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Abstract. In this work, we study the performance of the K-Nearest Neighbour
(KNN) based predictive model in sequential as well as parallel mode to observe
its performance both in terms of accuracy and execution time. We propose a
parallel KNN algorithm, called TUKNN to handle voluminous data. Based on our
experimental study, it has been observed that our method is capable of handling
datasets with large dimensionality and instances with high accuracy. We also
recommend best possible proximity measure and optimal range of K values for
better accuracy.

Keywords: Supervised · Feature · Parallel · Classification · Optimal

1 Introduction

With the proliferation of data being generated, there is an urgent need of new technologies
and architectures to make possible to extract valuable information from it by capturing
and analysis process. New sources of data include various sensor enabled devices like
medical devices, IP cameras, video surveillance cameras, and set-top boxes, which con-
tribute largely to the volume of big data. Due to data proliferation, it is predicted that 44
zettabytes or 44 trillion gigabytes of data will be generated annually by the end of 20201.
The data are continuously generated by the sources from internet applications and com-
munications which are of large size, different variety, structured or unstructured, which
is referred to as Big data. Big Data is characterized by three particularly significant V’s
-Volume, Velocity, and Variety. The term Volume signifies the plethora of data produced
from time to time by various different organizations and institutes. Velocity characterizes
the rate at which data is generated from different sources. The third V, Variety denotes
the diverse forms of data which may be structured, semi-structured or unstructured, gen-
erated from several organizations. For example, data can be in the form of video, image,
text, audio, etc. Apart from the mentioned characteristics above, two other key features
are–incremental and dispersed nature. They are incremental in the sense that there is
dynamic addition of new incoming data to the pile of big data. Big data are dispersed in
nature because they are geographically distributed across different data centers. These
are some of the distinguishing characteristics which sets big data apart from traditional

1 https://www.emc.com/leadership/digital-universe/2014iview/index.htm.
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databases or data-warehouses. The traditional data storage techniques are not adequate
to store and analyze those huge volume of data. In short, such a data is so large and
complex that most traditional data management tools are inadequate to store or process
it efficiently.

There are various challenges associated with big data. Such a large volume of data if
processed sequentially it takes lot of time. Second, how do we process and extract valu-
able information from the huge volume of data within the given timeframe? To address
the challenges, it is required to know various computational complexities, information
security, and computational method, to analyze big data. For example, many statistical
methods that perform well for small data size do not scale to voluminous data. Simi-
larly, many computational techniques that perform well for small data face significant
challenges in analyzing big data. Big data analytics is the use of advanced analytic
techniques against very large, diverse data sets that include structured, semi-structured
and unstructured data, from different sources, and in different sizes from terabytes to
zettabytes.

Predictive analysis gives a list of solutions by establishing the previous data patterns
for a given situation. It studies the present as well as the past data and predict what may
happen in the future or gives the probability what would happen in the future. We need
to make use of such large data in order to make decisions in future. However, traditional
machine learning and statistical methods in sequential mode takes much longer time
in order to make prediction, especially, in case of intrusion data [3]. In this work, a
traditional machine learning model–KNN with various proximity measures is studied
both in sequential and parallel manner.

The major contribution of this paper is a parallel version of the KNN algorithm
referred here as TUKNN. We also conduct an exhaustive experimental study on a good
number of proximity measures in the KNN framework and recommend the best possible
measure to achieve best effective, better accuracy with TUKNN algorithm. Further, we
also recommend an optimal range for ‘k’ values to achieve best possible performance.

2 Related Work

KNN is a non-parametric classification method, which is simple but effective in many
cases [5]. It classifies objects based on the closest training example in the feature space.
For any test object t which is to be classified, its K nearest neighbors are retrieved, and
this forms the neighborhood of the object t. Then based on a majority voting among the
neighbours, the class label of t is decided.

In [9], the authors use the CUDA (Compute Unified Device Architecture) thread
model to implement a CUDA based KNN algorithm. Adult data from UCI Machine
Learning Repository were used to compare the performance of CUDA based implemen-
tation on GPUwith ordinary CPU based implementation and authors suggests that KNN
method is efficient for applications with large volume of data.

In [8], the authors implement CUKNN algorithmwhich constructs two multi- thread
kernels such as distance calculation kernel and sorting kernel.With CUKNN, the authors
claims that the method could achieve 15.2 times better execution time performance than
CPU.
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In [2], the authors propose a fast and parallel KNN algorithm and show the impact on
content-based image retrieval applications. The authors implement the parallel version
of KNN in C and MATLAB using GPU with CUDA.

3 Proposed Work

KNN is a widely used classification algorithm and can be considered parallel friendly
because of the number of independent operations. When the training and testing datasets
are large, then the speed of execution becomes quite slow which makes it suitable for
parallel implementation. In this work, we implement KNN on CUDA framework. The
proposed framework is depicted in Fig. 1. In our framework, we explore a good no of
proximitymeasures in parallel during themining process to recommend the best possible
measure for better accuracy. The measures used are: Euclidean distance, Manhattan
distance, Kulczynski distance, cosine similarity, Chebyshev Distance, Soergel distance,
Sorensen, and Tanimoto.

Fig. 1. Framework of the proposed work

3.1 Distance Measures

Dissimilarity is an essential component in the KNN algorithm. It influences the per-
formance of the algorithm significantly in terms of speed and accuracy. Since, every
proximity (similarity or dissimilarity) measure has its own advantages and disadvan-
tages. So, we conduct an empirical study to evaluate their performance and subsequently
to recommend the best possible measure for cost effective performance with TUKNN.
Table 1 shows the distance measures and their mathematical expressions used in our
work.

Further, we also carry out an exhaustive experimentation on large no of datasets
by varying the K values to identify an optimal range of K values for best possible
performance by TUKNN. Next, we present both sequential and parallel version of KNN
algorithm.

3.2 Sequential KNN Algorithm

[1] For every fold in the 5 folds perform the steps 2 to 8.
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Table 1. Distance measures and their mathematical expressions [4, 11]

Measure & References Math Expression
Euclidean Dxy =

√
(
∑m

i=1(xi − yi)2)
Manhattan DManhattan(x, y) = |xi − yi|
Kulczynski Dkulczynski(x, y) =

(
∑

|xi−yi|)
(
∑

max(xi,yi))

Chebyshev DChebyshev(x, y) = maxi(|xi − yi|)
Cosine Sim(A, B) = cos(θ) = A.B

||A||||B||

Sorgel Dsg =
∑d

i=1
|Pi−Qi|

∑d

i=1
min(Pi,Qi)

Sorenson Dsoresnosn = 2|x.y|
|x|2+|y|2

Tanimoto Dtanimoto = x.y
|x|∗|x|+|y|∗|y|−x.y

[2] Split the dataset into test set and training set using 5-fold cross validation.
[3] For every test instance in the test set perform the steps 4 to 8.
[4] Find the distance between this test instance and all the training instances in the

training set.
[5] Now, from the distances obtained from the step 4, find the first maximumK number

of minimum values and thereby save the respective training instances having those
values. Here, the maximum K value in the range (of K values) is chosen for the
algorithm.

[6] For every K in a range of values perform the steps 7 & 8.
[7] Find the first K neighbors (i.e. the first K training instances with the minimum

distances) from the results obtained in the step 5.
[8] Perform a majority voting among these neighbors; the dominating class label in the

pool will become the class label of the test instance.

In step 5, instead of applying a sorting algorithm, we find the first K minimum distances
and their respective training instances. This has been done in order to decrease the time
complexity of the algorithm as the best sorting algorithm (Quick sort) takes O(N2) time
where finding the first K minimum distances takes O(NKmax) time. Here, N represents
the size of the input (training set) and Kmax is the maximum K-Value in a range chosen
for the algorithm.

3.3 The Proposed Parallel KNN Algorithm

The algorithm for parallel KNN implementation is stated below.

[1] For every fold in the 5 folds perform the steps 2 to 8.
[2] Split the dataset into test set and training set using 5-fold cross validation.
[3] For every n instances (2500) in the test set, perform the steps 4 to 8.
[4] Compute the distances between these n instances and all the training instances in

the training set simultaneously by invoking the GPU kernel.
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[5] Now, from the distances obtained from the step 4, find the first maximumK number
of minimum values and thereby save the respective training instances having those
values. The maximum K is the maximum K value in the range of K values chosen
for the algorithm. This step is performed for all these n instances simultaneously
with the help of the GPU kernel.

[6] For every K, perform the steps 7 & 8.
[7] Find the first K neighbors (i.e. the first K training instances with the minimum

distances) from the results obtained in the step 5.
[8] Perform a majority voting among these neighbors and the dominating class label

in the pool will become the class label of the test instance. The steps 6, 7 and 8 are
performed for all these n instances simultaneously by invoking the GPU kernel.

4 Implementation and Results

For the parallel KNN, we compute all the distances between a set of test instances
and all the training instances simultaneously. Hence, all the distances are computed in
parallel at once. To calculate distance between the test instances and all the training
instances in parallel, we use many cores of the GPU platform and develop the kernels
in CUDA to compute the task in parallel. The most crucial task for a KNN classifier is
to compute the distance d for finding the nearest neighbors. We implement the distance
computation i.e. d on GPU platform which has resulted considerable improvement in
the KNN performance.

The graphics card used in our work is NVIDIA Tesla k40c GPU Accelerator which
has a memory of 12 GB. So, with a memory of 12 GB, we are able to compute the
distance between 2500 test instances and all the training instances in the training set
simultaneously on the GPU.

4.1 Datasets Used

We perform our experimentation on the following three types of datasets.

1. Ransomware Dataset: For our experiment, we use a dataset from Sgandurra et al.
[10]. The dataset has total 582 and 942 instances of ransomware and goodware
respectively. The 582 instances of ransomware comprise of 11 different variants.
Also, it has total 30,692 features which collectively represent the characteristics of
both goodware and ransomware. A detailed description of the dataset is given in the
Table 2.

2. SWaT Dataset: Secure Water Treatment [1] (SWaT) data set is also used in our
experimentation. The dataset contains a total of 946,722 instances out of which
54,620 instances belong to attack category. The dataset has 51 attributes and two
labels namely attack and normal.

3. UCI datasets: A total of 20 datasets is also used in our work. The list of datasets
used are given in the Table 3.
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Table 2. Ransomware dataset characteristics

Sl no Class No of samples

1 Goodware 942

2 Critroni 50

3 CryptLocker 107

4 CryptoWall 46

5 KOLLAH 25

6 Kovter 64

7 Locker 97

8 MATSNU 59

9 PGPCODER 4

10 Reveton 90

11 TeslaCrypt 6

12 Trojan-Ransom 34

Total samples:
1524

Total features:
30962

4.2 Results and Observation

In our framework, an optimal range for K values is determined based on experimental
study on twenty datasets from UCI Machine Learning repository. This testing reduces
the overhead of calculating the best possible K values for highest accuracy and makes
our model faster. As we can see form the Table 4, in the majority cases (15 out of 20) the
results show optimal K values within the range of 2–9. Table 5 shows the ratio of CPU
and GPU execution time for all the datasets used in our work. The optimal K value of
each proximity measures for which highest accuracy is obtained is reported in Table 6,
7 and 8.

4.2.1 Accuracy Comparison

The graph plots for the accuracy comparison for three datasets are shown below.

1. Accuracy of Binary Class Ransomware Dataset:The classification accuracy of KNN
algorithm with all the eight distance measures of ransomware dataset with binary
class is shown in Fig. 2. As shown in the figure, the highest accuracy i.e., 95.27 is
obtained with Kulczynski, Soergel, Sorenson, and Tanimoto measures.

2. Accuracy of Multi Class Ransomware Dataset: In this study, our observation from
Fig. 3 is that 82.32 is the highest accuracy given by KNN with Kulczynski measure.
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Table 3. Characteristics of 20 datasets obtained from UCI repository

S.I. Dataset name No of instances No of features

1 Absenteeism at
work

740 21

2 Audit 777 18

3 Banknote
authentication

1372 5

4 Blood transfusion 748 5

5 Cardiotocography 2126 23

6 Diabetic debrecen 1151 20

7 Ecoli 336 8

8 Glass identification 214 10

9 Haberman 306 3

10 Hill valley 606 101

11 ILPD 583 10

12 Image
segmentation

2310 19

13 Immunotherapy 90 8

14 Ionosphere 351 34

15 Iris 150 4

16 Libras 360 91

17 LSVT 126 309

18 Parkinson 756 754

19 Sonar 208 60

20 Soya bean 47 35

Fig. 2. Accuracy of ransomware dataset (binary class)
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Fig. 3. Accuracy of ransomware dataset (multi class)

3. Accuracy of SWaTDataset:Based on our study as depicted in Fig. 4 is that the model
give same accuracy for all the eight measures i.e., 94.1 for this dataset. However, a
difference in performance has been observed after 4th decimal (not reported here).

Fig. 4. Accuracy of SWaT dataset

4.2.2 Comparison of KNN and TUKNN in Terms of Execution Time

(a) KNN vs TUKNN Time Comparison for Binary Ransomware Dataset: The execution
time comparison of KNN and TUKNN for binary ransomware dataset is shown in
Fig. 5. It is clear from the figure that TUKNN performance is significantly better
than KNN.

Fig. 5. Time comparison for 2-class ransomware dataset: a) KNN and b) TUKNN
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Table 4. K values to achieve maximum accuracy

S.I. Dataset name No of instances No of features Value of K Max Avg accuracy

1 Absenteeism at
work

740 21 8 30.20%

2 Audit 777 18 3 93.70%

3 Banknote
authentication

1372 5 4 100%

4 Blood transfusion 748 5 8 76.50%

5 Cardiotocography 2126 23 37 98.40%

6 Diabetic debrecen 1151 20 8 67.40%

7 Ecoli 336 8 8 79.00%

8 Glass
identification

214 10 17 53.40%

9 Haberman 306 3 39 77.40%

10 Hill valley 606 101 3 54.70%

11 ILPD 583 10 49 70.90%

12 Image
segmentation

2310 19 2 65.20%

13 Immunotherapy 90 8 5 78.60%

14 Ionosphere 351 34 3 83.20%

15 Iris 150 4 2 96.00%

16 Libras 360 91 3 11.50%

17 LSVT 126 309 50 65.90%

18 Parkinson 756 754 10 74.60%

19 Sonar 208 60 4 46.30%

20 Soya bean 47 35 2 98.00%

Fig. 6. Time comparison for multi-class ransomware dataset: c) KNN and d) TUKNN
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(b) KNN vs TUKNN Time Comparison for Multi-Class Ransomware Dataset: Fig. 6
shows the performance comparison of KNN and TUKNN for multi class ran-
somware dataset. It is quite clear that TUKNN performance is much better than
the KNN.

(c) KNN vs TUKNN Time Comparison for SWaT Dataset: In Fig. 7, it is clear that
TUKNN implementation is significantly advantageous overKNN for SWaTdataset.

Fig. 7. Time comparison for SWaT dataset: e) KNN and f) TUKNN

Table 5. Ratio of CPU and GPU time (in seconds)

S. no Proximity
measures

Ransomware dataset SWaT dataset
Binary class Multi class Binary class

1 Euclidean
distance

65.94 75.2 144.96

2 Manhattan
distance

48.94 59.62 130.98

3 Chebyshev
distance

40.86 50.19 129.37

4 Cosine
similarity

94.59 100.9 237.05

5 Kulczynski
distance

87.49 100.94 181.95

6 Soergel
distance

89.63 104.06 187.25

7 Sorenson
distance

39.07 42.95 172.38

8 Tanimoto
distance

35.68 38.95 152.41

9 Motyka
distance

70.91 77.21 193.68

10 Ruzicka
distance

56.71 51.85 163



TUKNN: A Parallel KNN Algorithm to Handle Large Data 11

Table 6. Optimal ‘K’ values for proximity measures for 2-class ransomware dataset

Proximity
measure

Optimal ‘K’ value Accuracy

Euclidean 3 92.64
Manhattan 3 92.64
Kulczynski 3 95.27
Chebyshev 2 69.66
Cosine 7 61.9
Soergel 3 95.27
Sorenson 3 95.27
Tanimoto 3 95.27

Table 7. Optimal ‘K’ values for proximity measures for n-class ransomware dataset

Proximity
measure

Optimal ‘K’ value Accuracy

Euclidean 2 79.24
Manhattan 2 79.24
Kulczynski 3 82.32
Chebyshev 2 67.03
Cosine 8 61.78
Soergel 2 80.95
Sorenson 2 63.88
Tanimoto 2 63.88

Table 8. Optimal ‘K’ values for proximity measures for SWaT dataset

Proximity
measure

Optimal ‘K’ value Accuracy

Euclidean 9 94.08
Manhattan 9 94.08
Kulczynski 9 94.08
Chebyshev 9 94.08
Cosine 9 94.08
Soergel 9 94.08
Sorenson 9 94.08
Tanimoto 9 94.08
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5 Conclusion

Our study reveals that Kulczynski distance and Soergel distance are adequate with KNN
to handle 2-class ransomware dataset with high classification accuracy. However, in case
of multi-class data handling, although these two proximity measures have been found
to assist winning performance in comparison to its other counterparts, the classification
accuracies are relatively less. Interestingly, for SWaT dataset, among eight proximity
measures, six measures such as Euclidean, Manhattan, Kulczynski, Cosine Similarity,
Chebyshev, and Soergel distance are giving equal winning performances.

Out of all the computations performed, the Chebyshev distance for the bi- nary
classification of Ransomware Dataset is least benefitted from the usage of Py-CUDA
where GPU computation is only 40.86 times faster than the CPU computation and the
Cosine Similarity for the classification of SWaT Dataset is highly benefitted from the
usage of Py-CUDA where the GPU computation is 237.5 times faster than the CPU
computation.

When dealing with the binary classification of the Ransomware Dataset using the
KNN model, if accuracy is of high priority, then usage of Kulczynski or Soergel Dis-
tance is recommended. Similarly, when dealing with the multi-class classification of the
Ransomware Dataset, if accuracy is of high priority, then usage of Kulczynski Distance
is recommended. When dealing with the classification of the SWaT Dataset with high
accuracy, usage of any of these six proximity measures is recommended. But if both the
accuracy and the computational time are of high priority, then the usage of theManhattan
Distance is a better option to go with.

Also, we recommend K values ranging from 2 to 9 for best possible accuracy for all
the datasets used in the study. An exhaustive experimentation was also carried out for
optimal feature selection based on some prominent feature selection algorithms [6, 7].
The performance of TUKNNwith the optimal feature subset has been found significantly
better than the present performance. However, due to lack of space, those results are not
reported.
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