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Abstract In this chapter, we review sequence-based machine learning methods
that are used for malware detection and classification. We start by reviewing the
datatypes extracted from code: static features and dynamic traces of program execu-
tion. We review recent research that applies machine learning on opcode and API call
sequences, call graphs, system calls, registry changes, information flow traces, as well
as hybrid and raw data, to detect and classify malware. With a focus on metamorphic
malware, we discuss Hidden Markov Models (HMMs) and Long Short-Term Mem-
ory (LSTM) networks. We describe their input formats, such as one-hot encoding
and vector embeddings, the architecture of the machine learning models, the training
process, and the output formats. Finally, we discuss commercial and open-source
tools that are used for data extraction from software.

1 Introduction

Malware is software that is designed to disrupt or damage computer systems. Accord-
ing to Symantec, more than 669 million new malware variants were detected in 2018,
which was an increase of more than 80% from 2017, with such trends continuing
into 2019 and 2020 [41, 42]. Every day, there are at least 350,000 instances of new
malware being created and detected. Additionally, 81% of all ransomware infections
target businesses and organizations, making malware infections very costly. Mal-
ware and web-based attacks are the two most costly attack types—companies spent
an average of US $2.4 million in defense in 2018-2019 [30, 48]. Clearly, malware
detection is a critical task in computer security.

Malware detection can be based on static or dynamic software features, or a
combination of those, or raw data. Static features are extracted from static files,
while dynamic features are extracted during code execution or emulation. Static
approaches often use features such as calls to external libraries, strings, and byte
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sequences for classification. Other static approaches extract higher level information
from binaries, such as sequences of API calls or opcode information.

Signature-based detection that uses static data is widely used within commercial
antivirus software. While this method is used widely in commercial antivirus tools
and is capable of detecting specific malware families efficiently, it fails to detect
new malware. Therefore, modern antivirus tools go beyond static signature-based
detection and can detect unknown malwares more accurately using dynamic data.
Using dynamic data, itis able to detect unknown malwares according to their behavior
[10, 16].

Sequential features extracted from malware source code analysis have been used
for the classification of malware with deep learning approaches. Sequences used in
malware analysis have been used for LSTMs, as well as HMMs. Both features and
sequences can be extracted by performing either static or dynamic analysis. There
are many tools that can extract either or both data types. We provide an overview of
these tools later in this chapter.

This chapter starts with describing the distinction between static and dynamic data
for malware detection. Then we give an overview of the data type representation,
recent malware detection methods, and tools for extraction of static and dynamic
data. Finally, we describe how sequence-based deep learning algorithms can be used
for malware detection.

2 Data Extraction

2.1 Static Data

Machine learning models for malware detection and classification can be trained
on static features or attributes that are extracted from executable files [13]. Static
analysis involves analyzing the malware software or code without actually executing
the program. Static analysis involves disassembling software and representing some
of its attributes as features for input to a machine learning tool [16]. Approaches to
perform static analysis usually employ the executable binary file, while others use
the source code file. Examples of static features include opcodes, API calls, control
flow graphs, and many others. Specific features for training the machine learning
model include extracting opcode sequences after disassembling the binary file, or
extracting the control flow graph from the assembly file, extracting API calls from
the binary, as well as extracting byte code sequences from the binary executable file
[2, 9, 21, 28, 38, 44] (Figs. 1 and 2).
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mov ax,0000h

add [6CB12h],c1
push ds

add [si+0DO9K] ,dh
and [bx+si+4C0O1lh],di
push sp

push 7219h

and [bx+si+71h] ,dh

Fig. 1 Static opcode sequence example. Consider an example based on the assembly code snippet
is shown above; the following sequences of length 2, also named bi-grams or 2 grams, can be
generated: s1 = (mov, add), s2 = (add, push), s3 = (push, add), s4 = (add, and), s5 = (and, push),
s6 = (push, push), and s7 = (push, and). Because most of the common operations that can be used
for malicious purposes require more than one machine code operation, this example uses sequences
of two opcodes, instead of individual opcodes [35]

2.2 Dynamic Data

Dynamic Analysis is the analysis of a software’s behavior that is performed while
executing the program. Some of the data that can be obtained through dynamic
analysis are API calls, system calls, instruction traces, taint analysis, registry changes,
memory writes, and information flow tracking. Dynamic analysis uses the tasks

A==0

B>C

Fig. 2 Static control flow graph (static): A Control Flow Graph (CFG) is the graphical representa-
tion of control flow or computation during the execution of programs or applications. Control flow
graphs are mostly used in the static analysis, as they can accurately represent the flow inside of a
program unit
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performed by a program while it is being executed in a virtualized environment [16].
Dynamic analysis is known to provide more accurate malware behavior detection
results, but the data can be time-consuming to extract. There are several techniques
and approaches followed to perform dynamic analysis.

As an example, this is an API system call extracted dynamically [16]:

fork(); getpid(); idoctl(); read(); write(); wait(); exit();

In order to input this to a sequence-based neural network we can represent it in
one-hot encoded format. One-hot encoding is created by replacing the ith system
call with an n-vector of zeros and a ‘1’ in the ith position.

2.3 Hpybrid Analysis

Besides static and dynamic analysis techniques, another analysis technique is the
hybrid analysis of malware, which combines the advantages of both static and
dynamic analyses [34]. Hybrid analysis technique is the combination of static and
dynamic analysis techniques. In hybrid analysis, static analysis is done before the
execution of a program and then dynamic analysis is done selectively based on the
information obtained from static analysis. Dynamic analysis can be tedious due to
multi-path execution. Static analysis can be used to selectively choose the path of
execution for dynamic analysis. Often hybrid analysis results in increased accuracy
and efficiency [34].

2.4 Alternative Approaches That Use Raw Data

In many cases the extraction of these sequences and features for LSTMs and HMMs
can be costly, so approaches using raw bytes are preferred, if comparable accuracy
can be obtained. For example, byte n-grams have been successfully used as fea-
tures [43]. Also, it is possible to treat executable files as images and apply image
analysis techniques. Images of malware executables have previously been used for
classification using convolutional neural networks [25].

2.5 Evaluation of Malware Detection Accuracy

For API call sequences and opcode sequences, three test case scenarios have been
implemented in previous work:

e The first case uses dynamic analysis data alone for both training and testing.
e The second case uses dynamic analysis data for training and static analysis data
for testing.
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e The third case uses static analysis data alone for both training and testing.

It is widely known that dynamic analysis data is more accurate and is therefore
popular for training purposes. On the other hand, using dynamic data for training and
testing is less efficient due to the complexity of extracting data in a dynamic fashion
from software.

3 Recent Research Examples

In this section, we give an overview of recent research on malware detection and
classification.

In [51], a system is proposed that extracts the API sequences from a Portable Exe-
cutable (PE) file format. Then Objective-Oriented Association (OOA) based mining
is done for malware classification. The system parses PE files and generates OOA
rules efficiently for classification using FP Growth and a frequent-pattern tree. The
system was tested on a large collection of PE files obtained from the anti-virus labora-
tory of KingSoft Corporation to compare various malware detection approaches. The
accuracy and efficiency of the OOA system outperformed anti-virus software, such
as Norton AntiVirus and McAfee VirusScan, as well as previous data mining-based
detection systems that employed Naive Bayes, Support Vector Machine (SVM), and
Decision Tree techniques.

In [31], malware is analyzed by abstracting the frequent itemsets in API call
sequences. The authors focused on the usage of frequent messages in API call
sequences, They hypothesized that frequent itemsets consisting of API names and/or
APIarguments could be valuable for identifying the behavior of malware. The authors
clustered a dataset of malware binaries, demonstrating that using the frequent item-
sets of API call sequences can achieve high precision for malware clustering while
reducing the computation time.

In [30], a kernel object behavioral graph is created and graph isomorphism tech-
niques and weighted common graph technique are used to calculate the hotpath for
each malware family. And the unknown malware is then classified into whichever
malware family has similar hotpaths.

In [12], dynamic instruction sequences are logged and are converted to abstract
assembly blocks. Data mining algorithms are used to build a classification model
using feature vectors extracted from the above data. For malware detection, the same
method is used and scored against the classification model.

In [3], the authors propose a malware detection technique that uses instruction
trace logs of executables collected dynamically. These traces are then constructed as
graphs. The instructions are considered as nodes and the data from the instruction
trace is used to calculate the transition probabilities. Then a similarity matrix is
generated between the constructed graphs using different graph kernels. Finally, the
constructed similarity matrix is input to an SVM for classification.
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In [47], the authors presented a malware detection technique using dynamic analy-
sis where fine-grained models are built to capture the behavior of malware using sys-
tem calls information. Then they use a scanner to match the activity of any unknown
program against these models to classify them as either benign or malware. The
behavior models are represented in the form of graphs. The vertices denote the sys-
tem calls and the edges denote the dependency between the calls where the input of
one system call (vertex) depends on the output of another system call (vertex).

In [1], the authors propose a run-time monitoring based malware detection tool
that extracts statistical features from malware using spatio-temporal information
from API call logs. The spatial information is the arguments and return values of the
API calls and temporal information is the sequence of the API calls. This information
is used to build formal models that are fed to standard machine learning algorithms
for malware detection.

From all the research given above, it is evident that dynamic analysis is a good
source of information for malware behavior. Even though producing dynamic data
incurs an execution overhead, a more accurate model can be obtained from dynamic
analysis than using static analysis alone.

3.1 Hybrid Analysis

Hybrid analysis tools are developed for using the accuracy benefit that dynamic
analysis offers and the static analysis’ advantage of time complexity.

HDM Analyzer uses both static analysis and dynamic analysis techniques in the
training phase and performs only static analysis in the testing phase. By combin-
ing static and dynamic analyses, HDM Analyzer achieved a better accuracy and
time complexity than static and dynamic analysis methods alone [18]. The authors
extracted a sequence of API calls for dynamic analysis, which is one of the most
effective features for describing the behavior of a program.

In [9], the authors propose a framework for classification of malware using both
static and dynamic analysis. They define the features or characteristics of malware as
Mal-DNA (Malware DNA). Mal-DNA combines static, dynamic, and hybrid char-
acteristics. Besides extracting the static features of malware, they extract dynamic
data with debugging based behavior monitoring. Then they classify malware using
machine learning algorithms.

In a slightly modified version, [19] apply n-grams method to the API calls
extracted and use the above as a feature set for malware classification. Applica-
tion Programming Interface (API) call sequences are commonly used features in
intelligent malware detection systems. An API call sequence captures the activities
of a program and, hence, it is useful data for mining of malicious behavior. Different
order of each API call in a sequence may mean a different behavior model. Therefore,
the order of API calls is an important issue to analyze malware behavior. The paper
proposes a feature extraction approach for modeling malware behavior that extracts
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API call sequences by dynamic analysis of executing programs. The novelty of the
approach is utilizing n-grams to preserve the order of API calls.

In [17], a set of program API calls is extracted and combined with the control flow
graphs (CFGs) to obtain a new representation model called API-CFG, where API
calls form the edges in the control flow graph. This API-CFG is trained by a learning
model and used as a classifier during the testing stage for malware detection. The
behavior of a program is represented by a set of API calls. Therefore, a classifier can
be employed to construct a learning model with a set of programs’ API calls. Finally,
an intelligent malware detection system is developed to detect unknown malwares
automatically. This approach is capable of classifying benign and malicious code
with high accuracy. The results show a statistically significant improvement over
n-grams-based detection method.

In [23], dynamic malware detection is done using registers values set analysis. In
this paper, a novel method is proposed based on similarities of binaries behaviors.
At first, run-time behavior of the binary files is found and logged in a controlled
environment tool. The approach assumes that the behavior of each binary can be
represented by the values of memory contents in its run-time. That is, values stored
in different registers while the malware is running in the controlled environment can
be a distinguishing factor to discriminate it from those of benign programs. Then, the
register values for each Application Programming Interface (API) call are extracted
before and after API is invoked. After that, the changes of registers values throughout
the executable file are traced to create a vector for each of the values of EAX, EBX,
EDX, EDI, ESI, and EBP registers.

In [32], a new runtime kernel memory mapping method called allocation-driven
mapping is introduced, which identifies dynamic kernel objects, including their types
and lifetimes. The method works by capturing kernel object allocation and dealloca-
tion events. A benefit of kernel-based malware analysis includes providing a temporal
view of kernel objects by performing a temporal analysis of kernel execution. Their
system includes a temporal malware behavior monitor that tracks malware behavior
by the manipulation of dynamic kernel objects. Allocation-driven mapping is shown
to reliably analyze malware behavior by guiding the analysis only to the events
relevant to a malware attack.

In [36], the API call sequences and assembly code are combined and a similarity-
based matrix is produced that determines whether a portion of code has traces of a
particular malware. This research showed good results by using API call sequences
and Opcode sequences to give a good description of the behavior of a malware.

An orthogonal approach to the monitoring of function calls during the execution of
aprogram, is the analysis of how the program processes data. The goal of information
flow tracking is to propagate and track “taint-labeled” data throughout the system,
while a program manipulating this data is executed. The data that should be tracked
is specifically marked (tainted) with a corresponding label. Assignment statements,
for example, usually propagate the taint-label of the source operand to the target [16].
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Fig. 3 Illustration of a generic Hidden Markov Model [40]

4 HMM Architecture

The HMM is based on augmenting the Markov chain. A Markov chain is a model
that represents the probabilities of sequences of random variables, called states, each
of which can take on values from some set. These sets can be words, or tags, or
symbols representing anything, like the alphabet. In the case of malware, the sets of
values may be opcodes or API calls.

A Markov chain makes an assumption that for predicting the future in a sequence,
the current state is all that matters. The states before the current state only impact the
future via the current state. For instance, to predict the next word you could consider
the current word, but you should not examine previously seen words. Similarly,
to predict if the states in a sequence produced by a piece of software constitute
malware, you could use the states immediately preceding a state, but not states seen
in the distant past.

HMMs have been used for malware detection. A Hidden Markov Model (HMM)
is a machine learning model to represent probability distributions over a sequence
of observations [22]. The HMM satisfies the markov property, i.e., the current state
t is dependent only on ¢ — 1 and is independent of all states prior to t — 1. A HMM
is motivated by the idea of considering both observed events (such as words that we
see in the input) and hidden events (such as part-of-speech tags) that we think of
as causal factors in our probabilistic model. An HMM is specified by the following
components:

e 0 =qiq...qy asetof N states

e O = 010;...0r asequence of T observations, each one drawn from a vocabulary
V=v,v,...,Vy

e A =ayi...qa;...ayy atransition probability matrix A, each a;; representing the
probability of moving from state i to state j, s.t. Pj—; ya;; = 1Vi

e B = b;(0;) a sequence of observation likelihoods, also called emission probabil-
ities, each expressing the probability of an observation o; being generated from a
state i

e 7T = my, My, ..., Ty an initial probability distribution over states. ; is the proba-
bility that the Markov chain will start in state i. Some states j may have 7; = 0,
meaning that they cannot be initial states.
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4.1 Training for Malware Detection

The basic steps followed for performing malware detection using HMM are as fol-
lows. First, we select the observation data that the model should be trained for. In this
case, the observed sequences represent software states that may originate from mal-
ware data. The observed sequences can be API calls sequence or opcode sequences.
A model is trained with the above-observed sequences. After convergence, we get an
accurate model that best fits the observed sequences. Next, we score a set of malware
and benign files against the trained model. If the scores are higher than a predeter-
mined threshold, the scores above the threshold can be classified as files from the
malware family and ones that are below the threshold can be classified as files from
the benign family [5] (Fig. 3).

4.2 Metamorphic Malware Detection

The use of static data is insufficient when dealing with the advanced malware obfusca-
tion techniques such as code relocation, mutation, and polymorphism [11]. In [37], an
opcode-based software similarity measure was developed, showing excellent results
for metamorphic malware detection and classification. In [14], the metamorphic
malware detection is done based on function call graph analysis. In [29], multiple
sequence alignment algorithms from bioinformatics lead to viral code signatures that
generalize successfully to previously known polymorphic variants of viruses.

The detection of metamorphic malware became more effective due to the appli-
cation of Markov models and HMMs to malware detection. Profile Hidden Markov
Models (PHMMs) are known for their success at detecting relations between DNA
and protein sequences. When applied for malware detection it has been found that
PHMMs can effectively detect metamorphic malware [40] and HMMs have also been
successful in this regard. In [S], HMMs were used for malware classification. The
HMM clustering results classify the malware samples into their appropriate families
with good accuracy, providing a useful tool in malware analysis and classification.

5 LSTM Architecture

Long Short-Term Memory networks—usually just called “LSTMs”—are a special
kind of Recurrent Neural Network (RNN), capable of learning long-term dependen-
cies in sequences of events. They work well on a large variety of problems. Besides
malware detection, they have also been widely used for sequence classification in
other fields such as text mining and biology.

In this section, we analyze how LSTM sequence-based deep learning methods
may be used for malware classification [24]. While static signature-based malware
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detection methods are quick, static code analysis can be vulnerable to code obfus-
cation techniques. LSTMs offer the benefit that they don’t rely on static analysis
and can analyze a short snapshot of the runtime behavior. Behavioral data collected
during file execution is more difficult to obfuscate but takes a long time to capture
(typically up to 5 min). This often means that the malicious payload has likely already
been delivered by the time it is detected.

In [39], LSTMs were applied to microarchitectural event traces captured through
on-chip hardware performance counter (HPC) registers. The proposed LSTM
approach achieved up to 11% higher detection accuracy compared to other sequence-
based classification, such as HMM-based approaches in detecting obfuscated mal-
ware.

References [27, 46, 49] used sequences of API system calls for training an
LSTM. In [27], they trained the LSTM model to learn from the most informative
of sequences from the API-dataset based on their relative ranking as determined by
Term Frequency-Inverse Document Frequency (TF-IDF) recommended features.
They were able to achieve accuracy as high as 92% in detecting malware and benign
code from an unknown test API-call sequence.

Reference [8] extracted 3-grams of opcode sequences and API call sequences.
They then used attention mechanisms to identify API system calls that are more
important than others for determining whether a file is malicious. They report this
approach gave an accuracy that was 12% and 5% higher than conventional malware
detection models using convolutional neural networks and skip-connected LSTM-
based detection models, respectively.

Reference [39] used dynamic data in the form of microarchitectural event traces
captured through on-chip hardware performance counter (HPC) registers. They com-
bined this with localized feature extraction from image binaries corresponding to the
application binaries. Using this advanced approach, an accuracy of 94% and nearly
90% is achieved in detecting normal and metamorphic malware created through code
relocation obfuscation technique.

An LSTM variation is to use coupled forget and input gates. This variation on the
LSTM is called the Gated Recurrent Unit, or GRU [7]. It combines the forget and
input gates into a single “update gate.” It also merges the cell state and hidden state.
Instead of separately deciding what to forget and what to add new information to,
GRUs make those decisions together. GRUs only forget when they are going to input
something in its place. GRUs only input new values to the state when they forget
something older. GRUs have also been used for malware detection [6].

5.1 LSTM Training

Input format: A single training data element consists of the label and an input
word: xseq—a subsequence of a fixed size sampled randomly from the full origi-
nal sequence. Reference [45] used one-hot encoding of logged API call sequences
reflecting process behavior. One-hot encoding is a method for transforming categor-
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ical data to numerical data by representing the ith categorical value from the universe
as a numerical vector of zeros and a ‘1’ in the ith position.

Reference [50] compared opcode embedding against one-hot encoding methods.
One-hot encoding is simple to use and with the rather small number of Android
opcodes, the sparseness of one-hot encoding does not cause a negative impact on
efficiency. Another method is learning opcode embedding from data samples. Using
opcode embedding achieves better malware detection results than one-hot encoding
since opcode embedding captures the opcode semantic information better compared
to one-hot encoding. The embedding idea comes from word vector learning in NLP,
such as word2vec. Opcode embedding helps to learn the semantic information of
opcode sequences and mine for malicious behaviors [50].

Reference [26] also input word embeddings derived from opcode sequences to
LSTMs for malware detection and malware classification. Their evaluation results
showed their proposed method can achieve an average AUC of 0.99 and an average
AUC of 0.987, respectively.

Generally, an LSTM or RNN takes an input sequence of a fixed size for training
or classification. An input sequence that is of a shorter size than the input layer of the
LSTM can be padded with special characters [6]. Otherwise, it can either be trimmed
or subsampled to derive samples of the desired size.

Reference [33] used trimming of sequences to detect whether or not an exe-
cutable is malicious based on a short snapshot of behavioral data. They collected
ten numerical machine activity data metrics (e.g., CPU and memory usage) as fea-
ture inputs, which are continuous numeric values, allowing for a large number of
different machine states to be represented in a small vector of size 10. They used an
ensemble of RNNs to build an RNN model able to predict whether an executable is
malicious or benign within the first 5s of execution with 94% accuracy. This was
one of the first works to predict malicious code during execution. Previous dynamic
analysis research collected data for around 5 min per sample [33].

In some works training the LSTM involved a subsampling of sequences from
the original sequence. Specifically, training on a set of labeled sequences occurs
by subsampling a number (say, 50-100) of short fixed-length sequence samples.
Then training happens on each sample. For instance, [4] used samples extracted
from Windows files. They trained a multiclass classification RNN, more specifically
a LSTM on the dataset. This model for analyzing unstructured data was tested on
unseen programs and the accuracy reached 67.60%, including six classes with five
different types of malware.

The subsampling is chosen to ensure a fair representation of smaller and larger
sequences. The number (m) of fixed-length subsequences sampled from each exe-
cutable code sample should be proportional to the logarithm or square root of the
sequence length, such that longer sequences will contribute more samples, but do not
overwhelm the training. Each sample is a different subsequence xseq associated with
the originating sequence. The sequence xseq can be one-hot encoded if the number
of possible values is small.

Output format: The output from the final neuron is in a range from O to 1. This
value is used to discriminate between a positive or negative classification value; in
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Fig. 4 An LSTM and a layered LSTM architecture

other words, if it is predicted to be malware or not malware. A neural network is a

function
F(x‘veqaxf|9) =)y (1

that accepts sequences of points x,., and the feature vector x s. The function F also
depends implicitly on the DL model parameters 6, which are determined during the
training process. The output of the neural network, score y, is computed using the
softmax function, which ensures that y satisfies y € [0, 1]. By convention, the higher
the score is for the sequence, the more likely the sequence is to be a true malware
(Fig.4).
Gradient Descent and Backpropagation
The training cycles are typically repeated for a specified number of epochs (such as
30 training cycles): The loss (error) is computed as target—actual output. E is the
loss overall, computed by averaging loss over all instances of the training set.

The gradient of the loss is computed at the position we end up at. For neuron o; at
layer j:
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0E  0E do; Onet; 0j = p(net;) = (E w;_,o;c)
Bw,-j 60j 61]8!'.3‘ 3w.,-j

During gradient descent the weights are adjusted by the learning rate 7:

Vw;; = the product of —» and the gradient of loss

Vw;; changes w;; such that E decreases in next epoch

Backpropagation then adjusts all weights from outer to the inner layers.

As hyperparameters, the model can be trained with a binary cross-entropy loss
function and Adam optimizer. Usually, there are dropout layers to reduce overfitting.

Another possible architecture involves a hybrid of LSTM and a dense neural
network. As input in this case, a single training data element consists of the label
and two input words: x,.,—a subsequence of a fixed size sampled randomly from
the full original sequence and x ;—a vector containing features extracted from the
full sequence. The values of the feature vector x can be normalized to be bound
within [—1, 1]. This architecture takes the sequences as input on one branch; and the
features as matrices or vectors in another branch [24, 25] (Fig.5).

6 Tools

6.1 IDA Pro

IDA Pro is a popular disassembler for generating assembly language source code
from executables. It can also be used as a debugger. IDA Pro can be used to generate
.asm files from which opcodes and windows API calls can be extracted. Also, IDA
Pro is useful for collecting the instruction trace logs of executables.

6.2 OllyDbg

OllyDbg is a 32-bit disassembler and debugger, which is second best to IDA Pro.
OllyDbg has limited features compared to IDA Pro.

6.3 Ether

Ether is an open-source tool for malware analysis that has been developed via hard-
ware virtualization extensions and resides completely outside of the target OS. This
disables the detection of guest software components. Many recent viruses can detect
a debugger or a virtual environment during execution. Ether malware analysis tool
overcomes this problem and hence provides a benefit as a tool for malware detection
[15].
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Fig.5 Ahybrid LSTM and dense architecture. A neuron in the dense layer has all-to-all connectivity
and connections are described as a two-dimensional numerical matrix. Dropout layers are used to
reduce overfitting

6.4 API Logger

API Logger is a tool that logs all API calls that meet the restrictions of the inclusion
and exclusion lists. The inclusion list specifies which libraries need to be included
and exclusion list specifies which libraries or functions can be ignored [20].
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6.5 WinAPIOverride

WinAPIOverride is an advanced API monitoring software. Its main distinction is
the ability to manually extract API calls by deciding the flow of the program during
execution. In that sense, it fills the gap between classic API monitoring software and
debuggers.

6.6 API Monitor

API Monitor is a software tool that also helps in monitoring and controlling API
calls made by applications of processes. This tool needs to be run inside a virtual
machine to analyze a malware and cannot be run in a sandboxed environment (Www.
rohitab.com/apimonitor. Accessed 07/14/2020).

6.7 BSA

Buster Sandbox Analyzer (BSA) is a tool that can decide if processes exhibit mali-
cious activities based on dynamic analysis. In addition to analyzing the behavior of
running processes, BSA keeps track of the changes made to the system, such as reg-
istry changes. The tool runs inside a Sandbox that protects the system from getting
infected while executing the malware. BSA can generate API trace calls for win32
executables. Other tools similar to BSA that are useful for tracing in sandboxed envi-
ronments are CWSandbox and Norman Sandbox (http://bsa.isoftware.nl. Accessed
07/14/2020).

7 Conclusion

In this chapter, we have compared data representations for static and dynamic datasets
that can be used to classify and detect malware. The extracted data is input to a
sequence-based machine learning or deep learning tool. Sequence-based machine
learning provides a non-signature-based malware detection method that can effec-
tively classify new and unknown types of malware, as well as metamorphic malware.
Both static and dynamic datasets contain data types that are sequence-based. Using
dynamic data offers a benefit over static data for detecting obfuscated code. The data
can be trained upon and classified by sequence-based machine learning tools, such
as HMMs and LSTMs. The sequence-based approaches are in contrast to training
upon and classifying using feature-based machine learning tools, such as dense or
convolutional neural networks, which often employ images or raw data from mal-
ware.
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