
Achieving Pairing-Free Aggregate
Signatures using Pre-Communication

between Signers

Kaoru Takemure1,2(B) , Yusuke Sakai2 , Bagus Santoso1 ,
Goichiro Hanaoka2 , and Kazuo Ohta1,2

1 The University of Electro-Communications, Tokyo, Japan
2 National Institute of Advanced Industrial Science and Technology (AIST),

Tokyo, Japan

Abstract. Most aggregate signature schemes are relying on pairings,
but high computational and storage costs of pairings limit the feasibility
of those schemes in practice. Zhao proposed the first pairing-free aggre-
gate signature scheme (AsiaCCS 2019). However, the security of Zhao’s
scheme is based on the hardness of a newly introduced non-standard com-
putational problem. The recent impossibility results of Drijvers et al.
(IEEE S&P 2019) on two-round pairing-free multi-signature schemes
whose security based on the standard discrete logarithm (DL) problem
has strengthened the view that constructing a pairing-free aggregate sig-
nature scheme which is proven secure based on standard problems such
as DL problem is indeed a challenging open problem.

In this paper, we offer a novel solution to this open problem. We intro-
duce a new paradigm of aggregate signatures, i.e., aggregate signatures
with an additional pre-communication stage. In the pre-communication
stage, each signer interacts with the aggregator to agree on a specific
random value before deciding messages to be signed. We also discover
that the impossibility results of Drijvers et al. apply if the adversary can
decide the whole randomness part of any individual signature. Based on
the new paradigm and our discovery of the applicability of the impossibil-
ity result, we propose a pairing-free aggregate signature scheme such that
any individual signature includes a random nonce which can be freely
generated by the signer. We prove the security of our scheme based on
the hardness of the standard DL problem. As a trade-off, in contrast to
the plain public-key model, which Zhao’s scheme uses, we employ a more
restricted key setup model, i.e., the knowledge of secret-key model.

Keywords: Aggregate Signatures · Pre-Communication · Knowledge
of Secret Key Model · Rogue-Key Attack

1 Introduction

Boneh et al. [8] introduced the concept of aggregate signatures, in which indi-
vidual signatures on different messages generated by n signers are combined by
c© Springer Nature Switzerland AG 2020
K. Nguyen et al. (Eds.): ProvSec 2020, LNCS 12505, pp. 65–84, 2020.
https://doi.org/10.1007/978-3-030-62576-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62576-4_4&domain=pdf
http://orcid.org/0000-0002-9288-1911
http://orcid.org/0000-0002-5115-8292
http://orcid.org/0000-0003-4604-305X
http://orcid.org/0000-0001-6617-2962
http://orcid.org/0000-0003-3658-0409
https://doi.org/10.1007/978-3-030-62576-4_4

66 K. Takemure et al.

any party acting as an aggregator into a single signature with the length shorter
than the total length of n individual signatures. The aggregate signature scheme
proposed in [8] requires bilinear map computations using pairings in the ver-
ification step, and the security of the scheme is based on the hardness of the
pairing-based Diffie-Hellman assumption.

However, from the perspective of practical implementation and security guar-
antee, it is much preferable if we can avoid the pairings completely. First, the
pairing computation is still relatively quite costly. Since most pairing-based
schemes require pairing computations in verification, for the situation where the
verifiers are lightweight devices, such schemes might not be suitable. In addition,
recently, large cryptanalytic effort, such as [15,19], revealed a new weakness of
pairing based problems, and in a subsequent paper by Guillevic [15], it was
shown that we need to make the field size of the group used for pairing ≈ 75%
larger than the initial recommendation of the parameter for 128-bit security.

Recently, Zhao proposed an aggregate signature scheme based on the sigma
protocol which does not require pairing computation at all [32]. However, the
security of his scheme is based on the hardness of a non-standard computational
problem, i.e., the non-malleable discrete logarithm (NMDL) assumption, which
is newly introduced by Zhao in the same paper.

Therefore, constructing an aggregate signature scheme with the following
properties is a very important open problem from the practical and theoret-
ical points of view: (1) pairing-free, i.e., the scheme does not rely on pairing
computations or pairing-based assumption, and (2) provably secure based on
well-established standard assumptions, e.g., standard discrete logarithm prob-
lem. The aim of this paper is to propose a solution to this open problem. For
simplicity, we will focus only on pairing-free schemes here afterward.

1.1 Properties of Aggregate Signatures and Multi-signatures

Another cryptographic primitive which is closely related to aggregate signatures
is multi-signatures. In a multi-signature scheme, the combined signature must
be the combination of signatures on the same message, while in an aggregate
signature scheme, the combined signature can be the combination of signatures
on different messages. We will show below several properties related to the sig-
nature generating procedure and the security, which most aggregate signatures
and multi-signatures have in common.

Stages in Combining Signatures. Here, we unify the representation of signature
generating procedures in most (pairing-free) multi-signatures and aggregate sig-
natures into a sequence of three stages.1

– Stage I (Offline Stage). In this stage, each signer performs the necessary
interactive communication with other signers before deciding the message to
be signed.

1 It should be noted that an aggregate signature schemes or a multi-signature do not
have to have all the three stages.

Achieving Pairing-Free Aggregate Signatures using Pre-Communication 67

Table 1. Comparison among Pairing-Free Multi-signature and Aggregate Signature
Schemes

Multi signatures Aggregate signatures

BN(-IAS) [5] CoSi [10,29] mBCJ [2,10] Zhao [32] PCAS

#rounds in Stage I 0 0 0 0 1

Non-interactive message decision in

Stage II

No No No Yes Yes

#rounds in Stage III 3 2 2 1 1

#allowed concurrent signing queries poly(n) log(n) poly(n) poly(n) poly(n)

Security Assumption DL OMDL DL NMDL DL

Key-Setup Model plain PK KOSK KV plain PK KOSK
∗ PCAS is our proposed scheme. The first row and the third row indicate the number of interactive com-

munication between signers in Stage I and Stage III respectively. The second row indicates whether the

message decision in Stage II is carried without any interaction between signers. The fourth row indicates

the maximum number of concurrent signing queries which is allowed without breaking the security of the

scheme. Here, n indicates the number of signers. DL, OMDL, NMDL indicate the standard discrete loga-

rithm problem, one-more discrete logarithm problem, and non-malleable discrete logarithm problem [32],

respectively. We describe the notions of the key-setup model mentioned at the final row in the paragraph

Attacks and Key-Setup Model in Sect. 1.1.

– Stage II (Message Decision Stage). In this stage, signers decide the message
they will individually sign and eventually include in the final combined sig-
nature. In the case of multi-signatures, since all signatures to combine have
to be signatures on one single same message, it is almost natural that the
signers communicate to each other interactively to decide the message to be
signed in this stage. In the case of aggregate signatures, generally, a signer
does not need to share the message with other signers.

– Stage III (Online Stage). In this stage, signers share specific values related to
the messages decided in Stage II to others via interactive communication.

Research Question. We compare several pairing-free multi-signature and aggre-
gate signature schemes in Table 1. Notice that most pairing-free multi-signature
schemes require more than one communication round in the online stage (Stage
III), while they achieve provable security based on the hardness of standard
computational problems [2,5,29]. On the other hand, the pairing-free aggregate
signature scheme, Zhao’s scheme only requires a single communication round
in the online stage, while it achieves provable security using the hardness of
newly introduced non-standard computational problems. Our question here is
as follows.

“Is it possible to construct a new scheme which achieves the best of the
two worlds: (1) one communication round in Stage III, and (2) provable
security based on the hardness of standard computational problems ?”

Aggregate Signatures based on Multi-signatures. In a multi-signature scheme,
signatures on the same message are combined into the final signature. However,
one can easily tweak the scheme such that the combined signature will be a
signature on multiple different messages decided by different signers. In Stage
II, via an interactive message decision process, each signer can send an individual

68 K. Takemure et al.

message to all other signers and then combine all different individual messages
into one single message by simple concatenation. This single message will be the
message to be signed which is agreed by all signers. In [5], Bellare and Neven
introduced this concept as Interactive Aggregate Signatures (IAS).

Attacks and Key-Setup Model. In both multi-signatures and aggregate signa-
tures, one should consider an attack scenario which is called the rogue-key attack.
In a rogue-key attack, an attacker generates public keys dishonestly and tries
to forge a combined signature involving such dishonest keys. In general, we can
guarantee the security of the scheme against the rogue-key attacks using the fol-
lowing two basic strategies. The first is (i) to prove directly that there exists no
rogue-key attack, and the second is (ii) to exclude rogue-key attacks by a specific
key registration protocol. These two approaches are formally modeled by (i) the
plain public-key (PK) model [5] and (ii) the knowledge of secret keys (KOSK)
model [6,21], respectively.

(i) The plain PK model is the model without any assumption in the key setup.
In the security model, an adversary can freely choose all cosigners’ public
keys excluding at least one honest signer’s key.

(ii) The KOSK model is the model where all signers need to prove the validity
of their public key. In the security model, an adversary can freely pick all
cosigners’ public keys, but it must output the secret keys corresponding
to these public keys. In practice, the KOSK model can be implemented
using one of the following models: (1) a trusted setup model [25], in which a
dedicated key registration protocol is needed to be executed by each signer,
(2) the key verification (KV) model [2], and (3) the proof-of-possession
(PoP) model [27], where each signer submits a certificate to prove possession
of a secret key.

1.2 Our Contributions

In this paper, we propose a new paradigm for constructing aggregate signature
which we call aggregate signatures with pre-communication (AS with PreCom).
We propose an aggregate signature scheme based on the new paradigm, which
we name PCAS, and proved its security based on the standard discrete loga-
rithm (DL) assumption in the KOSK model using a random oracle. We show
the comparison of PCAS with other pairing-free multi-signature and aggregate
signature schemes in Table 1 (We also show the performance comparison among
aggregate signature scheme and related schemes in Table 2 in Sect. 4).

Most aggregate signature schemes (either with pairings or without pairings)
do not have any interactive round between signers in Stage I. In contrast, an
aggregate signature scheme with pre-communication, have one interactive round
in Stage I before the message deciding stage (Stage II). We believe that this
drawback only has minor effects on the practical use. As shown in Table 1, PCAS
still keeps the most important feature of aggregate signatures, i.e., any signer is
allowed to choose their individual message to be signed without interacting with

Achieving Pairing-Free Aggregate Signatures using Pre-Communication 69

other signers in Stage II. Moreover, one should notice that the total number of
interactive rounds in PCAS, i.e., two, is the lowest number of interactive rounds
that the multi-signature schemes (either with pairing or without pairing) can
ever achieve in theory and these multi-signature schemes are being used widely
in real-world practice today [11].

Comparison to Zhao’s Aggregate Signature Scheme. As opposed to Zhao’s aggre-
gate signature scheme [32] which is proven based on a non-standard computa-
tional problem NMDL, our proposed aggregate signature scheme PCAS is proven
secure under the standard discrete-logarithm (DL) assumption. To prove the
security of our scheme, we assume the KOSK model as the key-setup model.2

Although the KOSK model is more costly compared to the plain PK model, there
are several practical methods for implementing the KOSK model as mentioned
in the previous section.

PCAS achieves a smaller signature size than the signature size in Zhao’s
scheme [32]. Concretely, let n be the number of individual signatures to com-
bine. For λ-bit security, in Zhao’s scheme the combined signature includes n
group elements whose total size is about 2λn bits, while in PCAS the combined
signature includes a random string with the total size of λn bits.

Circumventing Impossibility Results of Drijvers et al. [10]. In [10] Drijvers et al.
showed attacks against several two-round multi-signature schemes and also show
the impossibility of proving the security of those schemes. Since our proposed
aggregate signature scheme bears a resemblance to CoSi scheme [29], one of the
multi-signature schemes covered in [10], one may wonder whether the impossi-
bility results of Drijvers et al. are applicable to our proposed scheme. However,
as shown in a more detailed explanation at Sect. 5, the random value t which
is freshly chosen by the signer in every signature query, is actually sufficient for
our proposed scheme to avoid the impossibility results. Concretely, the root of
the impossibility results is the adversary’s ability to force the honest signer to
use a specific hash value c of the adversary’s choice in the response to a signa-
ture query. This ability is eliminated by the random value t, which makes the
adversary unable to predict the challenge c that the honest signer will use since
c is computed depending on the value of t in our scheme. For more detail, see
the full version of this paper.

1.3 Difficulty and Our Techniques

The Schnorr digital signature scheme [28] built from the Schnorr identification
by the Fiat-Shamir transform [12] is used in many applications as well as ours
because of the small computational complexity and well-established security.
Let q be a prime integer, g be a generator of a cyclic group G with order q,

2 The KOSK model is essential because there is a sub-exponential attack against this
scheme in the plain PK model by using k-sum algorithm as in [10]. For more detail
of this attack, see the full version of this paper.

70 K. Takemure et al.

X be a public key, m be a message, (R, s) is a signature on m, and H be
a hash function H : {0, 1}∗ → Zq. The verification formula of the Schnorr
signature scheme is R = gsX−c where c is the value such that c = H(R,X,m).3

We can aggregate the formula because of the linearity. More specifically, for all
i = 1, . . . , n, when each signer Si (with public key Xi) submits a signature (Ri, si)
on a message mi, one can compress all signatures into (˜R, s̃) where ˜R =

∏n
i=1 Ri

and s̃ =
∑n

i=1 si mod q. Then the verification formula is ˜R = gs̃
∏n

i=1 Xci
i where

ci = H(Ri,Xi,mi).4

However, there are three difficulties in extending the Schnorr digital signature
scheme to multi-signatures or aggregate signatures by the above compression.

First, (I) all signers need to share ˜R before generating a signature. On the
Schnorr signature, a signer inputs Ri to the hash function to generate ci. If
an aggregator compresses all signers’ Ri into ˜R, a verifier cannot know Ri and
cannot compute ci. Thus we need to replace Ri with ˜R in the input of the hash
function, but in that case, then all signers require ˜R for generating signatures.

Second, (II) by sharing ˜R, a reduction fails to simulate the honest signer
in the security proof. In the Schnorr signature scheme, the reduction simulates
the signing oracle by the honest-verifier zero-knowledge property of the sigma
protocol and the random oracle. In detail, the reduction chooses s and c at
uniformly random from Zq, computes R ← gsX−c, sets H(R,X,m) ← c in the
random oracle table, and return (R, s) as a signature. If H(R,X,m) is predefined
by hash queries, the reduction cannot set H(R,X,m) ← c and cannot complete
this simulation. In the case that the input R of the hash function is changed to ˜R,
the reduction can compute ˜R only after an adversary outputs all cosigners’ Ri.
Thus an adversary can know ˜R before the reduction knows it, and can prevent
the reduction from setting H(˜R,X,m) ← c in the random oracle table by making
a hash query (˜R,X,m).

Third, (III) it is hard to compute the solution of the DL problem from forg-
eries because of the term related to cosigners. Recall that the verification formula
is ˜R = gs̃

∏

i X−ci
i . Let X̄ be an instance of the DL problem the reduction tries

to solve. For simplicity, we assume the restricted case where the k-th signer is
the honest signer (Xk = X̄) and a forger assigns distinct group elements to
cosigners’ key. 5 The reduction uses the rewinding technique and obtains the
two formulae ˜R = gs̃

∏

i X−ci
i and ˜R′ = gs̃′ ∏

i X
−c′

i
i where ˜R = ˜R′, and ck �= c′

k.
When the reduction tries to extract the discrete logarithm of X̄ by dividing the
above two formulae, it can obtain

X̄ck−c′
k = gs̃−s̃′ ∏

i�=k

X
−ci+c′

i
i . (1)

3 For the convenience of considering multiple users, we added the public key to the
input of the hash function.

4 If we set m1 = m2 = · · · = mn, then we can see it as multi-signatures.
5 In [5], Bellare and Neven consider the case where there are several public keys with

the same values.

Achieving Pairing-Free Aggregate Signatures using Pre-Communication 71

However, notice here that the term
∏

i�=k X
−ci+c′

i
i related to cosigners becomes

the barrier for the reduction to extract the discrete logarithm of X̄.
Next, we show how Bellare-Neven multi-signature scheme [5] circumvents

the above difficulties. First, note that in a multi-signature scheme, all signers
who participate will generate signatures on the same message and are allowed
to interact with each other in the signing procedure. For (I), all signers share
{Ri}i in the signing protocol and compute ˜R. For (II), each signer generates a
commitment to Ri by using a hash function and sends the commitment to all
other signers, before it sends Ri. By this, in the security proof, when the reduc-
tion receives all cosigners’ commitments to {Ri}i, it can compute ˜R by searching
all cosigners’ Ri in the random oracle table simulating the hash function before
the adversary knows ˜R. For (III), the reduction programs the random oracle
carefully as follows. For the hash query (˜R,Xk, L,m) where L is the list of the
signers’ public keys, the reduction fixes H(˜R,Xi, L,m) to the random value for
all i �= k before it defines H(˜R,Xk, L,m). By this careful programming of a
random oracle, the reduction can make the situation that ci = c′

i holds for i �= k

in Eq. (1) and can cancel out the term
∏

i�=k X
−ci+c′

i
i related to cosigners. Then

it can extract the solution to the problem as (s̃ − s̃′)/(ck − c′
k) mod q without

cosigners’ secret key. Thus, this scheme can be proved secure in the plain PK
model.

Unfortunately, these techniques to circumvent the three difficulties (I)-(III)
are effective only for multi-signatures, not for aggregate signatures. Recall that
the techniques to circumvent (I) and (II) require the communication in the sign-
ing phase. Applying them to aggregate signatures will automatically destroy
the advantage of aggregate signatures over multi-signatures, i.e., the freedom
of the signers to sign their own chosen message individually without sharing it
with other signers beforehand. And the technique to circumvent (III) is simply
impossible to apply on aggregate signatures. This technique works only if all
messages in the signatures to be combined are fixed before the rewinding point
in the security proof. However, in aggregate signatures, the cosigners controlled
by the adversary always have the freedom to change the messages in the sig-
natures to be combined any time, even after the rewinding point. Therefore,
we need to explore other approaches to overcome the above three difficulties in
aggregate signatures.

We overcome the three difficulties as follows. For (I), noticing that ˜R is
pre-communicable, we introduce the pre-communication and exclude the com-
munication in the signing protocol. For (II), we resolve the difficulty by adding
the random value ti generated by the signer in the signing phase to the input
of the hash function to produce ci. In more details, each ci is computed as
ci ← H(˜R,Xi, ti,mi) and a set of ti is included in a aggregate signature as
(˜R, s̃, {ti}i). Consequently, thanks to ti, the reduction can succeed in simulating
the honest signer no matter how cleverly the adversary behaves, because the
adversary should guess the random value ti. For (III), we use the KOSK model.
By this, the reduction can obtain cosigners’ secret keys xi for i �= k and com-

72 K. Takemure et al.

pute the discrete logarithm of
∏

i�=k X
−ci+c′

i
i in Eq. (1). Therefore it can extract

a solution to the DL problem as (s̃ − s̃′ − ∑

i�=k xi(ci − c′
i))/(ck − c′

k) mod q.6

1.4 Related Work

Boneh et al. suggested the idea of aggregate signatures and proposed the first
aggregate signature scheme using pairing [8]. Bellare et al. showed that the
aggregate signature scheme [8] is secure even if the restriction of different pairs
of a public key and a message between all signers is eliminated [4]. There are
many pairing-based aggregate signature schemes [1,7,16,17,21,23,26].

Lysyanskaya et al. introduced a notion of sequential aggregate signatures,
where signers sequentially generate a signature on his message by using previ-
ous signers’ messages and signatures and provided the first sequential aggregate
signature scheme built from the RSA assumption [22]. After that, pairing-based
sequential aggregate signature schemes [13,20,21] and pairing-free sequential
aggregate signature schemes [3,9,26] were proposed.

Gentry and Ramzan proposed the first aggregate signature in the synchro-
nized setting [14], and Ahn et al. formalized the synchronized aggregate sig-
natures, in which signatures generated in the same period can be compressed
into an aggregate signature. Hohenberger and Waters provided an RSA-based
synchronized aggregate signature scheme [18]. We can implement an AS with
PreCom scheme using a synchronized aggregate signature scheme as follows. In
a PreCom phase, the signers can agree on the time period by pre-communication.
A restriction of this approach is that the number of the signatures the signers
can issue is bounded at the setup time. Our proposed scheme does not have such
a restriction.

Identity-based aggregate signatures [7,14,17,30] are the aggregate signatures
in which each signer is assigned an ID and creates a signature by using a secret
key that a private key generator generates by the master secret key and the
signer’s ID. Bellare and Neven proposed a DL-based multi-signature scheme
and mentioned the applicability of multi-signatures to (interactive) aggregates
signature [5]. This application presupposes that signers can share messages.

Zhao proposed an aggregate signature scheme for blockchain applica-
tions [32]. This scheme is asynchronous and constructed from general elliptic
curves. He stated that the proposed scheme is more applicable to blockchain
applications than pairing-based aggregate signatures for the system complexity
and the verification speed. His scheme is an extension of the Γ-signature [31] to
aggregate signatures. Though the signature size linearly depends on the number
of signers, this scheme is proved secure in the plain PK model and requires no
communication between signers for signing. The security of this scheme is based
on the non-malleable discrete logarithm (NMDL) assumption. This assumption

6 Here, we implicitly assumed the same restriction as we assumed in Sect. 1.3 for
discussing Bellare-Neven’s approach to the difficulty (III). However, this restriction
can be removed in the actual proof of this proposed scheme. For detail, see the
security model in Sect. 3.1.

Achieving Pairing-Free Aggregate Signatures using Pre-Communication 73

is only justified in the generic group model [24] with random oracles, where an
adversary is allowed to query both of the random oracle and the generic group
oracle.

2 Preliminaries

2.1 Notation

For a prime integer q, we denote the ring of integers modulo q by Zq and the
multiplicative group of Zq by Z∗

q . Let G be a cyclic group of order q and let g be a

generator of G. For a set A, we write a
$←− A to mean that a is chosen at uniformly

random from A. For a probabilistic algorithm B, we write b ← B(β1, . . . ; ρ) to

mean that B on inputs β1, . . . and random tape ρ outputs b, and b
$←− B(β1, . . .)

to mean that ρ is chosen at uniformly random and let b ← B(β1, . . . ; ρ).

2.2 Hardness Assumption

We now recall the definition of the discrete logarithm assumption.

Definition 1 (Discrete Logarithm Assumption). For (G, g, q), let E be a
PPT algorithm that is given y chosen at uniformly random from G. We say that
E (t, ε)-breaks DL if E runs in time at most t and outputs x such that y = gx

with probability at least ε.

3 Aggregate Signatures with Pre-Communication

3.1 Definition

In this paper, particularly, we introduce a model where, before signing, each
signer communicates with the aggregator and shares information in advance,
which we hereafter call helper information. Note that communication in this
model is the one-to-one communication between a signer and the aggregator. We
now describe the definition of aggregate signature (AS) with pre-communication
(PreCom) below. We illustrate pre-communication and aggregation in Fig. 1.

Definition 2 (AS with PreCom). An AS with PreCom consists of the fol-
lowing five algorithms and one protocol. Let n be the number of signers and let
i be the index of a signer.

Setup(1λ) → pp. The public parameter generation algorithm takes as input a
security parameter 1λ, then outputs a public parameter pp.

KeyGen(pp) → (pk , sk). The key generation algorithm takes as input a public
parameter pp, then outputs a public key pk and a secret key sk.

74 K. Takemure et al.

AG

S1

S2

...

...

Sn

(pk1, sk1)

h̃1

(pk2, sk2)

h̃2

(pkn, skn)

h̃n

{pki}

z

Pre-Communication

AG

S1

S2

...

...

Sn

Verifier

(m
1 , σ

1)

(m2, σ2)

(m
n
, σn

)

({mi}ni=1, σa)

Aggregation

Fig. 1. Aggregate Signature with Pre-Communication: The arrows that denote the
communication are simplified to one round communication as in the proposed scheme
in this paper. In our model, we do not restrict the number of rounds to one.

PreCom〈S1(pk1, sk1), . . . ,Sn(pkn, skn),AG({pki}n
i=1)〉 → (h̃1, . . . , h̃n, z). The

pre-communication protocol is executed between each signer Si with input a
public key pk i and a secret key sk i and an aggregator AG with input all the
signers’ public keys {pk i}n

i=1. After the protocol terminates, each Si and AG
obtain h̃i and z as helper information, respectively.

Sign(pp, pk , sk , h̃,m) → σ. The signing algorithm takes as input a public param-
eter pp, a public key pk, a secret key sk, helper information h̃, and a message
m, then outputs a signature σ.

Agg(pp, z, {(pk i,mi, σi)}n
i=1) → σa. The aggregation algorithm takes as input

a public parameter pp, helper information z, and a set of all signers’ public
keys, messages, and signatures {(pk i,mi, σi)}n

i=1, then outputs an aggregate
signature σa.

AggVer(pp, {(pk i,mi)}n
i=1, σa) → {0, 1}. The aggregate signature verification

algorithm takes as input a public parameter pp, a set of all signers’ public keys
and messages {(pk i,mi)}n

i=1, and an aggregate signature σa, then outputs 0
(REJECT) or 1 (ACCEPT).

For any set of messages {mi}n
i=1, if all signers and an aggregator behave honestly,

then Pr[AggVer(pp, {(pk i,mi)}n
i=1, σa) = 1] = 1 holds.

Security Model of AS with PreCom. Below, we show the definition of existen-
tial unforgeability under the chosen-message attack to AS with PreCom in the
random oracle model and knowledge of secret key (KOSK) model [6,21]. This
security definition requires that it be infeasible to forge aggregate signatures
involving at least one honest signer. In the security model here, as a forger F ,
we consider aggregators who corrupt signers except for one honest signer. Also

Achieving Pairing-Free Aggregate Signatures using Pre-Communication 75

the forger F can execute the pre-communication and the aggregation protocols
with an honest signer several times, and after that, it tries to output a forgery.
Then the forger F can arbitrarily choose the corrupted cosigners’ public keys
even though it must output secret keys corresponding to these public keys. This
restriction is called the KOSK model.

Formally, the security model here is defined by the three-phase game of the
following.

Setup. The challenger chooses the parameter pp $←− Setup(1λ) and the key pair

(pk , sk) $←− KeyGen(pp). It runs a forger F on input pk and pp.
Signing Queries. The challenger receives (j, ij) as a PreCom signing query.

The challenger and F execute the pre-communication protocol PreCom
〈S1(pk1, sk1), . . . ,Sn(pkn, skn),AG({pki}n

i=1)〉 → (h̃1, . . . , h̃n, z) where the
challenger behaves as Sij (pk , sk) and all the other parties are controlled
by F . Then, the challenger obtains the helper information h̃ij and stores
this information with the PreCom signing query. The challenger receives
(j,m′) as a message signing query. It reads out h̃ij and computes σ′

j ←
Sign(pp, pk , sk , h̃ij ,m

′). The challenger returns σ′
j to F . F is allowed to con-

currently make any number of above queries where it is allowed to make only
one message signing query per one PreCom signing query.7

Output. After F terminates, it outputs n key pairs {(pki, ski)}n
i=1, a set of

messages {m∗
i }n

i=1, and a forgery σ∗
a where the following holds.

– {pki}n
i=1 is distinct to each other.

– pk ∈ {pki}n
i=1.

– skk is ⊥ where k is such that pkk = pk.
If AggVer(pp, {(pk i,m

∗
i)}n

i=1, σ
∗
a) = 1 is true and m∗

i has never been queried
where i is such that pki = pk, then F is said to succeed in forgery.

Definition 3 (Unforgeability in KOSK Model for AS with PreCom).
Let N be a maximum number of cosigners being involved in the forgery. We say
that F (t, qS , qH , N, ε)-break AS with PreCom if F runs in at most t time, makes
at most qS signing queries and at most qH random oracle queries, and succeeds
in forgery in the above game with probability at least ε. For an AS scheme with
PreCom, if there are no F that (t, qS , qH , N, ε)-breaks it, we say the scheme is
(t, qS , qH , N, ε)-secure.

3.2 Our AS Scheme with PreCom (PCAS)

In this section, we propose the AS scheme with PreCom PCAS based on the dis-
crete logarithm assumption in the random oracle model and the KOSK model.
This scheme is an extension of the Schnorr signature scheme to aggregate signa-
tures. We introduce the pre-communication to solve the difficulty (I) in Sect. 1.3
without the communication in the signing phase.
7 This restriction is essential. If this restriction is omitted, there is an attack against

our proposed scheme. See Remark 1 for more detail.

76 K. Takemure et al.

The Algorithms and Protocol of PCAS. Below, we now show the algorithms
and protocol of PCAS.

Setup(1λ) → pp. It chooses (G, q, g), a hash function H : {0, 1}∗ → Zq, and a
parameter κ, then outputs pp = (G, q, g,H, κ).

KeyGen(pp) → (pk , sk). It computes x
$←− Zq and X ← gx, then outputs the

public key pk = X and the secret key sk = x.
PreCom〈S1(pk1, sk1), . . . ,Sn(pkn, skn),AG({pki}n

i=1)〉 → (h̃1, . . . , h̃n, z). For

all i ∈ [1, n], firstly, each signer Si computes ri
$←− Zq and Ri ← gri and sends

Ri to the aggregator. The aggregator generates ˜R ← ∏n
i=1 Ri from given

{Ri}n
i=1, and returns ˜R to all the signers. Each signer Si and the aggregator

store h̃i = (ri, ˜R) and z = ˜R as the helper information, respectively.

Sign(pp, pk , sk , h̃,m) → σ. It chooses a value t
$←− {0, 1}κ at uniformly random,

computes c ← H(˜R,X, t,m) and s ← cx + r mod q, then outputs σ = (s, t)
as a signature.

Agg(pp, z, {(pk i,mi, σi)}n
i=1) → σa. It computes s̃ ← ∑n

i=1 si mod q, then
outputs the aggregate signature σa = (s̃, {ti}n

i=1,
˜R).

AggVer(pp, {(pk i,mi)}n
i=1, σa) → {0, 1}. If {pki}n

i=1 are not distinct to each
other, it outputs 0. For all i ∈ [1, n], it computes ci ← H(˜R,Xi, ti,mi). If
˜R = gs̃

∏n
i=1 X−ci

i holds, then outputs 1. Otherwise outputs 0.

For the verification formula, it holds that gs̃
∏n

i=1 X−ci
i = g

∑
xici+rig

∑ −xici =
g

∑
ri = ˜R. Thus, an aggregate signature is accepted with probability 1 when it

is generated honestly.

Remark 1. Note that already used helper information cannot be reused because
the adversary can obtain two distinct signatures generated from the same helper
information and extract a secret key by exploiting the special soundness prop-
erty. Moreover, in the aggregation phase, if several signers fail to participate
in this phase, the protocol terminates, and it should be restarted from pre-
communication.

The Security of PCAS. We should overcome two difficulty (II) and (III) in
Sect. 1.3 to prove PCAS secure. (For more detail, see Sect. 1.3).

To overcome the difficulty (II), we add the random value t to the input of a
hash function which produces c. We explain how this t enables us to simulate
the signing oracle. Towards this end, let us review how to simulate the honest
signer for the Schnorr signature. Firstly, the reduction receives m′ from a forger
as a signing query, randomly chooses (c, s) and computes R ← gsX−c where
X is the honest signer’s public key. After that, it sets H(R,X,m′) ← c in the
random oracle table and return (R, s) as a valid signature to a forger. In this
case, H(R,X,m′) is not predefined with overwhelming probability because R is
a fresh random value generated by the reduction. For PCAS, the reduction needs
to set H(˜R,X, t,m′) ← c in the random oracle table. Although a forger can
decide ˜R and m′, it cannot obtain t until the reduction return (s, t). Therefore,

Achieving Pairing-Free Aggregate Signatures using Pre-Communication 77

the reduction can set H(˜R,X, t,m′) ← c between receiving ˜R and m′ from a
forger and returning (s, t).

To overcome the difficulty (III), we consider the KOSK model. By this, the
reduction can make use of the cosigners’ secret keys to extract the solution to
the DL problem. Moreover, the KOSK model is essential for PCAS because there
is a rogue-key attack in the plain PK model. We describe this attack in the full
version of this paper.

The following theorem states that PCAS is secure under the discrete loga-
rithm assumption in the random oracle model and the KOSK model.

Theorem 1. If there is a forger F that (t, qS , qH , N, ε)-breaks PCAS, then there
is an algorithm B that (t′, ε′)-breaks DL such that

ε′ � ε2

qH + 1
− 2qS(2qH + qS − 1)

(qH + 1)2κ+1
− 1

q
, t′ � 2t + 2qStexp + O(qH + qS + 1),

where texp is the time for an exponentiation in G and we assume that κ = λ.

Proof. We first show the construction of the algorithm B which can solve the
DL problem using the forger F . B is given an instance of the DL problem Y and
a parameter (G, q, g).

To construct B, let A be the algorithm as follows. On inputs (G, q, g, Y),
h1, . . . , hqH+1 ∈ Zq, and a random tape ρ, A runs F on inputs (G, q, g) and Y
as an honest signer’s public key. It initializes counters ctr1 = 1, ctr2 = 0 and
tables T [·], L[·] to be empty, where T [·] is a random oracle table and L[·] is a
table that stores helper information of PreCom for signing queries. It responds
to F ’s hash queries and signing queries as follows.

Hash Query H(Q). A query Q is parsed as Q = (˜R,X, t,m). In the case that
X = Y , A lets T [Q] = hctr1 and ctr1 ← ctr1 + 1 if T [Q] is undefined. In the

case that X �= Y , A lets c
$←− Zq, T [Q] ← c if T [Q] is undefined. It returns

T [Q].
Signing Query. Firstly, when A receives the signal to start PreCom, it sets

ctr2 ← ctr2 + 1, chooses s′, c′ $←− Zq, computes R′ ← gs′
X−c′

k , and sends R′

to F . After that, when A is given ˜R′ from F , A assigns L[ctr2] ← (s′, c′, ˜R′).
When receiving a query (m′, J), A sets M ′ ← M ′ ∪ {m′} and reads L[J].

It returns ⊥ to F if L[J] is empty. A chooses t′ $←− {0, 1}κ and sets Q′ =
(˜R′, Y, t′,m′). It sets bad ← true and halts with output ⊥ if T [Q′] is already
defined. Otherwise it assigns T [Q′] ← c′, empties L[J] and returns (s′, t′)
to F .

Finally, F outputs {X∗
i }n∗

i=1 which is the set of public keys including Y ,
{x∗

i }i∈[1,n∗]\{k} which is the set of secret keys corresponding to the public keys
except Xk such that Y = Xk, the set of messages {m∗

i }n∗
i=1, and a forgery

(s̃∗, {t∗i }n∗
i=1,

˜R∗). A checks whether m∗
k /∈ M ′ and AggVer(pp, {(X∗

i ,mi)}n∗
i=1,

(s̃∗, {t∗i }n∗
i=1,

˜R∗)) = 1 holds, and it outputs ⊥ if not. Otherwise A outputs

78 K. Takemure et al.

(I, {(Xi, xi)}i∈[1,n]\{k}, (s̃∗, {c∗
i }n∗

i=1,
˜R∗)) where c∗

i = T [˜R∗,Xi, t
∗
i ,m

∗
i] and I is

the index such that hI = T [˜R∗, Y, t∗k,m∗
k].

B obtains the following two sequences by rewinding A according to the
Bellare-Neven general forking Lemma [5].

(I(1), {(X(1)
i , x

(1)
i)}i∈[1,n(1)]\{k(1)}, (s̃

(1), {c
(1)
i }n(1)

i=1 , ˜R(1)))

(I(2), {(X(2)
i , x

(2)
i)}i∈[1,n(2)]\{k(2)}, (s̃

(2), {c
(2)
i }n(2)

i=1 , ˜R(2)))

s.t. ˜R(1) = ˜R(2) ∧ I(1) = I(2) ∧ c
(1)

k(1) �= c
(2)

k(2)

Since the above sequences satisfy the verification formula, we have

˜R(1) = gs̃(1)
n(1)
∏

i=1

X
(1)
i

−c
(1)
i and ˜R(2) = gs̃(2)

n(2)
∏

i=1

X
(2)
i

−c
(2)
i

.

By ˜R(1) = ˜R(2), dividing the above two equations gives

Y c
(1)
1 −c

(2)
1 = gs̃(1)−s̃(2) ∏

i∈[1,n(1)]\{k(1)}
X

(1)
i

−c
(1)
i

∏

i∈[1,n(2)]\{k(2)}
X

(2)
i

c
(2)
i

.

Therefore, finally B outputs the following as the solution to the instance Y of
the DL problem.

y ← s̃(1) − s̃(2) − ∑

i∈[1,n(1)]\{k(1)} x
(1)
i c

(1)
i +

∑

i∈[1,n(2)]\{k(2)} x
(2)
i c

(2)
i

c
(1)

k(1) − c
(2)

k(2)

mod q

(2)

B succeeds in outputting y if and only if it succeeds in forking A. Let frk be
the probability of succeeding in forking A, and then the success probability ε′

of B is equal to frk . Let acc be the probability that A outputs the sequence. We
have

acc = Pr[bad �= true ∧ Fsucceed] � Pr[Fsucceed] − Pr[bad = true].

The event bad = true happens when A cannot set H(˜R′,X, t′,m′) ← c′ in the
random oracle table due to a predefined H(˜R′,X, t′,m′). F can cause this event
by guessing t′ which is the part of a signature that the signing oracle returns.
How F maximizes the probability of causing this event is as follows. Firstly, for
a hash query Qk = (˜R′,X, t′,m′), F fixes ˜R′,X, and m′ and queries qH times
with t′ different from each other. After that, F makes qS signing queries by using
˜R′,X, and m′. Let Hitf be the event that bad = true is happened in the fth
time signing query. Note that one new row in the random oracle table is created
every time F makes signing query. Then Pr[bad = true] is bounded as follows.

Pr[bad = true] = Pr[Hit1 ∨ Hit2 ∨ . . . ∨ HitqS]
� Pr[Hit1] + Pr[Hit2] + . . . + Pr[HitqS]

� qH

2κ
+

qH + 1
2κ

+ . . . +
qH + qS − 1

2κ
=

qS(2qH + qS − 1)
2κ+1

.

Achieving Pairing-Free Aggregate Signatures using Pre-Communication 79

Thus we obtain

acc � ε − qS(2qH + qS − 1)
2κ+1

.

By the Bellare-Neven general forking lemma [5], we have

ε′ = frk � acc
(

acc
qH + 1

− 1
q

)

� acc2

qH + 1
− 1

q

=
1

qH + 1

(

ε − qS(2qH + qS − 1)
2κ+1

)2

− 1
q

� ε2

qH + 1
− 2qS(2qH + qS − 1)

(qH + 1)2κ+1
− 1

q
.

The running time t′ of B is twice as the running time t of F plus O(qH+qS+1)
time needed to answer hash queries plus 2qStexp time because each signing query
involves two exponentiation in G.
�

The Restriction on the Public Keys. For PCAS, all signers’ public keys need
to be distinct from each other. The reason is as follows: in the security proof,
if several cosigners are having the same public key as an honest signer, the
denominator of Eq. (2) is

∑

i∈[1,n(1)] s.t. Y =X
(1)
i

c
(1)
i −∑

i∈[1,n(2)] s.t. Y =X
(2)
i

c
(2)
i . In

this situation, we cannot know whether this denominator is not equal to 0 only
from condition c

(1)
1 �= c

(2)
1 .

On the KOSK Model and Its Implementation. We used the KOSK model
in the security proof for simplicity and necessity. In practice, a possible way to
implement the KOSK model is to use a proof-of-possession (PoP). The security
of this implementation depends on the security of PoP. For example, we may
consider the case of using the Schnorr signature [28] as PoP. More specifically,
if a signer is required to include the PoP signed by his secret key in his public
key, then, in the security game, a forger outputs the PoP signed by the secret
keys behind the cosigners’ public keys, not the secret keys. Since the set of the
cosigners’ secret keys is necessary for the proof of Theorem 1, proving the security
of PCAS with this PoP is not trivial. A possible way to prove such a scheme secure
is applying Bagherzandi-Cheon-Jarecki generalized forking lemma [2].

4 Performance Comparison among Aggregate Signature
Scheme and Related Schemes

In this section, we compare the proposed aggregate signature scheme with pre-
communication PCAS with the Zhao’s aggregate signature scheme [32] and the
Bellare-Neven interactive aggregate signature scheme BN-IAS [5]. These schemes
are constructed based on the Schnorr signature scheme [28]. Note that we sup-
pose the situation that these schemes are used for the same purpose of compress-
ing signatures on different messages into a compact signature. Then, we focus on

80 K. Takemure et al.

Table 2. Performance Comparison among Aggregate Signature Scheme and Related
Schemes

Scheme BN-IAS [5] Zhao [32] PCAS

Type IAS standard AS AS with PreCom

No sharing Messages No Yes Yes

Communication

Complexity

(|M| + l0 + |G| + |Zq |)
×n(n − 1)

2n|Zq| n(2|G| + |Zq| + κ)

Signature Size |Zq| + |G| |Zq| + n|G| |Zq | + |G| + nκ

Assumption DL NMDL DL

Key Setup plain PK plain PK KOSK

Restriction

in Aggregation
No Restriction Distinct (pk ,m) Distinct pk

Withdrawal No Yes No
∗ The row 1 and 2 indicate pairing-free aggregate signature (AS) scheme and
related schemes. In row 4 and 5, |M |, |Zq| and |G| indicate the size of a element
in |M |, Zq , and G. Also. n denotes the number of signers, and �0 and κ are
specific parameters on each scheme. Especially, the bit-length of κ is as same as
the security parameter in general. The row 6 and 7 show that the assumption and
the key-setup model (cf., the notion of models in Sect. 1.1) in which each scheme is
proved secure, where DL and NMDL indicate the discrete logarithm assumption
and non-malleable DL assumption [32]. The row 8 shows the restriction of all
signers’ public keys and/or messages to be accepted in the verification. The final
row shows the possibility of a continuation of the procedure in the case where
signers disappear before the aggregation phase.

sharing messages, communication complexity, withdrawal, the key setup model,
assumptions, and the size of the aggregate signature for the comparison. Table 2
summarizes this comparison.

Necessity of Sharing Messages. On the above purpose, BN-IAS is the multi-
signature scheme used as an aggregate signature scheme. More detail, this scheme
generates a combined signature on different messages by seeing a set of signers’
messages as one message. Then, all players need to execute the interactive pro-
tocols in Stage II in Sect. 1.1.

PCAS and Zhao’s scheme need not share messages between all signers. Espe-
cially, PCAS requires interactive protocol as PreCom, however, this interaction
is executed in Stage I. Thus, it achieves no sharing messages. Zhao’s scheme has
the standard construction of the aggregate signature, so it has no interaction
protocol.

Communication Complexity. Firstly, let n be the number of signers, and |M | be
the size of a message M . Moreover, we consider the communication complexity
including the cost of one-shot communication from signers to an aggregator for
submitting a signature.

For BN-IAS, all signers need to share messages before the signing phase.
Also, the signing protocol requires three-round communication between every
two signers. Therefore, this scheme requires n(n − 1)/2 channels, and the total
communication complexity per channel is 2|M | + 2l0 + 2|G| + 2|Zq| where l0 is
the bit-length of the range of the hash function to produce the commitment to
commitment element on the Schnorr signature scheme. The total communication
complexity in aggregation protocol is n(n − 1)(|M | + l0 + |G| + |Zq|).

Achieving Pairing-Free Aggregate Signatures using Pre-Communication 81

PCAS needs one bidirectional communication to share helper information
between signers and the aggregator in the pre-communication phase. Hence this
scheme requires n channels, and the total communication complexity per channel
is 2|G|+ |Zq|+κ. Then the total communication complexity is n(2|G|+ |Zq|+κ).

Zhao’s scheme has no interactive protocol, so there are only communications
for submitting signatures. Then this scheme requires n channels, and the total
communication complexity is 2n|Zq|.

The Size of an Aggregate Signature. The size of a signature of BN-IAS is |Zq|+|G|,
and hence it is independent of n. The signature size of PCAS is |Zq| + |G| + nκ
and the signature size of Zhao’s scheme is |Zq|+n|G|. Notably, both sizes depend
on n. We can pick κ to be equal to the security parameter λ because we should
consider only target collisions for the hash function in the proof of Theorem 1.
Also, We can have κ � |G| because the order of G is about 22λ in general.
Therefore PCAS can achieve a smaller signature size than Zhao’s scheme.

Key Setup Model, Assumptions, and Acceptable Condition. We proved PCAS
secure under the DL assumption in the KOSK model and the random oracle
model. This scheme needs to use a PoP to prove the correct generation of a
public key in practical due to the KOSK model. BN-IAS was proved secure under
the DL assumption in the random oracle model and the plain PK model. Zhao’s
scheme was proved secure under the NMDL assumption in the random oracle
model and the plain PK model. Zhao also showed the hardness of the NMDL
problem in the generic group model [24] and the random oracle model.

BN-IAS has no restrictions on public keys and messages, namely, we may
include duplicate public keys and messages in aggregation. In Zhao’s scheme, an
aggregate signature is not accepted when all signers’ pairs of a public key and a
message are not distinct to each other. In PCAS, the aggregate signature can be
accepted at least every public keys should be distinct.

Withdrawal. BN-IAS must halt and restart a signing protocol when some signers
disappear in the signing phase. Also, PCAS must halt and restart a signing
protocol when some signers fail to participate in an aggregation phase. On the
other hand, Zhao’s scheme can continue the process in such a situation because
each signer generates a signature without any communication.

5 How to Avoid Drijvers et al.’s Impossibility

Drijvers et al. showed that several multi-signature schemes claimed to be secure
are in fact insecure by both concrete attacks and meta-reductions demonstrating
the impossibility of proving their security [10]. Because all of such schemes are
based on the Schnorr identification or extensions thereof, one may wonder if their
attacks or meta-reduction arguments are applicable or not to our schemes and, if
not, may want to know the reason for the inapplicability. In particular, the CoSi
scheme [29], which is one of the targets of these attacks and meta-reductions is

82 K. Takemure et al.

quite similar to our PCAS scheme and is essentially the PCAS scheme without
t. Therefore, it seems to be reasonable that our PCAS scheme is a target of (a
natural extension of) these attacks and meta-reductions.

We discover that the meta-reductions of Drijvers et al. apply to any multi-
signature or aggregate signature scheme based on sigma protocol, e.g., Schnorr
identification scheme, with the following properties: (1) the challenge of each
signer depends solely on the message to be signed and the combined commit-
ment, and (2) a malicious aggregator can control the values of the combined
commitment. Exploiting the above properties, a meta-reduction algorithm can
somehow rewind any reduction algorithm which simulates an honest signer and
force the honest signer to use different challenges of the malicious aggregator’s
choice. Thus, if the reduction simulates the honest signer perfectly, the meta-
reduction algorithm obtains two distinct individual signatures based on two dif-
ferent combined commitments but the same fixed individual commitment from
the honest signer. The special soundness property of sigma protocol enables the
meta-reduction algorithm to break the hardness of underlying computational
problem and thus the impossibility holds.

For the PCAS scheme, this structure is eliminated by introducing a random
value of t. The point is that t is chosen by the honest signer after an aggregator
broadcasting the combined commitment. Due to this t, a malicious aggregator
cannot force the honest signer to use the challenge of the malicious aggregator’s
choice.

In the full version of this paper, we elaborate more on the above-outlined
weakness of the PCAS scheme without t from the viewpoints of both concrete
attacks and meta-reduction arguments. Furthermore, we explain how this weak-
ness was overcome by the introduction of the random value t.

6 Conclusion

In this paper, we propose a new paradigm pre-communication and the PCAS
scheme which is constructed based on this new paradigm and proved secure under
the standard DL assumption and the KOSK model. By presenting the concrete
rogue-key attack, we state that the KOSK model is essential for PCAS. Moreover,
we explain that we avoided Drijvers et al.’s attacks and impossibility results.

In practice, PCAS need proof-of-possession (PoP) because of their security in
the KOSK model. Therefore to analyze the security of schemes equipped with a
concrete PoP is an important open question.

Acknowledgments. This paper is based on results obtained from a project com-
missioned by the New Energy and Industrial Technology Development Organization
(NEDO). This work was supported by JST CREST Grant Number JPMJCR19F6,
Japan. This work was supported by JSPS KAKENHI Grant Numbers JP18H01438,
JP18H03238, JP18H05289, JP18K11292, JP18K11293, JP18K18055, JP19H01109. We
are grateful to an anonymous reviewer, who pointed out subtleties in the security def-
inition of aggregate signatures with pre-communication.

Achieving Pairing-Free Aggregate Signatures using Pre-Communication 83

References

1. Ahn, J.H., Green, M., Hohenberger, S.: Synchronized aggregate signatures: new
definitions, constructions and applications. In: CCS 2010, pp. 473–484 (2010)

2. Bagherzandi, A., Cheon, J.H., Jarecki, S.: Multisignatures secure under the discrete
logarithm assumption and a generalized forking lemma. In: CCS 2008, pp. 449–458
(2008)

3. El Bansarkhani, R., Mohamed, M.S.E., Petzoldt, A.: MQSAS - a multivariate
sequential aggregate signature scheme. In: Bishop, M., Nascimento, A.C.A. (eds.)
ISC 2016. LNCS, vol. 9866, pp. 426–439. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-45871-7 25

4. Bellare, M., Namprempre, C., Neven, G.: Unrestricted aggregate signatures. In:
Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol.
4596, pp. 411–422. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-73420-8 37

5. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: CCS 2006, pp. 390–399 (2006)

6. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the gap-diffie-hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36288-6 3

7. Boldyreva, A., Gentry, C., O’Neill, A., Yum, D.H.: Ordered multisignatures and
identity-based sequential aggregate signatures, with applications to secure routing.
In: CCS 2007, pp. 276–285 (2007)

8. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-39200-9 26

9. Brogle, K., Goldberg, S., Reyzin, L.: Sequential aggregate signatures with lazy ver-
ification from trapdoor permutations. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 644–662. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-34961-4 39

10. Drijvers, M., et al.: On the security of two-round multi-signatures. In: IEEE S&P
2019, pp. 1084–1101 (2019)

11. Drijvers, M., Gorbunov, S., Neven, G., Wee, H.: Pixel: multi-signatures for con-
sensus. In: IACR Cryptology ePrint Archive 2019, p. 514 (2019)

12. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: CRYPTO 1986, pp. 186–194 (1986)

13. Fischlin, M., Lehmann, A., Schröder, D.: History-free sequential aggregate signa-
tures. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 113–130.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32928-9 7

14. Gentry, C., Ramzan, Z.: Identity-based aggregate signatures. In: Yung, M., Dodis,
Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 257–273.
Springer, Heidelberg (2006). https://doi.org/10.1007/11745853 17

15. Guillevic, A.: A short-list of pairing-friendly curves resistant to special TNFS at
the 128-bit security level. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V.
(eds.) PKC 2020. LNCS, vol. 12111, pp. 535–564. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45388-6 19

16. Hohenberger, S., Koppula, V., Waters, B.: Universal signature aggregators. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 3–34.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 1

https://doi.org/10.1007/978-3-319-45871-7_25
https://doi.org/10.1007/978-3-319-45871-7_25
https://doi.org/10.1007/978-3-540-73420-8_37
https://doi.org/10.1007/978-3-540-73420-8_37
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/978-3-642-34961-4_39
https://doi.org/10.1007/978-3-642-34961-4_39
https://doi.org/10.1007/978-3-642-32928-9_7
https://doi.org/10.1007/11745853_17
https://doi.org/10.1007/978-3-030-45388-6_19
https://doi.org/10.1007/978-3-030-45388-6_19
https://doi.org/10.1007/978-3-662-46803-6_1

84 K. Takemure et al.

17. Hohenberger, S., Sahai, A., Waters, B.: Full domain hash from (leveled) multi-
linear maps and identity-based aggregate signatures. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 494–512. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40041-4 27

18. Hohenberger, S., Waters, B.: Synchronized aggregate signatures from the RSA
assumption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol.
10821, pp. 197–229. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78375-8 7

19. Kim, T., Barbulescu, R.: Extended tower number field sieve: a new complexity for
the medium prime case. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 543–571. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 20

20. Lee, K., Lee, D.H., Yung, M.: Sequential aggregate signatures made shorter. In:
Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013.
LNCS, vol. 7954, pp. 202–217. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38980-1 13

21. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate
signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006).
https://doi.org/10.1007/11761679 28

22. Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggregate signa-
tures from trapdoor permutations. In: Cachin, C., Camenisch, J.L. (eds.) EURO-
CRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24676-3 5

23. Ma, D., Tsudik, G.: Extended abstract: forward-secure sequential aggregate
authentication. In: S&P 2007, pp. 86–91 (2007)

24. Maurer, U.M.: Abstract models of computation in cryptography. In: IMA 2005,
pp. 1–12 (2005)

25. Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures: extended
abstract. In: CCS 2001, pp. 245–254 (2001)

26. Neven, G.: Efficient sequential aggregate signed data. In: Smart, N. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 52–69. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78967-3 4

27. Ristenpart, T., Yilek, S.: The power of proofs-of-possession: securing multiparty
signatures against rogue-key attacks. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 228–245. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-72540-4 13

28. Schnorr, C.: Efficient identification and signatures for smart cards. In: CRYPTO
1989, pp. 239–252 (1989)

29. Syta, E., et al.: Keeping authorities “honest or bust” with decentralized witness
cosigning. In: S&P 2016, pp. 526–545 (2016)

30. Xu, J., Zhang, Z., Feng, D.: ID-based aggregate signatures from bilinear pairings.
In: Desmedt, Y.G., Wang, H., Mu, Y., Li, Y. (eds.) CANS 2005. LNCS, vol. 3810,
pp. 110–119. Springer, Heidelberg (2005). https://doi.org/10.1007/11599371 10

31. Yao, A.C., Zhao, Y.: Online/offline signatures for low-power devices. IEEE Trans.
Inf. Forensics Secur. 8(2), 283–294 (2013)

32. Zhao, Y.: Practical aggregate signature from general elliptic curves, and applica-
tions to blockchain. In: AsiaCCS, 2019, pp. 529–538 (2019)

https://doi.org/10.1007/978-3-642-40041-4_27
https://doi.org/10.1007/978-3-319-78375-8_7
https://doi.org/10.1007/978-3-319-78375-8_7
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/978-3-642-38980-1_13
https://doi.org/10.1007/978-3-642-38980-1_13
https://doi.org/10.1007/11761679_28
https://doi.org/10.1007/978-3-540-24676-3_5
https://doi.org/10.1007/978-3-540-24676-3_5
https://doi.org/10.1007/978-3-540-78967-3_4
https://doi.org/10.1007/978-3-540-78967-3_4
https://doi.org/10.1007/978-3-540-72540-4_13
https://doi.org/10.1007/978-3-540-72540-4_13
https://doi.org/10.1007/11599371_10

	Achieving Pairing-Free Aggregate Signatures using Pre-Communication between Signers
	1 Introduction
	1.1 Properties of Aggregate Signatures and Multi-signatures
	1.2 Our Contributions
	1.3 Difficulty and Our Techniques
	1.4 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Hardness Assumption

	3 Aggregate Signatures with Pre-Communication
	3.1 Definition
	3.2 Our AS Scheme with PreCom (PCAS)

	4 Performance Comparison among Aggregate Signature Scheme and Related Schemes
	5 How to Avoid Drijvers et al.'s Impossibility
	6 Conclusion
	References

