
A Comparative Study of Adversarial
Attacks to Malware Detectors Based on
Deep Learning

Corrado Aaron Visaggio, Fiammetta Marulli, Sonia Laudanna,
Benedetta La Zazzera, and Antonio Pirozzi

Abstract Machine learning is widely used for detecting and classifying malware.
Unfortunately, machine learning is vulnerable to adversarial attacks. In this chapter,
we investigate how generative adversarial approaches could affect the performance
of a detection system based on machine learning. In our evaluation, we trained
several neural networks for malware detection on the EMBER [3] dataset and then
we built ten parallel GANs based on convolutional layer architecture (CNNs) for the
generation of adversarial examples with a gradient-based method.We then evaluated
the performance of our GANs, in a gray-box scenario, by computing the evasion rate
reached by the adversarial generated samples. Our findings suggest that machine-
and deep-learning-based malware detectors could be fooled by adversarial malicious
samples with an evasion rate of around 99% providing further attack opportunities.

1 Introduction

Several studies have investigated the effectiveness [1, 7, 8, 17, 19, 48] and drawbacks
[4, 40] of machine (and recently also deep) learning in detecting and classifying
malware. Independently from the inherent limitations of malware detectors based on
machine learning, the generative adversarial networks (GANs, in the remainder of
the chapter) become a menace to the effectiveness of these tools.

A GAN is a tool that produces adversarial samples by using the adversarial
machine learning [26]: this is a technique that leverages machine learning for fool-
ing classifiers trained with a machine learning algorithm, leading them to wrongly
classify some samples.

C. A. Visaggio · S. Laudanna · B. La Zazzera · A. Pirozzi
University of Sannio, Benevento, Italy
e-mail: visaggio@unisannio.it

F. Marulli (B) · S. Laudanna · B. La Zazzera · A. Pirozzi
Department of Maths and Physics, University of Campania “L.Vanvitelli”, Caserta, Italy
e-mail: fiammetta.marulli@unicampania.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
M. Stamp et al. (eds.), Malware Analysis Using Artificial Intelligence
and Deep Learning, https://doi.org/10.1007/978-3-030-62582-5_19

477

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62582-5_19&domain=pdf
mailto:visaggio@unisannio.it
mailto:fiammetta.marulli@unicampania.it
https://doi.org/10.1007/978-3-030-62582-5_19

478 C. A. Visaggio et al.

Adversarial machine learning has been applied with a certain success especially
to the field of image recognition with some surprising results [21], but also to speech
recognition [2] and biometric recognition [11].

For understanding how powerful maybe this technique, we couldmention the case
of image recognition. The adversarial sample is an image that has been tampered
within away that cannot be distinguishedby abare eye, but thatmisleads the classifier.
The result is that the image is not recognized at all or, even worst, is classified as a
completely different image.

An exemplar case is the automatic recognition of street signs: a street sign is
decoded as another street sign. Alike the fieldswhereGANs have been experimented,
they could be successfully used for generating samples ofmalware that are recognized
by malware detectors based on machine learning as goodware.

The research community is now investigating the application of GANs tomalware
analysis, and so far the main result consists of some models of GANs for producing
adversarial malware samples.

Our purpose is to investigate how and how much GANs are able to degrade the
performance of malware detectors based on machine learning. We trained a set of
classifiers using different combinations of features, obtaining a wide spectrum of
performances. Thus, we built different models of GANs, observing the degradation
of each detector.

This work does not help to identify how to make stronger a detector against an
adversarial attack but provides data for quantifying the potential effects of a GAN
on a malware detector based on machine learning.

In this chapter, we provide a brief overview of the current state of the art and
some open issues related to the vulnerabilities of deep learning models adopted in
designing malware recognition systems. More precisely, we focused on the weak
points of these approaches when attacked by adversarial examples that are proving
to be increasingly sophisticated and effective in misleading defense systems.

We provide further evidence by discussing a case study that shows how adversarial
examples and generative adversarial approaches, by the means of generative adver-
sarial neural networks (GANs), can degrade the detection performance of a deep
learning feature-based malware detector, finally highlighting that certain features
may prove to be more sensitive than others.

The chapter is organized as follows: the next section provides the background
of adversarial machine learning and the most significant applications, while Sect. 3
compares the related literature. Section4 shows the research questions we posed and
the design of the case study. Section5 discusses the obtained results, and, finally,
conclusions are drawn in the last section.

A Comparative Study of Adversarial Attacks to Malware … 479

2 The Deep Learning Models Adopted in Malware
Detection

Machine learning (ML) and deep learning (DL) have been successfully employed
for detecting malicious objects, e.g., executable files.

New malware programs appear each year in increasing amounts and hence mal-
ware detection based on signature matching is increasingly becoming an impractical
approach. Machine and deep learning promise to provide valid countermeasures
against modern malware because of their capability to potentially detect malware
applications without specific signatures of their behavior or data.

Generally, ML-based malware detectors work on the extraction of the malware
(and benign programs) features and static and/or dynamic analysis can be performed.
Such systems learn from examples for creating models by which they will be able
to discriminate whether a given program is a malware or not. These models are then
used to estimate the likelihood that a given program is malware.

One of the bottlenecks exhibited by ML-based malware detection is represented
by the high time required to learn when the number or size of features is wide or
the number of sample programs is large. Although reducing the number of features
could shorten the learning time, the accuracy in the detection task likely decreases. So,
finding an acceptable trade-off among the detection accuracy, short learning times,
and limiting the size of data, obtainable by selecting a convenient combination of
sensitive features, is far from being a trivial problem.

A very accurate review of recent findings of adversarial examples in deep neural
networks and a deep investigation of existing methods for generating adversarial
examples is provided in [50].

2.1 The Deep Learning Models in a Nutshell

The essential background about techniques and enabling architectures of deep learn-
ing is provided in the following.

Deep learning is a kind of machine learning that makes computers to learn from
experience and knowledgewithout explicit programming and extracts useful patterns
from raw data.

Conventional machine learning algorithms exhibit some limitations since it is
difficult to extract well-represented features because of the curse of dimensional-
ity, computational bottleneck, and strong requirements of the domain and expert
knowledge. Deep neural networks represent a particular kind of machine learning
algorithm, leveraging several “deep” layers of networks. Furthermore, deep learning
solves the problemof the representation bybuildingmultiple simple features tomodel
a complex concept. The more the number of available training data grows, the more
powerful the deep learning classifier becomes. Deep learning models solve compli-

480 C. A. Visaggio et al.

cated problems by complex and large models, with the help of hardware acceleration
in computational time.

Traditionally, researchers build a single deep learning model using the entire
dataset. However, the single deep learning model may not handle the increasing
complex malware data distributions effectively since different sample subspaces
representing a group of similar malware may have unique data distribution [52].

Since the performance of deep learning models keeps improving with the increas-
ing number of samples [49], researchers build a single deep learning model using
an entire data to understand the relationship between data features extracted from
malware and the target [9, 27, 39, 45].

These deep learning models mainly use three types of neural network architec-
tures:

• Convolutional neural network (CNN);
• Recurrent neural network (RNN); and
• Fully connected feedforward neural network (FC).

There are twomajor disadvantages in building a single deep learning model that uses
a blended dataset:

• Complex data distribution;
• Scalability.

Each type of malware has unique and different characteristics, proliferation meth-
ods, and data distributions [35, 49].

Consequently,merging different types ofmalware into one dataset results in a very
complex overall data distribution. Furthermore, the diversity and sophistication of
the merged dataset continue to grow rapidly due to the large number of new malware
variants that are created each year [49]. As a result, it is very challenging for a single
deep learning model to understand this complex data distribution.

Additionally, the single CNN model treats malware as the image while the single
RNN model considers the behavior as the sequence of events. Both models only
analyze the data distribution from only one perspective. In the case of malware, the
analysis of data distribution in different sample subspaces from multiple angles is
preferred in order to combine the knowledge and strength of these single models
effectively.

Second, building a single deep learning model for malware detection lacks scala-
bility to train on increasingly large malware datasets. Training deep learning models
on very large datasets is a computationally expensive process [20]. Since the number
of newmalware samples has exponentially increased through time [9, 31], building a
single deep learningmodel requires longer computation time. This slow training pro-
cess makes difficult to search and rebuild the learning model rapidly in order to adapt
to the fast changing malware landscape and respond to the new techniques adopted
by the malware writers. An alternative to using a single deep learning model to build
malware detection systems (MDSs) is the development of ensemble-based deep
learning models. Multiple deep learning models in the ensemble can work together

A Comparative Study of Adversarial Attacks to Malware … 481

to enhance the performance of MDSs. Researchers have developed the ensemble-
based deep learning models, where each model is constructed on the whole blended
dataset.

2.1.1 The Most Popular Deep Neural Network Architectures

A neural network layer includes a set of perceptrons (artificial neurons), and each
one is able to map a set of inputs to output values by evaluating a simple activa-
tion function. The function of a neural network is formed in a chain f(x) = f (k)

(. . . f (2) (f (1)(x))), where f (i) is the function of the ith layer of the network, with
i = [1; 2; …; k].

Convolutionalneuralnetworks (CNNs) and recurrentneuralnetworks (RNNs)
are the two most popular and adopted neural network architectures in recent times.

CNNs deploy convolution operations on hidden layers for weight sharing and
parameter reduction. CNNs can extract local information from grid-like input data.
CNNs have shown incredible successes in computer vision tasks, such as image
classification [24], object detection [44] and semantic segmentation [14].

RNNs are neural networks adopted for processing sequential input data with
variable length. RNNs produce an output at each step. The hidden neuron at each
step is calculated based on input data and hidden neurons at a previous step. To avoid
vanishing/exploding gradients of RNNs in long-term dependency, long short-term
memory (LSTM) and gated recurrent unit (GRU) with controllable gates are widely
used in practical applications.

Generative adversarial networks (GANs) are a type of generative model intro-
duced by [22], where adversarial examples can be exploited to improve the repre-
sentation of deep learning and perform unsupervised learning. A generative network
(generator) creates artificial samples while a discriminative network (discriminator)
acts as an adversary to determine if the generated samples are genuine or fake. This
kind of network architectures are typically referred as generative adversarial network
(GAN) and solve an optimization function described by

min
G

max
D

V (D, G) = Ex∼Pr [log D(x)] + Ez∼Pz [log D(G(z))],

where D and G denote the discriminator and generator, and Pr and Pz are, respec-
tively, the distribution of input data and noise. In this competition, GAN is able to
generate raw data samples that look close to the real data.

Due to the wide use and breakthrough successes, ML- and DL-based detection
systems have become amajor target for attacks, where adversaries are usually applied
to evaluate the attack methods. Unfortunately, both ML and DL approaches to mal-
ware detection can be fooled by adversarial examples that consist of small changes
to the input data causing misclassification at testing time.

482 C. A. Visaggio et al.

3 Adversarial Attacks Against Deep Learning-Based
Malware Detection System

In this section, we explore the adversarial attack techniques on MLmodels that have
been applied to intrusion and malware attack scenarios.

Several techniques have been proposed to create adversarial examples. Most
approaches suggest minimizing the distance between the adversarial example and
the instance to be manipulated in order to cause the ML classifier to misclassify the
testing dataset with high confidence.

Some methods require access to the gradients of the model, which typically intro-
duce perturbations optimized for certain distance metrics between the original and
perturbed samples: this kind of attack is called white-box attack. Other methods
only require access to the prediction function, which makes these methods model-
agnostic: this kind of attacks are called black-box attack.

A simple indiscriminate approach is gradient ascent during the training of ML
model. Szegedy et al. [47] proposed a first gradient method to generate adversar-
ial examples applied to the imaging field, using box-constrained limited-memory
Broyden-Fletc.her-Goldfarb-Shanno (L-BFGS) optimization, an optimization algo-
rithm that works with gradients. The adversarial examples were generated by mini-
mizing the following function:

Minimize ‖r‖2 subject to :
1. f (x + r) = l

2. x + r ∈ [0, 1]m ,

where x is an image represented as a vector of pixels, r represents the perturbations to
be made on the pixels to create an adversarial image, l is the target label (the desired
outcome class), and the parameter c is used to balance the distance between images
and the distance between predictions.

Goodfellow et al. [22] proposed a simple and fast gradient-based method called
fast gradient sign method (FGSM), using the gradient of the underlying model to
find adversarial examples and the original image x is manipulated by adding or
subtracting a small error ε to each pixel:

η = ε ∗ sign (�x J (x, y)) .

Here, η is the perturbed sample, ε is a hyperparameter controlling the amount of
perturbation added to each feature (pixel), �x J is the gradient of the models loss
function with respect to the original input pixel vector x and y the target label (the
true label vector for x). The sign of the gradient is positive if an increase in pixel
intensity increases the error the model makes and negative if a decrease in pixel
intensity increases the error. This approach requires many pixels to be changed, for
this reason, Su et al. [46] demonstrated that it is actually possible to deceive image

A Comparative Study of Adversarial Attacks to Malware … 483

classifiers by changing a single pixel (the RGB value). The one-pixel attack uses
differential evolution to find out which pixel is to be changed and how.

Brown at. al [12] proposed how to create image patches that can be added to a
scene, and force a classifier into reporting a class of the attacker’s choosing. This
method differs from the methods aforementioned since the adversarial image isn’t
close to the original image but it is removed and a part of the image is replaced with
a patch that can take on any shape.

Carlini andWagner [13] modified the objective function and used a different opti-
mizer compared with the L-BFGS attack described in [47]. Instead of using the same
loss function as in L-BFGS, they solved the following box-constraint optimization
problem to find an adversarial perturbation δ, making the problem more efficient to
solve. CWfinds the adversarial instance by finding the smallest noise δ ∈ Rnxn added
to an image x that will change the classification to a class t and uses the L2 norm
(i.e., Euclidean distance) to quantify the difference between the adversarial and the
original examples. Formally:

minimize ‖δ‖p subject to C (x + δ) = t, x + δ ∈ [0, 1]n,

where C(x) is the class label returned with an image x .
While successful, gradient-based methods work only under “white-box” settings.

Papernot et al. [38] showed a type of zero-knowledge attack (black-box attack) to
create adversarial exampleswithout internalmodel information andwithout access to
the training data. This technique, called Jacobian-based saliencymapattack (JSMA),
unlike the previous method, proposed to use the gradient of loss with each class label
with respect to every component of the input, i.e., Jacobian matrix to extract the
sensitivity direction. Then a saliency map is used to select the dimension which
produces the maximum error using the following equation:

st = ∂t

∂xi
; so =

∑

j �=t

∂ j

∂xi
; s(xi) = st |so| · (st < 0) · (so > 0).

In the previous formula , st represents the Jacobian of target class t and so represents
the sum of Jacobian values of all non-target class. Changing the selected pixel will
significantly increase the probability of the model labeling the image as the target
class. The purpose of JSMA attack is to optimize the Lo distance metric (the amount
of perturbed features).

Moosavi-Dezfooli et al. [33] proposed an algorithm,DeepFool, to compute adver-
sarial examples using an iterative linearization of the classifier to generate minimal
perturbations that are sufficient to change the classification labels. Starting with a
binary classification problem, this method creates an adversarial example computing
theEuclidean distance between perturbed samples and original samples in an iterative
manner until sign(f (x)) �= sign(f (x + r)) where r is the minimum perturbation
required.

484 C. A. Visaggio et al.

Zeroth-order optimization attack (ZOO) was proposed by Chen et al. [15] and
consists of approximating the full gradient via a random gradient estimate using
the difference between the predicted probability of the target model and the desired
class label. Precisely, the method uses zeroth-order stochastic coordinate descent to
optimize the malicious sample by adding perturbations to each feature and querying
the classifier to estimate the gradient and Hessian of the different features. In this
scenario, solving the optimization problem is computationally expensive and the
authors proposed a ZOO-Adam algorithm to find the optimal perturbations for the
target sample.

Most of the attacks presented have been initially tested on image domains by
introducing perturbations to existing images but they can equally be applied to other
types of data, such as datasetswith a limited number of features since these attacks are
not data-type dependent. In a cybersecurity scenario, a malicious user could access
any type of data used by a classifier and produce adversarial examples.

4 Generative Adversarial Attacks Against Malware
Detection Systems

In this section, we examine existing generative adversarial algorithms used to attack
malware detectors.

Generative adversarial algorithms have been mainly applied to image recogni-
tion, where generative adversarial networks (GANs) were used to generate images
that were indistinguishable from real ones. In the process of image generation, for
example, the GAN network modifies some features like pixels, while a human eye
does not perceive the difference from an original one. Using GAN to create a binary
file poses more difficulties than an image, because changing a bit in a binary may
corrupt the file. For this reason, generating executable files with a GAN could be
challenging.

The main difference between image and malware is that images are continuous
while malware features are binary. Changing byte arbitrarily could break semantics
and syntax of portable executable (PE) so we are limited in the types of modifica-
tion that can be done without breaking the malware functionality. For this reason,
different approaches have been proposed in the literature such as adding padding
bytes (adversarial noise) at the end of a file beyond PE boundaries [30]. Another
approach consists of injecting the adversarial noise in an unused PE region that is
not mapped in memory [32]. Most works in literature simply ignore this problem. In
order to overcome this limitation, attackers must have a white-box model in which
the type of the ML algorithm used and the features to be used are known. One of the
first demonstrations of an adversarial creation of a PE is the work [25]; in this paper,
authors adopt a gray-box model in which they only know the set of used features
based on API calls but do not know the ML model used by the classifier. In Mal-
GAN, authors generate adversarial examples by adding some irrelevant features to

A Comparative Study of Adversarial Attacks to Malware … 485

the binary files because removing features may crack the executable or its intended
behavior. The adversarial generated example is expressed by the following formula:

m ′ = m|o′,

where m is the initial feature vector, each element of m corresponds to the pres-
ence/absence of a particular feature in a malware, and then this input vector is fed
into a multi-layer feedforward neural network with weights

θg.

The output layer of this network has M neurons and has a sigmoid as an activation
function which is continuous in the range (0,1) as the last layer. The output of this
network is denoted as o.

Since malware features are binary, the output in the continuous space must be
transformed into the binary space with a transformation called binarization. This
procedure generates a new binary vector o’. Then the resulting m’ is a binary vector
obtained by the initial m vector through an OR bit-wise operation with the o’ binary
vector.

The non-zero element of the binary vector o’ acts as an irrelevant feature to be
added to the original malware. While MalGAN and the detector use the same API as
features quantity and this could affect the performance of avoidance, in [28] authors
add some noise to malware, extracting features (API list) from clean malware and
input them to the generator.

In another work [30], the authors present a gradient-based attack to generate
adversarial malware binaries but their limit is the manipulation to the padding bytes
appended at the end of the PE to guarantee that the malware integrity is preserved.
With this approach, they reach an evasion rate of 60% against raff2017malware
used as a classifier. GANs are also used to generate a malicious document. In [51],
the authors propose a method based onWasserstein generative adversarial network
(WGAN) to generate a malicious PDF with an evasion rate of 100% as stated. A
malicious PDF is a document that embeds and executes malicious code. In this
work, the authors generate adversarial examples by modifying 68 features extracted
from various attributes: size, metadata, and structural attributes.

5 Case Study

Wecarried out a case study to examine the effectiveness of adversarialmodels against
malware detectors based on deep learning. To this aim, we considered a coopera-
tive system of generative adversarial networks, where multiple GANs (couples of
generators and discriminators) run in parallel for supporting a multistage black-box
attack.

486 C. A. Visaggio et al.

Under the realistic hypothesis that an attacker knows very little about the system
he wants to attack (the case of a black-box attack), the attacker could set up some sort
of brute-force attack by deploying a pool of specific generators built for interacting
with a corresponding pool of specific targets (discriminators).

The attack strategy envisages multiple stages (steps). As first, the only knowledge
owned by the attacker consists of knowing that the target victim could behave accord-
ing to a ML or DL model and the kind of inputs it could accept, so the attacker trains
several generators working over different groups of features (possibly, he could try
over all the sensible combinations) for refining the generation of artificial adversarial
samples.

This training stage is performed without effectively interacting yet with the real
target. Discriminators play the role of the potential victims, as substitutes of real
victim systems. In the middle of attacking time, the attacker will start a smooth inter-
action with its victim, this time represented by a black box. By carefully analyzing
responses from the black box, it is able to figure out what features are used by the
malware detector black box. Adversarial test cases are produced by exploiting all the
trained generators in the attacker’s wallet.

Most of these samples will be harmless since they will not act on the right set
of features but we can suppose that almost one of these generators will be able to
generate samples that will produce some effects. By this way, the attacker will gain
knowledge about its adversary and can implement a gray-box attack, basing on the
features set its victim works over.

At the real attack time, the attacker will exploit only the right generator and
proceed to attack and refine its generation model until its target is reached out. The
case study we propose should not be regarded as exhaustive but it can be regarded
as proof of the concept that adversary attacks pointing ML and DL systems can
be implemented in many alternative and successful ways, for tampering with real
existing defense systems.

5.1 Case Study Design

As first, we trained ten parallel GANs simultaneously, where both the detectors and
the generators were realized by adopting deep neural network models. In particular,
the models used for the discriminators implement a fully connected feedforward
network architecture (FFNNs) while, for models of the generators, we adopted a
convolutional layer architecture (CNNs).

For implementing each GAN comprised in our cooperative system, we took our
cue from the general system architecture and the generators neural network archi-
tecture, implemented as a CNN, suggested in MalGAN [25]. Unlike MalGAN, we
don’t use a black-box detector and a substitute detector, since we designed our case
study from the perspective of a “patient attacker” deploying a multistage attack.
Our approach differs from MalGAN also in the kind of features considered both for

A Comparative Study of Adversarial Attacks to Malware … 487

training detectors and generators and in the generation strategy of the adversarial
samples, as it will be detailed in the following sections.

Then, in the first stage, we assume that the attacker knows at least the features
adopted by its victim for distinguishing between goodware and malware and has
access also to its gradients. In this way, we could directly exploit the gradient’s
information provided by the detectors for training the generators and refining the
capability to artificially generate samples that look like genuine ones.

With regard to the type of samples we analyzed and the kind of analysis performed
by the victim detectors, specifically, we considered the surface features extracted
from binary files applications, so the detectors answering to adversarial attacks are
trained to perform a static analysis over the inputs they are fed in.

Correspondingly, adversarial examples will be generated by crafting these surface
features. Since the surface feature space is discrete, we will apply a transformation
to continuous space, in order to apply a gradient-based method for improving the
probability that the generated adversarial examples will go undisturbed through the
detection system. The approach suggested in [23] allows us to work in discrete and
binary input domains, differently from most of the other proposed approaches [30]
that operate only in continuous and differentiable domains.

Furthermore, static analysis has the advantage that does not require the execu-
tion of samples in a sandbox or safe environment for studying their behaviors, and
the features for training the detector and/or classifiers can be extracted over specific
subsets of features. Conversely, the dynamic analysis could reveal more information
about malicious behaviors by the applications (e.g.., actions relationships and pat-
terns) but the operative conditions are more difficult to achieve. Challenging results
obtained by adopting static analysis in training machine and deep learning algo-
rithms for malware detection are described in [3], where the authors provided, as
first, an open-source dataset, namely, “EMBER,” consisting in a collection of sur-
face features extracted from a little under amillion ofmalicious applications targeting
Windows O.S. environment; furthermore, they provide experiments that compare a
baseline gradient boosted decision tree model trained using LightGBM [29] with
default settings to MalConv [43], an end-to-end but featureless deep learning model
for malware detection, which recently became a very popular benchmark in this kind
of experiments.

In the case of malware detection, unlike other application domains, like image and
speech recognition, manipulating bytes can severely compromise application func-
tionalities and validity; therefore, generating adversarial examples is not straightfor-
ward. An unavoidable requirement that should lay down every manipulation strategy
consists in adopting generation techniques that are able to guarantee the preservation
of malware functionality in the adversarially manipulated samples.

In our evaluation we trained, validated, and tested discriminator models for mal-
ware detection, by adopting for all the same samples, randomly extracted from the
EMBER [3] dataset. Finally, we selected the first ten ones that obtained the best
accuracy in the detection task. Then, we build ten parallel GANs, and we trained
ten generators for the corresponding trained detectors (discriminators). For training
the generators, we adopted a descendent gradient-based strategy and we adopted the

488 C. A. Visaggio et al.

maximum mean discrepancy (MMD) [5] as distance function for evaluating sample
distributions similarity during the training process.

We examined the results obtained in the different stages of our experiment for
measuring the effectiveness of the adversarial strategy and the robustness of the
malware detectors to these kinds of attacks.

We adopted, for evaluating the reached performances, the followingmetrics: accu-
racy, sensitivity, specificity, and evasion rate. The evasion rate represents a measure
of the success rate obtained by generator networks in fooling their opponent discrim-
inators; it can be computed as the ratio between the number of adversarial examples
that were misclassified as benign samples (also referred in the following as “good-
ware”) by each detector, over the total amount of adversarial samples submitted to
the discriminators.

By adopting the EMBER dataset, we were able to fit the detection performance
obtained from the state of the art. Then, by using the adversarial crafting algorithm,
we were able to mislead, on average, the ten detectors by decreasing the average
accuracy over all the models ranging from a minimum of 20.63% (best case) to a
maximum of 40.8% (worst case), by mixing genuine samples with adversarial one’s
samples and acting over the surface features.

Our preliminary experiments revealed, at a first sight analysis, that the byte dis-
tribution (byte histogram) is among the most sensitive features. This finding could
suggest that machine- and deep-learning-based malware detectors, which work on
static and surface features, could be fooled by adversarial malicious samples that are
able to reach a bytes distribution with a high level of likelihood with the goodware
bytes distribution.

5.2 General Architecture

The overall architecture of the systemwe propose corresponds to the general schema
of a GAN (Fig. 1), where each couple made of a generator (G) and a discriminator
(D) acts independently from each other.

5.2.1 The Discriminator Network Model

Following the approaches suggested in [36, 42, 43], we adopted a fully connected
multilayered feedforward neural network as the base architecture for our discrim-
inator’s models. All the models we trained for obtaining the detection systems, as
detailed in the following sections, share the same number of dense hidden layers,
their size and the size of the output layer, set to 1, since the detection acts as a binary
classification task (e.g., malware or goodware). All the trained models differ in the
input layer size, since we performed several experiments by changing the size and
the values of the input vectors, according to the combinations of features that we

A Comparative Study of Adversarial Attacks to Malware … 489

Fig. 1 GANs logic and building blocks of the proposed GANs-based architecture

Fig. 2 The discriminator network: malware detector architectural schema

aimed to test. Figure 2 shows the general architecture of the discriminator network
we adopted in our study.

The basic model adopted for each discriminator of our pool includes five hidden
dense and fully connected layers characterized by decreasing size (256-256-256-128-

490 C. A. Visaggio et al.

64); for each discriminator, the input size was variable, according to the subset of
features we considered for each model. The maximum size of the input layer was set
to 2,351, when we consider all the available features provided in the EMBER dataset
for implementing a static malware analysis over the input samples. In addition, we
adopted the Adam algorithm as optimization function and the binary cross entropy as
loss function. Finally, as an activation function, we adopted the ReLU that allowed
to alleviate the vanishing gradient issues and is faster when compared with other
non-linear activation functions.

We performed all the training cycles for 250 epochs with batch size set to 64.
We adopted different learning rates lr varying in the range [0.01;0.5]; finally, all the
discriminators models were able to converge to an accuracy rate a ≥ 80% and a false
positive rate (FPR) ≤ 1% (where FPR is computed as the number of benign sam-
ples misclassified as malicious over the total number of malicious samples detected),
by adopting a lr = 0.05 and a number of iterations = 250 epochs. The performance
metrics values were cross validated over the validation and the test sets. All the exper-
iments were repeated five times and the average values obtained in these experiments
were considered as the values of the final hyperparameters for tuning the networks.

The reason underlying the strategy of training several models was dictated also by
the need to apply a reduction to the whole set of the features provided by PEs files;
even though the best accuracy is performedwhen a detectionmodel is trained over the
whole features set, we need also to limit the performance decay, in terms of data size
and training time, in order to make this approach feasible for real-world scenarios.
So, we applied a strategy for reducing features and we were able to obtain a trade-off
among accuracy, data size, and learning time. Anyway, we didn’t investigate more
space and time complexity on this occasion, but it will be the object of further and
necessary investigations.

5.2.2 The Generator Network Model

For the generation network model, we followed the general setting adopted in [25].
The model we adopted for the generators is represented by a convolutional neural

network (CNN) trained on a sample fraction extracted by the EMBER dataset. We
split the Ember dataset in order to save a fraction of samples, made of benign and
malicious samples that were not included in the training set of our detectors. We
trained the generators until all of them reached at least an accuracy ratea≥98%,when
artificially reproducing the original samples, as it will be detailed in the following
of this section. For the generation of adversarial examples (AEs), we set two main
constraints:

• Functionality preserving: Adding noise for generating adversarial examples
should not break the sample’s behavior.

• Features probability distributions invariance: Since we worked only on surface
features, we don’t manipulate the content of binaries but we try to change the

A Comparative Study of Adversarial Attacks to Malware … 491

surface information as their probability distribution looks like more close to the
distribution of good samples.

TheCNNswe adopted for generators are characterized by layer sizes set toX-256-
X, where X represents the variable size for both the input and the output, according
to the input dimension that has to be transformed and the adversarial sample size that
has to be produced. Noise vectors adopted for manipulating genuine inputs have the
same dimensions of the input, according to the number of features that are considered
in each couple of generator-discriminator. The Adam optimizer was selected as an
optimization function. Each generator was trained for 500 epochs with a learning rate
set to 0.05. These training parameters were obtained after several experiments until
the best tuning that guarantees convergence for all the generatorswith an accuracy rate
over the original ground truth stabilized to 98%. This accuracy was cross validated
also over the validation and test set. All the experiments were repeated five times
and the average values obtained in these experiments were considered as the values
of the final hyperparameters for tuning the networks.

The generation ofAEs is usually done by adding small perturbations to the original
input in the direction of the gradient. The gradient-based methods work for contin-
uous input sets but they fail in the case of discrete input sets. If we denote the set of
the features as X ⊆ [0, N − 1], where N = 2351, the features comprised in the PEs
files can be arbitrarily represented as scalars in a set X [0, N - 1], where N = 2, 351.
So, AEs can be generated in a continuous embedding space E and reconstructed them
to original X.

5.2.3 Adversarial Example Generation Problem

Given a trained deep learning model f, an original input data sample x, generating an
adversarial example x’, can generally be described as a box-constrained optimization
problem:

min x′ ∥∥x′ − x
∥∥

s.t. m (x) = l

m
(
x′) = l′

l �= l′

x′ ∈ [0, 1],

where

• x is the genuine input sample;
• x’ is the artificial input sample;
• m (·) represents the trained deep learning model;
• l and l’ represent, respectively, the output labels produced by the model m (·) when
processing x and x’; and

• ||·|| denotes the distance between two samples.

492 C. A. Visaggio et al.

δ is the difference between x’ and x, and represents the perturbation (noise) added
to x. This optimization problem minimizes the perturbation while misclassifying
the prediction with a constraint of input data. Other variants of this optimization
problemcan be considered in different scenarios and assumptions. For instance, in the
image recognition domain, some adversaries consider that if δ < ε, the perturbation
is small enough to be unnoticeable to humans and it is viewed as a constraint. The
optimization objective function becomes the distance of the targeted prediction score
from the original prediction score.

5.3 Adversary Logic

Asdescribed in [50], the adversarial examples can be categorized in a taxonomyalong
seven axes. In our study, we followed the axes of the adversarial falsification and
the iterative attack. For the first dimension, we were interested in training generators
able to lead a decay in the detection accuracy of each detector, as it will be shown in
the results subsection. For the second dimension, by exploiting the transferability of
adversarial examples [37], we divided our attack into multiple stages until we reach
a fine-tuned generator for addressing the victim’s vulnerabilities. We considered as:

• False positive: The negative examples artificially generated that are misclassified
as positive samples.

• False negative: The positive examples artificially generated that are misclassified
as negative samples.

In the case of the malware detection task, a benign software being classified as mal-
ware is a false positive. Conversely, a false negative is a malware (usually considered
as positive) that cannot be identified by the trained model. This is also known as
machine/deep learning evasion.

5.3.1 Threat Model

We define the threat model as follows:

• The adversaries can attack only at the testing/deploying stage. They can tamper
with only the input data in the testing stage after the victim deep learning model is
trained. Further, we assume that neither the trained model nor the training dataset
can be modified. The adversaries may have knowledge of the trained model (archi-
tectures and parameters) but not allowed to modify the model, which is a common
assumption for many online machine learning services. We are not considering
attacks at the training stage (e.g., training data poisoning [16, 34]), even if they
are another interesting topic to explore.

• Since we considered adversarial attacks for deep neural networks, the adversaries
target only the integrity of their inputs. In general, integrity is essential to a deep

A Comparative Study of Adversarial Attacks to Malware … 493

learningmodel, although other security issues related to confidentiality and privacy
have drawn attention in deep learning. Anyway, in the case we considered PE files,
the integrity of the input is crucial. So, we focused on the attacks that degrade the
performance of deep learning models for malware detection: attacks cause the
increase of false positives and false negatives.

5.3.2 Adversarial Examples Generation

AEs are artificial inputs that are generated by modifying legitimate inputs so as to
fool the classificationmodels. In the fields of image and speech recognition, modified
inputs are considered adversarial when they are indistinguishable by humans from
the legitimate inputs, and yet they fool the model. Conversely, discrete sequences are
inherently different than speech and images, as changing one element in the sequence
may completely alter itsmeaning. For example, changing oneword in a sentencemay
hinder its gradient in a binary file, where the input is a discrete sequence of bytes,
changing one byte may result in invalid bytecode or different runtime functionality.
In malware detection, an AE is a binary file that is generated by modifying an
existing malicious binary. While the original file is correctly classified as malicious,
its modified version is misclassified as benign. Recent works as [23] have shown
that AEs cause catastrophic failures in malware detection systems, trained on a set of
handcrafted features such as file headers andAPI calls. Our experiment (contribution)
is focused on changing surface features by keeping the same original distribution of
benign samples.

5.4 Dataset

WechoseEMBER released byEndgame [3] as the dataset for our case study. EMBER
is a collection of features extracted from a large corpus of Windows portable exe-
cutables.

The first version of the dataset is a collection of 1.1 million PEs that were all
scanned by VirusTotal in 2017. The second EMBER dataset release consisted of
features extracted from samples collected in or before 2018.

The set of binary files is divided as follows:

• 900,000 training samples grouped in:

– 300,000 malicious;
– 300,000 benign; and
– 300,000 unlabeled.

• 200,000 test samples grouped in:

– 100,000 malicious;
– 100,000 benign.

494 C. A. Visaggio et al.

Fig. 3 Code snippet from Ember dataset JSON files describing PEs features

The dataset is made up of JSON files. Each sample includes

• the sha256 hash of the original file as a unique identifier;
• the month the files was first seen;
• a label, which may be 0 for benign, 1 for malicious, or -1 for unlabeled; and
• eight groups of raw features that include both parsed values and format-agnostic
histograms.

A code snippet from the JSON file is shown in Fig. 3.

5.4.1 Raw Features

The raw features include both parsed features and format-agnostic histograms and
counts of strings. Parsed features, extracted from the PE file, are

• General file: Information including the file size and basic information obtained
from the PE header.

• Header information: Reporting the timestamp, the target machine (string), and a
list of image characteristics (list of strings). From the optional header, the target
subsystem (string); DLL characteristics (a list of strings); the file magic as a string
(e.g., “PE32”); major and minor image versions; linker versions; system versions
and subsystem versions; and the code, headers, and commit sizes are provided.

• Imported functions: After having parsed the import address table, the imported
functions by the library are reported.

• Exported functions: The raw features include a list of the exported functions.
• Section information: Properties of each section are provided, including the name,
the size, the entropy, the virtual size, and a list of strings representing section
characteristics.

A Comparative Study of Adversarial Attacks to Malware … 495

The EMBER dataset also includes three groups of features that are format-agnostic,
as they do not require parsing the PE file:

• Byte histogram contains 256 integer values, representing the count of each byte
value within the file. The byte histogram is normalized to a distribution, since the
file size is represented as a feature in the general file information.

• Byte-entropy histogram approximates the joint distribution p(H,X) of entropy H
and byte value X.

• String information reported is the number of strings, their average length, a his-
togram of the printable characters within those strings, and the entropy of charac-
ters across all the printable strings.

5.5 Performance Metrics

Four metrics were used to evaluate the detectors (accuracy, sensitivity, specificity,
and evasion rate) obtained under different testing conditions.We provide the general
standard definitions for these metrics while reserving us to improve the explanation
about how they were specifically computed in the specific sections. As first we pro-
vide definitions for true positives, true negatives, false positives, and false negatives.

True positive: (TP) = the number of malicious samples correctly identified as
malicious;

False positive: (FP)= the number of benign (goodware) samples incorrectly iden-
tified as malicious;

True negative: (TN) = the number of benign samples correctly identified as
benign; and

False negative: (FN) = the number of malicious samples incorrectly identified as
benign.

By combining these observations it is possible to compute further indicators,
whose general meaning is provided as follows:

Accuracy: The accuracy of a test is defined as its ability to differentiate the benign
and malicious samples correctly. To estimate the accuracy of a test, we compute the
proportion of true positive (TP) and true negative (TN) in all the evaluated cases.
Mathematically, this can be stated as follows:

Accuracy = T P + T N

(T P + FP + T N + FN)
.

496 C. A. Visaggio et al.

Sensitivity: The sensitivity of a test is its ability to determine the malicious cases
correctly. To estimate it, we should calculate the proportion of true positive (TP) in
malicious cases. Mathematically, this can be stated as follows:

Sensitivity = T P

(T P + FN)
.

Specificity: The specificity of a test is its ability to determine the good cases
correctly. To estimate it, we compute the proportion of true negative among good
cases. Mathematically, this can be stated as follows:

Specificity = T N

(T N + FP)
.

Finally, we consider another indicator of sensitiveness known as the evasion
rate. When a dataset for testing the ability exhibited by a system in detection and/or
classification task is poisonedwith carefully designed adversarial examples, there are
two adversary perspectives: the victim (detector) and the attacker (generator) ones.
So, if we are interested to estimate the robustness of a detection system by computing
its performance decay under an adversarial attack (e.g., an accuracy decay), we are
interested in the estimation of the ability of the generator to produce adversarial
examples that are misclassified. In this perspective, the evasion rate can be adopted
as an indicator for measuring the generation ability and is defined, according to the
definition provided in [10], as follows:

Evasion Rate (EV) = FNAEs

NAEs
,

where NAEs represents the number of artificially generated adversarial samples of
malware submitted to the detector and FNAEs is the fraction of the overall counted
false negatives (malware incorrectly classified as goodware) represented by adver-
sarial samples set (that is to say, artificially generated malware incorrectly classified
as goodware).

5.6 Case Study Treatments

The case study was conducted on an Ubuntu 18.04 platform, running on a cluster
composed of five machines, with the same hardware configuration, equipped with
an Intel Xeon E5-2620 processor and 128 GB RAM. We exploited the GPU func-
tionalities of 5 NVIDIA GeForce RTX 2080 boards, by using the CUDA toolkit 9.0
and cuDNN with a TensorFlow-GPU v.1.13.1 version, running with Python 3.7. We
further adopted the Ember script tools version 0.1.0, LightGBM 2.1.0, scikitlearn
0.19.1, NumPy 1.14.2, and SciPy 1.0.0, Matplotlib 3.2.2 for plotting results.

A Comparative Study of Adversarial Attacks to Malware … 497

Table 1 PEs surface feature groups in the ember dataset

Feature group ID Description and original name Number of features

FG00 All 2351

FG01 General file info (General) 10

FG02 Header info (Header) 62

FG03 Imported functions (Imports) 1280

FG04 Exported functions (Exports) 128

FG05 Section info (Section) 255

FG06 Byte histogram (Histogram) 256

FG07 Byte-entropy histogram (Byte
entropy)

256

FG08 String info (Strings) 104

5.6.1 Malware Detector Training: The Method

The total number of features comprised in each PE is equal to 2,351, grouped in eight
families, according to the PE specifications[41]. Families’ names and their quantity
are provided in Table1. We added, for convenience of comparison, the 9th group
(FG00) representing the group including all the feature families, that is to say, 2,351
features.

For our case study, we started from considering all the features belonging to a
group as a unit, sowe always selected all the features in a feature group or we selected
none.

Each combination was evaluated according to the following information:

• selected feature groups;
• accuracy and false positive rates (FPR) computed by varying the threshold of
malware-likelihood scores by 0.01.

As described in the performance metric subsection, we define the accuracy as the
ratio of the number of correct answers to the number of all answers, and FPR as
the ratio of the number of malware-determination answers to the number of good
samples.

For each feature combination, we associated a set of feature vectors with a ground-
truth label and trained a different model; finally, we performed testing (malware-
likelihood computation) operations. After performing training, validation, and tests,
we selected the ten best detectors, according to the best accuracy values in the detec-
tion and a FP rate less than the limit threshold of 0.01.

498 C. A. Visaggio et al.

5.6.2 Adversarial Examples Generator: The Method

As for the generation strategy for adversarial examples, we worked on the surface
features of binary files and we focused on producing small changes on the most
sensitive features groups, in order to reproduce, for the artificially generated samples,
the distributions of the same features exhibited by goodware samples.

We want to remark that, for the purposes of the case study, we only consid-
ered applications metadata, extracted by the original binary files and conveniently
provided in the EMBER dataset. We were interested to provide further evidence
that feature-based models for malware detection, even if realized by the means of
deep neural networks, may be broken by adversarial samples properly designed. We
haven’t considered the whole binary files, because manipulating the content of a
binary file, even also changing a small number of byte, can severely compromise the
behavior and the functionalities of the application. This aspect, also investigated in
the works of [30, 32], will be a matter of further investigations, possibly joining both
surface features and payload of binary files.

With previousworks,we share the common approach of generatingAEs by adding
small perturbations to the original malicious inputs, in order to follow the probability
distributions of the selected features groups, in the direction of the descent gradient,
for reducing the distance between probabilities distribution.

Since we considered surface features, we observed that some features are more
sensitive than others. So, our generation strategy consisted in following the probabil-
ity distribution trend of these sensitive features in genuine goodware samples, thus
producing a noise able to make closer the surface features probability distributions
of the followed model (the genuine benign sample) with the probability distributions
of the following model (the malware sample that has to be manipulated).

5.6.3 Training, Validation, and Test Sets Composition

In this section, details about the size of the training, validation, and test sets employed
for performing the case study are provided. The samples composing these sets have
been randomly extracted as a subset of the EMBER files collection, only excluding
the adversarial samples that were artificially generated.

• Training set for discriminators: 300,000 genuine samples, divided into 150,000
goodware and 150,000 malware (XtrainD).

• Training set for generators: 300,000 genuine samples, divided into 150,000
goodware and 150,000 malware (XtrainG); this training set is intersectionless with
the set adopted for training discriminators:

XtrainD ∩ XtrainG = ∅.

• Validation set for discriminators: 50,000 genuine samples (GEs), divided into
25,000 goodware and 25,000 malware (XvalidationD).

A Comparative Study of Adversarial Attacks to Malware … 499

• Test set for discriminators (excluding the adversarial samples): 45,000 genuine
samples, divided into 15,000 goodware and 30,000 malware (XtestGEs).

• Test set for GANs (discriminators including the adversarial scenario): 45,000
samples, divided into 15,000 genuine benign samples, 15,000 genuine malicious
samples (the same of discriminators without attack), 15,000 artificially generated
adversarial examples of malware (Xtest AEs).

5.7 Case Study Results and Performance Evaluation

In order to provide a clear and convenient explanation of our case study and its
results, we decide to present the results splitting them into two scenarios, in order
to compare how the malware detector performances degrade when attacked with
adversarial samples. Results of our tests will be summarized in terms of accuracy,
sensitivity, and specificity metrics.

Regarding the first scenario, sensitivity corresponds to the true positive rate (TPR),
where we considered as true positives all the malicious samples that were correctly
identified as malware in the detection task. Finally, we considered the false posi-
tive rate (FPR) obtained in the malware detection task, computed according to the
following equation:

FPR = FP

FP + T P
.

Regarding the second scenario, instead, accuracy is computed as the success rate,
i.e., the evasion rate (ER) obtained from the generator against his opponent (the
detector), and measures the number of adversarial examples that pass undisturbed.
In this scenario, the ER (coinciding with the TPR) is computed as the number of
adversarial malicious examples that are misclassified as “good guys” (goodware); it
corresponds to the ratio between the number of adversarial examples that successfully
pass as “good guys” and the total number of adversarial examples submitted to the
detector (discriminator).

5.7.1 Scenario 1: Discriminator Performance Excluding the
Adversarial Attack

Results are shown only for the best ten trained models, according to the described
criteria for the accuracy and FPR. In addition to these criteria, we performed two
different tests for obtaining a further indication of the sensitiveness of the considered
feature groups. Defining as nCKi

, with K ∈ [A, B], the maximum number of feature
groups considered in the i th combinationCi , Tables2 and 3 show the accuracy scores
of the best ten models (plus the 11th case of selecting all the available different
features), respectively, in the case in which we set the additional conditions in the
training models to

500 C. A. Visaggio et al.

Table 2 Accuracy scores for the best ten combinations of features by considering the combinations
of 4 different feature groups at most(CA)

Combination ID Selected feature
group combination

Total number of
feature

Accuracy rate (%)

CA1 General, Header,
Histogram, Section

583 92.27

CA2 General, Header,
Histogram, Strings

432 91.84

CA3 General, Header,
Section, Strings

431 90.66

CA4 General, Header,
Histograms

328 89.45

CA5 Header, Section,
Strings

421 88.23

CA6 General, Header, Byte
entropy

328 87.12

CA7 General, Section,
Strings

369 86.35

CA8 General, Header,
Strings

176 85.73

CA9 Section, Strings 359 83.07

CA10 General, Section 265 80.24

CA0 All 2351 98.32

CS : nCi = 1

CA : 1 ≤ nCi ≤ 4

CB : 5 ≤ nCi ≤ 8.

The combination named All corresponds to all the eight groups (Header, Imports,
Section, Histogram, General, Exports, Byte entropy, Strings), including all the 2,351
features.

The accuracy metric was computed by adopting the test set denoted as (XtestGEs),
comprising 45,000 genuine samples divided into 15,000 benign and 30,000malicious
samples.

By analyzing the results shown in Table3, we can observe that the highest value
for the accuracy is scored by the combination CB0 , including all the features, while
the closest score to this combination is obtained with a reduced set of features (com-
bination CB1), with a difference in accuracy that is at minimum 1.43% (CB0 versus
CB1) and at maximum 2.58% (CB0 versus CB9).

The feature groups Header, Imports, Section, and Histogram revealed to be par-
ticularly sensitive in biasing the accuracy score.

A Comparative Study of Adversarial Attacks to Malware … 501

Table 3 Accuracy scores for the best ten combinations of features by considering at least five and
at most seven different feature groups (CB)

Combination ID Selected feature group
combination

Total number of
feature

Accuracy rate (%)

CB1 Header, Imports,
Section,
Histogram, General,
Strings

1967 96.89

CB2 Header, Imports,
Section,
Histogram, General,
Byte
entropy, Strings

2223 96.55

CB3 Header, Imports,
Section,
Histogram, Byte
entropy, String

2213 96.39

CB4 Header, Imports,
Section,
Histogram, General,
Exports,
Byte entropy

2247 96.28

CB5 Header, Imports,
Section,
Histogram, String

1957 96.12

CB6 Header, Imports,
Section,
Histogram, Exports,
Byte entropy

2237 96.07

CB7 Header, Imports,
Section,
Histogram, General,
Exports, String

2095 95.96

CB8 Header, Imports,
Section,
Histogram, Byte
entropy

2109 95.89

CB9 Header, Imports,
Section,
Histogram, General,
Exports

1991 95.74

CB0 All 2351 98.32

502 C. A. Visaggio et al.

Table 4 Accuracy scores for singleton feature group combinations (CS)

Combination ID Selected feature group
combination

Total number of
feature

Accuracy rate (%)

CS1 Imports 1280 82.79

CS2 Section 255 73.46

CS3 Histogram 256 73.14

CS4 Byte entropy 256 65.81

CS5 Strings 104 64.73

CS6 General 10 61.59

CS7 Header 62 54.13

CS8 Exports 128 20.45

Fig. 4 Feature groups’ absolute frequency in the three most accurate models

Particularly, we observed that the feature group Histogram appears in the best
scores both in the reduced (CA) and in the extended (CB) feature group combinations.

Finally, since the information about feature sensitiveness to the accuracy is crucial
for designing the generation strategies for adversarial samples that will be effective,
we performed the last test considering only single group combinations, as shown in
Table4.

We can observe that the feature groups that scored the best accuracy values were
imports, section, and histogram. These three groups were also included in all the
ten best ranking models considered in Table3, where the best results were generally
obtained. Figure 4 summarizes the absolute frequency scored for all the eight features
groups over the three best ranked models for each of the three training we performed.

A Comparative Study of Adversarial Attacks to Malware … 503

5.7.2 Generator and Discriminator Performance Including Adversarial
Attack

For generating adversarial examples and testing the pool comprising the ten most
accurate discriminator models described in the previous scenario, we trained corre-
spondingly ten generators.

Given the initial working hypothesis of having knowledge, at this stage, of dis-
criminators gradients generated during the training over the genuine dataset, we had
the opportunity to exploit them in combination with the inner gradients of generators,
in order to apply a semi-direct training process for the generators. To be clearer, we
could adopt both a direct method for training the generators and an indirect one.

The direct method does not require to involve the discriminators during the train-
ing of the generators that are trained by simply comparing the difference elapsing
between the probability distributions of genuine samples and the artificially gener-
ated (adversarial) samples. This method is practicable in this case because we have
the true genuine data (a kind of white-box attack at the first stage) available.

In the second andmost realistic stage of the attack scenario, we imagined (a black-
box attack) genuine data aren’t available and the directmethod for training generators
can’t be applied yet. In this situation, the generators can be trained by submitting, at
each training iteration, the generated outputs to the victim and collecting the response,
for computing a step for making descendant the gradient function.

For reasons of simplicity, we adopted the direct method, since our aim was to
provide evidence that feature-based deep learning models for malware detection
could work with high accuracy even if the static analysis is performed; anyway, as
other kinds of deep learning models, also performing a dynamic analysis of samples,
they are affected by adversarial examples carefully designed.

So, the generators were trained by performing the comparison between the prob-
ability distribution of its generated samples with a “genuine” training set and back-
propagating the difference (the error) through the network, at each iteration of the
training process. To compute the distance (or similarity measure), we adopted the
maximum mean discrepancy (MMD) [5, 6, 18], able to compare effectively two
distributions.

Then, the training process of the generative networks develops as follows. Given
a random variable with uniform probability distribution as input, we want the prob-
ability distribution of the generated output to be the “genuine data set probability
distribution”; we considered two subcases:

• the first one in which the genuine dataset is the same adopted for training the
discriminators;

• the second one, in which the genuine dataset is represented by a different and
intersection fewer dataset from the one adopted for training discriminators.

The training process for each of the generators follows the basic idea to optimize
its inner network by repeating the following steps:

504 C. A. Visaggio et al.

• to generate some random inputs of the same size as the corresponding discrimi-
nator;

• to make these inputs go through the generator and the discriminator and collect
both generated outputs;

• to compare the “genuine probability distribution” and the artificially generated
one, by computing the MMD distance between the true samples and the generated
ones; and

• to adopt backpropagation to make one step of gradient descent to lower the MMD
distance between the truly genuine and artificially generated distributions.

We discuss here how to manipulate a source malware sample x into an adversarial
malware binary x∗ by slightly changing the surface feature values. Generators aim to
minimize the confidence associated with the malicious class (i.e., it maximizes the
probability of the adversarial malware sample being classified as benign), under the
constraint that qmax is the maximum amount of noise (changes) that can be added
to the original sample for being effective. The deep network implementing each
generator produces the probability of the generic sample x being malware, denoted
in the following with f(x). If f(x) ≥ 0.5, the input file is thus classified as malware
(and as benign, otherwise).

This can be characterized as the following constrained optimization problem:

minx f (x)

s.t.d(x, x∗) ≤ qmax ,

where

• x denotes the genuine sample distribution;
• x∗ denotes the generated sample; and
• d(x, x∗) is the distance function computed as the MMD distance.

We solve this problem with a gradient-descent algorithm over the generator net-
works by adopting as loss function the distance between the true and the generated
distributions at the current iteration.

We trained each generator, for both the genuine datasets, for 500 epochs, and
we also adopted a learning rate set to 0.05. These hyperparameters for the training
process were obtained after all the ten generators were able to converge and we
stopped when the error reached the threshold value of 0.02 (2%) (corresponding
to an accuracy rate in validation and testing of 98%). We were not able to reach
lower error rates, because we trained generators for being able to produce just over
15.000 adversarial samples, in order to ensure the same numerosity of the genuine
test examples when testing the discriminators. The overall time for training the ten
generators until all of them converge to a similarity rate of 98%, estimated between
the truly genuine and the adversarial generated samples distributions, lasted about
1day and a half (about 37h). We repeated the training process five times and we
considered as assessed the generator models after a time of about 10d.

A Comparative Study of Adversarial Attacks to Malware … 505

In this way, we obtained 30,000 adversarial examples, divided into two sets GEQ

andGNEQ comprising, respectively, 15,000 adversarial malicious samples generated
(AEsEQ)from comparison with the genuine training set adopted for discriminator
models and 15,000 artificially generated samples (AEsNEQ) computed by evaluating
the difference from a different dataset from the one adopted for training discriminator
models.

Finally, we addressed the adversarial attack to the ten discriminators with both
the two sets of generated adversarial samples and we provide a brief discussion over
the results we observed.

Like in Scenario 1, for computing performance metrics, we tested the discrimi-
nators with two variants of the test set denoted as (Xtest AEs); each variant comprises
45,000 samples, divided into 15,000 genuine benign samples and 30,000 malicious
samples, in turn divided into 15,000genuinemalware and15,000 adversarialmalware
samples. The two classes of test sets differ only for the kind of adversarial malware
samples included. In the first class, we included adversarial malware samples gen-
erated by comparison with the same training set adopted for training discriminator
models; in the second class, we included adversarial malware samples generated by
adopting a different training set from the one adopted for training discriminators.

So, we discussed these two cases of AE attack and we compared them with the
original accuracy scored by each discriminator when excluding AEs from its test set.

To verify the efficacy of the attack, for each test wemeasured beyond the accuracy
and the sensitivity, also the evasion rate [10], computed as the percentage ofmalicious
samples that managed to evade the network [30].

For each of the three cases shown in Table5, accuracy was computed considering
a test set comprising 45,000 samples; anyway, these tests were differently composed
for allowing, respectively, the case excluding the adversarial examples and the two
cases includingAEs generated by comparing or not comparing to the genuine training
set adopted for discriminators. These cases include

• Excluding AEs: No AEs attack is performed against the discriminators; the test set
is made of 45,000 genuine samples only, divided into 15,000 goodware samples
and 30,000 malware samples.

• Including AEs trained over the training set adopted by the discriminator: AEs
attack is performed against the discriminators; the test set is made of 45,000 sam-
ples, among which 30,000 genuine samples are divided into 15,000 goodware and
15,000 malware; the remaining 15,000 represent adversarial examples; this test
set will be called as follows: AEsEQ.

• Including AEs trained over a different training set from the one adopted by the
discriminator: AEs attack is performed against the discriminators; the test set is
made of 45,000 samples, among which 30,000 genuine samples are divided into
15,000 goodware and 15,000 malware; the remaining 15,000 represent adversarial
examples; this test set will be called in the following as AEsNEQ.

The results that we obtained in terms of evasion rate and accuracy decay for each
of the ten discriminators are summarized in Tables5 and 6.

506 C. A. Visaggio et al.

Table 5 Accuracy rate reached by attacking discriminators with adversarial examples from sets
AEsEQ and AEsNEQ

TEST 1 TEST 2 TEST 3

Discriminator ID Accuracy excluding
AEs (%)

Accuracy including
AEsEQ (%)

Accuracy including
AEsNEQ (%)

CB1 96.89 58.77 73.32

CB2 96.55 56.54 78.73

CB3 96.39 57.87 77.17

CB4 96.28 60.59 74.43

CB5 96.12 59.25 74.31

CB6 96.07 62.58 76.87

CB7 95.96 56.55 75.77

CB8 95.89 59.75 76.38

CB9 95.74 56.74 76.17

CB0 98.32 57.52 74.68

Fig. 5 Accuracy rate distributions for discriminators under AEs attack

In Figs. 5, 6, and 7 are reported, respectively, the accuracy rate distributions and
the trend line of the accuracy decay, computed over the ten discriminators and the
two types of AEs considered, when discriminators are under AEs attack.

We can observe that AEs perform worse (test set AEsNEQ) than the other AEs
adversarial set, producing, over the ten tested models for discriminators, an average
decay of accuracy valued to Delta (aAEsEQ) = 20.63 points. Minimum loss minloss
= 19.20 points and maximum loss maxloss = 23.57 points.

A Comparative Study of Adversarial Attacks to Malware … 507

Fig. 6 Trend of accuracy decay of discriminators under AEs attack (TEST 1–TEST 2)

Fig. 7 Trend of accuracy decay of discriminators under AEs attack (TEST 1–TEST 3)

Instead, when adversarial attack is performed by adopting adversarial examples
produced by generators trained over the same dataset adopted for training the dis-
criminators, AEs perform better (test set AEsEQ) than the other AEs adversarial set,
affecting over the ten tested models for discriminators an average decay of accuracy
valued to Delta (aAEsEQ) = 37.50 points. Minimum loss minloss = 30.49 points and
maximum loss maxloss = 40.80 points.

6 Conclusions

Attacks and defenses on adversarial examples draw great attention. The vulnerability
to adversarial examples becomes one of the major risks for applying DNNs in safety-
critical environments.

508 C. A. Visaggio et al.

Table 6 Evasion rate computed attacking discriminators with adversarial examples (AEs) from
sets AEQ and ANEQ

Discriminator ID Evasion rate with AEsEQ (%) Evasion rate with AEsNEQ
(%)

CB1 35.84 26.69

CB2 33.72 27.38

CB3 34.65 25.44

CB4 32.61 26.14

CB5 34.89 25.98

CB6 33.77 26.29

C)B7 31.52 27.66

CB8 29.05 26.39

CB9 27.39 24.61

CB0 39.12 32.45

Adversarial perturbations can easily fool deep neural networks (DNNs) in the
testing/deploying stage exploiting blind spots in the ML engine. The effectiveness
of an adversarial system is measured in terms of evasion rate and it depends upon
a specific group of features considered for the input set. Applied to the creation of
malware, GANs are able to generate a new instance of a malware family without
knowing an explicit model of the initial distribution of the data.

So an attacker could use GANs to fool detection systems, just by sampling the
provided data. On the other hand, GANs are also useful to build more robust machine
learningmodels helping in the development of a better training set. Real defense tech-
nologies such as AV or EDR must take into account an acceptable trade-off among
the detection accuracy, short learning times, and limit the size of data obtainable
by selecting a convenient combination of the sensitive feature. The effectiveness of
an attack on the ML model also depends on the knowledge of the system by the
attacker. In this case study, we conducted a gray-box attack in which the features of
the training set are known: this permits us to reach a very high evasion rate (about
98%).

References

1. Alazab, Mamoun, Sitalakshmi Venkatraman, Paul Watters, and Moutaz Alazab. 2013. Infor-
mation security governance: the art of detecting hidden malware. In IT security governance
innovations: theory and research, 293–315. IGI Global.

2. Alzantot,Moustafa,BharathanBalaji, andManiSrivastava. 2018.Didyouhear that? adversarial
examples against automatic speech recognition. arXiv:1801.00554.

3. Anderson,HyrumS., and Phil Roth. 2018. Ember: an open dataset for training static pemalware
machine learning models. arXiv:1804.04637.

http://arxiv.org/abs/1801.00554
http://arxiv.org/abs/1804.04637

A Comparative Study of Adversarial Attacks to Malware … 509

4. Apruzzese, Giovanni, Michele Colajanni, Luca Ferretti, Alessandro Guido, and Mirco
Marchetti. 2018. On the effectiveness of machine and deep learning for cyber security. In
2018 10th international conference on cyber Conflict (CyCon), pages 371–390. IEEE, 2018.

5. Arbel,Michael, Dougal Sutherland,Mikołaj Bińkowski, andArthur Gretton. 2018. On gradient
regularizers for mmd gans. Advances in neural information processing systems 6700–6710.

6. Arjovsky, Martin, and Léon Bottou. 2017. Towards principled methods for training generative
adversarial networks. arXiv:1701.04862.

7. Azab, Ahmad, Mamoun Alazab, and Mahdi Aiash. 2016. Machine learning based botnet iden-
tification traffic. In 2016 IEEE Trustcom/BigDataSE/ISPA, 1788–1794. IEEE.

8. Azab, Ahmad, Robert Layton,MamounAlazab, and Jonathan Oliver. 2014.Miningmalware to
detect variants. In 2014 fifth cybercrime and trustworthy computing conference, 44–53. IEEE.

9. Benchea, Răzvan, andDragoş TeodorGavriluţ. 2014. Combining restricted boltzmannmachine
and one side perceptron for malware detection. In International conference on conceptual
structures, 93–103. Springer.

10. Biggio, Battista, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel Laskov,
Giorgio Giacinto, and Fabio Roli. 2013. Evasion attacks against machine learning at test time.
In Joint European conference on machine learning and knowledge discovery in databases,
387–402. Springer.

11. Biggio, Battista, Paolo Russu, Luca Didaci, Fabio Roli, et al. 2015. Adversarial biometric
recognition: A review on biometric system security from the adversarial machine-learning
perspective. IEEE Signal Processing Magazine 32 (5): 31–41.

12. Brown, Tom B., Dandelion Mané, Aurko Roy, Martín Abadi, and Justin Gilmer. 2017. Adver-
sarial patch. arXiv:1712.09665.

13. Carlini, Nicholas, and David Wagner. 2017. Towards evaluating the robustness of neural net-
works. In 2017 IEEE symposium on security and privacy (sp), 39–57. IEEE.

14. Chen, Liang-Chieh,George Papandreou, Florian Schroff, andHartwigAdam. 2017.Rethinking
atrous convolution for semantic image segmentation. arXiv:1706.05587.

15. Chen, Pin-Yu, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. 2017. Zoo: Zeroth
order optimization based black-box attacks to deep neural networks without training substitute
models. In Proceedings of the 10th ACM workshop on artificial intelligence and security,
15–26.

16. Chen, Xinyun, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. 2017. Targeted backdoor
attacks on deep learning systems using data poisoning. arXiv:1712.05526.

17. Damodaran, Anusha, Fabio Di Troia, Corrado Aaron Visaggio, Thomas H. Austin, and Mark
Stamp. 2017. A comparison of static, dynamic, and hybrid analysis for malware detection.
Journal of Computer Virology and Hacking Techniques 13 (1): 1–12.

18. Dziugaite, Gintare Karolina, Daniel M Roy, and Zoubin Ghahramani. Training generative
neural networks via maximum mean discrepancy optimization. arXiv:1505.03906.

19. Firdausi, Ivan, Alva Erwin, Anto Satriyo Nugroho, et al. 2010. Analysis of machine learning
techniques used in behavior-based malware detection. In 2010 second international conference
on advances in computing, control, and telecommunication technologies, 201–203. IEEE.

20. Gibert, Daniel. 2016. Convolutional neural networks for malware classification. Tarragona,
Spain: University Rovira i Virgili.

21. Goodfellow, Ian, Patrick McDaniel, and Nicolas Papernot. 2018. Making machine learning
robust against adversarial inputs. Communications of the ACM 61 (7): 56–66.

22. Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. 2014. Explaining and harnessing
adversarial examples. arXiv:1412.6572.

23. Grosse, Kathrin, Nicolas Papernot, Praveen Manoharan, Michael Backes, and Patrick
McDaniel. 2017. Adversarial examples for malware detection. In European symposium on
research in computer security, 62–79. Springer.

24. He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. InProceedings of the IEEE
international conference on computer vision 1026–1034.

http://arxiv.org/abs/1701.04862
http://arxiv.org/abs/1712.09665
http://arxiv.org/abs/1706.05587
http://arxiv.org/abs/1712.05526
http://arxiv.org/abs/1505.03906
http://arxiv.org/abs/1412.6572

510 C. A. Visaggio et al.

25. Hu, Weiwei, and Ying Tan. 2017. Generating adversarial malware examples for black-box
attacks based on gan. arXiv:1702.05983.

26. Huang, Ling, Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein, and J Doug Tygar.
2011. Adversarial machine learning. In Proceedings of the 4th ACMworkshop on Security and
artificial intelligence, 43–58.

27. Jung, Wookhyun, Sangwon Kim, and Sangyong Choi. 2015. Poster: deep learning for zero-day
flash malware detection. In 36th IEEE symposium on security and privacy, vol. 10, 2809695–
2817880.

28. Kawai, Masataka, Kaoru Ota, and Mianxing Dong. 2019. Improved malgan: Avoiding mal-
ware detector by leaning cleanware features. In 2019 international conference on artificial
intelligence in information and communication (ICAIIC), 040–045. IEEE.

29. Ke, Guolin, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and
Tie-Yan Liu. 2017. Lightgbm: A highly efficient gradient boosting decision tree. In Advances
in neural information processing systems 3146–3154.

30. Kolosnjaji, Bojan, Ambra Demontis, Battista Biggio, Davide Maiorca, Giorgio Giacinto,
Claudia Eckert, and Fabio Roli. 2018. Adversarial malware binaries: Evading deep learn-
ing for malware detection in executables. In 2018 26th European signal processing conference
(EUSIPCO), 533–537. IEEE.

31. Kolosnjaji, Bojan, Apostolis Zarras, George Webster, and Claudia Eckert. 2016. Deep learn-
ing for classification of malware system call sequences. In Australasian joint conference on
artificial intelligence, 137–149. Springer.

32. Kreuk, Felix, Assi Barak, Shir Aviv-Reuven,Moran Baruch, Benny Pinkas, and Joseph Keshet.
2018. Deceiving end-to-end deep learning malware detectors using adversarial examples.
arXiv:1802.04528.

33. Moosavi-Dezfooli, Seyed-Mohsen, Alhussein Fawzi, and Pascal Frossard. 2016. Deepfool: a
simple and accuratemethod to fool deepneural networks. InProceedings of the IEEEconference
on computer vision and pattern recognition 2574–2582.

34. Muñoz-González, Luis, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin Wongras-
samee, Emil CLupu, and FabioRoli. 2017. Towards poisoning of deep learning algorithmswith
back-gradient optimization. InProceedings of the 10th ACMworkshop on artificial intelligence
and security, 27–38.

35. Obeis, Turki, andWesamBhayaNawfal. 2016. Review of datamining techniques for malicious
detetion. Research Journal of Applied Sciences 11 (10): 942–947.

36. Oyama, Yoshihiro, Takumi Miyashita, and Hirotaka Kokubo. 2019. Identifying useful fea-
tures for malware detection in the ember dataset. In 2019 seventh international symposium on
computing and networking workshops (CANDARW), 360–366. IEEE.

37. Papernot, Nicolas, Patrick McDaniel, and Ian Goodfellow. 2016. Transferability in machine
learning: from phenomena to black-box attacks using adversarial samples. arXiv:1605.07277.

38. Papernot, Nicolas, PatrickMcDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Anan-
thram Swami. 2017. Practical black-box attacks against machine learning. In Proceedings of
the 2017 ACM on Asia conference on computer and communications security, 506–519.

39. Pascanu, Razvan, Jack W Stokes, Hermineh Sanossian, Mady Marinescu, and Anil Thomas.
2015. Malware classification with recurrent networks. In 2015 IEEE international conference
on acoustics, speech and signal processing (ICASSP), 1916–1920. IEEE.

40. Pendlebury, Feargus, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and Lorenzo Cav-
allaro. 2019. {TESSERACT}: Eliminating experimental bias in malware classification across
space and time. In 28th {USENIX} Security Symposium ({USENIX} Security 19), 729–746.

41. Pietrek, Matt. 2002. Inside windows-an in-depth look into the win32 portable executable file
format. MSDN Magazine 17 (2): 80–90.

42. Puranik, Piyush Aniruddha. 2019. Static malware detection using deep neural networks on
portable executables.

43. Raff, Edward, Jon Barker, Jared Sylvester, Robert Brandon, Bryan Catanzaro, and Charles
Nicholas. 2017. Malware detection by eating a whole exe. arXiv:1710.09435.

http://arxiv.org/abs/1702.05983
http://arxiv.org/abs/1802.04528
http://arxiv.org/abs/1605.07277
http://arxiv.org/abs/1710.09435

A Comparative Study of Adversarial Attacks to Malware … 511

44. Redmon, Joseph, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You only look once:
Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision
and pattern recognition 779–788.

45. Saxe, Joshua, andKonstantin Berlin. 2015.Deep neural network basedmalware detection using
two dimensional binary program features. In 2015 10th international conference on malicious
and unwanted software (MALWARE), 11–20. IEEE.

46. Su, Jiawei, DaniloVasconcellosVargas, andKouichi Sakurai. 2019.One pixel attack for fooling
deep neural networks. IEEE Transactions on Evolutionary Computation 23 (5): 828–841.

47. Szegedy, Christian, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Good-
fellow, and Rob Fergus. 2013. Intriguing properties of neural networks. arXiv:1312.6199.

48. Ucci, Daniele, Leonardo Aniello, and Roberto Baldoni. 2019. Survey of machine learning
techniques for malware analysis. Computers & Security 81: 123–147.

49. Ye, Yanfang, Tao Li, S. Donald Adjeroh, and Sitharama, and Iyengar. 2017. A survey on
malware detection using data mining techniques. ACM Computing Surveys (CSUR) 50 (3):
1–40.

50. Yuan, Xiaoyong, Pan He, Qile Zhu, and Xiaolin Li. 2019. Adversarial examples: Attacks and
defenses for deep learning. IEEE Transactions on Neural Networks and Learning Systems 30
(9): 2805–2824.

51. Zhang, Jinlan, Qiao Yan, and Mingde Wang. 2019. Evasion attacks based on wasserstein
generative adversarial network. In 2019 Computing, communications and IoT applications
(ComComAp), 454–459. IEEE.

52. Zhong, Wei, and Gu Feng. 2019. A multi-level deep learning system for malware detection.
Expert Systems with Applications 133: 151–162.

http://arxiv.org/abs/1312.6199

	 A Comparative Study of Adversarial Attacks to Malware Detectors Based on Deep Learning
	1 Introduction
	2 The Deep Learning Models Adopted in Malware Detection
	2.1 The Deep Learning Models in a Nutshell

	3 Adversarial Attacks Against Deep Learning-Based Malware Detection System
	4 Generative Adversarial Attacks Against Malware Detection Systems
	5 Case Study
	5.1 Case Study Design
	5.2 General Architecture
	5.3 Adversary Logic
	5.4 Dataset
	5.5 Performance Metrics
	5.6 Case Study Treatments
	5.7 Case Study Results and Performance Evaluation

	6 Conclusions
	References

