
A Comparison of Word2Vec, HMM2Vec,
and PCA2Vec for Malware Classification

Aniket Chandak, Wendy Lee, and Mark Stamp

Abstract Word embeddings are often used in natural language processing as a
means to quantify relationships between words. More generally, these same word
embedding techniques can be used to quantify relationships between features. In this
paper, we first consider multiple different word embedding techniques within the
context of malware classification. We use hidden Markov models to obtain embed-
ding vectors in an approach that we refer to as HMM2Vec, and we generate vector
embeddings based on principal component analysis. We also consider the popular
neural network-based word embedding technique known asWord2Vec. In each case,
we derive feature embeddings based on opcode sequences for malware samples from
a variety of different families. We show that we can obtain better classification accu-
racy based on these feature embeddings, as compared to HMM experiments that
directly use the opcode sequences, and serve to establish a baseline. These results
show that word embeddings can be a useful feature engineering step in the field of
malware analysis.

1 Introduction

Malware detection and analysis are critical aspects of information security. The 2019
Internet Threat SecurityReport [46] claims an increase of 25% in 1 year in the number
of attack groups using malware to disrupt businesses and organizations. According
to the 2016 California Data Breach Report [13], malware contributed to 54% of all
breaches and 90% of total records breached, with a staggering 44 million records

A. Chandak · W. Lee · M. Stamp (B)
San Jose State University, San Jose, CA, USA
e-mail: mark.stamp@sjsu.edu

A. Chandak
e-mail: aniket.chandak@sjsu.edu

W. Lee
e-mail: wendy.lee@sjsu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
M. Stamp et al. (eds.), Malware Analysis Using Artificial Intelligence
and Deep Learning, https://doi.org/10.1007/978-3-030-62582-5_11

287

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62582-5_11&domain=pdf
mailto:mark.stamp@sjsu.edu
mailto:aniket.chandak@sjsu.edu
mailto:wendy.lee@sjsu.edu
https://doi.org/10.1007/978-3-030-62582-5_11


288 A. Chandak et al.

breached due to malware in the years 2012–2016. Statistics such as these imply that
malware is an increasing threat.

In this paper, we apply machine learning classification techniques to engineered
features that are derived from malware samples. This feature engineering involves
machine learning techniques. In effect, we apply machine learning to higher level
features, where these features are themselves obtained using machine learning mod-
els. The motivation is that machine learning can serve to distill useful information
from training samples, and hence the classification techniques may perform better
on such data. In this research, we consider the effectiveness of using these derived
features in the context of malware classification.

Specifically, we use word embeddings based on opcodes to derive features for
subsequent classification. We consider three distinct word embedding techniques.
First, we derive word embeddings from trained hidden Markov models (HMM). We
refer to this technique as HMM2Vec.We then consider an analogous technique based
on principal component analysis (PCA), which we refer to as PCA2Vec. And, as a
third approach, we experiment with the popular neural network-based word embed-
ding technique known as Word2Vec. In each case, we generate word embeddings
for a significant number of samples from a variety of malware families. We then use
several classification techniques to determine howwell we can classify these samples
using word embeddings as features.

The remainder of this paper is organized as follows.We provide a selective survey
of relevant related work in Sect. 2. Section3 contains an extensive and wide-ranging
discussion of machine learning topics that play a role in this research. In Sect. 4,
we provide details on the word embedding techniques that form the basis of our
experiments. Section5 gives our experiments and results, while Sect. 6 provides our
conclusion and some paths for future work.

2 Related Work

Malware analysis and detection are challenging problems due to a variety of factors,
including the large volume of malware and obfuscation techniques [10]. Every day,
thousands of new malware are generated—manual analysis techniques cannot keep
pace.Obfuscation iswidely used bymalware developers tomake it difficult to analyze
their malicious code.

Signature-basedmalware detectionmethods rely on pattern matching with known
signatures [47]. Signature detection is relatively fast, and it is effective against “tra-
ditional” malware. However, extracting signatures is a labor-intensive process, and
obfuscation techniques can defeat signature scanning.

Anomaly-based techniques are based on “unusual” or “virus-like” behavior or
characteristics. An example of anomaly detection is behavior-based analysis, which
can be used to analyze a sample when executed or under emulation [47]. When an
executable file performs any action that does not fit its expected behavior, an alarm



A Comparison of Word2Vec, HMM2Vec, and PCA2Vec for Malware Classification 289

can be triggered. Such a method can detect obfuscated and zero-day malware, but it
is slow, and generally subject to excessive false positives.

Recently, machine learning techniques have proven extremely useful for malware
detection. The effectiveness of machine learning algorithms depends on the charac-
teristics of the features used by such models. In malware detection and classifica-
tion, a sample can be represented by a wide variety of features, including mnemonic
opcodes, raw bytes, API calls, permissions, header information, etc. Opcodes are a
popular feature that form the basis of the analysis considered in this paper.

In [7], the author experiments with opcodes and determines that such features can
be successfully used to detect malware. The paper [11] achieves good results using
API calls as a feature. Such features can be somewhatmore difficult formalwarewrit-
ers to obfuscate, since API calls relate to the essential activity of software. However,
extracting API calls from an executable is more costly than extracting opcodes.

Another example of malware research involving opcodes can be found in [33].
This paper features opcode n-grams, with a Markov blanket used to select from the
large set of available n-gram. Classification is based on hidden Markov models, and
experiments are based on five malware families.

In [3], malware opcodes are treated as a language, withWord2Vec used to quantify
contextual information. Classification relies on k-nearest neighbors (k-NN). The
research in [34] also uses Word2Vec to generate feature vectors based on opcode
sequences, with a deep neural network employed for malware classification. In this
latter research, the number of opcodes is in the range of 50–200, and the length of
the Word2Vec embeddings range from 250 to 750.

Word2Vec embeddings are used as features to train bi-directional LSTMs in [20].
The experiments achieve good accuracy for malware detection, but training is costly.
In [14], the author proposed aword embeddingmethod based on opcode graphs—the
graph is projected into vector space, which yields word embeddings. This technique
is also computationally expensive.

In comparison to previous research, we consider additional vector embedding
techniques, we experiment with a variety of classification algorithms, we use a
smaller number of opcodes, and we generate short embedding vectors. Since we
use a relatively small number of opcodes and short embedding vectors, our tech-
niques are all highly efficient and practical. In addition, our experiments are based
on a recently collected and challenging malware dataset.

3 Background

In this section,we present background information on the various learning techniques
that are used in the experiments discussed in Sect. 5. Specifically, we introduce neural
networks, beginning with some historical background and moving on to a modern
context. We also introduce HMMs and PCA, which form the basis for the word
embedding techniques that we refer to as HMM2Vec and PCS2Vec, respectively.



290 A. Chandak et al.

Finally, we introduce four classification techniques, which are used in our experi-
ments.

In Sect. 4, we discuss HMM2Vec, PCA2Vec, and the neural network-based word
embedding technique, Word2Vec, in detail. For our experiments in Sect. 5, we use
these three word embedding techniques to generate features to classify malware
samples.

3.1 Neural Networks

The concept of an artificial neuron [12, 49] is not new, as the idea was first pro-
posed by McCulloch and Pitts in the 1940s [22]. However, modern computational
neural networks begins with the perceptron, as introduced by Rosenblatt in the late
1950s [37].

3.1.1 McCulloch–Pitts Artificial Neuron

Anartificial neuronwith three inputs is illustrated inFig. 1. In theoriginalMcCulloch–
Pitts formulation, the inputs Xi ∈ {0, 1}, the weights wi ∈ {+1,−1}, and the out-
put Y ∈ {0, 1}. The output Y is 0 (inactive) or 1 (active), based on whether or not the
linear function

∑
wi Xi exceeds the specified threshold T . This form of an artificial

neuron was modeled on neurons in the brain, which either fire or it do not (thus
Y ∈ {0, 1}), and have input that comes from other neurons (thus each Xi ∈ {0, 1}).
The weights wi specify whether an input is excitatory (increasing the chance of
the neuron firing) or inhibitory (decreasing the chance of the neuron firing). When-
ever

∑
wi Xi > T , the excitatory response wins, and the neuron fires—otherwise the

inhibitory response wins and the neuron does not fire.

Fig. 1 Artificial neuron



A Comparison of Word2Vec, HMM2Vec, and PCA2Vec for Malware Classification 291

3.1.2 Perceptron

A perceptron is less restrictive than a McCulloch–Pitts artificial neuron. With a
perceptron, both the inputs Xi and the weights wi can be real valued, as opposed to
the binary restrictions ofMcCulloch–Pitts.Aswith theMcCulloch–Pitts formulation,
the output Y of a perceptron is generally taken to be binary.

Given a real-valued input vector X = (X0, X1, . . . , Xn−1), a perceptron can be
viewed as an instantiation of a function of the form

f (X) =
n−1∑

i=0

wi Xi + b,

that is, a perceptron computes a weighted sum of the input components. Based on a
threshold, a single perceptron can define a binary classifier. That is, we can classify a
sample X as “type 1” provided that f (X) > T , for some specified threshold T , and
otherwise we classify X as “type 0.”

In the case of two-dimensional input, the decision boundary of a is of the form

f (x, y) = w0x + w1y + b (1)

which is the equation of a line. In general, the decision boundary of a perceptron is
a hyperplane. Hence, a perceptron can only provide ideal separation in cases where
the data itself is linearly separable.

As the name suggests, a multilayer perceptron (MLP) is an ANN that includes
multiple (hidden) layers in the form of perceptrons. An example of an MLP with
two hidden layers is given in Fig. 2, where each edge represent a weight that is to be
determined via training. Unlike a single layer perceptron, MLPs are not restricted to
linear decision boundaries, and hence an MLP can accurately model more complex
functions. For example, the XOR function—which cannot be modeled by a single
layer perceptron—can be modeled by an MLP.

To train a single layer perceptron, simple heuristics will suffice, assuming that the
data is actually linearly separable. From a high-level perspective, training a single
layer perceptron is somewhat analogous to training a linear support vector machine
(SVM), except that for a perceptron, we do not require that themargin (i.e., minimum
separation between the classes) be maximized. But training an MLP is clearly far
more challenging, since we have hidden layers between the input and output, and
it is not obvious how changes to the weights in these hidden layers will affect each
other or the output.

As an aside, it is interesting to note that for SVMs, we deal with data that is not
linearly separable by use of the “kernel trick,” where the input data is mapped to
a higher dimensional “feature space” via a (nonlinear) kernel function. In contrast,
perceptrons (in the form of MLPs) overcome the limitation of linear separability by
the use of multiple layers. With an MLP, it is as if a nonlinear kernel function has



292 A. Chandak et al.

Fig. 2 MLP with two hidden layers

been embedded directly into the model itself through the use of hidden layers, as
opposed to a user-specified explicit kernel function, which is the case for an SVM.

We can view the relationship betweenANNs and deep learning as being somewhat
akin to that of Markov chains and hidden Markov models (HMM). That is, ANNs
serve as a basic technology that can be used to build powerful machine learning
techniques, analogous to the way that an HMM is built on the foundation of an
elementary Markov chain.

3.2 Hidden Markov Models

A generic hidden Markov model is illustrated in Fig. 3, where the Xi represent the
hidden states and all other notations are shown in Table1. The state of the Markov
process, which we can be viewed as being hidden behind a “curtain” (the dashed line
in Fig. 3), is determined by the current state and the A matrix. We are only able to



A Comparison of Word2Vec, HMM2Vec, and PCA2Vec for Malware Classification 293

Fig. 3 Hidden Markov model

Table 1 HMM notation

Notation Explanation

T Length of the observation sequence

N Number of states in the model

M Number of observation symbols

Q Distinct states of the Markov process,
q0, q1, . . . , qN−1

V Possible observations, assumed to be
0, 1, . . . , M − 1

A State transition probabilities

B Observation probability matrix

π Initial state distribution

O Observation sequence, O0,O1, . . . ,OT−1

observe the observations Oi , which are related to the (hidden) states of the Markov
process by the matrix B.

3.2.1 Notation and Basics

Thenotation used in anHMMis summarized inTable1.Note that the observations are
assumed to come from the set {0, 1, . . . , M − 1}, which simplifies the notation with
no loss of generality. That is, we simply associate each of the M distinct observations
with one of the elements 0, 1, . . . , M − 1, so that we haveOi ∈ V = {0, 1, . . . , M −
1} for i = 0, 1, . . . , T − 1.

The matrix A = {ai j } is N × N with

ai j = P(state q j at t + 1 | state qi at t).



294 A. Chandak et al.

The matrix A is row stochastic, that is, each row satisfies the properties of a discrete
probability distribution. Also, the probabilities ai j are independent of t , and hence
the A matrix does not vary with t . The matrix B = {b j (k)} is of size N × M , with

b j (k) = P(observation k at t | state q j at t).

Aswith the Amatrix, B is row stochastic, and the probabilities b j (k) are independent
of t . The somewhat unusual notation b j (k) is convenient when specifying the HMM
algorithms.

AnHMM is defined by A, B, and π (and, implicitly, by the dimensions N andM).
Thus, we denote an HMM as λ = (A, B, π).

Suppose that we are given an observation sequence of length four, that is,

O = (
O0,O1,O2,O3

)
.

Then the corresponding (hidden) state sequence is denoted as

X = (
X0, X1, X2, X3

)
.

We let πX0
denote the probability of starting in state X0, and bX0

(O0) denotes the
probability of initially observing O0, while aX0,X1

is the probability of transiting
from state X0 to state X1. Continuing, we see that the probability of a given state
sequence X of length four is

P(X,O) = πX0
bX0

(O0)aX0,X1
bX1

(O1)aX1,X2
bX2

(O2)aX2,X3
bX3

(O3). (2)

Note that in this expression, the Xi represent indices in the A and B matrices, not
the names of the corresponding states.

To find the optimal state sequence in the dynamic programming (DP) sense, we
simply choose the sequence (of length four, in this case) with the highest probability.
In contrast, to find the optimal state sequence in the HMM sense, we choose the most
probable symbol at each position. The optimal DP sequence and the optimal HMM
sequence can differ.

3.2.2 The Three Problems

There are three fundamental problems that we can solve using HMMs. Here, we
briefly describe each of these problems.

Problem 1 Given the model λ = (A, B, π) and a sequence of observations O ,
determine P(O | λ). That is, we want to compute a score for the observed
sequence O with respect to the given model λ.



A Comparison of Word2Vec, HMM2Vec, and PCA2Vec for Malware Classification 295

Problem 2 Given λ = (A, B, π) and an observation sequence O , find an optimal
state sequence for the underlying Markov process. In other words, we want to
uncover the hidden part of the hidden Markov model.

Problem 3 Given an observation sequence O and the parameter N , determine a
model λ = (A, B, π) that maximizes the probability ofO . This can be viewed as
training a model to best fit the observed data. This problem is generally solved
using Baum–Welch re-estimation [35, 43], which is a discrete hill climb on the
parameter space represented by A, B, and π . There is also an alternative gradient
ascent technique for HMM training [4, 45].

Since the techniquewe use to train anHMM(Problem 3) is a hill climb, in general,
we obtain a local maximum. Training with different initial conditions can result in
different local maxima, and hence it is often beneficial to train multiple HMMs with
different initial conditions, and select the highest scoring model.

3.2.3 Example

Consider, for example, the problem of speech recognition which, not coincidentally,
is one of the earliest and best-known successes of HMMs. In speech problems, the
hidden states can be viewed as corresponding tomovements of the vocal cords, which
are not directly observed. Instead, we observe the sounds that are produced, and
extract training features from these sounds. In this scenario, we can use the solution
to HMM Problem 3 to train an HMM λ to, for example, recognize the spoken word
“yes.” Then, given an unknown spoken word, we can use the solution to Problem 1
to score the word against the trained model λ and determine the likelihood that the
word is “yes.” In this case, we do not need to solve Problem 2, but it is possible that
such a solution (i.e., uncovering the hidden states) might provide additional insight
into the underlying speech model.

English text analysis is another classic application of HMMs, which appears
to have been first considered by Cave and Neuwirth [9]. This application nicely
illustrates the strength of HMMs and it requires no background in any specialized
field, such as speech processing or information security.

Given a length of English text, we remove all punctuation, numbers, etc., and
converts all letters to lower case. This leaves 26 distinct letters and word-space, for
a total of 27 symbols. We assume that there is an underlying Markov process (of
order one) with two hidden states. For each of these two hidden states, we assume
that the 27 symbols are observed according to fixed probability distributions.

This defines an HMMwith N = 2 and M = 27, where the state transition proba-
bilities of the Amatrix and the observation probabilities of the B matrix are unknown,
while the observations Ot consist of the series of characters we have extracted from
the given text. To determine the A and B matrices, we must solve HMM Problem 3,
as discussed above.



296 A. Chandak et al.

We have trained such an HMM, using the first T = 50,000 observations from
the Brown Corpus,1 which is available at [8]. We initialized each element of π

and A randomly to approximately 1/2, taking care to sure that the matrices are row
stochastic. For one specific iteration of this experiment, the precise values used were

π = (
0.51316 0.48684

)

and

A =
(
0.47468 0.52532
0.51656 0.48344

)

.

Each element of B was initialized to approximately 1/27, again, under the constraint
that B must be row stochastic. The values in the initial B matrix (more precisely, the
transpose of B) appear in the second and third columns of Table2.

After the initial iteration, we find log
(
P(O |λ)

) = −165097.29 and after 100
iterations, we have log

(
P(O | λ)

) = −137305.28. These model scores indicate that
training has improved the model significantly over the 100 iterations.

In this particular experiment, after 100 iterations, the model λ = (A, B, π) has
converged to

π = (
0.00000 1.00000

)
and A =

(
0.25596 0.74404
0.71571 0.28429

)

with the converged BT appearing in the last two columns of Table2.
The most interesting part of an HMM is generally the B matrix. Without having

made any assumption about the two hidden states, the B matrix in Table2 shows
us that one hidden state consists of vowels while the other hidden state consists of
consonants. Curiously, from this perspective, word-space acts more like a vowel,
while y is not even sometimes a vowel.

Of course, anyone familiar with English would not be surprised that there is a
significant distinction between vowels and consonants. But, the crucial point here
is that the HMM has automatically extracted this statistically important distinction
for us—it has “learned” to distinguish between consonants and vowels. And, thanks
to HMMs, this feature of English text could be easily discovered by someone who
previously had no knowledge whatsoever of the language.

Cave and Neuwirth [9] obtain additional results when considering HMMs with
more than two hidden states. In fact, they are able to sensibly interpret the results for
models with up to N = 12 hidden states.

For more information on HMMs, see [43], which includes detailed algorithms
including scaling or Rabiner’s classic paper [35].

1Officially, it is the Brown University Standard Corpus of Present-Day American English, which
includes various texts totaling about 1,000,000 words. Here, “Present-Day” means 1961.



A Comparison of Word2Vec, HMM2Vec, and PCA2Vec for Malware Classification 297

Table 2 Initial and final BT

Observation Initial Final

a 0.03735 0.03909 0.13845 0.00075

b 0.03408 0.03537 0.00000 0.02311

c 0.03455 0.03537 0.00062 0.05614

d 0.03828 0.03909 0.00000 0.06937

e 0.03782 0.03583 0.21404 0.00000

f 0.03922 0.03630 0.00000 0.03559

g 0.03688 0.04048 0.00081 0.02724

h 0.03408 0.03537 0.00066 0.07278

i 0.03875 0.03816 0.12275 0.00000

j 0.04062 0.03909 0.00000 0.00365

k 0.03735 0.03490 0.00182 0.00703

l 0.03968 0.03723 0.00049 0.07231

m 0.03548 0.03537 0.00000 0.03889

n 0.03735 0.03909 0.00000 0.11461

o 0.04062 0.03397 0.13156 0.00000

p 0.03595 0.03397 0.00040 0.03674

q 0.03641 0.03816 0.00000 0.00153

r 0.03408 0.03676 0.00000 0.10225

s 0.04062 0.04048 0.00000 0.11042

t 0.03548 0.03443 0.01102 0.14392

u 0.03922 0.03537 0.04508 0.00000

v 0.04062 0.03955 0.00000 0.01621

w 0.03455 0.03816 0.00000 0.02303

x 0.03595 0.03723 0.00000 0.00447

y 0.03408 0.03769 0.00019 0.02587

z 0.03408 0.03955 0.00000 0.00110

Space 0.03688 0.03397 0.33211 0.01298

3.3 Principal Component Analysis

Principal component analysis (PCA) is a linear algebraic technique that provides a
powerful tool for dimensionality reduction.Here,weprovide a very brief introduction
to the topic; for more details, Shlens’ tutorial is highly recommended [40], while a
good source for the math behind PCA is [39]. The discussion at [42] provides a brief,
intuitive, and fun introduction to the subject.

Geometrically, PCA aligns a basis with the (orthogonal) directions having the
largest variances. These directions are defined to be the principal components. A
simple illustration of such a change of basis appears in Fig. 4.



298 A. Chandak et al.

Fig. 4 A better basis

Intuitively, larger variances correspond to more informative data—if the variance
is small, the training data is clumped tightly around the mean and we have limited
ability to distinguish between samples. In contrast, if the variance is large, there is a
much better chance of separating the samples based on the characteristic (or charac-
teristics) under consideration. Consequently, once we have aligned the basis with the
variances, we can ignore those directions that correspond to small variances without
losing significant information. In fact, small variances often contribute only noise,
in which cases we can actually improve our results by neglecting those directions
that correspond to small variances.

The linear algebra behind PCA training (i.e., deriving a new-and-improved basis)
is fairly deep, involving eigenvalue analysis. Yet, the scoring phase is simplicity
itself, requiring little more than the computation of a few dot products, which makes
scoring extremely efficient and practical.

Note that we treat singular value decomposition (SVD) as a special case of PCA,
in the sense that SVD provides a method for determining the principal components.
It is possible to take the opposite perspective, where PCA is viewed as a special
case of the general change of basis technique provided by SVD. In any case, for our
purposes, PCA and SVD can be considered as essentially synonymous.

3.4 Classifiers

In the research presented in this paper, we consider four different classifiers, namely,
k-nearest neighbors (k-NN), multilayer perceptron (MLP), random forest (RF), and
support vector machine (SVM). We have already discussed MLPs above, so in this
section, we give a brief overview of k-NN, RF, and SVM.



A Comparison of Word2Vec, HMM2Vec, and PCA2Vec for Malware Classification 299

Fig. 5 Examples of k-NN classification [44]

3.4.1 k-Nearest Neighbors

Perhaps the simplest possible machine learning algorithm is k-nearest neighbors
(k-NN). In the scoring phase, k-NN consists of classifying based on the k-nearest
samples in the training set, typically using a simple majority vote. Since all compu-
tation is deferred to the scoring phase, k-NN is considered to be a “lazy learner.”

Figure5 shows examples of k-NN, where the training data consists of two classes,
represented by the open blue squares and the solid red circles, with the green diamond
(the point labeled X ) being a point that we want to classify. Figure5a shows that if
we use the 1-nearest neighbor, we would classify the green diamond as being of same
type as the open blue squares, whereas Fig. 5b shows that X would be classified as
the solid red circle type if using the 3-nearest neighbors.

3.4.2 Random Forest

A random forest (RF) generalizes a simple decision tree algorithm. A decision tree is
constructed by building a tree, based on features from the training data. It is easy to
construct such trees, and trivial to classify samples once a tree has been constructed.
However, decision trees tend to overfit the input data.

An RF combines multiple decision trees to generalize the training data. To do
so, RFs use different subsets of the training data as well as different subsets of
features, a process known as bagging [44]. A simple majority vote of the decision
trees comprising the RF is typically used for classification [18].



300 A. Chandak et al.

Fig. 6 Support vectors in
SVM [44]

3.4.3 Support Vector Machine

Support vector machines (SVM) are a class of supervised learning methods that
are based on four major ideas, namely, a separating hyperplane, maximizing the
“margin” (i.e., separation between classes), working in a higher dimensional space,
and the so-called kernel trick. The goal in SVM is to use a hyperplane to separate
labeled data into two classes. If it exists, such a hyperplane is chosen to maximize
the margin [44].

An example of a trained SVM is illustrated in Fig. 6. Note that the points that
actually minimize the distance to the separating hyperplane correspond to support
vectors. In general, the number of support vectors will be small relative to the number
of training data points, and this is the key to the efficiency of SVM in the classification
phase.

Of course, there is no assurance that the training data will be linearly separable. In
such cases, a nonlinear kernel function can be embedded into theSVMprocess in such
a way that the input data is, in effect, transformed to a higher dimensional “feature
space.” In this higher dimensional space, it is far more likely that the transformed
data will be linearly separable. This is the essence of the kernel trick—an example of
which is illustrated in Fig. 7. That we can transform our training data in such amanner
is not surprising, but the fact that we can do so without paying any significant penalty
in terms of computational efficiency makes the kernel trick a very powerful “trick”
indeed. However, the kernel function must be specified by the user, and selecting an
(near) optimal kernel can be challenging.

3.4.4 Last Word on Classification Techniques

We note in passing that MLP and SVM are related techniques, as both of these
approaches generate nonlinear decision boundaries (assuming a nonlinear kernel).
For SVM, the nonlinear boundary is based on a user-specified kernel function,



A Comparison of Word2Vec, HMM2Vec, and PCA2Vec for Malware Classification 301

Fig. 7 A function φ illustrating the kernel trick [44]

whereas the equivalent aspect of anMLP is learned as part of the training process—in
effect, the “kernel” is learned when training an MLP. This suggests that MLPs have
an advantage, since there are limitations on SVM kernels, and selecting an optimal
kernel is more art than science. However, the trade-off is that more data and more
computation will generally be required to train a comparable MLP, since the MLP
has more to learn, in comparison to an SVM.

It is also the case that k-NN and RF are closely related. In fact, both are
neighborhood-based algorithms, but with neighborhood structures that are some-
what different [19].

Thus, we generally expect that the results obtained using SVM and MLP will
be qualitatively similar, and the same is true when comparing results obtained
using k-NN and RF. By using these four classifiers, we obtain a “sanity check”
on the results. If, for example, our SVM and MLP results differ dramatically, this
would indicate that we should investigate further. On the other hand, if, say, ourMLP
and RF results differ significantly, this would not raise the same level of concern.

4 Word Embedding Techniques

Word embeddings are often used in natural language processing as they provide a
way to quantify relationships between words. Here, we use word embeddings to
generate higher level features for malware classification.

In this section,wediscuss three distinctword embedding techniques. First,we con-
siderword embeddings derived from trainedHMMs,whichwe refer to asHMM2Vec.
Then we consider a word embedding technique based on PCA, which we refer to as
PCA2Vec. Finally, we discuss the popular neural network-based technique known
as Word2Vec.



302 A. Chandak et al.

4.1 HMM2Vec

Before discussing the basic ideas behind Word2Vec, we consider a somewhat analo-
gous approach to generating vector representations based on hiddenMarkov models.
To begin with we consider individual letters, as opposed to words—we call this sim-
pler version Letter2Vec.

Recall that an HMM is defined by the three matrices A, B, and π , and is denoted
as λ = (A, B, π). The π matrix contains the initial state probabilities, A contains
the hidden state transition probabilities, and B consists of the observation probabil-
ity distributions corresponding to the hidden states. Each of these matrices is row
stochastic, that is, each row satisfies the requirements of a discrete probability distri-
bution. Notation-wise, N is the number of hidden states, M is the number of distinct
observation symbols, and T is the length of the observation (i.e., training) sequence.
Note that M and T are determined by the training data, while N is a user-defined
parameter.

Suppose that we train an HMM on a sequence of letters extracted from English
text, where we convert all uppercase letters to lowercase and discard any character
that is not an alphabetic letter or word-space. Then M = 27, and we select N = 2
hidden states, and we use T = 50,000 observations for training. Note that each
observation is one of the M = 27 symbols (letters plus word-space). For the example
discussed below, the sequence of T = 50,000 observations was obtained from the
Brown corpus of English [8]. Of course, any source of English text could be used.

In one specific case, an HMM trained with the parameters listed in the previous
paragraph yields the B matrix in Table2. Observe that this B matrix gives us two
probability distributions over the observation symbols—one for each of the hidden
states. We observe that one hidden state essentially corresponds to vowels, while the
other corresponds to consonants. This simple example nicely illustrates the concept
of machine learning, as no assumption was made a priori concerning consonants
and vowels, and the only parameter we selected was the number of hidden states N .
Thanks to this training process, the model has learned a crucial aspect of English
directly from the data.

Suppose that for a given letter �, we define its Letter2Vec representation V (�)

to be the corresponding row of the converged matrix BT in the last two columns of
Table2. Then, for example,

V (a) = (
0.13845 0.00075

)
V (e) = (

0.21404 0.00000
)

V (s) = (
0.00000 0.11042

)
V (t) = (

0.01102 0.14392
)
.

(3)

Next, we consider the distance between these Letter2Vec embeddings. However,
instead of using Euclidean distance, we measure distance based on cosine similarity.

The cosine similarity of vectors X and Y is the cosine of the angle between the two
vectors. Let X = (X0, X1, . . . , Xn−1) and Y = (Y0,Y1, . . . ,Yn−1). Then the cosine
similarity is given by



A Comparison of Word2Vec, HMM2Vec, and PCA2Vec for Malware Classification 303

cosθ (X,Y ) =

n−1∑

i=0

XiYi

√
√
√
√

n−1∑

i=0

X2
i

√
√
√
√

n−1∑

i=0

Y 2
i

.

In general, −1 ≤ cosθ (X,Y ) ≤ 1, but since our Letter2Vec encoding vectors con-
sist of probabilities—and hence are non-negative—we have 0 ≤ cosθ (X,Y ) ≤ 1 for
the X and Y under consideration.

For the vector encodings in (3), we find that for the vowels “a” and “e,” the
cosine similarity is cosθ (V (a), V (e)) = 0.9999. In contrast, the cosine similarity
between the vowel “a” and the consonant “t” is cosθ (V (a), V (t)) = 0.0817. These
results indicate that these Letter2Vec embeddings—which are derived from a trained
HMM—provide useful information on the similarity (or not) of pairs of letters.

Analogous to our Letter2Vec embeddings, we could train an HMM on words (or
other features) and then use the columns of the resulting B matrix (equivalently, the
rows of BT ) to define word (feature) embeddings.

The state of the art for Word2Vec based on words from English text is trained
on a dataset corresponding to M = 10,000, N = 300 and T = 109. Training an
HMM with such parameters would be decidedly non-trivial, as the work factor for
Baum–Welch re-estimation is on the order of N 2T .

While the word embedding technique discussed in the previous paragraph—we
call it HMM2Vec—is plausible, it has some potential limitations. Perhaps the biggest
issue with HMM2Vec is that we typically train an HMM based on a Markov model
of order one. That is, the current state only depends on the immediately preceding
state. By basing our word embeddings on such a model, the resulting vectors would
likely provide only a very limited sense of context. While we can train HMMs using
models of higher order, the work factor would be prohibitive.

4.2 PCA2Vec

Another option for generating embedding vectors is to apply PCA to a matrix of
pointwisemutual information (PMI). To construct a PMImatrix, based on a specified
window size W , we compute P(wi ,wj ) for all pairs of words (wi ,wj ) that occur
within a windowW of each other within our dataset, and we also compute P(wi ) for
each individual word wi . Then we define the PMI matrix as

X = {xi j } = log
P(wj ,wi )

P(wi )P(wj )
.

We treat column i of X , denoted Xi , as the feature vector for word wi . Next, we
perform PCA (using a singular value decomposition) based on these Xi feature



304 A. Chandak et al.

vectors, and we project the feature vectors Xi onto the resulting eigenspace. Finally,
by choosing the N dominant eigenvalues for this projection, we obtain embedding
vectors of length N .

It is shown in [32] that these embedding vectors have many similar properties as
Word2Vec embeddings, with the author providing examples analogous to those we
give in the next section. Interestingly, it may be beneficial in certain applications to
omit some of the dominant eigenvectors when determining the PCA2Vec embedding
vectors [17].

For more details on using PCA to generate word embeddings, see [17]. The
aforecited blog [32] gives an intuitive introduction to the topic.

4.3 Word2Vec

Word2Vec is a technique for embedding “words”—ormore generally, any features—
into a high-dimensional space. InWord2Vec, the embeddings are obtained by training
a shallow neural network. After the training process, words that are more similar in
context will tend to be closer together in the Word2Vec space.

Perhaps surprisingly, certain algebraic properties also hold for Word2Vec embed-
dings. For example, according to [30], if we let

w0 = “king”,w1 = “man”,w2 = “woman”,w3 = “queen”

and we define V (wi ) to be the Word2Vec embedding of wi , then V (w3) is the vector
that is closest to

V (w0) − V (w1) + V (w2),

where “closest” is in terms of cosine similarity. Results such as this indicate that
Word2Vec embeddings capture meaningful aspects of the semantics of the language.

Word2Vec uses a similar approach as the HMM2Vec concept outlined above. But,
instead of using an HMM, Word2Vec embeddings are obtained from shallow (one
hidden layer) neural network. Analogous to HMM2Vec, in Word2Vec, we are not
interested in the resulting model itself, but instead we make use the learning that is
represented by the trained model to define word embeddings. Next, we consider the
basic ideas behind Word2Vec. Our approach is similar to that found in the excellent
tutorial [21]. Here, we describe the process in terms of words, but these “words” can
be general features.

Suppose that we have a vocabulary of size M . We encode each word as a “one-
hot” vector of length M . For example, suppose that our vocabulary consists of the
set of M = 8 words

W = (w0,w1,w2,w3,w4,w5,w6,w7)

= (“for”, “giant”, “leap”, “man”, “mankind”, “one”, “small”, “step”).



A Comparison of Word2Vec, HMM2Vec, and PCA2Vec for Malware Classification 305

Table 3 Training data

Offset Training pairs

“ one small step . . .” (one, small), (one, step)

“one small step for . . .” (small, one), (small, step), (small, for)

“one small step for man . . .” (step, one), (step, small), (step, for), (step, man)

“. . . small step for man one . . .” (for, small), (for, step), (for, man), (for, one)

“. . . step for man one giant . . .” (man, step), (man, for), (man, one), (man,
giant)

“. . . for man one giant leap . . .” (one, for), (one, man), (one, giant), (one, leap)

“. . . man one giant leap for . . .” (giant, man), (giant, one), (giant, leap), (giant,
for)

“. . . one giant leap for mankind” (leap, one), (leap, giant), (leap, for), (leap,
mankind)

“. . . giant leap for mankind” (for, giant), (for, leap), (for, mankind)

“. . . leap for mankind ” (mankind, leap), (mankind, for)

Then we encode “for” and “man” as

E(w0) = E(“for”) = 10000000 and E(w6) = E(“man”) = 00010000,

respectively.
Now, suppose that our training data consists of the phrase

“one small step for man one giant leap for mankind.” (4)

To obtain our training samples, we specify a window size W , and for each offset we
consider pairs ofwordswithin the specifiedwindow. For this example,we selectW =
2, so that we consider words at a distance of one or two, in either direction. For the
sentence in (4), a window size of two gives us the training pairs in Table3.

Consider the pair “(for,man)” from the fourth row in Table3. As one-hot vec-
tors, this training pair corresponds to the input vector 10000000 and output vec-
tor 00010000.

A neural network similar to that illustrated in Fig. 8 is used to generate Word2Vec
embeddings. The input is a one-hot vector of length M representing the first element
of a training pair, such as those in Table3. The network is trained to output the
second element of each ordered pair which, again, is represented as a one-hot vector.
The hidden layer consists of N linear neurons and the output layer uses a softmax
function to generate M probabilities, where pi is the probability of the output vector
corresponding to wi for the given input.

Observe that the Word2Vec network in Fig. 8 has NM weights that are to be
determined via training, and these weights are represented by the blue lines from the



306 A. Chandak et al.

Fig. 8 Neural network for Word2Vec embeddings

hidden layer to the output layer. For each output node ωi , there are N edges (i.e.,
weights) from the hidden layer. The N weights that connect to output node ωi form
the Word2Vec embedding V (wi ) of the word wi .

The state of the art in Word2Vec for English text is trained on a vocabulary
of some M = 10,000 words, and embedding vectors of length N = 300, training
on about 109 samples. Clearly, training a model of this magnitude is an extremely
challenging computational task, as there are 3 × 106 weights to be determined, not
to mention a huge number of training samples to deal with. Most of the complexity
of Word2Vec comes from tricks that are used to make it feasible to train such a large
network with such a massive amount of data.

One trick that is used to speed training inWord2Vec is “subsampling” of frequent
words. Common words such as “a” and “the” contribute little to the model, so these
words can appear in training pairs at a much lower rate than they are present in the
training text.

Another key trick that is used inWord2Vec is “negative sampling.”When training
a neural network, each training sample potentially affects all of the weights of the
model. Instead of adjusting all of the weights, in Word2Vec, only a small number of
“negative” samples have their weights modified per training sample. For example,
suppose that the output vector of a training pair corresponds to word w0. Then the
“positive” weights are those connected to the output node ω0, and these weights are
modified. In addition, a small subset of the M − 1 “negative” words (i.e., every word



A Comparison of Word2Vec, HMM2Vec, and PCA2Vec for Malware Classification 307

in the dataset except w0) are selected and their corresponding weights are adjusted.
The distribution used to select negative cases is biased toward more frequent words.

A general discussion of Word2Vec can be found in [5], while an intuitive—yet
reasonably detailed—introduction is given in [21]. The original paper describing
Word2Vec is [30] and an immediate follow-up paper discusses a variety of improve-
ments that mostly serve to make training practical for large datasets [31].

5 Experiments and Results

In this section, we summarize our experimental results. These results are based on
HMM2Vec, PCA2Vec, and Word2Vec experiments. But, first we discuss the dataset
that we have used for all of the experiments reported in this section.

5.1 Dataset

The experimental results discussed in this section are based on the families in Table4,
with the number of available samples listed. In order to keep the test set balanced,
from each of these families, we randomly selected 1000 samples, for a total of 7000
samples in our classification experiments. These families have been used in many
recent studies, including [6, 48], for example.

The malware families in Table4 are of a wide variety of different types. Next, we
briefly discuss each of these families.

BHO can performawide variety ofmalicious actions, as specified by an attacker [25].
CeeInject is designed to conceal itself from detection, and hence various families

use it as a shield to prevent detection. For example, CeeInject can obfuscate a

Table 4 Malware families and the number of samples

Family Type Samples

BHO Trojan 1396

CeeInject VirTool 1077

FakeRean Rogue 1017

OnLineGames Password stealer 1508

Renos Trojan downloader 1567

Vobfus Worm 1107

Winwebsec Rogue 2302

Total – 9974



308 A. Chandak et al.

Table 5 Classifier hyperparameters tested

Classifier Hyperparameter Tested values

MLP learning rate constant, invscaling,
adaptive

hidden layer size [(30, 30, 30), (10, 10, 10)]
solver sgd, adam

activation relu, logistic, tanh

max iter [10000]
SVM kernel rbf, linear

C [1, 10, 100, 1000]
gamma (rbf only) [0.001, 0.0001]

k-NN n neighbors [3, 5, 11, 19]
weights uniform, distance

p [1, 2, 3]
RF n estimators [30, 100, 500, 1000]

max depth [5, 8, 15, 25, 30]
min samples split [2, 5, 10, 15, 100]
min samples leaf [1, 2, 5, 10]

bitcoin mining client, which might have been installed on a system without the
user’s knowledge or consent [24].

FakeRean pretends to scan the system, notifies the user of nonexistent issues, and
asks the user to pay to clean the system [29].

OnLineGames steals login information of online games and tracks user keystroke
activity [26].

Renos will claim that the system has spyware and ask for a payment to remove the
supposed spyware [23].

Vobfus is a family that downloads other malware onto a user’s computer and makes
changes to the device configuration that cannot be restored by simply removing
the downloaded malware [27].

Winwebsec is a trojan that presents itself as antivirus software—it displays mislead-
ing messages stating that the device has been infected and attempts to persuade
the user to pay a fee to free the system of malware [28].

In the remainder of this section, we present our experimental results. First,
we discuss the selection of parameters for the various classifiers. Then we give
results from a series of experiments for malware classification, based on each of
the three word embedding techniques discussed in Sect. 4, namely, HMM2Vec,
PCA2Vec, and Word2Vec. Note that all of our experiments were performed using
scikit-learn [38].



A Comparison of Word2Vec, HMM2Vec, and PCA2Vec for Malware Classification 309

5.2 Classifier Parameters

For each of our word embedding classification experiments, we test the three classi-
fiers discussed in Sect. 3.4, namely, k-nearest neighbors (k-NN), random forest (RF),
and support vector machine (SVM), along with the multilayer perceptron (MLP),
which is discussed in Sect. 3.1.2. The features considered are the word embeddings
from HMM2Vec, PCA2Vec, and Word2Vec. Note that this gives us a total of 12
distinct experiments.

For each case, we performed a grid search over a set of hyperparameters using
GridSearchCV [41] in scikit-learn. GridSearchCV performs fivefold
cross validation to determine the best parameters for each embedding technique. The
parameters tested are listed in Table5. Observe that for each of the three different
word embedding techniques, we tested 36 combinations of parameters for MLP,
we tested 12 combinations for SVM, we tested 16 combinations for k-NN, and we
tested 400 RF combinations. Overall, we conducted

3 · (36 + 12 + 16 + 400) = 1392

experiments to determine the parameters for the remaining experiments.
The optimal parameters selected for each classifier and for each embedding tech-

nique are listed in Table6. We note that overall there is considerable agreement
between the parameters for the different word embedding techniques, but in two
cases (learning rate and n estimators), a different parameter is selected
for each of the three embedding techniques.

Table 6 Classifier hyperparameters selected
Classifier Hyperparameter HMM2Vec Word2Vec PCA2Vec Baseline

HMM

MLP learning rate invscaling constant adaptive constant

hidden layer size (30, 30, 30) (30, 30, 30) (30, 30, 30) (30, 30, 30)

solver adam adam sgd adam

activation relu relu relu relu

max iter 10000 10000 10000 10000

SVM kernel linear rbf rbf rbf

C 1000 1000 1000 10

gamma NA 0.001 0.001 0.0001

k-NN n neighbors 3 3 3 3

weights distance distance distance distance

p 1 2 1 3

RF n estimators 100 500 1000 1000

max depth 25 30 30 30

min samples split 2 2 2 2

min samples leaf 1 1 1 1



310 A. Chandak et al.

5.3 Baseline Results

First, we consider experiments based on opcode sequences and HMMs. These results
serve as a baseline for comparison with the vector embedding techniques that are
the primary focus of this research. We choose these HMM-based experiments for
the baseline, as HMM trained on opcode features have proven popular and highly
successful in the field of malware analysis [1, 2, 16, 36, 50].

Specifically, we train an HMM for each of the seven families in our dataset,
using N = 2 hidden states in each case. For classification, we score a sample against
all seven of theseHMMs, and the resulting score vector (of length seven) serves as our
feature vector. We use the same classification algorithms as in our word embedding
experiments, namely, k-NN, MLP, RF, and SVM.

Note that we use the same opcode sequences here as in our vector embedding
experiments. Specifically, the top 20most frequent opcodes are used, with all remain-
ing opcodes deleted.

The confusion matrices for these baseline HMM experiments are given in Fig. 9.
The accuracies obtained for k-NN, MLP, RF, and SVM are 0.92, 0.44, 0.91,
and 0.78, respectively. We see that MLP and SVM both perform poorly, whereas
the neighborhood-based techniques, namely, k-NN and RF, are both strong, con-
sidering that we have seven classes. In addition, k-NN and RF give very similar
results.

5.4 HMM2Vec Results

For these experiments, we train an HMM on each sample in our dataset. Recall that
our dataset consists of 1000 samples from each of the seven families listed in Table4.
We train each of these 7000 models with N = 2 hidden states, using the M = 20
most frequent opcodes over all malware samples. Opcodes outside the top 20 are
ignored.

As mentioned in Sect. 3.2.2, we often train multiple HMMs with different initial
conditions, and select the best scoring model. This becomes more important as the
length of the observation sequence decreases. Hence, when training our HMMs, we
performmultiple random restarts—the number of restarts is determined by the length
of the training sequence, as indicated in Table7.

Each B matrix is 2 × 20, where each row corresponds to one of the hidden states
of the model. From each of these matrices, we construct a vector of length 40 by
appending the two rows. Since the order of the hidden states can vary betweenmodels,
we select the order of the rows so as to obtain a consistency with respect to the most
common opcode. That is, the row corresponding to the state that accumulates the
highest probability for MOV is the first half of the feature vector, with the other row
of the B matrix becoming the last 20 elements of the feature vector. This accounts
for any cases where the hidden states differ.



A Comparison of Word2Vec, HMM2Vec, and PCA2Vec for Malware Classification 311

Fig. 9 Confusion matrices for baseline HMM experiments

Table 7 Number of random restarts

Observations Restarts

Greater than 30,000 10

10,000–30,000 30

5000–10,000 100

Less than 500 500

Based on the resulting feature vectors, we use the parameters in the HMM2Vec
column of Table6 to classify the samples using k-NN, MLP, RF, and SVM. The
confusion matrices for each of these cases is give in Fig. 10.

The accuracies obtained for k-NN, MLP, RF, and SVM based on HMM2Vec
features are 0.93, 0.91, 0.93, and 0.89, respectively. From the confusion matrices in
Fig. 10, we see that the greatest source of misclassifications is between FakeRean



312 A. Chandak et al.

Fig. 10 Confusion matrices for HMM2Vec experiments

andWinwebsec families. Inmost—but not all—of our subsequent experiments, these
two families will prove to be the most challenging to distinguish.

5.5 PCA2Vec Results

For our PCA2Vec experiments, we generate embedding vectors for each of the 7000
samples in our training set, as discussed in Sect. 4.2. We then train and classify
the 7000 malware samples using these PCA2Vec feature vectors. The confusion
matrices for these experiments are summarized in Fig. 11.

As above, each model is based on the 20 most frequent opcodes, which gives us
a 20 × 20 PMI matrix. For consistency with the HMM2Vec experiments discussed
above, we consider the two most dominant eigenvectors, and for consistency with
the Word2Vec models discussed below, we use a window size of W = 10 when



A Comparison of Word2Vec, HMM2Vec, and PCA2Vec for Malware Classification 313

Fig. 11 Confusion matrices for PCA2Vec experiments

constructing the PMI matrix. The resulting projection into the eigenspace is 2 × 20,
which we vectorize to obtain a feature vector of length 40.

The accuracies obtained for k-NN, MLP, RF, and SVM based on PCA2Vec fea-
tures are 0.84, 0.78, 0.88, and 0.76, respectively. From these numbers, we see that
PCA2Vec performed poorly for each of the classifiers considered, as compared to
HMM2Vec.

5.6 Word2Vec Results

Analogous to the HMM2Vec and PCA2Vec experiments above, we classify the sam-
ples using the same four classifiers but with Word2Vec embeddings as features. The
confusion matrices for these experiments are given in Fig. 12.



314 A. Chandak et al.

Fig. 12 Confusion matrices for Word2Vec experiments

As with the PCA2Vec experiments above, to generate our Word2Vec models, we
use a window size of W = 10. And, to be consistent with both the HMM2Vec and
PCA2Vec models discussed above, we use a vector length of two, giving us feature
vectors of length 40.We use the so-called continuous-bag-of-words (CBOW)model,
which is the model that we described in Sect. 4.3.

The accuracies obtained for k-NN, MLP, RF, and SVM based on Word2Vec fea-
tures are 0.93, 0.91, 0.93, and 0.89, respectively. These results match those obtained
using HMM2Vec.

In Sect. 5.8, we compare the accuracies obtained in our baseline HMM,
HMM2Vec, PCA2Vec, and Word2Vec experiments. But first we discuss possible
overfitting issues with respect to the k-NN and RF classifiers discussed above.



A Comparison of Word2Vec, HMM2Vec, and PCA2Vec for Malware Classification 315

5.7 Overfitting

As discussed above in Sect. 3.4.4, both k-NN and random forest are neighborhood-
based classification algorithms, but with different neighborhood structure. Thus, we
expect that these two classification algorithms will generally perform in a somewhat
similar manner, at least in a qualitative sense.

For k-NN, small values of k tend to result in overfitting. To avoid overfitting, the
rule of thumb is that we should choose k ≈ √

N , where N is the number of samples in
the training set [15]. Sincewe use an 80-20 split for training-testing andwe have 7000
samples, for our k-NN experiments, this rule of thumb gives us k = √

5600 ≈ 75.
However, for each feature set considered, our grid search yielded an optimal value
of k ≤ 3.

In Fig. 13, we graph the accuracy of k-NN as a function of k for the baseline
HMM, HMM2Vec, and Word2Vec feature sets. We see that all of these techniques
perform more poorly as k increases. In particular, for k ≈ 75, the performance of
each is poor in comparison to k ≤ 3, and this effect is particularly pronounced in
the case of the baseline HMM. This provides strong evidence that small values of k
in k-NN result in overfitting for each feature set, and the overfitting is especially
pronounced for the baseline HMM.

For a random forest, the overfitting that is inherent in decision trees is mitigated
by using more trees. In contrast, if the depth of the trees in the random forest is too
large, the effect is analogous to choosing k too small in k-NN, and overfitting is likely
to occur.

Fig. 13 k-NN results as a
function of k



316 A. Chandak et al.

Fig. 14 Random forest
results as a function of tree
depth

To explore overfitting in our RF experiments, in Fig. 14, we give the misclassifica-
tion results for the baseline HMM, HMM2Vec, andWord2Vec features, as a function
of the maximum depth of the trees. In this case, Word2Vec performs best for smaller
(maximum) depths, which indicates that the baseline HMM and HMM2Vec features
are more prone to overfitting.

In Fig. 15a and b, we give misclassification results as a function of both the
maximum depth and the number of trees for the baseline HMM and for HMM2Vec
features, respectively. From these results, we see that the baseline HMM performs
similarly as a function of the maximum depth, regardless of the number of trees. In
contrast, the HMM2Vec features yield consistently better results than the baseline

Fig. 15 Random forest maximum depth vs number of trees



A Comparison of Word2Vec, HMM2Vec, and PCA2Vec for Malware Classification 317

HMM (as a function of the maximum depth), except when the number of trees is
very small. This indicates that, with respect to the maximum depth, overfitting is
significantly worse for the baseline HMM, since the overfitting cannot be overcome
by increasing the number of trees.

From the discussion in this section, we see that all of our k-NN experimental
results suffer from some degree of overfitting, with this effect being most significant
in the case of the baseline HMM. For our RF results, overfitting is a relatively minor
issue for the HMM2Vec- and Word2Vec-engineered features but, as with k-NN, it
is a significant problem for the baseline HMM. Consequently, both the k-NN and
RF results we have reported for the baseline HMM are overly optimistic, as these
represent cases where significant overfitting has occurred.

5.8 Discussion

Figure16 gives the overall accuracy for each of our multiclass experiments using
k-NN, MLP, RF, and SVM classifiers, for our baseline HMM opcode experiments,
and for each of theHMM2Vec-, PCA2Vec-, andWord2Vec-engineered feature exper-
iments. In general, we expect RF and k-NN to perform somewhat similarly, since
both are neighborhood-based algorithms. We also expect that in most cases, SVM
and MLP will perform in a qualitatively similar manner to each other, since these
techniques are closely related. We find that these expectations are generally met in
our experiments, which can be viewed as a confirmation of the validity of the results.

From our 16 distinct experiments, we see that HMM2Vec andWord2Vec perform
best, with PCA2Vec lagging far behind. The baseline HMMdoes well with respect to
the neighborhood-based classifiers, namely, RF and k-NN. However, as discussed in

Fig. 16 Accuracies for
combinations of features and
classifiers



318 A. Chandak et al.

the previous section, these neighborhood-based techniques overfit the training data
in the baseline HMM experiments. Neglecting these overfit results, we see that using
the HMM2Vec- and Word2Vec-engineered features with SVM and MLP classifiers,
give us the best results. Furthermore, these HMM2Vec and Word2Vec results are
substantially better than either of the reliable results obtained for the baseline HMM,
that is, the baseline HMM results using SVM and MLP classifiers.

6 Conclusion and Future Work

In this paper, we have presented results for a number of experiments involving word
embedding techniques in malware classification. We have applied machine learning
techniques to raw features to generate engineered features that are used for classifi-
cation. Such a concept is not entirely unprecedented as, for example, PCA is often
used to reduce the dimensionality of data before applying other machine learning
techniques. However, the authors are not aware of previous work involving the use
word embedding techniques in the same manner considered in this paper.

Our results show that word embedding techniques can be used to generate features
that are more informative than the original data. This process of distilling useful
information from the data before classifying samples is potentially useful, not only
in the field of malware analysis, but also in other fields where learning plays a
prominent role.

For future work, it would be interesting to consider other families and other
types of malware. It would also be worthwhile to consider more complex and higher
dimensional data—as with dimensionality-reduction techniques, such data would
tend to offer more scope for improvement using the word embedding strategies
considered in this paper.

References

1. Annachhatre, Chinmayee, Thomas H. Austin, and Mark Stamp. 2015. Hidden Markov models
for malware classification. Journal of Computer Virology and Hacking Techniques 11 (2):
59–73.

2. Austin, Thomas H., Eric Filiol, Sébastien Josse, and Mark Stamp. 2013. Exploring hidden
Markov models for virus analysis: A semantic approach. In 46th Hawaii international confer-
ence on system sciences HICSS 2013, 5039–5048.

3. Awad, Y.,M.Nassar, andH. Safa.Modelingmalware as a language. In 2018 IEEE international
conference on communications, ICC, 1–6.

4. Baldi, Pierre, and Yves Chavin. 1994. Smooth on-line learning algorithms for hidden Markov
models. Neural Computation 6: 307–318. https://core.ac.uk/download/pdf/4881023.pdf.

5. Banerjee, Suvro. 2018. Word2Vec—A baby step in deep learning but a giant leap towards nat-
ural language processing. https://medium.com/explore-artificial-intelligence/word2vec-
a-baby-step-in-deep-learning-but-a-giant-leap-towards-natural-language-processing-
40fe4e8602ba.

https://core.ac.uk/download/pdf/4881023.pdf
https://medium.com/explore-artificial-intelligence/word2vec-a-baby-step-in-deep-learning-but-a-giant-leap-towards-natural-language-processing-40fe4e8602ba
https://medium.com/explore-artificial-intelligence/word2vec-a-baby-step-in-deep-learning-but-a-giant-leap-towards-natural-language-processing-40fe4e8602ba
https://medium.com/explore-artificial-intelligence/word2vec-a-baby-step-in-deep-learning-but-a-giant-leap-towards-natural-language-processing-40fe4e8602ba


A Comparison of Word2Vec, HMM2Vec, and PCA2Vec for Malware Classification 319

6. Basole, Samanvitha, Fabio Di Troia, and Mark Stamp. 2020. Multifamily malware models.
Journal of Computer Virology and Hacking Techniques.

7. Bilar, Daniel. 2007. Opcodes as predictor for malware. International Journal of Electronic
Security and Digital Forensics 1 (2): 156–168.

8. The Brown corpus of standard American English. http://www.cs.toronto.edu/~gpenn/csc401/
a1res.html.

9. Cave, Robert L., and Lee P. Neuwirth. 1980. Hidden Markov models for English. In Hidden
Markov models for speech, 16–56, IDA-CRD. New Jersey: Princeton. https://www.cs.sjsu.edu/
~stamp/RUA/CaveNeuwirth/index.html.

10. Dhammi, Arshi, and Maninder Singh. 2015. Behavior analysis of malware using machine
learning. In Eighth international conference on contemporary computing, IC3 2015, 481–486.

11. Hachinyan, Olga. 2017. Detection of malicious software on based on multiple equations of
API-calls sequences. In 2017 IEEE conference of Russian roung researchers in electrical and
electronic engineering, EIConRus, 415–418.

12. Hardesty, Larry. 2017. Explained: Neural networks. http://news.mit.edu/2017/explained-
neural-networks-deep-learning-0414.

13. Harris, Kamala. 2016. California data breach report. https://oag.ca.gov/sites/all/files/agweb/
pdfs/dbr/2016-data-breach-report.pdf.

14. Hashemi, Hashem, Amin Azmoodeh, Ali Hamzeh, and Sattar Hashemi. 2016. Graph embed-
ding as a new approach for unknown malware detection. Journal of Computer Virology and
Hacking Techniques 13: 153–166.

15. Jirina, Marcel, and Marcel Jirina Jr. Using singularity exponent in distance based classifier. In
10th International Conference on Intelligent Systems Design and Applications, ISDA 2010,
220–224.

16. Kalbhor, Ashwin, Thomas H. Austin, Eric Filiol, Sébastien Josse, and Mark Stamp. 2015.
Dueling hidden Markov models for virus analysis. Journal of Computer Virology and Hacking
Techniques 11 (2): 103–118.

17. Levy, Omer, Yoav Goldberg, and Ido Dagan. 2015. Improving distributional similarity with
lessons learned fromword embeddings.Transactions of the Association forComputational Lin-
guistics 3: 211–225. https://levyomer.files.wordpress.com/2015/03/improving-distributional-
similarity-tacl-2015.pdf.

18. Liaw, Andy, and Matthew Wiener. 2002. Classification and regression by randomForest. R
news 2 (3): 18–22.

19. Lin, Yi, and Yongho Jeon. 2006. Random forests and adaptive nearest neighbors. Journal of
the American Statistical Association 101 (474): 578–590.

20. Liu, Yingying, and Yiwei Wang. 2019. A robust malware detection system using deep learning
on API calls. In 2019 IEEE 3rd information technology, networking, electronic and automation
control conference, ITNEC, 1456–1460.

21. McCormick, Chris. 2016. Word2vec tutorial — The skip-gram model. http://mccormickml.
com/2016/04/19/word2vec-tutorial-the-skip-gram-model/.

22. McCulloch, Warren S., and Walter Pitts. 1943. A logical calculus of the ideas immanent in
nervous activity.Bulletin ofMathematical Biophysics 5. https://pdfs.semanticscholar.org/5272/
8a99829792c3272043842455f3a110e841b1.pdf.

23. Microsoft Security Intelligence. Renos. 2006. https://www.microsoft.com/en-us/wdsi/
threats/malware-encyclopedia-description?Name=TrojanDownloader:Win32/Renos&
threatId=16054.

24. Microsoft Security Intelligence. CeeInject. 2007. https://www.microsoft.com/en-us/wdsi/
threats/malware-encyclopedia-description?Name=VirTool%3AWin32%2FCeeInject.

25. Microsoft Security Intelligence. BHO. 2008. https://www.microsoft.com/en-us/wdsi/threats/
malware-encyclopedia-description?Name=Trojan:Win32/BHO&threatId=-2147364778.

26. Microsoft Security Intelligence.OnLineGames. 2008. https://www.microsoft.com/en-us/wdsi/
threats/malware-encyclopedia-description?Name=PWS%3AWin32%2FOnLineGames.

27. Microsoft Security Intelligence.Vobfus. 2010. https://www.microsoft.com/en-us/wdsi/threats/
malware-encyclopedia-description?name=win32%2Fvobfus.

http://www.cs.toronto.edu/~gpenn/csc401/a1res.html
http://www.cs.toronto.edu/~gpenn/csc401/a1res.html
https://www.cs.sjsu.edu/~stamp/RUA/CaveNeuwirth/index.html
https://www.cs.sjsu.edu/~stamp/RUA/CaveNeuwirth/index.html
http://news.mit.edu/2017/explained-neural-networks-deep-learning-0414
http://news.mit.edu/2017/explained-neural-networks-deep-learning-0414
https://oag.ca.gov/sites/all/files/agweb/pdfs/dbr/2016-data-breach-report.pdf
https://oag.ca.gov/sites/all/files/agweb/pdfs/dbr/2016-data-breach-report.pdf
https://levyomer.files.wordpress.com/2015/03/improving-distributional-similarity-tacl-2015.pdf
https://levyomer.files.wordpress.com/2015/03/improving-distributional-similarity-tacl-2015.pdf
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
https://pdfs.semanticscholar.org/5272/8a99829792c3272043842455f3a110e841b1.pdf
https://pdfs.semanticscholar.org/5272/8a99829792c3272043842455f3a110e841b1.pdf
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:Win32/Renos&threatId=16054
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:Win32/Renos&threatId=16054
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:Win32/Renos&threatId=16054
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=VirTool%3AWin32%2FCeeInject
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=VirTool%3AWin32%2FCeeInject
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/BHO&threatId=-2147364778
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/BHO&threatId=-2147364778
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS%3AWin32%2FOnLineGames
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS%3AWin32%2FOnLineGames
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?name=win32%2Fvobfus
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?name=win32%2Fvobfus


320 A. Chandak et al.

28. Microsoft Security Intelligence. Winwebsec. 2010. https://www.microsoft.com/security/
portal/threat/encyclopedia/entry.aspx?Name=Win32%2fWinwebsec.

29. Microsoft Security Intelligence. FakeRean. 2011. https://www.microsoft.com/en-us/wdsi/
threats/malware-encyclopedia-description?Name=Win32/FakeRean.

30. Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of
word representations in vector space. https://arxiv.org/abs/1301.3781.

31. Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Distributed
representations of words and phrases and their compositionality. https://papers.nips.cc/paper/
5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf.

32. Moody, Chris. Stop using word2vec. https://multithreaded.stitchfix.com/blog/2017/10/18/
stop-using-word2vec/.

33. Pechaz, B., M.V. Jahan, and M. Jalali. 2015. Malware detection using hidden Markov model
based on Markov blanket feature selection method. In 2015 International congress on technol-
ogy, communication and knowledge, ICTCK, 558–563.

34. Popov, Igor. 2017. Malware detection using machine learning based onWord2Vec embeddings
of machine code instructions. In 2017 siberian symposium on data science and engineering,
SSDSE, 1–4.

35. Rabiner, Lawrence R. 1989. A tutorial on hidden Markov models and selected applications
in speech recognition. Proceedings of the IEEE 77 (2): 257–286. https://www.cs.sjsu.edu/
~stamp/RUA/Rabiner.pdf.

36. Raghavan,Aditya, FabioDi Troia, andMark Stamp. 2019.HiddenMarkovmodelswith random
restarts versus boosting for malware detection. Journal of Computer Virology and Hacking
Techniques 15 (2): 97–107.

37. Rosenblatt, Frank. 1961. Principles of neurodynamics: Perceptrons and the theory of brain
mechanisms. http://www.dtic.mil/dtic/tr/fulltext/u2/256582.pdf.

38. scikit-learn: Machine learning in Python. https://scikit-learn.org/stable/.
39. Shalizi, Cosma. Principal component analysis. https://www.stat.cmu.edu/~cshalizi/uADA/12/

lectures/ch18.pdf.
40. Shlens, Jonathon. 2005. A tutorial on principal component analysis. http://www.cs.cmu.edu/

~elaw/papers/pca.pdf.
41. sklearn.model_selection.GridSearchCV. https://scikit-learn.org/stable/

modules/generated/sklearn.model_selection.GridSearchCV.html.
42. Stack Exchange. 2015. Making sense of principal component analysis. https://stats.

stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-
eigenvectors-eigenvalues.

43. Stamp, Mark. 2004. A revealing introduction to hidden Markov models. https://www.cs.sjsu.
edu/~stamp/RUA/HMM.pdf.

44. Stamp,Mark. 2017. Introduction tomachine learningwith applications in information security.
Boca Raton: Chapman and Hall/CRC.

45. Stamp, Mark. 2019. Deep thoughts on deep learning. https://www.cs.sjsu.edu/~stamp/RUA/
ann.pdf.

46. Symantec. 2019. Internet security threat report: Malware. https://interactive.symantec.com/
istr24-web.

47. Vinod, P., R. Jaipur, V. Laxmi, and M. Gaur. 2009. Survey on malware detection methods. In
Proceedings of the 3rd Hackers’ workshop on computer and internet security, IITKHACK’09,
74–79.

48. Wadkar, Mayuri, Fabio Di Troia, and Mark Stamp. 2020. Detecting malware evolution using
support vector machines. Expert Systems with Applications 143.

49. Wallis, Charles. 2017. History of the perceptron. https://web.csulb.edu/~cwallis/artificialn/
History.htm.

50. Wong, Wing, and Mark Stamp. 2006. Hunting for metamorphic engines. Journal in Computer
Virology 2 (3): 211–229.

https://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32%2fWinwebsec
https://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32%2fWinwebsec
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/FakeRean
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/FakeRean
https://arxiv.org/abs/1301.3781
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://multithreaded.stitchfix.com/blog/2017/10/18/stop-using-word2vec/
https://multithreaded.stitchfix.com/blog/2017/10/18/stop-using-word2vec/
https://www.cs.sjsu.edu/~stamp/RUA/Rabiner.pdf
https://www.cs.sjsu.edu/~stamp/RUA/Rabiner.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/256582.pdf
https://scikit-learn.org/stable/
https://www.stat.cmu.edu/~cshalizi/uADA/12/lectures/ch18.pdf
https://www.stat.cmu.edu/~cshalizi/uADA/12/lectures/ch18.pdf
http://www.cs.cmu.edu/~elaw/papers/pca.pdf
http://www.cs.cmu.edu/~elaw/papers/pca.pdf
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues
https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues
https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues
https://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf
https://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf
https://www.cs.sjsu.edu/~stamp/RUA/ann.pdf
https://www.cs.sjsu.edu/~stamp/RUA/ann.pdf
https://interactive.symantec.com/istr24-web
https://interactive.symantec.com/istr24-web
https://web.csulb.edu/~cwallis/artificialn/History.htm
https://web.csulb.edu/~cwallis/artificialn/History.htm

	 A Comparison of Word2Vec, HMM2Vec, and PCA2Vec for Malware Classification
	1 Introduction
	2 Related Work
	3 Background
	3.1 Neural Networks
	3.2 Hidden Markov Models
	3.3 Principal Component Analysis
	3.4 Classifiers

	4 Word Embedding Techniques
	4.1 HMM2Vec
	4.2 PCA2Vec
	4.3 Word2Vec

	5 Experiments and Results
	5.1 Dataset
	5.2 Classifier Parameters
	5.3 Baseline Results
	5.4 HMM2Vec Results
	5.5 PCA2Vec Results
	5.6 Word2Vec Results
	5.7 Overfitting
	5.8 Discussion

	6 Conclusion and Future Work
	References




