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Abstract Albeit the cyber world has become an essential part and the lifeline of the
present day, there are threats associated with it. People access the cyber world for
various services like networking, banking, communication, shopping, and for other
uses. Malware is one of the primary and perilous threats among malevolent software
for the decades in the cyber and the computing world. Due to its magnification in vol-
ume and in complexity, malware and its variant identification and classification are
the most central and severe problems nowadays. Since malware inception, more and
more malware is engendered and designed, as time passes; more intricate malware is
designed enormously. Researchers and analysts are perpetually probing for a solu-
tion that is the most efficacious to fight back with malware. The most-famedmethods
utilized for malware analysis is signature-based detection, static, and dynamic analy-
sis. In recent years, signature-based detection has been proven ineffective against the
escalation ofmalware and its variants.Malware classification is attractingwidespread
interest due to its vast proliferation. In this chapter, we have chosen to discuss and
explore another method of malware analysis that is image-based malware analysis
utilizing deep learning. We are specifically discussing malware classification utiliz-
ing malware visualization and deep learning, one of the most widely implemented
techniques in many real-world applications. To better understand the concept from
a practical perspective, we additionally discussed and implemented a fundamental
level malware classifier, for the reader’s further research and study purpose. The
main objective of this chapter is to avail readers a better and in-depth understand-
ing of malware classification, visualization, deep learning algorithms and emerging
challenges, open issues.
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1 Malware and Malware Analysis

In this section, we are discussing what is malware, what is malware analysis, what is
malware classification, how we visualize malware, etc. This section is prodigiously
needed and avails readers to better understand the malware analysis and malware
classification.

1.1 Malware

To efficaciously understand and analyze malware, you should be familiar with it.
Malware is an abbreviation formalicious software (malicious software is an umbrella
term used to refer a variety of forms of inimical software or programs) intending to
access information, resources without the user’s notification, and sanction. Malware
is any code that performs inimical.Malware infections are among themost frequently
encountered threats in the digital and computing world. Malware is additionally
utilized for obtaining a password, obtaining confidential data; additionally, they are
acclimated to trap the government. The malware is mall functioning software that is
found on the computer systems. Malware and other threats are defined as specially
indited programs to perform deleterious activities. An assailant designs malware to
compromise computer services, access data, bypass access controls, and affects the
functioning of a computer, its applications, or data.

The accelerated growth of devices in the cyber world has designated a massive
obstruction in front of malware analysts, researchers, and additionally for antivirus
companies. Assailants utilize the cyber world for illegitimate activities to commit
financial frauds, to gain access to sensitive and personal information, to gain access
for systems and networks. In recent years, there has been an expeditious increase in
Internet attacks [7, 8]. The researchers and analysts customarily suggested security
mechanisms and designed novel methods to fight malware and its variant attacks.
There has been a great amendment in the design of malware. Afore the termmalware
was coined, all the malignant programs were considered under the term computer
virus. Malware is an umbrella term for any program that contravenes the confi-
dentiality, integrity, and availability of accommodations, contrivances, networks, or
systems.

The list below provides an overview of variants of malware based on malware’s
behavior includes Trojans, viruses, worms, rootkits, botnets, phishing, spam, spy-
ware, key loggers, logic bombs, etc.

Adware is kenned as advertisement software. Adware is the designation given
to those programs which are designed to exhibit advertisements on your com-
puter when you explore the cyber world, and then redirect your search requests
to advertising websites and accumulate information about you and your inter-
est. Adware is considered as malevolent because it amasses data without your
consent or sanction. It is a type of malware that automatically distributes adver-
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tisements. Advertising-fortified software often comes bundled with software and
applications and most of them serve as a revenue tool.

Virus A computer virus is a malevolent program that cyber attackers program
to reproduce in massive amounts and affects the functioning of a computer and
degrades its performance. It is also known as infectors. It conventionally does so
by assailing and infecting subsisting files on the target system and from one host to
another. Viruses must execute to do their deleterious task, so they target any type
of file that the system can execute. A virus is a software program that modifies
other programs and affixes itself to their code. A virus can run by itself; they
perform intended malevolent activities when the infected program is executed.

Spyware Abbreviated for spy software (software that spies on a computer system).
It is programmed to monitor and record browsing data as well as confidential
information and other activities. It is a type of malware that spies and tracks
utilizer activity without their erudition. The capabilities of spyware can include
keystrokes accumulation, financial data harvesting, or activity monitoring.

Worm Functionally virus and worms are homogeneous.Worms are infectious and
spreads. Assailers design worms to replicate themselves like a virus. However,
a worm replicates without targeting and infecting specific files that are already
present on a computer. They utilize a computer network to spread, relying on
security failures on the target computer to access it, and steal or delete data.Worms
are network viruses that can spread over the network by duplicating themselves.
They do not transmute or ravage the user’s files but they reside inmainmemory and
duplicate themselves, and by this theymake the system and network unresponsive.

Trojan A trojan or trojan horse is a maleficent program that represents its utilizer
to be appearing utilizable and innocuous files or legitimate software. Attackers
distribute trojans as routine software, game, or an implement that persuades a
utilizer to install it on their computer. The denomination is derived from the ante-
diluvian Greek story of the wooden horse that used to march into the city of
Troy by stealth. Trojan horses are just as pernicious on computers and consid-
ered destructive. Cybersecurity experts consider trojans to be among the most
hazardous types of malware, concretely trojans are designed to glom financial
information from users.

Key logger A keystroke logger, or key logger, captures keystroke ingressionmade
on a computer by the utilizer, often without the sanction or erudition of the uti-
lizer. Key loggers have legitimate uses as a professional information technology
monitoring tool . However, keystroke logging is commonly utilized formalefactor
purposes, capturing sensitive information like usernames, passwords, answers to
security questions, and financial information.

Rootkit A rootkit is a set of software tools, typically malevolent, which gives an
unauthorized utilizer privileged access to a computer. Once a rootkit has been
installed, the controller of the rootkit can remotely execute files and transmute
system configurations on the host machine. Rootkits cannot self-propagate or
replicate. They must be installed on a device.

Bots and Botnets Additionally kenned as robots. Bots are maleficent programs
designed to infiltrate a computer and automatically respond to and carry out
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Fig. 1 Malware evolution
statistics

instructions received from a central command and control server. Bots can self-
replicate (like worms) or replicate via user action (like viruses and trojans).

Ransomware Ransomware is a type of malware that locks the data on a vic-
tim’s computer, typically by encryption. The cybercriminal behind the malware
demands payment afore decrypting the ransomed data and returning access to the
victim. The motive for ransomware attacks is proximately always monetary, and
unlike other types of attacks, the victim is conventionally notified that an exploit
has occurred and is given instructions for making payment to have the data reno-
vated to normal. It is a type of malignant software that essentially restricts utilizer
access to the computer by encrypting the files or locking down the system while
injunctively authorizing a ransom. Users are forced to pay the malware author to
remove the restrictions and gain access to their computers.

1.1.1 Current Scenario of Malware Magnification

This section deals with the current scenario of the magnification of malware and its
variants.We can see from Fig. 1 that the number of attacks is growing every year. The
number of malware found perpetual to increment because malware and its variants
can be engendered utilizing automated tools and reusing code modules. Reports
from different antivirus companies limpidly describe that number of malware, and
its variants are incrementing expeditiously.

A report from the av-test institute verbalized that in the period 2011- august 2020,
1050.82 million malware were recorded [7] and 10.87 million new malware were
reported in the month August 2020 Fig. 2.

One more report fromMcAffe antivirus company placidly describes the statistics
of malware evolution, millions of malware and variants are discovered [8].

There are many more reports from different antivirus companies conspicuous the
fact that malware and its variant assailments are incrementing every year and besides
malware, reports additionally present the current scenario of attacks of Internet of
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Fig. 2 New malware
evolution statistics

Things (IoT) malware, mobile malware, and withal an expeditious increase is in
ransomware recently. With these statistics, manual malware analysis is not feasible
anymore; it does not scale to handle this enormous count of malware that’s why the
process of malware analysis needs to be automated. This is discovered or reported
malware and its variants. It does not account formalware that has not been discovered
or reported yet. There could be millions more out there that are still relishing the
comfort of not being detected

1.1.2 Malware Family

Amalware family is a group ofmalware that comports and functions in the sameway.
A family can be divided into different variants, especially if an incipient malware has
different functionality and structure than the precedent ones. Malware family is the
term utilized for the malware samples that belong to the same family designates they
apportion their code or can have homogeneous code, capabilities, damage potential,
inchoation, or behavior. Malware family betokens that incipient malware is designed
by utilizing antecedent malware so we can group them in a single malware family.

For example, the Loylda family refer Table 1 of malware has four known vari-
ants: Loylda.AA1, Loylda.AA2, Loylda.AA3 and Loylda.AT,malware samples from
malimg dataset [19].

1.1.3 Threats From Malware

The damage caused by malware depends upon it, whether it infected a computer, a
business organization or whole network. The consequences of the damage caused by
malware depend upon the type of malware. There are many threats associated with
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variants of malware, such as some malware interrupts the services of the system and
operating system, some accesses file system without sanction, some access user’s
confidential data, some perform a denial of accommodation attacks, some minimize
the space of a system, effacing,misplacement and corrupts files, some access systems
resources, they additionally decelerate the process of the system, engender multiple
shortcuts, automatically consumes an abundance of space in the system and trun-
cating the recollection of the system. Malware greatly affects the functionality of
computers and networks. Malware additionally causes hardware failure.

1.2 Malware Analysis

Malware analysis is the process of inspection and dissection of the functionality,
purport, inception, and potential impact of malevolent code. In another way, it is
the process of extracting cryptic information from malware code through static,
dynamic, or hybrid inspection by utilizing tools, techniques, and methods. The data
that is extracted from malware can be simple like its file type, strings to more
perplexed information like malfeasance. Malware analysis denotes analyzing and
inspecting binaries of malignant code to understand its working and finding methods
for identification and classification of homogeneous files. Attributes or properties of
data/samples, and these attributes are analyzed to engender paramount insights into
the data under analysis. We accumulate features from malware binaries.

For example, in the facial detection system, the features would be shape, size,
color, and structure of eye perceivers, nose perceiver and inmalware analysis, features
can be strings from the malware binaries, application programming interface (API)
call sequences, n-grams, etc.

1.2.1 Traditional Approaches

The investigation ofmaleficent code is done traditionallymainlywith static, dynamic,
and hybrid analysis. Traditional approaches Fig. 3 such as static, dynamic, or hybrid
analysis extract separate levels of features from malignant samples for identifica-
tion and relegation, which cannot perform efficiently and accurately. The utilizations
of deep learning for malware classification offers an expedient of building scalable
machine learning models, which may handle any scale of data, without expending
of resources such as memory. Deep learning marks malware depend on the gen-
eral pattern, which directs the distinguishing of a variety of malware attacks and
their variations. Furthermore, deep learning conducts a profound classification and
improves its accuracy because deep learning identifies more features than conven-
tional machine learning methods by passing through many calibers of feature extrac-
tion. This enables deep learning models to acquire an incipient pattern of malware
after the fundamental training phase.
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Fig. 3 Traditional malware analysis approaches

1.2.2 Features and Feature Engineering

The performance of any classification, prediction, and recognition system is closely
dependent on feature. In machine learning, features are learned manually or we
can say that hand-crafted features are used. They dominate the past on image- and
video-based applications. There are many disadvantages associated with this feature
learning like deep knowledge of data for feature extraction; feature extraction and
classification were two different modules, where hundreds of features crafted for
applications, feature dimension is high and to select optimized features from feature
vector is a slow process.

Traditionally malware was identified and analyzed by utilizing the following
approaches.

1.2.3 Static Analysis

It refers to the analysis or investigation of a malignant program without executing
it. It is the process of extracting information from malware while it is not executing.
Static analysis can be performed directly with the actual code (if present) and if not,
can be applied to sundry representations of executables. Static analysis is considered
the most facile, expeditious, and less precarious analysis process. It is the most facile
and expeditious because there are no special conditions and requisites needed for
the analysis process. The malware is simply subjected to analysis implements. It is
less jeopardous because the malware is not executed during analysis; consequently,
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there is not at all any jeopardy of an infection yielding and spreading while analysis
is going on, and we do not worry about engendering a safe environment for static
analysis. The patterns detected in this kind of analysis include string signature, byte-
sequence or operation codes (opcodes), frequency distribution, byte-sequence n-
grams or opcodes n-grams, API calls, the structure of the disassembled program, etc.
The terminus goal is to identify malware afore the program goes under assessment.
Disassembly ofmalevolent programs is required to detect the patterns some prevalent
disassembly implements are objdump, IDA Pro, etc. Static analysis is considered to
be a less profit method of analysis as the data extracted from the static analysis
is less promising because data is amassed when malware is in passive mode (not
executing). Data extracted is constrained and not reveal much paramount information
about malware. Prevalent techniques applied in the static analysis are flow analysis,
string analysis and signature analysis.

1.2.4 Dynamic Analysis

Dynamic analysis is the process of extracting data frommalwarewhile it is executing.
It refers to the analysis of the deportment of a malevolent program while it is being
executed in a controlled environment (virtual machine, emulator, sandbox, etc) to
identify inimical activities after the program executes. The demeanor is monitored
by utilizing implements like processmonitor, process explorer, wire shark, or capture
bat. This kind of analysis endeavors to monitor system calls, injunctive authorization
trace, function and API calls, the network, the flow of information, etc. Unlike the
static analysis, which provides inhibited information from the malware being ana-
lyzed, the dynamic analysis offers an in-depth view into the malware’s functions and
comportment because it is accumulating information while the malware is executing.
To conduct dynamic analysis we require two things, first is the environment where
we can execute malware is in a controlled manner for the analysis purport and second
is analysis implements that monitor and records the environment for any vicissitudes
made by the malware to its target system. Unlike static analysis, dynamic analysis
is considered to be highly jeopardous but paramount, or high-profit process. The
peril of infection, spreading, or something inimical transpiring is high because the
malware is executing; the profit is high because the data extracted from malware
reveals more of itself during execution. In the dynamic analysis, we are probing for
the following vicissitudes in registry activity, network traffic activity, process, and
file activity. Some prevalent dynamic analysis implements are process monitor, wire
shark, capture bat, anubis, etc.

1.2.5 Hybrid Analysis

The hybrid analysis technique includes consolidating static and dynamic features
accumulated from examining the application and drawing data while the application
is running, discretely. Nevertheless, it would boost the precision of the identification.
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The principal drawback of hybrid analysis consumes the system resources and takes
a long time to perform the analysis. The hybrid analysis amalgamates the traits of
static and dynamic analysis for expeditious analysis and better results.

1.2.6 Comparison

Static analysis cannot detect unknown malware and its variants. Compared to static
analysis, dynamic analysis is more efficacious and does not require the executable
to be disassembled but on the other hand, it takes more time and consumes more
resources than static analysis, being more arduous to scale. One more issue is as
the controlled environment in which the malware is monitored is different from the
genuine one, the program may comport differently because some deportment of
malware might be triggered only under certain conditions such as via a concrete
command or on the concrete system date and in consequence, cannot be detected
in a virtual environment. In static analysis, data extraction is effective only if the
malware is free from any type of encryption or obfuscation. Dynamic analysis is all
about making the malware prosperously run in a controlled environment. Therefore,
its circumscription is because of the different malware dependencies like time, event,
program, etc. Static analysis can facilely be subjugated by a packed and encrypted
file. This is why file unpacking and decryption are paramount in the fight against
malware. Static analysis reveals some immediate information about malware but
it is expeditious, exhaustive analysis more in-depth information but it is hard and
time-consuming.

Malware analysis is a highly manual and laborious task, additionally requires
analysts to have expertise in software internals and reverse engineering. Data min-
ing and machine learning have shown promise in automating certain components
of malware analysis, but these methods still rely heavily on extracting paramount
features from the data, which is a nontrivial task that perpetuates to require practi-
tioners with specialized skill sets. As the number of devices connected over the cyber
world increases parallelly the attacks additionally increase exponentially. In reality,
malware analysis does not reveal most of the information from the malware because
of the known limitation of the malware analysis process.

1.3 Malware Classification

We now shift our discussion toward the main topic of this chapter that is malware
classification and identification. In general, malware classification is defined as to
group or classify malware together predicated on some mundane properties like
they apportion homogeneous code, same potential damage, their inceptions, etc. In
more simplewords, classification is the process of assigning an object to a category or
class. Classification refers tomethods for presaging the likelihood that a given sample
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belongs to a predefined class or category, like whether a piece of email belongs to
the class “spam” or a url is benign or malignant.

Malware can be classified in many ways such as depending on task, inception,
authorship, damagepotential, etc. In general,malware samples are groupedby family.
Malware samples that show homogeneous functionality, structure with little differ-
ences are grouped under one roof and referred to as they belong to the same malware
family. Classification is the prediction of incipient samples into its class whereas
clustering is about discrimination of one group of samples from other groups. Clas-
sification is supervised whereas clustering is unsupervised. Classification examples
are like to classify the taste of food as good or bad, to classify the thoughts or thinking
as right and wrong, etc.

The prevalent term for non-maleficent files is a benign file. These are the examples
of a binary classification problem one with only two output classes, “spam” and “not
spam,” “botnet” or “benign.” By convention, samples that possess the attribute we
are investigating (e.g., that an electronic mail is spam) are labeled as belonging to
class “1” while samples that don’t possess this attribute (e.g., mail that is not spam)
are labeled as belonging to the class “0.” These 1 and 0 class labels are often referred
to as positive and negative cases, respectively.

Classification is a puissant and efficacious supervised learning model that can be
appliedproductively to a broad rangeof security andother quandaries. The algorithms
used to perform classification are referred to as “classifiers.” There are numerous
classifiers available to solve binary classification problems, each with its strengths
and impotencies. By the definition of malware classification, one can be confused
with the identification of anygivenfile asmalicious andnon-malicious.One should be
kept in mind that malware classification includes the identification and classification
ofmalicious and non-malicious files. Sowe can conclude that a given arbitrary binary
file identified or classified as benign or malware comes under malware classification.
This classification is utilized to determine whether a binary is malicious or not.

1.3.1 Classification Steps

A classification typically proceeds through the following steps:

1. A training/learning phase: In this phase, an analyst builds a model and applies
a classifier on the training inputs. Training data consists of two things, data or
samples, and its associated labels/class.

2. A validation phase: This phase is applied to assess the training performance on
validation data. The validation phase is optional but researchers and analysts
vigorously suggest utilizing the validation phase. In this, training data is split into
two sets, one is for training and the second is for validation. Training is done on
training data and to assess the training performance (customarily accuracy) we
apply validation data on training.

3. A testing phase: To assess the performance of the deep learning model, we apply
testing data on the classifier and monitor the classifiers prognosticated labeled
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with an authentic or ground-truth label of test samples. The test precision is the
overall precision of the model. test data is not optically discerned afore data.

1.3.2 Why Malware Classification?

Malware and its variant detection and classification have become one of the most
adverse quandaries in the field of cybersecurity and the digital world. The daily
increase of malware and its variants is a rigorous quandary of malware analysis. The
main quandary with malware analysis is that the number of attack files submitted to
antivirus companies for the investigation purpose is enormous. It is virtually infea-
sible and arduous to analyze each file manually, so there is a desideratum for some
automation system and implements to analyze these files efficiently with less human
intervention and efforts.

In the cybersecurity domain, traffic classification as malicious and benign is con-
sidered the first step toward security. By classifying malware into their respective
families is helpful to analyze samples of a given family by human experts and some
defensive measures can be proposed to mitigate malware attacks. Features or charac-
teristics are extracted from themalware binaries utilizing data extractionmethods and
implements. The attack of malware and its variants is not only inhibited to the cyber
world, it is withal affecting the IoT networks, mobile networks, and contrivances.
Researchers and analysts commenced to explore malware analysis utilizing deep
learning and visualization techniques in IoT, mobile, and cloud infrastructure.

1.3.3 Why Malware Visualization?

Malware visualization is the process of visualizing malware binaries as images—
examples are given in Fig. 4. Visualization avails to visualize kindred attributes and
distinctions between two variants of the same family. Visualization is efficacious
in the representation of internal structure kindred attribute of malware. Malware
binaries are ready to run or executable programs referred to as binary files and has
an extension of .bin or .exe .

As we can visually perceive from Fig. 4 that malware from the same malware
family exhibits the same internal structure while malware from different malware
families has a different internal structure. This is the prevalent advantage of visual
malware as an image and it avails in classifying malware. The advantage of images
utilized in visualization is that they can give more in-depth information about the
internal structure of the malware binary code and could identify even small changes
in code while retaining the whole structure of the code.
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Fig. 4 Visual representation of malware

1.3.4 Challenges of Malware Classification

Here we are going to discuss the challenges that are reported during the study of
malware analysis. One of the most sizably voluminous challenges is that every-
day millions of malware are being designed and the complexity to detect this mas-
sive amplitude of sophisticated malware are very difficult to identify. Traditional
approaches for malware analysis were very tedious and manual intervention was
required for analysis. Obfuscation techniques present most immensely colossal hur-
dle and one of the major factors which affect the analysis of malware. Scalability
is one of the major challenges in the malware defense system as the number and
variety of malware are kept incrementing. Classification algorithms and models can
engender precise results on propitious conditions but this case is not possible in the
genuine world. To obtain a dataset for training and testing that is sizably voluminous
and accurately labeled is arduous. The number of samples in each class additionally
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affects the relegation precision. The classifier’s performance is highly dependent
upon the ample quantity of labeled data. Overfitting and underfitting are two well-
kenned quandaries associated with the classifier’s performance. There is not a single
performance measure that is used to assess the performance of the classifier; there
are varieties of measures available like accuracy, precision, f1 score, roc curves, etc.
Deep learning is about deep neural networks and neural networks have a variety of
hyper parameters that affects the models or classifier’s performance like the num-
ber of hidden layers, number of neurons per layer, learning rate, dropout, etc. Some
features extracted from malware samples have high dimensionality, which denotes a
more involutes system and incremented processing time. One of the latest emerging
threat in malware analysis is the file less malware [10], it does not utilize the file
system for its malevolent activities, thereby eschewing traditional approaches and
became one of the hurdles in malware analysis.

2 Deep Learning

In this section, we are discussing what is deep learning, what are different deep
learning algorithms, how is the deep learning model defined? The topic is briefly
explicated to relate with the malware classification.

2.1 What is Deep Learning?

Deep learning is a sub-branch of machine learning and its functioning is inspired
by the structure and function of the brain called neural networks. Deep learning
refers to the set of techniques utilized for learning in neural networks. It refers to
deep, or many-layered, neural networks withal kenned as deep neural network. Deep
learning is about learning abstract representations of data or observations utilizing
network layers that avail to make sense of some kind of hidden patterns, features of
data like images, sound, and text. In pursuing malware analysis and lowering human
intervention, deep learning has been introduced intomalware analysis. Deep learning
depends on studying various levels (from low level to higher level) of representations,
where top-level features (for example, face) are tenacious from lower level ones (like
edges, curve, etc.), and similarly lower- level features avail in determining numerous
top-level features.

2.1.1 Machine Learning

Machine learning is defined as the subfield of artificial intelligence. The goal of
machine learning is to understand the data and build a numerical model, fit that data
into a model that can be understood and utilized by the user.
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Antivirus companies commenced to utilize modern classification techniques
dependent on data mining and machine learning methods. All the methods either
data mining or machine learning approach dependent upon the extraction of features,
applying more clever frameworks or classifiers for classification purposes. The dis-
advantage of machine learning is that it requires manual feature extraction. Many
authors applied support vector machine (SVM) classifier, naÃ¯ve bayes classifier, or
mixed classifiers to classify malware.

2.1.2 Shallow and Deep Learning

Deep learning is a subfield of machine learning, concerned with functionality and
structure inspired by the human brain called artificial neural networks. The term
“deep” in deep learning isn’t a reference to any kind of in-depth understanding
achieved by the approach; rather, it stands for conception and number of stacked
layers of representations of the input. How many layers contribute to a deep learning
model of the input data is called the depth or deepness of the model? The term
shallow learning algorithms are normally referred to as traditional machine learning
algorithms. It refers to algorithms that are not deep in architecture, e.g., decision
trees, support vector machines, naive bayes classifier, etc.

Modern deep learning models often constitute tens or even hundreds of stacked
layers of representations and they’re all learned /extract features automatically from
exposure to training data. Machine learning inclines to fixate on learning/extracting
only one (mostly) or two layers of representations of the input data; hence, they’re
sometimes called shallow learning.

2.1.3 What Makes Deep Learning Different?

1. Deep learning algorithms offered better performance on many involutes real-
world problems.

2. It makes problem-solving more facile.
3. It automates the most critical phase of machine learning that is optimized feature

extraction.
4. With deep learning, we can acquire more refined transformations of complex

problems.

2.1.4 Deep Learning Framework

Generally, a framework is a platform, interface, accumulation of libraries, and imple-
ments for developing applications. We have deep learning frameworks for building
deep learningmodels facilely andwithout going into depth cognizance of algorithms.
Some popular frameworks are tensor flow, keras, pytorch, caffe, deeplearning4j, etc.
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Fig. 5 Deep neural network

2.2 Deep Learning Algorithms

Deep learning can be considered as a subfield of machine learning. It is predicated on
learning and improving on its own by examining algorithms.Whilemachine learning
uses simpler concepts, deep learning works with artificial neural networks, which
are designed to be homogeneous to how humans think and learn. Artificial neural
network (ANN) drive deep learning. Neural networks were restricted by computing
power and thuswere limited in complexity. However, deep learning (ANNwithmany
layers) sanction computers to observe, learn, and react to intricate situations more
expeditious than humans. Deep learning has availed image classification, language
translation, and speech recognition. Deep learning can be acclimated to solve any
pattern recognition problem, to classify images, for language translation, to recog-
nize speech and without human intervention. Deep learning is to learn hierarchical
representations of input data.

Commonly used deep learning algorithms are

2.2.1 Deep Neural Network (DNN)

Deep neural networks are the ANN with many layers Fig. 5. Typically deep neural
networks are feed-forward networks in which input flows from the input layer to
the output layer and hidden layers(two or more ) and the sodalities between the
layers are one way which is in the forward direction(input layer to output layer).
The outputs are obtained by learning with datasets of labeled information predicated
on backpropagation. The circumscription of deep neural networks is that they don’t
have any memory unit.
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Fig. 6 Restricted boltzmann
machine

2.2.2 Restricted Boltzmann Machine (RBM)

RBMs are a two-layered artificial neural network with generative capabilities Fig. 6.
They can learn a probability distribution over its set of input. RBM can be utilized
for dimensionality reduction, relegation, regression, collaborative filtering, feature
learning, and topic modeling. RBMs are a special class of Boltzmann machines and
they are restricted in terms of the connections between the visible and the hidden
units. Thismakes it facile to implement themwhen compared to boltzmannmachines.
As stated earlier, they are a two-layered neural network (one being the visible layer
and the other one being the hidden layer) and these two layers are connected by a
fully bipartite graph. This denotes that every node in the visible layer is connected
to every node in the hidden layer but no two nodes in the same group are connected.
There are two other layers of bias units (hidden bias and visible bias) in a RBM. This
is what makes RBMs different from auto encoders. The hidden bias RBM produces
the activation on the forward pass and the visible bias avails RBM to reconstruct the
input during a rearward pass. The reconstructed input is always different from the
actual input as there are no connections among the visible units and therefore, there
is no way of transferring information among them.

2.2.3 Convolutional Neural Network (CNN)

Convolutional neural networks are very subsidiary for images based processing,
especially for image-based classification. A convolutional neural network Fig. 7 is
a type of feed-forward neural network in which the connectivity pattern between its
neurons is inspired by the organization of the animal visual cortex, whose individual
neurons are arranged in such a way that they respond to overlapping regions tilling
the visual field. Convolutional layers are the core of a convolutional neural network.
Convolutional neural networks, like neural networks, are composed of neurons with
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Fig. 7 Convolutional neural network

weights and biases (updates through learning). Each neuron receives inputs, applies a
convolution operation (weighted sum of multiplication) over them, passes it through
an activation function, and responds with an output. The network has a loss func-
tion and weights and biases are updated according to the loss function. CNN is
composed of three types of layers: convolution layers, pooling/subsampling layers,
fully-connected/dense layers.

2.2.4 Deep Belief Network (DBN)

A DBN is a class of deep neural network, a graphical model, composed of multiple
layers of latent variables (hidden units utilized for detecting features), with connec-
tions between the layers but not between units within each layer and have direct and
undirected connections Fig. 8. RBMs can be stacked and trained to compose so-called
deep belief networks. Multiple RBMs can withal be stacked and learned through the
process of gradient descent and backpropagation. Such a network is called a deep
belief network. A deep belief network utilizes an unsupervised machine learning
model to produce results. One of the mundane features of a deep belief network
is that albeit layers have connections between them, the network does not include
connections between units in a single layer. A DBN can work as a supervised learn-
ing algorithm (as a classifier) and additionally utilized as an unsupervised learning
algorithm (to cluster data).
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Fig. 8 Deep belief network

Fig. 9 Recurrent neural
network

2.2.5 Recurrent Neural Network (RNN)

Recurrent neural networks are best to process sequences. A recurrent neural net-
work Fig. 9 addresses the issue of the memory limitation of deep neural networks.
Deep neural networks are stateless, but recurrent neural networks have connections
between passes and connections through time. A recurrent neural network looks sim-
ilar to a traditional artificial neural network except that it has a memory-state and
is added to the neurons. With a recurrent neural network, this output is sent back to
the previous layer number of times. RNNs can remember parts of the inputs and use
them to make accurate predictions.
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Fig. 10 Autoencoder

2.2.6 Deep Autoencoder (AE)

Autoencoder is a neural network Fig. 10 that utilizes unsupervised learning algo-
rithms and backpropagation. It efficiently compresses and encodes input data then
learns how to set output values identically to the input values. How to decode the
data back from the minimized encoded representation to a representation that is as
proximate to the original input as possible. Autoencoder, by design, transforms data
into a hidden representation and then reconstructs data from that hidden representa-
tion inputs are high-dimensional data. It is compressed by the hidden layer and the
output layer reconstructs the inputs. The main applications of the autoencoder are
data denoising and dimensionality abbreviation.

2.3 Steps for Building a Deep Learning Model

The main advantage of deep learning systems for malware analysis is that they
automate the work of feature extraction, and they have the potential to perform more
accurately and efficiently than traditional approaches to malware analysis, especially
we want to focus on malware classification especially on new, previously unseen
malware. Essentially, the following steps Fig. 11 are used to build any deep learning
model for malware classification.

1. Data/samples collection: To train the DL model, we require data (training data).
For malware analysis, we require malware as well as benign (good wares) data.
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Fig. 11 Deep learning
model building

The performance of the dl model depends profoundly on the quantity and quality
of training examples, you provide for training. The quality of the training data is
also important. If you want to apply the dl model for a multi-class classification
problemyou have to amass adequate data for each class. The general rule of thumb
is that the more data (training data) you feed into your dl model for training, the
more precise results you will get.

2. Model building: We have to define a deep learning model among various avail-
able deep learning models (DNN, CNN, RNN, Auto Encoders, etc.) as per the
requirements. We first build the model then training and testing is applied on the
defined model.

3. Training: Train the model for recognition of malware on the optimized features
extracted automatically by the dl model. For training, we provide data /samples
and associated labels of samples. Mundanely, training is considered to be an
arduous task to perform because of the settings of hyper parameters. We feed
the training images into different CNNmodel architectures (it varies with several
layers, number of neurons in layers, learning rate, number of epochs, batch size,
etc.) with different hyper parameters settings, several epochs, and batch size and
probe for the model that fits our dataset.

4. Testing: Once you trained your model, we require to test the model on the data
samples that were not included in the training to assess the model’s performance
or how precise the model is. Generally, testing is done by running the trained deep
learning model on the data samples that were not included in the training denotes
data that has been never seen by the model.
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3 Malware Classification Based on Malware Visualization
and Deep Learning

In the following section, we are going to present and discuss detailed procedures on
the recent cognate work predicated on malware classification utilizing deep learn-
ing. The exhaustive study covers techniques of malware visualization predicated on
different deep learning algorithms.

To visualize malware as an image [19] is the field of representing malware in the
form of visual features. To analyze malware more deeply, malware has to be trans-
formed into an image, refer Fig. 13. The main benefit of visualizing malware as an
image is that different sections of a binary file can be facilely differentiated, Fig. 4.
Many solutions have been proposed and implemented utilizing static and dynamic
approaches but this work is predicated on the malevolent code and its variants detec-
tion and classification utilizing visualization techniques and deep learning. There
has been extensive research and study done on analyzing malware, many papers are
published which denotes static, dynamic, and signature-based malware analyzing
techniques. A publication on image-based malware visualization is one of the pre-
ferred ways [19]. This section explicates how to compose an image out of binary
malware files, how to visualize those images, and how these images are utilized for
image-based classification.

Traditionally this task is done by signature matching. In signature matching, a
database is prepared of properties, the behavior of previously seenmalware; incipient
binaries are compared by this dataset to compare previously stored data to determine
that something visually perceived afore. Signature matching performswell as long as
malware designers alter the behavior and properties of malware to evade detection.
A malware designer continuously changes the properties and behavior of malware
to avoid detection. By utilizing obfuscation techniques like metamorphic and poly-
morphic, authors of malware changes properties of code, behavior to avoid detection
of malware by signature matching or malware identification implementations.

We have studied papers which utilize the same principles as [19] to classify the
malware into their families. It has been observed that the deep learning model is
efficient. We propose to utilize malware visualization technique, converts every mal-
ware bytes code to a grayscale image. In research and analysis, it was observed
that malware from different families has kindred attributes in visual appearance pre-
senting to us an opportunity to exploit this impotency where these images will be
utilized for image-based classification. In image generation and classification tech-
nique, every byte of data is converted into a grayscale pixel; array of the byte stream
was converted into an image. Image representation of the malware engenders very
convincing images for analysis purposes.
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3.1 Related Work: Recent Innovations in Malware
Classification Using Deep Learning and Visualization

In this section, we are going to discuss and review the current state-of-the-art
approaches that have been established to address the malware classification utilizing
deep learning models and malware visualization.

The solution based onmalware visualization byNataraj et al. [19] in the year 2011
is considered as the first solution of this kind. Authors proposed amethod to represent
malware as a grayscale image and after that extracted gist (a texture-based feature),
afterward, the grayscale malware images are classified utilizing a data mining algo-
rithm knn (k-nearest neighbor). They experimented with the malimg dataset consist-
ing of 9458 malware grayscale images belonging to 25 different families, amassed
from the anubis system. For the experimental purpose, they converted malware into
a grayscale image of dimension 64*64. They extracted 320-dimensional texture fea-
tures from malware image predicated on gist. They divided the samples into a ratio
of 90–10% for train and test ratio. They obtained the test accuracy of 97.18% which
is very high as compared to traditional approaches. The results obtained evidence
that visualization of malware is very efficacious and can relegate malware with more
precision and expeditiously than subsisting static and dynamic approaches.

In the year 2013, Han k. et al. [5] proposed an incipient way of visualizing mal-
ware. They visualized malware as a color image utilizing binary values. The pro-
posedmethod generatesRGBcolored pixels by utilizing binary information extracted
through static analysis. First, the author disassembled malware binary files utilizing
implements such as IDA pro or ollyDbg, after disassembling the extracted sequence
of assembly codes are divided into blocks of opcodes (example of opcode sequence:
pusmovaddsubmov), after blockbuilding, every blockof opcode instruction sequence
is processed by two hash functions to engender matrix of coordinate values and RGB
color pixels information. To compute the homogeneous attribute between image
matrices authors utilized a selective area matching algorithm. For experiment pur-
poses, the authors utilized a color image of size 256 * 256, 2505 benign, and 8169
malware image matrices are engendered utilizing a visualization implement. 95%
test accuracy is achieved by this method. Results deduced relegation efficaciously
and the time spent to calculate homogeneous attribute was about 2.4ms.

In 2016, K. K. Pal and k. S. Sudeep [21] presented a data preprocessing technique
for the malware relegation model utilizing a convolutional neural network and image
representation.Authors proved that by applyingpreprocessing techniques on the data,
classification accuracy can amend. Raw data applied to any deep neural network does
not engender good results. The authors conducted three types of normalization on
the dataset and showed how precision varies. They applied to mean normalization,
standardization, zero component analysis on the dataset. For experimental purport
authors usedmalware color images of size 32*32 and they utilized the cifar 10 dataset
(dataset contains 60000 color images of size 32*32 belongs to 10 different classes).
They obtained an accuracy of 64–68% when zero component analysis is applied,
they got increased accuracy as compared to when no preprocessing applied.
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In the year 2016Ding y. et al. [2] have prosperously applied a deep belief network,
one of the unsupervised learning algorithms for malware relegation. The authors
represented malware as opcode sequences and then use deep belief network to detect
malware. An opcode (operation code) additionally kenned as an instruction machine
code that designates the operation to be performed. In a deep learning algorithm, the
neural network is trained multiple times by the raw opcode sequences extracted from
thedecompiledfile, so that the hidden feature information canbe efficaciously learned
and the malware can be detected efficiently and more accurately. Feature extractor
measures different measures like information gain, document frequency to evaluate
the relegation . Author used information gain to cull subsidiary n-gram. To accurately
describe the opcode comportment, the author extracted opcode sequences from 3000
benign and 3000 malware samples. The extractor evaluates 10000 different n-grams
with different information gain values. From these 10000 values author utilized the
top 400 n-grams as the features of an executable. DBN architecture has 3 hidden
units with 200,200 50 hidden neurons, respectively. Each layer is trained with 30
epochs. The authors obtained 96.1% accuracy.

In the year 2016 Hardy w. et al. [6] proposed an intelligent deep learning frame-
work for malware detection. They applied auto encoder, it is one of the unsupervised
deep learning algorithms used to detect generic features from malware to detect
unknown malware. They utilized a greedy-based feature learning at each layer, fol-
lowed by supervised tuning of weights and biases. The authors extracted windows-
based API call sequences from the portable executable (PE) files. For experimental
purpose, authors used the comodo cloud security center dataset (dataset contains
22500 malware samples and 22500 benign samples total of 50000) and the train
and test ratio was 90–10%. The experiment is performed with a different number of
neurons in the hidden layer but 100 neurons at each hidden layer and 3 hidden layers
configuration yield the maximum accuracy that is 96.85% at training and 95.64% at
testing.

Tobiyama s. Et al. [23], in the year 2016, proposed the fusion of deep learning
models in malware analysis. The authors first applied a recurrent neural network to
extract the features based on malware behavior and then applied CNN to classify
malware feature images of size image 30*30. To capture the behavior of malicious
application authors utilized API call sequences. The proposed malware detection
framework is mainly using API call sequence extraction and deep learning technique
for classification. A process behavior is defined as various activities and to perform
each activity various operations are associated with activities. To record process
behavior API call sequence is generated; the API call sequence represents activities
and related operations. They extracted feature vector by training of recurrent neural
network and then these extracted feature vectors are converted into an image and
applied CNN for classification. For experimental purpose 81 malware process log
files of 11 different malware families, 69 benign processes log files data collected
by NTT secure platform laboratory. The architecture of recurrent neural network
consists of an input layer, a hidden layer, 2 LSTM hidden layers, and an output layer.
The architecture of CNN consists of 2 convolution and pooling layers with 10 and
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20 filters, respectively. Used max pooling with stride 2, no of epochs: 5, batch size:
20. They obtained 96% accuracy.

Azab A. et al. [1] in the year 2016 proposed and addressed machine learning
technique for identification of untrained botnets traffic. Authors applied the c4.5
learning algorithm (for building classifier with 10,20 and 30 FN costs and 1 FP cost)
and correlation-predicated feature cull (cfs, applied to filter out duplicate, redundant
and impertinent features form extracted features) algorithm on the communication
trafficbetween compromised contrivances andbotmaster, they extracted511different
features coalescence from 9 different features categories from this communication
that avails to relegate between botnet traffic and legitimate traffic. For botnet network
traffic accumulation, Zeus (a botnet toolkit) was culled and it is considered one
of the major threats, especially for attacks on online banking transmissions. Two
separate datasets accumulated for experiment one are for training (the 432 botnet
traffic engendered utilizing zeus builder version 1.x and 2774 HTTP traffic) and
the second is for testing(the 144 botnet traffic engendered utilizing Zeus builder
version 2.x and 2396 HTTP traffic). All the built classifiers were evaluated utilizing
the K-10 cross-validation to optate the lenient classifiers. The built classifiers were
evaluated utilizing theK-10 cross-validation to cull the rigorous classifier. The voting
results from the three costs achieved 88 TP, 56 FN, and 1 FP results, providing
0.989 precision, 0.611 recall, and 0.755 F-Measure results. These results betoken that
the utilization of the stringent classifier might affect the detection of the untrained
version’s flows that were included by the lenient classifier.

In the year 2018, Kalash M. et al. [11] proposed and implemented a deep CNN
model for malware classification. They translate the malware classification problem
into an image classification by following the approach used by Nataraj et al. [19],
converting malware binaries to grayscale images of size 224*224 and then applied a
convolutional neural network for classification. The proposed convolutional neural
network model architecture is based on VGG-16. They applied the proposed method
on two different datasets, namely, malimg(dataset consists of 9458 malware samples
belonging to 25 different families) and Microsoft dataset (contains 21741 malware
samples, each malware sample belongs to 9 different malware families). Train and
test ratio used by the authors are 90–10% in the malimg dataset and 10868 samples
for training and 10873 samples for testing on the Microsoft dataset. They utilized
cross-entropy loss to train the network. The authors achieved 98.52% accuracy on
the malimg dataset (with 25 epochs and a batch size of 6) and 98.99 and 99.97% on
two different settings of Microsoft dataset (with 25 epochs and a batch size of 8).

In 2018, Ni S. et al. [20] proposed a malware classification algorithm that utilizes
static features and convolutional neural network. They converted the disassembled
malware codes into grayscale images based on simhash, and then classification is
done by convolutional neural network. They extracted the opcode sequence from
the code section as features then after extraction of the opcode sequence they cal-
culated simhash for sequence similarity comparison. By using simhash and bipolar
interpolation they converted the opcode sequence into a malware image then applied
convolutional neural network for training and classification. Each input image needs
to go through two convolutional layers, two subsampling layers, and three full con-



Deep Learning in Malware Identification and Classification 187

nection layers. During the convolution process, they applied 32 filters of size 2*2 and
during subsampling max pooling is used whose size is 2*2 to dimension reduction.
The authors used the dataset for the experiment in Microsoft malware classification
challenge on kaggle by Microsoft 2015. The dataset consists of 10868 labeled mal-
ware images from 9 families, from 10868, 80% of them used for training and the rest
for testing. The classification accuracy they obtained was 99.260% with a 98.07%
f1 Score and 2.34% false positive rate (FPR).

KimC.H. et al. [13] in the year 2018 proposed a convolution gated neural network
for the task of malware identification and classification. Proposed model comprised
of convolutional neural network, gated recurrent unit (GRU), layer of deep neural
network, and a sigmoid layer. Each convolutional neural network has a convolution
layer, activation function, and pooling layer. All convolutional neural network pro-
duces a single output, and this output is applied to gated recurrent unit layers and
treats this output of convolutional neural network as time-series data. Each gated
recurrent unit produces a single output equal to the number of convolutional neural
networks in the first layer. Output of GRU is input to deep neural network. Each deep
neural network produces single output. The final layer of the network is the sigmoid
layer and the result of this layer is the classification.

In the year 2019, Singh A. et al. [22] explored and implemented a new way
to represent malware as color images as they used RGB representation of malware
(RGB images of size 32*32) over grayscale images to classifymalware. They experi-
mentedwith 37374 binary samples belonging to 22 families collected frommalshare,
virusshare, and virustotal, and malimg dataset. They applied deep neural network
architectures ResNet-50(residual network) architecture including a dense convolu-
tional neural network for classifying images. With their implemented model they
obtained 98.98% using convolutional neural network and 99.40% using ResNet-50
on the authors dataset and 96.08% using convolutional neural network and 98.10%
using ResNet-50 on the malimg dataset. The authors introduced a novel approach
to convert the binary file string of zeros and ones into rgb color images. They used
a 15 layer convolutional neural network model (5 convolutional layers and 2 dense
layers).

Yin Q. et al. [25] in the year 2019 presented a fused model of convolutional neu-
ral network and recurrent neural network for image classification. Authors extracted
features using convolutional and recurrent neural network networks from the inter-
mediate convolutional neural network network.

In the year 2019, Naeem H. [17] proposed a fast deep learning model to detect
malware in the IoT network. IoT devices improved the user experience of the inter-
net by smart devices to connect and information sharing. The author proposed the
detection of malware by converting malware binaries into the color images of size
192*192 and then applied a deep convolutional model for efficient malware detec-
tion on the malimg dataset (dataset consists of 9458 malware samples belonging to
25 different families) and leopard mobile datasets(contains 14733 malware samples
and 2486 benign samples of IoT applications.) The train and test ratio was utilized
as 55–45% for the malimg dataset and 34–66% for the leopard dataset. The author
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obtained an accuracy of 98.18% on the malimg dataset and 97.34% on the leopard
dataset. The author achieved better accuracy and response time.

In the year 2019, Khan U. R., et al. [12] defined an improved, more intelligent
convolutional neural network model for intrusion detection. Authors mentioned that
machine learning algorithms have a low detection rate, as well as manual extraction
of features, which is a laborious and time-consuming task that’s why they applied
deep learning in intrusion detection. Deep convolutional neural network is used for
training and classification and it automatically extracts optimized features from input
samples. The dataset used for experiments is the KDD99 dataset; the dataset con-
tains 494021 training samples and 311029 test samples, from 5 different categories
(contains normal, DOS, R2L, U2R, probe). They obtained the accuracy on improved
convolutional neural network that is 99.23 for 800 epochs, which is a promising
result. CNN model architecture has two convolutional and two pooling layers.

Mourtaji Y. et al. [16] in the year 2019 proposed a deep learning framework
for malware classification. Authors first converted malware binaries into grayscale
images as used by Nataraj et al. [19] and then trained a convolutional neural network
model for classification. Different parameters for experimental purpose used malimg
and Microsoft datasets. Train-test ratio used 85–15% for the malimg dataset and
10868 samples for training and 10873 samples for testing, and they utilized the
convolutional neural network architecture defined by K. Simonyan and used a cross-
entropy to learn and train the model from the network after that utilize stochastic
gradient descent (SGD) to optimize the learning parameters of the model, initialized
the learning rate to be 0.001 and 25 epochs, batch size of 6 for malimg dataset and
25 epochs, batch size of 8 for Microsoft dataset. The authors obtained 97.02% on
malimg and 98.72% and 99.881% on two different experiment settings on Microsoft
dataset.

JainM. et al. [9] in the year 2020 applied and comparedCNNand extreme learning
machines (ELM) for malware classification. Results are evident that ELMs required
less time to train as compared to train a CNN and achieves higher accuracy on
one-dimensional data processing. Authors also found that for two-dimensional data
processing ELMs are faster than CNN. Authors experimented with different settings
of the CNNmodel like they applied CNNwith one hidden layer than with two hidden
layers with different hyperparameters settings, and the best results they got with a
two-layer configuration of CNN with input images of size 128× 128 pixels with 32
and 64 filter maps. With ELMs, they have to perform very fewer experiment settings
like only they tuned some neurons in the hidden layer, the chosen 50 neurons for
the experiment. The authors utilized grayscale images of size 128*128 for CNN and
grayscale images of size 64*64 for the ELMmodel. They used themalimg dataset for
experiments and 80% for training, 10% for testing, and 10% for validation division
is applied to the dataset. The configuration of CNN architecture: CNN with two
convolutional layers, 128 × 128 images, and (32, 64) filters and ELM architecture
has 50 neurons in the hidden layer. They obtained an accuracy of 96.3% on the CNN
model and 97.7% on the ELM model.

In January 2020, Kumar G. S. and Bagane P. [3] presented a hybrid deep learning-
based model for malware classification. They applied convolutional neural network
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with bi-directional long short-termmemory(LSTM) to do the task. First, they applied
convolutional neural network for feature extraction, and then in the last layer after
flattening the output they applied the LSTM model for the classification.

In the year 2020, Vasan D. et al. [24] proposed a novel approach based on the
ensemble CNN architecture model for effective detection and classification of mal-
ware images. Authors utilized the pre-trained models and combined different opti-
mized features extracted to fine-tune the VGG 16 and ResNet50 and fused the
extracted features from both models and classified the malware into their corre-
sponding families. Results proved the effectiveness of the proposed method.

In the year 2020, Naeem et al. [18] proposed a deep learning model for malware
detection in the android operating system. They transformed a raw android file into a
color image (of dimension 224*224 and 229*229) and then applied a deep convolu-
tional neural network model for android malware classification. The author designed
a very deep convolutional neural network that has 4 convolutional layers each fol-
lowed by an activation function and max pooling layer, followed by a dense layer
and softmax layer. The author applied a deep convolutional neural network model on
the leopard dataset (dataset contains 14,733 malware samples and 2486 benign sam-
ples of different IIoT applications) and the malimg dataset. They achieved 97.81%
accuracy on a leopard mobile malware dataset (224*224 color image dimension), a
well-known industrial Internet of Things (IIOT) dataset, and 98.79% on a malimg
dataset (with 229*229 color image dimension).

3.1.1 Generative Adversarial Networks (GANs)

Generative adversarial networks provide a new way of addressing computer vision,
detection and classification problems.One of the biggest problemswith deep learning
model is lacking of sufficient training samples as we know that good quality and
sufficient data is the key of deep learning model. Any deep learning model heavily
dependent on the number of samples providing for training. Many datasets available
today face this problem. We can notice from Table 1 that malimg dataset is also
a high imbalanced dataset Allaple. A malware family contains 2949 samples as
compare toWintrim.BX and Skintrim.Nmalware family contains 97 and 80 samples
respectively. This imbalance affects the training process as well as the classification
performance. To address this problem GANs we can utilize. GAN can be used to
generate samples from the data.

GANs are types of deep learning technique for generative modeling and most
recent development in machine learning. GANs are very incipient in the literature on
deep learning, and they belong to unsupervised learning. The first paper published
by Goodfellow et al. In 2014 [4] introduced the generative adversarial networks
framework. A GAN is trained utilizing two neural network models. Generative mod-
eling requires a model to engender incipient samples from a subsisting distribution
of available samples, for example, engendering incipient images that are generally
homogeneous but concretely different from available images in the dataset. GANs are
mainly utilizedwith convolutional neural networkwhich denotes GANs are specially
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utilized for image cognate applications. A GAN is trained utilizing two neural net-
work models. One model is referred as the generator or generative network model,
which learns to engender incipient likely samples. The other model is called the
discriminator or discriminative network and learns to differentiate engendered sam-
ples from authentic samples, discriminator works like a classifier; it distinguishes
authentic samples from the engendered samples.

We can apply GAN in cybersecurity field, and it is proving very promising. One
of the quandaries with any deep learning model is data imbalance issue. As we all
very well know that good quality and adequate magnitude of training data is the
key for any deep learning models performance. So, we can surmount this issue of
data imbalance utilizing GAN and can engender incipient samples from the genuine
samples for training. In reality, all the real-world datasets are imbalance datasets and
there is much variation in the number of samples in each family. So GANs can be
proved very efficient to address this issue.

In the year 2019, Y. Lu and J. Li [15] applied GAN for malware classifica-
tion/predication on deep learning model. Authors addressed the data imbalance issue
and engender incipient samples for training. They applied GAN utilizing convolu-
tional neural network and called this model as deep convolutional generative adver-
sarial network (DCGAN) to engender malware samples from the available dataset.
Experimental results are conspicuous that utilizing GAN accuracy of the proposed
model is incremented by 6%. In their implementation, they utilized a 18-layers deep
residual net as themalware classifier.Network learns from the trained data that engen-
ders the potential distribution of the incipient genuine samples from the authentic
samples, while the discriminator differentiates the incipient genuine sampleswith the
genuine samples as accurately as possible.Multiple convolutional and convolutional-
transpose layers are utilized in the discriminator and engenderer for training. They
trained the GAN network for 10000 epochs to engender the authentic samples, start-
ing from the 1000 training epochs, preserved 25 engendered samples for every 100
epochs for each class. So after the training is done. They have 2250 engendered
synthetic samples for each class. They achieved the overall average testing accuracy
of the deep residual network is 84% and the precision, recalls, and f1-scores of the
classes with more samples size are supplementally incremented.

In the year 2017, Kim JY. et al. [14] proposed a transferred generative adver-
sarial network (tGAN) for automatic malware relegation and detection of the zero-
day attack. They surmount the constraint of GAN training to pre-train GAN with
auto encoder structure. The proposed model gets the best performance compared
to the conventional learning algorithms. To address the data imbalance issue and to
engender incipient samples they proposed and applied tGAN model predicated on
GAN. Their proposed architecture consists of three modules: pre-training module,
engendering data module, and malware detecting module. First module pre-trains
the second module which has an engenderer that engenders data kindred for train-
ing, and a discriminator that distinguishes genuine data from engendered data. The
discriminator is trained to distinguish the authentic data from the engendered data,
and the engenderer is trained to make the discriminator to classify the engendered
data into the genuine data. They used malware data utilized in the kaggle Microsoft
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malware classification challenge. The accuracy of malware type detection is 96.39%.
The entire data is divided into training and test data at a ratio of 90:10. It shows the
best performance compared to other conventional models, and it enables to detect
malware even with a minute of data.

A detailed review of generative adversarial networks and its application in cyber
security is presented by Banjo Y. et al. [26]. They explained how GANs are very
useful and applicable in cyber security field. They reviewed two very widely utilized
GANarchitectures the deep convolutional generative adversarial network (DCGAN),
and wasserstein GAN. Their reviews are notable to study cyber security where the
GAN plays a vital role in the design of a security system . This paper guide the scope
of modern cyber security studies with generative adversarial networks.

Deep learning can help to solve problems caused by modern malware and the
way they function. Using deep learning we can also automate the malware analysis
process. The biggest advantage with deep learning is that the manual extraction of
features or data is skipped, deep learning architectures automatically extracts features
from samples, based on the extracted features from the training dataset, samples are
distinguished by samples belonging to a particular class to other classes. Traditionally
malware classification has been a manual process, involving experts having in-depth
knowledge of malware, their working, properties in malware to design malware
identification, or classification engines.Deep learning facilitates automatic extraction
of optimized features from the training dataset, letting the automatic detection of
features analysts can make effort for designing more efficient algorithms, and better
results.

3.2 Performance Metrics: To Measure the Performance of
the Deep Learning Model

To evaluate the performance of the developed system or solution following metrics
are calculated. Using these metrics we can compare different techniques and can
conclude which technique is better than others.

3.2.1 Confusion Matrix

It is utilized to visualize the performance of a technique. In general, a classifier is
evaluated by a confusion matrix Fig. 12. Structure-wise confusion matrix is a table
representation that is used to describe the performance of a classification model on
the test datasets. All other performance metrics are calculated utilizing the confusion
metric. In the confusion matrix, there are four possible states denominated true pos-
itive (TP), false positive (FP), true negative (TN), and false negative (FN) defined as
follows
TP: when the sample is identified as an attack and the sample is an attack (Remark:
identification of attack).
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Fig. 12 Confusion matrix

FP: when the sample is identified as an attack and the sample is not an attack (false
alarm).
TN: when the sample is not identified as an attack and the sample is not an attack.
FN: when the sample is not identified as an attack and the sample is an attack.

Accuracy indicates the proportion of all samples with correct predictions to the
total sample size. The formula to calculate accuracy is

Accuracy = TP+ TN

TP+ TN+ FP+ FN
(1)

Precision describes the ratio of predictive positive samples positive. The formula to
calculate precision is

Precision = TP

TP+ FP
(2)

Recall is also known as True Positive Rate (TPR.)The formula to calculate recall is

Recall = TP

TP+ FN
(3)

F1 is the harmonic mean of precision and recall. The formula to calculate the F1
score is

F1 score = 2× Precision× Recall

Precision+ Recall
(4)

Receiver operating characteristic curve (ROC) is a graph that is used to summarize
the performance of a classifier over all possible thresholds. The graph is generated
by plotting a graph between True Positive Rate (TPR) and False Positive Rate (FPR).
the formulas for TPR and FPR are
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TPR = TP

TP+ FN
and FPR = FP

FP+ TN
.

We observed that accuracy (1) is a common measure used to judge the classifier’s
performance but it seems inadequate, and other measures like f1-score (4) and recall
(3) are also important to evaluate the performance of the classification. High accuracy
and recall with lower misclassification are required for an efficient model.

3.3 A Practical Implementation of Malware Classification
Using CNN and Malware Image Visualization

In this section, we are going to discuss a practical example of malware classification
utilizing a convolutional neural network, which is considered the most prosperous
deep learning architecture in computer vision, patternmatching, and natural language
processing. We also discuss an idea of how convolution works, convolutional neural
network works, and the main operation types are used in building the convolutional
neural network model. We can implement any other deep learning model withal but
most advanced applications and models are currently being utilized by convolutional
neural network so we decided to implement convolutional neural network for our
practical implementation. After reading this section, you will have an early under-
standing of how deep neural networks work, and you will be able to move on to
practical applications. Our goal is to give you an expeditious and facile tutorial on
how to implement image relegation. Hopefully, you will be able to understand the
main practical concepts and utilize this to build your applications and research.

A fundamental convolutional neural network model architecture Fig. 7 contains
convolutional layer followed by an activation function (CONV), pooling layer (max
or avg pooling based on the requisite) (POOL), dense/fully connected layer (FC).

3.3.1 Convolution Layer

To implement convolution operation kernels/filters are frequently utilized. The con-
volution operation (betokened by *) consists of multiplying the corresponding pixels
with the kernel pixels, one pixel at a time, and summing up the values to assign that
value to the central pixel. The same operation will then be applied, shifting the con-
volution matrix to the left until all possible pixels are visited. Kernels or filters are
a matrix of values and the kernel slides over the input image and performs element-
wise multiplication operation between the values in the filter with the pristine pixel
values of the image. Themultiplications are summed up engendering a single number
for that particular receptive field. The input to the convolutional layer is an image
that is resized to an optimal size (mundanely image size n*n) and fed as input to the
convolutional layer. Let us consider image size is 32*32*1, where 32*32 is image
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dimension and 1 is the channel depth, it will be 1 for grayscale image and will take
value 3 for color images.

3.3.2 Pooling Layer

Convolutional layers in a convolutional neural network methodically apply ker-
nels/filters to images to extract optimized features and outputs feature maps. A
quandary with feature maps is that they are sensitive to the location of the fea-
tures in the input image which denotes a minuscule change (this can transpire due
to shifting, cropping, rotation, or any other transformation) in the input image will
yield different feature maps. A prevalent solution to this problem is downsampling.
Mundane pooling methods are average pooling and max pooling. Max pooling is
commonly utilized for the downsampling. Pooling layer operates on each feature
map individually.

3.3.3 Dense/Fully Connected Layer

Fully connected layers or dense layers are a crucial layer of convolutional neural
network, which are responsible for recognizing and classifying images or we can
say that the final classification decision is taken by a fully connected layer. Fully
connected layer takes the output from previous layers (convolutional and pooling
layers of the defined convolutional neural networkmodel) and predicts the class/label
that best describes the input image.

3.3.4 Dataset

In this practical implementation, we will be working on one of the most extensively
used datasets in malware classification that is the malimg dataset. The dataset details
are given inTable 1. In this demonstration,wewill build a simple convolutional neural
network model to have an idea of the general structure of computations needed to
tackle the multi-class classification problem.

First, let us understand the dataset. We are going to use malimg malware dataset
[19] for practical purpose. Description of the dataset is as follows

1. The dataset contains 9339 malware images.
2. Malware images belong to 25 different malware families/classes.
3. Images are grayscale images.
4. All images of different sizes.
5. Dataset is highly imbalanced.
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Table 1 Malimg dataset

Serial no. Family/class Family name No. of variants

1 Worm Allaple.A 2949

2 Worm Allaple.L 1591

3 Worm Yuner.A 800

4 Dialer Instant access 431

5 Worm VB.AT 408

6 Rogue Fakerean 381

7 PWS Lolyda.AA 1 213

8 Trojan C2Lop.gen!G 200

9 Trojan Alueron.gen!J 198

10 PWS Lolyda.AA 2 184

11 Dialer Dialplatform.B 177

12 Trojan-Downloader Dontovo.A 162

13 PWS Lolyda.AT 159

14 Backdoor Rbot!gen 158

15 Trojan C2Lop.P 146

16 Trojan-Downloader Obfuscator.AD 142

17 Trojan Malex.gen!J 136

18 Trojan-Downloader Swizzor.gen!I 132

19 Trojan-Downloader Swizzor.gen!E 128

20 PWS Lolyda.AA 3 123

21 Dialer Adialer.C 122

22 Backdoor Agent.FYI 116

23 Worm:AutoIT Autorun.K 106

24 Trojan-Downloader Wintrim.BX 97

25 Trojan Skintrim.N 80

— — Total 9339

3.3.5 Preprocessing

Our malimg dataset already contains malwarein the form of images (grayscale
images), to demonstrate how a malware binary can be visualized as an image, we are
going to use a random text file andwewill show you how to convert the file into image
Fig. 13. The ultimate goal of this step is to convert files into images and use them
as the input of our convolutional neural network. We can convert any file using the
following python code used by [19]. We have created a notepad file abc.txt with the
contents of activeds.dll. Activeds.dll is the dynamic link library file of the windows
operating system, which is stored in location c:/windows/system32/ activeds.dll.

The following python program is used to convert the abc.txt file into a grayscale
image.
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Fig. 13 Converted grayscale
image

After running the above program we got the following grayscale image Fig. 13
of the corresponding abc.txt.

3.3.6 Image Resizing

Let us proceed, so ourmalimg dataset already contains malware samples in grayscale
image format. To input these images into convolutional neural network for training,
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we need all images of the same size, so there is need to resizes all images of the
malimg dataset to the specified size you want. I chose the (48*48) image dimension.

As we can see from Fig. 4, some differences among malware images, However,
it would be too complex to accurately classify malware into their corresponding
families as we have 9339 total malware images.

3.3.7 Implementation Details

For a programming perspective, we performed the following experiment utilizing
a personal laptop with i3, 2.40 GHz intel processor; a 64-bit system with 4GB of
random access memory. We used python programming language, python packages,
and libraries which are availed to experiment. Keras library is utilized to train and test
the model which utilizes a convolutional neural network. We have utilized spyder
4.0.1 which is a scientific python development environment tool, python 3.7.5 on
windows 10, 64-bit windows 10 operating system.

3.3.8 Architecture

Let us define the convolutional neural network model for training and classification.
Our dataset is ready; we have built our model using keras. Here, we will define
our model, which is a stacked layer of convolution and pooling operations, with
a final flattened layer and a softmax activation function applied to determine the
class probability of the malware samples. The following network architecture will
be used for training and testing purpose, the chosen convolutional neural network
architecture Table 2 will only be for study and understanding purpose, We have
randomly chosen the number of filters, layers, filter size. Hyper parameters tuning is
also a research topic. So basically, we don’t know how it is going to perform, what
will be the accuracy, and we do not need to worry about these things here.

1. Convolutional layer : 30 filters, (3 * 3) kernel size, activation=ReLU
2. Max pooling layer : (2 * 2) pool size
3. Convolutional layer : 48 filters, (3 * 3) kernel size, activation=ReLU
4. Max pooling layer : (2 * 2) pool size
5. Dropout layer: dropping 50 percent of neurons
6. Flatten layer
7. Dense/fully connected layer : 1024 neurons, ReLU activation function
8. Dropout layer: dropping 50 perecnt of neurons
9. Dense/fully connected layer : number of output class, softmax activation function

Table 2 summarizes our chosen convolutional neural network architecture.
model.summary() is used to visualize defined model architecture.

The input for convolutional neural network training has a shape of [48 * 48 *
1]: [image width * image height * channel /depth]. In our case, each malware is a
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Table 2 Summary of our chosen convolutional neural network architecture

S.
no.

Layer (type) Output shape Parameters

1 conv2d_3(Conv2D) (None, 46, 46, 30) 300

2 max_pooling2d_3(MaxPooling2 ) (None, 23, 23, 30) 0

3 conv2d_4(Conv2D) (None, 21, 21, 48) 13008

4 max_pooling2d_4(MaxPooling2) (None, 10, 10, 48) 0

5 dropout_3(Dropout) (None, 10, 10, 48) 0

6 flatten_2(Flatten) (None, 4800) 0

7 dense_3(Dense) (None, 1024) 4916224

8 dropout_4(Dropout) (None, 1024) 0

9 dense_4(Dense) (None, 25) 25625

grayscale image, so the image channel value will be 1, if we use color images we
have to assign value 3 in the image channel.We used the train test split() function
of scikit learn to split dataset images between train and test, following a (90-10) %
ratio.

Here is the code used to define convolutional neural network architecture using
keras.

#Python code to define convolutional neural network model architecture
model = Sequential ()
model.add (Conv2D (30, (3, 3), activation=’relu’, input_shape= (img_rows,
img_cols,img_channels)))
model.add (MaxPooling2D ((pool_size, pool_size)))
model.add (Conv2D (48, (3, 3), activation=’relu’))
model.add (MaxPooling2D ((pool_size, pool_size)))
model.add (Dropout (0.5))
model.add (Flatten ())
model.add (Dense (1024, activation=’relu’))
model.add (Dropout (0.5))
model.add (Dense (no_out_classes,activation=’softmax’))
opti_mizer=Adam (lr=0.001)
model.compile (loss =’categorical_crossentropy’, optimizer = opti_mizer,
metrics=[’accuracy’])

We executed our program for 15 epochs. Epochs summary are as follows
Train on 7564 samples, validate on 841 samples
Epoch 1/15
7564/7564 [==============================] - 174s 23ms/step - loss:
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0.9531 - acc: 0.7132 - val_loss: 0.2436 - val_acc: 0.9394
Epoch 2/15
7564/7564 [==============================] - 491s 65ms/step - loss:
0.2252 - acc: 0.9332 - val_loss: 0.1796 - val_acc: 0.9441
Epoch 3/15
7564/7564 [==============================] - 713s 94ms/step - loss:
0.1643 - acc: 0.9510 - val_loss: 0.1265 - val_acc: 0.9631
Epoch 4/15
7564/7564 [==============================] - 168s 22ms/step - loss:
0.1370 - acc: 0.9594 - val_loss: 0.1125 - val_acc: 0.9750
Epoch 5/15
7564/7564 [==============================] - 168s 22ms/step - loss:
0.1158 - acc: 0.9636 - val_loss: 0.1214 - val_acc: 0.9655
Epoch 6/15
7564/7564 [==============================] - 166s 22ms/step - loss:
0.1062 - acc: 0.9681 - val_loss: 0.0941 - val_acc: 0.9774
Epoch 7/15
7564/7564 [==============================] - 170s 22ms/step - loss:
0.0913 - acc: 0.9718 - val_loss: 0.1050 - val_acc: 0.9727
Epoch 8/15
7564/7564 [==============================] - 719s 95ms/step - loss:
0.0890 - acc: 0.9710 - val_loss: 0.1350 - val_acc: 0.9679
Epoch 9/15
7564/7564 [==============================] - 166s 22ms/step - loss:
0.0819 - acc: 0.9741 - val_loss: 0.0810 - val_acc: 0.9798
Epoch 10/15
7564/7564 [==============================] - 167s 22ms/step - loss:
0.0726 - acc: 0.9757 - val_loss: 0.1052 - val_acc: 0.9703
Epoch 11/15
7564/7564 [==============================] - 167s 22ms/step - loss:
0.0753 - acc: 0.9753 - val_loss: 0.0797 - val_acc: 0.9822
Epoch 12/15
7564/7564 [==============================] - 166s 22ms/step - loss:
0.0650 - acc: 0.9791 - val_loss: 0.1039 - val_acc: 0.9738
Epoch 13/15
7564/7564 [==============================] - 166s 22ms/step - loss:
0.0773 - acc: 0.9751 - val_loss: 0.0852 - val_acc: 0.9798
Epoch 14/15
7564/7564 [==============================] - 166s 22ms/step - loss:
0.0634 - acc: 0.9790 - val_loss: 0.0847 - val_acc: 0.9822
Epoch 15/15
7564/7564 [==============================] - 166s 22ms/step - loss:
0.0620 - acc: 0.9795 - val_loss: 0.0977 - val_acc: 0.9715
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Fig. 14 Confusion matrix

3.3.9 Results

After training and testing our convolutional neural networkmodel, we reached a final
test accuracy of 97.537% which is very high! We got test time at 0.078. Here is the
confusion matrix of our classification Fig. 14.

We can observe from the confusion matrix that most of the malware samples were
well classified into its corresponding actual family,Autorun.K is alwaysmisclassified
for Yuner. A, it is probably because we have only 80 samples of Autorun.K; this is
very few in our dataset and that both are a component of a closeworm type.Moreover,
Swizzor.gen!E is often misclassified with Swizzor.gen!l, which can be explicated by
the fact that they emanate from authentically close kind of families and types and
thus could have homogeneous attributes in their code.We can also plot train and
validation accuracy Fig. 15 and loss Fig. 16 during per epoch and analyze precision
and losses, ups and downs during the whole journey. We can also calculate some
more performance-based quantifications such as precision of the model which is
0.965, recall of the model is 0.975, and f1-score of the model is 0.968.

It is all about how to implement initial level malware image classification, and to
further explore the results and analysis we can plot the confusion matrix, which give
us somemore statistics about the classification, somehints aboutwhatwent erroneous
during classification. It was the initial level understanding of how to implement
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Fig. 15 Training and
validation accuracy during
15 epochs

Fig. 16 Training and
validation losses during 15
epochs

malware image classification utilizing convolutional neural network. Utilizing this
basic understanding, you can further ameliorate classification results, perform more
applications, and do further research.

3.3.10 Datasets for Malware Analysis

Here we are mentioning some popular datasets Table 3 available for practice and
research. Datasets play a consequential role in training, testing, and validation of
systems. Datasets of malware images consist of many images that belong to different
families. Readers can make utilization of it for their research and projects. Some
popular datasets are
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Table 3 Summary of publicly available datasets for malware analysis

S. no. Dataset Dataset description

1 Malimg dataset The malimg dataset consists of 9000
malware files belonging to 25 malware
families and their variants

2 Malicia dataset The dataset comprises 11,688 malware
binaries collected from 500 drive-by
download servers

3 Microsoft malware classification challenge
dataset

This dataset contains 9 classes for training
and testing purposes. It includes 21741
malware samples

4 Malshare A free malware repository providing
researchers access to samples, malicious
feeds

5 IoT-23 A labeled dataset with malicious and
benign IoT network traffic

6 AMD Android malware dataset has 24,553
samples, it is integrated by 71 malware
families ranging from 2010 to 2016

7 Android malware genome project More than 1,200 malware samples that
cover the majority of existing Android
malware families, ranging from their debut
in August 2010 to recent ones in October
2011

8 Drebin dataset The dataset contains 5,560 applications
from 179 different malware families. The
samples have been collected from August
2010 to October 2012 and were made
available to us by the mobile sandbox
project

4 Challenges and Open Issues

This chapter and study is the first step toward enhancing our understanding of visu-
alization and deep learning-based malware classification. During the study, many
difficulties and challenges of malware classification were found; the present findings
might have important implications for suggesting several courses of action to solve
this problem. For a consistent and effective framework, it is important to address
all the challenges and difficulties. Traditional malware classification approaches are
very time-consuming and complex.

In our view, malware classification is very well handled by image visualization
and deep learning approaches as compared to traditional approaches. Deep learning
approaches efficiently perform learning but we found some limitations such as dl
models requires all input images of the same size, which limits the training model.
Work done by many researchers transform malicious binaries into grayscale images,
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so there is the scope of training and classification with color images. Different model
architectures (differ in several layers, number of kernels/filters, size of strides, etc)
show different results, so there is the scope of more intelligent architectures using
deep learning to improve performance. Existing approaches which achieved high
accuracy are often specific to a particular dataset, so still, there is a need for more
generic deep learning architecture, which can be utilized for any type of dataset. The
size of the dataset has significant importance on the accuracy and performance of the
model. There is scope to address the data imbalance issue (as there is a difference in
the number of samples in one family and rest). Available malware datasets constitute
different formats and specifications containing both infected and non-infected files;
inconsistencies may arise in the accuracy of the results, deep learningmethods can be
substantially influenced by adversarial attacks using the experience of the learning
algorithm to avoid detection, or infuse harming instances into the training data.
One of the latest emerging hurdles in malware analysis is the file less malware
[10], which makes malware analysis more complicated. A combination of deep
learning models for malware analysis can prove more intelligent and effective. To
achieve good classification accuracy architecture alone is not only responsible it is
also dependent on the dataset, so quality and enough data generate more accurate
results, so preprocessing of the dataset is one of the important considerations for
classification.

5 Conclusion

In this chapter, we provided a detailed study of the malware, malware analysis,
deep learning, and its algorithms. The exponential development of the Internet, con-
nected devices, services and applications, user’s activity, and confidential information
attracts cybercriminals. Although malware is not a new threat in the cyber world,
but the device manufacturer, attacker’s techniques to avoid detection and different
service providers use different communication technologies creates a heterogeneous
environment where malware analysis becomes a critical task. In this context, this
chapter aimed to present an overview of the fundamental aspects of malware detec-
tion and classification using image visualization and deep learning techniques.

Within the next few years, malware classification and identification are likely
to become important and inevitably be an issue that is going to be explored more.
As can be concluded from the above-discussed information and study, the use of
visualization techniques to represent malware and deep learning models in malware
detection and classification proved to be efficient than traditional approaches. It is
important to keep in mind that deep learning approaches prove to be a state-of-
the-art approaches for malware detection and classification in some cases, but they
are always the possibility of better to do. Deep learning methods also have some
limitations such as a limited number of samples for analysis, to increase hidden
layers which also increases complexity in the model and increases training time.
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One biggest advantage of deep learning is automation. There is a need for automat-
ing the detection and classification process is still an important issue as most of the
traditional malware analysis in the identification and classification of new threats
continues to be a human task. Deep learning also has human interaction but limited
sense. Until now, thismethodology has only been applied to very less in literature and
also in practice, so this chapter will encourage readers to do further research in this
vast and important topic, and malware analysis is also connected to our lives directly.
Malware classification is a fundamental and vital issue for future research and we
have mentioned some state-of-the-art researcher’s approaches, scope and emerging
challenges for malware classification using deep learning for the reader’s further
studies. Finally, it is expected that the information presented and discussed in this
chapter would help readers, analysts, and researchers to obtain a general and practi-
cal view of the malware analysis especially malware identification and classification
from where they can visualize and explore new avenues of research.
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