
Receiver Selective Opening CCA
Secure Public Key Encryption
from Various Assumptions

Yi Lu1,2(B), Keisuke Hara1,2, and Keisuke Tanaka1

1 Tokyo Institute of Technology, Tokyo, Japan
{lu.y.ai,hara.k.am}@m.titech.ac.jp, keisuke@is.titech.ac.jp

2 National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan

Abstract. Receiver selective opening (RSO) attacks for public key
encryption (PKE) capture a situation where one sender sends messages
to multiple receivers, and an adversary can corrupt a set of receivers
and get their messages and secret keys. Security against RSO attack
for a PKE scheme ensures confidentiality of other uncorrupted receivers’
ciphertexts. Among all of the RSO security notions, simulation-based
RSO security against chosen ciphertext attack (SIM-RSO-CCA security)
is the strongest notion. In this paper, we explore constructions of SIM-
RSO-CCA secure PKE from various computational assumptions. Toward
this goal, we show that a SIM-RSO-CCA secure PKE scheme can be con-
structed based on an IND-CPA secure PKE scheme and a designated-
verifier non-interactive zero-knowledge (DV-NIZK) argument satisfying
one-time simulation soundness. Moreover, we give the first construction
of DV-NIZK argument satisfying one-time simulation soundness. Con-
sequently, through our generic construction, we obtain the first SIM-
RSO-CCA secure PKE scheme under the computational Diffie-Hellman
(CDH) or learning parity with noise (LPN) assumption.

Keywords: Public-key encryption · Receiver selective opening
security · Chosen ciphertext attacks

1 Introduction

1.1 Background and Motivation

In the context of security notions of public key encryption (PKE), there are a lot
of formulations considering different attack scenarios, such as chosen plaintext
attacks (CPA) and chosen ciphertext attacks (CCA), and different attacker goals,
such as one-wayness, indistinguishability (IND), and non-malleability. However,
Bellare, Hofheinz, and Yilek [3] claimed that IND−CPA or IND−CCA secu-
rity [7,9], which are the most accepted security notions for PKE, can not pro-
vide adequate security in a multi-user scenario. Concretely, they showed that
c© Springer Nature Switzerland AG 2020
K. Nguyen et al. (Eds.): ProvSec 2020, LNCS 12505, pp. 213–233, 2020.
https://doi.org/10.1007/978-3-030-62576-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62576-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-62576-4_11

214 Y. Lu et al.

when some of users has been corrupted, there are situations where we cannot
preserve the other users’ confidentiality of ciphertexts by using only IND−CPA
or IND−CCA secure PKE schemes. Then, they proposed selective opening (SO)
security for PKE which can ensure that the uncorrupted users’ ciphertexts leak
no information about their secrets.

Depending on different attack scenarios, SO security is divided into two set-
tings: sender selective opening (SSO) security [3,4] and receiver selective opening
(RSO) security [2,14]. In this paper, we focus on RSO security. In RSO security,
we consider a situation where there are one sender and multiple receivers. An
adversary can corrupt some receivers, which means he gets their secret keys and
plaintexts. RSO security ensures the confidentiality of uncorrupted receivers’
ciphertexts. Here, if we also consider an active adversary who can execute CCA,
we can also consider RSO−CCA security for PKE.

From another point of view, there are two flavors of definitions for SO secu-
rity: indistinguishability-based SO security and simulation-based SO security. As
mentioned in some previous works [2,14], simulation-based SO security is more
desirable than indistinguishability-based SO security, because the definition of
indistinguishability-based SO security can support only a plaintext space which
satisfies a notion called efficient resamplability [3]. Roughly, efficient resampla-
bility refers to when a part of plaintexts are fixed, the remaining plaintexts can
be resampled efficiently. This requirement is somewhat artificial and limits real-
world applications because a plaintext distribution in practice scenarios do not
necessarily satisfy this requirement.

From the above arguments, simulation-based RSO−CCA (SIM−RSO−CCA)
security is the most favorable notion among all of the RSO security. Recently,
some works [10–12] proposed constructions of SIM−RSO−CCA secure PKE
under standard computational assumptions, such as the decisional Diffie-
Hellman (DDH) assumption and the decisional composite residuosity (DCR)
assumption. One of the important research area for cryptography is making a
cryptographic primitive under the various assumptions. More specifically, we
have two main problems in this area: Can we construct a cryptographic primi-
tive under a weaker computational assumption or a post-quantum computational
assumption ? In particular, National Institute of Standards and Technology
(NIST) launched the Post-Quantum Cryptography Standardization in 2016, and
thus post-quantum cryptography has been attracting more attention. Hence, in
this paper, we tackle the following question:

Is it possible to construct a SIM-RSO-CCA secure PKE scheme from
weaker or post-quantum computational assumptions ?

1.2 Our Contribution

Based on the above motivation, we give affirmative answers to the question. More
precisely, we show that SIM−RSO−CCA secure PKE can be constructed under
the computational Diffie-Hellman (CDH) assumption (weaker computational

RSO-CCA Secure PKE from Various Assumptions 215

assumption) or the learning parity with noise (LPN) assumption (new post-
quantum computational assumption). In the following, we explain the details of
our contribution.

Hara et al.’s Approach and Its Limitation. Toward our goal, we focus on the Hara
et al.’s work [10,11]. In [10,11], they introduced the receiver non-committing
CCA (RNC−CCA) security for receiver non-committing encryption (RNCE),
which is a variant of PKE with a special non-committing property, then showed
that RNC−CCA secure RNCE implies SIM−RSO−CCA secure PKE. More-
over, they proposed a construction of RNC−CCA secure RNCE by using an
IND−CPA secure PKE scheme and a non-interactive zero-knowledge (NIZK)
proof system satisfying one-time simulation soundness.1 In a nutshell, their con-
struction is obtained by combining the classical Naor-Yung paradigm [21] and a
trick for a non-committing property that the decryption key used in a decryption
algorithm of their RNCE scheme is chosen at random from two decryption keys
of an underlying IND−CPA secure PKE scheme.

In order to obtain a SIM−RSO−CCA secure PKE scheme under the CDH
or LPN assumption through their generic construction, all of the components
of their construction should be realized under the CDH or LPN assumption.
Actually, we can construct an IND−CPA secure PKE scheme based on the CDH
assumption [13] or the LPN assumption [1,25]. However, NIZK proof system has
not been proposed under these assumptions so far, and thus we cannot obtain a
CDH or LPN based SIM−RSO−CCA secure PKE scheme through this generic
construction.

Our Approach. In order to circumvent the above problem, we show that an NIZK
proof system is not needed, but a designated-verifier NIZK (DV-NIZK) argument
is sufficient for our goal. More specifically, we show that RNC−CCA secure
RNCE can be obtained from IND−CPA secure PKE and DV-NIZK argument
satisfying one-time simulation soundness. Roughly, a DV-NIZK argument is a
relaxation of an NIZK proof system to the designated-verifier model, in other
words, the model which only a user who has a secret verification key can verify
a proof correctly. Although it is known that IND−CCA secure PKE scheme can
be constructed from these two primitives [8], we have the following nebulous
point for proving the RNC−CCA security for RNCE.

In contrast to IND−CCA security for PKE, when showing RNC−CCA secu-
rity for RNCE, we have to consider a situation where an adversary can get a
decryption key in a security game. For checking the validity of a ciphertext, we
need to include a secret verification key of DV-NIZK argument into a decryp-
tion key of our RNCE scheme. Furthermore, as well as the original Naor-Yung

1 Due to the previous works [22,24], it is known that both of an IND−CPA secure PKE
scheme and an NIZK proof system can be constructed based on the learning with
errors (LWE) assumption, which is one of the post-quantum computational assump-
tion. Thus, by combining with the result [10], we can obtain a SIM−RSO−CCA
secure PKE scheme based on the LWE assumption.

216 Y. Lu et al.

paradigm [21], we need to use zero-knowledge and (one-time simulation) sound-
ness of a DV-NIZK argument in our security proof. However, in DV-NIZK set-
ting, we cannot ensure soundness if a secret verification key is revealed to an
adversary, while zero-knowledge still holds. Thus, it seems that our strategy
does not make sense at first glance. However, by focusing on the details of a
security proof, we have seen through that there is no problem. The main reason
is that soundness is only used to prevent an adversary from making “unfavor-
able” decryption queries in a security proof, and thus soundness need to be
held only while it makes decryption queries. Here, in RNC-CCA security, we
consider decryption queries only before a decryption key (including a secret ver-
ification key) is revealed. Therefore, it is possible to prevent unfavorable decryp-
tion queries without a secret verification key, that is, soundness of DV-NIZK
argument is sufficient for proving RNC−CCA security of RNCE. See Sect. 4.2
for more details.

Construction of One-time Simulation Sound DV-NIZK. Recently, a lot of
works [6,17,18,20,23] showed that a DV-NIZK argument can be constructed
under the CDH and LPN assumption. The notion of a one-time simulation sound
DV-NIZK argument was considered in the Elkind et al.’s work [8]. However,
a concrete construction of one-time simulation sound DV-NIZK argument has
not been proposed so far. Then, in order to complete our RNC−CCA secure
RNCE scheme, we propose a construction of one-time simulation sound DV-
NIZK argument by combining (ordinary) DV-NIZK argument, strong one-time
signature, and commitment based on the Lindell’s approach [19]. See Sect. 3 for
more details. (Note that we can construct strong one-time signature and com-
mitment based on the one-way function, which is obtained under the CDH or
LPN assumption.)

By combining the above results, we can obtain a SIM−RSO−CCA secure
PKE scheme based on the CDH or LPN assumption.

1.3 Related Work

Jia et al. [15] proposed the first construction of SIM−RSO−CCA secure
PKE using indistinguishability obfuscation. Moreover, Jia et al. [16] proposed
indistinguishability-based RSO-CCA (IND-RSO-CCA) secure PKE schemes
based on standard computational assumptions. Concretely, they showed two
generic constructions of IND−RSO−CCA secure PKE. First, they gave a generic
construction based on an IND−RSO−CPA secure PKE scheme, an IND−CCA
secure PKE scheme, an NIZK proof system, and a strong one-time signature
scheme. Second, they gave a generic construction based on a universal hash proof
system. Recently, Huang et al. [12] showed that a SIM−RSO−CCA secure PKE
scheme can be constructed under the DDH or DCR assumption. Moreover, they
showed that a SIM−RSO−CCA secure PKE scheme can be constructed from
an identity-based encryption scheme satisfying RSO security for a master secret
key in the ideal cipher model.

RSO-CCA Secure PKE from Various Assumptions 217

2 Preliminaries

In this section, we define notations and recall the definitions for some crypto-
graphic primitives.

2.1 Notations

In this paper, x ← X denotes sampling an element x from a finite set X uniformly
at random. y ← A(x; r) denotes that a probabilistic algorithm A outputs y for
an input x using a randomness r, and we simply denote y ← A(x) when we do
not need to write an internal randomness explicitly. For strings x and y, x‖y
denotes the concatenation of x and y. Also, x := y denotes that x is defined by
y. λ denotes a security parameter. A function f(λ) is a negligible function in λ,
if f(λ) tends to 0 faster than 1

λc for every constant c > 0. negl(λ) denotes an
unspecified negligible function. PPT stands for probabilistic polynomial time.
If n is a natural number, [n] denotes a set of integers {1, · · · , n}. Also, if a
and b are integers such that a ≤ b, [a, b] denotes a set of integers {a, · · · , b}. If
m = (m1, · · · ,mn) is an n-dimensional vector, mJ denotes a subset {mj}j∈J

where J ⊆ [n]. If O is a function or an algorithm and A is an algorithm, AO

denotes that A has an oracle access to O.

2.2 Public Key Encryption

Here, we review the definition of public key encryption (PKE).

Definition 1 (Public key encryption). A PKE scheme with a plaintext
space M consists of a tuple of the following three PPT algorithms Π =
(KG,Enc,Dec).

KG: The key generation algorithm, given a security parameter 1λ, outputs a
public key pk and a secret key sk.

Enc: The encryption algorithm, given a public key pk and a plaintext m ∈ M,
outputs a ciphertext c.

Dec: The (deterministic) decryption algorithm, given a public key pk, a secret
key sk, and a ciphertext c, outputs a plaintext m ∈ {⊥} ∪ M.

As the correctness for Π, we require that Dec(pk , sk ,Enc(pk ,m)) = m holds
for all λ ∈ N, m ∈ M, and (pk , sk) ← KG(1λ).

Then, we recall IND−CPA security and SIM−RSO−CCA security for PKE.2

Definition 2 (IND-CPA security). We say that Π = (KG,Enc,Dec) is
IND−CPA secure if for any PPT adversary A = (A1,A2),

Advind−cpa
Π,A (λ) := 2·

∣
∣
∣Pr[b ← {0, 1}; (pk , sk) ← KG(1λ); (m∗

0,m
∗
1, st1) ← A1(pk);

c∗ ← Enc(pk ,m∗
b); b

′ ← A2(c∗, st1) : b = b′] − 1
2

∣
∣
∣ = negl(λ),

2 In this paper, as mentioned in Sect. 1.2, we focus on RNC−CCA secure RNCE
to obtain a new SIM−RSO−CCA secure PKE scheme. Although we do not use a
SIM−RSO−CCA security for PKE, we recall the definition here for completeness.

218 Y. Lu et al.

Definition 3 (SIM-RSO-CCA security). Let n be the number of users. For
a PKE scheme Π = (KG,Enc,Dec), an adversary A = (A1,A2,A3), and a
simulator S = (S1,S2,S3), we define the following pair of experiments.

Exprso−cca−real
n,Π,A (λ) :
(pk, sk) := (pk j , sk j)j∈[n] ← (KG(1λ))j∈[n]

(Dist, st1) ← AODec(·,·)
1 (pk)

m∗ := (m∗
j)j∈[n] ← Dist

c∗ := (c∗
j)j∈[n] ← (Enc(pk j ,m

∗
j))j∈[n]

(J, st2) ← AODec(·,·)
2 (c∗, st1)

out ← AODec(·,·)
3 (skJ ,m∗

J , st2)
Return (m∗,Dist, J, out)

Exprso−cca−sim
n,Π,S (λ) :
(Dist, st1) ← S1(1λ)
m∗ := (m∗

j)j∈[n] ← Dist
(J, st2) ← S2(st1)
out ← S3(m∗

J , st2)
Return (m∗,Dist, J, out)

In both of the experiments, we require that the distributions Dist output by A
and S be efficiently samplable. In Exprso−cca−real

n,Π,A (λ), a decryption query (c, j) is
answered by Dec(pk j , sk j , c). A2 and A3 are not allowed to make a decryption
query (c∗

j , j) for any j ∈ [n]. Furthermore, A3 is not allowed to make a decryption
query (c, j) satisfying j ∈ J . (This is without losing generality, since A3 can
decrypt any ciphertext using the given secret keys.)

We say that Π is SIM−RSO−CCA secure if for any PPT adversary A and
any positive integer n = n(λ), there exists a PPT simulator S such that for any
PPT distinguisher D,

Advrso−cca
n,Π,A,S,D(λ) := |Pr[D(Exprso−cca−real

n,Π,A (λ)) = 1] − Pr[D(Exprso−cca−sim
n,Π,S (λ)) = 1]|

= negl(λ).

2.3 Receiver Non-committing Encryption

Here, we review receiver non-committing encryption (RNCE) [5]. Informally,
RNCE is public key encryption (PKE) having the property that it can gener-
ate a fake ciphertext which can be later opened to any plaintext (by showing
an appropriate secret key). In the following, we give a syntax of RNCE and
RNC−CCA security for it [10].

Definition 4 (Receiver non-committing encryption). An RNCE scheme
Π with a plaintext space M consists of the following seven PPT algo-
rithms (KG,Enc,Dec,FKG,Fake,Open,FDec). (KG,Enc,Dec) are the
same algorithms as those of a PKE scheme. (FKG,Fake,Open,FDec) are
defined as follows.

FKG: The fake key generation algorithm, given a security parameter 1λ, outputs
a public key pk and a trapdoor td.

Fake: The fake encryption algorithm, given a public key pk and a trapdoor td,
outputs a fake ciphertext c̃.

Open: The opening algorithm, given a public key pk, a trapdoor td, a fake cipher-
text c̃, and a plaintext m, outputs a fake secret key s̃k .

RSO-CCA Secure PKE from Various Assumptions 219

FDec: The fake decryption algorithm, given a public key pk, a trapdoor td, and
a ciphertext c, outputs m ∈ {⊥} ∪ M.

Definition 5 (RNC-CCA security). For an RNCE scheme Π = (KG,Enc,
Dec,FKG,Fake,Open,FDec) and an adversary A = (A1,A2,A3), we con-
sider the following pair of experiments.

Exprnc−real
Π,A (λ) :

(pk, sk) ← KG(1λ)
(m∗, st1) ← AODec(·)

1 (pk)
c∗ ← Enc(pk,m∗)
st2 ← AODec(·)

2 (c∗, st1)
sk∗ := sk
Return b′ ← A3(sk∗, st2)

Exprnc−sim
Π,A (λ) :

(pk, td) ← FKG(1λ)
(m∗, st1) ← AODec(·)

1 (pk)
c∗ ← Fake(pk, td)
st2 ← AODec(·)

2 (c∗, st1)
sk∗ ← Open(pk, td, c∗,m∗)
Return b′ ← A3(sk∗, st2)

In Exprnc−real
Π,A (λ), a decryption query c is answered by Dec(pk , sk , c). On the other

hand, in Exprnc−sim
Π,A (λ), a decryption query c is answered by FDec(pk , td , c). In

both of the experiments, A2 is not allowed to make a decryption query c = c∗ and
A3 is not allowed to make any decryption query. We say that Π is RNC−CCA
secure if for any PPT adversary A, Advrnc−cca

Π,A (λ) := |Pr[Exprnc−real
Π,A (λ) = 1] −

Pr[Exprnc−sim
Π,A (λ) = 1]| = negl(λ) holds.

In the previous work [10], the following theorem was shown.

Theorem 1 ([10]). If an RNCE scheme Π = (KG,Enc,Dec,FKG,Fake,
Open,FDec) is RNC−CCA secure, then a PKE scheme Πrso := (KG,Enc,
Dec) is SIM−RSO−CCA secure.

2.4 Signature

Here, we review the definition of a signature scheme.

Definition 6 (Signature). A signature scheme Σ with a message space M
consists of the following three PPT algorithms.

SKG: The key generation algorithm, given a security parameter 1λ, outputs a
verification key vk and a signing key sigk.

Sign: The signing algorithm, given a signing key sigk and a message m, and
outputs a signature σ.

SVer: The verification algorithm, given a verification key vk, a message m, and
a signature σ, outputs either 1 (meaning “accept”) or 0 (meaning “reject”).

As the correctness for Σ, we require that for all λ ∈ N, (vk , sigk) ←
SKG(1λ), and messages m ∈ M, it holds that SVer(vk ,m,Sign(sigk ,m)) = 1.

Next, we define strong one-time unforgeability under chosen message attacks
for a signature scheme.

220 Y. Lu et al.

Definition 7 (Strong one-time unforgeability). We say that a signature
scheme Σ = (SKG,Sign,SVer) satisfies strong one-time unforgeability if for
any PPT adversary A = (A1,A2),

AdvunfΩ,A(λ) := Pr[(vk , sigk) ← SKG(1λ); (m, st1) ← A1(vk); σ ← Sign(sigk , m);

(m′, σ′) ← A2(σ, st1) : ((m′, σ′) �= (m, σ)) ∧ (SVer(vk , m′, σ′) = 1)] = negl(λ)

holds.

2.5 Commitment

Here, we review the definition of a commitment scheme.

Definition 8 (Commitment). A Commitment scheme Ω with a plaintext
space M consists of the following two PPT algorithms.

CKG: The key generation algorithm, given a security parameter 1λ, outputs a
public commitment key ck.

Commit: The commit algorithm, given a public commitment key ck and a plain-
text m, outputs a commitment c.

Next, we define the following two security properties for commitment: statis-
tical binding and computationally hiding.

Definition 9 (Statistical binding). Let Ω = (CKG,Commit) be a commit-
ment scheme. We say that Ω satisfies statistical binding if for any computation-
ally unbounded adversary A,

AdvbindΩ,A(λ) := Pr[ck ← CKG(1λ); (m0,m1, r0, r1) ← A(ck) :

Commit(ck ,m0; r0) = Commit(ck ,m1; r1)] = negl(λ)

holds.

Definition 10 (Computational hiding). We say that a commitment scheme
Ω = (CKG,Commit) satisfies computationally hiding if for any PPT adver-
sary A = (A1,A2),

AdvhideΩ,A(λ) :=
∣
∣
∣Pr[b ← {0, 1}; ck ← CKG(1λ); (m0,m1, st1) ← A1(ck);

c ← Commit(ck ,mb); b′ ← A2(c, st1) : b = b′] − 1
2

∣
∣
∣ = negl(λ)

holds.

RSO-CCA Secure PKE from Various Assumptions 221

2.6 Designated-Verifier Non-interactive Zero-Knowledge
Arguments

Here, we review the definition of a designated-verifier non-interactive zero-
knowledge (DV-NIZK) argument [6,17,18,20,23].

Definition 11 (DV-NIZK argument). Let R be an efficiently computable
binary relation and L := {x | ∃w s.t. (x,w) ∈ R}. A DV-NIZK argument for L
consists of a tuple of the following five PPT algorithms Φ = (CRSGen,Prove,
Verify,SimCRS,SimPrv).

CRSGen: The common reference string (CRS) generation algorithm takes a
security parameter 1λ as input, and outputs a CRS crs and a secret verifica-
tion key vsk.

Prove: The proving algorithm takes a CRS crs, a statement x, and a witness w
as input, and outputs a proof π.

Verify: The (deterministic) verification algorithm takes a CRS crs, a secret
verification key vsk, a statement x, and a proof π as input, outputs a bit
v ∈ {0, 1}, which is either 1 (meaning “accept”) or 0 (meaning “reject”).

SimCRS: The simulator’s CRS generation algorithm takes a security parameter
1λ as input, outputs a simulated CRS crs, a simulated secret verification key
vsk, and a trapdoor key tk.

SimPrv: The simulator’s proving algorithm takes a trapdoor key tk and a state-
ment x as input, and outputs a simulated proof π.

We say that a DV-NIZK argument Φ is correct if we have Verify(crs, vsk , x,
Prove(crs, x, w)) = 1 for all λ ∈ N, (crs, vsk) ← CRSGen(1λ), and valid
statement / witness pairs (x,w) ∈ R.

Next, we define (standard) soundness and one-time simulation soundness for
a DV-NIZK argument. We adopt a definition of soundness which was considered
in recent works [6,17,18,20,23]. Moreover, we adopt a definition of one-time
simulation soundness proposed in [8]. We note that in both of security definitions,
an adversary can make multiple verification queries.

Definition 12 (Soundness). We say that a DV-NIZK argument Φ =
(CRSGen,Prove,Verify,SimCRS,SimPrv) satisfies soundness if for any
PPT adversary A,

AdvsoundΦ,A (λ) := Pr[(crs, vsk) ← CRSGen(1λ); (x, π) ← AO(·,·)(crs)

: (x /∈ L) ∧ (Verify(crs, vsk , x, π) = 1)] = negl(λ)

holds, where O(·, ·) is a verification oracle which receives a query (x, π) and
returns v ← Verify(vsk , x, π).

222 Y. Lu et al.

Definition 13 (One-time simulation soundness). We say that a DV-NIZK
argument Φ = (CRSGen,Prove,Verify,SimCRS,SimPrv) satisfies one-
time simulation soundness if for any PPT adversary A = (A1,A2),

Advot−ss
Φ,A (λ) := Pr[(crs, tk , vsk) ← SimCRS(1λ); (x′, st1) ← AO(·,·)

1 (crs);

π′ ← SimPrv(tk , x′); (x, π) ← AO(·,·)
2 (π′, st1)

: ((x, π) �= (x′, π′)) ∧ (x /∈ L) ∧ (Verify(crs, vsk , x, π) = 1)] = negl(λ)

holds, where O(·, ·) is a verification oracle which receives a query (x, π) and
returns v ← Verify(vsk , x, π).

Then, we give the definitions of zero-knowledge and witness indistinguisha-
bility for a DV-NIZK argument. We adopt a definition of zero-knowledge which
was considered in [8]. Our definition of witness indistinguishability is a natural
extension from one of a (standard) NIZK proof system. It is easy to see that our
witness indistinguishability is implied by zero-knowledge.

Definition 14 (Zero-knowledge). For a DV-NIZK argument Φ =
(CRSGen,Prove,Verify,SimCRS,SimPrv) and a PPT adversary A =
(A1,A2), we consider the following two experiments.

Expzk−real
Φ,A (λ) :

(crs, vsk) ← CRSGen(1λ)
(x,w, st1) ← A1(crs, vsk)
π ← Prove(crs, x, w)
b′ ← A2(π, st1)
Return b′

Expzk−sim
Φ,A (λ) :
(crs, vsk , tk) ← SimCRS(1λ)
(x,w, st1) ← A1(crs, vsk)
π ← SimPrv(tk , x)
b′ ← A2(π, st1)
Return b′

In both of the experiments, it is required that x ∈ L and w be a witness for x ∈
L. We say that Φ is zero-knowledge if for any PPT adversary A, AdvzkΦ,A(λ) :=
|Pr[Expzk−real

Φ,A (λ) = 1] − Pr[Expzk−sim
Φ,A (λ) = 1]| = negl(λ) holds.

Definition 15 (Witness indistinguishability). We say that a DV-NIZK
argument Φ = (CRSGen,Prove,Verify,SimCRS,SimPrv) satisfies witness
indistinguishability if for any PPT adversary A = (A1,A2),

AdvwiΦ,A(λ) := 2 ·
∣
∣
∣Pr[(crs, vsk) ← CRSGen(1λ);

(x,w0, w1, st1) ← A1(crs, vsk); b ← {0, 1};

π ← Prove(crs, x, wb); b′ ← A2(π, st1) : b = b′] − 1
2

∣
∣
∣ = negl(λ),

where (x,w0), (x,w1) ∈ R holds.

3 Construction of One-Time Simulation Sound DV-NIZK

In this section, we provide a construction of one-time simulation sound DV-
NIZK. First, in Sect. 3.1, we describe our construction. Then, in Sect. 3.2, we
give a security proof for our construction.

RSO-CCA Secure PKE from Various Assumptions 223

3.1 Description

In this section, we formally describe our construction of one-time simulation
sound DV-NIZK argument for an NP language L′. Let Σ = (SKG,Sign,SVer)
be a signature scheme, Ω = (CKG,Commit) a commitment scheme, and
Π = (CRSGen,Prove,Verify,SimCRS,SimPrv) a (standard) DV-NIZK
argument for L, where

L :=
{

(x′, ck , vk , c) | ∃ (w′, r) s.t. ((x′, w′) ∈ R′) ∨ (c = Commit(ck , vk; r))
}

.

Then, we construct our one-time simulation sound DV-NIZK argument Φ′ =
(CRSGen′,Prove′,Verify′,SimCRS′,SimPrv′) for L′ as described in Fig.1.

3.2 Security Proof

In this section, we show that our scheme Φ′ satisfies one-time simulation sound-
ness (Theorem 2) and zero-knowledge (Theorem 3).

Theorem 2. If Φ satisfies (standard) soundness, Ω satisfies statistical binding,
and Σ satisfies strong one-time unforgeability, then Φ′ satisfies one-time simu-
lation soundness.

Proof of Theorem 2. Let A = (A1,A2) be a PPT adversary that attacks the one-
time simulation soundness of Φ′. The detailed description of one-time simulation
soundness for Φ′ is as follows.

1. The challenger generates ck ← CKG(1λ), (crs, vsk) ← CRSGen(1λ),
and (sigk∗, vk∗) ← SKG(1λ). Then, it samples r ← RΠ and computes
c∗ ← Commit(ck , vk∗; r). Finally, it sets crs ′ := (crs, ck , c∗) and tk :=
(vk∗, sigk∗, r), and runs A1(crs ′). When A1 makes a verification query (x̃, π̃),
the challenger returns v ← Verify(crs, vsk , x̃, π̃) to A1.

2. When A1 outputs (x̂′, st1) and terminates, the challenger sets x̂ :=
(x̂′, ck , vk∗, c∗) and ŵ := (⊥, r), and computes π̂ ← Prove(crs, x̂, ŵ) and
σ̂ ← Sign(sigk∗, (x̂′, π̂)). Then, it sets π̂′ := (vk∗, π̂, σ̂) and runs A2(π̂′, st1).
When A2 makes a verification query (x̃, π̃), the challenger returns v ←
Verify(crs, vsk , x̃, π̃) to A2.

3. A2 outputs a pair of a statement and a proof (x′, π′ = (vk , π, σ)) and
terminates.

Here, in the above experiment, we let Win be the event that ((x′, π′) �=
(x̂′, π̂′))∧ (x′ /∈ L′)∧ (Verify(crs ′, vsk , x′, π′) = 1) holds. We have the inequality
Advot−ss

Φ′,A (λ) = Pr[Win] = Pr[Win ∧ vk �= vk∗] + Pr[Win ∧ vk = vk∗].
In the following, we show that there exist a PPT adversary B against the

soundness of Φ such that AdvsoundΦ,B (λ) = Pr[Win ∧ vk �= vk∗] (Lemma 1) and
a PPT adversary C = (C1, C2) against the strong one-time unforgeability of Σ
such that AdvunfΣ,C(λ) = Pr[Win ∧ vk = vk∗] (Lemma 2).

224 Y. Lu et al.

CRSGen′(1λ) :
ck ← CKG(1λ)
(crs, vsk) ← CRSGen(1λ)
r ← RΩ

c ← Commit(ck , 0|vk|; r)
crs ′ := (crs, ck , c)
Return (crs ′, vsk)

Prove′(crs ′, x′, w′) :
(vk , sigk) ← SKG(1λ)
x := (x′, ck , vk , c)
w := (w′, ⊥)
π ← Prove(crs, x, w)
σ ← Sign(sigk , (x′, π))
Return π′ := (vk , π, σ)

Verify′(crs ′, vsk , x′, π′) :
If SVer(vk , (x′, π), σ) = 1
∧Verify(crs, vsk , (x′, ck , vk , c), π) = 1 then
Return 1

else Return 0
SimCRS′(1λ) :

ck ← CKG(1λ)
(crs, vsk) ← CRSGen(1λ)
(sigk∗, vk∗) ← SKG(1λ)
r ← RΠ

c∗ ← Commit(ck , vk∗; r)
crs ′ := (crs, ck , c∗)
tk := (vk∗, sigk∗, r)
Return (crs ′, tk , vsk)

SimPrv′(crs ′, tk , x′) :
x := (x′, ck , vk∗, c∗)
w := (⊥, r)
π∗ ← Prove(crs, x, w)
σ∗ ← Sign(sigk∗, (x′, π∗))
Return π′ := (vk∗, π∗, σ∗)

Fig. 1. Construction of one-time simulation sound DV-NIZK argument Φ′.

Lemma 1. There exists a PPT adversary B such that AdvsoundΦ,B (λ) = Pr[Win∧
vk �= vk∗].

Proof of Lemma 1. We construct a PPT adversary B that attacks the soundness
of Φ so that AdvsoundΦ,B (λ) = Pr[Win∧vk �= vk∗], using the adversary A as follows.

B(crs) : First, B generates ck ← CKG(1λ), (crs, vsk) ← CRSGen(1λ), and
(sigk∗, vk∗) ← SKG(1λ). Then, it samples r ← RΠ and computes c∗ ←
Commit(ck , vk∗; r). Next, it sets crs ′ := (crs, ck , c) and tk ′ := (vk∗, sigk∗,
r), and runs A1(crs ′). When A1 makes a verification query (x̃′, (ṽk , π̃, σ̃)),
B computes s ← SVer(ṽk , (x̃′, π̃), σ̃), makes a verification query ((x̃′, ck , ṽk ,
c), π̃), and gets the result v. If s = v = 1 holds, B returns 1 to A1. Otherwise,
B returns 0 to A1.
When A1 outputs a pair of a statement and state information (x̂′, st1) and
terminates, B sets x̂ := (x̂′, vk , c) and ŵ := (⊥, r). Next, B computes π̂ ←
Prove(crs, x̂, ŵ) and σ̂ ← Sign(sigk∗, (π̂, x̂′)). Then, B sets π̂′ := (vk , π̂, σ̂)
and runs A2(π̂′, st1). When A2 makes a verification query ((x̃′, ck , ṽk , c), π̃),
B answers in the same way as above. When A2 outputs a pair of a statement
and a proof (x′, (vk , π, σ)) and terminates, B sets x := (x′, ck , vk , c), returns
(x, π) to its experiment, and terminates.

We can see that B perfectly simulates an experiment of one-time simu-
lation soundness for A. Here, we assume that vk �= vk∗ holds. Firstly, if

RSO-CCA Secure PKE from Various Assumptions 225

the event Win occurs, Verify′(crs ′, vsk , x′, π′) = 1 holds, which means that
Verify(crs, vsk , (x′, ck , vk , c), π) = 1 holds.

Secondly, x′ /∈ L′ holds now. Moreover, due to the fact that vk �= vk∗ and
the statistical binding of Ω hold, we can see Commit(ck , vk ; r) �= c. Hence, we
have x /∈ L.

From the above argument, if Win occurs and vk �= vk∗ holds, we can see
that B can make a pair of a statement and a proof (x, π) breaking the soundness
of Φ. Thus, AdvsoundΦ,B (λ) = Pr[Win ∧ vk �= vk∗] holds.
� (Lemma 1)

Lemma 2. There exists a PPT adversary C = (C1, C2) such that AdvunfΣ,C(λ) =
Pr[Win ∧ vk = vk∗].

Proof of Lemma 2. We construct a PPT adversary C = (C1, C2) that attacks the
strong one-time unforgeability of Σ so that AdvunfΣ,C(λ) = Pr[Win ∧ vk = vk∗],
using the adversary A as follows.

C1(vk∗): First, C1 generates ck ← CKG(1λ) and (crs, vsk) ← CRSGen(1λ).
Next, C1 samples r ← RΠ and computes c ← Commit(ck , vk∗; r). Then,
C1 sets crs ′ := (crs, ck , c) and runs A1(crs ′). When A1 makes a verification
query of (x̃′, π̃′), C1 returns v ← Verify′(crs ′, vsk , x̃′, π̃′) to A1.
When A1 outputs a pair of a statement and state information (x̂′, st1) and
terminates, C1 sets x̂ := (x̂′, ck , vk∗, c) and ŵ := (⊥, r), and computes π̂ ←
Prove(crs, x̂, ŵ). Then, C1 sets m̂ := (x̂′, π̂) and st′1 as all the information
known to C1, returns (m̂, st1) to its experiment, and terminates.

C2(σ̂, st1): First, C2 sets π̂′ := (vk∗, σ̂, π̂) and runs A2(π̂′, st1). When A2 outputs
a pair of a challenge statement and a proof (x′, (vk , π, σ)), and terminates, C2

sets m′ := (x′, π), returns (σ,m′) to its experiment, and terminates.

We can see that C perfectly simulates an experiment of one-time simulation
soundness for A. Here, we assume that vk = vk∗ holds. If the event Win occurs,
Verify(crs ′, vsk , x′, π′) = 1 holds, which means that SVer(vk∗,m′, σ) = 1 holds.
Moreover, (x′, π′) �= (x̂′, π̂′) holds now, which implies (m′, σ) �= (m̂, σ̂). From the
above argument, if Win occurs and vk = vk∗ holds, we can see that C can make a
pair of a statement and a proof (x′, π) breaking the strong one-time unforgeability
of Σ. Thus, AdvunfΣ,C(λ) = Pr[Win ∧ vk = vk∗] holds.
� (Lemma 2)

Putting everything together, we obtain Advot−ss
Φ′,A (λ) ≤ AdvsoundΦ,B (λ) +

AdvunfΣ,C(λ). Since Φ satisfies (standard) soundness and Σ satisfies strong one-time
unforgeability, for any PPT adversary A, Advot−ss

Φ′,A (λ) = negl(λ) holds. Therefore,
Φ′ satisfies one-time simulation soundness.
� (Theorem 2)

Theorem 3. If Φ satisfies witness indistinguishability and Ω satisfies computa-
tionally hiding, then Φ′ satisfies zero-knowledge.

Proof of Theorem 3. Let A = (A1,A2) be a PPT adversary that attacks the
zero-knowledge of Φ′. We introduce the following experiments {Expi}2i=0.

226 Y. Lu et al.

Exp0: Exp0 is exactly the same as Expzk−real
Φ′,A (λ). The detailed description is as

follows.
1. Exp0 generates ck ← CKG(1λ) and (crs, vsk) ← CRSGen(1λ). Then,

Exp0 samples r ← RΩ and computes c ← Commit(0|vk |; r). Next, Exp0
sets crs ′ := (crs, ck , c) and runs A1(crs ′, vsk).

2. When A1 outputs a tuple (x′, w′, st1) and terminates, Exp0 generates (vk ,
sigk) ← SKG(1λ) and sets x := (x′, ck , vk , c) and w := (w′,⊥). Then,
Exp0 computes π ← Prove(crs, x, w) and σ ← Sign(sigk , (x′, π)), and
returns π′ := (vk , π, σ) to A2.

3. When A2 outputs a bit b′ ∈ {0, 1} and terminates, Exp0 outputs b′.
Exp1 : Exp1 is identical to Exp0 except that Exp1 generates another

(sigk∗, vk∗) ← SKG(1λ) and computes c ← Commit(vk∗; r) instead of
c ← Commit(0|vk |; r).

Exp2 : Exp2 is identical to Exp1 except that Exp2 sets w := (⊥, r) and uses this
w to make a proof π. Note that Exp2 is exactly the same as Expzk−sim

Φ′,A (λ).

We let pi := Pr[Expi(λ) = 1] for all i ∈ [0, 2]. Then, we have

AdvzkΦ′,A(λ) = |Pr[Expzk−real
Φ′,A (λ) = 1] − Pr[Expzk−sim

Φ′,A (λ) = 1]|

= |p0 − p2| ≤
1∑

i=0

|pi − pi+1|.

It remains to show how each |pi − pi+1| is upper-bounded. To this end, in
the following, we show that there exist an adversary D = (D1,D2) against the
computationally hiding of Ω such that |p0 − p1| = AdvhideΩ,D(λ) (Lemma 3) and
an adversary E = (E1, E2) against the witness indistinguishability of Φ such that
|p1 − p2| = AdvwiΦ,E(λ) (Lemma 4).

Lemma 3. There exists a PPT adversary D = (D1,D2) such that |p0 − p1| =
AdvhideΩ,D(λ).

Proof of Lemma 3. We construct a PPT adversary D = (D1,D2) that attacks
the hiding property of Ω so that |p0 − p1| = AdvhideΩ,D(λ), using the adversary
A = (A1,A2) as follows.

D1(ck): First, D1 generates (crs, vsk) ← CRSGen(1λ) and (sigk∗, vk∗) ←
SKG(1λ). Then, D1 sets m0 := 0|vk∗|, m1 := vk∗, and st1 as all of
the information known to D1, returns (m0,m1, st1) to its experiment, and
terminates.

D2(c): First, D2 sets crs ′ := (crs, c) and runs A1(crs ′). When A1 outputs a tuple
(x′, w′, st′1), D2 sets x := (x′, ck , vk∗, c) and w := (w′,⊥). Then, D2 computes
π ← Prove(crs, x, w) and σ ← Sign(sigk∗, (x′, π)), sets π′ := (vk∗, π, σ), and
runs A2(π′, st1). When A2 outputs a bit b′ ∈ {0, 1} and terminates, D2 returns
b′ to its experiment and terminates.

RSO-CCA Secure PKE from Various Assumptions 227

We let b be the challenge bit for D in its experiment. When b = 0, we
can see that D perfectly simulates Exp0 for A. This ensures that when b = 0,
the probability that D outputs 1 is exactly the same as the probability that A
outputs b′ = 1 in Exp0. On the other hand, when b = 1, we can see that D
perfectly simulates Exp1 for A. This ensures that when b = 1, the probability
that D outputs 1 holds is exactly the same as the probability that A outputs
b′ = 1 in Exp1. Therefore, we have AdvhideΩ,D(λ) = |Pr[b′ = 1|b = 0]−Pr[b′ = 1|b =
1]| = |p0 − p1|.
� (Lemma 3)

Lemma 4. There exists a PPT adversary E = (E1, E2) such that |p1 − p2| =
AdvwiΦ,E(λ).

Proof of Lemma 4. We construct a PPT adversary E = (E1, E2) that attacks
the witness indistinguishability of Φ so that |p1 − p2| = AdvwiΦ,E(λ), using the
adversary A = (A1,A2) as follows.

E1(crs): First, E1 generates ck ← CKG(1λ) and (sigk∗, vk∗) ← SKG(1λ). Then,
E1 samples r ← RΩ and computes c ← Commit(ck , vk∗; r). Next, E1 sets
crs ′ := (crs, c) and runs A1(crs ′). When A1 outputs (x′, w′, st1) and termi-
nates, E1 sets x := (x′, ck , vk∗, c), w0 := (w′,⊥), and w1 := (⊥, r). Then, E1

returns (x,w0, w1) and st′1 including all of the information known to E1 to its
experiment, and terminates.

E2(π, st′1): First, E2 computes σ ← Sign(sigk , (x′, π)). Then, E2 sets π′ :=
(π, σ, vk∗) and runs A2(π′, st1). When A2 outputs a bit b′ ∈ {0, 1} and ter-
minates, E2 returns b′ to its experiment and terminates.

We let b be the challenge bit for E in its experiment. When b = 0, we can
see that E perfectly simulates Exp1 for A. This ensures that when b = 0, the
probability that E outputs 1 holds is exactly the same as the probability that
A outputs 1 in Exp1. On the other hand, when b = 1, E perfectly simulates
Exp2 for A. This ensures that when b = 0, the probability that E outputs 1 is
exactly the same as the probability that A outputs 1 in Exp2. Therefore, we have
AdvwiΦ,E(λ) = |Pr[b′ = 1|b = 0] − Pr[b′ = 1|b = 1]| = |p1 − p2|.
� (Lemma 4)

Putting everything together, we obtain AdvzkΦ′,A(λ) ≤ AdvhideΩ,D(λ)+AdvwiΦ,E(λ).
Since Ω satisfies computationally hiding and Φ satisfies witness indistinguishabil-
ity, for any PPT adversary A, AdvzkΦ′,A(λ) = negl(λ) holds. Therefore, Φ′ satisfies
zero-knowledge.
� (Theorem 3)

4 Construction of RNC−CCA Secure RNCE

In this section, we show that our generic construction of RNC−CCA secure
RNCE with the plaintext space {0, 1}. Firstly, in Sect. 4.1, we describe our
generic construction. Then, in Sect. 4.2, we give a security proof for it.

228 Y. Lu et al.

KG′(1λ) :
α ← {0, 1}
(pk0, sk0) ← KG(1λ)
(pk1, sk1) ← KG(1λ)
(crs, vsk) ← CRSGen(1λ)
pk := (pk0, pk1, crs)
sk := (α, skα, vsk)
Return (pk , sk)

Enc′(pk , m) :
(r0, r1) ← (RΠ)2

c0 ← Enc(pk0, m; r0)
c1 ← Enc(pk1, m; r1)
x := (pk0, pk1, c0, c1)
w := (m, r0, r1)
π ← Prove(crs, x, w)
Return c := (c0, c1, π)

Dec′(pk , sk , c) :
x := (pk0, pk1, c0, c1)
If Verify(crs, vsk , x, π) = 1
then

m ← Dec(pkα, skα, cα)
Return m

else Return ⊥

FKG′(1λ) :
α ← {0, 1}
(pk0, sk0) ← KG(1λ)
(pk1, sk1) ← KG(1λ)
(crs, vsk , tk)

← SimCRS(1λ)
pk := (pk0, pk1, crs)
td := (α, sk0, sk1, vsk , tk)
Return (pk , td)

Fake′(pk , td) :
cα ← Enc(pkα, 0)
c1⊕α ← Enc(pk1⊕α, 1)
x := (pk0, pk1, c0, c1)
π ← SimPrv(tk , x)
Return c̃ := (c0, c1, π)

Open′(pk , td , c̃, m) :
˜sk := (α ⊕ m,

skα⊕m, vsk)
Return ˜sk

FDec′(pk , td , c) :
x := (pk0, pk1, c0, c1)
If Verify(crs, vsk , x, π) = 1
then

m ← Dec(pk0, sk0, c0)
Return m

else Return ⊥

Fig. 2. Construction of RNC−CCA secure RNCE Π ′.

4.1 Description

In this section, we formally describe our generic construction of RNC-CCA
secure RNCE with the plaintext space {0, 1}. Let Π = (KG,Enc,Dec) be
a PKE scheme with the plaintext space {0, 1} and Rπ a randomness space for
the encryption algorithm Enc. Let Φ = (CRSGen,Prove,Verify,SimCRS,
SimPrv) be a DV-NIZK argument for

Leq :=
{

(pk0, pk1, c0, c1)| ∃(m, r0, r1) ∈ {0, 1} × (RΠ)2 s.t.

(c0 = Enc(pk0,m; r0)) ∧ (c1 = Enc(pk1,m; r1))
}

.

Then, we use them to construct our RNCE scheme Π ′ = (KG′,Enc′,
Dec′,FKG′,Fake′,Open′,FDec′) with the plaintext space {0, 1} as described
in Fig. 2. We note that the correctness of our RNCE scheme holds due to the
correctness of Π and Φ.

How to expand the plaintext space of our generic construction. In the above,
we only give the construction whose plaintext space is {0, 1}. However, we can
expand the plaintext space by using our single-bit construction in a parallel way
except for the generation of a proof of a DV-NIZK argument. More concretely,
if we encrypt an 	-bit plaintext m = m1‖ · · · ‖m�, the procedure is as follows.

Firstly, we generate a public key pk = ((pk i
0, pk

i
1)i∈[�], crs) and a secret key

sk = (αi, sk i
αi

, vsk)i∈[�], where α1, · · · , α� ← {0, 1}, (pk i
v, sk i

v) ← KG(1λ) for

RSO-CCA Secure PKE from Various Assumptions 229

all (i, v) ∈ [] × {0, 1}, and crs (resp., vsk) denotes a CRS (resp., a secret
verification key) of a DV-NIZK argument. Next, we compute a ciphertext
c = ((ci

0)i∈[�], (ci
1)i∈[�], π), where ci

v ← Enc(pk i
v,mi) for all (i, v) ∈ [] × {0, 1}

and π is a proof proving that, for each i ∈ [], the ciphertexts ci
0 and ci

1 encrypt
the same plaintext mi ∈ {0, 1}. Similarly, for the other procedures, we execute
one-bit version algorithms in a parallel way for all i ∈ [] except for the procedure
of a DV-NIZK argument. See the full version of the paper for the details.

4.2 Security Proof

In this section, we show the following theorem.

Theorem 4. If Π is an IND−CPA secure PKE scheme and Φ satisfies one-time
simulation soundness and zero-knowledge, then Π ′ is RNC−CCA secure.

Proof of Theorem 4. Let A = (A1,A2,A3) be a PPT adversary that attacks the
RNC−CCA security of Π ′. We introduce the following experiments {Expi}5i=0.

Exp0 : Exp0 is exactly the same as Exprnc−real
Π′,A (λ). The detailed description is as

follows.

1. First, Exp0 samples α ← {0, 1} and computes (pk0, sk0) ← KG(1λ),
(pk1, sk1) ← KG(1λ), and (crs, vsk) ← CRSGen(1λ). Next, Exp0 sets
pk := (pk0, pk1, crs) and sk := (α, skα, vsk), and runs A1(pk). When A1

makes a decryption query c = (c0, c1, π), Exp0 checks whether Verify(crs,
vsk , (pk0, pk1, c0, c1), π) = 1 or not. If this condition holds, Exp0 computes
m ← Dec(pkα, skα, cα) and returns m to A1. Otherwise, Exp0 returns ⊥
to A1.

2. When A1 outputs (m∗, st1) and terminates, Exp0 computes the chal-
lenge ciphertext c∗ as follows. First, Exp0 samples (r∗

0 , r
∗
1) ← (RΠ)2

and computes c∗
0 ← Enc(pk0,m

∗; r∗
0), c∗

1 ← Enc(pk1,m
∗; r∗

1), and
π∗ ← Prove(crs, (pk0, pk1, c

∗
0, c

∗
1), (m

∗, r∗
0 , r

∗
1)). Next, Exp0 sets c∗ =

(c∗
0, c

∗
1, π

∗) and runs A2(c∗, st1). When A2 makes a decryption query c,
Exp0 answers in the same way as above.

3. When A2 outputs state information st2 and terminates, Exp0 runs
A3(sk , st2).

4. When A3 outputs a bit b′ and terminates, Exp0 outputs b′.
Exp1 : Exp1 is identical to Exp0 except for the following change. When

computing the challenge ciphertext c∗, the common reference string
crs is generated by executing (crs, vsk , tk) ← SimCRS(1λ) instead
of (crs, vsk) ← CRSGen(1λ). Moreover, Exp1 generates a simu-
lated proof π∗ ← SimPrv(tk , (pk0, pk1, c

∗
0, c

∗
1)) instead of π∗ ←

Prove(crs, (pk0, pk1, c
∗
0, c

∗
1), (m

∗, r∗
0 , r

∗
1)).

Exp2 : Exp2 is identical to Exp1 except that when computing the challenge cipher-
text c∗, Exp2 computes c∗

1⊕α ← Enc(pk1⊕α, 1 ⊕ m∗; r∗
1⊕α) instead of c∗

1⊕α

← Enc(pk1⊕α,m∗; r∗
1⊕α).

230 Y. Lu et al.

Exp3 : Exp3 is identical to Exp2 except that when responding to a decryption
query c = (c0, c1, π), if Verify(crs, vsk , (pk0, pk1, c0, c1), π) = 1, Exp3 answers
m ← Dec(pk0, sk0, c0) instead of m ← Dec(pkα, skα, cα). Note that the
decryption procedure in Exp3 is exactly the same as FDec′(pk , td , c).

Exp4 : Exp4 is identical to Exp3 except that α ⊕ m∗ is used instead of α. That
is, when computing the challenge ciphertext c∗, Exp4 computes c∗

0 and c∗
1

by c∗
α⊕m∗ ← Enc(pkα⊕m∗ ,m∗) and c∗

α⊕(1⊕m∗) ← Enc(pkα⊕(1⊕m∗), 1 ⊕ m∗).
Moreover, Exp4 gives the secret key sk = (α⊕m∗, skα⊕m∗ , vsk) to A3 instead
of sk = (α, skα).

Exp5 : Exp5 is exactly the same as Exprnc−sim
Π′,A (λ).

We let pi := Pr[Expi(λ) = 1] for all i ∈ [0, 5]. Then, we have Advrnc−cca
Π′,A (λ) =

|Pr[Exprnc−real
Π′,A (λ) = 1] − Pr[Exprnc−sim

Π′,A (λ) = 1]| = |p0 − p5| ≤ ∑4
i=0 |pi − pi+1|.

It remains to show how each |pi − pi+1| is upper-bounded. To this end, we will
show the following lemmata.

Lemma 5. There exists a PPT adversary E = (E1, E2) against the zero-
knowledge of Φ such that |p0 − p1| = AdvzkΦ,E(λ).

Lemma 6. There exists a PPT adversary F = (F1,F2) against the IND−CPA
security of Π such that |p1 − p2| = Advind−cpa

Π,F (λ).

Lemma 7. There exists a PPT adversary G = (G1,G2) against the one-time
simulation soundness of Φ such that |p2 − p3| ≤ Advot−ss

Φ,G (λ).

Lemma 8. |p3 − p4| = 0 holds.

Lemma 9. |p4 − p5| = 0 holds.

As mentioned in Sect. 1.2, compared to the previous work [10], the most
technically obscure part is Lemma 7 using the one-time simulation soundness of
a DV-NIZK argument, and thus we show only it here due to the space limitation.
We will show the rest lemmata formally in the full version of the paper.

Proof of Lemma 7. For i ∈ {2, 3}, we let Badi be the event that A2

makes a decryption query c = (c0, c1, π) satisfying (Dec(pk0, sk0, c0) �=
Dec(pk1, sk1, c1)) ∧ (Verify(crs, vsk , (pk0, pk1, c0, c1), π) = 1) in Expi. (We call
such a decryption query a bad decryption query.) Exp2 proceeds identically to
Exp3 unless Bad2 happens. Therefore, the inequality |p2 − p3| ≤ Pr[Bad2] =
Pr[Bad3] holds. In the following, we show that one can construct a PPT adver-
sary G = (G1,G2) that attacks the one-time simulation soundness of Φ so that
Pr[Bad2] = Advot−ss

Φ,G (λ), using the adversary A = (A1,A2,A3).

G1(crs) : First, G1 samples α ← {0, 1} and computes (pk0, sk0) ← KG(1λ) and
(pk1, sk1) ← KG(1λ). Next, G1 sets pk := (pk0, pk1, crs) and runs A1(pk).
When A1 makes a decryption query c = (c0, c1, π), G1 makes a verification
query ((pk0, pk1, c0, c1), π) to its experiment. Upon receiving a verification

RSO-CCA Secure PKE from Various Assumptions 231

result v ∈ {0, 1}, G1 checks whether v = 1 or not. If this is the case, then
G1 computes m ← Dec(pkα, skα, cα) and returns m to A1. Otherwise, G1

returns ⊥ to A1.
When A1 outputs the challenge plaintext m∗ and state information st1, and
terminates, G1 computes c∗

α ← Enc(pkα,m∗) and c∗
1⊕α ← Enc(pk1⊕α, 1 ⊕

m∗). Finally, G1 sets st′1 as all the information known to it, returns
((pk0, pk1, c

∗
0, c

∗
1), st

′
1) to its experiment, and terminates.

G2(π∗, st′1) : First, G2 sets c∗ := (c∗
0, c

∗
1, π

∗) and runs A2(c∗, st1). When A2 makes
a decryption query c, G2 parses c := (c0, c1, π). Then, G2 makes a verifica-
tion query ((pk0, pk1, c0, c1), π) to its experiment. If the verification result is
0, then G2 returns ⊥ to A2. If the verification result is 1, then G2 checks
whether Dec(pk0, sk0, c0) �= Dec(pk1, sk1, c1) or not. If this is the case, G2

returns ((pk0, pk1, c0, c1), π) to its experiment and terminates. Otherwise, G2

computes m ← Dec(pkα, skα, cα) and returns m to A2. When A2 outputs
state information st2 and terminates, G2 gives up and terminates.

From the above construction of G, it is easy to see that G perfectly sim-
ulates the experiment Exp2 for A. Here, the success condition of G is to out-
put a pair of a statement and a proof (x, π) satisfying ((x∗, π∗) �= (x, π)) ∧
(Verify(crs, vsk , x, π) = 1) ∧ (x /∈ Leq), where x∗ = (pk0, pk1, c

∗
0, c

∗
1) and

x = (pk0, pk1, c0, c1). If A2 makes a bad decryption query c = (c0, c1, π), then
Dec(pk0, sk0, c0) �= Dec(pk1, sk1, c1) and Verify(crs, vsk , x, π) = 1. Thus, we
can see that x /∈ Leq holds now due to the correctness of Π.

Moreover, due to the condition of decryption queries by A2, we have (c∗
0, c

∗
1, π

∗)
= c∗ �= c = (c0, c1, π). That is, we have (x∗, π∗) �= (x, π). Thus, when A2 makes
a bad decryption query c, G achieves its success condition by returning (x, π) to
its experiment. We note that G can detect that the event Bad2 occurs because G
has both of the secret keys sk0 and sk1, and can make a verification query (x, π) to
its experiment. From the above arguments, the probability that A2 makes a bad
decryption query is exactly the same as the probability that G breaks the one-time
simulation soundness of Φ. Therefore, we have Pr[Bad2] = Advot−ss

Φ,G (λ), which in
turn implies |p2 − p3| ≤ Advot−ss

Φ,G (λ).
� (Lemma 7)

Putting everything together, we obtain Advrnc−cca
Π′,A (λ) ≤ AdvzkΦ,E(λ) +

Advind−cpa
Π,F (λ) + Advot−ss

Φ,G (λ). Since Π is IND−CPA secure
and Φ satisfies one-time simulation soundness and zero-knowledge, for any PPT
adversary A, Advrnc−cca

Π′,A (λ) = negl(λ) holds. Therefore, Π ′ satisfies RNC−CCA
security.
� (Theorem 4)

Acknowledgement. A part of this work was supported by NTT Secure Platform
Laboratories, JST OPERA JPMJOP1612, JST CREST JPMJCR14D6, JSPS KAK-
ENHI JP16H01705, JP17H01695, JP20J14338.

References

1. Alekhnovich, M.: More on average case vs approximation complexity. In: 44th
FOCS, pp. 298–307 (2003)

232 Y. Lu et al.

2. Bellare, M., Dowsley, R., Waters, B., Yilek, S.: Standard security does not imply
security against selective-opening. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 645–662. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-29011-4 38

3. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryp-
tion and commitment secure under selective opening. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01001-9 1

4. Bellare, M., Yilek, S.: Encryption schemes secure under selective opening attack.
Cryptology ePrint Archive, Report 2009/101 (2009)

5. Canetti, R., Halevi, S., Katz, J.: Adaptively-secure, non-interactive public-key
encryption. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 150–168. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 9

6. Couteau, G., Hofheinz, D.: Designated-verifier pseudorandom generators, and their
applications. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol.
11477, pp. 562–592. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17656-3 20

7. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: 23rd ACM STOC, pp. 542–552 (2020)

8. Elkind, E., Sahai, A.: A unified methodology for constructing public-key encryp-
tion schemes secure against adaptive chosen-ciphertext attack. Cryptology ePrint
Archive, Report 2002/042 (2002)

9. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

10. Hara, K., Kitagawa, F., Matsuda, T., Hanaoka, G., Tanaka, K.: Simulation-based
receiver selective opening CCA secure PKE from standard computational assump-
tions. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp.
140–159. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0 8

11. Hara, K., Kitagawa, F., Matsuda, T., Hanaoka, G., Tanaka, K.: Simulation-based
receiver selective opening CCA secure PKE from standard computational assump-
tions. Theor. Comput. Sci. 795, 570–597 (2019)

12. Huang, Z., Lai, J., Chen, W., Au, M.H., Peng, Z., Li, J.: Simulation-based selec-
tive opening security for receivers under chosen-ciphertext attacks. Des. Codes
Cryptogr. 87(6), 1345–1371 (2019)

13. Haralambiev, K., Jager, T., Kiltz, E., Shoup, V.: Simple and efficient public-key
encryption from computational Diffie-Hellman in the standard model. In: Nguyen,
P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 1–18. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-13013-7 1

14. Hazay, C., Patra, A., Warinschi, B.: Selective opening security for receivers. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 443–469.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6 19

15. Jia, D., Lu, X., Li, B.: Receiver selective opening security from indistinguishability
obfuscation. In: Dunkelman, O., Sanadhya, S.K. (eds.) INDOCRYPT 2016. LNCS,
vol. 10095, pp. 393–410. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-49890-4 22

16. Jia, D., Lu, X., Li, B.: Constructions secure against receiver selective opening
and chosen ciphertext attacks. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol.
10159, pp. 417–431. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
52153-4 24

https://doi.org/10.1007/978-3-642-29011-4_38
https://doi.org/10.1007/978-3-642-29011-4_38
https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1007/978-3-540-30576-7_9
https://doi.org/10.1007/978-3-030-17656-3_20
https://doi.org/10.1007/978-3-030-17656-3_20
https://doi.org/10.1007/978-3-319-98113-0_8
https://doi.org/10.1007/978-3-642-13013-7_1
https://doi.org/10.1007/978-3-662-48797-6_19
https://doi.org/10.1007/978-3-319-49890-4_22
https://doi.org/10.1007/978-3-319-49890-4_22
https://doi.org/10.1007/978-3-319-52153-4_24
https://doi.org/10.1007/978-3-319-52153-4_24

RSO-CCA Secure PKE from Various Assumptions 233

17. Katsumata, S., Nishimaki, R., Yamada, S., Yamakawa, T.: Designated veri-
fier/prover and preprocessing NIZKs from Diffie-Hellman assumptions. In: Ishai,
Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 622–651.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 22

18. Kitagawa, F., Matsuda, T.: CPA-to-CCA transformation for KDM security. In:
Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 118–148. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-36033-7 5

19. Lindell, Y.: A simpler construction of CCA2-secure public-key encryption under
general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp.
241–254. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 15

20. Lombardi, A., Quach, W., Rothblum, R.D., Wichs, D., Wu, D.J.: New construc-
tions of reusable designated-verifier NIZKs. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11694, pp. 670–700. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26954-8 22

21. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: 22nd ACM STOC, pp. 427–437 (1990)

22. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (Plain) learn-
ing with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7 4

23. Quach, W., Rothblum, R.D., Wichs, D.: Reusable designated-verifier NIZKs for all
NP from CDH. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol.
11477, pp. 593–621. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17656-3 21

24. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: 37th ACM STOC, pp. 84–93 (2009)

25. Yu, Yu., Zhang, J.: Cryptography with auxiliary input and trapdoor from constant-
noise LPN. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
214–243. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
4 9

https://doi.org/10.1007/978-3-030-17656-3_22
https://doi.org/10.1007/978-3-030-36033-7_5
https://doi.org/10.1007/3-540-39200-9_15
https://doi.org/10.1007/978-3-030-26954-8_22
https://doi.org/10.1007/978-3-030-26954-8_22
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-17656-3_21
https://doi.org/10.1007/978-3-030-17656-3_21
https://doi.org/10.1007/978-3-662-53018-4_9
https://doi.org/10.1007/978-3-662-53018-4_9

	Receiver Selective Opening CCA Secure Public Key Encryption from Various Assumptions
	1 Introduction
	1.1 Background and Motivation
	1.2 Our Contribution
	1.3 Related Work

	2 Preliminaries
	2.1 Notations
	2.2 Public Key Encryption
	2.3 Receiver Non-committing Encryption
	2.4 Signature
	2.5 Commitment
	2.6 Designated-Verifier Non-interactive Zero-Knowledge Arguments

	3 Construction of One-Time Simulation Sound DV-NIZK
	3.1 Description
	3.2 Security Proof

	4 Construction of RNC-CCA Secure RNCE
	4.1 Description
	4.2 Security Proof

	References

