A Selective Survey of Deep Learning)
Techniques and Their Application to i
Malware Analysis

Mark Stamp

Abstract In this chapter, we consider neural networks and deep learning, within
the context of malware research. A variety of architectures are introduced, including
multilayer perceptrons (MLP), convolutional neural networks (CNN), recurrent neu-
ral networks (RNN), long short-term memory (LSTM), residual networks (ResNet),
generative adversarial networks (GAN), and Word2Vec. We provide a selective sur-
vey of applications of each of these architectures to malware-related problems.

1 Introduction

In this chapter, we discuss a variety of topics related to deep learning, with the
primary focus on popular neural networking-based architectures. We survey various
malware-related applications of each architecture considered. Each topic is discussed
in some detail, with additional references for further reading provided in all cases.

This chapter can be viewed as a companion to the survey [78], which covers classic
machine learning techniques and their applications in cybersecurity research. Our
focus here is on neural networks and deep learning, and with respect to applications,
we focus most of our attention on malware-related topics, but we do mention other
applications within the broader information security domain.

For the sake of completeness, we begin with an introduction to artificial neu-
ral networks (ANNs), which includes a brief history of neural networks. We then
introduce a wide variety of architectures and techniques, including convolutional
neural networks (CNN), recurrent neural networks (RNN), long short-term memory
(LSTM), residual networks (ResNet), and generative adversarial networks (GAN).
We also discuss related techniques, such as word embeddings—including Word2 Vec.
We also briefly mention ensemble techniques and transfer learning in passing.

M. Stamp ()
San Jose State University, San Jose, CA, USA
e-mail: mark.stamp @sjsu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 3
M. Stamp et al. (eds.), Malware Analysis Using Artificial Intelligence
and Deep Learning, https://doi.org/10.1007/978-3-030-62582-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62582-5_1&domain=pdf
mailto:mark.stamp@sjsu.edu
https://doi.org/10.1007/978-3-030-62582-5_1

4 M. Stamp

2 A Brief History of ANNs

The concept of an artificial neuron [26, 82] is not new, as the idea was proposed
by McCulloch and Pitts in the 1940s [52]. However, modern computational neural
networking really begins with the perceptron, which was first proposed by Rosenblatt
in the late 1950s [68].

An artificial neuron with three inputs is illustrated in Fig.1. In the original
McCulloch-Pitts formulation, X; € {0, 1},w; € {41, —1}, and the output ¥ € {0, 1}.
The threshold T determines whether the output Y is O (inactive) or 1 (active),
based on)_ w; X;. The thinking was that a neuron either fires or it does not (thus,
Y € {0, 1}), and the inputs would come from other neurons (thus, X; € {0, 1}), while
the weights w; specify whether an input is excitatory (increasing the chance of the
neuron firing) or inhibitory (decreasing the chance of the neuron firing). When-
ever y w; X; > T, the excitatory response wins, and the neuron fires; otherwise, the
inhibitory response wins and the neuron does not fire.

A perceptron is considerably less restrictive than a McCulloch-Pitts artificial
neuron, as the X; and w; can be real-valued. Since we want to use a perceptron as a
binary classifier, the output is generally taken to be binary. McCulloch and Pitts chose
such a restrictive formulation because they were trying to model logic functions. At
the time, it was felt that encoding elementary logic into artificial neurons would be
the key step to constructing systems with artificial intelligence. However, that point
of view has certainly not panned out, while the additional generality offered by the
perceptron formulation has proven extremely useful.

Given a real-valued input vector X = (Xo, Xy, ..., X,—1), a perceptron can be
viewed as a function of the form

n—1
fX) =) wiX;+b,
i=0

Fig. 1 Artificial neuron wo
Xo
w1
Xi T Y
wa

X>

A Selective Survey of Deep Learning Techniques ... 5

11X X 1o XX o
> > >
0[O X 0[O o 00 X
0 1 0 1 0 1
Xo Xo Xo
(a) OR (b) AND (c) XOR

Fig. 2 OR and AND are linearly separable but XOR is not

that is, a perceptron computes a weighted sum of the components. Based on a thresh-
old, a perceptron can be used to define a binary classifier. For example, we could
classify a sample X as “type 1” provided that f(X) > T, for some specified thresh-
old T, and otherwise classify X as “type 0.”
In the case of two-dimensional input, the decision boundary of a perceptron defines
aline
fx,y) =wox +wry +b. (D

It follows that a perceptron cannot provide ideal separation in cases where the data
itself is not linearly separable.

There was considerable research into ANNSs in the 1950s and 1960s, and that
era is often described as the first “golden age” of Al and neural networks. But the
gold turned to lead in 1969 when an influential work by Minsky and Papert [55]
emphasized the limitations of perceptrons. Specifically, they observed that the XOR
function is not linearly separable, which implies that a single perceptron cannot
model something as elementary as XOR. The OR, AND, and XOR functions are
illustrated in Fig.2, where we see that OR and AND are linearly separable, while
XOR is not.

As the name suggests, a multilayer perceptron (MLP) is an ANN that includes
multiple (hidden) layers in the form of perceptrons. An example of an MLP with
two hidden layers is given in Fig. 3, where each edge represents a weight that is to
be determined. Unlike a single-layer perceptron, MLPs are not restricted to linear
decision boundaries, and hence an MLP can accurately model the XOR function.
However, the perceptron training method proposed by Rosenblatt [68] cannot be used
to effectively train an MLP [44]. To train a single perceptron, simple heuristics will
suffice, assuming that the data is linearly separable. From a high-level perspective,
training a single perceptron is somewhat analogous to training a linear SVM, except
that for a perceptron, we do not require that the margin (i.e., minimum separation)
be maximized. However, training an MLP would appear to be challenging since we
have hidden layers between the input and output, and it is not clear how changes to
the weights in these hidden layers will affect each other, let alone the output.

6 M. Stamp

Xo Xi Input layer
fo fo fo Ist hidden layer
h A h A 2nd hidden layer

Output layer

Yo N o) Output

Fig. 3 MLP with two hidden layers

As an aside, it is interesting to note that for SVMs, we deal with data that is not
linearly separable by employing a soft margin (i.e., we allow for training errors)
and by the use of the so-called “kernel trick,” where we map the input data to a
higher dimensional feature space using a (nonlinear) kernel function. In contrast,
perceptrons (in the form of MLPs) overcome the limitation of linear separability by
the use of multiple layers. For an MLP, it is almost as if the nonlinear kernel function
has been embedded directly into the model itself through the use of hidden layers,
as opposed to a user-specified explicit kernel function, as is the case for an SVM.

One possible advantage of the MLP approach over an SVM is that for an MLP,
the equivalent of the kernel function is, in effect, derived from the data and refined
through the training process. In contrast, for an SVM, the kernel function is selected
by a human, and once selected it does not change. In machine learning, removing
those pesky humans from the learning process is a good thing. However, a possible
tradeoff is that significantly more training data will likely be needed for an MLP, as
compared to an SVM, due to the greater data requirement involved in learning the
equivalent of a kernel function.

A Selective Survey of Deep Learning Techniques ... 7

As another aside, we note that from a high-level perspective, it is possible to view
MLPs as combining some aspects of SVMs (i.e., specifically, nonlinear decision
boundaries) and HMMs (i.e., hidden layers). Also, we will see that the backpropa-
gation algorithm that is used to train MLPs includes a forward pass and backward
pass, which is eerily reminiscent of the training process that is used for HMMs.

As yet another aside, we note that an MLP is a feedforward neural network, which
means that there are no loops—the input data and intermediate results feed directly
through the network. In contrast, a recurrent neural network (RNN) can have loops,
which gives an RNN a concept of memory but can also add significant complexity.

In the book Perceptrons: An Introduction to Computational Geometry, published
in 1969, Minsky and Papert [55] made much of the perceived shortcoming of
perceptrons—in particular, the aforementioned inability to model XOR. This was
widely viewed as a devastating criticism at the time, as it was believed that success-
ful Al would need to capture basic principles of logic. Although it was known that
perceptrons with multiple layers (i.e., MLPs) can model XOR, at the time, nobody
knew how to efficiently train MLPs. Minsky and Papert’s work was highly influential
and is frequently blamed for the relative lack of interest in the field—a so-called “Al
winter’—that persisted throughout the 1970s and into the early 1980s.

By 1986, there was renewed interest in ANNS, thanks in large part to the work of
Rumelhart, Hinton, and Williams [70], who developed a practical means of training
MLPs—the method of backpropagation. For details on backpropagation, see [80],
for example.

It is worth noting that there was another “Al winter” that lasted from the late 1980s
through the early 1990s (at least). The proximate cause of this most recent Al winter
was that the hype far outran the limited successes that had been achieved. Although
deep learning has now brought ANNs back into vogue, your author (a doubting
Thomas, and proud of it) is not convinced that the current artificial intelligence mania
will prove any less artificial than previous Al “summers” which, on the whole, yielded
mostly disappointment. Some of the ridiculous statements being made today [28] lead
your eminently sensible author to believe that the hype is already hopelessly out of
control.!

Next, we discuss deep learning, which builds on the foundation of ANNs. We
can view the relationship between ANNs and deep learning as being somewhat
akin to that of Markov chains and HMMs, for example. That is, ANNs serve as a
basic technology that can be used to build a powerful machine learning technique,
analogous to the way that an HMM is built on the foundation of an elementary
Markov chain. But, before we get into the details of deep learning, we consider the
topic from a high-level perspective.

UIn stark contrast to the nonsensical hype that envelopes far too much of the discussion of deep
learning and (especially) Al, there does exist some clear-headed thinking that points to the great
transformative potential of learning technology in the real world, rather than the world of science
fiction. For a fine example of this latter genre, see the intriguingly titled article, “Models will run the
world” [14]. (Spoiler alert: “Models will run the world” is not about world domination by skinny
women in swimsuits).

8 M. Stamp

Fig. 4 Model performance
as a function of the amount
of training data

Performance

= Deep Learning
= Machine Learning

Amount of Training Data

3 Why Deep Learning?

It is sometimes claimed that the major advantage of deep learning arises when the
amount of training data is large. For example, the tutorial [35] gives a graph similar
to that in Fig. 4, which purports to show that deep learning will continue to achieve
improved results as the size of the dataset grows, whereas other machine learning
techniques will plateau at some relatively early point. That is, models generated
by non-deep learning techniques will “saturate” relatively quickly, and once this
saturation point is reached, more data will not yield improved models.? In contrast,
deep learning is supposed to continue learning, essentially without limit as the volume
of training data increases, or at least it will plateau at a much higher level. Of course,
even if this is entirely true, there are practical computational constraints since more
data requires more computing power for training.

2If any learning model truly saturates, then adding more data will be counterproductive beyond
some point, as the work factor for training on larger datasets increases, while there is no added
benefit from the resulting trained model. It would therefore be useful to be able to predetermine a
“score” of some sort that would tell us approximately how much data is optimal when training a
particular learning model for a given type of data.

A Selective Survey of Deep Learning Techniques ... 9

4 Decisions, Decisions

The essence of machine learning is that when training a model, we minimize the need
for input from those fallible humans. That is, we want our machine learning models to
be data-driven, in the sense that the models learn as much as possible directly from
the data itself, with minimal human intervention. However, any machine learning
technique will require some human decisions—for HMMs, we specify the number
of hidden states; for SVMs, we specify the kernel function; and so on.

For ANNS in general, and deep learning in particular, the following design deci-
sions are relevant [22].

e The depth of an ANN refers to the number of hidden layers. The “deep” in deep
learning indicates that we employ ANNs with lots of hidden layers, where “lots”
seems to generally mean as many as possible, based on available computing power.

e The width of an ANN is the number of neurons per layer, which need not be the
same in each layer.

e Inan MLP, for example, nonlinearity is necessary, and this is achieved through the
activation functions (also known as transfer functions). Most activation functions
used in deep learning are designed to mimic a step function—examples include
the sigmoid (or logistic) function

fx) =

)

I4e*
the hyperbolic tangent

X —X

ef—e
J(x) = tanh(x) = prgnp—
the inverse tangent (also known as arctangent)
f(x) =tan"' (x),
and the rectified linear unit (ReLU)
x ifx >0

f(x) = max{0, x} = {

0 otherwise.

Note that the softmax function is a generalization of the sigmoid function to mul-
ticlass problems.

The graph of each of the activation functions given above is illustrated in Fig. 5. As
of this writing, ReLU is the most popular activation function. Numerous variants
of the ReLU function are also used, including the leaky ReLLU and exponential
linear unit (ELU).

10 M. Stamp

e In addition to activation functions, we also specify an objective function. The
objective function is the function that we are trying to optimize and typically
represents the training error.

e A bias node may be included (or not) in any hidden layer. Each bias node generates
a constant value and hence is not connected to any previous layer. When present,
a bias node allows the activation function to be shifted. In the perceptron example
given in (1), the bias corresponds to the y-intercept b.

For the sake of comparison with our favorite non-deep learning technique, the
depth of an HMM can be viewed as the order of the underlying Markov model.
Typically, for HMMs, we only consider models of order one (in which case, the
current state depends only on the previous state), but it is possible to consider higher
order models. The width of an HMM might be viewed as being determined by N,
the number of hidden states. But, regardless of the order of the model or the choice
of N, there is really only one hidden layer in any HMM. The fact that an HMM is
based on linear operations implies that adding multiple hidden layers would have no
effect, as the multiple layers would be equivalent to a single layer. Furthermore, the A
and B matrices of an HMM can be viewed as its activation functions (with the B
matrix corresponding to the output layer), and P (& | A) corresponds to the objective
function in an ANN. Note that these functions are all linear in an HMM, while at
least some of the activation functions must be nonlinear in any true multilayer ANN,
such as an MLP.

Neural networks are trained using the backpropagation algorithm, which is a
special case of a more general technique known as reverse mode automatic differen-
tiation. For additional details on the topic of backpropagation, see, for example, [80].

The remainder of this paper is focused on various neural network based architec-
tures and related topics. For each topic covered, we discuss research in the field of
malware analysis.

5 Multilayer Perceptrons

We have already discussed multilayer perceptrons (MLP) in some detail. MLPs are in
some sense one of the most generic neural networking architectures—when someone
speaks of a neural network in general, there is a good chance that they have an MLP
in mind.

5.1 Overview of MLPs

Recall that Fig. 3 is an example of an MLP with two hidden layers. Each edge in the
figure represents a weight that is to be determined via training, and backpropagation

A Selective Survey of Deep Learning Techniques ... 11

1.00

1.00

0.50
—2.00 —1.00 1.00 2.00
—1.00
—6.00 —4.00 —2.00 0.00 2.00 4.00 6.00
(a) Sigmoid function (b) Hyperbolic tangent
5.00
2.00
4.00
1.00
3.00
—6.00 —4.00 -2.00 2.00 4.00 6.00 2.00
1.00 1.00
—2.00 —4.00 —2.00 0.00 2.00 4.00
(c) Arctangent (d) ReLU

Fig. 5 Activation functions

is an efficient and effective way to train such a network. The advantage of an MLP
is that it is not restricted to linear decision boundary.

5.2 MLPs in Malware Analysis

MLPs are extremely popular, and in most fields, they are one of the first learning tech-
niques considered. Information security is no exception, as MLPs have been applied
to nearly every security problem where deep learning techniques are applicable. Not
surprisingly, large numbers of malware research papers employ MLPs. For example,
in [5] MLPs are trained on progressively more generic malware families, yielding
quantifiable results on the inherent tradeoff between the generality of the training
data and accuracy. The research in [74] shows that a straightforward ensemble of
various learning algorithms—including MLPs—can generate significantly stronger

12 M. Stamp

results than any of the component techniques. The paper [85] uses MLPs as part of
an Android malware detection technique.

Another field in information security where MLPs have played a very prominent
role is in intrusion detection systems (IDS). For example, the paper [57] uses MLPs
in a novel multiclass IDS approach.

6 Convolutional Neural Networks

In this section, we provide an introduction to one of the most important and widely
used learning techniques—CNN. After a brief overview, we introduce discrete con-
volutions with the focus on their specific application to CNNs. We then consider a
simplified example that serves to illustrate various aspects of CNNs.

6.1 Overview of CNNs

Generically, ANNs use fully connected layers. A fully connected layer can deal effec-
tively with correlations between any points within the training vectors, regardless of
whether those points are close together, far apart, or somewhere in between. In con-
trast, a CNN, is designed to deal with local structure—a convolutional layer cannot
be expected to perform well when crucial information is not local. A key benefit of
CNN s is that convolutional layers can be trained much more efficiently than fully
connected layers.

For images, most of the important structure (edges and gradients, for example) is
local. Hence, CNNs would seem to be an ideal tool for image analysis and, in fact,
CNNs were developed for precisely this problem. However, CNNs have performed
well in a variety of other problem domains. In general, any problem for which there
exists a data representation where local structure predominates is a candidate for a
CNN. In addition to images, local structure is crucial in fields such as text analysis
and speech analysis, for example.

6.2 Convolutions and CNNs

A discrete convolution is a sequence that is itself a composition of two sequences and
is computed as a sum of pointwise products. Let ¢ = x * y denote the convolution
of sequences x = (xp, X1.X2, ...) and y = (¥9, ¥1.¥2, - . .). Then the k™ element of
the convolution is given by

cp = Z Xiyj = in)’k—i-
i

k=i+j

A Selective Survey of Deep Learning Techniques ... 13

We can view this process as x being a “filter” (or kernel) that is applied to the
sequence y over a sliding window.
For example, if x = (xo, x1) and y = (3o, y1, ¥2, V3, ¥4), we find

¢ =x%y=(Xoy1 + X1)0. Xoy2 + X1 Y1, X0Y3 + X1 Y2, X0 4 + X1)3).

If we reverse the order of the elements of x, then we have

¢ = (Xoyo + X191, Xoy1 + X12, Xo¥2 + X1 Y3, Xoy3 + X1Y4)

which is, perhaps, a slightly more natural and intuitive way to view the convolution
operation.

Again, we can view x as a filter that is applied to the sequence y. Henceforth,
we define this filtering operation as convolution with the order of the elements of
the filter reversed. For example, suppose that we apply the filter x = (1, —2) to the
sequence y = (0, 1, 2, 3, 4). In this case, the convolution gives us

¢ =x%y = (Xo¥o + X1¥1, XoY1 4 X1Y2, Xoy2 + X1¥3, X0Y3 + X1)4)
=(1-0-2-1,1-1-2.2,1.2-2.3,1-3-2.4)
= (-2, -3, -4, -5)

We can define an analogous filtering (or discrete convolution) operation in two or
three dimensions. For the two-dimensional case, suppose that A = {q;;}isan N x M
matrix representing an image and F' = { f;;} is an n x m filter. Let C = {¢;;} be the
convolution of F with A. As in the one-dimensional case, we denote this convolution
as C = F x A. In this two-dimensional case, we have

n—1m—1

Cij:§ § See@ivk jres

k=0 €=0

wherei =0,1,...,N—nand j =0,1,..., M —m. That is, we simply apply the
filter F at each offset of A to create the new—and slightly smaller—matrix that
we denote as C. The three-dimensional case is completely analogous to the two-
dimensional case.

We could simply define filters as we see fit, with each filter designed to correspond
to a specific feature.® But since we are machine learning aficionados, for CNNs, we
let the data itself determine the filters. Therefore, training a CNN can be viewed
as determining filters, based on the training data. As with any respectable neural
network, we can train CNNs via backpropagation.

Suppose that A represents an image and we train a CNN on the image A. Then
the first convolutional layer is trained directly on the image. The filters determined
at this first layer will correspond to fairly intuitive features, such as edges, basic

3We see examples of filters applied to simple images in Sect. 6.3.

14 M. Stamp

shapes, and so on. We can then apply a second convolutional layer, that is, we apply
a similar convolutional process, but the output of the first convolutional layer is the
input to this second layer. At the second layer, filters are trained based on features
of features. Perhaps not surprisingly, these second layer filters correspond to more
abstract features of the original image A, such as the “texture.” We can repeat this
convolution of convolutions step again and again, at each layer obtaining filters that
correspond to features representing a higher degree of abstraction, as compared to
the previous layer. The final layer of a CNN is not a convolution layer but is instead
a typical fully-connected layer that can be used to classify based on complex image
characteristics (e.g., “cat” versus “dog”). In addition, so-called pooling layers can
be used between some of the convolutional layers. Pooling layers are simple—no
training is involved—and serve primarily to reduce the dimensionality of the problem.
Below, we give a simple example that includes a pooling layer.

In addition to having multiple convolutional layers, at each layer, we can (and
generally will) stack several convolutions on top of each other. These filters are all
initialized randomly, so they can all learn different features. In fact, for a typical color
image, the image itself can be viewed as consisting of three layers, corresponding to
the R, G, and B components in the RGB color scheme. Hence, for color images, the
filters for the first convolutional layer will be three-dimensional, while subsequent
convolutional layers can—and, typically, will—be three-dimensional as well, due
to the stacking of multiple convolutions/filters at each layer. For simplicity, in our
example, we only consider a black-and-white two-dimensional image, and we only
apply one convolution at each layer.

Before considering a simple example, we note that there are advantages of CNNs
that are particularly relevant in the case of image analysis. For a generic neural
network, each pixel would typically be treated as a separate neuron, and for any
reasonable size of image, this would result in a huge number of parameters, making
training impractical. In contrast, at the first layer of a CNN, each filter is applied
over the entire image, and at subsequent layers, we apply filters over the entire
output of the previous layer. One effect of this approach is that it greatly reduces
the number of parameters that need to be learned. Furthermore, by sliding the filter
across the image as a convolution, we obtain a degree of translation invariance, i.e.,
we can detect image features that appears at different offsets. This can be viewed as
reducing the overfitting that would otherwise likely occur.

The bottom line is that CNNs represent an efficient and effective technique that
was developed specifically for image analysis. However, CNNs are not restricted
to image data, and can be useful in any problem domain where local structure is
dominant.

6.3 Example CNN

Now we turn our attention to a simple example that serves to illustrate some of the
points discussed above. Suppose that we are dealing with black-and-white images,

A Selective Survey of Deep Learning Techniques ... 15
0/0]/0]0]|0]|0]|0|0|0|0]|0]|0]|0O]|O]|O]|O
0/0/0/0]0|0]|0|0[0]|0|0]|0]0]|0]|0|O0O
0/0/0/0]0|0]|0|0[0]|0|0]|0]0]|0]|0]|O0O
0/0]0|0|O|1|1|1|1]|1|1]0]0]|0]|0|O
0/0]{0|/0]|1|/0]|0|0[0]|0|0O|1]0]|0]|0]|O0O
0/0/0|1]0/0]|0|0[0]|0|0]|0]|1]0]0]|O0
0/0/0|1]0/0]|1]0[0]|1|0]|0]|1]0]0|O0
0/0/0|1]0/0]|0|0[0]|0|0]|0]|1]0]0]|O0
0/0]/0]1]0]|1]|0|0|0|0O|1]0]|1][0]|0]|0O
0/0/0|1]0|/0]|1]0[0|1|0]|0]|1]0]0|O0
0/0/0|1]0/0]|0|1[1]0|0]|0]|1]0]0]|O0
0/0]/0]0]1]|0]|0|0|0|0O]|0]|1]0]|0]|O]|O
0/0]0|0|O|1|1|1|1]|1|1]0]0]|0]|0|O
0/0/{0/0]0|0]|0|0[0]|0|0]|0]0]|0]|0]|O0O
0/0/0/0]0|0]|0|0[0]|0|0]|0]0]0]0|O0
0/0/0/0]0/0[0]0[0][0[0]0]0O][0][0]|0O

(a) Pixels (b) Numeric pixel values
Fig. 6 A 16 x 16 black-and-white image
2 |-1]-1 -112 -1 -1|-1]-1 -1(-1|2
-112|-1 -1 2 (-1 2122 -112 -1
-1|-1]2 -1 2]-1 -1]|-1]-1 2 |-1|-1
(a) Diagonal (b) Vertical (¢) Horizontal (d) Anti-diagonal

Fig. 7 Examples of filters

where each pixel is either 0 or 1, with O representing white and 1 representing black.*
Further, suppose that the black-and-white images under consideration are 16 x 16
pixels in size. An example of such an image appears in Fig. 6.

In Fig. 7, we give some 3 x 3 filters. For example, the output of the filter in Fig. 7a
is maximized when it aligns with a diagonal segment. Figure 8 shows the result of
applying the convolution represented by the filter in Fig. 7a to the smiley face image
in Fig.6.

We note that, for the convolution in Fig. 8, the maximum value of 6 does indeed
occur only at the three offsets where the (main) diagonal segments are all black
and the off-diagonal elements are all white. These maximum values correspond to
convolutions over the red boxes in Fig.9.

In a CNN, so-called pooling layers are often intermixed with convolutional layers.
As with a convolutional layer, in a pooling layer, we slide a window of a fixed size
over the image. But whereas the filter in a convolutional layer is learned, in a pooling

4Color and grayscale images are more complex. For grayscale, a nonlinear encoding (i.e., gamma
encoding) is employed, so as to make better use of the range of values available. For color images,
the RGB (red, green, and blue, respectively) color scheme implies that each pixel is represented by 24
bits (in an uncompressed format), in which case convolutional filters can be viewed as operating
over a three-dimensional box that is 3 bytes deep.

16 M. Stamp

filter

ofojojofo|o|0j0|0|O|O[O|O|O|O]|O 0[0|0|0[0|0|0O[0O|0|O[0O]|0|O]|O
0(0[0JO[0[0]|0[0|0]|0O|0O[0O|O[O0[O]|O 0(0|0|2[1]{0|0[0|0|-2(-1]{0|0]|0
0/0[0JO[0[{0]|0[0|0]|0O|0O[0O|O[O[O]|O 0(0]2|-2{0[{0|0[0|0|3[-2]-1/0]|0
0(0[0|OfO[L|1|1|1]|1[1]0|0[0O[O]|O 0(2]-2/0(-3]0(0[0|0|0|6]|-2|-1]0
0(0[0|Of1]|0]|0|0O|0O|O|O|1]|0|O|O]|O 0[1]|0|-3[4]|-1|-1]2|-1|-2[0|3|-2][0
0(0[0|1[{0[0]|0[|0O|0O|O|O[O|1|O[O]|O 0(0|0|0|-1|2|-1]-1|2|-1{0]|0|0|0O
0[0[0|1[{0[0]|1]0|0]|1|0O[0O|1[0[O0O]|O 0(0]|0|2[-2[-2[2|-1{1|1[-1]/0|0]|0
0(0[0|1[{0[0]|0[0|0]|0|O[O|1[0O[0O]|O 0[0]|0|-1{4|-2-1|2|-2|1|-1|{0|0]|0
0(0[0|1[{0[1]|0[0|0]|O|1][0|1[0[0O]|O 0(0]|0|-1]-2|6 -3{0|-2[2]|0|0]|0
0(0[0|1[{0[0]|1]0|0O|1|0O[O|1|0O[O]|O 0(-2|3(0(-2]-2(3[0|-2/4|-3|0|1]|0
0[0[0|1[{0[0]|O|1|1]|0|0O[O|1[0O[0O]|O 0[-1|-2/6[0|-1|-2[1|2|-3]0]-2(2|0
0(0[0|0[1[{0]|0[|0|0]|O|O|1]|0[0O[O]|O 0[0[-1|-2{3]{0(0[0]{0|0(-2[2|0]|0
0(0[O0|OfO[L|1|1|1]|1[1]0|0[0O|O]|O 0(0 -1]-2{0(0[0]|0|1({2]|0|0]|0
0(0[0|O[0O[0O]|O|O|O|O|O[O|O|O|O]|O 0/0/0/0[0[0[/0[0[0|0O[0][0|0]|0O
0(0[0|0[0[0]|0]|0|0]|0O|0O[0O|O[O[O]|O

0/0[0/0[0[0][0[0[0]0/0O[0]O|O[O]O

Fig. 8 First convolutional layer (3 x 3 filter from Fig. 7a)

Fig. 9 Maximum
convolution values in Fig. 8

layer an extremely simple filter is specified and remains unchanged throughout the
training. As the name implies, in max pooling, we simply take the the maximum
value within the filter window. An illustration of max pooling is given in Fig. 10.
Instead of a max pooling scheme, sometimes average pooling is used. In any case,
pooling can be viewed as a downsampling operation, which has the effect of reducing
the dimensionality, and thus easing the computational burden of training subsequent
convolutional layers.’ To increase the downsampling effect, pooling usually uses
non-overlapping windows. Note that the dimensionality reduction of pooling could

51t is also sometimes claimed that pooling improves certain desirable characteristics of CNN, such
as translation invariance and deformation stability. However, this is disputed, and the current trend
seems to clearly be in the direction of fully convolutional architectures, i.e., CNNs with no pooling
layers [69].

A Selective Survey of Deep Learning Techniques ... 17

max
ojojojojofojojojojofojojoijo 0]2|1]0]0|0]0
00 211{0[0]|0]0(|-2|-1 0 2(210(0(3|6|0
00 -2{0]0|0|0]|0]|3|-2|-1]0]|O0 11042230
012(-2{0|-3|]0|0|0]|0|0O|6]|-2|-1]0 0|2|4(2]|1|0]0
O(1]0|-3[4|-1|-1|2]|-1|-2{0[3|-2|0 01363421
oj(o|O0|0O]|-1|2]|-1|-1{2]|-1|{0|0]|O]O 0Oj6|13]112(2]2
0({0[0]2(|-2(-2|2|-1|1|1|-1][0|0O]|O 0j0|0fO]|1|2]0
0({0]0|-1|4|-2|-1|2]|-2|1|-1|0|0]|O
0/0[|0(|-1|-2|{6|0|-3]0(-2/2]|0|0]|0
0(-2{3]0(-2(-2{3|0|-2[4|-3]0|1]0
0(-1{-2|6|0|-1|-2{1]2]|-3]0[-2(2]|0
0/0|-1|-2|/3]|0[|0]|0]|0|0O|-2[{2|0]|0
00 -1|-2 0(0|o0 2 00
ojojojojofojojojojofojojojo

Fig. 10 Max pooling layer (2 x 2, non-overlapping)

also be achieved by a convolutional layer that uses a larger stride through the data,
and in [75], for example, it is claimed that such an approach results in no loss in
accuracy for the resulting CNN.

An illustration of the first convolutional layer for a color image is given in Fig. 11.
In this case, a three-dimensional filter is applied over the R, G, and B components
in the RGB color scheme. The example in Fig. 11 is meant to indicate that five
different filters are being trained. Since each filter is initialized randomly, they can
all learn different features. At the second convolutional layer, we can again train
three-dimensional filters, based on the output of the first convolutional layer. This
process is repeated for any additional convolutional layers.

There are several possible ways to visualize the filters in convolutional layers. For
example, in [89], a de-convolution technique is used to obtain the results in Fig. 12.
Here, each row is a randomly selected filter and the columns, from left to right,
correspond to training epochs 1, 2, 5, 10, 20, 30, 40, and 64. From layer 4, we see
that the training images must be faces. In general, it is apparent that the filters are
learning progressively more abstract features as the layer increases.

A fairly detailed discussion of CNNs can be found at [38], while the paper [15]
provides some interesting insights. For a more intuitive discussion, see [37], and if
you want to see lots of nice pictures, take a look at [16]. More details on convolutions
can be found in [61].

18 M. Stamp

filters
filtery
filters
filter,
filter;

=

C

.
.
Fun

Fig. 11 First convolutional layer with stack of five filters (RGB image)

6.4 CNNs in Malware Analysis

CNNs have proven their worth in a wide variety of security-related applications.
Some of these applications, such as image spam detection [1, 10, 72], are obvious and
relatively straightforward applications of CNNs. However, other security domains
that do not have any apparent image-based component have also had success with
CNNEs.

By treating executable files as images, researchers have been able to leverage the
strengths of CNNs for malware detection, classification, and analysis. For example,
the papers [6] and [88] treat executable files as images, and obtain the state-of-the-art
result for the malware detection problem. In particular, the research in [88] makes
extensive use of transfer learning, whereby the output layer of previously trained
CNN s are retrained for the malware detection problem. This results in fast training
times and very high malware classification accuracies.

The research in [34] compares CNNs to so-called extreme learning machines
(ELM), a topic that we discuss below, in Sect. 10. The best CNN results in [34]
are obtained using a one-dimensional CNN trained on the raw bytes of executable
files. In [86], CNNs are successfully applied to a combination of static and dynamic
features.

A Selective Survey of Deep Learning Techniques ... 19

Fig. 12 Visualizing convolutions [89]

7 Recurrent Neural Networks

An example of a feedforward neural network with two hidden layers is given in
Fig. 13. This type of neural network has no “memory” in the sense that each input
vector is treated independently of other input vectors. Hence, such a feedforward
network is not well suited to deal with sequential data.

In some cases, it is necessary for a classifier to have memory. For example, if we
want to tag parts of speech in English text (i.e., noun—verb, and so on), this is not
feasible if we only look at words in isolation. For example, the word “all” can be
an adjective, adverb, noun, or even a pronoun, and the only way to determine which
is the case is to consider the context. A recurrent neural network (RNN) provides a
way to add memory (or context) to a feedforward neural network.

20 M. Stamp

X0 X1 Input layer
fo fo fo Ist hidden layer
h f f fi 2nd hidden layer

Output layer

Yo i y2 Output

Fig. 13 Feedforward neural network with two hidden layers

To convert a feedforward neural network into an RNN, we treat the output of the
hidden states as another input. For the neural network in Fig. 13, the corresponding
generic RNN is illustrated in Fig. 14. The structure in Fig. 14 implies that there is a
time step involved, that is, we train (and score) based on a sequence of input vectors.
Of course, we cannot consider infinite sequences, and even if we could, the influence
of feature vectors that occurred far back in time is likely to be minimal.

The RNN in Fig. 14 can be “unrolled,” as illustrated in Fig. 15. Note that in this
case, we use f to represent the hidden layer or layers, while the notation X, is used
to represent (xo, x1) at time step ¢ from un-unrolled RNN in Fig. 14 and, similarly,
Y, corresponds to (Yo, y1, y2) at time ¢t. From the unrolled form, it is clear that
any RNN can be treated as a special case of a feedforward neural network, where
the intermediate hidden layers (f in our notation) all have identical structures and
weights. We can take advantage of this special structure to efficiently train an RNN
using a (slight) variant of backpropagation, known as backpropagation through time
(BPTT).

Before briefly turning our attention to BPTT, we illustrate some variants of a
generic RNN. An RNN such as that illustrated in Fig. 15 is known as a sequence-
to-sequence model, since each input sequence (Xo, Xy, ..., X,—1) corresponds to
an output sequence (Yy, Yy, ..., Y,—1). In Fig.16a, we have illustrated a many-
to-one example of an RNN, that is, the case where an input sequence of the

A Selective Survey of Deep Learning Techniques ...

21

Input layer
1st hidden layer
M fi \[— h I— bil I— h 2nd hidden layer
Output layer
Yo V1 Y2 Output
Fig. 14 Network in Fig. 13 as an RNN
f f f f
8 8 4 8
Yo Y Y, Yuoi

Fig. 15 Unrolled RNN (sequence-to-sequence model)

22 M. Stamp

Xo X X (X1 Xo
J] J] J] J 7]
] 1| | f
Y1 Yo ")6} s Y1
(a) Many-to-one RNN (b) One-to-many RNN

Fig. 16 Variants of the generic RNN in Fig. 15

form (Xy, X1, ..., X,—1) corresponds to the single output Y,,_. At the other extreme,
Fig. 16b illustrates a one-to-many RNN, where the single input X, corresponds to
the output sequence (Yo, Y1, ..., ¥,—1).

A many-to-one model might be appropriate for part-of-speech tagging, for exam-
ple, while a one-to-many RNN could be used for music generation. An example
of an application where a sequence-to-sequence (or many-to-many) RNN would be
appropriate is a machine translation. There are numerous possible variants of the
sequence-to-sequence RNN. Also, note that a feedforward neural network, such as
that in Fig. 13, can be viewed as a one-to-one RNN.

Multilayer RNNs can also be considered. This can be viewed as training multiple
RNNs simultaneously, with the first RNN trained on the input data, the second RNN
trained on the hidden states of the first RNN, and so on. A two-layer (sequence-to-
sequence) RNN is illustrated in Fig. 17. Of course, more layers are possible, but the
training complexity will increase, and hence only “shallow” RNN architectures (in
terms of the number of layers) are generally considered.

7.1 Backpropagation Through Time

RNNs can be viewed as neural networks that are designed specifically for time series
or other sequential data. With an RNN, the number of parameters is reduced so as
to ease the training burden. This situation is somewhat analogous to CNNs, which
are designed to efficiently deal with local structure (e.g., in images). That is, both
CNNs and RNNs serve to make training more efficient—as compared to generic
feedforward neural networks—for specific classes of problems. Backpropagation
through time (BPTT) is simply an ever-so-slight variation on backpropagation that
is optimized for training RNNs.

A Selective Survey of Deep Learning Techniques ... 23

Fig. 17 Two-layer RNN

©

r—1
L]
1
L]
]
il
-]

1
)
1
)
1
)
[~

8 8 8 8
Yo Y Y» e Y,
Fig. 18 Simple RNN —1 ;
example rooms--omo-oo-n .
EEY X)
1 1
oM ____ = _ _I
w1 w2
wo w3
2
ws
f f f f
e X /
| X
w7
wg Wwg
y

In Fig. 18, we give a detailed view of a many-to-one (actually, two-to-one) RNN.
In this case, we see that the 10 weights, (wg, wy, ..., wg) must be determined via
training.

In Fig. 19, we give a neural network that is essentially the fully connected version
of the RNN in Fig. 18. Note that in this fully connected version, there are 20 parame-
ters to be determined. In an RNN, we assume that the data represents sequential input

24 M. Stamp

Fig. 19 Fully connected

analog of Fig. 18 X0 X1 X2 X3
wi s .. wi4
w0 wis
w7 wig
W16 wi9
y

and hence the reduction in the number of weights is justified, since we are simply
eliminating from consideration cases where the past is influenced by the future.®

It is well known that gradient issues are a concern when training neural networks
in general, and are a particularly acute issue with generic RNNs. In an RNN, the
further that we attempt to backpropagate through time, the more likely that the
gradient will “explode” or “vanish” or oscillate between extremes. The details of the
exploding gradient and vanishing gradient are beyond the scope of this survey; for
more information on these topics, see [79], for example.

Next, we turn our attention to specialized RNN architectures that are designed
to mitigate the gradient issues that plague generic RNNs. Specifically, we consider
LSTM networks in some detail and we then briefly discuss a variant of LSTM known
as gated recurrent units (GRU). In fact, a vast number of variants of the LSTM
architecture have been developed. However, according to the extensive empirical
study in [23], “none of the variants can improve upon the standard LSTM architecture
significantly.”

7.2 Long Short-Term Memory

In addition to being a tongue twister, LSTM networks are a class of RNN architectures
that are designed to deal with long-range dependencies. That is, LSTM can deal with
“gaps” between the appearance of a feature and the point at which it is needed by
the model [23]. The claim to fame of LSTM is that it can reduce the effect of a

6Obviously, the inventors of RNNs were not familiar with Back to the Future or Star Trek, both of
which conclusively demonstrate that the future can have a large influence on the past.

A Selective Survey of Deep Learning Techniques ... 25

X() X 1 X2 X";

Lo Ly L L3

ho hy hy h3
Fig. 20 LSTM

vanishing gradient, which is what enables such models to account for longer range
dependencies [30].

Before outlining the main ideas behind LSTM, we note that the LSTM architecture
has been one of the most commercially successful learning techniques ever devel-
oped. Among many other applications, LSTMs have been used in Google Allo [39],
Google Translate [84], Apple’s Siri [46], and Amazon Alexa [25]. However, recently,
the dominance of LSTM may have begun to wane. ResNet has been shown to have
theoretical advantages over LSTM, and it outperforms LSTM in a wide range of
applications [63].

Figure 20 illustrates an LSTM. The obvious difference from a generic vanilla
RNN is that an LSTM has two lines entering and exiting each state. As in a standard
RNN, one of these lines represents the hidden state, while the second line is designed
to serve as a gradient “highway” during backpropagation. In this way, the gradient
can “flow” much further back with less chance that it will vanish along the way.

InFig.21, we expand one of the LSTM cells L, that appear in Fig. 20. Here, o is the
sigmoid function, 7 is the hyperbolic tangent (i.e., tanh) function, the operators “x”’
and “ 4 ” are pointwise multiplication and addition, respectively, while “||”” indicates
concatenation of vectors. The vector i, is the “input” gate, f; is the “forget” gate,
and o; is the “output” gate. The vector g, is an intermediate gate and does not have a
cool name, but is sometimes referred to as the “gate” gate [47], which, come to think
of it, is especially cool. We have much more to say about these gates below.

The gate vectors that appear in Fig. 21 are computed as

h,_ h,_
f,:g(wf<x’t 1)+bf> g,:r<wg<x’t ‘>+bg)
P . ht—l) _]’l,_l
S S R (O

while the outputs are

26 M. Stamp

X
hi—y N—O o) > I
W
i
Cr—1 St > C
L 4
hy
Fig. 21 One timestep of an LSTM
a=[fi®ca 1D,V
hy =0, @1(cy)s
®
where “ 7 is pointwise multiplication and “@®” is the usual pointwise addition.

Note that each of the weight matrices is n x 2n.
In matrix form, ignoring the bias terms b, we have

i; o
fi o hi—y
ol o W X; ,
81 T

where X, and h,_; are column vectors of length n, and W is the 4n x 2n weight
matrix

Further, each of the gates i;, f;, o;, and g, is a column vectors of length n. Recall
that the sigmoid o squashes its input to be within the range of 0 to 1, whereas the
tanh function t gives output within the range of —1 to +1.

A Selective Survey of Deep Learning Techniques ... 27

To highlight the intuition behind LSTM, we follow a similar approach as that given
in the excellent presentation [47]. Specifically, we focus on the extreme cases, that
is, we assume that the output of each sigmoid o is either O or 1, and each hyperbolic
tangent t is either —1 or +1. Then the forget gate f; is a vector of Os and 1s, where
the Os tell us the elements of ¢,;_; that we forget and the 1s indicate the elements to
remember. In the middle section of the diagram, the input gate i; and gate gate g,
together determine which elements of ¢,_; to increment or decrement. Specifically,
when element j of i; is 1 and element j of g, is 41, we increment element j of ¢;_;.
And if element j of i; is 1 and element j of g, is —1, then we decrement element j
of ¢,_;. This serves to emphasize or de-emphasize particular elements in the new-
and-improved cell state ¢,. Finally, the output gate o, determines which elements of
the cell state will become part of the hidden state /,. Note that the hidden states A,
is fed into the output layer of the LSTM. Also note that before the cell states are
operated on by the output gate, the values are first squeezed down to be within the
range of —1— +1 by the 7 function.

Of course, in general, the LSTM gates are not simply countered that increment
or decrement by 1. But, the intuition is the same, that is, the gates keep track of
incremental changes thus allowing relevant information to flow over long distances
via the cell state. In this way, LSTM negates some of the limitations caused by
vanishing gradients.

7.3 Gated Recurrent Units

As mentioned above, there are a large number of variants of the basic LSTM architec-
ture. Most such variants are slight variants, with only minor changes from a standard
LSTM. A gated recurrent unit (GRU), on the other hand, is a fairly radical departure
from an LSTM. Although the internal state of a GRU is somewhat complex and,
perhaps, less intuitive than that of an LSTM, there are fewer parameters in a GRU,
and hence it is easier to train a GRU, and less training data is required. The wiring
diagram for a GRU is given in Fig. 22.
The gate vectors that appear in Fig. 21 are computed as

hy—

Zl - G<WZ<Xl; 1> +bz>
hy

rl - G<Wr <Xt[l) + br)

while the output is
hh=0-z2)Qh_1® 7R g,

28 M. Stamp

X

hy

Fig. 22 One timestep of a GRU

®
where “ 7 is pointwise multiplication and “@” is the usual pointwise addition.

Note that each of the weight matrices is n x 2n.
In matrix form, ignoring the bias terms b, we have

2 o 0
. hi—i 1@ h_
rt B ’ W(Xt) + 2 W(Xt ’ >

8t 0

where X, and h,_; are column vectors of length n, and W is the 3n x 2n weight
matrix
w;
W=\ W,
W,

Each of the gates z;, r;, and g, is a column vectors of length n.

The intuition behind a GRU is that it replaces the input, forget, and output gates
of an LSTM with just two gates—an “update” gate z, and a “reset” gate r,. The
GRU update gate serves a similar purpose as the combined output and forget gates of
an LSTM. Specifically, the update serves to determine what to output (or write) and
what to forget. The function 1 — z; in the GRU implies that anything that is not output
must be forgotten. Thus, the GRU is less flexible as compared to an LSTM since an
LSTM allows us to independently select elements for output and elements that are

A Selective Survey of Deep Learning Techniques ... 29

forgotten. The GRU reset gate and the LSTM input gate each serve to combine new
input with previous memory.

The gating in a GRU is more complex and somewhat less intuitive as compared
to that found in an LSTM. In any case, the most radical departure of the GRU from
the LSTM architecture is that there is no cell state in a GRU. This implies that any
memory must be stored in the hidden state /,. This simplification (as compared to
an LSTM) relies on the fact that in a GRU, the write and forget operations have been
combined.

7.4 Recursive Neural Network

We mention in passing that recursive neural networks can be viewed as generalizing
recurrent neural networks.’ In a recursive neural network, we can recurse over any
hierarchical structure, with trees being the archetypal example. Then training can be
accomplished via backpropagation through structure (BPTS), often using stochastic
gradient descent for simplicity. In contrast, a recurrent neural network is restricted
to one particular structure—that of a linear chain.

7.5 Last Word on RNNs

RNNS are useful in cases where the input data is sequential. Generic RNN archi-
tectures are subject to vanishing and exploding gradients, which limit the length
of the history (or gaps) that can effectively be incorporated into such models. Rel-
atively complex RNN-based architectures—such as LSTM and its variants—have
been developed that can better handle such gradient issues. These architectures have
proven to be commercially successful across a wide range of products.

A good general discussion of RNNs can be found in [59], and an overview of var-
ious RNN-specific topics—with links to many relevant articles—is available at [58].
A more detailed (mathematical) description can be found in Chap. 10 of [20]. The
slides at [47] provide a good general introduction to RNNs, with nice examples and
a brief, but excellent, discussion of LSTM.

7Unfortunately, “recursive neural network” is typically also abbreviated as RNN. Here, we reserve
RNN for recurrent neural networks and we do not use any abbreviation when referring to recursive
neural networks.

30 M. Stamp

7.6 RNNs in Malware Analysis

Inacommercial sense, LSTMs are surely the most successful deep learning technique
yet developed, so it is not surprising that LSTMs have been successfully applied to
the malware detection problem [50]. Both LSTMs and GRUs—along with CNNs—
are considered in [2], with the authors claiming a major improvement over relevant
previous work. The paper [31] considers an adversarial attack, where the attacker
can defeat a system that uses RNNs based on API calls.

There are many applications of RNNs in areas of information security outside of
the malware domain. In [87], CNN and LSTM architectures are used to detect cyber-
security events, based on social networking messages. Other infosec applications of
LSTMs include generating security ontologies [19], network security [49], breaking
CAPTCHAs [11], host-based intrusion detection [41], and network anomaly detec-
tion [13], among others.

8 Residual Networks

At the time of this writing, residual network (ResNet) is considered the state of the
art in deep learning for many image analysis problems. A residual network is one
in which instead of approximating a function F(x), we approximate the “residual,”
which is defined as H (x) = F(x) — x. Then the desired solution is given by F'(x) =
H(x)+ x.

The original motivation for considering residuals was based on the observation that
deeper networks sometimes produce worse results, even when vanishing gradients are
not the cause [27]. This is somewhat counterintuitive, as the network should simply
learn identity mappings when a model is deeper than necessary. To overcome this
“degradation” problem, the authors of [27] experiment with residual mappings and
provide extensive empirical evidence that the resulting ResNet architecture yields
improved results as compared to standard feedforward networks for a variety of
problems. The authors of [27] conjecture that the success of ResNet follows from
the fact that the identity map corresponds to a residual of zero, and “if an identity
mapping were optimal, it would be easier to push the residual to zero than to fit an
identity mapping by a stack of nonlinear layers.”

Whereas LSTM uses a complex gating structure to ease gradient flow, ResNet
defines additional connections that correspond to identity layers. This enables ResNet
to deal with vanishing gradients, as well as the aforementioned degradation problem.
These identity layers allow a ResNet model to skip over layers during training,
which serves to effectively reduce the minimum depth when training. Intuitively,
ResNet is able to train deeper networks by, in effect, training over a considerably
shallower network in the initial stages, with later stages of training serving to flesh
out the intermediate connections. This approach was inspired by pyramidal cells in

A Selective Survey of Deep Learning Techniques ... 31

Fig. 24 Another view of the ResNet architecture in Fig.23

the brain, which have a similar characteristic in the sense that they bridge “layers”
of neurons [76].

A very high-level illustrative example of a ResNet architecture is given in Fig. 23,
where each curved edge represents an identity transformation. Note that in this case,
the identity transformations enable the model to skip over two layers. In principle,
ResNet would seem to be applicable to any flavor of deep neural network, but in
practice, it seems to applied to CNNs.

IfaResNethas N identity paths, then the network contains 2V distinct feedforward
networks. For example, the ResNet in Fig.23 can be expanded into the graph in
Fig.24. Note that most of the paths in a ResNet are relatively short.

Surprisingly, the paper [81] provides evidence that in spite of being trained simul-
taneously, the multiple paths in a ResNet “show ensemble-like behavior in the sense
that they do not strongly depend on each other.” And perhaps an even more surprising
result in [81] shows that “only the short paths are needed during training, as longer
paths do not contribute any gradient.” In other words, a deep ResNet architecture is
more properly viewed as a collection of multiple, relatively shallow networks.

32 M. Stamp

8.1 ResNetin Malware Analysis

At the time of this writing, ResNet is a relative newcomer and the level of research
in the security domain is somewhat limited. Nevertheless, ResNet architectures have
shown promise for dealing with the usual suspects, namely malware analysis [40,
66] and intrusion detection [43, 83].

9 Generative Adversarial Network

Let {X;} be a collection of samples and {Y;} a corresponding set of class labels.
In statistics, a discriminative model is one that models the conditional probability
distribution P (Y | X). Such a discriminative model can be used to classify samples—
given an input X of the same type as the training samples {X;}, the model enables
us to easily determine the most likely class of X by simply computing P (Y | X) for
each class label Y.

In contrast, a model is said to be generative if it models the joint probability distri-
bution of X and Y, which we denote as P (X, Y). Such a model is called “generative”
because, by sampling from this distribution, we can generate new pairs (X;, Y;) that
fit the probability distribution. Note that we can produce a discriminative model from
a generative model, since

P(X,Y)
PY|X)=——.
P(X)
Therefore, in some sense, a generative model is inherently more general than a
discriminative model.

Consider, for example, hidden Markov models (HMM) [77], which are a popu-
lar class of classic machine learning techniques. An HMM is defined by the three
matrices in A = (A, B,), where 7 is the initial state distribution, A contains the
transition probability distributions for the hidden states, and B consists of the obser-
vation probability distributions corresponding to the hidden states. If we train an
HMM on a given dataset, then we can easily generate samples that match the proba-
bility distributions of the HMM. To generate such samples, we first randomly select
an initial state based on the probabilities in . Then we repeat the following steps
until the desired observation sequence length is reached: Randomly select an obser-
vation based on the current state, using the probabilities in B, and randomly select
the next state, based on the probabilities in A. The resulting observation sequence
will be indistinguishable (in the HMM sense) from the data that was used to train
the HMM.

From the discussion in the previous paragraph, it is clear that a trained HMM is
a generative model. However, it is more typical to use an HMM as a discriminative
model. In discriminative mode, we determine a threshold, then we classify a given
observation sequence as matching the model if its HMM score is above the specified

A Selective Survey of Deep Learning Techniques ... 33

threshold. This example shows that in practice, it is easy to use a generative model
as a discriminative model.

On the other hand, while a trained SVM serves to classify samples, we could not
use such a model to generate samples that match the training set. Thus, an SVM is
an example of a discriminative model.

In the realm of deep learning, a discriminative network is designed to classify
samples, while a generative network is designed to generate samples that “fit” the
training data. From the discussion above, it is clear that we can always obtain a dis-
criminative model from a generative model. Intuitively, it would seem that training a
(more general) generative model in order to obtain a (more specific) discriminative
model would be undesirable since we do not need the full generality of the model.
However, reality appears to be somewhat more subtle. In [60], it is shown that for one
generative—discriminative pair (naive Bayes and logistic regression) the discrimina-
tive models do indeed have a lower asymptotic error; however, the generative models
consistently converge faster. This suggests that with limited training data, a genera-
tive model might produce a superior discriminative model, as compared to directly
training the corresponding discriminative model. In any case, in the realm of deep
learning, discriminative models dominate, with an example of a typical application
being image classification. In contrast, generative models have only recently come
into vogue, with an example application being the creation of fake images.

Now, suppose that when training a discriminative neural network, in addition
to the real training data, we generate “fake” training samples that follow a similar
probability distribution as the real samples. Further, suppose that these fake training
samples are designed to trick the discriminative network into making classification
mistakes. Such samples would tend to improve the training of the network, thus
making it stronger and more effective than if we had restricted the training to only
the real data.

Although intuitively appealing, several problems arise when trying to implement
a training technique based on fake samples. For one thing, we generally do not know
the distribution of the training set, which often lives in an extremely high dimensional
space of great complexity. Another issue is that during training, the discriminative
network is constantly evolving, so determining samples that are likely to trick the
network is a moving target. Another concern is that if the fake training samples are
too difficult—or too easy—to distinguish at any point in the training process, we are
unlikely to see any improvement over simply using the real training data

Several techniques have been proposed to try to take advantage of fake data so
as to improve the training process. In the case of a generative adversarial network
(GAN), we use a neural network to generate the fake data—a generative network
is trained to defeat a discriminative network. Furthermore, the discriminative and
generative networks are trained simultaneously in a minimax game. This approach
sidesteps the complications involved in trying to model the probability distribution
of the training samples. In fact, the generative network in a GAN simply uses random
noise as its underlying probability distribution.

To summarize, a GAN consists of two competing neural networks—a generative
network and a discriminative network—with the generative network creating fake

34 M. Stamp

data that is designed to defeat the discriminative network. The two networks are
trained simultaneously following a game-theoretic approach. In this way, both net-
works improve, with the ultimate objective being a discriminative model (and/or a
generative model) that is stronger than it would have been if it was trained only on
the real training data.

We define two neural networks, namely a discriminator D(x; 6,;), and a genera-
tor G(z; 0,), where 6, consists of the parameters of the discriminator network, and 6,
consists of the parameters of the generator network. Here, we describe the training
process in terms of images, but other types of data could be used. Also, to simplify
the notation, we suppress the dependence on 6, and 6, in the remainder of this dis-
cussion, except where it is essential for understanding and may not be clear from
context.

The generator G(z) produces a fake image (based on the random seed value z)
with the goal of tricking the discriminator into believing it is a real training image. In
contrast, the discriminator D (x) returns a value in the range of 0— 1 that can be viewed
as its estimate of the probability that the image x is real. For example, D(x) = 1
means that the discriminator is completely certain that the image is real, while D (x) =
0 tells us that the discriminator is sure that the image is fake, and D(x) = 1/2 implies
that the discriminator is clueless. Note that the discriminator must deal with both real
and fake images, while the generator is only concerned with generating fake images
that trick the discriminator.

The generator G wins if D thinks its fake images are real. Thus, we can train G
by making 1 — D(G(z)) as close to zero as possible or, equivalently, by mini-
mizing log(l — D(G(z))). On the other hand, D wins if it can distinguish the
fake images from real images so, ideally, when training D, we want D(x) = 1,
when x is a real image, and D(G(z)) = 0 for fake images G(z). Therefore, we
can train D by maximizing D(x)(1 — D(G(z)) or, equivalently, by maximiz-
ing log(D(x)) + log(1 — D(G(z))). We want the D and G models to be in com-
petition, so they can strengthen each other. This can be accomplished by formulating
the training in terms of the minimax game

min max (E (log(D(x))) + E(log(1 = DG@))), @)

where E is the expected value, relative to the implied probability distribution. Specifi-
cally, for the max over D, the expectation is with respect to the real sample distribution
which has parameters 6,, while for the min over G, the expectation is with respect
to the fake sample distribution, which is specified by the parameters 6,.

In the case of stochastic gradient descent (or ascent), at each iteration, we consider
one real sample x and one fake sample G (z). Then, due to the max in equation (2), we
first perform gradient ascent to update the discriminator network D. This is followed
by gradient descent to update generator network G. Of course, both of these steps
rely on backpropagation.

Note that for the discriminator network D, the backpropagation error term involves

A Selective Survey of Deep Learning Techniques ... 35

Fig. 25 Gradient of 4F+,
generator network G ‘.. log(1-D(G(2)))
3 - - —log(D(G(2)))
2 Seell
T T T
1
~1
-2
-3
—4
0.1 0.3 0.5 0.7 0.9

D(G(z))

10g(D(x)) + log(l — D(G(z))),

while for the generator network G, the error term involves only

log(l — D(G(Z))). 3)

Of course, in practice, we would typically use a minibatch of, say, m real samples
and m fake samples at each update of D and G, rather than a strict stochastic gradient
descent/ascent.

There is one technical issue that arises when attempting to train the generator
network G as outlined above. As illustrated in Fig. 25, the gradient of the expression
in (3) is nearly flat for values of D(G(z)) near zero. This implies that, early in
training, when the generator network is sure to be extremely weak—and hence the
discriminator can easily identify most G (z) images as fake—it will be difficult for
the G network to learn. From, Fig.25, we also see that

log(D(G(2))) 4)

is relatively steep near zero. Hence, instead training G based on a gradient ascent
involving equation (3), we perform gradient descent based on (4). Note that we
have simply replaced the problem of maximizing 1 — D(G(z)) with the equivalent
problem of minimizing the probability D(G(z)).

The algorithm for training a GAN is summarized in Fig. 26. In some applications,
letting iters = 1 works best, while in others, iters > 1 yields better results.
In the latter case, we update the discriminator network D multiple times for each
update of the generator network G. This implies that in such cases, the generator
might otherwise overwhelm the discriminator, that is, the generator is in some sense
easier to train. Finally, while a GAN certainly is an advanced architecture, it is
important to realize that training reduces to a fairly straightforward application of
gradient ascent.

36 M. Stamp

0: initialize parameters 6, and 6, and iters > 1
1: repeat
2: fork=1to iters
3: randomly select n noise samples Z = (20,21, - - - ,Zn—1)
4: randomly select n real samples X = (xo,x1,...,%—1)
S: update 6, by gradient ascent on
n—1
T (1og(D(x) +log(1 - D(G(=))))
i=
6: next k
7: randomly select n noise samples Z = (20,21, . - -,2n—1)
8: update 6, by gradient ascent on
n—1
L log(D(G(z:)))
i=
9: until stopping criteria is met
10: return(6,, 6,)

Fig. 26 GAN training algorithm

As with LSTM, there are a vast number of variations on the basic GAN approach
outlined here; see [48] for a list of nearly 50 such variants. Additional sources of
information on GANSs include the original paper on the subject [21] and the excellent
slides at [48].

9.1 GANs in Malware Analysis

GANSs seem to show promise for dealing with some of the most challenging problems
in information security. For example, GANs have been applied with some success to
zero-day malware detection [32, 42]. In addition, the generative aspect of a GAN can
be used to create challenging security problems in the “lab,” thus enabling researchers
to consider defenses against potential threats before those threats arise in a real-world
setting [67].

10 Extreme Learning Machines

As with most aspects of ELMs, the origin of the technique is somewhat controversial.
The unfortunate terminology of “Extreme Learning Machine” was apparently first
used in [24]. Regardless of the origin of the technique, ELMs are essentially ran-
domized feedforward neural networks that effectively minimize the cost of training.

An ELM consists of a single layer of hidden nodes, where the weights between
inputs and hidden nodes are randomly initialized and remain unchanged throughout
training. The weights that connect the hidden nodes to the output are trained, but
due to the simple structure of an ELM, these weights can be determined by solving

A Selective Survey of Deep Learning Techniques ... 37

Fig. 27 Architecture of an ELM model

linear equations—more precisely, by solving a linear regression problem. Since no
backpropagation is required, ELMs are far more efficient to train, as compared to
other neural network architectures. However, since the weights in the hidden layer are
not optimized, we will typically require more weights in an ELM, which implies that
the testing phase may be somewhat more costly, as compared to a network trained
by backpropagation. Nevertheless, in applications where models must be trained
frequently, ELMs can be competitive.

Consider the ELM architecture shown in Fig. 27, where X denotes the input layer,
H is the hidden layer, and Y is the output layer. In this example, there are N samples
of the form (x;, y;) fori = 1,2, ..., N, where x; = (x;, x;, ... xin)T is the feature
vector for samplei and y; = (y,~l Viy - yim)T are the output labels, where T indicates
the transposition operation. Then the input and output for the ELM are as X =
(x1 X2 ... xn)T and ¥ = (y1 V2 ... ym)T, respectively. In this example, the hidden
layer H has £ neurons. We denote the activation function of the hidden layer as g (x).

To train an ELM, we randomly select the weight matrix that connects the input
layer X to the hidden layer H. We denote this randomly assigned weight matrix
as W = (w1 Wy ... we), where each w; is a column vector. We also randomly select
the bias matrix B = (b1 by ... b() for this same layer. During the training phase,
both W and B remain unchanged.

After W and B have been initialized, the output of the hidden layer H is given by

H=g(WX + B).
The output of the ELM is denoted as Y and is calculated as
Y = HB,

where 8 is the weight matrix for the output layer.

38 M. Stamp

The values of the weights 8 at the hidden layer are learned via linear least squares,
and can be computed using H, the Moore—Penrose generalized inverse of H, as
discussed below. It is worth emphasizing that the only parameters that are learned in
the ELM are the elements of .

Given that Y is the desired output, a unique solution of the system based on least
squared error can be found as follows. We denote the Moore—Penrose generalization
inverse of H as HT, which is defined as

i (HTH)~'HT if HT H is nonsingular
~ |HT(HHT)"'if HHT is nonsingular

Then the desired solution 8 is given by
B=H'Y.

After calculating 8, the training phase ends. For each test sample x, the output Y
can be calculated as

Y =g(C)B,

where C(x) is defined below. The entire training process is extremely efficient,
particularly in comparison to the backpropagation technique that is typically used to
train neural networks [80].

For the research reported in this paper, we use the Python implementation of
ELMs given in [17]. This implementation uses input activations that are a weighted
combination of two functions referred to as an “MLP” kernel and an “RBF” kernel—
we employ the same terminology here. The MLP kernel is simply the linear operation

M(x) = Wx + B,

where the weights W and biases B are randomly selected from a normal distribution.
This is the kernel function that is typically associated with a standard ELM.

The RBF kernel is considerably more complex and is based on generalized radial
basis functions as defined in [18]. The details of this RBF kernel go beyond the scope
of this paper; see [18] for additional information and, in particular, examples where
this kernel is applied to train ELMs. We use the notation R(x) to represent the RBF
kernel. Also, it is worth noting that the RBF kernel is much more costly to compute,
and hence its use does somewhat negate one of the major advantages of an ELM.

The input activations are given by

Cx)=aMx)+ (1 —a)R(x), 5)

where 0 < o < 1 is a user-specified mixing parameter. Note that for « = 0 we use
only the MLP kernel M (x) and for ¢ = 1, only the RBF kernel R(x) is used.

A Selective Survey of Deep Learning Techniques ... 39

10.1 ELMs in Malware Analysis

In [34], ELMs are compared to CNNs for malware classification, and it is shown
that ELMs can outperform CNNs in some cases. This is impressive since ELMs
have training times that are only a small fraction of those required for comparable
CNNs. ELMs have also been applied to malware detection on the Android platform
in [90], where the training is based on static features, with reasonably strong results.
In [71], the authors consider the effectiveness of a technique that they refer to as
high-performance extreme learning machines (HP-ELM). By varying the features
and activation functions of their HP-ELM architecture, they achieve high accuracy
on a challenging dataset. A two-layer ELM is applied to the malware detection
problem in [33]. A partially connected network is used between the input and the
first hidden layer, and this layer is aggregated with a fully connected network in the
second layer. The authors utilize an ensemble to improve the accuracy and robustness
of the resulting ELM-based system.

11 Word Embedding Techniques

Word2Vec is a technique for embedding terms in a high-dimensional space, where
the term embeddings are obtained by training a shallow neural network. After the
training process, words that are more similar in context will tend to be closer together
in the Word2Vec space.

Perhaps surprisingly, meaningful algebraic properties also hold for Word2Vec
embeddings. For example, according to [53], if we let

wo = “king”, w; = “man”, w, = “woman”, w3 = “queen”

and V (w;) is the Word2Vec embedding of word w;, then V (w3) is the vector that is
closest—in terms of cosine similarity—to

Vwo) = V(w) + V().

Results such as this indicate that Word2Vec embeddings capture significant aspects
of the semantics of the language.

The focus of this section is Word2Vec, but before discussing this popular and
effective word embedding technique, we consider a couple of alternatives. First,
we discuss simple embedding strategies based on hidden Markov models. Then we
briefly consider a word embedding technique the uses PCA. Finally, we discuss the
main ideas behind Word2Vec.

40 M. Stamp

11.1 HMM?2Vec

To begin, we consider individual letter embeddings, as opposed to word embeddings.
We call the letter embedding technique considered here Letter2 Vec.

Recall that an HMM is defined by the three matrices A, B, and , and is denoted
as A = (A, B,). The m matrix contains the initial state probabilities, A contains
the hidden state transition probabilities, and B consists of the observation probabil-
ity distributions corresponding to the hidden states. Each of these matrices is row
stochastic, that is, each row satisfies the requirements of a discrete probability dis-
tribution. Notation-wise, we let N be the number of hidden states, M is the number
of distinct observation symbols, and T is the length of the observation (i.e., train-
ing) sequence. Note that M and T are determined by the training data, while N
is a user-defined parameter. For more details in HMMs, see [77] or Rabiner’s fine
paper [65].

Suppose that we train an HMM on a sequence of letters extracted from English
text, where we convert all uppercase letters to lowercase and discard any character
that is not an alphabetic letter or word-space. Then M = 27, and we select N = 2
hidden states, and we use 7 = 50,000 observations for training. Note that each
observation is one of the M = 27 symbols (letters plus word-space). For the example
discussed below, the sequence of T = 50,000 observations was obtained from the
Brown corpus of English [7]. Of course, any source of English text could be used.

For one specific case, an HMM trained with the parameters listed in the previous
paragraph yields the B matrix in Table 1. Observe that this B matrix gives us two
probability distributions over the observation symbols—one for each of the hidden
states. We observe that one hidden state essentially corresponds to vowels, while the
other corresponds to consonants. This simple example nicely illustrates the concept
of machine learning, as no a priori assumption was made concerning consonants
and vowels, and the only parameter we selected was the number of hidden states N.
Through the training process, the model learned a crucial aspect of English directly
from the data. This illustrative example is discussed in more detail in [77] and orig-
inally appeared in Cave and Neuwirth’s classic paper [8].

Suppose that for a given letter £, we define its Letter2Vec representation V (£) to
be the corresponding row of the matrix B” in Table 1. Then, for example,

V(a) = (0.13537 0.00364) V (e) = (0.21176 0.00223)

(6)
V(s) = (0.00032 0.11069) V) = (0.00158 0.15238)
Next, we consider the distance between these Letter2Vec representations. Instead of
using Euclidean distance, we measure the cosine similarity.g
The cosine similarity of vectors X and Y is the cosine of the angle between the
two vectors. Let S(X, Y) denote the cosine similarity between vectors X and Y. Then
for X = (Xo, X], ey X,,,l) and Y = (Y(), Yl, ey Ynfl),

8Cosine similarity is not a true metric, since it does not, in general, satisfy the triangle inequality.

A Selective Survey of Deep Learning Techniques ... 41

Table 1 Final BY for HMM

Letter State 0 State 1 Letter State 0 State 1
a 0.13537 0.00364 n 0.00035 0.11429
b 0.00023 0.02307 o 0.13081 0.00143
c 0.00039 0.05605 p 0.00073 0.03637
d 0.00025 0.06873 q 0.00019 0.00134
e 0.21176 0.00223 r 0.00041 0.10128
f 0.00018 0.03556 s 0.00032 0.11069
g 0.00041 0.02751 t 0.00158 0.15238
h 0.00526 0.06808 u 0.04352 0.00098
i 0.12193 0.00077 v 0.00019 0.01608
j 0.00014 0.00326 w 0.00017 0.02301
k 0.00112 0.00759 X 0.00030 0.00426
1 0.00143 0.07227 y 0.00028 0.02542
m 0.00027 0.03897 z 0.00017 0.00100
Space 0.34226 0.00375 - - -

S(X,Y) =

In general, we have —1 < S(X, Y) < 1, but since our Letter2Vec encoding vectors
consist of probabilities—and hence are non-negative values—we always have 0 <
S(X,Y)<1.

When considering cosine similarity, the length of the vectors is irrelevant, as we
are only considering the angle between vectors. Consequently, we might want to
consider vectors of length one, X=X /11 X| and Y = Y/|IY], in which case the
cosine similarity simplifies to the dot product

SEH =S KT
i=0

’"<Z

Henceforth, we use the notation X to indicate a vector X that has been normalized
to be of length one.

For the vector encodings in (6), we find that for the vowels and “e”, the cosine
similarity is S(V (a), V(e)) = 0.9999. In contrast, the cosine similarity of the vowel
“a” and the consonant “t” is S(V (a), V (t)) = 0.0372. The normalized vectors V (a)

113 ”

42 M. Stamp

Fig. 28 Normalized ~
vectors V(a) and V (t)

- V(a)

and V (t) are illustrated in Fig. 28. Using the notation in this figure, cosine similarity
is S(V(a), V(t)) = cos(0).

These results indicate that these Letter2Vec encodings—which are derived from
a trained HMM—provide useful information on the similarity (or not) of pairs of
letters. Note that we could obtain a vector encoding of any dimension by simply
training an HMM with the number of hidden states N equal to the desired dimension.

Our HMM-based approach to Letter2Vec encoding is interesting, but we want
to encode words, not letters. Analogous to the Letter2Vec embeddings discussed
above, we could train an HMM on words and then use the columns of the resulting B
matrix (equivalently, the rows of BT) to define word vectors. The state of the art
for Word2Vec uses a dataset corresponding to M = 10,000, N = 300 and T = 10°.
Training an HMM with similar parameters would be decidedly non-trivial, as the
work factor is on the order of N>T'.

While the word embedding technique discussed in the previous paragraph—we
call it HMM?2Vec—is plausible, it has some potential limitations. Perhaps the biggest
issue with HMM2Vec is that we typically train an HMM based on a Markov model
of order one. This means that the current state only depends on the immediately
preceding state. By basing our word embeddings on such a model, the resulting
vectors would likely provide only a very limited sense of context. While we can train
HMMs using models of a higher order, the work factor would be prohibitive.

11.2 PCA2Vec

Another option for generating embedding vectors is to apply PCA to a matrix
of pointwise mutual information (PMI). To construct a PMI matrix, based on a
specified window size W, we compute the probabilities P (w;, w;) for all pairs of
words (w;, w;) that occur within a window W of each other within dataset, and we
also compute P (w;) for each individual word w;. Then we define the PMI matrix
as X = {x;;} as

A Selective Survey of Deep Learning Techniques ... 43

xi = log<M> = log P(w;, w;) — log P(w;) —log P(w}).
P(wi)P(w;)

Let X; be column i of X. We use X; as the feature vector for word w; and
perform PCA (using SVD) based on these X; feature vectors. As usual, we project
the feature vectors X; onto the resulting eigenspace. Finally, by choosing the N
dominant eigenvalues for this projection, we obtain word embedding vectors of
length N.

It is shown in [56] that these embedding vectors have many similar properties as
Word2Vec embeddings, with the author providing examples analogous to those we
give in the next section. Interestingly, it may be beneficial in some applications to
omit a few of the dominant eigenvectors when determining the PCA2Vec embedding
vectors [45].

For more details on using PCA to generate word embeddings, see [45]. The
aforecited blog [56] gives an intuitive introduction to the topic.

11.3 Word2Vec

Word2Vec uses a similar approach as the HMM2Vec concept outlined above. But,
instead of using an HMM, Word2Vec is based on a shallow (one hidden layer)
neural network. Analogous to HMM2Vec, in Word2Vec, we are not interested in
the resulting model itself, but instead we make use the learning that is represented
by the trained model to define word embeddings. Next, we consider the basic ideas
behind Word2Vec. Our presentation is fairly similar to that found in the excellent
tutorial [51].

Suppose that we have a vocabulary of size M. We encode each word as a “one-
hot” vector of length M. For example, suppose that our vocabulary consists of the
set of M = 8 words

W = (wo, wi, wa, W3, W4, Ws, We, W7)

CLINY3 LLIT3 9% CEINT3

= (“for”, “giant”, “leap”, “man”, “mankind”, “one”, “small”, “step”)
Then we encode “for” and “man” as
E(wg) = E(“for”) = 10000000 and E(ws3) = E(“man”) = 00010000,

respectively.
Now, suppose that our training data consists of the phrase

“one small step for man one giant leap for mankind”. (7

44 M. Stamp

Table 2 Training data

Offset Training pairs

‘ one ‘small step ...” (one, small), (one, step)

“one‘ small ‘step for...” (small, one), (small, step), (small, for)

“one small‘ step ‘for man...” (step, one), (step, small), (step, for), (step, man)

... small step manone ...” (for, small), (for, step), (for, man), (for, one)

“. .. step for M one giant ...” (man, step), (man, for), (man, one), (man,
giant)

“...for man‘ one ‘ giant leap ...” (one, for), (one, man), (one, giant), (one, leap)

... man one | giant |leap for...” (giant, man), (giant, one), (giant, leap), (giant,
for)

“... one giant | leap | for mankind” (leap, one), (leap, giant), (leap, for), (leap,
mankind)

“... giant leap mankind” (for, giant), (for, leap), (for, mankind)

“...leap for‘ mankind "’ (mankind, leap), (mankind, for)

To obtain training samples, we specify the window size, and for each offset, we use
all pairs of words within the specified window. For example, if we select a window
size of two, then from (7), we obtain the training pairs in Table 2.

Consider the pair “(for,man)” from the fourth row in Table 2. As one-hot vectors,
this training pair corresponds to input 10000000 and output 00010000.

A neural network similar to that in Fig.29 is used to generate Word2Vec embed-
dings. The input is a one-hot vector of length M representing the first element of a
training pair, such as those in Table 2, and the network is trained to output the second
element of the ordered pair. The hidden layer consists of N linear neurons and the
output layer uses a softmax function to generate M probabilities, where p; is the
probability of the output vector corresponding to w; for the given input.

Observe that the Word2Vec network in Fig.29 has N M weights that are to be
determined, as represented by the blue lines from the hidden layer to the output
layer. For each output node w;, there are N edges (i.e., weights) from the hidden layer.
The N weights that connect to output node w; form the Word2Vec embedding V (w;)
of the word w;.

As mentioned above, the state of the art in Word2Vec for English text is based
on a vocabulary of M = 10,000 words, and embedding vectors of length N = 300.
These embeddings are obtained by training on a set of about 10° samples. Clearly,
training a model of this magnitude is an extremely challenging computational task, as
there are 3 x 10° weights to be determined, not to mention a huge number of training
samples to deal with. Most of the complexity of Word2Vec comes from tricks that
are used to make it feasible to train such a large network with a massive amount of
data.

A Selective Survey of Deep Learning Techniques ... 45

\% Input vector

Lo e IN—1 Hidden layer

Output layer

Po ... PM—1 Probability

Fig. 29 Neural network for Word2Vec embeddings

One trick that is used to speed training in Word2 Vec is the subsampling of frequent
words. Common words such as “a” and “the” contribute little to the model, so these
words can appear in training pairs at a much lower rate than they are present in the
training text.

The most significant work-saving trick that is used in Word2 Vec is so-called “neg-
ative sampling.” When training a neural network, each training sample potentially
affects all of the weights of the model. Instead of adjusting all of the weights, in
Word2Vec, only a small number of “negative” samples have their weights modified
per training sample. For example, suppose that the output vector of a training pair
corresponds to word wy. Then the “positive” weights are those of output node wy,
and all of the corresponding weights are modified. In addition, a small subset of
the M — 1 “negative” words (i.e., every word in the dataset except wy) are selected
and only the weights of the corresponding output nodes are modfied. The distribution
used to select the negative subset is biased toward more frequent words.

A high-level discussion of Word2Vec can be found in [3], while a very nice and
intuitive—yet reasonably detailed—introduction is given in [51]. The original paper
describing Word2Vec is [53] and an immediate follow-up paper discusses a variety
of improvements that mostly serve to make training practical for large datasets [54].

46 M. Stamp

11.4 Word Embeddings in Malware Analysis

Word2Vec is fairly popular in the malware detection literature. For example, in [64]
Word2Vec models based on machine code form the basis for a malware detection
technique, while in [12], an Android malware detection scheme dubbed Droid-
VecDeep uses Word2 Vec results as features in deep belief networks [29]. The recent
malware research in [9] considers multiple word embedding techniques (Word2Vec,
HMM2Vec, and PCA2Vec) based on opcode sequences. Better results are obtained
in most cases, as compared to using raw opcode sequences, which indicates that
word embeddings are a useful form of feature engineering. The paper [36] considers
Word2Vec and HMM2 Vec embeddings for malware classification, with strong results
obtained in many cases. In [62], word embeddings are used as part of a scheme that
can successfully distinguish points in time where significant evolution has occurred
within a malware family.

Word2Vec has proven surprisingly useful in a variety of security applications
beyond the malware domain. Such applications range from network-based anomaly
detection [4] to analyzing the evolution of cyberattacks [73].

12 Conclusion

In this chapter, we have provided details on a wide array of deep learning tech-
niques that have proven useful in the field of malware analysis. We began with
an introduction to the historical development of neural network-based techniques
and related topics. This was followed by a discussion of several popular modern
architectures. Specifically, we covered the following architectures: Multilayer per-
ceptrons (MLP), convolutional neural networks (CNN), recurrent neural networks
(RNN), long short-term memory (LSTM), gated recurrent units (GRU), residual net-
works (ResNet), generative adversarial networks (GAN), extreme learning machines
(ELM), and Word2Vec. For each of these architectures, we cited representative exam-
ples of relevant malware-related research, and in most cases, we also mentioned other
applications related to information security.

References

1. Annapurna, Annadatha, and Mark Stamp. 2018. Image spam analysis and detection. Journal
of Computer Virology and Hacking Techniques 14 (1): 39-52.

2. Ben Athiwaratkun and Jack W. Stokes. 2017. Malware classification with LSTM and GRU
language models and a character-level CNN. https://www.microsoft.com/en-us/research/wp-
content/uploads/2017/07/LstmGruCnnMalwareClassifier.pdf.

3. Banerjee, Suvro. 2018. Word2vec — A baby step in deep learning but a giant leap towards nat-
ural language processing. https://medium.com/explore-artificial-intelligence/word2vec-

https://www.microsoft.com/en-us/research/wp-content/uploads/2017/07/LstmGruCnnMalwareClassifier.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/07/LstmGruCnnMalwareClassifier.pdf
https://medium.com/explore-artificial-intelligence/word2vec-a-baby-step-in-deep-learning-but-a-giant-leap-towards-natural-language-processing-40fe4e8602ba

A Selective Survey of Deep Learning Techniques ... 47

10.

11.

12.

14.

15.

16.

17.

18.

19.

20.

21.

a-baby-step-in-deep-learning-but-a-giant-leap-towards-natural-language- processing-
40fe4e8602ba.

Barot, Ketul, Jialing Zhang, and Seung Woo Son. 2016. Using natural language processing
models for understanding network anomalies. http://ieee-hpec.org/2016/techprog2016/index_
htm_files/R-w2vec-final.pdf.

. Basole, Samanvitha, Fabio Di Troia, and Mark Stamp. 2020. Multifamily malware models.

Journal of Computer Virology and Hacking Techniques 16 (1): 79-92.

Bhodia, Niket, Pratikkumar Prajapati, Fabio Di Troia, and Mark Stamp. 2019. Transfer learning
for image-based malware classification. In Proceedings of the 5th International Conference on
Information Systems Security and Privacy, ICISSP 2019, eds. Paolo Mori, Steven Furnell, and
Olivier Camp, 719-726.

The Brown corpus of standard American English. http://www.cs.toronto.edu/~gpenn/csc401/
alres.html.

Cave, Robert L., and Lee P. Neuwirth. 1980. Hidden Markov models for English. In Hidden
Markov models for speech, 16-56, IDA-CRD. New Jersey: Princeton. https://www.cs.sjsu.edu/
~stamp/RUA/CaveNeuwirth/index.html.

Chandak, Aniket, Fabio Di Troia, and Mark Stamp. 2020. A comparison of word embedding
techniques for malware classification. In Malware analysis using artificial intelligence and
deep learning, eds. Stamp, Mark, Mamoun Alazab, and Andrii Shalaginov. Berlin: Springer.
Chavda, Aneri, Katerina Potika, Fabio Di Troia, and Mark Stamp. 2018. Support vector
machines for image spam analysis. In Proceedings of the 15th international joint conference on
e-business and telecommunications, ICETE 2018, eds. Callegari, Christian, Marten van Sin-
deren, Paulo Novais, Panagiotis G. Sarigiannidis, Sebastiano Battiato, Angel Serrano Sanchez
de Leon, Pascal Lorenz, and Mohammad S. Obaidat, 597-607.

Chen, Rui, Jing Yang, Rong-gui Hu, and Shu-guang Huang. 2013. A novel Istm-rnn decoding
algorithm in CAPTCHA recognition. https://ieeexplore.ieee.org/document/6840561.

Chen, T., Q. Mao, M. Lv, H. Cheng, and Y. Li. 2019. Droidvecdeep: Android malware detection
based on Word2Vec and deep belief network. KSII Transactions on Internet and Information
Systems 13 (4): 2180-2197.

. Cheng, Min, Qian Xu, Jianming Lv, Wenyin Liu, Qing Li, and Jianping Wang. 2016. MS-

LSTM: A multi-scale LSTM model for BGP anomaly detection. In 2016 IEEE 24th Interna-
tional Conference on Network Protocols (ICNP), 1-6.

Cohen, Steven A., and Matthew W. Granade. 2018. Models will run the world. Wall Street
Journal. https://www.wsj.com/articles/models- will-run-the-world-1534716720.

Cornelisse, Daphne. 2018. An intuitive guide to convolutional neural networks. https://medium.
freecodecamp.org/an-intuitive- guide-to-convolutional-neural-networks-260c2de0a050.
Deshpande, Adit. 2018. A beginner’s guide to understanding convolutional neural networks.
https://adeshpande3.github.io/ A-Beginner %27s-Guide-To- Understanding-Convolutional-
Neural-Networks/.

Extreme learning machine implementation in Python. https://github.com/dclambert/Python-
ELM.

Fernandez-Navarro, Francisco, César Hervas-Martinez, Javier Sanchez-Monedero, and
Pedro Antonio Gutiérrez. 2011. MELM-GRBF: A modified version of the extreme learn-
ing machine for generalized radial basis function neural networks. Neurocomputing 74(16):
2502-2510.

Gasmi, Houssem, Jannik Laval, and Abdelaziz Bouras. 2019. Cold-start cybersecurity ontology
population using information extraction with LSTM. In 2019 international conference on cyber
security for emerging technologies, CSET, 1-6.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. Cambridge: MIT
Press. http://www.deeplearningbook.org.

Goodfellow, Ian J, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets. In Proceedings
of the 27th international conference on neural information processing systems, NIPS’ 14, vol. 2,
2672-2680.

https://medium.com/explore-artificial-intelligence/word2vec-a-baby-step-in-deep-learning-but-a-giant-leap-towards-natural-language-processing-40fe4e8602ba
https://medium.com/explore-artificial-intelligence/word2vec-a-baby-step-in-deep-learning-but-a-giant-leap-towards-natural-language-processing-40fe4e8602ba
http://ieee-hpec.org/2016/techprog2016/index_htm_files/R-w2vec-final.pdf
http://ieee-hpec.org/2016/techprog2016/index_htm_files/R-w2vec-final.pdf
http://www.cs.toronto.edu/~gpenn/csc401/a1res.html
http://www.cs.toronto.edu/~gpenn/csc401/a1res.html
https://www.cs.sjsu.edu/~stamp/RUA/CaveNeuwirth/index.html
https://www.cs.sjsu.edu/~stamp/RUA/CaveNeuwirth/index.html
https://ieeexplore.ieee.org/document/6840561
https://www.wsj.com/articles/models-will-run-the-world-1534716720
https://medium.freecodecamp.org/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050
https://medium.freecodecamp.org/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
https://github.com/dclambert/Python-ELM
https://github.com/dclambert/Python-ELM
http://www.deeplearningbook.org

48

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

M. Stamp

Gormley, Matthew R. 2017. Neural networks and backpropagation. https://www.cs.cmu.edu/
~mgormley/courses/10601-s17/slides/lecture20-backprop.pdf.

Greff, Klaus, Rupesh Kumar Srivastava, Jan Koutnik, Bas R. Steunebrink, and Jiirgen Schmid-
huber. 2017. LSTM: A search space odyssey. IEEE Transactions on Neural Networks and
Learning Systems 28 (10): 2222-2232. https://arxiv.org/pdf/1503.04069.pdf.

Huang, Guang-Bin, Qin-Yu Zhu, and Chee-Kheong Siew. 2004. Extreme learning machine:
A new learning scheme of feedforward neural networks. In 2004 IEEE international joint
conference on neural networks, vol. 2, 985-990.

Gupta, Arpit. 2018. Alexa blogs: How Alexa is learning to converse more naturally. https://
developer.amazon.com/blogs/alexa/post/15bf7d2a-5e5¢c-4d43-90ae-c2596¢c9cc3a6/how-
alexa-is-learning-to-converse-more-naturally.

Hardesty, Larry. 2017. Explained: Neural networks. http://news.mit.edu/2017/explained-
neural-networks-deep-learning-0414.

He, Kaiming, Xiangyu Zhang, Shaoging Ren, and Jian Sun. Deep residual learning for image
recognition. https://arxiv.org/pdf/1512.03385.pdf.

Hern, Alex. 2017. The guardian. Elon Musk says Al could lead to third world war. https://www.
theguardian.com/technology/2017/sep/04/elon-musk-ai-third- world-war-vladimir-putin.
Hinton, Geoffrey. 2007. Deep belief nets. https://www.cs.toronto.edu/~hinton/nipstutorial/
nipstut3.pdf.

Hochreite, Sepp and Jiirgen Schmidhuber. 1997. Long short-term memory. Neural Computation
9(8): 1735-1780. http://www.bioinf.jku.at/publications/older/2604.pdf.

Hu, Weiwei and Ying Tan. 2017. Black-box attacks against RNN based malware detection
algorithms. https://arxiv.org/abs/1705.08131.

Hu, Weiwei and Ying Tan. 2017. Generating adversarial malware examples for black-box
attacks based on gan. https://arxiv.org/pdf/1702.05983.pdf.

Jahromi, Amir Namavar, Sattar Hashemi, Ali Dehghantanha, Kim-Kwang Raymond Choo,
Hadis Karimipour, David Ellis Newton, and Reza M. Parizi. 2019. An improved two-hidden-
layer extreme learning machine for malware hunting. Computers and Security 89.

Jain, Mugdha, William Andreopoulos, and Mark Stamp. Convolutional neural networks and
extreme learning machines for malware classification. Journal of Computer Virology and Hack-
ing Techniques.

Kaan, Can. 2018. Deep learning tutorial for beginners. https://www.kaggle.com/kanncaal/
deep-learning-tutorial-for-beginners.

Kale, Aparna Sunil, Fabio Di Troia, and Mark Stamp. 2020. Malware classification with
hmm2vec and word2vec features. submitted for publication.

Kalfas, loannis. 2018. Modeling visual neurons with convolutional neural net-
works. https://towardsdatascience.com/modeling- visual-neurons- with-convolutional-neural-
networks-e9cO1ddfdfa7.

Karpathy, Andrej. 2018. Convolutional neural networks for visual recognition. http://cs231n.
github.io/convolutional-networks/.

Khaitan, Pranav. 2016. Google Al blog: Chat smarter with Allo. https://ai.googleblog.com/
2016/05/chat-smarter-with-allo.html.

Khan, Riaz Ullah, Xiaosong Zhang, and Rajesh Kumar. 2019. Analysis of resnet and googlenet
models for malware detection. Journal of Computer Virology and Hacking Techniques 15 (1):
29-57.

Kim, Gyuwan, Hayoon Yi, Jangho Lee, Yunheung Paek, and Sungroh Yoon. 2016. LSTM-
based system-call language modeling and robust ensemble method for designing host-based
intrusion detection systems. https://arxiv.org/abs/1611.01726.

Kim, Jin-Young, Bu Seok-Jun, and Sung-Bae Cho. 2018. Zero-day malware detection using
transferred generative adversarial networks based on deep autoencoders. Information Sciences
460-461: 83-102.

Kravchik, Moshe, and Asaf Shabtai. 2018. Detecting cyberattacks in industrial control systems
using convolutional neural networks. https://arxiv.org/pdf/1806.08110.pdf.

https://www.cs.cmu.edu/~mgormley/courses/10601-s17/slides/lecture20-backprop.pdf
https://www.cs.cmu.edu/~mgormley/courses/10601-s17/slides/lecture20-backprop.pdf
https://arxiv.org/pdf/1503.04069.pdf
https://developer.amazon.com/blogs/alexa/post/15bf7d2a-5e5c-4d43-90ae-c2596c9cc3a6/how-alexa-is-learning-to-converse-more-naturally
https://developer.amazon.com/blogs/alexa/post/15bf7d2a-5e5c-4d43-90ae-c2596c9cc3a6/how-alexa-is-learning-to-converse-more-naturally
https://developer.amazon.com/blogs/alexa/post/15bf7d2a-5e5c-4d43-90ae-c2596c9cc3a6/how-alexa-is-learning-to-converse-more-naturally
http://news.mit.edu/2017/explained-neural-networks-deep-learning-0414
http://news.mit.edu/2017/explained-neural-networks-deep-learning-0414
https://arxiv.org/pdf/1512.03385.pdf
https://www.theguardian.com/technology/2017/sep/04/elon-musk-ai-third-world-war-vladimir-putin
https://www.theguardian.com/technology/2017/sep/04/elon-musk-ai-third-world-war-vladimir-putin
https://www.cs.toronto.edu/~hinton/nipstutorial/nipstut3.pdf
https://www.cs.toronto.edu/~hinton/nipstutorial/nipstut3.pdf
http://www.bioinf.jku.at/publications/older/2604.pdf
https://arxiv.org/abs/1705.08131
https://arxiv.org/pdf/1702.05983.pdf
https://www.kaggle.com/kanncaa1/deep-learning-tutorial-for-beginners
https://www.kaggle.com/kanncaa1/deep-learning-tutorial-for-beginners
https://towardsdatascience.com/modeling-visual-neurons-with-convolutional-neural-networks-e9c01ddfdfa7
https://towardsdatascience.com/modeling-visual-neurons-with-convolutional-neural-networks-e9c01ddfdfa7
http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/
https://ai.googleblog.com/2016/05/chat-smarter-with-allo.html
https://ai.googleblog.com/2016/05/chat-smarter-with-allo.html
https://arxiv.org/abs/1611.01726
https://arxiv.org/pdf/1806.08110.pdf

A Selective Survey of Deep Learning Techniques ... 49

44.

45.

46.

47.

48.

49.

50.

S1.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Kurenkov, Andrey. 2015. A ‘brief’ history of neural nets and deep learning. http://www.
andreykurenkov.com/writing/ai/a-brief-history-of-neural-nets-and-deep-learning/.

Levy, Omer, Yoav Goldberg, and Ido Dagan. 2015. Improving distributional similarity with
lessons learned from word embeddings. Transactions of the Association for Computational Lin-
guistics 3: 211-225. https://levyomer.files.wordpress.com/2015/03/improving-distributional-
similarity-tacl-2015.pdf.

Levy, Steven. 2016. The iBrain is here—and it’s already inside your phone. Wired. https://www.
wired.com/2016/08/an-exclusive-look-at-how-ai-and-machine-learning- work-at-apple/.

Li, Fei-Fei, Justin Johnson, and Serena Yeung. 2017. Lecture 10: Recurrent neural networks.
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf.

Li, Fei-Fei, Justin Johnson, and Serena Yeung. 2017. Lecture 13: Generative models. http://
cs231n.stanford.edu/slides/2017/cs231n_2017_lecture13.pdf.

Li, Shixuan, and Dongmei Zhao. 2019. A LSTM-based method for comprehension and eval-
uation of network security situation. In 2019 18th IEEE international conference on trust,
security and privacy in computing and communications, 723-728.

Lu, Renjie. 2019. Malware detection with Istm using opcode language. https://arxiv.org/abs/
1906.04593.

McCormick, Chris. 2016. Word2vec tutorial — The skip-gram model. http://mccormickml.
com/2016/04/19/word2vec-tutorial-the-skip-gram-model/.

McCulloch , Warren S, and Walter Pitts. 1943. A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biophysics 5. https://pdfs.semanticscholar.org/5272/
8a99829792¢3272043842455f3a110e841b1.pdf.

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of
word representations in vector space. https://arxiv.org/abs/1301.3781.

Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Distributed
representations of words and phrases and their compositionality. https://papers.nips.cc/paper/
5021-distributed-representations-of-words-and-phrases-and- their-compositionality.pdf.
Minsky, Marvin, and Seymour Papert. 1969. Perceptrons: An introduction to computational
geometry. Cambridge: MIT Press.

Moody, Chris. Stop using word2vec. https://multithreaded.stitchfix.com/blog/2017/10/18/
stop-using-word2vec/.

Moradi, Mehdi, and Mohammad Zulkernine. A neural network based system for
intrusion detection and classification of attacks. https://pdfs.semanticscholar.org/cbf2/
57a638aff38eae99bf88d8e22f150d9d8c47.pdf.

Narwekar, Abhishek, and Anusri Pampari. 2016. Recurrent neural network architectures. http://
slazebni.cs.illinois.edu/spring17/lec20_rnn.pdf.

Neubig, Graham. 2018. NLP programming tutorial 8 — Recurrent neural nets. http://www.
phontron.com/slides/nlp-programming-en-08-rnn.pdf.

Ng , Andrew Y, and Michael 1. Jordan. 2001. On discriminative vs. generative classifiers: A
comparison of logistic regression and naive Bayes. In Proceedings of the 14th international
conference on neural information processing systems: natural and synthetic, NIPS’01, 841—
848.

Olah, Christopher. 2014. Understanding convolutions. http://colah.github.io/posts/2014-07-
Understanding-Convolutions/.

Paul, Sunhera, Fabio Di, and Troia Mark Stamp. Word embedding techniques for malware
evolution detection. submitted for publication.

Philipp, George, Dawn Song, and Jaime G. Carbonell. 2018. The exploding gradient problem
demystified — Definition, prevalence, impact, origin, tradeoffs, and solutions. https://arxiv.
org/pdf/1712.05577.pdf.

Popov, 1. 2017. Malware detection using machine learning based on Word2Vec embeddings
of machine code instructions. In 2017 Siberian symposium on data science and engineering,
SSDSE, 1-4.

Rabiner, Lawrence R. 1989. A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE 77(2): 257-286. https://www.cs.sjsu.edu/~stamp/
RUA/Rabiner.pdf.

http://www.andreykurenkov.com/writing/ai/a-brief-history-of-neural-nets-and-deep-learning/
http://www.andreykurenkov.com/writing/ai/a-brief-history-of-neural-nets-and-deep-learning/
https://levyomer.files.wordpress.com/2015/03/improving-distributional-similarity-tacl-2015.pdf
https://levyomer.files.wordpress.com/2015/03/improving-distributional-similarity-tacl-2015.pdf
https://www.wired.com/2016/08/an-exclusive-look-at-how-ai-and-machine-learning-work-at-apple/
https://www.wired.com/2016/08/an-exclusive-look-at-how-ai-and-machine-learning-work-at-apple/
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture13.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture13.pdf
https://arxiv.org/abs/1906.04593
https://arxiv.org/abs/1906.04593
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
https://pdfs.semanticscholar.org/5272/8a99829792c3272043842455f3a110e841b1.pdf
https://pdfs.semanticscholar.org/5272/8a99829792c3272043842455f3a110e841b1.pdf
https://arxiv.org/abs/1301.3781
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://multithreaded.stitchfix.com/blog/2017/10/18/stop-using-word2vec/
https://multithreaded.stitchfix.com/blog/2017/10/18/stop-using-word2vec/
https://pdfs.semanticscholar.org/cbf2/57a638aff38eae99bf88d8e22f150d9d8c47.pdf
https://pdfs.semanticscholar.org/cbf2/57a638aff38eae99bf88d8e22f150d9d8c47.pdf
http://slazebni.cs.illinois.edu/spring17/lec20_rnn.pdf
http://slazebni.cs.illinois.edu/spring17/lec20_rnn.pdf
http://www.phontron.com/slides/nlp-programming-en-08-rnn.pdf
http://www.phontron.com/slides/nlp-programming-en-08-rnn.pdf
http://colah.github.io/posts/2014-07-Understanding-Convolutions/
http://colah.github.io/posts/2014-07-Understanding-Convolutions/
https://arxiv.org/pdf/1712.05577.pdf
https://arxiv.org/pdf/1712.05577.pdf
https://www.cs.sjsu.edu/~stamp/RUA/Rabiner.pdf
https://www.cs.sjsu.edu/~stamp/RUA/Rabiner.pdf

50

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

71.

78.

79.

80.

81.

82.

83.

84.

85.

M. Stamp

Rezende, E, G. Ruppert, T. Carvalho, F. Ramos, and P. de Geus. 2017. Malicious software clas-
sification using transfer learning of resnet-50 deep neural network. In /6th IEEE international
conference on machine learning and applications, ICMLA 2017, 1011-1014.

Rigaki, Maria, and Sebastian Garcia. 2018. Bringing a GAN to a knife-fight: Adapting malware
communication to avoid detection. https://mariarigaki.github.io/publication/gan-knife-fight/.
Rosenblatt, Frank. 1961. Principles of neurodynamics: Perceptrons and the theory of brain
mechanisms. http://www.dtic.mil/dtic/tr/fulltext/u2/256582.pdf.

Ruderman, Avraham, Neil C. Rabinowitz, Ari S. Morcos, and Daniel Zoran. 2018. Pooling is
neither necessary nor sufficient for appropriate deformation stability in CNNSs. https://arxiv.
org/abs/1804.04438.

Rumelhart, David, Geoffrey Hinton, and Ronald Williams. 1986. Learning representations by
back-propagating errors. Nature 323 (9)

Shamshirband, Shahab, and Anthony T. Chronopoulos. 2019. A new malware detection system
using a high performance-elm method. In Proceedings of the 23rd international database
applications & engineering symposium, IDEAS’ 19, 33:1-33:10.

Sharmin, Tazmina, Fabio Di Troia, Katerina Potika, and Mark Stamp. 2020. Convolutional
neural networks for image spam detection. Information Security Journal: A Global Perspective
29 (3): 103-117.

Shen, Yun, and Gianluca Stringhini. 2019. Attack2vec: Leveraging temporal word embeddings
to understand the evolution of cyberattacks. https://seclab.bu.edu/people/gianluca/papers/
attack2vec-usenix2019.pdf.

Singh, Tanuvir, Fabio Di Troia, Corrado Aaron Visaggio, Thomas H. Austin, and Mark Stamp.
2016. Support vector machines and malware detection. Journal of Computer Virology and
Hacking Techniques 12 (4): 203-212.

Springenber, Jost Tobias, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. 2014.
Striving for simplicity: The all convolutional net. https://arxiv.org/abs/1412.6806.

Spruston, Nelson. 2019. Pyramidal neurons: Dendritic structure and synaptic integration.
Nature Reviews Neuroscience 9: 206-221. https://www.nature.com/articles/nrn2286.

Stamp, Mark. 2004. A revealing introduction to hidden Markov models. https://www.cs.sjsu.
edu/~stamp/RUA/HMM.pdf.

Stamp, Mark. 2018. A survey of machine learning algorithms and their application in infor-
mation security. In Guide to vulnerability analysis for computer networks and systems: an
artificial intelligence approach, eds. Parkinson, Simon, Andrew Crampton, and Richard Hill,
chapter 2, 33-55. Berlin: Springer.

Stamp, Mark. 2019. Alphabet soup of deep learning topics. https://www.cs.sjsu.edu/~stamp/
RUA/alpha.pdf.

Stamp, Mark. 2019. Deep thoughts on deep learning. https://www.cs.sjsu.edu/~stamp/RUA/
ann.pdf.

Veit, Andreas, Michael Wilber, and Serge Belongie. Residual networks behave like ensembles
of relatively shallow networks. https://arxiv.org/pdf/1605.06431.pdf.

Wallis, Charles. 2017. History of the perceptron. https://web.csulb.edu/~cwallis/artificialn/
History.htm.

Wau, Peilun, Hui Guo, and Nour Moustafa. 2020. Pelican: A deep residual network for network
intrusion detection. https://arxiv.org/pdf/2001.08523.pdf.

Wu, Yonghui, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah,
Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo,
Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason
Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey
Dean. 2016. Google’s neural machine translation system: Bridging the gap between human
and machine translation. https://arxiv.org/abs/1609.08144.

Xu, Ke, Yingjiu Li, Robert H. Deng, and Kai Chen. 2018. Deeprefiner: Multi-layer android
malware detection system applying deep neural networks. In 2018 IEEE European symposium
on security and privacy, Euro SP, 473-487.

https://mariarigaki.github.io/publication/gan-knife-fight/
http://www.dtic.mil/dtic/tr/fulltext/u2/256582.pdf
https://arxiv.org/abs/1804.04438
https://arxiv.org/abs/1804.04438
https://seclab.bu.edu/people/gianluca/papers/attack2vec-usenix2019.pdf
https://seclab.bu.edu/people/gianluca/papers/attack2vec-usenix2019.pdf
https://arxiv.org/abs/1412.6806
https://www.nature.com/articles/nrn2286
https://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf
https://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf
https://www.cs.sjsu.edu/~stamp/RUA/alpha.pdf
https://www.cs.sjsu.edu/~stamp/RUA/alpha.pdf
https://www.cs.sjsu.edu/~stamp/RUA/ann.pdf
https://www.cs.sjsu.edu/~stamp/RUA/ann.pdf
https://arxiv.org/pdf/1605.06431.pdf
https://web.csulb.edu/~cwallis/artificialn/History.htm
https://web.csulb.edu/~cwallis/artificialn/History.htm
https://arxiv.org/pdf/2001.08523.pdf
https://arxiv.org/abs/1609.08144

A Selective Survey of Deep Learning Techniques ... 51

86.

87.

88.

89.

90.

Xue, Di, Jingmei Li, Tu Lv, Weifei Wu, and JiaXiang Wang. 2019. Malware classification using
probability scoring and machine learning. IEEE Access, 91641-91656.

Yagcioglu, Semih, Mehmet Saygin Seyfioglu, Begum Citamak, Batuhan Bardak, Seren Gul-
damlasioglu, Azmi Yuksel, and Emin Islam Tatli. 2019. Detecting cybersecurity events from
noisy short text. https://arxiv.org/abs/1904.05054.

Yajamanam, Sravani, Vikash Raja Samuel Selvin, Fabio Di Troia, and Mark Stamp. 2018. Deep
learning versus gist descriptors for image-based malware classification. In Proceedings of the
4th international conference on information systems security and privacy, ICISSP 2018, eds.
Mori, Paolo, Steven Furnell, and Olivier Camp, 553-561.

Zeiler, Matthew D, and Rob Fergus. 2014. Visualizing and understanding convolutional net-
works. https://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf.

Zhang, Wei, Huan Ren, Qingshan Jiang, and Kai Zhang. 2015. Exploring feature extraction
and ELM in malware detection for Android devices. Advances in Neural Networks, ISNN, eds.
Hu, Xiaolin, Yousheng Xia, Yunong Zhang, and Dongbin Zhao, 489-498.

https://arxiv.org/abs/1904.05054
https://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

	 A Selective Survey of Deep Learning Techniques and Their Application to Malware Analysis
	1 Introduction
	2 A Brief History of ANNs
	3 Why Deep Learning?
	4 Decisions, Decisions
	5 Multilayer Perceptrons
	5.1 Overview of MLPs
	5.2 MLPs in Malware Analysis

	6 Convolutional Neural Networks
	6.1 Overview of CNNs
	6.2 Convolutions and CNNs
	6.3 Example CNN
	6.4 CNNs in Malware Analysis

	7 Recurrent Neural Networks
	7.1 Backpropagation Through Time
	7.2 Long Short-Term Memory
	7.3 Gated Recurrent Units
	7.4 Recursive Neural Network
	7.5 Last Word on RNNs
	7.6 RNNs in Malware Analysis

	8 Residual Networks
	8.1 ResNet in Malware Analysis

	9 Generative Adversarial Network
	9.1 GANs in Malware Analysis

	10 Extreme Learning Machines
	10.1 ELMs in Malware Analysis

	11 Word Embedding Techniques
	11.1 HMM2Vec
	11.2 PCA2Vec
	11.3 Word2Vec
	11.4 Word Embeddings in Malware Analysis

	12 Conclusion
	References

