent intracellular molecular 
pathways, such as ERK1/2, PI3K/Akt, and stress-
activated protein kinase (SAPK)/c-jun kinase 
(JNK), in CXCL13-CXCR5-derived invasive and 
proliferative responses in prostate cancer cells. 
The studies also identified specific G-protein iso-
forms regulating CXCR5 signal transduction fol-
lowing CXCL13 stimulation (see Fig. 6.3) [30]. 
Likewise, Garg et  al. [46] further identified 
CXCL13 as a bona fide effector of protein kinase 
C epsilon (PKCε) in prostate cancer cells. 
Mechanistic studies revealed that PKCε overex-
pression cooperates with Pten loss (which leads 
to PI3K activation) to upregulate CXCL13 pro-

duction by prostate tumor cells, via a noncanoni-
cal NF-kB pathway, which contributes to CXCR5 
signal amplification and eventually results in a 
cell autonomous pro-migratory and tumorigenic 
autocrine loop [46]. Furthermore, CXCL13 pro-
duced by both cancer and stromal cells (specifi-
cally cancer-associated myofibroblasts) has been 
shown to create a pro-tumorigenic environment, 
leading to B-cell recruitment and evolution of 
castration-resistant prostate cancer after andro-
gen-deprivation treatment [108]. From mechanis-
tic perspective, it appears that hypoxia-inducible 
factor 1 (HIF-1)-derived autocrine transforming 
growth factor (TGF)-β/small mothers against 
decapentaplegic (SMAD) signaling may promote 
the activation of CXCL13-expressing myofibro-
blasts under hypoxic conditions (Fig.  6.3). The 
tumor-infiltrating B cells, that are recruited by 
overexpressed CXCL13, may then secrete LTα:β 
heterotrimers which further induce the stimula-
tion of LTβR on prostate cancer cells, leading to 
nuclear translocation of IKKα and activation of 
STAT3, thereby enhancing tumor growth and 
progression [108, 109]. Blockade of CXCL13 
expression by different treatments, including 
pharmacological inhibition of TGF-β signaling 
and immunodepletion of myofibroblasts, inhib-
ited B-cell recruitment to the tumor tissues and 
prevented the emergence of more aggressive type 
of cancer [108].

Androgen/AR-induced overexpression of 
CXCL13 has also been found to promote cell 
cycle and cell phase (G2/M) transition in primary 
prostate cancer tissues [17]. CXCL13 appeared 
to be direct target of androgen/AR axis, and its 
increased expression cooperated with AR in 
androgen/AR axis-mediated prostate tumor cell 
growth, proliferation, EMT, migration, and inva-
sion in androgen-dependent LNCaP cells [17].

6.6.4  CXCL13-CXCR5 Axis 
in Gastrointestinal Cancers

Prominent expressions of CXCL13 and/or 
CXCR5 have been found in gastrointestinal can-
cers, such as colon or colorectal cancer [110, 
111], hepatocellular carcinoma [49, 112], gastric 
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Fig. 6.3 CXCL13-CXCR5 signaling axis in prostate 
tumor microenvironment. CXCL13 can be produced 
both by tumor cells and by cells in the tumor microenvi-

ronment, such as hypoxia-activated myofibroblasts. In 
prostate cancer cells, upregulation of the protein kinase 
C epsilon (PKCε) and loss of the tumor suppressor Pten 
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cancer [113, 114], and pancreatic cancer [110]. 
Constitutively active noncanonical NF-κB path-
way has been shown to induce CXCL13 expres-
sion in human pancreatic cancer cell lines [115].

High levels of CXCL13 and CXCR5 have 
demonstrated the correlation with tumor develop-
ment, metastasis, and poorer survival in advanced 
colorectal cancer [111, 116]. A prior study high-
lighted that CXCL13 may promote the growth of 
CXCR5-expressing colon cancer cells in the liver 
[110]. Similarly, a molecular mechanism study by 
Zhu et  al. [117] demonstrated that CXCL13-
CXCR5-derived PI3K/Akt pathway may promote 
the migration and invasion of colon tumor cells 
via induction of MMP-13 production [117]. The 
genetic knockdown of CXCR5 and the pharmaco-
logical inhibition of PI3K/Akt pathway (by 
LY294002) both significantly suppressed the 
CXCL13-mediated growth, migration, and inva-
sion of colon cancer cells [117]. Furthermore, 
Chen et al. [51] manifested that CXCL13-CXCR5 
axis is essential in mediating the recruitment of 
Foxp3+ Treg cells by histidine 
decarboxylase(HDC)-expressing myeloid cells in 
the settings of colorectal carcinogenesis. HDC+ 
myeloid-derived CXCL13 may enhance the 
Foxp3 expression and cellular proliferation of 
CXCR5-expressing Treg cells through phospho-
Stat3 pathway [51]. Both HDC+ myeloid cells 
and Foxp3+ Treg cells have the ability to suppress 
CD8+ T-cell tumoricidal immunity. Together 
these findings suggest that CXCL13-CXCR5 axis 
may promote colon cancer growth and progres-
sion in both direct (affecting cancer cells) and 
indirect (affecting noncancerous cells) ways.

Elevated CXCL13 serum levels have also 
shown correlation with tumor size, metastatic 
disease, advanced stages, and recurrence-free 
survival in hepatocellular cancer patients [49, 
112]. A positive feedback loop network charac-
terizing mutual interaction between CXCL13 and 
the Wnt/β-catenin pathway has been reported to 
induce progression of hepatocellular carcinoma 
[112].

In gastric cancer, intratumoral CXCL13 
expression is associated with larger tumor diam-
eter [118], and its increased levels have been pro-
posed as independent prognostic marker for 
patients undergoing gastric cancer resection 
[118]. Ding et  al. demonstrated that CXCL13-
CXCR5-mediated recruitment of CD40+ MDSCs 
may stimulate gastric tumor growth, by enabling 
immune evasion, via inhibition of T-cell expan-
sion within the tumor microenvironment [48]. 
They further revealed that CD40 critically regu-
lates the recruitment and accumulation of MDSCs 
in gastric cancer settings by controlling CXCR5 
expression in MDSCs [48].

6.6.5  CXCL13-CXCR5 Axis in Other 
Solid Tumor Malignancies

CXCL13 has been identified as a prognostic bio-
marker for clear cell renal cell carcinoma 
(ccRCC) [119]. Upregulated CXCL13 expres-
sion in ccRCC correlated with advanced disease 
stage and poor prognosis [119]. Functional and 
mechanistic studies revealed that CXCL13-
CXCR5-mediated activation of PI3K/Akt/mTOR 

Fig 6.3 (continued) lead to elevated activity of PI3K, 
which, in turn, results in sequential activation of the 
members of the noncanonical NF-κB pathway, ulti-
mately inducing transcription of the CXCL13 gene. 
CXCL13 produced in this autocrine manner, together 
with CXCL13 generated by activated myofibroblasts, 
not only recruits of B cells within the tumor microenvi-
ronment but also stimulates divergent intracellular 
molecular pathways that are involved in cell growth, 
survival, invasion, and migration of prostate cancer 
cells (inset figure). The signal transduction of CXCL13-
CXCR5 interactions is mediated by G-protein heterotri-

mer comprising the typical Gα, Gβ, and Gγ subunits. 
Both Gαi and Gαq proteins have been implicated in 
CXCL13-CXCR5-derived molecular events. DOCK2, 
dedicator of cytokinesis 2; ERK, extracellular signal-
regulated kinase; HIF-1, hypoxia-inducible factor 1; 
JNK, Janus kinase; MAPK, mitogen-activated protein 
kinase; MEK, MAPK/ERK kinase; PI3K, phos-
phoinositide-3-kinase; SMAD, small mothers against 
decapentaplegic; TGF, transforming growth factor; 
TGF-βR, TGF-beta receptor; LTα:β, lymphotoxin alpha 
and beta; and ??, underlying signaling events remain 
elusive
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signaling pathway may promote the proliferation 
and migration of ccRCC cells [119]. Similarly, 
high CXCL13 expression levels have been 
reported in oral squamous cell carcinoma (OSCC) 
primary tumors [120–122]. OSCC are malignant 
tumors with a potent activity of local bone inva-
sion/osteolysis. CXCl13-CXCR5-derived 
RANKL signaling has been implicated in the 
osteolytic process and metastasis of OSCC 
tumors [122]. RANKL induces high levels of 
MMP-9 expression in OSCC as well as in stro-
mal/preosteoblast cells and thereby plays critical 
role in cancer invasion of the bone/osteolysis 
[122]. CXCL13-CXCR5 axis may upregulate 
JNK activity in OSCC tumor cells, which subse-
quently follows activation and nuclear transloca-
tion of NFATc3 transcription factor to enhance 
RANKL expression [123]. Nonetheless, in stro-
mal/preosteoblast cells, c-Myc, rather than JNK, 
appears to be downstream target of the CXCL13-
CXCR5 axis to stimulate NFATc3-mediated 
RANKL expression [121].

6.7  Concluding Remarks 
and Future Directions

To summarize, the findings discussed above 
highlight the fact that CXCL13-CXCR5 axis 
often leads to pro-cancerous consequences. 
Within the tumor microenvironment, CXCL13 
interacts with CXCR5  in both autocrine and 
paracrine fashion and, thereby, may integrate dif-
ferent tumor-immune-stroma cellular cross talks 
that are critical for dictating several aspects of 
tumor development and progression, including 
growth, proliferation, invasion, metastasis, and 
survival. Nevertheless, a lot more basic 
investigations are still needed before translating 
this information in clinical settings. For instance, 
the downstream signaling regulating the biology 
of this pathway in cancer and immune cells is yet 
to be fully explored. In addition, the signaling 
events which regulate CXCL13 and CXCR5 
expression in cancerous and noncancerous cells 
need much fuller investigation. Also, the data 
regarding immune-mediated pro- and anti-
tumoral activities of this pathway is limited in 

scope and depth. Much remains to be done to 
grasp a more comprehensive and conclusive 
landscape of its immune-related effects under 
broader terms of immune surveillance and eva-
sion mechanisms.

From therapeutic prospect, the data discussed 
above position CXCL13-CXCR5 pathway as a 
potential therapeutic target for cancer treatment. 
Figure  6.4 summarizes the potential impacts of 
direct targeting as well as blocking (upstream and 
downstream) the CXCL13-CXCR5 pathway in 
various cancers. However, the small-molecule 
inhibitors that could specifically target CXCL13 
or CXCR5 are lacking so far. One possible reason 
for this caveat is probably still-to-solve crystal 
structure of CXCR5 that might have limited the 
drug discovery efforts against this pathway. With 
CXCL13 crystal structure already in place, 
solving the one of CXCR5, either alone or in 
complex with CXCL13, would definitely help 
elucidating the critical aspects of ligand-receptor 
interactions, which could be further exploited for 
drug discovery against these proteins. An 
alternative approach for specific targeting could 
be anti-CXCL13 and anti-CXCR5 antibodies, 
which previously have successfully been used to 
target this axis for investigative purposes 
(Fig.  6.4). Exploiting them for therapeutic pur-
pose might open new avenues in cancer treat-
ment. Indeed, antibodies targeting cell surface 
receptors have proven clinical utility in cancer 
therapy. Examples include Herceptin that targets 
HER2/Neu [124] and Erbitux that targets epider-
mal growth factor receptor (EGFR) [125]. Both 
prevent binding of the endogenous ligand to the 
respective receptors. Apart from this, it would 
also be interesting to consider the possibility of 
inhibiting upstream inducers, for example, the 
signaling proteins involved in transcriptional 
regulation of CXCL13 or CXCR5 [18, 46, 87], 
or, alternatively, blocking of downstream signal-
ing molecules which mediate CXCL13-derived 
cancer pathobiology (Fig. 6.4). However, a major 
challenge to implement such approaches would 
probably be poor specificity. Further complicat-
ing the situation is the fact that cancer cells do not 
rely on a single chemokine or only one chemo-
kine receptor [7]. Therefore, it will be imperative 
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to balance the positive and negative effects of 
enhancing or inhibiting the underlying signaling 
events that would result from the therapeutic tar-
geting of this pathway. In short, the future of 
modulating this pathway for therapeutic purposes 
against cancer is very much dependent on efforts 
to elucidate its complex pro-tumor and antitumor 
roles in the tumor microenvironment.

Hopefully, future research efforts in this area 
will undoubtedly yield more exciting information 
that would pave the route to exploit this pathway 
for developing new treatment regimens against 
cancer.
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Fig. 6.4 Therapeutic implications of CXCL13-CXCR5 
axis in cancer. The data originates from several selected 
studies (reported in this manuscript), which implemented 
these interventions for investigational purpose. The 
portrayed information deduces the feasibility of targeting 
CXCL13-CXCR5 axis in different cancers. In addition, it 
also infers strategies to block this pathway at different 
levels. (1) Neutralization of overexpressed CXCL13 or 

CXCR5 with small interference RNAs hints at inhibiting 
upstream events. (2) Direct inhibition with anti-CXCL13 
or anti-CXCR5 antibodies in itself represents the strategy 
of choice while giving the reason to consider both proteins 
as potential targets for small molecule-based drug 
discovery. (3) Pharmacological inhibition of downstream 
signaling events might serve as an alternative approach for 
blocking CXCL13-mediated effects
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CCL24 Signaling in the Tumor 
Microenvironment

Sung-Jig Lim

Abstract

Chemokines with their network play an 
important role in cancer growth, metastasis, 
and host-tumor interactions. Of many chemo-
kines, C-C motif chemokine ligand 24 
(CCL24) has been shown to contribute to 
tumorigenesis as well as inflammatory dis-
eases like asthma, allergies, and eosinophilic 
esophagitis. CCL24 is expressed in some 
tumor cells such as colon cancer, hepatocel-
lular carcinoma, and cutaneous T cell lym-
phoma. CCL24 can be used as a potential 
biomarker in several cancers including colon 
cancer, non-small cell cancer, and nasopha-
ryngeal carcinoma as the plasma level of 
CCL24 is increased. The various functions of 
CCL24 contribute to the biology of cancer by 
M2 macrophage polarization, angiogenesis, 
invasion and migration, and recruitment of 
eosinophils.
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7.1  Introduction

C-C motif chemokine ligand 24 (CCL24), which 
also is called eotaxin-2, is a chemokine for eosin-
ophils, basophils, and T cells and has been mostly 
investigated in asthma, allergies, and eosinophilic 
esophagitis. Recently, CCL24 has been shown to 
contribute to tumorigenesis, especially in cancer 
of the colon and liver. This chapter focuses on the 
biology of CCL24  in tumors and discusses its 
role in the tumor microenvironment and its 
potential as a target of immunotherapy.

7.2  Chemokines

Chemokines are chemotactic cytokines that cause 
directed migration of many cells and are induced 
by inflammatory cytokines, growth factors, and 
pathogenic stimuli [1–3]. Directed migration of 
cells that express the appropriate chemokine 
receptor occurs along a chemical gradient of 
ligand, allowing cells to move toward high local 
concentrations of chemokines [4]. Chemokines 
are principally divided into the four major 
groups—C, CC, CXC, and CX3C—based on the 
position of the first two cysteine residues in their 
biochemical structure. Together with their recep-
tors, they play key roles in the immune defense 
by directing and controlling the migration, acti-
vation, differentiation, and survival of cells in the 
physiology of acute and chronic inflammatory 
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processes as well as in pathological deregulation 
by attracting and simulating various subsets of 
specific leukocytes [5]. Different spatiotemporal 
expression patterns for different chemokines and 
their receptors in our body suggest distinct roles 
in vivo [6]. About 45 chemokines and 20 chemo-
kine receptors have been identified [7].

7.3  Tumor Microenvironment 
and Chemokines

Tumors are not just masses of cancer cells; most 
solid tumors contain many nonmalignant various 
stromal components, including endothelial cells, 
pericytes, fibroblasts, various classes of leuko-
cytes, extracellular matrix, and even autonomic 
and sensory nerves [8, 9]. Their stromal compo-
nents have been reported to contribute to the 
growth and maintenance of numerous tissues [9]. 
Cancer is a complex disease involving a variety 
of interactions between tumors and the tumor 
microenvironment (TME) through direct contact 
and/or through paracrine signals [10]. It is critical 
to have proper knowledge of a tumor lesion and 
the associated microenvironment for complete 
understanding of tumorigenesis and development 
of effective preventive and interception strate-
gies. The TME is an indispensable participant in 
the neoplastic process, fostering proliferation, 
survival, and migration of cells such as macro-
phages, lymphocytes, endothelial cells, fibro-
blasts, eosinophils, granulocytes, natural killer 
cells, and B cells. The numbers and types of cells 
that make up the stroma in solid tumors are 
related to local production of chemokines by the 
tumor cells and stromal cell themselves.

It is becoming increasingly clear that the chemo-
kine network plays an important role in cancer 
through its effect on growth and metastasis of tumor 
cells as well as in host-tumor interactions [4].

7.4  CCL24 in Nonneoplastic Lesions

Eotaxin, a member of the CC chemokine family, 
has three forms, eotaxin-1/CCL11, eotaxin-2/
CCL24, and eotaxin-3/CCL26.

C-C motif chemokine ligand 24 (CCL24) was 
cloned and described for the first time in 1997 
[11]. It is located on chromosome 7q11.23 [12]. 
As its effects on human eosinophils and baso-
phils are surprisingly similar to those of eotaxin-1 
(CCL11), CCL24 also is called eotaxin-2 [11]. 
CCL24 contributes to atopic disorders, parasitic 
infections, and numerous systemic diseases, and 
then it has been mainly studied in asthma, aller-
gies, and eosinophilic esophagitis [13–17]. 
CCL24 is secreted by many cells, including mac-
rophages, epithelial cells, endothelial cells, and 
fibroblasts, and is stimulated predominantly by 
IL-4, IL-13, and/or TNF-α [14, 16, 18–20]. 
CCL24 is significantly elevated in the skin of 
Smad3−/− mice and facilitates target cell migra-
tion by upregulating adhesion to endothelial cells 
[15, 21]. CCL24 action occurs via binding to che-
mokine receptor CCR3, which is expressed 
mainly on eosinophils, basophils, and TH2 cells 
[22]. Thus, typical targets of CCL24 are eosino-
phils, T cells, and basophils [23–25]. However, 
CCR3 can interact with multiple ligands, includ-
ing eotaxin-1, eotaxin-2, eotaxin-3, monocyte- 
specific chemokine protein-2 (MCP-2)/CCL8, 
monocyte-specific chemokine protein-3 (MCP- 
3)/CCL7, monocyte-specific chemokine protein-
 4 (MCP-4)/CCL13, Regulated on Activation, 
Normal T Expressed and Secreted (RANTES)/
CCL5, and macrophage inflammatory protein-5 
(MIP-5)/CCL15 [26].

7.5  Expression of CCL24 
in Cancer

Limited research has been published regarding 
CCL24 in tumors (Table 7.1) [27–30]. Thus, very 
little is known about the role of CCL24 in 
cancer.

CCL24 has been mainly studied in colorectal 
tumors. Colon cancer cells produce CCL24, and 
secretion of CCL24 can be depressed by IFN-γ 
and enhanced by TH2-type cytokines such as 
interleukin-4 and interleukin-13 [31]. Both pri-
mary colorectal cancer and liver metastasis of 
colorectal cancer produce significant level of 
CCL24, whereas metastatic cancer from rhabdo-
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myosarcoma and breast, renal, and neuroendo-
crine tumors did not express a detectable level of 
eotaxin-2 [31]. These results suggest specific 
mechanisms for the production of CCL24  in 
colorectal cancer. Expression of CCL11 and 
CCL24  in tumor cells from adenoma with low- 
grade dysplasia to adenocarcinoma of the colon 
decreased significantly with tumor progression 
[27]. The reduced expression of CCL11 and 
CCL24 in advanced tumor cells could contribute 
to the immune-evasion mechanisms of colorectal 
adenocarcinoma by inhibiting recruitment of 
eosinophils that function as effector cells for the 
neoplasm [27]. Interestingly, stromal expression 
of CCL11 and CCL24 appeared to increase under 
these same conditions. The CCL11-/CCL24- 
secreting stromal cells are mostly mononuclear 
inflammatory cells, and increased expression of 
CCL11 and CCL24 in stromal cells might explain 
the elevated serum concentrations of those che-
mokines [27].

CCL24 was upregulated in hepatocellular car-
cinoma tissues and correlated with poor progno-
sis in hepatocellular carcinoma (HCC) patients, 
and CCL24 expression was associated with pro-
moted proliferation, migration, and invasion [28].

High expression of CCL24 in eosinophils 
themselves was noted in cutaneous T cell lym-
phoma, showing an autocrine and/or paracrine 
origin of tissue eosinophilia [30]. In oral squa-

mous cell carcinoma, eotaxin-1 was mainly 
derived from infiltrating eosinophils in autocrine 
and/or paracrine pathways [32].

Like nonneoplastic conditions, CCL24 expres-
sion can be upregulated by TH2-type cytokines 
like IL-4 and IL-13 in colorectal cancer [31]. But 
TH2-type cytokines failed to modulate CCL24 in 
HCC, suggesting that the TME of colorectal can-
cer might be more suitable for plantation and/or 
progress of cancer cells [28].

The ability to produce CCL24 was acquired in 
a human leukemic cell line through GATA-1 
expression [33].

7.6  CCL24 as a Biomarker

There have been a few studies about CCL24 as a 
potential biomarker.

The plasma CCL24 level in colorectal cancer 
patients is very high and exclusively associated 
with colorectal-specific mortality [29]. These 
data suggest high plasma level of CCL24 as a 
potential biomarker of prognosis.

Radiation therapy affects living cells in tumor 
tissue, as well as the TME, indicating that TME 
has an important role in response to treatment 
[34]. Irradiation elicits a complex response 
involving cross talk between several actors in the 
TME as well as with tumor cells, which is possi-

Table 7.1 CCL24 in cancer

Tumor Model system CCL24 References
Colon Human tissue, primary and hepatic 

metastasis
Increased [30]

Cell lines Increased by IL-4 and IL-13
Decreased by IFN-γ

[30]

Serum Increased [28]
Human tissue Decreased [26]

Nasopharynx Serum Increased [36]
Hepatocellular 
carcinoma

Human tissue Increased [27]

Melanoma Mice, lung metastasis Increased [37]
Lung Serum Correlate with tumor metabolic 

burden
[34]

Osteosarcoma Cell lines Decreased by melatonin [48]
Cutaneous T cell 
lymphoma

Human tissue Increased in eosinophils [29]
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bly reflected in the systemic levels of cytokines. 
Also, localized radiation therapy can trigger sys-
temic antitumor effects [35]. Radiation therapy 
elicits immediate responses in the irradiated tis-
sue, with increased expression of cytokines 
instrumental in generating free radicals and oxi-
dative stress, as well as to restore homeostasis 
[36]. In non-small cell lung cancer, serum level 
of CCL24 was significantly correlated with tumor 
volume and total lesion glycolysis measured by 
18F-FDGPET/CT before, during, and after radia-
tion therapy [35]. Thus, serum level of CCL24 
could be a putative indication of tissue radiation 
sensitivity. Cytokines such as CCL24 are released 
by macrophages and activating T-lymphocytes 
recruited by radiation therapy [24].

The level of CCL24 in the serum of nasopha-
ryngeal carcinoma is significantly higher than 
that of controls, illustrating its role as a potential 
serum biomarker for diagnosis and prognosis of 
carcinoma [37].

7.7  Functions of CCL24 in Cancer

7.7.1  Immune Functions

There has been limited research on the role of 
CCL24  in tumor immune responses. In normal 
lung, commensal microbiota in the upper respira-
tory tract maintains alveolar macrophages with a 
low level of CCL24 production to generate anti-
metastatic tumor activity [38].

In lung melanoma tissue of an antibiotic- 
treated mouse model, alveolar macrophages 
showed M2 macrophage polarization with ele-
vated expression of CCL24 and decreased γδ T 
cells, resulting in a defective antitumor response 
[38]. In contrast to CCL24-mediated recruitment 
of CCR3+ immune cells, including eosinophils, 
basophils, and TH2 cells during lung allergic 
inflammation, a high level of CCL24 failed to 
induce migration of CCR3+ immune cells in mel-
anoma lung tissue of the antibiotic-treated mouse 
model [38–40]. Furthermore, CCL24 neutraliza-
tion by anti-CCL24 antibody promotes immune 
cell infiltration in the lung, particularly that of 
γδT17 cells, which might be a novel feature of 

alveolar macrophage-derived CCL24  in the 
tumor immune response [38]. More attention 
should be paid to the functions of CCL24 in the 
TME in terms of macrophages and microbiota 
for better understanding of CCL24 functions and 
interaction between CCL24 and macrophages in 
the immune responses of tumors.

Cancer has a hypoxic TME. Hypoxic cells 
need alternative energy sources to compensate 
the inhibition of oxidative metabolism [41, 42]. 
The response of cells to hypoxia is associated 
with changes in gene expression and modulation 
of mononuclear phagocytes. Dendritic cells 
(DCs) respond to a hypoxic condition by improv-
ing migratory function via upregulation of some 
chemokine receptors (CCR2, CCR3, CXCR4, 
and CX3CR1) and downregulation of others 
(CCL13, CCL14, CCL18, CCL23, CCL24, and 
CCL26) [43]. Hence by decreasing chemokines 
like CCL24 and increasing chemokine receptors 
in the hypoxic tissue, DCs in hypoxic tumor tis-
sue have a tendency to exit the hypoxic tissue and 
migrate toward a normoxic area and finally to the 
lymph nodes to induce immune responses against 
the tumor [43].

7.7.2  Angiogenesis

Expression of CCL24 is increased in HCC tis-
sues, and overexpression of CCL24 in HCC pre-
dicts shorter overall survival and higher 
recurrence rate [28]. CCL24 contributes to the 
malignant biological behavior of HCC through 
the RhoA-vascular endothelial growth factor A 
(VEGFA)-vascular endothelial growth factor 
receptor 2 (VEGFR2) angiogenesis pathways 
and is correlated with poor prognosis [28]. 
Studies have shown conflicting results regarding 
CCL24 and VEGF. CCL24 was upregulated with 
VEFGA in atopic dermatitis in one study, 
whereas VEGFA was reduced with increase of 
CCL24 concentration in plasma in myalgic 
encephalomyelitis/chronic fatigue syndrome [44, 
45].

Eotaxin-1 has also been shown to directly 
mediate angiogenesis of CCR3+ microvascular 
endothelial cells [46]. Melanoma with eotaxin 
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production has increased microvascular density 
and extensive thrombosis of the blood vessels of 
the tumor in a murine model system [47].

7.7.3  Metastasis of Cancer Cells

Chemokines contributes to cancer progression 
and metastasis as critical mediators in the TME 
[48]. CCL24 influences the motility, migration, 
and invasion of osteosarcoma cell lines, and these 
effects are mediated by the extracellular signal- 
regulated kinase (ERK)/c-Jun N-terminal kinase 
(JNK) pathway [49]. Metastatic potential of HCC 
cell lines was increased with the expression of 
CCL24 with promoted migration and invasion 
[28]. These results suggest the need for further 
studies of CCL24 as a potential target for anti-
cancer therapy. Modulation of CCL24 expression 
in cancer cells to repress invasion, migration, and 
metastasis could be a target of anticancer 
therapies.

7.7.4  Chemokines for Eosinophils

Infiltration of eosinophils to sites of tumor of 
inflammation is a complicated process dependent 
on a combination of cytokines, adhesion mole-
cules, and chemokines. Eosinophil recruitment is 
conducted by many chemokines, including 
RANTES (Regulated on Activation, Normal T 
Expressed, and Secreted or CCL5), eotaxin-1, 
eotaxin-2, eotaxin-3, IL-8 (CXCL8), macro-
phage inflammatory protein (MIP)-1α (CCL3), 
and monocyte-specific chemokine protein 
(MCP-3 or CCL7) [50]. Tumor cells or stromal 
cells in TME can secrete eotaxin-2 and can 
induce infiltration of eosinophils. There have 
been conflicting reports of tumor-associated tis-
sue eosinophilia (TATE) as a prognostic indicator 
in solid tumors. TATE is associated with improved 
prognosis in colon tumors, esophageal SCC, 
nasopharyngeal carcinoma, penile carcinoma, 
and oral squamous cell carcinoma [51–55]. In 
contrast, TATE is associated with poor prognosis 
in Hodgkin’s lymphoma and cervical carcinoma 
[56, 57]. However, oral SCC showed both favor-

able and unfavorable prognoses, with the dis-
crepancy possibly related to differences in study 
methods and design [58]. Tumor-associated tis-
sue eosinophils appear to be protective in gen-
eral, but further studies are required to determine 
their exact mechanisms and their discrepant 
behaviors.

Protective effects of eosinophils on tumors are 
not completely understood. First of all, antitumor 
cytotoxic effects caused by degranulation of 
eosinophils are suggested by observation of gran-
ules in the local vicinity of tumors [59]. 
Eosinophils induce apoptosis and secrete gran-
zyme A, resulting in tumoricidal activity toward a 
colon cancer cell line [60].

Secondly, eosinophils recruited into the TME 
secrete chemokines such as CCL5 that attract 
CD8+ T cells to the tumor site, resulting in 
improvement of antitumor immunity [61].

7.8  Limitations and Future 
Considerations

Tumor microenvironment helps shape tumors 
and their progression and influences therapeutic 
responses. Chemokines are implicated in aggres-
sive metastatic tumor progression, and a better 
understanding of their regulation could lead to 
new therapeutic targets for cancer.

While CCL11 biology and functions in tumor 
and TME are quite present, there has been a lim-
ited study about the role of CCL24 within the 
TME and tumor. Further extensive investigations 
on the biology, functions, and regulation of 
CCL24 in tumors are required.

Immune cells engineered to express the recep-
tor for CCL24 (CCR3) effectively migrated in 
response to CCL24 protein. This suggests that 
immune cells undergoing gene modification to 
express a chemokine receptor may have improved 
abilities to localize to a tumor [31].

Melatonin attenuated CCL24 through inhibi-
tion of the JNK pathway to suppress motility, 
migration, and invasiveness of human osteosar-
coma cell lines [49]. Future research on melato-
nin treatment for antimetastasis of cancer cells 
and its mechanism is needed. In addition, involve-
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ment of the JNK pathway and downstream 
CCL24 in the metastasis of human osteosarcoma 
highlights the therapeutic potential of melatonin 
and JNK inhibitors for cancer metastasis [49].

CM-101 is a humanized monoclonal antibody 
that targets the human chemokine CCL24. 
Previous studies have shown that administration 
of CM-101, by binding CCL24 with high affinity, 
reduced pro-inflammatory responses in animal 
models of several diseases, including atheroscle-
rosis, rheumatoid arthritis, multiple sclerosis, and 
pulmonary fibrosis [62–65]. CM-101 decreases 
migration of fibroblasts and attenuation of endo-
thelial cell activation in CCL-24-expressing dis-
eases, resulting in reducing tissue damage of both 
skin and lung [66]. Those studies support transla-
tion of an anti-CCL24 antibody not only to the 
skin and lung fibrotic diseases in the clinic but 
also to CCL-24-expressing neoplastic diseases.

In an experimental mouse model of age- 
related macular degeneration (AMD) induced by 
laser injury, CCL11 and CCL24 were expressed 
in the choroidal neovascular tissue and retinal 
pigmented epithelium, and administration of 
neutralizing antibodies against CCL11 or CCL24 
suppressed the choroidal neovascularization 
(CNV), characteristic of AMD [66]. It is tempt-
ing to speculate that targeting CCL11 or CCL24 

through an antiangiogenic effect might provide 
benefit in CCL11- or CCL24-secreting tumors.

In acute promyelocytic leukemia, treatment of 
all-trans-retinoic acid (ATRA) induced a differ-
entiation syndrome with massive pulmonary 
infiltration, and expression of CCL24 and CCL2 
was elevated by ATRA stimulation [67]. These 
results indicate that CCL24 and CCL2 are 
directly regulated by ligand-activated retinoic 
acid receptors [67]. CCL24 is a possible pharma-
cological target, and the chemokine receptor 
antagonists are candidates for therapy of CCL24- 
secreting tumors (Fig. 7.1).

CCL24 shows various effects on cancer cells 
by M2 macrophage polarization, angiogenesis, 
invasion, and migration and recruitment of 
eosinophils.
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Abstract

Multiple checkpoint mechanisms are over-
ridden by cancer cells in order to develop 
into a tumor. Neoplastic cells, while con-
stantly changing during the course of cancer 
progression, also craft their surroundings to 
meet their growing needs. This crafting 
involves changing cell surface receptors, 
affecting response to extracellular signals 
and secretion of signals that affect the nearby 

cells and extracellular matrix architecture. 
This chapter briefly comprehends the non-
cancer cells facilitating the cancer growth 
and elaborates on the notable role of the 
CCR9-CCL25 chemokine axis in shaping 
the tumor microenvironment (TME), directly 
and via immune cells. Association of 
increased CCR9 and CCL25 levels in vari-
ous tumors has demonstrated the signifi-
cance of this axis as a tool commonly used 
by cancer to flourish. It is involved in attract-
ing immune cells in the tumor and determin-
ing their fate via various direct and indirect 
mechanisms and, leaning the TME toward 
immunosuppressive state. Besides, elevated 
CCR9-CCL25 signaling allows survival and 
rapid proliferation of cancer cells in an oth-
erwise repressive environment. It modulates 
the intra- and extracellular protein matrix to 
instigate tumor dissemination and creates a 
supportive metastatic niche at the secondary 
sites. Lastly, this chapter abridges the latest 
research efforts and challenges in using the 
CCR9-CCL25 axis as a cancer-specific 
target.
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TGF-β · Extracellular matrix · MMP · 
Metastasis

8.1  Introduction

Tumors do not develop quickly in a healthy, 
immune-competent host because checkpoints at 
multiple stages warrant that no transformed cells 
propagate. At the cellular level, cell cycle check-
points arrest the division of cells carrying altered 
or damaged DNA and divert them toward repair 
or death. In contrast, at the organismal level, the 
immune system carries out the surveillance and 
targets and clears the neoplastic cells. All these 
processes are integrated, ensuring the optimum 
health of the host. Transformed cells that prevail 
over the cellular checkpoints form  a neoplastic 
lesion that further supersedes various surveil-
lance mechanisms, undergoes a series of molecu-
lar and morphological changes and uncontrolled 
cell divisions to result in tumor development and 
cancer progression collectively. Therefore, the 
development of a tumor reflects a composite of 
multiple checkpoint failures. In this chapter, we 
outline the significance of the cellular composi-
tion of the tumor microenvironment (TME) and 
the role of chemokine signaling in determining 
overall TME characteristics, focusing on the 
CCR9-CCL25 axis. We also highlight current 
and future therapeutic ventures directed toward 
this chemokine axis to curb cancer.

8.2  Significance of Tumor 
Microenvironment

To gauge the impact of any phenomenon on can-
cer development, it is imperative to understand it 
at the local and the organismal scale. Teasing out 
carcinogenesis at the cellular level has shown 
several survival and apoptosis signaling path-
ways, mandatory for normal cell survival, 
are modulated to support cancer progression. The 
discrete cellular milieu around the neoplastic 
lesion, from now on termed as tumor microenvi-
ronment (TME), instigates cancer initiation and 

progression. Infiltration of many different cell 
types, including immune cells, stromal cells 
(connective tissues and blood vessels), fibro-
blasts, and nerve cells, and their secretions char-
acterize and govern TME dynamics and blood 
vasculature. The heterogeneous composition of 
tumors in different malignancies and individuals 
varies; however, often, the nonmalignant compo-
nent constitutes 80% of the tumor architecture 
with cancer cells contributing only 10–20%. 
These facts emphasize the significance of the 
supportive role of the nonmalignant cells in driv-
ing cancer progression. All cells communicate 
and influence each other’s functional characteris-
tics via the cytokines, chemokines, and metabolic 
by-products secreted in the TME [12, 52].

8.3  The Shaping of TME: 
The Nonmalignant 
Component

Nonimmune cells constituting TME: A significant 
proportion of TME is occupied by fibroblasts. 
These cancer-associated fibroblasts (CAFs), acti-
vated fibroblasts, myofibroblasts, or tumor- 
associated fibroblasts, actively participate in 
cancer progression [73]. They impact TME by 
cellular interactions with cancer cells and by 
secreting factors that modulate the extracellular 
matrix (ECM) to become a tumor conduit. CAFs 
contribute extracellular proteins like collagen 
[34], laminin [35], versican [120], and fibronec-
tin [8, 33, 97] that serve as an ally to malignant 
characteristics of cancer. In addition, CAF- 
secreted extracellular enzymes like LOX, MMPs, 
ADAMs, TIMPs, and kallikrein [124] function to 
remodel the ECM and collectively increase tumor 
stiffness by cross-linking ECM proteins, facili-
tate metastasis by digestion of extracellular 
matrix proteins, reduce cancer cell immunoge-
nicity by shedding surface antigens, and cleave 
cell surface receptors affecting various signaling 
mechanisms. Simultaneously, hormones and 
cytokines secreted by CAFs also impact the 
immune phenotype of TME. In fact, some CAFs 
are known to create immunosuppressive TME 
[49] by secretion of TGF-β [120]. A handful of 
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in  vitro studies also demonstrated CAF-cancer 
cell contact-dependent invasion ability of tumor 
[26, 65, 85].

The unevenly distributed endothelial cells in 
the TME are no less important than CAFs in sup-
porting the angiogenic switch of the tumor [61]. 
TME constituting endothelial cells are more pro- 
angiogenic and frequently upregulate MMP and 
receptors for VEGF.  They are the significant 
source of angiogenic factors [14] for rapidly 
dividing neoplastic cells as well as they help cre-
ating a tolerant immune environment [29]. Under 
the influence of the angiogenic factors, endothe-
lial cells downregulate the leukocyte adhesion 
proteins and so may reduce  the infiltration of 
immune cells into the TME.

Nerve cells in TME: Research connecting the 
nervous system and cancer has drawn substantial 
attention recently. The previous impression of 
lack of nerve cells in the tumor was challenged 
with the evidence of perineural invasion (PNI) 
that show cancer cell proliferation surrounding 
the peripheral nerves. Like a blood vessel and 
lymphatic vessel, the nerve is apparently used as 
a route for dissemination by the growing cancer 
cells. The presence of PNI is a poor prognostic 
marker [9, 24, 39], and denervating tumor 
impacts cancer metastasis [27, 89–91]. Several 
chemokines are involved in influencing tumor 
innervation [24, 39, 127]. However, the involve-
ment of CCR9 signaling has not yet been studied 
in this context.

Immune cells of TME: Both innate and adap-
tive immune cells reside and help shape the TME. 
Natural killer (NK) cells are the frontliners that 
discriminate and directly kill the neoplastic cells 
in developing and progressive tumors by secret-
ing perforin or granzyme after activation. They 
also induce receptor (-TNF, FasL, and TRAIL)-
mediated apoptosis of their target cancer cells. 
NK cell activation is a cytokine-dependent pro-
cess that requires IFN-α, IFN-β, IL-2, IL-12, and 
IL-15 and follows a gauging of activating 
(NKG2D) and inhibitory (KIR) receptors on the 
target cells [103, 106, 113]. NK cells also control 
tumor proliferation by activating M1 macro-
phages (Mϕ) and DCs, as well as Th1 cells of the 
adaptive immune system by secreting IFN-ϒ and 

generating tumor-specific antigens (TSA) due to 
direct killing.

Dendritic cells (DC), in the TME, under the 
influence of cytokines like TNFs and IFNs 
released by other cells, are polarized into distinct 
effector phenotype [4, 50, 105]. They capture, 
process, and combine the TSAs with MHC-I/II 
molecules for antigen presentation, eliciting the 
adaptive arm of immunity. Precisely, antigen pre-
sented in this way signal clonal expansion of 
naïve CD4+ and CD8+ T cells and their differen-
tiation to the helper (Th1, Th2, Th17, or T- fol-
licular helper (Tfh, Treg)) cells and cytotoxic T 
cells (CTLs). Interactions of DCs also regulate B 
cell-mediated immunity.

Macrophages also recognize TSAs and phago-
cytose the cells [1]. Macrophages determine the 
immune response by significantly contributing to 
the TME cytokine and chemokine profile.

Cancer cells would be effectively eliminated if 
these cells could perform optimal immune sur-
veillance. However, the TME with its immune 
evading and manipulating characteristics  facili-
tates cancer progression. That is, cancer cells 
become less immunogenic [36, 93, 94, 112, 129] 
by shedding antigenic proteins from their cell 
surface as facilitated by upregulation of extracel-
lular protease activities. These poorly immuno-
genic cancer cells undergo unrestricted clonal 
expansion and evade immune attack while simul-
taneously driving TME toward more immuno-
suppressive constitution by asserting the 
differentiation of myeloid-derived suppressor 
cells (MDSCs), tumor-associated macrophages 
(TAMs), regulatory T cells (T-regs), and regula-
tory dendritic cells (reg-DCs) resulting in aggres-
sive tumors. Mechanisms that allow for the 
evasion and immune suppression include the pro-
duction of selective cytokines and upregulation 
of IDO, leading to increased kynurenine release 
that, in turn, affects the cytotoxicity of T cell, 
DC, and macrophages. In all, the combined activ-
ity of these immune suppressor cells regulates 
tumor growth, survival, migration, and invasion 
by changing the hormone, growth factor, and 
cytokine profile of TME.

Immature myeloid cells are precursors of 
DCs, macrophages, and granulocytes. 
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Unfortunately, in TME, very often, these other-
wise anticancer immune cells attain immunosup-
pressive phenotype termed as MDSCs [20, 78, 
79, 82]. These cells can deactivate innate and 
adaptive immune cells. Specifically, MDSCs, via 
factors like inducible nitric oxide synthase, gen-
eration of ROS, and arginase, inhibit T cell divi-
sion and cytotoxicity, suppress CD8+ T cell 
response, favor Treg differentiation, and inhibit 
activation of NK cell [20, 82]. Additionally, the 
cytokine and chemokine composition of TME is 
not conducive for M1 macrophages (Mϕ) but 
favors polarization to M2 phenotype that is more 
immunosuppressive [76, 77]. Further, these 
TAMs considerably assist cancer progression 
through immune evasion, angiogenesis, and 
metastasis by secreting IL-10 and TGF-β [54, 76, 
101, 104]. Treg cells support tumor progression 
by abating NK cell-, T cell-, and B cell-mediated 
immune functions [40, 116, 130]. This diminish-
ing effect is achieved via secretion of suppressive 
cytokines and contact-dependent mechanisms 
[37].

8.4  Chemokine-Guided TME 
Infiltration

Infiltration of nonmalignant cells within the TME 
is mostly guided by a group of low MW 
(8–10  kDa) cytokines called chemokines. 
Primarily, chemokines function in bringing in 
specific GPCR bearing cells at their source site. 
These receptor-expressing cells are often immune 
cells that mark immune cell trafficking as the 
most common biological chore of chemokines. 
So, chemokine secretion pattern of a tumor (can-
cer and stromal cells) governs what immune cells 
populate the TME. For instance, CC chemokines 
released by breast, pancreatic, and cervical 
tumors, as well as those emanating from sarco-
mas and gliomas, cause infiltration of macro-
phages and lymphocytes [10, 18]. CC and CXC 
chemokine-mediated infiltration of macrophages 
and CD8+ T cells is observed in the case of ovar-
ian cancer [84]. However, the hypoxic microenvi-
ronment in solid tumors, along with chemokine 
and pro-inflammatory cytokine surge from tumor 

cells, diminishes the antitumor immune response 
of these tumor-infiltrating leukocytes (TILs) by 
chemokine receptor downregulation on their sur-
face [42, 99]. The emerging role of chemokines 
in suppressing host antitumor immunity has initi-
ated lots of research in this field. CCL25-CCR9 
signaling axis is one such signaling that is physi-
ologically relevant but is also extensively abused 
in various malignancies. Following sections com-
prehend the role of CCL25 signaling locally in 
the tumor microenvironment and at the systemic 
level in the development of a tumor.

8.5  Role of CCR9-CCL25 Axis 
in Sculpting TME

CCR9, a GPCR that belongs to the A2 subfamily 
of Rhodopsin-like receptors, is a sole receptor for 
CCL25. CCL25, also called TECK (thymus- 
expressed chemokine), is typically expressed in 
the thymus. It is important for the development, 
homeostasis, and function of mucosal T lympho-
cytes wherein migration is augmented by TCR 
signaling. The prime role of CCR9-CCL25 sig-
naling is in T lymphopoiesis. Maturation occurs 
as the lymphoid progenitor cells sequentially 
interact with the discrete stromal cells during 
their migration in the thymus  from the cortex 
through the medulla [95, 96, 109, 110]. 
CCR9, together with CCR7, affects the ushering 
of the lymphoid progenitors to the thymus [62]. 
CD69-positive thymocytes, most αβ thymocytes, 
and about 50% of γδ TCR-positive thymocytes 
and T cells express CCR9 [22, 110]. The expres-
sion is highest in CD4+ CD8+ cells and is down-
regulated as they mature. CD8+ cells maintain 
functional CCR9 even through their course of the 
journey to the secondary lymphoid organs, 
whereas the CD4+ counterparts omit their CCR9 
before egressing thymus [22]. In addition to T 
lymphocytes, CCR9 is expressed by a subset of 
DC and pre-pro B lymphocytes. It is also pro-
posed to play a role in B cell development [19] 
and reactivity [17]. This chemokine receptor 
expression interestingly varies with age [22, 
110]. CCL25 production also reduces by 
puberty as the thymus shrinks.
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Understandably, CCR9 is induced in acute 
and chronic lymphocytic leukemia of T cells 
compared to normal CD4+ T cells [92]. In solid 
malignancies, elevated CCR9-CCL25 axis is one 
of the most abused navigating mechanisms for 
tumor progression, and it could considerably 
influence the kind of cells infiltrating TME and 
TME dynamics. Although abundant evidence 
supports CCR9-CCL25 involvement in T cell 
recruitment at the inflamed tissues sites, studies 
directly correlating increased CCL25 levels and 
T cell homing in TME are surprisingly scarce. 

However, plentiful studies demonstrating CCR9 
facilitated DC infiltration in TME signify its indi-
rect impact on the T cell population in TME 
(Fig.  8.1). CCR9 expression in DC negatively 
correlates with the expression of costimulatory 
molecules and the capacity of DC to induce dif-
ferentiation in naïve T cells. CCR9Hi DC poorly 
stimulates T cell division than CCR9Lo DC sub-
set, which also reflects in reduced IL2 secretion 
[31]. Plasmacytoid DC (pDC) expressing CCR9 
suppresses the immune response [44, 81] by 
reducing the naïve-Th1 and inducing Treg differ-

Fig. 8.1 Shaping of the immunotolerant tumor microen-
vironment (TME) by CCR9-CCL25. Tumor with higher 
CCL25 makes the microenvironment more tolerant by 
recruiting CCR9-positive immune cells such as dendritic 
cells (DC), macrophages, MDSC, and T cells. Once 
recruited, CCL25-CCR9 in TME promotes polarization of 
macrophages from M1 to M2 phenotype. Increased 
CCR9Hi DC in the TME induces differentiation of naive T 

cells to Treg. Elevated CCR9-CCL25 signaling induces 
MMPs, making cancer cells less immunogenic by shed-
ding their cell surface antigens. In addition, these elevated 
MMPs will also increase angiogenic factors such as 
VEGF and TGF-β in the TME that dually support cancer 
progression by creating an immunosuppressive microen-
vironment and promoting angiogenesis
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entiation. pDC leads to increased generation of 
IL-10-producing Treg cells via ICOS-ICOSL 
pathway or IDO induction [111]. These evidence 
imply that CCR9Hi DC attracted by CCL25 pro-
ducing tumors will bend the TME toward immu-
nosuppression [111]. Accordingly, increased 
infiltration of pDCs in the tumor is a poor prog-
nostic indicator in several cancer types [7, 28, 46, 
66, 88, 102, 108] that also show elevated CCR9- 
CCL25 signaling.

Besides DCs, CCR9 activation is also involved 
in macrophage polarization (Fig. 8.1) in rheuma-
toid arthritis and hepatitis conditions; however, 
studies directly linking the CCR9-CCL25 axis to 
TAMs are also lacking. On the other hand, the 
expression of CCR9 by NK cells is controversial. 
CCR9 is expressed only in a subset of CD56bright 
NK cells [13, 21]. CCL25 induces the infiltration 
of CCR9-positive MDSCs in the endometriosis 
microenvironment [107]. Although one needs to 
take heed of immune cell plasticity in TME 
before drawing concrete conclusions regarding 
the fate and role of a cell in cancer, it is clear that 
CCL25-CCR9 signaling promotes immunosup-
pressive TME by recruitment of MDSCs and 
polarization of T-helper cells toward Th2 and 
Treg differentiation facilitated by CCR9Hi DC 
(Fig. 8.1).

In addition to the immune cell homing, CCR9 
led navigation helps cancer cell dissemination 
and proliferation in a secondary niche. CCL25 is 
significantly expressed by the epithelial cells of 
the small and large intestine [110], and conse-
quently, it is one of the main factors governing 
gut as the primary metastatic niche of cancer like 
melanoma [5, 70] and ovarian cancer. CCR9 
overexpression in melanoma patients did not cor-
relate with patient survival or prognosis [63]; 
however, metastasis of melanoma to the lung is 
assisted by CCR9-CCL25 signaling [55].

8.6  Involvement of CCR9-CCL25 
Axis in Tumor Promotion: 
The Nonimmune Component

The role of chemokines is not merely limited to 
immune cell trafficking but expands to the regu-
lation of cell differentiation, organ development, 

cell motility, and neuromodulation, among many 
others. Intracellular signaling cascades initiated 
after binding of chemokines to their GPCR regu-
late these biological processes. Therefore, the 
array of G proteins bound to receptor C terminal 
determines the intracellular signaling triggered 
by binding of a specific chemokine. Consequently, 
the significance of chemokines in promoting 
growth, survival, proliferation, and metastatic 
progression of cancer cells, mainly by promoting 
angiogenesis as well as the release of growth fac-
tors from cells in TME, has come to light [12, 25, 
51, 52, 69, 75]. Chemokines work in autocrine or 
paracrine fashion to stimulate the rapid growth of 
a tumor that cannot be eliminated by host immune 
response. Inhibiting certain chemokine signaling 
results in control of tumor progression by induc-
ing cancer cell death as well as overcoming the 
macrophage- and Th2-mediated immunosup-
pression. Our group has extensively demon-
strated the significance of CCR9-mediated 
signaling in supporting the progression of several 
solid malignancies (Fig. 8.2). Partial elucidation 
of CCR9-CCL25 signaling indicates downstream 
activation of the PI3K/Akt pathway [59, 115] and 
its downstream mediators, β- catenin [68], 
FKHR, and GSK-3β [56].

Survival and chemoresistance: Stimulation 
with CCL25 augments cellular proliferation and 
survival by regulating β-catenin [64, 68], Livin, 
and caspases, among many other survival- 
apoptosis controlling proteins [72]. Consequently, 
CCR9 activation also underlies chemoresistance 
(Fig.  8.2). The deterring effects of amplified 
CCR9-CCL25 axis on the chemotherapeutic 
response have been shown using several cancer 
models [56, 59, 72, 98]. Rearrangement of the 
cytoskeleton by regulating P-glycoprotein inter-
actions with F-actin and ERM (Ezrin-Radixin- 
Moesin) downstream to CCR9-CCL25 activation 
is also shown to determine the sensitivity of can-
cer cells to drugs [125].

Migration and invasion: Penetration of the 
basement membrane and invasion of the intersti-
tial stroma that is a prerequisite for the cancerous 
cells to metastasize are achieved principally by 
cytoskeletal rearrangement and fine-tuning of the 
activity of MMP and their tissue inhibitors 
(TIMP). Activation of the CCR9-CCL25 axis 
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could alter cellular adhesion by activation of β- 
catenin. It prompts the migration of cells via 
ERM (Ezrin-Radixin-Moesin) facilitated actin 
filament reorganization [128]. Specifically, 
CCL25 gradient induces migration of malignant 
ascites derived ovarian cancer cells [45].

The  CCR9-CCL25 chemokine axis also 
strongly correlates with upregulated activity of 
MMP-TIMP family of proteins [16, 43, 57, 100, 
114] which is commonplace in cancers. 
Aggressive ovarian cancer cells show modulation 
of MMP and TIMP family of proteins when stim-
ulated with CCL25 correlating with faster base-
ment membrane invasion. Similarly, the 
functional significance of the CCR9-CCL25 axis 
in migration and invasion is established for hepa-

tocellular carcinoma and breast, prostate, and 
lung cancers (Fig. 8.2) [58, 86, 126]. Cancer cell 
produced CCL25 also attracts mesenchymal stem 
cells [118], which are associated with increased 
invasiveness of cancer.

CCR9-CCL25 led β-catenin signaling [64, 
68], and MMP induction and activation [126] 
correlates with the modulation of EMT markers 
in cancer cells and could also be associated with 
angiogenesis [41, 71, 121] as discussed in the 
next section.

Angiogenesis: The infiltration of leukocytes to 
the tumor by chemokines is facilitated directly by 
their angiogenic activity and indirectly by the 
release of angiogenic factors from cells in the 
TME. Most of the chemokines secreted by tumor 

Fig. 8.2 Role of CCR9-CCL25 axis in different malig-
nancies. CCR9-CCL25 axis activates signaling cascades 
that support cancer cell survival and proliferation and, 
inhibit apoptosis. Thus, this chemokine receptor axis, in 
addition to promoting various cancers, is also involved in 
developing chemoresistance. Higher CCL25 in the tumor 
vicinity promotes infiltration of CCR9-expressing lym-

phocytes, and these infiltrating immune cells support 
tumor dissemination and metastasis. The figure illustrates 
CCR9-CCL25 signaling induced processes and mecha-
nisms as reported for various malignancies. Blue and 
green arrows indicate cancer promoting and anti- 
metastatic effects, respectively 
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cells are angiogenic. Furthermore, the extracel-
lular protease activities induced by CCR9 signal-
ing also shed surface proteins from cells in TME 
and from ECM, many of which are angiogenic 
cytokines like TGF-β, VEGF, and TNF-α.

CCL25-CCR9-induced elevation of MMP-2 
and MMP-9 activity could increase the bioavail-
ability of some angiogenic cytokines. MMP-2 
and MMP-9 activate TGF-β [122]. This angio-
genic cytokine supports immunosuppressive 
TME [119]. It inhibits expansion and cytolytic 
activity of CTLs and NK cells [3, 38], favors Th2 
differentiation, enhances pro-angiogenic chemo-
kine production by MDSCs [83], supports Tregs 
[32], and impedes DC functions [2]. TGF-β 
underlies versican upregulation by CAF in the 
TME and promotes ovarian cancer  invasion 
[120]. It also enhances the EMT transition of 
cancer cells and is a potent malignant growth 
supporting cytokine [3, 15, 30, 48, 80, 123].

Recent evidence demonstrated a positive cor-
relation between the expression of CCR9 and 
VEGF in tumor tissues. CCR9 activation induces 
VEGF-C and VEGF-D in lung cancer cells by 
modulating MMPs [86]. VEGF is the primary 
driver leading to tumor vascularization [61]. 
Proteolytic cleavage of VEGF from ECM regu-
lates its angiogenic capacities. MMP-9 that is 
elevated by CCL25 [57, 58] is the primary prote-
ase involved in VEGF bioavailability [67]. An 
increase in VEGF reflects pro-inflammatory 
cancer- promoting microenvironment and implies 
activation of a positive feedback loop: TNF-α, 
IL-1β, IL-6, and IL-8 [47]. CCR9-induced VEGF 
could also enhance CXCL1 secretion [74] by epi-
thelial cells and COX2 (cyclooxygenase2) 
expression in endothelial cells [6]. Thus, CCL25 
induced elevation in VEGF could promote immu-
nosuppressive TME.

Upregulated CCR9 signaling is also associ-
ated with increased IL-10 production [11, 117] in 
the ulcerative colitis model. IL-10, like TGF-β 
and VEGF, is highly immunosuppressive. 
Elevated IL-10 in TME is associated with infiltra-
tion of TAM, Treg differentiation, and downregu-
lating pro-inflammatory cytokines, MHC class II 
molecules, and costimulatory proteins [60, 87].

Except for cancer of the ovary and colorectal 
origin, all other cancer primarily metastasize to 
the bone, with the liver being the secondary hom-
ing site for most malignant tumors. Colorectal 
cancers are also exceptional concerning the 
CCR9-CCL25 axis; unlike other malignan-
cies, this axis negatively associates with metasta-
sis of the colorectal tumors (Fig. 8.2). All these 
highlight the significance of the organ of origin in 
determining the role of the CCR9-CCL25 axis.

8.7  CCR9-CCL25 as a Potential 
Target for Cancer Treatment

Based on the biological and clinical significance 
of CCR9-CCL25  in TME, it is a potential bio-
marker and a therapeutic target. Serum CCL25 
levels have diagnostic value for various malig-
nancies. Small molecule inhibitor of CCR9, ver-
cirnon or CCX282, was in phase III clinical trial 
as a potential treatment option for Crohn’s dis-
ease, a chronic inflammatory condition of the 
gastrointestinal tract, and some inflammatory 
bowel diseases. It was also anticipated to improve 
the overall survival of patients suffering malig-
nancies with elevated CCR9-CCL25 axis. 
However, the clinical trial data was less than 
promising. Sporadic reports using anti-CCR9, 
alone or as a fusion, to block CCL25 triggered 
signaling have shown encouraging results. 
However, most of these studies are focused on T 
cell lymphocytic leukemia [23, 53] and may not 
be as effective in solid tumor patients since tar-
geted delivery of bulky therapeutic antibodies in 
TME would be a challenge. This leaves room for 
researchers to try novel strategies targeting this 
clinically significant axis to improve the thera-
peutic outcome and patient survival. Considering 
the limited access of the receptor (CCR9), target-
ing the easily accessible ligand -CCL25 would be 
a more practical approach. Systemic neutraliza-
tion of CCL25 may not be associated with the 
usual systemic drug-led toxicities since CCL25 is 
mostly  important during early  developmental 
stages. Our lab is developing this approach, and 
past in vivo experiments carried out on this line 
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do not show any toxicity concern. On the other 
hand, an immune cell-based therapy similar to 
CAR-T or Sipuleucel-T, where the CCL25 sig-
naling is targeted, may be useful in the tumor 
context. However, the immune cell plasticity in 
the TME may pose a challenge.
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Abstract

Chemokines are a group of small proteins 
which play an important role in leukocyte 
migration and invasion. They are also involved 
in the cellular proliferation and migration of 
tumor cells.

Chemokine CCL27 (cutaneous T cell- 
attracting chemokine, CTACK) is mainly 
expressed by keratinocytes of the normal epi-
dermis. It is well known that this chemokine 
plays an important role in several inflamma-
tory diseases of the skin, such as atopic der-
matitis, contact dermatitis, and psoriasis. 
Moreover, several studies have shown an asso-
ciation between CCL27 expression and a vari-
ety of neoplasms including skin cancer.

In this chapter, we address the role of che-
mokine CCL27  in the tumor microenviron-
ment in the most relevant cancers of the skin 
and other anatomical locations. We also make 
a brief comment on future perspectives and 

the potential relation of CCL27 with different 
immunotherapeutic modalities.
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9.1  Introductory Section

9.1.1  Introduction: Chemokine 
and Chemokine Receptors

Chemokines are a superfamily of small 
(8–14 kDa) secreted basic proteins that regulate 
relevant leukocyte migration and tissue invasion 
by interacting with their specific receptors, the 
latter belonging to the superfamily of seven- 
transmembrane domain G-protein-coupled 
receptors. Chemokines are able to attract specific 
immune cells: Their function has been demon-
strated in inflammatory sites as well as in healthy 
lymphoid tissues [1, 2], and they also contribute 
to leukocyte extravasations and localization 
within peripheral sites [1, 3].
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Chemokine receptors are a group of mem-
brane proteins about 350 amino acids in size. At 
least 19 chemokine receptors have been identi-
fied in mammals [4], and 10 members (CCR1- 
10) have been described in humans. CCR are 
receptors for ligands of the CC chemokine sub-
family (containing at least 28 members, CCL1- 
28) [5]. Chemokine receptors can be subclassified 
into four subfamilies. Chemokine receptors, 
which are expressed on the cell surface, direct 
cell migration along guidance cues provided by 
their respective ligands. This process is called 
chemotaxis. The chemokine receptor-transduced 
signals have also been involved in several func-
tions such as cellular survival, proliferation, and 
activation [5].

Interactions of chemokines with a variety of 
cell types present in the tumor microenviron-
ment, particularly cutaneous cells, mesenchymal 
stem cells, and pericytes, have been described. 
Van den Broek et al. (2014) analyzed the variable 
response of different types of mesenchymal cells 
(adipose tissue-derived mesenchymal stem cells 
and dermal fibroblasts) as well as keratinocytes 
and how these cells would react to cutaneous 
burn wound [6]. In this study, they described the 
increased secretion of several chemokines by 
dermal fibroblasts and adipose tissue-derived 
mesenchymal cells in contact with burn wound 
exudates. This process could play a very impor-
tant role in future therapies with stem cells [7].

A healthy vasculature is essential for normal 
and tumoral tissues. Appropriate blood vessels 
are responsible for the normal supply of oxygen 
and nutrients and for removing products of deg-
radation [8]. Angiogenesis, the process by which 
new blood vessels form from existing vessels [9], 
is crucial to maintain an appropriate vasculature. 
Pericytes, fibroblast-like cells that are located 
around the endothelial cells in arterioles, capillar-
ies, and venules, play an important role in angio-
genesis. Type 2 pericytes have demonstrated 
angiogenic capacity both in  vivo and in  vitro 
[10]. Only type-2 pericytes located in the normal 
tissue involved by neoplasms contribute to tumor 
angiogenesis [10]. These findings could be 
important to develop different therapeutic strate-
gies in cancer treatment and in ischemic pro-

cesses. Pericytes also participate in the production 
of chemokine CCL12, which is involved in the 
maintenance of hematopoietic stem cells [11, 
12]. Deletion of CCL12 from perivascular cells 
results in depletion of bone marrow hematopoi-
etic stem cells [11].

9.1.2  Chemokine CCL27

Four families of chemokines (C, CC, CXC, 
CX3C) have been defined [13]. CCL27 (cutane-
ous T cell-attracting chemokine, CTACK) is one 
of the CC chemokines [14]. In humans and mice, 
this has been reported to be expressed mainly, but 
not exclusively, by keratinocytes [14]. CCL27 is 
also expressed in skin-derived Langerhans cells 
[14, 15].

In normal skin, CCL27 represents the domi-
nant chemokine and is expressed by basal kerati-
nocytes of the epidermis [16–21], and it has been 
shown to attract cutaneous lymphocyte antigen 
(CLA)-positive cells expressing the receptor 
CCR10 [17, 19, 20, 22]. CCL27 overexpression 
leads to the enhanced recruitment of CCR10+ 
cells, both of which have been shown to play an 
important role in T cell-mediated skin inflamma-
tion [16].

CCL27 has the potential to convert between 
different oligomeric states. This property makes 
it possible to accommodate multiple 
glycosaminoglycans- binding partners, providing 
a mechanism for cell specificity and regulation 
[23].

Therefore, CCL27 is a very important basic 
chemokine for T cell skin-homing [14]. In nor-
mal skin, suprabasal keratinocytes express only a 
minimum amount of CCL27. However, the 
lesions of human atopic dermatitis, contact der-
matitis, and psoriasis usually demonstrate much 
stronger expression of CCL27 [16]. In addition, 
CCL27 can be found in the dermal extracellular 
matrix, fibroblasts, and endothelial cells of the 
superficial plexus, especially in inflamed skin 
[16]. Nevertheless, CCL27 mRNA expression 
has not been identified in fibroblasts and endo-
thelial cells [22]. It has been suggested that 
CCL27 is secreted into the papillary dermis, 
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where it is immobilized in the extracellular 
matrix and displayed on the surface of endothe-
lial cells [16]. It is not currently clear how the 
secreted CCL27 localizes on the surface of the 
endothelial cells and where it is involved in the 
activation of integrins. The presentation of 
CCL27 on endothelial cells probably occurs 
through transcytosis, a mechanism known to 
localize chemokines such as CXCL8 and CCL19 
on endothelial cells [17, 24].

CCR10, the receptor for CCL27, is expressed 
by T cells, primary dermal microvascular endo-
thelial cells, dermal fibroblasts, and melanocytes, 
but not keratinocytes [22]. In humans, CCL27 
selectively attracts CLA+ memory T cells by 
interacting with CCR10 expressed in these lym-
phocytes [14, 22].

Fluctuations in CCL27 expression are seen in 
the skin lesions of patients with diseases such as 
atopic dermatitis, contact dermatitis, and psoria-
sis [25], diseases which have been correlated 
with increased CCL27 serum levels [26]. It has 
been reported that CCL27 expression is enhanced 
by tumor necrosis factor-alpha and interleukin 
beta during skin inflammation [27]. Increased 
levels of CCL27 have been detected in sera of 
patients with various skin inflammatory diseases, 
including diffuse or limited cutaneous systemic 
sclerosis, atopic dermatitis, and psoriasis vulgaris 
[16, 26, 28, 29].

In vitro studies have revealed that CCL27 
markedly enhances wound repair of endothelial 
cells and fibroblasts, which suggests a role for 
CCL27-CCR10 interactions in tissue repair [21]. 
Basal keratinocytes of the neo-epidermis are usu-
ally strong producers of CCL27 throughout the 
reepithelialization period [21].

It has been speculated that ultraviolet expo-
sure leads to the secretion of CCL27 from the 
epidermis into the dermis, mediating the recruit-
ment of CCR10-positive skin-homing leukocytes 
into the sites of ultraviolet-induced injury [30]. 
One study found that ionizing radiation induced 
CCL27 secretion in  vitro. After irradiation, a 
rapid increase in the levels of intracellular reac-
tive oxygen species promoted the secretion of 
tumor necrosis factor alpha, which in turn 
induced signaling that further boosted reactive 

oxygen species production. The cross talk 
between reactive oxygen species and tumor 
necrosis factor alpha can further trigger skin 
immune and inflammatory reactions to irradia-
tion through the induction of CCL27 secretion 
[31]. Cutaneous T cells activated in the presence 
of calcitriol express the chemokine receptor 
CCR10, attracting them to CCL27 expressed by 
epidermal keratinocytes, and then migrate from 
dermal layers to the epidermis under UV radia-
tion [32].

CCL27 has a relatively restricted expression 
pattern in normal physiological conditions. While 
CCL27 transcripts are found in multiple tissues, 
they are predominantly expressed in the skin by 
keratinocytes [14, 22]. One study has shown that 
CCL27 is a major regulator of keratinocyte pre-
cursor cell migration from the bone marrow to 
the skin [33]. In this study, bone marrow-derived 
cells were seen to transdifferentiate into keratino-
cytes at the sites of skin wounds [33].

9.2  Main Text

Chemokines are involved in neoplastic transfor-
mation, tissue invasion, and metastasis, as well as 
in the host antitumor response in cancer [34]. 
Cancer progression is facilitated by the evasion 
of the immune system by tumor cells [34]. 
Chemokines induce chemotaxis for a variety of 
cell types [26]. It has been hypothesized that dis-
semination of tumor cells to specific organs may 
be influenced by the chemokine receptors 
expressed by tumor cells and by the expression of 
their ligands in the target organs [35]. Cancer 
cells are special cells which do not respond to 
normal homeostatic regulations. Therefore, 
understanding the recruitment and involvement 
of a large amount of effector cells into a tumor is 
difficult [16]. However, accumulated evidence 
suggests that tumor immunity can be initiated by 
providing pro-inflammatory mediators in solid 
tumors [36]. Tumor-infiltrating lymphocytes usu-
ally represent a favorable feature but require the 
presence of numerous T cells and natural killer 
cells [37]. Chemokines have an important role in 
mediating the recruitment of the appropriate 
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immune cells to the tumor and the acquisition of 
an effective antitumor immunity [37]. The impor-
tant role of T cells in tumor rejection and their 
cytolytic activity against tumors have been 
known for decades [38, 39]. T cells circulating in 
the peripheral tissues are constantly screening for 
foreign and changed self-antigens expressed by 
malignant cells [40]. Subsequently, malignant 
cells are recognized and eliminated by tumor- 
associated antigen-specific T cells, thereby pre-
venting tumor progression [41].

The acute stress response has been described 
as an essential survival mechanism [42]. CCL27 
overexpression by short-term stress may induce 
recruitment of numerous T cells to sites of ultra-
violet exposure and enhance an early effector 
function against damaged cells that are likely to 
develop into tumors [43–45]. The activation of 
short-term stress may mediate antitumor immune 
responses [46]. Mobilizing protective immune 
responses is critical during cancer therapy for 
eradicating immune-responsive tumor cells as 
well as providing protection against infection 
[46].

Although cancer cells produce a variety of 
chemokine ligands that may be involved in neo-
angiogenesis, attraction and retention of inflam-
matory cells, and tumor cell proliferation [47], 
neoplastic cells express a limited repertoire of 
chemokine receptors [35, 47]. These receptors 
play distinct roles in distant organ metastasis [35, 
48].

CCL27 is overexpressed in certain types of 
squamous cell carcinoma [49] and expressed at 
various levels in metastatic prostate, breast, 
colorectal, and pancreatic cancer as well as in 
melanoma cell lines [50].

CCR10 and its ligand are expressed on vari-
ous epithelia-homing or epithelia-originating 
cancer cells and might play an important role in 
their specific tissue location, survival, and 
metastasis. Skin lesions of adult T cell leuke-
mia/lymphoma contain CCR10 and CCL27 
transcripts, which suggests that they both play a 
role in T cell leukemia/lymphoma cell invasion 
into the skin. Consistent with this, cutaneous T 

cell lymphoma such as mycosis fungoides has 
extensive expression of CCR10 [51]. Human 
melanoma also has a high level of CCR10 
expression that is associated with a lower sur-
vival rate and shorter time to progression [35]. 
CCR10 expression in melanoma cancer cells 
might promote their progression and immune 
escape [52]. In mouse experiments, ectopically 
expressed CCR10 on melanoma cell lines 
increased their survival through engagement 
with locally produced CCL27, allowing the 
melanoma cells to escape host immune antitu-
mor killing mechanisms, possibly by increasing 
the expression of antiapoptotic molecules such 
as BCL-2 [48]. In squamous cell carcinoma, 
overexpression of CCR10 and CCL27 has been 
found to be associated with tumor progression 
[49]. Intriguingly, it has been reported that 
some human keratinocyte-derived skin tumors 
might downregulate the expression of CCL27 
to prevent the attraction of the T cell- mediated 
antitumor immunity [53].

Lymphatic endothelial cells secreting CCL27 
guide entry of CCR10-positive activated T cells 
to afferent lymphatic vessels [54]. CCL27 has the 
capacity to drive lymphatic endothelial cell 
migration and demonstrates a role for CCR10 in 
lymphatic vessel development and patterning. 
CCL27 cooperates with VEGFD to promote lym-
phangiogenesis [50].

Decreased interactions between CCR10 and 
CCL27 may play an important role in vaccination 
and induced inhibition of tumor metastasis [55], 
and blockade of CCR10/CCL27 interaction may 
improve cancer survival [55].

9.3  CCL27 in Different Cancer 
Types

The importance of CCL27 and its ligand CCR10 
in tumor behavior and prognosis has been 
described in several studies. Here we summarize 
the most relevant features of these markers with 
regard to the most common tumors and described 
in relation to their anatomic location (Fig. 9.1).
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9.3.1  Skin Tumors

9.3.1.1  Melanoma
Cutaneous malignant melanoma is a potentially 
fatal tumor generated from activated or geneti-
cally modified melanocytes [56, 57] and is 
increasing in incidence [58]. The ability of tumor 
cells to avoid immune surveillance is probably 
central to the progression of melanoma and other 
cancers, and many mechanisms have been 
described which, in theory, enable cancers to 
escape immune-mediated cell death [34, 59].

Melanoma is considered a highly immuno-
genic tumor due to the numerous tumor- 
associated antigens identified [60], the 
well-known occurrence of spontaneous regres-
sion mediated by the host immune response [61], 
and the detection of antigen-experienced 
antitumor- specific T lymphocytes in vivo [62].

Tumor immunology embraces an extensive 
array of biological phenomena that include inter-
actions between neoplastic cells and the innate 
and adaptive immune response [35]. It has been 
suggested that the expression of chemokines and 

chemokine receptors by melanoma cells may be 
involved in tumor immune escape [35]. CCL27 
and chemokine receptor CCR10 in human mela-
nomas may help tumor cells to grow, invade tis-
sue, evade immune response, and spread to 
lymph nodes [34, 52, 63].

The implication of CCL27 in cutaneous mela-
nomas is currently unresolved [64]. It has been 
proposed that CCL27 expression in melanomas 
may induce antitumoral immunity [64] and that 
CCL27 may suppress tumor growth, probably 
due to the local recruitment of T lymphocytes 
and natural killer cells [65].

The ability to internalize the CCL27 chemo-
kine might be a feature of malignant melanocytes 
[48]. CCL27 internalization in malignant cells 
can mediate a number of biological effects, such 
as an increase in migratory competence by induc-
ing actin cytoskeleton relaxation [66]. 
Internalization of CCL27 has been observed 
more frequently in melanomas than in benign 
lesions [48]. CCL27-positive melanomas tend to 
have a lower mean density of CD3 and CD8 T 
cells compared to melanomas not expressing 

Fig. 9.1 The major human tissues in which CCL27 plays an important role in tumor progression and the main types of 
tumors which are influenced by CCL27
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CCL27, suggesting that liganding CCR10 by 
CCL27 could make melanoma cells less suscep-
tible to the host antitumor response [48, 52]. 
Moreover, cases with CCR10 and CCL27 co- 
expression tend to have a higher tumor thickness, 
suggesting that liganding CCR10 by CCL27  in 
melanoma cells could provide an advantage in 
tumor growth [48]. Since CCL27 can be regarded 
as a cellular response that recruits lymphocytes to 
the tumor site, CCL27 internalization in neoplas-
tic melanocytes expressing CCR10 could, 
through CCL27/CCR10 interaction, lead to a 
sequestering of the chemokine in an attempt to 
withdraw lymphocyte recruitment [52]. CCR10 
overexpression by melanoma cells might also be 
related to aggressive behavior and to their ability 

to escape immune control [52]. Likewise, CCL27 
chemokine is downregulated in melanoma metas-
tases compared with primary melanoma [67].

Some studies have demonstrated that CCL27 
expression in the environment could play an 
important role, as, for example, in epidermal 
cells just covering the melanoma (“supratumoral 
epidermis”) (Fig.  9.2). A higher expression of 
CCL27 in supratumoral epidermis has been asso-
ciated with a longer progression-free interval and 
longer melanoma-specific survival [68]. 
However, patients with the histological subtype 
lentigo maligna melanoma did not fulfill these 
criteria [68]. Differences in CCL27 immunos-
taining in these cases could be explained by the 
fact that this melanoma subtype is located in 

Fig. 9.2 Cutaneous malignant melanoma. Low-power 
view showing expression of CCL27 in supratumoral and 
peritumoral epidermis (a) or only in peritumoral epider-
mis (c, d); prominent CCL27 expression in melanoma 
tumor cells invading the reticular dermis (b). 
Co-expression of CCR10 (E, red) and CCL27 (F, green) 

and their fusion (G, orange) in melanoma cells (a, c, 
immunohistochemistry with Fast Red as chromogen; b, d, 
immunohistochemistry with DAB as chromogen; e–g, 
double indirect immunofluorescence labeled with Alexa 
Fluor 488 and Alexa Fluor 633, Invitrogen, UK)
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areas of the body with high sun exposure, and 
solar radiation is known to downregulate CCL27 
expression [53, 68]. Pivarcsi et  al. (2007) [53] 
suggested that this downregulation could have 
originated from a Ras mutation. This finding is 
also consistent with the Whiteman et al. (2011) 
molecular classification of melanoma [69], in 
which chronic sun-damaged melanomas have 
common Ras mutations. Therefore, it may be 
possible to explain lower CCL27 expression in 
lentigo maligna melanomas solely as a result of 
chronic sun damage and not through the down-
regulation of the chemokine within the tumor 
[69].

Although CCL27 is constitutively synthesized 
in the epidermis, CCL27 protein is also present in 
the dermis [14]. Thus, CCL27 may affect tumor 
cells implanted into the dermis because of its 
ability to cross the basement membrane after 
synthesis by keratinocytes [35]. The presence of 
CCL27 in the skin may potentially explain why 
CCR10 expression could be advantageous to 
melanoma, which arises in the environs of the 
skin and frequently metastasizes to the skin [35].

The use of the ligand-receptor expression ratio 
has been described as a powerful tool in mela-
noma prognosis. A higher chemokine ligand- 
receptor expression ratio in thin versus thick 
primary melanomas (36 times for CCL27-CCR10 
ratio) and in primary tumors versus melanoma 
metastasis (315 times for CCL27/CCR10) sup-
ports the implication of the chemokine ligand- 
receptor ratio in human melanoma progression 
[70]. Moreover, CCL27-CCR10 ratio in primary 
cutaneous melanoma is, combined with Breslow, 
the best predictor for the development of distant 
metastases [70], enhancing the prognostic pre-
dictive ability of Breslow tumor thickness and 
ulceration [70]. The fact that ligand-receptor 
ratios are absolutely independent of the control 
housekeeping gene employed for normalization 
provides outstanding additional value [70].

9.3.1.2  Carcinoma
Cutaneous squamous cell carcinoma is one of 
most prevalent nonmelanoma skin cancers [71]. 
It is more common in lightly pigmented than in 
heavily pigmented populations since 

 pigmentation provides protection against harmful 
effects of ultraviolet radiation [73, 74]. This neo-
plasm and basal cell carcinoma of the skin repre-
sent the most common malignancies in countries 
with a predominantly white Caucasian popula-
tion [72]. Ultraviolet-induced squamous cell car-
cinoma is generally common in countries with a 
mostly white population, whereas the number of 
ultraviolet- induced rates of squamous cell carci-
noma cases is low in countries with a lower white 
population [75]. Aside from ultraviolet radiation, 
chronic scarring processes and areas of chronic 
inflammation are also important risk factors for 
the development of squamous cell carcinoma 
[73]. Therefore, expression and functional sig-
nificance of CCR10 and CCL27 may differ 
according to the extent of ultraviolet exposure 
and chronic inflammation [49].

Acute stress induces higher levels of CCL27 
gene expression. Exposure to short-term stress 
shifts the cytokine balance toward conditions that 
favor the development and maintenance of cell- 
mediated immunity, which is known to confer 
protection against skin cancer [76, 77]. Chronic 
stress increases susceptibility to skin cancer and 
shifts the balance from protective to suppressive 
immune responses [78]. On one hand, chronic 
stress suppresses type 1 cytokines and CCL27 
gene expression, as well as CD4+ and CD8+ T 
cell infiltration at sites of tumor emergence and 
progression, while on the other, it increases the 
number of regulatory/suppressor cells at tumor 
sites and in circulation [78]. T cells have been 
implicated in both the regression [79] and rejec-
tion [80] of ultraviolet-induced squamous cell 
carcinoma. Therefore, downregulation of CCL27 
gene expression may contribute to suppression of 
T cell infiltration and T cell driven antitumor 
immune responses [78]. Chronic stressors 
increase susceptibility to disease by mobilizing 
endogenous immunosuppressive mechanisms 
such as regulatory/suppressor T cells [78].

A study of homeostatic chemokine expression 
demonstrated that human cutaneous tumors can 
evade antitumoral immunity by downregulating 
CCL27 expression through epidermal growth 
factor receptor and Ras activation. The authors 
suggested that the progressive loss of the homeo-

9 CCL27 Signaling in the Tumor Microenvironment



120

static and skin-associated chemokine CCL27 
during malignant transformation of keratinocytes 
represents a mechanism by which tumor cells 
evade the immune system. Furthermore, loss of 
CCL27 during cutaneous carcinogenesis was 
also found. Immunohistochemical analysis of 
skin samples showed that CCL27 expression was 
high in normal epidermis, lower in actinic kerato-
sis, and almost absent in basal cell and squamous 
cell carcinomas. These results suggest a potential 
implication of a progressive loss of CCL27 
expression during squamous cell carcinoma 
development [53].

In contrast, another study produced dissimilar 
results [49]. In normal skin, CCL27 was slightly 
expressed in basal but not in suprabasal epider-
mal cells, while strong cytoplasmic staining of 
the anaplastic tumor cells was found in squamous 

cell carcinoma (Fig. 9.3). CCL27 immunostain-
ing was weak in Bowen’s disease and sparse in 
basal cell carcinoma. The authors suggested pop-
ulation sampling (Caucasian versus Asian) as a 
reason for the difference, but the true reasons for 
the discrepancy remain unknown [49]. The study 
in the Asian population showed that in squamous 
cell carcinoma Clark level III or higher, strong 
CCL27 immunostaining was noticed in the cyto-
plasm of the anaplastic squamous cells within the 
tumor [49]. In squamous cell carcinoma Clark 
level II, actinic keratosis, bowenoid actinic kera-
tosis, and seborrheic keratosis, CCL27 immunos-
taining was moderately recognized [49]. Only 
weak CCL27 immunoexpression was detected 
[49] in Bowen disease. CCL27+ tumor cells were 
scarce in seborrheic keratosis and basal cell car-
cinoma. Thus, CCR10 and CCL27 expression 

Fig. 9.3 Cutaneous squamous cell carcinoma. 
Histological features showing keratinizing atypical squa-
mous cell nests (a, b) showing strong CCL27 cytoplasmic 

immunostaining (c, d) (a, b, H&E staining; c, d, immuno-
histochemistry with DAB as chromogen)
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was upregulated in squamous cell carcinoma 
Clark level III or higher relative to Bowen’s dis-
ease and basal cell carcinoma [49].

9.3.1.3  Cutaneous Lymphoma
Most cutaneous T cell lymphomas are low grade 
non-Hodgkin lymphomas that belong to the het-
erogeneous group of mature (peripheral) T cell 
neoplasms, characterized by clonal expansion of 
a epidermotropic and mature CD4-positive clone, 
putatively from a skin-homing subset of memory 
T cells [81, 82].

Theoretically, the origin of cutaneous T cell 
lymphoma cells seems to be a mature 
CD45RO  +  CD4+ memory T cell, which fre-
quently lacks expression of CD26 or CD7. The 
clue to understanding the nature and progression 
of cutaneous T cells lymphoma would be to 
unravel the mechanisms involved in their migra-
tion to the skin [82].

The roles of CCR10 and CCL27 in adult T cell 
leukemia/lymphoma invasion of the skin may be 
related to the retention of adult T cell leukemia/
lymphoma cells in the dermis besides their initial 
migration into the skin [83].

The T cell homing mechanism to the skin is 
not fully understood, but there is growing evi-
dence that chemokines and their corresponding 
receptors play a significant role [84–86]. 
Chemokines and their receptors have been asso-
ciated with tumor metastases [35], invasion of 
lymphatic vessels [87], and possibly trafficking 
of lymphoma cells [88].

According to WHO criteria, mycosis fungoi-
des is the most common cutaneous T cell lym-
phoma. Mycosis fungoides have a classically 
slow clinical course that progresses over time 
through the patch, plaque, and tumor stages, fol-
lowed by lymph node and visceral involvement 
[81]. Manifestations may be similar to psoriasis, 
due to skin-homing and proliferation of a malig-
nant T cell clone [81, 89, 90]. In mycosis fungoi-
des, although malignant T cells persist mainly in 
the skin and only few cells circulate in peripheral 
blood, some studies have revealed an aberrant T 
cell immunophenotype and circulating clonal 
cutaneous lymphocyte antigen-positive T cells in 
patient’s blood [91–93].

Normal epidermal keratinocytes usually 
exhibit weak cytoplasmic expression of CCL27 
[84]. Epidermal keratinocytes show stronger 
CCL27 expression in most cases of mycosis fun-
goides and adult T cell leukemia/lymphoma than 
in normal skin [84]. CCL27 may be expressed 
not only in the cytoplasm but also occasionally in 
the membrane of mycosis fungoides and adult T 
cell leukemia/lymphoma tumor cells [84]. The 
observations made in this study support the 
notion that CCL27 and its ligand CCR10 may 
contribute to infiltration of the skin by malignant 
T cells in mycosis fungoides and adult T cell leu-
kemia/lymphoma [84, 94]. The serum concentra-
tions of CCL27  in patients with mycosis 
fungoides is significantly increased, which sug-
gests a dynamic interaction between basal kerati-
nocytes and malignant T cells [95].

Similarly, increased CCL27 serum levels and 
epidermal expression in mycosis fungoides 
patients compared to normal controls has been 
documented, with the hypothesis that CCR10- 
CCL27 interactions play an early role in the evo-
lution from patch to tumor stage [95]. Epidermal 
CCL27 overexpression has been seen in 70% of 
early mycosis fungoides lesions at diagnosis 
[96].

CCR10 is an important receptor involved in 
the pathophysiology of mycosis fungoides skin- 
homing and epidermotropism [95]. Increases in 
the number of CCR10+ peripheral blood cells 
and serum CCL27 levels may reflect the extent of 
increasing infiltration during the course of myco-
sis fungoides disease progression [95]. The 
increase in CCR10+ CD4+ cells in the peripheral 
blood mononuclear cells of patients with mycosis 
fungoides may be considered as further proof 
that malignant, clonal T cells may already be cir-
culating from early stages of mycosis fungoides 
disease [95]. This would suggest a role for 
CCR10-CCL27 interactions during epidermotro-
pism and skin-homing, not only in Sézary syn-
drome but also in mycosis fungoides by a subtly 
different pathway from other allergic skin reac-
tions [95].

The WHO lymphoma classification system 
identifies Sézary syndrome as a distinct clinical 
entity [82, 90] with erythrodermia, lymphade-
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nopathy, and a circulating malignant clone char-
acterized by large cells with hyperconvoluted 
cerebriform nuclei [97] and is usually associated 
with poor prognosis [82]. CCR10 is expressed in 
circulating clonal cutaneous lymphocyte antigen- 
positive CD4+ cells in Sézary syndrome [98].

CCL27 in combination with CCL17 is capa-
ble of inducing extravasation of Sézary cells into 
the dermis, consistent with a nonredundant func-
tion of these chemokines in cutaneous T cell lym-
phoma accumulation in the skin. Other studies 
support the hypothesis that CCL27 is necessary 
for the transmigration of Sézary cells [99].

CCR10 is involved in skin-homing of the 
malignant T cell clone. CCR10 expression in 
Sézary syndrome may partially contribute to the 
aggressive clinical behavior in comparison with 
mycosis fungoides [51]. It has been found that 
tumor cell infiltration of the lymph node of 
patients with Sézary syndrome expressed 
CCR10 in a different pattern within the distinct 
lymphatic microenvironments [51]. Tumor cells 
within the sinusoidal area of the lymph node 
showed high expression of CCR10, whereas 
those in the follicular area showed no expression 
[51]. Since there was no evidence that CCL27 is 
expressed in lymphatic tissue, most probably 
CCR10 would not play a direct role in tumor 
migration into the lymph nodes [51].

9.3.2  Gastrointestinal Tumors

9.3.2.1  Carcinoma
Colorectal cancer is the third most common can-
cer worldwide [100] (Fig. 9.4). There is no single 
predominant risk factor attributed to colorectal 
cancer, but epidemiological studies have identi-
fied family history of colorectal cancer, smoking, 
excessive alcohol consumption, high intake of 
red and processed meat, obesity, physical inactiv-
ity, and diabetes as risk factors, in addition to age 
and male sex [101, 102]. Five chemokines, one of 
them CCL27, have been independently associ-
ated with risk of disease, and elevated levels of 
CCL27 have been associated with increased 
colorectal cancer risk [103].

The relationship between chemokines and 
inflammation (chronic and acute) is well known. 
Inflammatory bowel disease is a well-known risk 
factor for colorectal cancer, suggesting a relation 
between chronic inflammation and malignant 
transformation [104]. These findings are also 
supported by the lowered risk associated with 
regular use of aspirin and other nonsteroidal anti- 
inflammatory drugs [105].

To elucidate the role of chemokines in colorec-
tal adenocarcinoma, some studies have been con-
ducted using cell cultures of cancerous human 
cell lines. The tumor microenvironment in 
colorectal cancer cells plays an important role in 
antitumor effector cells. CCL27 is expressed in 
colorectal cancer cell line HCT-116 [106] and 
seems to play a critical role in the tumor microen-
vironment, suggesting that HCT-116 colorectal 
cancer cells secrete chemokines that attract effec-
tor cells toward the sites of tumor growth permit-
ting them to perform their antitumor activity 
[106].

T cell recruitment and activation at tumor sites 
can be elicited by the intratumoral administration 
of CCR10 [107]. Intratumoral injection of 
CCL27 demonstrates that after stimulation with 
dimethyl fumarate or monomethyl fumarate, 
NK92 cells upregulate the expression of CCR10 
and migrate toward CCL27 [106]. Calcium fluxes 
are also important to initiate the chemoattracting 
process [106].

Th22 cells (a subset of CD4+ T cells) could be 
increased in peripheral blood and tumor tissues 
in several types of gastrointestinal tumors [46]. 
Th22 cells have several chemokines as their cor-
responding ligands, one of which is CCL27 
[108]. It has been demonstrated that the propor-
tion of Th22 cells is much higher in tumor tissues 
than in paratumoral tissues [46]. Furthermore, 
colorectal tumor microenvironment expresses 
higher levels of CCL27 compared with those of 
the paratumoral tissues, suggesting that the accu-
mulation of Th22 cells in tumor tissues may be 
mediated by chemotactic cytokines secreted by 
the tumor microenvironment [109]. In addition, a 
reduction in tumor growth by immune responses 
has been noted upon transfection of CCL27 into 
other tumors such as ovarian carcinoma cells 
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[65]. In the same way, neutralization of CCL27 
has been shown to cause a decline in leukocyte 
migration to cutaneous tumor sites, thus promot-
ing tumor growth [53].

9.3.2.2  Metastasis from Cutaneous 
Lymphoma

Extracutaneous localizations of mycosis fungoi-
des are rare and occur in long-standing mycosis 
fungoides with lymph node involvement [110]. 
Pancreatic metastases of mycosis fungoides have 
been described [111] in which chemokines seem 
to play a critical role.

A histological analysis of pancreatic tissue 
demonstrated that glucagon-secreting cells of the 
pancreatic islets expressed the CCL27 chemo-
kine. Mycosis fungoides cells are known to 
express CCL27 receptor CCR10 [110]. Therefore, 
CCL27 chemokine could attract mycosis fungoi-
des cells to the pancreatic tissue. It was also sug-
gested that CCL27 may be abnormally regulated 
in this case [110].

Fig. 9.4 Colonic 
adenocarcinoma with 
prominent 
pseudoglandular tubular 
differentiation (a, b, 
H&E staining)

9 CCL27 Signaling in the Tumor Microenvironment



124

9.3.3  Breast Tumors

Breast cancer is one of the most common cancers 
in women worldwide and accounts for approxi-
mately 15% of newly diagnosed cancers in 
women [112, 113].

Breast adenocarcinoma cells express CCR10 
[25], and some studies have shown that CCL27 is 
able to increase breast cancer cell invasion and 
migration (Fig.  9.5). However, knockdown of 
CCR10 attenuates CCL27-mediated cell invasion 
and migration [113] which demonstrates that 
CCL27 enhances breast cancer cell invasion and 
migration through CCR10 [113].

CCL27/CCR10 interaction dose-dependently 
induces ERK1/2 activation. The CCR10- 
mediated ERK1/2 activation increases MMP-7 
production and subsequently enhances breast 

cancer cell invasion and migration [113], whereas 
knockdown of CCR10 inhibits the CCL27- 
mediated ERK1/2 activation [113].

CCR10 expression has been associated with 
tumor stage, lymph node metastasis, and capsular 
invasion, suggesting that CCR10 could be 
involved in breast cancer cell invasion and metas-
tasis [113].

9.3.4  Nasopharyngeal Tumors

Nasopharyngeal carcinoma is one of the most 
common malignant neoplasms in South China 
and Southeast Asia. Its etiology includes Epstein- 
Barr virus infection, environmental and genetic 
factors, and dietary habits [114, 115].

Fig. 9.5 Breast carcinoma. Histological features of an 
invasive adenocarcinoma with ductal differentiation 
showing tubular and cribriform features (a, b) and CCL27 

immunostaining in most tumor cells (c, d) (a, b, H&E 
staining; c, d, immunohistochemistry with DAB as 
chromogen)
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CCL27 levels in serum could be important in 
the detection of nasopharyngeal carcinoma 
induced by Epstein-Barr virus infection. 
According to the literature, CCL27 levels seem to 
be significantly higher in Epstein-Barr virus- 
infected individuals than in uninfected normal 
subjects, whereas CCL27 is downregulated in 
nasopharyngeal carcinomas [116].

Epstein-Barr virus infection induces an immune 
response that, under normal conditions, would 
increase CCL27 levels for recruitment of T cells 
[117]; however, CCL27 concentrations may be lower 
in subjects with abnormal immune function [68].

It has been described that reduced levels of 
cytokines and chemokines, such as CCL27, could 
permit tumor cells to avoid the immune response 
[53]. Compared with normal skin, keratinocyte- 
derived cutaneous tumor cells may downregulate 
the expression of CCL27 via the epidermal 
growth factor receptor-Ras-MARK signaling 
pathway, thereby evading the T cell-dependent 
antitumor immune response [118].

Plasma CCL27 concentrations could effec-
tively differentiate patients with nasopharyngeal 
carcinoma from the capsid antigen-specific-IgA 
(VCA-IgA)-positive healthy donors [116]. 
Moreover, CCL27 may also distinguish between 
early-stage nasopharyngeal carcinoma patients 
and the VCA-IgA-positive healthy donors [116]. 
It is suggested that CCL27 could be used as a bio-
marker to identify nasopharyngeal carcinoma 
patients and serve as the complement of VCA- 
IgA titers [116].

The combination of traditional viral markers 
and cellular markers (CCL27) could provide a 
new and effective method for diagnosing naso-
pharyngeal carcinoma, with CCL27 comple-
menting the more traditional biomarkers [116]. 
CCL27 detection in plasma has the advantage 
that it can be achieved with good accuracy and 
reproducibility and does not require specialized 
equipment [116].

9.3.5  Salivary Gland Tumors

Adenoid cystic carcinoma of salivary gland is 
considered to be the second most frequent malig-

nant tumor of the salivary glands, with a slow and 
relentless growth, local recurrence, and frequent 
distant metastasis, mainly to the lung. The 
involvement of regional lymph nodes is relatively 
rare, unlike perineural invasion, which has a high 
incidence and can increase the risk of recurrence 
[119].

The main cause of mortality in salivary 
adenoid cystic carcinoma is the development 
of distant metastasis [120, 121]. Primary treat-
ment is complete surgical resection when pos-
sible and adjuvant radiotherapy. The role of 
chemotherapy is controversial. Due to a lack 
of specific targets for metastatic cells, treat-
ment of adenoid cystic carcinoma remains a 
challenge [119].

Chemokines also play an important role in 
adenoid cystic carcinoma. Lower expression of 
chemokines, including CCL27, has been associ-
ated with lower recurrence and/or perineural 
invasion [122]. These findings suggest that 
CCL27 may play an important role in the devel-
opment of tumor dissemination in salivary ade-
noid cystic carcinoma [122].

9.3.6  Brain Tumors

Glioblastoma is the most malignant primary 
brain tumor in humans (Fig. 9.6) and is char-
acterized by invasion of normal brain struc-
tures, poor survival, and resistance to 
treatment [123]. Various chemokine receptors 
are expressed in glioblastoma, including 
CCR10 [124]. As in other tumors, interaction 
of chemokines and their receptors may guide 
tumor growth and invasion in these tumors 
[124].

It has been demonstrated that CCR10 acti-
vation by CCL27 stimulation could promote 
glioblastoma cell proliferation and invasion 
[124]. Moreover, a high expression of 
CCR10 in glioma is crucial for tumor prolif-
eration, invasion, and progression [124]. 
These findings are also supported by the fact 
that CCR10 neutralization inhibited tumor 
growth in vivo [124].
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9.3.7  Eye Tumors

Uveal melanoma is the most common intraocular 
malignant tumor [125]. Primary tumor treatment 
is relatively successful, although nearly half of 
patients with uveal melanoma will develop meta-
static disease, mostly to the liver [126].

Weak expression of CCR10 and CCL27 has 
been described in the cytoplasm of uveal mela-
noma cells [127]. Furthermore, the role of CCR10 
and CCL27  in cutaneous melanoma is well 
known [128]. CCL27 is a skin-specific chemo-
kine and is expressed in primary metastatic desti-

nations of melanoma as in lymph nodes, lung, 
liver and bone marrow. In this regard, high 
expression of both CCR10 and CCL27 in cutane-
ous melanoma cells might increase their ability 
to grow, invade tissues and lymph nodes, and 
escape the host immune response [52].

A relationship can be established between 
some chemokines and progression in the meta-
static disease of uveal melanomas; however, in 
contrast to the results described in cutaneous 
melanomas, no clear association has been found 
between CCL27/CCR10 and metastatic spread of 
uveal melanomas to the liver [127].

Fig. 9.6 Glioblastoma 
with extensive necrosis 
(a), spindle and 
pleomorphic tumor cells 
(b) (a, b, H&E staining)
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9.4  Future Trends

Throughout this chapter, we have described the 
central importance of chemokines in the inflam-
matory response and tumor microenvironment. A 
wide range of therapies are now used in cancer 
treatment. Immunotherapy plays an important 
role, not only as rescue therapy in patients with 
no other possibilities but also sometimes as a 
first-line treatment. The challenge is to improve 
our understanding of the biology of chemokines 
and the role they may play in treatment.

The importance of chemokines in cancer 
immunotherapy is considered to be due mostly to 
their chemoattractant property for a variety of 
immune cells as well as their angiostatic activity. 
In addition, it is known that some tumor cells 
express a lower level of chemokines than normal 
cells [129].

Tumor-suppressive activity of several chemo-
kines, including CCL27, has been observed in 
several experimental tumor models using differ-
ent laboratory techniques such as the in  vitro 
transfection method [64].

In general, three criteria are required for the 
immunologic destruction of established tumors: 
(a) Sufficient numbers of immune cells with 
highly avid recognition of tumor antigens must 
be generated in vivo, (b) these cells must traffic to 
and infiltrate the tumor stroma, and (c) the 
immune cells must be activated at the tumor site 
to manifest appropriate effector mechanisms 
such as direct lysis or cytokine secretion capable 
of causing tumor destruction [130].

Regarding this three rules, we can deduce that 
not only the accumulation but also the activation 
of immune cells in tumor tissue is very important 
in cancer immunotherapy and the use of chemo-
kines could play an important role in this process. 
Several approaches combining chemokines with 
cytokines or costimulatory molecules have been 
studied and have resulted in the synergic enhance-
ment of antitumor activity as compared with the 
application of chemokines alone [131, 132]. 
Therapy directed at specific chemokine receptor 
pathways may enhance antitumor immunity and 
may be a useful treatment. [48].

Immune chemokines, which primarily target 
lymphocytes and dendritic cells, could be useful 
molecules to improve the efficacy of cancer 
immunotherapy by augmenting tumor- infiltrating 
immune cells [133].

As chemokines regulate leukocyte migration 
and infiltration of local sites, they may play an 
important role in increasing tumor-infiltrating 
immune cells in cancer immunotherapy. Recent 
studies in several murine tumor models have pro-
vided experimental evidence that introduction of 
chemokines into the tumor environment results in 
the recruitment of relevant leukocyte subsets and 
decreases tumorigenicity of malignant cells [64, 
65, 134].

However, most of these studies used ex vivo 
gene transfection methods that are not suitable 
for use within clinical settings, especially for the 
treatment of patients with established malignan-
cies, and few reports have shown that direct 
in vivo transduction with chemokine genes alone 
could induce complete regression of a preexisting 
tumor mass [133].

Chemokine CCL27 is a strong recruiter for T 
cells into tumor tissue [133]. Cellular immune 
responses, including the activation of NK cells 
and cytotoxic T lymphocytes, play a more impor-
tant role in the elimination of tumor cells by 
tumor immunity than tumor immune responses 
accompanied by antibody production from B 
cells [133]. The antitumor effects in the IL-12/
CCL27 combinational therapy have shown T cell 
dependence with the effector activity of CD8+ 
cytotoxic T lymphocytes, rather than with the NK 
activity, mainly contributing to the regression of 
the preexisting tumors [133]. Some studies have 
shown that chemoattractant activity of CCL27 to 
NK is directed by ligand-receptor interaction 
[37].

The use of CCL27 in studies using the ex vivo 
transfection model [134] demonstrated that it 
could attenuate tumorigenicity of murine ovarian 
carcinoma cell line (OV-HM) by augmenting 
tumor-infiltrating T and NK cells to promote 
antitumor efficacy and improve the safety of 
IL-12 gene therapy for established tumors [134]. 
Tumors injected with the IL-12/CCL27 combina-
tion showed more enhanced accumulation of 
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CD3 T cells than those injected with RGD fiber- 
mutant adenoviral vector (AdRGD)-IL12 alone 
[133].

Compared to ex vivo experiments using 
CCL27 gene transferred OV-HM cells, in which 
about 70% of tumors regressed completely, anti-
tumor activity was not achieved in vivo, although 
the intratumoral injection of AdRGD-CCL27 did 
induce a large accumulation of NK cells [37]. 
Similarly, recent studies provide experimental 
evidence that introduction of chemokines into the 
tumor environment results in the recruitment of 
relevant leukocyte subsets in vivo and decreases 
tumorigenicity of malignant cells [64]. 
Nevertheless, other results have suggested that 
the accumulation of immune cells in tumors does 
not induce notable tumor regression per se [37].

CCL27 may be an important mediator of vac-
cines against metastatic disease. It has been dem-
onstrated that decreased levels and interactions 
between CCR10 and CCL27 may play an impor-
tant role in vaccine-induced inhibition of tumor 
metastasis and survival improvement [55].

As previously documented, CCL27 chemo-
kine could play a very important role, not only in 
immunotherapy but also as a marker to facilitate 
and provide new and effective methods in diag-
nosis as, for example, in nasopharyngeal carci-
noma [116].

Chemokines seem to be an important factor in 
the tumor microenvironment and will constitute a 
potential and critical element in future immuno-
therapy treatments. In this chapter, we have dis-
cussed the importance of chemokine CCL27  in 
the tumor microenvironment, with specific focus 
on the most relevant subtypes of malignancies 
influenced by CCL27  in the development and 
progression of tumors. Further research into the 
CCL27 chemokine may open up new and inter-
esting perspectives for more effective therapies 
against cancer in the future.
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