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Preface

Artificial intelligence (AI) is changing the world as we know it. From its humble
beginnings in the late 1940s as little more than an academic curiosity, AI has gone
through multiple boom and bust cycles. With recent advances in machine learning
(ML) and deep learning (DL), AI has finally taken root as a fundamental trans-
formative technology. The changes wrought by AI already affect virtually every
aspect of daily life, yet we are clearly only in the early stages of an AI-based
revolution.

In the field of information security, there is no topic that is more significant than
malware. The sheer volume of malware and the cost of dealing with its conse-
quences are truly staggering. It is therefore timely to consider ML, DL, and AI in
the context of malware analysis.

The chapters in this book apply numerous cutting-edge AI techniques to a wide
variety of challenging problems in the malware domain. The book includes no less
than 8 survey articles, which can serve to bring a reader quickly up to speed with
the current state of the art. The heart of the book consists of 11 chapters that are
tightly focused on AI-based techniques for malware analysis. We have also
included 6 chapters where AI is applied to information security topics that are not
strictly malware, but are closely related.

We are confident that this book will prove equally valuable to practitioners
working in the trenches and to researchers at all levels. New and novel techniques
as well as clever applications abound, yet we have strived to make the material
accessible to the widest possible audience. It is our fervent hope—and firm belief—
that the tools and techniques presented in the chapters of this book will play a major
role in taming the malware threat.

San Jose, USA Mark Stamp
Darwin, Australia Mamoun Alazab
Gjøvik, Norway
December 2020

Andrii Shalaginov

v



Contents

Surveys

A Selective Survey of Deep Learning Techniques and Their
Application to Malware Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Mark Stamp
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 A Brief History of ANNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Why Deep Learning? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4 Decisions, Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5 Multilayer Perceptrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.1 Overview of MLPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.2 MLPs in Malware Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.1 Overview of CNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.2 Convolutions and CNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.3 Example CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.4 CNNs in Malware Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

7 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.1 Backpropagation Through Time . . . . . . . . . . . . . . . . . . . . . . . . 22
7.2 Long Short-Term Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.3 Gated Recurrent Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.4 Recursive Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.5 Last Word on RNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.6 RNNs in Malware Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

8 Residual Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.1 ResNet in Malware Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 32

9 Generative Adversarial Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
9.1 GANs in Malware Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

vii



10 Extreme Learning Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
10.1 ELMs in Malware Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

11 Word Embedding Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
11.1 HMM2Vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
11.2 PCA2Vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
11.3 Word2Vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
11.4 Word Embeddings in Malware Analysis . . . . . . . . . . . . . . . . . . 46

12 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Malware Detection with Sequence-Based Machine Learning
and Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
William B. Andreopoulos
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2 Data Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.1 Static Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.2 Dynamic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.3 Hybrid Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.4 Alternative Approaches That Use Raw Data . . . . . . . . . . . . . . . 56
2.5 Evaluation of Malware Detection Accuracy . . . . . . . . . . . . . . . 56

3 Recent Research Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1 Hybrid Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 HMM Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.1 Training for Malware Detection . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Metamorphic Malware Detection . . . . . . . . . . . . . . . . . . . . . . . 61

5 LSTM Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1 LSTM Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.1 IDA Pro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 OllyDbg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.3 Ether . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.4 API Logger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.5 WinAPIOverride . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.6 API Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.7 BSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Review of the Malware Categorization in the Era of Changing
Cybethreats Landscape: Common Approaches, Challenges
and Future Needs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Andrii Shalaginov, Geir Olav Dyrkolbotn, and Mamoun Alazab
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2 Background: From Malware Developers to Malware Analysts . . . . . . 73

viii Contents



2.1 Severity of Malware Infection and Modus Operandi . . . . . . . . . 74
2.2 Detection and Approach Strategy . . . . . . . . . . . . . . . . . . . . . . . 75
2.3 Preliminary Analysis and Dissection . . . . . . . . . . . . . . . . . . . . . 76
2.4 Malware Categorization and Cybersecurity Awareness . . . . . . . 76

3 Malware Classification: State of the Art . . . . . . . . . . . . . . . . . . . . . . 77
3.1 Characteristics-Based Detection for Multinomial

Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.2 Commonly Used Malware Naming . . . . . . . . . . . . . . . . . . . . . 79
3.3 Auxiliary Software Tools and Research Datasets . . . . . . . . . . . . 79

4 Analysis of Community—and Commercially—Accepted Malware
Taxonomies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.1 Overall Software Category . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2 Risk Level/Threat Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3 Malware Targets/Platforms/Operating Systems . . . . . . . . . . . . . 81
4.4 Malware Type/General Categories . . . . . . . . . . . . . . . . . . . . . . 83
4.5 Malware Family/Functionality-Specific Categories . . . . . . . . . . . 84
4.6 System and Digital Forensic-Related Artefacts . . . . . . . . . . . . . 84
4.7 Malware Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.8 Malware Name Suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.9 Binary Compilation Timestamps/Timeline . . . . . . . . . . . . . . . . 85
4.10 Country/Adversarial Groups Origins . . . . . . . . . . . . . . . . . . . . . 86

5 Review of the Existing Anti-virus Naming Schemes . . . . . . . . . . . . . 86
5.1 Computer Antivirus Research Organization (CARO) . . . . . . . . . 86
5.2 Common Malware Enumeration (CME) . . . . . . . . . . . . . . . . . . 87
5.3 Malware Attribute Enumeration and Characterization

(MAEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.4 Malware Information Sharing Platform (MISP) . . . . . . . . . . . . . 88

6 Analysis of Existing Approaches to Malware Categorization . . . . . . . 88
7 Practical Implications of Malware Naming in the Light

of Big Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8 Discussions and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Addressing Malware Attacks on Connected and Autonomous
Vehicles: Recent Techniques and Challenges . . . . . . . . . . . . . . . . . . . . . 97
Aiman Al-Sabaawi, Khamael Al-Dulaimi, Ernest Foo,
and Mamoun Alazab
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

1.1 Important Technologies in Intelligent Transportation
System in Smart Cities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

1.2 Benefits of Intelligent Transportation System . . . . . . . . . . . . . . 99
1.3 Challenges of Intelligent Transportation System . . . . . . . . . . . . 100

Contents ix



2 Literature Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
2.1 Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
2.2 Defence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
2.3 Detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3 Recent Techniques and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A Survey of Intelligent Techniques for Android Malware Detection . . . 121
Rajesh Kumars, Mamoun Alazab, and WenYong Wang
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
2 Static, Dynamic, and Hybrid Analysis of Android Malware

Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
2.1 Static Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
2.2 Dynamic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
2.3 Hybrid Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
2.4 A Comparison of Static, Dynamic, and Hybrid Analysis . . . . . . 139

3 Android Malware Detection Approaches . . . . . . . . . . . . . . . . . . . . . . 140
3.1 Basic Proposed Framework to Detect Android Malware . . . . . . 140
3.2 Basic Proposed Algorithms for Android Malware Features . . . . 143
3.3 Feature Selection-Based Algorithms . . . . . . . . . . . . . . . . . . . . . 147
3.4 Association Rule-Based Algorithms . . . . . . . . . . . . . . . . . . . . . 147
3.5 Model Evaluation Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4 Experimental Analysis and Dataset Discussion . . . . . . . . . . . . . . . . . 149
4.1 Publicly Available Most Popular Dataset . . . . . . . . . . . . . . . . . 149
4.2 Dataset Other Research Work . . . . . . . . . . . . . . . . . . . . . . . . . 149

5 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.1 Permission-Based Experimental Analysis . . . . . . . . . . . . . . . . . 151
5.2 Clustering-Based Experimental Analysis . . . . . . . . . . . . . . . . . . 154
5.3 Classification Experimental Analysis . . . . . . . . . . . . . . . . . . . . 154

6 Additional Challenges of Android Malware Detection . . . . . . . . . . . . 155
7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Deep Learning in Malware Identification and Classification . . . . . . . . . 163
Balram Yadav and Sanjiv Tokekar
1 Malware and Malware Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

1.1 Malware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
1.2 Malware Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
1.3 Malware Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

2 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
2.1 What is Deep Learning? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
2.2 Deep Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
2.3 Steps for Building a Deep Learning Model . . . . . . . . . . . . . . . . 181

x Contents



3 Malware Classification Based on Malware Visualization and Deep
Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
3.1 Related Work: Recent Innovations in Malware Classification

Using Deep Learning and Visualization . . . . . . . . . . . . . . . . . . 184
3.2 Performance Metrics: To Measure the Performance

of the Deep Learning Model . . . . . . . . . . . . . . . . . . . . . . . . . . 191
3.3 A Practical Implementation of Malware Classification Using

CNN and Malware Image Visualization . . . . . . . . . . . . . . . . . . 193
4 Challenges and Open Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Review of Artificial Intelligence Cyber Threat Assessment Techniques
for Increased System Survivability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Nikolaos Doukas, Peter Stavroulakis, and Nikolaos Bardis
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
2 AI Support to Survivability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

2.1 Security Threat Detection for Preventive Survivability . . . . . . . . 210
2.2 Email Message Filtering by Linear Classifiers . . . . . . . . . . . . . . 211
2.3 Malware Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
2.4 Collusion Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
2.5 Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
2.6 Dynamic Analysis of Malware . . . . . . . . . . . . . . . . . . . . . . . . . 216

3 Cooperative Infrastructure Defense . . . . . . . . . . . . . . . . . . . . . . . . . . 217
4 Post Attack Survivability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

On Ensemble Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Mark Stamp, Aniket Chandak, Gavin Wong, and Allen Ye
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
2 Ensemble Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

2.1 Examples of Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
2.2 A Framework for Ensemble Classifiers . . . . . . . . . . . . . . . . . . . 226
2.3 Classifying Ensemble Classifiers . . . . . . . . . . . . . . . . . . . . . . . 227
2.4 Ensemble Classifier Examples . . . . . . . . . . . . . . . . . . . . . . . . . 229

3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
3.1 Dataset and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
3.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
3.3 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
3.4 Overview of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
3.5 Standard Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
3.6 Bagging Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
3.7 Boosting Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Contents xi



3.8 Voting Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
3.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

4 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Appendix: Confusion Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Malware Analysis

Optimizing Multi-class Classification of Binaries Based
on Static Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Lasse Øverlier
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
2 Related Work and Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

3.1 Selecting the Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

4.1 Microsoft Malware Classification Challenge . . . . . . . . . . . . . . . 256
4.2 Google Code Jam (GCJ) Data . . . . . . . . . . . . . . . . . . . . . . . . . 257

5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
5.1 MMCC Malware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
5.2 Google Code Jam (GCJ) Results . . . . . . . . . . . . . . . . . . . . . . . 262

6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
6.1 Length of N-Gram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
6.2 Simplification of Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
6.3 Size of Training Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
6.4 64-Bit Optimized Binaries Versus 32-Bit Non-optimized

Binaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
6.5 Classification Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Deep Learning Techniques for Behavioral Malware Analysis
in Cloud IaaS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
Andrew McDole, Maanak Gupta, Mahmoud Abdelsalam, Sudip Mittal,
and Mamoun Alazab
1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

1.1 Relevance in Cloud IaaS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
2 Machine Learning-Based Malware Detection . . . . . . . . . . . . . . . . . . . 271

2.1 File Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
2.2 Online Malware Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

3 Literature Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
4 Cloud Security Monitoring Overview . . . . . . . . . . . . . . . . . . . . . . . . 273
5 Behavioral Features and Characteristics . . . . . . . . . . . . . . . . . . . . . . . 278

xii Contents



6 Experimental Setup and Methodology . . . . . . . . . . . . . . . . . . . . . . . . 279
7 Deep Learning Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

7.1 Comparative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

A Comparison of Word2Vec, HMM2Vec, and PCA2Vec
for Malware Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Aniket Chandak, Wendy Lee, and Mark Stamp
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

3.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
3.2 Hidden Markov Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
3.3 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 297
3.4 Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

4 Word Embedding Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
4.1 HMM2Vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
4.2 PCA2Vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
4.3 Word2Vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

5 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
5.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
5.2 Classifier Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
5.3 Baseline Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
5.4 HMM2Vec Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
5.5 PCA2Vec Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
5.6 Word2Vec Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
5.7 Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
5.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

Word Embedding Techniques for Malware Evolution Detection . . . . . . 321
Sunhera Paul and Mark Stamp
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
3.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
3.3 Classification Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
4.1 HMM-Based Secondary Test . . . . . . . . . . . . . . . . . . . . . . . . . . 331
4.2 Opcode-SVM Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

Contents xiii



4.3 Opcode n-Gram-SVM Results . . . . . . . . . . . . . . . . . . . . . . . . . 333
4.4 Opcode-Word2Vec-SVM Results . . . . . . . . . . . . . . . . . . . . . . . 334
4.5 Opcode-HMM2Vec-SVM Results . . . . . . . . . . . . . . . . . . . . . . 336

5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

Reanimating Historic Malware Samples . . . . . . . . . . . . . . . . . . . . . . . . . 345
Paul Black, Iqbal Gondal, Peter Vamplew, and Arun Lakhotia
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
1.2 Emulator Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

2 Manual Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
3 Zeus C2 Server Emulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
4 Ransomware C2 Server Emulators . . . . . . . . . . . . . . . . . . . . . . . . . . 352

4.1 CryptoLocker C2 Server Emulator . . . . . . . . . . . . . . . . . . . . . . 352
4.2 CryptoWall C2 Server Emulator . . . . . . . . . . . . . . . . . . . . . . . 353

5 Semi-automated Generation of C2 Server Emulators . . . . . . . . . . . . . 356
6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

Cluster Analysis of Malware Family Relationships . . . . . . . . . . . . . . . . 361
Samanvitha Basole and Mark Stamp
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
2.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
2.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
2.4 K-Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
2.5 Elbow Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
3.1 Clustering by Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
3.2 Clustering Families of Different Type . . . . . . . . . . . . . . . . . . . . 374
3.3 Clustering Families of the Same Type . . . . . . . . . . . . . . . . . . . 376

4 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

Beyond Labeling: Using Clustering to Build Network Behavioral
Profiles of Malware Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
Azqa Nadeem, Christian Hammerschmidt, Carlos H. Gañán,
and Sicco Verwer
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
2 The Problem with AV Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

xiv Contents



3.1 Challenges in Malware Labeling . . . . . . . . . . . . . . . . . . . . . . . 385
3.2 Research Objectives: Detection Versus Analysis . . . . . . . . . . . . 386
3.3 Challenges in Malware Behavior Modeling . . . . . . . . . . . . . . . 387

4 MalPaCA: Malware Packet Sequence Clustering and Analysis . . . . . . 389
4.1 Connection Generation (P1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
4.2 Feature-Set Extraction (P2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
4.3 Distance Measure (P3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
4.4 HDBScan Clustering (P4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
4.5 Cluster Visualization (P5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
5.1 Experimental Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
5.2 MalPaCA Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

6 Malware Capability Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
6.1 Cluster Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
6.2 Constructing Behavioral Profiles . . . . . . . . . . . . . . . . . . . . . . . 400
6.3 Showing Relationships Using DAG . . . . . . . . . . . . . . . . . . . . . 401

7 Comparative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
7.1 Comparison with Traditional Family Labels . . . . . . . . . . . . . . . 402
7.2 Comparison with Statistical Features . . . . . . . . . . . . . . . . . . . . 404

8 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

An Empirical Analysis of Image-Based Learning Techniques
for Malware Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
Pratikkumar Prajapati and Mark Stamp
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
2.2 Learning Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
2.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
2.4 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
2.5 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

3 Deep Learning Experiments and Results . . . . . . . . . . . . . . . . . . . . . . 418
3.1 Multilayer Perceptron Experiments . . . . . . . . . . . . . . . . . . . . . . 419
3.2 Convolutional Neural Network Experiments . . . . . . . . . . . . . . . 420
3.3 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
3.4 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

4 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
Appendix: Confusion Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

Contents xv



A Novel Study on Multinomial Classification of x86/x64 Linux ELF
Malware Types and Families Through Deep Neural Networks . . . . . . . 437
Andrii Shalaginov and Lasse Øverlier
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
2 State of the Art: Machine Learning for Linux Malware Detection . . . . 439
3 Linux Malware: Automated Features Extraction and Classification . . . 440
4 Methodology: Malware Analysis and Detection . . . . . . . . . . . . . . . . . 442
5 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

5.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446

6 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
6.1 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
6.2 Classification Accuracy: State-of-the-Art Methods . . . . . . . . . . . 447
6.3 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448

7 Discussions and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

Fast and Straightforward Feature Selection Method . . . . . . . . . . . . . . . 455
Sergii Banin
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458

2.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
2.2 Literature Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

3 Intersection Subtraction Selection Method . . . . . . . . . . . . . . . . . . . . . 463
3.1 The Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
3.2 Feature Selection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 463
3.3 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 464
3.4 Theoretical Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
4.2 Experimental Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
4.3 Memory Access Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
4.4 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
4.5 Feature Selection and Machine Learning Algorithms . . . . . . . . . 469
4.6 Time Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
4.7 Analysis of Selected Feature Sets . . . . . . . . . . . . . . . . . . . . . . . 470
4.8 Classification Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471

5 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474

xvi Contents



A Comparative Study of Adversarial Attacks to Malware Detectors
Based on Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
Corrado Aaron Visaggio, Fiammetta Marulli, Sonia Laudanna,
Benedetta La Zazzera, and Antonio Pirozzi
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
2 The Deep Learning Models Adopted in Malware Detection . . . . . . . . 479

2.1 The Deep Learning Models in a Nutshell . . . . . . . . . . . . . . . . . 479
3 Adversarial Attacks Against Deep Learning-Based Malware

Detection System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
4 Generative Adversarial Attacks Against Malware Detection

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484
5 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485

5.1 Case Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
5.2 General Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
5.3 Adversary Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
5.4 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
5.5 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
5.6 Case Study Treatments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
5.7 Case Study Results and Performance Evaluation . . . . . . . . . . . . 499

6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508

Related Topics

Detecting Abusive Comments Using Ensemble Deep Learning
Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
Ravinder Ahuja, Alisha Banga, and S C Sharma
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
2 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519

3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
3.2 Data Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
3.3 Text Representation Techniques . . . . . . . . . . . . . . . . . . . . . . . . 520
3.4 Traditional Machine Learning Methods . . . . . . . . . . . . . . . . . . 523
3.5 Deep Learning Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525

4 Methodology Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
5 Experimental Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 530
6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533

Contents xvii



DURLD: Malicious URL Detection Using Deep Learning-Based
Character Level Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
Sriram Srinivasan, R. Vinayakumar, Ajay Arunachalam, Mamoun Alazab,
and KP Soman
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536
2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
3 An Overview of Uniform Resource Locator (URL) . . . . . . . . . . . . . . 538
4 Background Details of Deep Learning Models . . . . . . . . . . . . . . . . . . 539

4.1 Hybrid Architecture—Convolutional Neural Network
and Long Short-Term Memory (CNN-LSTM) with Character
Level Keras Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539

4.2 Character-Based Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
4.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542

5 Shortcomings in Malicious URL Detection . . . . . . . . . . . . . . . . . . . . 543
6 Description of Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
7 Model Configuration of Malicious URL Detection Engine . . . . . . . . . 543
8 Proposed Architecture—DeepURLDetect (DURLD) . . . . . . . . . . . . . . 547
9 Performance Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550
10 Evaluation Results and Observations . . . . . . . . . . . . . . . . . . . . . . . . . 551
11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552

Sentiment Analysis for Troll Detection on Weibo . . . . . . . . . . . . . . . . . . 555
Zidong Jiang, Fabio Di Troia, and Mark Stamp
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557

2.1 Trolls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
2.2 Machine Learning Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 558
2.3 Evaluation Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561

3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
4 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563

4.1 Chinese Segmentation Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 563
4.2 Sentiment Analysis Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
4.3 Troll Detection Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566

5 Implementation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569
5.1 Weibo Crawler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569
5.2 HMM for Chinese Segmentation . . . . . . . . . . . . . . . . . . . . . . . 570
5.3 HMM for Emotion Classification . . . . . . . . . . . . . . . . . . . . . . . 570
5.4 Sentiment Score Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 572
5.5 Troll Detection with XGBoost and SVM . . . . . . . . . . . . . . . . . 572
5.6 Chrome Extension for Troll Detection . . . . . . . . . . . . . . . . . . . 575

6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577

xviii Contents



Log-Based Malicious Activity Detection Using Machine and Deep
Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
Katarzyna A. Tarnowska and Araav Patel
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584
3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587

3.1 Solution Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
3.2 User Behavior Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
3.3 Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588
3.4 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589

4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590
4.1 Distance-Based Outlier Detection . . . . . . . . . . . . . . . . . . . . . . . 591
4.2 Machine and Deep Learning for Anomaly Detection . . . . . . . . . 594

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600
5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602

Image Spam Classification with Deep Neural Networks . . . . . . . . . . . . . 605
Ajay Pal Singh and Katerina Potika
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
2 Problem Statement and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 606
3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607

3.1 Spam Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607
3.2 Classification Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608
3.3 Quality Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611

4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612
5 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613

5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
5.2 Data Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615
5.3 Image Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615
5.4 Techniques Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
5.5 Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
5.6 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 622

6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 622
6.1 Neural Network Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 622
6.2 Deep Neural Network Results . . . . . . . . . . . . . . . . . . . . . . . . . 625
6.3 Image Spam Hunter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626
6.4 Dredze Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626
6.5 Convolution Neural Networks and Transfer Learning

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627
7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630

Contents xix



Universal Adversarial Perturbations and Image Spam Classifiers . . . . . 633
Andy Phung and Mark Stamp
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633
2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634

2.1 Image Spam Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634
2.2 Adversarial Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635

3 Evaluating Adversarial Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637
3.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637
3.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639

4 Inceptionism-Augmented Universal Perturbations . . . . . . . . . . . . . . . . 643
4.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643
4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644
4.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645
4.4 Proposed Dataset Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646

5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650

xx Contents



Surveys



A Selective Survey of Deep Learning
Techniques and Their Application to
Malware Analysis

Mark Stamp

Abstract In this chapter, we consider neural networks and deep learning, within
the context of malware research. A variety of architectures are introduced, including
multilayer perceptrons (MLP), convolutional neural networks (CNN), recurrent neu-
ral networks (RNN), long short-term memory (LSTM), residual networks (ResNet),
generative adversarial networks (GAN), and Word2Vec. We provide a selective sur-
vey of applications of each of these architectures to malware-related problems.

1 Introduction

In this chapter, we discuss a variety of topics related to deep learning, with the
primary focus on popular neural networking-based architectures. We survey various
malware-related applications of each architecture considered. Each topic is discussed
in some detail, with additional references for further reading provided in all cases.

This chapter can be viewed as a companion to the survey [78], which covers classic
machine learning techniques and their applications in cybersecurity research. Our
focus here is on neural networks and deep learning, and with respect to applications,
we focus most of our attention on malware-related topics, but we do mention other
applications within the broader information security domain.

For the sake of completeness, we begin with an introduction to artificial neu-
ral networks (ANNs), which includes a brief history of neural networks. We then
introduce a wide variety of architectures and techniques, including convolutional
neural networks (CNN), recurrent neural networks (RNN), long short-term memory
(LSTM), residual networks (ResNet), and generative adversarial networks (GAN).
We also discuss related techniques, such asword embeddings—includingWord2Vec.
We also briefly mention ensemble techniques and transfer learning in passing.
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2 A Brief History of ANNs

The concept of an artificial neuron [26, 82] is not new, as the idea was proposed
by McCulloch and Pitts in the 1940s [52]. However, modern computational neural
networking really begins with the perceptron, whichwas first proposed byRosenblatt
in the late 1950s [68].

An artificial neuron with three inputs is illustrated in Fig. 1. In the original
McCulloch-Pitts formulation, Xi ∈ {0, 1},wi ∈ {+1,−1}, and the outputY ∈ {0, 1}.
The threshold T determines whether the output Y is 0 (inactive) or 1 (active),
based on

∑
wi Xi . The thinking was that a neuron either fires or it does not (thus,

Y ∈ {0, 1}), and the inputs would come from other neurons (thus, Xi ∈ {0, 1}), while
the weights wi specify whether an input is excitatory (increasing the chance of the
neuron firing) or inhibitory (decreasing the chance of the neuron firing). When-
ever

∑
wi Xi > T , the excitatory response wins, and the neuron fires; otherwise, the

inhibitory response wins and the neuron does not fire.
A perceptron is considerably less restrictive than a McCulloch–Pitts artificial

neuron, as the Xi and wi can be real-valued. Since we want to use a perceptron as a
binary classifier, the output is generally taken to be binary.McCulloch and Pitts chose
such a restrictive formulation because they were trying to model logic functions. At
the time, it was felt that encoding elementary logic into artificial neurons would be
the key step to constructing systems with artificial intelligence. However, that point
of view has certainly not panned out, while the additional generality offered by the
perceptron formulation has proven extremely useful.

Given a real-valued input vector X = (X0, X1, . . . , Xn−1), a perceptron can be
viewed as a function of the form

f (X) =
n−1∑

i=0

wi Xi + b,

Fig. 1 Artificial neuron

T

X2

w2

X0

w0

X1

w1
Y
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Fig. 2 OR and AND are linearly separable but XOR is not

that is, a perceptron computes a weighted sum of the components. Based on a thresh-
old, a perceptron can be used to define a binary classifier. For example, we could
classify a sample X as “type 1” provided that f (X) > T , for some specified thresh-
old T , and otherwise classify X as “type 0.”

In the case of two-dimensional input, the decision boundary of a perceptron defines
a line

f (x, y) = w0x + w1y + b. (1)

It follows that a perceptron cannot provide ideal separation in cases where the data
itself is not linearly separable.

There was considerable research into ANNs in the 1950s and 1960s, and that
era is often described as the first “golden age” of AI and neural networks. But the
gold turned to lead in 1969 when an influential work by Minsky and Papert [55]
emphasized the limitations of perceptrons. Specifically, they observed that the XOR
function is not linearly separable, which implies that a single perceptron cannot
model something as elementary as XOR. The OR, AND, and XOR functions are
illustrated in Fig. 2, where we see that OR and AND are linearly separable, while
XOR is not.

As the name suggests, a multilayer perceptron (MLP) is an ANN that includes
multiple (hidden) layers in the form of perceptrons. An example of an MLP with
two hidden layers is given in Fig. 3, where each edge represents a weight that is to
be determined. Unlike a single-layer perceptron, MLPs are not restricted to linear
decision boundaries, and hence an MLP can accurately model the XOR function.
However, the perceptron trainingmethod proposed byRosenblatt [68] cannot be used
to effectively train an MLP [44]. To train a single perceptron, simple heuristics will
suffice, assuming that the data is linearly separable. From a high-level perspective,
training a single perceptron is somewhat analogous to training a linear SVM, except
that for a perceptron, we do not require that the margin (i.e., minimum separation)
be maximized. However, training an MLP would appear to be challenging since we
have hidden layers between the input and output, and it is not clear how changes to
the weights in these hidden layers will affect each other, let alone the output.
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X0 X1

f0 f0 f0

f1 f1 f1 f1

g g g
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1st hidden layer
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Output

Fig. 3 MLP with two hidden layers

As an aside, it is interesting to note that for SVMs, we deal with data that is not
linearly separable by employing a soft margin (i.e., we allow for training errors)
and by the use of the so-called “kernel trick,” where we map the input data to a
higher dimensional feature space using a (nonlinear) kernel function. In contrast,
perceptrons (in the form of MLPs) overcome the limitation of linear separability by
the use of multiple layers. For an MLP, it is almost as if the nonlinear kernel function
has been embedded directly into the model itself through the use of hidden layers,
as opposed to a user-specified explicit kernel function, as is the case for an SVM.

One possible advantage of the MLP approach over an SVM is that for an MLP,
the equivalent of the kernel function is, in effect, derived from the data and refined
through the training process. In contrast, for an SVM, the kernel function is selected
by a human, and once selected it does not change. In machine learning, removing
those pesky humans from the learning process is a good thing. However, a possible
tradeoff is that significantly more training data will likely be needed for an MLP, as
compared to an SVM, due to the greater data requirement involved in learning the
equivalent of a kernel function.



A Selective Survey of Deep Learning Techniques … 7

As another aside, we note that from a high-level perspective, it is possible to view
MLPs as combining some aspects of SVMs (i.e., specifically, nonlinear decision
boundaries) and HMMs (i.e., hidden layers). Also, we will see that the backpropa-
gation algorithm that is used to train MLPs includes a forward pass and backward
pass, which is eerily reminiscent of the training process that is used for HMMs.

As yet another aside, we note that anMLP is a feedforward neural network, which
means that there are no loops—the input data and intermediate results feed directly
through the network. In contrast, a recurrent neural network (RNN) can have loops,
which gives an RNN a concept of memory but can also add significant complexity.

In the book Perceptrons: An Introduction to Computational Geometry, published
in 1969, Minsky and Papert [55] made much of the perceived shortcoming of
perceptrons—in particular, the aforementioned inability to model XOR. This was
widely viewed as a devastating criticism at the time, as it was believed that success-
ful AI would need to capture basic principles of logic. Although it was known that
perceptrons with multiple layers (i.e., MLPs) can model XOR, at the time, nobody
knew how to efficiently trainMLPs.Minsky and Papert’s work was highly influential
and is frequently blamed for the relative lack of interest in the field—a so-called “AI
winter”—that persisted throughout the 1970s and into the early 1980s.

By 1986, there was renewed interest in ANNs, thanks in large part to the work of
Rumelhart, Hinton, and Williams [70], who developed a practical means of training
MLPs—the method of backpropagation. For details on backpropagation, see [80],
for example.

It is worth noting that there was another “AI winter” that lasted from the late 1980s
through the early 1990s (at least). The proximate cause of this most recent AI winter
was that the hype far outran the limited successes that had been achieved. Although
deep learning has now brought ANNs back into vogue, your author (a doubting
Thomas, and proud of it) is not convinced that the current artificial intelligencemania
will prove any less artificial than previousAI “summers”which, on thewhole, yielded
mostly disappointment. Someof the ridiculous statements beingmade today [28] lead
your eminently sensible author to believe that the hype is already hopelessly out of
control.1

Next, we discuss deep learning, which builds on the foundation of ANNs. We
can view the relationship between ANNs and deep learning as being somewhat
akin to that of Markov chains and HMMs, for example. That is, ANNs serve as a
basic technology that can be used to build a powerful machine learning technique,
analogous to the way that an HMM is built on the foundation of an elementary
Markov chain. But, before we get into the details of deep learning, we consider the
topic from a high-level perspective.

1In stark contrast to the nonsensical hype that envelopes far too much of the discussion of deep
learning and (especially) AI, there does exist some clear-headed thinking that points to the great
transformative potential of learning technology in the real world, rather than the world of science
fiction. For a fine example of this latter genre, see the intriguingly titled article, “Models will run the
world” [14]. (Spoiler alert: “Models will run the world” is not about world domination by skinny
women in swimsuits).
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Fig. 4 Model performance
as a function of the amount
of training data
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3 Why Deep Learning?

It is sometimes claimed that the major advantage of deep learning arises when the
amount of training data is large. For example, the tutorial [35] gives a graph similar
to that in Fig. 4, which purports to show that deep learning will continue to achieve
improved results as the size of the dataset grows, whereas other machine learning
techniques will plateau at some relatively early point. That is, models generated
by non-deep learning techniques will “saturate” relatively quickly, and once this
saturation point is reached, more data will not yield improved models.2 In contrast,
deep learning is supposed to continue learning, essentiallywithout limit as the volume
of training data increases, or at least it will plateau at a much higher level. Of course,
even if this is entirely true, there are practical computational constraints since more
data requires more computing power for training.

2If any learning model truly saturates, then adding more data will be counterproductive beyond
some point, as the work factor for training on larger datasets increases, while there is no added
benefit from the resulting trained model. It would therefore be useful to be able to predetermine a
“score” of some sort that would tell us approximately how much data is optimal when training a
particular learning model for a given type of data.
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4 Decisions, Decisions

The essence of machine learning is that when training amodel, weminimize the need
for input from those fallible humans. That is, wewant ourmachine learningmodels to
be data-driven, in the sense that the models learn as much as possible directly from
the data itself, with minimal human intervention. However, any machine learning
technique will require some human decisions—for HMMs, we specify the number
of hidden states; for SVMs, we specify the kernel function; and so on.

For ANNs in general, and deep learning in particular, the following design deci-
sions are relevant [22].

• The depth of an ANN refers to the number of hidden layers. The “deep” in deep
learning indicates that we employ ANNs with lots of hidden layers, where “lots”
seems to generallymean asmany as possible, based on available computing power.

• The width of an ANN is the number of neurons per layer, which need not be the
same in each layer.

• In anMLP, for example, nonlinearity is necessary, and this is achieved through the
activation functions (also known as transfer functions). Most activation functions
used in deep learning are designed to mimic a step function—examples include
the sigmoid (or logistic) function

f (x) = 1

1 + e−x
,

the hyperbolic tangent

f (x) = tanh(x) = ex − e−x

ex + e−x
,

the inverse tangent (also known as arctangent)

f (x) = tan−1(x),

and the rectified linear unit (ReLU)

f (x) = max{0, x} =
{
x if x > 0
0 otherwise.

Note that the softmax function is a generalization of the sigmoid function to mul-
ticlass problems.
The graph of each of the activation functions given above is illustrated in Fig. 5. As
of this writing, ReLU is the most popular activation function. Numerous variants
of the ReLU function are also used, including the leaky ReLU and exponential
linear unit (ELU).
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• In addition to activation functions, we also specify an objective function. The
objective function is the function that we are trying to optimize and typically
represents the training error.

• A bias nodemay be included (or not) in any hidden layer. Each bias node generates
a constant value and hence is not connected to any previous layer. When present,
a bias node allows the activation function to be shifted. In the perceptron example
given in (1), the bias corresponds to the y-intercept b.

For the sake of comparison with our favorite non-deep learning technique, the
depth of an HMM can be viewed as the order of the underlying Markov model.
Typically, for HMMs, we only consider models of order one (in which case, the
current state depends only on the previous state), but it is possible to consider higher
order models. The width of an HMM might be viewed as being determined by N ,
the number of hidden states. But, regardless of the order of the model or the choice
of N , there is really only one hidden layer in any HMM. The fact that an HMM is
based on linear operations implies that adding multiple hidden layers would have no
effect, as themultiple layers would be equivalent to a single layer. Furthermore, the A
and B matrices of an HMM can be viewed as its activation functions (with the B
matrix corresponding to the output layer), and P(O | λ) corresponds to the objective
function in an ANN. Note that these functions are all linear in an HMM, while at
least some of the activation functions must be nonlinear in any true multilayer ANN,
such as an MLP.

Neural networks are trained using the backpropagation algorithm, which is a
special case of a more general technique known as reverse mode automatic differen-
tiation. For additional details on the topic of backpropagation, see, for example, [80].

The remainder of this paper is focused on various neural network based architec-
tures and related topics. For each topic covered, we discuss research in the field of
malware analysis.

5 Multilayer Perceptrons

Wehave already discussedmultilayer perceptrons (MLP) in some detail.MLPs are in
some sense one of themost generic neural networking architectures—when someone
speaks of a neural network in general, there is a good chance that they have an MLP
in mind.

5.1 Overview of MLPs

Recall that Fig. 3 is an example of an MLP with two hidden layers. Each edge in the
figure represents a weight that is to be determined via training, and backpropagation
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Fig. 5 Activation functions

is an efficient and effective way to train such a network. The advantage of an MLP
is that it is not restricted to linear decision boundary.

5.2 MLPs in Malware Analysis

MLPs are extremely popular, and inmost fields, they are one of the first learning tech-
niques considered. Information security is no exception, as MLPs have been applied
to nearly every security problem where deep learning techniques are applicable. Not
surprisingly, large numbers of malware research papers employMLPs. For example,
in [5] MLPs are trained on progressively more generic malware families, yielding
quantifiable results on the inherent tradeoff between the generality of the training
data and accuracy. The research in [74] shows that a straightforward ensemble of
various learning algorithms—including MLPs—can generate significantly stronger
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results than any of the component techniques. The paper [85] uses MLPs as part of
an Android malware detection technique.

Another field in information security where MLPs have played a very prominent
role is in intrusion detection systems (IDS). For example, the paper [57] uses MLPs
in a novel multiclass IDS approach.

6 Convolutional Neural Networks

In this section, we provide an introduction to one of the most important and widely
used learning techniques—CNN. After a brief overview, we introduce discrete con-
volutions with the focus on their specific application to CNNs. We then consider a
simplified example that serves to illustrate various aspects of CNNs.

6.1 Overview of CNNs

Generically, ANNs use fully connected layers. A fully connected layer can deal effec-
tively with correlations between any points within the training vectors, regardless of
whether those points are close together, far apart, or somewhere in between. In con-
trast, a CNN, is designed to deal with local structure—a convolutional layer cannot
be expected to perform well when crucial information is not local. A key benefit of
CNNs is that convolutional layers can be trained much more efficiently than fully
connected layers.

For images, most of the important structure (edges and gradients, for example) is
local. Hence, CNNs would seem to be an ideal tool for image analysis and, in fact,
CNNs were developed for precisely this problem. However, CNNs have performed
well in a variety of other problem domains. In general, any problem for which there
exists a data representation where local structure predominates is a candidate for a
CNN. In addition to images, local structure is crucial in fields such as text analysis
and speech analysis, for example.

6.2 Convolutions and CNNs

A discrete convolution is a sequence that is itself a composition of two sequences and
is computed as a sum of pointwise products. Let c = x ∗ y denote the convolution
of sequences x = (x0, x1.x2, . . .) and y = (y0, y1.y2, . . .). Then the k th element of
the convolution is given by

ck =
∑

k=i+ j

xi y j =
∑

i

xi yk−i .
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We can view this process as x being a “filter” (or kernel) that is applied to the
sequence y over a sliding window.

For example, if x = (x0, x1) and y = (y0, y1, y2, y3, y4), we find

c = x ∗ y = (
x0y1 + x1y0, x0y2 + x1y1, x0y3 + x1y2, x0y4 + x1y3

)
.

If we reverse the order of the elements of x , then we have

c = (
x0y0 + x1y1, x0y1 + x1y2, x0y2 + x1y3, x0y3 + x1y4

)

which is, perhaps, a slightly more natural and intuitive way to view the convolution
operation.

Again, we can view x as a filter that is applied to the sequence y. Henceforth,
we define this filtering operation as convolution with the order of the elements of
the filter reversed. For example, suppose that we apply the filter x = (1,−2) to the
sequence y = (0, 1, 2, 3, 4). In this case, the convolution gives us

c = x ∗ y = (
x0y0 + x1y1, x0y1 + x1y2, x0y2 + x1y3, x0y3 + x1y4

)

= (
1 · 0−2 · 1, 1 · 1−2 · 2, 1 · 2−2 · 3, 1 · 3−2 · 4)

= (−2,−3,−4,−5
)

We can define an analogous filtering (or discrete convolution) operation in two or
three dimensions. For the two-dimensional case, suppose that A = {ai j } is an N × M
matrix representing an image and F = { fi j } is an n × m filter. Let C = {ci j } be the
convolution of F with A. As in the one-dimensional case, we denote this convolution
as C = F ∗ A. In this two-dimensional case, we have

ci j =
n−1∑

k=0

m−1∑

�=0

fk,�ai+k, j+�,

where i = 0, 1, . . . , N − n and j = 0, 1, . . . , M − m. That is, we simply apply the
filter F at each offset of A to create the new—and slightly smaller—matrix that
we denote as C . The three-dimensional case is completely analogous to the two-
dimensional case.

We could simply define filters as we see fit, with each filter designed to correspond
to a specific feature.3 But since we are machine learning aficionados, for CNNs, we
let the data itself determine the filters. Therefore, training a CNN can be viewed
as determining filters, based on the training data. As with any respectable neural
network, we can train CNNs via backpropagation.

Suppose that A represents an image and we train a CNN on the image A. Then
the first convolutional layer is trained directly on the image. The filters determined
at this first layer will correspond to fairly intuitive features, such as edges, basic

3We see examples of filters applied to simple images in Sect. 6.3.
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shapes, and so on. We can then apply a second convolutional layer, that is, we apply
a similar convolutional process, but the output of the first convolutional layer is the
input to this second layer. At the second layer, filters are trained based on features
of features. Perhaps not surprisingly, these second layer filters correspond to more
abstract features of the original image A, such as the “texture.” We can repeat this
convolution of convolutions step again and again, at each layer obtaining filters that
correspond to features representing a higher degree of abstraction, as compared to
the previous layer. The final layer of a CNN is not a convolution layer but is instead
a typical fully-connected layer that can be used to classify based on complex image
characteristics (e.g., “cat” versus “dog”). In addition, so-called pooling layers can
be used between some of the convolutional layers. Pooling layers are simple—no
training is involved—and serve primarily to reduce the dimensionality of the problem.
Below, we give a simple example that includes a pooling layer.

In addition to having multiple convolutional layers, at each layer, we can (and
generally will) stack several convolutions on top of each other. These filters are all
initialized randomly, so they can all learn different features. In fact, for a typical color
image, the image itself can be viewed as consisting of three layers, corresponding to
the R, G, and B components in the RGB color scheme. Hence, for color images, the
filters for the first convolutional layer will be three-dimensional, while subsequent
convolutional layers can—and, typically, will—be three-dimensional as well, due
to the stacking of multiple convolutions/filters at each layer. For simplicity, in our
example, we only consider a black-and-white two-dimensional image, and we only
apply one convolution at each layer.

Before considering a simple example, we note that there are advantages of CNNs
that are particularly relevant in the case of image analysis. For a generic neural
network, each pixel would typically be treated as a separate neuron, and for any
reasonable size of image, this would result in a huge number of parameters, making
training impractical. In contrast, at the first layer of a CNN, each filter is applied
over the entire image, and at subsequent layers, we apply filters over the entire
output of the previous layer. One effect of this approach is that it greatly reduces
the number of parameters that need to be learned. Furthermore, by sliding the filter
across the image as a convolution, we obtain a degree of translation invariance, i.e.,
we can detect image features that appears at different offsets. This can be viewed as
reducing the overfitting that would otherwise likely occur.

The bottom line is that CNNs represent an efficient and effective technique that
was developed specifically for image analysis. However, CNNs are not restricted
to image data, and can be useful in any problem domain where local structure is
dominant.

6.3 Example CNN

Now we turn our attention to a simple example that serves to illustrate some of the
points discussed above. Suppose that we are dealing with black-and-white images,
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Fig. 6 A 16 × 16 black-and-white image
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Fig. 7 Examples of filters

where each pixel is either 0 or 1, with 0 representing white and 1 representing black.4

Further, suppose that the black-and-white images under consideration are 16 × 16
pixels in size. An example of such an image appears in Fig. 6.

In Fig. 7, we give some 3 × 3 filters. For example, the output of the filter in Fig. 7a
is maximized when it aligns with a diagonal segment. Figure8 shows the result of
applying the convolution represented by the filter in Fig. 7a to the smiley face image
in Fig. 6.

We note that, for the convolution in Fig. 8, the maximum value of 6 does indeed
occur only at the three offsets where the (main) diagonal segments are all black
and the off-diagonal elements are all white. These maximum values correspond to
convolutions over the red boxes in Fig. 9.

In a CNN, so-called pooling layers are often intermixedwith convolutional layers.
As with a convolutional layer, in a pooling layer, we slide a window of a fixed size
over the image. But whereas the filter in a convolutional layer is learned, in a pooling

4Color and grayscale images are more complex. For grayscale, a nonlinear encoding (i.e., gamma
encoding) is employed, so as to make better use of the range of values available. For color images,
theRGB (red, green, and blue, respectively) color scheme implies that each pixel is represented by 24
bits (in an uncompressed format), in which case convolutional filters can be viewed as operating
over a three-dimensional box that is 3 bytes deep.
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Fig. 8 First convolutional layer (3 × 3 filter from Fig. 7a)

Fig. 9 Maximum
convolution values in Fig. 8

layer an extremely simple filter is specified and remains unchanged throughout the
training. As the name implies, in max pooling, we simply take the the maximum
value within the filter window. An illustration of max pooling is given in Fig. 10.

Instead of a max pooling scheme, sometimes average pooling is used. In any case,
pooling can be viewed as a downsampling operation, which has the effect of reducing
the dimensionality, and thus easing the computational burden of training subsequent
convolutional layers.5 To increase the downsampling effect, pooling usually uses
non-overlapping windows. Note that the dimensionality reduction of pooling could

5It is also sometimes claimed that pooling improves certain desirable characteristics of CNNs, such
as translation invariance and deformation stability. However, this is disputed, and the current trend
seems to clearly be in the direction of fully convolutional architectures, i.e., CNNs with no pooling
layers [69].
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Fig. 10 Max pooling layer (2 × 2, non-overlapping)

also be achieved by a convolutional layer that uses a larger stride through the data,
and in [75], for example, it is claimed that such an approach results in no loss in
accuracy for the resulting CNN.

An illustration of the first convolutional layer for a color image is given in Fig. 11.
In this case, a three-dimensional filter is applied over the R, G, and B components
in the RGB color scheme. The example in Fig. 11 is meant to indicate that five
different filters are being trained. Since each filter is initialized randomly, they can
all learn different features. At the second convolutional layer, we can again train
three-dimensional filters, based on the output of the first convolutional layer. This
process is repeated for any additional convolutional layers.

There are several possible ways to visualize the filters in convolutional layers. For
example, in [89], a de-convolution technique is used to obtain the results in Fig. 12.
Here, each row is a randomly selected filter and the columns, from left to right,
correspond to training epochs 1, 2, 5, 10, 20, 30, 40, and 64. From layer 4, we see
that the training images must be faces. In general, it is apparent that the filters are
learning progressively more abstract features as the layer increases.

A fairly detailed discussion of CNNs can be found at [38], while the paper [15]
provides some interesting insights. For a more intuitive discussion, see [37], and if
you want to see lots of nice pictures, take a look at [16]. More details on convolutions
can be found in [61].
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Fig. 11 First convolutional layer with stack of five filters (RGB image)

6.4 CNNs in Malware Analysis

CNNs have proven their worth in a wide variety of security-related applications.
Some of these applications, such as image spamdetection [1, 10, 72], are obvious and
relatively straightforward applications of CNNs. However, other security domains
that do not have any apparent image-based component have also had success with
CNNs.

By treating executable files as images, researchers have been able to leverage the
strengths of CNNs for malware detection, classification, and analysis. For example,
the papers [6] and [88] treat executable files as images, and obtain the state-of-the-art
result for the malware detection problem. In particular, the research in [88] makes
extensive use of transfer learning, whereby the output layer of previously trained
CNNs are retrained for the malware detection problem. This results in fast training
times and very high malware classification accuracies.

The research in [34] compares CNNs to so-called extreme learning machines
(ELM), a topic that we discuss below, in Sect. 10. The best CNN results in [34]
are obtained using a one-dimensional CNN trained on the raw bytes of executable
files. In [86], CNNs are successfully applied to a combination of static and dynamic
features.
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Fig. 12 Visualizing convolutions [89]

7 Recurrent Neural Networks

An example of a feedforward neural network with two hidden layers is given in
Fig. 13. This type of neural network has no “memory” in the sense that each input
vector is treated independently of other input vectors. Hence, such a feedforward
network is not well suited to deal with sequential data.

In some cases, it is necessary for a classifier to have memory. For example, if we
want to tag parts of speech in English text (i.e., noun–verb, and so on), this is not
feasible if we only look at words in isolation. For example, the word “all” can be
an adjective, adverb, noun, or even a pronoun, and the only way to determine which
is the case is to consider the context. A recurrent neural network (RNN) provides a
way to add memory (or context) to a feedforward neural network.
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Fig. 13 Feedforward neural network with two hidden layers

To convert a feedforward neural network into an RNN, we treat the output of the
hidden states as another input. For the neural network in Fig. 13, the corresponding
generic RNN is illustrated in Fig. 14. The structure in Fig. 14 implies that there is a
time step involved, that is, we train (and score) based on a sequence of input vectors.
Of course, we cannot consider infinite sequences, and even if we could, the influence
of feature vectors that occurred far back in time is likely to be minimal.

The RNN in Fig. 14 can be “unrolled,” as illustrated in Fig. 15. Note that in this
case, we use f to represent the hidden layer or layers, while the notation Xt is used
to represent (x0, x1) at time step t from un-unrolled RNN in Fig. 14 and, similarly,
Yt corresponds to (y0, y1, y2) at time t . From the unrolled form, it is clear that
any RNN can be treated as a special case of a feedforward neural network, where
the intermediate hidden layers ( f in our notation) all have identical structures and
weights. We can take advantage of this special structure to efficiently train an RNN
using a (slight) variant of backpropagation, known as backpropagation through time
(BPTT).

Before briefly turning our attention to BPTT, we illustrate some variants of a
generic RNN. An RNN such as that illustrated in Fig. 15 is known as a sequence-
to-sequence model, since each input sequence (X0, X1, . . . , Xn−1) corresponds to
an output sequence (Y0,Y1, . . . ,Yn−1). In Fig. 16a, we have illustrated a many-
to-one example of an RNN, that is, the case where an input sequence of the
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Fig. 14 Network in Fig. 13 as an RNN
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Fig. 15 Unrolled RNN (sequence-to-sequence model)
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Fig. 16 Variants of the generic RNN in Fig. 15

form (X0, X1, . . . , Xn−1) corresponds to the single outputYn−1. At the other extreme,
Fig. 16b illustrates a one-to-many RNN, where the single input X0 corresponds to
the output sequence (Y0,Y1, . . . ,Yn−1).

A many-to-one model might be appropriate for part-of-speech tagging, for exam-
ple, while a one-to-many RNN could be used for music generation. An example
of an application where a sequence-to-sequence (or many-to-many) RNN would be
appropriate is a machine translation. There are numerous possible variants of the
sequence-to-sequence RNN. Also, note that a feedforward neural network, such as
that in Fig. 13, can be viewed as a one-to-one RNN.

Multilayer RNNs can also be considered. This can be viewed as training multiple
RNNs simultaneously, with the first RNN trained on the input data, the second RNN
trained on the hidden states of the first RNN, and so on. A two-layer (sequence-to-
sequence) RNN is illustrated in Fig. 17. Of course, more layers are possible, but the
training complexity will increase, and hence only “shallow” RNN architectures (in
terms of the number of layers) are generally considered.

7.1 Backpropagation Through Time

RNNs can be viewed as neural networks that are designed specifically for time series
or other sequential data. With an RNN, the number of parameters is reduced so as
to ease the training burden. This situation is somewhat analogous to CNNs, which
are designed to efficiently deal with local structure (e.g., in images). That is, both
CNNs and RNNs serve to make training more efficient—as compared to generic
feedforward neural networks—for specific classes of problems. Backpropagation
through time (BPTT) is simply an ever-so-slight variation on backpropagation that
is optimized for training RNNs.
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Fig. 17 Two-layer RNN
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In Fig. 18, we give a detailed view of a many-to-one (actually, two-to-one) RNN.
In this case, we see that the 10 weights, (w0,w1, . . . ,w9) must be determined via
training.

In Fig. 19, we give a neural network that is essentially the fully connected version
of the RNN in Fig. 18. Note that in this fully connected version, there are 20 parame-
ters to be determined. In an RNN, we assume that the data represents sequential input
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Fig. 19 Fully connected
analog of Fig. 18 x2 x3x0 x1
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and hence the reduction in the number of weights is justified, since we are simply
eliminating from consideration cases where the past is influenced by the future.6

It is well known that gradient issues are a concern when training neural networks
in general, and are a particularly acute issue with generic RNNs. In an RNN, the
further that we attempt to backpropagate through time, the more likely that the
gradient will “explode” or “vanish” or oscillate between extremes. The details of the
exploding gradient and vanishing gradient are beyond the scope of this survey; for
more information on these topics, see [79], for example.

Next, we turn our attention to specialized RNN architectures that are designed
to mitigate the gradient issues that plague generic RNNs. Specifically, we consider
LSTM networks in some detail and we then briefly discuss a variant of LSTM known
as gated recurrent units (GRU). In fact, a vast number of variants of the LSTM
architecture have been developed. However, according to the extensive empirical
study in [23], “none of the variants can improve upon the standard LSTMarchitecture
significantly.”

7.2 Long Short-Term Memory

In addition to being a tongue twister, LSTMnetworks are a class ofRNNarchitectures
that are designed to deal with long-range dependencies. That is, LSTM can deal with
“gaps” between the appearance of a feature and the point at which it is needed by
the model [23]. The claim to fame of LSTM is that it can reduce the effect of a

6Obviously, the inventors of RNNs were not familiar with Back to the Future or Star Trek, both of
which conclusively demonstrate that the future can have a large influence on the past.
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vanishing gradient, which is what enables such models to account for longer range
dependencies [30].

Before outlining themain ideas behindLSTM,wenote that theLSTMarchitecture
has been one of the most commercially successful learning techniques ever devel-
oped. Among many other applications, LSTMs have been used in Google Allo [39],
Google Translate [84], Apple’s Siri [46], andAmazonAlexa [25]. However, recently,
the dominance of LSTM may have begun to wane. ResNet has been shown to have
theoretical advantages over LSTM, and it outperforms LSTM in a wide range of
applications [63].

Figure20 illustrates an LSTM. The obvious difference from a generic vanilla
RNN is that an LSTM has two lines entering and exiting each state. As in a standard
RNN, one of these lines represents the hidden state, while the second line is designed
to serve as a gradient “highway” during backpropagation. In this way, the gradient
can “flow” much further back with less chance that it will vanish along the way.

In Fig. 21,we expand one of theLSTMcells Lt that appear in Fig. 20.Here,σ is the
sigmoid function, τ is the hyperbolic tangent (i.e., tanh) function, the operators “×”
and “ + ” are pointwise multiplication and addition, respectively, while “‖” indicates
concatenation of vectors. The vector it is the “input” gate, ft is the “forget” gate,
and ot is the “output” gate. The vector gt is an intermediate gate and does not have a
cool name, but is sometimes referred to as the “gate” gate [47], which, come to think
of it, is especially cool. We have much more to say about these gates below.

The gate vectors that appear in Fig. 21 are computed as

ft = σ

(

Wf

(
ht−1

Xt

)

+ b f

)

it = σ

(

Wi

(
ht−1

Xt

)

+ bi

)

gt = τ

(

Wg

(
ht−1

Xt

)

+ bg

)

ot = σ

(

Wo

(
ht−1

Xt

)

+ bo

)

,

while the outputs are
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Fig. 21 One timestep of an LSTM

ct = ft ⊗ ct−1 ⊕ it ⊗ gt
ht = ot ⊗ τ(ct ),

where “
⊗
” is pointwise multiplication and “⊕” is the usual pointwise addition.

Note that each of the weight matrices is n × 2n.
In matrix form, ignoring the bias terms b, we have

⎛

⎜
⎜
⎝

it
ft
ot
gt

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

σ

σ

σ

τ

⎞

⎟
⎟
⎠W

(
ht−1

Xt ,

)

where Xt and ht−1 are column vectors of length n, and W is the 4n × 2n weight
matrix

W =

⎛

⎜
⎜
⎝

Wi

Wf

Wo

Wg

⎞

⎟
⎟
⎠

Further, each of the gates it , ft , ot , and gt is a column vectors of length n. Recall
that the sigmoid σ squashes its input to be within the range of 0 to 1, whereas the
tanh function τ gives output within the range of −1 to +1.
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To highlight the intuition behindLSTM,we follow a similar approach as that given
in the excellent presentation [47]. Specifically, we focus on the extreme cases, that
is, we assume that the output of each sigmoid σ is either 0 or 1, and each hyperbolic
tangent τ is either −1 or +1. Then the forget gate ft is a vector of 0s and 1s, where
the 0s tell us the elements of ct−1 that we forget and the 1s indicate the elements to
remember. In the middle section of the diagram, the input gate it and gate gate gt
together determine which elements of ct−1 to increment or decrement. Specifically,
when element j of it is 1 and element j of gt is +1, we increment element j of ct−1.
And if element j of it is 1 and element j of gt is −1, then we decrement element j
of ct−1. This serves to emphasize or de-emphasize particular elements in the new-
and-improved cell state ct . Finally, the output gate ot determines which elements of
the cell state will become part of the hidden state ht . Note that the hidden states ht
is fed into the output layer of the LSTM. Also note that before the cell states are
operated on by the output gate, the values are first squeezed down to be within the
range of −1– +1 by the τ function.

Of course, in general, the LSTM gates are not simply countered that increment
or decrement by 1. But, the intuition is the same, that is, the gates keep track of
incremental changes thus allowing relevant information to flow over long distances
via the cell state. In this way, LSTM negates some of the limitations caused by
vanishing gradients.

7.3 Gated Recurrent Units

Asmentioned above, there are a large number of variants of the basic LSTMarchitec-
ture. Most such variants are slight variants, with only minor changes from a standard
LSTM. A gated recurrent unit (GRU), on the other hand, is a fairly radical departure
from an LSTM. Although the internal state of a GRU is somewhat complex and,
perhaps, less intuitive than that of an LSTM, there are fewer parameters in a GRU,
and hence it is easier to train a GRU, and less training data is required. The wiring
diagram for a GRU is given in Fig. 22.

The gate vectors that appear in Fig. 21 are computed as

zt = σ Wz
ht−1

Xt
+ bz

rt = σ Wr
ht−1

Xt
+ br

gt = τ Wg
rt ⊗ ht−1

Xt
+ bg ,

while the output is
ht = (1 − zt )⊗ ht−1 ⊕ zt ⊗ gt ,
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Fig. 22 One timestep of a GRU

where “
⊗
” is pointwise multiplication and “⊕” is the usual pointwise addition.

Note that each of the weight matrices is n × 2n.
In matrix form, ignoring the bias terms b, we have

⎛

⎝
zt
rt
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⎛

⎝
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⎠W
ht−1

Xt
+

⎛

⎝
0
0
τ

⎞

⎠W
rt ⊗ ht−1
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where Xt and ht−1 are column vectors of length n, and W is the 3n × 2n weight
matrix

W =
⎛

⎝
Wz

Wr

Wg

⎞

⎠

Each of the gates zt , rt , and gt is a column vectors of length n.
The intuition behind a GRU is that it replaces the input, forget, and output gates

of an LSTM with just two gates—an “update” gate zt and a “reset” gate rt . The
GRU update gate serves a similar purpose as the combined output and forget gates of
an LSTM. Specifically, the update serves to determine what to output (or write) and
what to forget. The function 1 − zt in theGRU implies that anything that is not output
must be forgotten. Thus, the GRU is less flexible as compared to an LSTM since an
LSTM allows us to independently select elements for output and elements that are
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forgotten. The GRU reset gate and the LSTM input gate each serve to combine new
input with previous memory.

The gating in a GRU is more complex and somewhat less intuitive as compared
to that found in an LSTM. In any case, the most radical departure of the GRU from
the LSTM architecture is that there is no cell state in a GRU. This implies that any
memory must be stored in the hidden state ht . This simplification (as compared to
an LSTM) relies on the fact that in a GRU, the write and forget operations have been
combined.

7.4 Recursive Neural Network

We mention in passing that recursive neural networks can be viewed as generalizing
recurrent neural networks.7 In a recursive neural network, we can recurse over any
hierarchical structure, with trees being the archetypal example. Then training can be
accomplished via backpropagation through structure (BPTS), often using stochastic
gradient descent for simplicity. In contrast, a recurrent neural network is restricted
to one particular structure—that of a linear chain.

7.5 Last Word on RNNs

RNNs are useful in cases where the input data is sequential. Generic RNN archi-
tectures are subject to vanishing and exploding gradients, which limit the length
of the history (or gaps) that can effectively be incorporated into such models. Rel-
atively complex RNN-based architectures—such as LSTM and its variants—have
been developed that can better handle such gradient issues. These architectures have
proven to be commercially successful across a wide range of products.

A good general discussion of RNNs can be found in [59], and an overview of var-
ious RNN-specific topics—with links to many relevant articles—is available at [58].
A more detailed (mathematical) description can be found in Chap.10 of [20]. The
slides at [47] provide a good general introduction to RNNs, with nice examples and
a brief, but excellent, discussion of LSTM.

7Unfortunately, “recursive neural network” is typically also abbreviated as RNN. Here, we reserve
RNN for recurrent neural networks and we do not use any abbreviation when referring to recursive
neural networks.
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7.6 RNNs in Malware Analysis

In a commercial sense, LSTMs are surely themost successful deep learning technique
yet developed, so it is not surprising that LSTMs have been successfully applied to
the malware detection problem [50]. Both LSTMs and GRUs—along with CNNs—
are considered in [2], with the authors claiming a major improvement over relevant
previous work. The paper [31] considers an adversarial attack, where the attacker
can defeat a system that uses RNNs based on API calls.

There are many applications of RNNs in areas of information security outside of
the malware domain. In [87], CNN and LSTM architectures are used to detect cyber-
security events, based on social networking messages. Other infosec applications of
LSTMs include generating security ontologies [19], network security [49], breaking
CAPTCHAs [11], host-based intrusion detection [41], and network anomaly detec-
tion [13], among others.

8 Residual Networks

At the time of this writing, residual network (ResNet) is considered the state of the
art in deep learning for many image analysis problems. A residual network is one
in which instead of approximating a function F(x), we approximate the “residual,”
which is defined as H(x) = F(x) − x . Then the desired solution is given by F(x) =
H(x) + x .

Theoriginalmotivation for considering residualswas basedon the observation that
deeper networks sometimes produceworse results, evenwhenvanishing gradients are
not the cause [27]. This is somewhat counterintuitive, as the network should simply
learn identity mappings when a model is deeper than necessary. To overcome this
“degradation” problem, the authors of [27] experiment with residual mappings and
provide extensive empirical evidence that the resulting ResNet architecture yields
improved results as compared to standard feedforward networks for a variety of
problems. The authors of [27] conjecture that the success of ResNet follows from
the fact that the identity map corresponds to a residual of zero, and “if an identity
mapping were optimal, it would be easier to push the residual to zero than to fit an
identity mapping by a stack of nonlinear layers.”

Whereas LSTM uses a complex gating structure to ease gradient flow, ResNet
defines additional connections that correspond to identity layers. This enablesResNet
to deal with vanishing gradients, as well as the aforementioned degradation problem.
These identity layers allow a ResNet model to skip over layers during training,
which serves to effectively reduce the minimum depth when training. Intuitively,
ResNet is able to train deeper networks by, in effect, training over a considerably
shallower network in the initial stages, with later stages of training serving to flesh
out the intermediate connections. This approach was inspired by pyramidal cells in
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Fig. 23 Example of a ResNet architecture
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Fig. 24 Another view of the ResNet architecture in Fig. 23

the brain, which have a similar characteristic in the sense that they bridge “layers”
of neurons [76].

A very high-level illustrative example of a ResNet architecture is given in Fig. 23,
where each curved edge represents an identity transformation. Note that in this case,
the identity transformations enable the model to skip over two layers. In principle,
ResNet would seem to be applicable to any flavor of deep neural network, but in
practice, it seems to applied to CNNs.

If aResNet has N identity paths, then the network contains 2N distinct feedforward
networks. For example, the ResNet in Fig. 23 can be expanded into the graph in
Fig. 24. Note that most of the paths in a ResNet are relatively short.

Surprisingly, the paper [81] provides evidence that in spite of being trained simul-
taneously, the multiple paths in a ResNet “show ensemble-like behavior in the sense
that they do not strongly depend on each other.” And perhaps an evenmore surprising
result in [81] shows that “only the short paths are needed during training, as longer
paths do not contribute any gradient.” In other words, a deep ResNet architecture is
more properly viewed as a collection of multiple, relatively shallow networks.
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8.1 ResNet in Malware Analysis

At the time of this writing, ResNet is a relative newcomer and the level of research
in the security domain is somewhat limited. Nevertheless, ResNet architectures have
shown promise for dealing with the usual suspects, namely malware analysis [40,
66] and intrusion detection [43, 83].

9 Generative Adversarial Network

Let {Xi } be a collection of samples and {Yi } a corresponding set of class labels.
In statistics, a discriminative model is one that models the conditional probability
distribution P(Y | X). Such a discriminativemodel can be used to classify samples—
given an input X of the same type as the training samples {Xi }, the model enables
us to easily determine the most likely class of X by simply computing P(Y | X) for
each class label Y .

In contrast, a model is said to be generative if it models the joint probability distri-
bution of X and Y , which we denote as P(X,Y ). Such a model is called “generative”
because, by sampling from this distribution, we can generate new pairs (Xi ,Yi ) that
fit the probability distribution. Note that we can produce a discriminative model from
a generative model, since

P(Y | X) = P(X,Y )

P(X)
.

Therefore, in some sense, a generative model is inherently more general than a
discriminative model.

Consider, for example, hidden Markov models (HMM) [77], which are a popu-
lar class of classic machine learning techniques. An HMM is defined by the three
matrices in λ = (A, B, π), where π is the initial state distribution, A contains the
transition probability distributions for the hidden states, and B consists of the obser-
vation probability distributions corresponding to the hidden states. If we train an
HMM on a given dataset, then we can easily generate samples that match the proba-
bility distributions of the HMM. To generate such samples, we first randomly select
an initial state based on the probabilities in π . Then we repeat the following steps
until the desired observation sequence length is reached: Randomly select an obser-
vation based on the current state, using the probabilities in B, and randomly select
the next state, based on the probabilities in A. The resulting observation sequence
will be indistinguishable (in the HMM sense) from the data that was used to train
the HMM.

From the discussion in the previous paragraph, it is clear that a trained HMM is
a generative model. However, it is more typical to use an HMM as a discriminative
model. In discriminative mode, we determine a threshold, then we classify a given
observation sequence as matching the model if its HMM score is above the specified
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threshold. This example shows that in practice, it is easy to use a generative model
as a discriminative model.

On the other hand, while a trained SVM serves to classify samples, we could not
use such a model to generate samples that match the training set. Thus, an SVM is
an example of a discriminative model.

In the realm of deep learning, a discriminative network is designed to classify
samples, while a generative network is designed to generate samples that “fit” the
training data. From the discussion above, it is clear that we can always obtain a dis-
criminative model from a generative model. Intuitively, it would seem that training a
(more general) generative model in order to obtain a (more specific) discriminative
model would be undesirable since we do not need the full generality of the model.
However, reality appears to be somewhat more subtle. In [60], it is shown that for one
generative–discriminative pair (naïve Bayes and logistic regression) the discrimina-
tive models do indeed have a lower asymptotic error; however, the generative models
consistently converge faster. This suggests that with limited training data, a genera-
tive model might produce a superior discriminative model, as compared to directly
training the corresponding discriminative model. In any case, in the realm of deep
learning, discriminative models dominate, with an example of a typical application
being image classification. In contrast, generative models have only recently come
into vogue, with an example application being the creation of fake images.

Now, suppose that when training a discriminative neural network, in addition
to the real training data, we generate “fake” training samples that follow a similar
probability distribution as the real samples. Further, suppose that these fake training
samples are designed to trick the discriminative network into making classification
mistakes. Such samples would tend to improve the training of the network, thus
making it stronger and more effective than if we had restricted the training to only
the real data.

Although intuitively appealing, several problems arise when trying to implement
a training technique based on fake samples. For one thing, we generally do not know
the distribution of the training set, which often lives in an extremely high dimensional
space of great complexity. Another issue is that during training, the discriminative
network is constantly evolving, so determining samples that are likely to trick the
network is a moving target. Another concern is that if the fake training samples are
too difficult—or too easy—to distinguish at any point in the training process, we are
unlikely to see any improvement over simply using the real training data

Several techniques have been proposed to try to take advantage of fake data so
as to improve the training process. In the case of a generative adversarial network
(GAN), we use a neural network to generate the fake data—a generative network
is trained to defeat a discriminative network. Furthermore, the discriminative and
generative networks are trained simultaneously in a minimax game. This approach
sidesteps the complications involved in trying to model the probability distribution
of the training samples. In fact, the generative network in a GAN simply uses random
noise as its underlying probability distribution.

To summarize, a GAN consists of two competing neural networks—a generative
network and a discriminative network—with the generative network creating fake
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data that is designed to defeat the discriminative network. The two networks are
trained simultaneously following a game-theoretic approach. In this way, both net-
works improve, with the ultimate objective being a discriminative model (and/or a
generative model) that is stronger than it would have been if it was trained only on
the real training data.

We define two neural networks, namely a discriminator D(x; θd), and a genera-
torG(z; θg), where θd consists of the parameters of the discriminator network, and θg
consists of the parameters of the generator network. Here, we describe the training
process in terms of images, but other types of data could be used. Also, to simplify
the notation, we suppress the dependence on θd and θg in the remainder of this dis-
cussion, except where it is essential for understanding and may not be clear from
context.

The generator G(z) produces a fake image (based on the random seed value z)
with the goal of tricking the discriminator into believing it is a real training image. In
contrast, the discriminator D(x) returns a value in the range of 0– 1 that can be viewed
as its estimate of the probability that the image x is real. For example, D(x) = 1
means that the discriminator is completely certain that the image is real,whileD(x) =
0 tells us that the discriminator is sure that the image is fake, and D(x) = 1/2 implies
that the discriminator is clueless. Note that the discriminator must deal with both real
and fake images, while the generator is only concerned with generating fake images
that trick the discriminator.

The generator G wins if D thinks its fake images are real. Thus, we can train G
by making 1 − D(G(z)) as close to zero as possible or, equivalently, by mini-
mizing log(1 − D(G(z))). On the other hand, D wins if it can distinguish the
fake images from real images so, ideally, when training D, we want D(x) = 1,
when x is a real image, and D(G(z)) = 0 for fake images G(z). Therefore, we
can train D by maximizing D(x)(1 − D(G(z)) or, equivalently, by maximiz-
ing log(D(x)) + log(1 − D(G(z))). We want the D and G models to be in com-
petition, so they can strengthen each other. This can be accomplished by formulating
the training in terms of the minimax game

min
G

max
D

(
E

(
log(D(x))

) + E
(
log(1 − D(G(z)))

))
, (2)

where E is the expected value, relative to the implied probability distribution. Specifi-
cally, for themax over D, the expectation iswith respect to the real sample distribution
which has parameters θd , while for the min over G, the expectation is with respect
to the fake sample distribution, which is specified by the parameters θg .

In the case of stochastic gradient descent (or ascent), at each iteration, we consider
one real sample x and one fake sampleG(z). Then, due to themax in equation (2), we
first perform gradient ascent to update the discriminator network D. This is followed
by gradient descent to update generator network G. Of course, both of these steps
rely on backpropagation.

Note that for the discriminator network D, the backpropagation error term involves
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Fig. 25 Gradient of
generator network G
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while for the generator network G, the error term involves only

log
(
1 − D(G(z))

)
. (3)

Of course, in practice, we would typically use a minibatch of, say, m real samples
andm fake samples at each update of D andG, rather than a strict stochastic gradient
descent/ascent.

There is one technical issue that arises when attempting to train the generator
network G as outlined above. As illustrated in Fig. 25, the gradient of the expression
in (3) is nearly flat for values of D(G(z)) near zero. This implies that, early in
training, when the generator network is sure to be extremely weak—and hence the
discriminator can easily identify most G(z) images as fake—it will be difficult for
the G network to learn. From, Fig. 25, we also see that

log
(
D(G(z))

)
(4)

is relatively steep near zero. Hence, instead training G based on a gradient ascent
involving equation (3), we perform gradient descent based on (4). Note that we
have simply replaced the problem of maximizing 1 − D(G(z)) with the equivalent
problem of minimizing the probability D(G(z)).

The algorithm for training a GAN is summarized in Fig. 26. In some applications,
letting iters = 1 works best, while in others, iters > 1 yields better results.
In the latter case, we update the discriminator network D multiple times for each
update of the generator network G. This implies that in such cases, the generator
might otherwise overwhelm the discriminator, that is, the generator is in some sense
easier to train. Finally, while a GAN certainly is an advanced architecture, it is
important to realize that training reduces to a fairly straightforward application of
gradient ascent.
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Fig. 26 GAN training algorithm

As with LSTM, there are a vast number of variations on the basic GAN approach
outlined here; see [48] for a list of nearly 50 such variants. Additional sources of
information on GANs include the original paper on the subject [21] and the excellent
slides at [48].

9.1 GANs in Malware Analysis

GANs seem to show promise for dealingwith some of themost challenging problems
in information security. For example, GANs have been applied with some success to
zero-day malware detection [32, 42]. In addition, the generative aspect of a GAN can
be used to create challenging security problems in the “lab,” thus enabling researchers
to consider defenses against potential threats before those threats arise in a real-world
setting [67].

10 Extreme Learning Machines

Aswithmost aspects of ELMs, the origin of the technique is somewhat controversial.
The unfortunate terminology of “Extreme Learning Machine” was apparently first
used in [24]. Regardless of the origin of the technique, ELMs are essentially ran-
domized feedforward neural networks that effectively minimize the cost of training.

An ELM consists of a single layer of hidden nodes, where the weights between
inputs and hidden nodes are randomly initialized and remain unchanged throughout
training. The weights that connect the hidden nodes to the output are trained, but
due to the simple structure of an ELM, these weights can be determined by solving
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Fig. 27 Architecture of an ELM model

linear equations—more precisely, by solving a linear regression problem. Since no
backpropagation is required, ELMs are far more efficient to train, as compared to
other neural network architectures. However, since theweights in the hidden layer are
not optimized, we will typically require more weights in an ELM, which implies that
the testing phase may be somewhat more costly, as compared to a network trained
by backpropagation. Nevertheless, in applications where models must be trained
frequently, ELMs can be competitive.

Consider the ELM architecture shown in Fig. 27, where X denotes the input layer,
H is the hidden layer, and Y is the output layer. In this example, there are N samples
of the form (xi , yi ) for i = 1, 2, . . . , N , where xi = (

xi1 xi2 . . . xin
)T

is the feature

vector for sample i and yi = (
yi1 yi2 . . . yim

)T
are the output labels, where T indicates

the transposition operation. Then the input and output for the ELM are as X =
(
x1 x2 . . . xn

)T
and Y = (

y1 y2 . . . ym
)T
, respectively. In this example, the hidden

layer H has � neurons. We denote the activation function of the hidden layer as g(x).
To train an ELM, we randomly select the weight matrix that connects the input

layer X to the hidden layer H . We denote this randomly assigned weight matrix
as W = (

w1 w2 . . . w�

)
, where each wi is a column vector. We also randomly select

the bias matrix B = (
b1 b2 . . . b�

)
for this same layer. During the training phase,

both W and B remain unchanged.
AfterW and B have been initialized, the output of the hidden layer H is given by

H = g(WX + B).

The output of the ELM is denoted as Y and is calculated as

Y = Hβ,

where β is the weight matrix for the output layer.
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The values of the weights β at the hidden layer are learned via linear least squares,
and can be computed using H †, the Moore–Penrose generalized inverse of H , as
discussed below. It is worth emphasizing that the only parameters that are learned in
the ELM are the elements of β.

Given that Y is the desired output, a unique solution of the system based on least
squared error can be found as follows. We denote the Moore–Penrose generalization
inverse of H as H †, which is defined as

H † =
{

(HT H)−1HT if HT H is nonsingular

HT (HHT )−1 if HHT is nonsingular

Then the desired solution β is given by

β = H †Y.

After calculating β, the training phase ends. For each test sample x , the output Y
can be calculated as

Y = g
(
C(x)

)
β,

where C(x) is defined below. The entire training process is extremely efficient,
particularly in comparison to the backpropagation technique that is typically used to
train neural networks [80].

For the research reported in this paper, we use the Python implementation of
ELMs given in [17]. This implementation uses input activations that are a weighted
combination of two functions referred to as an “MLP” kernel and an “RBF” kernel—
we employ the same terminology here. TheMLP kernel is simply the linear operation

M(x) = Wx + B,

where the weightsW and biases B are randomly selected from a normal distribution.
This is the kernel function that is typically associated with a standard ELM.

The RBF kernel is considerably more complex and is based on generalized radial
basis functions as defined in [18]. The details of this RBF kernel go beyond the scope
of this paper; see [18] for additional information and, in particular, examples where
this kernel is applied to train ELMs. We use the notation R(x) to represent the RBF
kernel. Also, it is worth noting that the RBF kernel is much more costly to compute,
and hence its use does somewhat negate one of the major advantages of an ELM.

The input activations are given by

C(x) = αM(x) + (1 − α)R(x), (5)

where 0 ≤ α ≤ 1 is a user-specified mixing parameter. Note that for α = 0 we use
only the MLP kernel M(x) and for α = 1, only the RBF kernel R(x) is used.
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10.1 ELMs in Malware Analysis

In [34], ELMs are compared to CNNs for malware classification, and it is shown
that ELMs can outperform CNNs in some cases. This is impressive since ELMs
have training times that are only a small fraction of those required for comparable
CNNs. ELMs have also been applied to malware detection on the Android platform
in [90], where the training is based on static features, with reasonably strong results.
In [71], the authors consider the effectiveness of a technique that they refer to as
high-performance extreme learning machines (HP-ELM). By varying the features
and activation functions of their HP-ELM architecture, they achieve high accuracy
on a challenging dataset. A two-layer ELM is applied to the malware detection
problem in [33]. A partially connected network is used between the input and the
first hidden layer, and this layer is aggregated with a fully connected network in the
second layer. The authors utilize an ensemble to improve the accuracy and robustness
of the resulting ELM-based system.

11 Word Embedding Techniques

Word2Vec is a technique for embedding terms in a high-dimensional space, where
the term embeddings are obtained by training a shallow neural network. After the
training process, words that are more similar in context will tend to be closer together
in the Word2Vec space.

Perhaps surprisingly, meaningful algebraic properties also hold for Word2Vec
embeddings. For example, according to [53], if we let

w0 = “king”,w1 = “man”,w2 = “woman”,w3 = “queen”

and V (wi ) is the Word2Vec embedding of word wi , then V (w3) is the vector that is
closest—in terms of cosine similarity—to

V (w0) − V (w1) + V (w2).

Results such as this indicate that Word2Vec embeddings capture significant aspects
of the semantics of the language.

The focus of this section is Word2Vec, but before discussing this popular and
effective word embedding technique, we consider a couple of alternatives. First,
we discuss simple embedding strategies based on hidden Markov models. Then we
briefly consider a word embedding technique the uses PCA. Finally, we discuss the
main ideas behind Word2Vec.
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11.1 HMM2Vec

To begin, we consider individual letter embeddings, as opposed to word embeddings.
We call the letter embedding technique considered here Letter2Vec.

Recall that an HMM is defined by the three matrices A, B, and π , and is denoted
as λ = (A, B, π). The π matrix contains the initial state probabilities, A contains
the hidden state transition probabilities, and B consists of the observation probabil-
ity distributions corresponding to the hidden states. Each of these matrices is row
stochastic, that is, each row satisfies the requirements of a discrete probability dis-
tribution. Notation-wise, we let N be the number of hidden states, M is the number
of distinct observation symbols, and T is the length of the observation (i.e., train-
ing) sequence. Note that M and T are determined by the training data, while N
is a user-defined parameter. For more details in HMMs, see [77] or Rabiner’s fine
paper [65].

Suppose that we train an HMM on a sequence of letters extracted from English
text, where we convert all uppercase letters to lowercase and discard any character
that is not an alphabetic letter or word-space. Then M = 27, and we select N = 2
hidden states, and we use T = 50,000 observations for training. Note that each
observation is one of the M = 27 symbols (letters plus word-space). For the example
discussed below, the sequence of T = 50,000 observations was obtained from the
Brown corpus of English [7]. Of course, any source of English text could be used.

For one specific case, an HMM trained with the parameters listed in the previous
paragraph yields the B matrix in Table1. Observe that this B matrix gives us two
probability distributions over the observation symbols—one for each of the hidden
states. We observe that one hidden state essentially corresponds to vowels, while the
other corresponds to consonants. This simple example nicely illustrates the concept
of machine learning, as no a priori assumption was made concerning consonants
and vowels, and the only parameter we selected was the number of hidden states N .
Through the training process, the model learned a crucial aspect of English directly
from the data. This illustrative example is discussed in more detail in [77] and orig-
inally appeared in Cave and Neuwirth’s classic paper [8].

Suppose that for a given letter �, we define its Letter2Vec representation V (�) to
be the corresponding row of the matrix BT in Table1. Then, for example,

V (a) = (
0.13537 0.00364

)
V (e) = (

0.21176 0.00223
)

V (s) = (
0.00032 0.11069

)
V (t) = (

0.00158 0.15238
) (6)

Next, we consider the distance between these Letter2Vec representations. Instead of
using Euclidean distance, we measure the cosine similarity.8

The cosine similarity of vectors X and Y is the cosine of the angle between the
two vectors. Let S(X,Y ) denote the cosine similarity between vectors X and Y . Then
for X = (X0, X1, . . . , Xn−1) and Y = (Y0,Y1, . . . ,Yn−1),

8Cosine similarity is not a true metric, since it does not, in general, satisfy the triangle inequality.
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Table 1 Final BT for HMM

Letter State 0 State 1 Letter State 0 State 1

a 0.13537 0.00364 n 0.00035 0.11429

b 0.00023 0.02307 o 0.13081 0.00143

c 0.00039 0.05605 p 0.00073 0.03637

d 0.00025 0.06873 q 0.00019 0.00134

e 0.21176 0.00223 r 0.00041 0.10128

f 0.00018 0.03556 s 0.00032 0.11069

g 0.00041 0.02751 t 0.00158 0.15238

h 0.00526 0.06808 u 0.04352 0.00098

i 0.12193 0.00077 v 0.00019 0.01608

j 0.00014 0.00326 w 0.00017 0.02301

k 0.00112 0.00759 x 0.00030 0.00426

l 0.00143 0.07227 y 0.00028 0.02542

m 0.00027 0.03897 z 0.00017 0.00100

Space 0.34226 0.00375 – – –

S(X,Y ) =

n−1∑

i=0

XiYi

√
√
√
√

n−1∑

i=0

X2
i

√
√
√
√

n−1∑

i=0

Y 2
i

In general, we have −1 ≤ S(X,Y ) ≤ 1, but since our Letter2Vec encoding vectors
consist of probabilities—and hence are non-negative values—we always have 0 ≤
S(X,Y ) ≤ 1.

When considering cosine similarity, the length of the vectors is irrelevant, as we
are only considering the angle between vectors. Consequently, we might want to
consider vectors of length one, X̃ = X/‖X‖ and Ỹ = Y/‖Y‖, in which case the
cosine similarity simplifies to the dot product

S(X̃ , Ỹ ) =
n−1∑

i=0

X̃i Ỹi

Henceforth, we use the notation X̃ to indicate a vector X that has been normalized
to be of length one.

For the vector encodings in (6), we find that for the vowels “a” and “e”, the cosine
similarity is S(V (a), V (e)) = 0.9999. In contrast, the cosine similarity of the vowel
“a” and the consonant “t” is S(V (a), V (t)) = 0.0372. The normalized vectors V (a)
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Fig. 28 Normalized
vectors Ṽ (a) and Ṽ (t)

Ṽ (a)

Ṽ (t)

θ

and V (t) are illustrated in Fig. 28. Using the notation in this figure, cosine similarity
is S(V (a), V (t)) = cos(θ).

These results indicate that these Letter2Vec encodings—which are derived from
a trained HMM—provide useful information on the similarity (or not) of pairs of
letters. Note that we could obtain a vector encoding of any dimension by simply
training an HMMwith the number of hidden states N equal to the desired dimension.

Our HMM-based approach to Letter2Vec encoding is interesting, but we want
to encode words, not letters. Analogous to the Letter2Vec embeddings discussed
above, we could train an HMM on words and then use the columns of the resulting B
matrix (equivalently, the rows of BT ) to define word vectors. The state of the art
for Word2Vec uses a dataset corresponding to M = 10,000, N = 300 and T = 109.
Training an HMM with similar parameters would be decidedly non-trivial, as the
work factor is on the order of N 2T .

While the word embedding technique discussed in the previous paragraph—we
call it HMM2Vec—is plausible, it has some potential limitations. Perhaps the biggest
issue with HMM2Vec is that we typically train an HMM based on a Markov model
of order one. This means that the current state only depends on the immediately
preceding state. By basing our word embeddings on such a model, the resulting
vectors would likely provide only a very limited sense of context. While we can train
HMMs using models of a higher order, the work factor would be prohibitive.

11.2 PCA2Vec

Another option for generating embedding vectors is to apply PCA to a matrix
of pointwise mutual information (PMI). To construct a PMI matrix, based on a
specified window size W , we compute the probabilities P(wi ,wj ) for all pairs of
words (wi ,wj ) that occur within a window W of each other within dataset, and we
also compute P(wi ) for each individual word wi . Then we define the PMI matrix
as X = {xi j } as
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xi j = log

(
P(wj ,wi )

P(wi )P(wj )

)

= log P(wj ,wi ) − log P(wi ) − log P(wj ).

Let Xi be column i of X . We use Xi as the feature vector for word wi and
perform PCA (using SVD) based on these Xi feature vectors. As usual, we project
the feature vectors Xi onto the resulting eigenspace. Finally, by choosing the N
dominant eigenvalues for this projection, we obtain word embedding vectors of
length N .

It is shown in [56] that these embedding vectors have many similar properties as
Word2Vec embeddings, with the author providing examples analogous to those we
give in the next section. Interestingly, it may be beneficial in some applications to
omit a few of the dominant eigenvectors when determining the PCA2Vec embedding
vectors [45].

For more details on using PCA to generate word embeddings, see [45]. The
aforecited blog [56] gives an intuitive introduction to the topic.

11.3 Word2Vec

Word2Vec uses a similar approach as the HMM2Vec concept outlined above. But,
instead of using an HMM, Word2Vec is based on a shallow (one hidden layer)
neural network. Analogous to HMM2Vec, in Word2Vec, we are not interested in
the resulting model itself, but instead we make use the learning that is represented
by the trained model to define word embeddings. Next, we consider the basic ideas
behind Word2Vec. Our presentation is fairly similar to that found in the excellent
tutorial [51].

Suppose that we have a vocabulary of size M . We encode each word as a “one-
hot” vector of length M . For example, suppose that our vocabulary consists of the
set of M = 8 words

W = (w0,w1,w2,w3,w4,w5,w6,w7)

= (“for”, “giant”, “leap”, “man”, “mankind”, “one”, “small”, “step”)

Then we encode “for” and “man” as

E(w0) = E(“for”) = 10000000 and E(w3) = E(“man”) = 00010000,

respectively.
Now, suppose that our training data consists of the phrase

“one small step for man one giant leap for mankind”. (7)
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Table 2 Training data

Offset Training pairs

“ one small step . . .” (one, small), (one, step)

“one small step for . . .” (small, one), (small, step), (small, for)

“one small step for man . . .” (step, one), (step, small), (step, for), (step, man)

“. . . small step for man one . . .” (for, small), (for, step), (for, man), (for, one)

“. . . step for man one giant . . .” (man, step), (man, for), (man, one), (man,
giant)

“. . . for man one giant leap . . .” (one, for), (one, man), (one, giant), (one, leap)

“. . . man one giant leap for . . .” (giant, man), (giant, one), (giant, leap), (giant,
for)

“. . . one giant leap for mankind” (leap, one), (leap, giant), (leap, for), (leap,
mankind)

“. . . giant leap for mankind” (for, giant), (for, leap), (for, mankind)

“. . . leap for mankind ” (mankind, leap), (mankind, for)

To obtain training samples, we specify the window size, and for each offset, we use
all pairs of words within the specified window. For example, if we select a window
size of two, then from (7), we obtain the training pairs in Table2.

Consider the pair “(for,man)” from the fourth row in Table2. As one-hot vectors,
this training pair corresponds to input 10000000 and output 00010000.

A neural network similar to that in Fig. 29 is used to generate Word2Vec embed-
dings. The input is a one-hot vector of length M representing the first element of a
training pair, such as those in Table2, and the network is trained to output the second
element of the ordered pair. The hidden layer consists of N linear neurons and the
output layer uses a softmax function to generate M probabilities, where pi is the
probability of the output vector corresponding to wi for the given input.

Observe that the Word2Vec network in Fig. 29 has NM weights that are to be
determined, as represented by the blue lines from the hidden layer to the output
layer. For each output nodeωi , there are N edges (i.e., weights) from the hidden layer.
The N weights that connect to output node ωi form theWord2Vec embedding V (wi )

of the word wi .
As mentioned above, the state of the art in Word2Vec for English text is based

on a vocabulary of M = 10,000 words, and embedding vectors of length N = 300.
These embeddings are obtained by training on a set of about 109 samples. Clearly,
training amodel of thismagnitude is an extremely challenging computational task, as
there are 3 × 106 weights to be determined, not to mention a huge number of training
samples to deal with. Most of the complexity of Word2Vec comes from tricks that
are used to make it feasible to train such a large network with a massive amount of
data.
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· · ·

V

�0 �N−1

ω0 · · · ωM−1

p0 · · · pM−1

Input vector

Hidden layer

Output layer

Probability

Fig. 29 Neural network for Word2Vec embeddings

One trick that is used to speed training inWord2Vec is the subsampling of frequent
words. Common words such as “a” and “the” contribute little to the model, so these
words can appear in training pairs at a much lower rate than they are present in the
training text.

Themost significant work-saving trick that is used inWord2Vec is so-called “neg-
ative sampling.” When training a neural network, each training sample potentially
affects all of the weights of the model. Instead of adjusting all of the weights, in
Word2Vec, only a small number of “negative” samples have their weights modified
per training sample. For example, suppose that the output vector of a training pair
corresponds to word w0. Then the “positive” weights are those of output node ω0,
and all of the corresponding weights are modified. In addition, a small subset of
the M − 1 “negative” words (i.e., every word in the dataset except w0) are selected
and only the weights of the corresponding output nodes are modfied. The distribution
used to select the negative subset is biased toward more frequent words.

A high-level discussion of Word2Vec can be found in [3], while a very nice and
intuitive—yet reasonably detailed—introduction is given in [51]. The original paper
describing Word2Vec is [53] and an immediate follow-up paper discusses a variety
of improvements that mostly serve to make training practical for large datasets [54].
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11.4 Word Embeddings in Malware Analysis

Word2Vec is fairly popular in the malware detection literature. For example, in [64]
Word2Vec models based on machine code form the basis for a malware detection
technique, while in [12], an Android malware detection scheme dubbed Droid-
VecDeep uses Word2Vec results as features in deep belief networks [29]. The recent
malware research in [9] considers multiple word embedding techniques (Word2Vec,
HMM2Vec, and PCA2Vec) based on opcode sequences. Better results are obtained
in most cases, as compared to using raw opcode sequences, which indicates that
word embeddings are a useful form of feature engineering. The paper [36] considers
Word2Vec andHMM2Vec embeddings formalware classification,with strong results
obtained in many cases. In [62], word embeddings are used as part of a scheme that
can successfully distinguish points in time where significant evolution has occurred
within a malware family.

Word2Vec has proven surprisingly useful in a variety of security applications
beyond the malware domain. Such applications range from network-based anomaly
detection [4] to analyzing the evolution of cyberattacks [73].

12 Conclusion

In this chapter, we have provided details on a wide array of deep learning tech-
niques that have proven useful in the field of malware analysis. We began with
an introduction to the historical development of neural network-based techniques
and related topics. This was followed by a discussion of several popular modern
architectures. Specifically, we covered the following architectures: Multilayer per-
ceptrons (MLP), convolutional neural networks (CNN), recurrent neural networks
(RNN), long short-termmemory (LSTM), gated recurrent units (GRU), residual net-
works (ResNet), generative adversarial networks (GAN), extreme learning machines
(ELM), andWord2Vec. For each of these architectures, we cited representative exam-
ples of relevantmalware-related research, and inmost cases, we alsomentioned other
applications related to information security.
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Malware Detection with Sequence-Based
Machine Learning and Deep Learning

William B. Andreopoulos

Abstract In this chapter, we review sequence-based machine learning methods
that are used for malware detection and classification. We start by reviewing the
datatypes extracted from code: static features and dynamic traces of program execu-
tion.We review recent research that applies machine learning on opcode andAPI call
sequences, call graphs, systemcalls, registry changes, informationflow traces, aswell
as hybrid and raw data, to detect and classify malware. With a focus on metamorphic
malware, we discuss Hidden Markov Models (HMMs) and Long Short-Term Mem-
ory (LSTM) networks. We describe their input formats, such as one-hot encoding
and vector embeddings, the architecture of the machine learning models, the training
process, and the output formats. Finally, we discuss commercial and open-source
tools that are used for data extraction from software.

1 Introduction

Malware is software that is designed to disrupt or damage computer systems. Accord-
ing to Symantec, more than 669million newmalware variants were detected in 2018,
which was an increase of more than 80% from 2017, with such trends continuing
into 2019 and 2020 [41, 42]. Every day, there are at least 350,000 instances of new
malware being created and detected. Additionally, 81% of all ransomware infections
target businesses and organizations, making malware infections very costly. Mal-
ware and web-based attacks are the two most costly attack types—companies spent
an average of US $2.4 million in defense in 2018–2019 [30, 48]. Clearly, malware
detection is a critical task in computer security.

Malware detection can be based on static or dynamic software features, or a
combination of those, or raw data. Static features are extracted from static files,
while dynamic features are extracted during code execution or emulation. Static
approaches often use features such as calls to external libraries, strings, and byte
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sequences for classification. Other static approaches extract higher level information
from binaries, such as sequences of API calls or opcode information.

Signature-based detection that uses static data is widely used within commercial
antivirus software. While this method is used widely in commercial antivirus tools
and is capable of detecting specific malware families efficiently, it fails to detect
new malware. Therefore, modern antivirus tools go beyond static signature-based
detection and can detect unknown malwares more accurately using dynamic data.
Using dynamic data, it is able to detect unknownmalwares according to their behavior
[10, 16].

Sequential features extracted from malware source code analysis have been used
for the classification of malware with deep learning approaches. Sequences used in
malware analysis have been used for LSTMs, as well as HMMs. Both features and
sequences can be extracted by performing either static or dynamic analysis. There
are many tools that can extract either or both data types. We provide an overview of
these tools later in this chapter.

This chapter starts with describing the distinction between static and dynamic data
for malware detection. Then we give an overview of the data type representation,
recent malware detection methods, and tools for extraction of static and dynamic
data. Finally, we describe how sequence-based deep learning algorithms can be used
for malware detection.

2 Data Extraction

2.1 Static Data

Machine learning models for malware detection and classification can be trained
on static features or attributes that are extracted from executable files [13]. Static
analysis involves analyzing the malware software or code without actually executing
the program. Static analysis involves disassembling software and representing some
of its attributes as features for input to a machine learning tool [16]. Approaches to
perform static analysis usually employ the executable binary file, while others use
the source code file. Examples of static features include opcodes, API calls, control
flow graphs, and many others. Specific features for training the machine learning
model include extracting opcode sequences after disassembling the binary file, or
extracting the control flow graph from the assembly file, extracting API calls from
the binary, as well as extracting byte code sequences from the binary executable file
[2, 9, 21, 28, 38, 44] (Figs. 1 and 2).
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Fig. 1 Static opcode sequence example. Consider an example based on the assembly code snippet
is shown above; the following sequences of length 2, also named bi-grams or 2 grams, can be
generated: s1 = (mov, add), s2 = (add, push), s3 = (push, add), s4 = (add, and), s5 = (and, push),
s6 = (push, push), and s7 = (push, and). Because most of the common operations that can be used
for malicious purposes require more than one machine code operation, this example uses sequences
of two opcodes, instead of individual opcodes [35]

2.2 Dynamic Data

Dynamic Analysis is the analysis of a software’s behavior that is performed while
executing the program. Some of the data that can be obtained through dynamic
analysis areAPI calls, systemcalls, instruction traces, taint analysis, registry changes,
memory writes, and information flow tracking. Dynamic analysis uses the tasks

Fig. 2 Static control flow graph (static): A Control Flow Graph (CFG) is the graphical representa-
tion of control flow or computation during the execution of programs or applications. Control flow
graphs are mostly used in the static analysis, as they can accurately represent the flow inside of a
program unit
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performed by a program while it is being executed in a virtualized environment [16].
Dynamic analysis is known to provide more accurate malware behavior detection
results, but the data can be time-consuming to extract. There are several techniques
and approaches followed to perform dynamic analysis.

As an example, this is an API system call extracted dynamically [16]:
fork(); getpid(); ioctl(); read(); write(); wait(); exit();

In order to input this to a sequence-based neural network we can represent it in
one-hot encoded format. One-hot encoding is created by replacing the ith system
call with an n-vector of zeros and a ‘1’ in the ith position.

2.3 Hybrid Analysis

Besides static and dynamic analysis techniques, another analysis technique is the
hybrid analysis of malware, which combines the advantages of both static and
dynamic analyses [34]. Hybrid analysis technique is the combination of static and
dynamic analysis techniques. In hybrid analysis, static analysis is done before the
execution of a program and then dynamic analysis is done selectively based on the
information obtained from static analysis. Dynamic analysis can be tedious due to
multi-path execution. Static analysis can be used to selectively choose the path of
execution for dynamic analysis. Often hybrid analysis results in increased accuracy
and efficiency [34].

2.4 Alternative Approaches That Use Raw Data

In many cases the extraction of these sequences and features for LSTMs and HMMs
can be costly, so approaches using raw bytes are preferred, if comparable accuracy
can be obtained. For example, byte n-grams have been successfully used as fea-
tures [43]. Also, it is possible to treat executable files as images and apply image
analysis techniques. Images of malware executables have previously been used for
classification using convolutional neural networks [25].

2.5 Evaluation of Malware Detection Accuracy

For API call sequences and opcode sequences, three test case scenarios have been
implemented in previous work:

• The first case uses dynamic analysis data alone for both training and testing.
• The second case uses dynamic analysis data for training and static analysis data
for testing.
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• The third case uses static analysis data alone for both training and testing.

It is widely known that dynamic analysis data is more accurate and is therefore
popular for training purposes. On the other hand, using dynamic data for training and
testing is less efficient due to the complexity of extracting data in a dynamic fashion
from software.

3 Recent Research Examples

In this section, we give an overview of recent research on malware detection and
classification.

In [51], a system is proposed that extracts the API sequences from a Portable Exe-
cutable (PE) file format. Then Objective-Oriented Association (OOA) based mining
is done for malware classification. The system parses PE files and generates OOA
rules efficiently for classification using FP Growth and a frequent-pattern tree. The
systemwas tested on a large collection of PE files obtained from the anti-virus labora-
tory of KingSoft Corporation to compare various malware detection approaches. The
accuracy and efficiency of the OOA system outperformed anti-virus software, such
as Norton AntiVirus and McAfee VirusScan, as well as previous data mining-based
detection systems that employed Naive Bayes, Support Vector Machine (SVM), and
Decision Tree techniques.

In [31], malware is analyzed by abstracting the frequent itemsets in API call
sequences. The authors focused on the usage of frequent messages in API call
sequences, They hypothesized that frequent itemsets consisting of API names and/or
API arguments could be valuable for identifying the behavior ofmalware. The authors
clustered a dataset of malware binaries, demonstrating that using the frequent item-
sets of API call sequences can achieve high precision for malware clustering while
reducing the computation time.

In [30], a kernel object behavioral graph is created and graph isomorphism tech-
niques and weighted common graph technique are used to calculate the hotpath for
each malware family. And the unknown malware is then classified into whichever
malware family has similar hotpaths.

In [12], dynamic instruction sequences are logged and are converted to abstract
assembly blocks. Data mining algorithms are used to build a classification model
using feature vectors extracted from the above data. For malware detection, the same
method is used and scored against the classification model.

In [3], the authors propose a malware detection technique that uses instruction
trace logs of executables collected dynamically. These traces are then constructed as
graphs. The instructions are considered as nodes and the data from the instruction
trace is used to calculate the transition probabilities. Then a similarity matrix is
generated between the constructed graphs using different graph kernels. Finally, the
constructed similarity matrix is input to an SVM for classification.
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In [47], the authors presented amalware detection technique using dynamic analy-
sis where fine-grained models are built to capture the behavior of malware using sys-
tem calls information. Then they use a scanner to match the activity of any unknown
program against these models to classify them as either benign or malware. The
behavior models are represented in the form of graphs. The vertices denote the sys-
tem calls and the edges denote the dependency between the calls where the input of
one system call (vertex) depends on the output of another system call (vertex).

In [1], the authors propose a run-time monitoring based malware detection tool
that extracts statistical features from malware using spatio-temporal information
from API call logs. The spatial information is the arguments and return values of the
API calls and temporal information is the sequence of the API calls. This information
is used to build formal models that are fed to standard machine learning algorithms
for malware detection.

From all the research given above, it is evident that dynamic analysis is a good
source of information for malware behavior. Even though producing dynamic data
incurs an execution overhead, a more accurate model can be obtained from dynamic
analysis than using static analysis alone.

3.1 Hybrid Analysis

Hybrid analysis tools are developed for using the accuracy benefit that dynamic
analysis offers and the static analysis’ advantage of time complexity.

HDM Analyzer uses both static analysis and dynamic analysis techniques in the
training phase and performs only static analysis in the testing phase. By combin-
ing static and dynamic analyses, HDM Analyzer achieved a better accuracy and
time complexity than static and dynamic analysis methods alone [18]. The authors
extracted a sequence of API calls for dynamic analysis, which is one of the most
effective features for describing the behavior of a program.

In [9], the authors propose a framework for classification of malware using both
static and dynamic analysis. They define the features or characteristics of malware as
Mal-DNA (Malware DNA). Mal-DNA combines static, dynamic, and hybrid char-
acteristics. Besides extracting the static features of malware, they extract dynamic
data with debugging based behavior monitoring. Then they classify malware using
machine learning algorithms.

In a slightly modified version, [19] apply n-grams method to the API calls
extracted and use the above as a feature set for malware classification. Applica-
tion Programming Interface (API) call sequences are commonly used features in
intelligent malware detection systems. An API call sequence captures the activities
of a program and, hence, it is useful data for mining of malicious behavior. Different
order of eachAPI call in a sequencemaymean a different behaviormodel. Therefore,
the order of API calls is an important issue to analyze malware behavior. The paper
proposes a feature extraction approach for modeling malware behavior that extracts
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API call sequences by dynamic analysis of executing programs. The novelty of the
approach is utilizing n-grams to preserve the order of API calls.

In [17], a set of programAPI calls is extracted and combined with the control flow
graphs (CFGs) to obtain a new representation model called API-CFG, where API
calls form the edges in the control flow graph. This API-CFG is trained by a learning
model and used as a classifier during the testing stage for malware detection. The
behavior of a program is represented by a set of API calls. Therefore, a classifier can
be employed to construct a learning model with a set of programs’ API calls. Finally,
an intelligent malware detection system is developed to detect unknown malwares
automatically. This approach is capable of classifying benign and malicious code
with high accuracy. The results show a statistically significant improvement over
n-grams-based detection method.

In [23], dynamic malware detection is done using registers values set analysis. In
this paper, a novel method is proposed based on similarities of binaries behaviors.
At first, run-time behavior of the binary files is found and logged in a controlled
environment tool. The approach assumes that the behavior of each binary can be
represented by the values of memory contents in its run-time. That is, values stored
in different registers while the malware is running in the controlled environment can
be a distinguishing factor to discriminate it from those of benign programs. Then, the
register values for each Application Programming Interface (API) call are extracted
before and after API is invoked. After that, the changes of registers values throughout
the executable file are traced to create a vector for each of the values of EAX, EBX,
EDX, EDI, ESI, and EBP registers.

In [32], a new runtime kernel memory mapping method called allocation-driven
mapping is introduced, which identifies dynamic kernel objects, including their types
and lifetimes. The method works by capturing kernel object allocation and dealloca-
tion events. A benefit of kernel-basedmalware analysis includes providing a temporal
view of kernel objects by performing a temporal analysis of kernel execution. Their
system includes a temporal malware behavior monitor that tracks malware behavior
by the manipulation of dynamic kernel objects. Allocation-driven mapping is shown
to reliably analyze malware behavior by guiding the analysis only to the events
relevant to a malware attack.

In [36], the API call sequences and assembly code are combined and a similarity-
based matrix is produced that determines whether a portion of code has traces of a
particular malware. This research showed good results by using API call sequences
and Opcode sequences to give a good description of the behavior of a malware.

An orthogonal approach to themonitoring of function calls during the execution of
a program, is the analysis of how the program processes data. The goal of information
flow tracking is to propagate and track “taint-labeled” data throughout the system,
while a program manipulating this data is executed. The data that should be tracked
is specifically marked (tainted) with a corresponding label. Assignment statements,
for example, usually propagate the taint-label of the source operand to the target [16].
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Fig. 3 Illustration of a generic Hidden Markov Model [40]

4 HMM Architecture

The HMM is based on augmenting the Markov chain. A Markov chain is a model
that represents the probabilities of sequences of random variables, called states, each
of which can take on values from some set. These sets can be words, or tags, or
symbols representing anything, like the alphabet. In the case of malware, the sets of
values may be opcodes or API calls.

AMarkov chain makes an assumption that for predicting the future in a sequence,
the current state is all that matters. The states before the current state only impact the
future via the current state. For instance, to predict the next word you could consider
the current word, but you should not examine previously seen words. Similarly,
to predict if the states in a sequence produced by a piece of software constitute
malware, you could use the states immediately preceding a state, but not states seen
in the distant past.

HMMs have been used for malware detection. A Hidden Markov Model (HMM)
is a machine learning model to represent probability distributions over a sequence
of observations [22]. The HMM satisfies the markov property, i.e., the current state
t is dependent only on t − 1 and is independent of all states prior to t − 1. A HMM
is motivated by the idea of considering both observed events (such as words that we
see in the input) and hidden events (such as part-of-speech tags) that we think of
as causal factors in our probabilistic model. An HMM is specified by the following
components:

• Q = q1q2. . .qN a set of N states
• O = o1o2. . .oT a sequence of T observations, each one drawn from a vocabulary
V = v1, v2, . . ., vV

• A = a11. . .ai j . . .aNN a transition probability matrix A, each ai j representing the
probability of moving from state i to state j , s.t. Pj=1..Nai j = 1∀i

• B = bi (o j ) a sequence of observation likelihoods, also called emission probabil-
ities, each expressing the probability of an observation o j being generated from a
state i

• π = π1, π2, . . ., πN an initial probability distribution over states. πi is the proba-
bility that the Markov chain will start in state i . Some states j may have π j = 0,
meaning that they cannot be initial states.
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4.1 Training for Malware Detection

The basic steps followed for performing malware detection using HMM are as fol-
lows. First, we select the observation data that the model should be trained for. In this
case, the observed sequences represent software states that may originate from mal-
ware data. The observed sequences can be API calls sequence or opcode sequences.
A model is trained with the above-observed sequences. After convergence, we get an
accurate model that best fits the observed sequences. Next, we score a set of malware
and benign files against the trained model. If the scores are higher than a predeter-
mined threshold, the scores above the threshold can be classified as files from the
malware family and ones that are below the threshold can be classified as files from
the benign family [5] (Fig. 3).

4.2 Metamorphic Malware Detection

Theuse of static data is insufficientwhendealingwith the advancedmalware obfusca-
tion techniques such as code relocation,mutation, and polymorphism [11]. In [37], an
opcode-based software similarity measure was developed, showing excellent results
for metamorphic malware detection and classification. In [14], the metamorphic
malware detection is done based on function call graph analysis. In [29], multiple
sequence alignment algorithms from bioinformatics lead to viral code signatures that
generalize successfully to previously known polymorphic variants of viruses.

The detection of metamorphic malware became more effective due to the appli-
cation of Markov models and HMMs to malware detection. Profile Hidden Markov
Models (PHMMs) are known for their success at detecting relations between DNA
and protein sequences. When applied for malware detection it has been found that
PHMMs can effectively detectmetamorphicmalware [40] andHMMshave also been
successful in this regard. In [5], HMMs were used for malware classification. The
HMM clustering results classify the malware samples into their appropriate families
with good accuracy, providing a useful tool in malware analysis and classification.

5 LSTM Architecture

Long Short-Term Memory networks—usually just called “LSTMs”—are a special
kind of Recurrent Neural Network (RNN), capable of learning long-term dependen-
cies in sequences of events. They work well on a large variety of problems. Besides
malware detection, they have also been widely used for sequence classification in
other fields such as text mining and biology.

In this section, we analyze how LSTM sequence-based deep learning methods
may be used for malware classification [24]. While static signature-based malware
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detection methods are quick, static code analysis can be vulnerable to code obfus-
cation techniques. LSTMs offer the benefit that they don’t rely on static analysis
and can analyze a short snapshot of the runtime behavior. Behavioral data collected
during file execution is more difficult to obfuscate but takes a long time to capture
(typically up to 5min). This oftenmeans that themalicious payload has likely already
been delivered by the time it is detected.

In [39], LSTMs were applied to microarchitectural event traces captured through
on-chip hardware performance counter (HPC) registers. The proposed LSTM
approach achieved up to 11% higher detection accuracy compared to other sequence-
based classification, such as HMM-based approaches in detecting obfuscated mal-
ware.

References [27, 46, 49] used sequences of API system calls for training an
LSTM. In [27], they trained the LSTM model to learn from the most informative
of sequences from the API-dataset based on their relative ranking as determined by
Term Frequency–Inverse Document Frequency (TF–IDF) recommended features.
They were able to achieve accuracy as high as 92% in detecting malware and benign
code from an unknown test API-call sequence.

Reference [8] extracted 3-grams of opcode sequences and API call sequences.
They then used attention mechanisms to identify API system calls that are more
important than others for determining whether a file is malicious. They report this
approach gave an accuracy that was 12% and 5% higher than conventional malware
detection models using convolutional neural networks and skip-connected LSTM-
based detection models, respectively.

Reference [39] used dynamic data in the form of microarchitectural event traces
captured through on-chip hardware performance counter (HPC) registers. They com-
bined this with localized feature extraction from image binaries corresponding to the
application binaries. Using this advanced approach, an accuracy of 94% and nearly
90% is achieved in detecting normal andmetamorphic malware created through code
relocation obfuscation technique.

An LSTM variation is to use coupled forget and input gates. This variation on the
LSTM is called the Gated Recurrent Unit, or GRU [7]. It combines the forget and
input gates into a single “update gate.” It also merges the cell state and hidden state.
Instead of separately deciding what to forget and what to add new information to,
GRUs make those decisions together. GRUs only forget when they are going to input
something in its place. GRUs only input new values to the state when they forget
something older. GRUs have also been used for malware detection [6].

5.1 LSTM Training

Input format: A single training data element consists of the label and an input
word: xseq—a subsequence of a fixed size sampled randomly from the full origi-
nal sequence. Reference [45] used one-hot encoding of logged API call sequences
reflecting process behavior. One-hot encoding is a method for transforming categor-
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ical data to numerical data by representing the ith categorical value from the universe
as a numerical vector of zeros and a ‘1’ in the ith position.

Reference [50] compared opcode embedding against one-hot encoding methods.
One-hot encoding is simple to use and with the rather small number of Android
opcodes, the sparseness of one-hot encoding does not cause a negative impact on
efficiency. Another method is learning opcode embedding from data samples. Using
opcode embedding achieves better malware detection results than one-hot encoding
since opcode embedding captures the opcode semantic information better compared
to one-hot encoding. The embedding idea comes from word vector learning in NLP,
such as word2vec. Opcode embedding helps to learn the semantic information of
opcode sequences and mine for malicious behaviors [50].

Reference [26] also input word embeddings derived from opcode sequences to
LSTMs for malware detection and malware classification. Their evaluation results
showed their proposed method can achieve an average AUC of 0.99 and an average
AUC of 0.987, respectively.

Generally, an LSTM or RNN takes an input sequence of a fixed size for training
or classification. An input sequence that is of a shorter size than the input layer of the
LSTM can be padded with special characters [6]. Otherwise, it can either be trimmed
or subsampled to derive samples of the desired size.

Reference [33] used trimming of sequences to detect whether or not an exe-
cutable is malicious based on a short snapshot of behavioral data. They collected
ten numerical machine activity data metrics (e.g., CPU and memory usage) as fea-
ture inputs, which are continuous numeric values, allowing for a large number of
different machine states to be represented in a small vector of size 10. They used an
ensemble of RNNs to build an RNN model able to predict whether an executable is
malicious or benign within the first 5 s of execution with 94% accuracy. This was
one of the first works to predict malicious code during execution. Previous dynamic
analysis research collected data for around 5 min per sample [33].

In some works training the LSTM involved a subsampling of sequences from
the original sequence. Specifically, training on a set of labeled sequences occurs
by subsampling a number (say, 50–100) of short fixed-length sequence samples.
Then training happens on each sample. For instance, [4] used samples extracted
fromWindows files. They trained a multiclass classification RNN, more specifically
a LSTM on the dataset. This model for analyzing unstructured data was tested on
unseen programs and the accuracy reached 67.60%, including six classes with five
different types of malware.

The subsampling is chosen to ensure a fair representation of smaller and larger
sequences. The number (m) of fixed-length subsequences sampled from each exe-
cutable code sample should be proportional to the logarithm or square root of the
sequence length, such that longer sequences will contribute more samples, but do not
overwhelm the training. Each sample is a different subsequence xseq associated with
the originating sequence. The sequence xseq can be one-hot encoded if the number
of possible values is small.

Output format: The output from the final neuron is in a range from 0 to 1. This
value is used to discriminate between a positive or negative classification value; in
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Fig. 4 An LSTM and a layered LSTM architecture

other words, if it is predicted to be malware or not malware. A neural network is a
function

F(xseq , x f |θ) = y. (1)

that accepts sequences of points xseq and the feature vector x f . The function F also
depends implicitly on the DL model parameters θ , which are determined during the
training process. The output of the neural network, score y, is computed using the
softmax function, which ensures that y satisfies y ∈ [0, 1]. By convention, the higher
the score is for the sequence, the more likely the sequence is to be a true malware
(Fig. 4).
Gradient Descent and Backpropagation
The training cycles are typically repeated for a specified number of epochs (such as
30 training cycles): The loss (error) is computed as target—actual output. E is the
loss overall, computed by averaging loss over all instances of the training set.

The gradient of the loss is computed at the position we end up at. For neuron o j at
layer j :
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During gradient descent the weights are adjusted by the learning rate η:
∇wi j = the product of −η and the gradient of loss
∇wi j changes wi j such that E decreases in next epoch
Backpropagation then adjusts all weights from outer to the inner layers.
As hyperparameters, the model can be trained with a binary cross-entropy loss

function and Adam optimizer. Usually, there are dropout layers to reduce overfitting.

Another possible architecture involves a hybrid of LSTM and a dense neural
network. As input in this case, a single training data element consists of the label
and two input words: xseq—a subsequence of a fixed size sampled randomly from
the full original sequence and x f—a vector containing features extracted from the
full sequence. The values of the feature vector x f can be normalized to be bound
within [−1, 1]. This architecture takes the sequences as input on one branch; and the
features as matrices or vectors in another branch [24, 25] (Fig. 5).

6 Tools

6.1 IDA Pro

IDA Pro is a popular disassembler for generating assembly language source code
from executables. It can also be used as a debugger. IDA Pro can be used to generate
.asm files from which opcodes and windows API calls can be extracted. Also, IDA
Pro is useful for collecting the instruction trace logs of executables.

6.2 OllyDbg

OllyDbg is a 32-bit disassembler and debugger, which is second best to IDA Pro.
OllyDbg has limited features compared to IDA Pro.

6.3 Ether

Ether is an open-source tool for malware analysis that has been developed via hard-
ware virtualization extensions and resides completely outside of the target OS. This
disables the detection of guest software components. Many recent viruses can detect
a debugger or a virtual environment during execution. Ether malware analysis tool
overcomes this problem and hence provides a benefit as a tool for malware detection
[15].
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Fig. 5 AhybridLSTManddense architecture.Aneuron in the dense layer has all-to-all connectivity
and connections are described as a two-dimensional numerical matrix. Dropout layers are used to
reduce overfitting

6.4 API Logger

API Logger is a tool that logs all API calls that meet the restrictions of the inclusion
and exclusion lists. The inclusion list specifies which libraries need to be included
and exclusion list specifies which libraries or functions can be ignored [20].
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6.5 WinAPIOverride

WinAPIOverride is an advanced API monitoring software. Its main distinction is
the ability to manually extract API calls by deciding the flow of the program during
execution. In that sense, it fills the gap between classic API monitoring software and
debuggers.

6.6 API Monitor

API Monitor is a software tool that also helps in monitoring and controlling API
calls made by applications of processes. This tool needs to be run inside a virtual
machine to analyze a malware and cannot be run in a sandboxed environment (www.
rohitab.com/apimonitor. Accessed 07/14/2020).

6.7 BSA

Buster Sandbox Analyzer (BSA) is a tool that can decide if processes exhibit mali-
cious activities based on dynamic analysis. In addition to analyzing the behavior of
running processes, BSA keeps track of the changes made to the system, such as reg-
istry changes. The tool runs inside a Sandbox that protects the system from getting
infected while executing the malware. BSA can generate API trace calls for win32
executables. Other tools similar to BSA that are useful for tracing in sandboxed envi-
ronments are CWSandbox and Norman Sandbox (http://bsa.isoftware.nl. Accessed
07/14/2020).

7 Conclusion

In this chapter,we have compared data representations for static and dynamic datasets
that can be used to classify and detect malware. The extracted data is input to a
sequence-based machine learning or deep learning tool. Sequence-based machine
learning provides a non-signature-based malware detection method that can effec-
tively classify new and unknown types of malware, as well as metamorphic malware.
Both static and dynamic datasets contain data types that are sequence-based. Using
dynamic data offers a benefit over static data for detecting obfuscated code. The data
can be trained upon and classified by sequence-based machine learning tools, such
as HMMs and LSTMs. The sequence-based approaches are in contrast to training
upon and classifying using feature-based machine learning tools, such as dense or
convolutional neural networks, which often employ images or raw data from mal-
ware.

www.rohitab.com/apimonitor
www.rohitab.com/apimonitor
http://bsa.isoftware.nl
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Abstract Malicious software threats have been known to Information Security pro-
fessionals for over several decades since the dawn of computers. Developers of such
software have been keeping up with technologies addressing known and unknown
vulnerabilities for successful infection. With the growing amount of devices con-
nected to the Internet, it has become apparent that the categorization of millions of
malware samples is an emerging challenge. Malware labelling has become a signif-
icant challenge in the light of a large number of malware samples appearing daily.
Many researchers and anti-virus vendors developed their unique naming methods
that do not contribute to efficient incident response and remediation of the malware
infections on a global scale. In this paper, first, we provide a view on the modern
approaches to malware categorization concerning the needs of malware detection
and analysis, specifically focusing on general modus operandi and automated anal-
ysis. Then, we review the State of the Art technical reports from the antivirus on the
existing labelling initiatives and their usage by vendors. Finally, we give practical
insight into future needs and current challenges of the naming schemes using ground
truth knowledge. This review aims at bridging a knowledge gap between the exist-
ing labelling approaches, threats and malware functionality and problems related to
large-scale malware classification.
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1 Introduction

“Malware”, “malicious software” or broadly speaking “computer viruses” is an
umbrella term that is assigned to software designed to harm end-user as opposite
to a “goodware” or “benign software” such as office and entertainment programs,
Internet browsers and games. Further, there are several ways how actual malware
can be called from the perspective of functionality, threats to end-user and distri-
bution model, as for example, Trojan, Worm or Ransomware [66]. In general, mal-
ware labelling is a non-trivial problem and might vary depending on the analysis
approach, discovered artefacts and similarity to other previously discovered sam-
ples [8]. To name a malware, one can use either (i) cryptographic hash sum such as
MD51 equal to 0c5e15ea8c92f33396fe3fb85d7a7fbf or (ii) naming convention Tro-
jan:Win32/Detplock to describe a specific malware species [76]. One can see that the
hash sum approach is a robust machine-readable standard, however, not appropriate
for a human expert. On the other hand, the second approach is far more appropriate
for a malware analyst to make a decision on what kind of threats malware poses and
what kind of vulnerabilities it uses based on the malware type and family specifica-
tion. However, sometimes it is not clear based on what the malware categories are
created since the names often are machine-generated and do not reflect peculiarities
of actual malicious behaviour.

Malware analysis and defences recently became an emerging topic over the
last few decades—covering many areas and attracting multiple companies and
researchers to work on more secure platforms and solutions. However, the history of
malware spans back to the twentieth century. Commonly, 1949 is considered to be
the year when the theoretical foundations of self-replicating automata have been set
up [34]. The contemporary malware era started with the well-knownMorris worm in
1980 [18]. The real “boom” of malware infection reflected widespread development
of desktop and further mobile OS in early 2000 [36, 51, 60].

VirusTotal was established in 2004 and now can be considered as a de-facto
standard in the Information Security community [77]. It provides reporting of the
malware detection from 70 anti-virus vendors, which in addition to extensive Threats
Intelligence and community reporting, giving the most extensive publicly-available
malware awareness. As per 6th of January 2020, there have been reported 1,304,817
distinct files submitted to VirusTotal, while 803,259 files were labelled as malicious
by one or more anti-virus vendors [78]. At the same time, as per January 2020,
VirusShare collection offers access to 34,339,374 different malware samples avail-
able through the website [75]. This initiative started back in 2011, and now has
collected over 400 versatile archives with different examples of malware.

Most of the researchers in the Information Security community work on the tech-
niques used to identify and detect malware samples among others, answering the
question How to identify malicious software using known labels?. This includes
the construction of specific features and finding attributes, yet mostly focuses on
automated malware detection to facilitate human experts. However, we can see a

1Message-Digest algorithm for 128-bit hash sum.
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considerable need for research initiatives to answer the question How to best label
malware?. CARO (Computer Antivirus Research Organization) created a naming
scheme back in 1990 [11], which was supposed to be a stepping stone for malware
naming standardization. However, only Microsoft mostly uses CARO approach in
their products [41] with Trend Micro moving in that direction since 2018. In the lit-
erature, there can be found several sources mentioning these challenges, yet offering
no comprehensive overview or even solution.

The scope of this research is (i) to reveal existing challenges that complicate
malware identification and cyber threat intelligence services. To our knowledge, the
topic has been approached by many researchers, while in most cases the empha-
sis is only on a few most common malware classes rather than on a multi-faceted
approach. Moreover, we aim at (ii) providing a high-level overview of existing meth-
ods to malware naming by anti-virus vendors. There can be seen a clear gap in the
literature regarding challenges in malware naming and categorization, which this
paper is designed to address. Finally, we (iii) try to project the current needs of anti-
virus domain concerning existing approaches based on the real-world examples from
VirusTotal and large-scale malware naming problem.

This paper is organized as follows. The Sect. 2 introduces the history of mal-
ware categorization, distribution of works and their quantitative overview. Further,
Sect. 3 gives an overview of themost common approaches tomalware categorization,
used characteristics and supplementary software that can be found in the literature.
Section4 presents an in-depth review of the commonly used malware taxonomy by
different Anti-Virus vendors. Survey of industrial malware naming standards and
initiatives is given in Sect. 5. The comparative analysis and outlined challenges of
the malware categorization methods are presented in Sect. 6. Section7 offers insights
into current practical implications, especially in the era of Big Data. Finally, Sect. 8
give final remarks and recommendations towards the future development of the mal-
ware naming and taxonomy.

2 Background: From Malware Developers to Malware
Analysts

This section presents a high-level insight into the problem of cyberattacks boosted
by the development of new malware in addition to the existing general methods
of malware analysis and cybersecurity awareness. Development of Information and
Communications Technologies (ICT) boosted the number of adversarial activities
targeting users, as well as large organizations over the last few years. The main rea-
son for that is the growing number and complexity of both hardware and software
products available to end-users. Multiple security vulnerabilities, lack of cyberse-
curity awareness and weak data protection mechanism created a concrete stepping
stone for paradigms such asAttacks-as-a-Service andMalware-as-a-Service. Having
29 billions of connected devices by 2022 [24], one will expect malware infections
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and cyberattacks in general to be major threats. Therefore, it is important to provide
a quick incidence response as soon as possible based on the available cyber threats
intelligence, including malware naming information.

2.1 Severity of Malware Infection and Modus Operandi

By shortening development and delivery cycles, sacrificing cybersecurity standards
number of vulnerabilities may appear in the end-products as shown by OWASP Top
10 [80]. This can be considered as one of the root-cause problems related to cyber
threats in connection with malicious software that tends to exploit well-known, yet
not fixed, or zero-day vulnerabilities. Over the decades, there have been found infec-
tion of hundreds of thousands ofmalware samples, some of those becoming notorious
for their elaborate attacking mechanism and caused damages. Since malware is con-
sidered as one of the cyberattacks, the same reasons for committing those apply
financial gain and political motivation [49].

Adversarial actors use common mechanisms of exploiting the systems when
preparing and developing malware. Having strong cybersecurity knowledge, they
can learn about the target’s valuable assets, possible exploitation scenarios and weak
links in the system. The target’s cybersecurity watch mechanism with such knowl-
edge cannot even detect malicious intentions if they are not explicitly active. By
now, the importance of awareness of cyberattacks have been recognized by gov-
ernments and companies, such as Cisco [15], Symantec [68], Akamai [2] Check
Point [12], UK National Cyber Security Center [73], etc. Symantec, as many other
companies defined, beside huge attacks landscape, the generally-recognized routine
of performing cyberattacks:

1. Reconnaissance—attackers retrieve as much information as possible about the
target from public sources.

2. Incursion—active phase of delivering malware through various technical means
and social engineering.

3. Discovery—mapping of the internal infrastructure and security measures, staying
“low and slow”.

4. Capture—active malware infection or sensitive information access.
5. Exfiltration—getting the information and other incentives out of the target’s net-

work back to the attacker via covert anonymized channels.

It can be seen that adversarial actors often need a lot of background information
about hardware and software in the target’s network to be able to find and analyze cor-
responding possible vulnerabilities and protection weaknesses. This process can take
days or months depending on the complexity, zero-day vulnerabilities and human
factor. On multiple occasions over the last decade, it was shown that some of the
malware requires thorough development by a large group of people to be efficient
on the incursion. One of the notorious is ZeuS botnet [53], which had the version 1.0
detected in 2006 and later mainstream versions up to 1.4 running through 2013 and
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later. Moreover, there have been developed multiple forks from the mainstream of
Zeus, such as Citadel, LEAK and Skynet. This is an example of how powerful the
adversarial malware developers community target MS Windows OS. The reason for
such popularity is multi-fold: ranging from general simplicity for everyday utiliza-
tion, range of users’ privileges and up to elaborate security features and control of
software being installed [1].

2.2 Detection and Approach Strategy

Similarly to real life, the fight against cybercrime, malware, in this case, begins with
reports and indications of malicious activities. There have been suggested several
methods on how to approach the cyberattacks in general.

Lockheed Martin’s Cyber Kill Chain [38] was originally a military term, later
formulated in a framework from 2011, having the following phases: Reconnais-
sance, Weaponization, Delivery, Exploitation, Installation, Command and Control,
Actions and Objective. Corresponding defending action should be taken during each
identified stage to disrupt the attacker’s efforts.

NIST Cybersecurity Framework [20] is a policy framework released in 2014, for
public sector consisting of five main functions: Identify, Protect, Detect, Respond,
Recover.

Beside specific guidelines, there exists a general approach to malware discov-
ery that includes routine starting from malicious activities being discovered to the
point when malware signature is being published to end-point security solutions, for
example, suggested by Securosis [57]:

1. Malicious activities are recorded
2. Likely relevant artefacts have been unidentified
3. Discovery of binary files and possible cause of infection
4. Search for hash sums in known-to-be-benign and known-to-be-malicious
5. Reverse engineering and internal logic understanding of found files
6. Assignment of most likely malware category, malware family and variant
7. Creation of Anti-Virus signatures and awareness campaigns

To address the Analysis part, there have been created several guidelines and thor-
ough routines with similar tools as elaborately studied by Sikorski et al. [64]. Further,
we can see an enormous growth of anti-malware awareness campaigns and diversity
of protective software products to combat such infections on the market of digital
services. Furthermore, malware is not just a software anymore, yet also more low-
level such as Hardware Trojans as studied by Tehranipoor et al. [71]. While most
anti-virus detection mechanisms successfully use behavioural-based and signature-
based detection, this is out of scope in this study. We will only focus on the aspects
related to categorization.

One of the core issues in cybersecurity that makes the possible development of
malware is so-called vulnerabilities. Either software development bugs or unforeseen
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applications,make a user to execute restricted commands or to gain access to sensitive
information [39]. To address issues of malware naming and information sharing,
there has been developed Common Vulnerabilities and Exposures (CVE) standard
that creates a public entry for known vulnerabilities [19], where the details are taken
from the National Vulnerability Database (NVD). The CVE was developed and
maintained by MITRE Corporation [44].

2.3 Preliminary Analysis and Dissection

One of the biggest challenges that cybersecurity community faced a few decades ago
is how to efficiently and in a fast manner perform the analysis: (i) to identify mali-
cious components and functionality, (ii) to assign the corresponding cluster among
existing malware groups and (iii) to develop a recommendation on how to prevent
malware infection based on the analysis results. There have been suggested a few
community-accepted approaches according to the SANS report by Distler et al. [22],
by Damshenas et al. [21], Kendall et al. [31] and Zeltser [84]:

• static properties analysis aimed to study the characteristics of malware files with-
out executing them. Different aspects of files can be investigated such as headers,
possible encrypted parts, present strings, bytes, opcodes andAPI n-grams, Portable
Executable header features, strings and others [26, 55, 74, 83].

• dynamic behavioural analysis considers different parts of the executed malware
sample influence of different factors present in the target system, as shown by
Kendall et al. [31].Multiple activities such as network traffic, registry keys and disk
usage patterns, API-calls and instruction tracing, and memory layout investigation
are explored to find out what differentiates malware from non-malware according
to Egele et al. [23]. To collect such information, one can use either specialized
sandboxes like Cuckoo [27] or utilize any Virtual Machines such as VirtualBox
accompanied by monitoring software.

2.4 Malware Categorization and Cybersecurity Awareness

Malware categorization becomesmore andmore important, in particular, in response
to critical incidents. A growing amount of malware threats and malware variants [6]
require maintainable of large-scale datasets and knowledge databases. Without hav-
ing a systematic approach to labelling and taxonomizing new and existing pieces of
malicious software, one may do the same job over. Resolution of such issues was
first attempted by the Computer Antivirus Research Organization (CARO) with their
naming scheme as defined by Skulason in 1991 [65]. Therefore, it is essential to have
a high-level overview of the contemporary malware categories, methods and stan-
dards for more efficient similarity-based malware detection and further analysis. The
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most extensive available collection of anti-virus reports is available through Virus-
Total, which can demonstrate how complex, diverse malware categorization used by
different companies. One of the large-scale malware studies showed that out of 60+
AV vendors on VirusTotal, Microsoft follows easy-to-use CARO naming for their
reports [62]. We will only look into howmalware is categorized by different vendors
and what are the current and future challenges.

There can be seen several works that attempted to summarize and provide an
overview of standard approaches to malware categorization. We will introduce
each of the works with their findings below. One of those is a report written by
Hardikars [28] published by SANS Institute in 2008. The paper aimed at giving a
detailed overview of viruses, a self-replicated type of malware. The author briefly
acknowledges different malware categories as a worm, logic bomb, backdoor, trojan,
spyware and botnet [5] in addition to virus. Further, all existing at that time viruses
were classified into the following categories: memory-based, target-based, obfusca-
tion technique-based and payload-based with multiple specific subcategories.

3 Malware Classification: State of the Art

This section gives an overview of the malware classifications used in scientific
research. To understand how the classification has been developing over the years,
the history of the malware analysis research, corresponding used characteristics,
type of classification and mentioned naming schemes would be referenced to. To the
authors’ knowledge, there have not been any major scientific reviews that address
aspects of malware naming and categorization. Besides, only Anti-Virus vendors and
cybersecurity companies focus on these aspects.

Malware developers have been employing advanced techniques in their software
to remain unnoticed as long as possible and to cause as much harm as possible. They
can use fake Windows certificates, zero-day vulnerabilities and default software
settings, etc. as described by Wu et al. in 2016 [82], making it challenging to notice
abnormalities. Further, a set of obfuscation methods is applied, such as encryption,
polymorphism, metamorphism, dead code insertions, or instruction substitution [55]
to conceal the real functionality logic of the software. In addition to this,MSWindows
is a known target of many attacks crafted by famous viruses such as Stuxnet, Duqu
and Flame [7]. Multiple market share surveys suggest that more than 50% of desktop
computers and laptops users utilize MSWindows as an Operating System (OS) [67].
At the same time, nearly 2% of the users still have Windows XP installed, which is
no longer a supported OS version [48].
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3.1 Characteristics-Based Detection for Multinomial
Classification

There has been a tremendous interest in the academic community towards intelligent
malware classification to the ability ofMachineLearningmethods to perform fast and
efficient classification without human interaction. However, previous works mostly
focus on the intelligent differentiation of a file between benign ormalicious type [58].
This is a binary classification, where a heap ofmalware samples are classified against
a collection of goodware. Cohen [17] suggested in 1987, that no algorithm will be
able to detect all computer viruses confidently. This assertion was strengthened by
Chess et al. [14]. As a result, we can assume that no methods can achieve 100%
classification accuracy on large-scale sets. Bragen [10] applied Machine Learning
on opcode sequences and achieved 95% accuracy with the tree-based RandomForest
method. Kolter et al. [33] used 1,971 malicious files and 1,651 benign, while Bragen
used only 992 malicious and 771 benign. Markel et al. [37] used PE32 header data
in malware and benign files detection on Decision Tree, Naive Bayes, and Logistic
Regression. The authors achieved a 0.97 F-score in binary classification. Further-
more, Shankarapani et al. [63] applied PE32 file parser to extract static features for
similarity analysis. Overall, 1,593 samples were acquired for binary classification in
that study.

In contrast to binary, multinomial classification can be described as detection of
whether amalware belongs to a particular family or type. There exist severalmalware
categories, (trojan, backdoor, etc.) and malware families, (Poison, Ramdo, etc.),
which are commonly defined by the Information Security community. A malware
category is a general type of malware that uses a certain kind of approach to exploit
a system and gain illegal access, such as a worm, which is a self-replicating code
that can spread over email, or ransomware that encrypts files and requires a financial
ransom to be paid [13]. On the other hand, amalware family is a specific sub-category
that uses a particular vulnerability or targets specific software versions. For example,
considering the worm category, we can distinguish the p2p worm family such as
Spybot from removable drive worm like Autorun!inf [81]. Cohen [17] suggested in
1987, that there are no algorithms that will be able to confidently detect all possible
computer viruses. This statement was strengthened by Chess et al. [14]. This type of
classification can be seen appearing in scientific literature, mostly starting from 2008.
Rieck et al. [52] studied 14 different malware families extracted from 10,072 unique
binaries. The authors achieved, on average 88% accuracy in family detection using
individual SVM for each one. Further, Zhang et al. [87] explored binary classification
using binary sub-sets of 450 viruses and goodware based on the 2-gram analysis.
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Fig. 1 CARO malware naming scheme [41]

3.2 Commonly Used Malware Naming

There exists several malware types (like trojan, backdoor, etc.) and families (like
Poison, Ramdo, etc.), which are commonly defined by the Information Security
community. In 1991, the Computer Antivirus Research Organization (CARO) pro-
posed a standardized naming scheme for malware [11]. Although CARO states that
this naming scheme is “widely accepted”, we found that from all the vendors on
VirusTotal, Microsoft is the only one that complies with this. It is, therefore, chal-
lenging to establish a typical pattern in scanner results across anti-virus databases.
An example of a widely used approach is CARO naming, shown in Fig. 1.

To the authors’ knowledge, there has been no adequately performed a scientific
study that provides a complete taxonomy of malware or relevant naming schemes.
However, there can be found non-academic blog entries orAnti-Virus vendors reports
with different malware species descriptions and dissections. Mushtaq [47] gave an
overview of the fraction malware samples considering only 20 species, mostly fami-
lies. Another list of families is published by Microsoft as a part of the description of
the Windows Malicious Removal Tool [43] starting from 2005 up until March 2020.
Finally, The Malware Database website offers an extensive collection of different
information pages, structured adequately for each particular malware family and cat-
egory [81]. However, what we can see is that in the scientific community, authors
usually mix up both families and categories, and typically consider fewer samples
than exist in the wild [52, 87].

3.3 Auxiliary Software Tools and Research Datasets

The de-facto standard online resource in the malware analysis community is Virus-
Total that was launched in 2004, and now offers access as a single entry point to 70
anti-virus vendors’ databases. Over the years it started offering Public and Private
APIs, also used by major security labs and companies. However, as it was mentioned
before, only Microsoft, in most cases, uses CARO labelling scheme, which can be
parsed intomalware family and type accordingly. Other vendors use their approaches
to labelling, often confusing and misleading. To overcome this limitation, there has
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developed a tool called “AVCLASS: A Tool for Massive Malware Labeling” and
released in 2016 [3, 56]. The main goal of this tool is to process VirusTotal reports
to be able to extract the most likely malware family considering the variety of the
formats of the virus analysis reports.

Another important aspect that should be mentioned is community-maintained
datasets, which are used to foster malware analysts collaboration, results from dis-
semination and malware detection mechanism testing. VirusShare [75] gives access
to 34,503,473 malware samples as of 05.02.2020. Those are not categorized and are
available in archives containing up to 131,072 files in 374 archives. VxHeaven [79]
also offers an overview of computer viruses in a very categorized and dissected man-
ner. Besides, there has been created a new solution called VirusTotal Intelligence that
can be used to extract binary samples of a specific malware that the user defines.

4 Analysis of Community—and Commercially—Accepted
Malware Taxonomies

As we can see, the diversity of malware threats became a real Big Data problem with
nearly 0.5M malware samples being detected by VirusTotal everyday [78]. Over the
last decades, there has been a growth in hardware and software technologies, subse-
quently making appropriate categorization of malware samples a very cumbersome
and non-trivial task. It led to cases where one malware has been categorized com-
pletely differently by various AV vendors. This also might indicate that malware can
belong to multiple categories, as mentioned by Kaspersky [30].

This section provides a high-level overview of the most commonly used
approaches in reviewed literature to categorize malware in various aspects of used
technologies and internal functionality. We first start from the general categories and
then will go more into more specific functionality-oriented taxonomies. It was also
provided with an overview of relevant Anti-Virus vendors’ approaches to malware
categorization

4.1 Overall Software Category

The most general malware categorization approach is according to the type of soft-
ware, as stated by F-secure [25]:

1. Clean/“Goodware”—the software that does not pose any risk to the user and
perform predefined benign functions like office programs or browsers.

2. PotentiallyUnwantedApplications (PUP)&UnwantedApplications/“Grayware”
—the software that can be considered as unwanted, depending on the user and
environment they are being used, typically performs actions without consent such
as advertising or programs parameters changes.
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3. Harmful/“Malware”—the software that has a negative impact either on user’s
data or devices functionality and is designed specifically by adversarial actors.

Further, speaking of PUP, ClamAV [16] offers following thorough definition of
the sub-types (10): Packed, PwTool, NetTool, P2P, IRC, RAT, Tool, Spy, Server,
Script.

4.2 Risk Level/Threat Level

This is another categorization that is used by Anti-Virus vendors to indicate the
danger of using a particular piece of software. For example, Microsoft Security
Essentials [42] differentiates the following security levels, which are also included
in the reports on discovered malware.

1. Low—potentially unwanted programs, which, however, might have some benign
functionality with some malicious intentions.

2. Medium—software that might harm the user’s privacy.
3. High—potentially harmful programs that may misuse personal information or

make unauthorized system changes.
4. Severe—well-known malware species.

4.3 Malware Targets/Platforms/Operating Systems

Another important categorization of the malware is the target, for which such soft-
ware was developed, including types, formats and platforms. Each Operating System
and Platform dictates the way how it can be attacked, which depends on multiple
factors, security controls, user privileges, file system access mechanisms, frequency
of updates and general quality of manufacturer maintenance. Depending on this,
adversaries may exploit particular know or zero-day vulnerabilities when the attack
reconnaissance phase is finished, and some information is known about the end-user
system.

F-Secure categorization includes 49 general programming languages and platform
types [25]: AM, Android, ACAD, BAT, Boot, ChromeOS, CM, CS, DOS, HLP,
HTML, IDA, INF, INI, iPhoneOS,MSIL, Java, JS, Linux,MacOS,MMS,OM,OS/2,
OSX, PM, PalmOS, Perl, PHP, PPM, PUM, REG, SH, SMS, Solaris, SymbOS, SVL,
SWF, Unix, VBS, W16, W32, W64, W128, WM, WinCE, WinHEX, WMA, WMV,
XM.

Microsoft uses more elaborate approaches and actually differentiates three fol-
lowing items [41]:

1. Operating Systems (22): AndroidOS, DOS, EPOC, FreeBSD, iPhoneOS, Linux,
MacOS,MacOS_X, OS2, Palm, Solaris, SunOS, SymbOS, Unix,Win16,Win2K,
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Table 1 Top 10 desktop and mobile OS with corresponding version distributions

Desktop OS (%) Desktop OS version (%) Mobile OS (%) Mobile OS version (%)

Windows 88.07 Windows
10

48.96 Android 69.99 Android
8.1

13.91

MacOS 9.44 Windows
7

32.37 iOS 29.21 Android
8.0

10.28

Linux 1.87 Mac OS
X 10.14

4.80 Unknown 0.65 Android
9.0

10.12

ChromeOS 0.41 Windows
8.1

3.95 Series 40 0.06 Android
7.0

7.31

Unknown 0.19 Windows
XP

1.96 Windows
phone
OS

0.04 Android
6.0

7.08

BSD 0.02 Mac OS
X 10.13

1.78 Linux 0.03 iOS 12.1 5.69

Linux 1.36 RIM OS 0.02 Android
7.1

5.35

Mac OS
X 10.15

0.95 Symbian 0.01 Android 4.97

Mac OS
X 10.12

0.81 Bada 0.00 iOS 12.3 4.64

Windows
8

0.67 Windows 0.00 iOS 12.4 4.55

Win32, Win64, Win95, Win98, WinCE, WinNT. This list will change upon the
advancement and appearance of the new OS.

2. Scripting Languages (30): ABAP, ALisp, AmiPro, ANSI, AppleScript, ASP,
AutoIt, BAS, BAT, CorelScript, HTA, HTML, INF, IRC, Java, JS, LOGO, MPB,
MSH, MSIL, Perl, PHP, Python, SAP, SH, VBA, VBS, WinBAT, WinHlp, Win-
REG. Moreover, Windows binaries can be categorized as EXE (executable) and
DLL (Dynamically-Linked Library).

3. Macros forMicrosft Office (12): A97M,HE, O97M, PP97M,V5M,W1M,W2M,
W97M, WM, X97M, XF, XM.

4. Other file types (9): ASX, HC, MIME, Netware, QT, SB, SWF, TSQL, XML.

So, it can be seen that there is a significant separation in malware taxonomies
related to what kind of OS and platforms that can run. To give an overview of the
end-user OS market share as of February 2020, we looked into the market share
of different platforms provided by the company Net Marketshare [48]. The overall
statistics are represented in the Table1 for mobile and desktop devices. It can be seen
that Windows takes 88.07% of all installed desktop OS, while Android occupies
69.99% of devices. Surprisingly, most of the vulnerabilities and malware infections
are affiliated with these OS. We do not consider the enterprise cloud server solutions
at this moment due to generally lower cybersecurity awareness among private end-
users.
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4.4 Malware Type/General Categories

This category defines the general type of malware. Hardikar [28] suggested the
following categorization based on their functionality aspects as defined in the SANS
report:

1. Memory-based (resident, temporary, swapping, non-resident, user and kernel).
2. Payload-based (no, non-destructive, destructive, dropper).
3. Obfuscation techniques-based (no, ecryption, oligo-, meta-, poly-morphism,

stealth, armouring, tunnelling, retrovirus).
4. Target-based (compiled (file, boot sector), interpreted (macro, script), multipar-

tite).

These are also affiliated with the functional classification, dissemination methods
and behavioural aspects1. This is the most commonly used approach by anti-virus
vendors, researchers and malware labs. Further, it can be divided into sub-families
and sub-types. However, this is the complete list of 31 names given byMicrosoft [41]:
Adware, Backdoor, Behavior, BrowserModifier, Constructor, DDoS, Exploit, Hack-
tool, Joke, Misleading, MonitoringTool, Program, PWS, Ransom, RemoteAccess,
Rogue, SettingsModifier, SoftwareBundler, Spammer, Spoofer, Spyware, Tool, Tro-
jan, TrojanClicker, TrojanDownloader, TrojanNotifier, TrojanProxy, TrojanSpy, Vir-
Tool, Virus, Worm. It is worth mentioning, that over the last few years there were
removed three obsolete malware types such as Dialer, DoS, TrojanDropper.

Classification provided by F-secure [25] is more generic and consists of 12 mal-
ware types: Application, Adware, Trackware, Hack-Tool, Monitoring-Tool, Spy-
ware, Backdoor, Exploit, Trojan, Rootkit, Worm, Virus.

Symantec offers a different approach to categorization, based on the reporting and
policies definition:

• Virus/Threat types [70] (7): Crack, Damaged, False positive, Joke, Malicious,
Speculative, Phish.

• Policies-oriented configurations [69] (46): Ad-supported Program, Adware,
Adware Bundler, Adware Installer, Attack, Backdoor, Botnet, Browser hijacker,
Browser plug-in, Critical Spyware Web site, Custom Restricted Lists 1, 2, and
3, Destroyer, Dialer, Downloader, Exploit, Hack tool, Joke program, Keylogger,
Major Spyware Website, Malicious behaviour, Minor Spyware Website, Mislead-
ing Application, P2P, Parental control, Password Hijacker, Phishing, Potentially
Unwanted Software, RAT, Remote access, Rogue Security Program, Rootkit,
Security Assessment Tool, Security risk, Spammer, Spyware, Spyware Market-
ing and Tools, Stealth Notifier, Surveillance, SystemMonitor, Tracking Software,
Trackware, Trojan, Trojan FTP, Unclassified Critical Spyware, Unclassified Spy-
ware, Worm.

Avira uses a predefined set of malware type prefixes (69) in addition to malware
family name [4]: ABAP, ACAD, AM, A97M, APM, ASM, Bash, BAT, BDC, BDS,
Boo, CSC, Csh, DIAL, DOS, DR, EML, Game, HLLx, HLP, HTML, INF, INI, IRC:,
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JAVA, Joke, JS, JSc,Kit, Linux,MIRC,O2000M,097M,OS2, P2000M,P97M,Palm,
Perl, PDF, PHP, PIF, PP, Sh, SPR, SWF, Sys, TR, Unix, UWS, VBS, Vgen, VXD,
W16,W2000,W2000M,W32,W95,W97M,WB,WIN,WIN2k,WM,Worm,Wscr,
X2000M, X97F, X97M, XF, XM.

TrendMicro used the following set of malware type prefixes (34) prior to making
CARO compliant naming [72]: ADW, ALS, ATVX, BAT, BHO, BKDR, CHM,
COOKIE, DIAL, [DOS, DDOS], ELF, EXPL, GENERIC, HKTL, HTML, IRC,
JAVA, JOKE, JS, NE, PALM, PE, PERL, RAP, REG, RTKT, SPYW, SYMBOS,
TSPY, TROJ, UNIX,VBS,WORM, [W2KM,W97M,X97M, P97M,A97M,O97M,
WM, XF, XM, V5M, X2KM, X97M].

4.5 Malware Family/Functionality-Specific Categories

Depending on the specific functionality, exploitation and code similarity methods,
malware types are divided into more specific sub-types, also called families. For
example, the Ransomware malware type contains the following families: Cryp-
tolocker,WannaCry, Cryptowall, etc. Some of the family names have a clear meaning
and denotes the malicious software they are assigned to. However, the majority are
more like a machine-constructed derivative from some other names. However, the
total amount of malware families is not well-defined. From the 2016 study, it was dis-
covered 10,362 among nearly 328,000 Windows malware samples found in the first
ten archives from VirusShare [26, 62]. Further, Malware Wiki2 has one of the most
comprehensive collections of malware types that are further divided into malware
families. There are nearly 3,000 malware families’ descriptions, including history,
exploited vulnerabilities, artefacts and caused harm [81]. Some of the families are
no longer relevant since the software has been patched or just replaced with new
versions.

4.6 System and Digital Forensic-Related Artefacts

Anotherway of categorizingmalware is by the traces that they leave in the system [35,
64]. This also defines the ability of Anti-Virus to detect such malware based on
available signatures.

1. Disk-related—file operations, registry modification. However, there is a new
trend, file-less malware, which makes tracking of such artefacts less efficient.

2. Network-related—interaction with C&C centers, port scanning, etc.
3. Memory-related—any kind of memory activities such that read/write, new pro-

cesses, etc.
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4.7 Malware Variants

Malware developers are using sophisticated techniques to avoid detection such as
obfuscation, encryption and packers changes. However, the internal functionality
of malware stays the same. Therefore, it is important to denote such changes such
as variant “.BC” that will naturally follow variants “.BB” and “.BA” according to
Microsoft [41].

4.8 Malware Name Suffix

Final categorization is according to different supplementary optional material, like
threats campaign, dropper, library identifier, etc. as defined by Microsoft [41] (19):
.dam, .dll, .dr, .gen, .kit, .ldr, .pak, .plugin, .remnants, .worm, !bit, !cl, !dha, !pfn,
!plock, !rfn, !rootkit, @m, @mm.

4.9 Binary Compilation Timestamps/Timeline

One of the challenges is that there is no clear and trustworthy information on when
the malware was exactly created [60], making timeline analysis irrelevant. However,
one can consider using time-related fields from VirusTotal reports as an indicator of
when the malware first draw attention and was uploaded to the website (Fig. 2).

Fig. 2 Distribution of malware creation timestamps from VirusShare_00000 archive [60]
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4.10 Country/Adversarial Groups Origins

Malware developers use advanced methods to hide their origins (country or region-
specific), sometimes pretending to be from one or another geographic location based
on user language in the source code or comments [54]. Because any information
containing in malware may be fake, such origins definitions are rather speculations
than “ground truth”.

5 Review of the Existing Anti-virus Naming Schemes

The section presents an overview of the Anti-Virus vendors standards and malware
naming initiatives. To our knowledge, there has not been done relevant academic
adaptation for the research, even though, those approaches have been mentioned by
cybersecurity researchers. To our knowledge, there are no commonly used standards.
However, CARO seems to have a long-standing initiative that is accepted by at least
Microsoft and Trend Micro.

Malware Naming in principle is a cumbersome task because one malware can be
classified differently from the perspective of the functional taxonomy. The challenge
with malware categorization and malware naming, in general, had been seen already
for many decades and several researchers raised this topic. Impre [29] indicated
difficulties of proper classification as Big Data problem with 700 million malware
samples in Q1 2017. Besides existing malware analysis techniques, the author ana-
lyzed a few existing approaches to malware naming accepted by Anti-Virus vendors.
There are different needs for incident response, tracking malware relations and pre-
liminary analysis that will dictate with a scheme to use. Zeltser [85, 86] identified
that there were twomajor efforts made to address the changing nature of the malware
landscape since mid-2000. As a response to multiple malware infections, analysts
started assigning eye-catching names to malware campaigns like CryptoLocker or
WannaCry. The author shows an example of how Duqu was named after “DQ” pre-
fix that the malware used. Mo [46] performed a study of 30 most common malware
samples using Metascan engine. It was shown that there is a considerable lack of
consistency and agreement between different Anti-Virus engines. Some of the ven-
dors call, for example, trojan as a worm and vice-versa. Mitre tried to address those
issues by suggesting new solutions in addition to the CARO naming scheme.

5.1 Computer Antivirus Research Organization (CARO)

Computer Antivirus Research Organization (CARO) had been established in 1990,
to facilitate the study and research in malware analysis [11]. They published the
so-called CARO naming scheme or Virus Naming Convention of computer viruses.
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The original idea was to reduce confusion in malware names. Many anti-virus ven-
dors subsequently used this naming scheme to establish their standards. Since 2007,
CARO workshop happens every year, where security experts meet to discuss chal-
lenges and opportunities.

The main idea of this naming is to have a clear separation into Type, Platform,
Family, Variant and Additional Information that is used to mention additional useful
information. The Type part indicates a general malware category such that Trojan
Horse, Rootkit, Worm, etc. According to Microsoft [41], there are 31 malware types
and 22 Operating Systems. The Family part should indicate what a specific mal-
ware group based on the similarity in code or functionality. Such similarity helps
researchers to get more details regarding virus from previously analyzed members
of this family. Despite the long existence of such a scheme and the involvement of
multiple Anti-Virus vendors, it was not widely used in the industry. For now, only
Microsoft applies this method to labelling their malware signatures. The general
structure of the naming looks as follows:

Listing 1 CARO naming convention
[<type >://][ < platform >/]<family >[.<group >][.<length

↪→ >].<variant >[<modifiers >][!<comment >]

5.2 Common Malware Enumeration (CME)

Common Malware Enumeration (CME) is another approach to establish a standard
in malware naming with a particular focus on merging the indexing approaches
utilized by different anti-virus vendors [45]. It was announced in 2005, as a result
of inconsistencies and lack of communication between anti-virus vendors and very
similar toCommonVulnerabilities andExposures (CVE), also developed byMITRE.
In contrary to the per-file naming of viruses, CME offers a unique treat identification
that is independent of variants or number of files that are assigned to a particular
family or attack. By identifying a major outbreak, there is a unique code that is
being assigned in the form of CME-N, where N is an integer. Meanwhile, anti-virus
vendors can assign such CME identification to their naming of malware. However,
the threats identifiers on the website show the last update was in 2007, and the report
by Bontchev [9] stated a large number of weaknesses and problems with CME in
comparison to CARO naming. Despite the efforts and promising results, we can
conclude that the CME scheme is not in use anymore. CME uses unique identifiers
that are further linked to specific malware infections detected by different Anti-Virus
Vendors.

Listing 2 CME identifier
CME -540: Symantec \rightarrow "w32.zotob.e", Sophos \

↪→ rightarrow "W32/Tpbot -A", \dots
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5.3 Malware Attribute Enumeration and Characterization
(MAEC)

Malware Attribute Enumeration and Characterization (MAEC) is a community-
developed malware naming models based on the behavioural information, system
artefacts and specific relationships betweenmalware samples [32]. It ismaintained by
MITRE and can be reinforced by Structured Threat Information Expression (STIX)
cyber observable high-level objects.2 An example of Zeus botnet samples is shown
below

Listing 3 MAEC malware description
{

"type":"package",
"id":"package --f53adac8 -c416 -42c6 -6fbc -7

↪→ b6ef8876fc5",
"schema_version":"5.0",
"maec_objects": [

{
" type ":"malware -family",
" id ":"malware -family --df91014d -0c2e

↪→ -4e01 -b8a5 -d8c32bb038e6",
" name ": {

"value":"Zeus",
"confidence":90

}
}

]
}

5.4 Malware Information Sharing Platform (MISP)

Malware Information Sharing Platform (MISP) [50] is developed with a primary
goal of facilitation of incident response, where malware classification schemes with
machine-readable tags human-readable descriptions are essential components. An
example of botnet classification taxonomy is shown below (Fig. 3).

6 Analysis of Existing Approaches to Malware
Categorization

As we have shown below, over a few decades, since 1990s, there have been devel-
oped multiple schemes to approach malware naming. However, the main challenge

2https://maecproject.github.io/documentation/overview/.

https://maecproject.github.io/documentation/overview/
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Fig. 3 MISP taxonomy [50]

in malware naming is diversity in malware functionality, attack vectors and sev-
eral malicious software samples. The optimal way is to use multi-faceted taxonomy
that can provide an accurate description of malware categories, as well as facilitate
human-understandable labelling.

From the literature, we can see that the problem of malware naming attracted
the attention of a few companies, while still there is no unified format that may
facilitate faster and better malware detection based on previous knowledge. One of
the studies [29] provided a recommendation of choosing CARO naming for general
classification due to its solid foundation, while for incident response, theremight be a
need to employ additional mechanisms. OPSWAT [46] stated that CARO consortium
did not convince other Anvi-Virus vendors to use this approach. While others tried
their solutions like CME, they did not succeed over CARO. BitDefender [8] in
2006, state that CME is a very perspective and intelligent approach, however, has
major limitations concerning tremendous speed that Anvi-Virus industry is moving
forward. Finally, in 2005, one of the founders of CARO—Vesselin Bontchev [9],
highlighted a few major challenges in Anti-Virus naming conventions. Generally,
Bontchev advocates for the usage of CARO due to well-through naming standards
and restrictions to avoid confusion and mixed naming. Further, he criticizes CME
initiative due to many limitations that might easily lead to malware being named
without CME identifier and vice-versa, one malware being assigned to several CME
identifiers such as Zotob.E has two different CME numbers. Finally, 73% of the
vulnerabilities in the SANS RISK bulletin has no CVE numbers making CME less
applicable.

It is notable how the AV industry has grown: from 5,000 new malware programs
per month according to Bontchev on 13 October 2005 to 595,010 distinct malware
files per day identified by at least one vendor in VirusTotal as of 10th of February,
2020 [78]. We can guesstimate around 3,563% increase in daily malware samples
appearance over 15 years. To the authors’ knowledge, not every AV vendor has
adopted CARO naming: only Microsoft consistently use it over many years and
TrendMicro have recently adopted it in July 2018.
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7 Practical Implications of Malware Naming in the Light of
Big Data

The general challenge is that a single malware samples can be attributed to multiple
malware categories and families. To demonstrate the example of malware labelling,
we refer to the VirusTotal scanning result of the file named “VirusShare_0c5e15ea8c
92f33396fe3fb85d7a7fbf” andMD5 hash sum 0c5e15ea8c92f33396fe3fb85d7a7fbf
[76]. A fraction of 26 Anti-Virus reports is presented in the Fig. 4.

However, the diversity of the used naming approaches draw significant atten-
tion. There were few examples of consistency among Anti-Virus vendors such as
Trojan.Downloader.Zlob.ABKL is used by the 7 following companies: Ad-Aware,
Emsisoft, eScan, Arcabit, BitDefender, F-Secure, GData. Furthermore, among all
reports, 49 out of 70 AV classified these files as malicious software with the follow-
ing keywords (types) used in labels: “Zlob”—28 vendors, “Trojan”—27, “Win32”
or “W32”—21, “Downloader”—19 and “Generic”—5. This drastically changes the
efforts of malware analyst to find the most likely classification result. Finally, only
Microsoft specified malware family name “Detplock” has used the CARO naming
scheme approach: Trojan:Win32/Detplock. Trend Micro adopted CARO naming in
2018 [40]; however, this company named the aforementioned malware samples as
Undetected/Non-malicious. As a result of these considerations, we have to put for-
ward the following needs (i) fostering cooperation between AV vendors through
public dialogue involving domain experts, (ii) unification of the malware naming
format, possible towards CARO scheme, (iii) utilization of advancing processing
mechanisms like AVCLASS tool to extract as close label as possible.

The main problem with malware naming is the consistent growth in the known
malware samples pool.VirusTotal receivesmore than amillionfiles scanning requests

Fig. 4 Example of 26 Anti-Virus naming reports for the executable file with MD5 has sum
0c5e15ea8c92f33396fe3fb85d7a7fbf [76]
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Fig. 5 Statistics of the
malware types and families
328,000 Windows PE32
malware samples [59, 61]

per day, with more than half of this amount classified as malicious samples by at
least one of the anti-virus vendors. One of the extensive studies in 2016, investigated
naming of 400,000 of Windows Portable Executable 32bit (PE32) files [26, 62].
Based on the analysis of the JSON reports fromVirusTotal, it became clear that there
is no unified approach for malware labelling bringing the task of proper malware
type and family labelling to an almost impossible one. However, 328,000 malware
samples were labelled as malicious by Microsoft, which also meant that the CARO
naming scheme was used. Therefore, it is considered as one of the most extensive
multinomial malware studies [59]. The statistics of the malware types and families
are shown in the Table5.

Further, Fig. 6 presents how the 35generalmalware types and10,362more specific
malware families are distributed based on the count of each category. The most
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Fig. 6 Distribution of malware types and families over 328,000 Windows PE32 malware sam-
ples [59]

frequent malware type is “trojan” detected in 76,932 malware files, while examples
like “flooder” and “remoteaccess” were only found in 3 cases. While most of the
malware types of names can be explained, the process is not that trivial with malware
families. For example, “bho” corresponds toBrowserHijackObject (BHO); however,
“Lolyda” family does not represent anything except that we know that it is a gaming
trojan.

So, from the most extensive collection of malware reports by different anti-virus
in VirusTotal, there can be seen a high level of irregularity and diversity. For example,
Trojan Downloader called Zlob [76] shows that each Anti-Virus vendor assigned a
unique name, which is not only differed by malware name, but also by the name
components format and order.

8 Discussions and Conclusions

The amount of malware being discovered everyday grows exponentially. The num-
ber of platform variants, programming languages, exploitation ways, vulnerabilities
and delivery techniques is huge considering the heavy development of new hardware
and software in recent decades. We discovered that there is a growing interest in
multi-class malware detection since 2009. The evolution of malware is affected by
the current usage of technologies. Despite multiple attempts since 1990s to unify
the approach of malware categorization and labelling, only a few comply with the
community-accepted CARO naming scheme. Another discovery of this study is,
despite the existence of CARO, there is still no unified standard for malware taxon-
omy since everymalware lab and anti-virus vendors use their practices while keeping
the general names in the reports, so it can be correlated globally with others. This
can be seen from VirusTotal’s 70 anti-virus reports, as a de-facto standard tool for
malware analysis. Then, we practically confirmed that the challenge with categoriza-
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tion is that manual analysis of a large number of samples may not be feasible in a
short timeframe to issue adequate protective measures and proper unique identifica-
tion within the range of existing families. Finally, some of the malware is no longer
usable and outdated, while others use zero-day vulnerabilities and have not been
discovered yet. As a future direction, we see a need for more work towards the uni-
fication of malware labelling, better cyber threats intelligence exchange and general
public-oriented cybersecurity awareness campaigns to reduce the risk of malware
infection.
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Addressing Malware Attacks on
Connected and Autonomous Vehicles:
Recent Techniques and Challenges

Aiman Al-Sabaawi, Khamael Al-Dulaimi, Ernest Foo, and Mamoun Alazab

Abstract Part of the wider development and monitoring of smart environments for
an intelligent cities approach is the building of an intelligent transportation system.
Such a system involves the development of modern vehicles which significantly
improve passenger safety and comfort, a trend that is expected to increase in the
coming years. There are key factors relating to safety impacts and security vulnera-
bilities that may emerge during the increased deployment of automated vehicles and
the security and privacy of connected and automated vehicle systems. They include
ways of defining the security of malware-relevant system boundaries including elec-
tronic control units, silicon hardware, software, vehicle systems, infrastructure, net-
work connectivity andmore. In addition, vehicle industries are facingmany problems
with critical security and privacy issues, influenced by the smart environments for
an intelligent cities approach. Such problems are related to hardware and software
applications that allow the interfacing of Vehicle to Vehicle (V2V) and Vehicle to
Infrastructure networks (V2I). In this chapter, we present connected car methods
relating to the attack, defence and detection of malware in vehicles. Critical issues
are introduced regarding the sharing of safety information and the verification of the
integrity of this information from V2V and V2I networks. In particular, we discuss
the challenges and review state-of-the-art intra–inter-vehicle communication. Hack-
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ers can access this information in V2V/V2I networks and broadcast fake messages
and malware to break the security system by using weak points in vehicles and net-
works. We present important security approaches that are used in vehicles which can
fully protect the vehicle security architecture by detecting the attempts made and
the methods used by hackers to tackle malware and security problems in vehicles.
We present a comprehensive overview of current research on advanced intra-inter-
vehicle communication networks and identify outstanding research questions that
may be used to achieve high levels of vehicle security and privacy in intelligent cities
in the future.

1 Introduction

Smart city or smart building technology has been advancing in recent years due to
the development of communication technologies and wiring which are associated
with the fields of power, health, education, industries and transportation. Buildings
are becoming more complex, with interconnected Internet of Things (IoT) systems
offering technological equipment and cost-efficient buildings and energy. The infras-
tructure of the IoT is still developing and offers many benefits for humans includ-
ing monitoring asset movements, turning lights on/off as needed, optimizing room
occupancy, air conditioning systems, health systems, vehicular and road connected
systems, security systems (monitoring camera systems) and location systems [38,
49].

The IoT enables cities to grow and expand. Officials in cities with the technology
of the IoT can access valuable data to gain a better understanding of their city’s
operations. Those data enable the control of traffic, the empowerment of local law
enforcement, allow improved security of connected vehicles, monitoring of the envi-
ronment and enable city-wide connectivity and tracking of parking efficiency. These
cities play a significant role in fostering creativity and innovation. The creation of
customized IoT applications positions cities at the technological forefront which, in
turn, attracts new residents and businesses. Intelligent transportation systems, mon-
itoring the way people commute in metros and smart cities, are one benefit. An
intelligent transportation system offers a novel approach to the provision of different
transportation modes, advanced infrastructure and traffic and mobility management
solutions. It uses a number of electronic, sensor, wireless and communication tech-
nologies to provide consumers with access to a smarter, safer and faster way of
travelling [38, 49].
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1.1 Important Technologies in Intelligent Transportation
System in Smart Cities

1. Advanced Tracking System: modern vehicles are connected with in-vehicle GPS.
The GPS system can offer two-way communication, helping traffic profession-
als to locate vehicles, check speeding vehicles and provide emergency services.
Smartphones, mobile applications and Google Maps have become useful tools in
tracking, understanding road quality, traffic density and locating different routes
and places.

2. Advanced Sensing Technologies: These include intelligent sensors both in vehi-
cles and road infrastructure. Radio Frequency Identification (RFI) and intelligent
beacon sensing technologies are ensuring the safety of drivers in cities worldwide.
Road reflectors and inductive loops are built into roads, assisting with traffic con-
trol and safe driving, especially at night. They can also provide information about
vehicle density at particular times and can identify vehicles at both slow and high
speeds.

3. Advanced Video Vehicle Detection: Video cameras or CCTV surveillance can
solve many problems for traffic managers. Video footage of strategic places and
prime junctions can help operators observe trafficflowand identify any emergency
situation or road congestion. In-built vehicle sensors and automatic number plate
detection help to check vehicles for security purposes.

4. AdvancedTrafficLight Systems:RadioFrequency Identification (RFID) is used in
traffic light systems. This technology can offer correct algorithms and databases
even when applied to multiple lanes, road junctions and vehicles. These lights
can adjust themselves during critical and peak hour traffic situations without any
human presence.

5. Emergency E-Call Vehicle Service: During an emergency situation such as an
accident or mishap, in-vehicle sensors can establish contact with a nearby emer-
gency centre. An e-call will help a driver to connect to a trained operator and also
transmit important information such as time, location, direction of vehicle and
vehicle identification directly to the centre [38].

1.2 Benefits of Intelligent Transportation System

1. Minimizing Pollution: An intelligent transportation system aims to promote the
use of public transport by the general public. If it provides single-point services
and access to real-time information about the transport schedule, people will
prefer to use an intelligent transportation system and reduce private vehicle usage,
thereby lowering traffic congestion and lowering pollution levels.

2. Security and Safety: Advanced sensing technologies help to provide emergency
and critical care services to drivers and people when required, such as real-time
data analysis, including CCTV, GPS, internet connectivity and wireless and virus
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and malware detection [12]. Surveillance of public transportation also helps to
alert city managers to the risk of terror elements and to avoid mishaps or terror
attacks.

3. Market for Mobile Applications: Recently, modern transportation has come to
depend more on smartphones and mobile applications to identify parking spots,
route guides, destination points, weather forecasts and arrival and departure
details.

4. Smart Parking Solutions: Smart parking solutions, combined with appropriate
infrastructure, internet connectivity and security cameras, can minimize parking
problems. Many urban areas now have multi-layer parking systems. There are
also many applications which provide users with information about free parking
spaces available nearby [38].

1.3 Challenges of Intelligent Transportation System

To support these benefits and sophisticated features in an intelligent transportation
system, modern vehicles are developed using software, an assortment of embedded
computing devices, sensors, communication interfaces and actuators. However, these
lead to many challenges that affect human life and safety [23].

Vehicle industries predict that as the cost of software and electronics fall, security-
related incidents will become a serious threat. Exploiting vulnerabilities in the vehi-
cle’s electronics may allow the remote control of vehicle components. An attacker
can turn off the vehicle’s lights or even control the brakes while on the move [30].
More recently, attacks on production vehicles, for example, exploiting vulnerabil-
ities in Fiat/Chrysler’s Uconnect system, enabled hackers to control the vehicles,
turning off the engine and controlling the steering over the Internet [24, 49], with
the company urging owners to update their vehicles’ software to patch the identified
vulnerabilities [49].

Moreover, many of the enhanced services of these modern inter-connected vehi-
cles rely on the location of the vehicles and their drivers, information that, by its
nature, gives rise to significant privacy concerns. Securing the various heterogeneous
hardware and software platforms and networks in the intelligent transformation sys-
tem ecosystem is still a challenging task. While security is an important key in var-
ious aspects of smart vehicle-related Information and Communications Technology
(ICT) deployments, many aspects of efficient intelligent transportation operations
have safety issues and other Quality of Service (QoS) characteristics which may
limit the applicability of complex security initiatives. Therefore, potential solutions
should be considered for these limitations by identifying attack type, defence and
detection [23].

Given the advantages of a connected vehicle, security in vehicle networks and
their characteristics and issues, it is crucial to understand how current intelligent
transportation systems can be adapted toworkwith smart environments for intelligent
cities. In this chapter, we provide an overview of connected vehicle methods in
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intra-inter-vehicle communication. We then provide a survey of the recent history
of three key features in-vehicle security and malware: attack, defence and detection.
There has been extensive research in each area and many studies address intra–
inter-vehicle communication, which is a critical problem in-vehicle technology. The
following review critically describes the literature regarding the identification of
attacks such as malware and their types and the defences and solutions in intra-
inter-vehicle communication. The detection issues and challenges for each type of
communication will be presented. The literature also includes the recent techniques
and their challenges and issues regarding vehicle security from malware including
attacks, defences and detection in intra-inter-communication networks. The objective
of this chapter is to help researchers to address these challenges in future work and
in the further investigation of attacks, defences and detection, as well as to make
significant changes to the design of vehicle systems to improve automotive security
and prevent any malware and cyber terrorists from attacking vehicles.

This chapter is organized as follows: the first section presents a comprehensive
overview of the vehicle connectedmethods, including attacks, detection and defence.
In the second section, recent techniques and their challenges are discussed. The third
section comprises the conclusion of the chapter.

2 Literature Review

Because modern technology has introduced more intelligence and complexity into
the car industry, researchers are required to take greater responsibility for both safety
and security. Vehicle security is different from vehicle safety, which includes vehicle
speed [10] and vehicle integrated design [21]. Vehicle security, however, is essen-
tial to delivering vehicle safety from malware [45]. With a connected environment,
vehicles, infrastructure and pedestrians can exchange information, either through a
peer-to-peer connectivity protocol or a centralized system via a 4G or more advanced
telecommunication and security network. This technology has the potential to be one
of the most disruptive technologies for urban and smart cities. The interaction and
exchange of information regarding the use of malware may occur in V2V, V2I,
pedestrian-to-infrastructure (P2I) or vehicle-to-pedestrian applications (V2P) [52].

Vehicle security covers many aspects including immobilizers, car-to-car commu-
nication, car-to-infrastructure communication, car-to-X communications, cloud and
smartphone or smart device [13]. Recently, security analysis has been investigated
in vehicle production and it was discovered that there are many reasons for security
development. By accessing the in-vehicle 3G or Bluetooth, an attacker may tamper
with the brakes while people are driving cars. In addition, car thieves have the abil-
ity to exploit security breaches in keyless-entry systems or to generate spare keys
by using the on-board diagnostic system or using malware. Today, the weakness of
security measures in vehicles can cause many financial problems, such as decreas-
ing mileage to extend warranty claims by illegal chip adjusting [48]. Connected car
methods are shown in Fig. 1.
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Fig. 1 The concept of the connected car

1. Car-to-Car communication: This term refers to inter-vehicle communication
exchange between two cars, for example, to warn others of a change in the road
surface, obstacles on the roadway or other dangers.

2. Car-to-infrastructure communication: This refers to communication between cars
and components of the infrastructure usingwireless communication. Components
of the infrastructure include nodes in a cellular network or intelligent traffic signs
that can be utilized to establish car-industry communication, infotainment plat-
forms or the Internet.

3. Car-to-X communication: This term refers to the sending and receiving of data
between cars, the infrastructure, other transport, traffic management systems and
different Internet applications. While other communications receive and process
information, cars can also exchange information.

4. Smartphone or smart device: Given the implementation of common modern tech-
nology, smartphones, tablets and smartwatch use is widespread and they become
an obvious goal in the communication system, as shown in Fig. 2.

5. Cloud: Computing can exchange data from cars and data stored in the (Cloud) by
using the Internet, as shown in Fig. 3.
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Fig. 2 Connection types [33]

Fig. 3 Simple car connections
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Fig. 4 Connected car environment [58]

In recent years, electronic systems in vehicles have been controlled by an Elec-
tronic Control Unit (ECU). The controller Area Network (CAN) uses an in-vehicle
network to structure an effective network of ECUs [58].

The ECU is an important component in automotive application components that
can control one or more of the electrical systems and subsystems in cars [57]. The
on-board architecture of vehicles can contain more than 70 ECUs [17] that can
interconnect via different networks such as Local Interconnect Network (LIN), CAN
or FlexRay [1, 40]. In fact, CAN use has become widespread because it significantly
reduces the number of communication lines and ensures the reliability of higher data
transmission [28], as shown in Fig. 4.

Recently, due to increasing penetration of smartphones and advanced communi-
cation technologies, Global Positioning System (GPS) data [54, 56], media access
control (MAC) addresses fromBluetooth andWi-Fi components [14, 20] andmobile
phone data [15, 16] are becoming available for the analysis of traffic conditions or
even travel behaviour and security in vehicles. The data sources listed above are
important in developing and monitoring smart environments for intelligent cities.
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With such characteristics, more detailed analysis of attack, detect and defence of
vehicle security could be conducted.

2.1 Attack

One of the effects of the extensive introduction of technology in vehicles is car hack-
ing usingmalware [8]. Nowadays it could be conducted to exploit a new generation of
vehicles that are even more connected to wireless networks, to the Internet, and with
each other [41], as shown inFig. 4.Vehicles inVehicularAdhocNetworks (VANETs)
transmit self-information to fixed remote nodes such as their speed, direction, acceler-
ation and traffic conditions. For example, Dedicated Short-Range Communications
(DSRC) are emerging as a standard to support IEEE 802.11 in communications
between vehicles. FCC has allocated a 75 MHz of DSRC spectrum at 5.9 GHz to
be used in VANETs communications. There is also an IEEE P1609 working group
which has proposed DSRC as the IEEE 802.11p standard which gives specifications
for a wireless Medium Access Control (MAC) layer and a physical layer for Wire-
less Access in Vehicular Environments (WAVE) [39]. Attacks on VANETs create a
large number of issues for all network users by using different types of attacks, such
as malware [53]. In this chapter, two types of attacks using malware are addressed,
namely attacks on Inter-vehicle communication (IVC) and attacks on Intra-vehicle
communication. Car methods are shown in Fig. 1.

2.1.1 Attacks on Inter-Vehicle Communication (IVC)

Several years ago, work on Inter vehicle communication (IVC) started in industrial
research labs and academic institutions. To date, some academic research teams have
started addressing security issues in vehicles, however, some research projects are
still highly theoretical and do not suggest realistic solutions [26]. In [45], various
perspectives on IVC security were considered and the focus was on secure position-
ing and privacy problems. In this chapter, classifying and identifying the types of
attacks in IVC aims to suggest practical solutions.

–Denial of Service Attack (DoS)
The purpose of (DoS) attacks is to prevent legal users from accessing services or
data in computer networks. In vehicular networks, this attack jams and overflows the
traffic with huge volumes of irrelevant messages that negatively affect communica-
tion among the nodes of the network, roadside units and on-board units. There is a
huge number of high-powered computing facilities in close proximity to the target
because the vehicle under attack is part of the vast infrastructure of the Social Internet
of Vehicles (SIoV) embedded in a smart city environment. An attacker can use these
for jamming attacks on the target’s on-board sensory tool or use malware attacks,
thereby countering the ability of the target vehicle to detect irregular messages dur-
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Fig. 5 DOS attack in V2V communications

ing collaboration with its local information resources. A voting scheme can address
the issues of DoS attacks [36]. However, if attackers can produce false identities
to masquerade themselves, voting schemes may fail [32]. According to [34], DoS
attacks have three levels:

First level (Basic Level): Overwhelm the Node Resources. The goal of the attacker
is to overwhelm the node resources so that other important and necessary tasks can-
not be performed by their nodes. These nodes become constantly busy and use all
the resources to check the messages.

• Case 01: DOS Attack in V2V Communications. A warning message is sent by an
attacker (Accident at location Y) and this message is received by a victim node
behind the attacker node as shown in Fig. 5. The attacker continuously repeats the
sending of the same message, so the victim node is kept busy and is completely
denied access to the network [46].

• Case 02: Launch DOS Attack in V2I Communications as shown in Fig. 6, an
attack is launched on a Road-Side Unit (RSU). Any other nodes that attempt
to communicate with the RSU will be unable to get any response from the RSU,
therefore, the service is unavailable when the RSU is continuously busy attempting
to verify the messages. The key risk, in this example, is the inability to send critical
life information [46].

Second Level (Extended Level): Jamming the Channel. The highest level of DOS
attack involves Jamming the Channel, therefore, denying other users’ access to the
network. There are two possible cases:

• Case 01: A high-frequency channel, sent by an attacker, jams the communication
among any nodes in a domain as shown in Fig. 7. Messages cannot be sent or
received by these nodes in that domain (services are not available in that domain
due to this attack). It can send and/or receive messages when a node leaves the
domain of attack [46].

• Case 02: Jamming the communication channel between the nodes and the infras-
tructure. In Fig. 8, an attack is launched near the infrastructure to jam the channel.
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Fig. 6 Launch DOS attack in V2I communications

Fig. 7 A domain of jammed channel for vehicle-to-vehicle communications

Fig. 8 Source denial of service (DOS) attack and its possible solutions in VANET

As a result, the network breaks down. In this way, because the network is unavail-
able, sending and/or receiving messages and/or malware to/from other nodes is
not possible and would fail.

Third Level: Distributed Denial of Services (DDOS): DDOS attacks are more
serious in the vehicular ad hoc network (VANET) because of the distribution of this



108 A. Al-Sabaawi et al.

Fig. 9 DDOS in vehicle-to-vehicle communications

Fig. 10 DDOS in vehicle-to-infrastructure communications

attack which spreads over a wide area of the network. The attacker can launch attacks
from various resources. The two possible cases [27] are

• Case 01: An attack is launched from various resources and different time slots
may be used to send the messages. These messages and time slots may differ from
node to node. The objective of this attack is to make a network unavailable by
bringing the network down at a goal node. Figure 9 shows three attackers, black
cars (nodes), sending messages to a red car (target node) in front. After a period
of time, the goal node cannot connect with any other nodes in the network.

• Case 02: The VANET infrastructure (RSU) is the target of attack as shown in
Fig. 10. Three attackers in the network launch an attack on the infrastructure from
various sources. The infrastructure is overloaded, causing a denial of service when
other nodes in the network want to access the network.

– GPS Spooling Attack
This attack tries to fake a GPSReceiver by broadcasting false GPS signals, structured
to match a set of normal GPS signals, or by rebroadcasting genuine signals captured
elsewhere or at a different time. The attacker may modify these spoofed signals
in such a way by using malware to cause the receiver to estimate its location to be
somewhere other thanwhere it actually is, or to be locatedwhere it is but at a different
time. GPS spooling detection requires swiftness and accuracy. In many GPS-based
applications, it is critical to detect GPS spooling attacks as soon as possible, as
shown in Fig. 11. GPS has been used in wide-area monitoring systems (WAMSs) in
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Fig. 11 Illustration of time-critical spooling detection in power grid system [33]

the power grid [63]. WAMS consists of frequency disturbance recorders (FDRs), a
communication network and a monitoring system server. Each FDR is provided with
a GPS receiver to obtain its position and accurate timing [50].
–Masquerading and Sybil
In a masquerading attack, a vehicle conceals its identity and appears to be legal in
the vehicle network. Strangers can conduct attacks, such as injecting false messages
or malware. In a Sybil attack, the attackers create several identities, appearing to be
several legal vehicles at the same time. They can artificially damage a roadway and
impact on the decision making of the other drivers during smart routing systems. In
this attack mode, a vehicle can claim several locations concurrently, that can lead to
traffic congestion [35].
– Impersonation Attack
The attackers steal the identity of a legal vehicle and can then broadcast security
messages on the behaviour of that vehicle. These messages can affect the decision-
making of other drivers and generate traffic issues. In [19], a method called Building
Up secure Connection along with Key factors (BUCK) has been proposed to detect
and separate the impersonation attack.
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Fig. 12 OBD-II [25]

2.1.2 Attack on Intra Vehicle Communication

– Indirect physical access
Inmodern vehicles, the internal networks can be accessed either directly or indirectly
by several physical interfaces:

• The OBD-II port, as shown Fig. 12, is the most significant automotive interface
that can provide direct access to the vehicle’s key CAN buses. It provides service
personnel with sufficient access to the full range of automotive systems, allowing
routine maintenance for both diagnostics and ECU programming [18]. Attackers
can also access the in-car entertainment system, for example, introducing false
code into MP3 files when playing the file and inserting malicious information and
malware in the in-vehicle entertainment system without the owner’s knowledge
[61].

• Entertainment includes Disc, USB and iPod. A USB port or an iPod/iPhone dock-
ing port is external digital multimedia ports provided by vehicle manufacturers,
allowing users to control their vehicle’s media system by using their personal
phone or audio player. Thus, an attacker can deliver malicious information and
malware by using encoding algorithms as a song file on a CD and convincing the
user to play it by using social engineering. Also, it may compromise an iPod or
the mobile phone of the user and install software on them that can help to attack
the media system in a vehicle when connected.

– Short-Range Wireless Access
There are many drawbacks in indirect physical access to the network, including
challenges to precise targeting, the inability to control the time of compromise and
its operational complexity. Therefore, the ability of an attacker to locate a vehicle’s
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Fig. 13 Remote keyless entry [37]

Fig. 14 Tire pressure
monitoring system [3]

wireless interface for devices is required to weaken that ability over a Short-Range
Wireless Access [18]. Examples include the following:

• Bluetooth has been used to support hands-free calling in vehicles and it is sold by
all vehicle manufacturers. Generally, Bluetooth devices used in vehicles have a
range of 10m. Themanagement services component of the Bluetooth stack is often
implemented in software, while the Bluetooth protocol is typically implemented
in hardware [45].
For example, the attacker can place a wireless transmitter close to the vehicle’s
receiver device. The hackers need to know the vehicle’s Bluetooth MAC address
to exploit the vehicle’s vulnerability without physical contact [61].

• Remote Keyless Entry: automobiles have been equipped with RF-based remote
keyless entry (RKE) systems to open doors from a distance, flashlights, switch on
the engine of the vehicle and activate alarms, as shown in Fig. 13.

• Tire pressure: Modern vehicles have used a system to support a Tire Pressure
Monitoring System (TPMS) to warn a driver about over- or under-inflated tires. It
is called Direct TPMS and uses rotating sensors to transmit digital telemetry, as
shown in Fig. 14.
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– Long-Range Wireless
Modern vehicles include long-distance wireless digital access channels greater than
1 km. These comprise two categories (Adam, 2011):

• Broadcast channels are not specifically aimed at a given vehicle but can be (tuned
into) by receivers on request to be a part of the external attack surface. Long-range
broadcast media, such as control channels (to make attacks), can be attractive.
Because they are difficult to detect, malware can control multiple receivers at
once and does not need attackers to get an accurate address for their prey. There
is a plethora of broadcast receivers for long-range signals in modern vehicles
that include Global Positioning Systems (GPS) (Honda/Acura, GM, Toyota, Saab,
Ford, Kia, BMW and Audi). Remote telematics systems are the most significant
systems targeted in long-range wireless attacks, with companies, such as Ford
(Sync), GM (OnStar) and Toyota (Safety Connect) supplying their vehicles with
data networks and cellular voices that provide numerous features, such as (1)
supporting safety (crash reporting); (2) convenience (hands-free data access such
as driving directions or weather); (3) diagnostics (early alert of mechanical issues);
and (4) anti-theft (remote track and disable).

• Cellular channels also have many features vulnerable to attack over considerable
distances by using malware, in a mostly covert way, because of the wide coverage
of the cellular data structure and its relatively high bandwidth. Moreover, they are
two-way channels “supporting interactive control and data ex-filtration” (Adam,
2011) and are individually addressable.

2.2 Defence

In the last decade, vehicle industries have been facedwith critical security and privacy
issues when they developed telematics systems. These issues relate to everyday
applications that allow interfacing between vehicles and humans and vehicles and
infrastructure. The current risks that face vehicle architectures are wireless security
break-ins and sensors, but future automotive architectures and systems will increase
these risks and, therefore, they need to bemitigated. Vehicle systems can be protected
from (hackers) and infectious viruses using malware that will, from the consumer’s
perspective, have a direct impact on trustworthiness, the vehicle’s safety dynamics
and quality. Hacking occurs by taking full advantage of the telematics and wireless
features that have become an important part of the vehicle, performing the function of
an electrical system brain in the vehicle. Therefore, this allows the module to become
the open input to the world. There are two potential solutions to defend against an
attack [47].
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2.2.1 Inter-Vehicle Communication Solution

This solution combines cryptography and data security with the packet data session
through (TCP/IP) and the voice service. A number of researchers have proposed
trying to secure V2V networks, but these methods are not sufficient to efficiently
provide safety and security [47]. Many attempts have addressed this technique. In
[22], a new technique was proposed, namely Elliptic Curve cryptography and Digital
Signature Algorithms (ECDSA), by using two parties (a remote agent and network
embedded system) to create a 128-bit symmetric key and encrypting all transmit-
ted data through the Advance Encryption Scheme (AES). An Identity-based Batch-
Verification (IBV) technique that creates a private key for use in [62]. It does not
require a certificate and it will verify each received signature within 300 ms. How-
ever, it relies on (the Dynamic Short-Range Communication (DSRC) protocols). The
research of [44] investigated how much the Medium Access Control (MAC) proto-
col can acquire through both quality of Service and security necessity for vehicle
network safety applications and how to design an efficient MAC protocol to acquire
the safety-related vehicle networks.

2.2.2 Intra-Vehicle Communication Solution

As automotive industries began utilizing more and more electronics in vehicles,
huge wire harnesses, that were expensive and heavy, were the result. Specific wiring
was then replaced by in-vehicle networks, which reduced wiring weight, complexity
and cost. CAN, a high integrity serial bus system for intelligent networking devices,
emerged as the standard in-vehicle network (see Fig. 15). It requires data transmission
security between the vehicle’s ECU via a CAN Bus which is a protocol for an open
and unsecured vehicle. Vehicle companies have no concerns about the security of
this type of communication because of the low risk of remotely accessing the CAN
Bus. The only way of accessing the CAN Bus is by using an On-Board Diagnostic
(OBD) connector that can connect a diagnostic tool physically to the vehicle, so
that problem analysis can be performed by authorized technicians [59]. However,

Fig. 15 A high-integrity serial bus system with or without CAN
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automotive companies are able to easily develop hardware interfaces and software
application layers that allow malware to access the CAN Bus directly through the
telematics ECU by using Wi-Fi, BT and cellular networks. Today, technology has
increased security risks to the point of allowing unauthorized systems and network
access, audit ability and compliance, customer data breaches, internal and external
sabotage and the theft of intellectual property and confidential business information
[51].

2.3 Detect

2.3.1 Challenges of Inter-Vehicle Communication

There is a critical problem in securing vehicle to vehicle or vehicle to infrastruc-
ture communication. This is because all communication between vehicle and vehi-
cle or vehicle and roadside units occurs using wireless technology, therefore, if
security is not enforced, the probability of various attacks or viruses being injected
into the unprotected system is high [47]. Inter-Vehicle Communication still faces
challenges regarding the following issues: trust; real-time communication; quality
of service; message dissemination; fault detection; efficient physical layer trans-
mission schemes; wireless network access; secure protocols; information security
mechanisms; network scalability; and robustness [42]. Therefore, automotive indus-
tries need to create a secure, reliable and effective system to avoid these problems
[47].

2.3.2 Challenges of Intra-Vehicle Communication

Internal Vehicle Communication faces a range of issues [33]:

• The use of different generic wireless sensor networks possessing unique charac-
teristics that provide the space for optimization.

• Sensors are stationary so that the network topology does not change over time.
• Sensors are typically connected to the ECU through one hop, which yields a simple
star-topology.

• There is no energy constraint for sensors having a wired connection to the vehicle
power system. The design and deployment of Internal Vehicle wireless sensor
networks are still challenging.

• The Internal Vehicle Communication environment is difficult due to severe scatter-
ing in a very limited space and often with no line-of-sight. This is the major reason
for the extensive effort to characterize the Internal Vehicle wireless channels.

• Data transmissions require low latency and high reliability to satisfy the stringent
requirement of real-time Internal Vehicle control systems.
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• Interference from neighbouring vehicles in a highly dense urban scenario may not
be negligible.

• Security is critical to protect the in-vehicle network and control system frommali-
cious attacks.

3 Recent Techniques and Challenges

Electrical wiring systems in vehicles have become increasingly sophisticated. They
require more and more connectors, control units, relays and terminals to connect the
ECU with other devices. Recently, due to developments in automotive technology,
vehicles have become even more connected through wireless networks and have
become more dependent on complex electronic systems. Therefore, vehicles can
be attacked through wireless networks, smartphones, GPS and cameras [60]. Auto-
motive industries, such as AVnu and OPENSIG, argue that Ethernet represents the
standard of next-generation automotive networks because ethernet is wide-ranging
and includes bandwidth improvements, improved implementation, flexibility and
cost savings. Currently, it is not convenient to replace all in-vehicle devices with
Ethernet-enabled replacements [43]. Thus, it is likely that Ethernet will function as a
high-speed backbone network at first, coexisting with legacy technologies until such
time it becomes cost-effective to migrate to a full end-to-end Ethernet solution. As
automotive networks become more complicated, the standardization of approaches
becomesmore andmore attractive to manufacturers. This is happening at all levels of
the automotive communication stack and is gaining momentum, with organizations
such as IEEE RTPGE, OPENSIG, the AVnu alliance and AUTOSAR coordinating
an industry-led push towards extensible and cost-effective standards that will drive
the development of in-vehicle networks, as shown in Fig. 16. Research in this field
has been increased. For example, in [27], a method of V2I cybersecurity architec-
ture, known CVGuard, can detect and prevent cyberattacks on V2I applications. A
Stop Sign Gap Assist (SSGA) application has shown that CVGuard was effective in
mitigating the adverse safety effects created by a DDoS attack.

ADAS
Remote Radio

Remote AMP HMI

Sharklin

CAN

FLEXRAY

Car-IVN Open Alliance BroadR-Reach Ethernet

Fig. 16 Ethernet switch to connect vehicle’s devices [29, 31]
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The literature suggests that, as in-vehicle technology becomes more and more
complex, there will be a drive to standardize approaches across the industry, allow-
ing manufacturers to focus on improving the existing applications built on simi-
lar foundations. This provides an excellent structure for the future expansion and
improvement of in-vehicle network systems and leads, ultimately, to greater driver
comfort and, most importantly, safety [5, 55].

4 Conclusion

Developing security solutions compatible with the automotive ecosystem and smart
cities is challenging and we believe it will require greater engagement between the
computer security community and automotive manufacturers. This chapter provides
an opportunity to reflect on the security and privacy risks and malware associated
withmodern automobiles.We synthesized concrete, pragmatic recommendations for
future automotive security and identified fundamental challenges. Defending against
known vulnerabilities does not mean the non-existence of other vulnerabilities, thus,
many of the specific vulnerabilities identified will need to be addressed. In the future,
it may be that the future of intelligent transportation systems and smart cities falls
within the multiple layers of the connected environment including cybersecurity
and forensics [6], artificial intelligence and machine learning in identification traffic
[11], biometric recognition [2, 4, 9], traffic congestion control-based In-Memory
Analytics [7] and connected networks of vehicles. Thesewill lead to the development
of future intelligent transportation systems and smart cities and vehicle industries
that include the analysis of information regarding malware from cyber sources, CSP
network modelling and flow models in a connected environment.
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A Survey of Intelligent Techniques for
Android Malware Detection

Rajesh Kumars, Mamoun Alazab, and WenYong Wang

Abstract The revolution of smart devices such as smartphones, smart washing
machines, smart cars is increasing every year, as these devices are provided con-
nected with the network and provide the online functionality and services available
with the lowest cost. In this context, the Android operating system (OS) is very
popular due to its openness. It has major stakeholder in the smart devices but has
also become an attractive target for cyber-criminals. This chapter presents a system-
atic and detailed survey of the malware detection mechanisms using deep learning
and machine learning techniques. Also, it classifies the Android malware detection
techniques in three main categories including static, dynamic, and hybrid analysis.
The main contribution of this chapter are (1) It briefly describing the background
and feature extraction of the static, dynamic, and hybrid analysis. (2) This chapter
discusses the basic methodology and frameworks which classify, cluster, or extract
Androidmalware features. (3) Exploring the dataset, harmful features, and classifica-
tion results. (4) Discussing the current challenges and issues. Moreover, it discusses
the most important factors, data-mining algorithms, and processed frameworks.

1 Introduction

With the growth of smartphone and the services they provide such as online shop-
ping, health monitoring system, money transaction, and manymore. The android has
largest global market in the world. The frequent use of mobile devices with those
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facilities encourage people to store and share their personal and critical information
through using mobile devices, and the wide use of devices with Android system
makes Android-based mobile devices a target for malicious application developers
[3, 4, 6, 7, 38, 41, 42, 70–72]. Therefore, the malicious activity can affect the
working of many devices connected in a network. Malware is a program or a set
of programs that can cause harm to financial forgery, identity, sensitive informa-
tion or data, and resources. These malicious applications may leak the user’s private
information without their knowledge or consent.

Personal data leakage: People are not concerned with the security of data or
personal information in mobile devices while they are normally very concerned for
the same in PC environments [5, 6, 10, 11, 35, 40, 51]. Some apps steal personal
information and at the same time demand payments. Such Trojan apps have been
downloaded 9,252 times and 211 affected users paid a total of $250,000 to the
malware developers [50]. Malware developers successfully stole personal data such
as contacts, emails, SMS, and device information which can be used in identity theft
and spamming [50].

Social: GPS location, call log, and contact lists can be captured by malware [50].
The contact list and location are user-sensitive information. This information can be
captured by malware and can do harm by leaking social identity that can be used in
various ways to threaten the security of a user’s social image.

Business: Business organizations have their own apps to run their business. Mal-
ware can capture user information or business data which will put the business
organization at a risk. The business owner will be at a risk of financial loss as well
as reputation

Financial loss:Themotive ofmalware development has changed and now focuses
on financial gain [23]. Capital expenses related to malware average $ 6–7bn dollars
in a fiscal year [23]. “ Zeus in theMobile” is a Trojan that captures the authentication
code of the user in a banking application, which may cause financial losses to the
user. It is also expensive to remove, where a security firm charged $21/s for the first
detection in 2010 [51]. This type of malware can cause user financial losses as well
as large financial losses to a business owner in detection fees. In some cases, a user
may have to pay large phone bills for premium rate services because of the malicious
activity of an app [50].

Every day has various new applications in the market. It is assessed that there
will be roughly 6.1 billion smartphone clients by 2020 [55, 60]. Google, the man-
ufacturers of the Free Phone Alliance, and the open-source community of Android
developers havemade great efforts to enhance security forAndroid.However, amajor
concern tends to be the proliferation and development of emerging security threats.
Hence, in this context, we discuss the static, dynamic, and hybrid analysis detec-
tion Android malware features extraction techniques. After that, the most popular
framework to detect malware is discussed. Then, the most popular and basic algo-
rithm and techniques are discussed which is mostly an analysis of malware. Finally,
some conclusions about Android malware detection techniques. Additionally, this
chapter identifies many elements of security threats involved in using mobile phones
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and applications, and the user will feel confident in using these applications. The
following are the main contributions of this survey:

1. Providing a summary of the current static, dynamic, and hybrid analysis related
to Android malware detection using the machine and deep learning.

2. Presenting a current approach to detect Android malware.
3. Exploring the important features extraction methods and results of the machine

learning and deep learning approach.
4. Discussing the challenges and open-source dataset of the Android malware

detection.

The rest of the paper was structured as follows: Sect. 2 overviews the static, dynamic,
and hybrid analysis approaches and discusses the features extraction methods.
Section 3 discusses the current methodologies for the classification, clustering , and
data mining for the feature extraction. Section 4 discuss the dataset and results of
the current machine learning techniques. Section 6 discusses the challenges. Finally,
Sect. 7 concludes the chapter.

2 Static, Dynamic, and Hybrid Analysis of Android
Malware Background

In this chapter, we discuss the background of Android malware detection techniques.
There are three basic techniques to detect Android malware. (i) Static analysis, (ii)
Dynamic analysis, iii) Hybrid analysis. Firstly, we discuss the static analysis, which
consists of two methods (i) Permission-based analysis (ii) API Call based analysis.
Secondly, we elaborate on the dynamic analysis that is used to extract the training
characteristics of the model. Also, we consider the hybrid analysis that combines
static and dynamic analysis. Finally, we compare the static, dynamic, and hybrid
analysis.

2.1 Static Analysis

The static analysis method refers to analyzing source code files or executable files
without running applications. There are several features such as API call and per-
missions to analyze the static analysis. The feature extraction methods are shown in
Fig. 1 (Table1).

Furthermore, some static features detection methods are shown in Table2. The
k-nearest neighborsmachine learning classifier achieve better performance and accu-
racy in the detection of the malware. However, it takes more processing time with a
large amount of data. That’s why most of the authors used Support Vector Machine
and Random Forest classifiers. Therefore, we use and enhance the Random Forest
algorithm for Android malware detection.
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Fig. 1 Static feature extraction of method

Table 1 Overview of feature sets of Android APK decompiled files

Feature sets

Manifest S1 Hardware components

S2 Requested permissions

S3 Application components

S4 Filtered intents

Dexcode S5 Restricted API calls

S6 Used permission

S7 Suspicious API calls

S8 Network addresses

2.1.1 Permission-Based Analysis

Permission-based access control mechanism is a major component of the Android
platform security mechanism. On the Android platform, applications are separated
from applications, and applications and systems are isolated. When applications per-
form certain operations or access certain data, they must apply for corresponding
permissions. This means that permissions defined in the manifest file can indicate
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Table 2 Static features detection methods

Ref Features Accuracy Machine
learning
models

Contribution Limitation

[9]
Permission 91.75% Random

Forest
Permission-based
approach using KNN
clustering

Risky permission not
founded

[29]
Permission 81% C4.5, SVM The framework

quick identify the
malicious
permission

It uses the limited
number of malware.
It requires the
evidence

[58]
Permission 88.20% HMNB Probabilistic

generative models
for ranking the
permission. It
identifies ranging
from the simple
Naive Bayes,
hierarchical mixture
models

Susceptible to
adversarial attack

[17]
Permission – AHP a global threat score

deriving set of
permissions required
by the app

Only depends on
permissions with
known limitations—
susceptible to
attack

[47]
Permission 98.6 J48 Build a framework

for based on
SIGPID. It extracts
top 22 permissions.

Susceptible to
impersonate attack

[39]
Permission 92.79% Random

Forest
Design a model
which score the
malicious
permission

Susceptible to
adversarial attack

[57]
Permission 94.90% Random

Forest
It uses the
classification
algorithm to detect
the malware.

Susceptible to
adversarial attack

[13]
Permission,
API calls

92.36% Random
Forest

Susceptible to
adversarial attack

[78]
Permission,
API calls,
intent

97.87% k-nearest
neighbors

Design a DroidMat
Framework which is
based on manifest
and API call tracing

Susceptible to
adversarial attack

[1]
API call 99% k-nearest

neighbors
It mitigates Android
malware installation
through providing
lightweight
classifiers

Susceptible to
impersonate attack

(continued)
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Table 2 (continued)

Ref Features Accuracy Machine
learning
models

Contribution Limitation

[16]
API call 93.04% Signature

matching
It measures the
similarity of
malware

Susceptible to
impersonate attack

[15]
API call 96.69% SVM The paper uses

malicious-preferred
features and
normal-preferred
features for the
detection of malware

Susceptible to
impersonate attack

[79]
ICC related
features

97.40% SVM Design a
ICCDetector
framework which
classify the malware
based on android
intent filters

Susceptible to
impersonate attack

[82]
Permission,
command,
API calls

98.60% Parallel
classifier

This paper combine
the machine learning
classifiers to classify
the malware.

Susceptible to
impersonate attack

[27]
Requested
permissions-
used
permissions
sensitive API
calls-
Actions-app
components

F1 97.3 Prec.
98.2 Recall
98.4

DBN DroidDeep for
detection of malware
using deep belief
network

Susceptible to
adversarial attack

[75]
Risky
Permissions-
dangerous
API calls

F1-94.5
Recall-94.5
Prec-93.09

DBN Proposed
DroidDeepLearner
combines risky
permission and
dangerous API calls
to build a DBN
classification model.

Susceptible to
adversarial attack

[28]
API call
blocks

ACC 96.66% DBN DroidDelver
Detection system is
used to identify
malware using an
API call block.

Susceptible to
adversarial attack

[22]
Requested
permission

Acc 93% CNN-
AlexNet

Proposed a detection
system that converts
the requested
permissions into an
image format and
then uses CNN for
classification

Only depends on
permissions with
known limitations—
susceptible to
attack

(continued)
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Table 2 (continued)

Ref Features Accuracy Machine
learning
models

Contribution Limitation

[88]
323 features F1 95.05 DBN An identification

system designed by
FlowDroid uses data
flow analysis to
identify malware.

Susceptible to
adversarial attack

[52]
Learn to
detect
sequences of
opcode that
indicate
malware

ACC 98
Prec. 99
Recall 95 F1
97

CNN Developed a
detection system that
uses automatic
functions to learn
from raw data and to
treat the
disassembled code
as text

Although trained on
a large dataset,
performance
dropped when tested
on a new
dataset—Susceptible

[54]
API call
sequence

Acc 99.4
Prec. 100
Recall 98.3
Acc 97.7

CNN The proposed
method based on
API call sequence
that can use the
multiple layers of
CNN.

Susceptible to
impersonate attack

[27]
Extract
features from
the
transferred
images

CNN Proposed a RGB
scheme based on
color representation.

Results showed that
human experts are
still needed in the
collection and
updating of
long-term samples.
Susceptible to an
attack

[46]
Dangerous
API
calls-risky
permissions

Recall 94.28 DBN DBN was used to
create an automatic
malware classifier

Susceptible to
adversarial attack

[86]
API calls
Permissions-
Intent
filters

Prec 96.6
Recall 98.3
ACC 97.4 F1
97.4

CNN Presented system
detection of malware
DeepClassifyDroid
Android based on
CNN

Susceptible to
impersonate attack

[65]
API calls Acc 95.7 DBN Suggested approach

to image texture
analysis for malware
detection

Risky permission not
founded

(continued)
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Table 2 (continued)

Ref Features Accuracy Machine
learning
models

Contribution Limitation

[74]
Permissions
requested
permissions
filtered
intents
restricted
API calls-
hardware
features-
code related
features
suspicious
API calls

Acc 98.8
Recall 99.91
F1 99.82

CNN A hybrid malware
detection model has
been developed
using CNN and DAE

It uses the limited
number of malware.
It requires the
evidence

[34]
API
sequence
calls

F1 96.29
Prec 96.29
Recall 96.29

CNN MalDozer used
natural language
processing technique
to detect Android
malware that can
identify the malware
family attributes.

Susceptible to
adversarial attack

[80]
The semantic
structure of
Android
bytecode

Acc 97.74 CNN LSTM DeepRfiner was
proposed to identify
the malware. The
structure of method
use the LSTM for
semantic byte code

Only depends on
permissions with
known limitations—
susceptible to
attack

[44]
Permissions
API Calls

Prec 97.15
Recall 94.18
F1 95.64

DNN Implemented
DNN—based
malware detection
engine

Susceptible to
impersonate attack

[26]
Code
analysis

Acc 95.4 CNN The proposed
method for
analyzing a small
portion of raw APK
using 1-D CNN

Susceptible to
adversarial attack

the behavior of the application. Developers can declare the permissions that need
to be applied in the <uses-permission> tag or <permission> tag. The permissions
in the <uses-permission> tag are predefined by android, and the permissions in the
<permission> tag are customized by the developer and belong to third-party per-
missions. According to Android’s official documentation, the level of protection of
permissions implies the potential risks involved and points out the verification pro-
cess that should be followed when the system decides whether to grant application
permissions. The four protection levels are described as follows: Normal defines
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the low-risk permissions to access the system or other applications, which does not
require user confirmation and is automatically authorized. Dangerous can access
user data or control the device in some form, such as READ_SMS (allowing appli-
cations to read SMS). When granting such permissions, the system will pop up a
confirmation dialog box and display the permission information requested by the
application. The user can choose to agree or cancel the installation. Signature is the
most severe permission level and requires an encryption key. It only grants applica-
tions that use the same certificate as the declared permissions. Therefore Signature
usually only appears in applications that perform device management tasks, such as
ACCESS_ALL_- EXTERNAL_STORAGE (access to external storage). System can
be granted either partial applications of the system image or applications with the
same signature key as the declaration permission.

2.1.2 Suspicious API Calls

The second solution is a static analysis of the source code of the app.Malicious codes
usually use a combination of services, methods and API calls that is not common
for non-malicious applications [12]. To differentiate malicious and non-malicious
applications, Machine learning algorithms can learn common malware services such
as combinations of APIs and system calls. Figure 2 shows the some of suspicious API
calls, which are mostly used by malware applications. Figure 3 shows the extracted
features from the APK file that contains the classes.dex file.

2.2 Dynamic Analysis

The dynamic analysis method is not affected by code transformation technologies,
such as bytecode encryption, reflection, and native code execution, and can deeply
analyze the malicious behaviors of the application. Therefore, it makes sense to col-
lect dynamic features, which can effectively compensate for the limitations of static
analysis. Figure 4 shows the feature extraction method and detection technique of
the dynamic analysis. Many machine learning algorithm used for dynamic analysis,
for instance, Logistic regression (LR), K-means Clustering, SVM, KNN_E,KNN,
Bayesian network (BN), and NaÃ¯ve Bayes. Table 3 illustrates the accuracy level,
dynamic features, and detection methods. For example, some malware may obtain
malicious files through the network or other means during the running process, and
thenwrite them into the systemfiles to performmalicious behaviors. Thesemeans can
escape static detection and affect the accuracy of detection. DroidBox is an Android
application sandbox that extends TaintDroid. It can perform dynamic strain analysis
at the application framework level, andmonitor various operations of the application,
such as information leakage, network, file input / output, and encryption operations.
DroidBox provides two scripts, startemu.sh and droidbox.sh. The former is used to
start a simulator dedicated to the dynamic analysis of Android applications, and the
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Fig. 2 Suspicious API calls

Fig. 3 Workflow of android file decompiling

latter is used to perform specific dynamic analysis. We obtain the dynamic operation
log of each application by installing and running each application in DroidBox for
30s, and extract features from them (Table4).
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Fig. 4 Dynamic feature extraction and detection

Table 3 Dynamic features detection methods

Ref Features Accuracy Machine learning
models

[32]
System call 91.75% Signature Matching

[12]
System call 81% K-Means

[24]
System call 88.2% Frequency

[25]
System call – Pattern matching

[77]
API call 97.6 KNN_M

[29]
Native size 99.9% RF, SVM
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Table 4 Suspicious API call

Name Used in malicious Used in benign

PTRACE Most often utilized [24, 49] Utilized in benign applications
[24]

SIGPROCMASK Most often utilized [24, 49] Utilized in benign applications
[24]

CLOCK Most often utilized [49, 68] –

CLOCK-GETTIME Utilized in malicious
applications [24]

Utilized in benign applications
[24]

RECV Most often utilized [24, 68] Not Utilized [24]

RECVFROM Most often utilized [25, 49,
68]

Not Utilized [24]

WRITE Most often utilized [25, 49,
68]

Utilized in benign applications
[24]

WRITEV Most often utilized [24, 68] Utilized in benign applications
[24]

WAIT4 Most often utilized [49]

SEND Most often utilized [68]

SENDTO Most often utilized [49, 68]

MPROJECT Most often utilized [25, 49,
68]

Utilized in benign applications
[24]

FUTEX Most often utilized [24, 49] Utilized in benign applications
[24]

IOCTL Most often utilized [24, 49] Utilized in benign applications
[24]

FCNTL64 Most often utilized [24] Utilized in benign applications
[24]

GETPID Most often utilized [24, 49] Utilized in benign applications
[24]

GETUID32 Most often utilized [24, 49] Utilized in benign applications
[24]

EPOLL Most often utilized [24] Utilized in benign applications
[24]

EPOLL-CTL Most often utilized [24] Utilized in benign applications
[24]

EPOLL-WAIT Most often utilized [25, 68] Utilized in benign applications
[24]

CACHEFLUS – –

READ Most often utilized [49, 68] Utilized in benign applications
[24]

READV Most often utilized [68] –

STAT64 – –

(continued)
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Table 4 (continued)

Name Used in malicious Used in benign

GETTIMEEOFDAY utilized in malicious
applications [24]

Utilized in benign applications
[24]

ACCESS Most often utilized [25, 68] Utilized in benign applications
[24]

PREAD – –

UMASK Most often utilized [24] Not Utilized [24]

CLOSE utilized in malicious
applications [24]

Utilized in benign applications
[24]

OPEN Most often utilized [24, 68] Utilized in benign applications
[24]

MMAP2 utilized in malicious
applications [24]

Utilized in benign applications
[24]

MUNMAP – –

MADVISE utilized in malicious
applications [24]

Utilized in benign applications
[24]

FCHOWN32 Most often utilized [24] Not Utilized[24]

PRCTL Not Utilized [24] Utilized in benign applications
[24]

BRK Most often utilized [24] Not Utilized[24]

LSEEK Utilized in malicious
applications [24]

Utilized in benign applications
[24]

DUP Utilized in malicious
applications [24]

Utilized in benign applications
[24]

GETPRIORTY Utilized in malicious
applications [24]

Utilized in benign applications
[24]

PIPE

CLONE Utilized in malicious
applications [24]

Utilized in benign applications
[24]

FSYNC Most often utilized in [24] Not Utilized[24]

GETDENTS64 Utilized in malicious
applications [24]

Utilized in benign applications
[24]

GETTID Utilized in malicious
applications [24]

Utilized in benign applications
[24]

LSTA64 Utilized in malicious
applications [24]

Utilized in benign applications
[24]

FORK – –

NANOSLEEP Not Utilized [24] Only Utilized in benign
applications [24]

RECVMSG – –

CHMOD Utilized in malicious
applications [24]

Utilized in benign applications
[24]

SENDMSG Most widely Utilized[49] –

FLOCK Not Utilized [24] Only Utilized in benign
applications [24]

(continued)
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Table 4 (continued)

Name Used in malicious Used in benign

MKDIR Most often utilized [24] Not Utilized [24]

CONNECT Most often utilized [24] Not Utilized [24]

POLL Not Utilized [24] Only Utilized in benign
applications [24]

RENAME Most widely Utilized [68] Not Utilized [24]

SETPRIORITY – –

SETSOCKOPT Most often utilized [24] Not utilized [24]

SOCKET Most often utilized [24] Not utilized [24]

UNLINK – –

2.3 Hybrid Analysis

To improve the performance of learning algorithms, the hybrid analysis was devel-
oped, which utilizes the dynamic and static features as shown in Figure fig: Hybrid
Analysis. Some researches proposed multi-classification techniques [20, 30] to
obtain high accuracy in the hybrid analysis. Furthermore, The static features are
Publisher ID, API call, Class structure, Java Package name, Crypto operations,
Intent receivers Services, Receivers, and Permission, and dynamic are Crypto oper-
ations, File operations, Network activity. The APK file extracted static features from
classes.dex files, and dynamic features fromAndroidmanifest.xml file. Hybrid Anal-
ysis combines static features and dynamic features. These features are used to detect
malicious applications. In [48], the following features are selected form static (per-
mission andAPICall) and dynamic (SystemCall). Y. Liu, et al. [48] used the SVMand
Naive Bayes machine learning classifier. The SVM classifier used for static analysis
achieved 93.33 to 99.28 percent accuracy, while the Naive Bayes used for dynamic

Fig. 5 Dynamic feature extraction and detection
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Table 5 Hybrid analysis methods

Ref Methodology Tools Achements Limitations

[69]
Decompress and decompile
the Android app using the
tool Baksmali. Scans
decompiled samli files to
extract static patterns.
Generate static behavior
vector. Installs and executes
the applications on
emulator Runs monkey to
give user inputs Hijacks
system calls using LKM
logs the system calls

Baksmali Monkey
tool Emulator

can detect the
malicious system
calls at kernel
space

Insufficient test
results for
malware detection
No comparison of
the system is
provided against
any other malware
detection
techniques. Not
any classification
results are
available Increase
in malware
detection rate is
not shown
Incomplete
evaluation system

[87]
Detects known malware
samples by filtering and
foot printing based on
permission. Detects
zero-day malware through
heuristic filtering and
dynamic monitoring of
execution

– Successfully
detects 211
malicious apps
among 204,040
apps. +Detect two
zero-day malware
Droid Dream light
and Plankton
Achieves 86.1
accuracy

This study is
limited to two
heuristics
Permission-based
filtering only
considered the
essential
permission of 10
malware families

[2]
Pre-process the App
through API Monitor to
obtain static features such
as API calls. Install the app
on AVD. Uses APE_BOX,
combination of DroidBox
and APE, to collect the
run-time activities and
simulation of GUI-based
event. Combines the static
and dynamic features and
applies SVM classification

API Monitor APE
DroidBox
LIBSVM

Achieves 86.1%
accuracy

Time consuming
due to use of
emulators High
resource
consumption in
log collection.
Malware can
easily evade
anti-emulator
techniques

(continued)
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Table 5 (continued)
Ref Methodology Tools Achements Limitations

[37]
Extract the static features from
manifest file and disassembled
dex file using Aapt Extracts
dynamic features using
CuckooDroid Maps the features
into vector space and performs
vector selection. Uses
LinearSVC classifier in Misuse
detection to classify the
application, if app is malware
uses signature-based detection
to identify the malware.
Applies anomaly detection if
App is not classified by misuse
detection and uses
signature-based detection to
identify the family of malware

Android Asset
Packaging Tool

Detects known
malwares and their
variants with 98.79%
true positive rate.
Detects the zero-day
malwares real
positive rate with
98.76 percent
accuracy

Comparison of
proposed scheme
with other
well-known malware
detection schemes,
e.g., RiskRanker,
Drebin, Kirin, etc. is
not provided

[56]
Parameters related to
permissions, such as broadcast
receivers, intents and services,
are decompiled from the
manifest file in the static
analysis phase using Aapt. In
the behavior analysis phase, the
Android emulator app is
executed and the functions
related to user interactions, java
based, and native function calls
are extracted. Performs feature
on the basis of information gain
and records them in CSV file.
Rule generation module uses
CSV file to create rules and
maps the permission against the
function calls for classification

Android Asset
Packaging Tool

Achieves 96.4%
detection rate

High time for
scanning. High
electricity
consumption. High
consumption of
resources/storage

[84]
Extracts sensitive API calls and
permissions as static features.
Logs dynamic action for
dynamic analysis Applies deep
learning model for classification

7ZIP, XML-printer2
Tinyxml,
DropidBOX
Baksmali

Detects 96.7 percent
accurate malware

Unrealistic malware
for dynamic analysis
that does not display
malicious behavior
throughout the
monitoring interval
can evade the
detection system

(continued)
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Table 5 (continued)

Ref Methodology Tools Achements Limitations

[64]
Extracts PSI from binary
code files as static features
sort features according to the
frequency of occurrence in
each file. Selects feature with
occurrence frequency above
certain threshold value and
creates static feature vector.
For dynamic feature use
cuckoo malware analyzer. For
each file, create API call
grams and analyze API call
sequences based on the
n-gram method. Selects
grams of API call above a
certain threshold value and
creates a dynamic function
vector. Concatenates both
feature vector for each file
and input them to Machine
learning classifiers

WEKA Classifies 98.7
percent accurate
unknown
applications

Comparison of
proposed scheme
with other
well-known
malware detection
schemes, e.g.,
RiskRanker,
Derbin,
DroidRanger, etc. is
not provided

[48]
Decompiles applications
using Akptool and analyze
the decompiled results.
Automatically switches to
static analysis if app is
correctly decompiled.
Performs extraction of static
features, permission and API
calls, from manifest and
smali files. Inputs the feature
vectors to machine learning
classifiers, SVM, KNN, and
Naive Bayes. If application
does not correctly decompile
then it performs dynamic
analysis by operating the app
with monkey tool and
monitoring the app’s actions
using strace. Generates the
feature vector of traced
system call logs and applies
the machine learning
classifier on the feature vector
for classification

APK tool Strace
Monkey tool

Achieves 99%
accuracy as a result
of static analysis
and 90% accuracy
as a result of
dynamic analysis

Only static or
dynamic analysis
can be performed
on the application,
so that the
dynamically
labeled data cannot
be detected in an
easy way for static
analysis Only the
executed code is
analyzed when
dynamic analysis is
carried out. The
non-executed code
remains undetected

(continued)
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Table 5 (continued)
Ref Methodology Tools Achements Limitations

[62]
Extracts features at four
different levels: user level,
application level, kernel level,
and package level user
activities at user level and
market information and
riskiness of application at
package level Generates feature
vectors consisting of 14
features and input the vector to
KNN classifier. Notifies the
user about malicious apps and
helps the user to block and
remove them through UI

Only runs on rooted
devices with a carnal
having module
support due to which
it has not been
conceived for
distribution in the
mass market.
Pre-installed apps are
not analyzed by the
app evaluator. Thus,
will not be included
in apps suspicious
list and so will not be
dejected against
known malware
behavior patterns.
only the apps
identified as risky or
added to the apps
suspicious list. 9.4%
memory overhead
because classifier
requires the training
data and memory

[61]
Feature collector collects static
features of at the application at
installation. GramDroid a web
tool that extracts the features of
applications and provides their
visual representation in order to
identify the threads posed by
the application Local detector
classifies the application as
legitimate, malware, or risk
using static features. Response
manager gives control to use if
app as detects as malware.
Cloud detector performs
detailed dynamic analysis at a
remote server if app is detected
is risk by local detector updates
the database if app is detecting
malware

From top 20 enlisted
frequently requested
permission

[33]
The Android device’s client
application captures the
application’s specific
information and sends it to the
server. Detailed analysis and
application execution based on
emulation is carried out.
Otherwise, the APK file will be
sent from the client device to
the server

Androgaurd Detects 99%
accurate malware
applications

The malware can
easily evade
emulation-based
detection

(continued)
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Table 5 (continued)
Ref Methodology Tools Achements Limitations

[67]
User permission to detect
malware behavior as static
analysis. The signature data
type contains all applications
signature. Android user offers
users a malware analysis
service. The central server
connects the Android client to
the signature database

Archives 92.5%
specificity

It lacks the
advantages of
dynamic analysis, as
dynamic malicious
payloads cannot be
detected

[66]
Uses static functions, manifest
file, and code files assembled.
Uses system calls and binder
transactions as dynamic
behavior features. The user and
the application monitor and
signature are forwarded to the
server which applies to generate
the signature. The signature
matching algorithm

Achieves 99%
accuracy

Overall causes 7.4
percent overhead
performance and 8.3
percent overhead
memory

analysis achieved accuracy up to 90 percent. Furthermore, Kim et al. [36], used the
J48 machine learning classier, the features are selected from static (permission ) and
dynamic (APICal l). A. Saracino el al. [62], achieved 96.9% accuracy based on KNN
by selecting the static feature (permission) and dynamic (critical API, SMS, User
activity System call) feature (Fig. 5 and Table5).

2.4 A Comparison of Static, Dynamic, and Hybrid Analysis

Static Analysis:

1. Single Category features: The advantages of single category features are easy to
extract, and low power computation. The limitations associated with this method
are code obstruction, imitation attack, and low precision.

2. Multiple categories of Features: The advantages of multiple category features are
easy to extract, and high accuracy. The limitations associated with this method
are Mimicry attack, high computation, code obfuscation, and difficult to handle
multiple features

Dynamic Analysis:

1. SingleCategory features: it poses a better accuracy and easy to recover code obfus-
cation as compared with static analysis. However, its feature extraction process
is difficult, and it consumes high resources.

2. Multiple categories of Features: It gives better accuracy and easy to recover code
obfuscation as comparedwith a static anddynamic single category.The limitations
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of this approach are (1) difficult to handle multiple features, (2) high resources,
and (3) more time computation.

Hybrid Analysis: The main benefits of hybrid analysis are to perform the highest
accuracy as compared to static and dynamic analysis. The limitations are (1) highest
complexity, (2) framework requirement to combine the static and dynamic features,
(3) more resources utilization, and (4) time-consumption.

3 Android Malware Detection Approaches

3.1 Basic Proposed Framework to Detect Android Malware

In this section, we discuss the methodology to detect malicious codes detection
techniques based on deep learning and machine learning. Kim et al. [38] proposed
an multi-model malware detection-based malware analysis system to automatically
analyze and classifymalware behaviors. Figure 6 shows the overall architecture of the
developed framework. The multimodal deep learning framework uses seven kinds of
the feature; String feature,method opcode feature,methodAPI feature, shared library
function opcode feature, permission feature, component feature, and environmental
feature. Using those features, the seven corresponding feature vectors are generated
first, and then, among them, the permission/component/predefined setting feature
vectors are merged into one feature vector. Finally, the five feature vectors are fed to
the classification model for malware detection.

Moreover, Tao Lei et al. [43] proposed an Graph-based malware detection model
based on three components: (1) call graph extraction; (2) event group building; and

Fig. 6 A multimodal deep learning method for android malware detection using various features
[38]
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Fig. 7 EveDroid: event-aware android malware detection against model degrading for IoT devices
[43]

(3) NN training. These three phases are shown in 7. In call graph phase it extracts
the call graphs of every sample from the training samples by using the static analysis
tools and then filters out repetitive API calls. The event group building component
aims to build the event group for apps, which consists of event subgraph traverse,
API calls encoding and clustering. Finally, the event group (clustering result) is fed
into the NN to train the parameters.

Andrea Saracino et al. [62] detect malicious behavioral-patterns extracted from
several categories of malware. The features at the four system levels, and to detect
and prevent amisbehavior. It consists of four steps shown in Fig. 9. The first one is the
AppRiskAssessment, which includes theAppEvaluator that implements an analysis
of metadata of an app package (apk) (permission and market data), before the app
is installed on the device. The second block is the Global Monitor, which monitors
the device and OS features at three levels, i.e., kernel (SysCall Monitor), user (User
Activity Monitor), and application (Message Monitor). The third block is the Per-
App Monitor, which implements a set of known behavioral patterns to monitor the
actions performed by the set of suspicious apps (App Suspicious List), generated by
the App Risk Assessment, through the Signature-Based Detector (Fig. 8).

Huijuan Zhu et al. [89] raises a stacking ensemble framework SEDMDroid to
identify Android malware. Specifically, to ensure individual’s diversity, it adopts
random feature subspaces and bootstrapping samples techniques to generate sub-
set, and runs Principal Component Analysis (PCA) on each subset. The accuracy is
probed by keeping all the principal components and using the whole dataset to train
each base learner Multi-Layer Perception (MLP). Then, Support Vector Machine
(SVM) is employed as the fusion classifier to learn the implicit supplementary infor-
mation from the output of the ensemblemembers and yield the final prediction result.
Figure9 shows the overall proposed framework of the SEDMDroid (Fig. 10).

JinLi, et al. [45] propose themalware detection framework based on static analysis
for permission feature. The proposed framework consists of three-technique to collect
risky permissions. (i) Permission Ranking With Negative Rate (ii) Support-Based
Permission Ranking (iii) Permission Mining With Association Rules. It extracts
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Fig. 8 Significant permission identification for machine-learning-based androidmalware detection
[45]

Fig. 9 SEDMDroid: an enhanced stacking ensemble framework for Android malware detection
[89]

Fig. 10 DAPASA: detecting android piggybacked apps through sensitive subgraph analysis [18]
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Fig. 11 DAPASA: SSG graph [18]

significant permissions from apps and uses the extracted information to effectively
detect malware using a supervised learning algorithm (Fig. 11).

Kumar et al. [41] propose the malware detection framework which is based on
three techniques, (i) Clustering Algorithm (ii) Naive Bayes Classifier for Multi-
Feature (iii) Blockchain-based malware detection framework. Overall architecture
of the proposed system shown in Fig. 12. A new blockchain-based framework was
presented to evaluate the performance of malware detection. The newly proposed
machine learning technique provides an efficient approach to train themodel and then
stores and exchanges the trained model results throughout the blockchain network
for spreading the information of newly generated malware.

More precisely, the first method based on a clustering algorithm, which reduces
the high dimensional data and removes unnecessary features. Secondly, we use a
classification method based on naïve Bayes for multi-feature classification. Finally,
a blockchain database store the malware information.

3.2 Basic Proposed Algorithms for Android Malware
Features

This section discusses the basic algorithms and techniques which is used commonly.
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Fig. 12 Amultimodal malware detection technique for Android IoT devices using various features
[42]
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3.2.1 Clustering Techniques to Classify the Malware

The centroids of the clusters which are calculated using the basic K-means [53]
clustering algorithm shown in Algorithm 1. The process of future generation values
in the malicious feature database corresponds to the elements of the feature vector,
and every feature value is searched in the features extracted from input applications. If
there is no certain feature value in the extracted features, its absence is represented as
zero. Otherwise, the existence of the feature value is represented as one in the vector.
The overall process of future generation is shown in Algorithm 2. Additionally, the
similarity-based feature vectors are generated in Algorithm 3.

Algorithm 1 K-means algorithm [53]
1: Select K centroids arbitarity for each cluster Ci, i ε[1, k]
2: Assign each data point to the cluster whose centroid is closet to the data point
3: Calculate the centroid Ci of cluster Ci, iε[1, k]
4: Repeat Steps 2 and 3 until no points change between clusters

Algorithm 2 Feature value clustering-based feature transformation [38]
1: Centroids ← k− means (k, F−db)
2: Feature vector ← [

00 . . . . . . 0
]

3: index ← 0
4: for ∀c ∈ Centroids do
5: min-sim ← 0
6: for ∀ f ∈ F− app do
7: dist ← get-euclidean-dist(c, f)
8: min-sim ← sim
9: end for
10: end for
11: return ← feature vector

Algorithm 3 Feature value clustering-based feature transformation [38]
1: input ← F = {

fi j
}
1≤i≤m,1≤ j≤n , G : number of clusters desired, Clu a clustering algorthim, ⊕ associative and

communicative feature combination algorithm
2: Cluster the n basic features into G groups accordingly by considering each feature to be a column vector in F
3: minCon f ← a minimum threshold of confidence coefficient
4: for each sample APK i do
5: for each feature group g do
6: f FCig = ⊕{i. f | f ∈ g}% combine values of APK i value of the feature f for each f in feature group g

7: end for
8: fFCi =

(
f FCi1 , · · · , f FCiG

)
%

9: sample i
10: end for
11: return ← FFC =

{
fFCi | 1 ≤ i ≤ m

}
(feature value clustering-based G-dimensional features vector for m sample

APKs)
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3.2.2 Feature Ranking-Based Algorithms

Average Accuracy-Based Ranking Scheme: The ranking is designed to be directly
proportional to the average prediction accuracies across the classes.

Let Pbase be the set of performance accuracies Pk,cε Pbase of K base classifiers. If
m denotes malware and b, benign then the average accuracy of the k-th base classifier
is given by

ak = 0.5 ×
∑

c=m,b

Pk,c|k ∈ {1, . . . , K }, 0 < Pk,c ≤ 1. (1)

Let A ← ak,∀k ∈ {1, . . . , K } be a set of the average predictive accuracies, to
which a ranking function Rankdesc (.) is applied

Ā ← Rankdesc (A) (2)

Thus, Ā contains an ordered ranking of the level-1 base classifiers average predic-
tive accuracies in descending order. Next, the top Z rankings are utilized in weight
assignments as follows:

ω1 = Z , ω2 = Z − 1, . . . , ωZ = 1, Z ≤ K (3)

Class Differential-Based Ranking Scheme: let the average accuracy of each
base classifier be given by ak in (1) and define D̄ with cardinality K as a set of
ordered rankings in descending order of magnitude. Calculate dk proportional to
average accuracies and inversely proportional to absolute difference of interclass
accuracies.

dk = ak∣
∣Pk,m − Pk,b

∣
∣ , k ∈ {1, . . . , K } (4)

D̄ ← Rankdesc (D) (5)

Ranked Aggregate of Per Class Accuracies-Based Scheme: With F̄ defined
as the set of ordered rankings with cardinality K , given the initial performance
accuracies of Pp,c of the K base classifiers.

{
Pm ← Pk,c where c �= b
Pb ← Pk,c where c �= m

, k ∈ {1, . . . , K }, c ∈ {m, b} (6)

{
P̄m ← Rankdesc (Pm)

P̄b ← Rank (Pb)
(7)
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{
fk ← P̄k,m + P̄k,b
F ← fk

,∀k ∈ {1, . . . , K }
F̄ ← Rankdesc (F)

(8)

3.3 Feature Selection-Based Algorithms

Feature selection is extremely important in static, dynamic, and hybrid analysis.
The appropriate feature set is selected using different selection methods such as
information gain, mutual information, fisher score, and similarity function.

Information gain (IG) feature ranking approach to rank the features and then
selecting the top n features. IG evaluates the features by calculating the IG achieved
by each feature. Specifically, given a feature X, IG is expressed as

IG = E(X) − E(X/Y ) (9)

where E(X) and E(X/Y ) represent the entropy of the feature X before and after
observing the feature Y , respectively. The entropy of feature X is given by

E(X) = −
∑

x∈X
p(x) log2(p(x)) (10)

where p(x) is the marginal probability density function for the random variable X .
Similarly, the entropy of X relative to Y

E(X/Y ) = −
∑

x∈X
p(x)

∑

x∈X
p(x | y) log2(p(x | y)) (11)

Similarity-based feature selection is shown in the below equation, B represents
the benign and M represents the malware. X is the feature list and γ is the similarity
between the features.

SB
(
X j

) = ep

n∑

i=1

γ SB
(
Xsb

j

)
ψ

(
Xsb

j

)
,
(
X j

) ∈ Xsb (12)

Sscore = Sp + Sj (13)

3.4 Association Rule-Based Algorithms

Association rule mining is used to discover meaningful relationships between vari-
ables in huge databases. For example, if events A and B always occur at the same
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time, then the two events are likely to be associated, for instance, we found that many
permissions are always together, i.e., READ_CONTACTS andWRITECONTACTS
are always used together. These dangerous Android permissions belong to the per-
mission Google’s list. As we know that those permissions are always together. So
we only need one of them to characterize certain behavior.

STEP1: Find out the frequent two permissions sets
STEP2: Diversity-based interestingness measures for association rule using fre-

quent two itemsets that were developed by Piatetsky-Shapiro [21]
– When support(Y

⋃
Z) ≈ support (Y )support (Z), the two-item sets(Y, Z) are

mutually independent. That is, the association rule Y ⇒ Z is uninteresting.

interest (y, z) = support (Y∪Z)

support (Y∪Z)
− 1

= P(Y |Z)

P(Z)

– if interest(Y, Z) > 0, Y , andZ are correlated positively.
– if interest(Y, Z) ≈ 0, Y , andZ are commonly independent, and the common

two-item sets should be rejected.
– if interest(Y, Z) < 0, Y , and Z are negatively correlated.
STEP3: Create the association rule based on the permission (see Algorithm 4).
STEP4: Calculate the probability table of the association rules.

Algorithm 4 Association rule set R for permission based [41]
1: input ← 1 Associaion Rule Set R
2: minSub ← minimum thershold of support cofficient
3: minCon f ← minimum thershold of confidence cofficient
4: for Z=D do
5: r = null
6: r.PushTail(Z)

7: for Y in D do
8: if Y ⇒ Z ∈ L2 and support (Y ⇒ Z) > minsup and con f idence(Y ⇒ Z) > mincof then
9: r.PushTail(Y )

10: end if
11: r.PushTail(r)
12: end for
13: end for
14: output ← Association Rule R

3.5 Model Evaluation Measures

Python programming language contains tools for data pre-processing, classification,
clustering, regression, association rules, and visualization, which make it the best
tool for the data scientist to measure and test the performance of classifiers. There
are various criteria for evaluating classifiers and criteria are set based on the selected
goals. For the classification methods are evaluating such as True Positive Rate (TPR)
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and False Positive Rate (FPR) and classification accuracy. we used the following
standardmeasurements:Given the number of true positives formalicious applications
using the following formulas:

T PR = Tp

Tp + Fn
(14)

False Positive rate is the proportion of negative instance for the benign apps

FPR = Fp

Fp + Tn
(15)

The accuracy is defined as below equation

Accuracy = Tp + Tn
Tp + Tn + Fp + Fn

(16)

4 Experimental Analysis and Dataset Discussion

The proposed framework poses strong evidence over acquired experiments results.
Here, we discuss major aspects for experimentation which include statistics and
source of dataset, evaluation measures to understand the performance criteria for
exploited machine learning algorithm, and result outcomes which give strong evi-
dence towards the significance of our proposed model.

4.1 Publicly Available Most Popular Dataset

In order to excavate practical significance, we introduce 10 most popular dataset in
Table 6. More description of the dataset are discussed in the provided links.

4.2 Dataset Other Research Work

The comparison of the number of benign and malware apps used in previous work
is shown in Table 7.
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Table 6 Publicly available most popular dataset

Original label Sources

1 Android Malware Genome
Project

http://www.
malgenomeproject.org

2 M0Droid Dataset http://m0droid.netai.net/
modroid/

3 The Drebin Dataset http://user.informatik.uni-
goettingen.de/~darp/drebin/

4 AndroMalShare http://sanddroid.xjtu.edu.cn:
8080/#home

5 Kharon Malware Dataset http://kharon.gforge.inria.fr/
dataset/

6 AMD Project http://amd.arguslab.org

7 AAGM Dataset http://www.unb.ca/cic/
datasets/android-adware.html

8 Android PRAGuard Dataset http://pralab.diee.unica.it/en/
AndroidPRAGuardDataset

9 AndroZoo https://androzoo.uni.lu/

10 A Dataset based on
ContagioDump

http://cgi.cs.indiana.edu/
~nhusted/dokuwiki/doku.php?
id=datasets

Table 7 Compersion of dataset using benign and malware apps

Authors Benign Malware

[29]
480 124769

[31]
45 300

[79]
5264 12026

[58]
378 324658

[1]
3978 500

[13]
175 621

[57]
1446 2338

[8]
5560 123453

[82]
2925 3938

[16]
238 1500

http://www.malgenomeproject.org
http://www.malgenomeproject.org
http://m0droid.netai.net/modroid/
http://m0droid.netai.net/modroid/
http://user.informatik.uni-goettingen.de/~darp/drebin/
http://user.informatik.uni-goettingen.de/~darp/drebin/
http://sanddroid.xjtu.edu.cn:8080/#home
http://sanddroid.xjtu.edu.cn:8080/#home
http://kharon.gforge.inria.fr/dataset/
http://kharon.gforge.inria.fr/dataset/
http://amd.arguslab.org
http://www.unb.ca/cic/datasets/android-adware.html
http://www.unb.ca/cic/datasets/android-adware.html
http://pralab.diee.unica.it/en/AndroidPRAGuardDataset
http://pralab.diee.unica.it/en/AndroidPRAGuardDataset
https://androzoo.uni.lu/
http://cgi.cs.indiana.edu/~nhusted/dokuwiki/doku.php?id=datasets
http://cgi.cs.indiana.edu/~nhusted/dokuwiki/doku.php?id=datasets
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5 Experimental Analysis

5.1 Permission-Based Experimental Analysis

Among the 145 permission set, 48 permission are risky permissions which are men-
tioned in previous literature [13, 63, 73] and Table 8. Moreover, Jin Li, et.al, [47],
developed a SIGPID framework to detect the risky permission, the authors generate
top 22 risky permission mentioned in Table 9. Furthermore Kumar et al. [41] used a
data-mining technique to extract the risky permission, based on association rule set
of risky permission shown in Table 10.

Table 8 Permission set mostly used in malware

Risky permissions

ACCESS_WIFI_STATE SEND_SMS

READ_LOGS READ_CALL_LOG

CAMERA DISABLE_KEYGUARD

CHANGE_NETWORK_STATE RESTART_PACKAGES

WRITE_APN_SETTINGS SET_WALLPAPER

CHANGE_WIFI_STATE INSTALL_PACKAGES

READ_CONTACTS WRITE_CONTACTS

WRITE_SETTINGS GET_TASKS

RECEIVE_MMS ACCESS_WIFI_STATE

WRITE_APN_SETTINGS SYSTEM_ALERT_WINDOW

READ_HISTORY_BOOKMARKS RECEIVE_BOOT_COMPLETED

ACCESS_NETWORK_STATE CALL_PHONE

READ_EXTERNAL_STORAGE ACCESS_FINE_LOCATION

EXPAND_STATUS_BAR ADD_SYSTEM_SERVICE

PERSISTENT_ACTIVITY INTERNET

GET_ACCOUNTS WRITE_SMS

PROCESS_OUTGOING_CALLS CHANGE_CONFIGURATION

READ_HISTORY_BOOKMARKS GET_PACKAGE_SIZE

WAKE_LOG ACCESS_MOCK_LOCATION

WRITE_CALL_LOG WRITE_HISTORY_BOOKMARKS

READ_PHONE_STATE RECEIVE_WAP_PUSH

SET_ALARAM WRITE_SMS

RECEIVE_SMS READ_SMS
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Table 9 Top 22 permissions [45]

Top 22 Risky permission extract from SIGPID

ACCESS_WIFI_STATE SEND_SMS

READ_LOGS READ_CALL_LOG

RESTART_PACKAGES DISABLE_KEYGUARD

READ_EXTERNAL_STORAGE CHANGE_NETWORK_STATE

WRITE_APN_SETTINGS SET_WALLPAPER

CHANGE_WIFI_STATE INSTALL_PACKAGES

READ_CONTACTS WRITE_CONTACTS

CAMERA GET_TASKS

READ_HISTORY_BOOKMARKS ACCESS_WIFI_STATE

WRITE_APN_SETTINGS SYSTEM_ALERT_WINDOW

WRITE_SETTINGS RECEIVE_BOOT_COMPLETED

Table 10 Permission patterns Malware and Benign [41]

Permission patterns Benign Malware

Common android request permission

READ_PHONE_STATE,
ACCESS_WIFI_STATE

2.36 63.08

INTERNET,
ACCESS_WIFI_STATE

5.05 63.49

READ_PHONE_STATE 31.87 93.4

ACCESS_WIFI_STATE 5.22 63.49

ACCESS_NETWORK_STATE,
ACCESS_WIFI_STATE

3.99 60.31

INTERNET,
WRITE_EXTERNAL_STORAGE,
READ_PHONE_STATE

13.28 65.44

INTERNET,
READ_PHONE_STATE,
ACCESS_NETWORK_STATE

24.21 78.97

INTERNET,
READ_PHONE_STATE

31.21 93.078

WRITE_EXTERNAL_STORAGE,
READ_PHONE_STATE

13.37 65.53

READ_PHONE_STATE,
ACCESS_NETWORK_STATE

24.21 79.05

(continued)
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Table 10 (continued)

Permission patterns Benign Malware

Common android run-time permissions

READ_PHONE_STATE, ACCESS_NETWORK_STATE 23.63 77.18

INTERNET, READ_LOGS 6.85 6.85

READ_PHONE_STATE 30.32 91.69

INTERNET, READ_PHONE_STATE, ACCESS
_NETWORK_STATE

26.36 77.18

READ_PHONE_STATE,VIBRATE 21.92 65.28

INTERNET, READ_PHONE_STATE 29.9 91.52

READ_PHONE_STATE, READ_LOGS 5.38 46.86

READ_LOGS 6.93 47.6

INTERNET, READ_PHONE_STATE, VIBRATE 21.68 65.12

Unique android request permission

READ_PHONE_STATE, WRITE_SMS 0 50.94

INTERNET, READ_PHONE_STATE, ACCESS_WIFI_STATE 0 63.09

ACCESS_NETWORK_STATE, RECEIVE_BOOT_COMPLETED 0 51.68

ACCESS_NETWORK_STATE, WRITE_SMS 0 49.64

RECEIVE_BOOT_COMPLETED, ACCESS_WIFI_STATE 0 42.63

INTERNET, RECEIVE_BOOT_COMPLETED 0 44.75

WRITE_EXTERNAL_STORAGE, ACCESS_NETWORK_STATE,
ACCESS_WIFI_STATE

0 54.53

READ_PHONE_STATE, RECEIVE_BOOT_COMPLETED 0 43.12

INTERNET, SEND_SMS 0 43.12

INTERNET, ACCESS_NETWORK_STATE, ACCESS_WIFI_STATE 0 60.31

Unique android run-time permissions

INTERNET, READ_PHONE_STATE,ACCESS_NETWORK_STATE,
VIBRATE

0 55.42

ACCESS_NETWORK_STATE, VIBRATE, READ_LOGS 0 38.55

READ_PHONE_STATE, ACCESS_NETWORK_STATE,
READ_LOGS

0 43.2

READ_LOGS, INTERNET, ACCESS_NETWORK_STATE 0 43.2

READ_PHONE_STATE, VIBRATE, READ_LOGS 0 41.33

INTERNET, VIBRATE, READ_LOGS 0 41.49

READ_LOGS, INTERNET, READ_PHONE_STATE, 0 46.87

ACCESS_FINE_LOCATION, READ_PHONE_STATE,
VIBRATE,INTERNET

0 34.23

INTERNET, SEND_SMS 0 33.58

INTERNET, ACCESS_FINE_LOCATION, READ_LOGS 0 28.45
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Fig. 13 Topological data analysis (TDA) result of each feature data. Density-based spatial cluster-
ing algorithm was utilized in the TDA. a–e the visualized result for each feature type. Malicious
samples from Malgenome project were used [38]

5.2 Clustering-Based Experimental Analysis

Kim et al. [38], cluster the malware features based on frequency analysis. The red
color shows the highest risk features. Figure 13 shows the clustering results obtained
by [38].

5.3 Classification Experimental Analysis

From the machine learning-based methods to the general classification-based meth-
ods, various kinds of the Android malware detection methods were surveyed. As
shown in Table 11, the detection accuracy or the F-measure values of our framework
were higher than the other methods including the deep learning-based methods [30,
36, 47, 54].
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Table 11 Classification results

Authors Algorthim Capicity for
feature diversity

Accuracy F-measure

[38]
Multimodal deep
neural network

High 98% 0.99

[81]
Ranking based High 98% 0.98

[42]
KNN & Navie
Bayes

High 98% 0.98

[83]
DNN/RNN Medium 90% NA

[52]
CNN Low 90% NA

[19]
XGBoost Low 97% 0.97

[29]
Adaboost/NB/DT Low NA 0.78

[85]
NB Low 93% NA

[8]
SVM Low 93.9 NA

[76]
KNN+K-means Low NA 0.91

[14]
Bayesian Low 92% NA

[84]
SVM Low NA 0.98

[59]
RF Low 97.5% NA

6 Additional Challenges of Android Malware Detection

Mobile malware and account fraud have exploded around the world. Cybersecurity
strategy that allows you to protect your digital assets from hackers. We observed that
increasing cyber threats targeting Android mobile devices. Cyber Threat Actors and
their use and monetization of stolen data. We discuss and analyze the current effort
of monetizing mobile malware in detail below.

• Premium Rate Number Billing: In this case, the attacker sets and registers an
additional rate number. Usually, these are “shortcodes” that are shorter than the
usual phone numbers. The Android application can request permission to send
SMS messages during installation. These SMS messages can be sent without user
confirmation. Sending a text message to an advanced shortcode causes the phone
owner to charge his phone bill and attacker to generate revenue.
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• Spyware: Several Android apps allow someone to track and monitor a mobile
phone user. These apps can record and export all SMS, emails, messages, call logs,
microphone, and GPS locations. These applications typically require an attacker
to buy a vendor application and then gain physical access to the phone. Although
these apps may not generate an attacker’s revenue, they generate revenue for the
spyware application vendor. Table 8 shows the required permission and APIs used
in an Android application to perform these tasks.

• Search Engine Poisoning: Some search engines recommend websites or change
search engine rankings by monitoring user access rates. These recommendations
can be further customized when using a mobile version of the search site and
are explicitly monitored by mobile users. A malicious application can initiate
multiple requests to these sites, thereby poisoning the hit rate monitored by the
search engine. Artificially increasing their search rankings allows an attacker to
increase the number of visits by potential customers, or generate revenue through
pay-per-view or pay-per-click advertising displayed on the website.

• Pay-Per-Click:Each service (such as an ad network) pays for each time an affiliate
member refers to a particular website (pay-per-click). Using malicious applica-
tions, an attacker can manually access these sites for a few cents per click. Mobile
television in China is a wide range of value-added services, and content providers
can participate in revenue-sharing programs with operators based on the payer’s
view. An attacker can create a video channel with the carrier and then register it,
generating revenue each time a user views the video or channel. Malicious apps
can generate revenue for downloading such video content

• Pay-Per-Install: In the mobile market, the pay-per-view scheme usually refers
to a model that differs from the pay-per-install scheme in the PC malware space.
The term usually refers to a legitimate distribution market in the mobile market,
which hosts download applications and charges vendors based on the number of
downloads and installations. The opposite is a pre-installation in the PC malware
space; the reseller pays the affiliate each time they can install an app on a user’s
computer. Installing pay-per-install software on an infected computer allows an
attacker to generate revenue. Although PC applications have many pay-as-you-go
solutions, only a handful of mobile apps are available.

• Adware: Many ad networks pay for each view and click when the ad appears.
Malicious apps can display ads by launching a browser. An attacker generates ad
revenue each time the app is used and an ad is displayed.

• mTAN Stealing: Some banks must send additional credentials out of the band
to prevent man-in-the-middle attacks when they make a transaction or log in to
an online bank account. In particular, the bank will send a random number to
the registered mobile phone number called a transaction authentication number
(mTAN). They need malware on their phone to get this number for the attacker to
succeed.
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7 Conclusion

This chapter presented a systematic literature survey of the Android malware detec-
tion techniques using deep learning and machine learning. Te reviewed and papers
were categorized as three categories of Android malware detection: (1) static anal-
ysis, (2) dynamic analysis, and (3) hybrid analysis approaches. The most popu-
lar and useful Android malware detection techniques were analyzed via classifica-
tion approaches, clustering approaches, data-mining approaches, deep learning and,
machine-based approaches. Moreover, this chapter discusses the all available dataset
and experimental analysis of androidmalware detection. Furthermore, it assessed the
effectiveness of current methods for analyzing malware and detection techniques.
That’s different from previous surveys that usually study mobile attacks only, this
chapter introduces static, dynamic, and hybrid analysis techniques and proposed
algorithms.
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Abstract Albeit the cyber world has become an essential part and the lifeline of the
present day, there are threats associated with it. People access the cyber world for
various services like networking, banking, communication, shopping, and for other
uses. Malware is one of the primary and perilous threats among malevolent software
for the decades in the cyber and the computing world. Due to its magnification in vol-
ume and in complexity, malware and its variant identification and classification are
the most central and severe problems nowadays. Since malware inception, more and
more malware is engendered and designed, as time passes; more intricate malware is
designed enormously. Researchers and analysts are perpetually probing for a solu-
tion that is the most efficacious to fight back with malware. The most-famedmethods
utilized for malware analysis is signature-based detection, static, and dynamic analy-
sis. In recent years, signature-based detection has been proven ineffective against the
escalation ofmalware and its variants.Malware classification is attractingwidespread
interest due to its vast proliferation. In this chapter, we have chosen to discuss and
explore another method of malware analysis that is image-based malware analysis
utilizing deep learning. We are specifically discussing malware classification utiliz-
ing malware visualization and deep learning, one of the most widely implemented
techniques in many real-world applications. To better understand the concept from
a practical perspective, we additionally discussed and implemented a fundamental
level malware classifier, for the reader’s further research and study purpose. The
main objective of this chapter is to avail readers a better and in-depth understand-
ing of malware classification, visualization, deep learning algorithms and emerging
challenges, open issues.
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1 Malware and Malware Analysis

In this section, we are discussing what is malware, what is malware analysis, what is
malware classification, how we visualize malware, etc. This section is prodigiously
needed and avails readers to better understand the malware analysis and malware
classification.

1.1 Malware

To efficaciously understand and analyze malware, you should be familiar with it.
Malware is an abbreviation formalicious software (malicious software is an umbrella
term used to refer a variety of forms of inimical software or programs) intending to
access information, resources without the user’s notification, and sanction. Malware
is any code that performs inimical.Malware infections are among themost frequently
encountered threats in the digital and computing world. Malware is additionally
utilized for obtaining a password, obtaining confidential data; additionally, they are
acclimated to trap the government. The malware is mall functioning software that is
found on the computer systems. Malware and other threats are defined as specially
indited programs to perform deleterious activities. An assailant designs malware to
compromise computer services, access data, bypass access controls, and affects the
functioning of a computer, its applications, or data.

The accelerated growth of devices in the cyber world has designated a massive
obstruction in front of malware analysts, researchers, and additionally for antivirus
companies. Assailants utilize the cyber world for illegitimate activities to commit
financial frauds, to gain access to sensitive and personal information, to gain access
for systems and networks. In recent years, there has been an expeditious increase in
Internet attacks [7, 8]. The researchers and analysts customarily suggested security
mechanisms and designed novel methods to fight malware and its variant attacks.
There has been a great amendment in the design of malware. Afore the termmalware
was coined, all the malignant programs were considered under the term computer
virus. Malware is an umbrella term for any program that contravenes the confi-
dentiality, integrity, and availability of accommodations, contrivances, networks, or
systems.

The list below provides an overview of variants of malware based on malware’s
behavior includes Trojans, viruses, worms, rootkits, botnets, phishing, spam, spy-
ware, key loggers, logic bombs, etc.

Adware is kenned as advertisement software. Adware is the designation given
to those programs which are designed to exhibit advertisements on your com-
puter when you explore the cyber world, and then redirect your search requests
to advertising websites and accumulate information about you and your inter-
est. Adware is considered as malevolent because it amasses data without your
consent or sanction. It is a type of malware that automatically distributes adver-
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tisements. Advertising-fortified software often comes bundled with software and
applications and most of them serve as a revenue tool.

Virus A computer virus is a malevolent program that cyber attackers program
to reproduce in massive amounts and affects the functioning of a computer and
degrades its performance. It is also known as infectors. It conventionally does so
by assailing and infecting subsisting files on the target system and from one host to
another. Viruses must execute to do their deleterious task, so they target any type
of file that the system can execute. A virus is a software program that modifies
other programs and affixes itself to their code. A virus can run by itself; they
perform intended malevolent activities when the infected program is executed.

Spyware Abbreviated for spy software (software that spies on a computer system).
It is programmed to monitor and record browsing data as well as confidential
information and other activities. It is a type of malware that spies and tracks
utilizer activity without their erudition. The capabilities of spyware can include
keystrokes accumulation, financial data harvesting, or activity monitoring.

Worm Functionally virus and worms are homogeneous.Worms are infectious and
spreads. Assailers design worms to replicate themselves like a virus. However,
a worm replicates without targeting and infecting specific files that are already
present on a computer. They utilize a computer network to spread, relying on
security failures on the target computer to access it, and steal or delete data.Worms
are network viruses that can spread over the network by duplicating themselves.
They do not transmute or ravage the user’s files but they reside inmainmemory and
duplicate themselves, and by this theymake the system and network unresponsive.

Trojan A trojan or trojan horse is a maleficent program that represents its utilizer
to be appearing utilizable and innocuous files or legitimate software. Attackers
distribute trojans as routine software, game, or an implement that persuades a
utilizer to install it on their computer. The denomination is derived from the ante-
diluvian Greek story of the wooden horse that used to march into the city of
Troy by stealth. Trojan horses are just as pernicious on computers and consid-
ered destructive. Cybersecurity experts consider trojans to be among the most
hazardous types of malware, concretely trojans are designed to glom financial
information from users.

Key logger A keystroke logger, or key logger, captures keystroke ingressionmade
on a computer by the utilizer, often without the sanction or erudition of the uti-
lizer. Key loggers have legitimate uses as a professional information technology
monitoring tool . However, keystroke logging is commonly utilized formalefactor
purposes, capturing sensitive information like usernames, passwords, answers to
security questions, and financial information.

Rootkit A rootkit is a set of software tools, typically malevolent, which gives an
unauthorized utilizer privileged access to a computer. Once a rootkit has been
installed, the controller of the rootkit can remotely execute files and transmute
system configurations on the host machine. Rootkits cannot self-propagate or
replicate. They must be installed on a device.

Bots and Botnets Additionally kenned as robots. Bots are maleficent programs
designed to infiltrate a computer and automatically respond to and carry out
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Fig. 1 Malware evolution
statistics

instructions received from a central command and control server. Bots can self-
replicate (like worms) or replicate via user action (like viruses and trojans).

Ransomware Ransomware is a type of malware that locks the data on a vic-
tim’s computer, typically by encryption. The cybercriminal behind the malware
demands payment afore decrypting the ransomed data and returning access to the
victim. The motive for ransomware attacks is proximately always monetary, and
unlike other types of attacks, the victim is conventionally notified that an exploit
has occurred and is given instructions for making payment to have the data reno-
vated to normal. It is a type of malignant software that essentially restricts utilizer
access to the computer by encrypting the files or locking down the system while
injunctively authorizing a ransom. Users are forced to pay the malware author to
remove the restrictions and gain access to their computers.

1.1.1 Current Scenario of Malware Magnification

This section deals with the current scenario of the magnification of malware and its
variants.We can see from Fig. 1 that the number of attacks is growing every year. The
number of malware found perpetual to increment because malware and its variants
can be engendered utilizing automated tools and reusing code modules. Reports
from different antivirus companies limpidly describe that number of malware, and
its variants are incrementing expeditiously.

A report from the av-test institute verbalized that in the period 2011- august 2020,
1050.82 million malware were recorded [7] and 10.87 million new malware were
reported in the month August 2020 Fig. 2.

One more report fromMcAffe antivirus company placidly describes the statistics
of malware evolution, millions of malware and variants are discovered [8].

There are many more reports from different antivirus companies conspicuous the
fact that malware and its variant assailments are incrementing every year and besides
malware, reports additionally present the current scenario of attacks of Internet of
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Fig. 2 New malware
evolution statistics

Things (IoT) malware, mobile malware, and withal an expeditious increase is in
ransomware recently. With these statistics, manual malware analysis is not feasible
anymore; it does not scale to handle this enormous count of malware that’s why the
process of malware analysis needs to be automated. This is discovered or reported
malware and its variants. It does not account formalware that has not been discovered
or reported yet. There could be millions more out there that are still relishing the
comfort of not being detected

1.1.2 Malware Family

Amalware family is a group ofmalware that comports and functions in the sameway.
A family can be divided into different variants, especially if an incipient malware has
different functionality and structure than the precedent ones. Malware family is the
term utilized for the malware samples that belong to the same family designates they
apportion their code or can have homogeneous code, capabilities, damage potential,
inchoation, or behavior. Malware family betokens that incipient malware is designed
by utilizing antecedent malware so we can group them in a single malware family.

For example, the Loylda family refer Table 1 of malware has four known vari-
ants: Loylda.AA1, Loylda.AA2, Loylda.AA3 and Loylda.AT,malware samples from
malimg dataset [19].

1.1.3 Threats From Malware

The damage caused by malware depends upon it, whether it infected a computer, a
business organization or whole network. The consequences of the damage caused by
malware depend upon the type of malware. There are many threats associated with
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variants of malware, such as some malware interrupts the services of the system and
operating system, some accesses file system without sanction, some access user’s
confidential data, some perform a denial of accommodation attacks, some minimize
the space of a system, effacing,misplacement and corrupts files, some access systems
resources, they additionally decelerate the process of the system, engender multiple
shortcuts, automatically consumes an abundance of space in the system and trun-
cating the recollection of the system. Malware greatly affects the functionality of
computers and networks. Malware additionally causes hardware failure.

1.2 Malware Analysis

Malware analysis is the process of inspection and dissection of the functionality,
purport, inception, and potential impact of malevolent code. In another way, it is
the process of extracting cryptic information from malware code through static,
dynamic, or hybrid inspection by utilizing tools, techniques, and methods. The data
that is extracted from malware can be simple like its file type, strings to more
perplexed information like malfeasance. Malware analysis denotes analyzing and
inspecting binaries of malignant code to understand its working and finding methods
for identification and classification of homogeneous files. Attributes or properties of
data/samples, and these attributes are analyzed to engender paramount insights into
the data under analysis. We accumulate features from malware binaries.

For example, in the facial detection system, the features would be shape, size,
color, and structure of eye perceivers, nose perceiver and inmalware analysis, features
can be strings from the malware binaries, application programming interface (API)
call sequences, n-grams, etc.

1.2.1 Traditional Approaches

The investigation ofmaleficent code is done traditionallymainlywith static, dynamic,
and hybrid analysis. Traditional approaches Fig. 3 such as static, dynamic, or hybrid
analysis extract separate levels of features from malignant samples for identifica-
tion and relegation, which cannot perform efficiently and accurately. The utilizations
of deep learning for malware classification offers an expedient of building scalable
machine learning models, which may handle any scale of data, without expending
of resources such as memory. Deep learning marks malware depend on the gen-
eral pattern, which directs the distinguishing of a variety of malware attacks and
their variations. Furthermore, deep learning conducts a profound classification and
improves its accuracy because deep learning identifies more features than conven-
tional machine learning methods by passing through many calibers of feature extrac-
tion. This enables deep learning models to acquire an incipient pattern of malware
after the fundamental training phase.
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Fig. 3 Traditional malware analysis approaches

1.2.2 Features and Feature Engineering

The performance of any classification, prediction, and recognition system is closely
dependent on feature. In machine learning, features are learned manually or we
can say that hand-crafted features are used. They dominate the past on image- and
video-based applications. There are many disadvantages associated with this feature
learning like deep knowledge of data for feature extraction; feature extraction and
classification were two different modules, where hundreds of features crafted for
applications, feature dimension is high and to select optimized features from feature
vector is a slow process.

Traditionally malware was identified and analyzed by utilizing the following
approaches.

1.2.3 Static Analysis

It refers to the analysis or investigation of a malignant program without executing
it. It is the process of extracting information from malware while it is not executing.
Static analysis can be performed directly with the actual code (if present) and if not,
can be applied to sundry representations of executables. Static analysis is considered
the most facile, expeditious, and less precarious analysis process. It is the most facile
and expeditious because there are no special conditions and requisites needed for
the analysis process. The malware is simply subjected to analysis implements. It is
less jeopardous because the malware is not executed during analysis; consequently,
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there is not at all any jeopardy of an infection yielding and spreading while analysis
is going on, and we do not worry about engendering a safe environment for static
analysis. The patterns detected in this kind of analysis include string signature, byte-
sequence or operation codes (opcodes), frequency distribution, byte-sequence n-
grams or opcodes n-grams, API calls, the structure of the disassembled program, etc.
The terminus goal is to identify malware afore the program goes under assessment.
Disassembly ofmalevolent programs is required to detect the patterns some prevalent
disassembly implements are objdump, IDA Pro, etc. Static analysis is considered to
be a less profit method of analysis as the data extracted from the static analysis
is less promising because data is amassed when malware is in passive mode (not
executing). Data extracted is constrained and not reveal much paramount information
about malware. Prevalent techniques applied in the static analysis are flow analysis,
string analysis and signature analysis.

1.2.4 Dynamic Analysis

Dynamic analysis is the process of extracting data frommalwarewhile it is executing.
It refers to the analysis of the deportment of a malevolent program while it is being
executed in a controlled environment (virtual machine, emulator, sandbox, etc) to
identify inimical activities after the program executes. The demeanor is monitored
by utilizing implements like processmonitor, process explorer, wire shark, or capture
bat. This kind of analysis endeavors to monitor system calls, injunctive authorization
trace, function and API calls, the network, the flow of information, etc. Unlike the
static analysis, which provides inhibited information from the malware being ana-
lyzed, the dynamic analysis offers an in-depth view into the malware’s functions and
comportment because it is accumulating information while the malware is executing.
To conduct dynamic analysis we require two things, first is the environment where
we can execute malware is in a controlled manner for the analysis purport and second
is analysis implements that monitor and records the environment for any vicissitudes
made by the malware to its target system. Unlike static analysis, dynamic analysis
is considered to be highly jeopardous but paramount, or high-profit process. The
peril of infection, spreading, or something inimical transpiring is high because the
malware is executing; the profit is high because the data extracted from malware
reveals more of itself during execution. In the dynamic analysis, we are probing for
the following vicissitudes in registry activity, network traffic activity, process, and
file activity. Some prevalent dynamic analysis implements are process monitor, wire
shark, capture bat, anubis, etc.

1.2.5 Hybrid Analysis

The hybrid analysis technique includes consolidating static and dynamic features
accumulated from examining the application and drawing data while the application
is running, discretely. Nevertheless, it would boost the precision of the identification.
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The principal drawback of hybrid analysis consumes the system resources and takes
a long time to perform the analysis. The hybrid analysis amalgamates the traits of
static and dynamic analysis for expeditious analysis and better results.

1.2.6 Comparison

Static analysis cannot detect unknown malware and its variants. Compared to static
analysis, dynamic analysis is more efficacious and does not require the executable
to be disassembled but on the other hand, it takes more time and consumes more
resources than static analysis, being more arduous to scale. One more issue is as
the controlled environment in which the malware is monitored is different from the
genuine one, the program may comport differently because some deportment of
malware might be triggered only under certain conditions such as via a concrete
command or on the concrete system date and in consequence, cannot be detected
in a virtual environment. In static analysis, data extraction is effective only if the
malware is free from any type of encryption or obfuscation. Dynamic analysis is all
about making the malware prosperously run in a controlled environment. Therefore,
its circumscription is because of the different malware dependencies like time, event,
program, etc. Static analysis can facilely be subjugated by a packed and encrypted
file. This is why file unpacking and decryption are paramount in the fight against
malware. Static analysis reveals some immediate information about malware but
it is expeditious, exhaustive analysis more in-depth information but it is hard and
time-consuming.

Malware analysis is a highly manual and laborious task, additionally requires
analysts to have expertise in software internals and reverse engineering. Data min-
ing and machine learning have shown promise in automating certain components
of malware analysis, but these methods still rely heavily on extracting paramount
features from the data, which is a nontrivial task that perpetuates to require practi-
tioners with specialized skill sets. As the number of devices connected over the cyber
world increases parallelly the attacks additionally increase exponentially. In reality,
malware analysis does not reveal most of the information from the malware because
of the known limitation of the malware analysis process.

1.3 Malware Classification

We now shift our discussion toward the main topic of this chapter that is malware
classification and identification. In general, malware classification is defined as to
group or classify malware together predicated on some mundane properties like
they apportion homogeneous code, same potential damage, their inceptions, etc. In
more simplewords, classification is the process of assigning an object to a category or
class. Classification refers tomethods for presaging the likelihood that a given sample
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belongs to a predefined class or category, like whether a piece of email belongs to
the class “spam” or a url is benign or malignant.

Malware can be classified in many ways such as depending on task, inception,
authorship, damagepotential, etc. In general,malware samples are groupedby family.
Malware samples that show homogeneous functionality, structure with little differ-
ences are grouped under one roof and referred to as they belong to the same malware
family. Classification is the prediction of incipient samples into its class whereas
clustering is about discrimination of one group of samples from other groups. Clas-
sification is supervised whereas clustering is unsupervised. Classification examples
are like to classify the taste of food as good or bad, to classify the thoughts or thinking
as right and wrong, etc.

The prevalent term for non-maleficent files is a benign file. These are the examples
of a binary classification problem one with only two output classes, “spam” and “not
spam,” “botnet” or “benign.” By convention, samples that possess the attribute we
are investigating (e.g., that an electronic mail is spam) are labeled as belonging to
class “1” while samples that don’t possess this attribute (e.g., mail that is not spam)
are labeled as belonging to the class “0.” These 1 and 0 class labels are often referred
to as positive and negative cases, respectively.

Classification is a puissant and efficacious supervised learning model that can be
appliedproductively to a broad rangeof security andother quandaries. The algorithms
used to perform classification are referred to as “classifiers.” There are numerous
classifiers available to solve binary classification problems, each with its strengths
and impotencies. By the definition of malware classification, one can be confused
with the identification of anygivenfile asmalicious andnon-malicious.One should be
kept in mind that malware classification includes the identification and classification
ofmalicious and non-malicious files. Sowe can conclude that a given arbitrary binary
file identified or classified as benign or malware comes under malware classification.
This classification is utilized to determine whether a binary is malicious or not.

1.3.1 Classification Steps

A classification typically proceeds through the following steps:

1. A training/learning phase: In this phase, an analyst builds a model and applies
a classifier on the training inputs. Training data consists of two things, data or
samples, and its associated labels/class.

2. A validation phase: This phase is applied to assess the training performance on
validation data. The validation phase is optional but researchers and analysts
vigorously suggest utilizing the validation phase. In this, training data is split into
two sets, one is for training and the second is for validation. Training is done on
training data and to assess the training performance (customarily accuracy) we
apply validation data on training.

3. A testing phase: To assess the performance of the deep learning model, we apply
testing data on the classifier and monitor the classifiers prognosticated labeled
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with an authentic or ground-truth label of test samples. The test precision is the
overall precision of the model. test data is not optically discerned afore data.

1.3.2 Why Malware Classification?

Malware and its variant detection and classification have become one of the most
adverse quandaries in the field of cybersecurity and the digital world. The daily
increase of malware and its variants is a rigorous quandary of malware analysis. The
main quandary with malware analysis is that the number of attack files submitted to
antivirus companies for the investigation purpose is enormous. It is virtually infea-
sible and arduous to analyze each file manually, so there is a desideratum for some
automation system and implements to analyze these files efficiently with less human
intervention and efforts.

In the cybersecurity domain, traffic classification as malicious and benign is con-
sidered the first step toward security. By classifying malware into their respective
families is helpful to analyze samples of a given family by human experts and some
defensive measures can be proposed to mitigate malware attacks. Features or charac-
teristics are extracted from themalware binaries utilizing data extractionmethods and
implements. The attack of malware and its variants is not only inhibited to the cyber
world, it is withal affecting the IoT networks, mobile networks, and contrivances.
Researchers and analysts commenced to explore malware analysis utilizing deep
learning and visualization techniques in IoT, mobile, and cloud infrastructure.

1.3.3 Why Malware Visualization?

Malware visualization is the process of visualizing malware binaries as images—
examples are given in Fig. 4. Visualization avails to visualize kindred attributes and
distinctions between two variants of the same family. Visualization is efficacious
in the representation of internal structure kindred attribute of malware. Malware
binaries are ready to run or executable programs referred to as binary files and has
an extension of .bin or .exe .

As we can visually perceive from Fig. 4 that malware from the same malware
family exhibits the same internal structure while malware from different malware
families has a different internal structure. This is the prevalent advantage of visual
malware as an image and it avails in classifying malware. The advantage of images
utilized in visualization is that they can give more in-depth information about the
internal structure of the malware binary code and could identify even small changes
in code while retaining the whole structure of the code.
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Fig. 4 Visual representation of malware

1.3.4 Challenges of Malware Classification

Here we are going to discuss the challenges that are reported during the study of
malware analysis. One of the most sizably voluminous challenges is that every-
day millions of malware are being designed and the complexity to detect this mas-
sive amplitude of sophisticated malware are very difficult to identify. Traditional
approaches for malware analysis were very tedious and manual intervention was
required for analysis. Obfuscation techniques present most immensely colossal hur-
dle and one of the major factors which affect the analysis of malware. Scalability
is one of the major challenges in the malware defense system as the number and
variety of malware are kept incrementing. Classification algorithms and models can
engender precise results on propitious conditions but this case is not possible in the
genuine world. To obtain a dataset for training and testing that is sizably voluminous
and accurately labeled is arduous. The number of samples in each class additionally
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affects the relegation precision. The classifier’s performance is highly dependent
upon the ample quantity of labeled data. Overfitting and underfitting are two well-
kenned quandaries associated with the classifier’s performance. There is not a single
performance measure that is used to assess the performance of the classifier; there
are varieties of measures available like accuracy, precision, f1 score, roc curves, etc.
Deep learning is about deep neural networks and neural networks have a variety of
hyper parameters that affects the models or classifier’s performance like the num-
ber of hidden layers, number of neurons per layer, learning rate, dropout, etc. Some
features extracted from malware samples have high dimensionality, which denotes a
more involutes system and incremented processing time. One of the latest emerging
threat in malware analysis is the file less malware [10], it does not utilize the file
system for its malevolent activities, thereby eschewing traditional approaches and
became one of the hurdles in malware analysis.

2 Deep Learning

In this section, we are discussing what is deep learning, what are different deep
learning algorithms, how is the deep learning model defined? The topic is briefly
explicated to relate with the malware classification.

2.1 What is Deep Learning?

Deep learning is a sub-branch of machine learning and its functioning is inspired
by the structure and function of the brain called neural networks. Deep learning
refers to the set of techniques utilized for learning in neural networks. It refers to
deep, or many-layered, neural networks withal kenned as deep neural network. Deep
learning is about learning abstract representations of data or observations utilizing
network layers that avail to make sense of some kind of hidden patterns, features of
data like images, sound, and text. In pursuing malware analysis and lowering human
intervention, deep learning has been introduced intomalware analysis. Deep learning
depends on studying various levels (from low level to higher level) of representations,
where top-level features (for example, face) are tenacious from lower level ones (like
edges, curve, etc.), and similarly lower- level features avail in determining numerous
top-level features.

2.1.1 Machine Learning

Machine learning is defined as the subfield of artificial intelligence. The goal of
machine learning is to understand the data and build a numerical model, fit that data
into a model that can be understood and utilized by the user.



176 B. Yadav and S. Tokekar

Antivirus companies commenced to utilize modern classification techniques
dependent on data mining and machine learning methods. All the methods either
data mining or machine learning approach dependent upon the extraction of features,
applying more clever frameworks or classifiers for classification purposes. The dis-
advantage of machine learning is that it requires manual feature extraction. Many
authors applied support vector machine (SVM) classifier, naÃ¯ve bayes classifier, or
mixed classifiers to classify malware.

2.1.2 Shallow and Deep Learning

Deep learning is a subfield of machine learning, concerned with functionality and
structure inspired by the human brain called artificial neural networks. The term
“deep” in deep learning isn’t a reference to any kind of in-depth understanding
achieved by the approach; rather, it stands for conception and number of stacked
layers of representations of the input. How many layers contribute to a deep learning
model of the input data is called the depth or deepness of the model? The term
shallow learning algorithms are normally referred to as traditional machine learning
algorithms. It refers to algorithms that are not deep in architecture, e.g., decision
trees, support vector machines, naive bayes classifier, etc.

Modern deep learning models often constitute tens or even hundreds of stacked
layers of representations and they’re all learned /extract features automatically from
exposure to training data. Machine learning inclines to fixate on learning/extracting
only one (mostly) or two layers of representations of the input data; hence, they’re
sometimes called shallow learning.

2.1.3 What Makes Deep Learning Different?

1. Deep learning algorithms offered better performance on many involutes real-
world problems.

2. It makes problem-solving more facile.
3. It automates the most critical phase of machine learning that is optimized feature

extraction.
4. With deep learning, we can acquire more refined transformations of complex

problems.

2.1.4 Deep Learning Framework

Generally, a framework is a platform, interface, accumulation of libraries, and imple-
ments for developing applications. We have deep learning frameworks for building
deep learningmodels facilely andwithout going into depth cognizance of algorithms.
Some popular frameworks are tensor flow, keras, pytorch, caffe, deeplearning4j, etc.
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Fig. 5 Deep neural network

2.2 Deep Learning Algorithms

Deep learning can be considered as a subfield of machine learning. It is predicated on
learning and improving on its own by examining algorithms.Whilemachine learning
uses simpler concepts, deep learning works with artificial neural networks, which
are designed to be homogeneous to how humans think and learn. Artificial neural
network (ANN) drive deep learning. Neural networks were restricted by computing
power and thuswere limited in complexity. However, deep learning (ANNwithmany
layers) sanction computers to observe, learn, and react to intricate situations more
expeditious than humans. Deep learning has availed image classification, language
translation, and speech recognition. Deep learning can be acclimated to solve any
pattern recognition problem, to classify images, for language translation, to recog-
nize speech and without human intervention. Deep learning is to learn hierarchical
representations of input data.

Commonly used deep learning algorithms are

2.2.1 Deep Neural Network (DNN)

Deep neural networks are the ANN with many layers Fig. 5. Typically deep neural
networks are feed-forward networks in which input flows from the input layer to
the output layer and hidden layers(two or more ) and the sodalities between the
layers are one way which is in the forward direction(input layer to output layer).
The outputs are obtained by learning with datasets of labeled information predicated
on backpropagation. The circumscription of deep neural networks is that they don’t
have any memory unit.
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Fig. 6 Restricted boltzmann
machine

2.2.2 Restricted Boltzmann Machine (RBM)

RBMs are a two-layered artificial neural network with generative capabilities Fig. 6.
They can learn a probability distribution over its set of input. RBM can be utilized
for dimensionality reduction, relegation, regression, collaborative filtering, feature
learning, and topic modeling. RBMs are a special class of Boltzmann machines and
they are restricted in terms of the connections between the visible and the hidden
units. Thismakes it facile to implement themwhen compared to boltzmannmachines.
As stated earlier, they are a two-layered neural network (one being the visible layer
and the other one being the hidden layer) and these two layers are connected by a
fully bipartite graph. This denotes that every node in the visible layer is connected
to every node in the hidden layer but no two nodes in the same group are connected.
There are two other layers of bias units (hidden bias and visible bias) in a RBM. This
is what makes RBMs different from auto encoders. The hidden bias RBM produces
the activation on the forward pass and the visible bias avails RBM to reconstruct the
input during a rearward pass. The reconstructed input is always different from the
actual input as there are no connections among the visible units and therefore, there
is no way of transferring information among them.

2.2.3 Convolutional Neural Network (CNN)

Convolutional neural networks are very subsidiary for images based processing,
especially for image-based classification. A convolutional neural network Fig. 7 is
a type of feed-forward neural network in which the connectivity pattern between its
neurons is inspired by the organization of the animal visual cortex, whose individual
neurons are arranged in such a way that they respond to overlapping regions tilling
the visual field. Convolutional layers are the core of a convolutional neural network.
Convolutional neural networks, like neural networks, are composed of neurons with
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Fig. 7 Convolutional neural network

weights and biases (updates through learning). Each neuron receives inputs, applies a
convolution operation (weighted sum of multiplication) over them, passes it through
an activation function, and responds with an output. The network has a loss func-
tion and weights and biases are updated according to the loss function. CNN is
composed of three types of layers: convolution layers, pooling/subsampling layers,
fully-connected/dense layers.

2.2.4 Deep Belief Network (DBN)

A DBN is a class of deep neural network, a graphical model, composed of multiple
layers of latent variables (hidden units utilized for detecting features), with connec-
tions between the layers but not between units within each layer and have direct and
undirected connections Fig. 8. RBMs can be stacked and trained to compose so-called
deep belief networks. Multiple RBMs can withal be stacked and learned through the
process of gradient descent and backpropagation. Such a network is called a deep
belief network. A deep belief network utilizes an unsupervised machine learning
model to produce results. One of the mundane features of a deep belief network
is that albeit layers have connections between them, the network does not include
connections between units in a single layer. A DBN can work as a supervised learn-
ing algorithm (as a classifier) and additionally utilized as an unsupervised learning
algorithm (to cluster data).
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Fig. 8 Deep belief network

Fig. 9 Recurrent neural
network

2.2.5 Recurrent Neural Network (RNN)

Recurrent neural networks are best to process sequences. A recurrent neural net-
work Fig. 9 addresses the issue of the memory limitation of deep neural networks.
Deep neural networks are stateless, but recurrent neural networks have connections
between passes and connections through time. A recurrent neural network looks sim-
ilar to a traditional artificial neural network except that it has a memory-state and
is added to the neurons. With a recurrent neural network, this output is sent back to
the previous layer number of times. RNNs can remember parts of the inputs and use
them to make accurate predictions.
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Fig. 10 Autoencoder

2.2.6 Deep Autoencoder (AE)

Autoencoder is a neural network Fig. 10 that utilizes unsupervised learning algo-
rithms and backpropagation. It efficiently compresses and encodes input data then
learns how to set output values identically to the input values. How to decode the
data back from the minimized encoded representation to a representation that is as
proximate to the original input as possible. Autoencoder, by design, transforms data
into a hidden representation and then reconstructs data from that hidden representa-
tion inputs are high-dimensional data. It is compressed by the hidden layer and the
output layer reconstructs the inputs. The main applications of the autoencoder are
data denoising and dimensionality abbreviation.

2.3 Steps for Building a Deep Learning Model

The main advantage of deep learning systems for malware analysis is that they
automate the work of feature extraction, and they have the potential to perform more
accurately and efficiently than traditional approaches to malware analysis, especially
we want to focus on malware classification especially on new, previously unseen
malware. Essentially, the following steps Fig. 11 are used to build any deep learning
model for malware classification.

1. Data/samples collection: To train the DL model, we require data (training data).
For malware analysis, we require malware as well as benign (good wares) data.
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Fig. 11 Deep learning
model building

The performance of the dl model depends profoundly on the quantity and quality
of training examples, you provide for training. The quality of the training data is
also important. If you want to apply the dl model for a multi-class classification
problemyou have to amass adequate data for each class. The general rule of thumb
is that the more data (training data) you feed into your dl model for training, the
more precise results you will get.

2. Model building: We have to define a deep learning model among various avail-
able deep learning models (DNN, CNN, RNN, Auto Encoders, etc.) as per the
requirements. We first build the model then training and testing is applied on the
defined model.

3. Training: Train the model for recognition of malware on the optimized features
extracted automatically by the dl model. For training, we provide data /samples
and associated labels of samples. Mundanely, training is considered to be an
arduous task to perform because of the settings of hyper parameters. We feed
the training images into different CNNmodel architectures (it varies with several
layers, number of neurons in layers, learning rate, number of epochs, batch size,
etc.) with different hyper parameters settings, several epochs, and batch size and
probe for the model that fits our dataset.

4. Testing: Once you trained your model, we require to test the model on the data
samples that were not included in the training to assess the model’s performance
or how precise the model is. Generally, testing is done by running the trained deep
learning model on the data samples that were not included in the training denotes
data that has been never seen by the model.
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3 Malware Classification Based on Malware Visualization
and Deep Learning

In the following section, we are going to present and discuss detailed procedures on
the recent cognate work predicated on malware classification utilizing deep learn-
ing. The exhaustive study covers techniques of malware visualization predicated on
different deep learning algorithms.

To visualize malware as an image [19] is the field of representing malware in the
form of visual features. To analyze malware more deeply, malware has to be trans-
formed into an image, refer Fig. 13. The main benefit of visualizing malware as an
image is that different sections of a binary file can be facilely differentiated, Fig. 4.
Many solutions have been proposed and implemented utilizing static and dynamic
approaches but this work is predicated on the malevolent code and its variants detec-
tion and classification utilizing visualization techniques and deep learning. There
has been extensive research and study done on analyzing malware, many papers are
published which denotes static, dynamic, and signature-based malware analyzing
techniques. A publication on image-based malware visualization is one of the pre-
ferred ways [19]. This section explicates how to compose an image out of binary
malware files, how to visualize those images, and how these images are utilized for
image-based classification.

Traditionally this task is done by signature matching. In signature matching, a
database is prepared of properties, the behavior of previously seenmalware; incipient
binaries are compared by this dataset to compare previously stored data to determine
that something visually perceived afore. Signature matching performswell as long as
malware designers alter the behavior and properties of malware to evade detection.
A malware designer continuously changes the properties and behavior of malware
to avoid detection. By utilizing obfuscation techniques like metamorphic and poly-
morphic, authors of malware changes properties of code, behavior to avoid detection
of malware by signature matching or malware identification implementations.

We have studied papers which utilize the same principles as [19] to classify the
malware into their families. It has been observed that the deep learning model is
efficient. We propose to utilize malware visualization technique, converts every mal-
ware bytes code to a grayscale image. In research and analysis, it was observed
that malware from different families has kindred attributes in visual appearance pre-
senting to us an opportunity to exploit this impotency where these images will be
utilized for image-based classification. In image generation and classification tech-
nique, every byte of data is converted into a grayscale pixel; array of the byte stream
was converted into an image. Image representation of the malware engenders very
convincing images for analysis purposes.
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3.1 Related Work: Recent Innovations in Malware
Classification Using Deep Learning and Visualization

In this section, we are going to discuss and review the current state-of-the-art
approaches that have been established to address the malware classification utilizing
deep learning models and malware visualization.

The solution based onmalware visualization byNataraj et al. [19] in the year 2011
is considered as the first solution of this kind. Authors proposed amethod to represent
malware as a grayscale image and after that extracted gist (a texture-based feature),
afterward, the grayscale malware images are classified utilizing a data mining algo-
rithm knn (k-nearest neighbor). They experimented with the malimg dataset consist-
ing of 9458 malware grayscale images belonging to 25 different families, amassed
from the anubis system. For the experimental purpose, they converted malware into
a grayscale image of dimension 64*64. They extracted 320-dimensional texture fea-
tures from malware image predicated on gist. They divided the samples into a ratio
of 90–10% for train and test ratio. They obtained the test accuracy of 97.18% which
is very high as compared to traditional approaches. The results obtained evidence
that visualization of malware is very efficacious and can relegate malware with more
precision and expeditiously than subsisting static and dynamic approaches.

In the year 2013, Han k. et al. [5] proposed an incipient way of visualizing mal-
ware. They visualized malware as a color image utilizing binary values. The pro-
posedmethod generatesRGBcolored pixels by utilizing binary information extracted
through static analysis. First, the author disassembled malware binary files utilizing
implements such as IDA pro or ollyDbg, after disassembling the extracted sequence
of assembly codes are divided into blocks of opcodes (example of opcode sequence:
pusmovaddsubmov), after blockbuilding, every blockof opcode instruction sequence
is processed by two hash functions to engender matrix of coordinate values and RGB
color pixels information. To compute the homogeneous attribute between image
matrices authors utilized a selective area matching algorithm. For experiment pur-
poses, the authors utilized a color image of size 256 * 256, 2505 benign, and 8169
malware image matrices are engendered utilizing a visualization implement. 95%
test accuracy is achieved by this method. Results deduced relegation efficaciously
and the time spent to calculate homogeneous attribute was about 2.4ms.

In 2016, K. K. Pal and k. S. Sudeep [21] presented a data preprocessing technique
for the malware relegation model utilizing a convolutional neural network and image
representation.Authors proved that by applyingpreprocessing techniques on the data,
classification accuracy can amend. Raw data applied to any deep neural network does
not engender good results. The authors conducted three types of normalization on
the dataset and showed how precision varies. They applied to mean normalization,
standardization, zero component analysis on the dataset. For experimental purport
authors usedmalware color images of size 32*32 and they utilized the cifar 10 dataset
(dataset contains 60000 color images of size 32*32 belongs to 10 different classes).
They obtained an accuracy of 64–68% when zero component analysis is applied,
they got increased accuracy as compared to when no preprocessing applied.
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In the year 2016Ding y. et al. [2] have prosperously applied a deep belief network,
one of the unsupervised learning algorithms for malware relegation. The authors
represented malware as opcode sequences and then use deep belief network to detect
malware. An opcode (operation code) additionally kenned as an instruction machine
code that designates the operation to be performed. In a deep learning algorithm, the
neural network is trained multiple times by the raw opcode sequences extracted from
thedecompiledfile, so that the hidden feature information canbe efficaciously learned
and the malware can be detected efficiently and more accurately. Feature extractor
measures different measures like information gain, document frequency to evaluate
the relegation . Author used information gain to cull subsidiary n-gram. To accurately
describe the opcode comportment, the author extracted opcode sequences from 3000
benign and 3000 malware samples. The extractor evaluates 10000 different n-grams
with different information gain values. From these 10000 values author utilized the
top 400 n-grams as the features of an executable. DBN architecture has 3 hidden
units with 200,200 50 hidden neurons, respectively. Each layer is trained with 30
epochs. The authors obtained 96.1% accuracy.

In the year 2016 Hardy w. et al. [6] proposed an intelligent deep learning frame-
work for malware detection. They applied auto encoder, it is one of the unsupervised
deep learning algorithms used to detect generic features from malware to detect
unknown malware. They utilized a greedy-based feature learning at each layer, fol-
lowed by supervised tuning of weights and biases. The authors extracted windows-
based API call sequences from the portable executable (PE) files. For experimental
purpose, authors used the comodo cloud security center dataset (dataset contains
22500 malware samples and 22500 benign samples total of 50000) and the train
and test ratio was 90–10%. The experiment is performed with a different number of
neurons in the hidden layer but 100 neurons at each hidden layer and 3 hidden layers
configuration yield the maximum accuracy that is 96.85% at training and 95.64% at
testing.

Tobiyama s. Et al. [23], in the year 2016, proposed the fusion of deep learning
models in malware analysis. The authors first applied a recurrent neural network to
extract the features based on malware behavior and then applied CNN to classify
malware feature images of size image 30*30. To capture the behavior of malicious
application authors utilized API call sequences. The proposed malware detection
framework is mainly using API call sequence extraction and deep learning technique
for classification. A process behavior is defined as various activities and to perform
each activity various operations are associated with activities. To record process
behavior API call sequence is generated; the API call sequence represents activities
and related operations. They extracted feature vector by training of recurrent neural
network and then these extracted feature vectors are converted into an image and
applied CNN for classification. For experimental purpose 81 malware process log
files of 11 different malware families, 69 benign processes log files data collected
by NTT secure platform laboratory. The architecture of recurrent neural network
consists of an input layer, a hidden layer, 2 LSTM hidden layers, and an output layer.
The architecture of CNN consists of 2 convolution and pooling layers with 10 and
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20 filters, respectively. Used max pooling with stride 2, no of epochs: 5, batch size:
20. They obtained 96% accuracy.

Azab A. et al. [1] in the year 2016 proposed and addressed machine learning
technique for identification of untrained botnets traffic. Authors applied the c4.5
learning algorithm (for building classifier with 10,20 and 30 FN costs and 1 FP cost)
and correlation-predicated feature cull (cfs, applied to filter out duplicate, redundant
and impertinent features form extracted features) algorithm on the communication
trafficbetween compromised contrivances andbotmaster, they extracted511different
features coalescence from 9 different features categories from this communication
that avails to relegate between botnet traffic and legitimate traffic. For botnet network
traffic accumulation, Zeus (a botnet toolkit) was culled and it is considered one
of the major threats, especially for attacks on online banking transmissions. Two
separate datasets accumulated for experiment one are for training (the 432 botnet
traffic engendered utilizing zeus builder version 1.x and 2774 HTTP traffic) and
the second is for testing(the 144 botnet traffic engendered utilizing Zeus builder
version 2.x and 2396 HTTP traffic). All the built classifiers were evaluated utilizing
the K-10 cross-validation to optate the lenient classifiers. The built classifiers were
evaluated utilizing theK-10 cross-validation to cull the rigorous classifier. The voting
results from the three costs achieved 88 TP, 56 FN, and 1 FP results, providing
0.989 precision, 0.611 recall, and 0.755 F-Measure results. These results betoken that
the utilization of the stringent classifier might affect the detection of the untrained
version’s flows that were included by the lenient classifier.

In the year 2018, Kalash M. et al. [11] proposed and implemented a deep CNN
model for malware classification. They translate the malware classification problem
into an image classification by following the approach used by Nataraj et al. [19],
converting malware binaries to grayscale images of size 224*224 and then applied a
convolutional neural network for classification. The proposed convolutional neural
network model architecture is based on VGG-16. They applied the proposed method
on two different datasets, namely, malimg(dataset consists of 9458 malware samples
belonging to 25 different families) and Microsoft dataset (contains 21741 malware
samples, each malware sample belongs to 9 different malware families). Train and
test ratio used by the authors are 90–10% in the malimg dataset and 10868 samples
for training and 10873 samples for testing on the Microsoft dataset. They utilized
cross-entropy loss to train the network. The authors achieved 98.52% accuracy on
the malimg dataset (with 25 epochs and a batch size of 6) and 98.99 and 99.97% on
two different settings of Microsoft dataset (with 25 epochs and a batch size of 8).

In 2018, Ni S. et al. [20] proposed a malware classification algorithm that utilizes
static features and convolutional neural network. They converted the disassembled
malware codes into grayscale images based on simhash, and then classification is
done by convolutional neural network. They extracted the opcode sequence from
the code section as features then after extraction of the opcode sequence they cal-
culated simhash for sequence similarity comparison. By using simhash and bipolar
interpolation they converted the opcode sequence into a malware image then applied
convolutional neural network for training and classification. Each input image needs
to go through two convolutional layers, two subsampling layers, and three full con-
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nection layers. During the convolution process, they applied 32 filters of size 2*2 and
during subsampling max pooling is used whose size is 2*2 to dimension reduction.
The authors used the dataset for the experiment in Microsoft malware classification
challenge on kaggle by Microsoft 2015. The dataset consists of 10868 labeled mal-
ware images from 9 families, from 10868, 80% of them used for training and the rest
for testing. The classification accuracy they obtained was 99.260% with a 98.07%
f1 Score and 2.34% false positive rate (FPR).

KimC.H. et al. [13] in the year 2018 proposed a convolution gated neural network
for the task of malware identification and classification. Proposed model comprised
of convolutional neural network, gated recurrent unit (GRU), layer of deep neural
network, and a sigmoid layer. Each convolutional neural network has a convolution
layer, activation function, and pooling layer. All convolutional neural network pro-
duces a single output, and this output is applied to gated recurrent unit layers and
treats this output of convolutional neural network as time-series data. Each gated
recurrent unit produces a single output equal to the number of convolutional neural
networks in the first layer. Output of GRU is input to deep neural network. Each deep
neural network produces single output. The final layer of the network is the sigmoid
layer and the result of this layer is the classification.

In the year 2019, Singh A. et al. [22] explored and implemented a new way
to represent malware as color images as they used RGB representation of malware
(RGB images of size 32*32) over grayscale images to classifymalware. They experi-
mentedwith 37374 binary samples belonging to 22 families collected frommalshare,
virusshare, and virustotal, and malimg dataset. They applied deep neural network
architectures ResNet-50(residual network) architecture including a dense convolu-
tional neural network for classifying images. With their implemented model they
obtained 98.98% using convolutional neural network and 99.40% using ResNet-50
on the authors dataset and 96.08% using convolutional neural network and 98.10%
using ResNet-50 on the malimg dataset. The authors introduced a novel approach
to convert the binary file string of zeros and ones into rgb color images. They used
a 15 layer convolutional neural network model (5 convolutional layers and 2 dense
layers).

Yin Q. et al. [25] in the year 2019 presented a fused model of convolutional neu-
ral network and recurrent neural network for image classification. Authors extracted
features using convolutional and recurrent neural network networks from the inter-
mediate convolutional neural network network.

In the year 2019, Naeem H. [17] proposed a fast deep learning model to detect
malware in the IoT network. IoT devices improved the user experience of the inter-
net by smart devices to connect and information sharing. The author proposed the
detection of malware by converting malware binaries into the color images of size
192*192 and then applied a deep convolutional model for efficient malware detec-
tion on the malimg dataset (dataset consists of 9458 malware samples belonging to
25 different families) and leopard mobile datasets(contains 14733 malware samples
and 2486 benign samples of IoT applications.) The train and test ratio was utilized
as 55–45% for the malimg dataset and 34–66% for the leopard dataset. The author
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obtained an accuracy of 98.18% on the malimg dataset and 97.34% on the leopard
dataset. The author achieved better accuracy and response time.

In the year 2019, Khan U. R., et al. [12] defined an improved, more intelligent
convolutional neural network model for intrusion detection. Authors mentioned that
machine learning algorithms have a low detection rate, as well as manual extraction
of features, which is a laborious and time-consuming task that’s why they applied
deep learning in intrusion detection. Deep convolutional neural network is used for
training and classification and it automatically extracts optimized features from input
samples. The dataset used for experiments is the KDD99 dataset; the dataset con-
tains 494021 training samples and 311029 test samples, from 5 different categories
(contains normal, DOS, R2L, U2R, probe). They obtained the accuracy on improved
convolutional neural network that is 99.23 for 800 epochs, which is a promising
result. CNN model architecture has two convolutional and two pooling layers.

Mourtaji Y. et al. [16] in the year 2019 proposed a deep learning framework
for malware classification. Authors first converted malware binaries into grayscale
images as used by Nataraj et al. [19] and then trained a convolutional neural network
model for classification. Different parameters for experimental purpose used malimg
and Microsoft datasets. Train-test ratio used 85–15% for the malimg dataset and
10868 samples for training and 10873 samples for testing, and they utilized the
convolutional neural network architecture defined by K. Simonyan and used a cross-
entropy to learn and train the model from the network after that utilize stochastic
gradient descent (SGD) to optimize the learning parameters of the model, initialized
the learning rate to be 0.001 and 25 epochs, batch size of 6 for malimg dataset and
25 epochs, batch size of 8 for Microsoft dataset. The authors obtained 97.02% on
malimg and 98.72% and 99.881% on two different experiment settings on Microsoft
dataset.

JainM. et al. [9] in the year 2020 applied and comparedCNNand extreme learning
machines (ELM) for malware classification. Results are evident that ELMs required
less time to train as compared to train a CNN and achieves higher accuracy on
one-dimensional data processing. Authors also found that for two-dimensional data
processing ELMs are faster than CNN. Authors experimented with different settings
of the CNNmodel like they applied CNNwith one hidden layer than with two hidden
layers with different hyperparameters settings, and the best results they got with a
two-layer configuration of CNN with input images of size 128× 128 pixels with 32
and 64 filter maps. With ELMs, they have to perform very fewer experiment settings
like only they tuned some neurons in the hidden layer, the chosen 50 neurons for
the experiment. The authors utilized grayscale images of size 128*128 for CNN and
grayscale images of size 64*64 for the ELMmodel. They used themalimg dataset for
experiments and 80% for training, 10% for testing, and 10% for validation division
is applied to the dataset. The configuration of CNN architecture: CNN with two
convolutional layers, 128 × 128 images, and (32, 64) filters and ELM architecture
has 50 neurons in the hidden layer. They obtained an accuracy of 96.3% on the CNN
model and 97.7% on the ELM model.

In January 2020, Kumar G. S. and Bagane P. [3] presented a hybrid deep learning-
based model for malware classification. They applied convolutional neural network
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with bi-directional long short-termmemory(LSTM) to do the task. First, they applied
convolutional neural network for feature extraction, and then in the last layer after
flattening the output they applied the LSTM model for the classification.

In the year 2020, Vasan D. et al. [24] proposed a novel approach based on the
ensemble CNN architecture model for effective detection and classification of mal-
ware images. Authors utilized the pre-trained models and combined different opti-
mized features extracted to fine-tune the VGG 16 and ResNet50 and fused the
extracted features from both models and classified the malware into their corre-
sponding families. Results proved the effectiveness of the proposed method.

In the year 2020, Naeem et al. [18] proposed a deep learning model for malware
detection in the android operating system. They transformed a raw android file into a
color image (of dimension 224*224 and 229*229) and then applied a deep convolu-
tional neural network model for android malware classification. The author designed
a very deep convolutional neural network that has 4 convolutional layers each fol-
lowed by an activation function and max pooling layer, followed by a dense layer
and softmax layer. The author applied a deep convolutional neural network model on
the leopard dataset (dataset contains 14,733 malware samples and 2486 benign sam-
ples of different IIoT applications) and the malimg dataset. They achieved 97.81%
accuracy on a leopard mobile malware dataset (224*224 color image dimension), a
well-known industrial Internet of Things (IIOT) dataset, and 98.79% on a malimg
dataset (with 229*229 color image dimension).

3.1.1 Generative Adversarial Networks (GANs)

Generative adversarial networks provide a new way of addressing computer vision,
detection and classification problems.One of the biggest problemswith deep learning
model is lacking of sufficient training samples as we know that good quality and
sufficient data is the key of deep learning model. Any deep learning model heavily
dependent on the number of samples providing for training. Many datasets available
today face this problem. We can notice from Table 1 that malimg dataset is also
a high imbalanced dataset Allaple. A malware family contains 2949 samples as
compare toWintrim.BX and Skintrim.Nmalware family contains 97 and 80 samples
respectively. This imbalance affects the training process as well as the classification
performance. To address this problem GANs we can utilize. GAN can be used to
generate samples from the data.

GANs are types of deep learning technique for generative modeling and most
recent development in machine learning. GANs are very incipient in the literature on
deep learning, and they belong to unsupervised learning. The first paper published
by Goodfellow et al. In 2014 [4] introduced the generative adversarial networks
framework. A GAN is trained utilizing two neural network models. Generative mod-
eling requires a model to engender incipient samples from a subsisting distribution
of available samples, for example, engendering incipient images that are generally
homogeneous but concretely different from available images in the dataset. GANs are
mainly utilizedwith convolutional neural networkwhich denotes GANs are specially
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utilized for image cognate applications. A GAN is trained utilizing two neural net-
work models. One model is referred as the generator or generative network model,
which learns to engender incipient likely samples. The other model is called the
discriminator or discriminative network and learns to differentiate engendered sam-
ples from authentic samples, discriminator works like a classifier; it distinguishes
authentic samples from the engendered samples.

We can apply GAN in cybersecurity field, and it is proving very promising. One
of the quandaries with any deep learning model is data imbalance issue. As we all
very well know that good quality and adequate magnitude of training data is the
key for any deep learning models performance. So, we can surmount this issue of
data imbalance utilizing GAN and can engender incipient samples from the genuine
samples for training. In reality, all the real-world datasets are imbalance datasets and
there is much variation in the number of samples in each family. So GANs can be
proved very efficient to address this issue.

In the year 2019, Y. Lu and J. Li [15] applied GAN for malware classifica-
tion/predication on deep learning model. Authors addressed the data imbalance issue
and engender incipient samples for training. They applied GAN utilizing convolu-
tional neural network and called this model as deep convolutional generative adver-
sarial network (DCGAN) to engender malware samples from the available dataset.
Experimental results are conspicuous that utilizing GAN accuracy of the proposed
model is incremented by 6%. In their implementation, they utilized a 18-layers deep
residual net as themalware classifier.Network learns from the trained data that engen-
ders the potential distribution of the incipient genuine samples from the authentic
samples, while the discriminator differentiates the incipient genuine sampleswith the
genuine samples as accurately as possible.Multiple convolutional and convolutional-
transpose layers are utilized in the discriminator and engenderer for training. They
trained the GAN network for 10000 epochs to engender the authentic samples, start-
ing from the 1000 training epochs, preserved 25 engendered samples for every 100
epochs for each class. So after the training is done. They have 2250 engendered
synthetic samples for each class. They achieved the overall average testing accuracy
of the deep residual network is 84% and the precision, recalls, and f1-scores of the
classes with more samples size are supplementally incremented.

In the year 2017, Kim JY. et al. [14] proposed a transferred generative adver-
sarial network (tGAN) for automatic malware relegation and detection of the zero-
day attack. They surmount the constraint of GAN training to pre-train GAN with
auto encoder structure. The proposed model gets the best performance compared
to the conventional learning algorithms. To address the data imbalance issue and to
engender incipient samples they proposed and applied tGAN model predicated on
GAN. Their proposed architecture consists of three modules: pre-training module,
engendering data module, and malware detecting module. First module pre-trains
the second module which has an engenderer that engenders data kindred for train-
ing, and a discriminator that distinguishes genuine data from engendered data. The
discriminator is trained to distinguish the authentic data from the engendered data,
and the engenderer is trained to make the discriminator to classify the engendered
data into the genuine data. They used malware data utilized in the kaggle Microsoft
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malware classification challenge. The accuracy of malware type detection is 96.39%.
The entire data is divided into training and test data at a ratio of 90:10. It shows the
best performance compared to other conventional models, and it enables to detect
malware even with a minute of data.

A detailed review of generative adversarial networks and its application in cyber
security is presented by Banjo Y. et al. [26]. They explained how GANs are very
useful and applicable in cyber security field. They reviewed two very widely utilized
GANarchitectures the deep convolutional generative adversarial network (DCGAN),
and wasserstein GAN. Their reviews are notable to study cyber security where the
GAN plays a vital role in the design of a security system . This paper guide the scope
of modern cyber security studies with generative adversarial networks.

Deep learning can help to solve problems caused by modern malware and the
way they function. Using deep learning we can also automate the malware analysis
process. The biggest advantage with deep learning is that the manual extraction of
features or data is skipped, deep learning architectures automatically extracts features
from samples, based on the extracted features from the training dataset, samples are
distinguished by samples belonging to a particular class to other classes. Traditionally
malware classification has been a manual process, involving experts having in-depth
knowledge of malware, their working, properties in malware to design malware
identification, or classification engines.Deep learning facilitates automatic extraction
of optimized features from the training dataset, letting the automatic detection of
features analysts can make effort for designing more efficient algorithms, and better
results.

3.2 Performance Metrics: To Measure the Performance of
the Deep Learning Model

To evaluate the performance of the developed system or solution following metrics
are calculated. Using these metrics we can compare different techniques and can
conclude which technique is better than others.

3.2.1 Confusion Matrix

It is utilized to visualize the performance of a technique. In general, a classifier is
evaluated by a confusion matrix Fig. 12. Structure-wise confusion matrix is a table
representation that is used to describe the performance of a classification model on
the test datasets. All other performance metrics are calculated utilizing the confusion
metric. In the confusion matrix, there are four possible states denominated true pos-
itive (TP), false positive (FP), true negative (TN), and false negative (FN) defined as
follows
TP: when the sample is identified as an attack and the sample is an attack (Remark:
identification of attack).
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Fig. 12 Confusion matrix

FP: when the sample is identified as an attack and the sample is not an attack (false
alarm).
TN: when the sample is not identified as an attack and the sample is not an attack.
FN: when the sample is not identified as an attack and the sample is an attack.

Accuracy indicates the proportion of all samples with correct predictions to the
total sample size. The formula to calculate accuracy is

Accuracy = TP+ TN

TP+ TN+ FP+ FN
(1)

Precision describes the ratio of predictive positive samples positive. The formula to
calculate precision is

Precision = TP

TP+ FP
(2)

Recall is also known as True Positive Rate (TPR.)The formula to calculate recall is

Recall = TP

TP+ FN
(3)

F1 is the harmonic mean of precision and recall. The formula to calculate the F1
score is

F1 score = 2× Precision× Recall

Precision+ Recall
(4)

Receiver operating characteristic curve (ROC) is a graph that is used to summarize
the performance of a classifier over all possible thresholds. The graph is generated
by plotting a graph between True Positive Rate (TPR) and False Positive Rate (FPR).
the formulas for TPR and FPR are
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TPR = TP

TP+ FN
and FPR = FP

FP+ TN
.

We observed that accuracy (1) is a common measure used to judge the classifier’s
performance but it seems inadequate, and other measures like f1-score (4) and recall
(3) are also important to evaluate the performance of the classification. High accuracy
and recall with lower misclassification are required for an efficient model.

3.3 A Practical Implementation of Malware Classification
Using CNN and Malware Image Visualization

In this section, we are going to discuss a practical example of malware classification
utilizing a convolutional neural network, which is considered the most prosperous
deep learning architecture in computer vision, patternmatching, and natural language
processing. We also discuss an idea of how convolution works, convolutional neural
network works, and the main operation types are used in building the convolutional
neural network model. We can implement any other deep learning model withal but
most advanced applications and models are currently being utilized by convolutional
neural network so we decided to implement convolutional neural network for our
practical implementation. After reading this section, you will have an early under-
standing of how deep neural networks work, and you will be able to move on to
practical applications. Our goal is to give you an expeditious and facile tutorial on
how to implement image relegation. Hopefully, you will be able to understand the
main practical concepts and utilize this to build your applications and research.

A fundamental convolutional neural network model architecture Fig. 7 contains
convolutional layer followed by an activation function (CONV), pooling layer (max
or avg pooling based on the requisite) (POOL), dense/fully connected layer (FC).

3.3.1 Convolution Layer

To implement convolution operation kernels/filters are frequently utilized. The con-
volution operation (betokened by *) consists of multiplying the corresponding pixels
with the kernel pixels, one pixel at a time, and summing up the values to assign that
value to the central pixel. The same operation will then be applied, shifting the con-
volution matrix to the left until all possible pixels are visited. Kernels or filters are
a matrix of values and the kernel slides over the input image and performs element-
wise multiplication operation between the values in the filter with the pristine pixel
values of the image. Themultiplications are summed up engendering a single number
for that particular receptive field. The input to the convolutional layer is an image
that is resized to an optimal size (mundanely image size n*n) and fed as input to the
convolutional layer. Let us consider image size is 32*32*1, where 32*32 is image
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dimension and 1 is the channel depth, it will be 1 for grayscale image and will take
value 3 for color images.

3.3.2 Pooling Layer

Convolutional layers in a convolutional neural network methodically apply ker-
nels/filters to images to extract optimized features and outputs feature maps. A
quandary with feature maps is that they are sensitive to the location of the fea-
tures in the input image which denotes a minuscule change (this can transpire due
to shifting, cropping, rotation, or any other transformation) in the input image will
yield different feature maps. A prevalent solution to this problem is downsampling.
Mundane pooling methods are average pooling and max pooling. Max pooling is
commonly utilized for the downsampling. Pooling layer operates on each feature
map individually.

3.3.3 Dense/Fully Connected Layer

Fully connected layers or dense layers are a crucial layer of convolutional neural
network, which are responsible for recognizing and classifying images or we can
say that the final classification decision is taken by a fully connected layer. Fully
connected layer takes the output from previous layers (convolutional and pooling
layers of the defined convolutional neural networkmodel) and predicts the class/label
that best describes the input image.

3.3.4 Dataset

In this practical implementation, we will be working on one of the most extensively
used datasets in malware classification that is the malimg dataset. The dataset details
are given inTable 1. In this demonstration,wewill build a simple convolutional neural
network model to have an idea of the general structure of computations needed to
tackle the multi-class classification problem.

First, let us understand the dataset. We are going to use malimg malware dataset
[19] for practical purpose. Description of the dataset is as follows

1. The dataset contains 9339 malware images.
2. Malware images belong to 25 different malware families/classes.
3. Images are grayscale images.
4. All images of different sizes.
5. Dataset is highly imbalanced.
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Table 1 Malimg dataset

Serial no. Family/class Family name No. of variants

1 Worm Allaple.A 2949

2 Worm Allaple.L 1591

3 Worm Yuner.A 800

4 Dialer Instant access 431

5 Worm VB.AT 408

6 Rogue Fakerean 381

7 PWS Lolyda.AA 1 213

8 Trojan C2Lop.gen!G 200

9 Trojan Alueron.gen!J 198

10 PWS Lolyda.AA 2 184

11 Dialer Dialplatform.B 177

12 Trojan-Downloader Dontovo.A 162

13 PWS Lolyda.AT 159

14 Backdoor Rbot!gen 158

15 Trojan C2Lop.P 146

16 Trojan-Downloader Obfuscator.AD 142

17 Trojan Malex.gen!J 136

18 Trojan-Downloader Swizzor.gen!I 132

19 Trojan-Downloader Swizzor.gen!E 128

20 PWS Lolyda.AA 3 123

21 Dialer Adialer.C 122

22 Backdoor Agent.FYI 116

23 Worm:AutoIT Autorun.K 106

24 Trojan-Downloader Wintrim.BX 97

25 Trojan Skintrim.N 80

— — Total 9339

3.3.5 Preprocessing

Our malimg dataset already contains malwarein the form of images (grayscale
images), to demonstrate how a malware binary can be visualized as an image, we are
going to use a random text file andwewill show you how to convert the file into image
Fig. 13. The ultimate goal of this step is to convert files into images and use them
as the input of our convolutional neural network. We can convert any file using the
following python code used by [19]. We have created a notepad file abc.txt with the
contents of activeds.dll. Activeds.dll is the dynamic link library file of the windows
operating system, which is stored in location c:/windows/system32/ activeds.dll.

The following python program is used to convert the abc.txt file into a grayscale
image.
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Fig. 13 Converted grayscale
image

After running the above program we got the following grayscale image Fig. 13
of the corresponding abc.txt.

3.3.6 Image Resizing

Let us proceed, so ourmalimg dataset already contains malware samples in grayscale
image format. To input these images into convolutional neural network for training,
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we need all images of the same size, so there is need to resizes all images of the
malimg dataset to the specified size you want. I chose the (48*48) image dimension.

As we can see from Fig. 4, some differences among malware images, However,
it would be too complex to accurately classify malware into their corresponding
families as we have 9339 total malware images.

3.3.7 Implementation Details

For a programming perspective, we performed the following experiment utilizing
a personal laptop with i3, 2.40 GHz intel processor; a 64-bit system with 4GB of
random access memory. We used python programming language, python packages,
and libraries which are availed to experiment. Keras library is utilized to train and test
the model which utilizes a convolutional neural network. We have utilized spyder
4.0.1 which is a scientific python development environment tool, python 3.7.5 on
windows 10, 64-bit windows 10 operating system.

3.3.8 Architecture

Let us define the convolutional neural network model for training and classification.
Our dataset is ready; we have built our model using keras. Here, we will define
our model, which is a stacked layer of convolution and pooling operations, with
a final flattened layer and a softmax activation function applied to determine the
class probability of the malware samples. The following network architecture will
be used for training and testing purpose, the chosen convolutional neural network
architecture Table 2 will only be for study and understanding purpose, We have
randomly chosen the number of filters, layers, filter size. Hyper parameters tuning is
also a research topic. So basically, we don’t know how it is going to perform, what
will be the accuracy, and we do not need to worry about these things here.

1. Convolutional layer : 30 filters, (3 * 3) kernel size, activation=ReLU
2. Max pooling layer : (2 * 2) pool size
3. Convolutional layer : 48 filters, (3 * 3) kernel size, activation=ReLU
4. Max pooling layer : (2 * 2) pool size
5. Dropout layer: dropping 50 percent of neurons
6. Flatten layer
7. Dense/fully connected layer : 1024 neurons, ReLU activation function
8. Dropout layer: dropping 50 perecnt of neurons
9. Dense/fully connected layer : number of output class, softmax activation function

Table 2 summarizes our chosen convolutional neural network architecture.
model.summary() is used to visualize defined model architecture.

The input for convolutional neural network training has a shape of [48 * 48 *
1]: [image width * image height * channel /depth]. In our case, each malware is a
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Table 2 Summary of our chosen convolutional neural network architecture

S.
no.

Layer (type) Output shape Parameters

1 conv2d_3(Conv2D) (None, 46, 46, 30) 300

2 max_pooling2d_3(MaxPooling2 ) (None, 23, 23, 30) 0

3 conv2d_4(Conv2D) (None, 21, 21, 48) 13008

4 max_pooling2d_4(MaxPooling2) (None, 10, 10, 48) 0

5 dropout_3(Dropout) (None, 10, 10, 48) 0

6 flatten_2(Flatten) (None, 4800) 0

7 dense_3(Dense) (None, 1024) 4916224

8 dropout_4(Dropout) (None, 1024) 0

9 dense_4(Dense) (None, 25) 25625

grayscale image, so the image channel value will be 1, if we use color images we
have to assign value 3 in the image channel.We used the train test split() function
of scikit learn to split dataset images between train and test, following a (90-10) %
ratio.

Here is the code used to define convolutional neural network architecture using
keras.

#Python code to define convolutional neural network model architecture
model = Sequential ()
model.add (Conv2D (30, (3, 3), activation=’relu’, input_shape= (img_rows,
img_cols,img_channels)))
model.add (MaxPooling2D ((pool_size, pool_size)))
model.add (Conv2D (48, (3, 3), activation=’relu’))
model.add (MaxPooling2D ((pool_size, pool_size)))
model.add (Dropout (0.5))
model.add (Flatten ())
model.add (Dense (1024, activation=’relu’))
model.add (Dropout (0.5))
model.add (Dense (no_out_classes,activation=’softmax’))
opti_mizer=Adam (lr=0.001)
model.compile (loss =’categorical_crossentropy’, optimizer = opti_mizer,
metrics=[’accuracy’])

We executed our program for 15 epochs. Epochs summary are as follows
Train on 7564 samples, validate on 841 samples
Epoch 1/15
7564/7564 [==============================] - 174s 23ms/step - loss:
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0.9531 - acc: 0.7132 - val_loss: 0.2436 - val_acc: 0.9394
Epoch 2/15
7564/7564 [==============================] - 491s 65ms/step - loss:
0.2252 - acc: 0.9332 - val_loss: 0.1796 - val_acc: 0.9441
Epoch 3/15
7564/7564 [==============================] - 713s 94ms/step - loss:
0.1643 - acc: 0.9510 - val_loss: 0.1265 - val_acc: 0.9631
Epoch 4/15
7564/7564 [==============================] - 168s 22ms/step - loss:
0.1370 - acc: 0.9594 - val_loss: 0.1125 - val_acc: 0.9750
Epoch 5/15
7564/7564 [==============================] - 168s 22ms/step - loss:
0.1158 - acc: 0.9636 - val_loss: 0.1214 - val_acc: 0.9655
Epoch 6/15
7564/7564 [==============================] - 166s 22ms/step - loss:
0.1062 - acc: 0.9681 - val_loss: 0.0941 - val_acc: 0.9774
Epoch 7/15
7564/7564 [==============================] - 170s 22ms/step - loss:
0.0913 - acc: 0.9718 - val_loss: 0.1050 - val_acc: 0.9727
Epoch 8/15
7564/7564 [==============================] - 719s 95ms/step - loss:
0.0890 - acc: 0.9710 - val_loss: 0.1350 - val_acc: 0.9679
Epoch 9/15
7564/7564 [==============================] - 166s 22ms/step - loss:
0.0819 - acc: 0.9741 - val_loss: 0.0810 - val_acc: 0.9798
Epoch 10/15
7564/7564 [==============================] - 167s 22ms/step - loss:
0.0726 - acc: 0.9757 - val_loss: 0.1052 - val_acc: 0.9703
Epoch 11/15
7564/7564 [==============================] - 167s 22ms/step - loss:
0.0753 - acc: 0.9753 - val_loss: 0.0797 - val_acc: 0.9822
Epoch 12/15
7564/7564 [==============================] - 166s 22ms/step - loss:
0.0650 - acc: 0.9791 - val_loss: 0.1039 - val_acc: 0.9738
Epoch 13/15
7564/7564 [==============================] - 166s 22ms/step - loss:
0.0773 - acc: 0.9751 - val_loss: 0.0852 - val_acc: 0.9798
Epoch 14/15
7564/7564 [==============================] - 166s 22ms/step - loss:
0.0634 - acc: 0.9790 - val_loss: 0.0847 - val_acc: 0.9822
Epoch 15/15
7564/7564 [==============================] - 166s 22ms/step - loss:
0.0620 - acc: 0.9795 - val_loss: 0.0977 - val_acc: 0.9715
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Fig. 14 Confusion matrix

3.3.9 Results

After training and testing our convolutional neural networkmodel, we reached a final
test accuracy of 97.537% which is very high! We got test time at 0.078. Here is the
confusion matrix of our classification Fig. 14.

We can observe from the confusion matrix that most of the malware samples were
well classified into its corresponding actual family,Autorun.K is alwaysmisclassified
for Yuner. A, it is probably because we have only 80 samples of Autorun.K; this is
very few in our dataset and that both are a component of a closeworm type.Moreover,
Swizzor.gen!E is often misclassified with Swizzor.gen!l, which can be explicated by
the fact that they emanate from authentically close kind of families and types and
thus could have homogeneous attributes in their code.We can also plot train and
validation accuracy Fig. 15 and loss Fig. 16 during per epoch and analyze precision
and losses, ups and downs during the whole journey. We can also calculate some
more performance-based quantifications such as precision of the model which is
0.965, recall of the model is 0.975, and f1-score of the model is 0.968.

It is all about how to implement initial level malware image classification, and to
further explore the results and analysis we can plot the confusion matrix, which give
us somemore statistics about the classification, somehints aboutwhatwent erroneous
during classification. It was the initial level understanding of how to implement
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Fig. 15 Training and
validation accuracy during
15 epochs

Fig. 16 Training and
validation losses during 15
epochs

malware image classification utilizing convolutional neural network. Utilizing this
basic understanding, you can further ameliorate classification results, perform more
applications, and do further research.

3.3.10 Datasets for Malware Analysis

Here we are mentioning some popular datasets Table 3 available for practice and
research. Datasets play a consequential role in training, testing, and validation of
systems. Datasets of malware images consist of many images that belong to different
families. Readers can make utilization of it for their research and projects. Some
popular datasets are
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Table 3 Summary of publicly available datasets for malware analysis

S. no. Dataset Dataset description

1 Malimg dataset The malimg dataset consists of 9000
malware files belonging to 25 malware
families and their variants

2 Malicia dataset The dataset comprises 11,688 malware
binaries collected from 500 drive-by
download servers

3 Microsoft malware classification challenge
dataset

This dataset contains 9 classes for training
and testing purposes. It includes 21741
malware samples

4 Malshare A free malware repository providing
researchers access to samples, malicious
feeds

5 IoT-23 A labeled dataset with malicious and
benign IoT network traffic

6 AMD Android malware dataset has 24,553
samples, it is integrated by 71 malware
families ranging from 2010 to 2016

7 Android malware genome project More than 1,200 malware samples that
cover the majority of existing Android
malware families, ranging from their debut
in August 2010 to recent ones in October
2011

8 Drebin dataset The dataset contains 5,560 applications
from 179 different malware families. The
samples have been collected from August
2010 to October 2012 and were made
available to us by the mobile sandbox
project

4 Challenges and Open Issues

This chapter and study is the first step toward enhancing our understanding of visu-
alization and deep learning-based malware classification. During the study, many
difficulties and challenges of malware classification were found; the present findings
might have important implications for suggesting several courses of action to solve
this problem. For a consistent and effective framework, it is important to address
all the challenges and difficulties. Traditional malware classification approaches are
very time-consuming and complex.

In our view, malware classification is very well handled by image visualization
and deep learning approaches as compared to traditional approaches. Deep learning
approaches efficiently perform learning but we found some limitations such as dl
models requires all input images of the same size, which limits the training model.
Work done by many researchers transform malicious binaries into grayscale images,
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so there is the scope of training and classification with color images. Different model
architectures (differ in several layers, number of kernels/filters, size of strides, etc)
show different results, so there is the scope of more intelligent architectures using
deep learning to improve performance. Existing approaches which achieved high
accuracy are often specific to a particular dataset, so still, there is a need for more
generic deep learning architecture, which can be utilized for any type of dataset. The
size of the dataset has significant importance on the accuracy and performance of the
model. There is scope to address the data imbalance issue (as there is a difference in
the number of samples in one family and rest). Available malware datasets constitute
different formats and specifications containing both infected and non-infected files;
inconsistencies may arise in the accuracy of the results, deep learningmethods can be
substantially influenced by adversarial attacks using the experience of the learning
algorithm to avoid detection, or infuse harming instances into the training data.
One of the latest emerging hurdles in malware analysis is the file less malware
[10], which makes malware analysis more complicated. A combination of deep
learning models for malware analysis can prove more intelligent and effective. To
achieve good classification accuracy architecture alone is not only responsible it is
also dependent on the dataset, so quality and enough data generate more accurate
results, so preprocessing of the dataset is one of the important considerations for
classification.

5 Conclusion

In this chapter, we provided a detailed study of the malware, malware analysis,
deep learning, and its algorithms. The exponential development of the Internet, con-
nected devices, services and applications, user’s activity, and confidential information
attracts cybercriminals. Although malware is not a new threat in the cyber world,
but the device manufacturer, attacker’s techniques to avoid detection and different
service providers use different communication technologies creates a heterogeneous
environment where malware analysis becomes a critical task. In this context, this
chapter aimed to present an overview of the fundamental aspects of malware detec-
tion and classification using image visualization and deep learning techniques.

Within the next few years, malware classification and identification are likely
to become important and inevitably be an issue that is going to be explored more.
As can be concluded from the above-discussed information and study, the use of
visualization techniques to represent malware and deep learning models in malware
detection and classification proved to be efficient than traditional approaches. It is
important to keep in mind that deep learning approaches prove to be a state-of-
the-art approaches for malware detection and classification in some cases, but they
are always the possibility of better to do. Deep learning methods also have some
limitations such as a limited number of samples for analysis, to increase hidden
layers which also increases complexity in the model and increases training time.
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One biggest advantage of deep learning is automation. There is a need for automat-
ing the detection and classification process is still an important issue as most of the
traditional malware analysis in the identification and classification of new threats
continues to be a human task. Deep learning also has human interaction but limited
sense. Until now, thismethodology has only been applied to very less in literature and
also in practice, so this chapter will encourage readers to do further research in this
vast and important topic, and malware analysis is also connected to our lives directly.
Malware classification is a fundamental and vital issue for future research and we
have mentioned some state-of-the-art researcher’s approaches, scope and emerging
challenges for malware classification using deep learning for the reader’s further
studies. Finally, it is expected that the information presented and discussed in this
chapter would help readers, analysts, and researchers to obtain a general and practi-
cal view of the malware analysis especially malware identification and classification
from where they can visualize and explore new avenues of research.
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Review of Artificial Intelligence Cyber
Threat Assessment Techniques for
Increased System Survivability

Nikolaos Doukas, Peter Stavroulakis, and Nikolaos Bardis

Abstract This chapter presents an overview of the problem of survivability of infor-
mation systems, along with solutions that are currently available to designers of such
systems. The notion of survivability in the context of cybersecurity over multi-user
distributed information systems is defined, which is set as the target of cyber defense
to prevent the adversary from successfully completing their mission. The cyber-
attackers’ kill chain is explained. Artificial Intelligence (AI) techniques that may be
employed in order to promote information system survivability are outlined and the
technical issues toward which each technique can contribute are listed. Following
that, schemes for increased cyber survivability are presented, which focus on solv-
ing particular problems that commonly appear by employing artificial intelligence
techniques. First, the problem of email message filtering in the context of breaking
the cyber kill chain is analyzed and a typical AI-assisted technical solution is given.
Following that, the effect of malware in survivability is presented and an approach
to its solution based on the static analysis and detection of patterns is presented.
Subsequently, the collusion attack, an attack where multiple malware programs col-
laborate in order to achieve malicious goals, is presented and an AI-powered solution
is outlined based on currently available technology. A three-level anomaly detection
system is presented that employs AI primitives and detects problematic behavior in
network traffic, packed files, and SQL statements in order to produce cybersecurity
defense actions and warnings. Dynamic analysis of potentially harmful programs
is analyzed and a technique that performs such analysis is presented that examines
the executed machine-level instruction opcodes and utilizes AI in order to circum-
vent efforts of malware creators to obfuscate the actions and intents of their code. A
recently proposed comprehensive cooperative infrastructure defense system is briefly
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presented that is based on the artificial intelligence ant colony paradigm. The system
aims to coordinate human and automated efforts to protect the integrity of large-scale
information systems. It uses multiple AI principles in order to utilize existing infor-
mation and obtain novel knowledge, adapting to new threats and user expectations.
Finally, survivability promoting countermeasures are presented that act as additional
fail-safe mechanisms to impair the cyber-attackers mission.

1 Introduction

Survivability is a notion applicable to both military and civilian or commercial sys-
tems and describes the ability of such systems to remain operational or gracefully
degrade after an attack against them [17]. The range of possible attacks is easy to
determine in the case of physical systems, but presents a challenge of itself in the
case of cyber systems. In the context of the cyberspace, maintaining an information
system operational principally involves protecting the CIA triad of information secu-
rity, namely confidentiality, integrity, and availability [4]. Some researchers further
expand this description with three further specialized cybersecurity targets, autho-
rization, authentication, and non-repudiation [12]. Defense efforts against cyberat-
tacks are facilitated by understanding the cyber kill chain, a widely accepted model
describing the steps taken by attackers in order to achieve their goals. These steps
start involve (i) reconnaissance, whereby a would-be attacker collects information
about specific targets and tactics of the target information system, (ii) weaponiza-
tion, which describes the development by the attacker of target-specific weapons or
exploits based on the identified weaknesses, (iii) delivery, when the actual deliv-
ery of the malicious software to the target takes place, (iv) exploitation, where the
weaknesses identified are used in order to execute the malicious application, (v)
installation of the malware, (vi) command and control, when the attacker acquires
communications and management channels with the target and finally, and (vii)
actions, when the attackers utilize the target to achieve their objectives of illegiti-
mate data access, data integrity violation, or denial of service [15, 17]. Engineers
aiming to protect information systems against cyberattacks distribute their efforts in
four fronts, namely the ability of a system to (i) remain invisible from the attacker, (ii)
remain inaccessible to the attacker’s weapons, (iii) withstand the hit, and (iv) main-
tain partial or full functionality despite possible damages, while offering capabilities
for containing the problems arising and following recovery procedures [17]. The sur-
vivability approach to cyber defense involves making assumptions that conventional
defenses in each phase have failed and designing techniques to minimize the effect
of possible attacker actions. Such techniques include cyber deception to confuse the
adversary, analysis of outbound traffic to detect data theft, white lists for software,
limitations on use of non-essential applications, use of redundant computational
units, etc. Designing and implementing cyber defense for survivability is a process
relying on intuition, requires analysis of system data and activities and prioritization
of threats, all for the purpose of deriving the context and allowing human operators
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to make real-time informed decisions. Defending cyber systems against attacks to
this effect, artificial intelligence has been successfully used for the purpose of sup-
porting the decision-making process. This chapter reviews emergent research results
concerning AI tools that contribute to effective and timely threat prioritization and
mitigation, for the purpose of developing components of AI cyber threat assessment
decision support systems. AI primitives that contribute to these aims include pattern
recognition, anomaly detection, predictive analytics, and natural language process-
ing. Particular topics to be reviewed are anomaly-based network intrusion detection,
detection of insider threats, spam and phishing detection, behavior-based malicious
software identification, malicious activity detection based on low-level instruction
analysis, suspicious network activity identification, data provenance tracking, etc.
The actual AI techniques involved include classification, clustering, statistical deci-
sion models, fuzzy logic, stream data analytics, and data visualization. A review of
these techniques will be covered in this chapter regarding the use of AI for cyber
survivability. Special emphasis will be given to the use of AI for cyber survivability
decision support including machine learning for software analysis, cyber-physical
system integration, blind testing of programs without specifications, machine learn-
ing and data mining techniques for enhanced database security, malicious executable
detection via ML, etc. A particular challenge in the problem of classification in the
context of cyber security is class imbalance or the “one class classification” issue.
This arises from the necessity to train the detector using a limited training set of
positive examples, since the behavior of malware is unknown and rapidly evolving.

2 AI Support to Survivability

AI techniques are being applied to cybersecurity problems, despite the fact that the
foundation technologymay still be considered as under development or experimental
[13], since it is producing promising results in a significant range of possible cyber
threats belonging to the cyber kill chain explained earlier. The application of AI to the
problem of identifying and alleviating cyber threats provides a defense tool capable
of adapting to the continuously changing tactics of the attackers [13, 18]. AI includes
a variety of techniques and algorithms, several of which become useful in the fight
against cyber threats [17, 18]. Pattern recognition algorithms are commonly used for
identifying phishing or spam e-mail messages, malware programs, untrusted sites,
and other threats. Anomaly detection techniques are employed for spotting unusual
computer process activity or questionable data. Natural language processing schemes
may be used to process texts that have been created for the purpose of obfuscating
the attackers aims, into structured intelligence information useable in the context of
defense. Predictive analytics process large quantities of data in search of patterns
and outliers that may reveal upcoming threats. The use of AI is, despite fears to
the contrary, not aiming to replace humans, but to provide decision support tools in
order to assist human efforts to make optimal and rapid decisions [13, 17, 18]. It
is not expected to solve all possible cybersecurity problems. The aim is to enable



210 N. Doukas et al.

the timely and adequate response to emerging threats, either by quickly filtering
simplistic attacks or by identifying the suspicious cases in order to bring them to the
attention of the expert security analysts. AI techniques have been successfully applied
in the context of somemore abstract challenges concerning the ability of information
systems towithstand and survive attacks, hence supporting their survivability, namely
[17]

• Compliance. The pre-deployment verification of the consistency of an information
system’s implementation with its specifications and the relevant security standards
of its conformance with the rules of the network to which it is going to connect,
and of its compatibility to the architecture of the other systems in conjunction with
which it is going to operate.

• Intrusion Detection. The run-time operation of identifying incoming threats. It
may be based on signatures, in the case of attacks that have already been observed
at least once, or with anomaly detection techniques after long-term observations
that have permitted the establishment of the baseline normality of network traffic.
Determining what is normal is a particularly challenging task in environments
presenting rich cyber activity.

• Patching. The act of identifying vulnerabilities discovered by the community that
affect the system of interest and for which remedies, or patches, are already avail-
able and can be readily applied.

• Digital Forensics. The post-attack process of discovering what went wrong, how,
when, where, and why, in order to avoid the occurrence of similar events in the
future.

• Defense in Depth. The run-time process of identifying ongoing attacks and imped-
ing their progress within the system until suitable countermeasures and defensive
actions may be employed.

2.1 Security Threat Detection for Preventive Survivability

Survivability as an engineering design target does not imply the prevention of every
possible attack and the elimination of the probability of an intrusion [14]. On the
contrary, survivability analyses need to consider multiple “what if” scenaria deter-
mining the behavior and availability of the information system after different types
of security breach events [14, 17]. The ultimate aim is not to prevent the attack, but
prevent the attackers to complete their mission [17]. The mission is the final link
of the kill chain described and consists of one or more of the three subtasks of data
theft, system integrity compromise, and denial of service. Therefore, in designing for
survivability, the AI algorithms to be used may be selected according to the expected
level of threat, the anticipated types of attacks and the amount of processing capa-
bilities available to be assigned for this purpose. The survivability subsystem of the
design hence becomes configurable and scalable according to the necessities of the
application. The success of the defense can be quantified as the extent to which the
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mission of the attacker failed. According to this observation, AI techniques suitable
for the survivability in the event of different types of attacks will be outlined in the
order of the progression of the attack within the cyber kill chain described earlier
and in increasing level of sophistication.

2.2 Email Message Filtering by Linear Classifiers

Email messages are commonly used as an attack vector and depending on their type,
e.g., spam, phishing, malware, etc., may present a significant cyber threat. Email
messages can be the vehicle used by the attackers in multiple links of the kill chain,
as for example a phishing message may be part of a reconnaissance effort or a spam
message may be used for the delivery of the malicious payload [13, 17]. Consider
a simplistic approach, whereby undesired messages are recognized by the presence
and frequency of appearance of words or patterns from a pre-determined set of suspi-
cious ones within their body [13]. A generic classifier may then be designed, which
based the decision on a score value for the suspicious words calculated for each mes-
sage. The score could be a simple weighted sum of the frequencies of appearance of
each of these words and the weight for each word is a design parameter [13]. The
final decision is based on a threshold; if the score for a message exceeds a certain
threshold, which is another design parameter, the message is classified as spam, oth-
erwise it is considered normal. In realistic applications, however, given the variety
of spam sources and the evolution of the practices of the spammers, who will adapt
in order to circumvent the filter, the design parameters for this classifier would have
to be regularly or continuously adjusted. If this is organized in an iterative manner,
in interaction with the users, the use of AI-supervised learning techniques becomes
a naturally occurring choice [13]. The weighted sum approach represents a linear
classifier in a space whose dimensions are determined by the size of the word-set.
The AI instrument suitable for solving this problem is the perceptron. An initial set
of weights is determined via an arbitrary principle and a desired result is defined for
the weighted sum function described above that requires it to give e.g., an answer of
+1 when a message is spam and -1 when it is not. The perceptron, which is realized
as an implementation of this function, can then be trained, using a training set of
emails. Each training message is presented to the perceptron, the result produced is
observed, compared to the known result and the weights of the function are adjusted
depending on the difference from the desired value. The correction functions for the
weights are the object of many independent research efforts, but a simple and robust
approach may be found in [13], along with further details about the implementa-
tion. The corrections become smaller after a number of iterations and the training
converges. The principal and significant limitation of this class of algorithms is that
they can only be effective if the actual data is separable by a multidimensional line
in the space defined by the data. In fact, if the data is not linearly separable, then the
training algorithm will not converge, i.e., the corrections will cause the values of the
weights to oscillate indefinitely, irrespective of the number of iterations [13]. Better
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classification for spam messages can be achieved if the separation is attempted by a
hyperplane function not limited to a linear form. Support Vector Machines (SVMs)
are also supervised learning algorithms that attempt to determine the hyperplane that
separates the data and are not limited to linear models [13]. Another major difference
from perceptrons is that they attempt to maximize the distance of the training data
from the separation hyperplane, rather than minimizing the number of misclassifi-
cations. SVMs are a powerful tool and can also detect spam that is encoded in the
form of images [13]. A completely different approach for spam e-mail classifica-
tion was proposed in [1]. Instead of trying to detect spam messages based on the
content, messages are clustered according to the author to whom they are attributed.
Incoming messages undergo a two-phase process. In the first phase, messages are
grouped together using an authorship-based clustering algorithm. Finer categoriza-
tion is achieved in the second step,whereby linguistic, syntactical, andother structural
analyses are performed [1]. The results are clusters of e-mails with high probability
of being attributed to the same author. This approach, as reported by its authors in
[1], does not produce an actual solution to the problem of detecting spam, as it is
easy for spammers to occasionally modify their style in order to evade detection. It
should be seen as a means of reducing the volume of processing required in order to
process all messages, and therefore cancelling the advantage spammers acquire by
launching massive numbers of spam messages. Additionally, the method has been
successful [1] in detecting links between seemingly different spam campaigns.

2.3 Malware Detection

Malware, or MALicious softWARE, is software that is employed by cyber-attackers
for the purposes of completing their mission with the kill chain. Depending on the
method of delivery, malware could be very easy or extremely difficult to recognize.
An executable file arriving as an attachment to an e-mail message can be readily
detected by the spam detectors described earlier on. However, malware hidden in a
downloaded file, a non-authorized installation medium or a shared storage unit may
present a greater challenge. Additionally, there exist collusion attacks, when multi-
ple, seemingly innocent applications combine AI algorithms can again be employed
to facilitate the detection and promote survivability. Detection can be broadly divided
into two categories in this case, namely static and dynamic analysis. Static analysis
involves examining the file, without executing it. Recognitionmay be achieved based
on a variety of factors, ranging from the name of the file to specialized signatures of
particular malware that have been identified by the community. This process is essen-
tially a feature extraction process: large volumes of data (e.g., the executable files)
are processed in order to extract features (the signatures, the filename, other distin-
guishing strings) which are then used for recognition either by humans or in this case
by means of AI algorithms. Hash functions are mathematical functions with several
properties that render them suitable for fast processing of large quantities of data [9,
10], among which is the ability to summarize. Suitable many-to-one hash functions
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are applied on a large number of bytes to produce a relatively small-sized result used
as a signature, i.e., a quick way to identify identical data items. For well-designed
hash functions, the signature is unique, in that slightly dissimilar items produce
completely different results [9], while collisions are possible, since the function is
many-to-one. Widely used signature functions are SHA256 and MD5, with MD5
being susceptible to collisions [16]. Community-identified hashes of the executables
of known malware can be used as features to identify a particular file as an instance
of that malware. Other elements of the file, such as the magic numbers encountered
in some file types (pdf, image files) or the portable executable header in Windows,
are also used as recognition features. A toolbox and database for such file feature
extraction is Yara (https://yara.readthedocs.io/en/stable/). Commonly encountered
malware in the form of viruses, trojans, etc., is successfully detected by commer-
cially available antivirus and other similar programs. There exist, however, cases
where this process is not as straightforward as it seems, and the assistance of AI is
indispensable.

2.4 Collusion Attacks

In recent years, an everexpanding use of smart phones has been observed. Even
though such devices use operating systems, and therefore software isolation and
other information security principles canbe applied, the need for openness has created
severalways that applications running on such devices can communicate or share data
between them [3]. This means that multiple, seemingly unrelated, apps collaborating
between them have the possibility to achieve malicious intents, such as data theft.
This type of attack is called a collusion attack. Examining applications individually,
e.g., in a sandbox environment, would not reveal such behavior. Machine learning
and other AI techniques may be used as detection tools for colluding behavior.
Even though the Android operating system incorporates many of the strict Linux
security primitives isolating running applications, both open and secret means of
communication between apps have been identified [3]. An open, or overt means
could be file sharing, while a hidden or covert one might be a special setting of
a shared resource, such as the system volume, which passes a special message to
the collaborating application [3]. Since there exist legitimate applications that need
to perform similar actions as those observed in malware, the principal difficulty of
the detection is that the intent of the application, a purely subjective and qualitative
notion, needs to be detected. Suitable features for detecting colluding behavior need
to be identified before any AI technique can be employed for detecting colluding
behavior. Such features can include actions that applications take [3], e.g.,

• accessing sensitive information (contacts, e-mail messages),
• accessing cost-bearing services (calling, SMS sending),
• accessing sensitive hardware (camera, microphone),

https://yara.readthedocs.io/en/stable/
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• sending data over the Internet, and
• permissions it requires.

The above actions are actions that can be legitimately used by authorized appli-
cation in order to create services desired by the users. The fact that an application
takes one or more of these actions is by no means an indication of malicious intent.
The Naive Bayes classifier has been successfully employed as an AI tool in order
to estimate the likelihood of sets of two or more applications are serving malicious
purposes, given the set of actions that each one of them uses [3]. The classifier was
trained over a set of known for their malicious intent applications. A probabilistic
filter was hence created that operates in two stages:

• An initial, fast filter examines applications and application sets based on the easily
detectable features outlined above

• The second, more thorough filter performs the static code analysis described in
the previous section, along with intent determination rules, in order to discover
candidates with increased likelihood for colluding behavior.

On the identified candidates a software model checking procedure is used in order
to detect sequences of actions that are likely to be part of collusion ofmalicious intent
[3]. This approach presents both false positives and false negatives, especially since
given the fact that the analysis is of probabilistic character. This same fact, however,
also implies that the approach promotes survivability. Calibrating the likelihood of
false positives, for example, can be viewed as a means of calibrating the survivability
of the system in relation to its capability of running applications that may perform
risky but desirable operations. Additionally, scores of the intermediate detection
phases may be used in order to create breaking points at which to block the attacker’s
mission from being completed. For example, even though data transfer operations by
applications could be allowed, data transfers after a sequence of actions are classified
as likely to be malicious.

2.5 Anomaly Detection

An artificial intelligence technique for survivability has been presented that is based
on themethod of operation of biological beings [8]. Three different machine learning
systems are used in order to construct a hybrid framework for detecting anomalies
and can be viewed as a multi-agent system. Each agent operates in a different sector
of the information system and synchronization is achieved by cooperation or negotia-
tion, since no single agent has a complete perspective of all the available information
and there exists no central coordinator [8]. Temporal programming is used in order
to phase contradiction of intentions and contradiction of resource management con-
cluding about the extent of the threat and risk. Automatic actions may be taken, such
as termination of network connections and reports are sent to human administrators
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for taking more complicated risk mitigation actions. The first agent uses neural net-
work classifiers trained on a database of information system intrusion information
with recordings of the total flow of a network simulating the US air-force military
network [8]. Events are analyzed including the connection between the IP addresses,
the TCP packages exchanged, the protocols used, and the operation time. The fea-
tures extracted include content features, traffic features, time-based traffic features,
and host-based traffic features, totaling 41 features. The attacks noted include Denial
of Service, Remote to User, Probing, and User to Root. A three-step procedure is
developed, with each step using an increasing number of features, in order to filter
out irrelevant events and raise the alarm with high confidence for more dangerous
occurrences. The second agent also employs a neural network classifier in order to
detect packed or unpacked executables of possible malware [8]. A genetic algorithm
is hence used in order to reduce the probability of false positives and false negatives.
The agent is trained based on an available dataset of patterns used as features that are
extracted from packed malware, and benign executables [8]. A three-step procedure
is employed:

• The neural network classifies binaries as packed files or benign executables.
• The executables are sent to the regular antivirus software for further assessment.
The Evolving Classification Function technique is then used upon the packed files
in order to again classify those files as benign or malignant. A genetic algorithm
is used in order to increase the process of the integrity.

• Benign files are sent to the antivirus software, while suspect ones are unpacked in
sandbox, the diagnosis is verified by antivirus software and are finally quarantined
for treatment by human administrators.

The third agent uses a neural network and a genetic algorithm in order to train the
neural network’s weights for minimum error in classifying SQL injection attacks [8].
A dataset of 13384 SQL statements is used, including both legitimate and malicious
ones. Various features are extracted from the available SQL statements including
length, symbols present, linguistic constructs in the SQL syntax, and the correlation
with knownmalicious SQL commands. Particularly interesting is the entropy feature
measuring the amount of information the SQL command is expected to extract [8].
The classification is two-phase, firstly eliminating outlier data and then employing
the classifier in order to examine the instances that are more likely to be malicious
SQL injections. The three-agent system’s functionality is consistent with the aims
of survivability. The first agent uses AI to detect network anomalies that evade the
firewall and intrusion detection systems. The second agent enhances survivability in
virus attacks by employing AI techniques in order to filter out regular threats that
can be successfully handled by the antivirus software and employing advanced and
computationally intensive AI detection procedures for more involved cases.

The use of network traffic analysis and irregularity detection has been shown
in [5] to be capable of detecting new botnets before they launch their attack, i.e.,
being able to predict the attack. The detection is based on extracted features from
network traffic in the phase where the botnet is establising or reconfiguring their
command and control (CC) structure. Machine learning is employed that is trained
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on observations before and after the deployment of the botnet CC traffic. There exist
elements of botnet CC traffic that are similar between different botnets and deviate
from the corresponding observations of legitimate traffic, which make the training
of machine learning algorithms effective [5]. This approach is, therefore, extremely
helpful in detecting zero-day versions of botnets.

2.6 Dynamic Analysis of Malware

Static analysis of malware, as explained in a previous section, aims to identify mal-
ware threats based on features such as the structure of the code, data structures
encountered, patterns that can be observed within, and signatures. The structure
of the code may be parametrized as call graphs. Patterns within files may reveal
information such as IP addresses or URLs, command line options, passwords and
windows portable execution files utilized by the malware for attaining its aims. The
process is considered safe, since it is not necessary to execute the file. However, it
is not always feasible to examine alternative call paths, since attackers can easily
insert redundant code in order to obfuscate the path for the true malicious actions
[7]. Dynamic analysis of executables involves observing the file under investigation
while it is being executed. Information about memory accesses during the execution
of the program is recorded, thereby eliminating many of the possibilities of attackers
to hide their intentions. The execution may take place in the actual operating system,
in an emulated environment that is monitored by the controllers’ host, or a purely vir-
tual environment that completely isolates the target system from possible effects of
the malware. Countermeasures taken by malware creators to evade dynamic analysis
include

• the detection of emulated or virtual environments,
• insertion of complicated mathematical or other complex code that serves no pur-
pose,

• re-ordering of instructions within their code so that it does not resemble the known
patterns,

• variable use of registers,
• altering code appearance by using alternative instruction constructs to achieve the
same results, and

• packing software to obfuscate the appearance of theWindows portable executable
files.

Additional techniques employed by attackers are polymorphic approaches that
encrypt malicious code until it is time to attempt its malicious assignment and meta-
morphicmalware where themalicious code is rewritten at every iteration [7]. Opcode
analysis has been proposed as a counter-measure against these practices of the attack-
ers to mask their actions. Opcoderefers to the machine-level instructions executed
by the malware in the target system. It is hence possible to observe the actual actions
of the malware and circumvent obfuscation efforts. A scheme for dynamic malware
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analysis was proposed in [7]. The training and testing are based on the VirusTo-
tal database of malware. The opcodes corresponding to the stored executables were
extracted via an automated procedure. The Intel architecture commonly used in most
current personal computer incorporates 610 different opcodes. From these opcode
sequences, run-lengths of various lengths were extracted. N-grams are a concept
used in solving natural language processing problems. A similar approach was used
for analyzing the malware opcode language. Hence, the extracted opcode data was
processed for bigrams and trigrams, and run-lengths were determined [7]. The pro-
posed method uses the Random Forest (RF) classification algorithm. The RF is an
ensemble learner, combining decisions from multiple small decision trees, each one
with a random number of features at each node. This technique presents increased
immunity to noise and reduces overfitting, while it is possible to be parallelized.
For better training accuracy, the features were reduced by selecting features with
the largest information gain [7]. Accuracy in detection for this dynamic analysis
technique is reported at more than 99%. The technique promotes the survivability
target of detecting unknown attacks based on the knowledge of known attacks, via
the transformation of malware commands into the opcode space.

A scheme for calculating the similarity between obfuscated versions of malware
binaries is proposed in [6]. This is achieved using the Trend Locality Sensitive
Hashing (TLSH) and k Nearest Neighbors in order to detect similarities between
obfuscated versions of the same binaries. Hashing techniques that are common in
document similarity detection [9, 10] are used. A sliding window is used to populate
an array of buckets. The quartile points of each bucket is then estimated. A digest
is hence created that also includes a checksum. The digest body is further quantized
and each bucket count is converted to a two-bit value. The output digest created
from the last two steps is used for the decision-making. The method is shown [6] to
be able to efficiently detect and being resilient to obfuscations commonly used by
cybercriminals.

3 Cooperative Infrastructure Defense

The cyber survivability systems reviewed so far involve an automatic process, with an
optional asynchronous intervention by human operators. A cyber defense scheme has
been proposed that organizes humans and digital agents into a cooperative scheme,
where the initiative is mixed [11]. The Cooperative Infrastructure Defense (CID)
implements a hierarchical framework of humans and digital agents called ants. The
notion of digital agents that are parallelized to ants is well established in AI. The
CID rapidly adapts to respond to unknown attacks, with the high-level supervision
and guidance by human operators—administrators [11]. The software agents (ants)
are also hierarchically organized, in order to better organize the flow of guidance
instructions from the human to the ants and also provide a concise and accurate
representation of the current situation as feedback to the administrator. Each of the
agents possesses a level of rationality which is a combination of human instructions,
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logic programming rules, and machine learning results. The system is capable of
collecting information and using it to update its knowledge and recognizing unknown
states as safe or potentially problematic. It is, therefore, inherently continuously
seeking survivable states, thus enhancing its survivability. The software agents take
real-time decisions at low level, while permitting human intervention at all levels.
Agents have the ability to spawn more agents or terminate their operation. In normal
operation, agents stop operating only when they encounter a difficult problem that
requires intervention by humans. Human-initiated intervention is permitted at any
time, but is discouraged as it disrupts the real-time response and adaptation to the
events happeningwithin the system.Agents are organized in three levels of hierarchy,
enclave-level, host-level and swarm-level [11].

• At enclave level, the agents interface with humans and other agents at the same
level in order to coordinate the establishment and application of business drivers
and human-defined policies. Their role involves creating and enforcing executable
policies for the entire information system (enclave). A supervisor may be respon-
sible for one or more information systems and could be members of regulatory
bodies. They interact with the top-level software agents via natural language or
graphical commands. They oversee the overall system survivability. They trans-
late human instructions to actionable policies to be applied over the entire system.
Using supervised learning, they adapt their behavior in order to better interact
with the human operators and create responses that are closer to what the human
will eventually choose. They can broker agreements with agents at the same level
of other information systems. Their actions are uniquely identifiable within the
system for attribution and problem detection. Since such actions may incur physi-
cal costs, especially when involving external systems, special rules impose limits
upon the actions they can take.

• At host level, the agents protect and configure a single host or a set of similar
hosts and interact with the administrators to obtain clarifications about ambiguous
evidence from the swarm. The subsystem under the control of such agents could
be a single server or router, a storage area network or a set of user workstations.
They are responsible for implementing the policies they receive from higher level
agents. They are also responsible for collecting the information gathered by the
lower level agents (the sensors). They give sensors local connectivity information
and control their spawning. They combine the information from the sensors, their
own previously obtained information and previous human input and policies from
higher level agents in order to detect problems and derive solutions. They are
essentially the principal survivability seeking architecture of the system. Host-
level agents give positive feedback to sensors that provided information that turned
out to be useful, in order to encourage them to collect more similar information.

• At swarm level, the agents that can also be seen as sensors, continuously scan
machines for problems and reporting them to the sentinel. Sensors are specialized
and possess classifiers capable of detecting a particular set of problem indica-
tors. They are independent processes and communicate via messaging primitives.
Sensors may move from machine to machine, by suitable remote procedure calls
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and message passing. They employ ant colony algorithms and swarm intelligence
as documented in literature [11]. They must contain simple logic so that it can
be possible to spawn large numbers of such agents and give them high mobility.
They move according to a predefined geography within their information system,
but their motion is random similar to that of ants when moving on the ground.
They employ a classifier and search the hosts they visit for patterns of known
problems or anomalous conditions. There also exist differential sensors that detect
differences between similar hosts that they visit, such as network traffic volume,
number of open files, etc. They communicate with other sensors via messages.
Sensors that have contributed a significant amount of information that turns out
useful are spawned by higher level agents so as to employmore identical instances.

Trust is maintained at the host-level agents, as they have been shown to be capable
of hence protecting and promoting trust at lower levels. Results show that this system
for safeguarding system survivability can match the performance of an equivalent
intrusion detection systemwith the number of operational sensors of each type being
about 50% of the number of the existing devices. In rough terms, this means that
the information system level survivability is achieved with approximately half the
computational load overhead required for the equivalent intrusion detection system.

A fully automated system that incorporates techniques to detect unknown and
hidden malware, thereby providing a solution for the zer-day malware problem is
proposed in [2]. Both the systems described in this section demonstrate howAI-based
tools are capable of easing the burden of forensic analysis on information systems for
the purpose of detecting hidden malware threats and providing a real-time command
and control center for defending cyber infrastructure.

4 Post Attack Survivability

The survivability analysis is based on the assumption that the attack has already
occurred [17], and therefore, when trying to mitigate the effects of the attack, one or
more links of the cyber kill chain have already beenmaterialized. The ultimate goal of
the attacker is to achieve their mission, which is normally qualified into one of three
primary attack objectives which are denial of service, information theft, and decep-
tion attacks [17]. The ultimate target of survivability design involves preventing the
attacker from completing their mission, i.e., reaching the final link of the kill chain.
In the previous sections, a series of algorithms that detect or give warning about the
possibility that a security breach has occurred. In this section, it will be demonstrated
with two scenaria how AI and other techniques can be used to implement counter-
measures that are capable of interrupting the progress of an attack that has not been
detected. The first scenario involves the establishment of a secure communications
link to disseminate critical mission messages to remotely operating military person-
nel. Assuming that the communication breach will inevitably occur, the following
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preventive countermeasures are capable of limiting or completely eliminating the
effects of this breach [17].

• Use of deceptive messages which are randomly mixed with the proper ones. The
attacker will then have to devise a means of distinguishing between the two.

• Re-establishment of the session after each mission has been accomplished, or at
random instances. The attacker will need to detect the change and repeat the breach
successfully.

• Multiple channel creation, hence dividing themaximumpossible gain of any single
breach.

• Agreement of session keys between the legitimate participants before they are
separated in order to arrive at their remote positions. The attacker will hence be
forced to attempt to deduce the session keys by data observation, a process that
requires more time and processing capabilities.

The second scenario involves protecting the position information for a fleet of
UAVs when the base control station has been compromised [17]. In this case, the
following preventive actions could be taken:

• Indications of compromise coming from the attack detection AI algorithms of pos-
sible security breaches cause a secure reboot of the system to occur. The attacker
will hence have to overcome the secure operator authentication process. This pro-
cess could be triggered, even if the quantitative indices show a low probability of
breach.

• Disk encryption at both operating system level and at data level. The adversary
will hence have to cryptanalyze both encryption schemes.

• Indications of compromise coming from the attack detection AI algorithms of
possible security breaches trigger the destruction of all data stored in the base
station. The attacker will have to try to recover the data without triggering the
destruction mechanism. Provided that the data required by the legitimate users is
regularly transferred to secure storage, this process could also be triggered, even
if the quantitative indices show a low probability of breach.

• Regular verification of the integrity of the base station is required, e.g., by having
a legitimate user or the administrator authenticate locally. If the deadline passes
without this event occurring, data destruction is initiated.

The above scenaria demonstrate the cyber survivability principle of designing infor-
mation systems that have as principle aim to prevent the adversary from completing
their mission after they have completed parts of their attack (the cyber kill chain). The
countermeasures described are complementary to current cybersecurity schemes, but
have a significant contribution toward this very important aim.
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5 Conclusions

Survivability is a concept that is well known in the context of military operations and
is also understood in other contexts, such as business, and medicine. The notion of
survivability in the context of cybersecurity over multi-user distributed information
systems was defined. Rather than setting as the target of cyber defense the preven-
tion of the adversary from breaching the system, the aim becomes to stop them from
bringing their mission to an end, which can involve data theft, denial of service,
or integrity violation. An overview of the problem of survivability in information
systems and solutions that are currently available to system designers was presented.
The cyber attacker’s kill chain was explained. Artificial Intelligence (AI) techniques
that may be employed in order to promote system survivability were outlined and
the technical issues toward which they can contribute were listed. Following that,
schemes for increased cyber survivability were presented, which focused on solving
particular problems that commonly appear, by employing artificial intelligence tech-
niques. First, the problem of email message filtering in the context of breaking the
cyber kill chain was analyzed and a typical AI-assisted technical solution was given.
Following that, the effect of malware in survivability was presented and an approach
to its solution based on static analysis and detection of patterns was presented. Subse-
quently, the collusion attack, an attack where multiple malware programs collaborate
in order to achieve malicious goals, was presented and an AI-powered solution was
outlined based on current technology. A three-level anomaly detection system was
presented that employs AI primitives and detects problematic behavior in network
traffic, packed files, and SQL statements in order to produce cybersecurity warnings.
Dynamic analysis of potentially harmful programs was analyzed and a technique
that performs such analysis was presented that examined the executed machine-level
instruction opcodes and utilized AI primitives in order to circumvent efforts of mal-
ware creators to obfuscate the actions and intents of their code. The final section
presented a comprehensive cooperative infrastructure defense system that was based
on the ant colony paradigm of artificial intelligence theory. The system aimed to
coordinate human and automated efforts to protect the integrity of large-scale infor-
mation systems. It used multiple AI principles in order to utilize existing information
and obtain novel knowledge, adapting to new threats and user expectations. A set of
countermeasures that inhibit the cyber adversary’s mission and promote survivability
against cyber attacks were finally outlined and evaluated in the context of cyberattack
scenaria. The countermeasures acted as fail-safe mechanisms to break the cyber kill
chain when the attack has not been detected.
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On Ensemble Learning

Mark Stamp, Aniket Chandak, Gavin Wong, and Allen Ye

Abstract In this chapter, we consider ensemble classifiers, that is, machine learning
based classifiers that utilize a combination of scoring functions. We provide a frame-
work for categorizing such classifiers, and we outline several ensemble techniques,
discussing how each fits into our framework. From this general introduction, we then
pivot to the topic of ensemble learning within the context of malware analysis. We
present a brief survey of some of the ensemble techniques that have been used in
malware (and related) research. We conclude with an extensive set of experiments,
where we apply ensemble techniques to a large and challenging malware dataset.
While many of these ensemble techniques have appeared in the malware literature,
previously there has been no way to directly compare results such as these, as dif-
ferent datasets and different measures of success are typically used. Our common
framework and empirical results are an effort to bring some sense of order to the
chaos that is evident in the evolving field of ensemble learning—both within the
narrow confines of the malware analysis problem, and in the larger realm of machine
learning in general.

1 Introduction

In ensemble learning, multiple learning algorithms are combined, with the goal of
improved accuracy as compared to the individual algorithms. Ensemble techniques
are widely used, and as a testament to their strength, ensembles have won numerous
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machine learning contests in recent years, including the KDD Cup [15], the Kaggle
competition [14], and the Netflix prize [26].

Many such ensembles resemble Frankenstein’s monster [33], in the sense that
they are an agglomeration of disparate components, with some of the components
being of questionable value—an “everything and the kitchen sink” approach clearly
prevails. This effect can be clearly observed in the aforementioned machine learning
contests, where there is little (if any) incentive to make systems that are efficient
or practical, as accuracy is typically the only criteria for success. In the case of the
Netflix prize, thewinning teamwas awarded $1,000,000, yetNetflix never implement
the winning scheme, since the improvements in accuracy “did not seem to justify
the engineering effort needed to bring them into a production environment” [3]. In
real-world systems, practicality and efficiency are necessarily crucial factors.

In this chapter, we provide a straightforward framework for categorizing ensemble
techniques. We then consider specific (and relatively simple) examples of various
categories of such ensembles, and we show how these fit into our framework. For
various examples of ensembles, we also provide experimental results, based on a
large and diverse malware dataset.

While many of the techniques that we consider have previously appeared in the
malware literature, we are not aware of any comparable study focused on the effec-
tiveness of various ensembles using a common dataset and common measures of
success. While we believe that these examples are interesting in their own right, they
also provide a basis for discussing various tradeoffs between measures of accuracy
and practical considerations.

The remainder of this chapter is organized as follows. In Sect. 2,we discuss ensem-
ble classifiers, including our framework for categorizing such classifiers. Section 3
contains our experimental results and some discussion of these results. This section
also includes a discussion of our dataset, scoring metrics, software used, and so on.
Finally, Sect. 4 concludes the paper and includes suggestions for future work.

2 Ensemble Classifiers

In this section, we first give a selective survey of some examples of malware (and
closely related) research involving ensemble learning. Then we provide a framework
for discussing ensemble classifiers in general.

2.1 Examples of Related Work

The paper [18] discusses various ways to combine classifiers and provides a theoreti-
cal framework for such combinations. The focus is on straightforward combinations,
such as a maximum, sum, product, majority vote, and so on. The work in [18] has
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Table 1 Security research papers using ensemble classifiers

Authors Application Features Ensemble

Alazab et al. [2] Detection API calls Neural networks

Comar et al. [8] Detection Network traffic Random forest

Dimjaševic et al. [9] Android System calls RF and SVM

Guo et al. [10] Detection API calls BKS

Idrees et al. [12] Android Permissions, intents RF and others

Jain & Meena [13] Detection Byte n-grams AdaBoost

Khan et al. [17] Detection Network based Boosting

Kong & Yan [19] Classification Function call graph Boosting

Morales et al. [24] Android Permissions Several

Narouei et al. [25] Detection DLL dependency Random forest

Shahzad et al. [31] Detection Opcodes Voting

Sheen et al. [32] Various Detection efficiency Pruning

Singh et al. [34] Detection Opcodes SVM

Smutz & Stavrou [36] Malicious PDF Metadata Random forest

Toolan & Carthy [40] Phishing Various C5.0, boosting

Ye et al. [58] Detection API calls, strings SVM, bagging

Ye et al. [59] Categorization Opcodes Clustering

Yerima et al. [60] Zero day 179 features RF, regression

Zhang et al. [61] Detection n-grams Dempster-Shafer

clearly been influential, but it seems somewhat dated, given the wide variety of
ensemble methods that are used today.

The book [20] presents the topic of ensemble learning from a similar perspective
as [18] but in much more detail. Perhaps not surprisingly, the more recent book [62]
seems to have a somewhat more modern perspective with respect to ensemble meth-
ods, but retains the theoretical flavor of [18, 20]. The brief blog at [35] provides a
highly readable (if highly selective) summary of some of the topics covered in the
books [20, 62].

Here, we take an approach that is, in some sense, more concrete than that in [18,
20, 62]. Our objective is to provide a relatively straightforward framework for cate-
gorizing and discussing ensemble techniques.We then use this framework as a frame
of reference for experimental results based on a variety of ensemble methods.

Table 1 provides a summary of several research paperswhere ensemble techniques
have been applied to security-related problems. The emphasis here is on malware,
but we have also included a few closely related topics. In any case, this represents
a small sample of the many papers that have been published, and is only intended
to provide an indication as to the types and variety of ensemble strategies that have
been considered to date. On this list, we see examples of ensemble methods based
on bagging, boosting, and stacking, as discussed below in Sect. 2.3.
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2.2 A Framework for Ensemble Classifiers

In this section, we consider various means of constructing ensemble classifiers, as
viewed from a high-level perspective. We then provide an equally high-level frame-
work that we find useful in our subsequent discussion of ensemble classifiers in
Sect. 2.3 and, especially, in Sect. 2.4.

We consider ensemble learners that are based on combinations of scoring func-
tions. In the general case, we assume the scoring functions are real valued, but the
more restricted case of zero-one valued “scoring” functions (i.e., classifiers) easily
fits into our framework. We place no additional restrictions on the scoring functions
and, in particular, they do not necessarily represent “learning” algorithms, per se.
Hence, we are dealing with ensemble methods broadly speaking, rather than ensem-
ble learners in a strict sense.We assume that the ensemble method itself—as opposed
to the scoring functions that comprise the ensemble—is for classification, and hence
ensemble functions are zero-one valued.

Let ω1, ω2, . . . , ωn be training samples, and let vi be a feature vector of lengthm,
where the features that comprise vi are extracted from sample ωi . We collect the
feature vectors for all n training samples into an m × n matrix that we denote as

V = (
v1v2· · ·vn

)
, (1)

where each vi is a column of the matrix V . Note that each row of V corresponds to a
specific feature type, while column i of V corresponds to the features extracted from
the training sample ωi .

Let S : Rm → R be a scoring function. Such a scoring functionwill be determined
based on training data, where this training data is given by a feature matrix V , as in
Eq. (1). A scoring function S will generally also depend on a set of k parameters that
we denote as

Λ = (
λ1λ2. . .λk

)
. (2)

The score generated by the scoring function S when applied to sample x is given by

S(x ;V,Λ),

where we have explicitly included the dependence on the training data V and the
function parameters Λ.

For any scoring function S, there is a corresponding classification function that
we denote as Ŝ : Rm → {0, 1}. That is, once we determine a threshold to apply to the
scoring function S, it provides a binary classification function that we denote as Ŝ.
As with S, we explicitly indicate the dependence on training data V and the function
parameters Λ by writing

Ŝ(x ;V,Λ).
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For example, each training sample ωi could be a malware executable file, where
all of the ωi belong to the same malware family. Then an example of an extracted
feature vi would be the opcode histogram, that is, the relative frequencies of the
mnemonic opcodes that are obtainedwhenωi is disassembled. The scoring function S
could, for example, be based on a hidden Markov model that is trained on the feature
matrix V as given in Eq. (1), with the parametersΛ in Eq. (2) being the initial values
that are selected when training the HMM.

In its most general form, an ensemble method for a binary classification problem
can be viewed as a function F : R� → {0, 1} of the form

F
(
S1(x ;V1,Λ1), S2(x ;V2,Λ2), . . . , S�(x ;V�,Λ�)

)
. (3)

That is, the ensemble method defined by the function F produces a classification
based on the scores S1, S2, . . . , S�, where scoring function Si is trained using the
data Vi and parameters Λi .

2.3 Classifying Ensemble Classifiers

From a high-level perspective, ensemble classifiers can be categorized as bagging,
boosting, stacking, or some combination thereof [20, 35, 62]. In this section, we
briefly introduce each of these general classes of ensemble methods and give their
generic formulation in terms of Eq. (3).

2.3.1 Bagging

In bootstrap aggregation (i.e., bagging), different subsets of the data or features (or
both) are used to generate different scores. The results are then combined in someway,
such as a sum of the scores, or a majority vote of the corresponding classifications.
For bagging, we assume that the same scoring method is used for all scores in the
ensemble. For example, bagging is used when generating a random forest, where
each individual scoring function is based on a decision tree structure. One benefit
of bagging is that it reduces overfitting, which is a particular problem for decision
trees.

For bagging, the general Eq. (3) is restricted to

F
(
S(x ;V1,Λ), S(x ;V2, Λ), . . . , S(x ;V�,Λ)

)
(4)

That is, in bagging, each scoring function is essentially the same, but each is trained
on a different feature set. For example, suppose that we collect all available feature
vectors into a matrix V as in Eq. (1). Then bagging based on subsets of samples
would correspond to generating Vi by deleting a subset of the columns of V . On the
other hand, bagging based on features would correspond to generating Vi by deleting
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a subset of the rows of V . Of course, we can easily extend this to bagging based on
both the data and features simultaneously, as in a random forest. In Sect. 2.4, we
discuss specific examples of bagging.

2.3.2 Boosting

Boosting is a process whereby distinct classifiers are combined to produce a stronger
classifier. Generally, boosting deals with weak classifiers that are combined in an
adaptive or iterative manner so as to improve the overall classifier. We restrict our
definition of boosting to cases where the classifiers are closely related, in the sense
that they differ only in terms of parameters. From this perspective, boosting can be
viewed as “bagging” based on classifiers, rather than data or features. That is, all of
the scoring functions are re-parameterized versions of the same scoring technique.
Under this definition of boosting, the general Eq. (3) becomes

F
(
S(x ;V,Λ1), S(x ;V,Λ2), . . . , S(x ;V,Λ�)

)
. (5)

That is, the scoring functions differ only by re-parameterization, while the scoring
data and features do not change.

Below, in Sect. 2.4, we discuss specific examples of boosting; in particular, we
discuss the most popular method of boosting, AdaBoost. In addition, we show that
some other popular techniques fit our definition of boosting.

2.3.3 Stacking

Stacking is an ensemble method that combines disparate scores using a meta-
classifier [35]. In this generic form, stacking is defined by the general case in Eq. (3),
where the scoring functions can be (and typically are) significantly different. Note
that from this perspective, stacking is easily seen to be a generalization of both
bagging and boosting.

Because stacking generalizes both bagging and boosting, it is not surprising that
stacking-based ensemble methods can outperform bagging and boosting methods,
as evidenced by recent machine learning competitions, including the KDDCup [15],
the Kaggle competition [14], as well as the infamous Netflix prize [26]. However,
this is not the end of the story, as efficiency and practicality are often ignored in
such competitions, whereas in practice, it is virtually always necessary to consider
such issues. Of course, the appropriate tradeoffs will depend on the specifics of the
problem at hand. Our empirical results in Sect. 3 provide some insights into these
tradeoff issues within the malware analysis domain.

In the next section, we discuss concrete examples of bagging, boosting, and stack-
ing techniques. Then in Sect. 3, we present our experimental results, which include
selected bagging, boosting, and stacking architectures.
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2.4 Ensemble Classifier Examples

Here, we consider a variety of ensemble methods and discuss how each fits into the
general framework presented above. We begin with a few fairly generic examples,
and then discuss several more specific examples.

2.4.1 Maximum

In this case, we have

F
(
S1(x ;V1,Λ1), S2(x ;V2,Λ2), . . . , S�(x ;V�,Λ�)

) = max{Si (x ;Vi ,Λi )}. (6)

2.4.2 Averaging

Averaging is defined by

F
(
S1(x ;V1,Λ1), S2(x ;V2,Λ2), . . . , S�(x ;V�,Λ�)

) = 1

�

�∑

i=1

Si (x ;Vi ,Λi ). (7)

2.4.3 Voting

Voting could be used as a form of boosting, provided that no bagging is involved
(i.e., the same data and features are used in each case). Voting is also applicable to
stacking, and is generally applied in such a mode, or at least with significant diversity
in the scoring functions, since we want limited correlation when voting.

In the case of stacking, a simple majority vote is of the form

F
(
Ŝ1(x ;V1,Λ1), Ŝ2(x ;V2,Λ2), . . . , Ŝ�(x ;V�,Λ�)

)

= maj
(
Ŝ1(x ;V1,Λ1), Ŝ2(x ;V2,Λ2), . . . , Ŝ�(x ;V�,Λ�)

)
,

where “maj” is the majority vote function. Note that the majority vote is well defined
in this case, provided that � is odd—if � is even, we can simply flip a coin in case of
a tie.

As an aside, we note that it is easy to see why we want to avoid correlation when
voting is used as a combining function. Consider the following example from [47].
Suppose that we have the three highly correlated scores

⎛

⎝
Ŝ1
Ŝ2
Ŝ3

⎞

⎠ =
⎛

⎝
1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 0 0
1 0 1 1 1 1 1 1 0 0

⎞

⎠ ,
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where each 1 indicates correct classification, and each 0 is an incorrect classification.
Then, both Ŝ1 and Ŝ2 are 80% accurate, and Ŝ3 is 70% accurate. If we use a simple
majority vote, then we obtain the classifier

C = (1 1 1 1 1 1 1 1 0 0 )

which is 80% accurate. On the other hand, the less correlated classifiers

⎛

⎝
Ŝ1′
Ŝ2′
Ŝ3′

⎞

⎠ =
⎛

⎝
1 1 1 1 1 1 1 1 0 0
0 1 1 1 0 1 1 1 0 1
1 0 0 0 1 0 1 1 1 1

⎞

⎠

are only 80%, 70% and 60% accurate, respectively, but the majority vote in this case
gives us

C ′ = (1 1 1 1 1 1 1 1 0 1 )

which is 90% accurate.

2.4.4 ML-Based Combination

Recall that the most general formulation of an ensemble classifier is given in Eq. (3).
In this formulation, we can select the function F based on a machine learning tech-
nique, which is applied to the individual scores S(x ;Vi ,Λi ). In the remainder of
this section, we consider specific ensemble examples involving machine learning
techniques.

2.4.5 AdaBoost

Given a collection of (weak) classifiers c1, c2, . . . , c�, AdaBoost is an iterative algo-
rithm that generates a series of (generally, stronger) classifiers,C1,C2, . . . ,CM based
on the classifiers ci . Each classifier is determined from the previous classifier by the
simple linear extension

Cm(x) = Cm−1(x) + αmci (x)

and the final classifier is given by C = CM . Note that at each iteration, we include a
previously unused ci from the set of (weak) classifiers and determine a newweightαi .
A greedy approach is used when selecting ci , but it is not a hill climb, so that results
might get worse at any step in the AdaBoost process.

From this description, we see that the AdaBoost algorithm fits the form in Eq. (5),
with Ŝ(x ;V,Λi ) = Ci (x), and

F
(
Ŝ(x ;V,Λ1), Ŝ(x ;V,Λ2), . . . , Ŝ(x ;V,ΛM )

) = Ŝ(x ;V,ΛM ) = CM(x)
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2.4.6 SVM as Meta-Classifier

It is natural to use an SVM as a meta-classifier to combine scores [38]. For example,
in [34], an SVM is used to generate a malware classifier based on several machine
learning and statistical-based malware scores. In [34], it is shown that the result-
ing SVM classifier consistently outperforms any of the component scores, and the
differences are most pronounced in the most challenging cases.

The use of SVM in this meta-classifier mode can be viewed as a general stacking
method. Thus, this SVM technique is equivalent to Eq. (3), where the function F
is simply an SVM classifier based on the component scores Si (x ;Vi ,Λi ), for i =
1, 2, . . . , �.

2.4.7 HMM with Random Restarts

A hidden Markov model can be viewed as a discrete hill climb technique [37, 38].
As with any hill climb, when training an HMM we are only assured of a local
maximum, and we can often significantly improve our results by executing the hill
climb multiple times with different initial values, selecting the best of the resulting
models. For example, in [51] it is shown that an HMM can be highly effective for
breaking classic substitution ciphers and, furthermore, by using a large number of
random restarts, we can significantly increase the success rate in the most difficult
cases. The work in [51] is closely related to that in [7], where such an approach is
used to analyze the unsolved Zodiac 340 cipher.

From the perspective considered in this paper, an HMMwith random restarts can
be seen as a special case of boosting. If we simply select the best model, then the
“combining” function is particularly simple, and is given by

F
(
S(x ;V,Λ1), S(x ;V,Λ2), . . . , S(x ;V,Λ�)

) = max{S(x ;V,Λi )}. (8)

Here, each scoring function is an HMM, where the trained models differ based only
on different initial values. We see that Eq. (8) is a special case of Eq. (6). However,
the “max” in Eq. (8) is the maximum over the HMMmodel scores, not the maximum
over any particular set of input values. That is, we select the highest scoring model
and use it for scoring. Of course, we could use other combining functions, such as
an average or majority vote of the corresponding classifiers. In any case, since there
is a score associated with each model generated by an HMM, any such combining
function is well-defined.

2.4.8 Bagged Perceptron

Like a linear SVM, a perceptron will separate linearly separable data. However,
unlike an SVM, a perceptron will not necessarily produce the optimal separation,
in the sense of maximizing the margin. If we generate multiple perceptrons, each
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with different random initial weights, and then average these models, the resulting
classifier will tend to be nearer to optimal, in the sense of maximizing the margin [21,
47]. That is, we construct a classifier

F
(
S(x ;V,Λ1), S(x ;V,Λ2), . . . , S(x ;V,Λ�)

) = 1

�

�∑

i=1

S(x ;V,Λi ), (9)

where S is a perceptron and each Pi represents a set of initial values. We see that
Eq. (9) is a special case of the averaging example given in Eq. (7). Also, we note that
in this sum, we are averaging the perceptron models, not the classifications generated
by the models.

Although this technique is sometimes referred to as “bagged” perceptrons [47],
by our criteria, it is a boosting scheme. That is, the “bagging” here is done with
respect to parameters of the scoring functions, which is our working definition of
boosting.

2.4.9 Bagged Hidden Markov Model

Like the HMM with random restarts example given above, in this case, we generate
multiple HMMs. However, here we leave the model parameters unchanged, and
simply train each on a subset of the data. We could then average the model scores
(for example) as a way of combining the HMMs into a single score, from which we
can easily construct a classifier.

2.4.10 Bagged and Boosted Hidden Markov Model

Of course, we could combine both the HMM with random restarts discussed in
Sect. 2.4.7 with the bagging approach discussed in the previous section. This process
would yield an HMM-based ensemble technique that combines both bagging and
boosting.

3 Experiments and Results

In this section, we consider a variety of experiments that illustrate various ensemble
techniques. These experiments involvemalware classification based on a challenging
dataset that includes a large number of samples from a significant number ofmalware
families.
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3.1 Dataset and Features

Our dataset consists of samples from the 21malware families listed in Table 2. These
families are from various different types of malware, including Trojans, worms,
backdoors, password stealers, so-called VirTools, and so on.

Each of the malware families in Table 2 is summarized below.

Adload downloads an executable file, stores it remotely, executes the file, and
disables proxy settings [41].

Agent downloads Trojans or other software from a remote server [42].
Allaple is a worm that can be used as part of a denial of service (DoS) attack [52].
BHO can perform a variety of actions, guided by an attacker [45].
Bifrose is a backdoor Trojan that enables a variety of attacks [4].
CeeInject uses advanced obfuscation to avoid being detected by antivirus soft-

ware [48].
Cycbot connects to a remote server, exploits vulnerabilities, and spreads through

backdoor ports [5].
FakeRean pretends to scan the system, notifies the user of supposed issues, and

asks the user to pay to clean the system [53].
Hotbar is adware that shows ads on webpages and installs additional adware [1].
Injector loads other processes to perform attacks on its behalf [49].
OnLineGames steals login information of online games and tracks user keystroke

activity [28].

Table 2 Type of each malware family

Index Family Type Index Family Type

1 Adload [41] Trojan
downloader

12 Renos [43] Trojan
downloader

2 Agent [42] Trojan 13 Rimecud [54] Worm

3 Allaple [52] Worm 14 Small [44] Trojan
downloader

4 BHO [45] Trojan 15 Toga [46] Trojan

5 Bifrose [4] Backdoor 16 VB [6] Backdoor

6 CeeInject [48] VirTool 17 VBinject [50] VirTool

7 Cycbot [5] Backdoor 18 Vobfus [55] Worm

8 FakeRean [53] Rogue 19 Vundo [56] Trojan
downloader

9 Hotbar [1] Adware 20 Winwebsec [22] Rogue

10 Injector [49] VirTool 21 Zbot [23] Password
stealer

11 OnLineGames [28] Password
stealer

– – –
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Renos downloads software that claims the system has spyware and asks for a
payment to remove the nonexistent spyware [43].

Rimecud is a sophisticated family of worms that perform a variety of activities
and can spread through instant messaging [54].

Small is a family of Trojans that downloads unwanted software. This downloaded
software can perform a variety of actions, such as a fake security application [44].

Toga is a Trojan that can perform a variety of actions of the attacker’s choice [46].
VB is a backdoor that enables an attacker to gain access to a computer [6].
VBinject is a generic description ofmalicious files that are obfuscated in a specific

manner [50].
Vobfus is a worm that downloads malware and spreads through USB drives or

other removable devices [55].
Vundo displays pop-up ads and may download files. It uses advanced techniques

to defeat detection [56].
Winwebsec displays alerts that ask the user for money to fix supposed issues [22].
Zbot is installed through email and shares a user’s personal information with

attackers. In addition, Zbot can disable a firewall [23].

From each availablemalware sample, we extract the first 1000mnemonic opcodes
using the reversing tool Radare2 (also know as R2) [29]. We discard any malware
executable that yields less than 1000 opcodes, as well as a number of executables that
were found to be corrupted. The resulting opcode sequences, each of length 1000,
serve as the feature vectors for our machine learning experiments.

Table 3 gives the number of samples (per family) from which we successfully
obtained opcode feature vectors.Note that our dataset contains a total of 9725 samples
from the 21 malware families and that the dataset is highly imbalanced—the number
of samples per family varies from a low of 129 to a high of nearly 1000.

Table 3 Type of each malware family

Index Family Samples Index Family Samples

1 Adload 162 12 Renos 532

2 Agent 184 13 Rimecud 153

3 Allaple 986 14 Small 180

4 BHO 332 15 Toga 406

5 Bifrose 156 16 VB 346

6 CeeInject 873 17 VBinject 937

7 Cycbot 597 18 Vobfus 929

8 FakeRean 553 19 Vundo 762

9 Hotbar 129 20 Winwebsec 837

10 Injector 158 21 Zbot 303

11 OnLineGames 210 Total 9725
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3.2 Metrics

The metrics used to quantify the success of our experiments are accuracy, balanced
accuracy, precision, recall, and the F1 score. Accuracy is simply the ratio of correct
classifications to the total number of classifications. In contrast, the balanced accuracy
is the average accuracy per family.

Precision, which is also known as the positive predictive value, is the number of
true positives divided by the sum of the true positives and false positives. That is,
the precision is the ratio of samples classified as positives that are actually positive
to all samples that are classified as positive. Recall, which is also known as the true
positive rate or sensitivity, is computed by dividing the number of true positives by
the number true positives plus the number of false negatives. That is, the recall is the
fraction of positive samples that are classified as such. The F1 score is computed as

F1 = 2 · precision · recall
precision + recall

,

which is the harmonic mean of the precision and recall.

3.3 Software

The software packages used in our experiments include hmmlearn [11],XGBoost
[57], Keras [16], TensorFlow [39], and scikit-learn [30], as indicated
in Table 4. In addition, we use Numpy [27] for linear algebra and various tools
available in the package scikit-learn (also known as sklearn) for general
data processing. These packages are all widely used in machine learning.

Table 4 Software used in experiments

Technique Software

HMM hmmlearn

XGBoost XGBoost

AdaBoost sklearn

CNN Keras, TensorFlow

LSTM Keras, TensorFlow

Random Forest sklearn
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3.4 Overview of Experiments

For all of our experiments, we use opcode sequences of length 1000 as features. For
CNNs, the sequences are interpreted as images.

We consider three broad categories of experiments. First, we apply “standard”
machine learning techniques. These experiments, serve as a baseline for comparison
for our subsequent experiments. Among other things, these standard experiments
show that the malware classification problem that we are dealing with is challenging.

We also conduct bagging and boosting experiments based on a subset of the tech-
niques considered in our baseline standard experiments. These results demonstrate
that both bagging and boosting can provide some improvement over our baseline
techniques.

Finally, we consider a set of stacking experiments, where we restrict our attention
to simple voting schemes, all of which are based on architectures previously consid-
ered in this paper. Although these are very basic stacking architectures, they clearly
show the potential benefit of stacking multiple techniques.

3.5 Standard Techniques

For our “standard” techniques, we test several machine learning methods that are
typically used individually. Specifically,we consider hiddenMarkovmodels (HMM),
convolutional neural networks (CNN), random forest, and long short-term memory
(LSTM). The parameters that we have tested in each of these cases are listed in
Table 5, with those that gave the best results in boldface.

From Table 5, we note that a significant number of parameter combinations were
tested in each case. For example, in the case of our random forest model, we tested

53 · 3 · 6 = 2250

different combinations of parameters.
The confusion matrices for all of the experiments in this section can be found

in the Appendix in Fig. 2a through Fig. 2d. We present the results of all of these
experiments—in terms of the metrics discussed previously (i.e., accuracy, balanced
accuracy, precision, recall, and F1 score)—in Sect. 3.9.

3.6 Bagging Experiments

Recall from our discussion above that we use the term bagging to mean a multi-
model approach where the individual models are trained with the same technique
and essentially the same parameters, but different subsets of the data or features. In
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Table 5 Parameters for standard techniques

Technique Parameters Values tested

HMM n_components [1,2,5,10]
n_iter [50,100,200,300,500]
tol [0.01,0.5]

CNN learning_rate [0.001,0.0001]
batch_size [32,64,128]
epochs [50,75,100

Random Forest n_estimators [100,200,300,500,800]
min_samples_split [2,5,10,15,20]
min_samples_leaf [1,2,5,10,15]
max_features [auto,sqrt,log2]
max_depth [30,40,50,60,70,80]

LSTM layers [1,3]
directional [uni-dir,bi-dir]
learning_rate [0.01]
batch_size [1,16,32]
epochs [20]

contrast, we use boosting to refer tomulti-model caseswhere the data and features are
essentially the same and the models are of the same type, with the model parameters
varied.

We will use AdaBoost and XGBoost results to serve as representative examples
of boosting. We also consider bagging experiments (in the sense described in the
previous paragraph) involving each of the HMM, CNN, and LSTM architectures.
The results of these three distinct bagging experiments—in the form of confusion
matrices—are given in Fig. 3 in the Appendix. In terms of the metrics discussed
above, the results of these experiments are summarized in Sect. 3.9.

3.7 Boosting Experiments

As representative examples of boosting techniques, we consider AdaBoost and
XGBoost. In each case, we experiment with a variety of parameters as listed in
Table 6. The parameter selection that yielded the best results are highlighted in bold-
face.

Confusion matrices for these two boosting experiments are given in Fig. 4 in the
Appendix. The results of these experiments are summarized in Sect. 3.9, in terms of
accuracy, balanced accuracy, and so on.
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Table 6 Parameters for boosting techniques

Technique Parameters Values tested

AdaBoost n_estimators [100,200,300,500,800,1000]
learning_rate [0.5,1.0,1.5,2.0]

algorithm [SAMME,SAMME.R]

XGBoost eta [0.05,0.1,0.2,0.3,0.5]
max_depth [1,2,3,4]
objective [multi:softprob,binary:logistic]
steps [1,5,10,20,50]

3.8 Voting Experiments

Since there exists an essentially unlimited number of possible stacking architectures,
we have limited our attention to one of the simplest, namely, voting. These results
serve as a lower bound on the results that can be obtained with stacking architectures.

We consider six different stacking architectures. These stacking experiments can
be summarized as follows.

CNN consists of the plain and bagged CNN models discussed above. The confu-
sion matrix for this experiment is given in Fig. 5a.

LSTM consists of the plain and bagged LSTMmodels discussed above. The con-
fusion matrix for this experiment is given in Fig. 5b.

Bagged neural networks combines our bagged CNN and bagged LSTMmodels.
The confusion matrix for this experiment is given in Fig. 5c.

Classic techniques combines (via voting) all of the classic models considered
above, namely, HMM, bagged HMM, random forest, AdaBoost, and XGBoost.
The confusion matrix for this experiment is given in Fig. 5d.

All neural networks consists of all of the CNN and LSTM models, bagged and
plain. The confusion matrix for this experiment is given in Fig. 5e.

All models combines all of the classic and neural network models into one voting
scheme. The confusion matrix for this experiment is given in Fig. 5f.

In the next section, we present the results for each of the voting experiments
discussed in this section in terms of our various metrics. These metrics enable us to
directly compare all of our experimental results.

3.9 Discussion

Table 7 summarizes the results of all of the experiments discussed above, in term of
the following metrics: accuracy, balanced accuracy, precision, recall, and F1 score.
These metrics have been introduced in Sect. 3.1.
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Table 7 Comparison of experimental results

ExperimentsCase Accuracy Balanced Precision Recall F1 score
accuracy

Standard HMM 0.6717 0.6336 0.7325 0.6717 0.6848

CNN 0.8211 0.7245 0.8364 0.8211 0.8104

Random
Forest

0.7549 0.6610 0.7545 0.7523 0.7448

LSTM 0.8410 0.7185 0.7543 0.7185 0.8145

Bagging Bagged
HMM

0.7168 0.6462 0.7484 0.7168 0.7165

Bagged
CNN

0.8910 0.8105 0.9032 0.8910 0.8838

Bagged
LSTM

0.8602 0.7754 0.8571 0.8602 0.8549

Boosting AdaBoost 0.5378 0.4060 0.5231 0.5378 0.5113

XGBoost 0.7472 0.6636 0.7371 0.7472 0.7285

Voting Classic 0.8766 0.8079 0.8747 0.8766 0.8719

CNN 0.9260 0.8705 0.9321 0.9260 0.9231

LSTM 0.8560 0.7470 0.8511 0.8560 0.8408

Bagged
neural
networks

0.9337 0.8816 0.9384 0.9337 0.9313

All neural
networks

0.9208 0.8613 0.9284 0.9208 0.9171

All models 0.9188 0.8573 0.9249 0.9188 0.9154

In Table 7, the best result for each type of experiment is in boldface, with the
best results overall also being boxed. We see that a voting strategy based on all of
the bagged neural network techniques gives us the best result for each of the five
statistics that we have computed.

Since our dataset is highly imbalanced, we consider the balanced accuracy as the
best measure of success. The balanced accuracy results in Table 7 are given in the
form of a bar graph in Fig. 1.

Note that the results in Fig. 1 clearly show that stacking techniques are bene-
ficial, as compared to the corresponding “standard” techniques. Stacking not only
yields the best results, but it dominates in all categories. We note that five of the
six stacking experiments perform better than any of the standard, bagging, or boost-
ing experiments. This is particularly noteworthy since we only considered a simple
stacking approach. As a result, our stacking experiments likely provide a poor lower
bound on stacking in general, and more advanced stacking techniques may improve
significantly over the results that we have obtained.
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Fig. 1 Balanced accuracy results

4 Conclusion and Future Work

In this chapter, we have attempted to impose some structure on the field of ensemble
learning. We showed that combination architectures can be classified as either bag-
ging, boosting, or in the more general case, stacking. We then provided experimental
results involving a challenging malware dataset to illustrate the potential benefits of
ensemble architectures. Our results clearly show that ensembles improve on standard
techniques, with respect to our specific dataset. Of course, in principle, we expect
such combination architectures to outperform standard techniques, but it is instruc-
tive to confirm this empirically, and to show that the improvement can be substantial.
These results make it clear that there is a reason why complex stacking architectures
win machine learning competitions.

However, stacking models are not without potential pitfalls. As the architectures
become more involved, training can become impractical. Furthermore, scoring can
also become prohibitively costly, especially if large numbers of features are used in
complex schemes involving extensive use of bagging or boosting.

For future work, it would be useful to quantify the tradeoff between accuracy and
model complexity. While stacking will generally improve results, marginal improve-
ments in accuracy that come at great additional cost in training and scoring are
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Fig. 2 Confusion matrices for standard techniques

unlikely to be of any value in real-world applications. More concretely, future work
involving additional features would be very interesting, as it would allow for a more
thorough analysis of bagging, and it would enable us to draw firmer conclusions
regarding the relative merits of bagging and boosting. Of course, more and more
complex classes of stacking techniques could be considered.

Appendix: Confusion Matrices

See Figs. 2, 3, 4, 5
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Fig. 3 Confusion matrices for bagging experiments

Fig. 4 Confusion matrices for boosting techniques
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Fig. 5 Confusion matrices for voting ensembles
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Optimizing Multi-class Classification of
Binaries Based on Static Features

Lasse Øverlier

Abstract Classification of binaries is often done with limited resources spent on
pre-processing the input, assuming that the resource-intensivemachine learning tech-
niques will find the optimal results. In this paper, we identify pre-processingmethods
to perform faster malwaremulti-class classification of high accuracy, and we also use
the same techniques to classify author (programmer) identification from executables.
One method is via eight different types of code simplifications of the disassembled
code to reduce storage and calculation time. Another is through visual analysis from
running TFIDF N-gram analysis using both Random Forest and SVM, for a large
range of different N-grams. The results show interesting features from our classifi-
cation of executables which we base solely on the analysis of the disassembled code.
We have in addition looked at using different training data sizes, compiler optimized
code, and both ELF and PE-files and demonstrate methods for optimizing storage
and computational complexity when classifying executable files. Our findings show
that a higher size N-gram is only preferable for some code simplifications, and that
some code simplifications can give a very high accuracy (99.2%) based on only a
fraction of the code. In addition, the amount of training data can be quite low and
still yield an accuracy of over 95%.

1 Introduction

When we move away from malware detection [10, 23] and binary classification
to malware multi-class classification, there are many ways to group the malware
binaries.

It is useful to classify themalwarewith othermalwarewith similar functionality. It
is also useful to classify the programmers who wrote the malware assuming that they
leave some sort of identifiable signatures through their programming practices. The
malware programmer may be anonymous, but it is useful to know which malware
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most likely originates from the same programmer or programmer group. These two
methods of classification do seem like two completely different challenges since we
might assume that any author identifiable texts are removed and code convertedwhen
the source codes are compiled into binaries.

So when we have access to the originating source code of the malware, this
latter research problem resembles the author identification problem for identifying
the origin of, or classification of, anonymous texts [1]. But for processed text, in
our case binary software files without access to the source code, this is a different
kind of problem. In our case, we have little or no control over how the software’s
source code has been parsed, analyzed, and optimized by the compiler to produce the
binary software file.Wemay also assume that different types of compilersmight leave
identifiable markers. And in additionmost malware programmers make an effort into
being anonymous for obvious reasons, and this may also affect the resulting binary.
After compilation, we may also assume that the binary also can be edited to hide
potential identifying markers before being used as a malware.

Our original challenge was to start with the binaries and see if and how a clas-
sification of the source code may be optimized by using and extracting as little as
possible from the binary files. This created two dimensions of experiments. First,
we look at how accuracy of correct classification varies with different methods of
machine learning techniques and variables. And second, we attempt to minimize
the data that must be extracted from the binaries in order to create and maximize
classification results and still maintain acceptable accuracy.

In one of our experiments, we examine whether malware classifications into fam-
ily classes of similar functionality can be done and how the results vary with our
optimizations. In the other experiment, we attempt to see whether an author can be
identified to belong to a classification of binaries based on the authors (programmers).

This paper is structured as follows. We will in section two look at related work,
and in section three look at the theory behind our classification experiment. In section
four, we explain the experiment setup, andwe continue in section fivewith the results.
The discussion of the results is in chapter six, and in chapter seven we conclude.

2 Related Work and Background

Classifying programmer (group) when we have access to the source code, this
research problem resembles the author identification problem with many earlier
publications. In [5] deVel et al. used a support vector machines (SVM) classifier
to identify authorship of multi-topic e-mails. Others have looked at different uses
of N-gram features for author identification using histograms of character-based
N-grams [6], and also trying to avoid language dependency and smaller profiles
[13]. N-grams can be used on different types of entities, characters, bytes, opcodes,
words, etc., depending on what kind of patterns we are looking for.

Using character-based techniques may not be best in all types of analyses and
classifications. Houvardas et al. [9] use variable length word-based N-gram features
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to make author identification with original text as input. They experimented with
various length (character) n-grams, 3-gram up to 5-gram, and showed that there is
a variation in accuracy when comparing different lengths. Language independence
was also shown in programmer identification where Peng et al. [18] present graphs
for accuracy of the various lengths of N-grams from 1-gram to 7-gram for English,
Chinese, and Greek.

Classifying file types is another similar problem where earlier N-gram analysis
[22] have shown to be promising and produced “fingerprints” for the file types using
unigrams (“1-gram”). Later research have improved this by using support vector
machines and multiple various length N-grams for the same file type classification
problem [2]. Most earlier N-gram analysis on binary files are made character-by-
character.

Analyzing programmer authorship may involve other things more specific for
programmers and code structure than authors’ language and structures. Krsul and
Spafford [15] looked at the programming style through measurable predetermined
parameters in the code, like program line length, variable name length, function
names, percentage of global variables, etc. Others have researched similar techniques
later [14]. Caliskan-Islam et al. [4] use syntactic structures in the source code to
extract selected features and run these features through a random forest classification.
Burrows and Tahaghoghi [3] have made similar research using N-gram source code
analysis.

This raises the question of which of the different lengths of n-gram that will
contribute the most in our case where we only base the analysis on the binary files.
Even for binary files, there are multiple methods of how the binary code is produced.
Some binaries may include debug information and thus may include names and
identifiers used in the source code. Most binaries remove this debug information,
and some compile with a high degree of optimization which tries to make the most
effective binary code from the source code files.

Other types of binary data analysis have been performed on network traffic. Anal-
ysis of different N-gram techniques for classifying and detecting binary protocols
(“not text-based protocols”) like RPC, Samba, and RDP can be found in [7].

Different types of compilers might leave identifiable markers in how they compile
or maybe how they optimize the binary executable. In [12], Kalbhor et al. demon-
strates successful results by using hiddenMarkovmodels for identifying the compiler
used.

Spafford and Weeber [21] addressed the challenge of tracking both source code
and binary code back to its authors already in 1992. Among other things, they dis-
cussed the use of compiler optimization, different source code languages, data struc-
tures and system calls, all which are relevant features to use in today’s newer analysis
methods. Research into identifying programmer(s) from binaries have received an
extra boost with the current machine learning tools to simplify large-scale analysis.
In Meng [16] and Meng et al. [17], extract features from basic blocks in the bina-
ries and use this to attribute the different basic blocks to authors using support vector
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machines and random forest classificationmodels. Rosemblumet al. [20] use features
from the control flow graph, and Caliskan et al. [4] extracts both instruction features,
lexical features, syntactic features, and flow features in their de-anonymization of
programmers.

3 Methodology

In author identity analysis there are multiple identification indicators that will vary
and may help identify an author, like language, vocabulary, word frequency, term
frequency, sentence buildup, order of sentences, style of writing, etc. There are many
more indicators which may be specific for any individual author. We will in this
paper only use a few of these identifiers, but let us first review some of the additional
challenges we have to address when we start with binary code to attempt to classify
malware. We use a disassembler to give us a textual representation of the malware,
but this contains information like memory addresses which will vary with compiler
and operating system.We try to structure this disassembled information as explained
in Chap. 4 andwewill only look at some of the indicators: words, terms, term lengths,
and term frequency. Then we will visualize how the prediction accuracy varies with
the length of the terms in different setups.

3.1 Selecting the Dictionary

One term in disassembled code can be interpreted to be one of many variations.
Figure 1 shows a tiny fraction of one such file from the experiment. The code can be
found in the lower right half of the figure.

We may look at each word (or set of characters separated by one or more whites-
pace characters) as they are found in the code, like “mov,” “edi,” “[ecx-0DCh],” etc.,

Fig. 1 Example of code from one of the data sets [19]
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or we may look at one full line of code at a time, like “push ebp,” “mov ebp, esp,”
etc., to be one single term in the dictionary.

Many earlier machine learning experiments have fed the binary files with limited
pre-processing into the classifiers, often using character-based analysis, and includ-
ing all the disassembled output, like addresses, comments, opcodes (machine code
values) and have had very successful results [8, 11].

Since we wanted to build our analysis solely on the disassembled code and differ-
ent variations of this code as found from the binary malware files, we have extracted
the code without all the extra information shown in Fig. 1. The code lines with the
disassembly code shown in the lower right part of the figure are everything we base
our analysis on. Thiswaywe ignored the addresses, comments, and opcodes/machine
code, and only used our parsing, pre-processing, and analysis on the textual repre-
sentation of the code part.

The difference between using word frequency and term frequency can easily be
observed in the figure as the word count for “push” is five, but if we use the term
“push <REGISTER>” we see that there is only one occurrence of each term. We can
also assume that a longer more inclusive termwill give a lower occurrence rate/count
of each term and a larger dictionary, compared to single word “terms.”More complex
terms will usually give a lower term count and a larger dictionary. To make the text
easier to parse we combined words into selected “terms” (chosen by us) through
removing spaces to build new words in the text to be analyzed.

We wanted to analyze the difference between the terms included in the dictionary
to see whether we could make good predictions in classifying malware by using only
a fraction of the information given from the disassembler and binary analysis tools.
We have run our analysis on the following different simplifications of disassembled
code:

1. Single letter—only the first letter from the first word (first letter of mnemonic).
2. First word—only the first word of each code line (the mnemonic)
3. First two words connected—as (4), but as one word in the dictionary (“2 words

connected”)
4. First two words—often mnemonic and first parameter, as separate words in the

dictionary (“2 words”)
5. All words connected—as (6), but as one word in the dictionary for each code line
6. All words—removed number values, type information, and special characters,

except colon(’:’), and kept all words—often mnemonic with all registers
7. All code connected—as (8), but as one word in the dictionary for each code line
8. All code—the complete code line with the whitespace output from the disassem-

bler as the word separator. Meaning that commas, brackets, etc., will be present
in the words in the dictionary.

An example of this code simplification is shown in Table 1. Here we have used
the disassembled code from Fig. 1 to exemplify how the different dictionaries will
become. The input disassembled code is shown in the “All code” column. Note
that when using large N-gram we will include words from multiple lines, as a line
separator will function as a normal whitespace.
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Table 1 Code simplification in the different analysis formats

Single
letter

First word 2 words
connected

2 words All words
connected

All words All code connected All code

m mov movedi mov edi movediedi mov edi
edi

movedi,edi mov edi,
edi

p push pushebp push ebp pushebp push ebp pushebp push ebp

m mov movebp mov ebp movebpesp mov ebp
esp

movebp,esp mov ebp,
esp

s sub subesp sub esp subesp sub esp subesp,1Ch sub esp,
1Ch

l lea leaecx lea ecx leaecxedx lea ecx
edx

leaecx,[edx+140h] lea ecx,
[edx+140h]

a add addedi add edi addediecx add edi
ecx

addedi,[ecx-
0DCh]

add edi,
[ecx-
0DCh]

p push pushecx push ecx pushecx push ecx pushecx push ecx

p push pusheax push eax pusheax push eax pusheax push eax

Table 2 shows the first 80 characters of the resulting documents representing the
simplification from one file in the experiment. The full code can be seen/extracted
when combining “All code” and “All code connected.” All these different types of
combining the disassembled code gives completely different dictionaries when run
through aword-based term frequency-inverse document frequency (TFIDF) counter.1

So the list of words in the dictionaries based on the code from Table 1 will look
something like this

1-gram, Single letter : (“m”, “p”, “s”, “l”, “a”)
2-gram, Single letter : (“m p”, “p m”, “m s”, “s l”, “l a”, “a p”, “p p”)
1-gram, 2 words : (“mov”, “edi”, “push”, “ebp”, “sub”, “esp”, “lea”, “ecx”, “add”,

“eax”)
2-gram, 2 words : (“mov edi”, “edi push”, “push ebp”, “ebp mov”, “mov ebp”,

“ebp sub”, “sub esp”, “esp lea”, ...)
3-gram, 2 words : (“mov edi push”, “edi push ebp”, “push ebp mov”, “ebp mov

ebp”, “mov ebp sub”, “ebp sub esp”, ...)
1-gram, All code connected : (“movedi,edi”, “pushebp”, “movebp,esp”, “subesp,

1Ch”, “leaecx,[edx+140h]”, ...)
2-gram, All code connected : (“movedi,edi pushebp”, “pushebp movebp,esp”,

“movebp,esp subesp,1Ch”, “subesp,1Ch leaecx,[edx+140h]”, “leaecx,[edx+
140h]”, ...)

1-gram, All code : (“mov”, “edi,”, “edi”, “push”, “ebp”, “ebp,”, “esp”, “sub”,
“esp,”, “1Ch”, “lea”, “ecx,”, “[edx+140h]”, ...)

These are just a few examples to understand how our simplification of code is being
built into “words” that will appear in the dictionaries and be used in the analyses.

1We used the SKLearn (https://scikit-learn.org/) TFIDF vectorizer.

https://scikit-learn.org/
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Table 2 First 80 characters in one of the disassembled files in all simplification variations

Simplification First 80 characters of “Document”

Single letter j d i a a a a a a a a a a x a x a j a a a x a o s p a p
a a a x a x a a a a a a

First word jg dec inc add add add add add add add add add
add xor add xor add je add add ad

First two words connected jg decesp incesi addecx addeax addeax addeax
addeax addeax addeax addeax addeax

First two words jg dec esp inc esi add ecx add eax add eax add
eax add eax add eax add eax add e

All words connected jg decesp incesi addecxeax addeaxeax addeaxal
addeaxal addeaxal addeaxal addeaxe

All words jg dec esp inc esi add ecx eax add eax eax add
eax al add eax al add eax al add

All code connected jg0x47 decesp incesi adddword[ecx],eax
adddword[eax],eax addbyte[eax],al addbyte

All code jg 0x47 dec esp inc esi add dword [ecx], eax
add dword [eax], eax add byte [eax]

Some special situations to be aware of

1. In “2 words,” “All words,” and “All code” each word in every code line separated
by a whitespace (or new line) will be a word for the dictionary. This especially
affects the large N-gram experiments with regards to dictionary size and memory
usage.

2. In “All code,” there will be special characters in the different words, like “ebp,”
(with a comma included) which makes the dictionary add this entry in addition
to “ebp.”

3. When using multiple words, and the *-connected words the resulting dictionary
will grow extremely large and this have caused problems with the largest data
set as it required up toward 1TB of memory when using standard ML-libraries
for higher N-gram values. We have, therefore, reduced the maximum N-grams to
8-gram for the experiment using the biggest data set.

4 Experiments

For learning how to perform multi-class classification, there exists a few data sets
available online, but notmany (public) large ones.We have chosen two quite different
data sets. One set from the Microsoft Malware Classification Challenge (MMCC)
and one set extracted from the Google Code Jam (GCJ) competition. These two data
sets are different in manyways. InMMCC, we have a classification of binaries which
is made into malware families which consists of many variants of same functionality.
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In GCJ, we have classified, by the programmer, and have different programs written
by the same author with highly different functionality and purpose.

The similarities of the experiments is that we try to make the same type of dictio-
nary variants as explained in Sect. 3, and plot the accuracy of support vectormachines
and random forest classification for all N-gram values from “1-gram” up to either
“8-gram” or “18-gram” based on the data size.

But first we will explain the special circumstances for running our experiment on
these two quite different type of data sets.

4.1 Microsoft Malware Classification Challenge

One of the largest public available data sets with malware can be found in the
Microsoft Malware Classification Challenge [19]2 (MMCC). It consists of over
400GB of data, with both binary and disassembled code from the use of the IDA
disassembler and debugger.3 The binarymalware has been stripped of the PE-header
to be made non-executable for security reasons. This does limit the value of the data
set, but they have prioritized the potential security implications with hundreds of
gigabytes of executable malware available to anyone. The MMCC data set consists
of around 200GB of training data, where the classification is known, and another
200GB of test data to be classified as a part of the competition evaluation. The real
classification of this test data set is still unknown at the time of our experiment—four
years after the competition was completed. We, therefore, used only the training data
for both training and testing our results.

The data classification is given on all the training data—10868 of them in nine dif-
ferent classes: Ramnit, Lollipop,Kelihos_ver3,Vundo, Simda, Tracur, Kelihos_ver1,
Obfuscator.ACY, and Gatak. These classes were predefined and found in a separate
file classifying each malware file. We wanted to see if the results varied with the
amount of data used from each code line. Therefore, we made eight experiments on
this data set where each line of disassembled code was converted into documents of
the same simplification classes shown in Table 1, from single letter, first word, etc.
to “all code.”

There were 10859 files useful for classification based on disassembled code. Nine
files were ignored simply because they only consisted of data without any code, and
with thePE-header removed, thesewere so different from the other files, and therefore
not used in the analysis.

We performed some simplifications before applying this conversion. We found
that some disassembly instructions were over-represented in many files and these
lines have been removed. “align” and especially the data indicator lines “dd” which
is just listing unstructured (unrecognized) data in the binary. These data blocks are

2https://www.kaggle.com/c/malware-classification.
3https://www.hex-rays.com/products/ida/.

https://www.kaggle.com/c/malware-classification
https://www.hex-rays.com/products/ida/


Optimizing Multi-class Classification of Binaries Based on Static Features 257

Table 3 MMCC code size in gigabytes (GB) after simplification in the different analysis formats,
uncompressed (top) and Zlib-compressed (bottom)

Single
letter

First word 2 words 2 words
connected

All words All words
connected

All code All code
connected

Raw input

0.52 0.97 4.3 4.5 4.9 5.6 6.4 7.6 140

0.039 0.061 1.3 1.3 1.4 1.4 1.9 1.9 17

often encrypted, not very informative until the malware is executed, and therefore
not used in our static analysis.

With our simplifications, the code base was reduced from the around 200GB
(binary and compressed disassembled code) down to 500MB for “single letter” data
and even down to 39MB for the compressed version. Sizes of the different code
versions are shown in Table 3 with all sizes in gigabytes. So if we can get acceptable
results with “single letter” or “first word,” we can reduce storage needed for the
classification from 140GB to 39MB/61MB.

4.2 Google Code Jam (GCJ) Data

Another set of software was taken from the Google Code jam library which has
a publicly available source code repository at https://www.go-hero.net/jam/ where
the source code files from every competition can be downloaded (if scripting). The
programs entered here are answers to programming challenges and authors submit
their solutions into this open competition. All solutions are sorted by challenge, year,
programming language, and author. The source files submitted are made in multiple
programming languages, but we have only extracted those that used C/C++ for our
experiment. These source code files had to be compiled to Linux ELF binaries for
our experiment setup.

As with all machine learning algorithms, you need a minimum amount of training
and testing data to have significance and see if identifying patterns can be discovered.
There were many contributors with just a few entries of programs, so we start by
using the top ten code writers (based on a number of contributions only). This gave us
approximately the same number of classes as in the MMCC data set, but the number
of files in total went down from 10800 in MMCC to 413 in GCJ. This makes GCJ
a quite different classification challenge as we now only have 37 samples from the
“least productive” programmer in our set up to 49 files from the “most productive”
programmer as the content in this multi-class classification.

https://www.go-hero.net/jam/
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Table 4 GCJ code size in megabytes (MB) after simplification in the different analysis formats,
uncompressed (top) and Zlib-compressed (bottom)

Single
letter

First
word

2 words 2 words
con-
nected

All
words

All
words
con-
nected

All code All code
con-
nected

Raw
input

2.1 4.6 7.1 8.0 8.3 9.8 14 16 18

0.33 0.48 0.72 0.74 0.86 0.92 1.8 1.9 2.7

We used a script made by F. Seehusen at FFI4 to download the GCJ source
code from the 2010–2017 competitions. The code was downloaded and sorted by
username and this script also included how to produce both a 64-bit version with
the optimization flag set (“g++ -w -m64 -O”), and a 32-bit version without any
optimization (“g++ -w -m32 -O0”) from each of the source codes. Compile time of
these small programs were in the order of seconds.

So why did we not just use the source code? Because that would be a similar
problem as described by others under Chap. 3. There have been many classifica-
tion experiments on original source code(s). So even if we had the source code,
our experiment was to see if we could classify disassembled code correctly. First
the disassembled code was extracted using Radare25 and all the functions in the
executable (as defined by Radare) were extracted together with their corresponding
disassembled code. As with MMCC, we only used the code parts in our analysis.
We do assume that data areas may contain useful information that will enhance the
analysis and classification, but this experiment was narrowed down to only look at
the code sections.

We converted the GCJ-code into the eight different code simplifications and the
sizes of the analysis material and the resulting eight versions are shown in Table 4.

5 Results

Here, we will first describe the results from the MMCC malware experiments and
then from the Google Code Jam data set. All accuracy values are made from running
the classification with 80% of the files in training and 20% in the prediction set.
Every test was run 10 times and the average of these runs is shown in the graphs.
The average accuracy for correct classifications are shown in Fig. 2 as given from
the scikit-learn→metrics→ accuracy_score library.

4Norwegian Defence Research Establishment.
5Radare2 can be found at https://rada.re/ and is one of the most used open-source disassembly tools
today.

https://rada.re/
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Fig. 2 Classification using SVM on MMCC malware

5.1 MMCC Malware

5.1.1 Using SVM

Using Support Vector Machines (SVM), we run the experiment 10 times for each
n-gram from 1 to 8, using 80% random selected files for training, and the remaining
20% for testing.

To get some more details on the variation of the data we can shorten the scale on
the y-axis as shown in Fig. 3.

We can see from the results that single letter have the least accurate result starting
at 1-gram, but stay within top-5 and better than 98% accuracy from 3-gram and

Fig. 3 Classification using SVM on MMCC malware—shortened y-axis
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Table 5 Heatmap for best and worst accuracy using SVM

larger. Another interesting result is that all the manually connected dictionaries have
their accuracy start high, but drops off significantly after 6-gram.

If we look at the accuracy more in detail in Fig. 3, we can observe that the “All
code” keeps a slight advantage almost for all N-grams. But we also can see that the
accuracy “Single letter” is actually (nearly) as good as the maximum accuracy value
at 5-gram.

To visualize better and see which binary classes are easier to predict than others
we can print a heatmap for the scenario of the best and another lower accuracy when
using Linear SVC. We can see from Fig. 3 that the assumed worst accuracy is the
“Single letter,” 1-gram result, and that the best accuracy (by a small margin) is the
“All code,” 2-gram result. These heatmaps are shown in Table 5 where we can see
that under the 1-gram/single letter, some features seem to be over-represented to be
predicted, like “Kelihos_ver3,” but others are not occuring at all, like “Kelihos_ver1,”
“Ramnit,” and “Obfuscator_ACY.” But this improves a lot when using all code were
close to everything that is predicted to be “Kelihos_ver1” actually is correct, and all
other categories have a very high accuracy as well.

Looking at the results it seems like 2 words, all words and all code are consistently
better than 98% accuracy. Andwe can also see that first word and single letter reaches
the 98% accuracy level already around 3-gram.

5.1.2 Using Random Forest

If we use the same data in a random forest classification we get the results shown in
Fig. 4. In order to see any differences between the top five code types we reduce the
scale on the accuracy axis to observe any patterns. This is shown in Fig. 5.

As we can see every run for the top five code types gives an accuracy better than
98.5% from 2-gram and higher, and that a 99% accuracy is achieved already at 1-
gram of “2 words,” “all words,” and “all code” and the need for building much higher
n-grams seem unnecessary.
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Fig. 4 Classification using Random Forest on MMCC malware

Fig. 5 Classification using Random Forest on MMCC malware—re-scaled y-axis

Best accuracy was found with All words, 2-gram at 99.2% accuracy with only one
parameter taken into account. As expected the worst accuracy was found in single
letter, 1-gram.

Table 6 shows the heatmap for best and worst accuracy for random forest, even
if the differences and/or challenges are not easily identifiable from the heatmap.
The hardest category to detect seems here to be “Simda” for our best result as these
are more often than other classes wrongfully predicted to be either “Tracur” or
“Obfuscator.ACY.”
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Table 6 Heatmap for best and worst accuracy using Random Forest

Fig. 6 Classification using Linear SVC on GCJ 32-bit binaries

5.2 Google Code Jam (GCJ) Results

In the Google Code Jam (GCJ) data set, we look at two different binary versions:
Linux 32-bit and Linux 64-bit. In addition, we look at the same eight different code
parsing methods.

5.2.1 Google Code Jam—32-Bit

For the GCJ 32-bit using Linear SVC, shown in Fig. 6, we see that the results are
lower than for the MMCC experiments. The maximum accuracy can be found at
5-gram and higher and in the first six code categories. We see here that both “All
code” and “All code connected” never reaches more than around 60% accuracy.
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Fig. 7 Classification using Random Forest on GCJ 32-bit binaries, 60–100% accuracy

Fig. 8 ClassificationusingRandomForest onGCJ32-bit binaries, 1-gram throughn-gram included,
60–100% accuracy

Using random forest classification, we get the results of Fig. 7. The scale of the
figure is reduced and starts at 60% accuracy. We see that here the accuracy of the top
six code types are around 90% from 5-gram and higher.

But Figs. 6 and 7 are only showing the resultswhen the specificN-gram is included
in the classification. Since we have a significantly smaller amount of code in this
experiment compared to in theMMCC-experiment, we can try to build the dictionary
from all combinations from 1-gram to 18-gramwhere all lower n-grams are included.
Meaning that the 3-gram result will include 1-grams, 2-grams, and 3-grams. This
result is shown in Fig. 8.

We can see that the only major difference is that the drop off disappears and every
code class seems to more or less stabilize at around a maximum accuracy of 90% for
the top six, and around 80% at the two “all code” types.
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Fig. 9 Classification using Random Forest on GCJ 64-bit binaries

5.2.2 Google Code Jam—64-Bit

The 64-bit versions of the GCJ codes were compiled with the optimization flag set
and including all lower n-grams when building classification vectors as explained
above. Figure 9 shows the Random Forest classification of the 64-bit codes.

The top six code types for accuracy is enhanced in Fig. 10 with the scale showing
80–100% accuracy. We see that most of these six code types reach 95% accuracy for
higher N-grams.

Fig. 10 Classification using Random Forest on GCJ 64-bit binaries, 80–100% accuracy, top six
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6 Discussion

We have analyzed the classification of binaries through disassembly in several dif-
ferent dimensions. The paper set out to use only two variants: length of N-grams
used in classification and different types of simplification of disassembled code for
storage reduction. Through the experiment phase other dimensions were added as
they were found to be interesting for optimizing the classification algorithms: the
size of training material, 64-bit optimized compilation vs. 32-bit no optimization,
classification algorithm, and accumulation of n-gram lengths. We will discuss each
of these points here.

6.1 Length of N-Gram

The length of the N-grams is essential with regards to accuracy. Increase in length
also means a significant increase in dictionary size, unless we make a strict cutoff in
the TFIDF construction. We had problems with the implementation in our machine
learning toolkit, sklearn, when both the training size and the dictionary size were
large. With large N-grams the dictionary could be up millions of entries if we did
not enforce cutoff. We have not had time to experiment with best cutoff values, but
after some initial testing we chose 5% for the low boundary, and 75% for the high
boundary. After this the dictionary was in most cases below 10000, and we were able
to run the experiment on 1-gram–8-grams for the MMCC data set within reasonable
time (< 4h for each setting) and keep sklearn below our 192GB of RAM.

For the GCJ data set, we only had around 440 files, and therefore we could
include all lengths up to 18-gram, including the accumulation of lower N-grams.
Without accumulationwehad someof the code simplifications demonstrating a “drop
off.” These were the “*-connected” simplifications where the dictionary usually
become very large in higher N-grams. For accumulated results this “drop off” is
likely the reason for the lower horizontal accuracy graph. We could also observe that
the dictionary was about twice as big for the accumulated n-grams as for the single
n-grams.

6.2 Simplification of Code

Looking at the accuracy graphs for each of the different code simplifications we
observe that almost all variants occur in the highest levels. If this is to be used
as an indication only with >98% accuracy, we would suggest just using “single
letter/3-gram,” “first word/2-gram” or “2words/1-gram.” All these results will yield
a significant indication upon the classification, and be both fast and demand less
resources.
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We also observe that in five of the code simplifications, the accuracy in theMMCC
data analysis is kept above 98% in all N-gram lengths (ref Fig. 5).

6.3 Size of Training Data

As expected we have a higher accuracy when we have a high amount of training
material (MMCC data, 99.2% accuracy) compared to a small training data size (GCJ
data, 95% accuracy). Classifying a programmer based on only 440 files of training
data with an accuracy of 95%might be a good indication and good enough for many
analysis scenarios.

As we can see from Tables 3 and 4 we may save significant amounts of storage if
we are comfortable with the “single letter” accuracy. The reduction is around 10:1
and almost as good with.

6.4 64-Bit Optimized Binaries Versus 32-Bit Non-optimized
Binaries

One surprising result came with the analysis of optimized vs. non-optimized bina-
ries. From the graphs in Figs. 10 and 8 we observe that the accuracy of the GCJ
classification was better than 95% from the optimized binaries and around 92% from
the 32-bin plain compilation. We also note that the difference between 64-bit and
32-bit code may play a part here, but we did not have time to include analysis of this
variable as well.

6.5 Classification Algorithm

We see that the LinearSVC classification algorithm is almost identical in both the
“single n-gram analysis” compared to the “accumulated n-gram analysis.” But com-
paring the graphs for Random Forest classification, they show a clear “drop off” in
increasing N-gram values for the largest dictionaries when using “single n-gram”.
This is compensated by including the use of lower length n-grams in “accumulated
n-gram.”

LinearSVC also demonstrates a lower accuracy in all classification results, but
it was significantly faster (5-10x) in large dictionaries and slower (1-2x) in small
dictionaries.
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7 Conclusion

We have observed interesting features in multi-class classification of binaries based
on analyzing only the disassembled code. We have looked at various methods of
constructing simplification of the code, using different length N-grams for analysis,
different classification algorithms, and different training data sizes.

Our findings show that a higher size N-gram is only preferable for some code
simplifications, and that some code simplifications can give a very high accuracy
(99.2%) based on only a fraction of the code. In addition, we found that the amount
of training data storage can be reduced by over 97% from input to compressed first
word, with corresponding reduced computing resources for 1-grams in dictionary
size, and still yield an accuracy of over 95%.

In future work, we hope to extend to other platforms and other types of malware
and maybe be able to include more programmer specific code. In addition ROC-
curves will be analyzed to optimize how to best visualize elements from amulti-class
classification.
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Deep Learning Techniques for Behavioral
Malware Analysis in Cloud IaaS

Andrew McDole, Maanak Gupta, Mahmoud Abdelsalam, Sudip Mittal,
and Mamoun Alazab

Abstract This chapter focuses on online malware detection techniques in cloud
IaaS using machine learning and discusses comparative analysis on the performance
metrics of various deep learning models.

1 Introduction and Motivation

Cloud has become a popular platform due to its characteristics of on-demand ser-
vices, infinite resources, ubiquitous availability and pay-as-you-go business model
[22]. Infrastructure as a Service (IaaS) is a popular service model for many data
centers. In IaaS, resources of a data center may be purchased by clients to perform
their own personal tasks but require either the strength or availability of the data
centers resources. This model allows customers to save money by removing the
need for every customer to set up their own computers or computing cluster and it
allows data centers to efficiently utilize their computing resources. Clients can pur-
chase access to any number of virtual machines, which can include a few machines
or thousands of virtual machines. With the scale of resource usage, there must be
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automatic monitoring of these virtual machines to provide security for the cloud
provider and its clients. With many clients having their resources in a shared virtual
space, there is a risk that one client’s virtual machine becoming infected could mean
more virtual machines within the data center become infected. Not only would the
cloud providers hardware be at risk, any users who have virtual resources in this data
center could also be at risk. As cloud providers grow and increase the size of their
consumer base, the responsibility of cloud providers to ensure the protection and
security of their customers also increases. Cloud providers must seek the best pos-
sible security mechanisms to employ in the defense of their clients. In IaaS, the risk
of attack and infection is increased due to common configurations and automatic
provisioning of virtual machines in data centers. When configurations are similar
among virtual machines, malware attacks are able to be repeated across those similar
virtual machines.

As cloud infrastructure grows and develops, it presents a larger attack vector for
malicious actors to launch attacks and inject malware. Customers who utilize cloud
resources in data centers are called cloud tenants. Those tenant’s virtual machines
(VMs) need to be protected and secured against any variety of attacks that may
take place against their resources. Preventing these attacks is a critical task, but
equally important is detecting when a novel exploit succeeds and a portion of a data
center’s resources become infected. These exploits can take the form of a system
vulnerability, a configuration vulnerability, an insider threat, or credentials stolen
from an external source. With all of the possible methods of malware entry, cloud
presents the opportunity for large amounts of malware to infect data centers globally.

1.1 Relevance in Cloud IaaS

Cloud infrastructure is unique because of the flexibility of services that can be offered
in a cloud format. The flexibility of cloud attracts many customers who can utilize
IaaS for their own benefit. With this flexibility also brings more risk with the various
types of malware that can affect the data center. With varying services hosted within
a data center, there are more variations of malware and attacks that can be performed
as opposed to a system where a single type of service is offered. With more viable
attacks, cloud infrastructure becomes more likely to experience malware infections.
Cloud IaaSwould benefit from highly accuratemalware analysis and detection. Deep
learning techniques have proven to be highly effective in malware detection and can
be used to improve the security of cloud IaaS as well.

Cloud has some essential characteristics such as on-demand self-service, rapid
elasticity, migration, resource pooling, and controlled measured service. These char-
acteristics are necessary to support the on-demand delivery of computing power
and the pay-as-you-go service model of cloud computing. These characteristics also
incentivize attackers to target cloud infrastructure. For example, attackers couldmake
use of the rapid-elasticity characteristic to create bot-nets quickly. Reacting to emerg-
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ing threats brought on by the adoption of cloud is necessary to increasing cloud
security.

Research in [1–3, 9, 15–18, 23, 31] discuss vulnerabilities that involve the essen-
tial cloud properties. The largest threat to cloud infrastructure is malware infection.
Cloud malware injection is an attack where malware is injected into pre-existing
process. While this attack is not unique to cloud environments, it can affect cloud
more drastically. This is due to automatic provisioning and ability for cloud to spin
up more VMs on demand and those VMs are configured in a similar manner. Such
VMs are vulnerable to alike attacks if they are from the same template, increasing
the chances that malware will spread from one VM to the next. In such a case, an
attacker is able to quickly gain control of large number of VMs to execute large-scale
attacks.

2 Machine Learning-Based Malware Detection

In many cases, malware detection methods for a single machine will work for cloud
systems as well. Figure1 shows an overview of machine learning-based malware
detection techniques and their commonly associated features.

2.1 File Classification

In file classification, the goal is to examine a binary file and classify it as either mali-
cious or not. This is usually accomplished by executing the malware in an observable
isolated environment. The environment is designed to prevent malware from spread-
ing outside of the intended scope. If an executable is identified as benign, then it is

Fig. 1 Classification diagramofmachine learning-basedmalware detectionmethods and associated
features
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allowed to be executed without further interference. File classification methods are
split into static and dynamic analysis.

Static malware is the process of scanning files before they are executed to deter-
mine if they are malicious or not. If a file is being statically analyzed, then the
malware executable is disassembled by dissemblers. These dissemblers produce an
approximate source code of the malware which can be examined with various tools.
More complex dissemblers can produce more accurate source codes than simpler
ones. Certain dissemblers can also analyze control flow of a program to produce
even more accurate source code. This technique is commonly used because it is sim-
ple, quick, and the tools needed are readily available. This technique can be defeated
by malware writers who can craft binaries which cause the dissemblers to gener-
ate incorrect code. This is usually accomplished by the malware writers inserting
in flawed code, which when executed, follow an obfuscated execution path that the
dissemblers could not generate properly on their own. One example of this type of
static malware analysis is extracting n-grams of a binary file. These n-grams can then
be used as features to be used in a machine learning technique to uncover malicious
patterns.

Even if dissemblers could generate the proper source code for a particular mali-
cious binary, then the malware could be injected into an already running application.
Since many files in static analysis are checked only once, usually before executing
the file, the benign application would be scanned and deemed as such. If malware
is injected into this already running process, then the malware’s source code would
not be scanned and go undetected. In cloud IaaS, this attack is referred to as a cloud
malware injection [17]. If a cloud malware injection attacked is performed success-
fully, then the malware will go undetected and allowed to act without interference.
Therefore, there is an essential need to constantly monitor applications running in
cloud environments to maintain the services that have not been infected.

Where static analysis will fail to capture such malware attacks taking place,
dynamic analysis can detect such an attack. Dynamic analysis works by record-
ing the behavior of an executable and analyzing it to determine if malicious behavior
is taking place. In dynamic analysis, the executable is executed and external software
is recording its behavior. Typically, this is conducted within a sandboxwhere the exe-
cutable would not be able to affect anything important. Information gathered during
execution may include system calls, memory access, or network communications.

2.2 Online Malware Detection

In contrast, online detection methods involved a system that is being continuously
monitored for malware. The features associated with online detection methods such
as system calls, memory features, and performance metrics are costly to collect.
These methods make up for this cost with the ability to detect malware that has
infected an already running process that was initially determined to be benign.
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Figure1 shows a classification diagram of various machine learning-based mal-
ware detection techniques. Several works have been done inmalware detectionwhich
focuses on different feature aspects. Most algorithms for detecting malware focus on
a single machine. Some examples of this include support vector machines (SVMs)
[30], all-nearest-neighbor classifier [13], and naïve bayes [4, 14]. While cloud envi-
ronments generally involve more than a single machine acting on its own, there is
not a large difference between a single virtual machine and a standalone host except
for the hypervisor in a cloud environment. The hypervisor is critical in collecting
information about the virtual machines running in a cloud environment. Due to this
restriction, most works [4, 10–12, 19, 20, 24, 26, 32] are limited to using features
which can be obtained through the hypervisor. Dawson et al. [10] utilize system
calls for features and are concerned with rootkits. The work uses a non-linear phase-
space algorithm to detect anomalies found in the system calls. The phase-space graph
dissimilarities are used to evaluate the results.

Entropy-basedAnomalyTesting (EbAT)was introduced in [29]. EbATusedmulti-
plemetrics such asmemory utilization as well as CPU utilization. Thework analyzed
these metrics for anomaly detection based upon distribution instead of a flat thresh-
old. Accurate results were generated from this approach for detection and the ability
to scale up to meet metric processing demand. This work was limited in usefulness
for practical and realistic cloud environment scenarios. Azmandian et al. [8] utilize
performance metrics gathered from the hypervisor to form a new anomaly detection
approach. These metrics included disk and network input–output. This work also
uses KNN and Local Outlier Factor.

Abdelsalam et al. [3] show that malware detection can be conducted using a black-
box approach. The metrics used in this work included VM-level performance and
resource utilization. Highly active malware that made a large footprint in resource
utilization records were detected by this approach. This approach was not as effective
in detecting malware with low amounts of activity. These malwares likely attempted
to hide themselves and reduced their activity to avoid leaving evidence in the resource
utilization records.

3 Literature Review

Tables1 and 2 summarize state-of-the-art research, challenges, and contributions
with respect to online malware detection literature.

4 Cloud Security Monitoring Overview

Cloud security monitoring takes place at various levels. The levels include the Phys-
ical layer which contains computer hardware. The next level is the Infrastructure
as a Service level which contains the cloud infrastructure made of virtual machines
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Table 1 Online malware detection literature

Paper title Focus/objective Contribution Limitation

Malware detection in
cloud computing
infrastructures [30]

Introduces an online
cloud anomaly
detection approach

• Effective anomaly
detection using
one-class Support
Vector Machines
• Assesses VM-Based
feaures on detection
performance

• Gathering features
per process is
computationally
expensive
• Uses highly active
malware that is easier
to detect

Malicious sequential
pattern mining for
automatic malware
detection [13]

Proposes an effective
sequence mining
operation to discover
malicious patters

• Proposes effective
framework using
sequence mining
techniques
• New nearest
neighbor classifier to
identify unknown
malware

• Unable to perform
malware classification,
only detection

Analysis of machine
learning techniques
used in behavior-based
malware detection [14]

Provide
proof-of-concept on
automatic
behavior-based
malware analysis

• Utilizes 220 unique
Indonesian malware
for Windows
• Proof of concept for
using ML in
behavior-based
malware detection

• Limited malware
dataset
• Limited feature
selection

Zero-Day Malware
Detection Based on
Supervised Learning
Algorithms of API
Call Signatures [4]

Propose and evaluate a
novel method of
detecting and
classifying zero-day
malware

• Proposes machine
learning framework to
detect unknown
malware with high
accuracy, high
efficiency, and
signature free

• Only uses Windows
API Calls as features

Towards
understanding
malware behavior by
the extraction of API
calls [6]

Provides automated
method of extracting
API call features

• Provides automated
approach for API call
feature extraction
• Combines API call
features with anomaly
detection to analyze
overall behavior of
binaries

• Only applies to
malware which uses
Windows API calls

Malware detection
based on structural and
behavioral features of
API calls [5]

Detecting obfuscated
malware involving
structural and
behavioral features of
API Calls

• Provides automated
system to
reverse-engineer
program codes and
apply feature
extraction
• Behavior features of
API calls
• Applied n-gram
statistical model on
executables for
n-values

• If there are a lack of
tools that can unpack
certain malware, then
it poses a challenge to
the automated system
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Table 2 Online malware detection literature (Continued)

Paper title Focus/objective Contribution Limitation

Machine learning-based
botnet identification
traffic [7]

Botnet Identification
using machine learning.

• Introduces CONIFA, a
ML framework for
botnet detection

• CONFIA relies on
ML which can be
affected by new data
deviating from the data
used during training.

Phase-space detection
of virtual machine cyber
events through
hypervisor-level system
call analysis [10]

Validating Oak Ridge
National Lab’s (ORNL)
Beholder project is
applicable to rootkit
detection in virtual
machines

• Implements system
for detecting malware in
a running VM.
• Validates accuracy of
ORNL’s Beholder
project algorithm
• Builds on ORNL’s
Beholder project by
applying new data

• Only tested with
Beholder’s parameter
set, could have different
results with other
parameters
• Future work left to
experiment with other
execution environments

On the feasibility of
online malware
detection with
performance counters
[11]

Building a malware
detector in hardware
using performance
counters

• Tests the efficacy of
using dynamic
performance data to
characterize and detect
malware
• Applies standard
machine learning
techniques such as
KNN and Decision
Trees to detect malware

• Detector accuracy can
be improved in futher
work
• Unable to determine if
new approach provides
a significant advantage
in malware detection

Deep learning approach
for intelligent intrusion
detection system [27]

Incorporating deep
learning to introduce a
new scalable intrusion
detection system

• Proposes deep
learning approach to
detect cyberattacks
proactively
• Explores host-level
events using natural
language processing
• Use multiple datasets
in comparative analysis
due to underlying flaws
• Proposes a scalable
hybrid intrusion
detection system SHIA

• Further work includes
enhancing accuracy of
the proposed framework
by adding the ability to
monitor DNS and BGP
events in the network.
• Complex deep neural
networks were not
trained due to the
computational cost

Robust intelligent
malware detection using
deep learning [28]

Evaluating classical
machine learning
architectures and deep
learning architectures
for malware detection

• Proposes scalable
framework named
ScaleMalNet to collect
malware samples from
distributed sources
• Novel image
processing technique
• Independent
performance evaluation
of classical machine
learning and deep
learning architectures

• The deep learning
architectures are
vulnerable to
adversarial
environments and the
robustness of the deep
learning architectures
against this
vulnerability is not
discussed.
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Fig. 2 Cloud monitoring
points

and storage. The next level is the Platform as a Service level which is made of run-
time environments. The last level is the Software as a Service level where cloud
applications are used over the Internet.

With cloud systems becoming more complex and servicing more customers, the
need volume of virtual machines that need to be monitored is increasing. Monitoring
all of these virtual machines is resource intensive and failure to protect the tenants
can result in service downtime. Tenants can also infect other tenants via co-resident
attacks. All of the scenarios in the cloud systems where attacks could be performed
need to be monitored. Figure2 shows where cloud monitoring endpoints could be
employed in a cloud IaaS scenario.

There are two categories of cloud security described by Fig. 2: Resource Layer
Monitoring andServiceLayerMonitoring. Thefigure illustrates interactions between
components in a cloud environment and which components should be monitored.
There is a security risk associated with every interaction and malware can spread
through these interactions to infect unrelated parts of the ecosystem. Customers
interact with various cloud services hosted on cloud storage. Users typically can
update and manage this information. Clients can also host services such as web sites
which have their own set of end users. If an end user of a hosted website is able to
infect the Cloud App component, then the Cloud Storage component is at risk which
endangers the rest of the environment and its entities.

Figures3 and 4 show close up views of the Resource Layer Monitoring and Ser-
vice Layer Monitoring, respectively. Figure3 shows the tenants interacting with var-
ious cloud resource components. Figure4 shows the tenants interacting in various
ways with cloud services. These cloud services are also communicating between one
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Fig. 3 Resource layer monitoring

Fig. 4 Service layer monitoring

another in the background. While monitoring the behavior of the tenants’ interac-
tions may provide evidence for malicious activity, it may also be worth monitoring
the background communications between services.
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5 Behavioral Features and Characteristics

When building a deep learning model for malware analysis, features must be deter-
mined and collected from experiments or existing data. They should represent infor-
mation that reflects the behavior of active malware in a particular system. Existing
work such as [4, 24, 26] utilize API calls whereas [10, 12, 20] focus on system calls.
Other features can include performance counters [11] and memory features [19, 32].
Table3 shows an example set of features which could be used for behavioral malware
detection.

For the collection of data, developing an ecosystem which allows malware to
execute without issue is essential. Modern malware commonly has mechanisms to
detect when it should or should not be active. This can be done to avoid detection
and reduce the chance that a system’s malware detection and prevention methods
will catch the malware. If a malware detects that it is running inside of a “sandbox”
or being monitored by an anti-virus application, the malware might decide to remain
idle. If a malware is not active and features of the system are recorded, then those
features may reflect normal activity of the system and should not be labeled as
malicious.

An example experimental setupmay look like a set ofmachines set upwith Internet
access and limited anti-virus measures, if any. Such machines need Internet access
to allow most malware to conduct their malicious activities without interference.
These may be part of a larger network that simulates some service and traffic to that
service. An example service relevant to cloud IaaS is a web server that responds to
various HTTP requests. Simulated traffic represents normal users interacting with
this web service. Allow the simulated traffic to run for a period of time and record
the selected features for the machine that is intended to be infected with malware.

Table 3 Sample virtual machine features

Metric Description

CPU utilization Average CPU utilization

Memory usage Amount of memory in use by the VM that is
allocated to it

Memory allocation Amount of memory allocated to the VM by the
hypervisor

Disk read requests Amount of times the VM requested read access
to the disk

Disk read amount Number of bytes read from the disk by the VM

Disk write requests Amount of times the VM requested write
access to the disk

Disk write amount Number of bytes write from the disk by the VM

Network incoming bytes Number of bytes received by the VM

Network outgoing bytes Number of bytes sent by the VM
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This machine will generate benign samples that will be used later to establish what is
normal behavior. After the period of time is over, malware should be injected into the
machine and the simulated traffic should be allowed to continue. This represents a
successful cloud malware injection attack in the real world, where users are unlikely
to know that the service they are using has been compromised. If users notice no
change in their service, their behavior should remain the same and it should be the
same traffic behavior as before. Once the malware has been injected into the target
machine, further recording should take place of the same selected features. This
phase of recording should last as long as the benign phase to maintain a balanced
amount of data. Once all of the data has been collected across the time samples,
the network infrastructure should be wiped clean so that any changes made by the
malware are reverted. This experiment should be run multiple times with different
malware or network setups to generate a large volume of data which can be used in
deep learning techniques.

Once the data has been collected, the data must be pre-processed and transformed
into a format that is able to be input into deep learning algorithms. This usually
means transferring all relevant information in a vector with floating point values and
encoding all strings using one-hot encoding. Once the data is in the proper format,
a set of data must be set aside for training and validation. A deep learning model
requires data to train on to learn behaviors but there needs to be some way of com-
paring performances across models. The validation data is used for this comparison.
Dataset aside as validation data should not be used during the training of the model,
and instead be used as a measurement of a model’s accuracy. An example of using
validation data is to split the full dataset into 80% training and 20% validation. The
model trains on the training dataset and every so often, the model is tasked with
predicting the validation data samples. The accuracy of the model on the validation
dataset should be the standard bywhich themodel is judged. Various techniques exist
when applying this dataset split including using a third test dataset when splitting
the full dataset as well as cross-fold validation. It is necessary to generate enough
data so that even after the split, there is enough data to train the deep learning model
and enough data to test a varied set of examples.

6 Experimental Setup and Methodology

The dataset used for experimental analysis of deep learning techniques [21] was
collected from an OpenStack testbed that simulated a 3-tier web architecture. The
testbed utilized a database (MySQL), application server (Wordpress), and a web
server (Apache) to create the architecture. In a typical 3-tier web architecture, a
client makes a request to a web server which can then either return a static page
to the client or access the application server. If the application server requires data
access, then it can access the database. In any case, the response is returned back
to the client. In this experimental setup, the web server and application server were
allowed to scale up or down based on demand while the database was not. Two
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separate load balancers were used, one to distribute requests among web-servers
from clients, and the other to distribute web server requests to application servers.
Each computes node, acting as a cloud service, had network monitoring agents as
well as agents collecting samples of the virtual machine itself.

Traffic was needed to accurately represent the intended use case: 3-tier web ser-
vice. The traffic was simulated using two traffic different generation models: Poisson
Process and ON/OFF Pareto. A program was built to act as multiple clients. This
program sent requests to the web-servers which would go through the load balancer
first. The parameters used for the simulation are

• Generation algorithm: Poisson or On/Off Pareto
• Concurrent Clients: 50
• Requests sent per hour: 3600
• Request Types: GET and POST (Randomly Generated)

The parameters for the On/Off Pareto algorithm used the NS21 tool defaults. The
traffic volumewas chosen to test the scalability policy by stressing the load balancers.
The policy for scaling up was set to scale up when CPU utilization of either the app-
servers or web-servers increased above %. Each experiment lasted for one hour.

The following four metrics were used to evaluate the effectiveness of the models:

Accuracy = TP + TN

TP + TN + FP + FN

Precision = TP

TP + FP

Recall = TP

TP + FN

F1 Score = 2 × Precision × Recall

Precision + Recall

A positive is when the system correctly detects a present malware and a negative
is when the system fails to detect an existing malware. Therefore:

• TP: Malware successfully detected
• FP: System detected malware but no malware was present
• TN: System correctly identified no malware was present
• FN: System failed to detect present malware

In the experiments, a single virtual machine was randomly chosen to be injected with
malware halfway through the experiment. The chosen features of this machine were
recorded every 10s. All machines were erased and rebuilt after every experiment due
to the infection of live malware.

1NS2 tool manual. http://www.isi.edu/nsnam/ns/doc/node509.html.

http://www.isi.edu/nsnam/ns/doc/node509.html
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Table 4 Sample values for metrics collected in [21]

Metric Value Metric Value

sample_no 5672254 mem_swap 0

exp_no 23 mem_lib 0

vm_id 178 mem_text 217088

pid 1036 mem_uss 1105920

ppid 1 mem_dirty 0

sample_time 6/6/2018 19:32 mem_shared 3334144

process_creation_time 6/6/2018 19:32 mem_data 585728

status sleeping mem_vms 43921408

num_threads 1 mem_rss 3751936

kb_received 0 io_write_bytes 0

kb_sent 0 io_write_chars 76

num_fds 14 io_write_count 9

cpu_children_sys 0 io_read_bytes 958464

cpu_children_user 0 io_read_chars 61088

cpu_user 0.01 io_read_count 77

cpu_sys 0 ctx_switches_involuntary 43

cpu_percent 0 ctx_switches_voluntary 182

cpu_num 0 nice 0

name dbus-daemon ionice_ioclass 0

gid_real 111 ionice_value 0

gid_saved 111 label 0

gid_effective 111 – –

Table4 shows the metrics collected for the experiments in [21]. The example
column represents a single process with the features collected about that process at a
given time slice. This is the raw data that was collected by the polling agents. Further
preparation of the data must be done before it is ready to be used in a neural network
such as using one-hot encoding to encode the string values. All of the preparation
will turn this raw data into a feature vector.

7 Deep Learning Techniques

Deep learning is a subset of machine learning, which revolves around using arti-
ficial neural networks (ANNs). ANNs are made of layers of neurons that activate
in response to its input from the previous layers. Input in the form of tensors is
passed through the layers and eventually makes a prediction. The prediction is then
used to calculate the loss of the model and the weights of the model is then updated
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Table 5 Comparison for evaluation metrics

Model Accuracy Precision Recall F1

LeNet-5 89.2 94.7 80.9 87.2

ResNet-50 88.4 86.0 88.9 87.4

ResNet-101 86.6 82.3 89.7 85.9

ResNet-152 89.5 89.0 87.8 88.4

DenseNet-121 92.9 100 84.6 91.5

DenseNet-169 92.8 99.7 84.4 91.4

DenseNet-201 92.8 99.5 84.6 91.5

to increase accuracy. Two of the most used types of artificial neural networks are
convolutional neural networks (CNNs) and recurrent neural networks (RNNs).

CNNs are used in many applications where data can be visualized in the form of
images. CNNs utilize a series of convolutional layers and pooling layers to break
down an image into smaller mappings, and then begin to recognize smaller patterns
until it builds up to predicting to full image. In the case of malware detection, features
can be gathered from a virtual machine and used to create two-dimensional arrays of
processes and features which can then be interpreted as an image. A CNN can work
on this image to “recognize” and infected VM.

RNNs are used for applications where there is a strong time relationship between
data samples that need to be captured. RNNs utilize either Long Short-TermMemory
(LSTM) or Gate Recurrent Units (GRUs) cells to simulate memory. These cells are
designed to solve the vanishing gradient where backpropagation fails to update the
early layers within a deep network. Such LSTM and GRU cells have internal gates
which regulate the flow of information. For example, the authors in [25] utilize an
RNN to perform early detection ofmalware. Theywere able to detect malwarewithin
the first 5 s of execution with 94% accuracy.

7.1 Comparative Analysis

In this subsection, a detailed [21] comparison and contrasts of different state-of-the-
art CNN models have been discussed used for detecing malwares in cloud IaaS. The
models used were LeNet-5, ResNet-50, ResNet-101, ResNet-152, DenseNet-121,
DenseNet-169, and DenseNet-201.

The results for the seven models tested are shown in Table5. The baseline model
LeNet-5 represents a shallow, simple CNN. The model lacks the depth necessary
to capture complex and minute features. LeNet-5 reached an accuracy of �87%
while the best performing model, DenseNet-121 reached the highest accuracy of
�93%. The difference between DenseNet-121, DenseNet-169, and DenseNet-201
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in accuracy was negligible. These results suggest that adding more layers to create
deeper networks did not improve accuracy past a certain point within dense networks.

ResNet-152 performed slightly better than LeNet-5 in accuracy but fell behind in
precision.One impact of this lowprecision is theResNetmodels thatwere classifying
benign samples as malicious. This could prove to be detrimental if regular use was
beingmisidentified asmalicious and a cloud providerwas receiving false alarms. This
may cause loss of availability to clients if the cloud provider were taking steps against
these false alarms such as isolating virtual resources. Once the considerably longer
training time of ResNet-152 is taken into account, the minor accuracy increase over
LeNet-5 is likely not aworthwhile tradeoff. The higher recall of the residual networks
may lend themselves to other scenarios where catching all of the malware incidents
is more important than some false alarms. These may be cases where the resources
being protected are extremely sensitive in nature and false positives are preferable
to false negatives. ResNet-50 and ResNet-101 achieved the lowest accuracy overall
however so they are not recommended over the other models tested.

All of themodels underwent training and validation to find the point at which their
validation accuracy was greatest. For all seven models, their highest performing ver-
sion was used in a testing phase to generate the results in Table5. The DenseNet
models took much longer to train and therefore longer to reach their highest per-
forming states than LeNet-5. DenseNet-121 took almost 10x longer to train than
LeNet-5 and the other DenseNet models took longer than DenseNet-121 while pro-
viding marginally better results. It suffices to say that DenseNet-121 provided the
best performance improvement in terms of accuracy with respect to training time
from the baseline LeNet-5.

8 Conclusion

In this chapter, we discuss the importance of analyzingmalware detectionmethods in
cloud IaaS and the ability to utilize deep learning methods in those detection efforts.
Cloud providers have an increasing responsibility to provide security mechanisms
which will protect their data centers and the customers they serve. One such secu-
rity mechanism is deep learning. Deep learning techniques provide highly accurate
models which can detect malware. These models are useful for cloud environments
especially when many virtual machines may be configured similarly and therefore
could be susceptible to repeated attacks using the same malware. To utilize deep
learning in cloud malware detection, data must first be found or generated. The data
should be gathered from a simulated environment that closely represents real-world
services and network infrastructure. If a new dataset is being generated, then the fea-
tures being collected must be selected first. These features can include CPU usage,
memory usage, system calls, or even network operations. Once data is generated and
collected, it is ready to be fed into a deep learning model for predictions. A deep
learning model should be designed to fit the dataset and the hyperparameters of the
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model will need to be tuned to increase accuracy. Once a model has been trained, it
can then be used to perform predictions on new malware.
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A Comparison of Word2Vec, HMM2Vec,
and PCA2Vec for Malware Classification

Aniket Chandak, Wendy Lee, and Mark Stamp

Abstract Word embeddings are often used in natural language processing as a
means to quantify relationships between words. More generally, these same word
embedding techniques can be used to quantify relationships between features. In this
paper, we first consider multiple different word embedding techniques within the
context of malware classification. We use hidden Markov models to obtain embed-
ding vectors in an approach that we refer to as HMM2Vec, and we generate vector
embeddings based on principal component analysis. We also consider the popular
neural network-based word embedding technique known asWord2Vec. In each case,
we derive feature embeddings based on opcode sequences for malware samples from
a variety of different families. We show that we can obtain better classification accu-
racy based on these feature embeddings, as compared to HMM experiments that
directly use the opcode sequences, and serve to establish a baseline. These results
show that word embeddings can be a useful feature engineering step in the field of
malware analysis.

1 Introduction

Malware detection and analysis are critical aspects of information security. The 2019
Internet Threat SecurityReport [46] claims an increase of 25% in 1 year in the number
of attack groups using malware to disrupt businesses and organizations. According
to the 2016 California Data Breach Report [13], malware contributed to 54% of all
breaches and 90% of total records breached, with a staggering 44 million records
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breached due to malware in the years 2012–2016. Statistics such as these imply that
malware is an increasing threat.

In this paper, we apply machine learning classification techniques to engineered
features that are derived from malware samples. This feature engineering involves
machine learning techniques. In effect, we apply machine learning to higher level
features, where these features are themselves obtained using machine learning mod-
els. The motivation is that machine learning can serve to distill useful information
from training samples, and hence the classification techniques may perform better
on such data. In this research, we consider the effectiveness of using these derived
features in the context of malware classification.

Specifically, we use word embeddings based on opcodes to derive features for
subsequent classification. We consider three distinct word embedding techniques.
First, we derive word embeddings from trained hidden Markov models (HMM). We
refer to this technique as HMM2Vec.We then consider an analogous technique based
on principal component analysis (PCA), which we refer to as PCA2Vec. And, as a
third approach, we experiment with the popular neural network-based word embed-
ding technique known as Word2Vec. In each case, we generate word embeddings
for a significant number of samples from a variety of malware families. We then use
several classification techniques to determine howwell we can classify these samples
using word embeddings as features.

The remainder of this paper is organized as follows.We provide a selective survey
of relevant related work in Sect. 2. Section3 contains an extensive and wide-ranging
discussion of machine learning topics that play a role in this research. In Sect. 4,
we provide details on the word embedding techniques that form the basis of our
experiments. Section5 gives our experiments and results, while Sect. 6 provides our
conclusion and some paths for future work.

2 Related Work

Malware analysis and detection are challenging problems due to a variety of factors,
including the large volume of malware and obfuscation techniques [10]. Every day,
thousands of new malware are generated—manual analysis techniques cannot keep
pace.Obfuscation iswidely used bymalware developers tomake it difficult to analyze
their malicious code.

Signature-basedmalware detectionmethods rely on pattern matching with known
signatures [47]. Signature detection is relatively fast, and it is effective against “tra-
ditional” malware. However, extracting signatures is a labor-intensive process, and
obfuscation techniques can defeat signature scanning.

Anomaly-based techniques are based on “unusual” or “virus-like” behavior or
characteristics. An example of anomaly detection is behavior-based analysis, which
can be used to analyze a sample when executed or under emulation [47]. When an
executable file performs any action that does not fit its expected behavior, an alarm
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can be triggered. Such a method can detect obfuscated and zero-day malware, but it
is slow, and generally subject to excessive false positives.

Recently, machine learning techniques have proven extremely useful for malware
detection. The effectiveness of machine learning algorithms depends on the charac-
teristics of the features used by such models. In malware detection and classifica-
tion, a sample can be represented by a wide variety of features, including mnemonic
opcodes, raw bytes, API calls, permissions, header information, etc. Opcodes are a
popular feature that form the basis of the analysis considered in this paper.

In [7], the author experiments with opcodes and determines that such features can
be successfully used to detect malware. The paper [11] achieves good results using
API calls as a feature. Such features can be somewhatmore difficult formalwarewrit-
ers to obfuscate, since API calls relate to the essential activity of software. However,
extracting API calls from an executable is more costly than extracting opcodes.

Another example of malware research involving opcodes can be found in [33].
This paper features opcode n-grams, with a Markov blanket used to select from the
large set of available n-gram. Classification is based on hidden Markov models, and
experiments are based on five malware families.

In [3], malware opcodes are treated as a language, withWord2Vec used to quantify
contextual information. Classification relies on k-nearest neighbors (k-NN). The
research in [34] also uses Word2Vec to generate feature vectors based on opcode
sequences, with a deep neural network employed for malware classification. In this
latter research, the number of opcodes is in the range of 50–200, and the length of
the Word2Vec embeddings range from 250 to 750.

Word2Vec embeddings are used as features to train bi-directional LSTMs in [20].
The experiments achieve good accuracy for malware detection, but training is costly.
In [14], the author proposed aword embeddingmethod based on opcode graphs—the
graph is projected into vector space, which yields word embeddings. This technique
is also computationally expensive.

In comparison to previous research, we consider additional vector embedding
techniques, we experiment with a variety of classification algorithms, we use a
smaller number of opcodes, and we generate short embedding vectors. Since we
use a relatively small number of opcodes and short embedding vectors, our tech-
niques are all highly efficient and practical. In addition, our experiments are based
on a recently collected and challenging malware dataset.

3 Background

In this section,we present background information on the various learning techniques
that are used in the experiments discussed in Sect. 5. Specifically, we introduce neural
networks, beginning with some historical background and moving on to a modern
context. We also introduce HMMs and PCA, which form the basis for the word
embedding techniques that we refer to as HMM2Vec and PCS2Vec, respectively.
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Finally, we introduce four classification techniques, which are used in our experi-
ments.

In Sect. 4, we discuss HMM2Vec, PCA2Vec, and the neural network-based word
embedding technique, Word2Vec, in detail. For our experiments in Sect. 5, we use
these three word embedding techniques to generate features to classify malware
samples.

3.1 Neural Networks

The concept of an artificial neuron [12, 49] is not new, as the idea was first pro-
posed by McCulloch and Pitts in the 1940s [22]. However, modern computational
neural networks begins with the perceptron, as introduced by Rosenblatt in the late
1950s [37].

3.1.1 McCulloch–Pitts Artificial Neuron

Anartificial neuronwith three inputs is illustrated inFig. 1. In theoriginalMcCulloch–
Pitts formulation, the inputs Xi ∈ {0, 1}, the weights wi ∈ {+1,−1}, and the out-
put Y ∈ {0, 1}. The output Y is 0 (inactive) or 1 (active), based on whether or not the
linear function

∑
wi Xi exceeds the specified threshold T . This form of an artificial

neuron was modeled on neurons in the brain, which either fire or it do not (thus
Y ∈ {0, 1}), and have input that comes from other neurons (thus each Xi ∈ {0, 1}).
The weights wi specify whether an input is excitatory (increasing the chance of
the neuron firing) or inhibitory (decreasing the chance of the neuron firing). When-
ever

∑
wi Xi > T , the excitatory response wins, and the neuron fires—otherwise the

inhibitory response wins and the neuron does not fire.

Fig. 1 Artificial neuron
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3.1.2 Perceptron

A perceptron is less restrictive than a McCulloch–Pitts artificial neuron. With a
perceptron, both the inputs Xi and the weights wi can be real valued, as opposed to
the binary restrictions ofMcCulloch–Pitts.Aswith theMcCulloch–Pitts formulation,
the output Y of a perceptron is generally taken to be binary.

Given a real-valued input vector X = (X0, X1, . . . , Xn−1), a perceptron can be
viewed as an instantiation of a function of the form

f (X) =
n−1∑

i=0

wi Xi + b,

that is, a perceptron computes a weighted sum of the input components. Based on a
threshold, a single perceptron can define a binary classifier. That is, we can classify a
sample X as “type 1” provided that f (X) > T , for some specified threshold T , and
otherwise we classify X as “type 0.”

In the case of two-dimensional input, the decision boundary of a is of the form

f (x, y) = w0x + w1y + b (1)

which is the equation of a line. In general, the decision boundary of a perceptron is
a hyperplane. Hence, a perceptron can only provide ideal separation in cases where
the data itself is linearly separable.

As the name suggests, a multilayer perceptron (MLP) is an ANN that includes
multiple (hidden) layers in the form of perceptrons. An example of an MLP with
two hidden layers is given in Fig. 2, where each edge represent a weight that is to be
determined via training. Unlike a single layer perceptron, MLPs are not restricted to
linear decision boundaries, and hence an MLP can accurately model more complex
functions. For example, the XOR function—which cannot be modeled by a single
layer perceptron—can be modeled by an MLP.

To train a single layer perceptron, simple heuristics will suffice, assuming that the
data is actually linearly separable. From a high-level perspective, training a single
layer perceptron is somewhat analogous to training a linear support vector machine
(SVM), except that for a perceptron, we do not require that themargin (i.e., minimum
separation between the classes) be maximized. But training an MLP is clearly far
more challenging, since we have hidden layers between the input and output, and
it is not obvious how changes to the weights in these hidden layers will affect each
other or the output.

As an aside, it is interesting to note that for SVMs, we deal with data that is not
linearly separable by use of the “kernel trick,” where the input data is mapped to
a higher dimensional “feature space” via a (nonlinear) kernel function. In contrast,
perceptrons (in the form of MLPs) overcome the limitation of linear separability by
the use of multiple layers. With an MLP, it is as if a nonlinear kernel function has
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Fig. 2 MLP with two hidden layers

been embedded directly into the model itself through the use of hidden layers, as
opposed to a user-specified explicit kernel function, which is the case for an SVM.

We can view the relationship betweenANNs and deep learning as being somewhat
akin to that of Markov chains and hidden Markov models (HMM). That is, ANNs
serve as a basic technology that can be used to build powerful machine learning
techniques, analogous to the way that an HMM is built on the foundation of an
elementary Markov chain.

3.2 Hidden Markov Models

A generic hidden Markov model is illustrated in Fig. 3, where the Xi represent the
hidden states and all other notations are shown in Table1. The state of the Markov
process, which we can be viewed as being hidden behind a “curtain” (the dashed line
in Fig. 3), is determined by the current state and the A matrix. We are only able to
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Fig. 3 Hidden Markov model

Table 1 HMM notation

Notation Explanation

T Length of the observation sequence

N Number of states in the model

M Number of observation symbols

Q Distinct states of the Markov process,
q0, q1, . . . , qN−1

V Possible observations, assumed to be
0, 1, . . . , M − 1

A State transition probabilities

B Observation probability matrix

π Initial state distribution

O Observation sequence, O0,O1, . . . ,OT−1

observe the observations Oi , which are related to the (hidden) states of the Markov
process by the matrix B.

3.2.1 Notation and Basics

Thenotation used in anHMMis summarized inTable1.Note that the observations are
assumed to come from the set {0, 1, . . . , M − 1}, which simplifies the notation with
no loss of generality. That is, we simply associate each of the M distinct observations
with one of the elements 0, 1, . . . , M − 1, so that we haveOi ∈ V = {0, 1, . . . , M −
1} for i = 0, 1, . . . , T − 1.

The matrix A = {ai j } is N × N with

ai j = P(state q j at t + 1 | state qi at t).
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The matrix A is row stochastic, that is, each row satisfies the properties of a discrete
probability distribution. Also, the probabilities ai j are independent of t , and hence
the A matrix does not vary with t . The matrix B = {b j (k)} is of size N × M , with

b j (k) = P(observation k at t | state q j at t).

Aswith the Amatrix, B is row stochastic, and the probabilities b j (k) are independent
of t . The somewhat unusual notation b j (k) is convenient when specifying the HMM
algorithms.

AnHMM is defined by A, B, and π (and, implicitly, by the dimensions N andM).
Thus, we denote an HMM as λ = (A, B, π).

Suppose that we are given an observation sequence of length four, that is,

O = (
O0,O1,O2,O3

)
.

Then the corresponding (hidden) state sequence is denoted as

X = (
X0, X1, X2, X3

)
.

We let πX0
denote the probability of starting in state X0, and bX0

(O0) denotes the
probability of initially observing O0, while aX0,X1

is the probability of transiting
from state X0 to state X1. Continuing, we see that the probability of a given state
sequence X of length four is

P(X,O) = πX0
bX0

(O0)aX0,X1
bX1

(O1)aX1,X2
bX2

(O2)aX2,X3
bX3

(O3). (2)

Note that in this expression, the Xi represent indices in the A and B matrices, not
the names of the corresponding states.

To find the optimal state sequence in the dynamic programming (DP) sense, we
simply choose the sequence (of length four, in this case) with the highest probability.
In contrast, to find the optimal state sequence in the HMM sense, we choose the most
probable symbol at each position. The optimal DP sequence and the optimal HMM
sequence can differ.

3.2.2 The Three Problems

There are three fundamental problems that we can solve using HMMs. Here, we
briefly describe each of these problems.

Problem 1 Given the model λ = (A, B, π) and a sequence of observations O ,
determine P(O | λ). That is, we want to compute a score for the observed
sequence O with respect to the given model λ.
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Problem 2 Given λ = (A, B, π) and an observation sequence O , find an optimal
state sequence for the underlying Markov process. In other words, we want to
uncover the hidden part of the hidden Markov model.

Problem 3 Given an observation sequence O and the parameter N , determine a
model λ = (A, B, π) that maximizes the probability ofO . This can be viewed as
training a model to best fit the observed data. This problem is generally solved
using Baum–Welch re-estimation [35, 43], which is a discrete hill climb on the
parameter space represented by A, B, and π . There is also an alternative gradient
ascent technique for HMM training [4, 45].

Since the techniquewe use to train anHMM(Problem 3) is a hill climb, in general,
we obtain a local maximum. Training with different initial conditions can result in
different local maxima, and hence it is often beneficial to train multiple HMMs with
different initial conditions, and select the highest scoring model.

3.2.3 Example

Consider, for example, the problem of speech recognition which, not coincidentally,
is one of the earliest and best-known successes of HMMs. In speech problems, the
hidden states can be viewed as corresponding tomovements of the vocal cords, which
are not directly observed. Instead, we observe the sounds that are produced, and
extract training features from these sounds. In this scenario, we can use the solution
to HMM Problem 3 to train an HMM λ to, for example, recognize the spoken word
“yes.” Then, given an unknown spoken word, we can use the solution to Problem 1
to score the word against the trained model λ and determine the likelihood that the
word is “yes.” In this case, we do not need to solve Problem 2, but it is possible that
such a solution (i.e., uncovering the hidden states) might provide additional insight
into the underlying speech model.

English text analysis is another classic application of HMMs, which appears
to have been first considered by Cave and Neuwirth [9]. This application nicely
illustrates the strength of HMMs and it requires no background in any specialized
field, such as speech processing or information security.

Given a length of English text, we remove all punctuation, numbers, etc., and
converts all letters to lower case. This leaves 26 distinct letters and word-space, for
a total of 27 symbols. We assume that there is an underlying Markov process (of
order one) with two hidden states. For each of these two hidden states, we assume
that the 27 symbols are observed according to fixed probability distributions.

This defines an HMMwith N = 2 and M = 27, where the state transition proba-
bilities of the Amatrix and the observation probabilities of the B matrix are unknown,
while the observations Ot consist of the series of characters we have extracted from
the given text. To determine the A and B matrices, we must solve HMM Problem 3,
as discussed above.
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We have trained such an HMM, using the first T = 50,000 observations from
the Brown Corpus,1 which is available at [8]. We initialized each element of π

and A randomly to approximately 1/2, taking care to sure that the matrices are row
stochastic. For one specific iteration of this experiment, the precise values used were

π = (
0.51316 0.48684

)

and

A =
(
0.47468 0.52532
0.51656 0.48344

)

.

Each element of B was initialized to approximately 1/27, again, under the constraint
that B must be row stochastic. The values in the initial B matrix (more precisely, the
transpose of B) appear in the second and third columns of Table2.

After the initial iteration, we find log
(
P(O |λ)

) = −165097.29 and after 100
iterations, we have log

(
P(O | λ)

) = −137305.28. These model scores indicate that
training has improved the model significantly over the 100 iterations.

In this particular experiment, after 100 iterations, the model λ = (A, B, π) has
converged to

π = (
0.00000 1.00000

)
and A =

(
0.25596 0.74404
0.71571 0.28429

)

with the converged BT appearing in the last two columns of Table2.
The most interesting part of an HMM is generally the B matrix. Without having

made any assumption about the two hidden states, the B matrix in Table2 shows
us that one hidden state consists of vowels while the other hidden state consists of
consonants. Curiously, from this perspective, word-space acts more like a vowel,
while y is not even sometimes a vowel.

Of course, anyone familiar with English would not be surprised that there is a
significant distinction between vowels and consonants. But, the crucial point here
is that the HMM has automatically extracted this statistically important distinction
for us—it has “learned” to distinguish between consonants and vowels. And, thanks
to HMMs, this feature of English text could be easily discovered by someone who
previously had no knowledge whatsoever of the language.

Cave and Neuwirth [9] obtain additional results when considering HMMs with
more than two hidden states. In fact, they are able to sensibly interpret the results for
models with up to N = 12 hidden states.

For more information on HMMs, see [43], which includes detailed algorithms
including scaling or Rabiner’s classic paper [35].

1Officially, it is the Brown University Standard Corpus of Present-Day American English, which
includes various texts totaling about 1,000,000 words. Here, “Present-Day” means 1961.
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Table 2 Initial and final BT

Observation Initial Final

a 0.03735 0.03909 0.13845 0.00075

b 0.03408 0.03537 0.00000 0.02311

c 0.03455 0.03537 0.00062 0.05614

d 0.03828 0.03909 0.00000 0.06937

e 0.03782 0.03583 0.21404 0.00000

f 0.03922 0.03630 0.00000 0.03559

g 0.03688 0.04048 0.00081 0.02724

h 0.03408 0.03537 0.00066 0.07278

i 0.03875 0.03816 0.12275 0.00000

j 0.04062 0.03909 0.00000 0.00365

k 0.03735 0.03490 0.00182 0.00703

l 0.03968 0.03723 0.00049 0.07231

m 0.03548 0.03537 0.00000 0.03889

n 0.03735 0.03909 0.00000 0.11461

o 0.04062 0.03397 0.13156 0.00000

p 0.03595 0.03397 0.00040 0.03674

q 0.03641 0.03816 0.00000 0.00153

r 0.03408 0.03676 0.00000 0.10225

s 0.04062 0.04048 0.00000 0.11042

t 0.03548 0.03443 0.01102 0.14392

u 0.03922 0.03537 0.04508 0.00000

v 0.04062 0.03955 0.00000 0.01621

w 0.03455 0.03816 0.00000 0.02303

x 0.03595 0.03723 0.00000 0.00447

y 0.03408 0.03769 0.00019 0.02587

z 0.03408 0.03955 0.00000 0.00110

Space 0.03688 0.03397 0.33211 0.01298

3.3 Principal Component Analysis

Principal component analysis (PCA) is a linear algebraic technique that provides a
powerful tool for dimensionality reduction.Here,weprovide a very brief introduction
to the topic; for more details, Shlens’ tutorial is highly recommended [40], while a
good source for the math behind PCA is [39]. The discussion at [42] provides a brief,
intuitive, and fun introduction to the subject.

Geometrically, PCA aligns a basis with the (orthogonal) directions having the
largest variances. These directions are defined to be the principal components. A
simple illustration of such a change of basis appears in Fig. 4.
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Fig. 4 A better basis

Intuitively, larger variances correspond to more informative data—if the variance
is small, the training data is clumped tightly around the mean and we have limited
ability to distinguish between samples. In contrast, if the variance is large, there is a
much better chance of separating the samples based on the characteristic (or charac-
teristics) under consideration. Consequently, once we have aligned the basis with the
variances, we can ignore those directions that correspond to small variances without
losing significant information. In fact, small variances often contribute only noise,
in which cases we can actually improve our results by neglecting those directions
that correspond to small variances.

The linear algebra behind PCA training (i.e., deriving a new-and-improved basis)
is fairly deep, involving eigenvalue analysis. Yet, the scoring phase is simplicity
itself, requiring little more than the computation of a few dot products, which makes
scoring extremely efficient and practical.

Note that we treat singular value decomposition (SVD) as a special case of PCA,
in the sense that SVD provides a method for determining the principal components.
It is possible to take the opposite perspective, where PCA is viewed as a special
case of the general change of basis technique provided by SVD. In any case, for our
purposes, PCA and SVD can be considered as essentially synonymous.

3.4 Classifiers

In the research presented in this paper, we consider four different classifiers, namely,
k-nearest neighbors (k-NN), multilayer perceptron (MLP), random forest (RF), and
support vector machine (SVM). We have already discussed MLPs above, so in this
section, we give a brief overview of k-NN, RF, and SVM.
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Fig. 5 Examples of k-NN classification [44]

3.4.1 k-Nearest Neighbors

Perhaps the simplest possible machine learning algorithm is k-nearest neighbors
(k-NN). In the scoring phase, k-NN consists of classifying based on the k-nearest
samples in the training set, typically using a simple majority vote. Since all compu-
tation is deferred to the scoring phase, k-NN is considered to be a “lazy learner.”

Figure5 shows examples of k-NN, where the training data consists of two classes,
represented by the open blue squares and the solid red circles, with the green diamond
(the point labeled X ) being a point that we want to classify. Figure5a shows that if
we use the 1-nearest neighbor, we would classify the green diamond as being of same
type as the open blue squares, whereas Fig. 5b shows that X would be classified as
the solid red circle type if using the 3-nearest neighbors.

3.4.2 Random Forest

A random forest (RF) generalizes a simple decision tree algorithm. A decision tree is
constructed by building a tree, based on features from the training data. It is easy to
construct such trees, and trivial to classify samples once a tree has been constructed.
However, decision trees tend to overfit the input data.

An RF combines multiple decision trees to generalize the training data. To do
so, RFs use different subsets of the training data as well as different subsets of
features, a process known as bagging [44]. A simple majority vote of the decision
trees comprising the RF is typically used for classification [18].
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Fig. 6 Support vectors in
SVM [44]

3.4.3 Support Vector Machine

Support vector machines (SVM) are a class of supervised learning methods that
are based on four major ideas, namely, a separating hyperplane, maximizing the
“margin” (i.e., separation between classes), working in a higher dimensional space,
and the so-called kernel trick. The goal in SVM is to use a hyperplane to separate
labeled data into two classes. If it exists, such a hyperplane is chosen to maximize
the margin [44].

An example of a trained SVM is illustrated in Fig. 6. Note that the points that
actually minimize the distance to the separating hyperplane correspond to support
vectors. In general, the number of support vectors will be small relative to the number
of training data points, and this is the key to the efficiency of SVM in the classification
phase.

Of course, there is no assurance that the training data will be linearly separable. In
such cases, a nonlinear kernel function can be embedded into theSVMprocess in such
a way that the input data is, in effect, transformed to a higher dimensional “feature
space.” In this higher dimensional space, it is far more likely that the transformed
data will be linearly separable. This is the essence of the kernel trick—an example of
which is illustrated in Fig. 7. That we can transform our training data in such amanner
is not surprising, but the fact that we can do so without paying any significant penalty
in terms of computational efficiency makes the kernel trick a very powerful “trick”
indeed. However, the kernel function must be specified by the user, and selecting an
(near) optimal kernel can be challenging.

3.4.4 Last Word on Classification Techniques

We note in passing that MLP and SVM are related techniques, as both of these
approaches generate nonlinear decision boundaries (assuming a nonlinear kernel).
For SVM, the nonlinear boundary is based on a user-specified kernel function,
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Fig. 7 A function φ illustrating the kernel trick [44]

whereas the equivalent aspect of anMLP is learned as part of the training process—in
effect, the “kernel” is learned when training an MLP. This suggests that MLPs have
an advantage, since there are limitations on SVM kernels, and selecting an optimal
kernel is more art than science. However, the trade-off is that more data and more
computation will generally be required to train a comparable MLP, since the MLP
has more to learn, in comparison to an SVM.

It is also the case that k-NN and RF are closely related. In fact, both are
neighborhood-based algorithms, but with neighborhood structures that are some-
what different [19].

Thus, we generally expect that the results obtained using SVM and MLP will
be qualitatively similar, and the same is true when comparing results obtained
using k-NN and RF. By using these four classifiers, we obtain a “sanity check”
on the results. If, for example, our SVM and MLP results differ dramatically, this
would indicate that we should investigate further. On the other hand, if, say, ourMLP
and RF results differ significantly, this would not raise the same level of concern.

4 Word Embedding Techniques

Word embeddings are often used in natural language processing as they provide a
way to quantify relationships between words. Here, we use word embeddings to
generate higher level features for malware classification.

In this section,wediscuss three distinctword embedding techniques. First,we con-
siderword embeddings derived from trainedHMMs,whichwe refer to asHMM2Vec.
Then we consider a word embedding technique based on PCA, which we refer to as
PCA2Vec. Finally, we discuss the popular neural network-based technique known
as Word2Vec.
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4.1 HMM2Vec

Before discussing the basic ideas behind Word2Vec, we consider a somewhat analo-
gous approach to generating vector representations based on hiddenMarkov models.
To begin with we consider individual letters, as opposed to words—we call this sim-
pler version Letter2Vec.

Recall that an HMM is defined by the three matrices A, B, and π , and is denoted
as λ = (A, B, π). The π matrix contains the initial state probabilities, A contains
the hidden state transition probabilities, and B consists of the observation probabil-
ity distributions corresponding to the hidden states. Each of these matrices is row
stochastic, that is, each row satisfies the requirements of a discrete probability distri-
bution. Notation-wise, N is the number of hidden states, M is the number of distinct
observation symbols, and T is the length of the observation (i.e., training) sequence.
Note that M and T are determined by the training data, while N is a user-defined
parameter.

Suppose that we train an HMM on a sequence of letters extracted from English
text, where we convert all uppercase letters to lowercase and discard any character
that is not an alphabetic letter or word-space. Then M = 27, and we select N = 2
hidden states, and we use T = 50,000 observations for training. Note that each
observation is one of the M = 27 symbols (letters plus word-space). For the example
discussed below, the sequence of T = 50,000 observations was obtained from the
Brown corpus of English [8]. Of course, any source of English text could be used.

In one specific case, an HMM trained with the parameters listed in the previous
paragraph yields the B matrix in Table2. Observe that this B matrix gives us two
probability distributions over the observation symbols—one for each of the hidden
states. We observe that one hidden state essentially corresponds to vowels, while the
other corresponds to consonants. This simple example nicely illustrates the concept
of machine learning, as no assumption was made a priori concerning consonants
and vowels, and the only parameter we selected was the number of hidden states N .
Thanks to this training process, the model has learned a crucial aspect of English
directly from the data.

Suppose that for a given letter �, we define its Letter2Vec representation V (�)

to be the corresponding row of the converged matrix BT in the last two columns of
Table2. Then, for example,

V (a) = (
0.13845 0.00075

)
V (e) = (

0.21404 0.00000
)

V (s) = (
0.00000 0.11042

)
V (t) = (

0.01102 0.14392
)
.

(3)

Next, we consider the distance between these Letter2Vec embeddings. However,
instead of using Euclidean distance, we measure distance based on cosine similarity.

The cosine similarity of vectors X and Y is the cosine of the angle between the two
vectors. Let X = (X0, X1, . . . , Xn−1) and Y = (Y0,Y1, . . . ,Yn−1). Then the cosine
similarity is given by



A Comparison of Word2Vec, HMM2Vec, and PCA2Vec for Malware Classification 303

cosθ (X,Y ) =
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In general, −1 ≤ cosθ (X,Y ) ≤ 1, but since our Letter2Vec encoding vectors con-
sist of probabilities—and hence are non-negative—we have 0 ≤ cosθ (X,Y ) ≤ 1 for
the X and Y under consideration.

For the vector encodings in (3), we find that for the vowels “a” and “e,” the
cosine similarity is cosθ (V (a), V (e)) = 0.9999. In contrast, the cosine similarity
between the vowel “a” and the consonant “t” is cosθ (V (a), V (t)) = 0.0817. These
results indicate that these Letter2Vec embeddings—which are derived from a trained
HMM—provide useful information on the similarity (or not) of pairs of letters.

Analogous to our Letter2Vec embeddings, we could train an HMM on words (or
other features) and then use the columns of the resulting B matrix (equivalently, the
rows of BT ) to define word (feature) embeddings.

The state of the art for Word2Vec based on words from English text is trained
on a dataset corresponding to M = 10,000, N = 300 and T = 109. Training an
HMM with such parameters would be decidedly non-trivial, as the work factor for
Baum–Welch re-estimation is on the order of N 2T .

While the word embedding technique discussed in the previous paragraph—we
call it HMM2Vec—is plausible, it has some potential limitations. Perhaps the biggest
issue with HMM2Vec is that we typically train an HMM based on a Markov model
of order one. That is, the current state only depends on the immediately preceding
state. By basing our word embeddings on such a model, the resulting vectors would
likely provide only a very limited sense of context. While we can train HMMs using
models of higher order, the work factor would be prohibitive.

4.2 PCA2Vec

Another option for generating embedding vectors is to apply PCA to a matrix of
pointwisemutual information (PMI). To construct a PMImatrix, based on a specified
window size W , we compute P(wi ,wj ) for all pairs of words (wi ,wj ) that occur
within a windowW of each other within our dataset, and we also compute P(wi ) for
each individual word wi . Then we define the PMI matrix as

X = {xi j } = log
P(wj ,wi )

P(wi )P(wj )
.

We treat column i of X , denoted Xi , as the feature vector for word wi . Next, we
perform PCA (using a singular value decomposition) based on these Xi feature
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vectors, and we project the feature vectors Xi onto the resulting eigenspace. Finally,
by choosing the N dominant eigenvalues for this projection, we obtain embedding
vectors of length N .

It is shown in [32] that these embedding vectors have many similar properties as
Word2Vec embeddings, with the author providing examples analogous to those we
give in the next section. Interestingly, it may be beneficial in certain applications to
omit some of the dominant eigenvectors when determining the PCA2Vec embedding
vectors [17].

For more details on using PCA to generate word embeddings, see [17]. The
aforecited blog [32] gives an intuitive introduction to the topic.

4.3 Word2Vec

Word2Vec is a technique for embedding “words”—ormore generally, any features—
into a high-dimensional space. InWord2Vec, the embeddings are obtained by training
a shallow neural network. After the training process, words that are more similar in
context will tend to be closer together in the Word2Vec space.

Perhaps surprisingly, certain algebraic properties also hold for Word2Vec embed-
dings. For example, according to [30], if we let

w0 = “king”,w1 = “man”,w2 = “woman”,w3 = “queen”

and we define V (wi ) to be the Word2Vec embedding of wi , then V (w3) is the vector
that is closest to

V (w0) − V (w1) + V (w2),

where “closest” is in terms of cosine similarity. Results such as this indicate that
Word2Vec embeddings capture meaningful aspects of the semantics of the language.

Word2Vec uses a similar approach as the HMM2Vec concept outlined above. But,
instead of using an HMM, Word2Vec embeddings are obtained from shallow (one
hidden layer) neural network. Analogous to HMM2Vec, in Word2Vec, we are not
interested in the resulting model itself, but instead we make use the learning that is
represented by the trained model to define word embeddings. Next, we consider the
basic ideas behind Word2Vec. Our approach is similar to that found in the excellent
tutorial [21]. Here, we describe the process in terms of words, but these “words” can
be general features.

Suppose that we have a vocabulary of size M . We encode each word as a “one-
hot” vector of length M . For example, suppose that our vocabulary consists of the
set of M = 8 words

W = (w0,w1,w2,w3,w4,w5,w6,w7)

= (“for”, “giant”, “leap”, “man”, “mankind”, “one”, “small”, “step”).
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Table 3 Training data

Offset Training pairs

“ one small step . . .” (one, small), (one, step)

“one small step for . . .” (small, one), (small, step), (small, for)

“one small step for man . . .” (step, one), (step, small), (step, for), (step, man)

“. . . small step for man one . . .” (for, small), (for, step), (for, man), (for, one)

“. . . step for man one giant . . .” (man, step), (man, for), (man, one), (man,
giant)

“. . . for man one giant leap . . .” (one, for), (one, man), (one, giant), (one, leap)

“. . . man one giant leap for . . .” (giant, man), (giant, one), (giant, leap), (giant,
for)

“. . . one giant leap for mankind” (leap, one), (leap, giant), (leap, for), (leap,
mankind)

“. . . giant leap for mankind” (for, giant), (for, leap), (for, mankind)

“. . . leap for mankind ” (mankind, leap), (mankind, for)

Then we encode “for” and “man” as

E(w0) = E(“for”) = 10000000 and E(w6) = E(“man”) = 00010000,

respectively.
Now, suppose that our training data consists of the phrase

“one small step for man one giant leap for mankind.” (4)

To obtain our training samples, we specify a window size W , and for each offset we
consider pairs ofwordswithin the specifiedwindow. For this example,we selectW =
2, so that we consider words at a distance of one or two, in either direction. For the
sentence in (4), a window size of two gives us the training pairs in Table3.

Consider the pair “(for,man)” from the fourth row in Table3. As one-hot vec-
tors, this training pair corresponds to the input vector 10000000 and output vec-
tor 00010000.

A neural network similar to that illustrated in Fig. 8 is used to generate Word2Vec
embeddings. The input is a one-hot vector of length M representing the first element
of a training pair, such as those in Table3. The network is trained to output the
second element of each ordered pair which, again, is represented as a one-hot vector.
The hidden layer consists of N linear neurons and the output layer uses a softmax
function to generate M probabilities, where pi is the probability of the output vector
corresponding to wi for the given input.

Observe that the Word2Vec network in Fig. 8 has NM weights that are to be
determined via training, and these weights are represented by the blue lines from the
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Fig. 8 Neural network for Word2Vec embeddings

hidden layer to the output layer. For each output node ωi , there are N edges (i.e.,
weights) from the hidden layer. The N weights that connect to output node ωi form
the Word2Vec embedding V (wi ) of the word wi .

The state of the art in Word2Vec for English text is trained on a vocabulary
of some M = 10,000 words, and embedding vectors of length N = 300, training
on about 109 samples. Clearly, training a model of this magnitude is an extremely
challenging computational task, as there are 3 × 106 weights to be determined, not
to mention a huge number of training samples to deal with. Most of the complexity
of Word2Vec comes from tricks that are used to make it feasible to train such a large
network with such a massive amount of data.

One trick that is used to speed training inWord2Vec is “subsampling” of frequent
words. Common words such as “a” and “the” contribute little to the model, so these
words can appear in training pairs at a much lower rate than they are present in the
training text.

Another key trick that is used inWord2Vec is “negative sampling.”When training
a neural network, each training sample potentially affects all of the weights of the
model. Instead of adjusting all of the weights, in Word2Vec, only a small number of
“negative” samples have their weights modified per training sample. For example,
suppose that the output vector of a training pair corresponds to word w0. Then the
“positive” weights are those connected to the output node ω0, and these weights are
modified. In addition, a small subset of the M − 1 “negative” words (i.e., every word
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in the dataset except w0) are selected and their corresponding weights are adjusted.
The distribution used to select negative cases is biased toward more frequent words.

A general discussion of Word2Vec can be found in [5], while an intuitive—yet
reasonably detailed—introduction is given in [21]. The original paper describing
Word2Vec is [30] and an immediate follow-up paper discusses a variety of improve-
ments that mostly serve to make training practical for large datasets [31].

5 Experiments and Results

In this section, we summarize our experimental results. These results are based on
HMM2Vec, PCA2Vec, and Word2Vec experiments. But, first we discuss the dataset
that we have used for all of the experiments reported in this section.

5.1 Dataset

The experimental results discussed in this section are based on the families in Table4,
with the number of available samples listed. In order to keep the test set balanced,
from each of these families, we randomly selected 1000 samples, for a total of 7000
samples in our classification experiments. These families have been used in many
recent studies, including [6, 48], for example.

The malware families in Table4 are of a wide variety of different types. Next, we
briefly discuss each of these families.

BHO can performawide variety ofmalicious actions, as specified by an attacker [25].
CeeInject is designed to conceal itself from detection, and hence various families

use it as a shield to prevent detection. For example, CeeInject can obfuscate a

Table 4 Malware families and the number of samples

Family Type Samples

BHO Trojan 1396

CeeInject VirTool 1077

FakeRean Rogue 1017

OnLineGames Password stealer 1508

Renos Trojan downloader 1567

Vobfus Worm 1107

Winwebsec Rogue 2302

Total – 9974
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Table 5 Classifier hyperparameters tested

Classifier Hyperparameter Tested values

MLP learning rate constant, invscaling,
adaptive

hidden layer size [(30, 30, 30), (10, 10, 10)]
solver sgd, adam

activation relu, logistic, tanh

max iter [10000]
SVM kernel rbf, linear

C [1, 10, 100, 1000]
gamma (rbf only) [0.001, 0.0001]

k-NN n neighbors [3, 5, 11, 19]
weights uniform, distance

p [1, 2, 3]
RF n estimators [30, 100, 500, 1000]

max depth [5, 8, 15, 25, 30]
min samples split [2, 5, 10, 15, 100]
min samples leaf [1, 2, 5, 10]

bitcoin mining client, which might have been installed on a system without the
user’s knowledge or consent [24].

FakeRean pretends to scan the system, notifies the user of nonexistent issues, and
asks the user to pay to clean the system [29].

OnLineGames steals login information of online games and tracks user keystroke
activity [26].

Renos will claim that the system has spyware and ask for a payment to remove the
supposed spyware [23].

Vobfus is a family that downloads other malware onto a user’s computer and makes
changes to the device configuration that cannot be restored by simply removing
the downloaded malware [27].

Winwebsec is a trojan that presents itself as antivirus software—it displays mislead-
ing messages stating that the device has been infected and attempts to persuade
the user to pay a fee to free the system of malware [28].

In the remainder of this section, we present our experimental results. First,
we discuss the selection of parameters for the various classifiers. Then we give
results from a series of experiments for malware classification, based on each of
the three word embedding techniques discussed in Sect. 4, namely, HMM2Vec,
PCA2Vec, and Word2Vec. Note that all of our experiments were performed using
scikit-learn [38].
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5.2 Classifier Parameters

For each of our word embedding classification experiments, we test the three classi-
fiers discussed in Sect. 3.4, namely, k-nearest neighbors (k-NN), random forest (RF),
and support vector machine (SVM), along with the multilayer perceptron (MLP),
which is discussed in Sect. 3.1.2. The features considered are the word embeddings
from HMM2Vec, PCA2Vec, and Word2Vec. Note that this gives us a total of 12
distinct experiments.

For each case, we performed a grid search over a set of hyperparameters using
GridSearchCV [41] in scikit-learn. GridSearchCV performs fivefold
cross validation to determine the best parameters for each embedding technique. The
parameters tested are listed in Table5. Observe that for each of the three different
word embedding techniques, we tested 36 combinations of parameters for MLP,
we tested 12 combinations for SVM, we tested 16 combinations for k-NN, and we
tested 400 RF combinations. Overall, we conducted

3 · (36 + 12 + 16 + 400) = 1392

experiments to determine the parameters for the remaining experiments.
The optimal parameters selected for each classifier and for each embedding tech-

nique are listed in Table6. We note that overall there is considerable agreement
between the parameters for the different word embedding techniques, but in two
cases (learning rate and n estimators), a different parameter is selected
for each of the three embedding techniques.

Table 6 Classifier hyperparameters selected
Classifier Hyperparameter HMM2Vec Word2Vec PCA2Vec Baseline

HMM

MLP learning rate invscaling constant adaptive constant

hidden layer size (30, 30, 30) (30, 30, 30) (30, 30, 30) (30, 30, 30)

solver adam adam sgd adam

activation relu relu relu relu

max iter 10000 10000 10000 10000

SVM kernel linear rbf rbf rbf

C 1000 1000 1000 10

gamma NA 0.001 0.001 0.0001

k-NN n neighbors 3 3 3 3

weights distance distance distance distance

p 1 2 1 3

RF n estimators 100 500 1000 1000

max depth 25 30 30 30

min samples split 2 2 2 2

min samples leaf 1 1 1 1
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5.3 Baseline Results

First, we consider experiments based on opcode sequences and HMMs. These results
serve as a baseline for comparison with the vector embedding techniques that are
the primary focus of this research. We choose these HMM-based experiments for
the baseline, as HMM trained on opcode features have proven popular and highly
successful in the field of malware analysis [1, 2, 16, 36, 50].

Specifically, we train an HMM for each of the seven families in our dataset,
using N = 2 hidden states in each case. For classification, we score a sample against
all seven of theseHMMs, and the resulting score vector (of length seven) serves as our
feature vector. We use the same classification algorithms as in our word embedding
experiments, namely, k-NN, MLP, RF, and SVM.

Note that we use the same opcode sequences here as in our vector embedding
experiments. Specifically, the top 20most frequent opcodes are used, with all remain-
ing opcodes deleted.

The confusion matrices for these baseline HMM experiments are given in Fig. 9.
The accuracies obtained for k-NN, MLP, RF, and SVM are 0.92, 0.44, 0.91,
and 0.78, respectively. We see that MLP and SVM both perform poorly, whereas
the neighborhood-based techniques, namely, k-NN and RF, are both strong, con-
sidering that we have seven classes. In addition, k-NN and RF give very similar
results.

5.4 HMM2Vec Results

For these experiments, we train an HMM on each sample in our dataset. Recall that
our dataset consists of 1000 samples from each of the seven families listed in Table4.
We train each of these 7000 models with N = 2 hidden states, using the M = 20
most frequent opcodes over all malware samples. Opcodes outside the top 20 are
ignored.

As mentioned in Sect. 3.2.2, we often train multiple HMMs with different initial
conditions, and select the best scoring model. This becomes more important as the
length of the observation sequence decreases. Hence, when training our HMMs, we
performmultiple random restarts—the number of restarts is determined by the length
of the training sequence, as indicated in Table7.

Each B matrix is 2 × 20, where each row corresponds to one of the hidden states
of the model. From each of these matrices, we construct a vector of length 40 by
appending the two rows. Since the order of the hidden states can vary betweenmodels,
we select the order of the rows so as to obtain a consistency with respect to the most
common opcode. That is, the row corresponding to the state that accumulates the
highest probability for MOV is the first half of the feature vector, with the other row
of the B matrix becoming the last 20 elements of the feature vector. This accounts
for any cases where the hidden states differ.
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Fig. 9 Confusion matrices for baseline HMM experiments

Table 7 Number of random restarts

Observations Restarts

Greater than 30,000 10

10,000–30,000 30

5000–10,000 100

Less than 500 500

Based on the resulting feature vectors, we use the parameters in the HMM2Vec
column of Table6 to classify the samples using k-NN, MLP, RF, and SVM. The
confusion matrices for each of these cases is give in Fig. 10.

The accuracies obtained for k-NN, MLP, RF, and SVM based on HMM2Vec
features are 0.93, 0.91, 0.93, and 0.89, respectively. From the confusion matrices in
Fig. 10, we see that the greatest source of misclassifications is between FakeRean
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Fig. 10 Confusion matrices for HMM2Vec experiments

andWinwebsec families. Inmost—but not all—of our subsequent experiments, these
two families will prove to be the most challenging to distinguish.

5.5 PCA2Vec Results

For our PCA2Vec experiments, we generate embedding vectors for each of the 7000
samples in our training set, as discussed in Sect. 4.2. We then train and classify
the 7000 malware samples using these PCA2Vec feature vectors. The confusion
matrices for these experiments are summarized in Fig. 11.

As above, each model is based on the 20 most frequent opcodes, which gives us
a 20 × 20 PMI matrix. For consistency with the HMM2Vec experiments discussed
above, we consider the two most dominant eigenvectors, and for consistency with
the Word2Vec models discussed below, we use a window size of W = 10 when
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Fig. 11 Confusion matrices for PCA2Vec experiments

constructing the PMI matrix. The resulting projection into the eigenspace is 2 × 20,
which we vectorize to obtain a feature vector of length 40.

The accuracies obtained for k-NN, MLP, RF, and SVM based on PCA2Vec fea-
tures are 0.84, 0.78, 0.88, and 0.76, respectively. From these numbers, we see that
PCA2Vec performed poorly for each of the classifiers considered, as compared to
HMM2Vec.

5.6 Word2Vec Results

Analogous to the HMM2Vec and PCA2Vec experiments above, we classify the sam-
ples using the same four classifiers but with Word2Vec embeddings as features. The
confusion matrices for these experiments are given in Fig. 12.
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Fig. 12 Confusion matrices for Word2Vec experiments

As with the PCA2Vec experiments above, to generate our Word2Vec models, we
use a window size of W = 10. And, to be consistent with both the HMM2Vec and
PCA2Vec models discussed above, we use a vector length of two, giving us feature
vectors of length 40.We use the so-called continuous-bag-of-words (CBOW)model,
which is the model that we described in Sect. 4.3.

The accuracies obtained for k-NN, MLP, RF, and SVM based on Word2Vec fea-
tures are 0.93, 0.91, 0.93, and 0.89, respectively. These results match those obtained
using HMM2Vec.

In Sect. 5.8, we compare the accuracies obtained in our baseline HMM,
HMM2Vec, PCA2Vec, and Word2Vec experiments. But first we discuss possible
overfitting issues with respect to the k-NN and RF classifiers discussed above.
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5.7 Overfitting

As discussed above in Sect. 3.4.4, both k-NN and random forest are neighborhood-
based classification algorithms, but with different neighborhood structure. Thus, we
expect that these two classification algorithms will generally perform in a somewhat
similar manner, at least in a qualitative sense.

For k-NN, small values of k tend to result in overfitting. To avoid overfitting, the
rule of thumb is that we should choose k ≈ √

N , where N is the number of samples in
the training set [15]. Sincewe use an 80-20 split for training-testing andwe have 7000
samples, for our k-NN experiments, this rule of thumb gives us k = √

5600 ≈ 75.
However, for each feature set considered, our grid search yielded an optimal value
of k ≤ 3.

In Fig. 13, we graph the accuracy of k-NN as a function of k for the baseline
HMM, HMM2Vec, and Word2Vec feature sets. We see that all of these techniques
perform more poorly as k increases. In particular, for k ≈ 75, the performance of
each is poor in comparison to k ≤ 3, and this effect is particularly pronounced in
the case of the baseline HMM. This provides strong evidence that small values of k
in k-NN result in overfitting for each feature set, and the overfitting is especially
pronounced for the baseline HMM.

For a random forest, the overfitting that is inherent in decision trees is mitigated
by using more trees. In contrast, if the depth of the trees in the random forest is too
large, the effect is analogous to choosing k too small in k-NN, and overfitting is likely
to occur.

Fig. 13 k-NN results as a
function of k
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Fig. 14 Random forest
results as a function of tree
depth

To explore overfitting in our RF experiments, in Fig. 14, we give the misclassifica-
tion results for the baseline HMM, HMM2Vec, andWord2Vec features, as a function
of the maximum depth of the trees. In this case, Word2Vec performs best for smaller
(maximum) depths, which indicates that the baseline HMM and HMM2Vec features
are more prone to overfitting.

In Fig. 15a and b, we give misclassification results as a function of both the
maximum depth and the number of trees for the baseline HMM and for HMM2Vec
features, respectively. From these results, we see that the baseline HMM performs
similarly as a function of the maximum depth, regardless of the number of trees. In
contrast, the HMM2Vec features yield consistently better results than the baseline

Fig. 15 Random forest maximum depth vs number of trees
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HMM (as a function of the maximum depth), except when the number of trees is
very small. This indicates that, with respect to the maximum depth, overfitting is
significantly worse for the baseline HMM, since the overfitting cannot be overcome
by increasing the number of trees.

From the discussion in this section, we see that all of our k-NN experimental
results suffer from some degree of overfitting, with this effect being most significant
in the case of the baseline HMM. For our RF results, overfitting is a relatively minor
issue for the HMM2Vec- and Word2Vec-engineered features but, as with k-NN, it
is a significant problem for the baseline HMM. Consequently, both the k-NN and
RF results we have reported for the baseline HMM are overly optimistic, as these
represent cases where significant overfitting has occurred.

5.8 Discussion

Figure16 gives the overall accuracy for each of our multiclass experiments using
k-NN, MLP, RF, and SVM classifiers, for our baseline HMM opcode experiments,
and for each of theHMM2Vec-, PCA2Vec-, andWord2Vec-engineered feature exper-
iments. In general, we expect RF and k-NN to perform somewhat similarly, since
both are neighborhood-based algorithms. We also expect that in most cases, SVM
and MLP will perform in a qualitatively similar manner to each other, since these
techniques are closely related. We find that these expectations are generally met in
our experiments, which can be viewed as a confirmation of the validity of the results.

From our 16 distinct experiments, we see that HMM2Vec andWord2Vec perform
best, with PCA2Vec lagging far behind. The baseline HMMdoes well with respect to
the neighborhood-based classifiers, namely, RF and k-NN. However, as discussed in

Fig. 16 Accuracies for
combinations of features and
classifiers
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the previous section, these neighborhood-based techniques overfit the training data
in the baseline HMM experiments. Neglecting these overfit results, we see that using
the HMM2Vec- and Word2Vec-engineered features with SVM and MLP classifiers,
give us the best results. Furthermore, these HMM2Vec and Word2Vec results are
substantially better than either of the reliable results obtained for the baseline HMM,
that is, the baseline HMM results using SVM and MLP classifiers.

6 Conclusion and Future Work

In this paper, we have presented results for a number of experiments involving word
embedding techniques in malware classification. We have applied machine learning
techniques to raw features to generate engineered features that are used for classifi-
cation. Such a concept is not entirely unprecedented as, for example, PCA is often
used to reduce the dimensionality of data before applying other machine learning
techniques. However, the authors are not aware of previous work involving the use
word embedding techniques in the same manner considered in this paper.

Our results show that word embedding techniques can be used to generate features
that are more informative than the original data. This process of distilling useful
information from the data before classifying samples is potentially useful, not only
in the field of malware analysis, but also in other fields where learning plays a
prominent role.

For future work, it would be interesting to consider other families and other
types of malware. It would also be worthwhile to consider more complex and higher
dimensional data—as with dimensionality-reduction techniques, such data would
tend to offer more scope for improvement using the word embedding strategies
considered in this paper.
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Word Embedding Techniques for
Malware Evolution Detection

Sunhera Paul and Mark Stamp

Abstract Malware detection is a critical aspect of information security. One diffi-
culty that arises is that malware often evolves over time. To maintain effective mal-
ware detection, it is necessary to determine when malware evolution has occurred so
that appropriate countermeasures can be taken. We perform a variety of experiments
aimed at detecting points in time where a malware family has likely evolved, and we
consider secondary tests designed to confirm that evolution has actually occurred.
Several malware families are analyzed, each of which includes a number of samples
collected over an extended period of time. Our experiments indicate that improved
results are obtained using feature engineering based on word embedding techniques.
All of our experiments are based on machine learning models, and hence our evo-
lution detection strategies require minimal human intervention and can easily be
automated.

1 Introduction

Malware is a malicious software that causes disruption in normal activity, allows
access to unapproved resources, gathers private data of users, or performs other
improper activity [1]. Developing measures to detect malware is a critical aspect of
information security.

Malware often evolves due to changing goals of malware developers, advances
in detection, and so on [3]. This evolution can occur through a wide variety of
modifications to the code. It is essential to detect and analyze malware evolution so
that appropriate measures can be taken to maintain and improve the effectiveness of
detection techniques [2].

An obvious technique for analyzing malware evolution consists of reverse engi-
neering a large number of samples over an extended period of time, which is a highly
labor-intensive process. Other approaches to malware evolution include graph prun-
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ing techniques [7] and analysis of PE file features using support vector machines
(SVM) [29]. This latter research shows considerable promise, and has the advan-
tage of being fully automated, with no reverse engineering or other time-consuming
analysis required. Our proposed research can be viewed as an extension of—and
improvement on—the groundbreaking work in [29].

We consider several experiments that are designed to detect points in time where a
malware family has likely evolved significantly.We then perform further experiments
to confirm that such evolution has actually occurred.All of our experiments have been
conducted using a significant number of malware families, most of which include a
large number of samples collected over an extended period of time. Furthermore, all
of our experiments are based on machine learning, and hence fully automatable.

For a given malware family, we first separate the available samples based on
windows of time. We have extracted opcode sequences from every sample and we
use these opcodes as features for detecting malware evolution. We experiment with
a variety of feature engineering techniques, and in each case we train linear SVMs
over sliding windows of time. The SVMweights of thesemodels are compared based
on a χ2 distance measure, which enables us to detect changes in the SVM models
over time. A point in time where a spike is observed in the χ2 graph shows a sub-
stantial change in SVM models—which indicates a possible evolutionary branch in
the malware family under consideration. To confirm that such evolution has actually
occurred, we train hiddenMarkovmodels (HMM) on either side of a significant spike
in the χ2 graph. If a clear distinction between these HMMs is observed, it serves as
a confirmation that significant evolution has been detected. The primary objective of
this research is to implement and analyze different variants of this proposed malware
evolution detection technique.

The remainder of this paper is organized as follows. In Sect. 2, we discuss relevant
related work in the area of malware evolution. Section3 provides an overview of the
dataset that we use, as well as brief introductions to the various machine learning
models and techniques that we use in this research. We present our experimental
results in Sect. 4. The paper concludes with Sect. 5, where we also outline possible
avenues for future work.

2 Related Work

Relative to the vast malware research literature, comparatively little has been done
in the area of malware evolution. In this section, we provide a selective review of
research related to malware evolution.

The malware evolution research in [7] is based on large and diverse malware
dataset that spans for nearly two decades. This work focuses on the inheritance
properties ofmalware, and the technique is based ongraph pruning. The authors claim
that many specific traits of various families in their dataset have been “inherited”
from other families. However, it is not entirely clear that these “inherited” traits are
actually inherited, as opposed to having been developed independently. In addition,
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the graph-based analysis in [7] requires “extensive manual investigation,” which is
in stark contrast to the automated techniques that are considered in this paper.

The authors of [9] extract a variety of features from Android malware samples
and determine trends based on standard software quality metrics. These results are
compared to a similar analysis of trends in Android non-malware, or goodware. This
work shows that the trends in Android malware and goodware are fairly similar,
indicating that the “improvement” in this type of malware has followed a similar
path as that of goodware.

The paper [24] is focused on detecting new malware variants, which is closely
related to an evolution problem. The authors considered malware variants that would
typically defeat machine learning based detectors. Their approach relies as an exten-
sive feature set and employs semi-supervised learning. In comparison, the approach
in this paper relies entirely on unsupervised techniques, and we are able to detect
less drastic code modifications.

The work in [4] is nominally focused on malware taxonomy. However, this work
also provides insight into malware evolution, in the form of “genealogical trajec-
tories.” The work relies on a variety of features and uses support vector machines
(SVM) for classification.

We note in passing that machine learning models are trained on features. Thus,
extracting appropriate features from a dataset is a crucial step in anymalware analysis
technique that is based onmachine learning.We can broadly classify features as static
and dynamic—features that can be obtained without executing the code are said to be
static, while those that require code execution or emulation are known as dynamic.
In general, static features are more efficient to collect, whereas dynamic features can
be more informative and are typically more robust [5].

The author in [29] use static PE file features of malware samples as the basis for
their malware evolution research. Based on these features, linear SVMs are trained
over various time windows and the resulting model weights are compared using a χ2

distance. A spike in theχ2 distance graph is shown to be indicative of an evolutionary
change in a malware family. Note that this approach is easily automated, with no
reverse engineering required.

The research presented in this paper extends and expands on the work in [29]. As
in [29], we use SVMs together with χ2 distance as a means of detecting evolutionary
change. We make several important contributions that greatly increase the utility
of this basic approach. The novelty of our work includes the use of more sensitive
static features—we use opcodes as compared to derived PE file features—and we
employ various feature engineering techniques. In addition, we develop an HMM-
based secondary test to verify the putative evolutionary changes obtained from the
SVM together with a χ2 distance.
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3 Implementation

In this section, we give a broad summary of the malware families that comprise
the dataset used in the research. We also discuss the features and machine learning
techniques used in our experiments. These features and techniques form the basis of
our evolutionary experiments in Sect. 4.

3.1 Dataset

A malware family represents a collection of samples that have major traits in com-
mon. Over time, successful malware families will tend to evolve, as malware writers
develop new features and find different applications for the code base.

The research in this paper is based on a malware dataset consisting of Windows
portable executable (PE)files. Froma large dataset,wehave extracted 11,037 samples
belonging to 15 distinct malware families. Table1 lists these malware families and
the number of samples per family that we use in our experiments.

Our Winwebsec and Zbot malware samples were acquired from the Malicia
dataset [23], while the remaining 13 families were extracted from a vast malware
dataset that was collected as part of the work reported in [8]. This latter dataset is

Table 1 Number of samples used in experiments

Family Samples Years

Adload 791 2009–2011

BHO 1,116 2007–2011

Bifrose 577 2009–2011

CeeInject 742 2009–2012

DelfInject 401 2009–2012

Dorkbot 222 2005–2012

Hupigon 449 2009–2011

IRCBot 59 2009–2012

Obfuscator 670 2004–2017

Rbot 127 2001–2012

VBInject 2,331 2009–2018

Vobfus 700 2009–2011

Winwebsec 1,511 2008–2012

Zbot 835 2009–2012

Zegost 506 2008–2011

Total 11,037 –
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greater than half a terabyte in size and contains on the order of 500,000 malware
executables. Our datasets are available from the authors, upon request.

Most of the malware families that were chosen for this research have a substantial
number of samples available over an extended time period. The smaller families
(e.g., IRCBot and Rbot) were chosen to test our analysis techniques in cases where
the training data is severely limited.

As a pre-processing step, we have organized all the malware samples in each
family according to their creation date. During this initial data-wrangling phase, any
sample having an altered compilation or creation date was discarded.

Next, we briefly discuss each of the malware families in our dataset. Note that
these families represent a wide variety of types of malware, including Trojan, worm,
adware, backdoor, and so on.

Bifrose is a backdoor Trojan that allows an attacker to connect to a remote IP
using a random port number. Some variants of Bifrose have the capability to
hide files and processes from the user. Bifrose enables an attacker to view system
information, retrieve passwords, or execute files by gaining remote control of an
infected system [22].

CeeInject serves to shielding nefarious activity from detection. For example,
CeeInject can obfuscate a bitcoin mining client, which might be installed on
a system to mine bitcoins without the user’s knowledge [13].

DelfInject is a worm that enters a system from a file passed by other malware,
or as a file downloaded accidentally by a client when visiting malignant sites.
DelfInject drops itself onto the system using an arbitrary document name (e.g.,
xpdsae.exe) and alters the relevant registry entry so that it runs at each system
start. The malware then injects code into svchost.exe so that it can create a
connection with specific servers and download files [14].

Dorkbot is a worm that steals user names and passwords by tracking online activ-
ities. It blocks security update websites and can launch denial of service (DoS)
attacks. Dorkbot is spread via instant messaging applications, social networks,
and flash drives [21].

Hotbar is an adware program that may be unintentionally downloaded by a user
from a malicious website. Being adware, Hotbar displays advertisements as the
user browses the web [11].

Hupigon is a family of backdoor Trojans. This malware opens a backdoor server
enabling other remote computers to control a compromised system [12].

Obfuscator hides its purpose through obfuscation. The underlying malware can
have virtually any payload [18].

Rbot is a backdoor Trojan that enables an attacker to control an infected computer
using an IRC channel. It then spreads to other computers by scanning for network
shares and exploiting vulnerabilities in the system. Rbot includes many advanced
features and it has been used to launch DoS attacks [10].

VBInject primarily serves to disguise other malware. VBInject is a packaged
malware, i.e., malware that utilizes techniques of encryption and compression
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to obscure its contents. This makes it difficult to recognize malware that it is
concealing. VBInject was first seen in 2009 and appeared again in 2010 [15].

Vobfus is a malware family that downloads other malware onto a user’s computer.
It uses the Windows autorun feature to spread to other devices such as flash
drives. Vobfus makes long-lasting changes to the device configuration that cannot
be restored simply by removing the malware from the system [16].

Winwebsec is a Trojan that presents itself as an antivirus software. It shows mis-
leadingmessages to the users stating that the device has been infected and attempts
to persuade the user to pay to remove these non-existent threats [17].

Zbot is a Trojan that attempts to steal confidential information from a compro-
mised computer. It explicitly targets system data, online sensitive data, and bank-
ing information, and it can also be easily modified to accumulate other kinds of
data. The Trojan itself is generally disseminated through drive-by downloads and
spam campaigns. Zbot was originally discovered in January 2010 [19].

Zegost is a backdoor Trojan that injects itself into svchost.exe, thus allowing
an attacker to execute files on the compromised system [20].

3.2 Feature Extraction

Mnemonic opcodes are machine-level language instructions that specify a particular
operation that is to be performed [26]. For this research, our dataset consists of
malware samples in the form of portable executable (PE) files. The primary feature
that we consider are opcode sequences extracted from these executable files.We have
also segregated the malware samples in each family according to their creation date.

3.3 Classification Techniques

In this section, we will provide an overview of each machine learning technique that
we employ in this research. Additional pointers to the literature are provided.

3.3.1 Support Vector Machines

Support vector machines (SVM) are one of the most popular classes of machine
learning techniques. An SVM attempts to find a separating hyperplane between two
labeled classes of data [27]. By utilizing the so-called “kernel trick,” an SVM can
map the input data to a high-dimensional space where the additional space can afford
a greater opportunity to find a separating hyperplane. The “trick” of the kernel trick
is that this mapping does not result in any significant increase in the work factor.

A linear SVM assigns a well-defined weight to each feature in the training vector.
These weights specify the relative importance that the SVM places on each feature
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Table 2 Sliding time window example

Time window Class +1 Class −1

Jan. 2011–Jan. 2012 Jan. 2011–Dec. 2011 Jan. 2012

Feb. 2011–Feb. 2012 Feb. 2011–Jan. 2012 Feb. 2012

Mar. 2011–Mar. 2012 Mar. 2011–Feb. 2012 Mar. 2012

which can serve as useful when ranking the importance of features. In our experi-
ments, we rely heavily on this aspect of linear SVMs.

Analogos to [29], in our experiments, we define the two classes of an SVM as
follows. All the sampleswithin themost recent one-year timewindow are class “+1,”
while all samples from the current month are defined as class “−1.” For example,
in Table2, we give three consecutive time windows, along with the time frames
corresponding to the two classes in each case.

3.3.2 χ2 Statistic

The χ2 statistic is a normalized sum of square deviation between the observed and
expected frequency distributions. This statistic is calculated as

χ2 =
n∑

i=1

(oi − ei )2

ei

where n denotes the number of features or observations, oi is the observed value of
the i th instance, and ei is expected value of the i th instance.

For our experiments, this statistic is used to quantify the differences between SVM
feature weights of different models, where these models were trained over different
time windows. As mentioned above, we use a time period of one year for one class,
and a time window of the following month as the other class. We compute this χ2

“distance” between pairs of models that are trained on overlapping time windows.
Any points in the resulting χ2 graph where a substantial change (i.e., a “spike”)
occurs indicates a point where adjacent SVM models differ significantly. These are
points of interest, since they indicate the times at which the code has likely been
substantially modified.

3.3.3 Word2Vec

Word2Vec is a “word” embedding technique that can be applied more generally to
features.Word2Vec is extremely popular in language modeling. The embedding vec-
tors produced by state-of-the-art implementations of Word2Vec capture a surprising
level of the semantics of a language. That is, words that are similar in meaning are



328 S. Paul and M. Stamp

Fig. 1 Neural network to obtain Word2Vec embeddings

“close” in theWord2Vec embedding space [25]. An oft-cited example of the strength
of Word2Vec is the following. If we let

w0 = “king”,w1 = “man”,w2 = “woman”,w3 = “queen”

and V (wi ) is the Word2Vec embedding of the word wi , then V (w3) is the vector that
is closest—in terms of cosine similarity—to

V (w0) − V (w1) + V (w2)

Word2Vec is based on a shallow, two-layer neural networks, as illustrated in
Fig. 1. Training such a model consists of determining the weights wi based on a large
training corpus [6]. These weights yield the Word2Vec embedding vectors.

In this paper, we compute Word2Vec embeddings based on extracted opcode
sequence from malware samples. These word embeddings are then used as features
in SVM classifiers. In this context, we can view the use of Word2Vec as a form of
feature engineering.

One of the great strengths of Word2Vec is that training is extremely efficient. The
key tricks that enable efficient training of such models are subsampling of frequent
words, and so-called negative sampling, whereby only a subset of the weights that
are affected by a training pair are adjusted at each iteration. For additional details on
Word2Vec, see, for example [28].
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Fig. 2 Hidden Markov model

3.3.4 Hidden Markov Models

AMarkov process is a statistical model that has states with known and fixed probabil-
ities of state transitions. A hidden Markov model (HMM) extends this concept to the
case where the states are “hidden,” in the sense that they are not directly observable.

Figure2 provides a generic view of an HMM. Here, the states Xi are determined
by the row stochastic N × N matrix A. The states Xi are not directly observable,
but as the name implies, the observations Oi can be observed. The hidden states are
probabilistically related to the observations via the N × M row stochastic matrix B.
Here, N is the number of hidden states of the model, and M is the number of distinct
observation symbols, and T in Fig. 2 is the length of the observation sequence. There
is also a row stochastic initial state distribution matrix, which is denoted as π . The
threematrices, A, B, andπ define anHMM,andweadopt the notationλ = (A, B, π).

The following three HMM problems can be solved efficiently:

Problem 1 Given amodel λ = (A, B, π) and an observation sequenceO , we need
to find P(O | λ). That is, an observation sequence can be scored to see how well
it fits a given model.

Problem 2 Given a model λ = (A, B, π) and an observation sequence O , we can
determine an “optimal” hidden state sequence. In the HMM sense, optimal means
that we maximize the expected number of correct states. This is an expectation
maximization (EM) algorithm.

Problem 3 Given O and a specified N , we can determine a model λ = (A, B, π)

that maximizes P(O | λ). This is, we can train a model to fit a given observation
sequence.

In this research, we employ the algorithms for Problems 1 and 3 above. That is,
we train HMMs, and we use trained HMMs to score samples.



330 S. Paul and M. Stamp

3.3.5 Experimental Approach

To automatically determine points in time where significant evolutionary changes
occur in malware families, we tag each sample in the family according to the date
on which it was compiled. We also extract the opcode sequences from each of the
malware samples.

As a first set of experiments, we train a series of linear SVMs directly on the
extracted opcodes, as discussed above. We then attempt to improve on these results
by considering several feature engineering techniques, in all cases using linear SVM
weights and χ2 graphs.

For our first attempt at feature engineering, we consider opcode n-grams.We then
experiment usingWord2Vec embeddings of the opocdes. Finally, we repeat the word
embedding experiments, but based on the B matrices obtained from trained HMMs,
instead of Word2Vec embeddings. We refer to this HMM-based word embedding
technique as HMM2Vec.

As discussed above, when training, one class consists of all samples belonging to
a specific family within a one-year time window, while the other class consists of the
samples from the subsequent one-month time window. Such a model contrasts the
family characteristics over a one month period to the characteristics of the previous
one-year time interval. From each such model, we obtain a vector of linear SVM
weights. Then we shift our time window one month ahead, and again train an SVM
and obtain another vector of SVM weights.

For each set of experiments, we obtain a series of snapshots of the samples—in
the form of linear SVM weights—based on overlapping sliding windows, where
each SVM is trained over a one-year time-frame. Adjacent SVM weight vectors
are based on one-month offsets. We use these SVM weight vectors as a basis for
tracking changes in the underlying models, and we quantify those changes using
the χ2 statistics, as discussed above. Potential evolutionary points appear as spikes
in the resulting χ2 graph.

As a secondary test, for each significant spike in theχ2 graph,we train twoHMMs,
one on either side of the spike. We then score samples on both sides of the spike
using both HMMs. If the sample scores are observably different for each of these
HMMs on each side of the spike, this serves to confirm that significant evolutionary
change in the malware family has occurred.

For this secondary test, we can quantify the evolutionary effect by computing
the χ2-like evolution score

E = 1

n

n∑

i=1

(
Ŝ(xi ) − S(xi )

)2

S(xi )

where S(xi ) is the HMM score of the sample xi using the “correct” model and Ŝ(xi )
is the score of xi using the “incorrect” model. For example, if sample xi occurs
before the spike, then S(xi ) is the score obtained using the model that was trained
on data before the spike, and Ŝ(xi ) is the score of xi using the model trained after
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the spike. The larger the evolution score E , the stronger the evidence of evolution.
Note that the 1/n factor is needed since the number of samples available differs for
different families, and the number of samples might also differ for different spike
computations within the same family.

4 Experiments and Results

In this section, we present and discuss the results of the experiments outlined in
the previous section. First, we provide a graphical illustration of our HMM-based
secondary test. Then we consider opcode-SVM experiments, followed by analogous
SVM experiments based on opcode n-gram features. Neither of these techniques
produce particularly strong results, and hence we then turn our attention to addi-
tional opcode-based feature engineering. Specifically, we apply word embedding
techniques to opcode sequence and train SVM classifiers based on these engineered
features. These experiments prove to be highly successful.

4.1 HMM-Based Secondary Test

The previous work in [29] is based on PE file features and uses linear SVM analysis
to detect evolutionary changes in a malware family. We perform similar analysis
in this paper, but based on opcode features and using word embedding techniques
for feature engineering. In this paper, we also employ hidden Markov models as a
secondary test to confirm suspected evolutionary changes.

As discussed above, once distinct spikes have been obtained from theχ2 similarity
graph, we train an HMM model on both sides such spikes using extracted opcode
sequences. Both models are then used for scoring malware samples on either side of
the spike. Here, we illustrate this secondary test for a specific case.

Figure3a depicts the scores obtained when scoring samples before a χ2 graph
spike using both HMMs, while Fig. 3b gives the corresponding result for samples
after the spike. In all cases, the scores are log likelihood per opcode (LLPO), that is,
the scores have been normalized so as to be independent of the length of the opcode
sequence.

In both Fig. 3a and b, we see that the scores are distinct for the two models on
each sample tested. These results demonstrate that the model trained before and the
model trained after the spike are significantly different which, in turn, indicates that
the samples used to train the models differ significantly. This is a clear sign of an
evolutionary branch point in the malware family.
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Fig. 3 Hidden Markov model trained before and after the spike

4.2 Opcode-SVM Results

In this section, we discuss experiments on 15 malware families, based on opcode
sequences and SVMs. That is, opcodes sequences are used directly as features in
linear SVM models, with the resulting model weights used to compute χ2 graphs.

Figure4 gives such a χ2 graph for the Zegost family, which has 506 malware
samples from the years 2008 through 2011. We observe multiple spikes in the graph
but the secondary HMM test does not yield impressive results for any of these spikes.
Hence, we conclude that this particular test does not reveal any strong evolution result
for the Zegost family.

We also computed opcode-SVMχ2 graphs for the remaining 14malware families,
nine of which appear in Fig. 5. For Adload and BHO, we observe that the graphs

Fig. 4 Opcode-SVM χ2 similarity graph for Zegost



Word Embedding Techniques for Malware Evolution Detection 333

Fig. 5 Opcode-SVM χ2 graphs for selected families

do not show any significant spikes except at the last time period. We are not able
to perform the secondary HMM test at the extreme endpoint, so we are not able to
confirm or deny these as evolution points.

From Fig. 5, we observe considerable fluctuation in the graphs for Bifrose, CeeIn-
ject, Hupigon, and Rbot, but none of these fluctuations stand out as clear points of
possible evolutionary change in the families. That is, for these families, it appears
that we only observe background noise.

4.3 Opcode n-Gram-SVM Results

Next, we consider analogous experiments to those of the previous section, but
based on opcode n-grams. This can be viewed as a first attempt at feature engi-
neering. As with the previous experiments, we train linear SVMs on these features
and construct χ2 graphs. We consider overlapping n-grams, and we experimented
with n = 2, 3, 5, 10 on each of the 15 families.
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Fig. 6 Opcode-n-gram-SVM χ2 graphs for Zegost

Examples of the results of these n-gram experiments are given in Fig. 6, which
shows 2-gram and 5-gram χ2 graphs for the Zegost family. For both of these cases,
we see only noisy results, with no clear evolutionary points. These results are typical
of our n-gram experiments and we conclude that opcode n-grams are not useful for
our purposes.

Next, we consider Word2Vec and HMM2Vec word embeddings These feature
engineering techniques prove to bemore effective for detecting evolutionary changes,
with HMM2Vec giving us our strongest results.

4.4 Opcode-Word2Vec-SVM Results

Here, we generate Word2Vec models based on opcode sequences. We then train
linear SVMs over each time window, based on these Word2Vec embeddings, and
we compute χ2 graphs of the SVM weights. As above, spikes in this graph indicate
points in time where evolution might have occurred.

Figure7a and b gives the χ2 graphs for the Zegost family with Word2Vec embed-
dings of length 2 and 3, respectively. From Fig. 7, we observe that feature weights in
certain time windows diverge significantly from their average values. Specifically,
these time periods are November 2010 and May 2011, and these are the points in
time where significant evolution in the family may have taken place. We also note
the similarity between the results for embedding vector lengths 2 and 3. This can be
viewed as a sign of the stability of the underlying approach, and serves to provide
additional confidence in the putative evolution points.

Applying our secondary HMM verification technique to the spike in Fig. 7, we
obtain the results in Fig. 8, which confirm that the malware family has evolved at
this point. Since vector lengths of 2 and 3 give us consistent results for Zegost, for
our remaining Word2Vec experiments, we use embedding vectors of length 2 in all
cases.
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Fig. 7 Opcode-Word2Vec-SVM χ2 graphs for Zegost

Fig. 8 Zegost HMM secondary test for opcode-Word2Vec-SVM

Figure9 shows ourWord2Vec based χ2 graphs for eight additional malware fami-
lies. Four of these families—BHO, Bifrose, Adload, and Vobfus—perform well with
this approach, in the sense that we detect clear spikes in their graphs.

For the remaining four families in Fig. 9, namely, CeeInject, Dorkbot, Hupigon,
and Rbot, we do not detect any significant spikes in their χ2 graphs. Additional
secondary HMM tests showing evolution appear in Fig. 10, while Fig. 11 gives an
example of a secondary test that shows no evolution. It is evident that the results
of these opcode-Word2Vec-SVM experiments are a major improvement over the
experiments considered above.

Of course, it is possible that there is no evolution to be detected, in some of
these families. But, over the extended time periods under consideration, we believe
it likely that evolution has occurred, which suggests that the Word2Vec features are
simply not sufficiently sensitive to detect changes in all cases. In the next section,
we consider another word embedding technique.
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Fig. 9 Opcode-Word2Vec-SVM χ2 graphs for selected families

4.5 Opcode-HMM2Vec-SVM Results

The experiments in this section are essentially the same as those in the previous
section, except that we use HMM2Vec embeddings in place of Word2Vec embed-
dings. As discussed above, HMM2Vec embeddings use obtained from the B matrix
of a trained HMM.

Figure12a and b give HMM2Vec based χ2 graphs for Zegost, using one random
start and 10 random restarts, respectively. Note that these results are based on HMMs
with N = 2 hidden states, which gives us embedding vectors of length 2. Since our
HMM training algorithm is a hill climb technique, multiple random restarts often
enable us to find a stronger model. For the Zegost results in Fig. 12, random restarts
appear to offer little, if any, advantage. Consequently, for the remaining experiments
in this section, we train a single HMM model, and we do not perform any random
restarts.

We experimented with N = 2 and N = 3 hidden states (giving us embedding
vectors of length 2 and 3, respectively), but we did not find any improvement
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Fig. 10 HMM secondary tests for opcode-Word2Vec-SVM showing evolution

Fig. 11 HMM secondary tests for opcode-Word2Vec-SVM showing no evolution

using N = 3. Hence, we use HMM2Vec embedding vectors of length 2 in all exper-
iments below.

Figure13 shows the χ2 graphs for 8 additional families based on HMM2Vec
embedding vectors. Overall, this HMM2Vec-SVM approach seems to provide better
results than the Word2Vec-SVM technique in the previous section, as we can detect
more malware evolution using the HMM2Vec feature engineering.

Based on the graphs in Fig. 13, we make the following observations.
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Fig. 12 Opcode-HMM2Vec-SVM χ2 graphs for Zegost

Fig. 13 Opcode-HMM2Vec-SVM χ2 for selected families
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Adload —An evolutionary event takes place in the time window Sep 2010–May
2011.

Zbot — No significant spike is observed in the χ2 graph.
BHO — Significant evolution takes place in the time window Nov 2008–May

2011
Bifrose — Malware evolution takes place in the time window March 2010–June

2011. The other spike in the period June 2009–Jan 2011 is a part of noise in the
data. This was confirmed by training HMMs on both sides.

CeeInject — Evolution occurs in the time window June 2009–April 2011.
DelfInject — No significant spike is observed in the χ2 graph.
Dorkbot — No significant spike is observed in the χ2 graph.
Hupigon —A significant spike in the time period June 2010–Jan2011 is observed

in the graph.

From Fig. 13, we conclude that we can observe significant spikes in almost all
families using HMM2Vec-SVM analysis. For the families Adload, BHO, Bifrose,
CeeInject, and Hupigon we observe significant spikes in the χ2 distribution graph.
HMM secondary test confirming evolution for some of these cases appear in Fig. 14.
In Fig. 15, we give results of HMM secondary tests that do not reveal evolution.

Comparing the families in which we could detect evolutionary changes using
Word2Vec with those detected using HMM2Vec, we observe that the evolutionary
points obtained usingWord2Vec are also foundusingHMM2Vec.Yet, theHMM2Vec
technique provides additional evolutionary points, indicating that it is more sensitive
to change than Word2Vec embeddings. Overall, HMM2Vec performed better than
any of the other approaches that we considered in this paper.

5 Conclusion and Future Work

Previous research has shown that analysis based on PE file features and linear SVM
models can be useful in detecting malware evolution [29]. In this paper, we expanded
on—and improved upon—this previous work in several ways. First, we considered
opcode features, rather than PE file features. Our intuition was that opcode-based
features would be more sensitive to the types of changes that we would like to detect,
and our results support this intuition. Second, we experimented with various feature
engineering techniques, andwe found that vector embeddings increase the sensitivity
of theSVManalysis. Thirdly,we showed that a secondary test usingHMMtechniques
can be used to verify that suspected evolutionary points in the timeline.

We experimented with a variety of techniques, and our best results were obtained
using an approach that we refer to as opcode-HMM2Vec-SVM. In this technique,
we use mnemonic opcodes as raw features, then generate HMM2Vec encodings
of the opcodes, which serve as features for linear SVMs, with the SVMs trained
over sliding windows of time. The resulting SVM weights are compared using a χ2

statistic, and we graph this statistic over the available timeline. Spikes in the χ2
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Fig. 14 HMM secondary tests for opcode-HMM2Vec-SVM showing evolution
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Fig. 15 HMM secondary tests for opcode-HMM2Vec-SVM showing no evolution

graph serve as indicators of likely evolutionary change. We were then able to further
confirm evolutionary changes using a secondary test based on training HMMs on
either side of a spike. This overall approach was more sensitive than previous work,
in the sense that we were able to detect additional changes in the codebase of various
families, and it was more precise, since we have a secondary test available to confirm
(or deny) putative evolutionary changes.

In the realm of futurework, additionalmachine learning techniques and additional
features and engineering strategies could be considered. For example, neural network
techniques could be used in place of SVMs, with multiclass output probabilities
playing the role of the linear SVM weights. Another option would be to elevate our
HMM-based secondary test to the role of the primary test. This might enable a more
fine-grained analysis of the timeline, as relatively little data is needed for HMM
training. With respect to feature engineering, dimensionality reduction techniques
would be a natural topic to consider. The use of dynamic features might add value
as well, although the additional complexity involved with collecting such features
might be a concern.
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Abstract Many types of malicious software are controlled from an attacker’s com-
mand and control (C2) servers. Anti-virus organizations seek to defeat malware
attacks by requesting removal of C2 server Domain Name Server (DNS) records.
As a result, the life span of most malware samples is relatively short. Large datasets
of historical malware samples are available for countermeasures research. However,
due to the age of these malware samples, their C2 servers are no longer available.
To cope with high volumes of malware production, malware analysis is increas-
ingly performed using machine learning techniques. Dynamic analysis is commonly
used for feature extraction. However, due to the absence of their C2 servers, after
initialization, malware samples may exit or loop attempting to establish C2 server
connections and, as a result, no longer exhibit their original capabilities. Therefore,
partial execution of historical malware samples in a sandbox results in features that
differ from those that would be extracted in-the-wild, thus invalidating the results
of any machine learning research based on these features. One approach to extract-
ing accurate features is to build an emulated C2 server to provide an environment
that allows control of the full capabilities of the malware in an isolated environ-
ment. To illustrate the benefits of building C2 server emulators, this chapter provides
examples of techniques for the creation of C2 server emulators for three malware
families (Zeus, CryptoWall, and CryptoLocker) using manual reverse engineering
techniques and a review of semi-automated techniques for the construction of C2
server emulators.
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1 Introduction

Many types of malware, including information-stealing malware, ransomware, and
Remote Access Trojans (RATs) are controlled from an attacker’s Command and
Control (C2) servers [3]. Anti-virus organizations seek to defeat malware attacks by
requesting removal ofC2 serverDomainNameServer (DNS) records. For discussion,
a historicalmalware sample is defined as amalware sample that has had its C2 servers
removed. Large datasets of historical malware samples are available for academic
experiments. However, due to the age of these malware samples, their C2 servers
are no longer available. To cope with high volumes of malware production, malware
analysis is increasingly performed using machine learning techniques [4]. Dynamic
analysis is commonly used for feature extraction. However, due to the absence of
their C2 servers, after initialization, malware execution may exit, or loop attempting
to establish C2 server connections. As a result, the command interface of historic
malware samples is no longer controlled. This results in the extraction of features that
differ from those that would be extracted in-the-wild, thus invalidating the results of
machine learning research based on these features.

It is noted that research techniques exist for automatic protocol analysis of mal-
ware [13]. However, these techniques depend on malware communications with live
C2 servers. The usage of the malware capabilities is determined by the malware
operators, and live testing may not reveal the full extent of the malware’s capability.
Other issues related to performing research with live malware include difficulties
in obtaining a consistent supply of live malware, unknown configuration, unknown
triggering conditions, detection of the analysis IP address (mitigated by the use of
an anonymizing proxy), or the malware operators gaining access to the analysis VM
via malware provided interfaces.

Researchers have recognized the need to prevent malware experiments from caus-
ing harm on the Internet. Research systems have been built to provide containment
of malware research [23]. However, these systems do not address the C2 server prob-
lems faced when performing experiments with historical datasets. Internet simulator
programs [20] may be used as part of a malware analysis environment and can pro-
vide generic responses to requests for common Internet services. A malware process
may request a connection to a common website to perform a connectivity check, and
an Internet simulator may be able to satisfy this request. However, if a connection
to a C2 server or other attacker-controlled infrastructure is requested, an Internet
simulator will not be able to respond with the protocol required by the malware.

The Botnet Evaluation Environment (BEE) provides an isolated environment for
botnet researchwith emulatedC2 servers for executionof theAgobot, SDBot,GTBot,
Phatbot, and Spybot malware [6]. An isolatedWaledac botnet was created by reverse
engineering the Waledac malware and identifying the Waledac botnet protocol. An
emulated C2 server was built to support this protocol, and a 3000 node Waledac
botnet was built. This isolated botnet was used to research security vulnerabilities
that could be used to take down the Waledac botnet [12].
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To illustrate the benefits of building C2 server emulators for machine learning
purposes, this chapter provides examples of techniques for the creation of C2 server
emulators for three malware families (Zeus, CryptoWall, and CryptoLocker) using
manual reverse engineering techniques.1 This chapter also provides a review of semi-
automated techniques for the construction of C2 server emulators.

1.1 Motivation

At a high level, the need to build a C2 server emulator will be the result of the
following requirements:

• The need to perform research using historical malware samples,
• The need to control the full capabilities of a malware sample,
• The need to perform the research in an isolated environment.

The construction of C2 server emulators has the following benefits: the ability to
control the malware through its network interface allows the execution of the full
capabilities of the malware and the extraction of features that would otherwise not be
possible using historical malware samples. Using an emulated C2 server allows the
testing of malware samples in isolation from the Internet, which prevents criminal
groups from becoming aware of the research.

1.2 Emulator Architecture

The architecture of a C2 server emulator will be similar irrespective of whether a
manual or semi-automated process is used to construct the emulator. A representative
C2 server emulator consists of an isolated networkusing twoormore virtualmachines
(VMs). One VM (VM1) is configured to run the C2 server emulator script and a
DNS simulator, while another VM (VM2) is configured to run the selected malware
samples and any related programs that will be attacked by this malware. The DNS
simulator resolves requests from the malware VM, and malware protocol requests
are read by the C2 emulator. An illustration of this architecture is shown in Fig. 1. C2
server emulators may be created using either manual or semi-automated construction
techniques. Sections2–4 discuss manual construction, and Sect. 5 provides a review
of semi-automated construction techniques.

1The datasets and code related to this research are available on request from the corresponding
author.



348 P. Black et al.

DNS
Simulator

C2 Emulator
Script

Malware
Execution

Emulator - VM1 Malware - VM2

Isolated
Virtual

Network

Related
Programs

(web browser)

Fig. 1 C2 emulator architecture

2 Manual Construction

The creation of C2 emulators provides a test harness that allows the full capability
of historic malware samples to be controlled in an isolated network. The process for
the manual construction of C2 emulators can be described in an abstract manner as a
process of the guideddiscovery of the communication and commandprocessing paths
of a malware sample using a debugger and the corresponding iterative development
of a script to generate network traffic to control this execution path. A difficulty with
this high-level description of the C2 server emulator construction process is that there
may be difficulties in fully understanding how to implement this process. A malware
analysis environment using a manually constructed C2 emulator is described in [18].
To illustrate the manual construction process, Sects. 3 and 4 provide examples of
the manual construction of C2 server emulators for a common information-stealing
malware and two ransomware families.

The requirement for the emulation of a malware C2 server arose from a research
project using machine learning for the detection of webinjects. Webinjects are mali-
cious HTML that are injected into web browser sessions and are used to steal banking
credentials and to illegally transfer funds [16]. Information stealing malware target-
ing banking infrastructure (banking malware, banking trojans) contain facilities for
intercepting credentials prior to encryption and injecting content into Internet bank-
ing sessions. This is performed by injecting malware into the browser process and
gaining control of networking Application Programming Interface (API) functions
with the use of user-mode hooking techniques [7]. Three options were considered
for webinject generation:

• The use of live malware to perform webinjects, Zarathustra, and Prometheus per-
formed webinject detection using live malware samples [9, 14],

• The use of Java-Script methods to inject code into the browser session,
• The creation an emulatedC2 server that can be used in conjunctionwith a historical
malware sample to perform user specified webinjects.



Reanimating Historic Malware Samples 349

The problems associated with using live malware for research purposes have been
discussed previously. While Java-Script methods can be used to inject HTML code
into a browser session, this injected HTML may differ from webinjects created by
malware. The time required to perform the reverse engineering work is a significant
consideration when deciding whether to build an emulated C2 server. However, this
may be offset by the significant benefits of being able to control the full capabilities
of the malware on an isolated network and the collection of more representative
features.

The following sections provide the details of the construction of the C2 server
emulators for the Zeus V2, CryptoLocker, and CryptoWall malware.

3 Zeus C2 Server Emulator

The Zeus v2 malware was selected for this research due to familiarity with this
malware fromprevious research. TheZeusC2 server emulator provides the capability
to create custom webinjects on an isolated network and to capture the modified
webpages for use in a webinject detection machine learning system [24]. In the
following description, class and function names (e.g., Core::GetBaseConfig) are
taken from the leaked Zeus source code [32]. A Zeus v2.1.0.1 malware sample with
an MD5 hash of a2a21d66f72ee53cfbc2dcfe929ffaba was used in this
research. This malware was unpacked using a custom static unpacker. The unpacked
Zeus sample was loaded into the Interactive Disassembler (IDA). This IDA database
was used to record the malware execution and to determine suitable API calls for
breakpoints.

The Zeus v2malware has an anti-analysismechanism known as hardware locking.
When Zeus malware infects a computer, a copy of the malware is installed in the
filesystem, and a block of encrypted binary data is embedded into this installed
malware. This encrypted data includes the malware’s installation directory and a
Globally Unique Identifier (GUID) that was generated from the computer’s hard disk
[31].When a previously installedZeus sample is executed in an analysis environment,
execution on a new computer will be detected, and the malware will exit.

The hardware locking test was disabled by editing the machine code in the
Core::EntryPoint function, and the jump instruction controlling the call to the Exit-
Process API was overwritten with no operation (NOP) instructions. This was the
only change that was made to the Zeus malware.

The guiding principle in building the Zeus C2 server emulator was to perform the
minimum amount of reverse engineering needed to produce a C2 server emulator.
Two VMs were used where VM1 was running the python C2 server emulator and
the Internet simulator, and VM2 was running the Zeus malware sample and Internet
Explorer version 8 for the webinjects testing. When the Zeus sample is executed, a
copy of this malware is injected into the Explorer process, and the injected malware
attempts to connect to the C2 server.
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Fig. 2 Simplified Zeus configuration

The Zeus configuration is an encrypted binary data structure containing text spec-
ifying the target URL, injection start pattern, and the corresponding webinjects. The
Zeus configuration is created by the Zeus configuration builder, subject to the mal-
ware author’s security controls. To simplify the researcher workflow, the emulated
C2 server uses a simplified text based configuration containing the targeted URLs,
injection start patterns, and the corresponding webinjects. An example of the sim-
plified configuration used by the emulated Zeus C2 server is given in Fig. 2. The
C2 server emulator injects additional JavaScript to dump the DOM of the injected
webpage into a shared host directory for analysis.

An initial C2 server emulator returning a response of 256 null bytes was created
using the python BaseHttpServer class. On VM2, a debugger was attached to the
explorer.exe process, a breakpoint was set at the InternetReadFile API, and the Zeus
malware sample was executed. The emulated C2 server returned a response, and the
breakpoint on the InternetReadFile API was hit in theWininet::DownloadData func-
tion. Single stepping in the debugger was continued until the BinStorage::Unpack
function was called where the following operations were observed:

• RC4 decryption of the received configuration,
• Recursive XOR decoding of the decrypted configuration Crypt::_visualEncrypt,
• Checking of the MD5 signature stored in the header of the decoded configuration,
• The writing of the encrypted Zeus configuration to the Windows registry.

Based on these observations, the C2 server emulator was updated to use RC4
encryption, recursive XOR encoding, and MD5 signing of the configuration data. A
flowchart showing the steps involved in the creation of the encrypted Zeus configu-
ration is given in Fig. 3.

A full explanation of the Zeus configuration and webinjects processing would
require excessive detail. The following provides a high-level view of the structure
of the Zeus configuration and the operation of the malware in the browser. The
Zeus configuration file consists of the following sections: header, filters, a number
of webinject sections, and an injects list containing the targeted URLs.

Using a debugger to follow the execution of the injected Zeus code in the web
browser was necessary in order to debug the processing of the encrypted Zeus con-
figuration created by the C2 server emulator and to determine the minimum config-
uration sections required to allow successful webinjects. To gain control of the Zeus
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code in Internet Explorer, a debugger was attached to the Internet Explorer 8 parent
process, and a breakpoint was set on the GetModuleHandleW API. Following the
validation of the Zeus configuration in the Explorer process, Zeusmalware is injected
into the browser process to monitor the current webpages, to detect triggering URLs,
and to perform injection of the webinjects.

When executing in the context of a web browser, Zeus hooks the browser’s
HttpSendRequest and InternetReadFile APIs. When the HttpSendRequest API is
called, this results in a call to WininetHook::OnHttpSendRequest to check the Zeus
configuration filter actions. If the filter action is not “ignore,” the HTTP request is
added to an HTTP connections tracking table. When the InternetReadFile API is
called, this results in a call to WininetHook::OnInternetReadFile to check the HTTP
response. If this connection is in the tracked HTTP connections table, then the Http-
Grabber::ExecuteInjects function is called to determine whether the URL is in the
targeted URLs section, and if required injects the webinject into the HTTP response
data. An example of a Zeus webinject, injected text in red, is shown in Fig. 4.

4 Ransomware C2 Server Emulators

The following section provides details of the construction of a C2 server emulator for
the CryptoLocker and CryptoWall ransomware. The reverse engineering of the Cryp-
toLocker malware was straightforward, and the construction of the C2 server emu-
lator was simple. However, the reverse engineering of the CryptoWall ransomware
was complicated by injection into multiple processes and API obfuscation.

4.1 CryptoLocker C2 Server Emulator

CryptoLocker ransomware was identified in 2013, and the number of infected com-
puters is not known. TheMD5 hash of the CryptoLocker sample used in this research
is fec5a0d4dea87955c124f2eaa1f759f5 [15]. This sample was obtained
fromMalpedia [26] and includes an unpacked version of the malware. CryptoLocker
uses the Microsoft CryptoAPI, which simplifies the identification of cryptographic
operations. CryptoLocker encryption of communications and files uses a randomly
generated AES key. This AES key is then RSA encrypted and is embedded into each
encrypted object. CryptoLocker communications encryption makes use of a public
key embedded in themalware and a private key stored in the C2 server. CryptoLocker
file encryption uses a public key provided by the C2 server. The private key needed
to decrypt the files is only provided after the ransom is paid [21, 25].

Running the unpacked malware in a debugger showed that a second malware
process was started, and the first process terminated. Examination of the malware in
IDA showed that the function controlling C2 server communications and user file
encryption was located at address 0x40B2A1. A shortcut to gaining control of this
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malware was performed by editing the first two bytes of this function in the unpacked
malware to 0xEBFE. This is a two byte loop that will cause any process executing
this function to loop and will stop the malware from progressing. The looping pro-
cess was identified by its high CPU usage using the task manager. The debugger was
then attached to gain control of the malware. Stepping through the malware with the
debugger showed that the following (before encryption) datawas sent to theC2 server
"version=1&id=1&name=USERNAME-06752E85&group=sell03-10&
lid=en-US".

The response from the C2 server is intended to be encrypted with a private key
contained in the C2 server. However, the C2 servers are no longer active, and the
private key is not available. Two approaches to address the missing private key are
to edit the CryptoLocker malware and replace the hard-coded RSA public key with
a generated public key, and use the corresponding private key in the C2 emulator,
or create unencrypted responses in the C2 emulator and modify the CryptoLocker
malware to no longer check the decryption status by replacing a conditional jump
with NOP instructions. The latter option was selected as it was easier to implement.

The unencrypted C2 server response was read using the InternetReadFile API and
was decrypted using the CryptDecrypt API. The conditional jump instruction testing
the return code from the CryptDecrypt API was overwritten with a NOP instruction,
allowing unencrypted C2 server responses to be processed by the CryptoLocker
malware. Themalwarewas observed to test that the last byte of the decrypted response
is zero, and theC2 server emulatorwas updated to send a null terminated unencrypted
response.

Further use of the debugger showed that a value of 1 in the first byte of the response
results in a call to a function that calls the CryptDecodeObjectEx API to decode a
Privacy EnhancedMail (PEM) format public key. This public key is located at byte 3
of the response. The completed C2 server emulator reads the initial message from the
malware and returns a response of 0x01, 0x00, 0x00, followed by a null terminated
PEM format public key. A screenshot of the CryptoLocker ransom demand screen
displayed after the user files were encrypted is shown in Fig. 5.

4.2 CryptoWall C2 Server Emulator

CryptoWall ransomware was identified in 2014. The MD5 hash of the CryptoWall
version 4 sample used in this research is d9993ab7397f5d2a34f786b54fc
55b2c. This sample was obtained from Malpedia [26] and included an unpacked
version of the malware. Descriptions of the CryptoWall protocol were provided by
industry blogs [1, 15, 29], and this information significantly reduced the amount of
reverse engineering required to build the CryptoWall C2 emulator.

Early versions of CryptoWall copied CryptoLocker’s appearance, and the mal-
ware authors adopted the name CryptoWall in May 2014. CryptoWall was primarily
distributed throughmalicious spam attachments. CryptoWall deletes volume shadow
copies, and the Windows System Restore feature is disabled. CryptoWall version 4
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Fig. 5 CryptoLocker ransom demand

uses a locally generated AES key to encrypt user files and filenames, RSA encryption
is used to protect the AES key. CryptoWall communications are RC4 encrypted, and
the RC4 cipher is passed to the C2 server in the URL of the infection announcement
message [1, 29].

CryptoWall version 4 malware injects itself into a newly started explorer pro-
cess [15]. The injected malware creates a new svchost process, which is injected
with a copy of the malware [29]. The new svchost process performs ransomware
operations. To gain control of the ransomware, run the analysis VM before the C2
server emulator is started. This will prevent the C2 server connection from being
established and will keep the ransomware in its initialization state. Before running
the CryptoWall ransomware, record a list of the process identifiers of the svchost
processes. Start the CryptoWall malware and identify the new svchost process, con-
nect to this process and set a breakpoint at the InternetConnectA API, next start the
CryptoWall C2 emulator and allow the debugger to run the CryptoWall malware.

When the ransomware is executed, anHTTPPOST is sent to theC2 server. TheC2
server uses the sortedURLparameter as ciphertext to create anRC4key [11]. Thedata
passed by the HTTP POST is ASCII encoded binary data, which is decoded using the
Python binascii.unhexlify function. The decoded data is decrypted using theRC4key.
The decrypted request is "{1|crypt13001|32DC0066DCE410C9285635
F121811FB99|1|2|1}".
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Fig. 7 CryptoWall ransom demand

The C2 server responds by sending an RC4 encrypted response e.g.,"{204|1}"
to the infected computer. The CryptoWall ransomware responds by sending a public
key request to the C2 server. The C2 server responds with a message containing a
public key and a base64 encoded ransom demand graphic. When this C2 response is
received, the ransomware process scans the infected computer’s storage and encrypts
user files. When the user files have been encrypted, an infection notification message
e.g., "{260|1}" is sent to the C2 server. Finally, a window is displayed on the
infected computer to demand payment [1, 15]. The messages exchanged between
the ransomware and the C2 server emulation are shown in Fig. 6.

The CryptoWall C2 emulator implements the CryptoWall protocol that allows
the ransomware to exercise its full capabilities. A screenshot of a section of the
CryptoWall ransom demand screen displayed after the user files were encrypted is
shown in Fig. 7.
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5 Semi-automated Generation of C2 Server Emulators

While the ability to automatically generate C2 server emulators for arbitrarymalware
familieswould be useful, this is not currently feasible, and the recentwork in literature
is a semi-manual construction process.

The Imaginary C2 program [30] converts captured network traffic into request
definitions that allow C2 HTTP response to be replayed. However, this traffic replay
approach is not suitable for situations where initial network traffic samples are not
available.

One automation approach for the creation of C2 server emulators is provided
in [2]. This research refers to C2 server emulators as Custom Impersonators. Mal-
ware samples are executed on a QEMU VM, and instruction traces are collected
using DECAF [19], and the instruction traces are translated into VINE intermedi-
ate language [28]. Symbolic execution [22] is performed on the instruction traces,
and symbolic variables are assigned to network input. A Simple Theorem Prover
(STP) constraint solver [17] is used to determine the values that determine the out-
come of the control flow tests. These values can be used to identify malware control
dependencies controlled by values in the network input [2]. The malware control
flow graph and control dependencies are provided to assist analysts with the manual
construction of C2 server emulators.

Research using ANGR [27], an open-source symbolic execution framework, cre-
ates a technique that employs static analysis to determine the C2 command protocol
and associated commands implemented in a common RAT. The top-level command
processing function of the RAT is analyzed, and for each explored path, a list of the
malware API calls and their arguments, function call relationships, and the network
data required to trigger the path’s execution are provided [5]. Windows API models
and support for the stdcall calling convention were added to ANGR in order
to support the analysis of Windows malware. Heuristics were created to limit the
number of paths explored by the symbolic execution in order to prevent potential
path explosion problems. Symbolic execution commences at the manually selected
Symbolic Execution Point (SEP), and an execution context is needed to provide
precondition values that are generated in malware initialization. In this research,
the execution context was generated using two different techniques: by performing
concrete execution, setting a breakpoint at the SEP, taking a memory dump, and
extracting the necessary parts of the execution context, or by moving the SEP back-
ward, allowing initialization of execution context values. Symbolic execution was
used to explore the command processing loop. The report produced by this tech-
nique showed the API calls, and the functions called in processing each command,
as well as the network data required to trigger the processing of each command.
This research targets analysis for a single RAT, requires manual SEP identification,
does not support analysis of encrypted protocols and does not support mining of the
analysis report from the tool output [5].

The S2E symbolic execution engine is used as the basis of research that con-
structs C2 servers for RATs [8]. The S2E engine performs symbolic execution of
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instructions and forks execution when branches are taken. An SMT solver is used to
evaluate expressions and obtain concrete values. To prevent performance problems
and scalability issues due to path explosion, an analyst must provide the location
of the command processing loop and details of how to reach this address. The pro-
cess used in this research can be summarized as Trace Generation, Trace Analysis,
Speculation, Validation, and C2 Server Generation. Trace generation uses symbolic
execution to explore execution paths and to maximize code coverage. A number of
the recorded traces will cover the RAT command processing code. The branches
taken and API execution details are recorded. Trace analysis builds Augmented Pre-
fix Tree Acceptors (APTA) that captures API execution and branches taken along
the explored paths. APTA’s are Deterministic Finite Automata (DFA) that have been
used in the protocol reverse engineering [10]. The goal of speculation is to generate
a small number of paths that cover all of the commands. Speculative edges are added
to the APTAs in an attempt to combine symbolically executed command fragments
into paths containing multiple commands. The symbolic execution engine is then
used to validate speculatively generated paths, and when speculative edges are val-
idated, the branches and API calls are recorded. C2 server generation is performed
for each validated path that contains multiple commands. This research generates a
C2 server from the code of a small RAT created for research purposes [8]. Due to the
requirement for manual analysis to provide the location of the command processing
loop as a starting point, this research is classified as semi-automated.

6 Limitations

Irrespective of the C2 emulator construction technique, some malware samples
require minor modification before they can be executed with a C2 server emula-
tor. Examples of the modifications required to allow the Zeus V2 and CryptoLocker
malware to run with C2 server emulators are given below.

Zeus v2 is a self-modifying malware with a hardware locking feature that only
allows the installed Zeus malware to execute on the computer that it was installed
on. In the Zeus C2 server emulator, the Zeus malware was unpacked using a static
unpacker, and the jump instruction that controls the hardware locking test was over-
written with NOP instructions to prevent the malware from terminating.

The CryptoLocker malware contains a hard-coded RSA public key, and the C2
server emulator is expected to respond with communications encrypted with the cor-
responding private key. Due to the removal of the original C2 servers, this private key
is no longer available. The C2 server emulator was developed to return unencrypted
responses, and the unpacked CryptoLocker malware sample was modified to skip
the successful decryption check. The modified CryptoLocker sample operates in the
same manner as the original ransomware, it connected to the emulated C2 server,
scanned the hard disk for user files, performed file encryption, and displayed the
ransom demand window.
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In both of these cases, a modification of the malware’s machine code allowed
a historical malware sample to operate at a high level of fidelity with an emulated
C2 server, allowing the collection of feature sets that are comparable with malware
execution in-the-wild. It is acknowledged that the technique of manually building
an emulated C2 server cannot currently be performed at scale. However, cases exist
where manually building a C2 server emulator allows academic research projects to
be performed that would not otherwise be possible.

A limitation in the manual construction of C2 emulators is the need for a skilled
analyst to perform manual reverse engineering. Techniques for the semi-automated
generation of C2 server emulators do exist. However, the fully automatic generation
of C2 emulators is not currently feasible due to current limitations in symbolic
execution techniques.

7 Conclusion

Academic malware datasets consist of collections of historic malware samples. The
C2 servers of these malware samples no longer exist, and when executed on a VM,
these malware samples perform their initialization functions and then wait for C2
server connections that no longer exist. This initialization-only behavior of historic
malware samples provides more limited features than would be collected when the
malware was running in-the-wild. Historic malware samples running without an
emulated environment cannot perform many of the malware’s original capabilities.

Live malware samples with active C2 servers have been used for research [14].
This approach is feasible but uncertain due to problems associated with the short life
span of malware C2 servers, unknown malware configuration, the malware being
controlled by the malware operator, and the possibility of the malware operator
becoming aware of the research.

The creation of C2 server emulators allows the full capabilities of malware sam-
ples to be fully controlled by researchers in an isolated network. In the case of
historic malware samples, the use of C2 server emulators allows control of mal-
ware capabilities that would no longer be available without emulation. This chapter
discussed methods for the manual reverse engineering of the malware sample’s com-
mand protocol and created an emulated C2 server that can control the full command
interface of the malware. Three examples of methods used for the construction of
emulated command and control servers were provided. Apart from the generation of
C2 server emulators, some malware samples require minor modifications to bypass
anti-analysis systems or to compensate for lost encryption keys. Examples of these
modifications were provided for two malware families.

A review of the literature related to the creation of emulated C2 servers was
undertaken. This review showed that the use of C2 server emulators and the auto-
mated generation of C2 server emulators is a new research topic with research in the
early stages. Existing research provides the semi-automated generation of C2 server
emulators based on individual samples.
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Cluster Analysis of Malware Family
Relationships

Samanvitha Basole and Mark Stamp

Abstract In this chapter,weuse K -means clustering to analyze various relationships
between malware samples. We consider a dataset comprising 20 malware families
with 1000 samples per family. These families can be categorized into seven different
types of malware. We perform clustering based on pairs of families and use the
results to determine relationships between families. We perform a similar cluster
analysis based on malware type. Our results indicate that K -means clustering can be
a powerful tool for data exploration of malware family relationships.

1 Introduction

Previous research has demonstrated that it is possible in some cases to train amachine
learning model to detect multiple malware families [3]. Specifically, neighborhood-
based techniques are relatively effective in such a situation. Although support vector
machines (SVM) did not perform well in this previous research, both k-nearest
neighbors (k-NN) and random forest (RF) were able to distinguish malware from
benign with good accuracy, even when several malware families were combined to
form the malware class.

In this research, we consider the same dataset used in [3], which includes 20
malware families. Here, we apply cluster analysis to these families. Our goal is to
determine whether we can discover interesting connections, relationships, and dif-
ferences between these various families, based on elementary clustering techniques.
While [3] considers binary classification experiments to distinguish malware from
benign, the research in this chapter is focused on a data exploration problem. The
featureswe use are byte n-gram frequencies, while the clusteringmethodwe consider
is the well-known K -means algorithm.

S. Basole (B) · M. Stamp
San Jose State University, San Jose, CA, USA
e-mail: s97basole@gmail.com

M. Stamp
e-mail: mark.stamp@sjsu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
M. Stamp et al. (eds.), Malware Analysis Using Artificial Intelligence
and Deep Learning, https://doi.org/10.1007/978-3-030-62582-5_14

361

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62582-5_14&domain=pdf
mailto:s97basole@gmail.com
mailto:mark.stamp@sjsu.edu
https://doi.org/10.1007/978-3-030-62582-5_14


362 S. Basole and M. Stamp

The remainder of this paper is organized as follows. In Sect. 2, we provide relevant
background information, including a brief discussion of relatedwork. Then in Sect. 3,
we give our experimental results and analysis. Finally, Sect. 4 concludes this chapter,
where we have included suggestions for future work.

2 Background

In this section, we first consider relevant related work. Then we discuss our malware
dataset, and we provide information on each family in the dataset. We also present
the various metrics that we use in our clustering experiments. Finally, we provide an
introduction to the K -means clustering algorithm.

2.1 Related Work

In [9], the authors use API calls to classify malware based on their types. They con-
sider a random forest (RF) classifier and achieve an average area under theROCcurve
(AUC) of 0.98. In contrast, we use n-grams and a clustering approach, and we are
considering a data exploration problem, rather than a straightforward classification
problem.

The authors in [4] propose a clustering approach for malware, wherein the goal
is to cluster samples based on similar behavior. These authors use features such as
system calls and network activity, to cluster malicious code based on its behavior. In
contrast to this previous work, our cluster analysis is based on simpler and easier to
collect features and, again, we are in a data exploration mode of operation.

The research in [10] uses BIRCH clustering based on static and dynamic features.
These authors consider 18 families, but 12 of those families contain less than 100
samples each. Our approach uses a larger and balanced dataset for clustering.

2.2 Dataset

The same dataset as used in [3] is considered in this research. This dataset includes 20
families, which we categorize into malware types, as listed in Table1.

Each of the malware families in Table1 is summarized below.

Adload downloads an executable file, stores it remotely, executes the file, and
disables proxy settings [18].

Agent downloads Trojans or other software from a remote server [19].
Alureon exfiltrates usernames, passwords, credit card data, and other confidential

data from an infected system [25].



Cluster Analysis of Malware Family Relationships 363

Table 1 Type of each malware family

Index Family Type Index Family Type

0 Adload [18] Trojan
Downloader

10 Obfuscator [27] VirTool

1 Agent [19] Trojan 11 OnLineGames [13] Password
Stealer

2 Alureon [25] Trojan 12 Rbot [28] Backdoor

3 BHO [21] Trojan 13 Renos [20] Trojan
Downloader

4 CeeInject [24] VirTool 14 Startpage [22] Trojan

5 Cycbot.G [2] Backdoor 15 Vobfus [29] Worm

6 DelfInject [11] VirTool 16 Vundo [30] Trojan
Downloader

7 FakeRean [26] Rogue 17 Winwebsec [31] Rogue

8 Hotbar [1] Adware 18 Zbot [14] Password
Stealer

9 Lolyda.BF [12] Password
Stealer

19 Zeroaccess [23] Trojan

BHO can perform a variety of actions, guided by an attacker [21].
CeeInject uses advanced obfuscation to avoid being detected by antivirus soft-

ware [24].
Cycbot.G connects to a remote server, exploits vulnerabilities, and spreads through

backdoor ports [2].
DelfInject sends usernames, passwords, and other personal and private informa-

tion to an attacker [11].
FakeRean pretends to scan the system, notifies the user of supposed issues, and

asks the user to pay to clean the system [26].
Hotbar is adware that shows ads on webpages and installs additional adware [1].
Lolyda.BF sends information from an infected computer andmonitors the system.

It can share user credentials and network activity with an attacker [12].
Obfuscator tries to obfuscate or hide itself to defeat malware detectors [27].
OnLineGames steals login information of online games and tracks user keystroke

activity [13].
Rbot gives control to attackers via a backdoor that can be used to access informa-

tion or launch attacks, and serves as a gateway to infect additional sites [28].
Renos downloads software that claims the system has spyware and asks for a

payment to remove the nonexistent spyware [20].
Startpage changes the default browser homepage and may perform other mali-

cious activities [22].
Vobfus is a worm that downloads malware and spreads through USB drives or

other removable devices [29].
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Table 2 Number of samples of each type

Malware type Samples

VirTool 3000

Password Stealer 3000

Backdoor 2000

Trojan 8000

Worm 1000

Rogue 2000

Adware 1000

Vundo displays pop-up ads and may download files. It uses advanced techniques
to defeat detection [30].

Winwebsec displays alerts that ask the user for money to fix supposed issues [31].
Zbot is installed through email and shares a user’s personal information with

attackers. In addition, Zbot can disable a firewall [14].
Zeroaccess is a Trojan horse that downloads applications that click on ads, thereby

making money for the attacker [23].

The features we use for clustering are based on byte n-gram frequencies. Specif-
ically, we choose the top 20 byte n-grams, with n = 2, from our malware class.
These frequency vectors are then normalized, so that each vector can be viewed as a
discrete probability distribution. The resulting normalized bigram frequency vectors
(of length 20) form our feature set.

Our experiments include clustering based on pairs of families, clustering selected
families belonging to different malware types, and clustering families belonging to
the same malware type. The number of samples of each of the seven malware types
found in our dataset is given in Table2. Note that we categorize “TrojanDownloader”
as a type of Trojan, giving us the seven distinct types listed in Table2.

2.3 Metrics

In this section, we discuss the metrics used to numerically evaluate our clustering
results. Note that we do not use accuracy, due to the label-switching problem that
occurs when we attempt to apply this metric to clustering results [17].

One popular choice for clustering is the so-called v-measure, which is a robust
metric for cluster evaluation—robust in the sense that a permutation of the cluster
labels does not affect the score. The v-measure is defined as the harmonic mean
between homogeneity (i.e., the case where each cluster contains all points from a
single class) and completeness (i.e., the case where all points from the same class
are in one cluster) [8]. Another nice feature of this metric is that it is symmetric, in
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that it yields the same score if the predicted classes and the true classes are switched.
The v-measure ranges from 0 to 1.

Although v-measure is a robust evaluation metric with many advantages, it is
not the best choice for the research considered in this chapter. The v-measure is not
normalized for random cluster results, hence it would tend to produce a higher score
for random cluster assignments when a “large” number of clusters K is chosen, say,
K > 10. In contrast, adjusted mutual information (AMI) results in random label
assignments having a score close to 0, regardless of the size of the dataset or the
number of clusters.

Another useful metric for clustering is the adjusted Rand index (ARI). The ARI is
similar to AMI, in the sense that it is adjusted to account for chance. The Rand index
is a similarity measure that considers all pairs of samples and uses the number of
pairwise agreements in the true and predicted clusters. Specifically, the Rand index
is calculated as [16]

RI = a + d

a + b + c + d
= a + d(

n

2

)

where a, b, c, and d are defined as follows: If U and V are two different partitions
or clusterings of the same data, then let a, b, c, and d be the number of objects
determined by

a = in the same cluster in U and in the same cluster in V

b = in the same cluster in U but in different clusters in V

c = in the same cluster in V but in different clusters in U

d = in different clusters in U and in different clusters in V

The formula for ARI is calculated using the raw Rand index RI as [8]

ARI = RI−E(RI)

max(RI) − E(RI)

where E is the expected value operator.
The authors in [15] state that AMI should be used when the true clusters are

unbalanced in size, while ARI should be used when the true clusters are large and
roughly equal-sized. In our research, the size of the ground truth for family labels is
precisely balanced with 1000 samples in each family. Thus, we use ARI to evaluate
our clustering predictions.
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2.4 K-Means

In this section, we first discuss a generic approach to clustering. We then consider
how to implement such an approach, which leads directly to the K -means algorithm.

Suppose that we are given the n data points X1, X2, . . . , Xn , where each of the Xi

is a vector of m real numbers. For example, we could analyze a set of malware
samples based on, say, five distinct scores, denoted s1, s2, . . . , s5. Then each data
point would be of the form

Xi = (s1, s2, s3, . . . , s5).

We assume that the desired number of clusters K is specified in advance and
that we want to partition our n data points X1, X2, . . . , Xn into K clusters. We also
assume that we have a distance function d(Xi , X j ) that is defined for all pairs of data
points.

We associate a centroid with each cluster, where the centroid can be viewed as
representative of its cluster. Intuitively, a centroid is the center of mass of a cluster.
We denote cluster j as C j with the corresponding centroid denoted as c j . Note that
in K -means, centroids need not be actual data points.

Now, suppose that we have clustered our n data points. Then we have a set of K
centroids,

c1, c2, c3, . . . , cK

and each data point is associated with exactly one centroid. Let centroid(Xi ) denote
the (unique) centroid of the cluster to which Xi belongs. The centroids determine
the clusters, in the sense that whenever we have

c j = centroid(Xi ),

then Xi belongs to cluster C j .
Beforewe can cluster data based on the process outlined above,we need to address

the following two questions:

1. How do we determine the centroids c j?
2. How do we determine the clusters? That is, we need to specify the func-

tion centroid(Xi ), which assigns data points to centroids. This has the effect
of determining the clusters.

There are many reasonable ways to answer these questions. Next, we consider an
intuitively appealing approach that leads directly to the K -means algorithm.

Intuitively, it seems clear that the more “compact” a cluster is, the better. Of
course, this will depend on the data points Xi and the number of clusters K . Since
the data is given, and we are assuming that K has been specified, we have no control
over the Xi or K . But, we do have control over the selection of the centroids c j
and the assignment of points to centroids via the function centroid(Xi ). The choice
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Fig. 1 Smaller and larger distortion for the same dataset

of centroids and the assignment of points to centroids will clearly influence the
compactness (i.e., “shape”) of the resulting clusters.

Let

distortion =
n∑

i=1

d
(
Xi , centroid(Xi )

)
. (1)

Intuitively, the smaller the distortion, the better, since a smaller distortion implies
that individual clusters are more compact.1

For example, consider the data in Fig. 1, where the same data points are clustered
in two different ways. It is clear that the clustering on the left-hand side in Fig. 1 has
a smaller distortion than that on the right-hand side. Therefore, we would say that
the left-hand clustering is superior, at least with respect to the measure of distortion.

Suppose that we try to minimize the distortion. First, we observe that distortion
depends on K , since more clusters imply more centroids—in the limit, we could
let K = n, and make each data point a centroid, in which case the distortion is 0.
To emphasize this dependence on K , we write distortionK . As mentioned above, we
assume that K is specified in advance.

The problem we want to solve can be stated precisely as

Given: K and data points X1, X2, . . . , Xn

Minimize: distortionK =
n∑

i=1

d
(
Xi , centroid(Xi )

)
.

(2)

Finding an exact solution to this problem is computationally infeasible. But, there is
a simple iterative approximation that works well in practice.

We claim that a solution to (2) must satisfy the following two conditions.

1In addition to having compact clusters, we might also want a large separation between clusters.
However, such separation is not (directly) accounted for in K -means.
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Condition 1 Each Xi is clustered according to its nearest centroid. That is, if
the data point Xi belongs to cluster C j , then d(Xi , c j ) ≤ d(Xi , c�) for all � ∈
{1, 2, . . . , K }, where the c� are the centroids.

Condition 2 Each centroid is located at the center of its cluster.

To verify the necessity of Condition 1, suppose that Xi is in clusterC j and that we
have d(Xi , c�) < d(Xi , c j ) for some �. Then by simply reassigning Xi to cluster �,
we will reduce distortionK . Condition 2 also seems intuitively clear, and it is a
straightforward calculus exercise to prove the necessity of this condition as well.

Condition 1 tells us that given any clustering for which there are points that
are not assigned to their nearest centroid, we can improve the clustering by simply
reassigning such data points to their nearest centroid. Condition 2 implies that we
alwayswant a centroid to be at the center of its cluster. Therefore, given any clustering,
we may improve it—and we cannot make it worse—with respect to distortionK by
performing either of the following two steps:

Step 1 Assign each data point to its nearest centroid.
Step 2 Recompute the centroids so that each lies at the center of its respective

cluster.

It is clear that nothing can be gained by applying Step 1 more than once in
succession, and the same holds true for Step 2. However, by alternating between
these two steps, we obtain an iterative process that yields a series of solutions that
will generally tend to improve and can never get worse with respect to distortionK .
This is precisely the K -means algorithm [7],whichwe state somewhatmore precisely
as Algorithm1.

Algorithm 1 K -means clustering
1: Given:

Data points X1, X2, . . . , Xn to cluster
Number of clusters K

2: Initialize:
Partition X1, X2, . . . , Xn into clusters C1,C2, . . . ,CK

3: while stopping criteria is not met do
4: for j = 1 to K do
5: Let centroid c j be the center of cluster C j
6: end for
7: for i = 1 to n do
8: Assign Xi to cluster C j so that d(Xi , c j ) ≤ d(Xi , c�)

for all � ∈ {1, 2, . . . , K }
9: end for
10: end while

The stopping criteria in Algorithm1 could be that distortionK improves (i.e.,
decreases) by less than a set threshold, or that the centroids do not change by much,
or we could simply run the algorithm for a fixed number of iterations.
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Note that Algorithm1 is a hill climb, and hence K -means is only assured of
finding a local maximum. And, as with any hill climb, the maximum we obtain will
depend on our choice for the initial conditions. For K -means, the initial conditions
correspond to the initial selection of centroids. Therefore, it can be beneficial to
repeat the algorithm multiple times with different initializations of the centroids.

In the experiments below, we use the K -means clustering algorithm to explore the
natural formation of malware clusters. We employ elbow plots as a tool to discern
structure from the 20 malware families based on pairwise clusters. Next, we discuss
elbow plots in this context.

2.5 Elbow Plots

Suppose that we graph the clustering error as a function of the number of clusters,
K . Then an “elbow” in this graph indicates the point where adding another cluster
does not significantly improve the clustering results [5]. Such an elbow can be used
to determine the (near) optimal number of clusters.

We choose distortion and inertia for our elbow plots. Distortion is calculated
as the average of the squared Euclidean distances from each point to the nearest
centroid, whereas inertia is calculated as the sum of these same distances. For our
experiments, elbow plots using distortion and inertia indicate that the clusters are not
well formed, and thus, the number of clusters is somewhat subjective. From Fig. 2,
it appears that K ∈ {4, 5, 6} should be good values for the number of clusters, as
the inertia and distortion only slightly decrease from that point onward. In any case,
these elbow plots clearly indicate that the optimal number of clusters is less than 10,
which is somewhat surprising, given that we are dealing with 20 families. This is a
strong indication that there is significant similarity between some of the families in
our dataset.
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3 Experiments and Results

In this section, we present results of three different sets of clustering experiments.
First, we cluster each pair of malware families and show that we can draw mean-
ingful conclusions based on these clustering results. Then we consider clustering
experiments where we restrict our attention to one family of each malware type
under consideration. Finally, we consider clustering multiple families from the same
malware type.

3.1 Clustering by Family

In this set of experiments, we perform clustering for each pair of families. Since there
are 20 families, we have

(20
2

) = 190 such clustering experiments. In each case, the
top 20 n-grams is extracted to form the features under consideration. Every sample
in the two families under consideration is then converted to a normalized vector
of n-gram frequencies. The resulting data is clustered using K -means, with K = 2.

The results of these experiments consist of 190 ARI scores and 190 confusion
matrices. Representative examples of the resulting confusion matrices are given in
Fig. 3.

Each of these 190 clustering experiments provides information on how closely
one family is related to another. From such results, we can deduce weak and strong
links between malware family pairs. The 190 ARI similarity scores are given in the
form of a heatmap in Table3. Note that the diagonal elements are 1 in every case,
since the similarity between a family and itself is always 1. Also, the heatmap is
symmetric, since the ARI similarity score is itself symmetric.

Figure4 gives the total pairwise ARI for each family in the form of a bar graph.
That is, each bar represents the sum of the 19 ARI scores of a given family with all
other families in our dataset. We refer to this sum as the total ARI.

In Fig. 5 we give the average ARI for all pairwise clusters formed with a given
family. Based on the horizontal line at y = 0.5, we see that there are four families
with a high average ARI, that is, an ARI that exceeds the y = 0.5 line. This implies
that when each of these four families is clustered against the other families, the
ARI is, on average, particularly high. The four high-ARI families are BHO, Adload,
Hotbar, and Vobfus. Note that these strong ARI results are also apparent from the
total ARI scores in Fig. 4 and from the heatmap in Table3.

From Table1, we see that Hotbar is the only adware in the dataset and Vobfus
is the only worm. It is intuitive that these malware families would tend to stand out
more from the other families, due to their being of unique types, and would thus
be easier to cluster. This is clearly indicated by the high-ARI results for Hotbar and
Vobfus. On the other hand, BHO and Adload are both Trojans, which is the most
common type in our dataset. This result indicates that in spite of Adload and BHO
being Trojans, they contain byte bigram features that are significantly different from
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Fig. 3 Selected examples from the 190 pairwise confusion matrices

the other Trojans in the dataset, namely, Agent, Alureon, Renos, Startpage, Vundo,
and Zeroaccess. It is also interesting that Adload and BHO are similar to each other,
in the sense that their pairwise clustering result is poor, as can be observed from the
heatmap in Table3.

To further explore these high-ARI families, we provide graphs showing the rela-
tionship strength of each with respect to all other families. To generate these graphs,
we use the NetworkX library in Python. The resulting graphs are given in Figs. 6, 7,
8 and 9, where each node represents a family, with the node numbers correspond-
ing to the “index” column in Table1. In each of these figures, the darkened node
corresponds to the family mentioned in the caption. Also, a dotted edge between
two nodes indicates an ARI score of 0.5 or less, while a solid line represents an
ARI score greater than 0.5. The nodes are positioned by simulating a force-directed
representation, based on the Fruchterman–Reingold force-directed algorithm [6].

These graphs help visualize howother families are related to the fourmost-distinct
families in our dataset. For example, Hotbar is almost equally distinguishable from
all other families. On the other hand, Adload is distinguishable from all families
except Vobfus and BHO. This means that Adload, BHO, and Vobfus are mostly
similar to each other, but highly distinguishable when clustered with other families
in the dataset.
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Table 3 Heatmap of pairwise clustering ARI scores
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Fig. 6 Adload relationship with its paired families

It is also interesting to note that there aremany families our dataset with extremely
poor pairwise clustering results. We see that Agent, CeeInject, Cycbot, DelfInject,
FakeRean, Obfuscator, Rbot, Renos, Vundo, Winwebsec, and Zbot all have average
ARI scores below 0.23. This indicates that there is a large subset of the families that
are virtually indistinguishable from each other.
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3.2 Clustering Families of Different Type

In this set of clustering experiments, we consider seven families, each of which is of
a different malware type. Specifically, the seven families considered, and their type,
are the following:

Agent—Trojan
Ceeinject—VirTool
Cycbot—Backdoor
FakeRean—Rogue
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Fig. 10 Clustering using seven families from different malware types

Hotbar—Adware
Lolyda—Password Stealer
Vobfus—Worm

Figure10 shows the results of clustering these seven families, each of which
belongs to a different malware type. We might expect well-defined clusters in this
case, but the ARI score is only 0.23, suggesting that a few families are still very
similar, in spite of belonging to different malware types.
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The results in Fig. 10 indicate that “type” is not a strong feature of malware.
More specifically, we can say that the characteristics of bigrams that distinguish
one malware family from another are not strongly type-dependent. This somewhat
surprising result is useful, since it shows that attempts to identify malware by generic
type are, in general, unlikely to be successful, at least when the analysis is based on
byte bigram features. However, we note in passing that the authors in [9] use API
calls as features and appear to have successfully classified selected malware by its
type. Hence, it may be possible to obtain better results for malware type by using
other features.

3.3 Clustering Families of the Same Type

In this section, we conducted two experiments to examine howwell K -means cluster-
ing can distinguish between families belonging to the same malware type. Figure11
illustrates the results of clustering four families, all of which are Trojans—the spe-
cific families considered in this case are Agent, Alureon, BHO, and Startpage. This
result suggests that there are three well-defined clusters among these four families.
We obtain an ARI of 0.35 in this case, which, interestingly, is much higher than the
result obtained for malware samples of different types in the previous section.

Next, we cluster the three VirTool families in our dataset, namely, CeeInject,
DelfInject, and Obfuscator. In this, we obtain the results in Fig. 12, which give us an
ARI score of just 0.07. This number suggests a random clustering result and implies
that these VirTool families are virtually indistinguishable, based on byte bigram
features.

The results in this section indicate that the Trojan type is generic, in the sense that
Trojan families can (and generally do) differ significantly from each other. This is
not surprising, as Trojan code tends to be dominated by the non-malicious part of

Fig. 11 Clustering four
Trojan families (Agent,
Alureon, BHO, and
Startpage)
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Fig. 12 Clustering VirTool
families (DelfInject,
CeeInject, and Obfuscator)
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the application, which would be expected to vary widely between different Trojan
families.

On the other hand, the VirTool type is highly specific, which results in an inability
to distinguish between these families. That is, the VirTool type is relatively homo-
geneous, making such samples difficult to distinguish from each other, even when
they are from different families.

4 Conclusion and Future Work

The goal of this research was to analyze malware clustering, with respect to families
and types, based on elementary features and clustering techniques. We considered
three different sets of experiments. In our first set of experiments, we clustered all
families in pairs. In our second set of experiments, we clustered seven families, with
one family from each of the distinct types in our dataset. Finally, we conducted
experiments where the clustered families all belong to the same malware type. All
of our experiments were based on K -means clustering using byte bigram features.

Our findings indicate that the relationship betweenmalware families andmalware
type is somewhat complex. This is not entirely unexpected, since some malware
types, such as Trojans, are only very loosely related, while other types, such as
VirTool, are much more specific. Indeed, we did find that families of the Trojan type
were far easier to distinguish from each other based on clustering, as compared to
VirTool families.

More generally, our pairwise clustering results—and, in particular, the heatmap
of ARI scores generated from these pairwise clusters—enabled us to draw many
conclusions concerning similarities and differences between families. We were able
to clearly see which families were most distinct from all other families, and which
subsets of families were the most similar to each other. These results show that
elementary cluster analysis is extremely useful for exploring relationships between
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malware families and that such analysis could serve as a guide for additional (and
more costly) analysis of a given malware dataset.

In this chapter, we performed cluster analysis to examine the relationship between
malware families. Our focuswas clustering using K -means and byte bigram features.
For future work, it would be interesting to consider larger numbers of clusters and to
explore other clustering techniques, includingGaussianmixturemodels, hierarchical
techniques, spectral clustering, and density-based clustering. While K -means can be
viewed as generating “circular” or “spherical” clusters, other techniques can produce
clusters of more general shapes. In addition, it would be interesting to experiment
with other features, such as opcodes and API call sequences.
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Abstract Malware family labels are known to be inconsistent. They are also black-
box since they do not represent the capabilities of malware. The current state of
the art in malware capability assessment includes mostly manual approaches, which
are infeasible due to the ever-increasing volume of discovered malware samples.
We propose a novel unsupervised machine learning-based method called MalPaCA,
which automates capability assessment by clustering the temporal behavior in mal-
ware’s network traces. MalPaCA provides meaningful behavioral clusters using only
20 packet headers. Behavioral profiles are generated based on the cluster member-
ship of malware’s network traces. A Directed Acyclic Graph shows the relationship
between malwares according to their overlapping behaviors. The behavioral pro-
files together with the DAG provide more insightful characterization of malware
than current family designations. We also propose a visualization-based evaluation
method for the obtained clusters to assist practitioners in understanding the clustering
results. We apply MalPaCA on a financial malware dataset collected in the wild that
comprises 1.1k malware samples resulting in 3.6M packets. Our experiments show
that (i) MalPaCA successfully identifies capabilities, such as port scans and reuse
of Command and Control servers; (ii) It uncovers multiple discrepancies between
behavioral clusters and malware family labels; and (iii) It demonstrates the effective-
ness of clustering traces using temporal features by producing an error rate of 8.3%,
compared to 57.5% obtained from statistical features.
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1 Introduction

Thefirstmalwarewas discovered over thirty years ago.Yet, it is still one of the leading
threats in cybersecurity.1 AV-test, a security research institute, reported detecting
over 1000 Million malware samples in 2019.2 Anti-Virus (AV) companies play a
pivotal role in analyzing malware by assigning labels to newly discovered samples.
However, there are several shortcomings of malware family labels: (i) Each vendor
has its own way of determining a malware family. Labels obtained from different
vendors are often inconsistent [29]. (ii) The precise methods used by each vendor
are proprietary and unstandardized [49]. (iii) The current labels are heavily based on
static and system-level activity analysis. The problem is that malware family labels
do not represent the capabilities of malware samples. The black-box (unexplainable)
nature of the labeling methods also makes it impossible to verify assigned family
labels, causing the evaluation of newer detection methods to depend on unreliable
ground truth [33]. Moreover, network traffic is rarely used to determine family labels
because of noisy ground truth and non-stationary data distribution [3]. As a result,
malware samples that exhibit identical network behavior but have different code
attributes end up in different families, see, e.g., Perdisci et al. [44].

In this chapter, we address the limited interpretability of malware family labels
by proposing white-box3 behavioral profiles for malware samples. Existing research
suggests that network traffic showsmalware’s core behavior by capturing direct inter-
actions with the attacker or C&C server [14]. Network traffic analysis can also be
performed remotely, which presents a lower overhead than many popular system-
activity solutions. Therefore, we place emphasis in building network behavioral pro-
files. To this end, we propose MalPaCA (Malware Packet Sequence Clustering and
Analysis) for automated capability assessment of malware samples. The goal of
Capability Assessment is to discover the behaviors a malware sample can exhibit.
We investigate the usage of unsupervised machine learning for intelligent capability
assessment to tackle the ever-increasing volume of newly discovered malware.

Until now, malware capability assessment has primarily been a manual effort [11,
40, 50], resulting in behavioral profiles that are quickly outdated. Although machine
learning-based behavioral analysis approaches exist, they construct a single model
that describes either the whole network or each protocol usage individually [47].
However, the network traffic originating from even a single host can be so complex
that these models fail to correctly represent malicious behaviors [23]. This is why
MalPaCA splits the network traffic between hosts into uni-directional connections
and considers them as discrete behaviors (or capabilities).

MalPaCA clusters similar connections based on their temporal similarity, where
each cluster represents a unique capability. A malware sample is then represented by
its Behavioral Profile—a list of cluster membership of its connections. We represent

1https://www.cybersecurity-insiders.com/top-15-cyber-threats-for-2019/.
2https://www.av-test.org/en/statistics/malware/.
3In white-box ML, all steps are explainable—the input, output and how the output was generated.
In contrast, only the input and output are known in black-box ML, e.g., Neural Networks.

https://www.cybersecurity-insiders.com/top-15-cyber-threats-for-2019/
https://www.av-test.org/en/statistics/malware/
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malware’s behavioral profiles in a Directed Acyclic Graph that shows different sam-
ples’ overlapping behaviors. The graph also shows malware samples from different
families behaving identically, showing potentially incorrect family labels. MalPaCA
is novel as it adopts sequential features that keep the temporal nature of the traffic
intact. It uses a combination of Dynamic Time Warping and Ngrams to measure the
distance between network connections. MalPaCA utilizes only 20 packets to identify
the network behavior shown by any given connection. It also utilizes only the packet
header features that are available even when traffic is encrypted.

The last step ofMalPaCA’s pipeline is assigning capability labels to clusters. Each
discovered cluster is visualized using temporal heatmaps to determine which capa-
bility it captures. The temporal heatmaps provide a goal- and data-driven approach
to investigate the performance of MalPaCA’s clustering, by clearly showing the net-
work connections that are grouped together. This eliminates the need to manually
investigate thousands of network traces. Security analysts can also fine-tune Mal-
PaCA’s parameters by visualizing the temporal heatmaps. The key advantage of this
methodology is its white-box and explainable nature: it provides a visual represen-
tation to investigate MalPaCA’s rationale for finding behavioral similarity. In doing
so, we address the interpretability problem of typical black-box analysis methods,
which is an important stepping stone towards better detection methods.

We evaluateMalPaCA’s performance on 1.1kmalware samples (resulting in 3.6M
packets) coming from 15 families collected in the wild. We also compare the effec-
tiveness of sequence clustering by comparing with an existing method based on
frequently-used statistical (aggregate) features [54].

Results. The results are very promising: (i) MalPaCA’s capability assessment works
on low quality datasets with as low as 20 packets in each trace, though additional
traces result in more thorough profiles; (ii) It successfully discovers several attacking
capabilities, such as port scans and reuse ofC&Cservers; (iii)MalPaCAdemonstrates
the effectiveness of sequence clustering by producing an error rate of 8.3% compared
to 57.5% obtained from statistical features; and (iv) MalPaCA uncovers multiple
discrepancies between behavioral clusters and family labels.We believe this happens
either because the labels are incorrect or because the overlapping families share
significant behavior.

Contributions. We summarize our contributions as follows:

1. We show that short sequences of packet header features are capable of character-
izing network behavior;

2. We build MalPaCA4—a tool to automatically build network behavioral profiles
of malware samples collected in the wild;

3. We introduce temporal heatmaps—a data-driven and visualization-based cluster
evaluation method that requires no ground truth;

4. We show the behavioral relationships betweenmalwares using a Directed Acyclic
Graph, which also uncovers discrepancies between behavioral clusters and tradi-
tional family labels;

4https://github.com/azqa/malpaca-pub.

https://github.com/azqa/malpaca-pub
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Fig. 1 Disagreements between AV vendors. Rows: YARA labels, Columns: AVClass labels,
Counts: # malware binaries

5. We demonstrate the effectiveness of sequence clustering, which shows less errors
than an existing solution based on statistical features.

2 The Problem with AV Labels

This section presents an analysis of our experimental dataset to emphasize the prob-
lem of inconsistent AV labels and motivates the need for explainable behavioral
profiles. We compare the agreement rate of two popular malware labeling practices,
i.e., YARA rules5 and VirusTotal6 labels. The malware collection process is given in
Sect. 5.1. Table2 shows the number of binaries in each malware family.

The malware binaries in the dataset are labeled using YARA rules. Each malware
binary also has a Virus Total (VT) scan report. On average, there are 61 AV vendors
for each malware sample, out of which 25.8% vendors per malware sample return a
null detection, i.e., unable to detect it as malicious. The rest assign various labels
to each malware binary.

5https://virustotal.github.io/yara/.
6https://www.virustotal.com/.

https://virustotal.github.io/yara/
https://www.virustotal.com/
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Since each AV vendor has its own vocabulary, a trivial filtering attempt on a
VT report cannot identify the true underlying family label. Sebastian et al. [49]
have developed an open source tool, called AVClass, that takes VT reports as input
and returns the most likely family label. If, after all the filtering steps, AVClass is
unable to identify the family name, it declares the malware as a “SINGLETON”.
We use AVClass to reduce a VT report into its representative VT family label. In
the experimental dataset, AVClass returns “SINGLETON” for 101/1196 (8.4%) VT
reports, while assigning 42 unique family labels to the rest 1095 malware binaries.

Figure1 shows the label agreement rate between the YARA and VT labels. The
y-axis shows the YARA labels. The x-axis shows the VT labels as aggregated by
AVClass. For brevity, “OTHERS” category contains all samples for which counts <
10.Only 3 family names co-exist in bothYARAandVT labels, i.e.,Citadel,Gozi,
and Ramnit. Also, although Ramnit is detected under the same name by both
YARAandVT, 10malware samples are still labeled differently. In fact, YARA family
labels are assigned 4.2 distinct VT labels on average, while VT labels are assigned
1.5 distinct YARA labels on average. One example demonstrating this is: YARA:
Zeus-VM-AES (29 samples) are predicted asVT:razy (10 samples),gamarue (6
samples),cerber (3 samples),upatre (3 samples),farfli (1 samples),locky
(1 samples), hpcerber (1 samples), and SINGLETON (4 samples). This makes it
very hard to understand the collected malware. One fair conclusion is that some VT
labels can be considered as sub-families of the popular YARA malware family. For
example, Dinwod and Banbra seem to be sub-families of Blackmoon, but the
names alone do not explain which attributes set them apart from each other.

3 Related Work

The field of malware analysis has existed since the first malware was discovered over
30 years ago. Since then, multiple machine learning-based approaches have been
proposed to automate malware detection and analysis. In this section, we present a
brief survey of the major research challenges targeted by prior work. In doing so, we
highlight how our work fills the gaps across various research themes.

3.1 Challenges in Malware Labeling

Existing research has repeatedly shown that malware family labels are noisy and
inconsistent. Popular tools, such as VirusTotal, run multiple AV scanners and return
an array of labels predicted by each scanner, without any indication as to which is
correct. There is also an absence of a common vocabulary that all security compa-
nies can follow to label malware samples. Maggi et al. [37] propose a method to find
inconsistencies in malware family labels generated by Anti-Virus (AV) scanners.
Mohaisen et al. [38] are the first to measure the accuracy, consistency, and com-



386 A. Nadeem et al.

pleteness of AV scanners. Their results show that AV vendors produce inconsistent
labels 50% of the time, on average. These findings resulted in research that found
ways to deal with the inconsistencies in the family labels. Kantchelian et al. [29]
proposed an algorithm based on Expectation Maximization and Bayesian models
that assign weights to each vendor’s trustworthiness. Sebastián et al. [49] developed
a useful open source tool, called AVClass that determines the likely family name
after performing heavy filtering on all the predicted labels. However, these methods
do not address the key underlying issue—malware family labels are black-box with
limited interpretability.

Behavioral profiles complement family names in that they also describe the behav-
ior of a sample. Capability assessment is done to characterize a malware family,
which has primarily been a manual effort resulting in behavioral profiles that are
quickly outdated. Also, most of the prior works in capability assessment utilize infor-
mation extracted from the static analysis of malware executables: Black et al. [11]
bridge the semantic gap between low-level API calls and high-level behaviors in
order to build a taxonomy of banking malware. They extract API calls by statically
analyzing a banking malware dataset, and map them to high-level behaviors manu-
ally with the help of domain experts. Sharma et al. [50] recently proposed a method
to automatically build behavioral profiles. They select a few high-level capabilities
possessed by malware by investigating the literature, and map them to low-level
behaviors extracted from the static analysis of 56 malware samples. In contrast, we
propose MalPaCA that automatically builds dynamic (network) behavioral profiles.

3.2 Research Objectives: Detection Versus Analysis

Existing research on malware comes in two strains: detection-based and analysis-
based. Malware detection and signature generation dominates existing literature,
with the end-goal of optimizing metrics [1, 2, 7, 10, 17, 24, 35, 36, 39, 44, 46,
54, 60], while only a few of these works also help the readers understand and
analyze the obtained results [23, 43]. Recently, however, several malware analy-
sis approaches have been proposed that aim to improve malware understandability
rather than optimizing detection rates. These methods provide essential insights that
can improve malware detection methods. Black et al. [11] perform an in-depth anal-
ysis of the key behaviors of banking malware families and how they have evolved
over time.Moubarak et al. [40] discuss malware evolution and the structural relation-
ship between several potentially state-sponsoredmalware. In [51], the authors cluster
Android malware samples and build a dendrogram of the malware families showing
overlapping code snippets. Sharma et al. [50] build behavioral profiles of malware
samples using static analysis. In this chapter, we follow a similar approach and build
an analysis tool, MalPaCA.MalPaCA uses unsupervised clustering to group network
connections that behave similarly and uses them to construct malware’s behavioral
profiles.
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Although clustering is an unsupervised technique, existing literature has often
used some notion of ground truth (family labels) to evaluate the cluster quality.
Bayer et al. [7] evaluate their malware clustering approach using labels obtained
by the majority voting of 6 AV vendors. Perdisci et al. [44] evaluate their malware
clustering approach by introducing a notion of AV graphs that depict the agreement
between AV vendors as a measure of cluster cohesion and separation. In [35], the
authors report the precision and recall of higher than 0.95 of their malware clustering
approach. They use the majority voted family labels from 25 AV vendors as their
ground truth. Li et al. [33] have examined the challenges of evaluating malware
clustering and have advised caution when deciphering highly accurate clustering
results as they can be impacted by spatial bias: performing majority voting on AV-
provided labels is hazardous, since if most of the AV vendors are in agreement, it
typically indicates that the families are already easy to detect. In this chapter, we
propose a data-driven and visualization-based method to evaluate clusters, without
using family labels. Instead of optimizing clustering accuracy, our emphasis is on
explainability of the results.

3.3 Challenges in Malware Behavior Modeling

Modeling software behavior is a challenging task, but modeling malware’s behavior
is even more challenging since malware authors specifically try to evade detec-
tion [15]. Static analysis of malware binaries and disassembled code has been a
popular malware analysis approach in the literature [6, 11, 21, 35, 39]. Increasingly
more malware uses obfuscation techniques to evade analysis, causing difficulties for
statically analyzing malware. The obfuscation attempts gave rise to dynamic analy-
sis of malware that executes a malware sample in a sandbox and collects execution
traces from it. Dynamic analysis is generally divided into two strains: System activ-
ity and Network traffic analysis. Network traffic analysis collects traces of malware
samples remotely using existing network monitoring infrastructures [44], making
it much easier to apply. However, the behavioral analysis and signature generation
literature is heavily focused on system activity analysis, e.g., see [7, 16, 50, 52].
Research suggests that network traffic shows the core behavior of malware [14].
Although sometimes encrypted, network traffic contains the direct interaction with
the attacker. In this section, we discuss three major challenges of modeling malware
behavior via traffic analyses.

Feature selection.Network traffic analysis is generally applied when designing Net-
work IntrusionDetection Systems (NIDS), which either detect anomalous traffic [24]
or generate signatures for malware families [22, 26, 55]. Deep Packet Inspection
(DPI) is one commonly used approach in NIDS to extract information from packet
payloads. For example, Rafique et al. [46] use DPI for automatic signature gener-
ation of malware families. Although effective, downsides to DPI-based approaches
are that they are privacy-intrusive, operationally expensive, and do not work out-of-
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the-box for encrypted traffic. There are also approaches that detect specific attacks.
For example, HTTP-based malware can be detected using specific features from the
Application header [44]. Similar approaches exist for DNS-based malware [32, 45],
and HTTPs-based malware [4]. In the absence of the HTTP, DNS, and TLS headers,
these approaches seize to work.

Several works use coarse or high-level features that are protocol-agnostic and
work out-of-the-box even with encrypted traffic. For example, Conti et al. [17] use
sequences of packet sizes to characterize the network behaviors generated byAndroid
applications. Aiolli et al. [2] use various statistical features computed over packet
sizes to detect bitcoin wallet application functionality. Acar et al. [1] use network
traffic direction and packet lengths to identify commands issued to smart home IoT
devices. These works aim to characterize benign network behaviors. In the malware
domain, Tegeler et al. [54] use average packet size, average packet inter-arrival time,
average connection duration, and the FFT of C&C communication to detect bot-
infected hosts. Garcia [23] builds a behavioral Intrusion Detection System by using
the size, duration, and periodicity of Netflows. In this chapter, we also use high-level
features from packet headers to characterize malware’s network behavior. To the best
of our knowledge, network traffic analysis has not been used in capability assessment
or for generating behavioral profiles of malware samples.

Feature representation. Machine learning methods take a feature vector as input,
which can represent anything ranging from a single behavior to a complete malware
sample. Multiple observations for a single feature are aggregated into statistical fea-
tures, e.g., mean packet size of a netflow. Existing literature is filled with approaches
that use such statistical features, e.g., see [5, 10, 23, 54]. Although they are compu-
tationally efficient, they lose local behavioral details, which can be a problem when
the goal is to characterize that behavior.

Another approach that is gaining momentum is the use of sequential features.
Numeric sequential features are typically used in two ways: Discretized and Raw
sequences. A raw sequence (or a continuous sequence) is composed of the original
observations, while a discretized sequence encodes the observations into a finite set
of bins. Discretizing sequences is typically faster and makes measuring distances
easier. Pellegrino et al. [43] learn state machines from discretized netflow data in
order to detect bot-infected traffic, while Hammerschmidt et al. [27] use it to cluster
host behavior over time. Lin et al. [36] detect anomalies in industrial water treatment
plant by using discretized sequences from sensor readings. In practice, malware-
related data is often scarce and noisy. In this case, discretization can lose important
information.

Raw sequences are rarely used for modeling network traffic because it is non-
stationary and contains noise (e.g., empty acknowledgment packets or retransmis-
sions), and delays (due to varying network latency) [3]. Ntlangu et al. [41] provide a
brief overview of time-series approaches to model network traffic. As noted in [41],
due to the nature of network traffic and their distributions, (auto-)regressive models
struggle to accurately capture them. Kim et al. [30] use a multi-variate time-series
regression model on host-based resource consumption, such as CPU and memory
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usage (not network traffic) to identify Android malware. Conti et al. [17] propose a
method to detect the action performed by Android applications using raw sequential
features. To the best our knowledge, MalPaCA is the first method that successfully
uses short raw sequential features to characterize malware network behavior.

Distance measure. The notion of behavioral similarity requires the means to be
able to measure distance between two objects. The choice of the distance measure is
directly dependent on the data type of the feature set (e.g., numeric or categorical)
and the way the features are represented (e.g., statistical or sequential). For statistical
features, Euclidean distance is most commonly used. For instance, Chan et al. [16]
use Euclidean distance to determine similar Android processes.

Calculating the distance between sequential features is more challenging because
they may not always be properly aligned. For categorical (or discretized) sequences,
there exist Bioinformatics inspired solutions using sequence alignment [57]. They
require pre-computed substitutionmatrices,which currently do not exist formalware.
There also exist String matching solutions frequently used in the Natural Language
Processing domain. Baysa et al. [8] use Levenshtein, or edit distance, to measure the
similarity between two malware binary files. A sequence can also be broken down
into sub-sequences, represented as Ngrams, which have been used to model genomic
sequences [58] and to match files [34]. They have also been used to classify malware
families in [13]. Longest Common Subsequence (LCS) with k-gaps can also be used
to measure distances between sequences. The gaps account for the occasional noise.
Chan et al. [16] use LCS to group similar resource-access-patterns (not network
traffic) in Android applications.

A few distance measures exist for raw or continuous sequences. Verwer et
al. [56] have used Kullback–Leibler divergence to measure the distance between
two sequences while learning probabilistic automata. However, it requires substan-
tial amount of data to measure the similarity with a high confidence, which is not
always available for malware. Another promising distancemeasure is Dynamic Time
Warping (DTW). DTW has been used in fingerprint verification [31], characterizing
DDoS attack dynamics [59], and measuring similarity in android application behav-
ior [17].MalPaCA uses a combination of DTW and Ngrams to measure the distance
between network connections.

4 MalPaCA: Malware Packet Sequence Clustering and
Analysis

The ultimate goal of MalPaCA is to construct a behavioral profile for each malware
sample that is more descriptive than its family label. Research shows that malware
belonging to the same family exhibits similar behaviors since malware authors often
share code and resources [53]. To this end, MalPaCA automatically identifies the
various network behaviors exhibited by malware samples, and groups samples that
share common behavior. MalPaCA does not assume any a priori knowledge about
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Fig. 2 MalPaCA: Connections clustered on behavioral similarity; malware described using con-
nections’ cluster membership

the malware’s family name or its capabilities, and hence can be used out-of-the-box
for other malware datasets. The profiles are built using observed behavior since only
the executed functionality is relevant for behavioral profiling. Profiles for individual
families can be enriched further by observing additional traffic.We releaseMalPaCA
to the public.7

Figure2 illustrates the architecture of MalPaCA with its five phases (P1 to P5).
Network traces (Pcap files) are given as input to the system, which are split into
uni-directional packet streams (or connections) that are clustered based on tempo-
ral similarities. Each cluster is assigned a capability label by visualizing tempo-
ral heatmaps showing connections’ feature values. Each malware sample (and its
associated Pcap file) is then described by a Cluster Membership String, forming a
descriptive behavioral profile.

4.1 Connection Generation (P1)

A connection is defined as an uninterrupted uni-directional list of all packets sent
from source IP to destination IP address. This means 8.8.8.8→ 123.123.123.123 is a
different connection than 123.123.123.123 → 8.8.8.8. We refer to these asOutgoing
and Incoming connections based on their direction with respect to the localhost.
Note that we do not use IP address as a feature, except to create connections.

Ideally, a connection captures one complete capability. The connection length
can vary significantly depending upon the behavior and network delays. Since the
networkdelay is an artifact of the network, not of themalware, it is important to reduce
its impact when measuring behavioral similarity. MalPaCA does so by capping the
sequence length to a fixed threshold, avoiding artifacts that are due to connection
length.

7https://github.com/azqa/malpaca-pub.

https://github.com/azqa/malpaca-pub
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Existing research suggests that it is possible to identify behavioral differences
from a handshake.8 Wang et al. [61] use the first 3 to 12 bytes of packet headers
in order to identify the different so-called Protocol Format Messages. MalPaCA
builds upon this idea and utilizes the first few packets of a connection to identify the
capability. This is a fixed threshold denoted by the tunable parameter len. It should
be large enough to allow the handshake to be modeled, the length of which is often
unknown in network traffic analysis. Larger values of len not only include noise
artifacts but also increase the computational resources required to process longer
connections.

4.2 Feature-Set Extraction (P2)

The choice of feature-set is crucial for determining the kind of behaviors that are iden-
tified by MalPaCA. Two considerations motivate our choice: (1) MalPaCA should
be generalizable to more than one type of malware; (2) The feature set is small and
easy to extract. Hence, we do not use features extracted from the packet payload
itself as they limit the applicability of the method. We also do not use IP addresses
as they are easy to spoof and are considered Personally Identifiable Information9 in
countries like the Netherlands. We use four sequential features: (i) packet size, (ii)
time interval, (iii) source port, (iv) destination port. All four features are indepen-
dent of the protocol type, making them available for every connection. Each feature
is represented as a sequence of raw observations for subsequent packets. Although
these features are simplistic, we demonstrate that their sequential nature captures
malware behavior effectively.

Packet size ( f ps) measures the size of the IP datagram of each packet in bytes.
Time interval ( fin) captures the inter packet arrival time in milliseconds.We use time
interval because malware tends to show a periodic behavior, e.g., bots send periodic
heartbeat packets10 to inform the C&C server about the infected host. MalPaCA is
meant to be used on a single network at a time since using inter-arrival time makes
connections collected on different latency networks incomparable.

We use both source ( fsp) and destination ( fdp) port numbers because the con-
nections are uni-directional. We particularly use source port so the analysts can limit
the use of problematic ports in case of outgoing connections. The usage of certain
vulnerable ports can also indicate suspicious activity. Each connection is represented
by four sequences, one per feature, C = ( f ps, fin, fsp, fdp).

8Handshake traffic refers to the introductory few packets of a connection.
9https://www.enterprisetimes.co.uk/2016/10/20/ecj-rules-ip-address-is-pii/.
10https://www.ixiacom.com/company/blog/mirai-botnet-things.

https://www.enterprisetimes.co.uk/2016/10/20/ecj-rules-ip-address-is-pii/
https://www.ixiacom.com/company/blog/mirai-botnet-things
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4.3 Distance Measure (P3)

Three considerations motivate our choice of distance measure: (1) Different distance
measures are applicable on numeric and categorical data types; (2) The distancemea-
sure should be intuitive to help understand the results; (3) It must produce results
that are resilient to delays and noise, which are common characteristics of network
traces. The last consideration was added after observing distance measures produc-
ing results that were artifacts of network delays. MalPaCA uses a combination of
Dynamic Time Warping (DTW) and Ngram analysis to measure distance between
two connections.

Dynamic Time Warping. DTW [9] is used to measure distances between numeric
sequences (packet size and time interval) due to its robustness to delays and noise. It
aligns two time-series thatmay contain distortions (orwarps) in the time-axis. Itmaps
local substructures in one sequence to those of the other sequence. For two sequences
a = [a0, a1, . . . , an] and b = [b0, b1, . . . , bm] the DTW distance ddtw(a, b) is

ddtw(a, b) =
n+1∑

i=1

m+1∑

j=1

||ai − b j || + min

⎧
⎪⎨

⎪⎩

d(ai−1, b j ),

d(ai , b j−1),

d(ai−1, b j−1))

(1)

The output is a similarity score, which we normalize using:

dndtw(a, b) = ddtw(a, b) − minx,y{ddtw(x, y)}
maxx,y{ddtw(x, y)} − minx,y{ddtw(x, y)} (2)

Ngram analysis. An Ngram is defined as the set of n (called order ) consecutive
items in a given sequence. The larger the value of order , the more sequence structure
is captured. A sequence of port numbers is converted into a set of Ngrams, called its
Ngram profile using a sliding window of length order . An example for order = 2 is
shown in Table1, where A, B,C, D are hypothetical port numbers. Let G be the set
of all unique Ngrams occurring in the dataset. For each packet sequence a, a vector
ag = [ f (g1, a), f (g2, a), . . . , f (g|G|, a)] is generated, containing the occurrence
frequencies f (gi , a) in a of each Ngram gi ∈ G.

Wemeasure the distance between twoNgramprofiles usingCosine distance.Other
distance measures exist for Ngrams, but Cosine has shown promise in measuring

Table 1 Example—Distance measurement using Ngram analysis

Input Ngram profiles G = [AB, BC, CB,
DA, CA]

Cosine distance

ABCBC AB, BC,CB, BC [1, 2, 1, 0, 0] 0.3876

DABCA DA, AB, BC,CA [1, 1, 0, 1, 1]
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similarity between categorical sequences [63]. It is determined by the angle between
two non-zero vectors. The similarity value lies between 0 and 1, where 1 means that
the two vectors are the same (parallel to each other) and 0 means they are completely
different (orthogonal to each other). For two sequences in their vector representations
a = [v1, . . . , v|G|] and b = [v′

1, . . . , v
′
|G|], the Cosine distance dcos(a, b) is

dcos(a, b) = 1 −
∑|G|

i=1 ai × bi√∑|G|
i=1 a

2
i ×

√∑|G|
i=1 b

2
i

(3)

Finally, the DTWand cosine distances are combined to calculate the final distance
between two connections:

dconn(A, B) = dndtw(aps, bps) + dndtw(ain, bin) + dcos(asp, bsp) + dcos(adp, bdp)

4
(4)

where A = (aps, ain, asp, adp) and B = (bps, bin, bsp, bdp) are connections and their
features: packet sizes {a|b}ps , intervals {a|b}in , source port Ngram profiles {a|b}ps ,
and destination port Ngram profiles {a|b}dp.

4.4 HDBScan Clustering (P4)

A key strength of MalPaCA is the clustering algorithm it uses. There exists a familial
structure among malware behaviors [51, 55]. Therefore, it makes sense to use hierar-
chical clustering tomodel the relationships between them.We have usedHierarchical
Density-Based Spatial Clustering of Applications with Noise (HDBScan) [12] for
this purpose. The key strengths of HDBScan are twofold: it automatically determines
the optimal number of clusters, and it generates high-quality clusters that remain sta-
ble over time. It also has minimal tunable parameters, which allow configurations to
be generalizable.

HDBScan requires a pairwise distancematrix as input. It does not force data points
to become part of clusters—all data points whose membership to a cluster cannot
be determined are considered to be noise. In our context, noise refers to behaviors
that are either too different from all the others or cannot be clearly assigned to one
cluster. An ideal dataset with clear cluster boundaries will have no noise. Hence,
in the presence of a less ideal dataset, noise is discarded to extract high-quality
clusters. Keep in mind that discarding excessive connections as noise can also be
counterproductive. We discuss this limitation in Sect. 8.
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4.5 Cluster Visualization (P5)

Formalizing cluster quality without ground truth is a fundamental challenge in clus-
tering. Although some metrics exist that capture cluster quality (i.e., Silhouette
index [48] and DB Index [18]), they require a notion of distance from a cluster
centroid, which is difficult to obtain for sequences. In MalPaCA, each connection
is represented by four sequences and collapsing these into a single cluster quality
measure loses important local behavior. Instead, we define the following properties
to be indicative of good clustering: (1) Cluster homogeneity is high—a cluster con-
tains only similar connections. (2) Cluster separation is high—each cluster captures
a unique capability. (3) Clusters are small and specific so they only capture the core
capability. The first two properties ensure that we obtainmeaningful capability-based
clusters, the third ensures that only the core capabilities are captured.

We use temporal heatmaps for a white-box cluster analysis. We graphically show
the connection features and rely on human visualization skills to determine cluster
quality. Analysts can inspect heatmaps to determine which behavior is captured in a
cluster. This gives them control over the clustering results. We leave the automation
of this process as future work.

Four temporal heatmaps are associated with each cluster, one corresponding to
each feature. Each row in a heatmap shows the corresponding feature sequence of the
first len packets in a connection. Figure3 shows example temporal heatmaps. The
figure highlights one dissimilar connection among the eight in the cluster, clearly
highlighted in red.

Clustering Error Analysis. Visualizing the cluster content helps to identify which
connections belong in a cluster. A Clustering Error (CE) is defined as a connection
that is placed in cluster Xdespite half of its features being different from the remaining
connections in the cluster. Since each feature holds equal weight, we only consider a
connection as CE if more than two features differ. We consider two features different
if more than 50% of their sequences differ so significantly that a different color
appears on the temporal heatmap. This is where human visualization skills play a
key role in determining feature similarity. Figure3 shows a cluster containing one
CE, highlighted in red. It shows that three out of four feature values of this connection
are different from other connections in the same cluster. The clustering error rate is

Fig. 3 A clustering error: one connection does not belong in the cluster it is assigned
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calculated as CEs
Clustersi ze , i.e.,

1
8 . We measure the error rate of each cluster similarly

and calculate the average percentage of errors per cluster as a notion of clustering
quality.

In practice, we first establish the common majority by finding two or more con-
nections that are most similar to one another, i.e., the ones that have the least mutual
distance. The pairwise distancematrix computed during clustering is used as a lookup
table for finding such connections. Figure3 shows a simple case where the rightful
owners of a cluster are easily visible since 7 out of 8 connections are very similar.
The rest of the connections are compared with the rightful owners and are either
considered as true positives or clustering errors, depending on how many feature
sequences differ.

5 Experimental Setup

In this section, we describe the dataset used for the experiments and the configuration
details of MalPaCA’s parameters.

5.1 Experimental Dataset

MalPaCA was evaluated on financial malware samples collected in the wild. We
worked in collaboration with a security company that specializes inmalware analysis
and threat intelligence. They collected the dataset independently. The dataset con-
tained 1196malware samples thatwere collected over one year. Eachmalware sample
was executed in a sandboxed environment containing several virtual machines. The
resulting network traffic was stored in a Pcap file. Some samples showed sandbox
evasion. They were re-executed in a VM with different settings. This resulted in a
total of 1196 Pcap files. Uni-directional connections were extracted, resulting a total
of 8997 connections containing 3.6M packets.

The dataset contains 15 famous financial malware families. They were labeled by
the security company using their proprietary YARA rules. Additionally, each sample
was submitted to VirusTotal (VT), which hosts 68 AV vendors. For each sample, VT
returns a report containing detection results from each vendor. Table2 summarizes
the dataset.

5.2 MalPaCA Parameters

MalPaCA has four parameters, i.e., order of the Ngrams used for port numbers, len
of packet sequences for features, and the two parameters of HDBScan clustering
algorithm: Minimum_Cluster_Size and K_nearest_neighbors. In our experi-
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Table 2 Experimental dataset: malware binaries and their associated YARA family labels

Family name (YARA) # Malware binaries

Blackmoon (B) 887 (74.10%)

Gozi-ISFB (GI) 122 (10.19%)

Citadel (C) 70 (5.85%)

Zeus-VM-AES (ZVA) 29 (2.42%)

Ramnit (R) 22 (1.83%)

Dridex-Loader (DL) 15 (1.25%)

Zeus-v1 (Zv1) 10 (0.83%)

Zeus-Panda (ZPa) 10 (0.83%)

Gozi-EQ (GE) 7 (0.58%)

Dridex RAT Fake Pin 7 (0.58%)

Dridex (D) 6 (0.50%)

Zeus-P2P (ZP) 4 (0.33%)

Zeus (Z) 3 (0.25%)

Zeus OpenSSL 2 (0.17%)

Zeus Action 2 (0.16%)

Total 1,196 (100%)

ments, we have used trigrams (order = 3) for port numbers, because they form
a good trade-off between performance and data sparsity [28]. In the experimen-
tal dataset, the length of connections is highly skewed towards shorter sequences,
with a mean of 20 packets. We use this mean as len.11 Out of 8997 connections
in the dataset, 733 connections are longer than len. The HDBScan algorithm uses
Minimum_Cluster_Size = 7 and K_nearest_neighbors = 7. These parameters
were selected by tuningMalPaCA on a configuration dataset (5% of the usable data).
The experiments were run on a machine with Intel Xeon E3-12xx v2 processor, 8
cores and 64GB RAM.

The specificity of the identified behaviors is highly dependent on the length of
sequences, i.e., len. Based on preliminary experiments with len = {5, 10, 20, 50},
we found that len = 20 provided the optimal trade-off between behavior character-
ization and the amount of connections that were discarded. For smaller values, the
connections were too generic. For larger values, connections with slight behavioral
differences were considered very different. For example, at len = 50 several clusters
capture slightly different variations of port scans, while at len = 20 those variations
merge to form a few strong clusters.

11len can be adjusted based on the required behavioral specificity.
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6 Malware Capability Assessment

MalPaCA produces 18 clusters from the dataset. There are, on average, 25 connec-
tions in each cluster. The algorithm discards 284 connections as noise. The remaining
449 connections originate from 216 Pcap files. Each cluster captures a unique behav-
ior, listed in Table3 along with the malware families that show that behavior. We
describe a few of the interesting behaviors obtained by MalPaCA. We also discuss
how host-based blacklisting [25, 54], which is a very common practice in security
companies, will fail to detect these behaviors.

1. Connection Direction Identification.MalPaCA successfully identifies the direc-
tion of traffic flow even though no such feature is used. The clusters and their
traffic direction are listed in Table3. Interestingly, we continue to see this pat-
tern even when port-related features are removed from the clustering. Hence, the
sequence of packet sizes and their inter-arrival time are collectively indicative of
the flow direction. This important trait identifies whether the suspicious behavior
is originating from inside the network or from outside it.

Table 3 For each cluster, (i) # connections, (ii) # malware families, (iii) Capability label, and (iv)
Traffic direction

Cluster # Conns # Families Behavior Direction

c1 39 9 (Common) SSDP traffic Out

c2 90 9 (Common) Broadcast traffic Out

c3 9 4 LLMNR traffic Out

c4 49 5 Systematic port
scan

In

c5 56 5 Randomized port
scan

Out

c6 25 1 (Rare) Connection spam In

c7 23 1 (Rare) Connection spam Out

c8 16 1 (Rare) Malicious subnet Out

c9 11 1 (Rare) Connection spam Out

c10 9 2 HTTPs traffic Out

c11 8 2 C&C Reuse In

c12 18 4 HTTPs traffic In

c13 25 5 Misc. In

c14 10 3 Misc. In

c15 20 3 Misc. In

c16 12 3 Misc. Out

c17 19 3 Misc. Out

c18 10 4 Misc. Out



398 A. Nadeem et al.

2. Device Probing. Some clusters capture connections that connect to the same host.
For example, one cluster contains all connections broadcasting to 239.255.255.
250, which is used by the SSDP protocol to find Plug and Play devices. Another
cluster captures all connections broadcasting to 224.0.0.252, which is used by the
Link-Local Multicast Name Resolution (LLMNR) protocol to find local network
computers. These clusters could easily have been obtained by using IP-based
blacklist, but they would not have clustered behaviorally similar hosts with dif-
ferent IP addresses.

3. Split-personality C&C Servers. In several instances, an infected host was
observed responding differently to the same request, so much so that the result-
ing connections ended up in different clusters. For example, two connections
of Gozi-ISFB contact 46.38.238.XX, which has been reported as a mali-
cious server located in Germany. The outgoing connections are identical as they
both request for the same resource. However, the responses received are very
different—the first response contains a small packet followed by a series of 1200-
byte packets, while the second one contains a periodic list of small and large
packets in the range of 600–1800 bytes. This insight portrays a better picture of
the behavior of said C&C server. In contrast, a blacklist would have grouped these
connections since they belong to the same host.

4. Port Scan Detection. Some clusters capture a Port Scan,12 which is a method
for determining open ports on a device in a network. Port scans are usually a
part of the reconnaissance phase in the attack kill chain [62]. Utilizing sequences
of port numbers enables us to detect any suspicious temporal behavior before
an attack happens. The clusters identify two types of port scans: (i) Systematic
port scan where ports are swept incrementally, which is seen as a gradient in the
corresponding temporal heatmap; and (ii) Randomized port scan where ports are
contacted randomly, which shows up in the heatmap as a checkered pattern. See
Fig. 4. Port scans carried out by different connections are clustered together if they
contact the same range of port numbers, which increases their mutual similarity.
This result is in direct contrast with Mohaisen et al. [39] who conclude that port
numbers are the least useful features in distinguishing malware families.

5. C&C Reuse by Multiple Families. One cluster contains connections from dif-
ferent families that contact the same C&C server, and their temporal heatmaps
look behaviorally identical. The cluster includes three Zeus-Panda (ZPA) con-
nections and one Blackmoon (B) connection who contact a single IP address
(encoded as 009), which has been reported as malicious. Figure5 shows the tem-
poral heatmaps of this cluster. The said connections are highlighted in green. This
result suggests that either the YARA rules mislabeled one of the samples or that
authors share C&C servers.

6. Malicious Subnet Identification. In some instances, several connections contact
IP addresses that fall in the same subnet. For example, two Zeus-VM-AES con-
nections contact one host from 62.113.203.XX subnet, while another connection
detected 15 days later contacts another host in the said subnet. Similarly, two

12https://whatismyipaddress.com/port-scan.

https://whatismyipaddress.com/port-scan
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Fig. 4 Clusters showing systematic and randomized port scans

Fig. 5 Similar Zeus-Panda and Blackmoon connections

Zeus-Panda connections and one Blackmoon connection contact two hosts in
88.221.14.XX subnet. This gives actionable intelligence to ISPs to investigate if
other IPs in these subnets are also hosting C&C servers.

6.1 Cluster Characterization

We analyze the temporal heatmaps for the behavioral trend of each cluster in order
to label it. MalPaCA’s goal is to identify different behaviors in the network traffic
and it does so regardless of their maliciousness and origin. Hence, the resulting
clusters contain both, benign and malicious behaviors. The common clusters can be
discarded if they contain known-benign behaviors, drastically reducing the number
of connections to analyze.
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We successfully assigned labels to 12 clusters. For example, in the case of connec-
tion spam, the whole cluster is filled with almost identical connections originating
from the same host. We validate this observation by specifically looking at the net-
work traffic of these connections to see exactly what behavior is shown. Six clusters
were left unlabeled since we could not identify the captured capability simply by
exploring temporal heatmaps. These particular clusters were also the source of clus-
tering errors. Table3 shows that SSDP and Broadcast traffic are the most common
behaviors and are both specific to Windows OS. Since the dataset is composed of
Windows-based malware, it explains why 9 out of 12 families have connections
in these two clusters. On the contrary, Connection Spam and Malicious Subnet are
the rarest behaviors.Malicious Subnet only captures Zeus-VM-AES. Gozi-ISFB
opens numerous connections, creating a Connection Spam. The incoming connec-
tions are stored in one cluster, while the outgoing traffic is split into two clusters due
to the difference in the type of requests. This detailed behavioral analysis enables
the identification of interesting clusters to analyze further.

Performance Analysis. The temporal heatmaps show that on average, 8.3% con-
nections per cluster are CEs—their feature sequences are different from their fellow
connections in a cluster. Themajority of the errors originate from the last six clusters.
Note that this error rate is low for an unsupervised setting since not all connections
require manual revision.

6.2 Constructing Behavioral Profiles

MalPaCA identifies 18 distinct behaviors in the dataset. Hence, eachmalware sample
(and its associated Pcap file) can be described as a binary string of 18 characters,
known asCluster Membership String (CMS), where each character signifies whether
the Pcap’s connections were found in that cluster. Precisely, for a malware sample x ,
CMSx = bn ,whereb ∈ {0, 1},n is the number of behavioral clusters, andbi indicates
whether x’s connections are present in the i th cluster. TheClusterMembership String
can be regarded as the behavioral profile of a given malware sample. In this work,
we consider binary CMSs because we are only interested in the behavior overlap of
different malware samples. Non-binary CMSx = zn , for connection counts z ∈ Z,
is an interesting avenue to investigate.

Table4 lists the composite behavioral profiles for each YARA malware family
in the dataset—each YARA family is represented as the union of all its samples’
CMSs. Dridex, Gozi-EQ, Zeus-P2P and Zeus-v1 only generate either SSDP
or Broadcast traffic. Since this traffic is obtained from standard Windows services,
it is likely that the malware was not activated when the associated Pcap files were
recorded. Hence, the only connections observed from these families seem benign.
Gozi-ISFB has the most diverse profile, with connection in 16 out of 18 clusters,
which exhibit attacking capabilities such as Port Scans and Connection Spamming.
Specifically, the Connection Spamming behavior is never exhibited by any other



Beyond Labeling: Using Clustering to Build Network Behavioral Profiles … 401

Table 4 Composite behavioral profiles ofmalware families. Columns:YARA labels, Rows: Cluster
labels by MalPaCA

B C D DL GE GI R Z ZP ZPa Zv1 ZVA

SSDP
traffic

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – ✓ – ✓

Broadcast
traffic

✓ ✓ – ✓ – ✓ ✓ – ✓ – ✓ ✓

LLMNR
traffic

✓ ✓ – ✓ – ✓ – – – – – –

System.
port scan

✓ ✓ – – – ✓ ✓ – – – – ✓

Random.
port scan

✓ ✓ – – – ✓ ✓ – – – – ✓

In conn
spam

– – – – – ✓ – – – – – –

Out conn
spam

– – – – – ✓ – – – – – –

Malicious
Subnet

– – – – – – – – – – – ✓

In HTTPs – ✓ – ✓ – ✓ – – – ✓ – –

Out
HTTPs

– – – – – ✓ – – – ✓ – –

C&C
reuse

✓ – – – – – – – – ✓ – –

Misc. ✓ ✓ – ✓ – ✓ – ✓ – ✓ – ✓

# Clusters 7 11 1 8 1 16 4 2 1 7 1 7

malware family in the dataset. There are two reasons for Gozi-ISFB’s diversity:
(i) Gozi-ISFB is the largest family under consideration, so many of its behav-
ioral aspects are captured; and (ii) Gozi-ISFB opens more connections per sample
compared to other families. For example, one sample of Gozi-ISFB opens 111
connections, while the average number of connections for other malware samples
is 3.

6.3 Showing Relationships Using DAG

We extract the behavioral relationships between the 216 Cluster Membership Strings
by considering it aSetMembershipproblem. It dictates that, e.g.,Set A= {0,1,1}
is a subset of Set B={1,1,1} because Set B encapsulates all of Set A’s
behaviors and more. Similarly, Set C= {0,0,0} is a subset of every other set
in this domain. Set C represents Pcaps where all connections were discarded as
Noise due to significant differences in behavior.
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G4: Broadcast, Https

G3: Portscans, Subnets, Broadcast

G1: Connection spam, Https

G2: C&C reuse

000000000000001010 
Citadel(2)

Gozi-ISFB(7)

010000000000001010 
Gozi-ISFB(1)

100000000000001010 
Citadel(1)

Gozi-ISFB(1)

000000000000101110 
Gozi-ISFB(1)

000000000101101010 
Gozi-ISFB(1)

010000000000101110 
Gozi-ISFB(1)

010000000101001010 
Gozi-ISFB(2)

000001101101101010 
Gozi-ISFB(1)

000001100101000000 
Gozi-ISFB(1)

100000000000000000 
Blackmoon(1)

Citadel(3)
Dridex(2)

Gozi-EQ(1)
Gozi-ISFB(6)
Ramnit(1)

ZeuS-VM-AES(1)

010000000000000000 
Blackmoon(22)

Citadel(4)
Dridex-Loader(2)
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Fig. 6 MalPaCA’s behavioral profiles: The DAG shows the behavioral relationships between mal-
ware samples. Each node shows a CMS and compares with YARA family labels (+ # Pcaps)

We represent the relationships between Pcap files using a Directed Acyclic Graph
(DAG), shown in Fig. 6. Each node represents a unique Cluster Membership String.
Multiple Pcaps can share a single CMS IFF their behaviors overlap. The nodes with
minimumHammingdistance are connected using edges. Thismethod allowsmultiple
parents, i.e., a CMS of "111" may be reached by both "110" and "101". Note
that this graph is constructed purely from a data-driven approach without using any
knowledge of family labels. In combination with human intelligence, we believe that
it can serve as a powerful tool in understanding malware’s network behavior.

7 Comparative Analysis

We show MalPaCA’s results in relation to existing work by conducting two com-
parative analyses: (i) Comparing MalPaCA’s behavioral profiles with YARA family
labels, and (ii) Comparing MalPaCA’s cluster quality with an existing approach that
uses statistical features.

7.1 Comparison with Traditional Family Labels

Weuse theDAG fromFig. 6 to contrast betweenYARA labels andMalPaCA’s behav-
ioral profiles. Each node shows a unique CMS, and the number of malware families
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that share it. For example, the node with the CMS of "000000000000001010"
is labeled as "Citadel(2), Gozi-ISFB(7)" because 2 Citadel Pcaps and
7 Gozi-ISFB Pcaps show the same behavior—their connections are co-located
in the clusters 15 and 17. The root (on the left most side) contains the Pcaps
for which all connections were discarded as Noise. Pcaps showing subsequently
more behaviors are placed towards the right of the graph, with the right most node
"111110000001100000 Citadel(1)" containing one Citadel Pcap that
shows the most diverse number of behaviors. Note that observing additional network
traffic will enrich this graph even further.

The graph shows four major partitions (denoted by G1-G4), indicating that there
are four high-level behavioral sub-groups present in the dataset. The G2 group
containing only one node stands out. It contains Pcaps from Zeus-Panda and
Blackmoon, and are the only malware samples that share a C&C server. This
observation makes a strong case that these particular Pcap files, albeit originating
from two families, are behaviorally alike. The G3 group contains Pcaps from various
families that are observed doing port scans and broadcasting behaviors. Some servers
from this group also form malicious subnets. The G4 group, on the other hand, is
the largest group that uses HTTPs traffic along with broadcasting behaviors. The G1
group is highly dominated by Gozi-ISFB and is observed doing Connection spam-
ming, along with using HTTPs traffic. Some connections from these Gozi-ISFB
Pcaps were placed in the behavioral clusters that we failed to identify (c13-c18).

The node location for some malware families is intriguing. For example, most
of the Zeus-VM-AES Pcaps that are associated with malicious subnets are located
in the G3 group, together with Ramnit files that are associated with port scans.
Dridex-Loader is only observed in group G4, while most of the Citadel
Pcaps are also seen in the same. Blackmoon and Gozi-ISFB have Pcaps that
are distributed over all of the behavioral sub-groups. However, Gozi-ISFB is seen
dominating the G1 group, while Backmoon dominates the G4 group. Furthermore,
as observed from Table4, Gozi-ISFB’s Pcaps collectively show 18 discrete behav-
iors and Citadel’s Pcaps show 11 behaviors. However, Citadel shows more
discrete behaviors in a single Pcap compared to Gozi-ISFB, as Gozi-ISFB’s
Pcaps contain more (behaviorally similar) connections on average. Also, each of
Gozi-ISFB’s Pcaps is more behaviorally dissimilar than Citadel’s Pcaps.

Zeus-Panda’s Pcaps are clearly divided into two behavioral sub-groups—one
in G2 group with Blackmoon samples and the other in the G4 group. Zeus-v1,
Zeus-P2P, ZeuS, Gozi-EQ, and Dridex are only seen at the left side of the
graph, indicating that none of their distinguishing behaviors were present in the
dataset.

To conclude, the DAG clearly identifies the discrepancies in the malware’s behav-
ioral profiles and their traditional family names. A significant portion of the analysis
pipeline is automated and unsupervised. The temporal heatmaps together with the
DAG are intended for human-in-the-loop exploration—they actively support mal-
ware behavior analysis and provide more insightful characterization of malware
than current family labels.



404 A. Nadeem et al.

7.2 Comparison with Statistical Features

Baseline Setup. We compare the cluster quality of using sequential versus statistical
features. We use the existing method by Tegeler et al. [54] (called baseline, hence-
forth) to compare our results since they not only use statistical features, but also
incorporate periodic behavior using Fourier transform to detect bot-infected network
traffic. Although the goal of their study diverges from ours, their feature selection
approach is aligned with ours. For objectivity, we keep the rest of the pipeline as
explained in Sect. 4. Taking guidelines from Tegeler et al. [54] and adapting them
to our problem statement, each connection in the baseline is characterized by (1)
average packet size, (2) average interval between packets, (3) average duration of a
connection, and (4) themaximumPower Spectral Density (PSD) of the FFT obtained
by the binary sampling approach by Tegeler et al. [54]—the signal is 1 when a packet
is present in the connection and is 0 in between.

Cluster quality comparison. The baseline method results in 22 clusters, with an
average of 21.2 connections per cluster. 265 connections are discarded as noise.
These results are in comparison with sequence clustering—18 clusters; on average
25 connections per cluster; 284 connections discarded as noise.

Baseline seems to perform better with smaller cluster size on average and dis-
carding fewer connections as noise. However, a deeper analysis shows the obtained
clusters lack quality.

1. With statistical features, connections present in most clusters appear very dif-
ferent from their fellow connections. On average, 57.5% connections per clus-
ter have visually different temporal heatmaps, compared to 8.3% for sequen-
tial features. Figure7 shows a cluster from the baseline. It has nine connec-
tions, out of which six are errors based on their behavior. The rightful own-
ers of the cluster are the connections that have the least mutual distance, i.e.,
GI|090|178 →021,GI|073|610→131,GI|073|610→346. The other
six connections have minor differences in all features, except the source port
which is 6 for all. They were clustered together because their statistical fea-
tures had the least mutual distance, i.e., average_t ime_interval = 19.77 ±
3.11; f f t = 0.07 ± 0.05; average_duration = 397.7 ± 61.7; average_bytes
= 573.3 ± 113.8. The temporal heatmaps clearly show behavioral differences in
nearly all clusters.

2. Statistical features are also unable to identify the direction of network traffic. In
the cluster shown in Fig. 7, there is one incoming connection in the cluster along
with eight outgoing ones. A similar trend is observed for 19 out of 22 clusters.
In contrast, sequences of packet size and inter-arrival time are enough to identify
traffic direction in sequence clustering.
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Fig. 7 Baseline clusters: Six out of nine behaviorally different connections clustered together in
baseline version

In summary, while statistical features may be simple to use, they lose behavioral
information that plays a crucial role in accurately determining similarities in network
behavior. Sequence clustering obtains significantly better clusters. Given that mod-
eling behavioral profiles is already challenging for short sequences, it is remarkable
that MalPaCA can identify network behaviors using only 20 packets and 4 coarse
features.

8 Limitations and Future Work

Limitations. Performance optimizations are needed to make sequence clustering
more efficient and scalable. In MalPaCA, DTW forms the main bottleneck as the
length of sequences grows longer. There exist streaming versions of DTW that com-
pute results in real time. One such technique is presented by Oregi et al. [42]. More-
over, using Locality Sensitive Hashing [6, 7] can make MalPaCA more scalable.

Density-based clustering discards rare events as noise. This makes sense if the
dataset is noisy. However, in the presence of a purely malicious dataset, the con-
nections that lie in lower density regions may represent rare attacking capabilities,
which may be discarded in the current implementation.

Malware authors can try to evade detection by modifying malware’s code. A
common assumption is that malware can easily evade detection by adding random
delays and padding to packets. However, there is a limit to what an attacker can
change. For example, a TCP handshake needs to happen in a certain way because
this is how the protocol dictates it. Also, padding-related provisions are already
standardized by some commonly used protocols, such as TLS making it difficult
to hide “coarse” features like packet sizes and inter-arrival times [19]. We expect
that MalPaCA is evasion resilient, e.g., since MalPaCA only uses coarse features,
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evading it is not a trivial task.Moreover, the usage ofDynamicTimeWarping distance
makes it resilient to random delays [20] and due to the relative distance measures
used in HDBScan, randomized port numbers are already clustered together, as shown
in Sect. 6. If, after all this, attackers still manage to evade MalPaCA, the malware
sample will end up with a new behavioral profile, making analysts more prone to
analyze it. More study is needed to strengthen these claims.

Future work. There are several research directions this work can take: (i) We will
work on fully automating the capability assessment of malware by building a direc-
tory of observed behaviors, which will be used for cluster labeling. (ii) We will test
and improve MalPaCA’s adversarial evasion resilience. (iii) We will integrate addi-
tional behavioral data sources in MalPaCA so the profiles are based on all static,
system-level, and network behavior. (iv) Since MalPaCA is a generic technique, we
will test its applicability in building behavioral profiles for everyday-use software.

9 Conclusions

In this chapter, we propose MalPaCA, an intuitive network traffic-based tool to per-
formmalware capability assessment: It groups capabilities using sequence clustering
and uses the cluster membership to build network behavioral profiles. We also pro-
pose a visualization-based cluster evaluation method whose key advantage is its
white-box nature, allowing malware analysts to investigate, understand, and even
correct labels, if necessary. We implement MalPaCA and evaluate it on real-world
financial malware samples collected in the wild. MalPaCA independently identi-
fies attacking capabilities. We build a DAG to show overlapping malware behaviors
and discover a number of samples that do not adhere to their family names, either
because of incorrect labeling by black-box solutions or extensive overlap in the
families’ behavior. We also show that sequence clustering outperforms existing sta-
tistical features-based methods by making only 8.3% errors, as opposed to 57.5%.
MalPaCA, with its visualizations and capability assessment, can actively support
the understanding of malware samples. The resulting behavioral profiles give mal-
ware researchers a more informative and actionable characterization of malware than
current family designations.
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An Empirical Analysis of Image-Based
Learning Techniques for Malware
Classification

Pratikkumar Prajapati and Mark Stamp

Abstract In this chapter, we consider malware classification using deep learning
techniques and image-based features. We employ a wide variety of deep learning
techniques, including multilayer perceptrons (MLP), convolutional neural networks
(CNN), long short-term memory (LSTM), and gated recurrent units (GRU). Among
our CNN experiments, transfer learning plays a prominent role—specifically, we
test the VGG-19 and ResNet152 models. As compared to previous work, the results
presented in this chapter are based on a larger and more diverse malware dataset, we
consider a wider array of features, and we experiment with a much greater variety
of learning techniques. Consequently, our results are the most comprehensive and
complete that have yet been published.

1 Introduction

Traditionally, malware detection and classification has relied on pattern matching
against signatures extracted from specific malware samples. While simple and effi-
cient, signature scanning is easily defeated by a number ofwell-known evasive strate-
gies. This fact has given rise to statistical and machine learning-based techniques,
which aremore robust to codemodification. In response, malwarewriters have devel-
oped advanced forms ofmalware that alter statistical and structural properties of their
code, which can cause statistical models to fail.

In this chapter, we compare deep learning (DL) models for malware classifica-
tion. For most of our deep learning models, we use image-based features, but we also
experiment with opcode features. The DL models consider include a wide variety
of neural networking techniques, including multilayer perceptrons (MLP), several
variants of convolutional neural networks (CNN), and vanilla recurrent neural net-
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works (RNN), as well as the advanced RNN architectures known as long short-term
memory (LSTM) and gated recurrent units (GRU). We also experiment with a com-
plex stacked model that combines both LSTM and GRU. In addition, we consider
transfer learning, in the form of the ResNet152 and VGG-19 architectures.

The remainder of this chapter is organized as follows. In Sect. 2 we provide rel-
evant background information, including a discussion of related work, an overview
of the various learning techniques considered, and we introduce the dataset used in
this research. Section3 is the heart of the chapter, with detailed results from a wide
variety of malware classification experiments. Section4 concludes the chapter and
provides possible directions for future work.

2 Background

In this section, we discuss related work and we introduce the various learning tech-
niques that are considered in this research. We also discuss the dataset that we use in
our malware classification experiments. In addition, we provide the specifications of
the hardware and software that we use to conduct the extensive set of experiments
that are summarized in Sect. 3.

2.1 Related Work

To the best of our knowledge, image-based analysis was first applied to the mal-
ware problem in [16], where high-level “gist” descriptors are used as features. More
recently, [44] confirmed the results in [16] and presented an alternative deep learn-
ing approach that produces equally good—if not slightly better—results, without the
extra work required to extract gist descriptors.

Transfer learning, where the output layer of an existing pre-trained DL model is
retrained for a specific task, is often used in image analysis. Such an approach allows
for efficient training, as a newmodel can take advantage of a vast amount of learning
that is embedded in the pre-trained model. Leveraging the power of transfer learning
has been shown to yield strong image-based malware detection and classification
results [44].

There is a vast malware analysis literature involving classic machine learning
techniques. Representative examples include [2, 5, 8, 25, 28, 42]. Intuitively, we
might expect models based on image analysis to be somewhat stronger and more
robust, as compared tomodels that rely onopcodes, byten-grams, or similar statistical
features that are commonly used in malware research.

The work presented in this chapter can be considered an extension of the work
in [6], where image-based transfer learning is applied to the malware classification
problem. We have extended this previous work in multiple dimensions, including a
larger, more challenging, and more realistic dataset. In addition, we perform much
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more experimentation with a much wider variety of techniques, and we consider a
large range of hyperparameters in each case.

2.2 Learning Techniques

In this section, we provide a brief introduction to each of the learning techniques
considered in this paper. Additional details on most of the learning techniques dis-
cussed here can be found in [27], which includes examples of relevant applications of
the techniques. We provide additional references for the techniques discussed below
that are not considered in [27].

2.2.1 Multilayer Perceptron

Aperceptron computes aweighted sumof its components in the formof a hyperplane,
and based on a threshold, a perceptron can be used to define a classifier. It follows
that a perceptron cannot provide ideal separation in cases where the data itself is
not linearly separable. This is a severe limitation, as something as elementary as the
XOR function is not linearly separable.

A multilayer perceptron (MLP) is an artificial neural network that includes multi-
ple (hidden) layers in the formof perceptrons. Unlike a single layer perceptron,MLPs
are not restricted to linear decision boundaries, and hence an MLP can accurately
model more complex functions. The relationship between perceptrons and MLPs
is very much analogous to the relationship between linear support vector machines
(SVM) and SVMs based on nonlinear kernel functions.

Training an MLP would appear to be challenging since we have hidden layers
between the input and output, and it is not clear how changes to the weights in these
hidden layers will affect each other or the output. Today, MLPs are generally trained
using backpropagation. The discovery that backpropagation can be used for training
neural networks was a major breakthrough that made deep learning practical.

2.2.2 Convolutional Neural Network

Generically, artificial neural networks use fully connected layers. The advantage of
a fully connected layer is that it can deal effectively with correlations between any
points within training vectors. However, for large training vectors, fully connected
layers are infeasible, due to the vast number of weights that must be learned.

In contrast, a convolutional neural network (CNN) is designed to deal with local
structure. A convolutional layer cannot be expected to perform well when significant
information is not local. The benefit of CNNs is that convolutional layers can be
trained muchmore efficiently than fully connected layers, due to the reduced number
of weights.
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For images, most of the important structure (edges and gradients, for example)
is local. Hence, CNNs are an ideal tool for image analysis and, in fact, CNNs were
developed precisely for image classification. However, CNNs have performedwell in
a variety of other problem domains. In general, any problem for which local structure
predominates is a candidate for CNNs.

2.2.3 Recurrent Neural Network

MLPs and CNNs are feedforward neural networks, that is, the data feeds directly
through the network, with no “memory” of previous feature vectors. In a feedforward
network, each input vector is treated independently of other input vectors. While
feedforward networks are appropriate for many problems, they are not well suited
for dealing with sequential data.

In some cases, it is necessary for a classifier to have memory. Suppose that we
want to tag parts of speech in English text (i.e., noun, verb, etc.), this is not feasible if
we only look at words in isolation. For example, the word “all” can be an adjective,
adverb, noun, or pronoun, and this can only be determined by considering its context.
A recurrent neural network (RNN) provides a way to add memory (or context) to a
feedforward neural network.

RNNs are trained using a variant of backpropagation known as backpropagation
through time (BPTT).A problem that is particularly acute inBPTT is that the gradient
calculation tends to be become unstable, resulting in “vanishing” or “exploding”
gradients. To overcome these problems, we can limit the number of time steps, but
this also serves to limit the utility of RNNs. Alternatively, we can use specialized
RNN architectures that enable the gradient to flow over long time periods. Both long
short-term memory and gated recurrent units are examples of such specialized RNN
architectures. We discuss these two RNN architectures next.

2.2.4 Long Short-Term Memory

Long short-term memory (LSTM) networks are a class of RNN architectures that
are designed to deal with long-range dependencies. That is, LSTM can deal with
extended “gaps” between the appearance of a feature and the point at which it is
needed by the model. In plain vanilla RNNs this is generally not possible, due to
vanishing gradients.

The key difference between an LSTM and a generic vanilla RNN is that an LSTM
includes an additional path for information flow. That is, in addition to the hidden
state, there is a so-called cell state that can be used to, in effect, store information
from previous steps. The cell state is designed to serve as a gradient “highway”
during backpropagation. In this way, the gradient can “flow” much further back with
less chance that it will vanish (or explode) along the way.

As an aside, we note that the LSTMarchitecture has been one of themost commer-
cially successful learning techniques ever developed. Among many other applica-
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tions, LSTMs play a critical role in Google Allo [11], Google Translate [43], Apple’s
Siri [13], and Amazon Alexa [9].

2.2.5 Gated Recurrent Unit

Due to its wide success, many variants on the LSTM architecture have been consid-
ered. Most such variants are slight, with only minor changes from a standard LSTM.
However, a gated recurrent unit (GRU) is a fairly radical departure from an LSTM.
Although the internal state of a GRU is somewhat complex and less intuitive than
that of an LSTM, there are fewer parameters in a GRU. As a result, it is easier to
train a GRU than an LSTM, and consequently less training data is required.

2.2.6 ResNet152

Whereas LSTM uses a complex gating structure to ease gradient flow, a residual
network (ResNet) defines additional connections that correspond to identity layers.
These identity layers allow a ResNet model to, in effect, skip over layers during
training, which serves to effectively reduce the depth when training and thereby
mitigate gradient pathologies. Intuitively, ResNet is able to train deeper networks
by training over a considerably shallower network in the initial stages, with later
stages of training serving to flesh out the intermediate connections. This approach
was inspired by pyramidal cells in the brain, which have a similar characteristic, in
the sense that they bridge “layers” of neurons [26].

ResNet152 is a specific deep ResNet architecture that has been pre-trained on
a vast image dataset. As one of our two examples of transfer learning, we use this
architecture, which includes an astounding 152 layers. That is, we use the ResNet152
model, where we only retrain the output layer specifically for our malware classifi-
cation problem.

2.2.7 VGG-19

VGG-19 is a 19-layer convolutional neural network that has been pre-trained on a
dataset containing more than 106 images [24]. This architecture has performed well
in many contests, and it has been generalized to a variety of image-based problems.
Here, we use the VGG-19 architecture and pre-trained model as one of our two
examples of transfer learning for image-based malware classification.
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Table 1 Type of each malware family

Family Type Family Type

Adload [29] Trojan downloader Obfuscator [37] VirTool

Agent [30] Trojan Onlinegames [22] Password stealer

Alureon [35] Trojan Rbot [38] Backdoor

BHO [32] Trojan Renos [31] Trojan downloader

CeeInject [34] VirTool Startpage [33] Trojan

Cycbot [3] Backdoor Vobfus [39] Worm

DelfInject [20] VirTool Vundo [40] Trojan downloader

FakeRean [36] Rogue Winwebsec [41] Rogue

Hotbar [1] Adware Zbot [23] Password stealer

Lolyda [21] Password stealer Zegost [4] Backdoor

2.3 Dataset

Our dataset consists of 20malware families. Three of thesemalware families, namely,
Winwebsec, Zeroaccess, and Zbot, are from the Malicia dataset [15], while the
remaining 17 families are taken from the massive malware dataset discussed in [12].
This latter dataset is almost half a terabyte and contains more than 500,000 malware
samples in the form of labeled executable files.

Table1 lists the 20 families used in this research, along with the type of malware
present in each family. Next, we briefly discuss each of these 20 malware families.

Adload downloads an executable file, stores it remotely, executes the file, and
disables proxy settings [29].

Agent downloads trojans or other software from a remote server [30].
Alureon exfiltrates usernames, passwords, credit card information, and other con-

fidential data from an infected system [35].
BHO can perform a variety of actions, guided by an attacker [32].
CeeInject uses advanced obfuscation to avoid being detected by antivirus soft-

ware [34].
Cycbot.G connects to a remote server, exploits vulnerabilities, and spreads through

a backdoor [3].
DelfInject sends usernames, passwords, and other personal and private informa-

tion to an attacker [20].
FakeRean pretends to scan the system, notifies the user of supposed issues, and

asks the user to pay to clean the system [36].
Hotbar is adware that shows ads on webpages and installs additional adware [1].
Lolyda sends information from an infected system and monitors the system. It

can share user credentials and network activity with an attacker [21].
Obfuscator tries to obfuscate or hide itself to defeat malware detectors [37].
Onlinegames steals login information and tracks user keystroke activity [22].
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Rbot gives control to attackers via a backdoor that can be used to access informa-
tion or launch attacks, and it serves as a gateway to infect additional sites [38].

Renos downloads software that claims the system has spyware and asks for a
payment to remove the nonexistent spyware [31].

Startpage changes the default browser homepage and can performothermalicious
activities [33].

Vobfus is a worm that downloads malware and spreads through USB drives or
other removable drives [39].

Vundo displays pop-up ads and it can download files. It uses advanced techniques
to defeat detection [40].

Winwebsec displays alerts that ask the user for money to fix nonexistent security
issues [41].

Zbot is installed through email and shares a user’s personal information with
attackers. In addition, Zbot can disable a firewall [23].

Zegost creates a backdoor on an infected machine [4].

The number of samples per malware family for the various features is given in
Table2. The “Binaries” lists the number of binary executable files available, the
“Images” column lists the number of binaries that were successfully converted to
images, and the “Opcodes” column lists the number of samples from which a suffi-
cient number of opcodes were extracted. From the table we see that 26,413 samples
are used in our image-based experiments, and 25,901 samples are used in our opcode-
based experiments.

2.4 Hardware

Table3 lists the hardware configuration of the machine used for the experiments
reported in this chapter. This machine was assembled for the purpose of training
deep learning models and it is highly optimized for this task.

2.5 Software

For our deep learning neural network experiments, we have used PyTorch [18].
In addition, for general data processing and related operations, we employ both
Numpy [17] and Pandas [14]. In addition, all code that was developed as part of this
project is available at [19].
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Table 2 Samples per malware family

Family Samples

Binaries Images Opcodes

Adload 1050 1050 1044

Agent 842 842 817

Alureon 1328 1328 1327

BHO 1176 1176 1159

CeeInject 894 894 886

Cycbot 1029 1029 1029

DelfInject 1146 1146 1097

Fakerean 1063 1063 1063

Hotbar 1491 1491 1476

Lolyda 915 915 915

Obfuscator 1445 1445 1331

Onlinegames 1293 1293 1284

Rbot 1017 1017 817

Renos 1312 1312 1309

Startpage 1136 1136 1084

Vobfus 926 926 924

Vundo 1793 1793 1784

Winwebsec 3651 3651 3651

Zbot 1786 1786 1785

Zeroaccess 1120 1120 1119

Total 26,413 26,413 25,901

3 Deep Learning Experiments and Results

In this section, we present results of a wide variety of neural network-based exper-
iments. First, we consider MLP experiments, followed by CNN experiments, and
then RNN experiments. We consider a large number of CNN and RNN cases. We
conclude this section with a pair of models based on transfer learning. The MLP,
CNN, and transfer learning models are based on image features, while the RNN
experiments use opcode sequences.

We consider various different sizes for images, in each case using square images.
To generate a square image from an executable, we first specify a width N , with
the height determined by the size of the sample. We then resize the image so that it
is N × N , which has the effect of stretching or shrinking the height, as required.
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Table 3 Hardware characteristics

Feature Description Details

CPU Brand and model Intel i9-9940X

Clock frequency 3.30GHz

Number of threads 28

Cache 19.25MB Intel Smart Cache

CPU liquid cooling Brand and model Corsair Hydro Series H115i
PRO RGB

Fan speed 1200RPM

Fan size 140mm

Radiator size 280mm

DRAM Brand and model Corsair
CMK32GX4M2A2666C16

Speed 2666MHz

Capacity 16 × 8 = 128GB

Motherboard Brand and model ASUS WS x299 Sage

GPU Brand and model Nvidia Titan RTX

Total video memory 24 GB GDDR6

Tensor cores 576

CUDA cores 4608

Base clock (MHz) 1350MHz

Single-precision performance 16.3 TFLOPS

Tensor performance 130 TFLOPS

Storage Brand and model Sabrent 2TB Rocket NVMe

Read speed 3400MB/s

Write speed 2750MB/s

3.1 Multilayer Perceptron Experiments

We experimented with various perceptron-based neural networks. The model we
present here uses square input image and has four hidden layers, each using the
popular rectified linear unit (relu) activation function. The output from the final
hidden layer is passed to a fully connected output layer. The output layer is used to
classify the sample—since we have 20 classes of malware in our dataset, the output
vector is 20-dimensional. The hyperparameters used for these MLP experiments are
given in Table4.

Figure2 gives the confusionmatrix for the best results obtained in ourMLP exper-
iments. The hyperparameters used for this best case are those shown in boldface in
Table4. In this case, the DelfInject and Obfuscator families have the lowest detection
rates, with both only slightly above 50% accuracy. The overall accuracy is 0.8644.
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Table 4 MLP model parameters

Classifier Hyperparameter Tested values Accuracy

Train Test

MLP image dim [64, 128] 0.9529 0.8644

learning rate [0.001, 0.0001]
batch size 256

epochs 50

3.2 Convolutional Neural Network Experiments

We have conducted a large number of convolutional neural network (CNN) experi-
ments. In this section we first discuss CNN experiments based on two-dimensional
images. Then we consider one-dimensional CNN experiments, where the malware
images are vectorized. We also present results for CNN experiments using opcodes
extracted from PE files, as opposed to forming images based on the raw byte values
in the executable files. The opcodes were extracted using objdump, and we use the
resulting mnemonic opcode sequence (eliminating operands, labels, etc.) as features.
The hyperparameters tested for all of these CNN experiments are given in Table5.

3.2.1 Two-Dimensional Image CNNs

Based on two-dimensional image features, we test the CNN model hyperparame-
ters listed under “CNN 2-d” in Table5. All of these 2-d CNN experiments use two
convolutional layers and three fully connected layers. The first convolutional layer
takes as input a square gray-scale image with one channel and outputs data with 12
channels using a kernel size of three, padding of two, and a stride of one. A relu
activation and max pooling is applied to the result before passing it to the second
convolutional layer. This second layer outputs data with 16 channels, with the other
parameters being the same as the first convolutional layer. Again, relu activation and
max pooling is applied before passing data to the first fully connected layer. This
first fully connected layer outputs a vector of dimension 120. After applying relu
activation, the data is passed to the second fully connected layer, which reduces the
output to a 90-dimensional vector. Finally, relu activation is again applied and the
data passes to the last fully connected layer, which is used to classify the sample, and
hence is 20-dimensional. For all image sizes less than 1024, we execute our CNN
2-d models for 50 epochs; for the case of 1024 × 1024 images, we use 8 epochs due
to the costliness of training on these large images.

The best overall accuracy obtained for our CNN 2-d experiments is 0.8955.
Figure3 gives the confusion matrix for the best case. We note that the Obfusca-
tor family is again the most difficult to distinguish.
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Table 5 CNN model parameters

Classifier Hyperparameter Tested values Accuracy

Train Test

CNN 2-d image dim [64, 128, 256, 1024] 0.9294 0.8955

learning rate [0.001, 0.0001]
batch size 256

epochs 50

CNN 1-d image dim [1024, 2048, 4096, 8192] 0.8445 0.8664

learning rate [0.001, 0.0001]
batch size 256

epochs 20

CNN 1-d refined conv1d 1 out channel [64, 128] 0.8538 0.8932

conv1d 1 kernel size [16, 32]
conv1d 1 stride [2, 8]
conv1d 2 out channel [32, 64, 128]
conv1d 2 kernel size [8, 16]
conv1d 2 stride [2, 4]
image dim 4096

learning rate 0.001

batch size 512

epochs 15

CNN opcode opcode length [500, 5000] 0.8418 0.8282

num filters [3, 6, 9]
filter size [[12, 6], [6, 12], [12, 24]]
embedding dim [128, 512]
learning rate 0.001

batch size 256

epochs 50

3.2.2 Vectorized Image CNNs

Recent work has shown promising results for malware classification using one-
dimensionalCNNson“image”data [10].Consequently,we experimentwithflattened
images, that is, we use images that are one pixel in height. A possible advantage of
this approach is that two-dimensional results can depend on the width chosen for the
images. We perform two sets of such experiments, which we denote as CNN 1-d and
CNN 1-d refined, the latter of which considers additional fine-tuning parameters.
The hyperparameters tested for these two cases are given in Table5.

Our CNN 1-d model uses two one-dimensional convolutional layers, followed
by three fully connected layers. The first convolution layer takes in an image with
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one channel and outputs data with 28 channels based on a kernel size of three. The
second convolutional layer outputs data with 16 channels and again uses a kernel of
size three. The first fully connected layer outputs a vector of 120 dimensions, which
is reduced to 90 dimensions by the second fully connected which, in turn, is reduced
to 20 dimensions by the third (and last) fully connected layer. We have applied relu
activations in all layers.

The confusion matrix for our best CNN 1-d case is given in Fig. 4. The overall
accuracy in this case is 0.8664. A handful of families (Agnet, Alureon, DelfInject,
Obfuscator, and Rbot) have accuracies below 80%, which represents the majority of
the loss of accuracy.

The CNN 1-d refined tests use the same basic setup as our CNN 1-d experiments,
but includes different selections of hyperparameters. As expected, these additional
parameters improved on the CNN 1-d case, as the best overall accuracy attained
for our CNN 1-d refined experiments is 0.8932. Qualitatively, the CNN 1-d refined
results are similar (per family) to the CNN 1-d experiments, so we have omitted the
confusion matrix for this case.

3.2.3 Opcode-Based CNNs

We also apply 2-d CNNs to opcode features. For each malware sample, we use the
first N opcodes from each binary file, where N ∈ {500, 5000}. We also experiment
with various other parameters, as indicated in Table5.

The results for the best choice of parameters for our opcode-based CNN experi-
ments are summarized in the confusion matrix in Fig. 5. Perhaps not surprisingly, the
results in this case are relatively weak, with an overall accuracy of 0.8282. However,
it is interesting to note from the confusion matrix that some of the families that are
consistently misclassified at high rates by image-based CNN models are classified
with high accuracy by this opcode-based approach. For example, DelfInject is classi-
fied at no better than about 71% in our previous CNN experimetns, but it is classified
with greater than 90% accuracy using the opcode-based features.

3.3 Recurrent Neural Networks

Next, we consider a variety of experiments based on various recurrent neural network
(RNN) architectures. Specifically, we employ plain vanilla RNN, LSTM, and GRU
models. We also consider a complex LSTM-GRU stacked model. The hyperparam-
eters tested in these experiments are summarized in Table6.
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Table 6 RNN model parameters

Classifier Hyperparameter Tested values Accuracy

Train Test

RNN embedding dim [256, 1024] 0.7710 0.7294

hidden dim [256, 1024]
num layers [1, 3]
directional [uni-dir, bi-dir]

learning rate 0.001

batch size 128

epochs 20

LSTM embedding dim [256, 1024] 0.9362 0.8916

hidden dim [256, 1024]
num layers [1, 3]
directional [uni-dir, bi-dir]

learning rate 0.001

batch size 128

epochs 20

GRU embedding dim [256, 1024] 0.9411 0.9003

hidden dim [256, 1024]
num layers [1, 3]
directional [uni-dir, bi-dir]

learning rate 0.001

batch size 128

epochs 20

Stacked embedding dim [256, 1024] 0.9525 0.8990

hidden dim [256, 1024]
num layers [1, 3]
directional [uni-dir, bi-dir]

LG [True, False]

learning rate 0.001

batch size 128

epochs 20

3.3.1 Vanilla RNN, LSTM, and GRU

We have trained our plain vanilla RNNs, LSTMs, and GRU-based models using 20
epochs in each case, with a learning rate of 0.001, a batch size of 128, and based on the
first 500 opcodes from each malware sample. We performed multiple experiments
with various other parameters, as given in Table6. In addition, we have applied a
dropout layer with 0.3 probability for all models with more than one layer.

The vanilla RNN experiments performed poorly, with an overall accuracy of
just 0.7294, and hence we omit the confusion matrix for this case. On the other hand,
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both the LSTMandGRUmodels performwell, with accuracies of 0.8916 and 0.9003,
respectively. The confusion matrix for the GRU case is given in Fig. 6. Since the
LSTMresults are so similar,we omit theLSTMconfusionmatrix. FromFig. 6,we see
that, qualitatively, the results of ourGRUexperimentsmore closelymatch those of the
CNN opcode-based experiments than the CNN image-based experiments. However,
quantitatively, our GRU opcode-based experiments yield significantly better results
than our CNN opcode-based experiments.

3.3.2 Stacked LSTM-GRU Model

As in [7], we have also experimented with stacked LSTM and GRU layers. The
experiments in this chapter test more parameters and we use a larger dataset, as
compared to [7]. A configuration option, which we refer to as LG, is used to decide
whether the LSTM is stacked on top of the GRU (LG = false in this case) or GRU is
stacked on top of the LSTM (LG = true). For example, when LG is “true,” opcode
inputs are first passed to LSTM layers, with the output of the LSTM (i.e., the hidden
cells) becoming input to the GRU layers. The output of the GRU is then passed to
fully connected layers that are used to classify the input data. We have applied a
dropout layer with 0.3 probability for models with more than one layer.

The best overall accuracy we obtain for our stacked LSTM-GRU experiments
is 0.8990; the confusion matrix for this case is given in Fig. 7. This is somewhat
disappointing, as it is in between the results obtained for our LSTMandGRUmodels.

3.4 Transfer Learning

Finally, we have considered two popular image-based transfer learning models,
namely RestNet152 and VGG-19. These are models that have been pre-trained on
large image datasets, and we simply retrain the last few layers for the malware
dataset under consideration, while the earlier layers are frozen during training. The
parameters used in these experiments are summarized in Table7.

For ResNet152, the model parameters for layer four were unfrozen for training.
We also added two more layers of fully connected neurons for training. Resnet152
is pre-trained based on 1000 classes and hence its last fully connected layer has
output dimensions of 1000. We reduce this output dimension to 500 via another fully
connected layer, and an additional fully connected layer further reduces the output
dimension to 20, which is the number of classes in our dataset.

For VGG-19, we froze all layers except 34, 35, and 36. As with ResNet152, we
added two more layers of fully connected neurons to reduce the output dimension
from 1000 to 20.

For all of our transfer learning experiments, we use a batch size of 256 and
trained each model for 20 epochs with learning rates of 0.001 and 0.0001. Both
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Table 7 Transfer learning model parameters

Classifier Hyperparameter Tested values Accuracy

Train Test

ResNet152 image dim 256 0.9811 0.9150

learning rate [0.001, 0.0001]
batch size 256

epochs 20

VGG-19 image dim 256 0.9690 0.9216

learning rate [0.001, 0.0001]
batch size 256

epochs 20

ResNet152 andVGG-19 expect image dimensions of 224 × 224 and hence we resize
our 256 × 256 images to 224 × 224.

The performance of these transfer learning models was the best of our deep learn-
ing experiments, with ResNet152 achieving an overall accuracy of 0.9150 and VGG-
19 doing slightly better at 0.9216. The confusionmatrix forVGG-19 is given in Fig. 8;
we omit the confusion matrix for ResNet152 since it is similar, but marginally worse.
As compared to the other image-based deep learning models we have considered,
we see marked improvement in the classification accuracy of the most challenging
families, such as Obfuscator.

3.5 Discussion

The results of the malware classification experiments discussed in this section are
summarized in Fig. 1. We see that among the deep learning techniques, the image-
based pre-trained models, namely, ResNet152 and VGG-19, perform best, with
VGG-19 classifying more than 92% of the samples correctly. The best of our other
(i.e., not pre-trained) image-based models achieved slightly less than 90% accuracy.

Although the opcode-based results performed relatively poorly overall, it is inter-
esting to note that they were able to classify some families with higher accuracy
than any of the image-based models. This suggests that a model that combines both
image features and opcode features might be more effective than either approach
individually.
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Fig. 1 Comparison of results

4 Conclusions and Future Work

Malware classification is a fundamental and challenging problem in information
security. Previous work has indicated that treating malware executables as images
and applying image-based techniques can yield strong classification results.

In this chapter, we provided results from a vast number of learning experi-
ments, comparing deep learning techniques using image-based features to some
cases involving opcode features. For our deep learning techniques, we focused on
multilayer perceptrons (MLP), convolutional neural networks (CNN), and recur-
rent neural networks (RNN), including long short-term memory (LSTM) and gated
recurrent units (GRU). We also experimented with the image-based transfer learn-
ing techniques ResNet152 and VGG-19. Among these techniques, the image-based
transfer learning models performed the best, with the best classification accuracy
exceeding 92%.
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For future work, additional transfer learning experiments would be worthwhile,
as there are many more parameters that could be tested. Larger and more diverse
datasets could be considered. In addition, it would be interesting to consider both
image-based and opcode features as part of a combined classification technique. As
noted above, the opcode-based techniques performworse overall, but they do provide
better results for some families that are particularly challenging to distinguish based
only on image features.

Appendix: Confusion Matrices
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Fig. 2 Confusion matrix for MLP experiment
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Fig. 3 Confusion matrix for CNN 2-d experiment
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Fig. 4 Confusion matrix for CNN 1-d experiment
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Fig. 5 Confusion matrix for opcode-based CNN experiment
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Fig. 6 Confusion matrix for GRU experiment
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Fig. 7 Confusion matrix for stacked LSTM-GRU experiment
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Fig. 8 Confusion matrix for VGG-19 experiment
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A Novel Study on Multinomial
Classification of x86/x64 Linux ELF
Malware Types and Families Through
Deep Neural Networks

Andrii Shalaginov and Lasse Øverlier

Abstract Through the history of desktop and server-oriented malware, Microsoft
Windows was notoriously known as one of the heavily attacked Operating Systems
(OS). Several factors caused this, including unobstructed installation of third-party
software. Unix-like OS is considerably less susceptible to malware infections. How-
ever, there are still a few examples of successful malicious software. The challenge is
that there are not thatmany software tools available to analyzeLinuxmalware, includ-
ing well-known automated intelligent machine learning-aided classification. Our
contribution in this paper is twofolded. First, we look at the most popular approaches
to analyze Linux malware into families and types. Simple binary classification is
no longer efficient and it is more important to know the exact class of malware to
speed up incident response. Second, we suggested methodology for multinomial
Linux malware classification using deep neural network. This approach overcomes
the limitation of shallow neural networks used before for multinomial Windows
PE32 malware classification. Such classification has been explored successfully for
MSWindows, yet, not on the Linux malware. Our focus also is specifically on desk-
top and server Intel-compatible Linux malware rather than affiliated ARM binaries
that require designed IoT environment to run successfully. This work will serve as
a stepping stone for efficient intelligent Linux malware classification using deep
learning-based methods. We have created a novel dataset with 10,574 malware files
labeled into 19 malware types and 442 malware families

1 Introduction

Malicious software, computer viruses, or simpler malware have been there for
decades, targeting individual users, organizations, and critical national infrastructure.
Historically, the family ofMicrosoftWindowsOperating Systems (OS) is considered
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to bemore vulnerable andmore susceptible to cyberattacks thanLinux orMacOS [17,
29]. Multiple factors influenced and lead to such state of the art. Although Linux is
considered to be more secure and less affected my computer viruses, there are still
notorious examples of how systems are exploited [20, 40]. As a result, a very few
works focus on either intelligent- or signature-based Linux malware detection [16].
This work bridges the gap between detection of Linux malware families and types
and application of renewed deep learning models for similarity-based static malware
detection.

Most of the researchers in the information security community work on the tech-
niques used to identify and detect Windows malware samples among others, partic-
ularly, known and widely seen classes. They use a lot of methods, both static and
dynamic analyses, to identify that malware among others, besides whether the soft-
ware is malicious or benign. Very few works focus on Linux and there is a clear
reason for such bias. From the global perspective of Desktop OS market share [35],
we can see that during May 2019–May 2020, the overall share of MS Windows OS
is 77.04%, OS X 0 18.38%, and Linux—1.68%. Market share of Linux in cloud
services is much bigger—more than 90% of public cloud services run Linux [13].
However, large-scale enterprise cloud solutions have better security measures than
private end users. Therefore, Linux malware analysis requires a better understanding
of specific features and approaches that can be used to not only detect malware but
also understandwhat type ofmalware it is. Another big challenge ismalware naming.
CARO (Computer Antivirus Research Organization) created a naming scheme back
in 1990 [3], whichwas supposed to be a stepping stone formalware naming standard-
ization. However, only Microsoft mostly uses CARO approach in their products [2]
with Trend Micro moving that direction since 2018. In the literature, there can be
found several sources mentioning these challenges, yet offering no comprehensive
overview or even solution. As a result, one needs to use additional processing meth-
ods like majority voting [34] or AVCLass [30] tool to find our correct and realistic
malware class name.

The scope of this research is (i) to reveal existing challenges that complicate
Linux malware identification and cyberthreat intelligence services when it comes to
feature engineering and extraction using open-source tools. To our knowledge, the
topic has been approached by researchers before, however, there is no comprehensive
evaluation of features that can be used for multinomial malware detection.Moreover,
we aim at (ii) providing a high-level overview of possible tools and data sources
for static feature contractions. Finally, (iii) we focus on multinomial Linux malware
classification using deep learning with multiple abstraction layers. To our awareness,
such evaluation has not been done before nor other works focused purely on Linux
malware compiled specifically for Intel desktop platforms rather thanARMorMIPS.
We have identified 15,101 Intel-compiled ELFfiles, which is the largest knownLinux
malware collection used in malware research. Out of those, 10,574 were labeled into
malware types and families.

This paper is organized as follows. Section2 represents the history of Linux mal-
ware and relevant background state of the art, including previous studies with appli-
cations of Machine Learning (ML). Following the relevant literature study, Sect. 3
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presents the ELF file format and possible raw data that can be extracted from the file,
and subsequently used to identify malware category. Section4 provides a suggested
methodology, used data and deep learning technique. Section5 describes used exper-
imental setup, software tools, and developed programs, while analysis of achieved
results in intelligent Linux malware classification is given in Sect. 6. Conclusions
and Discussions are outlined in Sect. 7.

2 State of the Art: Machine Learning for Linux Malware
Detection

Linuxmalware is not themostmainstream attack vectors. Frombefore, those binaries
were tailored for specific attacks when an attacker seeks access to the system, e.g.,
outdated vulnerable web service hosted on old Linux machine [24]. Another reason
for this is that Linuxmalware is developed for server-based production cloud systems,
while desktop Linux usage pattern is far from being mainstream [35]. We can see
a huge difference in available samples for Linux and Windows malware research.
There were only 10,548 collected ELF Linux malware samples, including PC and
ARM devices in the study by Cozzi et al. [16], out of which only 3,738 binaries were
Intel-compatible. Shalaginov et al. [34] managed to collect 326,000 malicious PE32
files. Linuxmalware detection is not yet a Big Data problem and does not necessarily
target the consumer market.

In general, the history of Linux malware is not as extensive as it can be seen in
the case of MS-DOS or Microsoft Windows. One of the main reasons is that hid-
ing malware code in open-source projects with community review is a very difficult
task [8]. In a matter of fact, there are very few surveys or articles published on the
evolution of Linuxmalware. However, we can say that early 1990s can be considered
as a starting point in a growing number of Linux malware. One of the surveys [1]
mentioned a few known famous Linux malware samples such as Staog (1996), Slap-
per (2002), and Trass Spyware (2014). Scott Granneman in 2003 article [21] defined
following approximation of total number of known viruses: MS Windows—60,000,
Macintosh—40, commercial Unix versions—5 and Linux—40. It means that Linux
malware roughly shares 0.07% of known malware samples. In June 2020, according
to VirusTotal Intelligence Platform (search command “magic:pe32 positives:1+”),
there are PE32 malware—37.55 million, ELF—0.14 million, and Mach-O—0.025
million of samples with at least one anti-virus vendors defining file as malicious.
In our particular case, it means that the number of malicious ELF files identified
by VirusTotal is 0.37% out of globally known malware. It includes both Intel-
compiled binaries and ARM and MIPS platforms. IoT botnets became popular in
recent years, also hitting ARM portable and embedded devices running Linux [25].
Using Shodan.io service we found only 12,320 Linux devices openly connected to
the Internet [9] with possible vulnerabilities and privacy concerns. Therefore, it is
yet another proof that Linux malware is not a mainstream infection, however, still
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representing a threat to corporate and enterprise clients, especially if the software is
outdated.

Cozzi et al. [16] highlighted a general lack of studies related to Linux malware,
how it functions, limited availability of data, and what indicators to look for compli-
cates the whole research. There are very few works that dissect Linux ELF malware
and perform a thorough study. Cozzi et al. looked at several examples of how Linux
malware implement malicious activities and what can be used for malware detection.
Another distinct work in the area is ELF-miner developed by Shahzad et al. [31].

3 Linux Malware: Automated Features Extraction and
Classification

Malware analysis research has gained extensive popularity and attention in the last
two decades, especially focusing on automated detection using ML. However, the
key factor to success and reproducible of study—data, i.e., malware binary samples.
When it comes to Linux malware, the main challenge is a qualitative and descrip-
tive ELF dataset, in contrary to millions of available Windows PE32 malware files.
We investigated several sources of possible Linux malware that can be utilized in
this research. First, VxHeaven [7] was one of the websites providing access to well-
categorized binary files. However, the website was closed in 2012 by Ukrainian
police forces, then worked since 2013 until 2018. Finally, it went offline, and cur-
rently several mirrors can be found online to maintain the initiative. The challenge is
that most of the viruses there are already outdated. Another resource is VirusTotal,
whichwas established in 2004 and now can be considered as a de facto standard in the
information security community [5]. It provides reporting of the malware detection
from 70 anti-virus vendors, which in addition to extensive threats intelligence and
community reporting, giving the most extensive publicly available malware aware-
ness. As per 03.07.2020, there have been reported 1,606,461 distinct files submitted
to VirusTotal, while 836,160 files were labeled as malicious by one or more anti-
virus vendors [6]. Finally, VirusShare [4] initiative started back in 2011 and now
has collected over 400 versatile archives with different examples of malware. As
per 03.07.2020, VirusShare collection offers access to 34,866,212 different malware
samples available through the website. In this research, we focus on VirusShare
malware files that are represented in four dedicated archives: one Linux and three
ELF-specific.

When it comes to Microsoft Windows Portable Executable 32 file format, we
can see that there has been done a wide range of studies [18, 28, 34, 36, 39, 41]
dissecting particular features and attributes that can identify malicious behavior. In
a matter of fact, one can find a well-known Windows API function calls that are
attributed to the malicious behavior [10, 19, 27, 37]. Furthermore, the attack vectors
and exploitation methods used famous software packages available for Windows
platform [42]. Therefore, state of the art in Windows malware analysis is extensive
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Fig. 1 Decoded ELF header field values extracted using “readelf -h”

and amount of available literature about possible distinct features and a corresponding
set of supplementary analytics tools is overwhelming [32].

We mentioned above that Linux malware is not a mainstream research field,
thereforemaking it challenging to have robust and resilient characteristics extraction.
However, we still can find a fewworks focusing on the peculiarities of Linuxmalware
samples.Generally speakingofExecutable andLinkableFormat (ELF)files, there is a
commonly used reference structure of the file. The ELFfile formatwas selected as the
main format in x86Unix andLinux systems in 1999 [22].Moreover, according toELF
version 1.2 specification [14], the files are organized in the following components:
(i) ELF header with (ii) subsequent program header table and (iii) section header
table. ELF header represents 32-byte-long data structure that identifies the following
parameters of the files as shown in Fig. 1.

Program headers are represented in Fig. 2. Each header has a size of 56 bytes and
current example has 3 headers. Section headers and corresponding segment mapping
are shown in the end.

Having in mind a general overview of the ELF file format, our main goal would
extract as many features as possible to be able to perform automated analysis [12].
Header and file data can be crucial to finding dissimilarities in malicious files. Our
particular goal is to investigate whether static analysis can be utilized for multi-class
malware classification usingML.A study byCozzi et al. [16] attempted to understand
what kind of characteristics can be used to identify malicious behavior in Linux. The
authors mostly focused on dynamic behavioral exaction and touched static analysis
briefly. Only 3,738 Intel-complied ELF files were used. Bai et al. [11] applied ELF
parser for classification of 8 malware classes with 763 malware samples based on
the system calls. There were even attempts to provide platform-independent malware
analysis for both Windows and Linux [23]. So, the main difference from previous
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Fig. 2 Overview of program header sections extracted using “readelf -l”

works is the utilization of a variety of relevant static features for malware detection
for Intel-complied binaries rather than the runtime and dynamic analysis of ELF,
which heavily depends on platform and OS.

Multi-class intelligent Linux malware classification requires building ML meth-
ods capable of high level of abstraction. Deep Learning and Deep Neural Networks
(DNN) have been successfully used in the area of malware analysis before [15, 38,
43]. The reason for this is the ability of the DNN to model highly nonlinear rela-
tionships, especially when it comes to multiple classes rather than standard binary
classification [33]. By using such an approach, the plan is to overcome the limitations
of static features in the multinomial Linux classification problem due to the presence
of obfuscation.

4 Methodology: Malware Analysis and Detection

In ML, any application based on the data analytics should include so-called testing
and training phase according to Kononenko [26]. The fundamentals of ML-based
intelligent malware detection depend on the quality of features or attributes that the
classification engine is relying upon. Shalaginov et al. [32] made an extensive survey
of possible way of feature extraction frommalware samples, such as byte sequences,
opcodes, high-level header features, etc. In our view, using high-level static features
in this research can yield reliable identification of multiple classes of malware. At
the same time, the dynamic behavioral analysis may not yield a sufficient amount of
relevant attributes and require much more efforts to establish a testing environment.
Unlike Cozzi et al. [16], we focus specifically on Linux PC malware (Intel 3086 and
x86-64) and not on ARM/MIPS platforms, while having many more samples for our
experimentation. So, to yield the best possible results, we developed the following
methodology using static analysis based on the characteristics from Linux native
tools and threat intelligence from VirusTotal platform.
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Phase 0. Acquiring samples from VirusShare—the most comprehensive and
known information security community ELF Linux malware samples that are also
publicly available.

Phase 1. Filtering all files that are not completed for ELF platform, performing
extraction of raw information for every malware binary file such as “md5,” JSON
“peframe” report, “readelf,” “file,” “strings,” file size, and entropy. All information
is being stored in MySQL database for easier subsequent access.

Phase 2. Filtering ELF Linuxmalware samples that have been compiled for either
Intel 3086 or Intel x64-86 platform based on extracted metadata. We specifically
exclude any other binaries such as ARM/MIPS to facilitate a better “ground truth” in
experiments and unbiased results. Then, an extraction of the reports using VirusTotal
Private API was performed.

Phase 3. Feature extraction is being performed on all types of raw data extracted
at the previous phase. As a basis, the following categories of metadata and character-
istics were used: “virustotal_file_report,” “peframe,” “readelf,” “strings,” “file_size,”
and “file_entropy.” The description of 30 extracted features is shown in Table1.

Finally, we are looking into malware types and families based on the standard
developed by the Computer Anti-Virus Research Organization (CARO). The idea
is to extract two classes: “type” and “family.” Tools like AVCLass [30] cannot give
both classes, and therefore we will be looking into VirusTotal reports generated by
Microsoft, one of the very few companies following CARO naming standard.

Phase 4. In this step, we extract two labeled datasets: with class label “type” and
“family” separately to investigate how those differ. This phase has to goals: (i) to
investigate features and possibly select the best set and (ii) evaluate the performance
of state-of-the-art MLmethods and deep DNNwith a large number of hidden layers.

5 Experimental Design

To investigate Linux ELF malware and understand how deep learning can be used
to perform multinomial classification, there was established an experimental setup
to process raw malware, extract relevant features, and build an intelligent detection
model.

5.1 Dataset

As we have mentioned before, the amount of available Linux ELF malware can-
not be compared to MS Windows PE32 malware binaries. Therefore, we looked
for community-published datasets that can serve the purpose of multinomial mal-
ware detection and reproducible experiments. One of the famous collection has been
published by VxHeaven [7]. Even though VxHeaven website offers well-classified
malware samples, the resource was offline and the data was not updated for sev-
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Table 1 Description of features extracted for each ELF file

Feature name Explanation

vt_submission_names Number of submission names

vt_times_submitted Times the binary was submitted

vt_exif Number of entries in “exiftool”

vt_embedded_ips Number of embedded IPs in the binary

vt_contacted_ips Number of IPs the binary contacted

vt_exports Number of export functions

vt_imports Number of import functions

vt_shared_libraries Number of shared libraries included

vt_segments Number of segments

vt_sections Number of sections

vt_packers Number of packers

vt_tags Number of tags

vt_positives Number of AV identified as malicious

peframe_ip Number of identified IP addresses

peframe_url Number of identified URLs

readelf_entry_address Entry point address

readelf_start_prog_headers Start of program headers

readelf_start_sec_headers Start of section headers

readelf_number_flags Number of flags

readelf_header_size Size of this header

readelf_size_prog_headers Size of program headers

readelf_number_prog_headers Number of program headers

readelf_size_sec_headers Size of section headers

readelf_number_section_headers Number of section headers

readelf_sec_header_string_table_index Section header string table index

strings_number Number of distinct strings

strings_size Size of all strings extracted from the file

strings_avg Average size of each string

file_size‘ Size of the file

file_entropy‘ Entropy of the whole file content

eral years. Therefore, we found another alternative—popular malware distribution
platform VirusShare [4]. Three archives with Linux ELF malware were acquired as
described in Table2.

Collected archives have been uploaded to VirusShare in 2014, 2016, 2019, and
2020. Following Phase 0, we managed to collect 56,805 unique (MD5) ELF files for
further processing from the archives. After filtering all non-Intel binaries, we have
shortlisted 15,101 ELF files following Phase 1. The top 10 types of Intel-related
malware platforms are presented in Table3. One can see that there is quite a different
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Table 2 Archives extracted from VirusShare that contain Linux and ELF malware

Filename Archive size (GB) Number of files

VirusShare_ELF_20140617.zip 0.13 2,778

VirusShare_ELF_20190212.zip 1.24 10,426

VirusShare_ELF_20200405.zip 2.40 43,553

VirusShare_Linux_20160715.zip 10.78 9,469

Table 3 Top 10 file types using Linux “file” command

Count Linux “file” command output

3,517 ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), statically linked, not
stripped

3,194 ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), statically linked, stripped

1,785 ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically linked, not stripped

1,271 ELF 32-bit LSB executable, Intel 80386, version 1 (GNU/Linux), statically linked,
stripped

610 ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), dynamically linked,
interpreter /lib/ld-linux.so.2, for GNU/Linux 2.0.0, not stripped

385 ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), statically linked,
missing section headers

370 ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically linked, stripped

364 ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), dynamically linked,
interpreter /lib/ld-linux.so.2, for GNU/Linux 2.2.5, not stripped

315 ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), statically linked, for
GNU/Linux 2.2.5, not stripped

264 ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), dynamically linked,
interpreter /lib/ld-linux.so.2, for GNU/Linux 2.2.5, with debug_info, not stripped

type of files. In overall, we retrieved 700 different types of ELF files compiled for
Intel platform out of 1,128 all types. During Phase 2, the extraction of the reports
using VirusTotal Private API and corresponding characteristics using open-source
and inline Linux command line software tools was performed. Finally, after Phase
3, we ended up having 10,574 selected ELF files that also have been labeled by
Microsoft following the CARO naming convention. Reason for this selection is the
ability to use trustworthy classification for both malware “types” and “families.”

Moreover, all relevant files have been checked against VirusTotal to retrieve rel-
evant static and dynamic analysis information and, most important, labels assigned
by Anti-Virus vendors. However, did not find any files that have not been submitted
to VT before—all were known malware samples from before. The overall raw data
set extracted from selected ELF files occupied 6.8 GB in MySQL storage for the
following fields in the database that are shown in the Fig. 3.
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Fig. 3 Raw data extracted from ELF files that are places in MySQL dataset

5.2 Experimental Setup

Experimental setup and all data processing have been done on Ubuntu 18.04 using
Python 3.6.9 and storing data inMySql 5.7. For feature engineering, we used follow-
ing tools: “ent”—entropy of the file, “strings” v 2.30—all ASCII strings in the file,
“file” v 5.32— information about particular file type, “readelf” v 2.30— information
about ELF formal object file, “peframe” v 6.0.3—a tool for getting JSON report on
PE32 files, also giving a lot of structural information on ELF, VirusTotal Private API
2.0—all anti-virus reports. For ML part, it was usedWeka 3.8.4 and RapidMiner 9.7.

6 Results and Analysis

One of the most important findings of this study is the actual distribution of the
malware samples in the collected dataset. In overall, we discovered 19 distinct mal-
ware types and 442 families following ELF malware labeled by Microsoft following
the CARO naming scheme. To our awareness, such descriptive statistics were not
available and the summary is represented in the Table4. It is peculiar that “DDoS”
type and “Mirai” family have a considerable share in the detected x86/x64 Linux
malware. Based on this, we can speculate that Linux machines are often infected for
distributed attacks and botnet creation.
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Table 4 Top 10 ELF x86/x64 ELF malware types and families extracted from the dataset

Malware type Count Malware family Count

DDoS 4,230 Lightaidra 2,709

Trojan 2,602 Gafgyt 1,368

Backdoor 2,153 Mirai 1,346

Virus 577 Occamy 1,050

Exploit 394 RST 281

DoS 204 CoinMiner 238

TrojanDownloader 160 Setag 236

Worm 120 Berbew 220

VirTool 98 Wacatac 195

HackTool 62 Tsunami 164

6.1 Feature Selection

Even though it was extracted 30 relevant features for multinomial classification of
Linux ELFmalware, not all of themhave the same contribution toward dissimilarities
in each class. To measure the differences in such contribution, we performed feature
evaluation using Information Gain method [26]. Results for 19 malware types and
442 families are shown in the Table5.

A few peculiarities that we can see is the consistency between the most influential
features when it comes to both types and families. Even though there is 10magnitude
difference in the number of classes, the following features haveoneof the biggestmer-
its when compared to others: “readelf_start_sec_headers”—starting position of the
section headers into ELF file measures in bytes, “file_size” in bytes, “string_size”—
the size of all ASCII strings discovered in ELF file and “strings_number”—number
of all distinct strings found in ELF file. The distribution of the two fist aforemen-
tioned features is represented in Figs. 4 and 5. The distribution is given for DDoS
and Trojan malware types, which were found to be the most frequent in the dataset
according to Table4. We can see how distributions differ from one type to a different
type, influenced by internal malicious functionality of binary files.

6.2 Classification Accuracy: State-of-the-Art Methods

To establish a “ground truth” compared to other ML methods accepted in the com-
munity and considered as state of the art, we used the following implementations in
Weka with tenfold cross-validation: Naive Bayes, Support Vector Machines (SVM),
multilayer perceptron, k-NN, and C4.5. The overall classification results for all mal-
ware families and types are shown in Table6.
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Table 5 Top 10 features according to Information Gain measure

Average merit Average rank Feature name

Malware type

1.022 +- 0.013 1 +- 0 readelf_start_sec_headers

0.898 +- 0.037 2 +- 0 file_size

0.774 +- 0.007 3.6 +- 0.66 readelf_entry_address

0.766 +- 0.016 3.9 +- 0.83 strings_size

0.757 +- 0.019 4.5 +- 0.67 strings_number

0.675 +- 0.003 6.4 +- 0.8 readelf_sec_header_string_table_index

0.665 +- 0.009 7.3 +- 0.64 readelf_number_section_headers

0.646 +- 0.034 7.7 +- 1.27 strings_avg

0.609 +- 0.019 8.9 +- 0.54 file_entropy

0.597 +- 0.005 9.7 +- 0.46 vt_sections

Malware Family

2.174 +- 0.026 1 +- 0 readelf_start_sec_headers

1.894 +- 0.036 2 +- 0 file_size

1.708 +- 0.03 3.1 +- 0.3 strings_size

1.671 +- 0.033 4 +- 0.45 strings_number

1.613 +- 0.025 4.9 +- 0.3 readelf_entry_address

1.478 +- 0.05 6.5 +- 0.5 readelf_number_section_headers

1.394 +- 0.178 7.5 +- 1.91 readelf_sec_header_string_table_index

1.401 +- 0.019 7.7 +- 0.46 strings_avg

1.285 +- 0.026 9.1 +- 0.7 file_entropy

1.274 +- 0.089 9.6 +- 1.02 vt_sections

One of the most accurate models is C4.5, which builds a decision tree model.
However, the complexity is quite outstanding, considering that for the “type” dataset,
the tree includes 693 leaves and having the size of 1,385; for the “family” dataset, the
tree contains 1,148 leaves and tree size is 2,295. It makes those methods impractical.

6.3 Deep Learning

It was mentioned before that the major advantage of deep learning is the ability to
model highly nonlinear data, such as multinomial classification. State-of-the-art ML
methods does not perform too well on the ELF multinomial malware classification,
especially hundreds of malware families cannot be classified properly. The exception
is k-NN and C4.5; however, training such models on millions of malware samples
will result in unmanageable and large models that are impractical in real life. To
investigate the influence on number of hidden layers—and, as a result, abstraction
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Fig. 4 Distribution of “readelf_start_sec_headers” for two most frequent ELF malware types—
DDoS and Trojan (plotted in RapidMiner)

Fig. 5 Distribution of “file_size” for two most frequent ELF malware types—DDoS and Trojan
(plotted in RapidMiner)

level—we performed a comparison of the DNN classification. Results for the ELF
malware types are shown in Fig. 6 and—for the malware families—in Fig. 7. There
is no improvement in accuracy for the family dataset for DNN with more than 10
layers while the training time and complexity grow dramatically. The conclusion that
we can draw from the plots is a necessity for higher abstraction level models that can
properly model features of each particular class when it comes to tens and hundreds
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Table 6 Classification accuracy of ELM malware types and families

Method Malware type, % Malware family, %

Naive Bayes multinomial 6.6295 6.5916

Support vector machine 59.6747 47.3804

Multilayer perceptron (3L) 63.6751 34.7172

IBk (k-NN, k = 3) 73.8415 63.8075

J48 (C4.5) 80.8587 71.5150

Fig. 6 Dependency of DNN accuracy and training time for 19 malware types on number of layers
(plotted in RapidMiner)

of malware classes, rather than the classical problem of binary malware/goodware
detection. Classification accuracy with the lower number of classes can be easily
boosted by an increasing number of hidden layers; however, it is not the case if there
is a considerable number of classes.

7 Discussions and Conclusions

This work describes ongoing research related to rarely explored Linux ELF malware
detection and analysis designed specifically for Intel x86/x64. The general lack of
tools and malware detection approaches can be explained by a much lower share of
desktop LinuxOS in comparison toMSWindows.Moreover, the latter has a different
security mechanismwhen it comes to the installation of third-party software, making
Linux malware targeting servers with outdated software. Moreover, there was no
comprehensive properly labeled dataset available for x86/x64. One of the outcomes
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Fig. 7 Dependency of DNN accuracy and training time for 442 malware families on number of
layers (plotted in RapidMiner)

of this work is corresponding ELF malware dataset containing 10,574 malware files
labeled into 19malware types and 442malware families. Following this, we extracted
30 static features that can be used for malware classification using state-of-the-art
machine learning methods. We can see that to achieve a reasonable classification
accuracy and concise model size on such non-trivial dataset one needs to use deep
neural networkswith a large number of layers. However, additional study of static and
possibly dynamic behavioral features is required to understand the bettermultinomial
classification of Linux ELF malware binaries.
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Fast and Straightforward Feature
Selection Method

A Case of High-Dimensional Low Sample Size Dataset
in Malware Analysis

Sergii Banin

Abstract Malware analysis and detection is currently one of the major topics in the
information security landscape. Twomain approaches to analyze and detect malware
are static and dynamic analyses. In order to detect a running malware, one needs to
perform dynamic analysis. Different methods of dynamic malware analysis produce
different amounts of data. The methods that rely on low-level features produce very
high amounts of data. Thus, machine learning methods are used to speed up and
automate the analysis. The data that is fed into machine learning algorithms often
requires preprocessing. Feature selection is one of the important steps of data pre-
processing and often takes significant amount of time. In this paper, we analyze the
Intersection Subtraction (IS) feature selection method that was first proposed and
used on a high-dimensional dataset derived from the behavioral malware analysis. In
ourwork, we assess its computational complexity and analyze potential strengths and
weaknesses. In the end, we compare Intersection Subtraction and Information Gain
(IG) feature selection methods in terms of potential classification performance and
time complexity. We apply them to the dataset of memory access patterns produced
by malicious and benign executables. As a result, we found that the features selected
by IS and IG are very different. Nevertheless, machine learning models trained with
IS-selected features performed almost as good as those trained with IG-selected fea-
tures. IS allowed to achieve the classification accuracy of more than 99%. We also
show, the IS feature selection method is faster than IG what makes it attractive to
those who need to analyze high-dimensional datasets.
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1 Introduction

Today many researchers from different research areas have to deal with big amounts
of data. Various statistical methods are used to process and understand data that is
too big or complex for human analysis. Part of these methods are called machine
learning: “the automatic modeling of underlying processes that have generated the
collected data” [22]. Currently, machine learning is one of the most used approaches
when there is a need to predict certain qualities of objects or events. Machine learn-
ing algorithms can be divided into supervised (classification and regression) and
unsupervised (clustering). In this paper, we focus on the classification: prediction
of a class (type) of a sample based on its features (properties). Machine learning
is widely used in different fields such as medicine, biology, manufacturing [24], or
information security [4, 31]. In information security, machine learning is extensively
used in production and research, as the amounts of data that need to be processed
are enormous. Especially, machine learning is actively used for malware analysis
and detection. According to AV-TEST Institute, there are more than 350,000 new
malware samples detected every day [3]. The developers of the anti-virus solutions
and researchers work on finding a way to detect malware without having to search
through the entire database of already known malware. Moreover, they try to find
methods that allow detecting previously unknown malware. The common practice
is to find certain characteristics that are common to many malware samples. As the
number of malware is very big and growing [3], the machine learning methods are
used to deal with the emerging amount of data. Machine learning methods rely on
features: properties of objects that are being studied. There are two main types of
features that can be extracted from malware: static and dynamic. Static features are
extracted directly from the malicious file without a need to launch it. Static features
are relatively easy to extract, but at the same time it is easier to change them with
a use of obfuscation or encryption [1]. However, malware becomes malicious only
after it has been launched. The features that occur after the launch of malware are
called dynamic or behavioral features.We can divide dynamic features into high- and
low-level features [6]. File and network activity, API [2], and system calls are some
of the high-level features, while opcodes, memory access operations [38], or hard-
ware performance counters are considered to be low-level ones. We name dynamic
features that emerge from the system’s hardware as the low-level features [5, 21, 25].
To represent a certain behavioral event with low-level features, we need to record
and process a significantly bigger amount of data. For example, to describe an API
call on the high level, we only need its name and arguments passed to it on the call.
However, if we decide to record a sequence of opcodes or memory access operations
invoked by the API call we’ll end up with hundreds if not thousands of events. In
this paper, we address a problem that arises from the number of low-level features
one needs to record and process while doing dynamic malware analysis.

While machine learning provides good opportunities for automation and analysis,
the data that is used by machine learning algorithms has to be preprocessed. Various
methods of data preprocessing are described in the literature: discretization of con-
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tinuous features, attribute binarization, the transformation of discrete features into
continuous, dimensionality reduction, and so on [22]. The first three of the afore-
mentioned methods are mostly used when the chosen machine learning algorithm
works only with a certain type of data. For example, the Naive Bayes classifier needs
discrete data to provide a useful outcome. On its turn, dimensionality reduction is
often needed, when the amount of features in the dataset is too big. Having too many
features can result in increased model training times and model overfitting. There
are several ways to reduce dimensionality: feature subset selection, feature extrac-
tion, and Principal Components Analysis (PCA) [22]. Feature extraction is aimed
at finding a set of new features that are constructed as a function of original fea-
tures. On its turn, PCA finds a new coordinate system with a focus on making the
axes aligned with the highest variance of the data. These methods, however, make it
harder to analyze the results achieved by the machine learningmodel: it is sometimes
important to understand which features contribute the most toward the classification
performance of a model. In such cases, in order to reduce the dimensionality, one
may apply feature (subset) selection. With feature selection it is possible to select
a certain amount of best features based on a certain feature quality measure while
keeping the original features intact.

Feature selection is aimed at the dimensionality reduction. Ironically, when the
amount of features becomes too big (for example, millions as in [8] or [5]) the
feature selection becomes a very computationally intense task. The datasets where
the number of features is much bigger than the number of learning samples are called
high-dimensional low (small) sample size (HDLSS/HDSSS) datasets. Sometimes
there are somany features [8] that commonly usedmachine learning packages simply
cannot handle such datasets. Storing such a dataset in the single file or database table
becomes a problem as well. Thus, the use of the commonmachine learning packages
becomes impossible since they require data to be stored in one piece. On its turn,
developing and implementation of a custommachine learning package can takemore
time than actual data collection and be a hard task for the researchers that don’t have
enough expertise in software development.

In this paper, we focus on the feature selection method that was developed and
used in [8] to detect malware based on the memory access patterns. In [8], the
dataset contained almost six millions of binary features and 1204 samples divided
into two classes. The features represented sequences of memory access operations
generated by malicious and benign software. The feature took value 1 if it was
generated by a sample, and 0 if not. Utilized feature selection method was aimed
at removing those features that are present (take value 1) in the samples of both
classes. Thus, it is named Intersection Subtraction (IS) feature selection method.
This method helped authors of [8] to reduce feature space from 6M of features to
800. With the use of selected features, it became possible to train a classification
model that achieved 98% classification accuracy for the two-class dataset. In this
paper, we provide an additional analysis of the IS feature selection method and
discuss its advantages and disadvantages. We also compare its performance with
an Information Gain [22] feature selection method in a similar malware detection
problem. We run our tests on the newer and larger dataset of malicious and benign
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executables. We show how machine learning models trained with features selected
by IS feature selection perform compared to those selected by IG.

The remainder of the paper is arranged as follows. In Sect. 2, we describe the prob-
lem and provide an overview of related articles. In Sect. 3, we describe the IS feature
selection method, theoretically assess its strengths and weaknesses, and explain the
context in which IS might be used. In Sect. 4, we describe our experimental setup,
compare feature sets selected by IS and IG, and train machine learning algorithms
with the use of selected features. In Sect. 5, we discuss our findings and outline the
future work. In Sect. 6, we summarize our findings and provide conclusions.

2 Background

In this section, we describe the problem area and provide an overview of the papers
related to HDLSS datasets and feature selection.

2.1 Problem Description

While talking about the optimal size of the dataset to be used in machine learning
model training, different authors consider different dataset sizes to be optimal. The
size of the dataset consists of a number of samples and features. In various sources
[15, 26], one can find suggestions that a minimal amount of samples for training
should be between 50 and 80, while 200 and more samples are expected to bring
increased accuracy and significantly smaller error rates. Other authors have shown
that it is important to have at least 20–30 samples per class [11]. When talking about
the number of features it is generally considered that the fewer features there are in
the dataset, the better it is for machine learning algorithm [5, 7, 8, 22]. Some authors
advise utilizing the rule of 10: in order to train a model with a good performance, one
needs to have ten times more samples than the number of features [23]. However,
in some cases, the number of features can be significantly higher than the number
of learning samples. This may happen due to the context of the research and the
nature of data. For example, in [8], the authors describe a novel malware detection
approach. They recordmemory access operations performedbymalicious and benign
executables, split them into n-grams of various sizes, and use those n-grams as
features for training the machine learning models. Each feature could take value
1 or 0 if the n-gram represented by the feature was or was not generated by the
sample, respectively. The sequence of memory access operations is a sequence of
Reads (R) and Writes (W). In their work, authors record a first million of memory
access operations performed by each executable after it was launched. Afterward,
the sequence of memory access operations is being split into the set of overlapping
n-grams of a size 96. Since memory access operations take only two possible values
(R and W), the potential feature space of the abovementioned approach is 296 if a
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sequence ofmemory access operationswould be completely random.However, as the
same authors mention in their next paper [5], the memory access operations are not
random. Thus, in [8], their initial feature space is “only” about 6M of features. They
had 1204 samples divided into two classes. This can be considered a good sample size
based on what was suggested in [11, 15]. However, the amount of features generated
under such experimental design makes it impossible to follow “the rule of 10.” A
straightforward approach in such conditions could be to simply use all the data for
training the machine learning model. However, just the storage of a complete dataset
from [8] would take more than 6GB of space. Popular machine learning frameworks
such as Weka [19] or Scikit-learn [26] are not suited to load and handle so much
data. This shows a need for dimensionality reduction. In the works similar to [8]
or [5], it is important to keep the original features in order to be able to interpret
results. For example, having the results from [8] it might be possible to understand
which memory access patterns make malicious behavior distinctive from the benign
behavior. Thereby, dimensionality reduction methods such as feature extraction or
PCA are not applicable in such cases. On its turn, feature selection can help to select
a subset feature without hindering their original state.

Feature selection methods can be divided into several categories: filter, wrapper,
and embedded methods. Filter methods choose features based on a certain quality
measure such as Pearson correlation, chi-square, mutual information, and so on.
Wrapper methods choose features based on the classification performance of the
target machine learning model trained with the use of those features [33]. Wrapper
methods are very computationally intense since for every possible feature subset
there is a need to train and test the machine learning model. Embedded methods,
as the name states, are embedded in the machine learning algorithms. Algorithms
such as decision trees [22] perform feature selection simultaneously with model
training.However, the computational overhead is higher than one of the filtermethods
and such algorithms are susceptible to overfitting [9] and are not suitable for high-
dimensional data [33]. So for the research similar to [8], the most suitable approach
for dimensionality reduction will be a filter-based method. In the case of (very) high-
dimensional data, it is crucial to have a feature selection method with the lowest
possible computational overhead. The perfect feature selection method will have a
computational complexity ofO(n) that is linear to a number of features n. But such a
method does not exist, since filter methods are aimed to select features that represent
classes (and consequently samples) in the best possible way [22]. Thereby, while
choosing the feature selection method to work on the high-dimensional dataset it is
desirable to choose a method with the computational complexity of O(mn) where m
is the number of samples in the dataset.

The use of different filter-based feature selection methods is described in various
papers. Information Gain [7, 24], correlation-based feature selection [5, 17], and
ReliefF [17] are some of the common feature selection methods. Information Gain
(IG) ranks features based on entropy in respect to the classes and can be described as
“the amount of information, obtained from the attribute A, for determining the class
C” [22]. Basically, in order to perform a feature selection based on IG, one have
to calculate probabilities of an attribute to take certain values and relevant class-
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conditional probabilities. This results in a computational complexity around O(mn),
where n is the amount of features andm is the amount of samples.Correlation-based
Feature Selection method (CFS) was proposed in [18] and is aimed at selecting
the subset of features that have a high correlation to the class but low correlation
between each other. By doing so it is possible to find a subset of featureswithminimal
redundancy. The problem with this method is that it requires to calculate a pairwise
correlationmatrix between all of the n features andm classeswhich requiresm((n2 −
n)/2) operations. The feature selection search could require an additional (n2 − n)/2
operation in a worst-case scenario. With a potential computational complexity of
O(m((n2 − n)/2) + (n2 − n)/2) the use of CFS for high-dimensional data becomes
very problematic. For example, just storing of correlation matrix needed for 6M of
features in [8] would require at least 18 TB of space. Thus, in order to apply CFS
on high-dimensional datasets, it might be useful to first reduce a feature space with
another, less computationally intense, feature selection method, and only after apply
the CFS [5]. ReliefF ranks features based on their ability to separate close samples
from the different classes [22]. In order to perform feature selection with ReliefF, it
is first important to calculate a distance matrix between all samples. The resulting
computational complexity of the method can be roughly estimated as O(n((m2 −
m)/2)) that is almost m/2 times more than the one of the IG. Having a large nmakes
the use of ReliefF less favorable than IG.

Based on the assumptions about the computational complexity of the abovemen-
tioned feature selection methods one can make a conclusion that IG might be one
of the best choices when it comes to the high-dimensional datasets. The problem is
that even the feature selection methods with O(mn) complexity become slow with
the large numbers of n. And as we mentioned above, common machine learning
packages are not suitable to work with big datasets. Thus, a researcher who needs to
perform feature selection on such datasets is forced to develop a custom implemen-
tation of feature selection algorithm with regard to the data in interest. In this case,
inefficient implementation of the common feature selection algorithm may result in
significant use of time and even inability to obtain results (e.g., due to the lack of
virtual memory). For example, the Information Gain of a feature is calculated with
the following formula:

Gain(A) = −
∑

k

pk log pk +
∑

j

p j

∑

k

pk| j log pk| j

where pk is the probability of the class k, p j is the probability of an attribute to take jth
value, and pk| j is the conditional probability of class k given jth value of an attribute
[22]. This shows that it is necessary to “count” how many times each attribute takes
a certain value in total and when a certain class is given. Let’s rewrite previously
mentioned computational complexity of IG as O(nTqmeaureIG) where TqmeaureIG =
f (m) is the computational time needed to calculate the quality measure (Information
Gain in this case) of a feature.Wewill need TqmeaureIG later to show that the IS feature
selection method works faster than IG, which is important when working with high-
dimensional datasets. Thus, it is easy to see that the inefficient implementation of
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IG can significantly increase the time needed to obtain the results. As we will later
show, it is possible to overcome this problem with a Intersection Subtraction feature
selection method.

2.2 Literature Overview

In this subsection, we refer to papers where authors addressed the problems related
to HDLSS datasets and feature selection on them. In [12], authors outline both curses
and blessings of high dimensionality. By blessings of dimensionality, they mention
the phenomenon of measure concentration and the success of asymptotic methods.
While talking about curses of dimensionality authors outline several areas where they
can occur: optimization, function approximation, and numerical integration. They
also stress attention to the fact that many “classical” statistical methods are based on
the assumption that the amount of features n is less than the amount of samples m,
whilem → ∞. However, thesemethodsmay fail if n > m, especially when n → ∞.
Other authors in [14] outline the following challenges of high dimensionality: “(i)
high dimensionality brings noise accumulation, spurious correlations, and inciden-
tal homogeneity; (ii) high dimensionality combined with large sample size creates
issues such as heavy computational cost and algorithmic instability” [14]. As well
as authors of [12] outline that traditional statistical methods may fail when used on
high-dimensional data. The authors of [40] review the performance and limitations
of several common classifiers such as Naive Bayes, linear discriminant analysis,
logistic regression, support vector machines, and distance weighted discrimination
in the case of two-class classification problem on HDLSS datasets. They also say
that if the number of features n → ∞ and both classes are from the same distribution
“the probability that these two groups are ‘perfectly’ separable converges to 1” [40].
In simple words, it means that with a large enough amount of features it should be
possible to construct a set of rules (build a classifier) that will perfectly fit (overfit)
the training data. This fact outlines the importance of thorough feature selection. It
will improve the capability of machine learning algorithms to create models with
good generality and interpretability. The model with good generality is the model
that is capable of generalizing over the dataset; suchmodel would not be significantly
changed if the number of samples in the dataset is slightly increased/decreased [40].
A model with good interpretability makes the analysis of the model itself easier.
The fewer features are involved during the training the easier it is to analyze the
obtained model. For example, authors of [5] underline the importance of the fact that
having 29 features instead of 6M or 15M helps in the understanding of the under-
lying processes. They performed multinomial (10 class) malware classification with
the use of features constructed from memory access patterns. Similar to [8], they
used memory access 96-grams as features. Such feature, if found to be important in
the classification, cannot be directly understood by a human analyst. Thus, in [6],
they made an attempt to interpret memory access sequences with more high-level
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system events (API calls). Such analysis would be much harder if they had millions
of features instead of 29.

Various authors addressed the problem of feature selection on HDLSS datasets
more specifically. For example, same authors in [36, 37] present possible improve-
ments to the PCA in HDLSS cases. In [36], they propose a way to estimate singular
value decomposition of the cross data matrix. Later, in [37], authors explore the
impact of the geometric representation of HDLSS data on a possibility to converge
the dataset to an n-dimensional surface. The authors of [13] propose a nonlinear
transformation of HDLSS data. They showed, how transformation based on inter-
point distances helps to increase final classification accuracy. In [39], the authors
propose a hybrid feature selection method that is based on ant lion optimization and
gray wolf optimization methods (ALO-GWO). They evaluate the performance of the
proposed method on several HDLSS datasets. The authors show that the ALO-GWO
feature selection method provides a good balance between the performance of mod-
els and the ability to reduce a feature space. The abovementioned papers addressed
the problem of feature selection on HDLSS. However, the number of features in
the dataset used in those papers rarely exceeded several tens of thousands (e.g., in
[39]). On their turn, authors of [16] during the test of their feature selection method
used a dataset with more than 3M of features. In their work, they proposed a fea-
ture selection method based on bijective soft sets (BSSReduce). They claim that the
computational complexity of the method isO(m)wherem is the number of samples.
This might have been a perfect feature selection method for the HDLSS datasets.
However, after reviewing the provided algorithms, it looks like their approach relies
on the precomputed bijective soft sets that have to contribute to the computational
complexity as well. Nevertheless, the results of testing the BSSReduce on the sev-
eral HDLSS datasets showed that it is capable of significant dimensionality reduction
while keeping a competitive level of the trainedmodel performance. It could be useful
to compare BSSReduce with our method, and unfortunately authors of BSSReduce
did not provide the source code of their tool. An approach different from the previ-
ously mentioned papers is present in the [5]. The authors of the paper did not focus
on feature selection. However, they needed to reduce feature space in two HDLSS
datasets from 6M to 15M of features. Authors said that “models should be simple
enough” [5] to make their analysis easier. In order to reduce a large feature space,
they performed feature selection in two steps. On the first step, they used custom
implementation of Information Gain feature selection to reduce feature space to 50K
and fewer features. On the second step, they took the best 5K feature selected by
IG and used them in CFS implementation from Weka. This resulted in 29 features
selected by CFS. The models trained with just 29 features performed almost as good
as a model trained on 5K and more features. For Naive Bayes and support vector
machine algorithms, smaller feature set even allowed to increase the performance
of trained models. Such approach has its own limitations. CFS is aimed at selecting
features that are not correlated with each other. However, since the first feature selec-
tion step utilizes IG, there is no guarantee that features passed to the CFS does not
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have a strong mutual correlation. But as we mentioned above, running CFS on the
HDLSS dataset with millions of features requires enormous computational resources
and sometimes impossible.

3 Intersection Subtraction Selection Method

In this section, we describe the IS feature selection method and evaluate its strengths
and weaknesses.

3.1 The Context

Before describing the Intersection Subtraction feature selection method we need
to describe a context under which its use becomes meaningful. This method was
developed during the research described in [8]. The task was to detect malware
based on thememory access traces. To do this,malicious and benign executableswere
launched together with custom-built Intel Pin [20] tool. The raw data consisted of the
first 1M of memory access operations performed by each executable. The sequences
contained W for each write operation and R for each read operation performed by
an executable. These sequences were later divided into a set of overlapping n-grams
of various sizes. For example, a sequence [WWRWRR] of a length 6 can be divided
into the set of 4-grams in the following way: [WWRW,WRWR,RWRR]. The n-grams
were directly used as features for machine learning model training. Each feature got
value 1 if the corresponding n-gram was generated by the sample regardless of the
number of times it was encountered in the trace of a certain sample. In other cases,
the feature got value 0. As the goal of the [8] was to be able to detect malware,
it is possible to state that features that obtain 1 (are present within a certain class)
pose greater interest. Such approach allows to state that presence of certain memory
access n-grams is the sign of malicious behavior. The dataset from [8] was nearly
balanced and samples were divided into two classes. So the context of the use of the
proposed feature selection method is the following: two-class classification problem
on a balanced dataset with binary features.

3.2 Feature Selection Algorithm

The feature space in [8] was around 6M of unique memory access n-grams of a
size 96. By the time of writing, authors were not able to implement any common
feature selection method (for example, IG) to operate on such dataset. Thus, they
implemented the following feature selection method. It includes the following steps:
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1. Construct two vectors of features for each class. The feature is included in the
vector of the class if the corresponding memory access n-gram was generated by
a sample from this class.

2. Having two vectors constructed, remove from them features that are present in
both vectors. Having this done we obtain two vectors of class-unique features. In
other words, we subtracted an intersection of two feature sets from both of them.

3. Decide on the size of the final feature set k.
4. From each of the class-unique features vectors, select k/2 features with the highest

class-wise frequency. A class-wise frequency is the proportion of samples within
the class that generate a corresponding memory access n-gram.

5. Use the k selected features to construct the final dataset with reduced dimension-
ality.

The resulting dataset is later used to build machine learning models. The operation
performed in Step 2 is quite similar to the symmetric difference of two sets. However,
we prefer to say that we subtract intersection from both sets, as we need those sets to
be separated until the last step. It is also worth mentioning that having an intersection
of two feature sets allows to explore features that fell into it. It might be useful for
additional analysis of the results [8].

3.3 Computational Complexity

Let’s discuss the potential computational complexity of Intersection Subtraction (IS)
feature selection. As data is already labeled (samples divided into two classes), the
feature vectors from the Step 1 are ready from the beginning. Step 2 requires finding
an intersection of two sets. Imagine we have two sets A and B with cardinality
of a and b, respectively. In order to find the intersection of A and B, we need to
compare all elements of set A with all elements of set B. Such operation will have
a computational complexity of O(ab). Let’s denote the intersection of A and B as
C = A ∩ B with cardinality c. Subtracting the elements of C fromA and B, similarly
to the previous operation, will have the computational complexity of O(ac + bc).
The resulting computational complexity of O(ab + ac + bc) may look quite high
already, since both a and b are large in case of HDLSS datasets. However, the
real implementation of IS feature selection with the use of Python programming
language shows that execution of the Step 2 does not take significant time (see
Sect. 4). First of all, according to [28], subtraction A-C (set difference) will have
computational complexity of O(a). So we can already rewrite previously mentioned
computational complexity of Step 2 with O(ab + a + b). Moreover, if we are not
interested in the intersection C itself, we can utilize two operations A-B and B-
A in order to obtain sets of class-unique features. Complexity of such approach
will be O(a + b). Step 4 requires the calculation of class-wise frequencies of the
features. In our particular case, when features are binary, we only need to count
how many samples from each class has value 1 of a certain feature. Step 4 will then
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have O((a − c)m + (b − c)m) computational complexity. Here, m is the number
of samples in the dataset, a-c is the amount of class-unique features from set A
and b-c—from set B. It is also worth mentioning that Step 4 can be optimized.
Let’s assume that the dataset is perfectly balanced, so we have two classes with m/2
samples. Since our IS feature selection is aimed on finding class-unique features, we
can only search for 1s among a-c and b-c features of m/2 samples of each class. So
Step 4 can be optimized to have a complexity ofO((a − c)m/2 + (b − c)m/2). Let’s
now try to assess the overall computational complexity of the IS feature selection.
Let us have the initial amount of features a+b = n and m samples. The amount of
features from intersection c is normally smaller than both a and b (here we assume
that A �⊂ B and B �⊂ A). Having this we can conclude that the complexity of Step
2 O(ab + a + b) after substitution will be smaller than O(n2) for all a > 1. On its
turn, the complexity of Step 4 O((a − c)m/2 + (b − c)m/2) should be smaller than
O(mn). The resulting complexity of O(ab + a + b + (a − c)m/2 + (b − c)m/2)
should be smaller than O(n2 + mn). The feature selection method where the upper
boundary of computational complexity is described with n2 is not what we outlined
in Sect. 2 as a good feature selection method for HDLSS dataset. Let’s now make
a substitution similar to the one we made in Sect. 2. First, let’s substitute m with
TqmeaureI S = g(m) which is the time needed to calculate class-wise frequency of a
feature. Second, the time Tin needed to find whether a certain feature from one set
is present in another set (to find an intersection or to subtract these features from the
set) is relatively small. Thus, the updated computational complexity of IS feature
selection will be smaller than O((nTin)2 + nTqmeaureI S) which can be smaller than
O(nTqmeaureIG) of IG. We will prove this in Sect. 4.

3.4 Theoretical Assessment

In this subsection, we discuss potential outcomes of the IS feature selection. As we
already mentioned, IS feature selection is potentially faster than a more common
IG feature selection. This makes IS attractive for the high-dimensional datasets.
However, speed comes with a price. Let’s look at the potential disadvantages of IS
feature selection. As we described at the beginning of this section, the use of this
method makes more sense when we are interested in finding features the presence
of which poses particular interest. However, it might happen that in the dataset there
will be no class-unique features. In other words, it will be impossible to say that if a
certain feature of a sample takes value 1, then this sample belongs to a certain class.
In such case, it will be impossible to find an intersection of two feature sets. The other
problem is potential information loss due to intersection removal. Imagine we have
a dataset that is represented in Table1. It has four features and four samples labeled
into two classes C1 and C2. IS feature selection will remove features f1 and f3 since
they obtain value 1 (are present) in both classes. The remaining features f2 and f4
will not allow us to generate a rule that will be able to distinguish between samples
s2 and s4. This example is quite small, but on the larger dataset removing a feature
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Table 1 Sample dataset 1

f1 f2 f3 f4

s1 1 1 1 0 C1

s2 1 0 0 0 C1

s3 1 0 1 1 C2

s4 0 0 1 0 C2

that takes value 1 in all samples of one class and only in one sample of another class
can lead to the inability of building a model with good performance. Such feature
would be most likely selected by IG feature selection. The last disadvantage of the
IS feature selection is potentially poor performance on the multinomial datasets.
If we increase the number of classes we will end up in the situation of growing
intersection size. In such case, the IS will remove more features from the feature
space resulting in increased information loss. We begin with the description of our
dataset and experimental environment. Later, we explain the basics ofmemory access
operations and explain the way we record and process the data.

4 Experimental Evaluation

In this section, we describe experimental evaluation of the IS feature selection
method. We show how IS feature selection can be applied for malware detection.
During experimental evaluation we compare performance of features selected by IS
and IG. In Fig. 1, we depict general data flow of our experiments. We start by record-
ing memory access operations produced by benign and malicious executables. After,
we split sequences of memory access operations into n-grams. Then we apply feature
selection methods to select best features (n-grams). In the end, we use these features
to train machine learning models and compare performance of the models trained
with a use of features selected by different feature selectionmethods. Before present-
ing the results achieved by machine learning models, we show the experimental time
complexity of the IS and IG feature selection methods. We also check how similar
the feature sets selected by different methods are.

We now proceed with the description of our dataset, experimental environment,
and the way we collect and process the data.
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Dataset:
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Fig. 1 The flow of data collection and feature selection

4.1 Dataset

In this work, we use dataset similar to the one used in [7]. It consists of 2098 benign
and 2005 malicious Windows executables. Malicious executables were downloaded
as part of VirusShare_00360 pack available at VirusShare [35]. Malicious samples
belong to the followingmalware families: Fareit, Occamy, Emotet, VBInject, Ursnif,
Prepscram, CeeInject, Tiggre, Skeeyah, and GandCrab. According to the VirusTotal
[32] reports, our samples were first seen (first submission date) betweenMarch 2018
andMarch 2019. Benign executables are the real software downloaded from Portable
Apps [27] in September 2019.
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4.2 Experimental Environment

In order to perform dynamic malware analysis, we need to avoid the influence of any
environmental changes, so that all executables are launched in similar conditions. To
achieve this we used an isolated Virtual Box virtual machine (VM) withWindows 10
guest operating system. VMs were launched on the Virtual Dedicated Server (VDS)
with 4-core Intel Xeon CPU E5-2630 CPU running at 2.4GHz and 32GB of RAM
with Ubuntu 18.04 as a main operating system.

4.3 Memory Access Operations

The executables used on Windows operating systems are compiled into the files in
PE32 format. Files of PE32 format contain header and sections. The header contains
the metadata that is used by operating system in order to properly load an executable
into memory and prepare all the necessary resources. The sections contain informa-
tion about imported and exported functions, resources, data, and the executable code.
The executable code is stored in the binary formwhich can be represented as opcodes.
Opcodes (or assembly commands) are the basic instructions that are executed by the
CPU. Execution of some instructions will not require memory access. For example,
execution ofMOV EAX,EBX opcode will not result in memory access, since data is
being moved between registers in the CPU. At the same time, MOV EDI, DWORD
PTR [ebp-0x20] will generate a Read (R) memory access, since the data has to be
read from the memory. On its turn, the ADD DWORD PTR [EAX],ECX will require
Reading (R) the value from the memory location addressed by [EAX] and thenWrit-
ing (W) the result of the addition to the memory. The sequences of opcodes were
previously proven to be a source of effective features for malware detection [10, 30,
34]. When the sequence of opcodes is executed it generates a sequence of memory
access operations. Two previous statements allow for memory access sequences to
be a potential source of features for malware detection [8]. Under our experimental
design we use only the type of memory access operation: R for read andW for write.
We do not use the value that is transferred to or from the memory as well as the
address of the memory region in use.

4.4 Data Collection

Each malware sample was launched on the clean snapshot of VM. During the exe-
cution of each sample, we recorded the first million of memory access operations
produced after the launch. Thiswas donewith the help of a custom-built Intel Pin [20]
tool that was launched together with the sample inside the VM. The VMhad all built-
in anti-virus features disabled to make malware run properly and also because they
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kept interrupting the work of Intel Pin. The automation of VM and data collection
were performed with the help of Python 3.7 scripts.

The memory access traces were first stored in the separate files. After, they were
split into the sequence of overlapping n-grams of the size 96 (96-grams). We choose
n-gram size (as well as the amount of recorded memory accesses) based on the
conclusions of their effectiveness drawn in [8]. The n-grams of memory access oper-
ations for each sample are then stored in the MySQL table. This table took 28.5GB
of storage.

4.5 Feature Selection and Machine Learning Algorithms

We implemented IS feature selection algorithm with Python. The custom implemen-
tation of IG feature selection algorithmwas similar to one in [7]. That implementation
allows to run feature selection in multiple threads, which significantly speeds up the
process. We found that samples produced more than 5.5M of unique n-grams (fea-
tures). Benign samples generated more than 4.5M of features, while malicious—
more than 1M of features. When performing IS feature selection we found that
benign and malicious samples shared almost 600K common features. Subtraction of
those features resulted in almost 4M and 430K of class-unique benign andmalicious
features, respectively. According to the algorithm from Sect. 3, we selected 50, 30,
15, 10, and 5 thousands of features. We selected a similar amount of features with
the IG feature selection algorithm as well. Similar to [5–7] we wanted to reduce
feature space even more, so that our models are simple enough for future human
analysis. Thus, we used CFS feature selection method from Weka [19] to select the
most relevant and least redundant features from 50K features selected by IS and IG.
As a result, we obtained 15 features from IS-based 50K feature set and 9 features
from IG-based 50K feature set. As CFS appends features to the feature set until
the increase of its merit is no longer possible, it is impossible to control the final
amount of selected features unless the GreedyStepwise search is applied. However,
such search never finishes its work when applied to the larger feature sets in our
experimental environment. We wanted to compare the performance of IS and IG
with the CFS as well. So we tried to select the same number of features with IG and
IS. However, CFS selected 15 features. And as the IS have to select equal amount of
features from each class (Sect. 3) we decided to select 14 features with IS (7 from
each class).

The selected features were later used to build machine learning models. The data
that is actually fed into mechine learning algorithms is basically a bitmap of presence
[8]: if a certain sample (row) generates a certain feature (column), then this feature
takes value 1 for this sample. In the opposite case, the feature takes value 0. We used
the following machine learning algorithms fromWeka: k-Nearest Neighbors (kNN),
RandomForest (RF), Decision Trees (J48), Support Vector Machines (SVM), and
Naive Bayes (NB) with the default Weka [19] parameters. We assessed the quality
of the models with fivefold cross validation [22]. Accuracy (ACC) as the amount of
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correctly classified samples and F1-measure (F1M) that takes into account precision
and recall were chosen as evaluation metrics. Further, in this section, we present the
classification performance of the machine learning models.

4.6 Time Complexity

One of the reasons to use IS feature selection is that it is relatively faster than the other
commonmethods. In this subsection, we provide time taken by IS and IGmethods to
select 50K of features from the initial 5.5M distinct features. It took 302s (∼5min)
for IS to select 50K features. In contrast, the IG used 18,560s (∼5.15h) to select 50K
features when running in one thread. While being launched in 16 threads, IG used
1168s (∼20min) to select 50K features. Further increase in the number of threads
does not make sense, since this is the maximum amount of threads available at our
VDS. As we can see, single-threaded IS works 3.8 times faster than IG ran with 16
threads and 61.5 times faster than IG ran with 1 thread. To find an intersection of
benign and malicious feature sets, the IS used 1.18 s as the average of 1000 runs. It
has used an additional 0.7 s to subtract intersection from both feature vectors. The
actual implementation of our feature selection algorithms did not load the entire
dataset at the same time. Thus, it is impossible to directly measure the time needed
to calculate the quality measure of a single feature, since it is calculated in iterations.
But indirect assessment (we divide overall time by the total amount of features to go
through) showed that IS needed around 5.5 · 10−5 s to assess a single feature, and IG
needed 2.12 · 10−4 s and 3.4 · 10−3 s to assess a single feature with 16 and 1 thread,
respectively. It is important to mention that the times provided are relevant to our
data structure and the way we store our data. For instance, the fact that we stored
memory access n-grams for each sample in a separate cell of the database table could
affect the time needed to perform feature selection.

4.7 Analysis of Selected Feature Sets

Here we analyze how different are the feature sets selected by IS and IG. In Table2,
the feature amount column shows the size of the feature set for IS and IG methods;
the common feature column shows the number of similar features selected by IG
and IS for the corresponding feature set size; and the difference ratio column shows
the ratio of the distinct features and is calculated as (Feature amount—Common
features)/Feature amount. As we can see, most of the features selected by the IS
method are different from those selected by IG. It complies with the theoretical
assessment of IS (see Sect. 3), where we explained that IS may discard features with
potentially high information gain only because they get value 1 in both classes. Aswe
mentioned before, we used CFS feature selection on the feature sets of the size 50K.
It is worth mentioning that CFS selected completely different features when working
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Table 2 Difference between feature sets selected by IS and IG

Feature amount Common features Difference ratio

50K 994 0.98

30K 994 0.97

15K 979 0.93

10K 955 0.9

5K 812 0.84

IG/IS 9/14 0 1

with 50K feature sets selected by IS or IG. When using IG and IS to select the same
amount of features as selected by CFS we also obtained completely different feature
sets.

4.8 Classification Performance

In this subsection, we present the classification performance achieved by themachine
learning algorithms. Tables3 and 4 contain evaluation metrics of machine learning
models trained with the feature sets of a different lengths selected by different feature
selection algorithms. Therefore, FSL stands for feature set length, ACC stands for
accuracy, and F1M stands for F1-measure. As we can see, both feature vectors
allowed to achieve a quite high classification accuracy. The best performing RF
model that used 10K features selected by IG managed to classify 99.9% of the
samples correctly. On its turn, features selected by IS allowed to build kNN and RF
models with an accuracy of 99.8%. As we can see, in most cases, models built with
the use of features selected by IS have slightly lower classification performance.
However, the difference in accuracy or F1-measure between IS and IG features
is most of the time less than 1%. Thus, it is hard to conclude whether the features
selected by IG is significantly better than those selected by IS. There is one exception
for NB models built with the use of 50K features. As it is possible to see, the NB
model trained with 50K features selected by IG has significantly lower accuracy and
F1-measure than the one trained with 50K features selected by IS. This difference
might be explained by the nature of features selected by IS and the limitations of
the NB method. While building the model, Naive Bayes assumes that features are
independent. However, Information Gain feature selection potentially selects a lot of
mutually correlated features. The IS does not take into account themutual correlation
between features as well. However, there should be less correlated features selected
by IS, since one half of the features will not have 1s in one of the classes and
vice versa. These properties of Naive Bayes were studied in [29]. Even though CFS
selected completely different features in IS and IG cases, the models built with those
features showed a quite similar classification performance. We will discuss this in
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Table 3 Classification performance with a use of features selected by IG
Method FSL kNN RF J48 SVM NB

ACC F1M ACC F1M ACC F1M ACC F1M ACC F1M

InfoGain 50K 0.996 0.996 0.996 0.996 0.997 0.997 0.983 0.983 0.693 0.671

30K 0.996 0.996 0.997 0.997 0.998 0.998 0.986 0.986 0.983 0.983

15K 0.996 0.996 0.998 0.998 0.998 0.998 0.991 0.990 0.983 0.983

10K 0.998 0.998 0.999 0.999 0.998 0.998 0.992 0.991 0.983 0.983

5K 0.995 0.995 0.997 0.997 0.997 0.997 0.988 0.988 0.983 0.983

9 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988

CFS 9 0.997 0.997 0.997 0.997 0.996 0.996 0.997 0.997 0.988 0.988

Table 4 Classification performance with a use of features selected by IS
Method FSL kNN RF J48 SVM NB

ACC F1M ACC F1M ACC F1M ACC F1M ACC F1M

IS 50K 0.991 0.991 0.997 0.997 0.997 0.997 0.983 0.983 0.982 0.982

30K 0.996 0.996 0.997 0.997 0.997 0.997 0.983 0.983 0.985 0.985

15K 0.998 0.998 0.998 0.998 0.997 0.997 0.984 0.984 0.983 0.983

10K 0.998 0.998 0.997 0.997 0.997 0.997 0.985 0.985 0.983 0.983

5K 0.998 0.998 0.998 0.998 0.997 0.997 0.985 0.985 0.983 0.983

14(7+7) 0.983 0.983 0.983 0.983 0.983 0.983 0.983 0.983 0.983 0.983

CFS 15 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.983 0.983

Sect. 5. When we used IS and IG to select the number of features similar to CFS
we found that models built with these features perform slightly worse if compared
to the models built with features selected by CFS. This finding can be explained
by the natures of CFS and IS algorithms. The IS will select features with higher
class-wise frequency. However, such features might correlate with each other. Thus,
these features might have a strong correlation with each other bringing redundant
information to the model. In contrast, CFS will try to select a feature set that has
as little redundant information as possible. Looking once again in Tables3 and 4,
we can conclude that both feature selection methods performed quite good under
our experimental setup while selecting feature sets that are very different from each
other.

Important notice. The results from Table3 is similar to part of the results provided
in [7]. This happened because our papers share the same dataset. Also the data
collection processes have only minor differences: in this paper, we recorded the first
million of memory access operations, while methodology of [7] is to record the first
million of memory access operations unless a certain stopping criteria is met.
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5 Discussion and Future Work

In this section, we discuss our findings and limitations that should be applied to the
possible conclusions made based on the presented results. As we were able to see,
IS feature selection works faster than IG. The main reason to this is the fact that the
selection of features based on its class-wise frequency requires less computations.
However, it is important to understand that all measurements of time complexity pre-
sented in this paper are specific to our conditions (available computational resource,
structure of the data, implementation of feature selection algorithms) and might dif-
fer in other conditions. The theoretical assessment of the IS feature selection method
predicted that features selected by IS might bring less information about samples
and classes than those selected by IG. But the experimental evaluation showed only
marginal difference in classification performance. Under our experimental setup,
only the amount of features selected by CFS could be considered as a proof of our
theoretical assessment. The CFS selected more features from IS-selected feature set
to gain similar merit (what resulted in similar classification performance). As we
mentioned before, CFS adds features to the feature set until its merit stops growing.
These facts show that features selected by IS possess less information. Thus, on the
small feature sets, we need more features selected by IS than those selected by IG.
As we compared classification performance of machine learning methods, we found
that under certain conditions NB might perform better when using IS-selected fea-
tures. This fact can be explored more thoroughly in the future work. The method was
tested on a nearly balanced dataset, and we selected the equal amount of features
to represent both classes. The use of other approach in the selection of the desired
amount of features or applicability on the imbalanced datasets is left for the future
work.

The IS feature selection method is quite simple in implementation. However, as
we discussed in Sect. 3, its applicability limited to the cases where we are interested
in the fact of presence of a certain feature in the class. Thus, when features are
not binary or discreet, the applicability of IS feature selection is questionable. It is
possible, however, to binarize continuous variables [22], but this a separate topic and
it is out of scope of this paper. There is also a number of possible improvements and
modifications that can be applied to the IS feature selection method in the future.
For example, we can decrease the time complexity of IS in the following way. When
we calculate class-wise frequencies of features, we might limit the search space by
the samples that produce this feature. Rough estimation suggest that it may halve
the time needed to perform IS feature selection. Another modification that can be
implemented in IS feature selection is introduction of the degree of membership to
the intersection. For example, a certain feature f might occur in both classes C1 and
C2. These classes have mC1 and mC2 samples, respectively. The feature f is present
in m f

C1 samples of a class C1 and m f
C2 samples of class C2. For example, we may

exclude feature from the intersection if
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> ε

. Basically, we keep a feature if it represents ε times bigger fraction of samples of
one class than fraction of samples of the other class. Such approach may decrease
an information loss, but will contribute to the increase of computational complexity
of IS feature selection method, and thus will make IS less attractive feature selection
method.

It is also important to outline the following observation. IS and IG selected
quite different feature sets. Moreover, CFS selected completely different features
from those preselected by IS and IG. Nevertheless, classification performance of the
machine learning models appeared to be very similar when using different feature
sets. This raises the following question: do the mentioned feature selection methods
always select the best feature set or do they find one of the several similarly good
feature sets? This question is left open for the future studies.

6 Conclusions

In this paper, we studied the performance of Intersection Subtraction feature selection
onmalware detection problem.We showed that with the use of IS feature selection on
HDLSS dataset, it is possible to correctly classify more than 99% of the benign and
malicious samples. The main contribution of this paper is the direct comparison of IS
and IG feature selection methods under the same conditions. We found that most of
the features selected by IS and IG are different. The classification performance of the
machine learning models trained with the use of quite different feature sets appeared
to be very similar. Even though the models trained with IG-selected features showed
marginally better performance, the single-thread implementation of the IS feature
selection method worked 3.8 times faster than the 16-thread implementation of IG.
This makes Intersection Subtraction feature selection attractive when it comes to
the analysis of HDLSS datasets. The IS feature selection may help when it is not
known yet whether the data is useful for the classification task at all. The number of
features might so big that it is pointless to spend time running more common (also
slower) feature selection methods. Thus, with certain abovementioned limitations,
the IS feature selection may be successfully applied to HDLSS datasets.
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A Comparative Study of Adversarial
Attacks to Malware Detectors Based on
Deep Learning

Corrado Aaron Visaggio, Fiammetta Marulli, Sonia Laudanna,
Benedetta La Zazzera, and Antonio Pirozzi

Abstract Machine learning is widely used for detecting and classifying malware.
Unfortunately, machine learning is vulnerable to adversarial attacks. In this chapter,
we investigate how generative adversarial approaches could affect the performance
of a detection system based on machine learning. In our evaluation, we trained
several neural networks for malware detection on the EMBER [3] dataset and then
we built ten parallel GANs based on convolutional layer architecture (CNNs) for the
generation of adversarial examples with a gradient-based method.We then evaluated
the performance of our GANs, in a gray-box scenario, by computing the evasion rate
reached by the adversarial generated samples. Our findings suggest that machine-
and deep-learning-based malware detectors could be fooled by adversarial malicious
samples with an evasion rate of around 99% providing further attack opportunities.

1 Introduction

Several studies have investigated the effectiveness [1, 7, 8, 17, 19, 48] and drawbacks
[4, 40] of machine (and recently also deep) learning in detecting and classifying
malware. Independently from the inherent limitations of malware detectors based on
machine learning, the generative adversarial networks (GANs, in the remainder of
the chapter) become a menace to the effectiveness of these tools.

A GAN is a tool that produces adversarial samples by using the adversarial
machine learning [26]: this is a technique that leverages machine learning for fool-
ing classifiers trained with a machine learning algorithm, leading them to wrongly
classify some samples.
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Adversarial machine learning has been applied with a certain success especially
to the field of image recognition with some surprising results [21], but also to speech
recognition [2] and biometric recognition [11].

For understanding how powerful maybe this technique, we couldmention the case
of image recognition. The adversarial sample is an image that has been tampered
within away that cannot be distinguishedby abare eye, but thatmisleads the classifier.
The result is that the image is not recognized at all or, even worst, is classified as a
completely different image.

An exemplar case is the automatic recognition of street signs: a street sign is
decoded as another street sign. Alike the fieldswhereGANs have been experimented,
they could be successfully used for generating samples ofmalware that are recognized
by malware detectors based on machine learning as goodware.

The research community is now investigating the application of GANs tomalware
analysis, and so far the main result consists of some models of GANs for producing
adversarial malware samples.

Our purpose is to investigate how and how much GANs are able to degrade the
performance of malware detectors based on machine learning. We trained a set of
classifiers using different combinations of features, obtaining a wide spectrum of
performances. Thus, we built different models of GANs, observing the degradation
of each detector.

This work does not help to identify how to make stronger a detector against an
adversarial attack but provides data for quantifying the potential effects of a GAN
on a malware detector based on machine learning.

In this chapter, we provide a brief overview of the current state of the art and
some open issues related to the vulnerabilities of deep learning models adopted in
designing malware recognition systems. More precisely, we focused on the weak
points of these approaches when attacked by adversarial examples that are proving
to be increasingly sophisticated and effective in misleading defense systems.

We provide further evidence by discussing a case study that shows how adversarial
examples and generative adversarial approaches, by the means of generative adver-
sarial neural networks (GANs), can degrade the detection performance of a deep
learning feature-based malware detector, finally highlighting that certain features
may prove to be more sensitive than others.

The chapter is organized as follows: the next section provides the background
of adversarial machine learning and the most significant applications, while Sect. 3
compares the related literature. Section4 shows the research questions we posed and
the design of the case study. Section5 discusses the obtained results, and, finally,
conclusions are drawn in the last section.
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2 The Deep Learning Models Adopted in Malware
Detection

Machine learning (ML) and deep learning (DL) have been successfully employed
for detecting malicious objects, e.g., executable files.

New malware programs appear each year in increasing amounts and hence mal-
ware detection based on signature matching is increasingly becoming an impractical
approach. Machine and deep learning promise to provide valid countermeasures
against modern malware because of their capability to potentially detect malware
applications without specific signatures of their behavior or data.

Generally, ML-based malware detectors work on the extraction of the malware
(and benign programs) features and static and/or dynamic analysis can be performed.
Such systems learn from examples for creating models by which they will be able
to discriminate whether a given program is a malware or not. These models are then
used to estimate the likelihood that a given program is malware.

One of the bottlenecks exhibited by ML-based malware detection is represented
by the high time required to learn when the number or size of features is wide or
the number of sample programs is large. Although reducing the number of features
could shorten the learning time, the accuracy in the detection task likely decreases. So,
finding an acceptable trade-off among the detection accuracy, short learning times,
and limiting the size of data, obtainable by selecting a convenient combination of
sensitive features, is far from being a trivial problem.

A very accurate review of recent findings of adversarial examples in deep neural
networks and a deep investigation of existing methods for generating adversarial
examples is provided in [50].

2.1 The Deep Learning Models in a Nutshell

The essential background about techniques and enabling architectures of deep learn-
ing is provided in the following.

Deep learning is a kind of machine learning that makes computers to learn from
experience and knowledgewithout explicit programming and extracts useful patterns
from raw data.

Conventional machine learning algorithms exhibit some limitations since it is
difficult to extract well-represented features because of the curse of dimensional-
ity, computational bottleneck, and strong requirements of the domain and expert
knowledge. Deep neural networks represent a particular kind of machine learning
algorithm, leveraging several “deep” layers of networks. Furthermore, deep learning
solves the problemof the representation bybuildingmultiple simple features tomodel
a complex concept. The more the number of available training data grows, the more
powerful the deep learning classifier becomes. Deep learning models solve compli-
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cated problems by complex and large models, with the help of hardware acceleration
in computational time.

Traditionally, researchers build a single deep learning model using the entire
dataset. However, the single deep learning model may not handle the increasing
complex malware data distributions effectively since different sample subspaces
representing a group of similar malware may have unique data distribution [52].

Since the performance of deep learning models keeps improving with the increas-
ing number of samples [49], researchers build a single deep learning model using
an entire data to understand the relationship between data features extracted from
malware and the target [9, 27, 39, 45].

These deep learning models mainly use three types of neural network architec-
tures:

• Convolutional neural network (CNN);
• Recurrent neural network (RNN); and
• Fully connected feedforward neural network (FC).

There are twomajor disadvantages in building a single deep learning model that uses
a blended dataset:

• Complex data distribution;
• Scalability.

Each type of malware has unique and different characteristics, proliferation meth-
ods, and data distributions [35, 49].

Consequently,merging different types ofmalware into one dataset results in a very
complex overall data distribution. Furthermore, the diversity and sophistication of
the merged dataset continue to grow rapidly due to the large number of new malware
variants that are created each year [49]. As a result, it is very challenging for a single
deep learning model to understand this complex data distribution.

Additionally, the single CNN model treats malware as the image while the single
RNN model considers the behavior as the sequence of events. Both models only
analyze the data distribution from only one perspective. In the case of malware, the
analysis of data distribution in different sample subspaces from multiple angles is
preferred in order to combine the knowledge and strength of these single models
effectively.

Second, building a single deep learning model for malware detection lacks scala-
bility to train on increasingly large malware datasets. Training deep learning models
on very large datasets is a computationally expensive process [20]. Since the number
of newmalware samples has exponentially increased through time [9, 31], building a
single deep learningmodel requires longer computation time. This slow training pro-
cess makes difficult to search and rebuild the learning model rapidly in order to adapt
to the fast changing malware landscape and respond to the new techniques adopted
by the malware writers. An alternative to using a single deep learning model to build
malware detection systems (MDSs) is the development of ensemble-based deep
learning models. Multiple deep learning models in the ensemble can work together
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to enhance the performance of MDSs. Researchers have developed the ensemble-
based deep learning models, where each model is constructed on the whole blended
dataset.

2.1.1 The Most Popular Deep Neural Network Architectures

A neural network layer includes a set of perceptrons (artificial neurons), and each
one is able to map a set of inputs to output values by evaluating a simple activa-
tion function. The function of a neural network is formed in a chain f(x) = f (k)

(. . . f (2) (f (1)(x))), where f (i) is the function of the ith layer of the network, with
i = [1; 2; …; k].

Convolutionalneuralnetworks (CNNs) and recurrentneuralnetworks (RNNs)
are the two most popular and adopted neural network architectures in recent times.

CNNs deploy convolution operations on hidden layers for weight sharing and
parameter reduction. CNNs can extract local information from grid-like input data.
CNNs have shown incredible successes in computer vision tasks, such as image
classification [24], object detection [44] and semantic segmentation [14].

RNNs are neural networks adopted for processing sequential input data with
variable length. RNNs produce an output at each step. The hidden neuron at each
step is calculated based on input data and hidden neurons at a previous step. To avoid
vanishing/exploding gradients of RNNs in long-term dependency, long short-term
memory (LSTM) and gated recurrent unit (GRU) with controllable gates are widely
used in practical applications.

Generative adversarial networks (GANs) are a type of generative model intro-
duced by [22], where adversarial examples can be exploited to improve the repre-
sentation of deep learning and perform unsupervised learning. A generative network
(generator) creates artificial samples while a discriminative network (discriminator)
acts as an adversary to determine if the generated samples are genuine or fake. This
kind of network architectures are typically referred as generative adversarial network
(GAN) and solve an optimization function described by

min
G

max
D

V (D, G) = Ex∼Pr [log D(x)] + Ez∼Pz [log D(G(z))],

where D and G denote the discriminator and generator, and Pr and Pz are, respec-
tively, the distribution of input data and noise. In this competition, GAN is able to
generate raw data samples that look close to the real data.

Due to the wide use and breakthrough successes, ML- and DL-based detection
systems have become amajor target for attacks, where adversaries are usually applied
to evaluate the attack methods. Unfortunately, both ML and DL approaches to mal-
ware detection can be fooled by adversarial examples that consist of small changes
to the input data causing misclassification at testing time.
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3 Adversarial Attacks Against Deep Learning-Based
Malware Detection System

In this section, we explore the adversarial attack techniques on MLmodels that have
been applied to intrusion and malware attack scenarios.

Several techniques have been proposed to create adversarial examples. Most
approaches suggest minimizing the distance between the adversarial example and
the instance to be manipulated in order to cause the ML classifier to misclassify the
testing dataset with high confidence.

Some methods require access to the gradients of the model, which typically intro-
duce perturbations optimized for certain distance metrics between the original and
perturbed samples: this kind of attack is called white-box attack. Other methods
only require access to the prediction function, which makes these methods model-
agnostic: this kind of attacks are called black-box attack.

A simple indiscriminate approach is gradient ascent during the training of ML
model. Szegedy et al. [47] proposed a first gradient method to generate adversar-
ial examples applied to the imaging field, using box-constrained limited-memory
Broyden-Fletc.her-Goldfarb-Shanno (L-BFGS) optimization, an optimization algo-
rithm that works with gradients. The adversarial examples were generated by mini-
mizing the following function:

Minimize ‖r‖2 subject to :
1. f (x + r) = l

2. x + r ∈ [0, 1]m ,

where x is an image represented as a vector of pixels, r represents the perturbations to
be made on the pixels to create an adversarial image, l is the target label (the desired
outcome class), and the parameter c is used to balance the distance between images
and the distance between predictions.

Goodfellow et al. [22] proposed a simple and fast gradient-based method called
fast gradient sign method (FGSM), using the gradient of the underlying model to
find adversarial examples and the original image x is manipulated by adding or
subtracting a small error ε to each pixel:

η = ε ∗ sign (�x J (x, y)) .

Here, η is the perturbed sample, ε is a hyperparameter controlling the amount of
perturbation added to each feature (pixel), �x J is the gradient of the models loss
function with respect to the original input pixel vector x and y the target label (the
true label vector for x). The sign of the gradient is positive if an increase in pixel
intensity increases the error the model makes and negative if a decrease in pixel
intensity increases the error. This approach requires many pixels to be changed, for
this reason, Su et al. [46] demonstrated that it is actually possible to deceive image
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classifiers by changing a single pixel (the RGB value). The one-pixel attack uses
differential evolution to find out which pixel is to be changed and how.

Brown at. al [12] proposed how to create image patches that can be added to a
scene, and force a classifier into reporting a class of the attacker’s choosing. This
method differs from the methods aforementioned since the adversarial image isn’t
close to the original image but it is removed and a part of the image is replaced with
a patch that can take on any shape.

Carlini andWagner [13] modified the objective function and used a different opti-
mizer compared with the L-BFGS attack described in [47]. Instead of using the same
loss function as in L-BFGS, they solved the following box-constraint optimization
problem to find an adversarial perturbation δ, making the problem more efficient to
solve. CWfinds the adversarial instance by finding the smallest noise δ ∈ Rnxn added
to an image x that will change the classification to a class t and uses the L2 norm
(i.e., Euclidean distance) to quantify the difference between the adversarial and the
original examples. Formally:

minimize ‖δ‖p subject to C (x + δ) = t, x + δ ∈ [0, 1]n,

where C(x) is the class label returned with an image x .
While successful, gradient-based methods work only under “white-box” settings.

Papernot et al. [38] showed a type of zero-knowledge attack (black-box attack) to
create adversarial exampleswithout internalmodel information andwithout access to
the training data. This technique, called Jacobian-based saliencymapattack (JSMA),
unlike the previous method, proposed to use the gradient of loss with each class label
with respect to every component of the input, i.e., Jacobian matrix to extract the
sensitivity direction. Then a saliency map is used to select the dimension which
produces the maximum error using the following equation:

st = ∂t

∂xi
; so =

∑

j �=t

∂ j

∂xi
; s(xi ) = st |so| · (st < 0) · (so > 0).

In the previous formula , st represents the Jacobian of target class t and so represents
the sum of Jacobian values of all non-target class. Changing the selected pixel will
significantly increase the probability of the model labeling the image as the target
class. The purpose of JSMA attack is to optimize the Lo distance metric (the amount
of perturbed features).

Moosavi-Dezfooli et al. [33] proposed an algorithm,DeepFool, to compute adver-
sarial examples using an iterative linearization of the classifier to generate minimal
perturbations that are sufficient to change the classification labels. Starting with a
binary classification problem, this method creates an adversarial example computing
theEuclidean distance between perturbed samples and original samples in an iterative
manner until sign( f (x)) �= sign( f (x + r)) where r is the minimum perturbation
required.
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Zeroth-order optimization attack (ZOO) was proposed by Chen et al. [15] and
consists of approximating the full gradient via a random gradient estimate using
the difference between the predicted probability of the target model and the desired
class label. Precisely, the method uses zeroth-order stochastic coordinate descent to
optimize the malicious sample by adding perturbations to each feature and querying
the classifier to estimate the gradient and Hessian of the different features. In this
scenario, solving the optimization problem is computationally expensive and the
authors proposed a ZOO-Adam algorithm to find the optimal perturbations for the
target sample.

Most of the attacks presented have been initially tested on image domains by
introducing perturbations to existing images but they can equally be applied to other
types of data, such as datasetswith a limited number of features since these attacks are
not data-type dependent. In a cybersecurity scenario, a malicious user could access
any type of data used by a classifier and produce adversarial examples.

4 Generative Adversarial Attacks Against Malware
Detection Systems

In this section, we examine existing generative adversarial algorithms used to attack
malware detectors.

Generative adversarial algorithms have been mainly applied to image recogni-
tion, where generative adversarial networks (GANs) were used to generate images
that were indistinguishable from real ones. In the process of image generation, for
example, the GAN network modifies some features like pixels, while a human eye
does not perceive the difference from an original one. Using GAN to create a binary
file poses more difficulties than an image, because changing a bit in a binary may
corrupt the file. For this reason, generating executable files with a GAN could be
challenging.

The main difference between image and malware is that images are continuous
while malware features are binary. Changing byte arbitrarily could break semantics
and syntax of portable executable (PE) so we are limited in the types of modifica-
tion that can be done without breaking the malware functionality. For this reason,
different approaches have been proposed in the literature such as adding padding
bytes (adversarial noise) at the end of a file beyond PE boundaries [30]. Another
approach consists of injecting the adversarial noise in an unused PE region that is
not mapped in memory [32]. Most works in literature simply ignore this problem. In
order to overcome this limitation, attackers must have a white-box model in which
the type of the ML algorithm used and the features to be used are known. One of the
first demonstrations of an adversarial creation of a PE is the work [25]; in this paper,
authors adopt a gray-box model in which they only know the set of used features
based on API calls but do not know the ML model used by the classifier. In Mal-
GAN, authors generate adversarial examples by adding some irrelevant features to
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the binary files because removing features may crack the executable or its intended
behavior. The adversarial generated example is expressed by the following formula:

m ′ = m|o′,

where m is the initial feature vector, each element of m corresponds to the pres-
ence/absence of a particular feature in a malware, and then this input vector is fed
into a multi-layer feedforward neural network with weights

θg.

The output layer of this network has M neurons and has a sigmoid as an activation
function which is continuous in the range (0,1) as the last layer. The output of this
network is denoted as o.

Since malware features are binary, the output in the continuous space must be
transformed into the binary space with a transformation called binarization. This
procedure generates a new binary vector o’. Then the resulting m’ is a binary vector
obtained by the initial m vector through an OR bit-wise operation with the o’ binary
vector.

The non-zero element of the binary vector o’ acts as an irrelevant feature to be
added to the original malware. While MalGAN and the detector use the same API as
features quantity and this could affect the performance of avoidance, in [28] authors
add some noise to malware, extracting features (API list) from clean malware and
input them to the generator.

In another work [30], the authors present a gradient-based attack to generate
adversarial malware binaries but their limit is the manipulation to the padding bytes
appended at the end of the PE to guarantee that the malware integrity is preserved.
With this approach, they reach an evasion rate of 60% against raff2017malware
used as a classifier. GANs are also used to generate a malicious document. In [51],
the authors propose a method based onWasserstein generative adversarial network
(WGAN) to generate a malicious PDF with an evasion rate of 100% as stated. A
malicious PDF is a document that embeds and executes malicious code. In this
work, the authors generate adversarial examples by modifying 68 features extracted
from various attributes: size, metadata, and structural attributes.

5 Case Study

Wecarried out a case study to examine the effectiveness of adversarialmodels against
malware detectors based on deep learning. To this aim, we considered a coopera-
tive system of generative adversarial networks, where multiple GANs (couples of
generators and discriminators) run in parallel for supporting a multistage black-box
attack.
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Under the realistic hypothesis that an attacker knows very little about the system
he wants to attack (the case of a black-box attack), the attacker could set up some sort
of brute-force attack by deploying a pool of specific generators built for interacting
with a corresponding pool of specific targets (discriminators).

The attack strategy envisages multiple stages (steps). As first, the only knowledge
owned by the attacker consists of knowing that the target victim could behave accord-
ing to a ML or DL model and the kind of inputs it could accept, so the attacker trains
several generators working over different groups of features (possibly, he could try
over all the sensible combinations) for refining the generation of artificial adversarial
samples.

This training stage is performed without effectively interacting yet with the real
target. Discriminators play the role of the potential victims, as substitutes of real
victim systems. In the middle of attacking time, the attacker will start a smooth inter-
action with its victim, this time represented by a black box. By carefully analyzing
responses from the black box, it is able to figure out what features are used by the
malware detector black box. Adversarial test cases are produced by exploiting all the
trained generators in the attacker’s wallet.

Most of these samples will be harmless since they will not act on the right set
of features but we can suppose that almost one of these generators will be able to
generate samples that will produce some effects. By this way, the attacker will gain
knowledge about its adversary and can implement a gray-box attack, basing on the
features set its victim works over.

At the real attack time, the attacker will exploit only the right generator and
proceed to attack and refine its generation model until its target is reached out. The
case study we propose should not be regarded as exhaustive but it can be regarded
as proof of the concept that adversary attacks pointing ML and DL systems can
be implemented in many alternative and successful ways, for tampering with real
existing defense systems.

5.1 Case Study Design

As first, we trained ten parallel GANs simultaneously, where both the detectors and
the generators were realized by adopting deep neural network models. In particular,
the models used for the discriminators implement a fully connected feedforward
network architecture (FFNNs) while, for models of the generators, we adopted a
convolutional layer architecture (CNNs).

For implementing each GAN comprised in our cooperative system, we took our
cue from the general system architecture and the generators neural network archi-
tecture, implemented as a CNN, suggested in MalGAN [25]. Unlike MalGAN, we
don’t use a black-box detector and a substitute detector, since we designed our case
study from the perspective of a “patient attacker” deploying a multistage attack.
Our approach differs from MalGAN also in the kind of features considered both for
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training detectors and generators and in the generation strategy of the adversarial
samples, as it will be detailed in the following sections.

Then, in the first stage, we assume that the attacker knows at least the features
adopted by its victim for distinguishing between goodware and malware and has
access also to its gradients. In this way, we could directly exploit the gradient’s
information provided by the detectors for training the generators and refining the
capability to artificially generate samples that look like genuine ones.

With regard to the type of samples we analyzed and the kind of analysis performed
by the victim detectors, specifically, we considered the surface features extracted
from binary files applications, so the detectors answering to adversarial attacks are
trained to perform a static analysis over the inputs they are fed in.

Correspondingly, adversarial examples will be generated by crafting these surface
features. Since the surface feature space is discrete, we will apply a transformation
to continuous space, in order to apply a gradient-based method for improving the
probability that the generated adversarial examples will go undisturbed through the
detection system. The approach suggested in [23] allows us to work in discrete and
binary input domains, differently from most of the other proposed approaches [30]
that operate only in continuous and differentiable domains.

Furthermore, static analysis has the advantage that does not require the execu-
tion of samples in a sandbox or safe environment for studying their behaviors, and
the features for training the detector and/or classifiers can be extracted over specific
subsets of features. Conversely, the dynamic analysis could reveal more information
about malicious behaviors by the applications (e.g.., actions relationships and pat-
terns) but the operative conditions are more difficult to achieve. Challenging results
obtained by adopting static analysis in training machine and deep learning algo-
rithms for malware detection are described in [3], where the authors provided, as
first, an open-source dataset, namely, “EMBER,” consisting in a collection of sur-
face features extracted from a little under amillion ofmalicious applications targeting
Windows O.S. environment; furthermore, they provide experiments that compare a
baseline gradient boosted decision tree model trained using LightGBM [29] with
default settings to MalConv [43], an end-to-end but featureless deep learning model
for malware detection, which recently became a very popular benchmark in this kind
of experiments.

In the case of malware detection, unlike other application domains, like image and
speech recognition, manipulating bytes can severely compromise application func-
tionalities and validity; therefore, generating adversarial examples is not straightfor-
ward. An unavoidable requirement that should lay down every manipulation strategy
consists in adopting generation techniques that are able to guarantee the preservation
of malware functionality in the adversarially manipulated samples.

In our evaluation we trained, validated, and tested discriminator models for mal-
ware detection, by adopting for all the same samples, randomly extracted from the
EMBER [3] dataset. Finally, we selected the first ten ones that obtained the best
accuracy in the detection task. Then, we build ten parallel GANs, and we trained
ten generators for the corresponding trained detectors (discriminators). For training
the generators, we adopted a descendent gradient-based strategy and we adopted the
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maximum mean discrepancy (MMD) [5] as distance function for evaluating sample
distributions similarity during the training process.

We examined the results obtained in the different stages of our experiment for
measuring the effectiveness of the adversarial strategy and the robustness of the
malware detectors to these kinds of attacks.

We adopted, for evaluating the reached performances, the followingmetrics: accu-
racy, sensitivity, specificity, and evasion rate. The evasion rate represents a measure
of the success rate obtained by generator networks in fooling their opponent discrim-
inators; it can be computed as the ratio between the number of adversarial examples
that were misclassified as benign samples (also referred in the following as “good-
ware”) by each detector, over the total amount of adversarial samples submitted to
the discriminators.

By adopting the EMBER dataset, we were able to fit the detection performance
obtained from the state of the art. Then, by using the adversarial crafting algorithm,
we were able to mislead, on average, the ten detectors by decreasing the average
accuracy over all the models ranging from a minimum of 20.63% (best case) to a
maximum of 40.8% (worst case), by mixing genuine samples with adversarial one’s
samples and acting over the surface features.

Our preliminary experiments revealed, at a first sight analysis, that the byte dis-
tribution (byte histogram) is among the most sensitive features. This finding could
suggest that machine- and deep-learning-based malware detectors, which work on
static and surface features, could be fooled by adversarial malicious samples that are
able to reach a bytes distribution with a high level of likelihood with the goodware
bytes distribution.

5.2 General Architecture

The overall architecture of the systemwe propose corresponds to the general schema
of a GAN (Fig. 1), where each couple made of a generator (G) and a discriminator
(D) acts independently from each other.

5.2.1 The Discriminator Network Model

Following the approaches suggested in [36, 42, 43], we adopted a fully connected
multilayered feedforward neural network as the base architecture for our discrim-
inator’s models. All the models we trained for obtaining the detection systems, as
detailed in the following sections, share the same number of dense hidden layers,
their size and the size of the output layer, set to 1, since the detection acts as a binary
classification task (e.g., malware or goodware). All the trained models differ in the
input layer size, since we performed several experiments by changing the size and
the values of the input vectors, according to the combinations of features that we
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Fig. 1 GANs logic and building blocks of the proposed GANs-based architecture

Fig. 2 The discriminator network: malware detector architectural schema

aimed to test. Figure 2 shows the general architecture of the discriminator network
we adopted in our study.

The basic model adopted for each discriminator of our pool includes five hidden
dense and fully connected layers characterized by decreasing size (256-256-256-128-
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64); for each discriminator, the input size was variable, according to the subset of
features we considered for each model. The maximum size of the input layer was set
to 2,351, when we consider all the available features provided in the EMBER dataset
for implementing a static malware analysis over the input samples. In addition, we
adopted the Adam algorithm as optimization function and the binary cross entropy as
loss function. Finally, as an activation function, we adopted the ReLU that allowed
to alleviate the vanishing gradient issues and is faster when compared with other
non-linear activation functions.

We performed all the training cycles for 250 epochs with batch size set to 64.
We adopted different learning rates lr varying in the range [0.01;0.5]; finally, all the
discriminators models were able to converge to an accuracy rate a ≥ 80% and a false
positive rate (FPR) ≤ 1% (where FPR is computed as the number of benign sam-
ples misclassified as malicious over the total number of malicious samples detected),
by adopting a lr = 0.05 and a number of iterations = 250 epochs. The performance
metrics values were cross validated over the validation and the test sets. All the exper-
iments were repeated five times and the average values obtained in these experiments
were considered as the values of the final hyperparameters for tuning the networks.

The reason underlying the strategy of training several models was dictated also by
the need to apply a reduction to the whole set of the features provided by PEs files;
even though the best accuracy is performedwhen a detectionmodel is trained over the
whole features set, we need also to limit the performance decay, in terms of data size
and training time, in order to make this approach feasible for real-world scenarios.
So, we applied a strategy for reducing features and we were able to obtain a trade-off
among accuracy, data size, and learning time. Anyway, we didn’t investigate more
space and time complexity on this occasion, but it will be the object of further and
necessary investigations.

5.2.2 The Generator Network Model

For the generation network model, we followed the general setting adopted in [25].
The model we adopted for the generators is represented by a convolutional neural

network (CNN) trained on a sample fraction extracted by the EMBER dataset. We
split the Ember dataset in order to save a fraction of samples, made of benign and
malicious samples that were not included in the training set of our detectors. We
trained the generators until all of them reached at least an accuracy ratea≥98%,when
artificially reproducing the original samples, as it will be detailed in the following
of this section. For the generation of adversarial examples (AEs), we set two main
constraints:

• Functionality preserving: Adding noise for generating adversarial examples
should not break the sample’s behavior.

• Features probability distributions invariance: Since we worked only on surface
features, we don’t manipulate the content of binaries but we try to change the
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surface information as their probability distribution looks like more close to the
distribution of good samples.

TheCNNswe adopted for generators are characterized by layer sizes set toX-256-
X, where X represents the variable size for both the input and the output, according
to the input dimension that has to be transformed and the adversarial sample size that
has to be produced. Noise vectors adopted for manipulating genuine inputs have the
same dimensions of the input, according to the number of features that are considered
in each couple of generator-discriminator. The Adam optimizer was selected as an
optimization function. Each generator was trained for 500 epochs with a learning rate
set to 0.05. These training parameters were obtained after several experiments until
the best tuning that guarantees convergence for all the generatorswith an accuracy rate
over the original ground truth stabilized to 98%. This accuracy was cross validated
also over the validation and test set. All the experiments were repeated five times
and the average values obtained in these experiments were considered as the values
of the final hyperparameters for tuning the networks.

The generation ofAEs is usually done by adding small perturbations to the original
input in the direction of the gradient. The gradient-based methods work for contin-
uous input sets but they fail in the case of discrete input sets. If we denote the set of
the features as X ⊆ [0, N − 1], where N = 2351, the features comprised in the PEs
files can be arbitrarily represented as scalars in a set X [0, N - 1], where N = 2, 351.
So, AEs can be generated in a continuous embedding space E and reconstructed them
to original X.

5.2.3 Adversarial Example Generation Problem

Given a trained deep learning model f, an original input data sample x, generating an
adversarial example x’, can generally be described as a box-constrained optimization
problem:

min x′ ∥∥x′ − x
∥∥

s.t. m (x) = l

m
(
x′) = l′

l �= l′

x′ ∈ [0, 1],

where

• x is the genuine input sample;
• x’ is the artificial input sample;
• m (·) represents the trained deep learning model;
• l and l’ represent, respectively, the output labels produced by the model m (·) when
processing x and x’; and

• ||·|| denotes the distance between two samples.
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δ is the difference between x’ and x, and represents the perturbation (noise) added
to x. This optimization problem minimizes the perturbation while misclassifying
the prediction with a constraint of input data. Other variants of this optimization
problemcan be considered in different scenarios and assumptions. For instance, in the
image recognition domain, some adversaries consider that if δ < ε, the perturbation
is small enough to be unnoticeable to humans and it is viewed as a constraint. The
optimization objective function becomes the distance of the targeted prediction score
from the original prediction score.

5.3 Adversary Logic

Asdescribed in [50], the adversarial examples can be categorized in a taxonomyalong
seven axes. In our study, we followed the axes of the adversarial falsification and
the iterative attack. For the first dimension, we were interested in training generators
able to lead a decay in the detection accuracy of each detector, as it will be shown in
the results subsection. For the second dimension, by exploiting the transferability of
adversarial examples [37], we divided our attack into multiple stages until we reach
a fine-tuned generator for addressing the victim’s vulnerabilities. We considered as:

• False positive: The negative examples artificially generated that are misclassified
as positive samples.

• False negative: The positive examples artificially generated that are misclassified
as negative samples.

In the case of the malware detection task, a benign software being classified as mal-
ware is a false positive. Conversely, a false negative is a malware (usually considered
as positive) that cannot be identified by the trained model. This is also known as
machine/deep learning evasion.

5.3.1 Threat Model

We define the threat model as follows:

• The adversaries can attack only at the testing/deploying stage. They can tamper
with only the input data in the testing stage after the victim deep learning model is
trained. Further, we assume that neither the trained model nor the training dataset
can be modified. The adversaries may have knowledge of the trained model (archi-
tectures and parameters) but not allowed to modify the model, which is a common
assumption for many online machine learning services. We are not considering
attacks at the training stage (e.g., training data poisoning [16, 34]), even if they
are another interesting topic to explore.

• Since we considered adversarial attacks for deep neural networks, the adversaries
target only the integrity of their inputs. In general, integrity is essential to a deep
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learningmodel, although other security issues related to confidentiality and privacy
have drawn attention in deep learning. Anyway, in the case we considered PE files,
the integrity of the input is crucial. So, we focused on the attacks that degrade the
performance of deep learning models for malware detection: attacks cause the
increase of false positives and false negatives.

5.3.2 Adversarial Examples Generation

AEs are artificial inputs that are generated by modifying legitimate inputs so as to
fool the classificationmodels. In the fields of image and speech recognition, modified
inputs are considered adversarial when they are indistinguishable by humans from
the legitimate inputs, and yet they fool the model. Conversely, discrete sequences are
inherently different than speech and images, as changing one element in the sequence
may completely alter itsmeaning. For example, changing oneword in a sentencemay
hinder its gradient in a binary file, where the input is a discrete sequence of bytes,
changing one byte may result in invalid bytecode or different runtime functionality.
In malware detection, an AE is a binary file that is generated by modifying an
existing malicious binary. While the original file is correctly classified as malicious,
its modified version is misclassified as benign. Recent works as [23] have shown
that AEs cause catastrophic failures in malware detection systems, trained on a set of
handcrafted features such as file headers andAPI calls. Our experiment (contribution)
is focused on changing surface features by keeping the same original distribution of
benign samples.

5.4 Dataset

WechoseEMBER released byEndgame [3] as the dataset for our case study. EMBER
is a collection of features extracted from a large corpus of Windows portable exe-
cutables.

The first version of the dataset is a collection of 1.1 million PEs that were all
scanned by VirusTotal in 2017. The second EMBER dataset release consisted of
features extracted from samples collected in or before 2018.

The set of binary files is divided as follows:

• 900,000 training samples grouped in:

– 300,000 malicious;
– 300,000 benign; and
– 300,000 unlabeled.

• 200,000 test samples grouped in:

– 100,000 malicious;
– 100,000 benign.
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Fig. 3 Code snippet from Ember dataset JSON files describing PEs features

The dataset is made up of JSON files. Each sample includes

• the sha256 hash of the original file as a unique identifier;
• the month the files was first seen;
• a label, which may be 0 for benign, 1 for malicious, or -1 for unlabeled; and
• eight groups of raw features that include both parsed values and format-agnostic
histograms.

A code snippet from the JSON file is shown in Fig. 3.

5.4.1 Raw Features

The raw features include both parsed features and format-agnostic histograms and
counts of strings. Parsed features, extracted from the PE file, are

• General file: Information including the file size and basic information obtained
from the PE header.

• Header information: Reporting the timestamp, the target machine (string), and a
list of image characteristics (list of strings). From the optional header, the target
subsystem (string); DLL characteristics (a list of strings); the file magic as a string
(e.g., “PE32”); major and minor image versions; linker versions; system versions
and subsystem versions; and the code, headers, and commit sizes are provided.

• Imported functions: After having parsed the import address table, the imported
functions by the library are reported.

• Exported functions: The raw features include a list of the exported functions.
• Section information: Properties of each section are provided, including the name,
the size, the entropy, the virtual size, and a list of strings representing section
characteristics.
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The EMBER dataset also includes three groups of features that are format-agnostic,
as they do not require parsing the PE file:

• Byte histogram contains 256 integer values, representing the count of each byte
value within the file. The byte histogram is normalized to a distribution, since the
file size is represented as a feature in the general file information.

• Byte-entropy histogram approximates the joint distribution p(H,X) of entropy H
and byte value X.

• String information reported is the number of strings, their average length, a his-
togram of the printable characters within those strings, and the entropy of charac-
ters across all the printable strings.

5.5 Performance Metrics

Four metrics were used to evaluate the detectors (accuracy, sensitivity, specificity,
and evasion rate) obtained under different testing conditions.We provide the general
standard definitions for these metrics while reserving us to improve the explanation
about how they were specifically computed in the specific sections. As first we pro-
vide definitions for true positives, true negatives, false positives, and false negatives.

True positive: (TP) = the number of malicious samples correctly identified as
malicious;

False positive: (FP)= the number of benign (goodware) samples incorrectly iden-
tified as malicious;

True negative: (TN) = the number of benign samples correctly identified as
benign; and

False negative: (FN) = the number of malicious samples incorrectly identified as
benign.

By combining these observations it is possible to compute further indicators,
whose general meaning is provided as follows:

Accuracy: The accuracy of a test is defined as its ability to differentiate the benign
and malicious samples correctly. To estimate the accuracy of a test, we compute the
proportion of true positive (TP) and true negative (TN) in all the evaluated cases.
Mathematically, this can be stated as follows:

Accuracy = T P + T N

(T P + FP + T N + FN )
.
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Sensitivity: The sensitivity of a test is its ability to determine the malicious cases
correctly. To estimate it, we should calculate the proportion of true positive (TP) in
malicious cases. Mathematically, this can be stated as follows:

Sensitivity = T P

(T P + FN )
.

Specificity: The specificity of a test is its ability to determine the good cases
correctly. To estimate it, we compute the proportion of true negative among good
cases. Mathematically, this can be stated as follows:

Specificity = T N

(T N + FP)
.

Finally, we consider another indicator of sensitiveness known as the evasion
rate. When a dataset for testing the ability exhibited by a system in detection and/or
classification task is poisonedwith carefully designed adversarial examples, there are
two adversary perspectives: the victim (detector) and the attacker (generator) ones.
So, if we are interested to estimate the robustness of a detection system by computing
its performance decay under an adversarial attack (e.g., an accuracy decay), we are
interested in the estimation of the ability of the generator to produce adversarial
examples that are misclassified. In this perspective, the evasion rate can be adopted
as an indicator for measuring the generation ability and is defined, according to the
definition provided in [10], as follows:

Evasion Rate (EV) = FNAEs

NAEs
,

where NAEs represents the number of artificially generated adversarial samples of
malware submitted to the detector and FNAEs is the fraction of the overall counted
false negatives (malware incorrectly classified as goodware) represented by adver-
sarial samples set (that is to say, artificially generated malware incorrectly classified
as goodware).

5.6 Case Study Treatments

The case study was conducted on an Ubuntu 18.04 platform, running on a cluster
composed of five machines, with the same hardware configuration, equipped with
an Intel Xeon E5-2620 processor and 128 GB RAM. We exploited the GPU func-
tionalities of 5 NVIDIA GeForce RTX 2080 boards, by using the CUDA toolkit 9.0
and cuDNN with a TensorFlow-GPU v.1.13.1 version, running with Python 3.7. We
further adopted the Ember script tools version 0.1.0, LightGBM 2.1.0, scikitlearn
0.19.1, NumPy 1.14.2, and SciPy 1.0.0, Matplotlib 3.2.2 for plotting results.
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Table 1 PEs surface feature groups in the ember dataset

Feature group ID Description and original name Number of features

FG00 All 2351

FG01 General file info (General) 10

FG02 Header info (Header) 62

FG03 Imported functions (Imports) 1280

FG04 Exported functions (Exports) 128

FG05 Section info (Section) 255

FG06 Byte histogram (Histogram) 256

FG07 Byte-entropy histogram (Byte
entropy)

256

FG08 String info (Strings) 104

5.6.1 Malware Detector Training: The Method

The total number of features comprised in each PE is equal to 2,351, grouped in eight
families, according to the PE specifications[41]. Families’ names and their quantity
are provided in Table1. We added, for convenience of comparison, the 9th group
(FG00) representing the group including all the feature families, that is to say, 2,351
features.

For our case study, we started from considering all the features belonging to a
group as a unit, sowe always selected all the features in a feature group or we selected
none.

Each combination was evaluated according to the following information:

• selected feature groups;
• accuracy and false positive rates (FPR) computed by varying the threshold of
malware-likelihood scores by 0.01.

As described in the performance metric subsection, we define the accuracy as the
ratio of the number of correct answers to the number of all answers, and FPR as
the ratio of the number of malware-determination answers to the number of good
samples.

For each feature combination, we associated a set of feature vectors with a ground-
truth label and trained a different model; finally, we performed testing (malware-
likelihood computation) operations. After performing training, validation, and tests,
we selected the ten best detectors, according to the best accuracy values in the detec-
tion and a FP rate less than the limit threshold of 0.01.
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5.6.2 Adversarial Examples Generator: The Method

As for the generation strategy for adversarial examples, we worked on the surface
features of binary files and we focused on producing small changes on the most
sensitive features groups, in order to reproduce, for the artificially generated samples,
the distributions of the same features exhibited by goodware samples.

We want to remark that, for the purposes of the case study, we only consid-
ered applications metadata, extracted by the original binary files and conveniently
provided in the EMBER dataset. We were interested to provide further evidence
that feature-based models for malware detection, even if realized by the means of
deep neural networks, may be broken by adversarial samples properly designed. We
haven’t considered the whole binary files, because manipulating the content of a
binary file, even also changing a small number of byte, can severely compromise the
behavior and the functionalities of the application. This aspect, also investigated in
the works of [30, 32], will be a matter of further investigations, possibly joining both
surface features and payload of binary files.

With previousworks,we share the common approach of generatingAEs by adding
small perturbations to the original malicious inputs, in order to follow the probability
distributions of the selected features groups, in the direction of the descent gradient,
for reducing the distance between probabilities distribution.

Since we considered surface features, we observed that some features are more
sensitive than others. So, our generation strategy consisted in following the probabil-
ity distribution trend of these sensitive features in genuine goodware samples, thus
producing a noise able to make closer the surface features probability distributions
of the followed model (the genuine benign sample) with the probability distributions
of the following model (the malware sample that has to be manipulated).

5.6.3 Training, Validation, and Test Sets Composition

In this section, details about the size of the training, validation, and test sets employed
for performing the case study are provided. The samples composing these sets have
been randomly extracted as a subset of the EMBER files collection, only excluding
the adversarial samples that were artificially generated.

• Training set for discriminators: 300,000 genuine samples, divided into 150,000
goodware and 150,000 malware (XtrainD).

• Training set for generators: 300,000 genuine samples, divided into 150,000
goodware and 150,000 malware (XtrainG); this training set is intersectionless with
the set adopted for training discriminators:

XtrainD ∩ XtrainG = ∅.

• Validation set for discriminators: 50,000 genuine samples (GEs), divided into
25,000 goodware and 25,000 malware (XvalidationD).
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• Test set for discriminators (excluding the adversarial samples): 45,000 genuine
samples, divided into 15,000 goodware and 30,000 malware (XtestGEs).

• Test set for GANs (discriminators including the adversarial scenario): 45,000
samples, divided into 15,000 genuine benign samples, 15,000 genuine malicious
samples (the same of discriminators without attack), 15,000 artificially generated
adversarial examples of malware (Xtest AEs).

5.7 Case Study Results and Performance Evaluation

In order to provide a clear and convenient explanation of our case study and its
results, we decide to present the results splitting them into two scenarios, in order
to compare how the malware detector performances degrade when attacked with
adversarial samples. Results of our tests will be summarized in terms of accuracy,
sensitivity, and specificity metrics.

Regarding the first scenario, sensitivity corresponds to the true positive rate (TPR),
where we considered as true positives all the malicious samples that were correctly
identified as malware in the detection task. Finally, we considered the false posi-
tive rate (FPR) obtained in the malware detection task, computed according to the
following equation:

FPR = FP

FP + T P
.

Regarding the second scenario, instead, accuracy is computed as the success rate,
i.e., the evasion rate (ER) obtained from the generator against his opponent (the
detector), and measures the number of adversarial examples that pass undisturbed.
In this scenario, the ER (coinciding with the TPR) is computed as the number of
adversarial malicious examples that are misclassified as “good guys” (goodware); it
corresponds to the ratio between the number of adversarial examples that successfully
pass as “good guys” and the total number of adversarial examples submitted to the
detector (discriminator).

5.7.1 Scenario 1: Discriminator Performance Excluding the
Adversarial Attack

Results are shown only for the best ten trained models, according to the described
criteria for the accuracy and FPR. In addition to these criteria, we performed two
different tests for obtaining a further indication of the sensitiveness of the considered
feature groups. Defining as nCKi

, with K ∈ [A, B], the maximum number of feature
groups considered in the i th combinationCi , Tables2 and 3 show the accuracy scores
of the best ten models (plus the 11th case of selecting all the available different
features), respectively, in the case in which we set the additional conditions in the
training models to
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Table 2 Accuracy scores for the best ten combinations of features by considering the combinations
of 4 different feature groups at most(CA)

Combination ID Selected feature
group combination

Total number of
feature

Accuracy rate (%)

CA1 General, Header,
Histogram, Section

583 92.27

CA2 General, Header,
Histogram, Strings

432 91.84

CA3 General, Header,
Section, Strings

431 90.66

CA4 General, Header,
Histograms

328 89.45

CA5 Header, Section,
Strings

421 88.23

CA6 General, Header, Byte
entropy

328 87.12

CA7 General, Section,
Strings

369 86.35

CA8 General, Header,
Strings

176 85.73

CA9 Section, Strings 359 83.07

CA10 General, Section 265 80.24

CA0 All 2351 98.32

CS : nCi = 1

CA : 1 ≤ nCi ≤ 4

CB : 5 ≤ nCi ≤ 8.

The combination named All corresponds to all the eight groups (Header, Imports,
Section, Histogram, General, Exports, Byte entropy, Strings), including all the 2,351
features.

The accuracy metric was computed by adopting the test set denoted as (XtestGEs),
comprising 45,000 genuine samples divided into 15,000 benign and 30,000malicious
samples.

By analyzing the results shown in Table3, we can observe that the highest value
for the accuracy is scored by the combination CB0 , including all the features, while
the closest score to this combination is obtained with a reduced set of features (com-
bination CB1 ), with a difference in accuracy that is at minimum 1.43% (CB0 versus
CB1 ) and at maximum 2.58% (CB0 versus CB9 ).

The feature groups Header, Imports, Section, and Histogram revealed to be par-
ticularly sensitive in biasing the accuracy score.
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Table 3 Accuracy scores for the best ten combinations of features by considering at least five and
at most seven different feature groups (CB )

Combination ID Selected feature group
combination

Total number of
feature

Accuracy rate (%)

CB1 Header, Imports,
Section,
Histogram, General,
Strings

1967 96.89

CB2 Header, Imports,
Section,
Histogram, General,
Byte
entropy, Strings

2223 96.55

CB3 Header, Imports,
Section,
Histogram, Byte
entropy, String

2213 96.39

CB4 Header, Imports,
Section,
Histogram, General,
Exports,
Byte entropy

2247 96.28

CB5 Header, Imports,
Section,
Histogram, String

1957 96.12

CB6 Header, Imports,
Section,
Histogram, Exports,
Byte entropy

2237 96.07

CB7 Header, Imports,
Section,
Histogram, General,
Exports, String

2095 95.96

CB8 Header, Imports,
Section,
Histogram, Byte
entropy

2109 95.89

CB9 Header, Imports,
Section,
Histogram, General,
Exports

1991 95.74

CB0 All 2351 98.32
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Table 4 Accuracy scores for singleton feature group combinations (CS)

Combination ID Selected feature group
combination

Total number of
feature

Accuracy rate (%)

CS1 Imports 1280 82.79

CS2 Section 255 73.46

CS3 Histogram 256 73.14

CS4 Byte entropy 256 65.81

CS5 Strings 104 64.73

CS6 General 10 61.59

CS7 Header 62 54.13

CS8 Exports 128 20.45

Fig. 4 Feature groups’ absolute frequency in the three most accurate models

Particularly, we observed that the feature group Histogram appears in the best
scores both in the reduced (CA) and in the extended (CB) feature group combinations.

Finally, since the information about feature sensitiveness to the accuracy is crucial
for designing the generation strategies for adversarial samples that will be effective,
we performed the last test considering only single group combinations, as shown in
Table4.

We can observe that the feature groups that scored the best accuracy values were
imports, section, and histogram. These three groups were also included in all the
ten best ranking models considered in Table3, where the best results were generally
obtained. Figure 4 summarizes the absolute frequency scored for all the eight features
groups over the three best ranked models for each of the three training we performed.
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5.7.2 Generator and Discriminator Performance Including Adversarial
Attack

For generating adversarial examples and testing the pool comprising the ten most
accurate discriminator models described in the previous scenario, we trained corre-
spondingly ten generators.

Given the initial working hypothesis of having knowledge, at this stage, of dis-
criminators gradients generated during the training over the genuine dataset, we had
the opportunity to exploit them in combination with the inner gradients of generators,
in order to apply a semi-direct training process for the generators. To be clearer, we
could adopt both a direct method for training the generators and an indirect one.

The direct method does not require to involve the discriminators during the train-
ing of the generators that are trained by simply comparing the difference elapsing
between the probability distributions of genuine samples and the artificially gener-
ated (adversarial) samples. This method is practicable in this case because we have
the true genuine data (a kind of white-box attack at the first stage) available.

In the second andmost realistic stage of the attack scenario, we imagined (a black-
box attack) genuine data aren’t available and the directmethod for training generators
can’t be applied yet. In this situation, the generators can be trained by submitting, at
each training iteration, the generated outputs to the victim and collecting the response,
for computing a step for making descendant the gradient function.

For reasons of simplicity, we adopted the direct method, since our aim was to
provide evidence that feature-based deep learning models for malware detection
could work with high accuracy even if the static analysis is performed; anyway, as
other kinds of deep learning models, also performing a dynamic analysis of samples,
they are affected by adversarial examples carefully designed.

So, the generators were trained by performing the comparison between the prob-
ability distribution of its generated samples with a “genuine” training set and back-
propagating the difference (the error) through the network, at each iteration of the
training process. To compute the distance (or similarity measure), we adopted the
maximum mean discrepancy (MMD) [5, 6, 18], able to compare effectively two
distributions.

Then, the training process of the generative networks develops as follows. Given
a random variable with uniform probability distribution as input, we want the prob-
ability distribution of the generated output to be the “genuine data set probability
distribution”; we considered two subcases:

• the first one in which the genuine dataset is the same adopted for training the
discriminators;

• the second one, in which the genuine dataset is represented by a different and
intersection fewer dataset from the one adopted for training discriminators.

The training process for each of the generators follows the basic idea to optimize
its inner network by repeating the following steps:
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• to generate some random inputs of the same size as the corresponding discrimi-
nator;

• to make these inputs go through the generator and the discriminator and collect
both generated outputs;

• to compare the “genuine probability distribution” and the artificially generated
one, by computing the MMD distance between the true samples and the generated
ones; and

• to adopt backpropagation to make one step of gradient descent to lower the MMD
distance between the truly genuine and artificially generated distributions.

We discuss here how to manipulate a source malware sample x into an adversarial
malware binary x∗ by slightly changing the surface feature values. Generators aim to
minimize the confidence associated with the malicious class (i.e., it maximizes the
probability of the adversarial malware sample being classified as benign), under the
constraint that qmax is the maximum amount of noise (changes) that can be added
to the original sample for being effective. The deep network implementing each
generator produces the probability of the generic sample x being malware, denoted
in the following with f(x). If f(x) ≥ 0.5, the input file is thus classified as malware
(and as benign, otherwise).

This can be characterized as the following constrained optimization problem:

minx f (x)

s.t.d(x, x∗) ≤ qmax ,

where

• x denotes the genuine sample distribution;
• x∗ denotes the generated sample; and
• d(x, x∗) is the distance function computed as the MMD distance.

We solve this problem with a gradient-descent algorithm over the generator net-
works by adopting as loss function the distance between the true and the generated
distributions at the current iteration.

We trained each generator, for both the genuine datasets, for 500 epochs, and
we also adopted a learning rate set to 0.05. These hyperparameters for the training
process were obtained after all the ten generators were able to converge and we
stopped when the error reached the threshold value of 0.02 (2%) (corresponding
to an accuracy rate in validation and testing of 98%). We were not able to reach
lower error rates, because we trained generators for being able to produce just over
15.000 adversarial samples, in order to ensure the same numerosity of the genuine
test examples when testing the discriminators. The overall time for training the ten
generators until all of them converge to a similarity rate of 98%, estimated between
the truly genuine and the adversarial generated samples distributions, lasted about
1day and a half (about 37h). We repeated the training process five times and we
considered as assessed the generator models after a time of about 10d.
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In this way, we obtained 30,000 adversarial examples, divided into two sets GEQ

andGNEQ comprising, respectively, 15,000 adversarial malicious samples generated
(AEsEQ)from comparison with the genuine training set adopted for discriminator
models and 15,000 artificially generated samples (AEsNEQ) computed by evaluating
the difference from a different dataset from the one adopted for training discriminator
models.

Finally, we addressed the adversarial attack to the ten discriminators with both
the two sets of generated adversarial samples and we provide a brief discussion over
the results we observed.

Like in Scenario 1, for computing performance metrics, we tested the discrimi-
nators with two variants of the test set denoted as (Xtest AEs); each variant comprises
45,000 samples, divided into 15,000 genuine benign samples and 30,000 malicious
samples, in turn divided into 15,000genuinemalware and15,000 adversarialmalware
samples. The two classes of test sets differ only for the kind of adversarial malware
samples included. In the first class, we included adversarial malware samples gen-
erated by comparison with the same training set adopted for training discriminator
models; in the second class, we included adversarial malware samples generated by
adopting a different training set from the one adopted for training discriminators.

So, we discussed these two cases of AE attack and we compared them with the
original accuracy scored by each discriminator when excluding AEs from its test set.

To verify the efficacy of the attack, for each test wemeasured beyond the accuracy
and the sensitivity, also the evasion rate [10], computed as the percentage ofmalicious
samples that managed to evade the network [30].

For each of the three cases shown in Table5, accuracy was computed considering
a test set comprising 45,000 samples; anyway, these tests were differently composed
for allowing, respectively, the case excluding the adversarial examples and the two
cases includingAEs generated by comparing or not comparing to the genuine training
set adopted for discriminators. These cases include

• Excluding AEs: No AEs attack is performed against the discriminators; the test set
is made of 45,000 genuine samples only, divided into 15,000 goodware samples
and 30,000 malware samples.

• Including AEs trained over the training set adopted by the discriminator: AEs
attack is performed against the discriminators; the test set is made of 45,000 sam-
ples, among which 30,000 genuine samples are divided into 15,000 goodware and
15,000 malware; the remaining 15,000 represent adversarial examples; this test
set will be called as follows: AEsEQ.

• Including AEs trained over a different training set from the one adopted by the
discriminator: AEs attack is performed against the discriminators; the test set is
made of 45,000 samples, among which 30,000 genuine samples are divided into
15,000 goodware and 15,000 malware; the remaining 15,000 represent adversarial
examples; this test set will be called in the following as AEsNEQ.

The results that we obtained in terms of evasion rate and accuracy decay for each
of the ten discriminators are summarized in Tables5 and 6.



506 C. A. Visaggio et al.

Table 5 Accuracy rate reached by attacking discriminators with adversarial examples from sets
AEsEQ and AEsNEQ

TEST 1 TEST 2 TEST 3

Discriminator ID Accuracy excluding
AEs (%)

Accuracy including
AEsEQ (%)

Accuracy including
AEsNEQ (%)

CB1 96.89 58.77 73.32

CB2 96.55 56.54 78.73

CB3 96.39 57.87 77.17

CB4 96.28 60.59 74.43

CB5 96.12 59.25 74.31

CB6 96.07 62.58 76.87

CB7 95.96 56.55 75.77

CB8 95.89 59.75 76.38

CB9 95.74 56.74 76.17

CB0 98.32 57.52 74.68

Fig. 5 Accuracy rate distributions for discriminators under AEs attack

In Figs. 5, 6, and 7 are reported, respectively, the accuracy rate distributions and
the trend line of the accuracy decay, computed over the ten discriminators and the
two types of AEs considered, when discriminators are under AEs attack.

We can observe that AEs perform worse (test set AEsNEQ) than the other AEs
adversarial set, producing, over the ten tested models for discriminators, an average
decay of accuracy valued to Delta (aAEsEQ ) = 20.63 points. Minimum loss minloss
= 19.20 points and maximum loss maxloss = 23.57 points.
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Fig. 6 Trend of accuracy decay of discriminators under AEs attack (TEST 1–TEST 2)

Fig. 7 Trend of accuracy decay of discriminators under AEs attack (TEST 1–TEST 3)

Instead, when adversarial attack is performed by adopting adversarial examples
produced by generators trained over the same dataset adopted for training the dis-
criminators, AEs perform better (test set AEsEQ) than the other AEs adversarial set,
affecting over the ten tested models for discriminators an average decay of accuracy
valued to Delta (aAEsEQ ) = 37.50 points. Minimum loss minloss = 30.49 points and
maximum loss maxloss = 40.80 points.

6 Conclusions

Attacks and defenses on adversarial examples draw great attention. The vulnerability
to adversarial examples becomes one of the major risks for applying DNNs in safety-
critical environments.
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Table 6 Evasion rate computed attacking discriminators with adversarial examples (AEs) from
sets AEQ and ANEQ

Discriminator ID Evasion rate with AEsEQ (%) Evasion rate with AEsNEQ
(%)

CB1 35.84 26.69

CB2 33.72 27.38

CB3 34.65 25.44

CB4 32.61 26.14

CB5 34.89 25.98

CB6 33.77 26.29

C)B7 31.52 27.66

CB8 29.05 26.39

CB9 27.39 24.61

CB0 39.12 32.45

Adversarial perturbations can easily fool deep neural networks (DNNs) in the
testing/deploying stage exploiting blind spots in the ML engine. The effectiveness
of an adversarial system is measured in terms of evasion rate and it depends upon
a specific group of features considered for the input set. Applied to the creation of
malware, GANs are able to generate a new instance of a malware family without
knowing an explicit model of the initial distribution of the data.

So an attacker could use GANs to fool detection systems, just by sampling the
provided data. On the other hand, GANs are also useful to build more robust machine
learningmodels helping in the development of a better training set. Real defense tech-
nologies such as AV or EDR must take into account an acceptable trade-off among
the detection accuracy, short learning times, and limit the size of data obtainable
by selecting a convenient combination of the sensitive feature. The effectiveness of
an attack on the ML model also depends on the knowledge of the system by the
attacker. In this case study, we conducted a gray-box attack in which the features of
the training set are known: this permits us to reach a very high evasion rate (about
98%).
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Giorgio Giacinto, and Fabio Roli. 2013. Evasion attacks against machine learning at test time.
In Joint European conference on machine learning and knowledge discovery in databases,
387–402. Springer.

11. Biggio, Battista, Paolo Russu, Luca Didaci, Fabio Roli, et al. 2015. Adversarial biometric
recognition: A review on biometric system security from the adversarial machine-learning
perspective. IEEE Signal Processing Magazine 32 (5): 31–41.

12. Brown, Tom B., Dandelion Mané, Aurko Roy, Martín Abadi, and Justin Gilmer. 2017. Adver-
sarial patch. arXiv:1712.09665.

13. Carlini, Nicholas, and David Wagner. 2017. Towards evaluating the robustness of neural net-
works. In 2017 IEEE symposium on security and privacy (sp), 39–57. IEEE.

14. Chen, Liang-Chieh,George Papandreou, Florian Schroff, andHartwigAdam. 2017.Rethinking
atrous convolution for semantic image segmentation. arXiv:1706.05587.

15. Chen, Pin-Yu, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. 2017. Zoo: Zeroth
order optimization based black-box attacks to deep neural networks without training substitute
models. In Proceedings of the 10th ACM workshop on artificial intelligence and security,
15–26.

16. Chen, Xinyun, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. 2017. Targeted backdoor
attacks on deep learning systems using data poisoning. arXiv:1712.05526.

17. Damodaran, Anusha, Fabio Di Troia, Corrado Aaron Visaggio, Thomas H. Austin, and Mark
Stamp. 2017. A comparison of static, dynamic, and hybrid analysis for malware detection.
Journal of Computer Virology and Hacking Techniques 13 (1): 1–12.

18. Dziugaite, Gintare Karolina, Daniel M Roy, and Zoubin Ghahramani. Training generative
neural networks via maximum mean discrepancy optimization. arXiv:1505.03906.

19. Firdausi, Ivan, Alva Erwin, Anto Satriyo Nugroho, et al. 2010. Analysis of machine learning
techniques used in behavior-based malware detection. In 2010 second international conference
on advances in computing, control, and telecommunication technologies, 201–203. IEEE.

20. Gibert, Daniel. 2016. Convolutional neural networks for malware classification. Tarragona,
Spain: University Rovira i Virgili.

21. Goodfellow, Ian, Patrick McDaniel, and Nicolas Papernot. 2018. Making machine learning
robust against adversarial inputs. Communications of the ACM 61 (7): 56–66.

22. Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. 2014. Explaining and harnessing
adversarial examples. arXiv:1412.6572.

23. Grosse, Kathrin, Nicolas Papernot, Praveen Manoharan, Michael Backes, and Patrick
McDaniel. 2017. Adversarial examples for malware detection. In European symposium on
research in computer security, 62–79. Springer.

24. He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. InProceedings of the IEEE
international conference on computer vision 1026–1034.

http://arxiv.org/abs/1701.04862
http://arxiv.org/abs/1712.09665
http://arxiv.org/abs/1706.05587
http://arxiv.org/abs/1712.05526
http://arxiv.org/abs/1505.03906
http://arxiv.org/abs/1412.6572


510 C. A. Visaggio et al.

25. Hu, Weiwei, and Ying Tan. 2017. Generating adversarial malware examples for black-box
attacks based on gan. arXiv:1702.05983.

26. Huang, Ling, Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein, and J Doug Tygar.
2011. Adversarial machine learning. In Proceedings of the 4th ACMworkshop on Security and
artificial intelligence, 43–58.

27. Jung, Wookhyun, Sangwon Kim, and Sangyong Choi. 2015. Poster: deep learning for zero-day
flash malware detection. In 36th IEEE symposium on security and privacy, vol. 10, 2809695–
2817880.

28. Kawai, Masataka, Kaoru Ota, and Mianxing Dong. 2019. Improved malgan: Avoiding mal-
ware detector by leaning cleanware features. In 2019 international conference on artificial
intelligence in information and communication (ICAIIC), 040–045. IEEE.

29. Ke, Guolin, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and
Tie-Yan Liu. 2017. Lightgbm: A highly efficient gradient boosting decision tree. In Advances
in neural information processing systems 3146–3154.

30. Kolosnjaji, Bojan, Ambra Demontis, Battista Biggio, Davide Maiorca, Giorgio Giacinto,
Claudia Eckert, and Fabio Roli. 2018. Adversarial malware binaries: Evading deep learn-
ing for malware detection in executables. In 2018 26th European signal processing conference
(EUSIPCO), 533–537. IEEE.

31. Kolosnjaji, Bojan, Apostolis Zarras, George Webster, and Claudia Eckert. 2016. Deep learn-
ing for classification of malware system call sequences. In Australasian joint conference on
artificial intelligence, 137–149. Springer.

32. Kreuk, Felix, Assi Barak, Shir Aviv-Reuven,Moran Baruch, Benny Pinkas, and Joseph Keshet.
2018. Deceiving end-to-end deep learning malware detectors using adversarial examples.
arXiv:1802.04528.

33. Moosavi-Dezfooli, Seyed-Mohsen, Alhussein Fawzi, and Pascal Frossard. 2016. Deepfool: a
simple and accuratemethod to fool deepneural networks. InProceedings of the IEEEconference
on computer vision and pattern recognition 2574–2582.

34. Muñoz-González, Luis, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin Wongras-
samee, Emil CLupu, and FabioRoli. 2017. Towards poisoning of deep learning algorithmswith
back-gradient optimization. InProceedings of the 10th ACMworkshop on artificial intelligence
and security, 27–38.

35. Obeis, Turki, andWesamBhayaNawfal. 2016. Review of datamining techniques for malicious
detetion. Research Journal of Applied Sciences 11 (10): 942–947.

36. Oyama, Yoshihiro, Takumi Miyashita, and Hirotaka Kokubo. 2019. Identifying useful fea-
tures for malware detection in the ember dataset. In 2019 seventh international symposium on
computing and networking workshops (CANDARW), 360–366. IEEE.

37. Papernot, Nicolas, Patrick McDaniel, and Ian Goodfellow. 2016. Transferability in machine
learning: from phenomena to black-box attacks using adversarial samples. arXiv:1605.07277.

38. Papernot, Nicolas, PatrickMcDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Anan-
thram Swami. 2017. Practical black-box attacks against machine learning. In Proceedings of
the 2017 ACM on Asia conference on computer and communications security, 506–519.

39. Pascanu, Razvan, Jack W Stokes, Hermineh Sanossian, Mady Marinescu, and Anil Thomas.
2015. Malware classification with recurrent networks. In 2015 IEEE international conference
on acoustics, speech and signal processing (ICASSP), 1916–1920. IEEE.

40. Pendlebury, Feargus, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and Lorenzo Cav-
allaro. 2019. {TESSERACT}: Eliminating experimental bias in malware classification across
space and time. In 28th {USENIX} Security Symposium ({USENIX} Security 19), 729–746.

41. Pietrek, Matt. 2002. Inside windows-an in-depth look into the win32 portable executable file
format. MSDN Magazine 17 (2): 80–90.

42. Puranik, Piyush Aniruddha. 2019. Static malware detection using deep neural networks on
portable executables.

43. Raff, Edward, Jon Barker, Jared Sylvester, Robert Brandon, Bryan Catanzaro, and Charles
Nicholas. 2017. Malware detection by eating a whole exe. arXiv:1710.09435.

http://arxiv.org/abs/1702.05983
http://arxiv.org/abs/1802.04528
http://arxiv.org/abs/1605.07277
http://arxiv.org/abs/1710.09435


A Comparative Study of Adversarial Attacks to Malware … 511

44. Redmon, Joseph, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You only look once:
Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision
and pattern recognition 779–788.

45. Saxe, Joshua, andKonstantin Berlin. 2015.Deep neural network basedmalware detection using
two dimensional binary program features. In 2015 10th international conference on malicious
and unwanted software (MALWARE), 11–20. IEEE.

46. Su, Jiawei, DaniloVasconcellosVargas, andKouichi Sakurai. 2019.One pixel attack for fooling
deep neural networks. IEEE Transactions on Evolutionary Computation 23 (5): 828–841.

47. Szegedy, Christian, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Good-
fellow, and Rob Fergus. 2013. Intriguing properties of neural networks. arXiv:1312.6199.

48. Ucci, Daniele, Leonardo Aniello, and Roberto Baldoni. 2019. Survey of machine learning
techniques for malware analysis. Computers & Security 81: 123–147.

49. Ye, Yanfang, Tao Li, S. Donald Adjeroh, and Sitharama, and Iyengar. 2017. A survey on
malware detection using data mining techniques. ACM Computing Surveys (CSUR) 50 (3):
1–40.

50. Yuan, Xiaoyong, Pan He, Qile Zhu, and Xiaolin Li. 2019. Adversarial examples: Attacks and
defenses for deep learning. IEEE Transactions on Neural Networks and Learning Systems 30
(9): 2805–2824.

51. Zhang, Jinlan, Qiao Yan, and Mingde Wang. 2019. Evasion attacks based on wasserstein
generative adversarial network. In 2019 Computing, communications and IoT applications
(ComComAp), 454–459. IEEE.

52. Zhong, Wei, and Gu Feng. 2019. A multi-level deep learning system for malware detection.
Expert Systems with Applications 133: 151–162.

http://arxiv.org/abs/1312.6199


Related Topics



Detecting Abusive Comments Using
Ensemble Deep Learning Algorithms

Ravinder Ahuja, Alisha Banga, and S C Sharma

Abstract Today, there is an avalanche of data on social networking sites. Technol-
ogy has facilitated our way of Internet usage and provided us with great liberty to
do what, when, and how we like. In just one click, we can share, like, comment any
post on social media, but this liberty has caused a severe threat to humans; unfortu-
nately, the online interaction among users with such ease involves harassment, abuse,
and bullying actions. The concern over this problem has triggered to build up better
models for classifying the abusive comments. In this chapter, we have applied four
classification algorithms: Naive Bayes, Random Forest, Decision Tree, and Support
Vector Machine, with Bag of Words features. Deep learning algorithms: Convolu-
tional Neural Network (CNN), Long Short-TermMemory (LSTM), and an ensemble
of LSTM and CNN are applied using GloVe and fastText word embedding to clas-
sify the comments into six categories: toxic, severe toxic, obscene, threat, insult, and
identity hate. We have taken data set from Kaggle competition. We conducted exper-
iments by using Keras library and TensorFlow at the back end and taken accuracy
as performance parameter. We found that CNN, LSTM blend with fastText word
embedding performs better out of all the algorithms applied with an accuracy of
98.46%.

1 Introduction

Social media provides an environment where people are given complete freedom to
post, comment, engage in discussions, and share their opinions. Suchonline platforms
have given us an entirely new dimension to communicate and express our thoughts.
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With time, online networking sites like Facebook and Twitter have proved to be an
integral part of our social lives. They are handy for expressing opinions, thoughts, and
views of people present all around the globe. In 2017 only, the daily Facebook post
volume is 4.3 billion, and 656 million tweets are posted daily on Twitter [28]. There
are many applications of analyzing contents on social media like knowing person’s
dietary preferences [38]. With so much importance of social media, it is a matter of
concern for the authorities to make these platforms safe for the masses. With such
a wide variety of users, social media platforms are getting miserable because of a
constant increase in the toxicity of comments, posts, and thoughts. Functionalities to
report comments as abusive or toxic, block people, report discussions, and remove
such comments have been provided. Still, there is a lack of a moderating function-
ality that flags such comments. There are users all around the globe with different
languages and writing styles. Not only language, but they are becoming more inno-
vative with the use of URLs and unique uses of emoticons. The high usage of these
social networking sites demands a well-modeled automated approach to handle such
vast data and detect toxicity in the content present with reasonable accuracy. There
have been criticisms of online social networking sites for the negligence of cyber
bullying and their incapability to classify and remove toxic comments [10]. As these
sites have a wider audience, such comments and posts spread like wildfire, which is
a matter of concern for Social Networking Sites. Although efforts have been made to
increase the online environment’s safety based on the crowd sourcing techniques in
most cases, these techniques have failed in detecting toxicity. As per cyber Bullying
Research Center data of 2016 [5], 26% of the sample reported cyberbullying related
to different types of bullying, two or more times within a time interval of just 30d.
73% of adult users on the Internet have seen online harassment as per 2014 Pew
Report [7]. It is becoming a toxic place buried under tonnes of rubbish and obsolete
comments and posts. It is reported that the person who faced online harassment has
decreased participation, which has occurred in the next project [32]. There are so
many cases that children were so bullied on social media that they are depressed and
lead to suicide. Therefore, the work we are proposing is centered around this very
thought to make social media a safer place. Automatic detection and classification of
the comments, posts, or messages at the correct time are of paramount importance.
Considering the humongous amount of comments being produced everyday classi-
fying comments manually would not be a feasible approach. Therefore, an optimal
model is required for text classification. We describe a method to efficiently perform
this task using deep learning models and detecting toxicity in the comments through
our work. Our job is intended to classify comments into six classes as obscene, iden-
tity hate, toxic, severe toxic, insult, and threat so that social media can now select
the type of toxicity they are trying to resolve. The contribution of this chapter is as
follows: (i) Machine learning algorithms—Support Vector Classifier, Decision Tree,
Naive Bayes, and Random Forest classifier with a bag of words is applied to classify
the text into six categories (ii) Deep learning algorithms—CNN, LSTM, and their
blends is used with GloVe and fastText word embedding. The rest of the chapter is
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organized as follows: Sect. 2 contains literature survey, Sect. 3 contains material and
methods, Sect. 4 contains approach used, and Sect. 5 contains experimental results
and analysis, followed by the conclusion section.

2 Literature Survey

Abusive text classification research was first represented in the paper [35] in which
supervised machine learning technique SVM was applied on TF-IDF features. In
paper [20], toxic comment classification is performed using SVM. The data was
collected from Youtube.com, and 2665 English comments were collected. Out of
which 1451 comments were classified as neutral or positive. Other 1214 were stated
to be abusive or spam comments and achieved an accuracy of 86.95% using tenfold
cross-validations. In the paper [10], attacks on perspective API created by Google
and the Jigsaw team for a toxic detection system is proposed (2017). The Perspective
website provides some sample phrases, and an attack is applied to these phrases. This
paper shows that toxicity scores can be reduced to the level of non-toxic phrases. Fur-
ther, this perspective API tool is only for the English language. Recently, researchers
have been applying deep learning models like Convolution Neural nets and LSTM to
optimize text classification. In the paper [8], CNN with word2vec word embedding
was compared against a bag of words in which SVM and Naive Bayes were applied
on designed DTMs (Document Term Matrices). LSTM for tweets was introduced
for twitter sentiment production in the paper [31], which gave us the idea that LSTM
might work pretty well for our dataset and solve a vanishing gradient problem. In the
paper [6], word, character, and sentence level representations were used to perform
sentiment analysis. They used two datasets and found that character level embed-
ding has performed better in the case of the first dataset, but in case of other data,
all of the embeddings perform much better. In the paper [33], authors have applied
traditional machine learning algorithms on 4029 messages to detect profanity related
texts on Twitter. They reported that Logistic regression is performing well among
all algorithms applied. In the paper [16], authors have applied the SVM and Naïve
Bayes algorithm to identify abusive comments from text or images from social media
platforms. In the paper [21], authors have applied fifteen transformations on the toxic
data to determine whether using these transformations can improve the models’ per-
formance. But they found that applying these transformations do not increase the
performance of the model. Their suggestion was to select the best model instead
of wasting time on the transformation of data. In the paper [27], the authors have
applied logistic regression, convolutional neural network, long short-term memory,
and CNN-LSTM to classify toxicity in the comments. They reported that CNN-
LSTM is giving the highest accuracy of 98.20%. In the paper[25], authors have
considered the TF-IDF features and applied three classification algorithms, namely
Logistic Regression, Random Forest, and Gradient Boosting. Out of the three algo-
rithms applied, logistic regression has given the highest accuracy of 97.20%. In the
report [30], authors have applied LSTM and CNN on the dataset taken from Kag-



518 R. Ahuja et al.

gle competition and used various word embedding like word2vec and GloVe. In the
Thesis [19], Siyuan Li applied word2vec, Glove, and skip-gram embedding vectors
in Gated Recurrent Unit, and Bi-LSTM (bi-directional long short-term memory).
They applied sampling techniques and penalizing loss to handle the imbalance issue
of the dataset. He concluded that using pre-trained word embedding is not necessar-
ily will improve the performance. Sampling technique and penalizing loss increase
the performance of the model. In the paper [1], authors have applied deep learning
techniques on three datasets from three different social media platforms. Firstly, they
have applied traditional classification algorithmswith char n-gram andword unigram
and computed the performance of these algorithms. They have also applied CNN,
LSTM, and Bi-LSTMwith random, GloVe, and SSWE word embedding. They have
applied transfer learning also to know whether the model trained on one dataset can
be applied to another dataset or not. In the paper [24], authors have applied J48, Jrip,
SVM with different kernels, KNN, Naïve Bayes, Random Forest, and CNN with
one hidden layer and two hidden layers for cyberbullying detection. They reported
that CNN, with two hidden layers, outperforms all the algorithms applied. In the
paper [15], authors have applied support vector machine, multinomial naive bayes,
GausseanNB, back propagation multilabel neural networks algorithms on Bangla
language text for toxic comments classification. They evaluated the models on the
basis log loss and hamming log and found that back propagation multilabel neural
network is performing better among all the algorithms. In the paper [22], authors have
presented a review of various machine learning techniques used in toxic comment
classification from 2012 to 2015. In addition to this, they have also presented two
tools for detecting abusive comments and their advantages and limitations. In paper
[30], authors have applied CNN, LSTM, Bi-directional LSTM, Bi-directional GRU,
Bi-directional GRU with attention, and using Glove and fastText word embedding.
They have also applied logistic regression using char n-gram and word n-gram. Fur-
ther, authors ensemble all these algorithms on Wikipedia and Twitter datasets and
reported the highest performance parameters AUC of 98.3%, F1 score of 79.1%, the
precision of 74%, and recall of 88%. In the paper [2], authors have applied deci-
sion tree, random forest, support vector machines, gradient-based decision tree, and
deep neural network with Glove word embedding to detect hate speech. In the paper
[11], Mai Ibrahim et al. applied data augmentation to remove the data’s imbalance
effect. Further, an ensemble of three algorithms, i.e., convolutional neural network,
bi-directional long short-term memory, and bi-directional gated recurrent unit. They
have applied two classifiers: one is used to identify whether the comment is toxic
or not. If the comment is toxic, then another multi-classifier is applied to classify
different types of toxicity. They reported the highest f-score of 82.82% in the case
of toxic/non-toxic classifiers and an f-score of 87.24% in the case of toxicity-type
classifiers.
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3 Materials and Methods

3.1 Dataset

Wehave taken a dataset fromwww.Kaggle.com,which consists of 159571Wikipedia
comments labeled by humans as a training set and 153164 comments for testing.
These ratings have classified toxicity in 6 classes as toxic, severe toxic, obscene,
threat, insult, and identity hate. Figure 1 shows the count of different tags in the
dataset. Word cloud for comments under these six categories is shown in Fig. 2.

3.2 Data Pre-processing

Text pre-processing is an important step before applying any classification algo-
rithms. Authors in the paper [13] compared various text pre-processing techniques.
The following pre-processing techniques have been applied. Technique 1: Unneces-
sary characters like!, ", ()*+,-./: etc. and stopwords are removed. Technique 2: All the
letters are converted to lowercase. Technique 3: Tokenization. Technique 4: Stem-
ming. We have pre-processed the data using Python regular expression, stemming
from Porter Stemmer, removing stop words with NLTK libraries.

Fig. 1 Count of different tags in a dataset

www.Kaggle.com
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Fig. 2 Word cloud for toxic comments

3.3 Text Representation Techniques

Text can be represented by various techniques such as a bag of words (BoW), Term
Frequency-Inverse Document Frequency (TF-IDF), and different pre-trained word
embeddings such as word2vec, GloVe, and fastText. We have used following text
representation schemes in our study:

3.3.1 Bag of Words (BoW)

Bag of Words is a Natural Language Processing model where only the vocabulary
of documents is considered instead of the structure of the material. It is, therefore,
called a bag of words because the structure of the document is wholly disregarded.
It is extensively being used for document classification, where each word frequency
is taken into consideration. It is also known as the Vector Space Model. This model
is only concerned about the word’s occurrence rather than wherein the document,
the term occurs. This model’s limitation is that two documents will be similar if they
have the same bag of words.

3.3.2 Term Frequency-Inverse Document Frequency (TF-IDF)

In the TF-IDF [14] term is taken as the weighing factor for the word importance in a
document or corpus. We have found the top 30 words related to each type of toxicity
in the comments using TF-IDF approach as shown in Fig. 3. TF (Term Frequency)—
which measures how frequently a word is present in a document and dividing it by
document length, results in normalization as given in Eq. (1).
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Fig. 3 Top thirty words in different six categories of comments

TF(t) = Number of occurrences of the token in the document

Total token count in the document
(1)

IDF (Inverse Document Frequency) measures the term importance in the given doc-
ument. In this methodology, rare terms are given more weightage as compared to
frequent terms. The intuition behind this is that the words like is, an, and the occurs
very frequently but have very little importance for inference something whereas the
abusive terms like idiot and moron would be less in frequency but of prime impor-
tance in the comment to make strong predictions. In a set of documents, U-IDF
weight for a token t is computed as given in Eq. (2):

IDF(t) = log(Total document count)

Count of documents in U that contain t
(2)

In post j , weight for term i is given in Eq. (3):

TF-IDFi j = TFi j × IDF (3)
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Therefore, each comment can be represented using vector, which further can be
represented by the TF-IDF value.

3.3.3 Word Embedding

Word embedding are numerical representations of the text, and they map words
to vectors using a dictionary such that words with similar meaning have similar
description. There are various pre-trained embedding like word2vec, GloVe, ElMo,
fastText. Word embeddings are used for a variety of tasks in deep learning, such
as semantic analysis, syntactic parsing, named entity recognition, etc. Embedding
provides a more sophisticated way to represent words in digital space. They provide
a measure of similarity between words and phrases. The two word embedding used
in our study is as follows:

Global Vectors for Words Representation (GloVe): The GloVe [23] is a count-
based model and can be easily used for larger data compared to the bag of words
model. The main idea of this model is that the word’s ratio to word co-occurrence
probabilities can give us useful information as some words will have a higher likeli-
hood of co-occurring more with some particular words. It consists of the following
steps:

Step 1 The co-occurrence of a word concerning the other words is collected in the
form of a matrix X. Each element Xij in this matrix represents how often word I
appears in the context of word j. A window size is used before the term and after
the term. Less weight is given for more distant words, using the formula given in
Eq. (4).

Decay = 1

offset
(4)

Step 2 Soft constraints are defined for each word pair as given in Eq. (5):

wT
i w j + bi + b j = log(Xi j ) (5)

Wi is the vector for the main word, wj vector for the context word, bi , b j are
scalar biases for the main and context words.

Step 3 The cost function is defined as given in Eq. (6)

J =
V∑

i=1

V∑

j=1

f (Xi j )(w
T
i w j + bi + b j − log(Xi j )

2 (6)

Here, f is a weighting function and takes care that prevalent words are not used
for the learning process, and V is the size of the vocabulary. The Euclidean distance
(cosine similarity) between two vectors provides information regarding the similarity
between the words. The similarity metrics used for this nearest neighbor evaluation
produce a single scalar, but this could be a problem because a unique number should
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not represent the relationship between two words. GloVe uses vector differences of
the two words such that they are able to capture as much meaning as possible. The
GloVe embedding is trained for working on non-zero entries of the word–word co-
occurrence matrix. Although for large corpora, this computation can be expensive,
it is a one-time-up-front cost. Training iterations are much faster as the number of
non-zero entries in the matrix is much smaller as compared to the vocabulary of the
corpus.

fastText Embedding: Pre-trained word vectors for 294 languages were released
by Facebook trained onWikipedia in 2017 called fastText. fastText [3] library is very
efficient in terms of word representation learning and classification of the sentence.
This model is a continuation of the skip-gram Word2vec model. fastText is helpful
in finding the vector representation for rare words, and it assumes word to be formed
by n-grams of character, thus taking into account sub-word information. N-grams
within a range of 3 to 6 characters were chosen. GloVe fails where words are not
in the dictionary. fastText can give vector representations for words not found in
the dictionary, i.e., that are not in the training set called OOV (Out of Vocabulary)
words since these can also be broken down into character n-grams. For this, they
averaged the vector representation of its n-grams. Words were broken into chunks
and using the vectors for these chunks to create a final vector for the word. We have
used 300-dimension fastText word embedding.

3.4 Traditional Machine Learning Methods

Classification algorithms are now being used in various applications and producing
good results. In the paper [12], authors have applied classification algorithms on text
classification. Following machine learning algorithms are implemented considering
the BoW features.

3.4.1 Support Vector Machine

Support Vector Machine (SVM) [29] is a supervised learning algorithm. It is used
for classification as well as regression problems by finding a hyperplane that dif-
ferentiates the classes most optimally. Each data point is marked in n-dimensional
space. Finding the right hyperplane is the challenge in SVM. Hyperplanes can be
linear, quadratic, etc. depending on the data points. SVM works for text classifica-
tion tasks as well, as they can handle high-dimensional input space. SVM can also
handle nonlinear classifications by using kernel tricks where inputs are mapped into
high-dimensional space. New data is then mapped into one of the categories as per
the hyperplane. The regularization and gamma are used for tuning the model.
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3.4.2 Decision Trees

Decision trees [26] are supervised learning algorithms wherein decisions are made
using some criteria, and the data are classified in the fashion of a tree. The data is split
into subsets until the point each leaf node is assigned a class variable. The nodes are
the points where the data is split, and decisions are made. Decision trees are simple to
implement and work well with both numerical and categorical variables. The feature
that divides the data most broadly is kept at the root node, and further decisions are
made accordingly as which feature best divides the data. This algorithm is simple
to implement and do not require much pre-processing. Generally, the criteria for
decision-making can be a Gini index, information gain. In this chapter, we have used
the Gini index for splitting.

3.4.3 Random Forest

Random forest [4] is an ensemble of decision tree algorithm. An ensemble algorithm
uses the results of multiple models, whether same or different. Therefore, for this
model, multiple decision trees are used for classification, and therefore called a
forest. The larger the number of trees that are used for making a decision, the more
likely it is to get an accurate decision. In the case of a random forest, the splitting is
done randomly, i.e., the features chosen for decision-making are chosen randomly as
opposed to the concept of a decision tree. They also overcome the problem of over
fitting by introducing randomness. The mode of classes of individual trees is taken
as the criteria for deciding the class label of the whole forest. The parameters that
can be tweaked for this model are the number of decision trees.

3.4.4 Naive Bayes Algorithm

Naïve Bayes [36] is a supervised learning algorithm that uses the concept of Bayes
probability theorem based on conditional and class probabilities. Thus, it has also
been used for text classification tasks. Bayes theorem gives us the probability of an
event given that an event has already occurred. It assumes that the features are inde-
pendent of each other. It is extremely useful with large data with a lesser number of
features. It is simple to perform and a fast algorithm. The drawback of this algorithm
is that the assumption of independence among features is rarely true in practical cases
due to which it is called a naive algorithm. It is a good algorithm for categorical data
compared to numerical data and highly efficient in terms of accuracy, speed, and
simplicity. It is good for linear classification.
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3.5 Deep Learning Methods

Deep Learning algorithms are nowadays widely used in different applications like
image processing, healthcare, sentiment analysis, etc.We have applied CNN, LSTM,
and their blend in our approach.

3.5.1 Convolutional Neural Network (CNN)

CNN’s were recently used in NLP systems and achieved remarkable results [17,
34, 37]. In the case of artificial neural nets, each input neuron was connected to
hidden layers, and when they reach out to output neurons, but in our task, we are
not considering them as they miss out on the spatial features of our text. ANN
would consider the relationship between vectors. However, in reality, each vector
has a different relationship with other vectors. CNN performs well on data with the
high locality. We expect high locality for our dataset because comments would be
based on a specific idea or content. As shown in Fig. 4, we have applied CNN in
the comments. Convolutional neural nets have a stack of various input layers and
multiple hidden layers that are passed on to the output layer. Hidden layers itself
contain a convolutional layer, pooling layers, connected layers full of connections,
and normalization layers, with the use of nonlinear activation function like ReLU or
tanh. A convolutional neural net has three layers: (1) Convolution Layers—performs
convolutions on the complete width and depth of input by sliding a window, the
window (filters) performs different operations on the data. Each cell of the matrix
is a tokenized character. Unlike 2D orientations in computer vision, texts have one-
dimensional structure only, and here, the word sequence matters. So, we fix up this
one dimension of the filter, and thus, it matches the word vector and can vary in the
number of rows. Rows are representing the word present in the sentence matrix that
would befiltered. Eachfilter computes the dot product of its entries and corresponding
input. After performing the computation, it produces a 2D activationmap of the filter.
All the convolutions and computations result in training the network about filters.

Fig. 4 CNN with word embedding architecture [17]
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These filters activate whenever they detect any special kind of features at a particular
spatial input position. Thus, stacking all the activation maps of filters, along with
input dimensions, resulting in a full output of the convolutional layer. One can now
interpret every entry of output as a neuron output, which only looks at a small
input region and sharing parameters with other connected neurons. The extent of
connectivity to the smaller regions of input is known as the neuron’s receptive field.
(2) Pooling Layers—Pooling layers are used for nonlinear dimensionality reduction
of the input feature map keeping the most salient information. It partitions the input
volume into non-overlapping regions. For all such regions, based on the pooling
function we are using, it outputs a value. Pooling functions can be max-pooling,
min polling, and average pooling. The most common and better is the max-pooling
function, which considers the local neighborhood’s maximum. The intuition behind
using the pooling layer is the importance of a feature’s rough location concerning its
neighboring feature. Here, we are not concerned about the exact position of the input.
Thus, the pooling layer reduces the input volume dimensions, reduces computations,
and controls over fitting. In our context, based on the value, some characters from
each filter would be selected by the max-pooling technique. (3) Fully connected
Layer—Finally, after the convolutional layer and pooling layer, we reach out to
a fully connected layer that performs a high level of reasoning. Every neuron of
a fully connected layer is connected with every other neuron in the next layer. All
connections have activation function involved with some randomweights and biases,
which they will learn with training. Its output to softmax function with cross-entropy
loss and results in providing probabilities for each class.

3.5.2 Long Short-Term Memory Network (LSTM)

Recurrent Neural Network (RNN) is being used in text classification [18], but it
is not able to handle long-term dependencies. LSTM is a special variant of RNN
introduced by Hochreiter and Schmidhuber [9]. LSTM is powerful to handle long-
termdependencies. LSTMhasmemoryblocks connected as a set of recurrent subnets.
In each block, LSTM has memory cells along with some special units—put, output,
and forget gate that control, protect, and let information flow through the cell. Cell
state is analogous to a conveyor belt that runs an entire chain of information flow
with some liner interactions. The gates regulate the information to the cell state.
Sigmoid Layer (with either 0 or 1 as output) and pointwise multiplication operations
compose these gates. As shown in Fig. 5, the memory block has one cell with three
gates as nonlinear units collecting information and controlling other cells’ activation
with multiplication. Input, output, and the previous state of the cell are multiplied by
input, output, and forget the gate.

The cell usually has sigmoid activation, which simply looks for the gate closed
(when 0) and the gate open (when 1) as given in Eq. (7).

i = σ(xtU
i + h(t−1)W

i ) (7)
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Fig. 5 LSTM block diagram [9]

In the above equation, σ is the sigmoid activation, xt is the input to the cell, h − (t −
1) is the previous hidden state, and W is the weight matrix. The initial decision in
LSTM is regarding the information LSTM is throwing out of the cell state and forget
gate help us doing that using the sigmoid layer. This layer looks for the ht − 1 and xt
output either 0 or 1. 0 means to completely ignore, and one means completely retain
information from a cell state, Ct − 1, as given in Eqs. (8) and (9).

i = σ(xtU
i + h(t−1)W

i ) (8)

ct = c(t−1) ∗ f + g ∗ i (9)

σ is the sigmoid activation, xtis the input to the cell, h(t − 1) is the previously hidden
state, ctis the current cell state, c(t − 1) is the previous cell state, and g is the external
input gate. If the gates let information in then, LSTM decides what new information
will be stored in the cell state. This decision needs two tasks to perform -Input
(sigmoid) gate layer deciding which information will update and a tan hyperbolic
function creating a new value Ct added to the state. Now, decisions are made, and it’s
time for LSTM to update the old state, Ct − 1, into Ct, forgetting the things initially
decided. After all the steps are performed, LSTM will get its updated value for each
state, as given in Eq. (10).

ht = tanh(ct ) × o (10)

o = σ(xtU
o + ht−1W

o) (11)

Finally, after performing the entire above task comes the decision of output from
the cell state. This somewhat works like input operations, the sigmoid layer and tan
hyperbolic will do their work. One decides whether to output the part of the infor-
mation or not through 0 and 1, and others will decide which part of the information
is important to output. The output formula is given in Eq. (11).

As shown inFig. 6, data to be fed into theLSTMis converted to numeric form.Here
we use LSTMwith pre-trained word embedding GloVe and fastText. The embedding
of each word is passed sequentially into an LSTM. LSTM takes words in a sequence
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Fig. 6 Working of LSTM
with word embedding

one by one, i.e., at time t, it takes input the ith word and the output from t − 1.
Therefore, it can learn long-term dependencies as opposed to traditional RNNs. That
is, LSTM can be used to embed text regions of variable and large sizes.

3.5.3 CNN-LSTM Blend

A more optimized approach can be to use the features of both the models (CNN
and LSTM). Deep Neural nets such as densely connected neural networks (DNNs),
convolutional neural networks (CNNs), and recurrent neural nets (RNNs) are good
performers in their respective fields. CNN’s are good for image recognition and
computer vision problems, but they can also be used for text classification tasks; on
the other hand, RNNs are good for languagemodeling and speech recognition issues.
Therefore, it is interesting to knowwhether one kind of deep learningmodel can learn
from others to improve performance. Model blending is combining the models that

Fig. 7 Depicts CNN+LSTM Blend Architecture
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have the same dependent variables and or the same independent variables. Both
LSTM and CNN are quite powerful models, but their functionalities and learning
processes are quite different.

CNNmodels are powerful for detecting patterns in the data, and LSTMs are good
for capturing language context. As shown in Fig. 7, the output from the CNN layer
is passed to the LSTM network. CNN performs very well in feature extraction, and
LSTM is used for sequence modeling. We have used CNN-LSTM with fastText and
GloVe embeddings. The difference between CNN and RNN is that both use different
structures for knowing the contextual information. CNN uses a fixed window of
words to learn the text context, whereas RNNs use a recurrent structure. CNN can
select more discriminative features through themax-pooling layer, and then the CNN
output is passed on to LSTM, where more discriminative features are learned.

4 Methodology Used

Figure 8 shows the overall methodology used in our study. We have used a dataset
from the Kaggle competition. The dataset is pre-processed to get useful information
out of it and to reduce the noise. The processed dataset is converted into numeric
values using a bag of words and word embeddings (GloVe and fastText). We have
applied four classification algorithms (Random Forest, Naïve Bayes, Support Vector
Machine, and Decision Tree) on the bag of word representation and evaluated the
performance based on accuracy.We have applied two deep learning algorithms (CNN
and LSTM) and their blend CNN-LSTM on the text. Text is represented by GloVe
and fastText word embedding and evaluated the performance based on accuracy.

Fig. 8 Flowchart of the Methodology Used
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CNN is good for feature extraction, whereas LSTM is good for sequence modeling.
Therefore, to use the advantages of both these models, we blended LSTM and CNN
to increase the performance.

5 Experimental Results and Analysis

We have applied four classification algorithms (SVM, Naïve Bayes, Random Forest,
and Decision Tree) with BoW, and two deep learning algorithms (CNN, LSTM, and
their blend CNN and LSTM) with the two-word embedding GloVe and fastText. The
performance parameter considered is accuracy.With this approach, detecting toxicity
and then categorizing the toxic comment into six different categories—toxic, severe
toxic, obscene, threat, insult, and identity hate are given in Table 1.

As shown in Table 1, we have achieved an accuracy of 89.92%with SVM, 90.24%
with a decision tree, 93.45% with naive Bayes classifier, and 91.78% with random
forest classifier. Naive Bayes gives the best results out of all these classification
models because it is a linear model. The other reason for naive Baye’s performance
is that our data does not have a binary classification. This model can handle this type
of task very well as it is based on Gaussian probability, so giving better probabilities
of each class. The performance of deep learning algorithms (CNN, LSTM, andCNN-
LSTM) with word embeddings (GloVe, and fastText) is also presented in Table 1.
WithGloVe embedding,we have achieved an accuracy of 95.42%withCNN, 97.06%
with LSTM, and 98.07% with CNN-LSTM blend.

The fastText embedding proves to be a better option in terms of word embedding
because we have achieved an accuracy of 95.98% with CNN, 97.64% with LSTM,

Table 1 Results of various approaches applied

Machine Learning Models with BoW

Sr. No. Models used Accuracy (%)

1 Support vector classifier 89.92

2 Decision tree 90.24

3 Naïve Bayes 93.45

4 Random forest 91.78

GloVe word embedding

5 Convolutional neural network 95.42

6 Long short-term memory 97.06

7 CNN+LSTM blend 98.07

fastText word embedding

5 Convolutional neural network 95.98

6 Long short-term memory 97.64

7 CNN+LSTM blend 98.46
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Table 2 Comparison of our results with the existing results

Sr. No. Research Paper Accuracy (%)

1 Saif, M. A., Medvedev, A. N., Medvedev,
M. A., Atanasova, T. [16]

96.45

2 Pallam Ravi, Hari Narayana Batta,
Greeshma S, and Shaik Yaseen [17]

97.92

3 Georgakopoulos, S. V., Tasoulis, S. K.,
Vrahatis, A. G., Plagianakos, V. P. [10]

91.20

4 In’es BEN AMAR, Antoine COPPIN,
and Emerick LECOMTE (2017) [18]

97.72

5 Our Approach 98.46

and 98.46% with CNN-LSTM Blend. The fastText is better for this problem due
to their function of considering the substructure of the word. The reason for this
embedding going well with our models is its ability to work well on new words
being used by users on social media. There is no rule of using strict standard rules
of English for expression on social media. This is a very important aspect when
we are working on data generated by highly evolved users. They are more in the
habit of using abbreviations, hashtags, and code words, which are sometimes entirely
different from the standard language structure fastText embedding takes care of. One
more positive point of this embedding is that it is multilingual and not necessarily
restricted to English; so, this model can be used for other languages. The maximum
accuracy was achieved for CNN-LSTM blend with fastText. Thus, it can be seen that
the CNN -LSTM blend has significantly improved the accuracy both for fastText as
well as GloVe word embedding. The LSTM model performs better than CNN due
to its functionality of good sequential modeling and recurrent memory blocks. CNN
is through powerful, as its results show, in comparison to our other approaches, it is
least accurate because of its weakness to work only close to the data and unable to
handle sequential modeling. But when CNN is combined with LSTM, it performed
extremely well because CNN models are very efficient in detecting patterns in the
data, and for capturing language context, we have LSTM. As shown in Table 2, our
approach is better than the state-of-the-art approaches existing in the literature.

6 Conclusion and Future Work

Nowadays, scientists and researchers are concerned about making social media plat-
forms a better place for users to interact freely in ways they think to be appropriate.
Toxicity and abusiveness in comments is a big hurdle for online social media net-
working sites. Identifying toxic, abusive, offensive comments in social media is a
huge problem that needs to be tackled and explored urgently. An efficient approach
or solution to this problem is still in its infancy. Hence, our work is devoted to curbing
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social media abuse, toxicity, and cyberbullying. In this study, we have implemented
four classification models—SVM, Naive bayes, random forest, decision tree with
BoW features and deep learning models—CNN and LSTM along with their blends
using GloVe and fastText word embedding to classify a comment as toxic. Naive
Bayes proves to a better approach among all the classification techniques applied
in our study and giving an accuracy of 93.45%. Our optimal blending of CNN and
LSTMon both fastText andGloVe enhanced our results.We have achieved promising
results of 98.46% accuracy with CNN-LSTM blend with fastText word embedding.
CNN and the LSTM blend proved to achieve better results by using each model’s
advantages. The use of word embedding has increased the performances of these
models with fastText giving remarkable results. In future more deep learning models
like Gated Recurrent Unit (GRU), Bi-LSTM, Bi-GRU, and BERT. An ensemble of
different word embedding can be done to improve performance. Working on better
data with more features and considering parameters like user’s past posts, profile,
and general use of language.

List of Abbreviations

API: Application Programming Interface
ANN: Artificial Neural Network
BoW: Bag of Words
Bi-GRU: Bi-directional Gated Recurrent Unit
Bi-LSTM: Bi-directional Long Short-Term Memory
CNN: Convolutional Neural Network Modified
DTM: Document Term Matrices
GloVe: Global Vector for Word Representation
GRU: Gated Recurrent Unit
IR: Information Retrieval
LSTM: Long Short-Term Memory
LDA: Linear Discriminant Analysis
ML: Machine Learning
NLTK: Natural Language Toolkit
OOV: Out of Vocabulary
PLSA: Probabilistic Latent Semantic Analysis
RNN: Recurrent Neural Network
ReLU: Rectifier Linear Unit
NLTK: Natural Language Toolkit
SVM: Support Vector Machine
SSWE: Sentiment Specific Word Embedding
TF-IDF: Term Frequency-Inverse Document Frequency
URL: Uniform Resource Locator
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DURLD: Malicious URL Detection Using
Deep Learning-Based Character Level
Representations

Sriram Srinivasan, R. Vinayakumar, Ajay Arunachalam, Mamoun Alazab,
and KP Soman

Abstract Cybercriminals widely use Malicious URL, a.k.a. malicious website as
a primary mechanism to host unsolicited content, such as spam, malicious adver-
tisements, phishing, and drive-by exploits, to name a few. Previous studies used
blacklisting, regular expression, and signature matching approaches to detect mali-
cious URLs. However, these approaches are limited to detect variants of existing
or newly generated malicious URLs. Over the last decade, classic machine learn-
ing techniques have been used to detect malicious URLs. In this work, we evaluate
various state-of-the-art deep learning-based character level embedding methods for
malicious URL detection. To leverage and transform the performance improvement,
we propose DeepURLDetect (DURLD) in which raw URLs are encoded using char-
acter level embedding. To capture several types of information in URL, we used the
hidden layers in deep learning architectures to extract features from character level
embedding and then employ a non-linear activation function to estimate the prob-
ability of the URL as malicious or not. Experimental evaluation demonstrates that
DURLDcan detect variants ofmaliciousURLs, and it is computationally inexpensive
when compared to various relevant deep learning-based character level embedding
methods.
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1 Introduction

MaliciousUniformResourceLocator (URL) host unsolicited information and attack-
ers usemalicious URLs as one of a primary tool to carry out cyber attacks. E-mail and
social media resources such as Facebook, Twitter, and WhatsApp are the most com-
monly used applications to spread malicious URLs [3, 4, 35]. They host unsolicited
information on the web page. Whenever an unsuspecting user visits that website
unknowingly through the URL, the host may get compromised, making them vic-
tims of various types of frauds includingmalware installation, data, and identity theft.
Every year, malicious URLs have been causing billions of dollars worth of losses
[12]. These factors force the development of efficient techniques to detect malicious
URLs promptly and give an alert to the network administrator.

Most of the commercial products existing in markets are based on the blacklisting
method [5]. This method relies on a database that contains a list of malicious URLs.
The blacklists are continually updated by the anti-virus group through scanning and
crowdsourcing solutions. The blacklistingmethod can be used to detect themalicious
URLs which are already present in the database. But, they completely fail to detect
the variants of the existing malicious URLs or entirely new malicious URLs. In
recent days, cyberattackers follow mutation techniques to generate several variants
of existing malware. To cope with this, machine learning techniques are employed.

In recent days, the most commonly used approach is applying domain knowledge
to extract lexical features of URL, followed by applying machine learning models.
The most commonly used feature engineering technique is Bag-of-words (BoW)
and the most commonly used machine learning model is the support vector machine
(SVM) [29]. Though machine learning-based solution can be used instead of black-
listing methodology, it suffers from many issues:

1. The conventional URL representation methods fail to capture the sequential pat-
terns and relationships among the characters.

2. Conventional machine learning models rely on manual feature engineering. This
requires extensive domain knowledge in the cybersecurity domain and it is con-
sidered a daunting task.

3. Fails to hold unrevealed features and it doesn’t generalize on the test data. Addi-
tionally, the number of unique words is immensely large and as a result, the
machine learning model faces memory constraints while training.

To alleviate the aforementioned issues, this work proposes a model named Deep-
URLDetect (DURLD) which uses a modern machine learning technique, typically
called “deep learning” with character embedding. Deep learning uses multiple hid-
den layers in which each layer does non-linear projection to learn representations of
multiple levels of abstraction and they are applied tomany cybersecurity applications
[2, 6, 8, 9, 26–28, 34, 37–39]. The main contributions of the proposed work are

1. Detailed investigation and analysis of various benchmark deep learning architec-
tures are performed for malicious URL detection.
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2. Various types of data sets are used in the experimental analysis to find out how
generalizable the models are. The difference between the time-split and random-
split of data splitting methods is shown in the experimental analysis.

3. Experiments are shown for character level embedding and n-gram representation
with various deep learning architectures

The rest of the sections of this chapter are organized as follows. Section 2 dis-
cusses the related works of malicious URL detection. Section 3 provides information
about URLs. Section 4 discusses the background details of benchmark text classifi-
cation models and the proposed model. Section 5 provides the major shortcomings
in malicious URL detection. Section 6 includes a description of the data set. The
working flow of malicious URL detection is discussed in Sect. 7. Section 8 contains
information on proposed architecture. Details of performancemeasures are discussed
in Sect. 9. The results are discussed in Sect. 10. At last, the conclusion and future
works are placed in Sect. 11.

2 Related Works

For the detailed literature survey of machine learning-based malicious URL detec-
tion, see [29]. This section discusses the most important works in malicious URL
detection.

At the beginning stages, blacklisting, regular expression, and signature matching
approaches are most commonly used for malicious URL detection. These methods
completely fail to detect new or variant of existing URLs. Moreover, the signature
database has to be updated frequently to handle new patterns of malicious URLs.
Later, machine learning algorithms were used to effectively detect new types of
malicious URLs. Conventional machine learning algorithms depend on feature engi-
neering to extract a list of features from URLs. This feature engineering requires
extensive domain knowledge of URL in cybersecurity and a list of good features has
to be carefully chosen through feature selection. There are various types of features
which are used in the published works for malicious URL detection. This includes
blacklist features [18, 22], lexical features [20, 22, 23], host-based features [14,
24], content features, context- and popularity-based features [13, 15, 21]. Black-
list features are estimated through checking its presence of a URL in a blacklist.
This could serve as a strong feature in identifying malicious URLs. Lexical features
are estimated through the string properties of the URL, e.g., the number of special
characters, length of URL, etc. Host-based features are obtained from the hostname
properties of the URL. This includes information related to WHOIS information, IP
Address, Geographic location, etc. Content features are derived from the HTML and
JavaScript when an unsuspecting user visits a webpage through the malicious URL.
Content features include information related to their ranking, popularity scores, and
source of sharing. Many existing studies have used separate feature category and as
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well as a combination of these features which were continually determined through
domain experts.

Feature engineering is a daunting task with considering the security threats. For
example, obtaining context-based features consumes more time and it is highly risky
too. Moreover, feature selection requires extensive domain knowledge. The infor-
mation which is obtained directly from the raw URL is a well-known approach [22,
23]. From the published results, obtaining the lexical feature is easier in comparison
to other features and it gave good performances [11]. Statistical properties of the
URL string such as length of the URL and number of special characters [20] have
been most commonly used and other most popular features were BoW, and term
frequency methods such as term document matrix (TDM) and term frequency and
inverse document frequency (TF-IDF) and n-gram features [11, 20, 22]. All these
features are not effective in extracting sequential order and semantics of URL. This
completely disregards the information from unseen characters. Moreover, malicious
URL detection solution based on the feature engineering with conventional machine
learning can be easily broken by an adversary.

In recent days, the application of deep learning with character level embedding
has been used for malicious URL detection. In [41], we compared a detailed analysis
of deep learning with character level embedding and conventional machine learning
with feature engineering methods for malicious and phishing URL detection. Deep
learning architectures performed well in comparison to the conventional algorithms.
The application of the recurrent neural network (RNN) and long short-term mem-
ory (LSTM) is applied to phishing URL detection [10]. For comparative analysis,
lexical features and statistical URL analysis were used with random forest classifier.
Both models performed well, the performance of LSTM was good in comparison
to the conventional machine learning method. In [31], we used convolutional neu-
ral network (CNN) with character level Keras embedding for detecting malicious
URLs, file paths, and registry keys. This study showed how a unique deep learning
architecture could be used on different cybersecurity problems. Like this, there are
so many benchmark deep learning architectures that exist. In this work, we evaluate
the performance of various deep learning architectures for malicious URL detection.

3 An Overview of Uniform Resource Locator (URL)

A uniform resource locator (URL) is a part of the uniform resource identifier (URI)
which is used to identify and retrieve a resource from the Internet service. A URL is
composed of three parts as shown in Fig. 1. The first part defines the type of protocol,
for example, http or https, the second part defines the domain name or IP address and
the third part defines the path and its parameters to a specific resource on the web.
The protocol is separated by a double slash from the other parts of the URL and it is
followed by the domain name. The path and its parameters are separated by a single
slash. A sample URL is given in Fig. 1. An adversary may use the URL as the main
source to host malicious activities. Most commonly, the malicious URLs are spread
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Table 1 Character level deep learning architectures

Name Architecture Task

Endgame [7] LSTM Detecting and categorizing
domain names that are
generated by DGAs

Invincea [31] CNN To detect malicious URLs, file
paths and registry keys

CMU [17] Bidirectional recurrent
structures

Social media text
classification, Twitter

MIT [44] Hybrid of CNN and LSTM Social media text
classification, Twitter

NYU [43] Stacked CNN layers Text classification

Fig. 1 Uniform resource locator (URL) components

via email and other social media apps. Once an unsuspecting user visits a malicious
URL, the host system may get compromised. Thus, detecting the nature and type of
URL is considered as a significant task.

4 Background Details of Deep Learning Models

4.1 Hybrid Architecture—Convolutional Neural Network
and Long Short-Term Memory (CNN-LSTM) with
Character Level Keras Embedding

Convolutional neural network (CNN) is very similar to DeepNeural Network (DNN)
and it uses convolution operation to extract features from the input. The example of
DNN and CNN network is shown in Figs. 2 and 3, respectively. CNN based on
character (CNN-C) level is a minimal variant of the deep CNN based on character
level [44]. CNN-C primarily uses 1D convolution and pooling operations also called
temporal convolution and temporal pooling, respectively. CNN-C extracts optimal
features from the character level representation of URLs. For character level rep-
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resentation, the character level Keras embedding representation is used. This takes
three parameters such as dictionary size, the maximum length of the character vector,
and embedding vector length. Initially, the character level Keras embedding weights
can be initialized as a hyperparameter. The weights are optimized during backpropa-
gation. The CNN features are passed into LSTM which facilitates to learn character
level sequence representation.

4.2 Character-Based Models

Character-based model takes an input text as a string of characters and automatically
extracts features. These features can be used for performing different tasks (e.g., text
classification). There are different character-based models that exist in the field of
natural language processing (NLP), and in this work, the efficacy of them are eval-
uated for cybersecurity application, namely, malicious URL detection. All models
use embedding as the first layer to transform the URLs into numeric vectors. The
details of the various character-based models are given in Table 1. The details of the
various character-based models are given below

1. Character level models based on RNN
Endgame Architecture: Reference [7] It uses LSTM with character level Keras
embedding for modeling domain generation algorithms (DGAs) to detect and
categorize the domain names that are generated by DGAs. The character level
Keras embedding facilitates to learn the sequence of characters of domain names
and it helps to preserve the order of character in domain names. Moreover, it
completely avoids the feature engineering method that is an important step for
classical machine learning methods. The method has better performance when
compared to the othermethods such as hiddenMarkovmodel, feature engineering,
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and bigrams with classical machine learning classifiers. The proposed LSTM net-
work is composed of an embedding layer for URL representation, LSTM layer for
optimal feature extraction, and logistic regression for classification. The embed-
ding layer maps each character to shape 128 and passes into LSTM for feature
learning and logistic regression for assigning a probability score for each domain
name.
CMU Architecture: Reference [17] CMU Architecture is named as Tweet2vec
for tweet representation and classification for social media data. It uses a bidirec-
tional gated recurrent unit (BGRU) to learn feature representation of Twitter data.
The tweets are tokenized into a stream of characters and each character is rep-
resented by using one-hot character encoding. These one-hot representations are
mapped into a character space and fed into the BGRUmodel. The model contains
forward and backward GRU which facilitates to learn the sequence of characters
in the domain name. Both the forward and backward GRU layers are combined
using a fully connected layer and a so f tmax non-linear activation function was
used for tweet classification, particularly to predict hashtags of tweets. For com-
parative study, the tweet2vec is evaluated on the word level tweet representation.
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2. Character level models based on CNN
NYU Architecture: Convolutional neural network (CNN) is most commonly
used in the field of image processing. In recent days, 1D CNN has been mapped
into text classification [43]. They have used word based CNN and LSTM. The
CNN of NYU is stacked CNN. With CNN, pre-trained embedding, embedding,
and lookup tables are used as text representation methods. With LSTM, pre-
trained word embedding is used as a text representation method. For evaluation,
they used different types of large-scale data sets. They claimed that the character
level CNNmodel performedwell in comparison to the classical and deep learning
models. The efficacy of deep learning models is evaluated on the classical text
representation methods such as BoW, n-gram with TF-IDF.
InvinceaArchitecture:Tomodel short character strings such asURLs, file paths,
or registry keys of cybersecurity data, [31] proposed CNN network. This CNN
network is composed of character level Keras embedding layer, parallel CNN
layer, followed by three fully connected layers. All three fully connected layers
contain 1,024 units and ReLU as an activation function. The architecture uses
batch normalization and dropout regularization techniques to speed up the model
training and prevent overfitting. To classify the short character strings as either
legitimate or malicious, the CNN network contains a fully connected layer with
unit 1 and sigmoid non-linear activation function.

3. Character level models based on hybrid CNN and RNN
MIT Architecture: Reference [44] This is an extension of the NYU model for
tweet classification. It is composed of stacked CNN layers followed by an LSTM
layer. The stacked CNN layer results in overfitting. To alleviate this, a minimum
number of parameters are used.

4.3 Problem Formulation

The objective of this work is to classify a given URL as either legitimate or
malicious and classification problem is binary. Let us consider a set of URLs
U = {(u1, y1), (u2, y2), · · · (un, yn)} where u represents URL and y represents ‘0’
for legitimate and ‘1’ for malicious.

There are two steps involved in the classification procedure, firstly, the optimal
feature representation and secondly, the prediction function. Feature representation
forms n-dimensional vector representation xn which can be passed into prediction
function as input yn = sign( f (xn)). The main aim is to minimize the total number
of misclassification. This can be achieved by minimizing the loss function. This type
of loss function can also include a regularization term. In this work, f is represented
as deep learning architectures.
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5 Shortcomings in Malicious URL Detection

There are no publically available benchmark data sets for research in malicious URL
detection. Most of the published results on malicious URL detection have used their
own private data sets in evaluating the efficacy of various conventionalmachine learn-
ing algorithms and deep learning architectures. These private data sets are collected
from various sources such as Alexa, DMOZ, Phishtank, OpenPhish, MalwareDo-
mains, MalwareDomainList, and many others. Though, these approaches cannot be
regarded as generic methods due to the uncommon data sets. Most of the published
results haven’t given any importance to the time-split methodology to divide the data
into train and test. Recently, [30] discussed the importance of time-split in dividing
the data into train and test sets. The data splitting methodology based on time-split
is very important to meet the zero day malware detection. Recently, the background
reason for not deploying machine learning-based solutions for security is discussed
by [33]. The detailed test cases that should be considered in test experiments are
discussed in detail by [36]. These different test cases help to evaluate the robustness
of machine learning-based solutions. Moreover, they have discussed the difficulty
behind applying data science techniques for cybersecurity.

6 Description of Data Set

It is necessary to test different forms of URL to assess the performance of various
conventional machine learning classifiers and deep learning architectures. There
are two types of data sets that are used. They are Data set 1 and Data set 2.
The Data set 1 is collected from publically available sources such as Alexa.com,
DMOZdirectory,MalwareDomainlist.com andMalwareDomains.com,CENAmrita
VishwaVidyapeetham research internal network backbone.Data set 2 is fromSophos
research [32]. The most commonly used methodology for dividing data into train
and test is random-split [25]. Data set 1 follows random-split. The classifier which is
modeled using a random-split approach is not an efficient splitting methodology to
meet zero day malware detection [30]. Data set 2 follows both the random-split and
time-split [30]. In the domain of cybersecurity, it is good to follow the time-split [19,
42]. This facilitates to enhance zero day malware detection. The detailed statistics
of both Data set 1 and Data set 2 are reported in Table 2.

7 Model Configuration of Malicious URL Detection Engine

The pseudo-code of the malicious URL detection engine is given as Algorithm 1.
It is composed of three different sections. They are (1) preprocessing, (2) optimal
features extraction, and (3) classification.
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Table 2 Detailed statistics URL data set

Data set Category Legitimate Malicious

Data set 1 Train 212,751 175,121

Data set 1 Test 122,406 101,616

Data set 2
random-split

Train 43,771 43,430

Data set 2
random-split

Test 18,516 18,857

Data set 2 time-split Train 39,271 47,044

Data set 2 time-split Test 23,016 15,243

In preprocessing, the URLs are transformed into feature vector using text repre-
sentation methods and the optimal features from the numeric vectors are extracted
using various benchmark models such as Invincea, NYU, MIT, CMU, Endgame,
and proposed model, DeepURLDetect (DURLD), and finally, classification is done
using fully connected layer with non-linear activation function.

Algorithm 1: Malicious URL Detection Engine
Input: A set of URLs U1,U2, ...,Un .
Output: Deep URL Detect Model Labels y1, y2, .., yn (0: legitimate or 1: Malicious) and

BenchMarkModels prediction p.
1 VectorizedURLs = Dataprocessing(Ui) // URLs into numerical vectors
using text representation method

2 Predicions p = BenchMarkModels(VectorizedURL) // Invincea, NYU, MIT,
CMU, Endgame

3 for each URLs Ui do
4 lcU RL= lowerCase(Ui )
5 ZeroPaddedURL Zi = Padding(lcU RL)
6 E = Character level Keras Embedding (Zi )
7 C = CNN(E)
8 L = LSTM(C)
9 Compute yi = Sigmoid(L)

10 end for

The characters in URLs are converted into lower case. This is due to the reason
domain names are case insensitive, and differentiating between capital and small
letters may cause regularization issue. Otherwise, the models have to be run for more
number of epochs to learn the patterns of all possibilities of characters that exist in
the URLs. The Data set 1 corpus contains 150 unique characters, dictionary size and
the maximum length of the URL is 2,307. The Data set 2 random-split and time-split
corpus contains 42 unique characters and the maximum length of the URL is 246.
The URL which is lesser than the maximum length is padded with 0. The detailed
architecture and configuration details of DURLD is shown in Tables3 and 4 for Data
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Table 3 Detailed configuration parameter information of DURLD for Data set 1

Layer (type) Output shape Param #

embedding_1 (Embedding) (None, 2307, 128) 19200

conv1d_1 (Conv1D) (None, 2306, 128) 32896

max_pooling1d_1
(MaxPooling1)

(None, 1153, 128) 0

lstm_1 (LSTM) (None, 70) 55720

dense_1 (Dense) (None, 1) 71

activation_1 (Activation) (None, 1) 0

Total params: 107,887

Trainable params: 107,887

Non-trainable params: 0

set 1 and Data set 2 random-split and time-split, respectively. In DURLD, character
level Keras embedding contains 128 as embedding size, as each character is mapped
into 128 dimensions. This helps to learn the similarity among characters by mapping
the semantics of similar characters to similar vectors. All models contain character
level Keras embedding as a URL representation method and the dimensionality of
the embedding size is set to the same size to conduct a fair comparative evaluation
strategy. To know the effectiveness of character level Keras embedding, a 3-gram text
representation method is mapped into domain names. The features of 3-grams are
hash it into a vector of length 1,000 using feature hashing. These 1,000-dimensional
vectors are passed into DNN for optimal feature extraction and classification; the
detailed configuration parameter details of DNN is available in Table 5. To avoid
overfitting and speed up the training process, dropout and batch normalization are
used, respectively, in between the DNN layers. Followed by the embedding layer,
DURLD contains the convolution layer. This layer contains 64 filters with filter
length 5, activation function ReLU . The convolutional layer follows maxpooling
with pool length 4, LSTM with 70 memory blocks. Finally, the optimal features are
passed into a fully connected layer which contains sigmoid non-linear activation
function which results in 0 for legitimate and 1 for spam. The loss function is binary
cross-entropy and is defined mathematically as given below.

loss(pd, ed) = − 1

N

N∑

i=1

[edi log pdi + (1 − edi ) log(1 − pdi )], (1)

where pd is a vector of predicted probability for all samples in testing data set, ed
is a vector of the expected class label, values are either 0 or 1.
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Table 4 Detailed configuration parameter information of DURLD for Data set 2 random-split and
time-split

Layer (type) Output shape Param #

embedding_1 (Embedding) (None, 246, 128) 5376

conv1d_1 (Conv1D) (None, 245, 128) 32896

max_pooling1d_1
(MaxPooling1

(None, 122, 128) 0

lstm_1 (LSTM) (None, 70) 55720

dense_1 (Dense) (None, 1) 71

activation_1 (Activation) (None, 1) 0

Total params: 94,063

Trainable params: 94,063

Non-trainable params: 0

Table 5 Detailed configuration details of DNN

Layer (type) Output shape Param #

dense_1 (Dense) (None, 128) 128128

batch_normalization_1 (Batch (None, 128) 512

activation_1 (Activation) (None, 128) 0

dropout_1 (Dropout) (None, 128) 0

dense_2 (Dense) (None, 96) 12384

batch_normalization_2 (Batch (None, 96) 384

activation_2 (Activation) (None, 96) 0

dropout_2 (Dropout) (None, 96) 0

dense_3 (Dense) (None, 64) 6208

batch_normalization_3 (Batch (None, 64) 256

activation_3 (Activation) (None, 64) 0

dropout_3 (Dropout) (None, 64) 0

dense_4 (Dense) (None, 32) 2080

batch_normalization_4 (Batch (None, 32) 128

activation_4 (Activation) (None, 32) 0

dropout_4 (Dropout) (None, 32) 0

dense_5 (Dense) (None, 16) 528

batch_normalization_5 (Batch (None, 16) 64

activation_5 (Activation) (None, 16) 0

dropout_5 (Dropout) (None, 16) 0

dense_6 (Dense) (None, 1) 17

Total params: 150,689

Trainable params: 150,017

Non-trainable params: 672
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Fig. 4 Proposed architecture—DeepURLDetect (DURLD)

8 Proposed Architecture—DeepURLDetect (DURLD)

The proposed architecture formalicious URL detection in the Ethernet level is shown
in Fig. 4. It is called as DeepURLDetect (DURLD). DURLD is a hybrid of convo-
lution and long short-term memory in-house model. This module can be added to
the existing scalable framework for cyber threat situational awareness to enhance the
malicious detection rate [40]. The architecture consists of three main modules (1)
Data collection, (2) Identifying malicious URL, and (3) Continuous monitoring

A distributed log collector collects URL logs from different sources inside an
Ethernet LAN in a passive way and pass it into a distributed database. Following, the
URLs are parsed using distributed log parser and fed into the deep learning module.
This classifies the URLs into either malicious or legitimate. A copy of the prepro-
cessed URLs is stored in a distributed database for further use. The deep learning
module has a Front End Broker to display detailed information about the URL analy-
sis. The framework contains a continuous monitoring module that monitors detected
malicious URLs. This monitors the targeted URLs once every 30s. This helps to
detect the malicious URL which is generated using Digitally Generated Algorithms
(DGA).
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Table 6 Test results

Model Accuracy (%) Precision (%) Recall (%) F1-score (%)

Data set 1 (both train and test from public sources)

Invincea [31] 99.0 99.5 98.4 98.9

NYU [43] 97.7 98.0 96.8 97.4

MIT [44] 97.9 98.8 96.6 97.7

CMU [17] 99.1 99.2 98.7 99.0

Endgame [7] 99.1 99.3 98.7 99.0

DeepURLDetect
(proposed)

97.2 97.4 96.4 96.9

3-gram with
DNN 5 layer
(proposed)

95.4 96.8 93.0 94.9

Data set 2 random-split

Invincea [31] 96.4 97.9 93.1 95.4

NYU [43] 96.1 97.9 92.2 95.0

MIT [44] 96.0 96.1 93.6 94.9

CMU [17] 95.4 95.1 93.3 94.2

Endgame [7] 96.6 97.2 94.1 95.6

DeepURLDetect
(proposed)

95.4 97.4 90.8 94.0

3-gram with
DNN 5 layer
(proposed)

95.0 96.2 90.9 93.5

Data set 2 time-split

Invincea [31] 96.1 95.9 94.4 95.1

NYU [43] 95.0 95.8 91.3 93.5

MIT [44] 93.3 97.7 85.2 91.0

CMU [17] 94.1 95.9 89.0 92.3

Endgame [7] 97.1 97.6 95.0 96.3

DeepURLDetect
(proposed)

93.1 94.5 87.8 91.1

3-gram with
DNN 5 layer
(proposed)

93.0 96.3 85.6 90.7
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Table 7 Test results. TPR and FPR are w.r.t. a threshold 0.5

Model TPR (%) FPR AUC

Data set 1 (both train and test from public sources)

Invincea [31] 88.9 0.087 0.9995

NYU [43] 89.5 0.10 0.9974

MIT [44] 85.9 0.124 0.9980

CMU [17] 87.7 0.105 0.9995

Endgame [7] 87.1 0.081 0.9996

DeepURLDetect
(proposed)

87.6 0.116 0.9964

3-gram with DNN 5
layer (proposed)

87.9 0.121 0.9909

Data set 2 random-split

Invincea [31] 93.9 0.142 0.9914

NYU [43] 94.2 0.143 0.9918

MIT [44] 95.0 0.146 0.9918

CMU [17] 94.4 0.145 0.9915

Endgame [7] 93.6 0.139 0.9913

DeepURLDetect
(proposed)

95.3 0.146 0.9922

3-gram with DNN 5
layer (proposed)

95.3 0.143 0.9922

Data set 2 time-split

Invincea [31] 85.9 0.023 0.9938

NYU [43] 83.3 0.031 0.9896

MIT [44] 82.7 0.027 0.9815

CMU [17] 89.5 0.027 0.9865

Endgame [7] 92.1 0.034 0.9962

DeepURLDetect
(proposed)

79.9 0.032 0.9823

3-gram with DNN 5
layer (proposed)

71.4 0.042 0.9812

Fig. 5 ROC curve for a Data set 1, b Data set 2 (random-split ) c Data set 2 (time-split)
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Fig. 6 ROC curve for a Data set 1, b Data set 2 (random-split ) c Data set 2 (time-split)

9 Performance Measures

The main objective of this work is to classify whether the URL is either benign or
malicious. To identify the performance of the deep learning architectures, we have
used the following statistical metrics.

• True positive (T P): malicious URL that is correctly classified as malicious URL.
• True negative (T N ): benign URL that is correctly classified as benign URL.
• False positive FP:benign URL that is incorrectly classified as malicious URL.
• False negative (FN ): malicious URL that is incorrectly classified as benign URL.

The abovemetrics are obtained from the confusionmatrix. In the confusionmatrix,
each row indicates the URL samples in a predicted class and each column indicates
the URL samples in an actual class. We estimate the statistical measures such as
Accuracy, Precision, Recall, F1-score, true positive rate (T PR), and false positive
rate (FPR) from confusion matrix, and they are defined mathematically as follows:

Accuracy = T P + T N

T P + T N + FP + FN
(2)

Recall = T P

T P + FN
(3)

Pr ecision = T P

T P + FP
(4)

F1 − score = 2 ∗ Recall ∗ Pr ecision

Recall + Pr ecision
(5)

T PR = T P

T P + FN
(6)

FPR = FP

FP + T N
(7)
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The accuracy estimates the ratio of the total number of correct classifications. The
precision estimates the number of correct classifications penalized by the number of
incorrect classifications. The recall estimates the number of correct classifications
penalized by the number of missed entries. The recall is also called sensitivity or
true positive rate. The F1-score estimates the harmonic mean of precision and recall,
which serves as a derived effectiveness measurement. The receiver operating charac-
teristic (ROC) curve denotes the performance of the classifier which is plotted using
T PR on Y -axis and FPR on X -axis. Generally, the ROC curve is used when the
classes are balanced and for imbalanced classes precision-recall curve is used. To
generate the precision-recall curve, we estimated the trade-off between the precision
and recall across varying thresholds in the range of [0, 1].

10 Evaluation Results and Observations

All deep learning architectures are implemented using TensorFlow [1] with Keras
[16] and conventional machine learning algorithms are implemented using Scikit-
learn [25]. The graphical processing unit (GPU)-enabled machine is used for exper-
imental purposes. Initially, all the models are trained with Data set 1. To evaluate the
performance, the trained model is tested with the test data set of Data set 1. Likewise,
same approach is followed for Data set 2 random-split and Data set 2 time-split. Most
of the models performed well on Data set 1 when compared to the models trained on
Data set 2 random-split and time-split. Moreover, the performance of various models
on Data set 2 random-split is good when compared to the models trained on Data set
2 time-split. This is because the samples of test data of Data set 2 time-split is unseen
during training. The detailed results are reported in Tables 6 and 7. The receiver
operating characteristic (ROC) curve for various models on different test data sets
are shown in Fig. 5a for Data set 1, Fig. 5b for Data set 2 random-split, and Fig. 5c
for Data set 2 time-split with comparing two operating characteristics such as true
positive rate and false positive rate across varying threshold in the range [0.0–1.0].
Likewise, the precision-recall curve for various models on different test data sets are
shown in Fig. 6a for Data set 1, Fig. 6b for Data set 2 random-split, and Fig. 6c for
Data set 2 time-split with comparing two operating characteristics such as precision
and recall across varying thresholds in the range [0.0–1.0]. Obtaining better AUC
in the precision-recall curve indicates that the models predict more accurately. The
performance of all models has a marginal difference in terms of accuracy and AUC,
and thus voting methodology can be employed to distinguish whether the URL is
legitimate or malicious. This can further enhance the malicious URL detection rate.
This remains as one of the significant direction toward future work. The models that
used character level Keras embedding as the text representation method performed
well when compared to DNN with a 3-gram text representation method. Deep learn-
ing with embedding-based malicious URL detection can be a robust solution over
handcrafted features with conventional machine learning-based solutions. This is
because the attacker can utilize domain knowledge to learn the handcrafted features
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to evade detection. They can make use of generative adversarial networks in deep
learning; the details are discussed in [7].

11 Conclusion

In this work, a comparative analysis of various deep learning-based character level
embedding models for malicious URL detection is done. All deep learning archi-
tectures have a marginal difference in terms of accuracy. Among five models, two
are based on RNN, two are based on CNN, and one is based on a hybrid of CNN
and LSTM. All the models performed well and achieved around 93–98% malicious
URLdetection ratewith a false positive rate of 0.001. For comparative analysis, DNN
with n-gram is used. In all test cases, deep learning-based character level models per-
formed well when compared to the other models. All deep learning-based character
level embedding-based models have the potential to handle variants of malicious
URLs. Though deep learning has performed well, it is good to have conventional
methods such as blacklisting using regular expression, signature matching method,
and conventional machine learning-based solutions as an initial gateway followed
by deep learning-based character level embedding models. The DeepURLDetect
(DURLD) model can be made more robust by adding auxiliary modules such as reg-
istration services, website content, network reputation, file paths, and registry keys.
This can be considered as one of the significant directions for future work.
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Sentiment Analysis for Troll Detection on
Weibo

Zidong Jiang, Fabio Di Troia, and Mark Stamp

Abstract The impact of social media on the modern world is difficult to overstate.
Virtually all companies and public figures have social media accounts on popu-
lar platforms such as Twitter and Facebook. In China, the micro-blogging service
provider, Sina Weibo, is the most popular such service. To influence public opinion,
Weibo trolls—the so-called Water Army—can be hired to post deceptive comments.
In this chapter, we focus on troll detection via sentiment analysis and other user
activity data on the Sina Weibo platform. We implement techniques for Chinese
sentence segmentation, word embedding, and sentiment score calculation. In recent
years, troll detection and sentiment analysis have been studied, but we are not aware
of previous research that considers troll detection based on sentiment analysis. We
employ the resulting techniques to develop and test a sentiment analysis approach
for troll detection, based on a variety of machine learning strategies. Experimental
results are generated and analyzed. AChrome extension is presented that implements
our proposed technique, which enables real-time troll detection when a user browses
Sina Weibo.

1 Introduction

Social media plays a significant role in the ongoing development of the Internet, as
people tend to acquire more information from social media than other platforms.
Deceptive comments created by trolls present a challenging problem in social media
applications. Trolls can be hired to publish misleading comments in an effort to
affect public opinion related to events or people, or even to negatively influence the
economy of a country.
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Sina Weibo is a widely used micro-blogging social media platform in China. A
majority ofWeibo posts are written in Chinese and, like Twitter, most posts published
onWeibo are short—until recently, there was a 140 character limit. With the number
of daily active users in excess of 200 million (as of 2019), Weibo is one of the largest
social media platforms in China.

Weibo is based onweak relationships, in the sense that a user can share content that
is visible to all of the user base. Therefore, many celebrities, businesses, and Internet
influencers all over the world register as Weibo users in an effort to expand their
exposure to the Chinese public. Weibo has become a platform where government
and businesses can communicate more efficiently with the general public.

The Chinese Water Army refers to a group of people who can be hired to post
deceptive comments on Weibo. Such troll activity is difficult to detect, due in part
to the unsegmented characteristic of the Chinese sentences. In some cases, Chinese
sentences can be segmented in different ways to yield different meanings.

Recent research has shown that hidden Markov models (HMMs) are effective
for sentiment analysis of English text [37]. Chinese word segmentation can also be
accomplished using HMMs [4, 21, 32]. In this research, we use HMMs, Word2Vec,
and other learning techniques to perform word segmentation and sentiment analysis
on Sina Weibo “tweets” for the purpose of detecting potential troll activity. We use
Word2Vec and HMMs for Chinese text segmentation, we employ HMMs and naïve
Bayes for sentiment analysis, and we use XGBoost and support vector machines
(SVMs) for troll detection.

We have generated a large training dataset by crawling the Sina Weibo and Ten-
cent Weibo platforms. Using an HMM-based Chinese sentence segmentation model
comparable to that in [32], we pre-process each post into a list of words. Then,
following the approach in [10], we construct a Word2Vec similarity scoring matrix
based on the word list that we have generated. A baseline of sentiment is determined
from the corpus that we have collected.

For sentiment analysis, we use a Word2Vec based technique to calculate senti-
ment scores. We use extracted features from Weibo comments as observations to
train HMM models for each emotion, and we use the trained models to determine
the emotions of each comment. We use an XGBoost model to aggregate sentiment
analysis results with user activity data to build the troll detection model. As a point
of comparison, we experiment with an approach based on support vector machines.

Finally, we present a Chrome extension that we have developed. This Chrome
extension implements our troll detection model, and it enables us to detect potential
troll activity on Weibo in real-time.

The remainder of this paper is organized as follows. In Sect. 2, we discuss relevant
background topics. Section3 contains an overview of selected previous work. In
Sect. 4, we consider data sources and data collection methods. In Sect. 5, we provide
implementation details and includes experimental results. Lastly, in Sect. 6, we give
a summary of our work, including a brief discussion of possible directions for future
development.
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2 Background

In this section, we discuss several relevant background topics. First, to motivate this
research, we discuss trolls in the context of socialmedia. Then, we introducemachine
learning models that are used in this research. We conclude this section with a brief
discussion of the evaluation metric that we employ.

2.1 Trolls

Troll users publish misleading, offensive, or trivial following-up content in online
communities. The content of a troll posting generally falls into one of several cate-
gories. It may consist of an apparently foolish contradiction of common knowledge,
a deliberately offensive insult to the readers of a newsgroup or mailing list, or a broad
request for trivial follow-up postings. The result of such posting is frequently a flood
of angry responses. In some cases, the follow-up messages posted in response to a
troll can constitute a large fraction of the contents of a newsgroup or mailing list on a
particular topic over an extended period of time. These messages may be transmitted
around the world to vast numbers of computers, wasting network resources, and cost-
ing resources. Troll threads frustrate people who are trying to carry on substantive
discussions [12].

Organized troll activity on the SinaWeibo platformwas first detected in 2013. This
initial group of troll users consisted of about 20,000 individuals in 50 ICQchat groups
associated with a person nicknamed “Daxia.” Subsequently, troll activity became an
online business on the Weibo platform. Trolls can be hired by businesses to publish
negative comments against their competitors or to generate anonymous good reviews
or positive comments. Prior to 2015,much of the troll activity onWeibowas designed
to adversely affect the reputation of businesses. After 2015, stricter controls were set
on speech on the Internet in China, and Sina Weibo developed a more sophisticated
infrastructure to filter such troll comments. Currently, most of the troll activity on
Weibo turned is designed to promote celebrities and companies.

Troll users on the Weibo platform can be categorized by their source of content.
Traditionally, trolls use automated fake accounts to post repeated messages in an
effort to dominate the comments. An example of such activity is shown in Fig. 1.
However, theWeiboplatformhas recently improved their infrastructure to block these
repeated messages from users, based on proxy detection, combined with message
filters for repeated comments.

Recently, troll users have become more sophisticated. Some organized Weibo
trolls are supervised by a management group who controls what, when, and where
they reply on the Weibo platform. Specific details of the comments that each troll
account publishes are made by individual troll users rather than being copied from
the management group. The management group only gives out the overall emotional
trend that the comments should convey. Thus, content made by troll users is repetitive
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Fig. 1 Weibo comments
dominated by troll
activity [26]

but not monotonously so. This fact makes troll detection onWeibo challenging, since
troll comments are composed and published by real human users. Furthermore, in
recent years, trolls are mostly hired by companies and celebrities to make positive
comments toward themselves.

2.2 Machine Learning Techniques

Content-based troll detection usually utilizes natural language processing (NLP)
using machine learning to analyze and categorize text. This is accomplished by con-
structing language processingmodels on comments and posts so as to label comments
with a high polarity of emotion or repetitiveness. By applying sentiment analysis
methods, we can filter comments with either high or low sentiment scores repre-
senting extreme positive or negative sentiment. This is accomplished by calculating
word relevance, and by analyzing correlations using word embedding techniques,
such as Word2Vec. We can then mark potential troll comments or pass along user
information behind such comments to the next stage of a troll detection model. A
key point of this research is to use sentiment analysis in troll detection.

Classifying specific comments as troll activity is challenging. Therefore, utilizing
user behavioral information to discern deceptive activity is a popular trend in troll
detection. Like most social media platforms, Weibo has numerous user relationship
data, such as the number of followers, number that a user is following, user rank, and
number of originalWeibo tweets. Also, trolls commonlymake attacks in a small time
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window following a specific tweet [11]. We can utilize this fact in combination with
other user relationship information in a troll detection system. The goal of including
such data in our troll detection approach is to reduce the false negatives that affect
strictly content-based detection methods.

Next, we introduce the various machine learning techniques used in this research.
Specifically, we discuss hidden Markov models, Word2Vec, XGBoost, and support
vector machines.

2.2.1 Hidden Markov Models

Hidden Markov models (HMMs) are well known for their use in pattern predic-
tion and for deriving hidden states from observations. An HMM (of order one) is
a stochastic model representing states where each future state depends only on the
current state, and not on states further in the past. By training an HMM on an obser-
vation sequence, we can obtain the probability of the transitions between each hidden
state and probability distributions for the observations, based on those hidden states.
A generic HMM is illustrated in Fig. 2.

In Fig. 2, the matrix A drives the Markov process for the hidden states, while the
matrix B probabilistically relates the hidden states to the observationsOi . The HMM
notation is summarized in Table1.

Applications of HMMs are extremely diverse, but for our purposes, two rele-
vant uses are English text analysis and speech recognition [28]. Other applications
of HMMs range from classic cryptanalysis [30] to malware detection [7, 29]. In
this research, we use HMMs for both Chinese word segmentation and for emotion
classification.

O0 O1 O2 · · · OT−1

X0 X1 X2 · · · XT−1
A A A A

B B B B

Fig. 2 Hidden Markov model
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Table 1 HMM notation

Notation Description

T Length of the observation sequence

N Number of states in the model

M Number of observation symbols

Q Distinct states of the Markov process, q0, q1, . . . , qN−1

V Possible observations, assumed to be 0, 1, . . . , M − 1

A State transition probabilities

B Observation probability matrix

π Initial state distribution

O Observation sequence, O0,O1, . . . ,OT−1

2.2.2 Word2Vec

Word2Vechas recently gained considerable popularity in natural languageprocessing
(NLP) [18]. This word embedding technique is based on a shallow neural network,
with the weights of the trained model serving as embedding vectors—the trained
model itself serves no other purpose. These embedding vectors capture significant
relationships between words in the training set. Word2Vec can also be used beyond
the NLP context to model relationships between more general features or observa-
tions.

When training a Word2Vec model, we must specify the desired vector length,
which we denote as N . Another key parameter is the window length W , which
represents the width of a sliding window that is used to extract training samples from
the data.

Certain algebraic properties hold for Word2Vec embeddings. For example, sup-
pose thatwe train a state-of-the-artWord2Vecmodel onEnglish text. Further, suppose
that we let

w0 = “king”, w1 = “man”, w2 = “woman”, w3 = “queen”,

and we define V (wi ) to be the Word2Vec embedding of word wi . Then according
to [18], the vector V (w3) is closest to

V (w0) − V (w1) + V (w2)

where “closeness” is in terms of cosine similarity. Results such as this indicate that in
theNLP context,Word2Vec embeddings capturemeaningful aspects of the semantics
of the language.

In this research, we train Word2Vec models Chinese text. These models are then
used for sentiment analysis of Weibo tweets.
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2.2.3 XGBoost

Boosting is a general technique for constructing a stronger classifier from a large
collection of relatively weak classifiers [6]. XGBoost typically uses decision trees as
the base classifiers. To generate our models, we use the XGBoost package in Python.
With this implementation, it is easy to analyze the significance of each individual
feature relative to the overall model, and thus eliminate ineffective features.

2.2.4 SVM

In [2], support vector machine (SVM) is described as “a rare example of a method-
ology where geometric intuition, elegant mathematics, theoretical guarantees, and
practical algorithms meet.” The essential ideas behind SVMs are the following.

Separating hyperplane —We seek a hyperplane that will separate two labeled
classes.

Maximize the margin —We want to find hyperplane that maximizes the “margin”
between two classes, where margin is defined as the minimum distance.

Work in higher dimensional space —By shifting the problem to a higher dimen-
sional space, there is a better chance that we can find a separation hyperplane, or
separating hyperplane with a larger margin.

Kernel trick —Perhaps surprisingly, we are able to work in a higher dimensional
space without paying any significant penalty with respect to computational com-
plexity. This is a powerful “trick” and is the key reason why SVM is one of the
most popular machine learning techniques available.

In this research, SVM serves as a comparison to XGBoost for troll detection. We
find that XGBoost performs better on one of our datasets, while SVM is superior on
another dataset.

2.3 Evaluation Metric

We use accuracy as the primary measure of success for all of our classification
experiments. The accuracy is computed as

accuracy = TP + TN

TP + TN + FP + FN
,

where TP is number of true positive cases, TN is true negatives, FP is false positives,
and FN is the number of false negatives. Accuracy can be seen to simply be the ratio
of correct classifications to the total number of classifications.
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Finally, we note that cross-validation is used in all of our experiments. Cross-
validation is a popular technique that serves to smooth any bias in the data, while
also maximizing the number of datapoints. Specifically, we employ fivefold cross-
validation.

3 Related Work

Related work in sentiment analysis includes [36], where a combination of emo-
tional orientation and logistical regression is used to analyze Amazon.com reviews.
By filtering the training dataset by text length, vocabulary complexity, correlation
with the product, sentiment similarity, and transition words, the proposed model
achieved 91.2% accuracy. For the problem of fake Weibo tweet detection—as
opposed to the troll detection we consider in this research—an XGBoost model
based on user activity achieved 93% accuracy in [17].

From our review of the literature, it appears that only [24] applies sentiment
analysis to the troll detection problem. The work in [24] applies domain adaptation
techniques to a recursive neural tensor network (RNTN) sentiment analysis model to
detect trolls that post repetitive, destructive, or deceptive comments. This previous
work achieves 78% accuracy. The results in [24] serve as a baseline for our research.

Sentiment analysis is widely used for mining subjective information in online
posts. In [14], Kim, et al., use hidden Markov models with syntactic and senti-
ment information for sentiment analysis of Twitter data. This differs from classic
approaches that use n-grams and polarity lexicons, as they group words based on
similar syntactic and sentiment groups (SIG), then build HMMs, where the SIGs
define the hidden states. Zhao and Ohsawa [37] propose a two-dimensional HMM
to analyze Amazon reviews in Japanese. For our purposes, this work illustrates an
important method for converting segmented Japanese text into word vectors using
Word2Vec. Feng and Durdyev [10] implemented three types of classification models
(SVM, XGBoost, LSTM) for the aspect-level sentiment analysis of restaurant cus-
tomer reviews in Chinese. According to the research in [10], LSTM yields better F-1
scores and accuracy, as compared to SVM and XGBoost. Further related research
can be found in Liu et al. [15], which uses a self-adaptive HMM.

Troll detection based on user characteristic data is considered in Zhang et al. [11].
In this paper, Weibo troll detection is based on a Bayesian model and genetic algo-
rithm. The proposed technique includes novel features (as compared to previous
work) such as the ratio of followers, average posts, and Weibo credibility, and
achieves an accuracy of about 90%.

Liu et al. [17] use XGBoost to detect fake Weibo posts based on features such
as a user’s number of posts, description, gender, followers, and reposts. The authors
attain an accuracy of more than 95%. Both [11] and [17] use data beyond Weibo
post text itself, and achieve good results. This previous work serves as inspiration
for some of the features considered in this paper.
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The special interest group for Chinese language processing (SIGHAN) of the
Association for Computational Linguistics organizes competitions for Chinese word
segmentation. In the first SIGHAN bake-off event in 2003, Zhang et al. [35] pro-
posed a word segmentation approach using hierarchical HMMs to form a Chinese
lexical analyzer, ICTCLAS. In 2005, Masayuki et al. [1] presented three word seg-
mentation models, including a character tagging classifier based on support vector
machines (SVMs) that also used maximum expropriation Markov models and con-
ditional random fields. These models were based on previously proposed methods,
with a different combination of out-of-vocabulary (OOV) extraction techniques being
used.

In general, for Chineseword segmentation, character-basedmodels performbetter
than word-based models. Wang et al. [33] highlighted that OOV techniques for word
extraction perform poor for in-vocabulary (IV) words. They proposed a generative
model that performs well on both OOV and IV words, and achieved good results on
the popular SIGHAN datasets. Chen et al. [5] report the use of Gibbs sampling in
combination with both word-based hierarchical process models and character-based
HMMs. Their solution achieved better performance (in terms of F1 score) than the
state-of-the-art models at that time.

4 Datasets

We acquired data and generated additional data for the various parts of this research.
We have Chinese segmentation data, sentiment analysis data, data consisting of
Weibo comments, and user data corresponding to the Weibo comments data. This
data is split into three datasets, namely, a Chinese segmentation dataset, a sentiment
analysis dataset, and a troll detection dataset. Next, we discuss each of these three
datasets.

4.1 Chinese Segmentation Dataset

For Chinese sentence segmentation, we acquired the dataset used in the SIGHAN
2005 Competition for Chinese sentence processing [9]. This dataset includes train-
ing, testing, and validation data. The training data consists of approximately 860,000
segmented Chinese sentences.Most of these sentences are from newspapers and pub-
lished books. The test set includes about 22,000 unsegmented sentences from similar
sources, while the validation set contains the segmentation of all of the sentences in
the test set. Table2 gives additional statistics for this dataset.

We consider the character-based generativemodel proposed in [32]. In this model,
the features from the training data consist of the positions of each character in each
segmented word. The beginning character in each segment is marked as B, any
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Table 2 Chinese segmentation dataset (SIGHAN 2nd Bakeoff 2005)

Source Training Testing

Academia Sincia 708,953 14,432

Peking University 19,056 1,944

City University of Hong Kong 53,019 1,492

Microsoft Research Asia 86,924 3,985

Fig. 3 Sample Chinese
sentence segmentation

Table 3 State sequence for Chinese sentence

middle character or characters are marked as M , and the ending character is marked
as E . On the other hand, all one-character words are marked as S.

For example, consider the sample Chinese sentence in Fig. 3, which includes the
correct segmentation for this sentence. Table3 gives the states corresponding to the
sentence in Fig. 3.

4.2 Sentiment Analysis Dataset

For sentiment analysis, we use the sentiment training dataset from the Python
SnowNLP package [34]. This particular dataset includes 16,548 sentences with pos-
itive sentiment and 18,574 with negative sentiment. The source for this dataset is
Chinese online shopping, movie, and book reviews. However, this data might not
accurately represents tweets and comments appearing in Weibo.

Since there is no public datasets forWeibo,we crawled about 5million SinaWeibo
posts to obtain additional data for our sentiment model. This data includes terms and
slang that are commonly seen on Weibo. From this data, we created a collection
of 2,325,644 sentences with positive sentiment and 960,899 sentences with negative
sentiment.

From all of our Weibo crawled data, we manually extracted 500 tweets for each
of the six emotions of interest, namely, happiness, surprise, fear, anger, disgust, and
sadness [3]. This data will be used to train an HMM for each emotion.
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We process each comment using the Pandas package in Python to remove stop
words, numbers, nonsense emoji, and single-word comments. A language detection
method was implemented to detect non-Chinese comments and translate English
comments into Chinese using the Translator package in Google Translate. We elimi-
nate all comments that are in languages other than Chinese and English, which results
in a negligible loss of data. In addition, we removed pure reposts and tagging that is
not relevant to our analysis.

For positive and negative sentiment analysis, we used the Word2Vec embedding
method. The resulting embedding vectors enable us to calculate a word sentiment
score, after segmenting a Weibo comment into a list of word. For sentiment analysis
(based on six basic emotions), we use the features introduced in [15], which are
then used to train HMMs for sentiment classification. These features are mutual
information, χ2 distance, and term frequency inverse document frequency, which
are defined as follows.

MI —Mutual information (MI) is based on correlations between two terms. In this
research, MI is used to determine the relevance between words and emotions. The
formula for MI representing the correlation between emotion e and text t is given
by

MI(t, e) = log
P(t | e)
P(e)

.

CHI — We use a χ2 distance measure (CHI) to quantify the dependence between
emotion e and text t . The higher the CHI value, the more dependent the text t is
on the emotion e. We calculate CHI as

CHI(t, e) = N (AD − BC)2

(A + B)(C + D)(A + C)(B + D)
,

where A is the prevalence of word t in comments with emotion e, B is the preva-
lence of word t in comments with emotions other than e, C is the absence of
word t in comments with emotion e, D is the absence of word t in comments with
emotions other than e, and N is the total number of comments.

TF-IDF —Term frequency inverse document frequency (TF-IDF) was originally
developed to extract keywords from text, for purposes such as indexing. We use
TF-IDF to determine keywords with respect to the various emotions under con-
sideration. We compute the TF-IDF as

TF-IDF(t, e) = Ne,t∑

k

Nk,t

log

(
N

ne
+ 0.01

)
,

where Ne,t is the number of times word t appears in a comment with emotion e,
N is the total number of comments, and ne is the number of comments in which
the emotion e appears.
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4.3 Troll Detection Dataset

After some initial experiments, we realized that there are limitations to the features
specified in [15, 24]. Therefore, we introducedmore user information related features
that we obtained by mining Weibo comment data. When crawling the Weibo data,
we use the JavaScript object notation (JSON) packet returned from representational
state transfer (REST) calls to theWeibo mobile site [27], which includes user-related
information. Typical operations under the RESTAPI include GET, POST, UPDATE,
and DELETE. We extract the user information listed in Table4. We also include a
small dataset of 673 normal users and 75 trolls from a Kaggle data source [16].

All user information and corresponding comments are grouped by original
tweet ID and stored in CSV format. One CSV file contains all of the comments
regarding one tweet, and each entry represents all of the information listed in Table4.
We selected eight tweets with a total of 31,980 comments from SinaWeibo accounts
belonging primarily to business owners and celebrities. The detailed tweet informa-
tion and statistics for this dataset are listed in Table5.

We manually labeled the data for rows 1, 2, 3, and 6 in Table5 as troll or non-
troll by examining the content of each comment. Combining these results with fake
account data from [16], we have about 3500 comment entries for our initial training
and testing data for the troll detection model. This manual labeling is extremely
tedious. To accelerate this process, we created a bot based on Selenium [25] to help
open each user’s Weibo page based on the UID that we provide from the dataset.

Table 4 List of user-related information from comment data

Field Name Dataset Description

uid UID Unique User ID for User
Account in Weibo

screen_name Username Displayed User Nickname

followers_count Follower User’s follower count

follow_count Following User’s following count

status_count Original_post User’s original composed
tweet count

urank User_rank User’s rated rank by user
activity in Weibo

verified Verified Whether user is verified
celebrity or business

description Description User’s own description in
headline

like_count Like_count Like count of this comment

floor_number Floor_number Location where the comment
is at

text Comment Comment content
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Table 5 Statistics of troll detection tweets and comments crawled from Weibo

Tweet ID User details Number

1 44275283 LeEco CEO YT Jia
declared bankrupt

812

2 44317480 Actress Yiyan Jiang
volunteered teaching
in rural

829

3 44564209 Yong actress Zi Yang
suspected done plastic
surgery

335

4 44718878 Reporting fraud in
singer Hong Han
Foundation receiving
donation

1210

5 44651702 Singer Hong Han
Foundation donation
to Wu Han
Coronavirus battle

3379

6 44650056 Criticism of multiple
celebrities’ donation to
Coronavirus battle

814

7 43961306 Suspected breakup of
Han Lu and Xiaotong
Guan (Actor/ress)

8371

8 43961306 Han Lu and Xiaotong
Guan (Actor/ress)
showoff their same
sweatshirt

16,230

To extract features from the data listed in Table4, we use Python Pandas [20] and
Numpy [19]. Some of the available features proved to be of little use, and these were
dropped, as discussed below. In order to have better features for our models, we also
perform some feature engineering. For example, we note whether users provide a
self-description or not.

Features such as follower count, following count, and the number of original
composed tweets clearly have a high significance in our analysis. However, we found
that building models with quantitative numbers from these categories biases the
model, due to the large differences across users. Weibo users typically only follow
a fairly small number of accounts, while troll users typically follow a large number
of accounts. Therefore, we dropped the follower and following count in the raw
dataset and instead compute the ratio of following to follower and use this as a
feature. Similarly, we introduce a feature consisting of the ratio of original posts to
followers to help identify troll users, who often make a large number of posts without
a commensurate increase in their follower count—we use this engineered feature in
place of the composed post feature from the raw data.
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When crawling Weibo, we noticed that some users frequently comment on the
same tweet rather than replying to other comments under a tweet. Therefore,we select
users who have more than one comment under a tweet, and we count the comments
made for each such user. Then, we computed the median of these comment counts.
Following this approach, a “frequent comment” feature is generated based on users
who made more comments than the median number.

We have a total of 19 features that we use in our XGBoost model. One of the engi-
neered features related to the sentiment score is denoted asdiffOriginalSenti.
This feature is the score for a comment minus the sentiment score of the original
tweet. Table6 lists the complete set of features that we obtain by combining sentiment
analysis result and user information data in Table4.

Table 6 Features considered for troll detection model

Feature Description Source

F0 follower Follower count Crawled Weibo dataset

F1 following Following count Crawled Weibo dataset

F2 original_post Number of original tweets Crawled Weibo dataset

F3 urank Rank by user activity in
Weibo

Crawled Weibo dataset

F4 verified User certified or not Crawled Weibo dataset

F5 like_count Like count for a comment Crawled Weibo dataset

F6 floor_number Comment location Crawled Weibo dataset

F7 description Self-description (1 or 0) Engineered feature

F8 freqComment Frequent comments Engineered feature

F9 ffRatio following divided by
follower

Engineered feature

F10 foRatio original_post divided
by follower

Engineered feature

F11 sentiment Comment sentiment score
(0 to 1)

Engineered feature

F12 diffOriginalSenti sentiment minus
sentiment of original

Engineered feature

F13 happy Happiness score (0 to 1) Engineered feature

F14 sad Sadness score (0 to 1) Engineered feature

F15 anger Anger score (0 to 1) Engineered feature

F16 disgust Disgust score (0 to 1) Engineered feature

F17 fear Fear score (0 to 1) Engineered feature

F18 surprise Surprise score (0 to 1) Engineered feature
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We would like to maximize our troll detection accuracy while minimizing the
number of features needed. To achieve this, we perform feature analysis in order to
rank the significance of features, so that we can drop features. This feature reduction
process is discussed in Sect. 5.5.

5 Implementation and Results

In this section, we give our results. First, we discuss the Weibo crawler that we have
implemented. Then, we consider our Chinese word segmentation results, followed
by our emotion classification technique, both of which are based on hidden Markov
models. Then, we consider our Word2Vec-based sentiment score and our XGBoost
and SVM-based troll detection results. We conclude this section with a discussion
of a Chrome extension that implements this troll detection system.

5.1 Weibo Crawler

As mentioned above, in order to have sufficient training and testing data, we devel-
oped a crawler to obtain such data directly from the Weibo platform. Our crawler
extracts posts, comments, and user information.

To extract posts, the crawler certain considers a number of tweets under specific
Weibo accounts. Note that Weibo tweets are similar to Twitter tweets, in that users
can retweet other users’ posts to their own Weibo account. The crawler disregards
retweets and only keeps original posts.

Comment crawling is used to obtain additional information related to posts.
Most comments contain repetitive messages and include username and hash-tags.
We remove this extraneous data with the Python Panda Dataframe function before
pipelining the comments into the word segmentation stage. Also, it is very com-
mon to see bilingual comments in Weibo, where most of the text is Chinese, but
some English is included. Therefore, we incorporate a language detection module
extended from the Google language library, which uses naïve Bayes to filter and
translate English to Chinese.

Our comment crawler works on Weibo mobile [27] data, where the tweets and
comments page are slightly simplified. The crawler makes HTTP requests such as

https://m.weibo.cn/comments/hotflow?id=TWEETID&mid=TWEETID&max_id=
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which yields JSON data from the Weibo platform containing comments related to
the specified tweet.1 We parse the resulting comment data contained in the JSON
packet to extract all of the raw data, including user information and comment content
using the BeautifulSoup package in Python [22]. After all of the entries have been
collected, they are saved into a CSV file, organized by tweet. Feature extraction and
model training are based on these CSV files.

5.2 HMM for Chinese Segmentation

As illustrated in Table3, when segmenting a Chinese sentence, we consider four
states, namely, B for begin, M for middle, E for end, and S for single. Thus, we train
an HMM with four hidden states. The observation sequence consists of Chinese
characters in the training dataset, and the hidden states correspond to B, M, E, and S.
It follows that the hidden state transition matrix of the HMM is 4 × 4 and of the form

⎡

⎢⎢⎣

B → B B → E B → M B → S
E → B E → E E → M E → S
M → B M → E M → M M → S
S → B S → E S → M S → S

⎤

⎥⎥⎦ . (1)

We implemented this HMM-based Chinese text segmentation, which is similar
to that in [32]. When training, the first character of each segmented word is marked
as a beginning state (B). Then characters are marked as middle states (M), until the
last character is read, which is marked as an end state (E), with any single-character
words marked as such (S). The emission probability, the state transition probability,
and the initial state probability are then used to update the state transition probability
matrix in (1). Subsequently, we use the trained HMM to segment Weibo posts and
comments line by line.

5.3 HMM for Emotion Classification

For each word in a tweet or comment, we can calculate a three-dimensional vector
based on its MI, CHI, and TF-IDF scores, as discussed in Sect. 4.2. After calculating
the feature vectors for each emotion, we obtain a mean value of each feature over all
tweets labeled by each specific emotion. This mean value is used as an observation.
The transition feature between states Sk−1 and Sk is computed as

1One obstacle we encountered was a change in the Weibo mobile site at the beginning of 2020. To
avoid being blocked when crawling a large number of comments, we were forced to modify the
crawler to use the “max_ID” property for the current comment page.
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Table 7 Features for words w0, w1, and w2 with respect to each emotion

Word Emotion MI CHI TD-IDF

w0 Happiness 0.0012 0.0247 0.0009

Anger 0.0012 0.0247 0.0070

Sadness 0.0015 0.0100 0.0450

Surprise 0.0080 −0.0050 0.0220

Disgust 0.0020 0.0470 0.0117

Fear 0.2200 0.0700 0.0009

w1 Happiness 0.0167 0.0064 0.1045

Anger −0.0012 0.0247 0.0009

Sadness 0.0200 −0.1416 0.0009

Surprise 0.0012 −0.0247 −0.0009

Disgust −0.0012 0.0247 0.0009

Fear 0.0012 0.0247 −0.0009

w2 Happiness 0.0012 0.0247 0.0009

Anger 0.0012 0.0247 0.0070

Sadness 0.0015 0.0100 0.0450

Surprise 0.3693 0.0820 −0.0119

Disgust 0.0526 0.0247 0.0008

Fear 0.0012 0.0247 0.0007

P(Sk = sp | Sk−1 = sq) =
{
1 if p = q + 1
0 otherwise

,

where the HMM states Sk correspond to the features MI, CHI, and TF-IDF. This
determines how close a feature vector in the test tweet is to those in the training set,
with respect to the various emotions. The emission probability

P(yk | Seik ) = J (yk | Seik ) = M11

M11 + M10 + M01

can be calculated by Jaccard similarity [13], which measures the correlation between
the feature vector yk and the state Sk , where M11 is the total number of tweets
containing feature vector yk and state Sk with respect to emotion ei , M10 is the
number of tweets containing only state Sk with respect to emotion ei , and M01 is the
number of tweets containing only feature vector yk with respect to emotion ei .

Table7 gives an example of the relationship between three consecutive wordsw0,
w1, and w2 in a particular test case.

We train an HMM for each of the six emotions. Then, we score a sample against
each model, and assign an emotion to the tweet based on the largest probability.
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Fig. 4 Sentiment score distribution for comments in Table6, Row 1

5.4 Sentiment Score Calculation

We first construct a Word2Vec model based on the 35,124 online shopping reviews
contained in the sentiment analysis dataset discussed in Sect. 4.2. Note that this
Word2Vec model is based on segmented Chinese text. We use the GenSim package
in Python [31] to train this Word2Vec model.

Next, the resulting Word2Vec embeddings are used to assign a sentiment score to
segmented Chinese words, based on 3,286,543 tweets that we crawled from Weibo.
These sentiment scores are determined using naïve Bayes. Specifically, we use naïve
Bayes to compute

P(c1 | w1, . . . , wn) = P(w1, . . . , wn | c1)P(c1)

P(w1, . . . , wn | c1)P(c1) + P(w1, . . . , wn | c2)P(c2)
,

where c1 represents the event that a word is positive and c2 represents the event that a
word is negative. Our sentiment score is computed as the product of P(c1 | w1, . . . ,

wn) and the word similarity score computed using the Word2Vec model. The result-
ing score can be viewed as the probability of a word in a tweet being positive,
where 0 represents an extremely negative word, while 1 represents an extremely
positive word. Figure4 illustrates a sample sentiment score distribution for one of
our training datasets. Note that this particular bar graph is based on the 812 comments
corresponding to Weibo tweet ID 44275293, as listed in Table5. Figure4 shows the
sentiment score frequency count distribution for all 812 comments with brackets of
width 0.02 over the range of 0 to 1.

5.5 Troll Detection with XGBoost and SVM

Our troll detection model is based on XGBoost. We train our XGBoost models
using Python under the Jupyter Notebook environment. For these XGBoosting troll
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Table 8 Troll detection statistics crawled from Weibo

Feature Description

F0 follower Follower count

F1 following Following count

F2 original_post Number of original tweets

F3 ffRatio following divided by follower

F4 foRatio original_post divided by follower

F5 urank User activity rank in Weibo

F6 verified User certified or not

F7 description User’s self-description (1 or 0)

F8 freqComment User comments frequently or not

F9 like_count Like count for comment

F10 floor_number Location of comment

F11 sentiment Sentiment score of the comment (0 to 1)

F12 diffOriginalSenti sentiment minus sentiment of original
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detectionmodels,wedropnon-quantitative features,which leaves uswith the features
listed in Table8. Training an XGBoost model on all of these features, we achieve
about 80% accuracy.

Ranking the features in this full-feature XGBoost model, we obtain the results
in Fig. 5. Note that F12 in Fig. 5 has a weight of 0, which implies that F12 (the
diffOriginalSenti feature) contributed nothing to the classification.

Next, we consider recursive feature elimination (RFE), where we drop the lowest
ranked feature, then retrain themodel. OurRFE results are given in Fig. 6.We observe
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that the model improves when we drop the two lowest ranked features, namely, F12
and F8, but beyond that, the model will lose accuracy if we drop additional features.
Hence, our optimal XGBoost model uses all of the features in Table8, except F8
and F12. With this model, we achieve an accuracy of about 82%.

The features used and their relative importance rank are given in Fig. 7. Note that
these are the features in the XGBoost model.

For comparison with our XGBoost classifier, we also experiment with an SVM
classifier. We utilize the Python scikit-learn package [23] to train our SVM classifier.
We compare the results of these SVM classification experiments to the XGBoost
experiments, based over two different datasets and various sets of features. Next, we
summarize these results.

As discussed above, using XGBoost as our classification method and RFE, we
achieve an accuracy of about 82%. With some additional feature engineering, we
were able to increase this troll detection accuracy to 83.64% on our Weibo crawled
dataset, using only the three features labeled as F9, F10, F11 in Fig. 7. In addition,
using our SVM classifier, we achieve 87.27% accuracy on the same dataset, based
on the same three features.

As another experiment, we compare our XGBoost and SVM models using the
SnowNLPsentiment dataset for the sentiment score calculation.Byusing this training
dataset for sentiment analysis, and with the addition of features F3 and F6, the
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Fig. 8 Comparison of
XGBoost and SVM
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accuracy for XGBoost is 89%. However, with this same dataset and feature set, the
SVM model achieves an accuracy of only 81.82%. These accuracy are summarized
in the form of a bar graph in Fig. 8.

Our experimental results show that we can achieve an accuracy as high as 89%,
which far exceeds the 78% accuracy obtained in the comparable previous work
in [24], and matches the accuracy in the previous work [11]. A significant advantage
of our approach is that it only requires a small number of easily obtained features, as
compared to any previous research. This makes our troll detection technique highly
efficient, and thus suitable for real-time troll detection, as validated by the Chrome
extension discussed in Sect. 5.6.

5.6 Chrome Extension for Troll Detection

Since our troll detection mechanism is written in Python, for real-time troll detection
on the Sina Weibo mobile website, we created a Chrome extension using HTML
and JavaScript. In this extension, we pass the JSON packet with Weibo comment
information to the back-end, which is built on the Django framework [8]. This back-
end implements our troll detection model, as discussed above. The overall workflow
for the plug-in is summarized as follows.

1. Run the crawler script against all the comments currently displayed in the browser
under one tweet and send the packet to a server-side portal (currently running as
localhost).
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Fig. 9 Chrome extension employing troll detection model
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2. On the server-side, sort the essential user information and comment text from the
returned JSON packet, as generated by the crawler.

3. On the server-side, run our sentiment analysis classifier against the comment text
and acquire the text sentiment scores.

4. On the server-side, aggregate the sentiment scores and other user information,
feed these into our troll detection model, and return the troll detection result to
the client-side plug-in.

5. Modify the CSS style sheet for any detected troll comments by adding an orange
background behind the text.

A screenshot showing this plug-in in action is given in Fig. 9. Note that in this imple-
mentation, tweets and comments that have been flagged as potential troll activity are
blurred.

6 Conclusion and Future Work

Thewidespread use of social media enables information transfer to occurmuch faster
than ever before. However, troll activities detract from the utility of social media.
Trolls have a variety of motivations, ranging from deception to profits, and it is not
likely that these motivating factors will diminish in the future. Therefore, intelligent
defenses against trolls are essential.

In this research, we utilized a variety of machine learning techniques to analyze
comment content and user information on the Sina Weibo platform. By conducting
sentiment analysis and by including user data aggregation, wewere able to efficiently
identify troll comments on SinaWeibowith higher accuracy, as compared to previous
work. We developed a Chrome extension that served to highlight the practicality of
our approach.

For future work, more user data and other features can be considered. In addition,
deep learning techniques that utilize sequential information, such as long short-term
memory (LSTM) networks, could prove useful. The Chrome extension that we have
developed could be extended to support the Weibo desktop platform.
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Log-Based Malicious Activity Detection
Using Machine and Deep Learning

Katarzyna A. Tarnowska and Araav Patel

Abstract This chapter describes the application of intelligent computational tech-
niques to the problemofmalicious activity detection. It is proposed to embedmachine
and deep learning models for malicious activity detection into the framework of a
log-based decision support system (DSS) for information security administrators. It
is expected that such a solution will enable organizational-wide protection of infor-
mational assets, by providing accurate and comprehensive real-time insights into
violations of information security policies. In this work, we present experiments and
results on database systems’ log analysis using traditional machine learning (ML)
methods and deep learning (DL) on the synthetic log dataset simulating user activity
in a hypothetical company.

1 Introduction

The organization of the chapter is as follows. First, the background information is pre-
sented: (1) the problem area of malicious activity, such as unauthorized access to data
or configuration changes; (2) insider threats, such as masquerader-based attacks; (3)
information security audit, including audit logging for security and compliance; (4)
intrusion detection systems (IDSs), with the focus on host-based IDS and anomaly-
based detection. The second section provides a review of current IDS solutions
and research specifically for relational database management systems (RDBMSs).
Section three describes the proposed methods for anomaly detection in system event
logs. Within the experimental design, traditional ML approaches such as distance-
based outlier detection and support vector machines (SVMs) are compared with the
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DL method based on the sequential autoencoder model. The fourth section presents
and discusses the results. Examples of detected incidents’ scenarios are presented.
The chapter concludes with a combined ML-DL approach, limitations, and future
work to integrate the models into the framework of DSS for the information security
audit.

Data security Data has become a valuable asset for most companies. As such it
has become important for companies to protect and manage this asset. Sensitive and
confidential data include personal records, medical records, company’s contracts,
clients, financial transactions, etc. On the other hand, we have seen a surge in data-
targeted attacks. The consequences of data breaches are serious: lawsuits, fines, loss
of trust, reputation, and customer base. According to the 2013 IOUG Enterprise
Security Survey, the three greatest threats to data security are (1) human error (77%),
(2) internal hackers or unauthorized users (63%), and (3) malicious code/viruses
(49%) [31]. In the Kroll 2012 Global Fraud Survey, it is reported that 60% of frauds
are committed by insiders, increasing from 55% in the previous year [25]. Likewise,
the 2012 Cybercrime report by PwC states that the most serious fraud cases were
committed by insiders [34]. Therefore, the problem to be solved within this work is
human malicious/insider activity.

Secondly, the database is considered the most vulnerable layer (54%) surpassing
the network (51%) and the server layer (51%) in terms of the severity of potential
damage [31].On the other hand,most IT resources are allocated to protect the network
layer (65%), the server layer (59%), and the database layer as third (57%) in terms
of budget, staff time, etc. [31]. In this work, the focus is on the underresourced, but
most vulnerable—the database layer.

Thirdly, data security is mandated by regulations, such as Sarbanes-Oxley-Act
(SOX)—58%, local state/government data protection laws (49%), Health Insurance
Portability andAccountabilityActHIPAA/HITECHfor healthcare electronic records
(37%), PCI DSS for payment card industry (30%), SAS 70 (18%), or Federal Infor-
mation Security Management Act FISMA (11%) [31]. The General Data Protection
Regulation (GDPR) adopted by the EU in 2016 mandates any organization handling
personal identifiable information (PII) of EU citizens to leverage security, auditing,
and intrusion detection mechanisms under heavy fine for compliance failure.

Malicious activity detectionMalicious activity is the harmful act initiated by trusted
insiders, that is, users authorized to access an organization’s network, system, or data.
Amalicious insider is defined as a current or former employee, contractor, or business
partner who intentionally exceeded ormisused that access in amanner that negatively
affected the confidentiality, integrity, or availability of the organization’s informa-
tion or information systems [5]. Themotivations and behaviors of insider threats vary
widely; however, the damage of insiders can inflict is significant. Detecting compro-
mised user accounts and insiders within the company whomay have malicious intent
has become a key problem in enterprise security. In masquerader attacks, users hide
their identity by impersonating other people [46]. Such attacks became one of the
most frequent forms of security attacks, including the database domain.
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Log-based audit control A log file is a file that records either events that occur in
an operating system or other applications. Logs are composed of log entries; each
entry contains information related to a specific event that has occurred within a
system or network [24]. Almost every software generates logs, mostly for debugging
purposes. The logs generated daily by software and hardware are in amassive volume.
It is challenging to keep track and analyze large heterogeneous logs. Detecting and
preventing cyber-attacks, which become evenmore sophisticated, require to generate
a holistic view rather than analyzing logs individually. The process of an information
security audit is a formal check if the system is meeting security requirements as
well as system and organizational policies [33]. According to the National Institute
of Standards and Technology, audit logs are records of events based on applications,
users, and systems, while the audit trails involve audit logs of applications, users, and
systems. Inmany critical applications, such as in hospitals or banking, collecting audit
trail is required by law [47]. The human inspection of audit information is generally
tedious as well as time-consuming. While the traditional audit process is highly
manual, performed by specialized auditors, there exist automated tools that support
the information security audit. So-called security information and event management
(SIEM) systems aggregate and analyze data. However, they use proprietary (non-
standard) data formats and the analytics is limited to statistical methods. Moreover,
they are complicated to deploy and expensive.

Intrusion detection systems Log analysis for intrusion detection is understood as
the process to detect attacks on a specific environment using system logs as the pri-
mary source of information. A host-based intrusion detection system (HIDS) is a
system that monitors a computer on which it is installed to detect an intrusion and/or
misuse and responds by logging the activity and notifying the designated authority.
HIDS monitors the system audit and event logs and notifies the system administrator
accordingly with alert messages. The analysis of data captured by IDS should be
preferably analyzed in real time (rather than in batch-mode later). Intrusion detec-
tion approaches include statistical modeling, data mining-based methods, signature
analysis, rule-based systems, genetic algorithms, etc. The notification mechanism
based on anomaly (outlier) detection techniques has the capability of detecting new
or unknown attacks by using the classification techniques, as opposed to more tradi-
tional signature-based or rule-based detection.

Anomaly-based detection An outlier is defined as an observation in a dataset that
appears to be inconsistent with the remainder of that set of data [22]. Anomalies
are defined as events that deviate from the standard and happen rarely. These are
patterns in data that do not conform to expected behavior or do not “follow the rest
of the pattern” [6]. In anomaly-based approaches, malicious activity is detected as
a deviation from the normal behavior of the users in the systems. Its benefit is in
detecting unknown intrusions. The models analyze current sessions and log entries
by comparing them against the profile representing a normal behavior. If a deviation
is found during the comparison, the notification is sent to the information security
authority. The “normal” behavior is modeled using either supervised or unsupervised
techniques [7]. Supervised learning builds a predictive model based on the instances
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labeled as normal and as an anomaly, but the problem is that anomalous instances
are usually few in the real-world datasets. Machine learning algorithms designed
specifically for anomaly detection tasks are isolation forests, DBScan, one-class
SVMs, elliptic envelopes, the local outlier factor, and others. These methods are
rooted in traditional machine learning. A common problem is a high rate of false
positives and over-fitting the “normal” profiles. There is a trade-off between relaxing
these margins and a higher rate of missed attacks. Therefore, fine-tuning the anomaly
detection models to find the optimum threshold is problematic.

Database systems security Database systems are systems designed to store and
manage data effectively. Database intrusion is understood as any activity that vio-
lates data integrity, data confidentiality, or data availability. Traditional database
security mechanisms offer basic security features such as authentication, authoriza-
tion, access control, data encryption, data masking, and auditing. These methods
are not sufficient to guarantee data security, especially guard against malicious data
access, as they were mostly designed to prevent intrusions, not to detect them. These
database security mechanisms need to be complemented by suitable ID mechanisms
to address especially the problem of insider threats. The goal of the intrusion detec-
tion, as a “second line of defense”, is to minimize the harm done by malicious
activity by early detection and notification. Most log-based IDS have been designed
for network-based intrusion detection [4, 37, 50, 56].

Although a database management system (DBMSs) is a vulnerable IT system
layer that contains sensitive information, to date, there have been few ID mech-
anisms proposed that are specifically tailored to function within a generic DBMS.
IDS designed for operating systems or network are not suitable for protecting DBMS
against insider threats. These are more difficult to defend against, as they come from
subjects that are legitimate users of the system.

Themalicious user threat can come from the high-privileged database administra-
tor (DBA) accounts.Within this research, it is proposed to gather cross-organizational
and cross-system user events data and apply intelligent computational techniques to
detect and notify about security incidents. IDS notifications should be provided to
the Information Security Administrator, who oversees IT systems/database admin-
istrators (see Fig. 1).

2 Related Work

Machine Learning methods for Intrusion Detection Systems Prior work on IDS
systems recommends a machine learning approach rather than a rule-based due to
the increased efficiency, scalability, and the generalization in contrary to over-fitting.

A sample rule-based approach to host-based IDS for log analytics was described
in [35]. A framework for time-series based pattern mining for anomaly detection was
proposed in [12].
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Fig. 1 The design of the decision support system for information security administrator, with the
log-based application monitoring the activity of the system users, including high-privileged system
users, such as administrators

Research on IDS for DBMS proposes employing both unsupervised and super-
vised ML methods. The major drawback of the supervised methods is that they
require to work with labeled data. Traditional classification architectures are not
sufficient for effective anomaly detection. As they are not meant to be used in an
unsupervised manner, they do not handle well severe class imbalance and, therefore,
struggle to correctly recall the outliers. Work in [23] uses clustering to represent
normal user behavior and outlier detection techniques to identify behavior that devi-
ates from these profiles. The COBWEB clustering method with SQL query mining
was used in [44] to determine deviations from normal profiles. A multi-stage log-
analysis approach based on Kibana for pattern-matching and Bayes Net for ML was
proposed to detect SQL-injection attacks in [32]. The research in [21] proposed pro-
tecting databases from internal and external attacks using a hidden Markov model
(HMM); however, having only information on known attacks, the system left the
database vulnerable to novel intrusions. The problem of masquerade detection was
tackled with profile hidden Markov models (PHMMs) based on user-issued UNIX
commands in [20]. One-class SVM (OCSVM) was proposed for anomaly detec-
tion of user behavior for the database security audit in [27]. The same method was
applied for detecting anomalous windows registry accesses in [17]. Windows event
logs were pre-processed and analyzed using statistical methods based on standard
deviation in [11]. A singular value decomposition (SVD)-based algorithm for user
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and entity behavior analytics within an intelligent platform for malicious activity is
described in [48]. Naive Bayes classifier was used in [8] to evaluate the legitimacy
of a database transaction represented as a hexplet data structure constructed from
SQL queries. They also proposed binding all the queries of the same transaction in
one behavior to reduce the false positive, similarly as in [19]. Work in [49] utilized
Naive Bayes classifier andmaximum aposteriori probability to detect intrusions. The
relevant features were extracted from a parse-tree representation of SQL commands.
A system called DBSAFE, designed in [43], uses database audit log files to train
a hybrid binary classifier and Naive-Bayesian classifier model for profiling normal
users. Predetermined policies are added for automated responses to detect intru-
sions. Work in [40] proposed an IDS based on the random forests (RF) method with
weighted voting to balance the impact of each tree. RF is graph-based and can be
used for modeling SQL queries. K-means algorithm was applied in [38] to recognize
anomalous behavior in a dataset with email notification; however, without the capa-
bility to analyze incoming log entries in real time. Big data-based IDS categorizing
logs in real time as either high, medium, or low in severity was described in [36].

Work in [39] attempts to compare the performance of different data mining tech-
niques (such as KNN, ANNs, SVMs, J48 decision trees, multilayer perceptions,
random forest) and different feature selection methods to detect database anoma-
lous behavior. The anomaly detection solution presented in [51] is DBMS-specific
(MS SQL Server). A general ID solution is needed to accommodate different types
of DBMSs that exist within the enterprise infrastructure. Work in [54] attempted a
generic and customizable approach for database exploitation detection using rein-
forcement learning in conjunction with neural network and association rule mining.

Deep Learning for Intrusion Detection Although deep learning (DL) is a subset of
machine learning, it is a newer and more complex way of learning than the norm [2].
DL allows quick detection of attacks without having to retrain the entire model for
incoming log entries [13]. The application of an artificial neural network (ANN) for
the user’s behavioral analysis system was proposed in [1]. A general-purpose frame-
work for online log anomaly detection and diagnosis in [10] utilized long short-term
memory (LSTM) network and self-adaptation. The authors used natural language
processing by handling log entries as sequential elements that followed patterns and
rules. However, it proved somehow difficult to analyze the entire log messages from
different systems. A stacked LSTM network for anomaly detection in times series
was described in [30]. A hybrid LSTM autoencoder model was used in [15] for
anomaly detection in application log data. The authors also provided a comparison
of its accuracy and generalization with unsupervised ML methods, such as KNN
and K-means. Autoencoders with nonlinear dimensionality reduction for anomaly
detection tasks were proposed in [42], which demonstrated that autoencoders are
able to detect subtle anomalies.

Current insider attacks are becoming more sophisticated, and anomaly detection
that includes logs from different layers of IT system (OS, database, application)
can provide the most accurate insights and event correlation analysis. For example,
an attempt to analyze and correlate events from different system layers (OS, kernel,
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application, andweb application data) within host-based IDSwas proposed in [53]. A
multifaceted and comprehensive approach to a cyber defense system that utilizes the
biological immune system was described in [9]. Visual techniques have the potential
to enhance machine learning for decision-making about potential threats [26, 52].

3 Methods

This research attempts to develop a cross-platform approach to intrusion detection
based on machine and deep learning methods. The goal is to identify unexpected
access patterns by authorized users, including masqueraders. This work proposes
mining database audit logs with the goal of detecting violations of access control.
We consider aDBMS layer that implements role-based access control (RBAC)model
[45]. Under this model system permissions are associated with roles, grouping sev-
eral users, rather than with single users. Since RBAC is standardized and adopted
in various DBMS products, the proposed IDS solution is generic. Both traditional
machine learning and deep learningmethods are employed tomodel normal database
access behavior using audit-log data with the goal of recognizing intruders.

3.1 Solution Design

The architecture for the proposed log-based IDS system supporting insider threat
detection consists of the following components (see Fig. 2):

• Log aggregation—log files from different IT systems and different IT layers are
aggregated into one central repository.

• Log data pre-processing and feature extraction—data is pre-processed accordingly
for anomaly detection models.

• Modeling user behavior/profile—using deep learning models, which will be
updated periodically.

• Anomaly detection and alerting—comparing the current profile with the base pro-
file to detect statistical deviations. Corresponding notifications are generated and
sent as an alert to the security administrator.

3.2 User Behavior Modeling

Users’ behavior within systems can be tracked over time using the log trail. These
datasets can be used to learn a baseline profile of the user’s behavior. Any deviations
from this behavior can be flagged as potential anomalies that warrant further investi-
gation. Within this research, we propose to compare traditional ML with novel deep
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Fig. 2 The proposed log-based anomaly detection system for malicious user activity within the IT
enterprise infrastructure (here, Project Management, and Sales systems). Deep learning methods
are proposed to learn “baseline” user behavior and detect deviations, which will result in notifying
Information Security Officer

learning (DL) techniques. They will be applied to system log datasets including audit
trail and operating system event logs to identify anomalous behavior of users. There
are two approaches to anomaly detection:

• Historical baseline—the user’s behavior is compared to its own behavior in the
past.

• Peer baseline—the user’s behavior is compared to users with similar roles/ privi-
leges in the systems (“peers”).

User behavior is defined as follows. First, the time-granularity for behavior analytics
has to be defined (hourly, daily, weekly, etc.). Each log entry is described by times-
tamp with precision up to seconds, and this timestamp feature will be used to derive
granularity. Secondly, content features of the logs, such as the command itself, or
data objects interacted with, are used for analysis.

3.3 Anomaly Detection

We propose two methods for anomaly detection:

1. Traditional machine learning—distance-based—ML method based on the dis-
tance metric, and support vector machines (SVMs) algorithm.
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2. Deep learning-based—learning normal user behavior with artificial neural net-
work (ANN) based on the autoencoder model and using it to detect anomalous
behavior.

Support vector machines (SVMs) are being applied to anomaly detection in the one-
class setting, that is, using one class to learn a region that contains the training data
instances (a boundary). Kernels, such as radial basis function (RBF) kernel, can be
used to learn complex regions. If a test instance falls within the learned region, it is
declared as normal, else it is declared as anomalous.

The DL methods can be particularly useful in user modeling because of its ability
to self-learn and to adapt. The input to ANN will be encoded data about the user
actions. Autoencoders will be used as models of an artificial neural network model
for the task of anomaly detection. Autoencoders are a type of unsupervised neural
network that accepts an input set of data, compresses the data into a latent-space
representation (an encoder), and reconstructs the input data from the latent represen-
tation (a decoder). These types of ANN are versatile because they learn compressed
data encoding in an unsupervisedmanner [2]. They can be implemented efficiently by
training one layer at a time. Autoencoders are well-suited for the anomaly detection
problem. Namely, mean squared error (MSE), which measures the reconstruction
loss, can be also indicative of an anomaly. Autoencoder is expected to minimize
MSE on the trained data, but for unexpected or anomalous data, which the model has
never has seen, it will yield higher MSE. If the MSE of the reconstruction is high,
then likely the data instance is an outlier and in our case, an anomaly.

3.4 Scenario

The dataset of the generated system logs simulates system user activity in a medium-
sized hypothetical company, which specializes in weapon production. The case study
is described in more detail in [41, 52]. The classified information is related to prod-
ucts, clients, and orders. Sensitive information includes sales data, and HR data,
such as employee data. Two sample database systems were designed and deployed
to simulate enterprise infrastructure in the considered company. It includes sys-
tems for project management (PM) and Sales system, both running on Oracle 11g
DBMS. The company employs a role-based access model to restrict access to data
objects according to the job role. Each user is assigned role corresponding to their
job function, for example, Project Manager, Developer, Human Resources, System
Administrator. Each role is assigned privileges to read or modify corresponding data
objects, such as Employees, Payments, Products, and Projects tables. There are 18
users, 8 roles, and 14 objects (tables) in the PM database system, and 16 users, 10
roles, and 5 tables in the Sales system.
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Table 1 Sample log entries generated by simulating malicious user activity in the source systems.
Audit trail includes the following information: the system’s component, the command’s content,
type of operation, object, and subject (user) involved in the operation, its result, and timestamp

Attribute Sample log 1 Sample log 2 Sample log 3

System PM-Oracle Sales-Oracle Sales-Linux

Command exec
dbms_session.set_
sql_trace(true);

update
Admin.Employees set
“Salary” = 2500
where “Employee” =
‘Skala Peter’

Echo ORACLE_SID

Operation execute procedure UPDATE N/A

Object dbms_ session PMO.EMPLOYEES N/A

User SYSTEM PSKALA Root

Result Successful Unsuccessful Successful

Date 2/13/20 4/12/2020 11/30/2020

Time 20:45:00 17:37:01 2:12:45

3.4.1 Logging Elements

Log entries generated for the described scenario contain the following elements:

• System’s name—host name, system component, or resource;
• The command’s content;
• The type of operation (i.e., login, read, write, delete);
• Object—the resource on which operation performed (i.e., identity or name of
affected data, component, such as DB table);

• The user performing the operation (i.e., user ID);
• Result status—if the operation was successful or not;
• Date/Time—stamp consisting of day-month-year and hour-minutes-second.

Sample log entries, related to insider threats, are presented in Table 1. In sample
log 1, the masquerader is executing a malicious procedure in the database from the
privileged System account. In Sample log 2, the malicious employee is attempting to
perform an illegal operation of increasing its own salary. In Sample log 3, the attacker
is trying to obtain the database SID in the OS-level command. All these operations
were taking place outside of normal business hours (9–17).

4 Experiments

The preliminary experiments on the dataset described in Sects. 3.4 and 4.1.1 were
conducted on distance-based outlier detection in RapidMiner. The second series
of experiments involved supervised machine learning based on SVM (in Python
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scikit-learn) and unsupervised deep learning models (in Python Tensorflow). These
involved generating a synthetic dataset of train and test data generated in Python and
described in more detail in Sect. 4.2.1. The results of each experiment are presented
and discussed in the next sections.

4.1 Distance-Based Outlier Detection

The experiments on distance-based outlier detection were conducted using Rapid-
Miner. The effectiveness of the approach was measured with common metrics for an
IDS, including the rate of false positives, false negatives, and accuracy [3].

4.1.1 Data Pre-Processing

One challenge in academic research on log-based intrusion detection is the lim-
ited availability of large datasets for event analysis [16], as opposed to commonly
available malware datasets [2]. The dataset used in this research was generated by
simulating normal and malicious activity in the monitored systems (PM and Sales).
One of the problems in anomaly detection is that anomalies only typically occur
0.001–1% of the time, which causes a massive imbalance in class labels. The dataset
reflects that imbalance with 17 records labeled as part of security incidents out
of 1510 records in total (around 0.011 or 1.1%). The anomalous data was gener-
ated by simulating common database security threats, such as excessive privilege
abuse, legitimate privilege abuse, privilege elevation, SQL injection, weak authenti-
cation/password attacks, and database communication protocol vulnerabilities. The
operations were logged using operating systems’ logging facilities (Event Log in
Windows XP and syslog in Linux-Red Hat 5) and switching on Oracle’s AUDIT
option on the specified operations, objects, and users. The logs from both monitored
systems were automatically extracted, transformed (standardized), and loaded into
Microsoft SQL Server 2008 repository using ETL processes implemented in SQL
Server Integration Services 2008. The following attributes were used as input to the
distance-based outlier detection algorithm: operation command, date, time, object,
user, operation type, and system. The date attribute was transformed into the day of
the week attribute (1–7) and the quarter (1–3).

4.1.2 Results

The detected outliers were compared against the ground truth, that is, whether the
log was part of the injected incident event in the hypothetical company setting.
Table 2 shows a list of correctly identified incidents (true positives-TP), missed
incidents (false negatives—FN), aswell as log entries incorrectly flagged as incidents
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Table 2 Distance-based outlier detection results in RapidMiner. Examples of events’ entries
detected by the algorithm as outliers (in a 1 and 2% models) versus the ground truth (incident
or not)

# Log entry (command @ user/system @ time) Outlier
(1%)

Outlier
(2%)

Actual

1 select ∗ from DBA_USERS @ SYSTEM/Oracle_PMO
@ 22:35

Yes Yes Yes

2 login @ jczolg/Oracle_PMO @ 4:23 Yes Yes Yes

3 exec dbms_session.set_sql_trace(true);
@ SYSTEM/Oracle_PMO @ 20:45

Yes Yes Yes

4 ECHO ORACLE_SID @ root/Linux @ 2:12 Yes Yes Yes

5 lsnrctl status @ root/Linux @ 3:12 Yes Yes Yes

6 revoke create any procedure from rwidawsi
@ ADMIN/Oracle_PMO @ 23:34

Yes Yes No

7 LOGOFF BY CLEANUP @ jczolg/ADMIN @ 19:58 Yes Yes No

8 alter table CLIENTS modify Client_name
NVARCHAR2(50) not null @ KTARNOWS/Oracle_PMO
@ 18:05

Yes Yes No

9 insert into PROJECT_DETAILS VALUES(1,1,’Atomic
bomb construction’) @ ZFENICKI/Oracle_PMO @ 17:30

Yes Yes No

10 insert into PRODUCTS values (1,1,Bomb,1000, null)
@ SBASZEL/Oracle_Sales @ 17:30

Yes Yes No

11 LOGON @ WMSYS/Oracle_Sales @ 22:50 Yes Yes Yes

12 select username,password from dba_users where
password=EXTERNAL; @ SYS/Oracle_Sales @ 15:45

Yes Yes Yes

13 select ∗ from projects @ Admin/Oracle_PMO @ 0:39 No No Yes

14 select ∗ from project_details @ Admin/Oracle_PMO
@ 0:40

No Yes Yes

15 update Employees set Salary=2500 where Name=’Skala
Peter’ @ PSKALA/Oracle_PMO @ 17:37

No Yes Yes

16 update Employees set salary=2000 where employee_id=1
@ MWARZYCHA/Oracle_PMO @ 17:35

No Yes No

17 select ∗ from Clients @ KTARNOWS/Oracle_PMO
@ 18:06

No Yes Yes

18 insert into Salesperson values (1,1,Karolina Uszka)
@ MWARZYCHA/Oracle_Sales @ 16:38

No Yes No

19 insert into Salesperson values (1,1,Karolina Uszka)
@ GOSTROW/Oracle_Sales @ 16:28

No Yes No

(false positives—FP). The two tested models of distance-based outlier detection
included the outliers percentage of 1% (default in RapidMiner) and 2%.
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4.1.3 Discussion

Table 2 shows the log entries from theOS and at theDBMS level, were either detected
or missed as incidents. “True negatives”, which comprise the largest group of events
that represent normal user behavior and not flagged as outliers by the tested model,
are not included in the table. Detected incidents The first group of events listed
(#1-#5;#11-#12) represents correctly detected security incidents (“true positives”).
The first correctly detected anomaly is the operation of reading from the system table
DBA_USERS, which is a part of the attack, where the malicious user has cracked
the SYSTEM user password. In the presented event, the masquerader looks for user
accounts in the system with the goal of abusing object privileges and read classified
or sensitive data. Log entry #2 in Table 2 denotes unsuccessful attempts to login
into the jczolg account, which is an account of the Information Security Officer.
One reason it has been detected as an anomaly is atypical hours of login (late in the
evening), another might be the atypical result of the login operation for that user. Log
entry #3, also correctly detected as an outlier, is related to a SQL-injection attack,
where a malicious user exploits the dbms_session package to inject malicious code.
Log entries #4-#5 are elements of an attack where a masquerader is trying to obtain
Oracle instance SID and check a DBMS listener status from the compromised root
account.
False alarms The second group of presented events (#6-#10) consists of so-called
“false positives” (commonly known as “false alarms”)—marked by the algorithm as
outliers, but not actual security incidents. For example, in log entry #8 KTARNOWS
with theDeveloper role is legally modifying theClients table. The same, in log entry
#9 ZFENICKI with the Project_manager role is adding a new project, which is a
legal operation for his role. Similarly, in log entry #10, SBASZEL is authorized to
add new products to the SALES database, as he is the R&D Director.
Undetected incidentsFinally, the third group of the presented log observations (#13-
#15;#17) contains so-called “false negatives”, which are the actual security incidents
but not detected by the system. For example, in log entry #15, user PSKALAmade an
illegal, but unsuccessful attempt to change his own salary.On the other hand, log entry
# 16 represents the same operation but with an authorized user—MWARZYCHA, who
has an HR role.
One can see, that few events were detected in the model with the percentage of
outliers set as 2%, but not detected in the model with 1% outliers, for example,
in log #14 (masquerader attack) and log #17 (attempt of illegal read). While the
2%-model improved incident detection (TP), it also incorrectly labeled events that
were not an attack (FP). For example, logs #18 and #19 (data update) were not the
actual incidents, but the 2%-model has flagged them as outliers. As a result, detection
capability improved but generated more “false alarms” as well. Table 3 summarizes
the results with the numbers for TP, FP, FN, TN, and the metrics for accuracy,
precision, recall, and false alarm rate (FAR). The table also compares two models in
three metrics: accuracy, recall, precision, and false alarm rate (FAR). Accuracy (1)
was computed as the ratio of correctly classified examples to all events. Recall (2)
can be also interpreted as the detection rate or probability of detection (the ratio of
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Table 3 The summaries of distance-based outlier detection experiments in RapidMiner. The table
presents the number of true positives (TP)—detected as outliers and actual incidents, false positives
(FP)—detected as outliers, but not part of the incident, false negatives (FN)- not outliers, but actual
incidents, true negatives (TN), and the derived metrics of accuracy, recall, precision, and false alarm
rate

Model #TP #FP #FN #TN Accuracy
(%)

Recall
(%)

Precision
(%)

FAR (%)

Model
with 1%
outliers

8 7 5 1489 99.2 61.5 53.3 0.5

Model
with 2%
outliers

11 17 2 1479 98.7 84.6 39.3 1.3

correctly classified “normal” events to all actual normal events). Precision (3) is the
ratio of items correctly classified incidents to all events classified as incidents. FAR
(4) represents items incorrectly labeled as incidents.

Accuracy = T P + T N

T P + T N + FP + FN
, (1)

Recall = T P

T P + FN
, (2)

Precision = T P

T P + FP
, (3)

FalseAlarmRate(FAR) = FP

T N + FP
. (4)

The goal is highly accurate detection of attacks while minimizing false posi-
tives and false negatives. Accuracy and precision are higher in 1%-model, while 2%
model correctly detects more incidents (higher recall), but also results in more “false
alarms”, deteriorating precision and accuracy. Improving the rate of correct detection
of an intrusion at the cost of increased false alarms is a known problem in intrusion
detection systems.

4.2 Machine and Deep Learning for Anomaly Detection

The experiments on supervised ML using SVM were conducted with Python scikit-
learn library was used. For deep learning Python Tensorflow Keras library was used.
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4.2.1 Synthetic Dataset

Training dataset The training dataset simulates the intrusion-free database trail
within PMO and Sales systems as described in the scenario in Sect. 3.4. This dataset,
which simulates normal user behavior, was generated within the algorithm imple-
mented in Python. Log audit records represent the recorded sequence of events in
database systemswithin the Jan–Aug 2020 timeframe and 9 am–5 pmworking hours.
The attributes include source system, timestamp (date: year, month, and day, time:
hours, minute, and second), operation type, user, and object (if applicable). Types of
operations include login, select (read), update, insert, delete, and logoff. Randomized
50,000 log records were used for training the ML/DL models.
Test dataset Numerous, fresh, never-before-seen attacks were generated to check
the generalization aptitude of the ID system. The intrusion/anomalous log entries
were generated with a Python script, which implements an algorithm that represents
violations against RBAC policy in the considered company, malicious attacks, such
as brute force attack, denial of service, and anomalous behavior, such as unapproved
operations and operations outside normal business hours. The subset of randomized
incident logs was used as a test dataset for ML/DL models.

4.2.2 Feature Pre-Processing

Since the attributes are categorical or text, there is a need for transformation before
making it suitable for deep learning models. It is critical to frame the problem cor-
rectly for DL models to be useful in anomaly detection. Autoencoders have proven
to work well with dependent data; however, the logs consist of both independent
and dependent variables. The system/user/operation/object relationship is dependent,
whereas the date and times are independent. Including dependent and independent
attributes to train autoencoders yielded poor results in terms of accuracy (32–65%).
Tuning the parameters (such as changing the number of epochs and batch size) did not
improve these results significantly. Therefore, the log data was split between inde-
pendent and dependent attributes, using the former as input for SVMmodel, and the
latter as input to the DL model. A system, user, operation, and object attributes were
transformed into numeric (integer) representations. Similarly, date (year-month-day)
and time (hour-minute-second) were transformed into separate integer attributes.

4.2.3 Results

Supervisedmachine learningTheSVMmodelwas used as a supervisedMLmethod
with log entries labeled as either anomalous or not, with train size 10,000 or 50,000.
Table 4 presents the process of parameter tuning for the 1:1 anomalous data ratio.
The model was tested with different types of the kernel (linear/polynomial/RBF),
and different values of c-parameter for the kernel.
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Table 4 Parameter tuning for SVM-based machine learning model using different kernels and
c-parameter values to optimize accuracy. The table presents changes leading to improvement only

Kernel C-Param Train size Accuracy (%) Precision (%) Recall (%)

Linear 2 10,000 70.09 72.15 64.74

Polynomial 20 10,000 90.68 95.10 85.87

Polynomial 2 10,000 91.24 96.44 85.92

Polynomial 6 10,000 91.24 95.97 86.01

RBF 8 50,000 99.72 99.99 99.45

RBF 20 50,000 99.97 100.00 99.94

Table 5 Comparing accuracy, precision, and recall of an optimal model (RBF, c= 20) for different
ratios of an anomaly in train data and different sets of attributes (timestamp vs. the whole log)

Log Anomaly ratio Accuracy (%) Precision (%) Recall (%)

Timestamp 1:1 99.97 100.00 99.94

Timestamp 1:1000 99.96 100.00 64.00

Whole log 1:1000 99.92 80.00 24.00

The first attempted SVM model with a linear kernel yielded an accuracy of 70%
and has not changed significantly after trying different parameter values.After chang-
ing the kernel from linear to polynomial, the accuracy improved to around 90% and
the optimal parameters yielded an accuracy of 92.1%. The best results were obtained
for the SVM with the RBF kernel with an accuracy of 99.995% after parameter tun-
ing. The experiments with different parameters were repeated for the different ratio
of anomaly data (1:1000), and for the entire log entry as input data (WL). Table 5
presents the accuracy, precision, and recall of the optimal model (SVM with RBF
kernel on 50,000 training data points) for different ratios of normal to anomaly logs
(1:1 and 1000:1) and different feature selection.

As one can see, decreasing the ratio of anomaly data (from 1:1 to 1:1000) to meet
the realistic scenarios deteriorates the recall metric. Further, when the whole log was
used as train input data, as opposed to timestamp data only, the accuracy, precision,
and recall metrics were lower, with 99.92, 80, and 24% accordingly.
Unsupervised deep learning The deep sequential autoencodermodel was used as an
unsupervised DLmethod that was trained on normal log entries only. The log entries
consist of the system, user, operation, and object portion of the log. The model was
tested with different values for the following parameters:

• Layers—number of layers for input and the first hidden layer;
• Activation—activation method (relu/sigmoid);
• Epochs—number of training epochs;
• Batch size—number of training examples in one forward/backward pass;
• Validation—whether test data will be used as validation;
• Shuffle—whether the log data will be shuffled prior to model implementation.
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Table 6 Parameter tuning for deep learning model based on sequential autoencoder. The Layers
column includes the encoding layers and for each row, there is a symmetrical decoding layer after
the 2nd 3-node layer. The Normal and Anomaly Avg columns represent the average scores of the
normal and anomaly logs with the Metric (RMSE / MAE2)
Layers Activation Batch Valida Shuff Metric Normal

Avg
Anomaly
Avg

Detect
(%)

[3, 25, 3]
sigmoid: 2nd 25 32 N/A N/A RMSE 8.9 ∗

10−5
1.2 ∗
10−1

55.6

[3, 48, 24, 12, 6, 3]
tanh: 2nd 48 32 N/A N/A RMSE 8.1 ∗

10−1
1.0 ∗
101

70.6

[3, 30, 15, 7, 3]
sigmoid: 2nd 30 32 N/A N/A RMSE 1.2 1.1 ∗

101
73.9

[3, 48, 24, 12, 6, 3]
sigmoid: 2nd 48 32 N/A N/A RMSE 3.5 1.8 ∗

101
75.5

[3, 48, 24, 12, 6, 3]
sigmoid: 2nd 48 256 N/A N/A RMSE 2.1 8.6 75.5

[3, 48, 24, 12, 6, 3]
sigmoid: 2nd 48 128 N/A N/A RMSE 1.1 1.1 ∗

101
75.7

[3, 30, 15, 7, 3]
sigmoid: 2nd 30 128 N/A N/A RMSE 8.7 ∗

10−2
5.4 ∗
10−1

77.7

[3, 30, 15, 7, 3]
sigmoid: 2nd 30 64 N/A N/A RMSE 1.1 ∗

10−1
1.9 79.5

[3, 30, 15, 7, 3]
sigmoid: 2nd 30 80 N/A N/A RMSE 1.4 6.2 86.1

[3, 30, 15, 7, 3]
linear: middle 3, sigmoid:
2nd 30

80 TRUE TRUE RMSE 2.0 ∗
10−1

1.3 86.8

[3, 30, 15, 7, 3]
linear: middle 3, sigmoid:
2nd 30

80 TRUE TRUE MAE2 1.5 ∗
10−4

9.4 ∗
10−4

89.2

[3, 48, 24, 12, 6, 3]
linear: middle 3,
sigmoid: 2nd 48

80 TRUE TRUE MAE2 6.8 ∗
10−3

1.5 ∗
10−1

92.5

The decoding accuracy was measured with the root mean standard/squared absolute
error (RMSE , MAE2):

RMSE =
√
√
√
√(

1

n
)

n
∑

i=1

(yi − xi )2, (5)

MAE2 = [(1
n
)

n
∑

i=1

|yi − xi |]2. (6)

Table 6 presents the results of the error averages for the normal and anomalous
data. The detection accuracy was measured with the percent of anomalies that had a
metric score greater than the average normal metric score. It clearly shows that the
reconstruction error becomes far bigger for anomalous data.
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All models in the table were performed with 200 epochs and relu as the default
activation for each layer if specified otherwise. Thefirst attempted autoencodermodel
had the following architecture, in terms of layers: [3, 25, 10, 3, 10, 25, 3] and “relu”
activation functions for each layer, except “sigmoid” activation for the 2nd 25-node
layer. The batch size was the default (32), and there was no validation nor shuffling
of log data. Though the root mean squared error (RMSE) averages for anomaly data
were 1.3 ∗ 103 times smaller than the normal data (training and testing data), only
55.6% of anomalies had an RMSE score larger than the normal testing data RMSE
average. Some of the anomalies had very high RMSE values, skewing the average
RMSE value for all the anomalies. This made it very important to not only consider
the difference inRMSE scores between normal and anomaly logs, but also to consider
detection capability. After increasing the number of hidden layers and changing their
respective nodes to [3, 48, 24, 12, 6, 3, 6, 12, 24, 48, 3] with “sigmoid” activation
for the 2nd 48-node layer, the anomaly detection accuracy increased to 74.5%. With
these sets of layers and activations, tuning the batch size to 128 made the accuracy
rise to 77.7%. The set of hidden layers: [3, 30, 15, 7, 3, 7, 15, 30, 3] with sigmoid
activation on the 2nd 30-node layer gave very similar results to the hidden layers:
[3, 48, 24, 12, 6, 3, 6, 12, 24, 48, 3]. Both these sets of layers were tested with each
tune of parameters and the higher value was recorded in the results table. Validating
the model with the test data, shuffling the log entries prior to encoding and decoding
the data and further tuning of the batch size to an optimal 80 provided an accuracy
of 78.1%. However, the results improved drastically to 86.8% after implementing a
linear activation function for the middle 3-node layer. The best result of 92.5% detec-
tion capability was obtained with hidden layers: [3, 48, 24, 12, 6, 3, 6, 12, 24, 48, 3]
with a “linear” activation at the middle 3-node layer and “sigmoid” activation at
the 2nd 48-node layer, batch size of 80, validation of the model with test data, and
shuffling of log entries prior to encoding and decoding.

4.2.4 Discussion

In our proposed hybrid solution, we utilize the strengths of the ML and DL models.
The incoming log entry is first pre-processed by converting the data to integer repre-
sentations. The SVMmodel performs timestamp-based classification on the log data.
The role-based features (system, user, operation, object) are analyzed with the deep
sequential autoencoder model. The results of both models determine the nature of
the incoming log entry. The SVM model will label the timestamp portion of the log
entry as either normal or anomalous. The deep sequential autoencoder will provide
a value that is represented by the square of the mean absolute error and, based on a
Gaussian distribution, will label the role-based features as either normal or anoma-
lous. Combining the results of both models will determine the anomalous nature of
the log: whether it is normal, anomalous in the role-based features, anomalous within
the timestamp, or anomalous in both the role-based features and the timestamp.

The last two columns in Table 7 mark whether each part of the hybrid model
determined the log entry to be anomalous. The first eight log entries are labeled
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Table 7 Sample log entries fed into the hybrid (machine and deep learning) model. The table
presents different types of incoming log entries (prior to pre-processing) and whether each model
detected it as a normal or anomalous log
# System User Operation Object Date Time Anom

(SVM)
Anom
(ANN)

#1 PM apuzon LOGON none 2020-08-05 23:05:03 Yes No

#2 SALES kuszka INSERT ORDERS 2020-01-20 21:45:55 Yes No

#3 SALES gnyski INSERT ORDERS 2020-05-22 8:26:15 Yes No

#4 PM gmjarcinska INSERT PROJECT_
DETAILS

2020-08-17 1:30:55 Yes No

#5 PM ktarnows LOGON none 2020-07-25 16:16:31 Yes No

#6 PM adynka SELECT TASKS 2020-06-21 14:45:23 Yes No

#7 PM kuszka DELETE CLIENTS 2020-01-12 11:26:53 Yes No

#8 SALES amaly SELECT PRODUCTS 2020-07-04 12:48:02 Yes No

#9 SALES mwarzycha SELECT ORDERS 2020-01-03 9:01:33 No Yes

#10 SALES apuzon SELECT DISTRI-
BUTORS

2020-04-10 14:23:04 No Yes

#11 PM ktarnows INSERT TASKS 2020-03-19 14:34:40 No Yes

#12 SALES kespiel UPDATE ORDERS 2020-07-23 14:47:51 No Yes

#13 PM adynka LOGON none 2020-06-24 10:05:45 No No

#14 PM adynka LOGON none 2020-06-24 11:07:23 No Yes

#15 PM ktarnows ALTER PROJECT_
TYPE

2020-01-01 9:28:47 No No

#16 SALES sbaszel SELECT WARE-
HOUSES

2020-05-05 15:39:51 No No

#17 PM mwarzycha SELECT DEPART-
MENTS

2020-05-29 10:49:53 No No

#18 PM aosinska LOGON none 2020-08-07 10:56:23 No No

anomalous based on timeframes outside the normal working hours/days. Though
these first eight rows may not be malicious, they are marked as anomalous due to
the timestamp at which they were logged. The hybrid model aims to reduce false
negatives, but at the cost of increasing the number of false positives, as in the case
of marking logs outside of work hours as anomalous. Rows #9-#12 are also anoma-
lous as they are unapproved operations, meaning that the users who performed the
operations and objects were not privileged to do so. This can mean that they were
privileged without the approval, either by themselves or another user, or there was
an intrusion into the RBAC database system. For example, user mwarzycha falls
under the HR role; however, she performed the operation SELECT on the ORDERS
object. This operation and object pair is a common log for the WAREHOUSEMAN
role and is not permitted for the HR role. This means that the user mwarzycha was
privileged without the approval of the WAREHOUSEMAN role or was given access
to just the SELECT and ORDERS operation and object pair. The rows #9-#12 were
marked as anomalous by the deep sequential autoencoder part of the hybrid detection
model. Rows #13-#14 show an example of an intrusion that was caught the ANN
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part of the model. The user adynka logged in in row #13, and then the user logged in
again, without logging off, in row #14. This shows that adynka had logged in from
multiple accounts, suggesting that her account has been breached. The last four rows
(#15-#18) are marked as normal logs, as they are within the RBAC model and the
timestamp of the log is within working hours. For example, user mwarzycha, who
is under the HR role, is performing the SELECT operation on the DEPARTMENTS
object on a Friday at 10:49 am. This is an authorized operation and object pair under
the HR role that is logged during normal work hours. For these last four rows, the
deep sequential autoencodermarked the event as normal, and the SVMmodelmarked
the timestamp as normal.

5 Conclusions

This chapter proposed a log-based anomaly detection system in application, database,
and operating system layers. Our research has demonstrated that deep learning meth-
ods, specifically, autoencoders can be successfully applied to detect deviations from
normal user behavior in data-based systems. The proposed IDS determines role
intruders that deviate from normal behavior. If the error between the original input
data and themodel’s decoded representation iswithin a high-level of confidence of the
Gaussian distribution, the incoming log entry is considered normal, and otherwise,
abnormal. Our experiments included manual tuning of the parameters of autoen-
coders, such as layers, activation, batch size, validation, and shuffling. Further, we
have proposed a hybrid method combining ML models and DL models to further
optimize anomaly detection. Although the performance of autoencoders was already
good enough without temporal information, we augment the anomaly detection with
the SVMmethod trained on timestamp data. It performs a combined anomaly detec-
tion at per log entry-level, rather than at per session-level as many previous methods
are limited to. The proposed generic solution is tailored for any role-based access
control (RBAC) database system. The limitations of this work were also identified.
The technique was tested on an artificial dataset, but ideally, the method should be
tested on a real world, highly unbalanced log dataset from the organization. It is nec-
essary to test the approach on a greater variety of possible insider threat scenarios,
such as weak audit trail or backup data exposure. The experiments within this work
focused on database system logs. The goal is to extend and evaluate thismethodology
for real-world log data accumulated from different platforms, DBMS systems, and
applications. The aggregated log analytics will involve handling known challenges
for log management, such as many log sources, inconsistent log content, inconsistent
timestamps, and inconsistent log formats [24].
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5.1 Future Work

Future works include testing and incorporating other deep learning techniques (i.e.,
different types of recurrent neural networks, restricted Boltzmann machines) and
integrating log data from different database systems (i.e., SQL Server) and applica-
tions to performmore comprehensive detection. Parameters for neural networks need
further detailed investigation. The future work also includes text mining techniques
on parsing and analyzing the commands’ contents (such as proposed in [28, 55]).
Evaluating the approach for efficiency will involve testing on very large log event
datasets, such as described in [29]/[14].

As there is a gap in both research and in academia, but most notably in the industry
offerings of comprehensive decision support systems (DSSs) for information secu-
rity (IS) administrators, the future work includes incorporating the tested and verified
models into the framework of intelligent DSS for IS. Such as system is expected to
enable better enforcement of organizational policies and compliance with the man-
dated regulations. The prototype DSS was implemented for a hypothetical medium-
sized company. The target organizations of this system are small-medium companies
who cannot afford expensive to deploy andmore complicated SIEM systems, but that
are mandated by various regulations to meet the audit compliance because of sensi-
tive/classified data stored within their systems. The benefits of the proposed systems
are customization to the organizational needs, but supporting a variety of platforms
existing in the enterprise IT infrastructure. It is proposed to collect and analyze the
comprehensive log data including (1) the IT infrastructure across the entire organiza-
tion, meaning heterogeneous IT systems; and (2) all layers of each IT system: from
the operating system level, through database system-level, up to the application level.
In the DSS customization process, the ETL process extracting logs from different
systems/platforms has to be implemented accordingly to the organization’s needs,
as well as the central repository of transformed and standardized log records has to
be set up locally. Such a DSS tool will help organizations in undergoing security
audits and in compliance with security standards defined by organizations, such as
ISO international information security standards. A DSS framework incorporating
a combination of ML algorithms with neural network-based DL approaches offers
rich opportunity to detect new variants of malicious and zero-day attacks. The new
types of attacks and vulnerabilities exploitations will help organizations craft and
implement better security policies and defense measures.

While many organizations concentrate the majority of their resources toward
securing the perimeter of their networks, they often neglect themost critical company
asset, databases [18]. Database security logging and monitoring are more difficult
because the data is often sensitive, there are legitimate privileged users or vary-
ing degrees. Databases contain the most valuable data companies own—customer,
employee, financial, and intellectual property to name a few categories. Protecting,
logging, and monitoring database data should be a core activity of every business,
unfortunately, many businesses fail to provide adequate security logging and moni-
toring for their databases. This research attempts to help close this gap.
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Image Spam Classification with Deep
Neural Networks

Ajay Pal Singh and Katerina Potika

Abstract Image classification is a fundamental problem of computer vision and
pattern recognition. We focus on images that contain spam. Spam is unwanted bulk
content, and image spam is unwanted content embedded inside the images. Image
spam potentially creates a threat to the credibility of any email-based communica-
tion system. While a lot of machine learning techniques are successful in detecting
textual based spam, this is not the case for image spams, which can easily evade
these textual-spam detection systems. In our work, we explore and evaluate four
deep learning techniques that detect image spams. First, we train deep neural net-
works using various image features. We explore their robustness on an improved
dataset, which was especially build in order to outsmart current image spam detec-
tion techniques. Finally, we design two convolution neural network architectures
and provide experimental results for these, alongside the existing VGG19 transfer
learning model, for detecting image spams. Our work offers a new tool for detecting
image spams, usage of a bigger dataset, and is compared against recent related tools.

1 Introduction

Over the last decade, email and Internet is flooded with spam content. A spam can
be defined as unwanted content, distributed mostly via emails. Due to the effluence
of spam emails over the Internet a lot of techniques have surfaced which classify
the spam from the valid content. Reports from Symantec [18] indicated that 90.4%
of the emails include spam content. These spam emails can include phishing links,
malware, advertisements, adult content, and others, which may impose a significant
threat to the security of the user’s privacy.

Spam initial was only in the form of texts. With the advent of machine learning,
many classifiers were developed to filter such spam based on email content. Lai
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and Tsai [11] used four different machine learning techniques, including K-nearest
neighbors (KNN), support vectormachines (SVM), andNaïve Bayes, that used email
messages to filter spam emails. These classifiers were able to classify text-based
spam with approximately 95% accuracy. Hence, over the years detecting content-
based spam emails became very easy. Google, Microsoft, and Yahoo use techniques
that perform very accurately to classify spam emails from the authentic emails.

However, over time, spammers came up with novel ideas to fool these content-
based classification techniques. Thus, image spam was developed, where unwanted
textual information was delivered in the form of images. To detect these types of
image text, optical character recognition (OCR) techniques [4]were developedwhich
were able to extract the text from the images. It involves segmentation of the textual
region within the images and using techniques to extract text from these regions.
However, these text-based classifiers were not always successful in detecting image
spam. One reason was that segmentation of textual area within these images in itself
is a difficult task [17]. Also, spammers started using obfuscation techniques, which
made the OCR techniques less effective.

A more direct approach was used by Annadatha et al. [1] and Aneri Chavda
et al. [2], where they consider properties of the image itself to classify spam images.
They used image processing techniques in conjunction with various machine learn-
ing models. We use different deep learning techniques on various image properties
as compared to these previous work [1] and [2]. We train neural networks and deep
neural networks on these image properties, instead of using the machine learning
techniques that were used previously in [2]. We then divulge deeper and experi-
ment with other deep learning techniques, such as convolutional neural networks
(CNN) based on raw images. Finally, we discuss the use of transfer learning and
train a VGG19 model on our dataset. The main focus of this work is to quantify
the robustness of these techniques on an improved spam dataset created by Aneri et
al. [2].

The remainder of the report is organized as follows. In Sect. 2, we discussed
the problem statement and the motivation behind it. Section 3 focuses on the related
work done so far in this domain. Section 4 describes the essential background, topics,
and terminologies needed to understand this project. Section 5 discusses the vari-
ous datasets used in this work, the steps involved in pre-processing these datasets
and the architecture used to train the deep learning models. Section 6 presents the
experimental results. Finally, Sect. 7 concludes and provides scope for future work.

2 Problem Statement and Motivation

This section defines the problem statement and scope for this work. It also focuses
on the motivation and purpose of solving this problem.

We focus on binary image classification. Anything that contains the marketing,
sexual, or other unwanted content embedded within the images is called a SPAM
image, whereas anything other than that is considered a HAM image. HAM is a
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keyword specified in the and used in previous papers [1, 2], so in order to maintain
the consistency we will also use the same terminology.

The goal is to use specifically Neural Networks and Deep Neural Networks on
the problem of spam image classification in order to obtain better results as obtained
in the previous papers. There are two main parts towards that direction:

• Classification based on image features: extraction of 38 features from the images
as described in [2] and then use the different Neural Networks and Deep Neural
Network architectures with the motive to improve the results.

• Use ofRaw Images: usage of deep learning techniques, such asConvolutionNeural
Networks, with different architectures and then with pre-built models based on
transfer learning on the spam image classification problem.

Using different approaches as mentioned above the results are presented in the
form of tables, graphs, and other metrics to give a quantification of this work.

The Internet is flooded with spam content, whether it is in the form of text or
unwanted text in the images. Previous techniques are good to detect textual spam
but the spammers are coming up with new ways to fool such techniques. We try to
solve this hard problem of image spams. We discuss the results obtained to classify
spam images by leveraging the power of neural networks and deep learning. Since
the advent of deep learning, there is not much research done on this domain. By
using our approach potentially administrators of email systems or other systems can
minimize the spam content that is even embedded in images.

3 Background

Let us present the essential background and terminology that we need.

3.1 Spam Categories

In general spam detection techniques are partitioned into the following two cate-
gories:

1. Content-based spam: spam in emails that are in textual form; classifiers in this case
deal with the actual content of the email extracted from email headers, keywords,
body of email, etc. Wide variety of machine learning techniques are available for
such spam classification [3].

2. Non-content-based spam: spam that use advanced forms; such one is an image
spam. For image spam classification we can look at the properties of an image,
or with the advent of deep learning we can use images in their raw byte form.
There are different generation of image spams ranging from first generation to
third generation. Images in the first generation contain plain spam images, but in
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the second and third generation images are obfuscated using noise, by overlaying
background of images to make them more resistant to OCR techniques. OCR
techniques are capable of segmenting the part of the images that contain specific
object for further purposes, for example, extraction of text or object detection.

3.2 Classification Techniques

Herewemention the techniques that we use and are implemented for the experiments
described in Sect. 6.

3.2.1 Neural Networks

Artificial neural networks (ANNs) are algorithms that are modeled after the neuronal
structure of cerebral cortex of the human brain but on much smaller scales. A neural
network (NN) structure is divided into different layers: the input layer, one or many
hidden layers, and the output layer. Each layer comprises nodes or neurons. A basic
unit of computation in a neural network is a neuron, which receives an input from
previous layer nodes along with their specific weights, and performs a function on
them. This function is also called the activation function. These neurons are activated
by using different activation functions. Some examples of activation functions: the
sigmoid, the tanh, and the Relu function. A bias is usually added with each layer
to provide regularization and move the function graph by some constant from the
center. The goal of the ANN’s is to decrease the loss function, which is derived from
the dataset.

As compared to support vector machines (SVM), which use only one function,
neural networks provide non-linearity due to the structure of its layers. There are
different types of neural networks, for example, feedforward NN, single layer per-
ceptron, multi-layer perceptron, and so on. The output layer in case of a classification
problem usually consists of a sigmoidal activation function to provide probabilities
for different classes, or labels for the dataset.

3.2.2 Deep Neural Networks

They are differentiated from basic NN by their depth; that is, the number of node
layers through which data passes in a multi-step process of pattern recognition.
In this each layer of a network is supposed to learn specific features as received
from the previous layer. The further the layer is, nodes are able to understand more
complex features, since they aggregate and recombine those features from previous
layers. Deep learning networks perform automatic feature extraction without human
intervention, unlike most traditional machine learning algorithms.
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3.2.3 Convolution Neural Networks

The idea behind Convolution Neural Networks (CNN) was derived from NNs with
neurons that learn from weights and biases. Also, each layer calculates a non-linear
function using teh dot product and some activation functions. CNN’s work on the
images itself in the input layer. The normal NN’s does not scale very well on the raw
images, because they are not able to learn enough features from them. The archi-
tecture of CNN’s introduces different types of layers, each of which learn specific
features from the previous layer. Thus, the general idea is that the starting layers are
able to learn more generic features, such as the curves and edges from the images,
then as the architecture grows these layers becomes more specific, for example,
detecting the ears of an animal. Unlike a NN a CNN have neurons arranged in three
dimensions, namely, width, height, and depth. The depth here refers to the channels
in an image, for a color image the depth is 3, whereas for a grayscale image it is 1.
The CNN architecture is built from different types of layers, which are repeated as
necessary to build the deep CNN. These layers are

1. Convolutional Layer: Tries to learn the features from the images by preserving
the spatial relationship among pixels. It uses the concept of filters. The images
are divided into small squares on which these filters are projected. These filters
contain different values of pixels, for example, a filter can be used to find edges
of text in a spam image. So, if there exist edges in the speculated square, those
pixels are activated. The pixels on the filter are multiplied on the input image area
under consideration and a sum is performed over those activated pixels within the
filter to check the intensity of the filter. These filters work in sync with the depth
of the images, so if the image is RGB then there are 3 filters used for each depth
of given sizes. There are three parameters that control the size of the Convolution
layers: stride, depth, and padding. The depth is mostly determined by the depth
of the raw images or based on the previous layer input. The stride defines the
number of pixels the filters are slided from left to right. Sometimes the input layer
features are padded with zeros to maintain proportion with the size of the filter
and to control the size of the output layer. After sliding the filter over all locations
of the input array we get an activation map or feature map.

2. RELU (Rectified Linear Units) Layer: To provide non-linearity after each Convo-
lution layer it is suggested to apply a RELU layer. A RELU layer works far better
in terms of performance as compared to the sigmoid or tanh function without
compromising the accuracy. This layer also overcomes the problem of vanishing
gradient. In vanishing gradient the lower layers train much slowly, because the
gradient due to back-propagation decreases exponentially through the layers. The
RELU function is given as

F(x) = max(0,x)

This function changes all negative values to 0 and increases the non-linearity of
the model without affecting the output of the Convolution layer.
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Fig. 1 A simple CNN architecture composed of different layers

3. Pooling (or down-sampling) Layer. It uses a filter of a given size, moves across
the input from previous layer, and applies a given function. For example, in a max
pooling layer, a max of all the filter values is given as output. There are other types
of pooling layers as well such as average pooling and L2-norm pooling. This layer
serves two purposes: it decreases the amount of computation by decreasing the
amount of parameters of weights, and it overcomes overfitting in the model.

4. Dropout Layer: This layer helps in overcoming the problem of overfitting. Over-
fitting means the weights and parameters are so tuned to the training examples
after training the network, that they perform very bad on the new examples. So
this layer drops out a random set of activation in a given layer by setting their
values to 0 [16].

5. FullyConnectedLayer: it takes as input fromanyof theConvolution layer, Pooling
orRELU layer and outputs a N dimensional vector. This N depends on the number
of classes you want to classify. In case of the image spam classification problem
the value of N = 2, i.e., whether the image is a SPAM or a HAM.

A classic CNN architecture is composed of the above layers repeated in some
fashion as necessary. A simple example of such architecture is given in Fig. 1.

3.2.4 Transfer Learning

Data is an essential part of deep learning community. As you train your networks on
large amount of data the network becomes more redundant and efficient in general-
izing the results to new datasets. Thus in case you have a small amount of dataset
to actually work on, transfer learning overcomes this caveat. It is a process of using
pre-trained models, which are trained on millions or billions of samples of gener-
alized datasets and then fine-tune these models on your own datasets. Rather than
training the whole network we use a pre-trained model weights and freeze them and
focus on training only specific lower level of layers which are more specific to our
dataset. If your dataset is different from the pre-trained model dataset then in that
case training more layers of the model is preferred. We focus on using two such
pre-trained models VGG16 and VGG19.

A technique called data augmentation is widely used to overcome the problem
of having less samples of dataset. It performs different image transformation on the
images to produce new images and hence augment the dataset. Some transformations
may include scaling the image by some ratio, rotating them, skewing, flipping, and
cropping the images.
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3.3 Quality Metrics

The following terms will be used to quantify the results:

• True Positive (TP): an image is a SPAM image and classifier marks it is as a SPAM
• True Negative (TN): an image is a HAM image and classifier marks it is as a HAM
• False Positive (FP): an image is a HAM image and classifier marks it is as a SPAM
• False Negative (FN): an image is a SPAM image and classifier marks it is as a
HAM

• Confusion Matrix: This is a matrix between TP, TN, FP, and FN. A Fig. 2 taken
from [2] is shown below.

• Accuracy: It is a metric used to determine how well a classifier works. It is defined
as

Accuracy = T P + T N

P + N
(1)

where P (Positive) = T P + FN and N (Negative) = T N + FP .
• ROC and AUC: Receiver Operating characteristics (ROC) and Area under the
Curve (AUC) can be obtained from a trained classifier. A ROC curve is plotted
against True positive rate (TPR) and False Positive rate (FPR) for varied threshold
values. An area under this ROC curve is known as AUC value. TPR and FPR are
determined as

T PR = T P

P
= T P

T P + FN
(2)

FPR = FP

N
= FP

FP + T N
(3)

An AUC close to 1 is considered as a good classifier.
• K -fold cross validation: In this technique the classifier is trained K times. The
dataset is divided into K subsets. Each time a classifier is trained, one of the K
subsets is used as the validation or test and the remaining K − 1 subsets are used
as the training set. The accuracy over all these K classifiers is averaged to provide
the average accuracy. Cross validation techniques are generally used to overcome
overfitting within the dataset.

• Stratified K -fold cross validation: It is a slight variation in the K -fold cross val-
idation technique. In this each fold is created in such a fashion that each subset
contains approximately the same percentage of each target class. This is used in
cases where the dataset classes are skewed, i.e., one class predominates the other.
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Fig. 2 A confusion matrix
[2]

4 Related Work

Image spam detection can be done using various techniques. One such approach is to
use content-based detection, i.e., to segment the content using OCR techniques and
then classify it. Other approaches include to detect image spams based on the proper-
ties or features extracted from these images. Different machine learning algorithms
are also used in conjunction with image processing to generate strong classifiers.
Additionally, deep learning techniques, such as CNN, can also be used on the raw
images to detect image spams.

A content-based image spam detection technique is discussed in [1], which uses
OCR techniques on spam images. These techniques extract the text from the seg-
mented image and perform textual analysis on the extracted text to determinewhether
the image is a SPAM or a HAM.

Another paper by Gevaryahu, Elias-Bachrach et al. [4] use the image metadata
properties, such as file size and other properties to detect SPAM images. The work
presented in [5] use probabilistic boosting trees for the classification by working on
the color and gradient histogram features and achieve an accuracy of 94%.

Sanjushree, Suhasini et al. [10] use SVMs and particle swarmoptimizations (PSO)
on ten metadata features and three textual features for SPAM image classification.
Using the combination of these techniques they were able to achieve a 90% accuracy
on the Dredze dataset (discussed below) using 380 test and 300 training images.
The authors of [5] use cluster-based filtering techniques with client and server-based
models and claim to achieve a 99% accuracy.

A fuzzy inference system was used to analyze multiple features in [8], claim-
ing to have achieved an accuracy of 85%. Annadatha et al. [1] used a linear SVM
classifier on 21 image properties and each property was associate with a weight for
the classification. The author performed feature reduction and selection based on
these weights. Two datasets [5] and Dredze [4] are used by them and they achieved
an accuracy of 97% and 99%, respectively. Moreover, they also developed a new
challenging dataset for their classifier.

Aneri et al. [2] used 38 features extracted for the Dredze and the Image Spam
hunter (ISH) datasets (discussed below). In their approach they use SVM kernels and
achieved an accuracy of 97% with linear, 96% with Radial Basis Function (RBF),
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and 95% with a polynomial kernel on the ISH dataset. Respectively, the results
are 98% using linear, 98% using RBF, and 95% using a polynomial kernel on the
Dredze dataset. Additionally, feature reduction techniques are used, like univariate
feature selection (UFS) and recursive feature elimination (RFE), to reduce the initial
38 features and provide better results. Expectation maximization (EM) clustering
techniques are some of their other approaches, but these did not performed very well
and achieved an accuracy of 87% on the ISH and 70% on the Dredze dataset. One
of the main contributions of this work is the creation of a new challenging dataset,
that we also use in this work. The accuracy was not very good for it being 52%. The
number of samples that we use is relatively large from these datasets. A big part of
our work also discusses various data processing techniques used to extract images
from the spam archive, which was an unprocessed dataset as provided by Dredze.
Hence, the amount of data the experiments and results are based on are large as
compared to all previous papers.

In a recent work, Sharma et al. [14] use CNNs along with other machine learning
techniques to solve the SPAM image classification problem. They consider it similar
to our real-world image spam and challenging datasets. The best results they get
are for their CNNs with an accuracy of 99.02% for the ISH dataset, 83.13% for the
improved dataset of [2], and 71.83% for the challenging dataset of [1] based on the
Dredze dataset.

Soranamageswari et al. [15] use backpropagation neural network based on only
color features and was able to achieve a 92.82% accuracy. An interesting aspect used
was that of splitting the image into different blocks and using them as features, but
this approach only achieves a 89.32% accuracy.

Hong-Gang Zhang and Er-Xin Shang [13] use CNNs to classify into 7 categories
of unwanted content embedded in images. They worked on a dataset containing
around 52K images. The 7 categories targeted by them include commodities, spam
images, political content images, adult content, recipe images, scenes, and everything
else. They used five-convolution alongside max pooling layers. The output of these
layers is given to the fully connected layer and a SVM classifier is used on this N
sized feature vector. They resized all the images to a 256 × 256 size and were able
to achieve an average accuracy of 75.1%. Following this approach we use a custom
CNN architecture, but only on a binary classification, namely, SPAM and HAM.

5 Framework

5.1 Datasets

We experiment with the three different datasets that are used by Aneri et al. [2].
However, the number of images used is much larger compared to the images used in
that approach. We focus on making use of different formats of images such as gif,
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jpeg, jpg, png, tif, and bmp. The gif images were processed and the first frame was
extracted from the gif images and converted to png files.

5.1.1 Dredze Dataset

Dredze et al. [4] created a SPAM image archive dataset as well as a personalized
SPAM image archive. The personalized SPAM image archive contained a lot of
unprocessed files in different formats such as gif, txt, and jpg. We pre-processed this
archive as well to augment our dataset. Then, the experiments were performed on
the combination of the Dredze SPAM archive and the Dredze personalized archive.
Earlier papers [1, 2] focused only on a subset of the personalized SPAM images
archive. After the pre-processing step, the personalized SPAM images were 3165
with 1760HAMimages, and the SPAMimages obtainedwere 10937. Totally, 14, 103
SPAM images and 12, 565 HAM images.

5.1.2 Image Spam Hunter (ISH)

The image spam hunter dataset contained both HAM and SPAM images [5]. We
extracted and processed 922 SPAM and 810 HAM images.

5.1.3 Improved Dataset

This dataset was created by Aneri et al. [2]. This dataset was created by performing
transformation on the HAM images to make them SPAM. The HAM images were
resized to the size of SPAM images to align their metadata features. Noise was
introduced in the SPAM images to make their edge detection difficult, since SPAM
images generally have less noise as compared to HAM images. These noise-induced
SPAM images were overlayed on top of the HAM images to generate the improved
dataset. We experimented with the additional 1, 030 improved SPAM images.

5.1.4 Combined Dataset

In general CNN requires large amount of datasets to converge and perform better.
So instead of experimenting with individual datasets mentioned above we combined
together all these datasets to augment the number of SPAM image samples. In order
to account for the HAM images we downloaded images belonging to different cate-
gories, that are not SPAM, to make our dataset balanced.
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5.2 Data Pre-processing

The Dredze dataset archive contained a lot of unwanted files and corrupted images
from which features could not be extracted. There were a lot of images in different
formats and almost 60−70% of the images were in gif formats. These gif images
were processed to extract the first frame and then saved in a png format which helped
in augmenting the dataset. The steps in order to achieve this objective are described
next:

1. All unwanted formats, such as .txt, were removed.
2. All .gif images were converted to .png files. All frames of the .gif images were

extracted and the first frame was saved as a SPAM image. The rest of the frames
did not contain a SPAM image and were discarded.

3. All corrupted files were removed.

In order to achieve the above objectives, different proofs of concepts were tried.
We created bash scripts to perform all the above steps and keep track of the results
after each step to get a clean augmented SPAM images archive.

5.3 Image Features

The first part of the experiments used NNs and DNNs on features extracted from
the images from the different datasets. We use the 38 features as mentioned in [2].
The features are classified into five big categories: metadata, color, texture, shape,
and noise features. Figure 3 below describes the different features belonging to each
category. The different categories of features are discussed below.

5.3.1 Metadata Properties

These properties contain the image height, width, aspect ratio, bit depth, and com-
pression ration of the image files. Compression of an image is defined as

Compression Ratio = height ∗ width ∗ channels

file size
(4)

5.3.2 Color Properties

These properties include mean, skew, variance, and entropy values of different prop-
erties of an image such asRGBcolors, kurtosis, hue, brightness, and saturation.Mean
can be a basic color feature that represents the average pixel value of the image. That
is, it is useful for determining an image background. A SPAM compared to a HAM
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Fig. 3 Different image features [2]
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Fig. 4 SPAM verses HAM RGB’s histogram

Fig. 5 SPAM verses HAM HSV’s histogram

image has different histogram properties for these features as depicted in the exam-
ples of Fig. 4. These histograms show the reasoning behind selecting these properties
of color for the classification task. Similarly, in the examples of Fig. 5 one can see
the histogram for HSV’s values of a SPAM and a HAM image. In images, a glossier
surface has more positive skew values as compared to a lighter and matte surface.
Hence, we can use skewness in making judgments about image surfaces. Kurtosis
values are interpreted in combination with noise and resolution measurement. High
kurtosis values go hand in hand with low noise and low resolution. SPAM images
usually have high kurtosis values.

5.3.3 Texture Properties

The local binary pattern (LBP) is used to determine similarity and information of
adjacent pixels. The LBP would appear to be a strong feature for detecting an SPAM
image that is simply text set on awhite background. In the case of SPAM images these
histograms will have high intensity for specific values rather than being scattered.
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5.3.4 Shape Properties

Histogram of oriented gradients (HOG) determines how intensity gradient changes
in an image. HOG descriptors are mainly used to describe the structural shape and
appearance of an object in an image, making them excellent descriptors for object
classification. Edges are one of the most important features to detect SPAM images.
They serve to highlight the boundaries in an image. Canny edge filters are used to
find the edges. Fig. 8 shows the contrast in canny edges for SPAM and HAM images.
Figures6 and 7 show the hog features for a HAM and a SPAM image.

5.3.5 Noise Properties

These features include signal to noise ratio (SNR) and entropy of noise. SPAM
images tend to have lesser noise as compared to HAM images. SNR is defined as the
ratio of mean to standard deviation of an image.

5.4 Techniques Used

Let us briefly describe the various techniques and architectures that we are going to
use.

5.4.1 Neural Networks

Abackpropagation neural networkwith 1 hidden layerwith 20 neuronswas used. The
input layer consisted of the 38 features. The hidden layer used the RELU activation
function and the output layer consists of the sigmoid activation function with one
neuron. A K -fold stratified cross validation, with K = 10, was used with this. An
architecture of the model is shown in Fig. 8.

5.5 Deep Neural Networks

The previous neural network was extended to introduce another hidden layer with 10
neurons and with the RELU activation function. Binary cross entropy was used as
the loss function and again with K -fold stratified cross validation. We make use of
two CNN architectures. We name them as CNN1 and CNN2. CNN1 was trained for
30 iterations, whereas CNN2 was run with 25 iterations. Both of them were trained
with a batch size of 64 images. The training set contained 19924 images, whereas
the validation set contained 2681 images.
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Fig. 6 a HAM original Image b HAM Grayscale Image c HAM HOG d HAM Canny edges

5.5.1 CNN1 Architecture

The CNN1 architecture as defined below was used as the third model to draw results.
The images were first rescaled to 128x128x3 and then fed to the network.

1. 96 filters of size 3 × 3 × 3 were used to the input layer with a stride of 1 followed
by the RELU function.
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Fig. 7 a SPAM original Image b SPAM Grayscale c SPAM HOG d SPAM Canny edges

2. On the output of 96 × 126 × 126 from the previous layer a max pool layer is used
taking the maximum value from a 3 × 3 area with stride of 2 × 2.

3. On the input of 96 × 62 × 62 from previous layer another convolution layer with
128 filters, with 3 × 3 filter size and stride of 1, and no padding is used followed
by a RELU activation function.

4. On 128 × 60 × 60 input from previous layer another max pooling layer with a
3 × 3 area and stride of 2 is used on the input of previous layers to produce an
output of size 128 × 29 × 29.

5. The input of the previous layer is flattened and given to a fully connected layer.
The N vector obtained from the input layer is of size 107648. On this N vector a
dense layer of size 256 is used with RELU as activation function and a dropout
layer with probability of 0.1. Another dense layer of size 1, which acts as the
output layer is added to the end of this with sigmoid activation function.
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Fig. 8 Neural network architecture

5.5.2 CNN2 Architecture

The CNN2 architecture is defined below and was used as the fourth model to draw
results. The images were again first rescaled to 128 × 128 × 3 and then fed to the
network.

1. 128 filters of size 3 × 6 × 6were used to the input layer with a stride of 2 followed
by the rectilinear linear operator (RELU) function.

2. On the output of 128 × 62 × 62 from previous layer a max pool layer is used
taking the maximum value from a 4 × 4 area with stride of 1.

3. On the input of 128 × 59 × 59 from previous layer another convolution layer with
128 filters with 4 × 4 filter size and stride of 1 and no padding is used followed
by a RELU activation function.

4. On 128 × 56 × 56 input from previous layer another max pooling layer with a
3 × 3 area and stride of 1 is used on the input of previous layers to produce an
output of size 128 × 54 × 54.

5. On the previous layer input another convolution layer with 256 filters with 3 × 3
filter size and stride of 2 is used followed by a RELU activation function.

6. On the 256 × 26 × 2 input from the previous layer another max pooling layer
with a 5 × 5 area and stride of 2 is used on the input of previous layers to produce
an output of size 256 × 12 × 12.

7. The input of the previous layer is flattened and given to a fully connected layer.
The N vector obtained from the input layer is of size 36864. On this N vector a
dense layer of size 1024 is used with RELU as activation function and a dropout
layer with probability of 0.2. Another dense layer of size 128 is added after that
with a dropout layer with probability of 0.1 and RELU activation function. The
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final layer is of 1 neuron, which acts as the output layer with sigmoid activation
function.

5.6 Transfer Learning

There are pre-trained models that are open sourced. These models are trained on
billions of images such as the ImageNet database [9]. Transfer learning is used to
decrease the computation time to train your own network and to make you make use
of these pre-trained networks. We can freeze some layers based on our requirements
and only train a subset of those layers on our own dataset. There are two such pre-
trained models available as open source, VGG16 and VGG19 [7, 12]. However, here
we only discuss the VGG19 model and the assumption is that VGG16 would have
performed similar to VGG19 with some minor difference in accuracy.

5.6.1 VGG19

In the VGG19 architecture we added 3 fully connected layers at the bottom with
1024, 512, and 1 layer, respectively and added a dropout layer with probability of
0.3 with 1024 neurons layer. We freeze all the layers of the network and just trained
this fully connected layer added to the end in 50 iterations.

6 Experimental Results

We first discuss the NNs results, then we go deeper and show our results for DNNs.
After that, we will show an alternative approach, of using raw images from our
dataset, and explain the results obtained for the CNN1 and the CNN2 architecture.
Finally, we conclude with the results obtained from the VGG19 model, which uses
the transfer learning approach. All the results were obtained by using the datasets
discussed in Sect. 5. Specifically, NNs and DNNs were trained and tested on the
Dredze, the ISH dataset, and the improved dataset. Whereas CNN1, CNN2, and
VGG19 were run on the combined dataset.

6.1 Neural Network Results

We created a neural network with the architecture discussed in Sect. 5 and ran it for
the ISH, Dredze, and Improved Dataset.
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Fig. 9 ROC and confusion matrix for ISH dataset trained on NN

Fig. 10 ROC curve for NN
when trained on Improved
dataset and with ISH dataset

6.1.1 ISH Dataset

TheNNwas runwith 100mini batch size and for 500 iterationswith 10-fold stratified
cross validation. The mean accuracy obtained after training the model was 99.07%.
Figure 9 shows the AUC achieved by the best classifier over the whole ISH dataset
and the confusion matrix obtained with a 0.7 threshold value is shown in Fig. 9. The
FP rate obtained was 0.12%.

When the above-trained model was tested on the improved dataset, it gave a very
low accuracy of 5.5%, which was expected as the improved dataset was meant to fool
such classifiers. So, in the next experiment the ISH dataset and with the improved
dataset and then trained on the NN, which gave an accuracy of 98.29% and an area
under curve of 0.99. The ROC curve regarding the same is given in Fig. 10.
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Fig. 11 ROC and confusion Matrix for Dredze dataset trained on NN

Fig. 12 ROC curve for
Dredze dataset combined
with improved dataset on NN

6.1.2 Dredze Dataset

The same NN was run on the Dredze personalized dataset and on the Dredze spam
archive combined with 10-fold stratified cross validation. We got mean accuracy
of 98.9% and 96.71%, respectively. The ROC curve when the NN was run on the
Dredze spam archive and with the personalized dataset is shown in Fig. 11 alongside
its confusion matrix. The FPR achieved in this case was 0.8%. When this model was
tested on the improved dataset we achieved an accuracy of 4.2%.

When the whole Dredze dataset was combined with the improved dataset and
then trained on the NN we achieved an accuracy of 94.42%. Figure 12 below shows
the ROC curve obtained for the same experiment.
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Fig. 13 Summarized Result of NN trained on different datasets

The summary of all the results when trainedwith different combination of datasets
on the NN is given in Fig. 13.

As shown above, NN gave best results for the ISH dataset. It performed worse
when trained on the ISH or the Dredze dataset, and then tested on the improved
dataset. However, when the two datasets were combined with the improved dataset,
the NN was still able to perform better, however, decreased the overall accuracy of
the other datasets as it acted as noise for them.

6.2 Deep Neural Network Results

The purpose of using a DNN was to compare the results obtained from the NN
and see if the introduction of extra hidden layers actually affects the results or not.
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Fig. 14 ROC and confusion matrix for ISH dataset trained on DNN

The experiments are performed on the same datasets and their combination with the
improved dataset as done in the NN approach.

6.3 Image Spam Hunter

Two experiments were performed on the ISH with the same configuration as dis-
cussed in Sect. 5. When the DNN was trained on the ISH dataset alone we achieved
a mean accuracy of 98.78%, the ROC curve and the confusion matrix are shown
in Fig. 14. The FPR in this case was 0% and when this model was tested on the
improved dataset we achieved an accuracy of 5.24%. When the DNN was trained
on the improved dataset and with the ISH dataset we achieve a mean accuracy of
98.13% and an ROC curve as shown in Fig. 15.

6.4 Dredze Dataset

After training it on the personalized dataset we achieved an accuracy of 98.95%.
When the same model was trained on the personalized combined with the SPAM
archive we obtained an accuracy of 96.82% and a FPR of 1%. When this model was
tested on the improved dataset we achieved an accuracy of 5.9%. The ROC curve
and confusion matrix obtained for the latter case is shown in Fig. 16.

When the Dredze dataset was combined with the improved dataset we achieved
the following ROC curve of Figure 17 and a mean accuracy of 95.63%.

The summary of all the results when trained with different combination of dataset
on the DNN is shown in Fig. 18.
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Fig. 15 ROC curve for ISH dataset and with improved dataset and trained on DNN

Fig. 16 ROC and confusion matrix for Dredze dataset trained on DNN

After comparing the results we obtain fromNNs and DNNs, we can conclude that
the introduction of an extra layer indeed increases the accuracies for Dredze dataset
with more samples but decreases the accuracy of the ISH dataset with comparable
lesser samples. It also became more robust with the improved dataset.

6.5 Convolution Neural Networks and Transfer Learning
Results

We trained the CNN1 and the CNN2 architectures on 19924 images of SPAM and
HAM, and test on 2681 images. TheCNN1, CNN2, andVGG19 are trained on aGPU
machine with GeForce GTX 960M, Cuda Version 8.0 and compute capability—5.0
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Fig. 17 ROC curve for Dredze dataset combined with improved dataset on DNN

Fig. 18 Summarized Result of DNN trained on different datasets
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Fig. 19 Accuracy verses Loss for the CNN1 model

Fig. 20 CNNs and transfer learning accuracies

configuration, and each model took an average of 4 days to train. CNN1 was trained
for 30 iterations, CNN2 for 25 iterations, and VGG19 for 50 iterations. For all of
these models Adam optimizer was used along with binary cross entropy. Figure 19
shows the training accuracy, training loss, validation accuracy, and validation loss
obtained over the 40 epochs the CNN1 model was trained on.

Then, Fig. 20 shows the accuracy results for the three models when trained on the
combined dataset, and when tested on the improved dataset.

From the above table it can be concluded that as the CNN2 performed little bit
better as compared to CNN1 as it had more layers. Also VGG19 performed better
than the other two because it was a pre-trained model on a much larger dataset.
Transfer learning hence is preferable in such scenarios when there are lesser time
and resources available to train your own model.

7 Conclusion and Future Work

In this work we make use of different real-world image spam datasets and provide
strong classifiers based on neural networks, deep neural networks, and convolution
neural networks. We compare our results to the ones presented by Aneri et al. [2].
These techniques were able to learn even from the improved dataset provided by
them. We performed different experiments with different combinations of datasets
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which were derived from Dredze (image archive and personalized), the image spam
hunter, and the improved dataset. In the CNN experiments, we matched and kept
the datasets for SPAM and HAM balanced by randomly sampling HAM files from
different categories over the Internet.All the experiments, especially the oneswith the
convolution neural networks, showed really promising results because the size of the
used dataset was comparatively much larger to the previous experiments performed
in the past and the diversity of the HAM files.

With the advent of deep learning which make use of big data available across
the Internet, even more strong classifiers are feasible. Techniques like generative
adversarial networks (GAN’s), introduced in year 2012 by Ian Goodfellow [6] can
be used for this purpose. Using GAN’s which is based on Nash equilibrium, more
stronger and robust classifiers can be built. Also, object segmentation using CNN
and RNN (Recurrent Neural Networks) [19] can be used to detect the segmented
region of SPAMS and remove them from the images by extrapolating a background
from ham images. Using such techniques, SPAM images can be converted to ham
dynamically. Also, different experiments with different architectures within the CNN
can be used to quantify different results.We can also use recursive feature elimination
(RFE) and univariate feature selection (UFS), as done in [2] on the image features,
when trained to neural networks and deep neural network to decrease the number of
features under consideration.
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Universal Adversarial Perturbations and
Image Spam Classifiers

Andy Phung and Mark Stamp

Abstract As the name suggests, image spam is spam email that has been embed-
ded in an image. Image spam was developed in an effort to evade text-based filters.
Modern deep learning-based classifiers performwell in detecting typical image spam
that is seen in the wild. In this chapter, we evaluate numerous adversarial techniques
for the purpose of attacking deep learning-based image spam classifiers. Of the
techniques tested, we find that universal perturbation performs best. Using univer-
sal adversarial perturbations, we propose and analyze a new transformation-based
adversarial attack that enables us to create tailored “natural perturbations” in image
spam. The resulting spam images benefit from both the presence of concentrated
natural features and a universal adversarial perturbation. We show that the proposed
technique outperforms existing adversarial attacks in terms of accuracy reduction,
computation time per example, and perturbation distance. We apply our technique to
create a dataset of adversarial spam images, which can serve as a challenge dataset
for future research in image spam detection.

1 Introduction

E-mail, or electronic mail, is one of the most popular forms of communication in
the world, with over 3.9 billion active email users [4]. As a side effect of this rapid
growth, the number of unwanted bulk email messages—i.e., spam messages—sent
with commercial or malicious intent has also grown. According to [4], 60 billion
spam emails will be sent each day for the next 3 years.

While text-based spam filtering systems are in use by most, if not all, e-mail
clients [8], spammers can embed messages in attached images to evade such
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systems—such messages are known as image spam. Image spam detectors based
on optical character recognition (OCR) have been deployed to combat such e-mail.
As a countermeasure, spammers can modify images so as to disrupt OCR-based
techniques [9].

In recent years, deep learning models, such as multi-layer perceptrons and con-
volutional neural networks, have been successfully applied to the image spam prob-
lem [1, 2, 6, 9, 12, 24, 25]. Note that these techniques do not rely on OCR, but
instead detect image spam directly, based on characteristics of the images.

With the recent development of perturbation methods, the possibility exists for
spammers to utilize adversarial techniques to defeat image-based machine learning
detectors [26]. To date, we are not aware of perturbation techniques having been used
by image spammers, but it is highly likely that this will occur in the near future.

The main contributions of our research are the following.

• We show that the universal perturbation adversarial attack is best suited for the
task of bypassing deep learning-based image spam filters.

• We propose a new image transformation-based attack that utilizes the maximiza-
tion of layer activations to produce spam images containing universal perturba-
tions. This technique focuses perturbations in the most salient regions, as well as
concentrating natural features in the remaining regions.

• We compare our proposed adversarial technique to existing attacks and find that
our approach outperforms all others in terms of accuracy reduction, computation
time per example, and perturbation magnitude.

• We generate a large dataset containing both non-spam and adversarial spam
images using our proposed attack. The authors will make this dataset available
to researchers.

The remainder of this chapter is organized as follows. In Sect. 2, we provide an
overview of relevant research and related work. In Sect. 3, we evaluate adversarial
attacks in the context of image spam, and in Sect. 4, we present our proposed attack.
Finally, Sect. 5 concludes this chapter, where we have included suggestions for future
work.

2 Background

2.1 Image Spam Filtering

The initial defenses against image spam relied on optical character recognition
(OCR). In such OCR-based systems, text is extracted from an image, at which point
a traditional text-based spam filter can be used [3]. As a reaction to OCR-based tech-
niques, spammers introduced images with slight modifications, such as overlaying a
light background of random artifacts on images, which are sufficient to render OCR



Universal Adversarial Perturbations and Image Spam Classifiers 635

ineffective. The rise of learning algorithms, however, has enabled the creation of
image spam filtering systems based directly on image features.

In 2008, a filtering system using a global image feature-based probabilistic boost-
ing tree was proposed and achieved 89.44% detection rate with a false positive
rate of 0.86% [9]. Two years later, an artificial neural network for image classifica-
tion was proposed [25]. These latter authors used were able to classify image spam
with 92.82% accuracy based on color histograms, and 89.39% accuracy based on
image composition extraction.

The two image spam detection methods presented in [2] rely on the principal
component analysis (PCA) and support vector machines (SVM). In addition, the
authors of [2] introduce a new dataset that their methods cannot reliably detect. Two
years later, the authors of [6] improved on the results in [2] by training a linear
SVM on 38 image features, achieving 98%, accuracy in the best case. The authors
also introduce a challenge dataset that is even more challenging than the analogous
dataset presented in [2].

The recent rise of deep learning, a subfield of machine learning, coupled with
advances in computational speed has enabled the creation of filtering systems capable
of considering not only image features but also entire images at once. In particular,
convolutional neural networks (CNNs) are well suited to computer vision tasks due
to their powerful feature extraction capabilities.

In recent years, CNNs have been applied to the task of image spam detection. For
example, in [1], a CNN is trained on an augmented dataset of spam images, achieving
6% improvement in accuracy, as compared to previous work. Similarly, the authors
of [12] consider a CNN, which achieved 91.7% accuracy. In [24], a CNN-based
system is proposed, which achieves an accuracy of 99% on a real-world image spam
dataset, 83% accuracy on the challenge dataset in [2] (an improvement over previous
works), and 68% on the challenge dataset in [6].

From the challenge datasets introduced in [2, 6], we see that the accuracy of
machine learning-based filtering systems can be reduced significantly with appro-
priate modifications to spam images. In this research, we show that the accuracy of
such systems can be reduced far more by using the adversarial learning the approach
that we present below.

2.2 Adversarial Learning

The authors of [26] found that by applying an imperceptible filter to an image, a given
neural network’s prediction can be arbitrarily changed. This filter can be generated
from the optimization problem

minimize ‖r‖2
subject to f (x + r) = l and x + r ∈ [0, 1]m,
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where f is the classifier, r is theminimizer, l is the target label, andm is the dimension
of the image. The resulting modified images are said to be adversarial examples,
and the attack presented in [26] is known as the L-BFGS Attack. These adversarial
examples generalize well to different network architectures and networks.

More recently, many advances have been made in both adversarial example gen-
eration and detection. For example, in [28] a taxonomy is proposed for generation
and detection methods, as well as a threat model. Based on this threat model, the
task of attacking neural network-based image spam detectors requires an attack that
is false negative (i.e., generative of positive samples misclassified as negative) and
black box (i.e., the attacker does not have access to the trained model). Attacks on
image spam classifiers must satisfy these two criteria.

After the introduction of theL-BFGSAttack, the authors of [10] built on theirwork
in [26] by introducing the Fast Gradient SignMethod (FGSM). This method uses the
gradient of the loss function with respect to a given input image to efficiently create
a new image that maximizes the loss, via backpropagation. This can be summarized
with the expression

advx = x + ε sign
(∇x J (θ, x, y)

)
,

where θ is the parameters of the model, x is the input image, y is the target label, and
J is the cost function used to train the model. These authors also introduce the notion
that adversarial examples result from linear behavior in high-dimensional spaces.

The authors of [5] introduce C&W’s Attack, a method designed to combat defen-
sive distillation, which consists of training a pair of models such that there is a low
probability of successively attacking both models. C&W’s Attack is a non-box con-
strained variant of the L-BFGS Attack that is more easily optimized and effective
against both distilled and undistilled networks. They formulate adversarial example
generation as the optimization problem

minimize D(x, x + δ) + c · f (x + δ)

such that x + δ ∈ [0, 1]n,

where x is the image, D is one of the three distance metrics described below, and c is
a suitably chosen constraint (the authors choose c with binary search). The authors
also utilize three distance metrics for measuring perturbation: L0 (the number of
altered pixels), L2 (the Euclidean distance), and L∞ (the maximum change to any of
the coordinates), and introduced three subvariants of their attack that aim tominimize
each of these distance metrics.

It is important to note that the previously mentioned attacks require knowledge
of the classifier’s gradient and, as such, cannot be directly deployed in a black-box
attack. In [19], the authors propose using a surrogate model for adversarial example
generation to enable the transferability of adversarial examples to attack black-box
models. Differing from gradient-based methods, the authors of [7] introduced a
method, Zeroth-Order Optimization (ZOO), which is inspired by the work in [5].
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The ZOO technique employs gradient estimation, with themost significant downside
being that it is computationally expensive.

The paper [14] introduces the DeepFool attack, which aims to find the minimum
distance from the original input images to the decision boundary for adversarial
examples. They found that the minimal perturbation needed for an affine classifier is
the distance to the separating affine hyperplane, which is expressed (for differentiable
binary classifiers) as

argminηi
‖ηi‖2

such that f (xi ) + ∇ f (xi )
Tηi = 0,

where i denotes the iteration, η is the perturbation, and f is the classifier. In com-
parison to FGSM, DeepFool minimizes the magnitude of the perturbation, instead of
the number of selected features. This would appear to be ideal for spammers, since
it would tend to minimize the effect on an image.

The universal perturbation attack presented in [13] is also suited to the task at
hand.Webelieve that universal adversarial examples aremost likely to be deployedby
spammers against black-box models due to their simplicity and their transferability
across architectures. Generating universal perturbations is an iterative process, as the
goal is to find a vector v that satisfies

‖v‖p ≤ ξ and Px∼μ(k̂(x + v) �= k̂(x)) ≥ 1 − δ,

where μ is a distribution of images, k̂ is a classification function that outputs for
each image x and a label k̂(x). The results in [13] show that universal perturbations
are misclassified with high probability, suggesting that the existence of such pertur-
bations are correlated to certain regions of the decision boundary of a deep neural
network.

Finally, the authors of [11] propose input restorationwith a preprocessing network
to defend against adversarial attacks. The authors’ defense improved the classification
precision of a CNN from 10.2% to 81.8%, on average. These results outperform
existing input transformation-based defenses.

3 Evaluating Adversarial Attacks

3.1 Experimental Design

The two multi-layer perceptron and convolutional neural network architectures pre-
sented in [24] are each trained on both of the datasets presented in [9], which
henceforth will be referred to as the ISH Dataset, and the dataset presented in [6],
which henceforth will be referred to as the MD Dataset (modified Dredze). We use
TensorFlow [27] to train our models—both architectures have been trained as they
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Table 1 Image spam datasets

Name Spam images Non-spam images

ISH dataset 928 830

MD dataset 810 784

Total 1738 1613

were presented in their respective articles on each of the datasets. NumPy [17] and
OpenCV [18] are used for numerical operations and image processing tasks, respec-
tively. All computations are performed on a laptop with 8GB ram, using Google
Colaboratory’s Pro GPU.

The ISH Dataset contains 928 spam images and 830 non-spam images, while the
MDDataset contains 810 spam images and 784 non-spam images; all images in both
datasets are in jpg format. These datasets are summarized in Table1.

Dataset preprocessing for the networks presented in [24] consists of downsizing
each of the images such that their dimensions are 32 × 3, applying zero-parameter
Canny edge detection [20] to a copy of the downsized image, and concatenating the
downsized image with the copy that had Canny edge detection applied. This process
results in 64 images, which are used to train the two neural networks, one for the ISH
dataset, and one for the MD dataset. The four resulting models achieved accuracies
within roughly 7% of the accuracies reported in [24].

To enable the generation of adversarial examples, four larger models with an
input size of 400x400 are also trained on the original datasets. The first few layers
of each of these models are simply used to downscale input images such that the
original architectures can be used after downscaling. These four alternative models
achieve accuracy roughly equivalent to the original models. The four adversarial
attacks (FGSM, C&W’s Attack, DeepFool, and universal perturbation) utilize these
four alternative models to generate adversarial examples that can then be formatted
as the original datasets to attack the original four models. This procedure attempts
to exploit the transferability of adversarial examples to similar architectures.

The IBM Adversarial Robustness Toolbox (ART) [16] is used to implement
C&W’s Attack, DeepFool, and universal perturbations, while FGSM was imple-
mented independently from scratch. An attemptwasmade to optimize the parameters
of each technique—the resulting parameters are summarized in Table2. Note that
for the universal perturbation attack, FGSM was used as the base attack, as the IBM
ART allows any adversarial attack to be used for computing universal perturbations.

The metrics used to evaluate each of the four attacks are the average accuracy,
area under the curve (AUC) of the receiver operating characteristic (ROC) curve,
average L2 perturbationmeasurement (Euclidean distance), and average computation
time per example for each of the four models. Scikit-learn [21] was used to generate
the ROC curves for each attack.

We use 251 data points for accuracy and L2 distances collected for the FGSM,
DeepFool, and universal perturbation experiments, in accordance with the full size
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Table 2 Attack parameters

Attack Description Value

FGSM Perturbation magnitude 0.1

C&W’s attack Target confidence 0

Learning rate 0.001

Binary search steps 20

Maximum iterations 250

Initial trade-off 100

Batch size 1

DeepFool Max iterations 500

Overshoot parameter 10−6

Class gradients 10

Batch size 1

Universal perturbation target accuracy 0%

Max iterations 250

Step size 64

Norm ∞

of the test dataset, which contains 251 examples for generating adversarial examples.
However, only 28 data points were collected from the C&W’s Attack experiment due
to a large amount of time required to generate each data point (roughly five minutes
per data point). The technique that will be used as the basis of our proposed attack
will be selected based on the performance of each attack, as presented in the next
section.

3.2 Analysis

The mean accuracy, computation time per example, and L2 distance were recorded
for each of the four models attacked by each of the attack methods. This data was
compiled into the tables discussed in this section.

FromTable3, we see that for FGSM, the accuracy of the attackedmodels is shown
to vary inconsistentlywhile Fig. 1 shows that the distribution of the L2 distances of the
generated adversarial examples skew right. Based on these results and corresponding
density plots of the accuracy and L2 distance distributions, the FGSM attack can be
ruled out as a candidate due to poor accuracy.

The mean L2 (Euclidean) distances of the adversarial examples are given in
Table4. The distribution of distances appears to be roughly equivalent across all
attacks.

DeepFool can also be ruled as a candidate, as the attack has been seen to be only
marginally better than the FGSM attack in terms of performance while also having a
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Table 3 Mean accuracy per adversarial example

Model FGSM (%) C&W’s attack
(%)

DeepFool (%) Universal
perturbation (%)

MLP (ISH) 95.2 89.2 98.8 98.7

CNN (ISH) 36.2 49.6 61.5 49.9

MLP (MD) 69.7 75.6 93.5 94.3

CNN (MD) 82.8 77.2 14.5 8.4

Fig. 1 Density plot of L2
(Euclidean) distances (Fast
Gradient Sign Method)

Table 4 Mean L2 (Euclidean) distance of adversarial examples from original images

Model FGSM attack C&W’s DeepFool
perturbation

Universal

MLP (ISH) 11537.55 10321.77 11513.26 11483.72

CNN (ISH) 11108.44 10924.14 11216.19 11416.58

MLP (MD) 8998.71 9185.04 9566.02 9490.56

CNN (MD) 9144.49 9009.91 9128.99 9381.15

Table 5 Mean computation time per adversarial example

Model attack FGSM C&W’s DeepFool
perturbation

Universal

MLP (ISH) 0.180 269.65 19.90 4.37

CNN (ISH) 0.038 251.01 4.75 2.87

MLP (MD) 0.164 270.58 36.30 3.71

CNN (MD) 0.165 244.47 1.48 5.23

significantly higher average computation time per adversarial example. This can be
observed in Table5, where the computation time per example varies greatly.

In contrast, C&W’sAttack shows consistent performance in all threemetrics at the
cost of high computation time (roughly five minutes per adversarial example). The
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Fig. 2 Density plot of L2 (Euclidean) distances (C&W’s Attack)

Fig. 3 ROC curves of C&W’s Attack and the universal perturbation when used to attack the four
classifiers

consistency of this attack is ideal from a spammer’s perspective, though the trade-off
is a relatively high computation time. In addition, the left skew of this attack with
respect to L2 distance, as presented in Fig. 2, indicates that the perturbation made to
spam images is much lower in comparison to the other attacks.

The universal perturbation attack is inconsistent in terms of accuracy, as shown in
Table3, where the mean accuracy across the four models is clearly shown to fluctuate
wildly, but this is simply due to the fact that only one perturbation (albeit with
varying success across architectures) is applied to all spam images, which is highly
advantageous for spammers. The generation and application of this perturbation to
an image takes roughly four seconds, which would result in greater performance in
a real-world spam setting in comparison to C&W’s Attack.

To further compare C&W’s Attack and the universal perturbation attack, the ROC
curves of the two are presented in Fig. 3. These ROC curves can be used to quantify
the diagnostic ability of the models attacked by each method.
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Table 6 Mann–Whitney U test results comparing C&W’s attack and the universal perturbation
attack

Model Accuracy p-value L2 distance p-value

MLP ISH 0.000 (H0 is rejected) 0.034 (H0 is rejected)

CNN ISH 0.384 (H0 is not rejected) 0.098 (H0 is not rejected)

MLP MD 0.000 (H0 is rejected) 0.057 (H0 is not rejected)

CNN MD 0.000 (H0 is rejected) 0.016 (H0 is rejected)

The ROC curve for C&W’s attack is much noisier due to being generated from
only 28 data points. Taking this into consideration, it can be inferred that both C&W’s
Attack and the universal perturbation attack are able to reduce the areas under the
ROC curve (AUC) of the attacked models to values close to 0.5. This suggests that
both attacks are able to reduce the class separation capacity of attacked image spam
classifiers to essentially random.

To analyze the differences in distribution of the accuracy and L2 distance data
collected from the trials conducted on C&W’s Attack and the universal perturbation
attack, the Mann–Whitney U test was utilized via its implementation in SciPy [22].
The Mann–Whitney U test compares two populations—in this case, the accuracy
and L2 distance data from both attacks for each attacked model. The null hypothesis
(H0) for the test is that the probability is 50% that a randomly drawn value from
the first population will exceed a value from the second population. The result of
each test is a Mann–Whitney U Statistic (not relevant in our case) and a p-value. We
use the p-value to determine whether the difference between the data is statistically
significant, where the standard threshold is p = 0.05. The results of these tests are
given in Table6.

The results in Table6 imply that the performance of these two attacks (C&W’s
Attack and the universal perturbation attack) are nearly identical when attacking a
CNN trained on the ISH dataset, as evidenced in the second row, where the null
hypothesis is not rejected. However, the L2 distance measurement for spam images
that have had the universal perturbation applied should remain constant relative to the
original spam image. Therefore, the results of these tests suggest that the universal
perturbation attack is able to achieve similar performance to C&W’s Attack, in terms
of perturbation magnitude, with a much lower computation time per example in
comparison to C&W’s Attack.

Given the above evidence, the universal perturbation attack is the best choice for
image spam, as it is unrivaled in termsof potential performance in a real-world setting.
The key advantages of the universal perturbation attack include that it generates a
single perturbation to be applied to all spam images and its relatively fast computation
time per adversarial example. Therefore, universal perturbationwill be used as a basis
for our image transformation technique, as discussed and analyzed in the remainder of
this paper.A sample adversarial spam imagegeneratedwith the universal perturbation
attack is presented in Fig. 4.
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Fig. 4 Adversarial spam
image generated with the
universal perturbation attack

4 Inceptionism-Augmented Universal Perturbations

4.1 Procedure

Based on the results and discussion above, a transformation that is applied to spam
images prior to generating adversarial examples, since perturbations cannot be trans-
formed after application, should meet the following conditions.

• Lower the misclassification rate
• Preserve adversarial effects after image resizing
• Make non-spam features more prominent while retaining legibility

Given the above criteria, a reasonable approach would be to maximize the presence
of “natural features” in a given spam image. That is, the features characteristic of
non-spam images learned by classifiers should be maximized while retaining leg-
ibility. To accomplish this, the procedure for maximizing the activation of a given
output neuron (in this case, the non-spam output neuron), as introduced in [15],
dubbed “DeepDream,” can be used to increase the number of natural features in
all images from the non-spam subsets of the ISH and MD datasets. This is accom-
plished by maximizing the activations of the convolutional layer with the greatest
number of parameters and output layer in the corresponding CNNs. The resulting
two sets of images that have had DeepDream applied (“dreamified” images) are then
grouped into batches of four images. The weighted average of the four images in
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each batch can then be taken to produce two processed non-spam datasets of images
with high concentrations of natural features, as batches of greater than four images,
may result in high noise. Each of the images in the resulting two non-spam datasets
are henceforth referred to as natural perturbations.

To preserve the adversarial effect that the universal perturbation introduces, the
Gradient-weighted Class Activation Mapping (Grad-CAM) technique introduced
in [23] is used to generate a class activation map for each spam image in each
dataset. The inverse of each such map is used with a natural perturbation generated
from the samedataset to remove the regions of the natural perturbationwhere the class
activation map is highest. By superimposing the resulting natural perturbations onto
the corresponding spam images, the regions where the universal perturbation is most
effective are left intact while the regions of the spam images affected by the natural
perturbations benefit by being more non-spam like. The presence of natural features
in the resulting spam images should also result in robustness against resizing prior
to inference by a deep learning-based image spam detection model, as the natural
features should be still be somewhat preserved even after being shrunken.

The universal perturbation is then applied to each of the resulting spam images.
The result is that we potentially reduce a deep learning-based image spam detector’s
accuracy due to the presence of a natural perturbation and a universal adversarial
perturbation and retain some sort of adversarial effect in the case of resizing. This
procedure also allows for the retention of legible text within spam images.

4.2 Implementation

To generate our two sets of “dreamified” images, the CNN architecture presented
in [24] is trained on both the ISH and MD datasets, with inverted labels to allow
for the maximization of the activations of the neurons corresponding to non-spam
images, as the activations for spam images would be maximized if the labels weren’t
inverted. These two models are trained with the TensorFlow Keras API, with the
hyperparameters given in [24]. For each of the models, the convolutional layer with
the highest number of parameters and the output layer were chosen as the layers in
which the activation should be maximized via gradient ascent, as the aforementioned
convolutional layer is responsible for recognizing the most complex natural features.
Each of the images from the non-spam subsets of the ISH and MD datasets were
used for inference on the two CNN models. The CNN models use the losses of the
chosen layers to iteratively update the non-spam images with gradient ascent so that
the number of non-spam features is maximized. Each non-spam image is updated
for 64 iterations with an update size of 0.001. The resulting “dreamified” images are
then grouped into batches of 4 and blended via evenly distributed weighted addition
to produce a total of 392 grayscale images, each of size 400 × 400 × 1. These 392
grayscale images are evenly split between the ISH dataset and MD datasets.

To utilize GradCAM, the CNN architecture presented in [24] is trained on both
the ISH and MD datasets with normal labels. For each image from the spam subsets
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Table 7 Mean accuracy of each model with spam images created by the proposed method

Images MLP (ISH) (%) CNN (ISH) (%) MLP (MD) (%) CNN (MD) (%)

Modified spam
images

80.1 98.8 98.4 75.3

Modified spam
images with
universal
perturbations

72.2 50.4 78.7 23.7

of the ISH and MD datasets, GradCAM is used to generate a corresponding class
activation map based on the activations of the last convolutional layer in each of the
twomodels. This is accomplished by computing the gradient of the top predicted class
with respect to the output feature map of the last convolutional layer, using the mean
intensity of the gradient over specific feature map channels. OpenCV [18] is then
used to upscale each of the class activationmaps to 400 × 400, convert them to binary
format and invert the result to allow the class activation maps to be applied to the
natural perturbations such that only the areas with the highest activation will contain
the natural perturbations. The bitwise AND of each processed class activation map
and a randomly selected natural perturbation can then be used to generate two sets of
processed natural perturbations, which are superimposed on the corresponding spam
images from each of the two spam subsets. This procedure results in two subsets of
spam images with natural perturbations.

Lastly, the universal perturbation is generated and applied to all images within the
two spam image subsets that have had natural perturbations applied. For this opera-
tion, we use the IBMAdversarial Robustness Toolbox [16]. The hyperparameters for
the Universal Perturbation attack remain the same as those given in Table2, above.

4.3 Performance Evaluation

The mean accuracy, computation time per example, and L2 distance were recorded
for each of the four models attacked using spam images with modified universal
perturbations. This is analogous towhat was done during the attack selection process.
This data has been compiled into the tables discussed in this section.

As can be seen from the results in Table7, the proposed method for generating
adversarial spam images is capable of lowering a learning-based model’s accuracy
to 23.7%. In addition, on average, our proposed technique is much more effective
while being evenly distributed in terms of accuracy on similar learning-basedmodels.

From Table8, we see that in contrast to C&W’s Attack, which on average takes
258.93 s per example, the time necessary to generate adversarial spam images with
natural perturbations is significantly lower and comparable to that of the original
Universal Perturbation attack. This is another advantage of our proposed attack.
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Table 8 Mean computation time per adversarial spam image (in seconds)

MLP (ISH) CNN (ISH) MLP (MD) CNN (MD)

5.46 5.15 5.87 4.80

Table 9 Mean L2 (Euclidean) distance of modified adversarial spam images from original images

MLP (ISH) CNN (ISH) MLP (MD) CNN (MD)

11392.02 11309.40 9440.69 9628.61

Fig. 5 Density plot of L2
(Euclidean) distances of the
modified adversarial spam
images from the original
images

The mean L2 distances and the distribution of the L2 distances of the modified
adversarial spam images are given in Table9. From Fig. 5, we see that the distri-
butions of these distances are, on average, not skewed, indicating that the natural
perturbations have had a slightly negative effect on the spam image L2 distances, as
the distributions for the original Universal Perturbation attack were skewed to the
left.

The ROC curves of the models attacked by the proposed method, which appear in
Fig. 6, are slightly worse in comparison to that of the original Universal Perturbation
attack, suggesting oncemore that the attack is capable of reducing the class separation
capacity of attacked image spam classifiers to essentially random.

4.4 Proposed Dataset Analysis

Figure7 contains an example of modified adversarial spam images. From this image,
we observe that the proposed method was able to effectively utilize class activation
maps generated with GradCAM to selectively apply a random natural perturbation
to the spam image. As discussed in the previous section, this decreases classification
accuracy even prior to the application of a universal perturbation.
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Fig. 6 ROC curves of each
of the four models attacked
by the modified spam images
generated with the proposed
method

Fig. 7 Example of modified
adversarial spam image
generated with the proposed
method

To fully evaluate the effect of the modified adversarial spam images from the two
modified datasets, two sets of class activation maps are generated from the spam
subsets of the two datasets using GradCAM and the corresponding CNN models.
These activation maps are then averaged to obtain two heatmaps from the class
activation maps, as shown in Figs. 10 and 11. For comparison, the same process was
applied to the original datasets to obtain Figs. 8 and 9.

As can be seen in Figs. 8 and 9, the activation regions for spam images from the
original ISH and MD datasets are skewed towards the top and bottom. The narrow
shape of these regions represent the regions in spam images that generate the highest
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Fig. 8 ISH spam data

Fig. 9 MD spam data

Fig. 10 Modified ISH spam
data
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Fig. 11 Modified MD spam
data

activations in the neurons of the deep learning-based classifier. The central region of
the average class activationmap for spam images from theMDdataset ismuch darker
in comparison to that of spam images from the ISH dataset due to the superimposition
of natural images directly onto spam features, as described in [6].

In contrast, Figs. 10 and 11 indicate that the introduction of natural and universal
adversarial perturbations are able to more evenly distribute the activation regions.
This result shows that the spam images from the modified datasets are much closer—
in terms of natural features—to non-spam images. This also suggests that the pro-
posed method outperforms the procedure used to generate the original MD dataset
as outlined in [6].

5 Conclusion and Future Work

Modern deep learning-based image spam classifiers can accurately classify image
spam that has appeared to date in thewild.However, spammers are constantly creating
new countermeasures to defeat anti-spam technology. Consequently, the eventual
use of adversarial examples to combat deep learning-based image spam filters is
inevitable.

In this chapter, four adversarial attacks were selected based on specific restrictions
and constraints of the image spam problem. These adversarial attacks were evaluated
on the CNN and MLP architectures introduced in [24]. For training data, we used
the dataset presented in [9] and [6]. The Fast Gradient Sign Method (FGSM) attack,
C&W’s Attack, DeepFool, and the Universal Perturbation attack were all evaluated
based on mean accuracy reduction, mean computation time per adversarial spam
image, mean L2 distance from the original spam images, and ROC curves of the
attacked classifiers. Through further statistical analysis, the Universal Perturbation
was chosen as a base for our proposed image transformation attack, due to its versa-
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tility and overall high performance in terms of accuracy reduction and computation
time.

Tomaximize the number and intensity of natural features in an attack, the approach
introduced in [15] for maximizing activations of certain layers in a deep neural
network was used. This technique serves to generate sets of “natural perturbations”
from the non-spam subsets of the image spam datasets. These natural perturbations
were then modified via the class activation maps of all spam images in both datasets.
The class activations were generated using GradCAM from the two convolutional
neural networks trained on the ISH and MD datasets. These activation maps allow
the regions in spam images recognized to contribute most to the spam classification
to benefit from a universal adversarial perturbation.

Our technique resulted in comparable—if not greater—accuracy reduction as
compared to C&W’s Attack. In addition, our approach is computation much more
efficient than C&W’s Attack. Furthermore, the nature of our attack implies that the
only potential computational bottleneck is generating the modified natural perturba-
tions. This aspect of the attack would not be an issue in practice, unless a spammer
generates vast numbers (i.e., in the millions) of modified adversarial spam images.

A dataset of modified adversarial spam images has been generated by the authors
by applying the proposed attack to the spam subsets of the ISH and MD datasets.
This dataset will be made freely available to researchers.

Future work will include evaluating the ability of adversarial attack defense meth-
ods. We will consider defensive distillation against adversarial spam images gener-
ated with our proposed attack. The goal of this research will be to develop defenses
specifically designed for natural perturbation-augmented adversarial spam images.
For example, the subtraction of predicted adversarial perturbations is one path that
we intend to pursue.
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