
Khoa Nguyen
Wenling Wu
Kwok Yan Lam
Huaxiong Wang (Eds.)

LN
CS

 1
25

05

14th International Conference, ProvSec 2020
Singapore, November 29 – December 1, 2020
Proceedings

Provable and
Practical Security

Lecture Notes in Computer Science 12505

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Khoa Nguyen • Wenling Wu •

Kwok Yan Lam • Huaxiong Wang (Eds.)

Provable and
Practical Security
14th International Conference, ProvSec 2020
Singapore, November 29 – December 1, 2020
Proceedings

123

Editors
Khoa Nguyen
Nanyang Technological University
Singapore, Singapore

Wenling Wu
Chinese Academy of Sciences
Beijing, China

Kwok Yan Lam
Nanyang Technological University
Singapore, Singapore

Huaxiong Wang
Nanyang Technological University
Singapore, Singapore

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-62575-7 ISBN 978-3-030-62576-4 (eBook)
https://doi.org/10.1007/978-3-030-62576-4

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-62576-4

Preface

This volume contains the papers presented at the 14th International Conference on
Provable and Practical Security (ProvSec 2020), held duringNovember 29 –December 1,
2020. The conference was planned to take place in Singapore. Due to the global
COVID-19 pandemic, the conference changed to an online format, hosted by the Strategic
Centre for Research in Privacy-Preserving Technologies & Systems (SCRIPTS) at
Nanyang Technological University, Singapore.

The first ProvSec conference was held in 2007. Until 2018, ProvSec conferences
focused on “Provable Security.” In 2019, “Practical Security” was added into the theme
to enrich the scope of the conference. This year, we continued to promote the area of
“Practical Security,” in order to bring together security researchers and practitioners.

The Program Committee consisted of 65 members from all over the world. In
response to the call for papers, 59 papers were submitted to the conference. The papers
were reviewed in a double-blind manner. Each paper was carefully evaluated by three
to five reviewers, and then discussed among the Program Committee. Finally, 20
papers were selected for presentation at the conference. Based on the reviews and votes
by Program Committee members, the following paper was given the Best Paper
Award, with a prize of EUR 1,000 generously sponsored by Springer:

“Group Signature without Random Oracles from Randomizable Signatures,” by Remi Clarisse
and Olivier Sanders.

We were also delighted to welcome five keynote talks from Ronald Cramer (CWI,
The Netherlands), Tetsu Iwata (Nagoya University, Japan), Chris Mitchell (Royal
Holloway, University of London, UK), Mike Rosulek (Oregon State University, USA),
and Yu Yu (Shanghai Jiao Tong University, China).

ProvSec 2020 would not have been possible without the contributions of the many
volunteers who freely gave their time and expertise. We would like to thank the
members of the Program Committee and the external reviewers for their substantial
work in evaluating the papers. We thank the local organizers for their tremendous
efforts in planning and executing this online event. Last but not least, we would like to
express our gratitude to all invited speakers and all authors who submitted papers to
ProvSec 2020.

November 2020 Khoa Nguyen
Wenling Wu

Kwok Yan Lam
Huaxiong Wang

Organization

Program Chairs

Khoa Nguyen Nanyang Technological University, Singapore
Wenling Wu Chinese Academy of Sciences, China

General Chairs

Kwok Yan Lam Nanyang Technological University, Singapore
Huaxiong Wang Nanyang Technological University, Singapore

Local Organizers

Eric Low Yang Chiang Nanyang Technological University, Singapore
Jenn Ong Nanyang Technological University, Singapore
Alice Yan Sin Yee Nanyang Technological University, Singapore

Program Committee

Elena Andreeva Technical University of Denmark, Denmark
Man Ho Au The University of Hong Kong, Hong Kong
Joonsang Baek University of Wollongong, Australia
Shi Bai Florida Atlantic University, USA
Rishiraj Bhattacharyya NISER, India
Jie Chen East China Normal University, China
Hua Chen Chinese Academy of Sciences, China
Céline Chevalier Université Paris 2, France
Cheng-Kang Chu Huawei, Singapore
Chitchanok

Chuengsatiansup
The University of Adelaide, Australia

Yi Deng Chinese Academy of Sciences, China
Dung Hoang Duong University of Wollongong, Australia
Keita Emura NICT, Japan
Xiong Fan University of Maryland, USA
Junqing Gong East China Normal University, China
Swee-Huay Heng Multimedia University, Malaysia
Qiong Huang South China Agricultural University, China
Xinyi Huang Fujian Normal University, China
Tetsu Iwata Nagoya University, Japan
David Jao University of Waterloo, Canada
Sabyasachi Karati NISER, India
Shuichi Katsumata AIST, Japan

Xu Ke Singapore Management University, Singapore
Jooyoung Lee KAIST, South Korea
Hyung Tae Lee JeonBuk National University, South Korea
Yang Li The University of Electro-Communications, Japan
Changlu Lin Fujian Normal University, China
Joseph Liu Monash University, Australia
Zhen Liu Shanghai Jiao Tong University, China
Dongxi Liu CSIRO, Australia
Shengli Liu Shanghai Jiao Tong University, China
Chris Mitchell Royal Holloway, University of London, UK
Kirill Morozov University of North Texas, USA
Fabrice Mouhartem IIT Madras, India
Khoa Nguyen Nanyang Technological University, Singapore
Federico Pintore University of Oxford, UK
Baodong Qin Xi’an University of Posts and Telecommunications,

China
Somindu C. Ramanna IIT Kharagpur, India
Amin Sakzad Monash University, Australia
Olivier Sanders Orange Labs, France
Jae Hong Seo Hanyang University, South Korea
Daniel Slamanig Austrian Institute of Technology, Austria
Shi-Feng Sun Monash University, Australia
Willy Susilo University of Wollongong, Australia
Paweł Szałachowski SUTD, Singapore
Katsuyuki Takashima Mitsubishi Electric, Japan
Atsushi Takayasu NICT, Japan
Benjamin Hong Meng Tan A*STAR, Singapore
Ni Trieu Arizona State University, USA
Viet Cuong Trinh Hong Duc University, Vietnam
Lei Wang Shanghai Jiao Tong University, China
Liping Wang Chinese Academy of Sciences, China
Weiqiang Wen University of Rennes 1, CNRS, IRISA, France
Wenling Wu Chinese Academy of Sciences, China
Keita Xagawa NTT, Japan
Yanhong Xu University of Calgary, Canada
Haiyang Xue Chinese Academy of Sciences, China
Rupeng Yang Hong Kong Polytechnic University, Hong Kong
Chung-Huang Yang National Kaohsiung Normal University, Taiwan
Guomin Yang University of Wollongong, Australia
Yong Yu Shaanxi Normal University, China
Zhenfei Zhang Algorand
Jiang Zhang Chinese Academy of Sciences, China
Liangfeng Zhang ShanghaiTech University, China
Jun Zhao Nanyang Technological University, Singapore

viii Organization

External Reviewers

Behzad Abdolmaleki
Ang Chen
Xin Chen
Valerio Cini
Nan Cui
Dipayan Das
Pratish Datta
Rafael Dowsley
Sabyasachi Dutta
Shengyuan Feng
Adela Georgescu
Satrajit Ghosh
Hui Guo
Shuai Han
Keisuke Hara
Yiming Li
Jinhui Liu
Xiangyu Liu
Xueqiao Liu
Yanyan Liu
Xingye Lu
Jiazhuo Lyu
Mimi Ma
Sha Ma
Shunli Ma
Pratyay Mukherjee
Sayantan Mukherjee
Bo Pang
Tran Phuong
Sourav Sen Gupta
Vishal Sharma
Junbin Shi
Kazumasa Shinagawa
Fang Song

Ehsan Hesamifard
Zhengan Huang
Li Huilin
Dingding Jia
Yanxue Jia
Haodong Jiang
Shabnam Kasra Kermanshahi
Akinori Kawachi
Sunpill Kim
Takeshi Koshiba
Shangqi Lai
Hyeonbum Lee
Hongbo Li
Xinyu Li
Yannan Li
Erkan Tairi
Syhyuan Tan
Yangguang Tian
Ivan Tjuawinata
Jianfeng Wang
Luping Wang
Yuling Wang
Yuntao Wang
Yohei Watanabe
Shengmin Xu
Takashi Yamakawa
Jun Yan
Zuoxia Yu
Xingliang Yuan
Ming Zeng
Peng Zhang
Yang Zhao
Cong Zuo

Organization ix

Contents

Signature Schemes

Group Signature Without Random Oracles from Randomizable Signatures . . . 3
Rémi Clarisse and Olivier Sanders

Constant-Size Lattice-Based Group Signature with Forward Security
in the Standard Model . 24

Sébastien Canard, Adela Georgescu, Guillaume Kaim,
Adeline Roux-Langlois, and Jacques Traoré

A Lattice-Based Provably Secure Multisignature Scheme in Quantum
Random Oracle Model. 45

Masayuki Fukumitsu and Shingo Hasegawa

Achieving Pairing-Free Aggregate Signatures using Pre-Communication
between Signers . 65

Kaoru Takemure, Yusuke Sakai, Bagus Santoso, Goichiro Hanaoka,
and Kazuo Ohta

Short Lattice Signatures in the Standard Model with Efficient Tag
Generation . 85

Kaisei Kajita, Kazuto Ogawa, Koji Nuida, and Tsuyoshi Takagi

One-Time Delegation of Unlinkable Signing Rights and Its Application. 103
Takashi Nishide

Watermarkable Signature with Computational Function Preserving 124
Kyohei Sudo, Masayuki Tezuka, Keisuke Hara, Yusuke Yoshida,
and Keisuke Tanaka

Privacy-Preserving Authentication for Tree-Structured Data with
Designated Verification in Outsourced Environments 145

Fei Zhu, Xun Yi, Sharif Abuadbba, Ibrahim Khalil, Xu Yang,
Surya Nepal, and Xinyi Huang

Encryption Schemes and NIZKs

Semi-Adaptively Secure Offline Witness Encryption from Puncturable
Witness PRF . 169

Tapas Pal and Ratna Dutta

Improved Indistinguishability for Searchable Symmetric Encryption 190
Moesfa Soeheila Mohamad and Ji-Jian Chin

Receiver Selective Opening CCA Secure Public Key Encryption
from Various Assumptions . 213

Yi Lu, Keisuke Hara, and Keisuke Tanaka

A Practical NIZK Argument for Confidential Transactions
over Account-Model Blockchain . 234

Shunli Ma, Yi Deng, Mengqiu Bai, Debiao He, Jiang Zhang,
and Xiang Xie

Secure Machine Learning and Multiparty Computation

Secure Cumulative Reward Maximization in Linear Stochastic Bandits 257
Radu Ciucanu, Anatole Delabrouille, Pascal Lafourcade,
and Marta Soare

Secure Transfer Learning for Machine Fault Diagnosis Under Different
Operating Conditions. 278

Chao Jin, Mohamed Ragab, and Khin Mi Mi Aung

Private Decision Tree Evaluation with Constant Rounds via (Only) SS-3PC
over Ring. 298

Hikaru Tsuchida, Takashi Nishide, and Yusaku Maeda

Dispelling Myths on Superposition Attacks: Formal Security Model
and Attack Analyses . 318

Luka Music, Céline Chevalier, and Elham Kashefi

Secret Sharing Schemes

Fair and Sound Secret Sharing from Homomorphic Time-Lock Puzzles 341
Jodie Knapp and Elizabeth A. Quaglia

Optimal Threshold Changeable Secret Sharing with New Threshold
Change Range . 361

Jian Ding, Changlu Lin, and Fuchun Lin

Security Analyses

Key Recovery Under Plaintext Checking Attack on LAC. 381
Ke Wang, Zhenfeng Zhang, and Haodong Jiang

xii Contents

Security of Two NIST Candidates in the Presence of Randomness Reuse. . . . 402
Ke Wang, Zhenfeng Zhang, and Haodong Jiang

Author Index . 423

Contents xiii

Signature Schemes

Group Signature Without Random
Oracles from Randomizable Signatures

Rémi Clarisse1,2 and Olivier Sanders1(B)

1 Orange Labs, Applied Crypto Group, Cesson-Sévigné, France
olivier.sanders@orange.com

2 Univ Rennes, CNRS, IRMAR - UMR 6625, 35000 Rennes, France

Abstract. Group signature is a central tool for privacy-preserving pro-
tocols, ensuring authentication, anonymity and accountability. It has
been massively used in cryptography, either directly or through variants
such as direct anonymous attestations. However, it remains a complex
tool, especially if one wants to avoid proving security in the random ora-
cle model.

In this work, we propose a new group signature scheme proven secure
without random oracles which significantly decreases the complexity in
comparison with the state-of-the-art. More specifically, we halve both
the size and the computational cost compared to the most efficient alter-
native in the same model. Moreover, our construction is also competitive
against the most efficient ones in the random oracle model.

Our construction is based on a tailored combination of two popular
signatures, which avoids the explicit use of encryption schemes or zero-
knowledge proofs while signing. It is flexible enough to achieve security
in different models and is thus suitable for most contexts.

1 Introduction

Group Signature, introduced by Chaum and van Heyst [17], enables members
of a group to sign on behalf of the group. The point is that the signature is
anonymous, i.e. it cannot be traced back to its issuer, except for a specific
entity, the opening authority, which can “open” any valid group signature.

Related Works. Combining seemingly contradictory properties such as
authentication and anonymity has proved tricky, the first really practical solution
being provided by Ateniese et al. [2]. Few years later, Bellare, Micciancio and
Warinschi [5] proposed the first security model (BMW model) for static group
signature, which was later extended to the case of dynamic group signature by
Bellare, Shi and Zhang [6] (BSZ model). Besides providing a way to assess exist-
ing schemes, these seminal works have introduced a generic construction that
has become the implicit framework for most of the following group signatures.

Informally, a group member of this generic construction receives from a
so-called group manager a certificate (a digital signature) τ on his public key
c© Springer Nature Switzerland AG 2020
K. Nguyen et al. (Eds.): ProvSec 2020, LNCS 12505, pp. 3–23, 2020.
https://doi.org/10.1007/978-3-030-62576-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62576-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-62576-4_1

4 R. Clarisse and O. Sanders

pk when he joins the group. To compute a group signature on some message m,
he first generates a digital signature σ on m (using the corresponding signing
key sk) and then encrypts σ and τ . Finally, he provides a non-interactive zero-
knowledge (NIZK) proof that every element is well formed. This three-steps
approach is usually known as Sign-Encrypt-Prove (SEP) in the literature.

The strength of the SEP paradigm is that it is based on standard crypto-
graphic primitives for which many instantiations exist. Unfortunately, it leads
to quite complex constructions because of the security requirements placed on
each building block, but primarily because of the complexity of the resulting
NIZK proof. Indeed, the signer must prove, without revealing σ and τ , that the
group signature is a valid encryption of the signature σ that has been gener-
ated using keys certified by the group manager. Such a statement is difficult to
prove and this becomes worse if one wants to achieve security without relying on
the random oracle model (ROM). Indeed, NIZK proofs are much more complex
outside this setting and even by using the Groth-Sahai methodology [24], group
signatures still contain dozens of elements (see e.g. [23]).

A natural question arising from this observation is whether it is possible to
construct more efficient schemes by using a different paradigm. Bichsel et al. [7]
proposed an interesting answer to this question. They indeed introduced a very
efficient alternative, at the cost of a slightly weaker notion of anonymity. This
allows them to circumvent the result of Abdalla and Warinschi [1] and thus
to avoid encryption. More specifically, their idea was to remove encryption by
using re-randomizable [14] certificates τ and by merging σ with the NIZK proofs,
leading to a signature of knowledge. The resulting construction is very efficient
(see Table 4 at the end of the paper) and can be further improved by instantiating
it with the randomizable signature scheme of Pointcheval and Sanders (PS) [28].

Another alternative based on equivalence-class signature [21] has recently
been proposed by Derler and Slamanig [19]. It shares commonalities with [7],
such as the absence of explicit encryption, but manages to achieve full anonymity
at the cost of increased complexity. Unfortunately, both [7] and [19] inherently
rely on signature of knowledge and so rather fit the random oracle model.

Very recently, Backes et al. [3] proposed a different framework based on a new
primitive called signatures with flexible public keys. It yields secure constructions
without random oracles with improved efficiency compared to the state-of-the-
art in this setting. However, the resulting group signatures are three times larger
than the ones in the ROM and require more computations to be generated.

More generally, designers of group signature schemes are confronted with the
choice of either proving security without random oracles or favoring efficiency
by relying on the random oracle model whose limits are known [16].

Our Contribution. In this work, we propose a new group signature scheme
avoiding the ROM that halves the size and the computational complexity com-
pared to the state-of-the-art [3]. More specifically, our group signature only con-
sists of 2304 bits which makes it very competitive, even against constructions in
the ROM (see Sect. 5 for more details).

Group Signature Without Random Oracles from Randomizable Signatures 5

As [3,7,19], our construction departs from the SEP framework and heavily
relies on the randomizability of its components. However, contrarily to those
works that assemble different building blocks (digital signature, NIZK, etc.) and
so achieve some level of genericity, we are here interested in optimizing the
combination to avoid NIZK proofs in the signature, so as to get the best possible
efficiency.

Our work results from the observation that the equivalence-class signa-
ture of Fuchsbauer, Hanser and Slamanig (FHS) [21] nicely interacts with the
Pointcheval and Sanders (PS) signature scheme [28]. More specifically, assuming
very slight modifications of the FHS public key and of the PS signatures, we are
able to merge the verification equations of FHS signatures with the one of PS
signatures. Such a merge is crucial for our construction: it indeed means that
it is no longer necessary to provide a NIZK proof that the signatures are valid
and related. Thus, verifying our group signatures is essentially verifying FHS
signatures.

Intuitively, we modify the PS signature scheme in such a way that each
signature is of the form (gr, gy·rXr/hm) where gy is the user’s secret key, r is
a random scalar, hm is a public element that depends on the message m to be
signed and X is a public element. Leaving out the term in X, one can note
that each signature contains a different representative of the same projective
equivalence class as (g, gy) and so it is quite easy, given a FHS signature on this
pair, to prove that the PS signature was generated using certified keys.

Our group signature thus only consists of a PS signature and a FHS one
which are both re-randomizable, leading to an anonymity proof under the DDH
assumption. Moreover, we can prove that a non-registered user cannot generate
a valid group signature unless he is able to forge FHS signatures. We only pay
the price for our tailored construction in the proof of non-frameability, where we
want to prove that no one can issue a forged group signature that can be traced
back to an honest user. Indeed, we would like to directly rely on the security
of PS signatures but this is impossible due to the modifications we introduced:
a PS signature is not enough to answer adversary queries in our security proof.
However, we show that we can tweak the original assumption underlying the
security of PS signatures to suit our construction and so that we can rely on
similar arguments to prove non-frameability.

While being non-generic, our construction remains flexible enough to comply
with different group signature models. Interestingly, the different variants we
consider achieve the same efficiency with respect to the group signature but
mostly differ in the registration procedure. This concretely means that the most
suitable setting can be chosen without any impact on the group signature itself.
This also allows us in Table 4 to fairly compare our construction with the most
relevant ones of the state-of-the-art and so to highlight the benefits of our group
signature in all cases.

Organisation. We describe in Sect. 2 the building blocks that we need to
construct our group signature. The Sect. 3 recalls the standard security model

6 R. Clarisse and O. Sanders

of group signatures. We describe our construction in Sect. 4 and compare it with
the most relevant alternatives of the state-of-the-art in Sect. 5.

2 Preliminaries

Notations. The identity element of a group G is denoted 1G and G
∗ means

G\{1G}. If the group G is of order p, then we may say interchangeably that
a ∈ Z/pZ or that a is a scalar. For a finite set X, the notation x

$← X means
that x is an element of X uniformly sampled.

2.1 Bilinear Groups

Definition 1. Bilinear groups are a set of three groups G1, G2, and GT of order
p along with a map, called pairing, e : G1 × G2 → GT that is

– bilinear: for any g ∈ G1, g̃ ∈ G2, and a, b ∈ Z/pZ, e(ga, g̃b) = e(g, g̃)ab;
– non-degenerate: for any g ∈ G

∗
1 and g̃ ∈ G

∗
2, e(g, g̃) �= 1GT

;
– efficient: for any g ∈ G1 and g̃ ∈ G2, e(g, g̃) can be efficiently computed.

We will only consider bilinear groups of prime order with type-3 pairings, i.e.
there is no efficiently computable homomorphism between G1 and G2. We stress
that this yields the most efficient parameters [25]. To highlight the differences
between G1 and G2, we will denote elements of the latter with a tilde (e.g. g̃).

2.2 Digital Signature

A digital signature scheme Σ is defined by four algorithms:

– Setup(1λ): Outputs public parameters pp for security parameter λ.
– Keygen(pp): On input pp, outputs signing and verification keys (sk, pk).
– Sign(sk,m): Outputs a signature σ of message m under signing key sk.
– Verify(pk,m, σ): On input verification key pk, message m and its alleged

signature σ, outputs 1 if σ is a valid signature on m under pk, and 0 otherwise.

The standard security notion for a signature scheme is existential unforge-
ability under chosen message attacks (EUF-CMA) [22]: it means that it is hard,
even given access to a signing oracle, to output a valid pair (m,σ) for a message
m never asked to the signing oracle.

PS Signature. In [28], Pointcheval and Sanders propose a randomizable signa-
ture scheme, i.e. a scheme enabling to derive re-randomized versions σ′ of any
valid signature σ. An interesting feature of their signatures is that one cannot
link σ and σ′ without knowing the corresponding message. They describe several
versions of their signature scheme, offering different features. In this work we will
use their variant supporting aggregation because it enables to decrease the size
of the public key but we will not use this aggregation feature.

Group Signature Without Random Oracles from Randomizable Signatures 7

– Setup(1λ): Outputs the parameters pp containing the description of type-3
bilinear groups (G1,G2,GT , e) along with a set of generators (g, g̃) ∈ G1×G2

and a pair (X, ˜X) ← (gx, g̃x) for some random scalar x.
– Keygen(pp): Generates a random scalar y and sets (sk, pk) as (gy, ˜Y = g̃y).
– Sign(sk,m): On message m, generates a signature (σ1, σ2) ← (gr,Xr ·gr·y·m)

for some random scalar r.
– Verify(pk,m, (σ1, σ2)): Accepts signature (σ1, σ2) on m if the following equal-

ity holds: e(σ1, ˜X · ˜Y m) = e(σ2, g̃).

One can note that anyone can re-randomize a signature by raising σ1 and σ2 to
the same power t. The PS signature scheme is proven EUF-CMA-secure under a
LRSW assumption customized for type-3 pairing, that we recall in Subsect. 2.3.

FHS Signature. In [21], Fuchsbauer, Hanser and Slamanig introduce a signa-
ture on equivalence-class for the following equivalence relation on tuples in G

n
1 :

(M1, . . . ,Mn) is in the same equivalence class as (N1, . . . , Nn) if there exists a
scalar a such that Ni = Ma

i for all i ∈ [1, n]. In this paper, we will only consider
the case n = 2.

– Setup(1λ): Outputs parameters pp containing the description of type-3 bilin-
ear groups (G1,G2,GT , e), with generators (g, g̃) ∈ G1 × G2.

– Keygen(pp): Generates two random scalars α1 and α2 and sets sk as (α1, α2)
and pk as (˜A1, ˜A2) = (g̃α1 , g̃α2).

– Sign(sk, (M1,M2)): Selects a random scalar t and computes the signature
(τ1, τ2, τ̃) ← ((Mα1

1 Mα2
2)t, g1/t, g̃1/t) on the representative (M1,M2) ∈ G

2
1.

– Verify(pk, (M1,M2), (τ1, τ2, τ̃)): Accepts (τ1, τ2, τ̃) ∈ G
2
1×G2, a signature on

(M1,M2), if e(τ1, τ̃) = e(M1, ˜A1) · e(M2, ˜A2) and e(τ2, g̃) = e(g, τ̃) hold.

We note that the signature (τ1, τ2, τ̃) is only valid on the representative (M1,M2).
However, we can easily derive a signature on other representatives (Mr

1 ,Mr
2) of

the same equivalence class, while re-randomizing the signature, by generating a
random scalar t′ and computing (τ r·t′

1 , τ
1/t′

2 , τ̃1/t′
).

2.3 Computational Assumptions

SXDH Assumption. For i ∈ {1, 2}, the DDH problem is hard in Gi if, given
(g, gx, gy, gz) ∈ G

4
i , it is hard to distinguish whether z = x · y or z is random.

The SXDH assumption holds if DDH is hard in both G1 and G2.

PS Assumption. Pointcheval and Sanders [28] introduce “Assumption 1”, here
referred to as PS assumption, to prove the security of their construction.

PS Assumption: Let (p,G1,G2,GT , e) be a bilinear group setting of type-3,
with g (resp. g̃) a generator of G1 (resp. G2). For (˜X = g̃x, ˜Y = g̃y), where x
and y are random scalars, we define the oracle O(m) on input m ∈ Z/pZ that
chooses a random r ∈ Z/pZ and outputs the pair P = (gr, gr(x+m·y)). Given
(g, gy, g̃, ˜X, ˜Y) and unlimited access to this oracle, no adversary can efficiently
generate (m∗, gr, gr(x+m∗·y)), with r �= 0, for a new scalar m∗, not asked to O.

8 R. Clarisse and O. Sanders

MPS Assumption. As we explain in the introduction, we would like to directly
rely on the PS assumption but this is not possible. In particular, in our group
signature construction, the user incorporates parts of the group signature in the
message to be signed. This is done by using a suitable map h that must be
taken into account by the assumption. We therefore introduce a variant of the
PS assumption that we call MPS assumption (M stands for modified).

MPS Assumption: Let (p,G1,G2,GT , e) a bilinear group setting of type-3,
with g (resp. g̃) a generator of G1 (resp. G2), and h : {0, 1}∗ → Z/pZ a function.
For random scalars x, y and z, we define the oracle O(m) on input m ∈ Z/pZ that
picks random r, s ∈ Z/pZ and outputs the tuple P = (s, g̃r·s, gr, gr·z, gr(x+t·y))
with t = h(g̃r·s||gr||m). Given (g, gy, gz, gz·x, g̃, ˜X, ˜Y) and unlimited access to
this oracle, no adversary can efficiently generate (t∗, gr, gr(x+t∗·y)) with r �= 0
and a value t∗ different from those involved in the answers from O.

The validity of the output can easily be checked thanks to the pairing e:
e(gr(x+t∗·y), g̃) ?= e(gr, ˜X · ˜Y t∗

). We note that the adversary’s goal is still to
output a valid PS signature but it now has access to additional elements that do
not seem helpful to create forgeries, as we discuss below. A proof that the MPS
assumption holds in the generic group model is given in the full version [18].

Remark 1. – Our new oracle still returns a PS signature (gr, gr(x+ty)) but on a
scalar t = h(g̃r·s||gr||m) instead of m. However, we define much harder success
conditions for the adversary: it can only win if the scalar t used in its forgery
is different from the ones used by O (in particular a forgery on a new message
m∗ is not valid if it leads to an already used t). Intuitively, this rules out any
strategy based on the properties of h (such as collisions). We will therefore
assume (and prove in the generic group model) that the MPS assumption
holds for any1 function h : {0, 1}∗ → Z/pZ. From the security point of view,
this therefore does not change anything compared to an assumption where O
would return (gr, gr(x+my)).

– This slight modification induces another one: we now need to provide the pair
(gz, gz·x), for some random scalar z, in the assumption. In [28], this pair is
exactly a signature on 0 and so is directly generated by the reduction in the
security proof by running O on 0. This is no longer possible here, and we then
need to explicitly add these elements in the definition of the assumption. In
any case, this does not provide more power to the adversary than in the PS
assumption.

– The element gr·z is the only one involving the secret z in P . It seems therefore
useless to combine it with the other elements of P to derive a new valid tuple.

– The last difference with the PS assumption is the pair (s, g̃r·s) that must be
added to the oracle answers. However, we note that g̃r·s is an element of G2

and so is intuitively useless to forge a PS signature (gr, gr(x+ty)) ∈ G
2
1, thanks

to the asymmetry of the pairing. The same holds true for s that is not one of
the secret values used to compute the PS signature.

1 We nevertheless note that the hardness of the corresponding problem depends on
the function h. For example, if h is constant then no adversary can succeed as soon
as it makes (at least) one query to O.

Group Signature Without Random Oracles from Randomizable Signatures 9

3 Group Signature

For completeness, we recall here the security model for dynamic group signature
from the BSZ model [6]. We introduce some minor syntactic changes and discuss
popular variants of the original security notions introduced by Bellare et al. [6].
A reader familiar with group signature can safely jump to Remark 2.

Syntax. A group signature scheme is defined by the following algorithms that
involve three types of entities: a group manager, an opening authority and users.
Each of the latter is identified by a public index i ∈ N

∗.

– Setup(1λ): Outputs public parameters pp for security parameter λ.
– UKeygen(pp): Returns a user’s key pair (sk, pk) on public parameter pp. We

assume that pk is public and anyone can get an authentic copy of it.
– OKeygen(pp): Returns the opening authority’s key pair (osk, opk) under pp.
– GKeygen(pp): Returns the group manager’s key pair (gsk, gpk) along with a

public register Reg, on public parameters pp.
– Join: This is a two-party interactive protocol between the group manager

and a user i who wants to join the group. The input of the former is
(gsk,Reg, opk, pki) whereas the user takes as input (gpk, opk, ski). If the pro-
tocol does not fail, then the user gets a group signing key uski whereas the
group manager updates Reg. Else, both parties return ⊥.

– Sign(uski,m): Returns a group signature σ of m under signing key uski.
– Verify(gpk, σ,m): On input the group manager’s public key, a group signa-

ture σ and a message m, returns a bit b ∈ {0, 1}.
– Open(osk, gpk,Reg, σ,m): On input the opening authority’s secret key, the

group manager’s public key, the register Reg, a group signature σ and a
message m, returns either 0, ⊥ or an index i ∈ N

∗ along with a proof π.
– Judge(gpk,Reg, σ,m, i, π): On input the group manager’s public key, the

register Reg, a group signature σ, a message m, an index i ∈ N
∗ and a proof

π, returns a bit b ∈ {0, 1}.

Security Model. A group signature should achieve correctness, anonymity,
traceability and non-frameability. We refer to [6] for a formal definition of cor-
rectness, but informally it means that any user who has joined the group should
be able to produce valid signatures σ (i.e. one for which Verify outputs 1) on
any message m. Moreover, it should be possible to open such signatures, i.e. to
recover the identity i of the signer, and to produce publicly verifiable proofs that
user i has indeed issued these signatures.

Anonymity requires that group signatures should be anonymous, except for
the opening authority. Traceability requires that no one can produced a valid
signature that cannot be traced back to some user through the Open procedure.
Finally, non-frameability means that no one can be falsely accused of having
produced a signature. The corresponding security games, outlined in Fig. 1,
make use of the following oracles:

10 R. Clarisse and O. Sanders

ExpanA (1λ) – Anonymity Security Game

1. pp ← Setup(1λ)
2. (osk, opk) ← OKeygen(pp)
3. (gsk, gpk) ← GKeygen(pp)
4. b

$← {0, 1}, O ← {OAdd, OJU ,
OCor, OSign, OOpen, OChb}

5. b∗ ← AO(gsk, opk)
6. If OOpen is queried on the output of

OChb, then return 0
7. Return (b = b∗)

Exp
nf
A (1λ) – NF Security Game

1. pp ← Setup(1λ)
2. (osk, opk) ← OKeygen(pp)
3. (gsk, gpk) ← GKeygen(pp)
4. (σ, m, i, π)

← AOAdd,OJU ,OCor,OSign(gsk, osk)
5. If OSign returned σ, then return 0
6. If i is corrupt, then return 0
7. Return Judge(gpk,Reg, σ, m, i, π)

ExptraA (1λ) – Traceability Security Game

1. pp ← Setup(1λ)
2. (osk, opk) ← OKeygen(pp)
3. (gsk, gpk) ← GKeygen(pp)
4. (σ, m) ← AOAdd,OJGM ,OCor,OSign(gpk, osk)
5. If ⊥← Open(osk, gpk,Reg, σ, m), then return 1
6. If (i, π) ← Open(osk, gpk,Reg, σ, m)

and 0 ← Judge(gpk,Reg, σ, m, i, π), then return 1
7. Return 0

Fig. 1. Security games for group signature

– OAdd(i) is an oracle that can be used to add a new user i. It then runs
UKeygen(pp) to get (ski, pki) and returns pki. If i has already been used in a
previous query, then it returns ⊥.

– OJU (i) is an oracle that plays the user’s side of the Join protocol. It can
be used by an adversary A playing the role of a corrupt group manager. It
returns ⊥ if i has already joined the group or if user i does not exist.

– OCor(i) is an oracle that returns all the secret keys of the user i. The user i
is then said to be corrupt. Any non-corrupt user is considered honest.

– OJGM () is the counterpart of the OJU oracle that can be used by a corrupt
user to join the group.

– OSign(i,m) is an oracle that returns Sign(uski,m), provided that i is an
honest user that has already joined the group.

– OOpen(σ,m) is an oracle that returns Open(osk, gpk,Reg, σ,m).
– OChb(i0, i1,m) is an oracle that takes as inputs the index of two honest users

and returns Sign(uskib
,m).

Let A be a probabilistic polynomial adversary. A group signature scheme is

– anonymous if Advan(A) = |Pr[ExpanA (1λ) = 1] − 1/2| is negligible for any A;
– traceable if Advtra(A) = Pr[ExptraA (1λ) = 1] is negligible for any A;
– non-frameable if Advnf (A) = Pr[ExpnfA (1λ) = 1] is negligible for any A.

The security model introduced by Bellare, Shi and Zhang [6] places no restric-
tion on the OCor queries in the anonymity experiment. This means that the
adversary is allowed to corrupt the “challenge” users (i.e. those that are involved

Group Signature Without Random Oracles from Randomizable Signatures 11

in OCh queries). This corresponds to the strongest notion of anonymity, some-
times called full anonymity or CCA-2 anonymity (see e.g. [19]), where anonymity
holds even if the users’ secret keys are leaked.

Remark 2. The BSZ model [6] defines strong security properties that are suffi-
cient in most contexts. However, it may be possible in some situations to relax
some of them, usually leading to more efficient constructions. This is particularly
true for the anonymity property for which popular variants exist, such as CPA
anonymity [8,13] or selfless anonymity [7,9,28]. The former removes the oracle
OOpen in the anonymity game but the users remain anonymous even if their
secret keys leak. Contrarily, selfless anonymity allows OOpen queries but users
are no longer anonymous when their secret keys leak. These two notions are
incomparable and so fit different contexts. The construction we describe in the
next section achieves both of them. Interestingly, it also achieves full anonymity
in the model introduced by Bellare, Micciancio and Warinschi [5] (BMW model),
where the group manager is also the opening authority.

4 Our Group Signature

4.1 The Construction

Intuition. A group signature usually contains two kinds of digital signatures
that we will denote by σ and τ . The first one is issued on the message to be signed
by the user using his own key pair (usk, upk). Intuitively, the unforgeability of
the digital signature ensures that no adversary is able to produce a forged group
signature which can be traced back to upk (non-frameability). The second one is
issued by the group manager on usk (or upk) to differentiate key pairs of group
members from those of unregistered users. Here, unforgeability ensures that only
users that have joined the group can issue group signature, which is necessary
to achieve traceability.

If non-frameability and traceability were the only two conditions expected
from a group signature, then the latter would simply be (τ, σ, upk,m). However,
this cannot work when anonymity is also required so the standard practice has
been to encrypt/commit at least τ and upk and then provide zero-knowledge
proofs that these elements are well-formed.

The work of Bichsel et al. [7] has shown that we can do better when τ is
randomizable. Indeed, in such a case there is no need to encrypt τ , the latter
can simply be re-randomized and sent unencrypted, leading to significant gains
in efficiency. Their group signature can only achieve a weaker selfless anonymity
notion in the ROM, but it seems a reasonable price to pay in view of the benefits.

Despite its novelty, [7] still shares commonalities with the standard frame-
work of the BSZ model [6]. There is indeed still a modular composition of two
signatures τ and σ with a proof of knowledge. The latter two can be merged
(leading to a signature of knowledge) using the Fiat-Shamir heuristic [20] in the
ROM, but the spirit remains the same. Modular systems are interesting since
they can leverage any advance in the construction of their building blocks. For

12 R. Clarisse and O. Sanders

example, the scheme of [7] can straightforwardly be improved by using PS signa-
tures [28] to instantiate τ , instead of Camenisch-Lysyanskaya signatures [14] in
the original construction. Unfortunately, the complexity of a modular construc-
tion is the sum of all its parts, so a natural question is whether it is possible to
improve efficiency by optimizing the combination of the different building blocks
for some specific instantiations.

In this section we construct the most efficient group signature without ran-
dom oracles by noticing that FHS equivalence-class signatures [21] nicely interact
with PS signatures [28]. Indeed let us recall the latter, and more specifically its
variant designed to support aggregation. A (non-aggregated) signature on a mes-
sage m in this case is given by (σ1, σ2) = (gr,Xr(gy·m)r) where r is some random
scalar, X = gx is a public element and y is the signer’s secret key. One can note
that we can alternatively define σ2 as σ

1/m
2 = Xr/m(gy)r: any adversary able to

forge such a signature can trivially be converted into an adversary against the
original PS-signature scheme.

Therefore, any signature issued by a user will be of the form (σ1, σ2) =
(gr,Xr/m(gy)r). If we applied the standard methodology here, we would provide
a signature τ on y (or gy) and then prove in a zero-knowledge way that τ is valid
on the key that has been used to generate (σ1, σ2). However, we can do better
if we directly use the FHS-signature scheme [21].

Indeed, for all r, if we discard the term Xr/m in σ2, it only remains (gr, gy·r)
which are different representatives of the same equivalent class. Thus, if we
provide a FHS signature on (gr, gr·y) one can directly check that (σ1, σ2) was
generated using a certified key, without any proof of knowledge. Anonymity of
the resulting construction simply follows from the ability to re-randomize FHS
signature while changing the representative of the class.

It then only remains to explain how to remove Xr/m. Recall that a FHS
signature on (gr, gr·y) is a tuple (τ1, τ2, τ̃) such that

e(τ1, τ̃) = e(gr, ˜A1) · e(gr·y, ˜A2) and e(τ2, g̃) = e(g, τ̃),

where (˜A1, ˜A2) = (g̃α1 , g̃α2) is the public key. Assume that we add ˜B = ˜Xα2 to
this public key (˜X = g̃x is a part of the public key of the PS-signature scheme).
Then, e(σ1, ˜A1) · e(σ2, ˜A2) · e(σ1, ˜B−1/m) = e(gr, ˜A1) · e(gy·r, ˜A2) = e(τ1, τ̃),
and the second equation remains unchanged. This means that we can check the
validity of both FHS and PS signatures at essentially the cost of verifying a FHS
signature. Moreover, the fact that we merge the verification of these signatures
makes zero-knowledge proofs unnecessary. Concretely, this means that our group
signature only consists of (σ1, σ2, τ1, τ2, τ̃), i.e. four elements of G1 and one
element of G2, and can be verified with merely two pairing equations.

Interestingly, the fact that we avoid the classical signature of knowledge of y
allows to achieve both CPA anonymity and selfless anonymity. Indeed, schemes
based on randomizable signatures (see e.g. [14,28]) are usually proven anony-
mous under the DDH assumption in G1. Therefore, to enable opening, they
usually force the users to provide some “trapdoor” g̃y ∈ G2 that allows the
opening authority to break DDH on their specific signatures. When y is part

Group Signature Without Random Oracles from Randomizable Signatures 13

of the user’s signing key usk (which is necessary for a signature of knowledge
of y), leakage of the latter means that the adversary can recover y and thus g̃y.
Anonymity can then no longer hold in this case leading to the selfless anonymity
notion.

In our case, we note that gy ∈ G1 is enough to issue group signatures,
meaning that users can discard y after generating their keys. In case usk leaks,
the adversary now recovers gy, which is useless to break DDH. We can thus
retain some level of anonymity (at least CPA anonymity) in this case.

The Protocol. We now formalize the previous intuition by describing the algo-
rithms constituting our scheme. As we explain above, we manage to avoid NIZK
proofs and explicit encryption in our signature. However, we still need such prim-
itives for some algorithms such as Join and Open. Fortunately, the latter are in
practice subject to less constraints that Sign as they have less impact on the
user’s experience (in particular because they are run far less often than Sign).
Our construction therefore also makes use of a public key encryption scheme Γ
and of a NIZK proof system. The latter will concretely be the Groth-Sahai proof
system [24] that allows to prove most common relations in bilinear groups by
using a common reference string crs. Additional details on these two primitives
are provided in the full version [18].

– Setup(1λ): Let (G1,G2,GT , e) be the description of type-3 bilinear groups
of prime order p, this algorithm first selects g

$← G
∗
1 and g̃

$← G
∗
2, and then

computes (X, ˜X) ← (gx, g̃x) for some random scalar x. It also generates the
public parameters ppΣ for a digital signature scheme2 Σ and selects a hash
function h : {0, 1}∗ → Z/pZ. Finally, it generates a common reference string
crs for the Groth-Sahai proof system [24] in the SXDH setting and then sets
the public parameters as pp = (G1,G2,GT , e, g, g̃,X, ˜X, crs, ppΣ , h).

– UKeygen(pp): The user defines his own key pair as (sk, pk) ← Σ.Keygen(ppΣ).
– OKeygen(pp): The opening authority generates a key pair (osk, opk) for a

public key encryption scheme Γ .
– GKeygen(pp): The group manager selects two random scalars α1 and α2 and

then computes (˜A1, ˜A2, ˜B) ← (g̃α1 , g̃α2 , ˜Xα2). He then initializes a public
register Reg and returns (gsk, gpk) ← ((α1, α2), (˜A1, ˜A2, ˜B)).

– Join: To join the group, a user i first selects two random scalars, u and y, and
computes (gu, gu·y) along with C ← Γ.Encrypt(opk, g̃y). He then generates
a NIZK proof π that C encrypts an element g̃y ∈ G2 such that e(gu, g̃y) =
e(gu·y, g̃). Finally, he generates μ ← Σ.Sign(ski, (gu||gu·y||C||π)) and sends
it, along with (gu, gu·y, C, π), to the group manager.
Upon receiving these elements, the group manager checks the validity of the
proof π and that Σ.Verify(pki, μ, (gu||gu·y||C||π)) = 1. If π and μ are both
valid, then he stores (gu, gu·y, C, π, pki, μ) in Reg[i], generates a t

$← Z/pZ
and returns τ ′

1 ← ((gu)α1(gu·y)α2)t, τ2 ← g1/t and τ̃ ← g̃1/t.
2 Any EUF-CMA signature scheme can be selected here, without any impact on the

complexity of the group signatures.

14 R. Clarisse and O. Sanders

Finally, the user computes τ1 ← (τ ′
1)

1/u and sets uski = (τ1, τ2, τ̃ , gy).
– Sign(uski,m): To sign a message m, the user first selects two random scalars

r and s, and generates the following elements:

τ ′
1 ← τ r·s

1 , (τ ′
2, τ̃

′) ← (τ1/s
2 , τ̃1/s), (σ1, σ2) ← (gr,Xr/h(τ̃ ′||σ1||m) · (gy)r).

The group signature σ on m is then defined as σ = (τ ′
1, τ

′
2, τ̃

′, σ1, σ2).
– Verify(gpk, σ,m): To verify a group signature σ on m, one checks that none

of its elements is 1G1 or 1G2 and that the following equalities hold:

e(σ1, ˜A1
˜B−1/h(τ̃ ||σ1||m)) · e(σ2, ˜A2) = e(τ1, τ̃) and e(τ2, g̃) = e(g, τ̃),

in which case one outputs 1. Otherwise, one returns 0.
– Open(osk, gpk, σ,m): Before opening a signature, the opening authority first

checks that it is valid. Otherwise, he returns 0. By using its secret key osk,
the opening authority has the ability to decrypt any ciphertext Ci stored in
Reg[i] and thus recover the elements g̃yi ∈ G2 for all registered users. He can
then check, for each of them, whether the following equality holds:

e(σ2, g̃) · e(σ1, ˜X−1/h(τ̃ ||σ1||m)) = e(σ1, g̃
yi).

If there is no match, then the opening authority returns ⊥. Otherwise, let j be
the corresponding user. The opening authority recovers the data (guj , guj ·yj ,
Cj , πj , pkj , μj) stored in Reg[j], commits to g̃yj and then outputs j along
with a Groth-Sahai proof π that:

e(σ2, g̃) · e(σ1, ˜X−1/h(τ̃ ||σ1||m)) = e(σ1, g̃
yj) and e(guj ·yj , g̃) = e(guj , g̃yj).

– Judge(gpk, σ,m, i, π): To verify an opening, one checks that π is valid,
Verify(gpk, σ,m) = 1 and Σ.Verify(pki, μi, (gui ||gui·yi ||Ci||πi)) = 1. If all
conditions are satisfied, then one returns 1. Otherwise, one returns 0.

Correctness. First note that at the end of the Join protocol, the user gets
a FHS equivalence-class signature [21] on the representative (g, gy). Indeed,
(τ1, τ2, τ̃) = ((gα1gy·α2)t, g1/t, g̃1/t). To issue a group signature on m, the
user first re-randomizes (τ1, τ2, τ̃) using s while updating the representative to
(gr, gr·y). The resulting tuple (τ ′

1, τ
′
2, τ̃

′) is ((gr·α1gr·y·α2)t·s, g1/(t·s), g̃1/(t·s)) and
is still a FHS signature on the same equivalent class. He then generates a pair
(σ1, σ2) where (σ1, σ

m′
2) is a PS signature [28] on m′ = h(τ̃ ′||σ1||m) using the

same randomness r. Therefore, such a group signature satisfies:

e
(

σ1, ˜A1
˜B−1/m′) · e(σ2, ˜A2) = e

(

gr, g̃α1− x·α2
m′

)

· e
(

gr(x
m′ +y), g̃α2

)

,

= e(g, g̃)r(α1+y·α2) = e(τ ′
1, τ̃

′),

and e(τ ′
2, g̃) = e(g1/(t·s), g̃) = e(g, g̃1/(t·s)) = e(g, τ̃ ′).

Group Signature Without Random Oracles from Randomizable Signatures 15

Remark 3. Group signatures following the classical Sign-Encrypt-Prove frame-
work usually provide an efficient opening procedure. Indeed, the opening author-
ity knows the corresponding decryption key and so can decrypt the ciphertext
included in the group signature and then identify the signer. Unfortunately, there
is no equivalent for constructions without encryption and in particular there is
no longer a “master” key that the opening authority can use to break anonymity.

Constructions based on randomizable signatures [7,19] circumvent this issue
by forcing each user to provide to the opening authority a way to open their
signatures. Concretely, during the Join protocol, each user must transmit some
elements depending on their secret keys to this authority. Unfortunately this
requirement does not fit the BSZ model [6] where Join is a two-party protocol
between the user and the group manager. There are then two ways to solve
this problem. Either we add the opening authority as an acting party in Join
or we require that the user sends these elements to the group manager. The
first solution is conceptually the simplest but modifies the original BSZ model.
The second one does not but requires additional primitives to ensure security.
Indeed, the user cannot transmit such elements in clear (otherwise the group
manager could break anonymity) so he must send them encrypted and prove
(in a zero-knowledge way) that the resulting ciphertext is well-formed.

In this paper we choose to describe the most complex (second) solution since
one can easily derive from it a group signature scheme complying with the first
option. We will then need an IND-CCA2 secure public key encryption scheme
that is compatible with NIZK proofs. In practice, one can choose for instance
[27] that nicely interacts with Groth-Sahai proofs [24]. We note that efficiency
is not really a concern here since this step of the Join protocol has no impact
on the group signatures themselves.

Remark 4. We note that the security model of Bellare et al. [6] already assumes
a trusted Setup phase, so our construction perfectly fits this model on this
point. However, this does not explain how to generate the public parameters
in real-world conditions. In practice, it would be natural that the opening
authority generates them. Regarding security, it would only be problematic for
non-frameability if corruption of this entity occurred before Setup, but this is
excluded by the model of [6]. We can also mitigate the risks by relying on a
cooperative generation of the parameters, as in [15].

4.2 Security Results

Theorem 1. Our group signature is:

– traceable under the EUF-CMA security of the FHS signature scheme;
– non-frameable under the MPS assumption, the collision-resistance of the func-

tion h and the EUF-CMA security of Σ;
– CPA anonymous under the SXDH assumption and the IND-CCA2 of Γ ;
– selfless anonymous if it is non-frameable, if Γ is IND-CCA2 secure and if the

SXDH assumption holds;

16 R. Clarisse and O. Sanders

– fully anonymous, with merged opening authority and group manager, if it is
traceable and if the SXDH assumption holds.

Theorem 1 shows that our scheme retains some security properties (namely
CPA security) even when users’ secret keys are leaked, contrarily to the ones
of [7,28]. The fact that selfless anonymity depends on the non-frameability may
seem surprising but this is due to the special opening process that the reduction
R uses in our security proof. Informally, R is able to open all signatures but the
ones generated by the “challenge” user. To circumvent this problem R stores all
the signatures it has produced on behalf of this user so that it will be able to
recognize them if they are later submitted to the OOpen oracle. However, this
works as long as the adversary is unable to forge signatures for this user, hence
the non-frameability requirement.

The last statement of the theorem shows that we can achieve the strongest
notion of anonymity if we additionally assume that the opening authority is also
the group manager, as in the model of Bellare, Micciancio and Warinschi [5].

The theorem is proved below, except the part regarding non-frameability
that we only provide in the full version of this work [18] due to space limitation.

Proof of Anonymity. Our proofs of CPA anonymity and selfless anonymity
are very similar and only differ by one game. We will then consider an adversary
against “anonymity” without specifying which property we consider except in
Game 5 where the distinction is necessary. We discuss the case of full anonymity
in Remark 5.

Let A be an adversary against the anonymity of our construction succeeding
with probability ε. We define a sequence of games to show that this advantage
is negligible. For each Game i we define Advi = |Pr(Si) − 1/2|, where Si is the
event “A succeeds in Game i”. We additionally define AdvSXDH as the advantage
against the SXDH problem.

Game 1. Our first game is exactly the one of anonymity of Fig. 1 where the
reduction R generates normally all the secret values and so is able to answer
any oracle query. By definition, we have Adv1 = ε.

Game 2. In our second game, R selects a random index i∗ ∈ [1, qA], where qA

is a bound on the number of OAdd queries. R proceeds as usual but aborts if
A queries (i0, i1,m) to the OCh oracle with ib �= i∗. The advantage of A in this
new game is then at least ε

qA
.

Game 3. In the third game, R generates a simulated common reference string
crs and simulates all the zero-knowledge proofs. Any change in the behaviour of
A can then be used against the zero-knowledge property of these proofs, which
rely on SXDH in our setting. Therefore, Adv3 ≥ Adv2 − AdvSXDH.

Group Signature Without Random Oracles from Randomizable Signatures 17

Game 4. In the fourth game, R sets opk as the public key of a IND-CCA 2
experiment. It then uses the decryption oracle to decrypt the ciphertext Ci

stored in Reg[i] for all users i and so can answer any query as usual. However,
upon receiving the OJU query on i∗ (this query necessarily occurs because of
Game 2), it proceeds normally except that it generates C as an encryption of
a random element of G2 and simulates the proof. A change in the behaviour
of A would imply an attack against the IND-CCA2 security of Γ , so we get
Adv4 ≥ Adv3 − AdvIND−CCA2.

Game 5. In the fifth game, R stores every signature it generates on behalf of i∗

in some register Sig. Upon receiving a Open query for some pair (σ,m), it first
checks whether σ ∈ Sig in which case it returns i∗ along with a simulated proof.
Otherwise, it returns Open(σ,m).

We note that Game 5 is the same as Game 4 when we consider CPA
anonymity since there is no OOpen query in this case. For selfless anonymity,
a difference only occurs when the adversary manages to submit a forged signa-
ture that can be traced back to i∗. However, such an adversary can straightfor-
wardly be converted into an adversary against non-frameability. We then have
Adv5 ≥ Adv4 − Advnf .

Game 6. In the sixth game, R proceeds as in the previous game except that
it answers to the OCh query by returning a signature generated using a random
key. The advantage of A can then only be 0. We prove below that the Games
5 and 6 cannot be distinguished under the SXDH assumption and we then have
Adv6 ≥ Adv5 − AdvSXDH.

Proof (of indistinguishability between anonymity Games 5 and 6). R receives a
DDH challenge (g, ga, gb, gz) in G1 and must then decide whether z = a ·b. It will
then act as if y = a for the secret key uski∗ of user i∗. This is not a problem since
ga is sufficient to issue group signatures and to join the group since Game 4.
Moreover Game 5 ensures R is able to answer any OOpen query, even without
knowing g̃a.

To answer the OCh query for a message m, it selects a random scalar t and
computes a group signature σ as follows:

• τ1 ← ((gb)α1 · (gz)α2)t;
• (τ2, τ̃) ← (g1/t, g̃1/t);
• (σ1, σ2) ← (gb, (gb)x/h(τ̃ ||σ1||m) · (gz)).

In any case, σ is a valid group signature on m, i.e. Verify(gpk, σ,m) outputs
the bit 1. If z = a · b, then σ s a valid signature issued by user i∗ and A is still
playing Game 5. Else, σ is a signature issued with a random key, independent
of a and A is playing Game 6. Any change of behavior of A between these two
games can then be used against the DDH assumption in G1 and so against the
SXDH assumption. �	

18 R. Clarisse and O. Sanders

We get the following result, which proves both CPA anonymity and selfless
anonymity of our construction:

• ε/qA ≤ 2 AdvSXDH + AdvIND−CCA2 for any adversary succeeding against CPA
anonymity with probability ε;

• ε/qA ≤ 2 AdvSXDH+AdvIND−CCA2+Advnf for any adversary succeeding against
selfless anonymity with probability ε.

Remark 5. Let us now consider the case where the group manager and the open-
ing authority are merged, as in the BMW model [5]. As explained in Remark 3,
the use of IND-CCA2 encryption during the Join protocol is only necessary
when the opening authority is not involved in this process, which is no longer
the case here. We can then discard Γ and remove Game 4 in the security proof.

In Game 5, R proceeds as follows. It still stores the signatures generated on
behalf of i∗ in Sig but now answers OOpen queries on (σ,m) as follows:

– if σ ∈ Sig, then it returns i∗ along with a simulated proof π;
– if Open(σ,m) returns (i, π) or 0, then it forwards this answer to the adversary;
– if Open(σ,m) returns ⊥, then it returns i∗ along with a simulated proof π.

We note that a problem only occurs in the third case if the adversary managed
to submit a group signature that cannot be traced back to a registered user. How-
ever, this would mean that A is a valid adversary against traceability, which is
unlikely. All the other games remain unchanged so ε/qA ≤ 2 AdvSXDH+Advtra for
any adversary succeeding against full anonymity with probability ε in BMW [5].

Proof of Traceability. We prove that any untraceable group signature can be
used to construct a forgery against the FHS equivalence-class signature scheme.
More specifically, let A be an adversary against traceability succeeding with
probability ε, then A can be converted into an adversary succeeding against the
EUF-CMA security of FHS signature with the same probability.

Technically, A can succeed by returning a valid signature σ on m that either
foils the opening process or that can be opened but for which it is impossible to
produce a valid proof of opening. We can exclude the latter in our construction
because of the correctness and of the soundness of Groth-Sahai proofs.

Our reduction R generates the public parameters as usual except that it does
not discard x after generating X and ˜X. It then gets the public key ˜A1 and ˜A2

from the EUF-CMA challenger and sets gpk as (˜A1, ˜A2, ˜Ax
2). By using its signing

oracle, it is able to handle Join query so the simulation is perfect. At the end
of the game, A then outputs with probability ε an untraceable group signature
σ on m. If we parse σ as (τ1, τ2, τ̃ , σ1, σ2), this means that:

(1) e
(

σ1, ˜A1
˜B−1/h(τ̃ ||σ1||m)

) · e(σ2, ˜A2) = e(τ1, τ̃);
(2) e(τ2, g̃) = e(g, τ̃);
(3) e(σ2, g̃) · e

(

σ1, ˜X−1/h(τ̃ ||σ1||m)
) �= e(σ1, g̃

yi) for all g̃yi stored (encrypted).

Group Signature Without Random Oracles from Randomizable Signatures 19

Equation (1.) is equivalent to: e(σ1, ˜A1) ·e(σ2 ·σ−x/h(τ̃ ||σ1||m)
1 , ˜A2

)

= e(τ1, τ̃),
which means (together with equation (2.)) that (τ1, τ2, τ̃) is a valid FHS signature
on

(

σ1, σ2 · σ
−x/h(τ̃ ||σ1||m)
1

)

. However, (τ1, τ2, τ̃) will be considered as a valid
forgery only if

(

σ1, σ2 · σ
−x/h(τ̃ ||σ1||m)
1

)

does not belong to the equivalence class
of a message submitted to the signing oracle.

Let S = {(hi, h
yi

i)}q
i=1, for hi ∈ G1 be the set of queried messages. All these

messages were involved in a Join query during which the group manager received
(and stored) g̃yi (encrypted). Therefore, if (μ1, μ2) belongs to the equivalent class
of an element of S, then there exists i ∈ [1, q] such that e(μ1, g̃

yi) = e(μ2, g̃).
Let us then assume that

(

σ1, σ2 ·σ−x/h(τ̃ ||σ1||m)
1

)

satisfies the previous condi-
tion, i.e. that there is i such that: e(σ1, g̃

yi) = e
(

σ2 · σ−x/h(τ̃ ||σ1||m)
1 , g̃

)

. We then
have e(σ1, g̃

yi) = e(σ2, g̃) · e(σ−x/h(τ̃ ||σ1||m)
1 , g̃

)

= e(σ2, g̃) · e(σ1, ˜X−1/h(τ̃ ||σ1||m)
)

,

which contradicts equation (3.). The pair
(

σ1, σ2 ·σ−x/h(τ̃ ||σ1||m)
1

)

has then never
been signed, nor any representative of the same equivalence class, which means
that (τ1, τ2, τ̃) along with

(

σ1, σ2 · σ
−x/h(τ̃ ||σ1||m)
1

)

is a valid forgery against the
EUF-CMA security of the FHS scheme.

5 Efficiency Comparison

We compare the signing algorithm of our scheme with the ones of other construc-
tions of the state-of-the-art. All of them are proven under interactive assumptions
(or directly in the generic group model) so we do not take this point into account
in our comparison. In Table 4, we enumerate the number of expensive operations,
i.e. exponentiations in G1, G2 and GT (denoted by e1, e2 and eT respectively).
Regarding signing cost, our scheme is the most efficient one whenever computing
3e1 + 1e2 is cheaper than computing 1eT .

To compare these operations, we choose a common metric. We aim at the 128-
bit security. Following the incentive of Barbulescu and Duquesne [4], we select
Barreto-Lynn-Scott curves with k = 12 that now seem more appropriate than
Barreto-Naehrig ones, considering the recent attacks on pairings [26]. Moreover,
they are getting involved in more implementations, e.g. in Zexe [12], a ledger-
based system, and in ZCash [11] for zk-SNARKs.

Like in [4], we select a prime q ≡ 3 (mod 4) and construct the tower of fields:

Fq2 =
Fq[U]

(U2 + 1)
, Fq6 =

Fq2 [V]
(V 3 − U − 1)

and Fq12 =
Fq6 [W]

(W 2 − V)
.

This choice yields the costs in Table 1, where m is the cost of one multiplication
in Fq (we make the rough assumption that squaring is the same cost as multi-
plying in Fq). The last line of Table 1 represents costs in the so-called cyclotomic
subgroup GΦ12(q) ⊂ Fq12 of order Φ12(q) (where Φ12(q) is the 12th cyclotomic
polynomial evaluated at q, see [4]). This is of interest to us since GT ⊂ GΦ12(q)

and squaring in GΦ12(q) are twice faster.
For simplicity, we take our BLS12 curve in the short Weierstrass model, that

is y2 = x3 + b with b ∈ Fq, and use the Jacobian coordinate system: representing

20 R. Clarisse and O. Sanders

Table 1. Costs of arithmetic operations in the tower extension as in [4]

Field Mult. (M) Squaring (S)

Fq m m

Fq2 3m 2m

Fq12 54m 36m

GΦ12(q) 54m 18m

(x, y) as (X,Y,Z) and satisfying the equations x = X/Z2 and y = Y/Z3. This
is the most efficient for pairings, without changing models (see [10]): it takes
11 field multiplications and 5 field squarings to add two distinct points and 2
field multiplications and 5 field squarings to double a point. After converting
squarings to multiplications (see Table 1), we end up with Table 2. Note that a
point in G2 is on the degree-6 twist curve, i.e. over Fq2 .

Table 2. Costs of arithmetic operations in the pairing groups G1/Fq and G2/Fq2 , when
modeling the curve with a short Weierstrass equation and using Jacobian coordinates

Group Addition Doubling

11M + 5S 2M + 5S

G1 16m 7m

G2 43m 16m

Now, to compare exponentiation, let n be a positive integer. Think of n as one
of the random scalars in our Sign procedure. A double-and-add algorithm will,
on average, double log2 n times and add (log2 n)/2 times. It means, for instance,
that an exponentiation by n in G1 costs 15(log2 n) field multiplications. In the
following, we bound n by p (the order of G1, G2 and GT) and so get Table 3,
where k = log2 p.

Table 3. Upper-bounded cost of one group exponentiation

Group G1 G2 GT

Cost 15k · m 38k · m 45k · m

Using BLS12 curves leads to a 256-bit representation of scalars and at least
384-bit (resp. 768-bit) for the elements of G1 (resp. G2). We summarize our
comparison in Table 4, indicating if the constructions follow the BMW model [5]
or the BSZ one [6] (see Sect. 3). We note that [19] also considers outlying prop-
erties, such as opening soundness, that have no impact on the group signature

Group Signature Without Random Oracles from Randomizable Signatures 21

itself. The last line of the table corresponds to our construction where the open-
ing authority and the group manager are merged, which impacts security but
not efficiency.

Table 4. Efficiency and security comparisons using BLS12 curves (m represents the
cost of one multiplication in the base field of the curve and k = �log2 p�)

Scheme Size in bit Cost in grp. exp. Cost with BLS12 ROM? GS model Anonymity

BCNSW [7] 1664 3 e1 + 1 eT 90k · m Yes BMW Selfless

PS [28] 1280 2 e1 + 1 eT 75k · m Yes BMW Selfless

DS [19] 2816 5 e1 + 1 e2 113k · m Yes BSZ CPA

DS* [19] 4608 5 e1 + 6 e2 303k · m Yes BSZ Full

BHKS [3] 4992 9 e1 + 2 e2 211k · m No BMW Full

Ours 2304 5 e1 + 1 e2 113k · m No BSZ CPA & Selfless

Ours* 2304 5 e1 + 1 e2 113k · m No BMW Full

If we focus on constructions without random oracles, our group signature
outperforms the recent construction of [3]: it halves both the signature size and
the signature cost. We also note that it is competitive against the most efficient
construction [28] in the random oracle model (ROM). Indeed, while the signature
size remains larger (double the size), the computational cost is quite similar and,
more importantly, our signer no longer needs to perform operation in GT and
so, does not need to implement the arithmetic in Fq12 , which is noticeable.

We would like to add that this comparison was made targeting the 128-bit
security level. At higher security levels, BLS12 curves might not be relevant any-
more. For instance, at 256 bits of security, the authors from [10] choose a BLS24
curve and different curve models for G1 and G2, thus satisfying the condition
3e1 + 1e2 < 1eT . In that case, our group signature scheme is computationally
the most efficient, even compared to the best alternative in the ROM [28].

6 Conclusion

In this paper, we have introduced the most efficient group signature scheme
proved secure without random oracles. Our construction is based on a tailored
combination of the PS signature scheme and the FHS equivalence-class signature
scheme, leading to a group signature consisting only of four elements in G1 and
one in G2. Its security mostly relies on the one of these signature schemes which
have been widely used in cryptographic protocols, although we need to adapt
the proof of PS signature to fit our construction.

Our scheme halves both the size and the computational cost compared to the
most efficient alternative in the same model. It also significantly closes the gap
with constructions in the ROM, showing that we can avoid this model without
dramatically increasing complexity.

Acknowledgements. The authors are grateful for the support of the ANR through
project ANR-16-CE39-0014 PERSOCLOUD and project ANR-18-CE-39-0019-02
MobiS5.

22 R. Clarisse and O. Sanders

References

1. Abdalla, M., Warinschi, B.: On the minimal assumptions of group signature
schemes. In: Lopez, J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269,
pp. 1–13. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30191-
2 1

2. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure
coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-44598-6 16

3. Backes, M., Hanzlik, L., Kluczniak, K., Schneider, J.: Signatures with flexible pub-
lic key: introducing equivalence classes for public keys. In: Peyrin, T., Galbraith, S.
(eds.) ASIACRYPT 2018, Part II. LNCS, vol. 11273, pp. 405–434. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03329-3 14

4. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. J. Cryp-
tology 32(4), 1298–1336 (2019). https://doi.org/10.1007/s00145-018-9280-5

5. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 38

6. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of
dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–
153. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3 11

7. Bichsel, P., Camenisch, J., Neven, G., Smart, N.P., Warinschi, B.: Get shorty via
group signatures without encryption. In: Garay, J.A., De Prisco, R. (eds.) SCN
2010. LNCS, vol. 6280, pp. 381–398. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15317-4 24

8. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-28628-8 3

9. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: ACM
CCS (2004)

10. Bos, J.W., Costello, C., Naehrig, M.: Exponentiating in pairing groups. In: Lange,
T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 438–455.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43414-7 22

11. Bowe, S.: BLS12-381: New zk-SNARK Elliptic Curve Construction (2017). https://
electriccoin.co/blog/new-snark-curve/

12. Bowe, S., Chiesa, A., Green, M., Miers, I., Mishra, P., Wu, H.: Zexe: enabling
decentralized private computation. IACR Cryptology ePrint Archive (2018)

13. Boyen, X., Waters, B.: Compact group signatures without random oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer,
Heidelberg (2006). https://doi.org/10.1007/11761679 26

14. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 4

15. Canard, S., Pointcheval, D., Sanders, O., Traoré, J.: Divisible E-cash made prac-
tical. In: PKC (2015)

16. Canetti, R., Goldreich, O., Halevi, S.: On the random-oracle methodology as
applied to length-restricted signature schemes. In: Naor, M. (ed.) TCC 2004. LNCS,
vol. 2951, pp. 40–57. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24638-1 3

https://doi.org/10.1007/978-3-540-30191-2_1
https://doi.org/10.1007/978-3-540-30191-2_1
https://doi.org/10.1007/3-540-44598-6_16
https://doi.org/10.1007/3-540-44598-6_16
https://doi.org/10.1007/978-3-030-03329-3_14
https://doi.org/10.1007/s00145-018-9280-5
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/978-3-540-30574-3_11
https://doi.org/10.1007/978-3-642-15317-4_24
https://doi.org/10.1007/978-3-642-15317-4_24
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-662-43414-7_22
https://electriccoin.co/blog/new-snark-curve/
https://electriccoin.co/blog/new-snark-curve/
https://doi.org/10.1007/11761679_26
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/978-3-540-24638-1_3
https://doi.org/10.1007/978-3-540-24638-1_3

Group Signature Without Random Oracles from Randomizable Signatures 23

17. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-46416-6 22

18. Clarisse, R., Sanders, O.: Group Signature without Random Oracles from Random-
izable Signatures (full version of this work). IACR Cryptol. ePrint Arch., 2018–1115
(2020)

19. Derler, D., Slamanig, D.: Highly-efficient fully-anonymous dynamic group signa-
tures. In: ASIACCS (2018)

20. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

21. Fuchsbauer, G., Hanser, C., Slamanig, D.: Structure-preserving signatures on
equivalence classes and constant-size anonymous credentials. J. Cryptol. 32(2),
498–546 (2019)

22. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

23. Groth, J.: Fully anonymous group signatures without random oracles. In: Kuro-
sawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-76900-2 10

24. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

25. Guillevic, A.: Comparing the pairing efficiency over composite-order and prime-
order elliptic curves. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini,
R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 357–372. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38980-1 22

26. Kim, T., Barbulescu, R.: Extended tower number field sieve: a new complexity for
the medium prime case. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part
I. LNCS, vol. 9814, pp. 543–571. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53018-4 20

27. Libert, B., Peters, T., Joye, M., Yung, M.: Non-malleability from malleability:
simulation-sound quasi-adaptive NIZK proofs and CCA2-secure encryption from
homomorphic signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 514–532. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 29

28. Pointcheval, D., Sanders, O.: Short randomizable signatures. In: Sako, K. (ed.)
CT-RSA 2016. LNCS, vol. 9610, pp. 111–126. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-29485-8 7

https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-540-76900-2_10
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-642-38980-1_22
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/978-3-642-55220-5_29
https://doi.org/10.1007/978-3-642-55220-5_29
https://doi.org/10.1007/978-3-319-29485-8_7
https://doi.org/10.1007/978-3-319-29485-8_7

Constant-Size Lattice-Based Group
Signature with Forward Security in the

Standard Model

Sébastien Canard1, Adela Georgescu2,3(B), Guillaume Kaim1,2,
Adeline Roux-Langlois2, and Jacques Traoré1

1 Orange Labs, Applied Crypto Group, Caen, France
2 Univ Rennes, CNRS, IRISA, Rennes, France

adela.georgescu@irisa.fr
3 Department of Computer Science, University of Bucharest, Bucharest, Romania

Abstract. One important property of group signatures is forward-
security, which prevents an attacker in possession of a group signing key
to forge signatures produced in the past. In case of exposure of one group
member’s signing key, group signatures lacking forward-security need to
invalidate all group public and secret keys (by re-initializing the whole
system) but also invalidate all previously issued group signatures. Most
of the existing forward-secure group signatures (FS-GS) are built from
number-theoretic security assumptions which are vulnerable to quan-
tum computers. The only post-quantum secure FS-GS scheme is built
from lattices by Ling et al. (PQCrypto 19) in the random oracle model,
following the classical framework of encrypt-then-prove, thus using non-
interactive zero-knowledge (NIZK) proofs. In this work, we achieve the
first FS-GS from lattices in the standard model. Our starting point is
the group signature of Katsumada and Yamada (Eurocrypt 19) which
replaces NIZK by attribute-based signatures (ABS), thus removing the
need for random oracles. We first modify the underlying ABS of Tsabary
(TCC 17) to equip it with forward-security property. We then prove that
by plugging it back in the group signature framework of Katsumada
and Yamada (Eurocrypt 19), we can design a FS-GS scheme secure in
the standard model with public key and signature size constant in the
number of users. Our constant size is achieved by relying on complexity
leveraging, which further implies relying on the subexponential hardness
of the Short Integers Solution (SIS) assumption.

1 Introduction

Group signatures were introduced as a new type of signatures by Chaum and van
Heyst [CvH91] in 1991 and they were designed to allow only members of a group
to sign messages while the identity of the signer remains hidden for the verifier
(anonymity). The latter can only ensure that a member belonging to the group
has signed the message. Moreover this property guarantees the unlinkability as
well, preventing anyone to detect that two group signatures have been generated
c© Springer Nature Switzerland AG 2020
K. Nguyen et al. (Eds.): ProvSec 2020, LNCS 12505, pp. 24–44, 2020.
https://doi.org/10.1007/978-3-030-62576-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62576-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-62576-4_2

Constant-Size Lattice-Based Group Signature 25

by the same group member. Nevertheless, if necessary, the signature can be
opened by an entity called group manager who holds some secret information
and reveals the identity of the signer (traceability). These features make group
signatures very useful for real life applications including e-commerce systems,
anonymous online communications and trusted hardware attestations.

From their beginning until now, a great variety of constructions for group
signatures have been proposed, addressing different needs: in the random ora-
cle model [CL04,BBS04] or standard model [BW06,Gro07], supporting static
groups [BMW03], dynamic groups [BSZ05] or partially dynamic groups and con-
structions based on different theoretical assumptions such as RSA [ACJT00], or
pairings [BBS04] for standard assumptions.

As for post-quantum constructions, there is a vast literature concerning group
signatures based on lattices, some of them being designed to support most
of the important properties listed above. Among them there are group signa-
tures in the static model [GKV10,CNR12,LLLS13,NZZ15,LNW15,LLNW16],
[LNWX18,BCN18,dPLS18], in the dynamic model where users have the flexi-
bility to join and leave the group [LNWX17], achieving partially dynamicity by
means of verifier-local revokability [LLNW14] (where new users can not join the
group but they can leave it being revoked), or using other tools to achieve par-
tial dynamicity [LLM+16,LMN16]. Concerning the random oracle model (ROM)
and the standard model, all of the existing lattice-based group signature schemes
are in the ROM except the construction by Katsumata and Yamada [KY19]. We
can further notice that the recent construction of non-interactive zero-knowledge
proof of knowledge (or NIZKPoK or NIZK) for all NP from [PS19] combined
with [BMW03] can be adapted in a group signature scheme in the standard
model in a straightforward manner (but very inefficiently as we explain in the
next subsection).

Forward-security [Son01,NHF09,LY10] is an important additional security
property sometimes considered in group signature constructions. Concerning lat-
tices, to the best of our knowledge there is one such construction in the ROM
model [LNWX19]. This property cuts the time into periods t and prevents attack-
ers from forging group signatures pertaining to past time periods t′ < t, even if
a secret group signing key is revealed at the current time period. As explained
in Song [Son01], in the context of group signatures, exposure of secret signing
keys is more damaging since an adversary being in the possession of a member’s
group signing key can produce signatures on behalf of the whole group, but still
remaining anonymous. As a consequence, all the public and secret keys of the
group need to be regenerated and all previously generated group signatures have
to be rendered invalid. We note that the solution to these problems is adding
a forward-secure mechanism to group signatures as was previously done first
for key exchange protocols [Gün89,DvOW92] and then for digital signatures
[BM99,IR01], symmetric-key encryption [BY03] and public key encryption sys-
tems [CHK03]. This property aims to protect past use of private keys even if an
adversary breaks-in at the current moment of time. When entering a new time
period t, a new secret key related to t is computed from the previous secret key

26 S. Canard et al.

related to t − 1 through a one-way key evolution algorithm, the latter one being
deleted promptly afterwards.

1.1 Our Contribution

Our main achievement in this paper is a lattice-based forward-secure group sig-
nature scheme without NIZK in the standard model with public key and sig-
nature size constant (independent) on the number of users. We note that this
is the first of its kind in the standard model as the only existing construction
[LNWX19] for group signatures from lattices achieving forward-security is in the
random oracle model. Our group signature corresponds to the transformation of
the lattice-based group signature from [KY19] using the idea from [LNWX19]
to obtain forward-security.

The main building block of our transformation is a lattice-based forward-
secure attribute-based signature scheme (FS-ABS) that we introduce later in
this paper as a novelty. We mention that there is a previous general construction
of FS-ABS due to [YLH+12] which combines the general primitive of credential
bundles (which can be instantiated with forward-secure digital signatures) and
non-interactive witness-indistinguishable (NIWI) proofs. Using this framework
one can achieve lattice-based FS-ABS as long as one can build forward-secure
digital signature and NIWI from lattices, but, to the best of our knowledge, there
is no construction in the lattice-settings for any of them. Therefore, we believe
that our construction of lattice-based FS-ABS is of self-interest.

We mention that our group signature scheme satisfies CCA-selfless-
anonymity (inherited from the base group signature scheme of [KY19]), a relax-
ation of the CCA-full-anonymity, since the adversary is not in possession of all
the secret keys: he is missing the secret keys of the two members, whose iden-
tities compose the challenge. As for the traceability property, we show that our
scheme achieves forward-secure traceability.

As already explained in [KY19], group signatures from lattices in the stan-
dard model can be achieved also by using the recent proposal for NIZK for all
NP from LWE [PS19] (published shortly after [KY19]) instead of the ABS. The
difference is that the ABS that we employ in our group signature scheme relies
only on the hardness of SIS, avoiding the potentially stronger LWE assump-
tion on which the NIZK mentioned above relies, leading to a potentially heavier
group signature construction. Another drawback of a potential instantiation of
group signatures using [PS19] is that the latter one relies on fully homomorphic
encryption for evaluating circuits making it very costly in time efficiency.

1.2 Overview of the Building Blocks for Our Construction

In order to have all the elements needed to give a technical overview of our
scheme, we start by describing three existing constructions: the group signa-
ture scheme of [KY19], the ABS proposed by Tsabary [Tsa17], and finally, the
forward-secure mechanism of the group signature construction of [LNWX19].

Constant-Size Lattice-Based Group Signature 27

Group Signature Scheme without NIZK. The starting point of our work is
the recent lattice-based group signature scheme without NIZK in the standard
model [KY19]. Previous to this construction, all works on group signatures were
relying on the Sign-Encrypt-Prove framework defined by Bellare, Micciancio and
Warinschi [BMW03]. In this framework, to sign a message M , a user encrypts
both his certificate received from the group manager and a digital signature
on M . Finally, he proves in non-interactive zero-knowledge that every element
is well formed. Until recently (2019), constructing NIZK from lattices for any
NP language was a long-standing open problem and by that time Katsumata
and Yamada [KY19] proposed a group signature scheme that by-passed the uti-
lization of NIZK by replacing it with indexed attribute-based signature scheme
(ABS). Their idea is based on the fact that for group signatures the needed NIZK
is in the common reference string (CRS) model and, in the context of group sig-
natures, it resembles to designated-prover NIZK (DP-NIZK) where there is a
proving key kP that needs to be kept secret (and thus is not known to the veri-
fier, assuring zero-knowledge) and a verification key kV which is public. Anyway,
simply replacing NIZK in the CRS model with DP-NIZK is not enough since it
trivially breaks anonymity. The breakthrough idea of Katsumata and Yamada
was to view ABS as DP-NIZK. In attribute-based signatures, a signer with an
attribute x is provided a secret key skx from the authority and can anony-
mously sign a message associated with a policy C using his secret key, if and
only if, his attribute satisfies the policy C. In particular, the signature hides the
attribute (anonymity) and users can not collude to pull their attributes together
if none of the attributes satisfies the policy associated to the message (unforge-
ability). Now, an ABS can be seen as a DP-NIZK by the following association:
the attribute x is seen as a witness w and the ABS signing key skx can be set
as the proving key kP of the DP-NIZK. Thus proving that w is a valid witness
to a statement s i.e. (s, w) ∈ R for the NP relation R resorts to, firstly prepare
a circuit Cs(w) = R(s, w) that has the statement s hard-wired into it, secondly
sign a message associated with the policy Cs using the proving key kP = skx and
finally output the signature as the NIZK proof π. Anonymity and unforgeability
of the ABS assure the zero-knowledge property and soundness respectively.

Having shown a way of substituting the NIZK with ABS, it remains to indi-
cate how to use ABS to construct group signature. We briefly explain, in the
following, the general framework from [KY19]. The group manager issues for
user i a key Ki of a secret key encryption (SKE) scheme and an ABS signing
key ski||Ki

where i||Ki is seen as an attribute. To sign a message M , the group
member i encrypts his identity under Ki obtaining cti = SKE.Enc(Ki, i) and cre-
ates an attribute-based signature for some policy Ccti which serves as a NIZK
proof of the fact that cti encrypts the identity. The circuit Ccti has the statement
cti hardwired such that Ccti(i||Ki) := (i = SKE.Dec(Ki, cti)). The traceability
property of the group signature holds from unforgeability of ABS and anonymity
holds from anonymity of the ABS and semantic security of the SKE.

As for the instantiation of the ABS from lattices, [KY19] gives two possible
solutions: the first one uses the ABS proposed by Tsabary [Tsa17] proven secure

28 S. Canard et al.

under the SIS assumption and the second one is an indexed ABS designed by
them, relying also on the SIS assumption. The need for the second construction
is explained by the problems encountered when trying to plug the first construc-
tion into a group signature. Tsabary’s scheme achieves selective unforgeability
which is not enough for security purposes of group signatures. Adaptiveness is the
required property and can be easily achieved via complexity leveraging with the
drawback that this approach requires a subexponential security loss. We remark
that in [KY19] they emphasize that they don’t really need adaptiveness but
rather something complementary to selectiveness called co-selective unforgeabil-
ity. Unfortunately, we can not achieve this property directly, without complexity
leveraging (see Sect. 3.3 for more details). The two different ABS constructions
give two different group signature schemes with the following properties:

(i) Tsabary’s ABS gives rise to a group signature scheme with public key and
signature size constant (independent) in the number of users and whose
security relies on the hardness of LWE with polynomial approximation factor
and subexponential hardness of SIS with polynomial approximation factor.

(ii) The second ABS gives rise to a group signature scheme with public key
and signature size linear in the number of users whose security relies on the
hardness of LWE and SIS with polynomial approximation factors.

Attributed Based Signature from Constrained Signature of Tsabary.
The main building block of our group signature is an Attribute Based Signature
scheme. In the following we briefly explain the ABS developped in Tsabary’s
paper. First of all, the construction in Tsabary’s paper is not really an attribute-
based signature but rather a key-policy constrained signature or simply con-
strained signature. We note that the other flavour of constrained signatures, as
defined in [Tsa17], called message-policy constrained signature is equivalent to
attribute-based signatures. In constrained signatures, a signing key skf is asso-
ciated with a policy f : {0, 1}∗ → {0, 1}, called the constraint, and a key skf can
sign a message x ∈ {0, 1}∗ only if the message satisfies the policy i.e. f(x) = 0.
In attribute-based signatures each key is associated with an attribute x ∈ {0, 1}∗

and a key skx can sign a policy f only if the attribute satisfies the policy i.e.
f(x) = 0. A constrained signature can be easily transformed into an attribute-
based signature using universal circuits (which we denote Ux) as briefly explained
in [KY19] (but not done there), transformation that we apply in Sect. 3 and that
we sketch below.

The ABS scheme (as well as the original constrained signature of [Tsa17])
is built from lattice trapdoors. The verification key vk consists of a uniformly
sampled matrix

−→
A = [A1‖...‖A�] ∈ Z

n×(m×�)
q (with � the input size of the

circuit C) and a close to uniform matrix A ∈ Z
n×p
q while the master signing

key msk is a trapdoor for A denoted A−1
γ0

. The signing key skxi
is associated to

an user i (we prefer the simplified version of this notation even though it would
be clearer to use skUxi

as notation) and to an universal circuit Uxi
(which has

the attribute hard-wired and takes as input the policy (circuit) and a message).
The secret key skxi

is a trapdoor [A‖Axi
]−1
γ where Axi

=
−→
A · HUxi

∈ Z
n×m
q is

Constant-Size Lattice-Based Group Signature 29

computed from
−→
A and Uxi

using the function EvalF. This function, associated
with a function EvalFX, allows to compute HUxi

= EvalF(Uxi
,
−→
A), and HUxi

,x =

EvalFX(Uxi
,x,

−→
A) both in Z

(�m)×m and of bounded norm such that (
−→
A−x⊗G)·

HUxi
,x =

−→
A ·HUxi

−Uxi
(x)G mod q, where G is the gadget matrix. Then, the

manager can easily generate the secret key skxi
using it’s own trapdoor A−1

γ0
. A

valid signature for a message M , a circuit C and an attribute xi is a short vector σ

such that [A‖−→A−xi⊗G]·σ = 0 mod q. We note that for every tuple (C,M, xi),
a trapdoor [A‖−→A−xi ⊗G]−1

γ′ can be derived from [A‖−→A−Uxi
(C,M)G]−1

γ′ when
Uxi

(C,M) = C(xi) = 0.
We remark that, at this stage, the unforgeability of the ABS can be eas-

ily broken, as explained in [KY19] because the message is not bounded to the
signature (both signature and verification just ignore the message) and a valid
signature for a pair of policy and message (C,M) is also valid for (C,M ′) for
M �= M ′. Therefore, in the security game, we can not allow signature queries
and following the idea of [KY19], we use the fact that a scheme that is unforge-
able only when the adversary can not make signature queries can be generically
transformed into a scheme that is unforgeable even when the adversary is allowed
to make signature queries. In short, the idea in [KY19] is to answer the signing
queries using the secret key of a dummy user which does not exist in the real
system. We will need to partition the set of all possible message-policy pairs into
a challenge set and a controlled set (using admissible hash functions) with the
hope that the adversary asks queries that fall into the controlled set to which
the challenger can answer with the help of the dummy key. We also hope that
the attacker outputs a forgery in the challenge set to allow the simulator to solve
a hard problem.

Forward Secure Group Signature of [LNWX19]. Recall that for achieving
forward-secure group signature, one needs a one-way key evolving mechanism
for deriving secret keys for every period of time. Let us now briefly explain this
mechanism following the idea of [LNWX19]. Let T = 2d be the total number
of time periods, the time periods are represented in a binary tree, where each
time period is a leaf of the tree. Each user secret key for a time period t is then
associated with a sub-tree of depth d which uniquely defines the time period
t. Let z be a binary string (corresponding to a time period) of lenth dz. The
set Nodes(t←T−1) contains nodes for which bases (trapdoors) are derived at a
current period of time t and which allow to compute subsequent keys in the
key update algorithm using the bonsai tree technique [CHKP10]. Each user
will have associated a matrix corresponding to period time z ∈ Nodes(t←T−1):
Axi,z = [A‖Axi

‖Tz[1]
1 ‖ · · · ‖Tz[dz]

dz
] where the last dz matrices corresponding to

the bits of dz are public. Therefore, the group signing key of user i at time t is
{Si||z, z ∈ Nodes(t←T−1)} which satisfies Axi,z ·Si||z = 0 mod q. The user is then
able to compute all possible Si||t by employing Si||z if z is an ancestor of t where
t is the binary representation of a period of time. The basis delegation technique
allows users to compute trapdoor matrices for all the descendent nodes in the
set Nodes(t←T−1) and therefore to compute all the subsequent signing keys.

30 S. Canard et al.

1.3 Our Construction

We are now able to better explain our contribution. We start from the con-
strained signature of Tsabary, we transform it in an ABS (according to [KY19]
suggestion) as previously explained, we equip it with forward-security (following
the mechanism of [LNWX19]), then plug it into the group signature of [KY19].
Thus we achieve the first forward-secure group signature from lattices without
NIZK in the standard model having public key and signature size independent of
the number of users for which we managed to prove forward-secure traceability
and CCA-selfless anonymity. The drawback is that the security assumption on
which the GS scheme relies is SIS with subexponential hardness.

Our main building block is then a forward secure Attribute Based Signature
which is built using the idea from [LNWX19] having as starting point Tsabary’s
constrained signature. As explained in [LNWX19], the advantage of this method
is that it incurs only logarithmic dependency on T . Therefore our construction
achieves signature size and public key size constant in N and logarithmic in T .
We note that [LNWX19] applied it directly for building forward-secure group
signature (FS-GS) while we need to apply it first on our ABS to get forward-
secure attribute-based signatures (FS-ABS). Indeed, in an encrypt-then-prove
paradigm for group signatures, the transformation of [LNWX19] into a forward
secure group signature is independent of the encryption scheme and of the NIZK
scheme used to prove the membership. This is because the group secret key of a
user does not appear as input in the NIZK proof but is embedded in a ciphertext
on which the proof is performed. Instead, the paradigm on which we build our
construction uses an ABS to prove that the user belongs to the group, and the
ABS secret key is a direct component of the group secret key of a user. This
means that if we want to update the group secret key of a user, we need to
update the ABS secret key as well.

From this observation and the fact that the ABS built by Tsabary [Tsa17]
is based on lattice trapdoors which fit perfectly with bonsai trees, we can then
adapt the forward security mechanism of [LNWX19] to the ABS derived from
[Tsa17], and use the resulting ABS to get forward-secure group signature scheme.
We note that if we try to apply the same technique for the second ABS from
[KY19] (also built from lattice trapdoors) we can not get forward-security. The
problem is that the design of ABS forces us to keep the initial secret key derived
by the master authority for every user in order to be able to compute all the
other subsequent keys for the following periods of time. This means that an
adversary who gains access to a secret key for a certain period of time, would be
able to compute the secret keys for all periods of time (including previous ones).

The main difficulty encountered when trying to add forward security to the
ABS derived from [Tsa17] is then the way to deal with the trapdoors for each
of the time periods. This includes the trapdoors considered in the ABS con-
struction as well as in the simulation. Moreover this modification induces a new
time parameter t, that has to be handled in the unforgeability proof. Indeed,
the construction of [Tsa17] has been designed to only consider a fixed matrix
A and a vector of matrices

−→
A linked to the attribute to generate and verify

Constant-Size Lattice-Based Group Signature 31

signatures. But now we add log t additional matrices in order to integrate the
time parameter, in a similar way to [LNWX19]. This transformation implies that
the secret keys have to be modified according to the time period considered. It
means that a trapdoor update mechanism needs to be built from the trapdoor
construction of Tsabary, using tools introduced in the bonsai tree mechanism
[CHKP10], and the time component has to be dealt with in the different queries
from the simulation-based proof.

Finally, as we apply forward-secure property to an attribute-based con-
struction in our case, we also have to handle an additional component which
is the attribute. A naive adaptation from the transformation of [LNWX19]
(on a group signature) to our construction (an attribute based signature) would
not be secure. Indeed, we have to deal with two types of trapdoor: the trap-
door inherent to the ABS construction derived from [Tsa17], and the trapdoors
given by the matrices linked to the time parameter. In the security proof of the
ABS scheme, we need to simulate these two types of trapdoors according to each
other, and according to the time period considered, in order to be able to answer
all the queries of an attacker. At the same time, we expect all these trapdoors
to vanish when the forgery of the attacker is outputted, in order to be able to
conclude the simulation and then to argue about the security reduction getting
a solution to a hard problem.

Related Work. The only previous work on forward-secure group signature
schemes from lattices is the work of [LNWX19] in the random oracle model using
NIZK achieving signature size Õ(λ(log N + log T)) and group public key size
Õ(λ2(log N + log T)). Our scheme is constant in the number of group members
and logarithmic in the number of time periods i.e. Õ(λlog T) and group public
key size Õ(λ2log T). Their scheme satisfies full-anonymity and forward-secure
traceability under SIS and LWE hardness.

Open Problems. One open problem would be to achieve a group signature
scheme with the same properties without relying on complexity leveraging (that
we need to employ in the underlying ABS). Another open problem would be to
upgrade the anonymity property from selfless anonymity to full anonymity.

2 Preliminaries

2.1 Lattices and Trapdoors

In this paper we use several values defined as follows: λ is the security parameter
and n, m and q ≥ 2 are integers such that n = poly(λ) and m ≥ n� log q	. The
discrete Gaussian distribution DZm,τ over Z

m with parameter τ is the distribu-
tion where the probability of all x is proportional to e−π‖x‖/τ2

. The norm of a
matrix A = [a1, . . . ,am] ∈ Z

n×m
q , is denoted ‖A‖ = maxj ‖aj‖, j ∈ [m], and it

is the maximum of the Euclidean norm of its vectors.

Lattices. For a matrix A ∈ Z
n×m
q and u ∈ Z

n
q that admits a solution to the

equation A ·x = u mod q, define the m-dimensional lattice: Λ⊥(A) = {x ∈ Z
m :

A · x = 0 mod q} ⊆ Z
m, and the coset Λ⊥

u (A) = {x ∈ Z
m : A · x = u mod q}.

32 S. Canard et al.

We briefly remind the SIS assumption and its hardness.

Definition 1 (SISn,q,B,m). Given a uniformly chosen matrix A ∈ Z
n×m
q , find

nonzero integer vector s ∈ Z
m such that ‖s‖∞ ≤ B and A · s = 0 mod q.

SISn,q,B,m is hard if for any adversary A, the probability to solve SIS is negligible,
i.e. it is bounded by negl(λ). SISn,q,B,m is sub-exponentially hard if the probability
to solve SIS is bounded by 2−O(nε) · negl(λ) for some constant 0 < ε < 1.

Trapdoors. For all v ∈ Z
n
q , A−1

γ0
(v) is the random variable with discrete gaus-

sian distribution DZm,γ0 conditioned on A · A−1
γ0

(v) = v mod q. A γ0-trapdoor
for A allows a procedure that can sample from A−1

γ0
(v) in time poly(n,m, log q)

for any v ∈ Z
n
q . By overloading notation we denote a γ0-trapdoor for A by A−1

γ0
.

We define the gadget matrix G based on the vector g ∈ Z
k
q whose entries are

the power of two gt := [1 2 4 · · · 2k−1] and k = �log q	. The matrix G is
the diagonal concatenation of g n times, i.e. G = g ⊗ In ∈ Z

n×nk
q .

Lemma 1 (Trapdoor generation [Ajt96,MP12]). There exists an efficient
procedure, that we call TrapGen(1n, 1m, q), with an efficiently computable value
m0 = O(n log q) such that for all m � m0 outputs a pair (A,A−1

γ0
), where

A ∈ Z
n×m
q is at negligible distance from uniform and A−1

γ0
is a γ0-trapdoor for

A with γ0 = O(
√

n log q log n).

Lemma 2 (Leftover Hash Lemma [HILL99]). Let m,n, q � 1 be integers

such that m � 4n log q and q prime. Let A $←− Z
m×n
q , r $←− {0, 1}m, then (A,Ar)

is at negligible statistical distance from uniform distribution on Z
m×n
q × Z

n
q .

2.2 Delegation Functions

During different time periods, a signer will need to delegate some lattice trapdoor
from a previous period to a next one. We make use of the following lemmas.

Lemma 3 (Trapdoor extension [ABB10,MP12]). Let ∈ Z
n×m
q be a matrix

with trapdoor M−1
γ and N ∈ Z

n×p
q a matrix such that M = NS mod q where

S ∈ Z
p×m
q with s1(S) its largest singular value. Then we can use (M−1

γ ,S) to
sample from N−1

γ′ for any γ′ ≥ γ · s1(S).

Lemma 4 ([CHKP10, Lemma 3.2]). There is a deterministic polynomial-time
algorithm ExtBasis with the following properties: given an arbitrary A ∈ Z

n×m
q

whose columns generate the entire group Z
n
q , an arbitrary basis S ∈ Z

m×m of
Λ⊥(A), and an arbitrary Ā ∈ Z

n×m̄
q , ExtBasis(S,A′ = A‖Ā) outputs a basis

S′ of Λ⊥(A′) ⊆ Z
m+m̄ such that ‖S̃′‖ = ‖S̃‖. Moreover the same holds even for

any permutation of the columns of A′.

There exists a function RandBasis developed by [CHKP10], which verifies
the following lemma:

Constant-Size Lattice-Based Group Signature 33

Lemma 5 ([CHKP10, Lemma 3.3]). Let S be a basis of a m-dimensional inte-
ger lattice Λ and a parameter s ≥ ‖S̃‖·ω(

√
log n). The algorithm RandBasis(S, s)

outputs a new basis S′ of Λ such that, with overwhelming probability, S′ ver-
ifies ‖S′‖ � s · √

m. Moreover, for any two basis S0,S1 of the same lattice
and any s � max{‖S̃0‖, ‖S̃1‖} · ω(

√
log n), the outputs of RandBasis(S0, s) and

RandBasis(S1, s) are within negl(n) statistical distance.

We further need an important property of lattice trapdoors [ABB10,MP12]:

Lemma 6. For A ∈ Z
n×p
q and R ∈ Z

p×m
q with m = n�log q	, one can compute

[A‖AR + G]−1
γ for γ = O(

√
mp ‖R‖∞).

2.3 Evaluation Functions

In order to generate or check the validity of a signature, we need to execute
some evaluation of a function with a set of lattices as input. The output of this
evaluation is 1 if the function evaluated on an attribute x is not valid and 0 if
the evaluation is correct. We use the notations and definition of the evaluation
functions developed by Tsabary [Tsa17]. Moreover we denote [x1G| · · · |x�G] by
x ⊗ G with x = (x1, · · · , x�) ∈ {0, 1}�.

Theorem 1 ([Tsa17, Theorem 2.7]). There exist efficient deterministic algo-
rithms EvalF and EvalFX such that for all n, q, � ∈ N, m = n�log q	, and for any
sequence of matrices

−→
A = (A1, · · · ,Al) ∈ (Zn×m

q)�, for any depth d boolean
circuit f : {0, 1}� → {0, 1} and for every x = (x1, · · · , x�) ∈ {0, 1}�, the outputs
Hf = EvalF(f,

−→
A), and Hf,x = EvalFX(f,x,

−→
A) are in Z

(�m)×m and it holds that
‖Hf‖∞, ‖Hf,x‖∞ � (2m)d and (

−→
A − x ⊗ G) · Hf,x =

−→
A · Hf − f(x)G mod q.

2.4 Building Blocks for Our Construction

As in [KY19], we employ secret key encryption (SKE) and one-time signa-
ture (OTS), both from lattices, in order to build our group signature scheme. We
use the SKE scheme based on LWE from [KY19], which is a secret key variant
of [Reg05] and the OTS scheme from [Moh10]

Admissible hash functions represent a family of hash functions introduced
in [BB04], which allows to separate the input space into two sets, the challenge
set and the controlled set. In practice, in a simulation-based game, a simulator
owning a dummy key can answer to queries in the controlled set but not in the
challenge set, and the adversary is expected to make his forgery in the challenge
set, allowing the simulator to solve a hard problem.

We fit in the definition of admissible hash functions given in [KY19].

3 Forward-Secure Indexed Attribute-Based Signature
Scheme from Lattices

As already explained in the introduction, we replace the ABS scheme in the
general construction of [KY19] with a forward-secure indexed ABS. We start by

34 S. Canard et al.

giving the definition and the security requirements of a forward-secure indexed
attribute based signature. We note that the ABS scheme supports multiple users
since it is designed as a building block for group signature scheme.

The starting point of our scheme is the constrained signature of [Tsa17]. We
first adapt it into an indexed attribute-based signature, by including an index
i into the attribute x, following the idea of [KY19]. Moreover we extend this
construction to a forward-secure attribute-based signature scheme, by applying
a transformation similar to [LNWX19]. The idea of this transformation is that
we consider a pair of matrices Tb

j , b ∈ {0, 1} for every bit j of the time period
t considered. Then by concatenating these matrices Tb

j to the public key of
[Tsa17], we can include a time period t into the verification key and the signa-
tures. The technical difficulty that arises when using this transformation into
the Tsabary’s construction is simulating the secret keys for each period of time
and for each user, without possessing the master secret key. This can be done
by using “dummy” secret keys which vanish when the signature is made for an
identity and a time period chosen selectively by the adversary at the beginning
of the game, allowing the simulator to solve a hard problem (which is the SIS
problem). We then get a new forward-secure attribute-based signature scheme
which is independent of the number of users N , and only logarithmic on the
total number of periods T .

3.1 Framework and Security Properties

We denote {Cλ}λ∈N the set of circuits with domain {0, 1}k(λ) and range {0, 1}.
We bound the size of every circuit in {Cλ} by kc = poly(λ). We also denote
the space of messages as {Mλ}λ∈N, for which we bound the size elements by
km = poly(λ). Usually we simplify notation and just denote these spaces C and
M. We then define the forward-secure indexed attribute-based signature scheme
for the circuit class C:

Definition 2. A forward-secure indexed attribute-based signature (FSI-ABS)
scheme consists of the following algorithms:

ABS.Setup(1λ, 1N , 1T) The setup algorithm takes as input λ the security param-
eter, N the size of the index space and T the number of time periods, given
in unary form, and it outputs a master public key mpk and a master secret
key msk.

ABS.KeyGen(msk, i, xi) The key generation algorithm takes as input the master
secret key msk, an index i ∈ [N] and the attribute xi ∈ {0, 1}k. It outputs
skxi,0, the initial secret key associated to xi.

ABS.KeyUpdate(mpk, i, skxi,t, t + 1) The key update algorithm takes as input the
master secret key msk, an index of an user i as well as its secret key for the
time t, skxi,t. It updates this key skxi,t for the next time period t + 1 and
outputs skxi,t+1.

ABS.Sign(mpk, skxi,t, C,M, t) The signing algorithm takes as input the master
public key mpk, a secret key skxi,t for the current period of time t, a circuit

Constant-Size Lattice-Based Group Signature 35

C ∈ Cλ, a message M ∈ Mλ and a time period t and it outputs an attribute-
based signature σ if C(xi) = 0.

ABS.Verify(mpk, C,M, σ, t) The verification algorithm takes as input the master
public key mpk, the circuit C, the message M , the attribute-based signature σ
and the time period t. This algorithm outputs Valid if the signature σ is valid
for the time period t and Invalid otherwise.

For a FSI-ABS scheme, we require correctness and two security properties:
perfect-privacy and forward-secure policy-selective unforgeability. Perfect privacy
captures the idea that the attribute used to sign a message must remain anony-
mous. The unforgeability property says that even if users collude they can not
forge a signature on a message associated with a policy if none of the attributes
satisfies the policy. We note that we can not achieve selective unforgeability
directly, but we start from no-signing-query and apply a transformation using
admissible hash functions to obtain selective unforgeability. We explain this in
more detail at the end of this section.

3.2 Construction of FSI-ABS Scheme from Lattices

We adapt the constrained signature developed by Tsabary [Tsa17] to a forward-
secure attribute-based signature scheme. As explained by Katsumata and
Yamada [KY19], the signature scheme of Tsabary is not an attribute-based sig-
nature but a constrained signature. It means that in the constrained signature,
a user does not sign a circuit but an attribute. Then the role of the attribute
and the circuit are exchanged compared to an actual attribute-based signature
scheme. However, as explained in [KY19], we can turn a constrained signature
into an attribute-based signature: we consider a constraint space composed of all
d-depth bounded circuit Fd = {f : {0, 1}� → {0, 1}}, with � = poly(λ), then a
constraint f can be seen as a universal circuit U(·, ·, x) (that we denote Ux(·, ·)),
which takes as input the circuit-message pair (C,M) (seen as a string of size �).

Our contribution is to build a forward-secure attribute-based signature
scheme meaning that the lifetime of the scheme is divided into T = 2d discrete
periods. To represent the time periods we use a binary tree (Fig. 1), then each
time period t is associated with a leaf Bin(t). Following [BSSW06], for j ∈ [d+1],
we define a time period’s “second sibling at depth j”. Intuitively, it corresponds
to the right neighbour at depth j of each node on the path from the root to the
leaf Bin(t).

Sibling(j, t) =

⎧
⎪⎪⎨

⎪⎪⎩

(1) if j = 1 and Bin(t)[j] = 0
(Bin(t)[1], ...,Bin(t)[j − 1], 1) if 1 < j ≤ d and Bin(t)[j] = 0
⊥ if 1 � j ≤ d and Bin(t)[j] = 1
Bin(t) if j = d + 1

⎫
⎪⎪⎬

⎪⎪⎭

.

We also define node set Nodes(t→T−1) to be {Sibling(1, t), ...,Sibling(d+1, t)}.
The goal of this set is to uniquely define the path to each leaf of the tree.

36 S. Canard et al.

Time periods

Fig. 1. A binary tree with time periods T = 23. In order to fill the set Nodes(t→T−1)

we begin with the leaf Bin(t) that we add in the set Nodes(t→T−1), together with its
sibling (which is its right neighbour), if it exists. Then recursively, we go up in the
tree to the parent of the node considered (coloured in red), and we add its sibling
(coloured in orange) to the set Nodes(t→T−1) (still if it exists). We keep going this way,
until we reach the root of the binary tree. We stop then and output the corresponding
list Nodes(t→T−1). On the path from node ε to the leaf node (001) we then have
Nodes(1→7) = {(1), (01), ⊥, (001)}. (Color figure online)

We consider also a function called bitstr which takes as input a message-
circuit pair (C,M) and which outputs its input seen as a string of bits. Then
bitstr : {0, 1}kc × {0, 1}km �→ {0, 1}�, such that

bitstr(C,M) = {C1, · · · , Ckc
,M1, · · · ,Mkm

}.

Selection of Parameters. Given the security parameter λ, the parameters
m0, p, γ0 and τs are chosen according to TrapGen algorithm, T = 2d is cho-
sen as a power of 2, for d ∈ N, and is the number of time periods considered, and
� is the size of input of the circuit. We choose parameters τu and B by referring
to Theorem 1. Finally sj is dictated also by Lemma 3. Then we set:

– m = 4n�log q	, m0 = O(n log q) � 4n log q,
– p = max{m0, (n + 1)�log q	 + 2λ},
– γ0 = O(

√
n�log q	log n),

– τs = max{√p · � · 2dm1.5+d, γ0},
– τu = τs · √

� · 2dm0.5+d,
– B = τu

√
(1 + d) · p + � · m,

– sj = O(
√

nd log q)j+1 · ω(
√

log n)j+1 for j ∈ [d].

ABS.Setup(1λ, 1N , 1T) On input the security parameter 1λ, 1N where N is
the number of indexes i ∈ [N] and 1T where T is the number of time periods
T = 2d for some d ∈ N, it sets the parameters n,m, p, q, γ0 to be polynomial
in λ. Then, it generates:

• uniform matrix
−→
A = [A1‖...‖A�]

$←− Z
n×�m
q ,

• (A,A−1
γ0

) ← TrapGen(1n, 1p, q), with A ∈ Z
n×p
q and A−1

γ0
its trapdoor,

Constant-Size Lattice-Based Group Signature 37

• 2d matrices Tb
j

$←− Z
n×p
q for all j ∈ [d] and b ∈ {0, 1}.

The algorithm outputs: mpk = (A,
−→
A, {Tb

j}j∈[d],b∈{0,1}) and msk = (A−1
γ0

).
ABS.KeyGen(msk, i, xi) On input the master secret key msk, the index i ∈ [N]

and the attribute xi ∈ {0, 1}k, it computes Uxi
, HUxi

= EvalF(Uxi
,
−→
A) ∈

Z
�m×m
q as defined in Theorem 1 and Axi

=
−→
A · HUxi

∈ Z
n×m
q . Then, it uses

A−1
γ0

to compute Rxi
= [A‖Axi

]−1. Then it determines the set Nodes(0→T−1)

and for z ∈ Nodes(0→T−1):
• if z =⊥, set skxi

[z] =⊥,
• else it denotes dz as the bit-length of z, with dz � d, and computes

the matrix: Axi,z = [A‖Axi
‖TBin(z)[1]

1 ‖ · · · ‖TBin(z)[dz]
dz

] ∈ Z
n×((dz+1)p+m)
q ,

then it computes: Rxi,z ← RandBasis(ExtBasis(Rxi
,Axi,z), sdz

), and set
skxi

[z] = Rxi,z,
Finally we get: skxi,0 = {skxi

[z], z ∈ Nodes(0→T−1)}.
ABS.KeyUpdate(mpk, i, skxi,t, t + 1) First parse the set skxi,t = {skxi

[z], z ∈
Nodes(t→T−1)} and determine the set Nodes(t+1→T−1).
For z′ ∈ Nodes(t+1→T−1):

• if z′ =⊥, set skxi
[z′] =⊥.

• Otherwise, there exists exactly one z ∈ Nodes(t→T−1) which is a prefix of
z′ i.e. z′ = z‖y. There are two possibilities here:
1. if z′ = z then skxi

[z′] = skxi
[z],

2. if z′ = z‖y for some non-empty y, then z is an ancestor of z′, and
from skxi

[z] = Rxi,z it can delegate a basis
Rxi,z′ ← RandBasis(ExtBasis(Rxi,z,Axi,z′), sdz′), and set
skxi

[z′] = Rxi,z′ .
Finally output skxi,t+1 = {skxi

[z′], z′ ∈ Nodes(t+1→T−1)}.
ABS.Sign(mpk, skxi,t, C,M, t) First compute x = bitstr(C,M). If Uxi

(x) =
C(xi) �= 0 output ⊥. Otherwise, first compute HUxi

,x = EvalFX(Uxi
,x,

−→
A) ∈

Z
�m×m
q , as defined in Theorem 1, such that (

−→
A − x ⊗ G) · HUxi

,x =
−→
A · HUxi

− Uxi
(x)G = Axi

as Uxi
(x) = 0.

Compute
−→
Bt = [A‖−→A−x⊗G‖TBin(t)[1]

1 ‖ · · · ‖TBin(t)[d]
d] ∈ Z

n×((d+1)p+�m)
q , and

Si =

⎡

⎢
⎢
⎢
⎢
⎣

Ip

HUxi
,x

Ip

· · ·
Ip

⎤

⎥
⎥
⎥
⎥
⎦

∈ Z
((d+1)p+�m)×((d+1)p+m)
q .

We then have
−→
Bt · Si = [A‖Axi

‖TBin(t)[1]
1 ‖ · · · ‖TBin(t)[d]

d] = Axi,t. Since skxi,t

contains a trapdoor for Axi,t, we can apply the trapdoor extension from
Lemma 3 to obtain B−1

τu
= [

−→
Bt]−1 = [A‖−→A−x⊗G‖TBin(t)[1]

1 ‖ · · · ‖TBin(t)[d]
d]−1

τu
,

where A = Axi,t, B =
−→
Bt and S = Si using skxi,t = [Axi,t]

−1
τs

.

Then the signer has a trapdoor for
−→
Bt and he can compute σx,t

$←− −→
Bt

−1(0).
ABS.Verify(mpk, C,M, σx,t, t). First, compute x = bitstr(C,M) and then

check that:

38 S. Canard et al.

• [A‖−→A − x ⊗ G‖TBin(t)[1]
1 ‖ · · · ‖TBin(t)[d]

d] · σx,t = 0,
• ‖σx,t‖∞ � B.

If the verification passes, then output Valid, if not, output Invalid.

3.3 Security Proofs

Lemma 7. Our ABS scheme is perfectly private.1

Lemma 8. Our ABS satisfies forward-secure no-signing-query unforgeability
assuming SISn,q,B′,m′ is hard, with B′ = (�(m+d)+1)B and m′ = (d+1)p+�·m.

What we prove in this theorem is a weak property of unforgeability, where
an attacker is prohibited to make signing queries. Indeed, we do not include the
message to be signed in the different steps of the signature process and note
that if the attacker would be able to perform some signature query on a circuit
message pair (C,M) and get σ, he could just output the valid signature σ but
on a pair (C,M ′) with M ′ �= M and win the unforgeability game.

However, in the context in which we intend to use the attribute-based signa-
ture, namely the group signature, this property of unforgeability is not enough.
We note that they face the same problem in [KY19] and introduce a reduction
from a (co-)selective unforgeable ABS to a no-signing-query ABS, using as a tool
the admissible hash function. Adapting in the same way as their construction,
we get a stronger unforgeability property, namely selective unforgeability.

With the above lemma and the no-signing to selective transformation of
[KY19], we prove that the attribute-based signature derived from the constrained
signature of Tsabary [Tsa17] is forward-secure policy-selective unforgeable where
the adversary chooses its target circuit-message pair (C∗,M∗) for the forgery at
the beginning of the game. But still this security notion is not enough for our
group signature scheme, we need adaptive security and we can only achieve it
by utilizing complexity leveraging as suggested in [KY19]. We have to randomly
guess (C∗,M∗) in the reduction from selective to adaptive security. Let us eval-
uate the reduction loss (as done in [KY19]): the length of the message M∗ is
bounded by poly(λ) and a circuit C∗ can be described by ovk and ct which can
be seen as binary strings with length poly(λ, log N) inducing a reduction loss
of 2−poly(λ,log N). To account for the loss in advantage we need to enlarge the
dimension n of the scheme to be poly(λ, log N)1/ε where ε is some constant in
(0, 1) requiring subexponential hardness of the SIS problem. As mentioned in
the introduction, co-selective unforgeability (where the adversary has to make
all the key queries at the beginning of the game but he can choose the target
policy adaptively) would be enough for our scheme but we can not achieve it
directly since in the unforgeability game we need to target policy associated to
the forgery to be chosen at the beginning of the game so that we can build the
public matrix for which we solve the SIS problem.

Lemma 9. Our ABS satisfies FS adaptive unforgeability under the subexponen-
tial hardness of SIS.
1 All the proofs can be found on the full version.

Constant-Size Lattice-Based Group Signature 39

4 Forward-Secure Group Signature Scheme

In this section we present the construction of our forward-secure group signature
(FS-GS) scheme from lattices.

We use the model of forward-secure group signature scheme formalized in
[NHF09] and [LNWX19] and we give the definition below.

Definition 3. A forward-secure group signature scheme consists of the following
algorithms:

GS.KeyGen(1λ, 1N , 1T) is a randomized algorithm taking as input a security
parameter λ, number of users N and number of time periods T . Its output
consists of a group public key gpk, an opening key gok and a set of initial
user secret keys {gski,0}i∈[N].

GS.KeyUpdate(gpk, gski,t, i, t + 1) is a randomized algorithm that takes as input
the group public key gpk, the secret key gski,t of user i at time t, a user i and
a time period t + 1 and outputs gski,t+1, the secret signing key of user i at
time t + 1.

GS.Sign(gpk, gski,t, i,M, t) takes as input the group public key gpk, the ith user
secret key gski,t at time t, the index i of the user, a message M ∈ {0, 1}∗ and
the current time interval t and outputs a group signature Σ.

GS.Verify(gpk,M,Σ, t) takes as input the group public key gpk, a message M ,
a signature Σ and the time period t. It outputs either Valid or Invalid. Valid
indicates that Σ is a valid signature on M at time period t w.r.t gpk.

GS.Open(gpk, gok,M,Σ, t) takes as input the group public key gpk, the opening
key gok, a message M , a signature Σ and time interval t and outputs an
identity or Invalid if it fails to identify the signer.

We require two security properties: forward-secure traceability and CCA-selfless
anonymity.

4.1 Forward-Secure Group Signature from Lattices

We now describe our lattice-based FS-GS scheme which employs the FSI-ABS
scheme given in the previous section and which satisfies CCA-selfless anonymity
and traceability. As the ABS used is forward-secure, we show that the group
signature is also forward-secure, so we consider that the lifetime of the scheme is
divided into T time periods. When entering a new period of time, a new secret
key is computed from the current one and afterwards the current key is deleted
promptly.

GS.KeyGen(1λ, 1N , 1T) On input security parameter λ, the number of group
members N and the total number of time periods T = 2d, the algorithms
works as follows: First sample pp ← SKE.Setup(1λ) and (mpk,msk) ←
ABS.Setup(1λ, 1N , 1T), then, for i ∈ [N], sample Ki ← SKE.Gen(pp) and
compute skxi,0 as ski||Ki,0 ← ABS.KeyGen(msk, i, i||Ki)i∈[N].
Output gpk = (pp,mpk), gok = {Ki}i∈[N], gski,0 = (i,Ki, ski||Ki,0).

40 S. Canard et al.

GS.KeyUpdate(gpk, gski,t, i, t + 1) It calls the key update algorithm of the
ABS and returns gski,t+1 = (i,Ki,ABS.KeyUpdate(mpk, i, skt,i, t + 1)).

GS.Sign(gpk, gski,t, i,M, t) In order to sign a message, the user samples
(ovk, osk) ← OTS.KeyGen(1λ) and computes the encryption of his identity
under the key Ki as ct ← SKE.Enc(Ki, i||ovk). Then, he computes

σ ← ABS.Sign(mpk, ski||Ki
, C[ovk, ct],M, t),

where the circuit C[ovk, ct] is defined as follows:

C[ovk, ct](i||Ki)

Hardwired constants: a verification key ovk of OTS and
ciphertext ct of SKE

– Retrieve i ∈ [N] and Ki from the input. If this is impossible, return 1.
– Compute SKE.Dec(Ki, ct) = i′||ovk′. If i′ = i and ovk′ = ovk output 0.

Otherwise, output 1.
Finally run τ ← OTS.Sign(osk,M‖σ).
The signature consists of Σ = (ct, ovk, σ, τ).

GS.Verify(gpk,M,Σ, t). On input gpk, a message M , a group signature Σ on
M and a period time t, check that ABS.Verify(mpk, C[ovk, ct],M, σ, t) = Valid
and OTS.Verify(ovk, τ,M‖σ) = Valid; if one of these verification condition
does not hold, return Invalid. Otherwise return Valid.

GS.Open(gpk, gok,M,Σ, t). First run GS.Verify(gpk,M,Σ, t) and return
Invalid if the verification result does not hold. Otherwise, parse Σ →
(ct, ovk, σ, τ). Since the manager does not know the identity of the user who
produced the signature, he has to find it by trial and error, i.e. he computes
di ← SKE.Dec(Ki, ct) for i ∈ [N] and outputs the smallest index i such that
di �= Invalid. If there is no such i, return Invalid.

4.2 Security

Correctness. The correctness of the FS-GS scheme follows directly from the
correctness of OTS, ABS and SKE.

Theorem 2 (Traceability). If ABS is forward-secure (adaptively) unforgeable
and SKE has key-robustness then the group signature scheme constructed above
has the forward-secure traceability property.

The following theorem addresses the CCA-selfless anonymity of the above GS
scheme. We omit the proof and mention that it is a straightforward adaptation
of the CCA-selfless anonymity proof from [KY19, Th. 5].

Theorem 3 (CCA-selfless anonymity). If ABS is perfectly private and adap-
tive unforgeable, OTS is strongly unforgeable and SKE is IND-CCA secure and
key-robust, then GS constructed as above is CCA-selfless anonymous.

Constant-Size Lattice-Based Group Signature 41

Acknowledgements. This work is supported by the European Union PROMETHEUS
project (Horizon 2020 Research and Innovation Program, grant 780701) and by the
french Programme “Investissement d’Avenir” under the national project RISQ P141580-
2660001/DOS0044216.

References

[ABB10] Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimen-
sion and shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 98–115. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-14623-7 6

[ACJT00] Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and prov-
ably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44598-6 16

[Ajt96] Ajtai, M.: Generating hard instances of lattice problems (extended
abstract). In: STOC, pp. 99–108. ACM (1996)

[BB04] Boneh, D., Boyen, X.: Secure identity based encryption without ran-
dom oracles. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
443–459. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
28628-8 27

[BBS04] Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-28628-8 3

[BCN18] Boschini, C., Camenisch, J., Neven, G.: Floppy-sized group signatures from
lattices. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol.
10892, pp. 163–182. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-93387-0 9

[BM99] Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In:
Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 28

[BMW03] Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures:
formal definitions, simplified requirements, and a construction based on
general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol.
2656, pp. 614–629. Springer, Heidelberg (2003). https://doi.org/10.1007/
3-540-39200-9 38

[BSSW06] Boyen, X., Shacham, H., Shen, E., Waters, B.: Forward-secure signatures
with untrusted update. In: ACM Conference on Computer and Communi-
cations Security, pp. 191–200. ACM (2006)

[BSZ05] Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case
of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376,
pp. 136–153. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-
540-30574-3 11

[BW06] Boyen, X., Waters, B.: Compact group signatures without random oracles.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444.
Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 26

[BY03] Bellare, M., Yee, B.: Forward-security in private-key cryptography. In:
Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 1–18. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36563-X 1

https://doi.org/10.1007/978-3-642-14623-7_6
https://doi.org/10.1007/978-3-642-14623-7_6
https://doi.org/10.1007/3-540-44598-6_16
https://doi.org/10.1007/978-3-540-28628-8_27
https://doi.org/10.1007/978-3-540-28628-8_27
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-319-93387-0_9
https://doi.org/10.1007/978-3-319-93387-0_9
https://doi.org/10.1007/3-540-48405-1_28
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/978-3-540-30574-3_11
https://doi.org/10.1007/978-3-540-30574-3_11
https://doi.org/10.1007/11761679_26
https://doi.org/10.1007/3-540-36563-X_1

42 S. Canard et al.

[CHK03] Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryp-
tion scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 255–271. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
39200-9 16

[CHKP10] Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to
delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 523–552. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13190-5 27

[CL04] Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous cre-
dentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS,
vol. 3152, pp. 56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-28628-8 4

[CNR12] Camenisch, J., Neven, G., Rückert, M.: Fully anonymous attribute tokens
from lattices. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol.
7485, pp. 57–75. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32928-9 4

[CvH91] Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EURO-
CRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991).
https://doi.org/10.1007/3-540-46416-6 22

[dPLS18] del Pino, R., Lyubashevsky, V., Seiler, G.: Lattice-based group signatures
and zero-knowledge proofs of automorphism stability. In: ACM Conference
on Computer and Communications Security, pp. 574–591. ACM (2018)

[DvOW92] Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and authen-
ticated key exchanges. Des. Codes Cryptogr. 2(2), 107–125 (1992)

[GKV10] Gordon, S.D., Katz, J., Vaikuntanathan, V.: A group signature scheme
from lattice assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 395–412. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17373-8 23

[Gro07] Groth, J.: Fully anonymous group signatures without random ora-
cles. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp.
164–180. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
76900-2 10

[Gün89] Günther, C.G.: An identity-based key-exchange protocol. In: Quisquater,
J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 29–37.
Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4 5

[HILL99] H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom gen-
erator from any one-way function. SIAM J. Comput. 28(4), 1364–1396
(1999)

[IR01] Itkis, G., Reyzin, L.: Forward-secure signatures with optimal signing and
verifying. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 332–354.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 20

[KY19] Katsumata, S., Yamada, S.: Group signatures without NIZK: from lattices
in the standard model. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11478, pp. 312–344. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-17659-4 11

[LLLS13] Laguillaumie, F., Langlois, A., Libert, B., Stehlé, D.: Lattice-based group
signatures with logarithmic signature size. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013. LNCS, vol. 8270, pp. 41–61. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-42045-0 3

https://doi.org/10.1007/3-540-39200-9_16
https://doi.org/10.1007/3-540-39200-9_16
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/978-3-642-32928-9_4
https://doi.org/10.1007/978-3-642-32928-9_4
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/978-3-642-17373-8_23
https://doi.org/10.1007/978-3-642-17373-8_23
https://doi.org/10.1007/978-3-540-76900-2_10
https://doi.org/10.1007/978-3-540-76900-2_10
https://doi.org/10.1007/3-540-46885-4_5
https://doi.org/10.1007/3-540-44647-8_20
https://doi.org/10.1007/978-3-030-17659-4_11
https://doi.org/10.1007/978-3-030-17659-4_11
https://doi.org/10.1007/978-3-642-42045-0_3

Constant-Size Lattice-Based Group Signature 43

[LLM+16] Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Signature
schemes with efficient protocols and dynamic group signatures from lattice
assumptions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS,
vol. 10032, pp. 373–403. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53890-6 13

[LLNW14] Langlois, A., Ling, S., Nguyen, K., Wang, H.: Lattice-based group signature
scheme with verifier-local revocation. In: Krawczyk, H. (ed.) PKC 2014.
LNCS, vol. 8383, pp. 345–361. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-642-54631-0 20

[LLNW16] Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments
for lattice-based accumulators: logarithmic-size ring signatures and group
signatures without trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9666, pp. 1–31. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49896-5 1

[LMN16] Libert, B., Mouhartem, F., Nguyen, K.: A lattice-based group signature
scheme with message-dependent opening. In: Manulis, M., Sadeghi, A.-R.,
Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 137–155. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-39555-5 8

[LNW15] Ling, S., Nguyen, K., Wang, H.: Group signatures from lattices: simpler,
tighter, shorter, ring-based. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020,
pp. 427–449. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46447-2 19

[LNWX17] Ling, S., Nguyen, K., Wang, H., Xu, Y.: Lattice-based group signatures:
achieving full dynamicity with ease. In: Gollmann, D., Miyaji, A., Kikuchi,
H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 293–312. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-61204-1 15

[LNWX18] Ling, S., Nguyen, K., Wang, H., Xu, Y.: Constant-size group signatures
from lattices. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol.
10770, pp. 58–88. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-76581-5 3

[LNWX19] Ling, S., Nguyen, K., Wang, H., Xu, Y.: Forward-secure group signatures
from lattices. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS,
vol. 11505, pp. 44–64. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-25510-7 3

[LY10] Libert, B., Yung, M.: Dynamic fully forward-secure group signatures. In:
AsiaCCS, pp. 70–81. ACM (2010)

[Moh10] Mohassel, P.: One-time signatures and chameleon hash functions. In:
Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544,
pp. 302–319. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19574-7 21

[MP12] Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster,
smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-29011-4 41

[NHF09] Nakanishi, T., Hira, Y., Funabiki, N.: Forward-secure group signatures
from pairings. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS,
vol. 5671, pp. 171–186. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-03298-1 12

https://doi.org/10.1007/978-3-662-53890-6_13
https://doi.org/10.1007/978-3-662-53890-6_13
https://doi.org/10.1007/978-3-642-54631-0_20
https://doi.org/10.1007/978-3-642-54631-0_20
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-319-39555-5_8
https://doi.org/10.1007/978-3-662-46447-2_19
https://doi.org/10.1007/978-3-662-46447-2_19
https://doi.org/10.1007/978-3-319-61204-1_15
https://doi.org/10.1007/978-3-319-76581-5_3
https://doi.org/10.1007/978-3-319-76581-5_3
https://doi.org/10.1007/978-3-030-25510-7_3
https://doi.org/10.1007/978-3-030-25510-7_3
https://doi.org/10.1007/978-3-642-19574-7_21
https://doi.org/10.1007/978-3-642-19574-7_21
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-03298-1_12
https://doi.org/10.1007/978-3-642-03298-1_12

44 S. Canard et al.

[NZZ15] Nguyen, P.Q., Zhang, J., Zhang, Z.: Simpler efficient group signatures
from lattices. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp.
401–426. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46447-2 18

[PS19] Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain)
learning with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO
2019. LNCS, vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-26948-7 4

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. In: STOC, pp. 84–93. ACM (2005)

[Son01] Song, D.X.: Practical forward secure group signature schemes. In: ACM
Conference on Computer and Communications Security, pp. 225–234. ACM
(2001)

[Tsa17] Tsabary, R.: An equivalence between attribute-based signatures and homo-
morphic signatures, and new constructions for both. In: Kalai, Y., Reyzin,
L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 489–518. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70503-3 16

[YLH+12] Yuen, T.H., Liu, J.K., Huang, X., Au, M.H., Susilo, W., Zhou, J.: Forward
secure attribute-based signatures. In: Chim, T.W., Yuen, T.H. (eds.) ICICS
2012. LNCS, vol. 7618, pp. 167–177. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34129-8 15

https://doi.org/10.1007/978-3-662-46447-2_18
https://doi.org/10.1007/978-3-662-46447-2_18
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-319-70503-3_16
https://doi.org/10.1007/978-3-642-34129-8_15
https://doi.org/10.1007/978-3-642-34129-8_15

A Lattice-Based Provably Secure
Multisignature Scheme in Quantum

Random Oracle Model

Masayuki Fukumitsu1(B) and Shingo Hasegawa2

1 Faculty of Information Media, Hokkaido Information University,
Nishi-Nopporo 59-2, Ebetsu, Hokkaido 069-8585, Japan

fukumitsu@do-johodai.ac.jp
2 Graduate School of Information Sciences, Tohoku University,

41 Kawauchi, Aoba-ku, Sendai, Miyagi 980-8576, Japan
shingo.hasegawa.b7@tohoku.ac.jp

Abstract. The multisignature schemes are attracted to utilize in some
cryptographic applications such as the blockchain. Though the lattice-
based constructions of multisignature schemes exist as quantum-secure
multisignature, a multisignature scheme whose security is proven in the
quantum random oracle model (QROM), rather than the classical ran-
dom oracle model (CROM), is not known.

In this paper, we propose a first lattice-based multisignature scheme
whose security is proven in QROM. The difficultly of proving the secu-
rity in QROM than CROM is how to program the random oracle in the
security proof. Although our proposed scheme is based on the Dilithium-
QROM signature whose security is proven in QROM, their proof tech-
nique cannot be directly applied to the multisignature setting. To solve
the problems in the security proof, we develop several proof techniques
in QROM. First, we employ the searching query technique by Targi and
Unruh to convert the Dilithium-QROM into the multisignature setting.
For the second, we develop a new programming technique in QROM,
since the conventional programming techniques seem not to work in the
multisignature setting of QROM. We combine the programming tech-
nique by Unruh with the one by Liu and Zhandry. The new technique
enables us to program the random oracle in QROM and to construct the
signing oracle in the security proof.

Keywords: Lattice cryptography · Multisigature · Quantum random
oracle model · CRYSTALS-Dilithium

1 Introduction

The multisignature scheme [16] is a variant of digital signature schemes in a
sense that a group of signers can prove their authenticity of a single message.
One of the advantages is that these can reduce the size of an issued multisignature

c© Springer Nature Switzerland AG 2020
K. Nguyen et al. (Eds.): ProvSec 2020, LNCS 12505, pp. 45–64, 2020.
https://doi.org/10.1007/978-3-030-62576-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62576-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-62576-4_3

46 M. Fukumitsu and S. Hasegawa

compared with that of all signatures generated by each signer individually. This
property is suitable for IoT devices, and the multisignature schemes are recently
employed in the blockchain to realize a transaction by a multi-user.

Although many multisignature schemes were proposed, most of them are
based on the discrete logarithm assumption or the integer factoring assump-
tion. Such schemes have the threat by quantum computers, because Shor [24]
presented the quantum algorithm for breaking these assumptions. The lattice-
based multisignature schemes are one of the promising candidates for quantum-
resistant multisignature schemes. El Bansarkhani and Sturm [10] proposed the
first lattice-based multisignature scheme for the constant number of signers.
Their multisignature scheme is based on a lattice-based standard signature
scheme by Güneysu, Lyubashevsky and Pöppelmann (GLP) [15], which is a Fiat-
Shamir-type signature scheme [11], and its security is proven from the Ring Short
Integer Solution assumption. Fukumitsu and Hasegawa [13] recently enhanced
their multisignature scheme concerning the tightness of security reduction. The
main idea of their construction is replacing the GLP signature scheme part with
the Abdalla-Fouque-Lyubashevsky-Tibouchi (AFLT) signature scheme [1] which
is known as a tightly-secure Fiat-Shamir-type signature scheme from the Ring
Learning with Errors assumption.

The security of these lattice-based multisignature schemes was proven only in
the classical random oracle model (CROM). In CROM, an adversary is supposed
to obtain any hash value from the random oracle, but a classical query is only
allowed. In order to show that the schemes have the security against quantum
computers, an adversary should enable quantum queries to the random oracle.
Boneh, Dagdelen, Fischlin, Lehmann, Schaffner and Zhandry [5] proposed the
quantum random oracle model (QROM). In this model, an adversary can quan-
tum query to the random oracle. The security of several cryptographic schemes
e.g. [5,8,19,20,25–28] has been proven in this model, however, there is no mul-
tisignature scheme that is provably secure in QROM.

1.1 Our Contribution

Overview. We proposed a first multisignature scheme which is provably secure
in QROM. The construction of our scheme is started with replacing the AFLT
signature scheme part of the Fukumitsu-Hasegawa multisignature scheme with a
variant of the candidates of the post-quantum cryptographic standard [22], the
Dilithium-QROM [19]. The Dilithium-QROM achieves the provable security in
QROM under the Modulo-LWE assumption. We aim to prove the plain-public
key (ppk) security of our proposed scheme in QROM. The ppk security [4] con-
sidered as the standard security notion of the multisignature scheme, and it
means that on a given challenge public key pk∗, any probabilistic polynomial-
time (PPT), especially quantum polynomial-time (QPT), adversary A cannot
forge a new multisignature σ∗ under a group of signers which contains the signer
owning pk∗ beyond negligible probability. During that, A can adaptively obtain
multisignatures under an arbitrary chosen pairs of a message μ and a group of
signers which contains the signer owning pk∗ from the signing oracle simulated

Lattice-Based Multisignature in QROM 47

by a challenger, where the challenger plays the role of the signer owning pk∗

while A does that of the co-signers.

Proof Technique. The main idea of proving the security of our proposed mul-
tisignature scheme is employing the proof technique by Kiltz, Lyubashevsky
and Schaffner [19]. They proved the security of the Fiat-Shamir-type signature
scheme in QROM. Their main feature is to naturally extend the security proof
in CROM by [1,17], which is called a lossy ID technique, to the QROM case.
The result suggests that the security proof given in CROM by the lossy ID tech-
nique can be converted to the one in QROM. On the other hand, the security
of the original scheme [13] of our proposed scheme was proven by using the
lossy ID technique. Therefore, we expect that we can prove the security of our
multisignature scheme in QROM by extending the security proof by [19] to the
multisignature scheme case. However, such a natural extension of [19] seems not
to work well. We then describe the details of the problems and their solutions.

We first briefly recap the structure of Fiat-Shamir-type signature schemes
and the security proof by [19]. A signature generated by such types consists of
a pair (w, z) such that z is determined by using a hash value c = H2(w, μ) of
the first component w and a message μ and a secret key of a signer. Their proof
is divided into three steps. In the first step, the signing oracle in the security
game is replaced with a simulator that no longer uses a secret key. In order
to achieve the security in QROM, all signatures which are replied to A from
the signing oracle are determined at the beginning of the game by utilizing a
random function. In the second step, a public key given to A is switched into
a “lossy” one which intuitively means a public key that has no corresponding
secret key. In the third step, they evaluate the upper bound of the winning
probability of the “changed” game at the previous steps. Then, they convert
the challenger of the changed game into an unbounded algorithm that solves
the generic search problem with bounded probabilities (GSPB) [19]. They also
showed that any unbounded quantum algorithm solves GSPB with negligible
probability. These imply that the winning probability of the original security
game is almost bounded by the probability of distinguishing the distribution of
a regular public key and that of a lossy public key.

According to these steps, we attempt to prove the security of the proposed
multisignature scheme. Namely, we shall construct a simulator of the signing
oracle and evaluate the security game with respect to a lossy public key by
converting the challenger of the changed game into an algorithm for solving
GSPB. However, it turns out that two problems obstruct the naive application
of [19] to our multisignature case, and we have to overcome them to succeed in
the security proof.

The first one is how to search queries to the random oracle by A in the
QROM case. Intuitively says, a multisignature during our signing protocol con-
sists of the summation (w,z) =

∑
(wv,zv) of all solo signatures (wv,zv) of the

Dilithium-QROM issued by all signers individually. Following the signing proto-
cols by [10,13], each signer broadcasts the hash value gv = H0(wv) of wv to the
co-signers before broadcasting wv. By utilizing this process, we aims to construct

48 M. Fukumitsu and S. Hasegawa

a simulator which recovers each of wv from gv as in [10,13] before broadcasting
wv. In the CROM case, this is done by using the hash table of H0. However,
this technique cannot be immediately utilized in the QROM case as mentioned
in [5,28]. This is because hash queries and these responses in QROM are in
superposition, and then recording such values to the hash table is in general dif-
ficult. To solve this problem, we employ the technique by Targi and Unruh [25]
which is used to prove the security of a variant of the Fujisaki-Okamoto transfor-
mation [12] in QROM. They overcame the difficultly by simulating the random
oracle using an efficiently invertible function, i.e. a polynomial. Namely, it recov-
ers a hash query to the random oracle by computing the root of the polynomial.
Note that since the polynomial has multiple roots, to determine a hash query
from the multiple roots, they utilize a one-way injection of a public key encryp-
tion scheme under fixed public key and randomness. To employ their method,
we involve a one-way injective function in our signing protocol. We also note
that the post-quantum public-key encryption schemes and the one-way injective
functions such as [6,14,23] can be adapted as a one-way injective function.

The second one is how one can program the hash values in QROM. The
simulator of the signing oracle, which plays the role of the signer owning pk∗,
is required to issue a solo signature of the Dilithium-QROM without the secret
key corresponding to pk∗. Recall that [19] succeeded in constructing such a
simulator by determining the signatures of all messages queried by A at the
beginning of the game. However, this technique cannot be applied immediately
in our case. This is because in the signing protocol of the multisignature scheme,
a multisignature (w,z) is issued by combining each of solo signatures (wv,zv)
from all co-signers which are played by A, and hence the simulator no longer
issues all multisignatures up-front. In order to resolve this problem, we employ
a programing technique proposed by Unruh [26]. Their technique supports to
program a hash value on H2 of an input value which is known just before the
programming. Although their technique seems to be suitable in our case, it
requires that an input value to be hashed by H2 must be determined just before
the programming by using fresh random coins. On the other hand, the input
values w and μ are determined before broadcasting wv in our construction, and
hence these values include no fresh random coin. This is a new problem to be
addressed. For this new problem, we combine the programming technique by
Liu and Zhandry [20]. Their technique realizes the programming of an arbitrary
value as a hash value. By using the technique by [20], the fresh random coins
are programmed as a hash value given by employing a new hash function H1,
and then the technique by [26] can be applied to our multisignature case by
adding the fresh random coins as the input value of H2. Our new programming
technique which combines the two conventional techniques [20,26] enables us
to construct the simulator in the multisiganture case even in QROM, and then
realizes the natural extension of the security proof in CROM into the QROM.

Lattice-Based Multisignature in QROM 49

1.2 Future Works

We employ a new cryptographic assumption called the rMLWE assumption
which is a lattice analog of the rDCK assumption [3] to simulate the signing
oracle. Showing the validity of the new assumption or removing it from the
security proof is an important future work.

Another important future work is concerning the parameters of our multisig-
nature scheme. Although we will show the bound and the relationship among
the parameters in Table 1, the concrete recommended values have not been dis-
cussed. We will determine them so that our proposed scheme takes significance
in the real world.

2 Preliminaries

Let A be an algorithm. y ← A(x) means that A outputs y on input x when A
is deterministic. When A is probabilistic, we denote this by y ← A(x; r), where
r is an internal coin of A. And then, A(x) is a random variable over the choice
of r. For any Boolean formula B, ¬B means that B does not satisfied. Let N be
the set of natural numbers. A function ε in κ is said to be negligible if for any
polynomial p, there exists κ0 ∈ N such that ε(κ) < 1/p(κ) for any κ ≥ κ0.

Let Z, Zn and Fq be the ring of integers, that of residues and the finite field
over q respectively, where n ∈ N, and q is a prime or a power of 2. Consider a finite
set X. For a probabilistic distribution D over X, x ∈D X means that x is chosen
according to D. x ∈U X means that x is chosen uniformly at random from X. Let
Uni be a probabilistic algorithm that outputs x ∈U X on a given set X. Although
the length of the representation of X may be beyond polynomial in a security
parameter, we use Uni only in unbounded algorithms in this paper. For any real
number 0 ≤ λ ≤ 1, Bλ is the Bernoulli distribution, namely Prx∈Bλ

{0,1}[x =
1] = λ. For a set X, |X| stands for the number of elements in X, while |a| does
for the absolute value of a for any number a.

2.1 Quantum Computation

The state |ψ〉 of n qubits is expressed by |ψ〉 =
∑

s∈{0,1}n αs|s〉, where each

of αs is a complex number such that
∑

s∈{0,1}n |αs|2 = 1. And, {|s〉}s∈{0,1}n is
called computational basis. The qubit is said to be in superposition if there exists
s ∈ {0, 1}n such that 0 < |αs| < 1, whereas it is classical otherwise. Any string
s ∈ {0, 1}n can be measured in the computational basis with probability |αs|2.
The evolution of a quantum system in a state |ψ〉 is defined by using a unitary
matrix U of size 2n × 2n. For the detail, please refer to a textbook such as [21].

Consider an oracle O which returns an m-bit string on input n-bit string.
Following [5], the quantum access to O is expressed by a unitary matrix UO
which maps |x〉|ψ〉 to |x〉|ψ ⊕ O(x)〉, where x ∈ {0, 1}n, ψ ∈ {0, 1}m and ⊕
denotes the bitwise exclusive-or operation. For an quantum algorithm A, A|O〉

means that A is allowed to access the oracle O in superposition.

50 M. Fukumitsu and S. Hasegawa

We recall the generic search problem with bounded probabilities (GSPB)
which is defined in [19] (Fig. 1). Intuitively, the adversary A = (A1,A2) in the
GSPB game aims to find a string x ∈ X such that g(x) = 1. Here, A can declare
the probability λ(x) that g(x) = 1 for each x ∈ X under the constraint that
λ(x) < λ for some designated 0 ≤ λ ≤ 1, and then the challenge C determines
the function g(x) according to Bλ(x) for each x ∈ X.

ExpGSPB
λ,A (κ)

(1) {λ(x)}x∈X , st
) ← A1(1κ)

(2) return 0 if ∃x ∈ X s.t. λ(x) > λ.
(3) For each x ∈ X, set g(x) ∈Bλ(x) {0, 1}
(4) x ← A|g〉

2 (st)
(5) return g(x)

Fig. 1. The generic search problem with
bounded probabilities 0 ≤ λ ≤ 1

ExpReprog
D,R,b′,A(κ)

(1) H ∈U Fun(D,R).
(2) st0 ← A|H〉

0 (1κ).
(3) (w, stc) ← AC(st0).
(4) c = H(w) if b′ = 1, or c ∈U R and set

H(w) = c otherwise.
(5) return A|H〉

2 (c, stc).

Fig. 2. The reprogram problem in
QROM

Lemma 1 ([19, Lemma 2.1], Generic Search Problem with Bounded
Probabilities). For any real number 0 ≤ λ ≤ 1, and any unbounded quan-
tum algorithm A = (A1,A2) making at most Q queries to g : X → {0, 1}, we
have Pr

[
ExpGSPB

λ,A (κ) = 1
]

≤ 8λ(Q + 1)2.

2.2 Quantum Random Oracle Model

In this subsection, we explain the notion of the quantum random oracle model
and the ways to simulate it. Let Fun(D,R) be the set of all functions H : D → R.
Then, the quantum random oracle model (QROM) is a security model in which
any adversary A obtains hash values from the random oracle by accessing the
oracle in superposition. For a hash function H ∈ Fun(D,R), we write A|H〉 to
denote that A can access the random oracle H in superposition.

It is known that there are several ways to simulate the random oracle. We
recall the techniques of replacing the random oracle with several functions, and
that of involving the compressed oracle proposed by [28].

The first way to simulate the random oracle is to replace the random ora-
cle with a random function H ∈U Fun(D,R). In this way, a challenger selects
H at the beginning of the security game, and replies H(x) on a given query x
in superposition. The random oracle is simulated perfectly by this technique,
because the uniformly random choice of a function from Fun(D,R) implies that
the hash value H(x) is uniformly distributed over R for any value x. The fol-
lowing lemma says that we can replace a hash value with a random value even
in QROM. Namely, we can use the programming technique with random values

Lattice-Based Multisignature in QROM 51

in this simulation. The collision-entropy [26] of a random variable X is defined
by − log Pr [X = X ′], where X ′ is a random variable X ′ which is independent of
X, but has the same distribution.

Lemma 2 ([26]). Let D, R be finite sets, and let A = (A0,AC ,A2) be an algo-
rithm such that A0 and A2 are quantum algorithms which can access the random
oracle, and AC is a probabilistic classical algorithm. Assume that AC(st0) has
collision-entropy at least ι for any input st0. For ExpReprog

D,R,b′,A depicted in Fig. 2,
and the number qA of queries by A0, we have
∣
∣
∣Pr

[
ExpReprog

D,R,0,A(1κ) = 1
]

− Pr
[
ExpReprog

D,R,1,A(1κ) = 1
]∣
∣
∣ ≤ (4 +

√
2)

√
qA2−ι/4.

Moreover, the following lemma guarantees that H can be replaced with a
2Q-wise independent function in the simulation of the random oracle.

Lemma 3 ([27]). Let A be a quantum algorithm, which can access the random
oracle in superposition at most Q times. Then, a simulator of the random oracle
which uses a function H ∈U Fun({0, 1}n

, {0, 1}m) is perfectly indistinguishable
from the one which uses a 2Q-wise independent function from A. A random
polynomial f2Q of degree 2Q over the finite field F2m is 2Q-wise independent.

Note that the root of f2Q can be computed in polynomial-time.
The second way to replace the random oracle is the use of the compressed

oracle [28]. The concept of compressed oracles was introduced to simulate the
random oracle as in the case of the classical ROM. Namely, a database of all pairs
of a random oracle query and its hash value is utilized in the simulation. We now
briefly recall the notion of the compressed Fourier oracle and the compressed
phase oracle, respectively. For the detail, please refer to the papers such as
[20,28]. Consider that R = {0, 1}θ, and a superposition of databases D which
contains pairs (x, y) of an input and an output of a hash function H. Hence,
(x, y) ∈ D means that H(x) = y. At the beginning of a security game, D is
initialized to a pure state over empty databases. For each query, the compressed
Fourier oracle returns its hash value in superposition after operating D ⊕ (x, y).
The operation D ⊕ (x, y) is defined in the following way:

– D if y = 0,
– D ∪ {(x, y)} else if y �= 0 ∧ D(x) = ⊥,
– D \ {(x, y)} else if there exists x such that D(x) = y′ ∧ y + y′ ≡ 0 (mod 2θ),

or
– D \ {(x, y)} ∪ {(x, y + y′)} otherwise.

The compressed phase oracle is intuitively obtained by applying the quantum
Fourier transformation to D. And any QPT algorithm can simulate both the
compressed Fourier oracle and the compressed phase oracle in the straightfor-
ward way as follows.

52 M. Fukumitsu and S. Hasegawa

Lemma 4 ([28]). Let A be a quantum algorithm which makes queries to a
random oracle H : D → {0, 1}n, and outputs tuples (x1, . . . , xk, y1, . . . , yk, z).
Let R be a collection of such tuples. Suppose that with probability p, A outputs a
tuple such that (1) the tuple is in R and (2) for all i, H(xi) = yi. Now consider
running A with each of the compressed Fourier oracle and the compressed phase
oracle, and suppose that the database D is measured after A produces its output.
Let p′ be the probability that the conditions (1) and (2) hold in this running case.
Then, we have

√
p ≤ √

p′ +
√

k/2n.

Liu and Zhandry [20] recently introduced a new compressed oracle, which is
called almost compressed Fourier oracle, by combining the compressed Fourier
oracle with the compressed phase oracle. In the use of the almost compressed
Fourier oracle, some points are called special points, and they are dealt with the
(uncompressed) phase oracle. On the other hand, other points are dealt with
the compressed Fourier oracle. As a programming technique on the almost com-
pressed Fourier oracle, the following lemma holds. This lemma can be extended
to a case for several special points as noted in [20].

Lemma 5 ([20, Corollary 7]). Consider a random oracle which maps an ele-
ment in {0, 1}n into the one in {0, 1}n. Assume that an adversary A is interact-
ing with a simulator of an almost compressed phase oracle where the i-th oracle
query x∗ is regarded as the special point. Instead of appending

∑
y |y〉 into the

database for the i-th query, |r〉 for randomly chosen r is appended. Then, A and
the simulator continue the running, and eventually the simulator measures the
output registers. Then, A cannot distinguish such a replacement.

More precisely, consider the following situation. Let S be a set of all pos-
sible entire states w of A and compressed database D ∪ {(x∗, r)}. We define
a measurement P0 =

∑
(w,D∪{x∗,r})∈S |w,D ∪ {(x∗, r)}〉〈w,D ∪ {(x∗, r)}| and

P1 = I − P0. Let γ be the probability that the measurement gives 0 in the game
where

∑
y |y〉 is appended into D as the hash value of x∗, and γ′ be the one where

|r〉 is appended. Then, we have γ = γ′.

2.3 Lattice

Consider q, n ∈ N. Let R and Rq be the rings Z[X]/(Xn + 1) and Zq/(Xn +
1), respectively. An element a =

∑n−1
i=0 aix

i in R or Rq is represented by its
coefficients vector (a0, a1, . . . , an−1). Regular font letters stand for elements in
R or Rq, while bold font letters stand for vectors and matrices over R or Rq.

For α ∈ N, r = x mod +α denotes the ordinary residue of the division over
α, namely 0 ≤ r < α, while r = x mod ±α does the centered residue such that
−α/2 < r ≤ α/2 when α is even, or −(α − 1)/2 ≤ r ≤ (α − 1)/2 otherwise.
Hereafter, each element x in Zq including coefficients of a ∈ Rq is represented by
the centered residue instead of the ordinary one. For any r ∈ Zq, ||r||∞ is defined
by |r mod ±q|. By using this notation, any element r = x mod ±α satisfies that
||r||∞ ≤ α/2 for any natural number α ≤ q and integer x. The L∞-norm and
the L2-norm of a polynomial a = (a0, a1, . . . , an−1) ∈ Rq are represented by

Lattice-Based Multisignature in QROM 53

||a||∞ = max0≤i≤n−1 ||ai||∞ and ||a||2 =
√∑n−1

i=0 ||ai||2∞, respectively. The L∞-
norm and the L2-norm of a vector a = (a1, . . . , a�) ∈ R�

q for any
 ∈ N are

represented by ||a||∞ = max1≤i≤� ||ai||∞ and ||a||2 =
√∑�

i=1 ||ai||2∞, respectively.
For any η ∈ N, let Sη be a set of all elements a ∈ R such that ||a||∞ ≤ η.

Consider k,
 ∈ N, a probability distribution D over Rq. For any polynomial
TMLWE and any function εMLWE, the (TMLWE, εMLWE,D)-Modulo-LWE assump-
tion ((TMLWE, εMLWE,D)-MLWE assumption) states that for any QPT adver-
sary A whose running time is at most TMLWE, it holds that

∣
∣PMLWE

0 − PMLWE
1

∣
∣ ≤

εMLWE(κ) for any κ, where

PMLWE
0 = Pr

[A(A, t) = 1 : A ∈U Rk×�
q , s1,∈D R�

q, s2 ∈D Rk
q , t = As1 + s2

]
,

PMLWE
1 = Pr

[A(A, t) = 1 : A ∈U Rk×�
q , t ∈U Rk

q

]
.

We also consider another assumption which is an analog of the rejected-DCK
assumption [3] to the MLWE case. For any polynomial TrMLWE, any function
εrMLWE and any constants γ′ and β, the (TrMLWE, εrMLWE,D, γ′, β)-rejected-
MLWE assumption ((TrMLWE, εrMLWE,D, γ′, β)-rMLWE assumption) states that
for any QPT adversary A whose running time is at most TrMLWE, it holds that∣
∣P rMLWE

0 − P rMLWE
1

∣
∣ ≤ εrMLWE(κ) for any κ, where

P rMLWE
0 = Pr

⎡

⎣A(A,w, c) = 1 :
A ∈U Rk×�

q , s ∈D R�
q,

y ∈U S�
γ′−1,

w = Ay, c ∈U CH
| y + cs ≥ γ′ − β

⎤

⎦,

P rMLWE
1 = Pr

⎡

⎣A(A,w, c) = 1 :
A ∈U Rk×�

q , s ∈D R�
q,

y ∈U S�
γ′−1,

w ∈U Rk
q , c ∈U CH

| y + cs ≥ γ′ − β

⎤

⎦.

2.4 Multisignature Scheme

We now introduce the notion of the multisignature and its security. A mul-
tisignature scheme consists of the following four tuples (Setup,KGen,Sig,Ver).
Setup and KGen are PPT algorithms. Setup(1κ) returns a system parameter pp
on a security parameter κ. Each signer generates a pair (sk,pk) of a secret
key sk and a public key pk by KGen(pp). The signing process can be done by
running the designated multiparty protocol during multiple signers to issue a
signature σ on a message μ and a set PK of public keys. Each signer executes
the interactive polynomial-time algorithm Sig(pp, sk,PK, μ) in order to execute
this protocol. Ver is a deterministic polynomial-time algorithm which returns 1
on input (pp,PK, μ, σ) if σ is a valid signature for (PK, μ).

Correctness. Let MSig = (Setup,KGen,Sig,Ver) be a multisignature scheme.
For any pp ← Setup(1κ) and any message μ, consider the situation where for
each 1 ≤ v ≤ U , a v-th signer generates own key pair (skv,pkv) ← KGen(pp),
executes Sig(pp, skv,PK, μ) in order to run the protocol, and then obtains a
signature σ, where PK = {pku}U

u=1. MSig satisfies the correctness if it always
holds Ver(pp,PK, μ, σ) = 1.

54 M. Fukumitsu and S. Hasegawa

Init C generates pp ← Setup(1κ) and C’s key pair (pk∗, sk∗) ← KGen(pp). Then C
sends (pp,pk∗) to F .

Sign For a query (μ(i),PK(i)) of a message μ(i) and a public key set PK(i) ={
pk(i)

u

}U

u=1
including pk∗, C runs the protocol by playing the role of the signer

which generates pk∗ and then returns a multisignature σ(i) to F . We assume with-
out loss of generality that pk(i)

1 = pk∗. Here, F plays the role of the co-signers.
Challenge For a final output (PK∗, μ∗, σ∗) of F , F is said to win this game if the

following conditions hold:
(1) pk∗ ∈ PK∗,
(2) (μ∗,PK∗) is not queried in Sign phase, and
(3) Ver(pp,PK∗, μ∗, σ∗) = 1.

Fig. 3. The description of the ppk game

Security. The plain public key (ppk) security [4] for multisignatures is defined
by the ppk game between the challenger C and the forger F (Fig. 3).

Definition 6. Let T be a polynomial, ε be a function and U be the number of
signers. A multisignature scheme MSig with U signers is (T,U, ε,QS)-ppk secure
if for any forger F running in time T which makes at most QS queries in Sign
phase, the probability that F wins the ppk game is ε.

Especially, MSig is said to be (T,U, ε,QS , Q0, Q1, . . .)-ppk secure in QROM if
MSig is (T,U, ε,QS)-ppk secure and the number of queries to the random oracle
Hi is at most Qi for all i.

3 A Dilithium-Based Multisignature Scheme

We propose a multisignature scheme which is based on the Dilithium-QROM sig-
nature scheme [19]. In their scheme, several supporting algorithms are employed
to optimize efficiency. We start by introducing such several supporting algorithms
in the next subsection.

Table 1. Parameters of the proposed multisignature scheme, where A, t, wH, s1, s2

and H1 will be defined in Fig. 5.

U # of signers constant

q ring modulus q ≡ 5 (mod 8)

n ring dimension

(k, �) dimension of matrix A � ≤ k

d dropped bit from t 46 · 2d−1 ≤ γ, 2d < 4U(γ′ − β) − 4

γ max. coefficient of wH q > 4Uγ, q ≡ 1 (mod 2Uγ),
2β � 2γ ≤ √

q/2/U

γ′ ≈ max. sig. coefficient 2β � 2γ′ ≤ √
q/2

η max. coefficients of s1, s2

β β = 46η ∀c ∈ CH, ∀s ∈ Sη , ||cs||∞ < β

θ length of hash values of H1 polynomial

Lattice-Based Multisignature in QROM 55

3.1 Supporting Algorithms

The basic strategy of the Dilithium-QROM signature scheme to reduce the key
size and the signature size is to ignore the residues of values by dividing them
by some designated even number α < q. In order to apply such a strategy
to a signature scheme, the Dilithium-QROM signature scheme employs several
supporting algorithms which are summarized in Fig. 4.

Power2Roundq(r ∈ Zq, d ∈ N):
(1) r = r mod +q.
(2) rL = r mod ±2d.
(3) return (r − rL)/2d.

UseHintq(h ∈ {0, 1}, r ∈ Zq, α ∈ 2N):
(1) m = (q − 1)/α.
(2) (rH, rL) ← Decomposeq(r, α).
(3) return rH if h = 0.
(4) return (rH + 1) mod +m if rL > 0.
(5) return (rH − 1) mod +m if rL ≤ 0.

MakeHintq(z ∈ Zq, r ∈ Zq, α ∈ 2N):
(1) rH ← HighBitsq(r, α).
(2) vH ← HighBitsq(r + z, α).
(3) return 0 if rH = vH, or 1 otherwise.

Decomposeq(r ∈ Zq, α ∈ 2N):
(1) r = r mod +q.
(2) rL = r mod ±α.
(3) return (rH, rL) = (0, rL − 1) if r − rL =

q − 1.
(4) rH = (r − rL)/α.
(5) return (rH, rL).

HighBitsq(r ∈ Zq, α ∈ 2N):
(1) (rH, rL) ← Decomposeq(r, α)
(2) return rH

LowBitsq(r ∈ Zq, α ∈ 2N):
(1) (rH, rL) ← Decomposeq(r, α)
(2) return rL

Fig. 4. Supporting algorithms [9]

We note that the supporting algorithms can be applied to vectors or polyno-
mials rather than scalars, by applying each of these elements in the vectors.
For example, Decomposeq(a, α) for a = (a0, a1, . . . , an−1) ∈ Rq means that
Decomposeq is applied to each coefficients of a with the same modulus α. Namely,
Decomposeq(a, α) = (Decomposeq(a0, α), . . . ,Decomposeq(an−1, α)). We can
employ the same manner for a vector over Rq. For a vector h = (h0, . . . , hn−1) ∈
{0, 1}n, UseHintq(h, a, α) means (UseHintq(h0, a0, α), . . . ,UseHintq(hn−1,
an−1, α)). MakeHintq is also applied to the same manner.

3.2 Proposed Scheme

We present our Dilithium-based multisignature scheme in this subsection. We
set CH =

{
c ∈ R | ||c||∞ = 1 ∧ ||c||2 =

√
46

}
, and consider the number U of sign-

ers and parameters (q, n, k,
, d, γ, γ′, η, β, θ) which are defined as Table 1. Let
Sam be an algorithm which outputs a matrix A ∈U Rk×�

q on input � ∈ {0, 1}256.
And, let H0,H1 and H2 be functions that H0 : D0 → R0, H1 : D1 → {0, 1}θ

and H2 : D2 → CH, respectively. We use a one-way injective function OW.

56 M. Fukumitsu and S. Hasegawa

Setup(1κ) returns � ∈U {0, 1}256.
KGen(�) returns a key pair (skv,pkv)

which is computed as follows:
(1) A = Sam(�).
(2) skv = (sv,1, sv,2) ∈U S�

η × Sk
η .

(3) tv = Asv,1 + sv,2.
(4) decomposite tv into (tv,H, tv,L)

according to Power2Roundq such
that tv = 2d · tv,H + tv,L.

(5) pkv = (tv,H, tv,L).

Ver(�,PK, μ, (wH, z,h)) returns 1 if the
following holds, where A = Sam(�),
PK = {pku}U

u=1, pku = (tu,H, tu,L),
τu = H1(pku,wH,PK, μ) and cu =
H2(pku,wH,PK \ {pku}, μ, τu), for
each 1 ≤ u ≤ U :

(a) ||z||∞ < U(γ′ − β).
(b) wH = UseHintq(h,x, 2Uγ), where

x = Az − 2d ∑U
u=1 cutu,H.

Sig(�,PK, skv, μ) returns σ = (wH, z,h) on the message μ under the public key set
PK = {pku}U

u=1 by running the following protocol, where pku = (tu,H, tu,L) for
each 1 ≤ u ≤ U . The following protocol is described in the viewpoint of the signer
owning the public key pkv which corresponds to skv. If the time of the iteration
exceeds E which is the expected time of the iteration, it returns σ = ⊥.
1st stage proceed to the followings, and then broadcast (gv,pv) to the co-signers:

(1.1) A = Sam(�); yv ∈U S�
γ′−1; wv = Ayv.

(1.2) gv = H0(wv); pv = OWgv (wv).
2nd stage After receiving {(gu,pu)}u �=v, broadcast wv to the co-signers.
3rd stage After receiving {wu}u �=v, proceed as follows, and then broadcast zv to

the co-signers:
(3.1) abort if ¬(gu = H0(wu) ∧ pu = OWgu(wu)) for some u �= v.
(3.2) w =

∑U
u=1 wu; wH = HighBitsq(w, 2Uγ).

(3.3) τv = H1(pkv,wH,PK, μ).
(3.4) cv = H2(pkv,wH,PK \ {pkv}, μ, τv).
(3.5) zv = yv + cvsv,1.
(3.6) restart if ¬ ||zv||∞ < γ′ − β

)
.

4th stage After receiving {zu}u �=v, proceed as follows:
(4.1) z =

∑U
u=1 zu.

(4.2) restart if ¬
(∣∣∣

∣∣∣LowBitsq
(
Az − ∑U

u=1 cutu, 2Uγ
)∣∣∣

∣∣∣
∞

< U(γ − β)
)
.

(4.3) h = MakeHintq
(
− ∑U

u=1 cutu,L,Az − 2d ∑U
u=1 cutu,H, 2Uγ

)
.

Fig. 5. Proposed multisignature scheme

The proposed multisignature scheme is given in Fig. 5. In the full version of this
paper, we show the correctness of our multisignature scheme, and evaluate the
expected time E of iterations. Especially, we estimate that the restart probabil-
ities ω1 and ω2 in (3.6) and (4.2) are 1 − e−n�β/γ′

and 1 − e−nkβ/γ , respectively.
This can be done in the same way as in [18, Lemma 4.4].

3.3 Security

We now show the security proof of the proposed multisignature scheme.

Theorem 7. Let (q, n, k,
, d, γ, γ′, η, β, θ) be parameters as in Table 1, and
let OW be a one-way injective function such that any QPT adversary breaks

Lattice-Based Multisignature in QROM 57

the one-wayness with probability at most εOW. Assume that the (TMLWE,
εMLWE,Uni(Sη))-MLWE assumption and (TrMLWE, εrMLWE,Uni(Sη), γ′, β)-
rMLWE assumption hold. Then, the proposed multisignature signature scheme
is (T,U, ε,QS , Q0, Q1, Q2)-ppk secure in QROM, where

T = TMLWE − poly = TrMLWE − poly,

ε < εMLWE +
2
√

Q1

2θ/2
+

QSE(4 +
√

2)
√

Q2 + (QSE − 1)U

2θ/4
+ QSEεrMLWE

+ 8 ·
(

1

|CH| + 2|CH|2
(

32U2γ′γ
q

)kn
)

· (Q2 + QSUE + 1)2 + εwH + εOW + negl.

Here, εwH
denotes the probability that wH = HighBitsq

(
Ay +

∑U
u=2 wu, 2Uγ

)

over the choices of A ∈U Rk×�
q and y ∈U S�

γ′−1 for any wH which would be
output by HighBitsq(w, 2Uγ) and any fixed set {wu}U

u=2.

For the probability εwH
, the following lemma holds. The proof is given in the

full paper. This is shown as in that of [18, Lemma 4.7].

Lemma 8. It holds that

εwH
≤ 1

(2γ′ − 1)n�
+

(
(4Uγ + 1)(4γ′ + 1)

q

)nk

.

Proof (Theorem 7). The theorem is proven by the hybrid argument. Let F be a
forger against the proposed multisignature scheme. We denote by Wink the event
that F wins Gamek for each 0 ≤ k ≤ 6 except k = 5, and Win5,t the event that
F wins Game5,t for each 0 ≤ t ≤ QsE. Note that proofs of Lemma 9, 10 and 11,
which will be appeared in this proof, are given in the full version of this paper.

Game0 (ppk game with simulating the random oracles). This game coincides
with the ppk game of the proposed multisignature scheme as in Fig. 6. Here, the
hash functions H0 and H2 are simulated by random functions, whereas H1 is
done by the almost compressed Fourier oracle. As mentioned in Subsect. 2.2, the
random oracles are perfectly simulated by using random functions H0 and H2.
Since H1 is simulated by the almost compressed random oracle with the database
D, there is a possibility that some tuple (pk,wH,PK, μ) is not contained in D,
but H1(pk,wH,PK, μ) = τ for some τ in the case where H1 is a perfectly random
function. It follows from Lemma 4 and the (T,U, ε,QS , Q0, Q1, Q2)-ppk security
of the proposed multisignature scheme that

√
ε ≤ √

Pr [Win0] +
√

Q1/2θ. Since
ε ≤ 1, we have

Pr [Win0] ≥
(

√
ε −

√
Q1

2θ

)2

= ε +
Q1

2θ
− 2

√
Q1

2θ
· ε ≥ ε − 2

√
Q1

2θ
. (1)

58 M. Fukumitsu and S. Hasegawa

Init C proceeds as follows:

(1) H0 ∈UFun(D0,R0);
(2) H2 ∈UFun(D2, CH).
(3) � ← Setup(1κ).
(4) (sk∗,pk∗) ← KGen(�), where

sk∗ = (s∗
1, s

∗
2) and pk∗ = (t∗

H, t∗
L).

(5) send (�,pk∗) to F .

H0 oracle On |w〉|ψ〉, reply |w〉|ψ ⊕ H0(w)〉.
H1 oracle On |pk,wH,PK, μ〉|τ〉, reply

the hash value by using a database D.
H2 oracle On |χ〉|ψ〉, reply |χ〉|ψ ⊕ H2(χ)〉,

where χ = (pk,wH, P, μ, τ).

Challenge Given (PK∗, μ∗, σ∗) by F ,
C returns 1 if the followings hold,
where PK∗ = {pk∗

u}U
u=1, σ∗ =

(w∗
H, z∗,h∗), and for each 1 ≤

u ≤ U , pk∗
u = t∗

u,H, t∗
u,L

)
, τ∗

u =
H1(pk∗

u,w∗
H,PK∗, μ∗), and c∗

u =
H2(pk∗

u,w∗
H,PK∗ \ {pk∗

u}, μ∗, τ∗
u):

– pk∗ ∈ PK∗,
– (μ∗,PK∗) does not queried,
– σ∗ is valid, i.e.

(a) ||z∗||∞ < U(γ′ − β), and
(b) w∗

H = UseHintq(h∗,x∗, 2Uγ),
where
x∗ = Az∗ − 2d ∑U

u=1 c∗
ut

∗
u,H.

Sign When F makes an i-th query (PK(i), μ(i)) of a set PK(i) = {pk(i)
u }U

u=1 and a
message μ(i) such that pk(i)

1 = pk∗, C finally returns σ(i) = (w(i)
H , z(i),h(i)) after

running the following protocol, where pk(i)
u = (t(i)u,H, t

(i)
u,L) for each 2 ≤ u ≤ U :

1st stage proceed as follows, and then send (g(i)
1 ,p

(i)
1) to F :

(1.1) A = Sam(�); y
(i)
1 ∈U S�

γ′−1; w
(i)
1 = Ay

(i)
1 .

(1.2) g
(i)
1 = H0(w

(i)
1); p

(i)
1 = OW

g
(i)
1

(w(i)
1).

2nd stage After receiving {(g(i)
u ,p

(i)
u)}U

u=2, send w
(i)
1 to F .

3rd stage After receiving {w(i)
u }U

u=2, proceed as follows, and then send z
(i)
1 to F :

(3.1) abort if ¬(g(i)
u = H0(w

(i)
u) ∧ p

(i)
u = OW

g
(i)
u

(w(i)
u)) for some 2 ≤ u ≤ U .

(3.2) w(i) =
∑U

u=1 w
(i)
u ; w

(i)
H = HighBitsq(w

(i), 2Uγ).
(3.3) τ

(i)
1 = H1(pk∗,w

(i)
H ,PK(i), μ(i)).

(3.4) c
(i)
1 = H2(pk∗,w

(i)
H ,PK(i) \ {pk∗}, μ(i), τ

(i)
1).

(3.5) z
(i)
1 = y

(i)
1 + c

(i)
1 s∗

1.
(3.6) restart if ¬(||z(i)

1 ||∞ < γ′ − β).

4th stage After receiving {z(i)
u }U

u=2, proceed as follows:
(4.1) z(i) =

∑U
u=1 z

(i)
u .

(4.2) restart if ¬(||LowBitsq(Az(i) − ∑U
u=1 c

(i)
u t

(i)
u , 2Uγ)||∞ < U(γ − β)).

(4.3) h(i) = MakeHintq(− ∑U
u=1 c

(i)
u t

(i)
u,L,Az(i) − 2d ∑U

u=1 c
(i)
u t

(i)
u,H, 2Uγ).

Fig. 6. Game0

Game1. At (1) of Init phase, C chooses H0 uniformly at random from a set of
all polynomials of degree 2(Q0 + QSUE), instead of H0 ∈U Fun(D0,R0). Since
F makes at most Q0 queries, and C computes at most UE hash values of H0 for
each signing oracle query, it follows from Lemma 3 that

Pr [Win1] = Pr [Win0]. (2)

Lattice-Based Multisignature in QROM 59

2nd stage After receiving {(g(i)
u ,p

(i)
u)}U

u=2,
proceed as follows, and then send w

(i)
1

to F :
(2.1) for each 2 ≤ u ≤ U ,

(2.1a) compute the roots {r(i)
u,j}j

of

H0 − g
(i)
u ,

(2.1b) find r
(i)
u ∈ {r(i)

u,j}j
such that

p
(i)
u = OW

g
(i)
u

(r(i)
u), and

(2.1c) abort if there is no such r
(i)
u .

(2.2) w(i) = w
(i)
1 +

∑U
u=2 r

(i)
u .

(2.3) w
(i)
H = HighBitsq(w

(i), 2Uγ).

(2.4) τ
(i)
1 = H1(pk∗,w

(i)
H ,PK(i), μ(i)).

(2.5) c
(i)
1 =

H2(pk∗,w
(i)
H ,PK(i) \ {pk∗}, μ(i), τ

(i)
1).

3rd stage After receiving {w(i)
u }U

u=2,
proceed as follows, and then send z

(i)
1

to F :

(3.1) abort if ¬(r(i)
u = w

(i)
u) for some

2 ≤ u ≤ U .
(3.2) z

(i)
1 = y

(i)
1 + c

(i)
1 s∗

1.

(3.3) restart if ¬(
∣∣∣
∣∣∣z(i)

1

∣∣∣
∣∣∣
∞

< γ′ − β).

Fig. 7. Description of Game2 changed from Game1

Game2. In this game, c
(i)
1 is computed at 2nd stage in Sign phase, instead of

3rd stage in Game1. In order to accomplish this change, w(i)
H is also required

to be computed at 2nd stage. Hence, 2nd stage and 3rd stage in Sign phase
are replaced with Fig. 7.

Before showing the relationship between Win1 and Win2, we note the pro-
cess (2.1a). As mentioned in Subsect. 2.2, the roots of the polynomials of degree
2(Q0 + QSUE) can be computed in polynomial time, and hence the process
(2.1a) can be done in polynomial time.

Assume that C does not abort at (2.1c) on Game2. In this case, the injectivity
of OW implies that the condition r

(i)
u = w

(i)
u checked in (3.1) on Game2 is

equivalent to the condition g
(i)
u = H0(w

(i)
u) ∧ p

(i)
u = OW

g
(i)
u

(w(i)
u) checked in

(3.1) on Game1. Thus we can consider that C also does not abort in (3.1) on
Game2 under the assumption that C does not abort at (2.1c).

We now evaluate the abort probability in (2.1c) on Game2. To proceed to

Sign phase, F must send a set
{(

g
(i)
u ,p

(i)
u

)}U

u=2
to C, such that there exist

w
(i)
u ’s which satisfy g

(i)
u = H0

(
w

(i)
u

)
and p

(i)
u = OW

g
(i)
u

(
w

(i)
u

)
. It follows from

the injectivity of OW that there is at most one w
(i)
u for each i and u. Therefore

there must exist r(i) which satisfies p
(i)
u = OW

g
(i)
u

(
r
(i)
u

)
, and hence we can

consider that C never abort in (2.1c).
We have

Pr [Win2] = Pr [Win1], (3)

Game3. At (2.4) during each execution of Sign in this game, C is changed to
abort if D have already contained the tuple

(
pk∗,w(i)

H ,PK(i), μ(i)
)
. Otherwise,

(
pk∗,w(i)

H ,PK(i), μ(i)
)

is regarded as a special point on the almost compressed

60 M. Fukumitsu and S. Hasegawa

Fourier oracle, and then C appends
∑

τ
(i)
1

∣
∣
∣τ

(i)
1

〉
into the database D as the hash

value of
(
pk∗,w(i)

H ,PK(i), μ(i)
)
.

In order to evaluate the abort probability due to the change in
Game3, we focus on the probability that F finds w

(i)
H before querying(

pk∗,w(i)
H ,PK(i), μ(i)

)
. There are two ways that F finds w

(i)
H .

The first one is to find it from g
(i)
1 and p

(i)
1 , because g(i)

1 and p
(i)
1 are computed

from w
(i)
1 . Since H0 is a polynomial of degree 2(Q0 +QSUE) and its coefficients

are hidden to F , it is difficult for F to determine w
(i)
1 from H0 [25]. Moreover, it

follows from the one-wayness of OW that such a vector also cannot be determined
from OW. Therefore, the abort probability due to these reasons is at most εOW +
negl.

The second one is that w(i)
H has been found at the process (2.3) for a randomly

chosen y
(i)
1 ∈U S�

γ′−1 and any
{
w

(i)
u

}U

u=2
given from F . This can be evaluated by

the probability εwH
that wH = HighBitsq

(
Ay +

∑U
u=2 wu, 2Uγ

)
holds for any

wH which would be output by HighBitsq(w, 2Uγ) and any fixed set {wu}U
u=2,

where the probability is taken over the choices of A ∈U Rk×�
q and y ∈U S�

γ′−1.
Then we have

|Pr [Win3] − Pr [Win2]| ≤ εOW + εwH
+ negl, (4)

Game4. At (2.4) during each execution of Sign in this game, C is changed
to appends

∣
∣
∣τ

(i)
1

〉
for τ

(i)
1 ∈U {0, 1}θ into the database as the hash value of

(
pk∗,w(i)

H ,PK(i), μ(i)
)
, instead of

∑
τ
(i)
1

∣
∣
∣τ

(i)
1

〉
in Game3. From Lemma 5, this

change does not affect the probability of the measurement of D. Then we have

Pr [Win4] = Pr [Win3]. (5)

Game5,t. In this game, we consider the process (2.5) of Sign. Sign phase is
queried at most Qs times by F . Moreover, for each query by F , the process
(2.5) is executed at most E times. Then the total number of the execution of
(2.5) during the game is at most QsE. Fix an index 0 ≤ t ≤ QsE. In Game5,t,
on the k-th execution of (2.5) for 1 ≤ k ≤ t, C sets the hash value c

(i)
1 as follows:

chooses c
(i)
1 ∈U CH and set H2

(
pk∗,w(i)

H ,PK(i) \ {pk∗}, μ(i), τ
(i)
1

)
= c

(i)
1 .

When t = 0, the replacement on c
(i)
1 does not happen, and hence we have

Pr [Win5,0] = Pr [Win4]. (6)

Otherwise, we employ Lemma 2 to evaluate the difference between the
probability of Win5,t and that of Win5,t+1. We construct an algorithm A =
(A0,AC ,A2) depicted in Fig. 8. Observe that ExpReprog

D2,CH,1,A and ExpReprog
D2,CH,0,A

coincide with Game5,t and Game5,t+1, respectively. Since F queries to H2 at

Lattice-Based Multisignature in QROM 61

A0(1κ) executes Game5,t by playing the role of C and interacting with F
just until the (t + 1)-th execution of (2.1c), and then returns st =(

H0, sk∗,pk∗,PK(i), μ(i),y
(i)
1 ,w

(i)
1 ,

{
g
(i)
u

}U

u=1
,
{
p
(i)
u

}U

u=1
,
{
r
(i)
u

}U

u=2

)
.

AC(st) executes (2.2), (2.3) and (2.4) on the (t + 1)-th execution, and then outputs(
pk∗,w

(i)
H ,PK(i) \ {pk∗}, μ(i), τ

(i)
1

)
and st.

A2(c
(i)
1 , st) executes Game5,t until the end, and then returns C’s final output.

Fig. 8. Adversary A of the reprogram problem from Game5,t

1st stage proceed as follows, and then
send (g(i)

1 ,p
(i)
1) to F :

(1.1) A = Sam(�).
(1.2) c

(i)
1 ∈U CH.

(1.3) z
(i)
1 ∈U S�

γ′−β−1.
(1.4) ν ∈Bω1

{0, 1}, where ω1 = 1 −
e−n�β/γ′

.
(1.5) w

(i)
1 = Az

(i)
1 − c

(i)
1 (t∗ − s∗

2) if
ν = 0, or w(i)

1 ∈U Rq otherwise.
(1.6) g

(i)
1 = H0(w

(i)
1);

p
(i)
1 = OW

g
(i)
1

(w(i)
1).

2nd stage After receiving {(g(i)
u ,p

(i)
u)}U

u=2,
proceeds as follows, and then send
w

(i)
1 to F :

(2.1) for each 2 ≤ u ≤ U ,
(2.1a) compute the roots {r(i)

u,j}j
of

H0 − g
(i)
u ,

(2.1b) find r
(i)
u ∈ {r(i)

u,j}j
such that

p
(i)
u = OW

g
(i)
u

(r(i)
u),

(2.1c) abort if there is no such r
(i)
u .

(2.2) w(i) = w
(i)
1 +

∑U
u=2 r

(i)
u .

(2.3) w
(i)
H = HighBitsq(w

(i), 2Uγ).
(2.4) abort if D has already contained

(pk∗,w
(i)
H ,PK(i), μ(i)).

(2.5) τ
(i)
1 ∈U {0, 1}θ;
append ((pk∗,w

(i)
H ,PK(i), μ(i)), τ (i)

1)
to D.

(2.6) set
H2(pk∗,w

(i)
H ,PK(i) \ {pk∗}, μ(i), τ

(i)
1) =

c
(i)
1 .

3rd stage After receiving {w(i)
u }U

u=2,
proceed as follows, and then send z

(i)
1

to F :

(3.1) abort if ¬(r(i)
u = w

(i)
u) for some

2 ≤ u ≤ U .
(3.2) restart if ν = 1.

Fig. 9. Description of Game6 changed from Game5,QSE

most Q2 times and C acted by A0 queries at most tU times, the number of access
H2 by A0 is at most Q2 + tU . The uniform choice of τ

(i)
1 over {0, 1}θ by AC at

(2.4) implies that the collision-entropy can be evaluated by θ.
Then, for 0 ≤ t ≤ QsE − 1, it follows from Lemma 2 that

|Pr [Win5,t+1] − Pr [Win5,t]| ≤ (4 +
√

2)
√

Q2 + tU2−θ/4. (7)

Game6. In this game, the way of generating
(
w

(i)
H , c

(i)
1 ,z

(i)
1

)
is changed. Con-

cretely, 1st stage, 2nd stage and 3rd stage in Sign phase are replaced with
Fig. 9. The following lemma shows the relationship between Win5,QsE and Win6.

62 M. Fukumitsu and S. Hasegawa

This proof is based on that of [18, Lemma 4.3] for the case ν = 0, and that of
[2, Theorem 5] for the case ν = 11.

Lemma 9. It holds that

|Pr [Win6] − Pr [Win5,QsE]| ≤ QSEεrMLWE. (8)

Game7. In this game, (1.5) of 1st stage in Sign phase is replaced with w
(i)
1 =

Az
(i)
1 − c

(i)
1 (t∗ − s(i)) where s(i) ∈U Sk

η instead of w(i)
1 = Az

(i)
1 − c

(i)
1 (t∗ − s∗

2),
if ν = 0. The following lemma guarantees that this change does not affect.

Lemma 10. It holds that

Pr [Win7] = Pr [Win6]. (9)

Game8. In this game, pk∗ = (t∗1, t
∗
0) is generated in a way that t∗ = 2d · t∗1 + t∗0

for t∗ ∈U Rk
q , instead of t∗ = As∗

1 + s∗
2 in Init phase. Therefore, we have

|Pr [Win8] − Pr [Win7]| ≤ εMLWE. (10)

The Upper Bound of Winning Probability of Game8. We evaluate the upper
bound of the winning probability of Game8 by using the GSPB game. The win-
ning probability is evaluated by the following lemma. We can prove the lemma
by the combination of the proofs of [19, Theorem 3.4] and [18, Lemma 4.5].

Lemma 11. It holds that

Pr [Win8] < 8 ·
(

1
|CH| + 2|CH|2

(
32U2γ′γ

q

)kn
)

· (Q2 + QSUE + 1)2. (11)

Thus, we have

ε < εMLWE +
2
√

Q1

2θ/2
+

QSE(4 +
√

2)
√

Q2 + (QSE − 1)U

2θ/4
+ QSEεrMLWE

+ 8 ·
(

1

|CH| + 2|CH|2
(

32U2γ′γ
q

)kn
)

· (Q2 + QSUE + 1)2 + εwH + εOW + negl.

The proof is completed. ��

Acknowledgements. We would like to thank anonymous reviewers for their valuable
comments and suggestions. We are also grateful to Akira Takahashi for his fruitful
comments on the security proof. This work was supported in part by JSPS KAKENHI
Grant Numbers JP18K11288 and JP19K20272.

1 [7] pointed out that w
(i)
1 in the case where C restarts should be simulated strictly.We

employ a method by [2,3] to deal with the case.

Lattice-Based Multisignature in QROM 63

References

1. Abdalla, M., Fouque, P.A., Lyubashevsky, V., Tibouchi, M.: Tightly secure signa-
tures from lossy identification schemes. J. Cryptol. 29(3), 597–631 (2016). https://
doi.org/10.1007/s00145-015-9203-7

2. Barthe, G., et al.: Masking the GLP lattice-based signature scheme at any order.
Cryptology ePrint Archive, Report 2018/381 (2018). https://eprint.iacr.org/2018/
381

3. Barthe, G., et al.: Masking the GLP lattice-based signature scheme at any order.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp.
354–384. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 12

4. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a gen-
eral forking lemma. In: Proceedings of the 13th ACM Conference on Computer
and Communications Security, CCS 2006, pp. 390–399. ACM, New York (2006).
https://doi.org/10.1145/1180405.1180453

5. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 3

6. de Castro, A.: Quantum one-way permutation over the finite field of two elements.
Quantum Inf. Process. 16(6) (2017). https://doi.org/10.1007/s11128-017-1599-6

7. Dam̊agrd, I., Orlandi, C., Takahashi, A., Tibouchi, M.: Two-round n-out-of-n
and multi-signatures and trapdoor commitment from lattices. Cryptology ePrint
Archive, Report 2020/1110 (2020). https://eprint.iacr.org/2020/1110

8. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the Fiat-Shamir transfor-
mation in the quantum random-oracle model. In: Boldyreva, A., Micciancio, D.
(eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 356–383. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26951-7 13

9. Ducas, L., et al.: CRYSTALS-Dilithium: a lattice-based digital signature scheme.
IACR Trans. Cryptogr. Hardware Embed. Syst. 2018(1), 238–268 (2018). https://
doi.org/10.13154/tches.v2018.i1.238-268

10. El Bansarkhani, R., Sturm, J.: An efficient lattice-based multisignature scheme
with applications to bitcoins. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS,
vol. 10052, pp. 140–155. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-48965-0 9

11. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

12. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. J. Cryptol. 26(1), 80–101 (2013)

13. Fukumitsu, M., Hasegawa, S.: A tightly-secure lattice-based multisignature. In:
Proceedings of the 6th on ASIA Public-Key Cryptography Workshop, APKC
2019, pp. 3–11. ACM, New York (2019). https://doi.org/10.1145/3327958.3329542.
http://doi.acm.org/10.1145/3327958.3329542

14. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and
new cryptographic constructions. In: Proceedings of the Fortieth Annual ACM
Symposium on Theory of Computing, STOC 2008, pp. 197–206. ACM, New
York (2008). https://doi.org/10.1145/1374376.1374407. http://doi.acm.org/10.
1145/1374376.1374407

https://doi.org/10.1007/s00145-015-9203-7
https://doi.org/10.1007/s00145-015-9203-7
https://eprint.iacr.org/2018/381
https://eprint.iacr.org/2018/381
https://doi.org/10.1007/978-3-319-78375-8_12
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/s11128-017-1599-6
https://eprint.iacr.org/2020/1110
https://doi.org/10.1007/978-3-030-26951-7_13
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.1007/978-3-319-48965-0_9
https://doi.org/10.1007/978-3-319-48965-0_9
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1145/3327958.3329542
http://doi.acm.org/10.1145/3327958.3329542
https://doi.org/10.1145/1374376.1374407
http://doi.acm.org/10.1145/1374376.1374407
http://doi.acm.org/10.1145/1374376.1374407

64 M. Fukumitsu and S. Hasegawa

15. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptog-
raphy: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P.
(eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33027-8 31

16. Itakura, K., Nakamura, K.: A public-key cryptosystem suitable for digital mul-
tisignature. NEC Res. Dev. 71, 1–8 (1983)

17. Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight
security reductions. In: Proceedings of the 10th ACM Conference on Computer
and Communications Security, CCS 2003, pp. 155–164. ACM, New York (2003).
https://doi.org/10.1145/948109.948132

18. Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of Fiat-Shamir sig-
natures in the quantum random-oracle model. Cryptology ePrint Archive, Report
2017/916 (2017). https://eprint.iacr.org/2017/916

19. Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of Fiat-Shamir
signatures in the quantum random-oracle model. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 552–586. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78372-7 18

20. Liu, Q., Zhandry, M.: Revisiting post-quantum Fiat-Shamir. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 326–355. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 12

21. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2000)

22. NIST: Post-quantum cryptography (2017). https://csrc.nist.gov/Projects/Post-
Quantum-Cryptography. Accessed 17 Nov 2019

23. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Pro-
ceedings of the Fortieth Annual ACM Symposium on Theory of Computing, STOC
2008, pp. 187–196. ACM, New York (2008). https://doi.org/10.1145/1374376.
1374406. http://doi.acm.org/10.1145/1374376.1374406

24. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999). https://doi.
org/10.1137/S0036144598347011

25. Targhi, E.E., Unruh, D.: Post-quantum security of the Fujisaki-Okamoto and
OAEP transforms. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp.
192–216. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-
5 8

26. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle
model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp.
755–784. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-
6 25

27. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp.
758–775. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-
5 44

28. Zhandry, M.: How to record quantum queries, and applications to quantum indif-
ferentiability. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol.
11693, pp. 239–268. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26951-7 9

https://doi.org/10.1007/978-3-642-33027-8_31
https://doi.org/10.1145/948109.948132
https://eprint.iacr.org/2017/916
https://doi.org/10.1007/978-3-319-78372-7_18
https://doi.org/10.1007/978-3-030-26951-7_12
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://doi.org/10.1145/1374376.1374406
https://doi.org/10.1145/1374376.1374406
http://doi.acm.org/10.1145/1374376.1374406
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-030-26951-7_9
https://doi.org/10.1007/978-3-030-26951-7_9

Achieving Pairing-Free Aggregate
Signatures using Pre-Communication

between Signers

Kaoru Takemure1,2(B) , Yusuke Sakai2 , Bagus Santoso1 ,
Goichiro Hanaoka2 , and Kazuo Ohta1,2

1 The University of Electro-Communications, Tokyo, Japan
2 National Institute of Advanced Industrial Science and Technology (AIST),

Tokyo, Japan

Abstract. Most aggregate signature schemes are relying on pairings,
but high computational and storage costs of pairings limit the feasibility
of those schemes in practice. Zhao proposed the first pairing-free aggre-
gate signature scheme (AsiaCCS 2019). However, the security of Zhao’s
scheme is based on the hardness of a newly introduced non-standard com-
putational problem. The recent impossibility results of Drijvers et al.
(IEEE S&P 2019) on two-round pairing-free multi-signature schemes
whose security based on the standard discrete logarithm (DL) problem
has strengthened the view that constructing a pairing-free aggregate sig-
nature scheme which is proven secure based on standard problems such
as DL problem is indeed a challenging open problem.

In this paper, we offer a novel solution to this open problem. We intro-
duce a new paradigm of aggregate signatures, i.e., aggregate signatures
with an additional pre-communication stage. In the pre-communication
stage, each signer interacts with the aggregator to agree on a specific
random value before deciding messages to be signed. We also discover
that the impossibility results of Drijvers et al. apply if the adversary can
decide the whole randomness part of any individual signature. Based on
the new paradigm and our discovery of the applicability of the impossibil-
ity result, we propose a pairing-free aggregate signature scheme such that
any individual signature includes a random nonce which can be freely
generated by the signer. We prove the security of our scheme based on
the hardness of the standard DL problem. As a trade-off, in contrast to
the plain public-key model, which Zhao’s scheme uses, we employ a more
restricted key setup model, i.e., the knowledge of secret-key model.

Keywords: Aggregate Signatures · Pre-Communication · Knowledge
of Secret Key Model · Rogue-Key Attack

1 Introduction

Boneh et al. [8] introduced the concept of aggregate signatures, in which indi-
vidual signatures on different messages generated by n signers are combined by
c© Springer Nature Switzerland AG 2020
K. Nguyen et al. (Eds.): ProvSec 2020, LNCS 12505, pp. 65–84, 2020.
https://doi.org/10.1007/978-3-030-62576-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62576-4_4&domain=pdf
http://orcid.org/0000-0002-9288-1911
http://orcid.org/0000-0002-5115-8292
http://orcid.org/0000-0003-4604-305X
http://orcid.org/0000-0001-6617-2962
http://orcid.org/0000-0003-3658-0409
https://doi.org/10.1007/978-3-030-62576-4_4

66 K. Takemure et al.

any party acting as an aggregator into a single signature with the length shorter
than the total length of n individual signatures. The aggregate signature scheme
proposed in [8] requires bilinear map computations using pairings in the ver-
ification step, and the security of the scheme is based on the hardness of the
pairing-based Diffie-Hellman assumption.

However, from the perspective of practical implementation and security guar-
antee, it is much preferable if we can avoid the pairings completely. First, the
pairing computation is still relatively quite costly. Since most pairing-based
schemes require pairing computations in verification, for the situation where the
verifiers are lightweight devices, such schemes might not be suitable. In addition,
recently, large cryptanalytic effort, such as [15,19], revealed a new weakness of
pairing based problems, and in a subsequent paper by Guillevic [15], it was
shown that we need to make the field size of the group used for pairing ≈ 75%
larger than the initial recommendation of the parameter for 128-bit security.

Recently, Zhao proposed an aggregate signature scheme based on the sigma
protocol which does not require pairing computation at all [32]. However, the
security of his scheme is based on the hardness of a non-standard computational
problem, i.e., the non-malleable discrete logarithm (NMDL) assumption, which
is newly introduced by Zhao in the same paper.

Therefore, constructing an aggregate signature scheme with the following
properties is a very important open problem from the practical and theoret-
ical points of view: (1) pairing-free, i.e., the scheme does not rely on pairing
computations or pairing-based assumption, and (2) provably secure based on
well-established standard assumptions, e.g., standard discrete logarithm prob-
lem. The aim of this paper is to propose a solution to this open problem. For
simplicity, we will focus only on pairing-free schemes here afterward.

1.1 Properties of Aggregate Signatures and Multi-signatures

Another cryptographic primitive which is closely related to aggregate signatures
is multi-signatures. In a multi-signature scheme, the combined signature must
be the combination of signatures on the same message, while in an aggregate
signature scheme, the combined signature can be the combination of signatures
on different messages. We will show below several properties related to the sig-
nature generating procedure and the security, which most aggregate signatures
and multi-signatures have in common.

Stages in Combining Signatures. Here, we unify the representation of signature
generating procedures in most (pairing-free) multi-signatures and aggregate sig-
natures into a sequence of three stages.1

– Stage I (Offline Stage). In this stage, each signer performs the necessary
interactive communication with other signers before deciding the message to
be signed.

1 It should be noted that an aggregate signature schemes or a multi-signature do not
have to have all the three stages.

Achieving Pairing-Free Aggregate Signatures using Pre-Communication 67

Table 1. Comparison among Pairing-Free Multi-signature and Aggregate Signature
Schemes

Multi signatures Aggregate signatures

BN(-IAS) [5] CoSi [10,29] mBCJ [2,10] Zhao [32] PCAS

#rounds in Stage I 0 0 0 0 1

Non-interactive message decision in

Stage II

No No No Yes Yes

#rounds in Stage III 3 2 2 1 1

#allowed concurrent signing queries poly(n) log(n) poly(n) poly(n) poly(n)

Security Assumption DL OMDL DL NMDL DL

Key-Setup Model plain PK KOSK KV plain PK KOSK
∗ PCAS is our proposed scheme. The first row and the third row indicate the number of interactive com-

munication between signers in Stage I and Stage III respectively. The second row indicates whether the

message decision in Stage II is carried without any interaction between signers. The fourth row indicates

the maximum number of concurrent signing queries which is allowed without breaking the security of the

scheme. Here, n indicates the number of signers. DL, OMDL, NMDL indicate the standard discrete loga-

rithm problem, one-more discrete logarithm problem, and non-malleable discrete logarithm problem [32],

respectively. We describe the notions of the key-setup model mentioned at the final row in the paragraph

Attacks and Key-Setup Model in Sect. 1.1.

– Stage II (Message Decision Stage). In this stage, signers decide the message
they will individually sign and eventually include in the final combined sig-
nature. In the case of multi-signatures, since all signatures to combine have
to be signatures on one single same message, it is almost natural that the
signers communicate to each other interactively to decide the message to be
signed in this stage. In the case of aggregate signatures, generally, a signer
does not need to share the message with other signers.

– Stage III (Online Stage). In this stage, signers share specific values related to
the messages decided in Stage II to others via interactive communication.

Research Question. We compare several pairing-free multi-signature and aggre-
gate signature schemes in Table 1. Notice that most pairing-free multi-signature
schemes require more than one communication round in the online stage (Stage
III), while they achieve provable security based on the hardness of standard
computational problems [2,5,29]. On the other hand, the pairing-free aggregate
signature scheme, Zhao’s scheme only requires a single communication round
in the online stage, while it achieves provable security using the hardness of
newly introduced non-standard computational problems. Our question here is
as follows.

“Is it possible to construct a new scheme which achieves the best of the
two worlds: (1) one communication round in Stage III, and (2) provable
security based on the hardness of standard computational problems ?”

Aggregate Signatures based on Multi-signatures. In a multi-signature scheme,
signatures on the same message are combined into the final signature. However,
one can easily tweak the scheme such that the combined signature will be a
signature on multiple different messages decided by different signers. In Stage
II, via an interactive message decision process, each signer can send an individual

68 K. Takemure et al.

message to all other signers and then combine all different individual messages
into one single message by simple concatenation. This single message will be the
message to be signed which is agreed by all signers. In [5], Bellare and Neven
introduced this concept as Interactive Aggregate Signatures (IAS).

Attacks and Key-Setup Model. In both multi-signatures and aggregate signa-
tures, one should consider an attack scenario which is called the rogue-key attack.
In a rogue-key attack, an attacker generates public keys dishonestly and tries
to forge a combined signature involving such dishonest keys. In general, we can
guarantee the security of the scheme against the rogue-key attacks using the fol-
lowing two basic strategies. The first is (i) to prove directly that there exists no
rogue-key attack, and the second is (ii) to exclude rogue-key attacks by a specific
key registration protocol. These two approaches are formally modeled by (i) the
plain public-key (PK) model [5] and (ii) the knowledge of secret keys (KOSK)
model [6,21], respectively.

(i) The plain PK model is the model without any assumption in the key setup.
In the security model, an adversary can freely choose all cosigners’ public
keys excluding at least one honest signer’s key.

(ii) The KOSK model is the model where all signers need to prove the validity
of their public key. In the security model, an adversary can freely pick all
cosigners’ public keys, but it must output the secret keys corresponding
to these public keys. In practice, the KOSK model can be implemented
using one of the following models: (1) a trusted setup model [25], in which a
dedicated key registration protocol is needed to be executed by each signer,
(2) the key verification (KV) model [2], and (3) the proof-of-possession
(PoP) model [27], where each signer submits a certificate to prove possession
of a secret key.

1.2 Our Contributions

In this paper, we propose a new paradigm for constructing aggregate signature
which we call aggregate signatures with pre-communication (AS with PreCom).
We propose an aggregate signature scheme based on the new paradigm, which
we name PCAS, and proved its security based on the standard discrete loga-
rithm (DL) assumption in the KOSK model using a random oracle. We show
the comparison of PCAS with other pairing-free multi-signature and aggregate
signature schemes in Table 1 (We also show the performance comparison among
aggregate signature scheme and related schemes in Table 2 in Sect. 4).

Most aggregate signature schemes (either with pairings or without pairings)
do not have any interactive round between signers in Stage I. In contrast, an
aggregate signature scheme with pre-communication, have one interactive round
in Stage I before the message deciding stage (Stage II). We believe that this
drawback only has minor effects on the practical use. As shown in Table 1, PCAS
still keeps the most important feature of aggregate signatures, i.e., any signer is
allowed to choose their individual message to be signed without interacting with

Achieving Pairing-Free Aggregate Signatures using Pre-Communication 69

other signers in Stage II. Moreover, one should notice that the total number of
interactive rounds in PCAS, i.e., two, is the lowest number of interactive rounds
that the multi-signature schemes (either with pairing or without pairing) can
ever achieve in theory and these multi-signature schemes are being used widely
in real-world practice today [11].

Comparison to Zhao’s Aggregate Signature Scheme. As opposed to Zhao’s aggre-
gate signature scheme [32] which is proven based on a non-standard computa-
tional problem NMDL, our proposed aggregate signature scheme PCAS is proven
secure under the standard discrete-logarithm (DL) assumption. To prove the
security of our scheme, we assume the KOSK model as the key-setup model.2

Although the KOSK model is more costly compared to the plain PK model, there
are several practical methods for implementing the KOSK model as mentioned
in the previous section.

PCAS achieves a smaller signature size than the signature size in Zhao’s
scheme [32]. Concretely, let n be the number of individual signatures to com-
bine. For λ-bit security, in Zhao’s scheme the combined signature includes n
group elements whose total size is about 2λn bits, while in PCAS the combined
signature includes a random string with the total size of λn bits.

Circumventing Impossibility Results of Drijvers et al. [10]. In [10] Drijvers et al.
showed attacks against several two-round multi-signature schemes and also show
the impossibility of proving the security of those schemes. Since our proposed
aggregate signature scheme bears a resemblance to CoSi scheme [29], one of the
multi-signature schemes covered in [10], one may wonder whether the impossi-
bility results of Drijvers et al. are applicable to our proposed scheme. However,
as shown in a more detailed explanation at Sect. 5, the random value t which
is freshly chosen by the signer in every signature query, is actually sufficient for
our proposed scheme to avoid the impossibility results. Concretely, the root of
the impossibility results is the adversary’s ability to force the honest signer to
use a specific hash value c of the adversary’s choice in the response to a signa-
ture query. This ability is eliminated by the random value t, which makes the
adversary unable to predict the challenge c that the honest signer will use since
c is computed depending on the value of t in our scheme. For more detail, see
the full version of this paper.

1.3 Difficulty and Our Techniques

The Schnorr digital signature scheme [28] built from the Schnorr identification
by the Fiat-Shamir transform [12] is used in many applications as well as ours
because of the small computational complexity and well-established security.
Let q be a prime integer, g be a generator of a cyclic group G with order q,

2 The KOSK model is essential because there is a sub-exponential attack against this
scheme in the plain PK model by using k-sum algorithm as in [10]. For more detail
of this attack, see the full version of this paper.

70 K. Takemure et al.

X be a public key, m be a message, (R, s) is a signature on m, and H be
a hash function H : {0, 1}∗ → Zq. The verification formula of the Schnorr
signature scheme is R = gsX−c where c is the value such that c = H(R,X,m).3

We can aggregate the formula because of the linearity. More specifically, for all
i = 1, . . . , n, when each signer Si (with public key Xi) submits a signature (Ri, si)
on a message mi, one can compress all signatures into (˜R, s̃) where ˜R =

∏n
i=1 Ri

and s̃ =
∑n

i=1 si mod q. Then the verification formula is ˜R = gs̃
∏n

i=1 Xci
i where

ci = H(Ri,Xi,mi).4

However, there are three difficulties in extending the Schnorr digital signature
scheme to multi-signatures or aggregate signatures by the above compression.

First, (I) all signers need to share ˜R before generating a signature. On the
Schnorr signature, a signer inputs Ri to the hash function to generate ci. If
an aggregator compresses all signers’ Ri into ˜R, a verifier cannot know Ri and
cannot compute ci. Thus we need to replace Ri with ˜R in the input of the hash
function, but in that case, then all signers require ˜R for generating signatures.

Second, (II) by sharing ˜R, a reduction fails to simulate the honest signer
in the security proof. In the Schnorr signature scheme, the reduction simulates
the signing oracle by the honest-verifier zero-knowledge property of the sigma
protocol and the random oracle. In detail, the reduction chooses s and c at
uniformly random from Zq, computes R ← gsX−c, sets H(R,X,m) ← c in the
random oracle table, and return (R, s) as a signature. If H(R,X,m) is predefined
by hash queries, the reduction cannot set H(R,X,m) ← c and cannot complete
this simulation. In the case that the input R of the hash function is changed to ˜R,
the reduction can compute ˜R only after an adversary outputs all cosigners’ Ri.
Thus an adversary can know ˜R before the reduction knows it, and can prevent
the reduction from setting H(˜R,X,m) ← c in the random oracle table by making
a hash query (˜R,X,m).

Third, (III) it is hard to compute the solution of the DL problem from forg-
eries because of the term related to cosigners. Recall that the verification formula
is ˜R = gs̃

∏

i X−ci
i . Let X̄ be an instance of the DL problem the reduction tries

to solve. For simplicity, we assume the restricted case where the k-th signer is
the honest signer (Xk = X̄) and a forger assigns distinct group elements to
cosigners’ key. 5 The reduction uses the rewinding technique and obtains the
two formulae ˜R = gs̃

∏

i X−ci
i and ˜R′ = gs̃′ ∏

i X
−c′

i
i where ˜R = ˜R′, and ck �= c′

k.
When the reduction tries to extract the discrete logarithm of X̄ by dividing the
above two formulae, it can obtain

X̄ck−c′
k = gs̃−s̃′ ∏

i�=k

X
−ci+c′

i
i . (1)

3 For the convenience of considering multiple users, we added the public key to the
input of the hash function.

4 If we set m1 = m2 = · · · = mn, then we can see it as multi-signatures.
5 In [5], Bellare and Neven consider the case where there are several public keys with

the same values.

Achieving Pairing-Free Aggregate Signatures using Pre-Communication 71

However, notice here that the term
∏

i�=k X
−ci+c′

i
i related to cosigners becomes

the barrier for the reduction to extract the discrete logarithm of X̄.
Next, we show how Bellare-Neven multi-signature scheme [5] circumvents

the above difficulties. First, note that in a multi-signature scheme, all signers
who participate will generate signatures on the same message and are allowed
to interact with each other in the signing procedure. For (I), all signers share
{Ri}i in the signing protocol and compute ˜R. For (II), each signer generates a
commitment to Ri by using a hash function and sends the commitment to all
other signers, before it sends Ri. By this, in the security proof, when the reduc-
tion receives all cosigners’ commitments to {Ri}i, it can compute ˜R by searching
all cosigners’ Ri in the random oracle table simulating the hash function before
the adversary knows ˜R. For (III), the reduction programs the random oracle
carefully as follows. For the hash query (˜R,Xk, L,m) where L is the list of the
signers’ public keys, the reduction fixes H(˜R,Xi, L,m) to the random value for
all i �= k before it defines H(˜R,Xk, L,m). By this careful programming of a
random oracle, the reduction can make the situation that ci = c′

i holds for i �= k

in Eq. (1) and can cancel out the term
∏

i�=k X
−ci+c′

i
i related to cosigners. Then

it can extract the solution to the problem as (s̃ − s̃′)/(ck − c′
k) mod q without

cosigners’ secret key. Thus, this scheme can be proved secure in the plain PK
model.

Unfortunately, these techniques to circumvent the three difficulties (I)-(III)
are effective only for multi-signatures, not for aggregate signatures. Recall that
the techniques to circumvent (I) and (II) require the communication in the sign-
ing phase. Applying them to aggregate signatures will automatically destroy
the advantage of aggregate signatures over multi-signatures, i.e., the freedom
of the signers to sign their own chosen message individually without sharing it
with other signers beforehand. And the technique to circumvent (III) is simply
impossible to apply on aggregate signatures. This technique works only if all
messages in the signatures to be combined are fixed before the rewinding point
in the security proof. However, in aggregate signatures, the cosigners controlled
by the adversary always have the freedom to change the messages in the sig-
natures to be combined any time, even after the rewinding point. Therefore,
we need to explore other approaches to overcome the above three difficulties in
aggregate signatures.

We overcome the three difficulties as follows. For (I), noticing that ˜R is
pre-communicable, we introduce the pre-communication and exclude the com-
munication in the signing protocol. For (II), we resolve the difficulty by adding
the random value ti generated by the signer in the signing phase to the input
of the hash function to produce ci. In more details, each ci is computed as
ci ← H(˜R,Xi, ti,mi) and a set of ti is included in a aggregate signature as
(˜R, s̃, {ti}i). Consequently, thanks to ti, the reduction can succeed in simulating
the honest signer no matter how cleverly the adversary behaves, because the
adversary should guess the random value ti. For (III), we use the KOSK model.
By this, the reduction can obtain cosigners’ secret keys xi for i �= k and com-

72 K. Takemure et al.

pute the discrete logarithm of
∏

i�=k X
−ci+c′

i
i in Eq. (1). Therefore it can extract

a solution to the DL problem as (s̃ − s̃′ − ∑

i�=k xi(ci − c′
i))/(ck − c′

k) mod q.6

1.4 Related Work

Boneh et al. suggested the idea of aggregate signatures and proposed the first
aggregate signature scheme using pairing [8]. Bellare et al. showed that the
aggregate signature scheme [8] is secure even if the restriction of different pairs
of a public key and a message between all signers is eliminated [4]. There are
many pairing-based aggregate signature schemes [1,7,16,17,21,23,26].

Lysyanskaya et al. introduced a notion of sequential aggregate signatures,
where signers sequentially generate a signature on his message by using previ-
ous signers’ messages and signatures and provided the first sequential aggregate
signature scheme built from the RSA assumption [22]. After that, pairing-based
sequential aggregate signature schemes [13,20,21] and pairing-free sequential
aggregate signature schemes [3,9,26] were proposed.

Gentry and Ramzan proposed the first aggregate signature in the synchro-
nized setting [14], and Ahn et al. formalized the synchronized aggregate sig-
natures, in which signatures generated in the same period can be compressed
into an aggregate signature. Hohenberger and Waters provided an RSA-based
synchronized aggregate signature scheme [18]. We can implement an AS with
PreCom scheme using a synchronized aggregate signature scheme as follows. In
a PreCom phase, the signers can agree on the time period by pre-communication.
A restriction of this approach is that the number of the signatures the signers
can issue is bounded at the setup time. Our proposed scheme does not have such
a restriction.

Identity-based aggregate signatures [7,14,17,30] are the aggregate signatures
in which each signer is assigned an ID and creates a signature by using a secret
key that a private key generator generates by the master secret key and the
signer’s ID. Bellare and Neven proposed a DL-based multi-signature scheme
and mentioned the applicability of multi-signatures to (interactive) aggregates
signature [5]. This application presupposes that signers can share messages.

Zhao proposed an aggregate signature scheme for blockchain applica-
tions [32]. This scheme is asynchronous and constructed from general elliptic
curves. He stated that the proposed scheme is more applicable to blockchain
applications than pairing-based aggregate signatures for the system complexity
and the verification speed. His scheme is an extension of the Γ-signature [31] to
aggregate signatures. Though the signature size linearly depends on the number
of signers, this scheme is proved secure in the plain PK model and requires no
communication between signers for signing. The security of this scheme is based
on the non-malleable discrete logarithm (NMDL) assumption. This assumption

6 Here, we implicitly assumed the same restriction as we assumed in Sect. 1.3 for
discussing Bellare-Neven’s approach to the difficulty (III). However, this restriction
can be removed in the actual proof of this proposed scheme. For detail, see the
security model in Sect. 3.1.

Achieving Pairing-Free Aggregate Signatures using Pre-Communication 73

is only justified in the generic group model [24] with random oracles, where an
adversary is allowed to query both of the random oracle and the generic group
oracle.

2 Preliminaries

2.1 Notation

For a prime integer q, we denote the ring of integers modulo q by Zq and the
multiplicative group of Zq by Z∗

q . Let G be a cyclic group of order q and let g be a

generator of G. For a set A, we write a
$←− A to mean that a is chosen at uniformly

random from A. For a probabilistic algorithm B, we write b ← B(β1, . . . ; ρ) to

mean that B on inputs β1, . . . and random tape ρ outputs b, and b
$←− B(β1, . . .)

to mean that ρ is chosen at uniformly random and let b ← B(β1, . . . ; ρ).

2.2 Hardness Assumption

We now recall the definition of the discrete logarithm assumption.

Definition 1 (Discrete Logarithm Assumption). For (G, g, q), let E be a
PPT algorithm that is given y chosen at uniformly random from G. We say that
E (t, ε)-breaks DL if E runs in time at most t and outputs x such that y = gx

with probability at least ε.

3 Aggregate Signatures with Pre-Communication

3.1 Definition

In this paper, particularly, we introduce a model where, before signing, each
signer communicates with the aggregator and shares information in advance,
which we hereafter call helper information. Note that communication in this
model is the one-to-one communication between a signer and the aggregator. We
now describe the definition of aggregate signature (AS) with pre-communication
(PreCom) below. We illustrate pre-communication and aggregation in Fig. 1.

Definition 2 (AS with PreCom). An AS with PreCom consists of the fol-
lowing five algorithms and one protocol. Let n be the number of signers and let
i be the index of a signer.

Setup(1λ) → pp. The public parameter generation algorithm takes as input a
security parameter 1λ, then outputs a public parameter pp.

KeyGen(pp) → (pk , sk). The key generation algorithm takes as input a public
parameter pp, then outputs a public key pk and a secret key sk.

74 K. Takemure et al.

AG

S1

S2

...

...

Sn

(pk1, sk1)

h̃1

(pk2, sk2)

h̃2

(pkn, skn)

h̃n

{pki}

z

Pre-Communication

AG

S1

S2

...

...

Sn

Verifier

(m
1 , σ

1)

(m
2, σ2)

(m
n
, σn

)

({mi}ni=1, σa)

Aggregation

Fig. 1. Aggregate Signature with Pre-Communication: The arrows that denote the
communication are simplified to one round communication as in the proposed scheme
in this paper. In our model, we do not restrict the number of rounds to one.

PreCom〈S1(pk1, sk1), . . . ,Sn(pkn, skn),AG({pki}n
i=1)〉 → (h̃1, . . . , h̃n, z). The

pre-communication protocol is executed between each signer Si with input a
public key pk i and a secret key sk i and an aggregator AG with input all the
signers’ public keys {pk i}n

i=1. After the protocol terminates, each Si and AG
obtain h̃i and z as helper information, respectively.

Sign(pp, pk , sk , h̃,m) → σ. The signing algorithm takes as input a public param-
eter pp, a public key pk, a secret key sk, helper information h̃, and a message
m, then outputs a signature σ.

Agg(pp, z, {(pk i,mi, σi)}n
i=1) → σa. The aggregation algorithm takes as input

a public parameter pp, helper information z, and a set of all signers’ public
keys, messages, and signatures {(pk i,mi, σi)}n

i=1, then outputs an aggregate
signature σa.

AggVer(pp, {(pk i,mi)}n
i=1, σa) → {0, 1}. The aggregate signature verification

algorithm takes as input a public parameter pp, a set of all signers’ public keys
and messages {(pk i,mi)}n

i=1, and an aggregate signature σa, then outputs 0
(REJECT) or 1 (ACCEPT).

For any set of messages {mi}n
i=1, if all signers and an aggregator behave honestly,

then Pr[AggVer(pp, {(pk i,mi)}n
i=1, σa) = 1] = 1 holds.

Security Model of AS with PreCom. Below, we show the definition of existen-
tial unforgeability under the chosen-message attack to AS with PreCom in the
random oracle model and knowledge of secret key (KOSK) model [6,21]. This
security definition requires that it be infeasible to forge aggregate signatures
involving at least one honest signer. In the security model here, as a forger F ,
we consider aggregators who corrupt signers except for one honest signer. Also

Achieving Pairing-Free Aggregate Signatures using Pre-Communication 75

the forger F can execute the pre-communication and the aggregation protocols
with an honest signer several times, and after that, it tries to output a forgery.
Then the forger F can arbitrarily choose the corrupted cosigners’ public keys
even though it must output secret keys corresponding to these public keys. This
restriction is called the KOSK model.

Formally, the security model here is defined by the three-phase game of the
following.

Setup. The challenger chooses the parameter pp $←− Setup(1λ) and the key pair

(pk , sk) $←− KeyGen(pp). It runs a forger F on input pk and pp.
Signing Queries. The challenger receives (j, ij) as a PreCom signing query.

The challenger and F execute the pre-communication protocol PreCom
〈S1(pk1, sk1), . . . ,Sn(pkn, skn),AG({pki}n

i=1)〉 → (h̃1, . . . , h̃n, z) where the
challenger behaves as Sij (pk , sk) and all the other parties are controlled
by F . Then, the challenger obtains the helper information h̃ij and stores
this information with the PreCom signing query. The challenger receives
(j,m′) as a message signing query. It reads out h̃ij and computes σ′

j ←
Sign(pp, pk , sk , h̃ij ,m

′). The challenger returns σ′
j to F . F is allowed to con-

currently make any number of above queries where it is allowed to make only
one message signing query per one PreCom signing query.7

Output. After F terminates, it outputs n key pairs {(pki, ski)}n
i=1, a set of

messages {m∗
i }n

i=1, and a forgery σ∗
a where the following holds.

– {pki}n
i=1 is distinct to each other.

– pk ∈ {pki}n
i=1.

– skk is ⊥ where k is such that pkk = pk.
If AggVer(pp, {(pk i,m

∗
i)}n

i=1, σ
∗
a) = 1 is true and m∗

i has never been queried
where i is such that pki = pk, then F is said to succeed in forgery.

Definition 3 (Unforgeability in KOSK Model for AS with PreCom).
Let N be a maximum number of cosigners being involved in the forgery. We say
that F (t, qS , qH , N, ε)-break AS with PreCom if F runs in at most t time, makes
at most qS signing queries and at most qH random oracle queries, and succeeds
in forgery in the above game with probability at least ε. For an AS scheme with
PreCom, if there are no F that (t, qS , qH , N, ε)-breaks it, we say the scheme is
(t, qS , qH , N, ε)-secure.

3.2 Our AS Scheme with PreCom (PCAS)

In this section, we propose the AS scheme with PreCom PCAS based on the dis-
crete logarithm assumption in the random oracle model and the KOSK model.
This scheme is an extension of the Schnorr signature scheme to aggregate signa-
tures. We introduce the pre-communication to solve the difficulty (I) in Sect. 1.3
without the communication in the signing phase.
7 This restriction is essential. If this restriction is omitted, there is an attack against

our proposed scheme. See Remark 1 for more detail.

76 K. Takemure et al.

The Algorithms and Protocol of PCAS. Below, we now show the algorithms
and protocol of PCAS.

Setup(1λ) → pp. It chooses (G, q, g), a hash function H : {0, 1}∗ → Zq, and a
parameter κ, then outputs pp = (G, q, g,H, κ).

KeyGen(pp) → (pk , sk). It computes x
$←− Zq and X ← gx, then outputs the

public key pk = X and the secret key sk = x.
PreCom〈S1(pk1, sk1), . . . ,Sn(pkn, skn),AG({pki}n

i=1)〉 → (h̃1, . . . , h̃n, z). For

all i ∈ [1, n], firstly, each signer Si computes ri
$←− Zq and Ri ← gri and sends

Ri to the aggregator. The aggregator generates ˜R ← ∏n
i=1 Ri from given

{Ri}n
i=1, and returns ˜R to all the signers. Each signer Si and the aggregator

store h̃i = (ri, ˜R) and z = ˜R as the helper information, respectively.

Sign(pp, pk , sk , h̃,m) → σ. It chooses a value t
$←− {0, 1}κ at uniformly random,

computes c ← H(˜R,X, t,m) and s ← cx + r mod q, then outputs σ = (s, t)
as a signature.

Agg(pp, z, {(pk i,mi, σi)}n
i=1) → σa. It computes s̃ ← ∑n

i=1 si mod q, then
outputs the aggregate signature σa = (s̃, {ti}n

i=1,
˜R).

AggVer(pp, {(pk i,mi)}n
i=1, σa) → {0, 1}. If {pki}n

i=1 are not distinct to each
other, it outputs 0. For all i ∈ [1, n], it computes ci ← H(˜R,Xi, ti,mi). If
˜R = gs̃

∏n
i=1 X−ci

i holds, then outputs 1. Otherwise outputs 0.

For the verification formula, it holds that gs̃
∏n

i=1 X−ci
i = g

∑
xici+rig

∑ −xici =
g

∑
ri = ˜R. Thus, an aggregate signature is accepted with probability 1 when it

is generated honestly.

Remark 1. Note that already used helper information cannot be reused because
the adversary can obtain two distinct signatures generated from the same helper
information and extract a secret key by exploiting the special soundness prop-
erty. Moreover, in the aggregation phase, if several signers fail to participate
in this phase, the protocol terminates, and it should be restarted from pre-
communication.

The Security of PCAS. We should overcome two difficulty (II) and (III) in
Sect. 1.3 to prove PCAS secure. (For more detail, see Sect. 1.3).

To overcome the difficulty (II), we add the random value t to the input of a
hash function which produces c. We explain how this t enables us to simulate
the signing oracle. Towards this end, let us review how to simulate the honest
signer for the Schnorr signature. Firstly, the reduction receives m′ from a forger
as a signing query, randomly chooses (c, s) and computes R ← gsX−c where
X is the honest signer’s public key. After that, it sets H(R,X,m′) ← c in the
random oracle table and return (R, s) as a valid signature to a forger. In this
case, H(R,X,m′) is not predefined with overwhelming probability because R is
a fresh random value generated by the reduction. For PCAS, the reduction needs
to set H(˜R,X, t,m′) ← c in the random oracle table. Although a forger can
decide ˜R and m′, it cannot obtain t until the reduction return (s, t). Therefore,

Achieving Pairing-Free Aggregate Signatures using Pre-Communication 77

the reduction can set H(˜R,X, t,m′) ← c between receiving ˜R and m′ from a
forger and returning (s, t).

To overcome the difficulty (III), we consider the KOSK model. By this, the
reduction can make use of the cosigners’ secret keys to extract the solution to
the DL problem. Moreover, the KOSK model is essential for PCAS because there
is a rogue-key attack in the plain PK model. We describe this attack in the full
version of this paper.

The following theorem states that PCAS is secure under the discrete loga-
rithm assumption in the random oracle model and the KOSK model.

Theorem 1. If there is a forger F that (t, qS , qH , N, ε)-breaks PCAS, then there
is an algorithm B that (t′, ε′)-breaks DL such that

ε′ � ε2

qH + 1
− 2qS(2qH + qS − 1)

(qH + 1)2κ+1
− 1

q
, t′ � 2t + 2qStexp + O(qH + qS + 1),

where texp is the time for an exponentiation in G and we assume that κ = λ.

Proof. We first show the construction of the algorithm B which can solve the
DL problem using the forger F . B is given an instance of the DL problem Y and
a parameter (G, q, g).

To construct B, let A be the algorithm as follows. On inputs (G, q, g, Y),
h1, . . . , hqH+1 ∈ Zq, and a random tape ρ, A runs F on inputs (G, q, g) and Y
as an honest signer’s public key. It initializes counters ctr1 = 1, ctr2 = 0 and
tables T [·], L[·] to be empty, where T [·] is a random oracle table and L[·] is a
table that stores helper information of PreCom for signing queries. It responds
to F ’s hash queries and signing queries as follows.

Hash Query H(Q). A query Q is parsed as Q = (˜R,X, t,m). In the case that
X = Y , A lets T [Q] = hctr1 and ctr1 ← ctr1 + 1 if T [Q] is undefined. In the

case that X �= Y , A lets c
$←− Zq, T [Q] ← c if T [Q] is undefined. It returns

T [Q].
Signing Query. Firstly, when A receives the signal to start PreCom, it sets

ctr2 ← ctr2 + 1, chooses s′, c′ $←− Zq, computes R′ ← gs′
X−c′

k , and sends R′

to F . After that, when A is given ˜R′ from F , A assigns L[ctr2] ← (s′, c′, ˜R′).
When receiving a query (m′, J), A sets M ′ ← M ′ ∪ {m′} and reads L[J].

It returns ⊥ to F if L[J] is empty. A chooses t′ $←− {0, 1}κ and sets Q′ =
(˜R′, Y, t′,m′). It sets bad ← true and halts with output ⊥ if T [Q′] is already
defined. Otherwise it assigns T [Q′] ← c′, empties L[J] and returns (s′, t′)
to F .

Finally, F outputs {X∗
i }n∗

i=1 which is the set of public keys including Y ,
{x∗

i }i∈[1,n∗]\{k} which is the set of secret keys corresponding to the public keys
except Xk such that Y = Xk, the set of messages {m∗

i }n∗
i=1, and a forgery

(s̃∗, {t∗i }n∗
i=1,

˜R∗). A checks whether m∗
k /∈ M ′ and AggVer(pp, {(X∗

i ,mi)}n∗
i=1,

(s̃∗, {t∗i }n∗
i=1,

˜R∗)) = 1 holds, and it outputs ⊥ if not. Otherwise A outputs

78 K. Takemure et al.

(I, {(Xi, xi)}i∈[1,n]\{k}, (s̃∗, {c∗
i }n∗

i=1,
˜R∗)) where c∗

i = T [˜R∗,Xi, t
∗
i ,m

∗
i] and I is

the index such that hI = T [˜R∗, Y, t∗k,m∗
k].

B obtains the following two sequences by rewinding A according to the
Bellare-Neven general forking Lemma [5].

(I(1), {(X(1)
i , x

(1)
i)}i∈[1,n(1)]\{k(1)}, (s̃

(1), {c
(1)
i }n(1)

i=1 , ˜R(1)))

(I(2), {(X(2)
i , x

(2)
i)}i∈[1,n(2)]\{k(2)}, (s̃

(2), {c
(2)
i }n(2)

i=1 , ˜R(2)))

s.t. ˜R(1) = ˜R(2) ∧ I(1) = I(2) ∧ c
(1)

k(1) �= c
(2)

k(2)

Since the above sequences satisfy the verification formula, we have

˜R(1) = gs̃(1)
n(1)
∏

i=1

X
(1)
i

−c
(1)
i and ˜R(2) = gs̃(2)

n(2)
∏

i=1

X
(2)
i

−c
(2)
i

.

By ˜R(1) = ˜R(2), dividing the above two equations gives

Y c
(1)
1 −c

(2)
1 = gs̃(1)−s̃(2) ∏

i∈[1,n(1)]\{k(1)}
X

(1)
i

−c
(1)
i

∏

i∈[1,n(2)]\{k(2)}
X

(2)
i

c
(2)
i

.

Therefore, finally B outputs the following as the solution to the instance Y of
the DL problem.

y ← s̃(1) − s̃(2) − ∑

i∈[1,n(1)]\{k(1)} x
(1)
i c

(1)
i +

∑

i∈[1,n(2)]\{k(2)} x
(2)
i c

(2)
i

c
(1)

k(1) − c
(2)

k(2)

mod q

(2)

B succeeds in outputting y if and only if it succeeds in forking A. Let frk be
the probability of succeeding in forking A, and then the success probability ε′

of B is equal to frk . Let acc be the probability that A outputs the sequence. We
have

acc = Pr[bad �= true ∧ Fsucceed] � Pr[Fsucceed] − Pr[bad = true].

The event bad = true happens when A cannot set H(˜R′,X, t′,m′) ← c′ in the
random oracle table due to a predefined H(˜R′,X, t′,m′). F can cause this event
by guessing t′ which is the part of a signature that the signing oracle returns.
How F maximizes the probability of causing this event is as follows. Firstly, for
a hash query Qk = (˜R′,X, t′,m′), F fixes ˜R′,X, and m′ and queries qH times
with t′ different from each other. After that, F makes qS signing queries by using
˜R′,X, and m′. Let Hitf be the event that bad = true is happened in the fth
time signing query. Note that one new row in the random oracle table is created
every time F makes signing query. Then Pr[bad = true] is bounded as follows.

Pr[bad = true] = Pr[Hit1 ∨ Hit2 ∨ . . . ∨ HitqS]
� Pr[Hit1] + Pr[Hit2] + . . . + Pr[HitqS]

� qH

2κ
+

qH + 1
2κ

+ . . . +
qH + qS − 1

2κ
=

qS(2qH + qS − 1)
2κ+1

.

Achieving Pairing-Free Aggregate Signatures using Pre-Communication 79

Thus we obtain

acc � ε − qS(2qH + qS − 1)
2κ+1

.

By the Bellare-Neven general forking lemma [5], we have

ε′ = frk � acc
(

acc
qH + 1

− 1
q

)

� acc2

qH + 1
− 1

q

=
1

qH + 1

(

ε − qS(2qH + qS − 1)
2κ+1

)2

− 1
q

� ε2

qH + 1
− 2qS(2qH + qS − 1)

(qH + 1)2κ+1
− 1

q
.

The running time t′ of B is twice as the running time t of F plus O(qH+qS+1)
time needed to answer hash queries plus 2qStexp time because each signing query
involves two exponentiation in G. �

The Restriction on the Public Keys. For PCAS, all signers’ public keys need
to be distinct from each other. The reason is as follows: in the security proof,
if several cosigners are having the same public key as an honest signer, the
denominator of Eq. (2) is

∑

i∈[1,n(1)] s.t. Y =X
(1)
i

c
(1)
i −∑

i∈[1,n(2)] s.t. Y =X
(2)
i

c
(2)
i . In

this situation, we cannot know whether this denominator is not equal to 0 only
from condition c

(1)
1 �= c

(2)
1 .

On the KOSK Model and Its Implementation. We used the KOSK model
in the security proof for simplicity and necessity. In practice, a possible way to
implement the KOSK model is to use a proof-of-possession (PoP). The security
of this implementation depends on the security of PoP. For example, we may
consider the case of using the Schnorr signature [28] as PoP. More specifically,
if a signer is required to include the PoP signed by his secret key in his public
key, then, in the security game, a forger outputs the PoP signed by the secret
keys behind the cosigners’ public keys, not the secret keys. Since the set of the
cosigners’ secret keys is necessary for the proof of Theorem 1, proving the security
of PCAS with this PoP is not trivial. A possible way to prove such a scheme secure
is applying Bagherzandi-Cheon-Jarecki generalized forking lemma [2].

4 Performance Comparison among Aggregate Signature
Scheme and Related Schemes

In this section, we compare the proposed aggregate signature scheme with pre-
communication PCAS with the Zhao’s aggregate signature scheme [32] and the
Bellare-Neven interactive aggregate signature scheme BN-IAS [5]. These schemes
are constructed based on the Schnorr signature scheme [28]. Note that we sup-
pose the situation that these schemes are used for the same purpose of compress-
ing signatures on different messages into a compact signature. Then, we focus on

80 K. Takemure et al.

Table 2. Performance Comparison among Aggregate Signature Scheme and Related
Schemes

Scheme BN-IAS [5] Zhao [32] PCAS

Type IAS standard AS AS with PreCom

No sharing Messages No Yes Yes

Communication

Complexity

(|M| + l0 + |G| + |Zq |)
×n(n − 1)

2n|Zq| n(2|G| + |Zq| + κ)

Signature Size |Zq| + |G| |Zq| + n|G| |Zq | + |G| + nκ

Assumption DL NMDL DL

Key Setup plain PK plain PK KOSK

Restriction

in Aggregation
No Restriction Distinct (pk ,m) Distinct pk

Withdrawal No Yes No
∗ The row 1 and 2 indicate pairing-free aggregate signature (AS) scheme and
related schemes. In row 4 and 5, |M |, |Zq| and |G| indicate the size of a element
in |M |, Zq , and G. Also. n denotes the number of signers, and �0 and κ are
specific parameters on each scheme. Especially, the bit-length of κ is as same as
the security parameter in general. The row 6 and 7 show that the assumption and
the key-setup model (cf., the notion of models in Sect. 1.1) in which each scheme is
proved secure, where DL and NMDL indicate the discrete logarithm assumption
and non-malleable DL assumption [32]. The row 8 shows the restriction of all
signers’ public keys and/or messages to be accepted in the verification. The final
row shows the possibility of a continuation of the procedure in the case where
signers disappear before the aggregation phase.

sharing messages, communication complexity, withdrawal, the key setup model,
assumptions, and the size of the aggregate signature for the comparison. Table 2
summarizes this comparison.

Necessity of Sharing Messages. On the above purpose, BN-IAS is the multi-
signature scheme used as an aggregate signature scheme. More detail, this scheme
generates a combined signature on different messages by seeing a set of signers’
messages as one message. Then, all players need to execute the interactive pro-
tocols in Stage II in Sect. 1.1.

PCAS and Zhao’s scheme need not share messages between all signers. Espe-
cially, PCAS requires interactive protocol as PreCom, however, this interaction
is executed in Stage I. Thus, it achieves no sharing messages. Zhao’s scheme has
the standard construction of the aggregate signature, so it has no interaction
protocol.

Communication Complexity. Firstly, let n be the number of signers, and |M | be
the size of a message M . Moreover, we consider the communication complexity
including the cost of one-shot communication from signers to an aggregator for
submitting a signature.

For BN-IAS, all signers need to share messages before the signing phase.
Also, the signing protocol requires three-round communication between every
two signers. Therefore, this scheme requires n(n − 1)/2 channels, and the total
communication complexity per channel is 2|M | + 2l0 + 2|G| + 2|Zq| where l0 is
the bit-length of the range of the hash function to produce the commitment to
commitment element on the Schnorr signature scheme. The total communication
complexity in aggregation protocol is n(n − 1)(|M | + l0 + |G| + |Zq|).

Achieving Pairing-Free Aggregate Signatures using Pre-Communication 81

PCAS needs one bidirectional communication to share helper information
between signers and the aggregator in the pre-communication phase. Hence this
scheme requires n channels, and the total communication complexity per channel
is 2|G|+ |Zq|+κ. Then the total communication complexity is n(2|G|+ |Zq|+κ).

Zhao’s scheme has no interactive protocol, so there are only communications
for submitting signatures. Then this scheme requires n channels, and the total
communication complexity is 2n|Zq|.

The Size of an Aggregate Signature. The size of a signature of BN-IAS is |Zq|+|G|,
and hence it is independent of n. The signature size of PCAS is |Zq| + |G| + nκ
and the signature size of Zhao’s scheme is |Zq|+n|G|. Notably, both sizes depend
on n. We can pick κ to be equal to the security parameter λ because we should
consider only target collisions for the hash function in the proof of Theorem 1.
Also, We can have κ � |G| because the order of G is about 22λ in general.
Therefore PCAS can achieve a smaller signature size than Zhao’s scheme.

Key Setup Model, Assumptions, and Acceptable Condition. We proved PCAS
secure under the DL assumption in the KOSK model and the random oracle
model. This scheme needs to use a PoP to prove the correct generation of a
public key in practical due to the KOSK model. BN-IAS was proved secure under
the DL assumption in the random oracle model and the plain PK model. Zhao’s
scheme was proved secure under the NMDL assumption in the random oracle
model and the plain PK model. Zhao also showed the hardness of the NMDL
problem in the generic group model [24] and the random oracle model.

BN-IAS has no restrictions on public keys and messages, namely, we may
include duplicate public keys and messages in aggregation. In Zhao’s scheme, an
aggregate signature is not accepted when all signers’ pairs of a public key and a
message are not distinct to each other. In PCAS, the aggregate signature can be
accepted at least every public keys should be distinct.

Withdrawal. BN-IAS must halt and restart a signing protocol when some signers
disappear in the signing phase. Also, PCAS must halt and restart a signing
protocol when some signers fail to participate in an aggregation phase. On the
other hand, Zhao’s scheme can continue the process in such a situation because
each signer generates a signature without any communication.

5 How to Avoid Drijvers et al.’s Impossibility

Drijvers et al. showed that several multi-signature schemes claimed to be secure
are in fact insecure by both concrete attacks and meta-reductions demonstrating
the impossibility of proving their security [10]. Because all of such schemes are
based on the Schnorr identification or extensions thereof, one may wonder if their
attacks or meta-reduction arguments are applicable or not to our schemes and, if
not, may want to know the reason for the inapplicability. In particular, the CoSi
scheme [29], which is one of the targets of these attacks and meta-reductions is

82 K. Takemure et al.

quite similar to our PCAS scheme and is essentially the PCAS scheme without
t. Therefore, it seems to be reasonable that our PCAS scheme is a target of (a
natural extension of) these attacks and meta-reductions.

We discover that the meta-reductions of Drijvers et al. apply to any multi-
signature or aggregate signature scheme based on sigma protocol, e.g., Schnorr
identification scheme, with the following properties: (1) the challenge of each
signer depends solely on the message to be signed and the combined commit-
ment, and (2) a malicious aggregator can control the values of the combined
commitment. Exploiting the above properties, a meta-reduction algorithm can
somehow rewind any reduction algorithm which simulates an honest signer and
force the honest signer to use different challenges of the malicious aggregator’s
choice. Thus, if the reduction simulates the honest signer perfectly, the meta-
reduction algorithm obtains two distinct individual signatures based on two dif-
ferent combined commitments but the same fixed individual commitment from
the honest signer. The special soundness property of sigma protocol enables the
meta-reduction algorithm to break the hardness of underlying computational
problem and thus the impossibility holds.

For the PCAS scheme, this structure is eliminated by introducing a random
value of t. The point is that t is chosen by the honest signer after an aggregator
broadcasting the combined commitment. Due to this t, a malicious aggregator
cannot force the honest signer to use the challenge of the malicious aggregator’s
choice.

In the full version of this paper, we elaborate more on the above-outlined
weakness of the PCAS scheme without t from the viewpoints of both concrete
attacks and meta-reduction arguments. Furthermore, we explain how this weak-
ness was overcome by the introduction of the random value t.

6 Conclusion

In this paper, we propose a new paradigm pre-communication and the PCAS
scheme which is constructed based on this new paradigm and proved secure under
the standard DL assumption and the KOSK model. By presenting the concrete
rogue-key attack, we state that the KOSK model is essential for PCAS. Moreover,
we explain that we avoided Drijvers et al.’s attacks and impossibility results.

In practice, PCAS need proof-of-possession (PoP) because of their security in
the KOSK model. Therefore to analyze the security of schemes equipped with a
concrete PoP is an important open question.

Acknowledgments. This paper is based on results obtained from a project com-
missioned by the New Energy and Industrial Technology Development Organization
(NEDO). This work was supported by JST CREST Grant Number JPMJCR19F6,
Japan. This work was supported by JSPS KAKENHI Grant Numbers JP18H01438,
JP18H03238, JP18H05289, JP18K11292, JP18K11293, JP18K18055, JP19H01109. We
are grateful to an anonymous reviewer, who pointed out subtleties in the security def-
inition of aggregate signatures with pre-communication.

Achieving Pairing-Free Aggregate Signatures using Pre-Communication 83

References

1. Ahn, J.H., Green, M., Hohenberger, S.: Synchronized aggregate signatures: new
definitions, constructions and applications. In: CCS 2010, pp. 473–484 (2010)

2. Bagherzandi, A., Cheon, J.H., Jarecki, S.: Multisignatures secure under the discrete
logarithm assumption and a generalized forking lemma. In: CCS 2008, pp. 449–458
(2008)

3. El Bansarkhani, R., Mohamed, M.S.E., Petzoldt, A.: MQSAS - a multivariate
sequential aggregate signature scheme. In: Bishop, M., Nascimento, A.C.A. (eds.)
ISC 2016. LNCS, vol. 9866, pp. 426–439. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-45871-7 25

4. Bellare, M., Namprempre, C., Neven, G.: Unrestricted aggregate signatures. In:
Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol.
4596, pp. 411–422. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-73420-8 37

5. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: CCS 2006, pp. 390–399 (2006)

6. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the gap-diffie-hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36288-6 3

7. Boldyreva, A., Gentry, C., O’Neill, A., Yum, D.H.: Ordered multisignatures and
identity-based sequential aggregate signatures, with applications to secure routing.
In: CCS 2007, pp. 276–285 (2007)

8. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-39200-9 26

9. Brogle, K., Goldberg, S., Reyzin, L.: Sequential aggregate signatures with lazy ver-
ification from trapdoor permutations. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 644–662. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-34961-4 39

10. Drijvers, M., et al.: On the security of two-round multi-signatures. In: IEEE S&P
2019, pp. 1084–1101 (2019)

11. Drijvers, M., Gorbunov, S., Neven, G., Wee, H.: Pixel: multi-signatures for con-
sensus. In: IACR Cryptology ePrint Archive 2019, p. 514 (2019)

12. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: CRYPTO 1986, pp. 186–194 (1986)

13. Fischlin, M., Lehmann, A., Schröder, D.: History-free sequential aggregate signa-
tures. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 113–130.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32928-9 7

14. Gentry, C., Ramzan, Z.: Identity-based aggregate signatures. In: Yung, M., Dodis,
Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 257–273.
Springer, Heidelberg (2006). https://doi.org/10.1007/11745853 17

15. Guillevic, A.: A short-list of pairing-friendly curves resistant to special TNFS at
the 128-bit security level. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V.
(eds.) PKC 2020. LNCS, vol. 12111, pp. 535–564. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45388-6 19

16. Hohenberger, S., Koppula, V., Waters, B.: Universal signature aggregators. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 3–34.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 1

https://doi.org/10.1007/978-3-319-45871-7_25
https://doi.org/10.1007/978-3-319-45871-7_25
https://doi.org/10.1007/978-3-540-73420-8_37
https://doi.org/10.1007/978-3-540-73420-8_37
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/978-3-642-34961-4_39
https://doi.org/10.1007/978-3-642-34961-4_39
https://doi.org/10.1007/978-3-642-32928-9_7
https://doi.org/10.1007/11745853_17
https://doi.org/10.1007/978-3-030-45388-6_19
https://doi.org/10.1007/978-3-030-45388-6_19
https://doi.org/10.1007/978-3-662-46803-6_1

84 K. Takemure et al.

17. Hohenberger, S., Sahai, A., Waters, B.: Full domain hash from (leveled) multi-
linear maps and identity-based aggregate signatures. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 494–512. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40041-4 27

18. Hohenberger, S., Waters, B.: Synchronized aggregate signatures from the RSA
assumption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol.
10821, pp. 197–229. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78375-8 7

19. Kim, T., Barbulescu, R.: Extended tower number field sieve: a new complexity for
the medium prime case. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 543–571. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 20

20. Lee, K., Lee, D.H., Yung, M.: Sequential aggregate signatures made shorter. In:
Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013.
LNCS, vol. 7954, pp. 202–217. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38980-1 13

21. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate
signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006).
https://doi.org/10.1007/11761679 28

22. Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggregate signa-
tures from trapdoor permutations. In: Cachin, C., Camenisch, J.L. (eds.) EURO-
CRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24676-3 5

23. Ma, D., Tsudik, G.: Extended abstract: forward-secure sequential aggregate
authentication. In: S&P 2007, pp. 86–91 (2007)

24. Maurer, U.M.: Abstract models of computation in cryptography. In: IMA 2005,
pp. 1–12 (2005)

25. Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures: extended
abstract. In: CCS 2001, pp. 245–254 (2001)

26. Neven, G.: Efficient sequential aggregate signed data. In: Smart, N. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 52–69. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78967-3 4

27. Ristenpart, T., Yilek, S.: The power of proofs-of-possession: securing multiparty
signatures against rogue-key attacks. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 228–245. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-72540-4 13

28. Schnorr, C.: Efficient identification and signatures for smart cards. In: CRYPTO
1989, pp. 239–252 (1989)

29. Syta, E., et al.: Keeping authorities “honest or bust” with decentralized witness
cosigning. In: S&P 2016, pp. 526–545 (2016)

30. Xu, J., Zhang, Z., Feng, D.: ID-based aggregate signatures from bilinear pairings.
In: Desmedt, Y.G., Wang, H., Mu, Y., Li, Y. (eds.) CANS 2005. LNCS, vol. 3810,
pp. 110–119. Springer, Heidelberg (2005). https://doi.org/10.1007/11599371 10

31. Yao, A.C., Zhao, Y.: Online/offline signatures for low-power devices. IEEE Trans.
Inf. Forensics Secur. 8(2), 283–294 (2013)

32. Zhao, Y.: Practical aggregate signature from general elliptic curves, and applica-
tions to blockchain. In: AsiaCCS, 2019, pp. 529–538 (2019)

https://doi.org/10.1007/978-3-642-40041-4_27
https://doi.org/10.1007/978-3-319-78375-8_7
https://doi.org/10.1007/978-3-319-78375-8_7
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/978-3-642-38980-1_13
https://doi.org/10.1007/978-3-642-38980-1_13
https://doi.org/10.1007/11761679_28
https://doi.org/10.1007/978-3-540-24676-3_5
https://doi.org/10.1007/978-3-540-24676-3_5
https://doi.org/10.1007/978-3-540-78967-3_4
https://doi.org/10.1007/978-3-540-78967-3_4
https://doi.org/10.1007/978-3-540-72540-4_13
https://doi.org/10.1007/978-3-540-72540-4_13
https://doi.org/10.1007/11599371_10

Short Lattice Signatures in the Standard
Model with Efficient Tag Generation

Kaisei Kajita1(B), Kazuto Ogawa1, Koji Nuida2, and Tsuyoshi Takagi2

1 Japan Broadcasting Corporation, 1-10-11, Kinuta, Setagaya-ku, Tokyo, Japan
kajita.k-bu@nhk.or.jp

2 The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan

Abstract. We propose new short signature schemes under the ring-SIS
assumption in the standard model. Specifically, by revisiting an existing
construction in [Ducas and Micciancio, CRYPTO 2014], we demonstrate
efficient lattice-based signatures with improved tag generation. We firstly
construct a scheme under mild security condition that is existentially
unforgeable against random message attack with auxiliary information.
We then convert the mildly secure scheme to a fully secure scheme by
applying a trapdoor commitment scheme. Our schemes enable the gen-
eration of tags from messages and the collision of multiple tags, which
improves reduction loss. Our schemes have short signature sizes of O(1)
and achieves tighter reduction loss than that of Ducas et al.’s scheme.
In accordance with two kinds of parameter set for tag generation, we
get two signature schemes with different properties of reduction loss and
verification key size. One of our schemes has tighter reduction and as the
same size verification key of O(log n) as that of Ducas et al.’s scheme,
where n is the security parameter. Another scheme achieves much tighter
reduction loss of O(Q

n
) for the sake of verification size of O(n), where Q

is the number of signing queries.

Keywords: Digital signatures · Ring-SIS assumption · Security
reduction · Trapdoor commitment

1 Introduction

1.1 Background

Digital signatures are one of the most fundamental cryptographic primitives that
guarantee authenticity of electronic documents and are an indispensable compo-
nent of our digital infrastructure. When using digital signatures, each signer has
a pair of keys consisting of one secret (signing) and one public (verification) key.
A signer signs a document with the secret key, and the document’s authenticity
is publicly verifiable with the public key.

K. Ogawa—He is on loan to National Institute of Information and Communications
Technology.

c© Springer Nature Switzerland AG 2020
K. Nguyen et al. (Eds.): ProvSec 2020, LNCS 12505, pp. 85–102, 2020.
https://doi.org/10.1007/978-3-030-62576-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62576-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-62576-4_5

86 K. Kajita et al.

The performance of cryptographic primitives, such as digital signatures, can
be evaluated using reduction loss relative to a difficult problem. Reduction loss
is the gap in difficulty between breaking the cryptographic primitive and solving
the difficult problem. When there is approximately no reduction loss (i.e., when
breaking the cryptographic primitive is at least as difficult as solving the difficult
problem), the digital signature scheme is called tightly secure. The reduction loss
can have a dramatic impact on the scheme’s parameters. Lowering the reduction
loss of a cryptosystem is important because this enables security parameters to
be made as small as necessary without compromising security.

The model of signature schemes with a random oracle is called the random
oracle model. It is an ideal framework for discussing the security of cryptosys-
tems, replacing the execution of the hash function H(·) with a query to a random
oracle, whose output is uniformly random. In general, a signature scheme in the
standard model (i.e., without a random oracle) is superior to that in the random
oracle model under the same condition. Here, we now discuss digital signature
schemes in the standard model.

In 1994, Peter Shor showed that quantum computers can efficiently solve
the integer factorization problem and the discrete logarithm problem [20]. Post-
Quantum Cryptography (PQC), which is believed to be resistant to an attack
from a quantum computer, is studied around the world. Lattice-based cryp-
tography is one type of PQC. Cryptosystems based on lattice problems have
been increasing since the original work of Ajtai [2,3]. One great concern in this
area is the need for a more efficient post-quantum digital signature scheme. The
construction of an efficient lattice-based scheme under the standard assumption
(i.e., general assumption such as the one-wayness of trapdoor permutation or
more specific assumption such as the RSA assumption, the CDH assumption, or
the Short Integer Solution assumption) with tight reduction loss in the standard
model is desirable.

1.2 Related Works

The direct constructions of lattice signatures were presented by Lyubashevsky
et al. [16] and Gentry et al. [13]. Lyubashevsky proposed a provably secure
one-time signature scheme in the standard model. Gentry et al. constructed a
signature scheme in the random oracle model that employs a sampling algorithm
from Gaussian distribution. Both schemes achieved short signatures consisting
of a single lattice vector.

We give a comparison of post-quantum signature schemes in the standard
model in Table 1. In 2010, Cash et al. [9] provides with the first lattice-based
signature scheme in the standard model applying chameleon hash function with
reduction loss of O(nQ) in reduction, where n is the security parameter and
Q is the number of signing queries. Boyen [7] proposed the vanishing trapdoor
technique and constructed a short signature scheme in the standard model with
reduction loss of O(nQ) in reduction. In 2013, Böhl et al. [6] formulated the
confined guessing technique. Their scheme has verification and signing keys of
size O(1) in the standard model with reduction loss of O(nQ) in reduction,

Short Lattice Signatures in the Standard Model 87

Table 1. Signature schemes under the (ring) SIS assumption in the standard model: n is
the security parameter; β is the SIS parameter: Q is the number of signing queries; and
ε, δ, �, α, and c are parameters for each scheme. For proposed scheme 1, the parameter

for tag generation is Ci = 2�αci�, and that for proposed scheme 2 is Ci = 2i. The unit
of size in SIS assumption is Z

n
q and that in the ring-SIS assumption is Rq.

Scheme |vk| |sk| |sig| Reduction loss Assumption β

CHKP10 [9] O(n) O(n) O(n) O(nQ) SIS Ω(n2)

Boyen10 [7] O(n) O(1) O(1) O(nQ) SIS Ω(n7/2)

BHJKSS13 [6] O(1) O(1) O(logn) O(nQ) SIS Ω(n5/2)

BKKP15 [5] O(1) O(1) O(n) O(1) SIS Ω(n3/2)

Alperin15 [4] O(1) O(1) O(1) O(nQ) SIS Ω(n11/2δ2δ)

BL16 [8] O(n) O(1) O(1) O(n) SIS+PRF Ω(n7/2�4c)

DM14 [11] O(logn) O(1) O(1) O
((

Q2

ε

)c)
ring-SIS Ω(n7/2)

Proposed scheme 1 O(logn) O(1) O(1) O
((

Q
n

)c)
ring-SIS Ω(n7/2)

Proposed scheme 2 O(n) O(1) O(1) O
(

Q
n

)
ring-SIS Ω(n7/2)

but longer signatures, of size O(log n). In 2014, a new short-signature framework
using the confined guessing and vanishing trapdoor techniques was proposed by
Ducas et al. [11]. Ducas et al.’s scheme has relatively short verification keys of

O(log n) with reduction loss of O(
(

Q2

ε

)c

) for an arbitrary constant c > 1 and
adversarial advantage ε.

Ducas et al. focus on a certain tag set and adjust the size of tag set so that
one tag collision occurs. In the confined guessing technique, the simulator can
solve a difficult problem by embedding the problem in the tag where the collision
occurs, so the size of the tag set greatly affects the efficiency of the reduction
loss. Therefore, efficient tag generation is important in signature schemes that
use confined guessing. A short-signature scheme with almost tight security in the
standard model using pseudorandom functions was proposed by Boyen et al. [8]
in 2016. Their signature scheme eliminates the reduction loss’s dependency on
the number of adversary’s queries, but their verification key is large, and a
pseudorandom function is used in their scheme. A tightly secure signature scheme
with short keys in the standard model was proposed by Blazy et al. [5], but its
signature size is large. A signature scheme that has short signatures and keys
was proposed by Alperin [4], but their reduction loss is loose.

Despite these outstanding works, lattice-based signature schemes that have
short signatures and keys and tight reduction loss in the standard model remain
unknown.

1.3 Contributions

We revisit Ducas et al. signature scheme [11] which employs the confined guess-
ing technique [6]. We improve the tag generation method of [6,11]. Regarding a

88 K. Kajita et al.

monotonically increasing parameter Ci for tag generation, each tag set is con-
structed as {0, 1}Ci in [11]. The number of elements in the tag sets directly lead
to reduction loss in the security proof when using confined guessing because a
challenger embeds a challenge problem into a certain target tag and hopes an
adversary forges a signature with corresponding the target tag. We consider mul-
tiple tag collisions, which enable tag sets to be made smaller and to enhance the
probability that a tag from a forged signature corresponds with the target tag.

In addition, we consider a security model, existential unforgeability against
extended random message attack (EUF-XRMA), which enables us to generate
tags from random messages. Each tag can be related to a single message, so our
signature scheme is regarded as a non-rerandomizable signature [14]. Hofheinz et
al. shows that re-randomizable signatures has a bound of reduction loss of O(Q)
[14]. We then achieve a fully secure model, existential unforgeability against
chosen message attacks (EUF-CMA), which secures signatures by applying the
conversion technique proposed by Abe et al. [1] using trapdoor commitments. As
a result, our construction (proposed scheme 1 in Table 1) has a tighter reduction

loss of O
((

Q
n

)c)
than that of Ducas et al.’s signatures, where n is the security

parameter, which has the same size of verification key as that of Ducas et al.’s
signatures.

Moreover, by choosing parameter Ci carefully, we achieve tighter reduction
loss of O(Q

n) at the cost of verification key size of O(n) (proposed scheme 2
in Table 1). Our signature schemes can be easily switched between proposed
scheme 1 and 2 changing the value of tag-generation parameter Ci.

As a result, our signature scheme has a short signature size of O(1) and
achieves a relatively short verification key size of O(log n) and reduction loss of

O
((

Q
n

)c)
in reduction when Ci = �αci�, where c > 1 and α ≥ 1

c−1 , or achieves

a verification key size of O(n) and reduction loss of O(Q
n) in reduction when

Ci = i.

2 Preliminaries

Notation: If S is a set, a
$←− S denotes sampling a at uniformly random from S.

negl(n) denotes an unspecified function f(n) such that f(n) = n−ω(1), meaning
that such a function is negligible in n. For a probabilistic polynomial-time (PPT)
algorithm A, we write y ← A(x) to denote the experiment of running A for a
given x, selecting an inner coin r uniformly from an appropriate domain, and
assigning the results of this experiment to the variable y, i.e. y = A(x; r). Let
X = {Xn}n∈N and Y = {Yn}n∈N be probability ensembles such that each Xn

and Yn are random variables over {0, 1}n. The statistical distance between Xn

and Yn is Dist(Xn, Yn) := 1
2

∑
s∈{0,1}n |Pr[Xn = s] − Pr[Yn = s]|. We write

X ≡ Y if Dist(Xn, Yn) = 0. We sometimes use a short notation (A,B) for the
result of vertically stacking two matrices A and B. We write # to denote the

Short Lattice Signatures in the Standard Model 89

number of elements. Let g be real valued functions, we sometimes use a notation
of Õ = O(g(n) logk g(n)) for some k. We denote ||x|| =

√∑
i x2

i as the Euclidean
norm.

ExptEUF-CMA
SIG,A (n):

(vk, sk) ← KGen(1n);
(m∗, σ∗) ← ASignsk(·)(vk)

If m∗ ∈ Qm, then return 0
Return Vrfy(vk, m∗, σ∗).

Fig. 1. Experiment with EUF-CMA.

ExptEUF-XRMA
SIG,A (n):

(vk, sk) ← KGen(1n);
gk ← Setup(1n)

For ∀i ∈ [Q],
(mi, ρi) ← MsgGen(gk);

σi ← Signsk(mi)
(m∗, σ∗) ← A(vk, {mi, σi, ρi}Q

i=1)
If m∗ ∈ Qm, then return 0
Return Vrfy(vk, m∗, σ∗).

Fig. 2. Experiment with EUF-XRMA.
The Setup algorithm is a PPT algorithm
that takes as input a security parameter
1n and outputs gk.

2.1 Digital Signatures

A digital signature scheme is given by a triple, SIG = (KGen,Sign,Vrfy), of PPT
Turing machines, where for every sufficiently large n ∈ N, the key-generation
algorithm KGen takes as input security parameter 1n and outputs a pair of
verification and signing keys, (vk, sk). Here, let Mn be message space. The
signing algorithm Sign takes as input (vk, sk) and a message m ∈ Mn and
produces a signature σ. The verification algorithm Vrfy takes as input vk, m,
and σ, and outputs a verification result bit. For correctness, Vrfy(vk,m, σ) = 1,
where σ = Sign(sk,m), must hold for any (vk, sk) pair generated with KGen(1n)
and for any m ∈ Mn.

2.2 Security Classes

EUF-CMA: A digital signature scheme SIG is considered existentially unforge-
able against adaptively chosen-message attack (EUF-CMA) [12] if for any
adversary A, AdvEUF-CMA

SIG,A (n) := Pr[ExptEUF-CMA
SIG,A (n) = 1] = negl(n), where

ExptEUF-CMA
SIG,A (n) is defined in Fig. 1. Signsk(·) is a signing oracle with respect

to sk that takes as input m, returns σ ← Signsk(m) and records m to a message
list Qm, which is initially an empty list.

EUF-XRMA: A SIG is considered existentially unforgeable against extended
random-message attack (EUF-XRMA) [1] with respect to the message gen-
erator MsgGen, a PPT algorithm that takes as input a message-generation

90 K. Kajita et al.

key gk and outputs m and ρ, if for any A and any positive inte-
ger Q, AdvEUF-XRMA

SIG,A (n) := Pr[ExptEUF-XRMA
SIG,A (n) = 1] = negl(n), where

ExptEUF-XRMA
SIG,A (n) is defined in Fig. 2, and Qm = {m1, . . . ,mQ}.

2.3 Lattice and Gaussian

A full-rank n-dimensional lattice is the set Λ = {Bz : z ∈ Z
n} of all integers

combinations of n basis vectors B = [b1, . . . ,bn] ∈ Z
n×n
q . For positive integers n

and q, let A ∈ Z
n×n
q be arbitrary and define the following full-rank n-dimensional

q-ary lattices:

Λ⊥(A) = {z ∈ Z
n : Az = 0 mod q},

Λ(A) = {z ∈ Z
n : ∃s ∈ Z

n
q s.t. z = Ats mod q}.

For any u ∈ Z
n
q , define the coset (or shifted lattice) Λ⊥

u (A) = {z ∈ Z
n : Az = u

mod q}.
We consider lattice problems restricted to ideal lattices [18]. We focus on

rings of the form R = Z[X]/Φn(X) or Rq = (R/qR), where n is a power of
2, q is an integer, and Φn(X) = Xn + 1 is the cyclotomic polynomial of degree
n [17]. For our construction, we require that Φn(X) does not split into low degree
polynomials modulo the prime factors of q. More specifically, we choose q = 3k.
Note that the lattice dimensions and polynomial orders are the same for the sake
of simplicity. The geometric quality of a matrix A ∈ R

m×n is measured by its
spectral norm s1 = supx ||Ax||/||x|| for every x ∈ Λ.

The n-dimensional Gaussian function ρs : Rn → (0, 1] is defined as ρs(x) =
exp(−π · ||x/s||2) for a variance s. For any countable X ⊂ Rn, let ρ(X) =∑

x∈X ρs(x). The discrete Gaussian distribution DΛ,s over a lattice Λ is defined
as DΛ,s(x) = ρs(x)/ρs(Λ) for all x ∈ Λ. The discrete Gaussian distribution over
n-dimensional row vectors of ring DR,s := Dn

Z,s is defined by identifying the ring
R with Z

n under the coefficient embedding. The discrete Gaussian distribution
over the ring x ← DR,s is sub-Gaussian of parameter s.

Then we define the ring-SIS problem as follows.

Definition 1. In the small integer solution over rings problem (ring-SISw,q,β),
one is given a matrix A ∈ R1×w

q and asked to find a non-zero vector x ∈ Λ⊥
q (A)

such that ||x|| ≤ β.

2.4 Lattice Trapdoor

W define lattice trapdoors as follows on the basis of Ducas et al.’s signature
[11]. For modulus q = 3k and n × n identity matrix In, we define the gadget
matrix G = [In|3In| . . . |3k−1In] ∈ Z

n×kn
q . Because In corresponds with the ring

element 1 ∈ Rq, the gadget matrix G can be regarded as a row vector of the
ring elements: G = [1, 3, . . . 3k−1] ∈ R1×k

q .

Short Lattice Signatures in the Standard Model 91

Definition 2. For any A ∈ R1×(w+k)
q , and invertible H ∈ R1×1

q , a G-trapdoor

for A with H is a matrix S ∈ Rw×k
q such that A

[
S
Ik

]
= HG.

The quality of a G-trapdoor S is measured by the spectral norm s1(S).
If S ← Dw×k

R,s , then we have s1(S) = s
√

n · O(
√

w +
√

k + ω(
√

log n)) with
overwhelming probability. Let Uw be the uniform distribution over w-dimensional
ring elements. We introduce the following theorem.

Theorem 1 ([11]). There is a polynomial time algorithm GenTrap(A′,H, s) that
on inputting a matrix A′ ∈ R1×w

q , H ∈ Rq, with parameter s > ω(
√

ln nw),
outputs a matrix A′′ ∈ R1×k

q and a G-trapdoor S ∈ Rw×k
q for A = [A′,A′′]

with H ∈ Rq such that s1(S) = s · O(
√

w +
√

k + ω(
√

log n)). In addition,
if w ≥ 2(log2 q� + 1), then with overwhelming probability over the choice of
A′ ← Uw, the distribution of A′′ is statistically close to uniform.

We introduce the following lemma that any linear combination of S is also
G-trapdoor. For any matrix X ∈ R, we write the sub-matrix as X[i].

Lemma 1 ([11]). For i = 0, . . . , d, let S[i] ∈ Rw×k
q be a G-trapdoor for [A,A[i]]

with H[i] ∈ Rq, where A[i] ∈ R1×k
q . Then, any linear combination S =

∑
i yi ·S[i]

with yi ∈ Rq is a G-trapdoor for [A,
∑

i yiA[i]] with H =
∑

i yiH[i].

Let us introduce a sampling algorithm from [19].

Definition 3. There is an efficient algorithm SampleD(A,u0,S, s) that, on
inputting a matrix A ∈ R1×(w+k)

q , a syndrome u0 ∈ Rq, a G-trapdoor S ∈ Rw×k
q

for A with invertible H ∈ Rq, and parameter s = ω(
√

log n) · s1(S), produces
a sample statistically close to the distribution DΛ⊥

u0
(A),s, where DΛ⊥

u0
(A),s is the

discrete Gaussian distribution whose variance is s and center is u0.

2.5 Trapdoor Commitments

We define a trapdoor commitment scheme [10]. Let TCOM = (KGentc,Comtc,
TComtc,TColtc) be a tuple of the following four algorithms. KGentc is a PPT
algorithm that takes as a input security parameter 1n and outputs a pair of keys,
one public and one trapdoor (pk, tk) ← KGentc(1n). Comtc is a PPT algorithm
that takes as input pk and m, selects a random r ← COIN, in which r ∈ Zq,
and outputs a commitment μ = Comtc

pk(m; r). TComtc is a PPT algorithm that
takes as input 1n and tk, and outputs (μ, χ) ← TComtc

tk(1n), where χ is auxiliary
information. TColtc is a deterministic polynomial-time algorithm that takes as
input tk, μ, χ and m, and outputs r such that μ = Comtc

pk(m; r). The construction
of lattice-based commitment schemes [15] is used implicitly in this paper.

3 Mildly Secure Scheme

We firstly demonstrate the generation method of tag to construct EUF-XRMA
secure signature scheme.

92 K. Kajita et al.

3.1 Tags

We define the sets of tag prefixes Ti = {0, 1}Ci , where Ci is a monotonically
increasing constant for i = {1, . . . , d} and d < n. In our proposed scheme 1,
the parameter Ci is the same as Ducas et al.’s, Ci = �αci�, where c > 1 and
α ≥ 1

c−1 . On the other hand, in our proposed scheme 2, Ci = i.
We identify each tag prefix t = [t0, . . . , ti−1] ∈ Ti with a corresponding

ring element t(X) =
∑

j<i tjX
j ∈ Rq with binary coefficients tj ∈ {0, 1}. We

demonstrate the following lemma to prove the security of our signature scheme
later in this paper.

Lemma 2. Let Q = 2O(n) and ψ = Ω(n). If #T > 2eQ
ψ+1 ,

Pr[(ψ + 1)-fold] := Pr[∃i1 , . . . , iψ+1 ∈ [Q]s.t.ti1 = · · · = tiψ+1]

is exponentially small in n, where t1, . . . , tQ are independently and uniformly
chosen from T and e denotes the base of the natural logarithm.

Proof. We compute the probability of Pr[(ψ+1)-fold] where ψ+1 tags are same
from Q elements. We then apply the Stirling’s approximation and asymptotically
estimate the probability.

Pr[∃i1, . . . , iψ+1 ∈ [Q] s.t ti1 = · · · = tiψ+1]

≤
(

Q
ψ + 1

) (
1

#T

)ψ

=
Q · (Q − 1) · · · (Q − ψ)

(ψ + 1)!

(
1

#T

)ψ

≤ Qψ+1

(ψ + 1)!

(
1

#T

)ψ

≤ Qψ+1

√
2π(ψ + 1)

(
e

ψ + 1

)ψ+1 (
1

#T

)ψ

· · · (∗)

=
e · Q√

2π(ψ + 1) · (ψ + 1)

(
e · Q

#T (ψ + 1)

)ψ

.

Inequality (∗) holds by Stirling’s approximation
√

2πx
(x

e

)x

≤ x! ≤ e
√

x
(x

e

)x

.

From ψ = O(n) and Q = 2O(n),

e · Q√
2π(ψ + 1) · (ψ + 1)

=
2O(n)

O(n3/2)

Now, we set #T > 2eQ
ψ+1 and e·Q

n(ψ+1) < 1
2 . e·Q√

2π(ψ+1)·(ψ+1)
is a power of 2

order in n. Hence, Pr[(ψ + 1)-fold] is exponentially small in n. ��

Short Lattice Signatures in the Standard Model 93

The lemma above is a generalized birthday bound lemma, which often
appears in the literature with ψ as a constant number, including [6]. In this case,
ψ is not constant and Q is an exponential number, which lead to somewhat dif-
ferent results than those in [6,11]. In addition, by using Stirling’s approximation
with suitable parameter selection, we obtain the results given above.

3.2 Construction

We propose a signature scheme SIG0. We prove later in this paper that SIG0

is EUF-XRMA secure with respect to MsgGen under the ring-SIS assump-
tion. SIG0 is similar to the non-adaptively secure signature scheme in [11]. The
main differences between SIG0 and Ducas et al.’s scheme are the generation
of tags from messages and the enabling of multiple tag collisions in SIG0. In
an EUF-XRMA game, it is supposed that random messages are given. The
EUF-XRMA game does not enables tags to be sent with signatures because all
tags can be generated from messages when generating the signature. We describe
our signature scheme SIG0 in Fig. 4. Let k be an arbitrary system parameter. We
let w = 2log2 q� + 2, q = 3k, and s = n3/2 · ω(log n)3/2 for system parameters.

Fig. 3. An example of tags when Ci = i

For any full tag t ∈ T = Td and
i < d, we write t≤i ∈ Ti for its prefix
of length i, and t[i] for the (ring) dif-
ference t≤i(X) − t≤i−1(X) ∈ Rq. Let
the algorithm BtoR in Sign be a func-
tion that converts an nk bits string into
a k-dimension vector in Rq. We note
that to sign a message m, SIG0 generates
{t≤1, . . . , t≤d} and {t[1], . . . , t[d]}, from
m. Figure 3 is an example that shows
mod operations t≤i = m mod Ci when
Ci = i. Then t[i] is obtained by com-
puted the difference t≤i(X) − t≤i−1(X).
Both our schemes and Ducas et al. signa-
ture scheme employ the confined guess-
ing technique proposed by Böhl et al. by embedding tags, whose each domain
varies in size, into public keys.

Correctness: The correctness of the scheme is verified as follows. Because
s = n3/2 · ω(log n)3/2, the signature σ produced during the signature gener-
ation process follows the distribution DΛ⊥

u (At),s and has a length of at most
s
√

n(w × k) with overwhelming probability. Thus, the signature σ is accepted
by the verification algorithm.

Two Results of Efficiency: We propose two results of efficiency by altering
parameter Ci for the tag set Ti = {0, 1}Ci . If Ci = �αci�, i.e. the same as Ducas
et al.’s signatures, we achieve slightly tighter reduction of O((Q

n)c) in reduction
with verification keys of O(log n). If Ci = i, we achieve tighter reduction of O(Q

n)
at the cost of verification key size of O(n).

94 K. Kajita et al.

KGen(n) Sign(vk, sk, m ∈ {0, 1}nk) Vrfy(vk, m, σ)
H ← Rq m = BtoR(m) m = BtoR(m)
U ← R1×k

q t≤0 = 1 t≤0 = 1
v0 ← Rq For i = 1 to d do For i = 1 to d
A′ ← R1×w

q t≤i = m mod Ci t≤i = m mod Ci

(A,S) ← GenTrap(A′,H, s) t[i] = (t≤i − t≤i−1)Xi−1 t[i] = (t≤i − t≤i−1)Xi−1

for i = 0 to d do At = [A|A0 +
∑d

i=1 t[i]A[i]] compute At,u0

A[i] ← R1×k
q u0 = Um+ v0 if ||σ| | ≤ s

√
n(w + k)

vk = (A,A[0], . . . ,A[d], σ ← SampleD(At,u0,S, s) and Atσ = u0

U,v0,H) return σ return 1
sk = S else
return (vk, sk) return 0

Fig. 4. SIG0: EUF-XRMA secure signature scheme under ring-SIS assumption.

3.3 Security Analysis

To prove our theorems later in this paper, we define (m,χ) ← MsgGen in
the EUF-XRMA experiment using a standard trapdoor commitment scheme
based on lattices. Let (m,χ) ← MsgGen be the algorithm that runs (μ, χ) ←
TComtc

tk(1n) and outputs a commitment μ as a message m.

Theorem 2. Under the ring-SISw,q,β assumption for β = Õ(n7/2), the signature
scheme SIG0 for Ci = �αci� is EUF-XRMA secure. More precisely, if there
exists an attacker A against EUF-XRMASIG0 that runs in time T , makes at
most Q queries where Q = 2O(n) and succeeds with probability ε ≥ 2−O(n), then
there exists an algorithm B that runs in time T ′ = T + poly(n), and solves
ring-SISw,q,β with probability ε′ = Ω((ψ+1

4eQ)c) · ε, where ψ is the number of tag-
collision and e denotes the base of the natural logarithm.

The security proof of Theorem 2 is approximately the same as Ducas et al.’s
security proof without the tag generation method and adversary’s condition. We
give the full proof of Theorem 2 in Appendix A. Here, we give its sketch.

Proof Sketch. The simulator B receives a ring-SIS challenge and gets Q messages
from MsgGen. Then, B generates tags from the messages: t

(j)
≤i = m(j) mod 2�αci�

for j = 1, . . . , Q. First, B sets the target tag set Ti∗ . We denote the event (ψ+1)-
fold happening be Pr[(ψ + 1)-foldreal]. Here, Pr[(ψ + 1)-foldreal] and Pr[(ψ +

1)-foldideal] are statistically indistinguishable. B randomly chooses t∗≤i∗
$←− Ti∗ ,

set M′ := {m|t∗≤i∗ = t
(j)
≤i∗}. If #M′ ≥ ψ + 1, B aborts. In accordance with

Lemma 2, B chooses #Ti∗ such that #Ti∗−1 < 2eQ
ψ+1 < #Ti∗ . From Ci = �αci�

for c > 1 and α ≥ 1
c−1 , αci ≤ Ci + 1 holds. Then,

Ci∗ ≤ αci∗
= cαci∗−1 ≤ c(Ci∗−1 + 1).

Short Lattice Signatures in the Standard Model 95

B sets #Ti∗ as

#Ti∗ = 2Ci∗ ≤ 2c(Ci∗−1+1) = (2 · 2Ci∗−1)
c ≤

(
4eQ

ψ + 1

)c

.

Let t∗ in Ti∗ be the target tag and embed the hint for solving the ring-SIS
challenge in it. After B feeds all information, messages, signatures, and tags as
auxiliary information, the adversary A returns the forgery σ
 for a fresh message
m
. If the tag t
 for the forgery corresponds the target tag t∗, B can solve the
ring-SIS challenge. Therefore, the success probability ε′ ≥ 1

#Ti∗ ε = Ω(
(

ψ+1
4eQ

)c

)ε.
If Ci = i, the following theorem holds.

Theorem 3. Under the ring-SISw,q,β assumption for β = Õ(n7/2), the signature
scheme SIG0 for Ci = i is EUF-XRMA secure. More precisely, if there exists
an attacker A against EUF-XRMASIG0 that runs in time T , makes at most Q
queries where Q = 2O(n), and succeeds with probability ε = 2−O(n), then there
exists an algorithm B that runs in time T ′ = T +poly(n), and solves ring-SISw,q,β

with probability ε′ = Ω(ψ
Q) · ε, where ψ is the number of tag collisions.

The proof of Theorem 3 is the same as that of Theorem 2 without the tag
set’s parameter. B sets #Ti∗ = 2i∗ ≤ 2 · 2i∗−1 = 2Ti∗−1 ≤ 4eQ

ψ+1 . After all
simulation, B can solve the ring-SIS challenge with success probability ε′ ≥

1
#Ti∗ ε = Ω

(
ψ+1
4eQ

)
ε.

4 Fully Secure Scheme

In this section, we demonstrate the construction of a fully EUF-CMA secure
scheme from SIG0 by applying the trapdoor commitment TCOM. We call TCOM
a trapdoor commitment scheme if the following conditions hold.

4.1 Conditions of TCOM

Hiding. For the pk generated with KGentc(1n), and any m,m′ ∈ Mn, statistical
hiding holds if the following ensembles are statistically indistinguishable in n:

{
(μ,m, r) |μ = Comtc

pk(m; r); r ← COIN,
}

s≈
{

(μ′,m′, r′) |μ′ = Comtc
pk(m′; r′); r′ ← COIN,

}
.

Computational Binding. For any polynomial-time adversary A,

εbind :=Pr

⎡
⎣
(m1,m2, r1, r2) ← A(pk);
(pk, tk) ← KGentc(1n) :
Comtc

pk(m1; r1)=Comtc
pk(m2; r2)∧(m1 �=m2)

⎤
⎦

= negl(n).

96 K. Kajita et al.

KGen(n) Sign(vk, sk, m ∈ {0, 1}nk) Vrfy(vk, m, σ, r)
H ← Rq r ← COINcom μ = Comtc

pk(m; r)
U ← R1×k

q μ = Comtc
pk(m; r) μ = BtoR(μ)

v0 ← Rq μ = BtoR(μ) t≤0 = 1
A′ ← R1×w

q t≤0 = 1 For i = 1 to d
(A,S) ← GenTrap(A′,H, s) For i = 1 to d do t≤i = μ mod Ci

for i = 0 to d do t≤i = μ mod Ci t[i] = (t≤i − t≤i−1)Xi−1

A[i] ← R1×k
q t[i] = (t≤i − t≤i−1)Xi−1 Compute At,u0

(tk, pk) ← KGentc(n) At = [A|A0 +
∑d

i=1 t[i]A[i]] if ||σ| | ≤ s
√

n(w + k)
vk = (A,A[0], . . . ,A[d], u0 = Uμ + v0 and Atσ = u0

U,v0,H) σ ← SampleD(At,u0,S, s) return 1
sk = S return (σ, r) else
return (vk, sk, pk, tk) return 0

Fig. 5. SIG1: EUF-CMA-secure signature scheme with TCOM

Trapdoor Property. The algorithm KGentc for generating pk also outputs a trap-
door tk. There is an efficient algorithm TComtc that, on inputting tk, pk, outputs
a commitment μ, and an algorithm TColtc that, on inputting any m, produces
r such that μ = Comtc

pk(m; r). The distribution of μ computed by TComtc is
statistically indistinguishable from that of commitments computed by Comtc,

{
(μ,m, r) |μ = Comtc

pk(m; r); r ← COIN,
}

s≈
{

(μ,m, r) | (μ, χ) ← TComtc
tk(1n); r = TColtctk(μ, χ,m)

}
.

4.2 Construction

Let SIG1 be a signature scheme constructed by applying TCOM to SIG0. We
describe it in Fig. 5. In the signing and verification algorithms of SIG1, commit-
ments μ are regarded as messages. The correctness of the signature scheme SIG1

can be demonstrated in the same way as that of SIG0.

4.3 Security Analysis

We demonstrate that SIG1 is EUF-CMA secure with TCOM by constructing
the adversary Bbind which breaks the computational binding of TCOM, or the
adversary Beuf−xrma

SIG0
which breaks the EUF-XRMA security.

Theorem 4. If TCOM = (KGentc,Comtc,TComtc, TColtc) is a trapdoor com-
mitment and SIG0 is EUF-XRMA secure, then SIG1 is EUF-CMA secure.

Short Lattice Signatures in the Standard Model 97

Proof. Let BEUF-XRMA
SIG0

be the adversary that can break EUF-XRMA security
of SIG0, and let Bbind be the adversary that can break computational binding
for TCOM. Let AEUF-CMA

SIG1
be the adversary that can break EUF-CMA secu-

rity of SIG1. Let εEUF-XRMA
SIG0

= AdvEUF-XRMA
SIG0,B (n) be an advantage of BEUF-XRMA

SIG0
,

εbind be an advantage of Bbind, and εEUF-CMA
SIG1

= AdvEUF-CMA
SIG1,A (n) be an advan-

tage of AEUF-CMA
SIG1

. We write BEUF-XRMAwithTCOM
SIG0

as the adversary against
EUF-XRMA security with TCOM of SIG0. We write the verification key and
signing key of SIG1 as (vk, sk) and those of SIG0 as (vk0, sk0). From the view
of AEUF-CMA

SIG1
, BEUF-XRMA

SIG0
and Bbind are statistically indistinguishable. Now, we

show that if AEUF-CMA
SIG1

that can break EUF-CMA security of SIG1 exists, then
BEUF-XRMAwithTCOM
SIG0

or Bbind exists.

Setup: We consider TComtc
tk as MsgGen of EUF-XRMA. Then, commitments

are generated with auxiliary information such that (μi, r
′
i) ← TComtc

tk(1n). The
adversary BEUF-XRMAwithTCOM

SIG0
receives the verification key vk0, commitments

μi, and signatures σi of SIG0 for 1 ≤ i ≤ Q and auxiliary information ρi =
(pk, tk, r′

i), where pk is the public key, tk is the trapdoor key for TCOM, and
commitment μi satisfies μi = Compk(xi; r′

i) for xi ∈ Mn. BEUF-XRMAwithTCOM
SIG0

sets vk = (vk0, pk) and sends vk to AEUF-CMA
SIG1

.

Signing: AEUF-CMA
SIG1

makes Q signing queries. For 1 ≤ i ≤ Q, AEUF-CMA
SIG1

gives
a message mi to BEUF-XRMAwithTCOM

SIG0
. Then BEUF-XRMAwithTCOM

SIG0
computes

ri = TColtctk(μi, χi,mi), where ri satisfies μi = Comtc
pk(mi; ri). According to the

statistical hiding property of trapdoor commitments, from the view of AEUF-CMA
SIG1

,
the r that is generated by both COIN, and TColtctk are statistically indistinguish-
able. BEUF-XRMAwithTCOM

SIG0
then returns (σi, ri) corresponding to mi. Here, the

signatures that BEUF-XRMAwithTCOM
SIG0

first received as input are regarded as that
of SIG1 since messages can be just replaced by commitments.

Forgery of AEUF-CMA
SIG1

: BEUF-XRMAwithTCOM
SIG0

receives a forgery (m∗,σ∗, r∗) of
SIG1 from AEUF-CMA

SIG1
, where m∗ �∈ {m1, . . . ,mq}. BEUF-XRMAwithTCOM

SIG0
then com-

putes commitment μ∗ = Comtc
pk(m∗; r∗).

Case 1: breaking EUF-XRMA security of SIG0. In this case that μ∗ �∈ {μ1, . . .,
μQ}, BEUF-XRMAwithTCOM

SIG0
outputs (μ∗,σ∗). This means the adversary succeeds

in breaking EUF-XRMA with TCOM security of SIG0. This goes against the
fact that any adversary who breaks the EUF-XRMA security of SIG0 does not
exists in Theorem 2.

Case 2: breaking computational binding. In this case that μ∗ ∈ {μ1, . . . , μQ},
Bbind outputs (m∗, r∗,mi, ri) such that (μ∗ = μi) ∩ (m∗ �= mi) for 1 ≤ i ≤ Q.
This means BEUF-XRMAwithTCOM

SIG0
succeeds in breaking computational binding for

trapdoor commitment as Bbind.

Analysis: Supposed that SIG1 is EUF-CMA secure. Then BEUF-XRMAwithTCOM
SIG0

breaks EUF-XRMA security when μ∗ �∈ {μ1, . . . , μq} or Bbind breaks compu-
tational binding for trapdoor commitments when μ∗ ∈ {μ1, . . . , μQ}. Therefore

98 K. Kajita et al.

εEUF-CMA
SIG1

is bounded by sum of εEUF-XRMA
SIG0

and εbind. Hence,

εEUF-CMA
SIG1

≤ εbind + εEUF-XRMA
SIG0

.

��

Table 2. The comparison between Proposed scheme and DM14

Scheme Tag collisions |Ti| d |vk| Reduction loss

DM14 1 2�αci� �logc(log2(
2Q2

ε
))� O(log n) (4Q2

ε
)c

Proposed scheme 1 ψ 2�αci� �logc(log2(
2eQ
ψ+1

))� O(log n) (4eQ
ψ+1

)c

Proposed scheme 2 ψ 2i �log2(2eQ
ψ+1

)� O(n) 4eQ
ψ+1

5 Reduction Loss

We discuss the reduction loss in this section. We denote εm, εnur, εt�=t∗ , and
εw=0 as follows: εm is the probability that events #M′ ≥ ψ + 1 occur and is
exponentially small; εnur = 1/2Ω(n) is the advantage of A that distinguishes
between uniformly random distributed tags and simulated tags; εt�=t∗ is the
probability that t
 corresponds to the the target tag t∗, that is, 1/#Ti∗ ; and
εw=0 is the probability that the ring-SIS solution w = 0.

For the advantage of the ring-SIS problem εring−SIS, in accordance with to
Theorems 2 and 3,

εring−SIS ≥ (1 − εm − εnur) · ε · εt�=t∗(1 − εz=0).

Therefore, because ε ≥ εeuf-cma − εbind from Theorem 4, where εeuf-cma is the
advantage of EUF-CMA security of SIG1 of,

εring−SIS = O
(

1
#T (j∗)

)
· ε = O

(
1

#T (j∗)

)
·
(
εeuf-cma − εbind

)
.

If Ci = �αci�,

εeuf-cma = O
((

Q

n

)c)
· εring−SIS + εbind,

if Ci = i,

εeuf-cma = O
(

Q

ψ

)
· εring−SIS + εbind.

The advantage of computational binding can be reduced to the ring-SIS problem.
The whole reduction loss to the ring-SIS problem is O

(
Q
ψ

)
if Ci = i or O

((
Q
ψ

)c)

if Ci = �αci�. The reduction loss is related to ψ and Q. There is an asymptotic
relation between them, ψ = log(Q). The modification of tag generation and
evaluation of the probability of tag collisions can eliminate the parameter ε from
the reduction loss of Ducas et al.’s signature scheme, O

((
Q2

ε

)c)
. We show the

detailed comparison in Table 2.

Short Lattice Signatures in the Standard Model 99

6 Conclusion

We have developed signature schemes that have a tighter reduction loss than
that of Ducas et al.’s signature [11] and have small signing keys and signatures
under the standard assumption in the standard model. Our proposed methods
are based on [11]. In Ducas et al.’s signatures, tags are used, but the tag con-
struction method uses a random value unrelated to the message. In our method,
tags are associated with messages because we consider the EUF-XRMA game
where random messages are given with auxiliary information. We then convert
our scheme with EUF-XRMA security to a scheme with EUF-CMA security
applying trapdoor commitments to auxiliary information. Our signature schemes
can be easily switched between proposed scheme 1 and 2 changing the value of
tag-generation parameter Ci. Because the reduction loss can have a dramatic
impact on the scheme’s parameters, the tighter reduction loss is, the faster com-
putations of signature generation and verification are.

As a result, our signature scheme has a short signature size of O(1), achieves a

relatively short verification key size of O(log n), and reduction loss of O
((

Q2

ε

)c)

in reduction when the parameter for tag generation Ci = �αci� (proposed scheme
1). Alternately, it achieves a verification key size of O(n) and reduction loss of
O

(
Q
n

)
in reduction when Ci = i (proposed scheme 2).

A Proof of Theorem 2

Proof. Suppose that there exists a PPT A against SIG0 and MsgGen. We demon-
strate that we can construct an algorithm B that uses A as an internal sub-
algorithm to solve the ring-SIS problem.

Setup: B receives a ring-SIS challenge A′ ∈ R1×w
q . B then runs MsgGen to receive

{m(j), {t
(j)
[i] }d

i=0}
Q
j=1 ← MsgGen(1n) as follows. Let us define M := {m(j)}Q

j=1

and Ti := {0, 1}Ci for i = 0, . . . , d. For j = 1, . . . , Q, B chooses message m(j) ∈
{0, 1}nk uniformly at random. Then, for i = 0, . . . , d and c > 1, let

t
(j)
≤i =

{
0 if i = 0
m(j) mod Ci if i ≥ 1

t
(j)
[i] = t

(j)
≤i (X) − t

(j)
≤i−1(X) ∈ Rq

B sets i∗ to be as small as possible such that i∗ > �(2eQ)/(ψ + 1)�. If
#Ti∗ > �(2eQ)/(ψ + 1)�, the probability that event (ψ + 1)-fold occurs is expo-
nentially small if Q tags are independently and uniformly chosen from Ti∗ , due
to Lemma 2. Let us denote by (ψ + 1)-foldreal the event that (ψ + 1)-fold hap-
pens on some tag in Ti∗ when t

(j)
≤i∗ are chosen according to the distribution of

MsgGen. Here we show that the statistical distance between the distribution of
tags computed by the signed message and the uniform distribution is negligible.

100 K. Kajita et al.

Claim. Pr[(ψ + 1)-foldreal] = Pr[(ψ + 1)-foldideal] + 2−O(n).

Proof of Claim. Let m be a message outputted by MsgGen, which is distributed
over Rq. By construction , the distribution of t∗ = m mod Ci is statistically
close to the uniform distribution over Ti∗ , where Ci is the tag generation param-
eter, e.g., Ci = 2i. Its distance is bounded by 2−O(n). Although independent Q
messages are considered, the distance should be still 2−O(n). ��

B randomly chooses t∗≤i∗
$←− Ti∗ . B can solve the ring-SIS problem when A

outputs a forged pair (m
,σ
) such that t∗≤i∗ = m
 mod Ci∗ . Let

M′ := {m ∈ M|t∗≤i∗ = t
(j)
≤i∗}.

If #M′ ≥ ψ + 1, B aborts; otherwise, it sets the verification key parameters as
follows:

H[i] =

⎧
⎪⎨
⎪⎩

0 ∈ Rq if i > i∗,
1 ∈ Rq if 1 ≤ i ≤ i∗,
−t∗≤i∗ if i = 0.

For s′ = ω(
√

log n), B runs (A[i],S[i]) ← GenTrap(A′,H[i], s
′). From Lemma 1,

because we have Ht = H[0] +
∑d

i=1 t[i]H[i] = −t∗[i∗] +
∑i∗

i=1 t[i] = −t∗≤i∗ + t≤i∗ ,

At

[
St

I

]
= HtG holds for

St = S[0] +
d∑

i=1

t[i]S[i],

Ht = −t∗≤i∗ + t≤i∗ ,

At = [A′|A[0] +
d∑

i=1

t[i]A[i]].

Simulation of Signatures: If t∗≤i∗ �= t
(j)
≤i∗ , B can run the signing algorithm σ(j) ←

Sign(sk,m(j)) because Ht = −t∗≤i∗ + t≤i∗ �= 0. Otherwise, because Ht = −t∗≤i∗ +
t≤i∗ = 0 holds, B chooses σ(j) ← Dw+k

Rq,s. Then B chooses m(j∗) at random from
M′ and sets m∗ = m(j∗). For the chosen j∗, B sets σ∗ = σ(j∗).

Generation of Verification Key: To exploit a forgery, B chooses SU ← Dw×k
R,s′ .

The spectrum norm of SU satisfies s1(SU) =
√

n · ω(log n). Then we have U =
A′SU. In addition, B chooses v0 ← Rq and sets vk = (A′,A[0], . . . ,A[d],U,v0).
Here, these simulated keys are indistinguishable from real keys.

B feeds (vk, {m(j),σ(j), {t
(j)
[i] }d

i=0}
Q
j=1) to A.

A’s Forgery: Given (vk, {m(j),σ(j), {t
(j)
[i] }d

i=0}
Q
j=1) from B, A generates a forged

signature (m
,σ
) and feeds it to B.

Short Lattice Signatures in the Standard Model 101

Exploiting the Forgery: A outputs a forgery σ
 for some message m
 of its
choice with a probability of at least ε. The simulator hope that t
≤i∗ = t∗≤i∗ is
fulfilled with probability 1/|Ti∗ |. If t
≤i∗ �= t∗≤i∗ , B aborts. Otherwise, B computes
A

t , u

0 and gets σ ← SampleD(At, u0,S, s). Because At�σ
 = u

0 holds, B
has v0 = At�σ
 − u

0. Similarly for σ∗, B has v0 = At∗σ∗
1 − u∗

0. Therefore,
At∗σ∗ − u∗

0 = At�σ
 − u

0. Because the condition t
≤i∗ = t∗≤i∗ ensures Ht∗ =

Ht� = 0, we derive

[A| − ASt∗ | − ASU] ·

⎡
⎣

σ∗
u

σ∗

m∗

⎤
⎦ = v0 = [A| − ASt� | − ASU] ·

⎡
⎣

σ

u

σ

m

⎤
⎦ ,

where σ = (σu,σ
) for the computation. In particular we obtain Aw = 0 for

w = (σ∗
u − σ∗

 − (St∗ · σ

u − St� · σ

) − SU(m∗ − m
)).

Because w has at least ω(n) min-entropy, the probability of w = 0 is 2−Ω(n).

Size of the Extracted Ring-SIS Solution: Because s∗ and s
 are valid signatures,

||s∗||, ||s♦|| ≤ n2w · ω(log n)3/2.

Additionally, s1(St) ≤ n3/2 · ω(log n) for any tag t ∈ T , and

||m∗||, ||m♦|| ≤ O(
√

nk)
SU ≤

√
n · ω(log n).

Combining all these bounds, we obtain

||w|| ≤ n7/2 · log n · ω(log n)3/2.

��

References

1. Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.:
Constant-size structure-preserving signatures: generic constructions and simple
assumptions. J. Cryptol. 29(4), 833–878 (2016). https://doi.org/10.1007/s00145-
015-9211-7

2. Ajtai, M.: Generating hard instances of lattice problems. In: STOC, pp. 99–108.
ACM (1996)

3. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case
equivalence. In: STOC, pp. 284–293. ACM (1997)

4. Alperin-Sheriff, J.: Short signatures with short public keys from homomorphic
trapdoor functions. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 236–255.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 11

5. Blazy, O., Kakvi, S.A., Kiltz, E., Pan, J.: Tightly-secure signatures from chameleon
hash functions. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 256–279.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 12

https://doi.org/10.1007/s00145-015-9211-7
https://doi.org/10.1007/s00145-015-9211-7
https://doi.org/10.1007/978-3-662-46447-2_11
https://doi.org/10.1007/978-3-662-46447-2_12

102 K. Kajita et al.

6. Böhl, F., Hofheinz, D., Jager, T., Koch, J., Seo, J.H., Striecks, C.: Practical signa-
tures from standard assumptions. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 461–485. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 28

7. Boyen, X.: Lattice mixing and vanishing trapdoors: a framework for fully secure
short signatures and more. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13013-7 29

8. Boyen, X., Li, Q.: Towards tightly secure lattice short signature and ID-based
encryption. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS,
vol. 10032, pp. 404–434. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53890-6 14

9. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–
552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 27

10. Damg̊ard, I.: Efficient concurrent zero-knowledge in the auxiliary string model. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6 30

11. Ducas, L., Micciancio, D.: Improved short lattice signatures in the standard model.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 335–352.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2 19

12. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. J. Comput. 17(2), 281–308 (1988)

13. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC, pp. 197–206. ACM (2008)

14. Hofheinz, D., Jager, T., Knapp, E.: Waters signatures with optimal security reduc-
tion. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol.
7293, pp. 66–83. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
30057-8 5

15. Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes
based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-89255-7 23

16. Lyubashevsky, V., Micciancio, D.: Asymptotically efficient lattice-based digital sig-
natures. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 37–54. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 3

17. Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: a modest pro-
posal for FFT hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 54–72.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71039-4 4

18. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-
way functions. In: Computational Complexity Conference (CCC), vol. 16, no. 4,
pp. 365–411. Schloss Dagstuhl (2007)

19. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

20. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: FOCS, pp. 124–134. IEEE (1994)

https://doi.org/10.1007/978-3-642-38348-9_28
https://doi.org/10.1007/978-3-642-38348-9_28
https://doi.org/10.1007/978-3-642-13013-7_29
https://doi.org/10.1007/978-3-642-13013-7_29
https://doi.org/10.1007/978-3-662-53890-6_14
https://doi.org/10.1007/978-3-662-53890-6_14
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/3-540-45539-6_30
https://doi.org/10.1007/978-3-662-44371-2_19
https://doi.org/10.1007/978-3-642-30057-8_5
https://doi.org/10.1007/978-3-642-30057-8_5
https://doi.org/10.1007/978-3-540-89255-7_23
https://doi.org/10.1007/978-3-540-78524-8_3
https://doi.org/10.1007/978-3-540-71039-4_4
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41

One-Time Delegation of Unlinkable
Signing Rights and Its Application

Takashi Nishide(B)

University of Tsukuba, Tsukuba, Japan
nishide@risk.tsukuba.ac.jp

Abstract. Delegation of signing rights can be useful to promote effec-
tive resource sharing and smooth cooperation among participants in dis-
tributed systems, and in many situations, we often need restricted dele-
gation such as one-timeness and unlinkability rather than simple full del-
egation. Particularly, one-timesness cannot be achieved just by deploy-
ing cryptographic measures, and one needs to resort to some form of
tamper-proofness or the assistance from external cloud servers for “key-
disabling”. In this work, we extend the latter such that a delegatee can
sign a message without the delegator’s involvement with the assumption
that there exists at least one honest cloud server with secure erasure to
achieve one-timeness. In this setting, if the delegator just shares their
signing key between the delegatee and cloud servers, it may be problem-
atic. It is because in the worst case, the delegator cannot know whether
or not a signing key theft occurred because the signatures generated ille-
gally are indistinguishable from the ones generated legally. To solve this,
first we propose an efficient one-time delegation scheme of Okamoto-
Schnorr signing. Further we combine the basic delegation scheme with
anonymous credentials such that the delegator can detect the signing key
theft even if one-time delegation is broken while also achieving unlink-
ability for both the delegator and cloud servers. Further we show its
application to an e-cash scheme, which can prevent double-spending.

Keywords: Signature · Delegation · Anonymous credential · E-cash

1 Introduction

Delegation of rights to services and resources is old (e.g., [10]), but still relevant
in distributed applications (e.g., [36,40]), and it can often be realized via del-
egation of signing rights. Signing rights are unlinkable if a delegatee can sign
a message unlinkably, where “unlinkably” means that when a delegator dele-
gated their signing rights to multiple delegatees, no entities including the del-
egator can know which delegatee signed a message from its resulting signature
as in group signatures [6]. This type of delegation is useful in applications need-
ing privacy-preserving access control. Further we consider one-time delegation,
where “one-time” means that a delegator outsources their one-time signing capa-
bility. More specifically, after the delegator outsources their signing capability to
c© Springer Nature Switzerland AG 2020
K. Nguyen et al. (Eds.): ProvSec 2020, LNCS 12505, pp. 103–123, 2020.
https://doi.org/10.1007/978-3-030-62576-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62576-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-62576-4_6

104 T. Nishide

the delegatee, the following properties hold without the delegator’s involvement:
(1) a delegatee can sign a message, (2) the verifier can verify the signature,
and (3) the delegatee is prevented from signing more than once rather than
detected after the fact. This type of one-timeness is often useful for electronic
one-show tokens such as e-cash. In this work, we aim for such one-time dele-
gation of unlinkable signing rights. In general, we cannot achieve one-timeness
just by deploying cryptographic measures, and one viable approach is to resort
to tamper-proofness such as smartcards (e.g., [12,27],[13, Sect. 6.3],[8]), one-time
programs (OTPs) [33], or trusted execution environments (TEEs) (e.g., [35,40]).
However, such hardware-based solutions may sometimes be undesirable due to
various side-channel attacks or cumbersome to use or deploy in practice (e.g., as
pointed out in [17]). As a practical alternative to achieve one-timeness (except a
feasibility result using quantum objects [2]), there is another line of research, e.g.,
[17,29,38,39] (called password-authenticated server-aided signatures in [17]). In
this line of research, roughly speaking, signing operations are made more secure
by employing threshold signing and external clouds (or hardware devices), so
that signatures can be generated only when the original signer authenticates to
the clouds and cooperate with the clouds having shares of a signing key. Such
a technique can make one-time delegation possible by letting a delegator secret-
share the signing key between a delegatee and clouds, and the clouds erase the
shares (i.e., key-disabling or rate-limiting the signing requests) after the del-
egatee accessed the clouds for signing operations. However, such an existing
approach may be insufficient in the context of delegation (where a delegatee is
also a potential adversary) due to the following: When one-timeness is broken in
the worst case (i.e., a delegatee signed more than once illegally, given only the
one-time signing right, e.g., via cloud breaches), it would be desirable for the del-
egator to be able to detect the fact from the generated and collected signatures.
However, the existing works do not enable the delegator to detect it because
all the signing rights use the same key and the signatures generated illegally
are indistinguishable from the legal ones. This drawback may deter the delega-
tors from relying on such delegation because no perfect protection against cloud
breaches exists. Further, simply using different signing keys for each delegation
may make it difficult to realize delegation of unlinkable signing rights.

Our Contributions. We propose efficient delegation of signing rights such that
it is one-time, unlinkable for clouds as well as the delegator and multi-run-
detectable even if one-timeness is broken, which means that the delegator can
know the fact that one-time signing right was exerted more than once illegally
from the generated and collected signatures1. To this end, we extend the existing
approach using one cloud (e.g., [17,29]) to the setting with multiple clouds and
Okamoto-Schnorr blind signatures, and combine it with anonymous credentials
such that no master signing key needs to be shared among the delegatee and
the clouds. In the setting of one cloud, the delegatee does not need to check the
validity of the response from the cloud because it can be checked by verifying
1 As in e-cash schemes, we believe that it is a natural assumption that the signatures

generated by the delegatees are eventually collected by the delegator.

One-Time Delegation of Unlinkable Signing Rights and Its Application 105

the resulting signature, but in our setting of multiple clouds, we need an efficient
way of checking the validity of each response, and for that, we use a variant of
the MACs based on secret sharing in [28]. Further we show a natural application
of our one-time delegation to e-cash where double-spending is prevented and
even if one-timeness is broken, double-spenders are identified. Our scheme does
not require clouds to interact with each other, so will enjoy easy deployment as
well.

Other Related Work . Group signatures (e.g., [6,34]) and its generalized
version (also called anonymous proxy signatures, e.g., [31]2) can also be
viewed as delegation of unlinkable signing rights, but one-timeness has not
been much explored. In the area of (delegatable) anonymous credentials (e.g.,
[9,21,23,31,42]), there exists a notion called k-times credential (e.g., [3,14,43]),
which allows a user to show a credential unlinkably up to k times, but the user
is not prevented from showing the same credential more than k times (although
identified after k +1 showings). Revocation of anonymous credentials is possible
(e.g., [1,16]). For example, in [1], revocation is realized with accumulators that
maintain non-revoked or revoked users in an anonymous way efficiently, and in
[16], an attribute in the credential corresponds to an expiration date, and the cre-
dential issuer puts update values for each non-revoked user on a public bulletin
board periodically such that only a non-revoked user can retrieve their corre-
sponding value and update their credential for the new time period. Although
this kind of revocation is useful in many situations, it will be insufficient for
our purpose because we need revocation immediately after one showing of the
credential.

The systems like [36,40] also address delegation of credentials such as pass-
words and signing keys with TEEs3. In, e.g., [40], a delegator just sends their cre-
dential to a TEE residing on the delegatee’s computer (or TEE on the centrally
brokered system) such that the delegatee can later use the delegated credential
inside the TEE with appropriate authentication. Compared with [36,40], our
approach (1) avoids putting the (master) signing key of a delegator directly in
clouds, and (2) tries to reduce the reliance on TEEs by using distributed clouds
such that the security is guaranteed even if part of clouds are corrupted.

We construct e-cash by applying our one-time delegation scheme. In the
offline e-cash model [26], a bank does not need to be involved in the payment,
but double-spending can only be detected without being prevented. In the online
e-cash model [22–24], double-spending is prevented by the bank being online to
be involved in the payment. Our e-cash scheme based on one-time delegation can
also prevent double-spending without the online bank in the payment, but with

2 In anonymous proxy signatures, anyone can act as a group manager by delegating
its signing rights to others who can then unlinkably sign, and in addition, received
rights can be re-delegated.

3 One-timeness is not a main theme in [36,40], but it will be possible if the delegator
specifies a delegation policy enforcing one-timeness for TEEs.

106 T. Nishide

the increased communication overhead due to payers’ access to clouds4, which
we believe can be alleviated, e.g., by the emerging 5G technology. In the e-cash
scheme of [12,13], a tamper-proof device such as smartcards (sometimes called
observer [25]) is issued and delivered to a user by the bank. Roughly speaking,
one-timeness is realized by the fact that spending e-cash needs the assistance
of the device (i.e., part of computation needs to be done by the device holding
partial secret values, and the device is supposed to refuse to reuse the same
e-cash). Although the scheme in [12,13] is efficient, as pointed out in e.g., [5], its
core building block, blind signature, does not have a proof of security, and the
exculpability property is not achieved when applied to e-cash.

2 Preliminaries

Notation . We use λ ∈ N as a security parameter. We assume a random ora-
cle (RO) which can be viewed as an idealized hash function, and denote it by
H : {0, 1}∗ → {0, 1}2λ (actually the range varies according to the context). We
denote string concatenation by ‖.

Bilinear Groups. Bilinear groups consist of three cyclic groupsG1,G2, andGT of
prime order p, and have a bilinear pairing e : G1 × G2 → GT with the properties:
(1) ∀g ∈ G1, g̃ ∈ G2 and a, b ∈ Zp, e(ga, g̃ b) = e(g, g̃)ab, (2) ∀g �= 1

G1
and

g̃ �= 1
G2

, e(g, g̃) �= 1
GT

, (3) the pairing e can be computed efficiently. In this work,
we use type-3 pairings where DDH holds in both G1 and G2 [32]5.

Okamoto-Schnorr (OS) Signature . The OS signature scheme [41] is obtained
by applying the Fiat-Shamir transform [30] to the OS proof of knowledge, and
the OS scheme enjoys witness indistinguishability6. The construction is given
in Fig. 1. We also show the OS blind signatures used in Sect. 3. In the OS
blind signature scheme, OS.KeyGen and OS.Vrfy remain the same, but OS.Sign
is replaced with OS.SigIssue protocol between a signer S and user U (Fig. 1).

Proof of Knowledge for Pedersen Commitment . We show a proof of
knowledge (PK) of the discrete logarithm representation in a Pedersen commit-
ment in Fig. 2, which is a Σ protocol and can be viewed as a generalization of the
Schnorr proof of knowledge. We assume that the protocol in Fig. 2 is made non-
interactive in the RO model by applying the Fiat-Shamir transform [30], and use
the Camenisch-Stadler [18] notation such as PK{(x1, . . . , xk) : h = g

x1
1 · · · gxk

k }
to denote this non-interactive zero-knowledge proof of knowledge of (x1, . . . , xk).
Similarly we use the notation SPK{(x1, . . . , xk) : h = g

x1
1 · · · gxk

k }(m) to denote
the signature on m (i.e., signature based on a PK like OS signatures).

It is well known that, for this PK, there exist a knowledge extractor EΣ

able to extract witnesses and zero-knowledge simulator SΣ able to generate
indistinguishable views by controlling the RO, which are used in security proofs.
4 In the context of online e-cash, our approach can be viewed as the bank’s outsourcing

double-spending checks securely to the clouds.
5 Type-3 pairings are considered to be the most efficient [32,42].
6 We need this property in the proof of Theorem 2, and this is why we need OS instead

of plain “Schnorr”.

One-Time Delegation of Unlinkable Signing Rights and Its Application 107

− OS.KeyGen(1λ) → (sk, pk): Choose a prime p, cyclic group G of order p, and
generators g, h ∈ G. The secret (signing) key sk is (x1, x2) ∈ Z

2
p, and public key

is pk = (g, h, p, y) where y = gx1hx2 .
− OS.Sign(sk, m ∈ {0, 1}∗) → (c, z1, z2): Choose random r1, r2 ∈ Zp, and compute

s ← gr1hr2 , c ← H(s m), zi ← ri − c · xi mod p for i = 1, 2
where H : {0, 1}∗ → Zp is modeled as an RO. The signature is (c, z1, z2).

− OS.Vrfy(pk, m, (c, z1, z2)): Check whether c
?= H(gz1hz2yc m), and if it holds,

the output is 1, and otherwise 0.
− OS.SigIssue(S(x1, x2), U(pk, m)) : // for blind signatures

1. S chooses random r1, r2 ∈ Zp, and sends s ← gr1hr2 to U .
2. U computes c ← H(s · gα1hα2yβ m) with random α1, α2, β ∈ Zp, and

sends c ← c − β mod p to S 6).
3. S sends zi ← ri − c · xi mod p (for i = 1, 2) to U .
4. If s = gz1hz2yc does not hold, U aborts, and otherwise U computes zi ←

zi + αi mod p for i = 1, 2, and the signature on m is (c , z1, z2).

Fig. 1. Okamoto-Schnorr (Blind) Signature (6Here we can see that U randomizes gr1hr2

and c′(= H(s · gα1hα2yβ ‖ m)). We note that the hash function is computed by U
instead of S in OS blind signatures.)

Authenticated Secret Sharing . We explain the MACs we use in the context
of secret sharing (see Sect. 3.1). This was proposed in [28], and it enables us to
efficiently check whether a reconstructed secret is correct. In Fig. 3, we show the
case where parties P1, P2 additively secret-share two secrets r, x, and reconstruct
a linear combination z = c′r + cx mod p of r and x (where c′, c are known to
P1, P2). In Sect. 3.1, we use a variant of this where first the delegator distributes
the shares of secrets, MAC key, and MAC tags, and later the delegatee can check
whether the shares sent by clouds are correct in reconstructing a secret.

− Inputs: A prover P has commitment h =
∏k

i=1 g
xi
i and gives the zero-knowledge

proof of knowledge of {xi ∈ Zp}1≤i≤k to a verifier V.
− Auxiliary inputs: The commitment h and generators g1, . . . , gk are public in-

formation and known to V.
− The protocol:

1. P chooses random ri ∈ Zp and sends R ← ∏k
i=1 g

ri
i to V.

2. V sends random c ∈ Zp to P.
3. P computes and sends zi ← ri + c · xi mod p to V.
4. If Rhc =

∏k
i=1 g

zi
i holds, V accepts the proof, and otherwise rejects.

Fig. 2. Proof of knowledge for Pedersen commitment

Anonymous Credential . An anonymous credential scheme (e.g., [5,42]) con-
sists of the following algorithms:

108 T. Nishide

− Inputs: The secrets r, x, MAC key α, and MAC tags αr, αx are additively
secret-shared as
r = r1 + r2 mod p, x = x1 + x2 mod p, α = α1 + α2 mod p,
α · r = m

(r)
1 + m

(r)
2 mod p, α · x = m

(x)
1 + m

(x)
2 mod p where p is a prime and

the shares with subscript i are held by Pi.
− Output: P1 and P2 reconstruct z = c′r + cx mod p if the MAC verification is

successful, and otherwise abort.
− The protocol:

1. Each Pi publishes its share zi = c′ri +cxi mod p of z (we note that malicious
Pi may publish incorrect zi).

2. Each Pi computes a candidate value z′ = z1 + z2 mod p of z.
3. Each Pi computes vi = αiz

′ − (c′m(r)
i + cm

(x)
i) mod p, and publishes the

commitment of vi, Com(vi).
4. Each Pi publishes the opening of Com(vi), and checks whether v1 + v2

?=
0 mod p. If v1+v2 = 0 mod p, each Pi accepts z′ as a correctly reconstructed
value, and otherwise aborts.

Fig. 3. Reconstruction of secret in authenticated secret sharing [28]

– AC.Setup(1λ) → params: Generate public parameters params.
– AC.IKeyGen(params, w) → (pkI , skI): Generate a public key pkI and secret

key skI of the credential issuer I where w is the number of attributes. We
implicitly assume that pkI includes params, and skI includes pkI .

– AC.CredIssue(I(skI), U(attU)) is an issuance protocol between I and U . At
the end of the protocol, U obtains the credential crU on attributes attU .

– AC.CredShow(U(attU , crU), V(pkI)) is a show protocol between U and a ver-
ifier V. At the end of the protocol, if the crU is a valid credential on attU
issued by I, V accepts the fact that U possesses the valid crU . If necessary, U
can also disclose part of attU to V in this protocol.

Ideal Functionality Fca. We assume a public key infrastructure where the
delegator and clouds register their public keys, modeled by Fca [20].

Ideal Functionality Fauth. We assume parties communicate via authenticated
(but public) channels modeled by Fauth [19].

3 One-Time Delegation of Okamoto-Schnorr Signing

Basic Idea . We consider one-time delegation of Okamoto-Schnorr (OS) signing.
Here the OS signing key itself is shared among the delegatee and clouds, so it is
not multi-run-detectable, but this serves as an important building block for one-
time multi-run-detectable delegation scheme in Sect. 4. Conceptually one-time
delegation can be viewed as if a delegator hands a delegatee a signing program
that can be run only once with a message to be signed. Making abstraction of how
such a signing program is implemented for now, we call it an OS signing one-time

One-Time Delegation of Unlinkable Signing Rights and Its Application 109

Algorithm 1. [OS.BSign(x1, x2, r1, r2, m̄)]otp
Require: m ∈ {0, 1}∗, 〈g, h, y = gx1hx2 , p, s = gr1hr2 , {[ri − c̄ · xi mod p]otp}2

i=1〉
Ensure: signature (c′, z′

1, z′
2) on m specified by Eotp under the public key y

1: Eotp chooses random α1, α2, β ∈ Zp, and computes c′ ← H(s · gα1hα2yβ ‖ m)
2: Eotp computes c ← c′ − β mod p
3: Eotp runs zi ← [ri − c̄ · xi mod p]otp with clouds by substituting c for c̄ for i = 1, 2
4: Eotp computes z′

i ← zi + αi mod p for i = 1, 2, and obtains (c′, z′
1, z′

2)

program (OTP), and running the OTP actually involves interaction between the
delegatee and clouds, but does not need interaction with the delegator (i.e., the
delegator can be offline when the OTP is run). In this context, we call a delegator
an OTP generator Gotp, and a delegatee an OTP executor Eotp. We consider how
to construct the OS signing OTP (sOTP) from the algorithm OS.Sign(sk,m)
(Fig. 1). To make the computation performed in the OTP as small as possible,
we avoid simply embedding the whole computation of OS.Sign(sk,m) including
the hash function into the OTP, and embed only the computation part zi ←
ri−cxi mod p into the OTP, thus leading to much better efficiency. Here an input
variable of an OTP specified by Eotp is denoted by, e.g., m̄, and a hardcoded
secret variable is denoted as is. If we let [f]otp denote the OTP of f , the OTP
of OS.Sign(sk,m) can be like a tuple [OS.Sign(sk, m̄)]otp = 〈g, h, y, p, s, {[ri −
c̄ · xi mod p]otp}2i=1〉 where y = gx1hx2 , s = gr1hr2 , c̄ ← H(s ‖ m̄). I.e., Eotp

specifies the variable m̄ and obtains the output by: (1) compute c ← H(s ‖ m),
(2) run [ri− c̄·xi mod p]otp by substituting c for c̄ for i = 1, 2. We can notice that
actually this can be viewed as an OS blind signing operation because the hash
calculation is not done by the signer (OTP). Therefore, the randomization of s =
gr1hr2 and the hash value c is also possible as U does in OS.SigIssue (Fig. 1). As
a result, the basic building block for an OS sOTP [OS.BSign(x1, x2, r1, r2, m̄)]otp
is Algorithm 1.

3.1 Instantiating OS Signing OTP with Clouds

Now we focus on [ri − c̄ · xi mod p]otp in the OS signing OTP (sOTP), and
consider how to instantiate this OTP with clouds. The basic idea is simple and
efficient. The main part [ri − c̄ · xi mod p]otp is just computing ri − cxi mod p
with input c specified later by Eotp, so Gotp can secret-share {ri, xi}2i=1 with the
delegatee Eotp and clouds, and let them compute ri − cxi mod p distributively7

with the shares and let the clouds erase the shares later. Although corrupted
clouds will not erase the shares correctly, one-timesness can be achieved if there
exists at least one honest cloud with secure erasure. We construct our protocol
such that Eotp needs to authenticate to clouds by using a password in running
an sOTP. First we define the ideal functionality FBOS

otp (Fig. 4) corresponding to
our real protocol, which allows Eotp to specify c and compute ri − cxi mod p for
i = 1, 2 only once, and for FBOS

otp , we assume the following:

7 No interaction among clouds is needed here thanks to the simplicity of OS signing.

110 T. Nishide

1. OTP Generation Request. On input (OTP-GENREQ, sid, Gotp, pwd) from Eotp:
− Record (otpgen-req, sid, Eotp,Gotp, pwd).
− Send (OTP-GENREQ, sid, Eotp,Gotp) to S. Upon receiving ok from S, output

(OTP-GENREQ, sid, Eotp) to Gotp.
2. OTP Generation. On input (OTP-GEN, sid, Eotp, g, h, p, x1, x2) from Gotp:

− Look up a record (otp-genreq, sid, Eotp,Gotp, pwd)8).
− Choose random r1, r2 ∈ Zp and record (otp, sid,Eotp,Gotp, pwd, p, x1, x2, r1,

r2, run-flg), where run-flg = not-run. Delete (otp-genreq, sid,Eotp,Gotp, pwd).
− If Eotp is corrupted, send (OTP-GEN-LEAK1, sid,Gotp,Eotp, g, h, p, gx1hx2 ,

gr1hr2) to S. If at least one Sj is corrupted, send (OTP-GEN-LEAK2, sid,
Gotp, p) to S.

− Send (OTP-GEN, sid, Gotp, Eotp) to S. Upon receiving ok from S, output
(OTP, sid, Gotp) to Eotp. For each Sj , send (OTP-GEN, sid, Gotp, Sj) to S.
Upon receiving ok from S, output (OTP-SHARE, sid, Gotp) to each Sj .

3. Running OTP. On input (OTP-RUN, sid, {qidj}m
j=1, pwd’, c′) from Eotp:

− Look up records (otp, sid, Eotp, ∗, pwd, p, x1, x2, r1, r2, run-flg).
− If the record (otp-running, sid, Eotp) already exists, wait until it is deleted.
− Record (otp-running, sid, Eotp).
− Set ath-flg ← pwdok, rslti ← ri − c′xi mod p for i = 1, 2 if pwd = pwd’, and

otherwise ath-flg ← pwdwrong, rslti ← ⊥. Initialize otp-finish ← true.
− // OTP was already run

If run-flg = run, output (OTP-RUN, sid, {qidj}m
j=1, ⊥) to Eotp

− Else, if Eotp is corrupted, output (OTP-RUN, sid, {qidj}m
j=1, {rslti}2

i=1) to
Eotp // OTP can be run

− Else, if no Sj is corrupted, // Eotp is honest
• send (OTP-RUN, sid, {qidj}m

j=1, Eotp) to S. Upon receiving ok from S,
output (OTP-RUN, sid, {qidj}m

j=1, {rslti}2
i=1) to Eotp

− Else, send (OTP-RUN-LEAK, sid, {qidj}m
j=1, Eotp, c′, ath-flg) to S9), set

otp-finish ← false, and record (otp-running-wait-share, sid, {qidj}m
j=1, Eotp,

c′, ath-flg). // Eotp is honest and at least one of {Sj}m
j=1 is corrupted

− If otp-finish = true and ath-flg = pwdok, update the record
(otp, sid, Eotp, ∗, pwd, p, x1, x2, r1, r2, run-flg) such that run-flg ← run.

− If otp-finish = true, delete (otp-running, sid, Eotp).
4. Corrupted Server Proceeds. On input (OTP-SH-PROC, sid, {qidj}m

j=1, Eotp,
sh-flg) from S where sh-flg ∈ {correct-sh, ⊥}:
− Look up records (otp, sid,Eotp, ∗, pwd, p, x1, x2, r1, r2, run-flg), (otp-running,

sid,Eotp), (otp-running-wait-share, sid, {qidj}m
j=1,Eotp, c′, ath-flg).

− Initialize rslti ← ⊥ for i = 1, 2.
− // At least one Sj is honest, so if the password is wrong, Eotp cannot

// obtain the correct result. Note that S can ignore ath-flg if it wants.
If ath-flg = pwdok and sh-flg = correct-sh, rslti ← ri −c′xi mod p for i = 1, 2.

− Send (OTP-RUN, sid, {qidj}m
j=1, Eotp) to S. Upon receiving ok from S, out-

put (OTP-RUN, sid, {qidj}m
j=1, {rslti}2

i=1) to Eotp.
− If ath-flg = pwdok, update the record (otp, sid, Eotp, ∗, pwd, p, x1, x2, r1,

r2, run-flg) such that run-flg ← run. Delete (otp-running-wait-share, sid,
{qidj}m

j=1,Eotp, c′, ath-flg), (otp-running, sid,Eotp).

Fig. 4. FBOS
otp for OS Signing OTP (“//” means comments and “∗” is a

wildcard)(8When we say that a functionality “looks up a record”, we mean that if
the record is not found, the functionality just ignores the input. 9In this case, S can
only prevent Eotp from obtaining correct shares by responding with incorrect shares.)

One-Time Delegation of Unlinkable Signing Rights and Its Application 111

– The existence of clouds {Sj}m
j=1 is public information.

– An (ideal) adversary (i.e., simulator) S is static (i.e., non-adaptive).
– sid is a common globally unique session ID both Gotp and Eotp have previously

agreed upon (i.e., each OTP has its own unique sid) as in [17].
– qidj is a common globally unique query ID both Sj and Eotp have previously

agreed upon each time Eotp tries to retrieve a share from Sj as in [17].

Then we give the full description of OTP generation and OTP execution in
Fig. 5, 6 respectively. For password authentication, we extend the method in [17]
such that Eotp can specify the password for multiple clouds. To let the simulation-
based security proof go through, here we need to use additive secret sharing
rather than Shamir’s secret sharing8 as in [17,38,39]. We explain the overview
of how to adapt and embed the MAC scheme in [28] into our construction such
that Eotp can check the correctness of the shares sent by the clouds. Suppose
the cloud Sj holds the shares {r′

i,j , x′
i,j}2i=1, and sends {r′

i,j − c′x′
i,j mod p}2i=1

to Eotp in response to c′ specified by Eotp. First we outline the process for Gotp.

1. Gotp chooses a random MAC key α(j) ∈ Zp and prepares its additive sharing

α(j) = α
(j)
Eotp

+ α
(j)
Sj

mod p.

2. Gotp prepares the additive sharings of MAC tags {α(j)r′
i,j , α(j)x′

i,j}2i=1

{α(j)r′
i,j = m

(j,r′
i)

Eotp
+ m

(j,r′
i)

Sj
mod p, α(j)x′

i,j = m
(j,x′

i)
Eotp

+ m
(j,x′

i)
Sj

mod p}2i=1

3. Gotp sends 〈α(j)
Sj

, {r′
i,j , x′

i,j , m
(j,r′

i)
Sj

, m
(j,x′

i)
Sj

}2i=1〉 to Sj , and 〈α(j)
Eotp

, {m
(j,r′

i)
Eotp

,

m
(j,x′

i)
Eotp

}2i=1〉 to Eotp.

Next we outline the protocol between Sj and Eotp running an sOTP.

1. Given c′ by Eotp
9, for i = 1, 2, Sj computes z′

i,j = r′
i,j − c′x′

i,j mod p and

similarly vi,Sj
= α

(j)
Sj

z′
i,j−(m(j,r′

i)
Sj

−c′·m(j,x′
i)

Sj
) mod p, and sends {z′

i,j , vi,Sj
}2i=1

to Eotp.

2. For i = 1, 2, Eotp computes v
(j)
i,Eotp

= α
(j)
Eotp

z′
i,j − (m(j,r′

i)
Eotp

− c′ · m
(j,x′

i)
Eotp

), and

checks whether v
(j)
i,Eotp

+ vi,Sj

?= 0 mod p. If 0, Eotp accepts {z′
i,j}2i=1, and

otherwise aborts.

For malicious Sj to cheat here such that Eotp accepts z′
i,j + Δ = r′

i,j − c′x′
i,j +

Δ (where Δ �= 0), Sj needs to compute the following v∗
i,Sj

by guessing α
(j)
Eotp

8 The adversarial Eotp can send different c’s to {Sj}m
j=1 in Step 3 of Fig. 6 maliciously

because we do not require {Sj}m
j=1 to coordinate with each other to reject such

requests (because we tried to keep the protocol as simple as possible). This makes
the use of Shamir’s secret sharing non-trivial in terms of the simulation in the proof.

9 We note that the value c′ does not need to be hidden from {Sj}m
j=1 because it is

randomized in OS blind signing.

112 T. Nishide

We assume the following:
− Gotp has a signing key (x1, x2) ∈ Z

2
p and public key y = gx1hx2 with a group G

of prime order p and generator g, h ∈ G.
− Each cloud is denoted by Sj where 1 ≤ j ≤ m.
− Gotp and each Sj register their public keys pkGotp

, pkSj
with Fca at the beginning

of the protocol.
− Gotp and Eotp have already agreed upon generating an sOTP.
− The communication between parties is done via Fauth.

1. On input (OTP-GENREQ, sid, Gotp, pwd), Eotp chooses random seed ∈ {0, 1}λ,
and generates {saltj , hj}m

j=1 such that
saltj ← H(seed ‖ Sj), hj ← H(saltj ‖ pwd).
Eotp obtains pkGotp

, {pkSj
}m

j=1 from Fca, and sends
(sid, Enc(pkGotp

, pkEotp
, {Enc(pkSj

, hj)}m
j=1)) to Gotp where Enc(pk, m) de-

notes the ciphertext of m under the key pk.
2. Gotp decrypts and receives (sid, pkEotp

, {Enc(pkSj
, hj)}m

j=1) from Eotp and out-
puts (OTP-GENREQ, sid, Eotp).
On input (OTP-GEN, sid, Eotp, g, h, p, x1, x2), Gotp chooses random r1, r1 ∈ Zp,
generates s = gr1hr2 , and splits {ri, xi}2

i=1 into ri = r′
i + r′′

i mod p, xi = x′
i +

x′′
i mod p at random.

3. To (m, m)-secret-share {r′
i, x′

i}2
i=1 among {Sj}m

j=1, Gotp generates the random
shares {r′

i,j , x′
i,j}1≤j≤m

i=1,2 such that

r′
i =

m∑
j=1

r′
i,j mod p and x′

i =
m∑

j=1

x′
i,j mod p for i = 1, 2.

4. For 1 ≤ j ≤ m, Gotp chooses random MAC keys {α(j) ∈ Zp}m
j=1, and prepares

the following additive sharings at random:
α(j) = α

(j)
Eotp

+ α
(j)
Sj

mod p,

α(j)r′
i,j = m

(j,r′
i)

Eotp
+ m

(j,r′
i)

Sj
mod p, α(j)x′

i,j = m
(j,x′

i)

Eotp
+ m

(j,x′
i)

Sj
mod p for i = 1, 2.

5. Gotp obtains {pkSj
}m

j=1 from Fca, and sends to each Sj

(sid, Enc(pkSj
, hj), Enc(pkSj

, 〈α(j)
Sj

, {r′
i,j , x′

i,j , m
(j,r′

i)

Sj
, m

(j,x′
i)

Sj
}2

i=1〉)).
6. An OS sOTP P is as follows:

P = 〈sid, g, h, y
︸︷︷︸

gx1hx2

, p, s
︸︷︷︸

gr1hr2

, {r′′
i , x′′

i }2i=1, {α
(j)
Eotp

}m
j=1, {m

(j,r′
i)

Eotp
, m

(j,x′
i)

Eotp
}1≤j≤m

i=1,2 〉

Gotp sends (sid, Enc(pkEotp
, P)) to Eotp.

7. Sj receives (sid, Enc(pkSj
, hj), Enc(pkSj

, 〈α(j)
Sj

, {r′
i,j , x′

i,j , m
(j,r′

i)

Sj
, m

(j,x′
i)

Sj
}2

i=1〉))
from Gotp, stores 〈sid, hj , α

(j)
Sj

, {r′
i,j , x′

i,j , m
(j,r′

i)

Sj
, m

(j,x′
i)

Sj
}2

i=1〉, and outputs

(OTP-SHARE, sid, Gotp).
8. Eotp receives (sid, Enc(pkEotp

, P)) from Gotp, stores (seed, P)12), and outputs
(OTP, sid, Gotp).

Fig. 5. Protocol for Generating an OS Signing OTP (12We assume that pwd exists only
in Eotp’s brain (not stored in Eotp’s computer).)

One-Time Delegation of Unlinkable Signing Rights and Its Application 113

unknown to Sj , but the probability that the guess is correct is only 1/p.

v∗
i,Sj

= −v
(j)
i,Eotp

= −(α(j)
Eotp

(r′
i,j − c′x′

i,j + Δ) − (m(j,r′
i)

Eotp
− c′ · m

(j,x′
i)

Eotp
))

= −α
(j)
Eotp

Δ + α
(j)
Sj

(r′
i,j − c′x′

i,j) − (m(j,r′
i)

Sj
− c′m(j,x′

i)
Sj

)

Although discrete-log based commitments can also be used to check the response
{z′

i,j}2i=1 from Sj here, the above MACs are much more efficient in that Eotp

needs only modular addition/multiplication rather than exponentiations.

− In this protocol for running an OS sOTP, Eotp interacts with each Sj .
− Eotp has an OS sOTP P (Fig. 5) and is given input c′ where c′ is computed as

c ← H(s·gα1hα2yβ ‖ m), c′ ← c−β mod p with s in P , random α1, α2, β ∈ Zp
14),

and message m ∈ {0, 1}∗ to be signed.

1. On input (OTP-RUN, sid, {qidj}m
j=1, pwd, c′), to retrieve a share from each Sj ,

Eotp computes, for authentication,

athj ← H(sid ‖ qidj ‖
hj︷ ︸︸ ︷

H(H(seed ‖ Sj)︸ ︷︷ ︸
saltj

‖ pwd)),

and sends (sid, qidj , Enc(pkSj
, pkEotp

, c′, athj)) to each Sj .
2. Each Sj decrypts and obtains (sid, qidj , pkEotp

, c′, athj) from Eotp. If Sj does not
have a data tuple corresponding to sid or it does not hold that athj = H(sid ‖
qidj ‖ hj), Sj sets rslti ← ⊥ for i = 1, 2. Otherwise Sj computes, for i = 1, 2,

z′
i,j ← r′

i,j − c′ · x′
i,j mod p, vi,Sj

← α
(j)
Sj

z′
i,j − (m(j,r′

i)

Sj
− c′ · m

(j,x′
i)

Sj
) mod p,

erases 〈sid, hj , α
(j)
Sj

, {r′
i,j , x′

i,j , m
(j,r′

i)

Sj
, m

(j,x′
i)

Sj
}2

i=1〉 15)since it is no longer needed,

and sets rslti ← 〈z′
i,j , vi,Sj

〉. Sj sends (sid, qidj , Enc(pkEotp
, {rslti}2

i=1)) to Eotp.

3. If Eotp decrypts and receives {rslti}2
i=1 from Sj and rslti �= ⊥, Eotp computes

v
(j)
i,Eotp

= α
(j)
Eotp

z′
i,j − (m(j,r′

i)

Eotp
− c′ · m

(j,x′
i)

Eotp
) mod p,

and verifies v
(j)
i,Eotp

+ vi,Sj

?= 0 mod p for i = 1, 2. If the verification fails or
rslti = ⊥, Eotp outputs (OTP-RUN, sid, {qidj}m

j=1, ⊥).
Otherwise Eotp has {z′

i,j}1≤j≤m
i=1,2 , computes, for i = 1, 2,

z′
i = ri − c′xi = (

∑m
j=1 z′

i,j) + (r′′
i − c′x′′

i) mod p,
and outputs (OTP-RUN, sid, {qidj}m

j=1, {z′
i}2

i=1).

Fig. 6. Protocol for Running an OS Signing OTP (14This randomizability makes the
resulting signature unlinkable even for the clouds as well as the delegator because c′

(visible to the clouds) is independent of the signature. 15We assume that while a thread

running in Sj is accessing a data tuple 〈sid, hj , α
(j)
Sj

, {r′
i,j , x′

i,j , m
(j,r′

i)

Sj
, m

(j,x′
i)

Sj
}2

i=1〉,
the access to this tuple (with tuple ID sid) by other threads is prevented with appro-
priate mutual exclusion.)

114 T. Nishide

Theorem 1. The protocol in Fig. 5, 6 securely realizes the functionality FBOS
otp

(Fig. 4) in the (Fca, Fauth)-hybrid and RO model, assuming that the static
adversary corrupts Eotp and at most (m − 1) clouds and the unforgeability of
the MAC scheme based on authenticated secret sharing.

We prove the above theorem in the full version by following the ideal/real simu-
lation paradigm. In the proof, basically we show that there exists a simulator S
that interacts with FBOS

otp and the adversary A and can generate an indistinguish-
able view for A by using only leakage from FBOS

otp without knowing {ri, xi}2i=1.

4 One-Time Multi-Run-Detectable Delegation Based
on Anonymous Credentials

Now we construct a one-time multi-run-detectable delegation scheme of unlink-
able signing rights with OS sOTPs and anonymous credentials (ACs) such that
a delegator does not need to embed their master signing key directly into the
OTP. First we construct a one-time AC (OAC) scheme, in which the credential
issuer can issue a one-time unlinkable credential which can be shown to a veri-
fier only once based on our OTPs. As an underlying AC scheme, we use the PS
scheme [42], which consists of the following:
− randomizable blind signatures with the message space of multiple attributes,
− zero-knowledge proof of knowledge of a signature.

Key Idea to combine OS sOTP and PS scheme: In the PS scheme, the
credential requestor U obtains a blind signature on the commitment to attU in
the issuance protocol, and in the show protocol, gives a zero-knowledge proof
of knowledge of attU . In our OAC scheme, the issuer adds hidden extra random
attributes a1,otp, a2,otp ∈ Zp to the commitment before signing it, and also hands
an OS sOTP including {ai,otp}2i=1 to U10. As a result, U is forced to use the sOTP
to prove knowledge of a signature in the show protocol because U cannot know
{ai,otp}2i=1 directly, and thus it leads to a one-time credential.

Building on the PS scheme and the above idea, our construction is given in Fig.
7. The main differences between the PS scheme and ours are:

– how to issue a credential in OAC.CredIssueotp,
– part of the prover’s process

is replaced with a run of an OS sOTP.
Although an OS sOTP is run in OAC.CredShowotp, the prover’s process is
the same as that of the PS scheme. Thus it is sufficient for us to prove that
OAC.CredIssueotp is a blind signature scheme, i.e., its blindness and unforgeabil-
ity with the following theorem (the proof is given in the full version).
10 {ai,otp}2

i=1 corresponding to a signing key in the OS scheme are fresh random and
used only once in our OAC, so the attack [7] on OS blind signatures does not apply
here because [7] needs concurrent polylog(λ) signing queries with the same signing
key.

One-Time Delegation of Unlinkable Signing Rights and Its Application 115

− OAC.Setupotp(1
λ): generate public parameters params = (p, G1, G2, GT , e) of a

type-3 bilinear group.
− OAC.IKeyGenotp(params, w): choose generators g ∈ G1, g̃ ∈ G2 and random

values (x, y1, . . . , yw, y1,otp, y2,otp, ys) ∈ Z
w+4
p , and compute

(X, Y1, . . . , Yw, Y1,otp, Y2,otp, Ys) ← (gx, gy1 , . . . , gyw , gy1,otp , gy2,otp , gys),
(X̃, Ỹ1, . . . , Ỹw, Ỹ1,otp, Ỹ2,otp, Ỹs) ← (g̃ x, g̃ y1 , . . . , g̃ yw , g̃ y1,otp , g̃ y2,otp , g̃ ys)
where pkI = (g, {Yi}w

i=1, Y1,otp, Y2,otp, Ys, g̃, X̃, {Ỹi}w
i=1, Ỹ1,otp, Ỹ2,otp, Ỹs) and

skI = X. The values (Yi, Ỹi) are related to attribute i, and (g, g̃) are said to be
related to dummy attribute 0.

− OAC.CredIssueotp(I(skI), U(attU)) is the following protocol between I and U .
1. To obtain a signature on the attributes attU = (a1, . . . , aw) ∈ Z

w
p , U generates

C ← gr · Y
sU
s · ∏w

i=1 Y
ai

i with random r, sU ∈ Zp, and sends C to I.
2. U gives to I the following proof of knowledge PK (Fig. 2) regarding C 16),

PK{(r, sU , a1, . . . , aw) : C = gr · Y
sU
s · ∏w

i=1 Y
ai

i }.
3. If the PK regarding C is valid, I chooses random values

u, a1,otp, a2,otp, r1,otp, r2,otp sI ∈ Zp, and sends U the following:
σ′ = (σ′

1, σ′
2) = (gu, (X · C · Y

a1,otp
1,otp · Y

a2,otp
2,otp · Y

sI
s)u),

OTP, P = 〈{Ỹi,otp}2
i=1, Ỹ

a1,otp
1,otp · Ỹ

a2,otp
2,otp , sI , p, Ỹ

r1,otp
1,otp · Ỹ

r2,otp
2,otp ,

{[ri,otp − c̄ · ai,otp mod p]otp}2
i=1〉

4. U obtains the signature σ on (attU , a1,otp, a2,otp, sn) where sn = sU + sI as

σ = (σ1, σ2) = σ′
1, σ′

2/σ′
1

r) = (gu, (X · Y
a1,otp
1,otp · Y

a2,otp
2,otp · Y sn

s ·
w∏

i=1

Y
ai

i)u).

The signature on (attU , a1,otp, a2,otp, sn) can be verified as

σ1 �= 1G1
and e(σ1, X̃ · Ỹ

a1,otp
1,otp · Ỹ

a2,otp
2,otp · Ỹ sn

s · ∏w
i=1 Ỹ

ai
i) ?= e(σ2, g̃).

By viewing σ = (σ1, σ2) as a signature on (0, attU , a1,otp, a2,otp, sn) where the
first entry is the value of dummy attribute 0, U can randomize σ to obtain
another fresh signature on (t, attU , a1,otp, a2,otp, sn) by computing new σ ←
(σs

1, (σt
1 · σ2)s) with random s, t ∈ Zp. We note that the portion corresponding

to (attU , a1,otp, a2,otp, sn) cannot be changed.
〈σ, (t, attU , a1,otp, a2,otp, sn), P 〉 corresponds to the credential crU .

− OAC.CredShowotp(V(pkI , σ, sn), U(crU)) is a show protocol between U and
verifier V. What U does is to prove knowledge of a (randomized) signa-
ture σ. Since the verification of the randomized signature σ = (σ1, σ2) on
(t, attU , a1,otp, a2,otp, sn) can be done as

e(σ1, X̃ · g̃ t · Ỹ
a1,otp
1,otp · Ỹ

a2,otp
2,otp · Ỹ sn

s · ∏w
i=1 Ỹ

ai
i) ?= e(σ2, g̃),

this verification can also be viewed as

e(σ1, g̃)t ·
2∏

i=1

e(σ1, Ỹi,otp)
ai,otp · e(σ1, Ỹs)

sn ·
w∏

i=1

e(σ1, Ỹi)
ai

?=
e(σ2, g̃)
e(σ1, X̃)

,

so with bases {e(σ1, g̃), {e(σ1, Ỹi,otp)}2
i=1, e(σ1, Ỹs), {e(σ1, Ỹi)}w

i=1}, giving the
following PK leads to proving knowledge of a signature:
PK

{
(t, a1, . . . , aw, a1,otp, a2,otp, sn) : e(σ2, g̃)/{e(σ1, X̃) · e(σ1, Ỹs)

sn} =

e(σ1, g̃)t ·
w∏

i=1

e(σ1, Ỹi)
ai ·

2∏
i=1

e(σ1, Ỹi,otp)
ai,otp

}
.

Here V requires U to disclose sn, and U runs the OS sOTP P 17).

Fig. 7. One-Time Anonymous Credential Scheme (16Depending on applications, U can
send part of attU in the clear to I, and I will judge that U is qualified as the portion
of attU . In the underlying non-blind PS multi-message signature [42, Sect. 4.2], these
clear attU corresponds to multiple messages. 17The details of how running an OTP is
combined with a (signature based on a) PK can be found in Fig. 10, which is similar
to this PK of a signature.)

116 T. Nishide

Theorem 2. The OAC scheme in Fig. 7 is one-time, blind, and unforgeable
based on the security of OTPs and the underlying PS scheme in the RO model.

Now we can see that the OAC scheme in Fig. 7 can be turned into an sOTP
because the PK in OAC.CredShowotp can be turned into an SPK as OS sig-
natures by using the Fiat-Shamir transform. Thus the credential issuer and
holder can be viewed as a delegator and delegatee respectively. The value sn
in OAC.CredIssueotp cannot be changed by U in OAC.CredShowotp because of the
unforgeability of the PS scheme, and needs to be disclosed in the resulting signa-
ture, so if the delegator finds more than one same sn in the collected signatures,
the delegator can detect the fact that an sOTP was run more than once, thus
achieving multi-run-detectability (if necessary, the delegator can announce that
sn is blocked). The PS scheme and OS sOTPs are unlinkable because of random-
izability, so our resulting sOTP also enjoys unlinkability for both the delegator
and clouds.

5 E-Cash Based on Signing OTPs

Building on our sOTPs based on OACs (Fig. 7), we construct an e-cash scheme.
In the traditional e-cash originating from [22], the following protocols exist:

– Withdraw protocol: A user U communicates with bank B, and receives elec-
tronic data (called e-coin), and B debits U ’s account the corresponding value.

– Spend protocol: U spends an e-coin by sending it to a merchant M.
– Deposit protocol: M deposits the e-coin spent by U to B, and B credits the

corresponding amount to the M’s account.

Employing our sOTP, our EC (Fig. 8, 9) prevents double-spending11 and fur-
ther identifies a double-spender even if sOTPs are broken. We adopt the elegant
framework [15] such that B can issue an e-coin including an sOTP and user’s ID
in the Withdraw protocol without embedding its master signing key, and two sig-
natures originating from the same e-coin (collected in the Deposit protocol) can
reveal the user’s ID. The scheme in [13, Sect. 6.3] takes a similar approach, but
the double-spender’s secret key is revealed, so “exculpability” is not achieved
(i.e., B can frame users), while ours reveals only the double-spender’s public
key according to [15], thus achieving exculpability. Following the e-cash security
model [11,15,37], we give the proofs in the full version, and discuss the addi-
tional possible extensions.

Batch Spending . What happens in the Spend protocol can be viewed as:
– Ui has an e-coin that can be viewed as a kind of public key certified by B.
– Ui signs the message from Mj with e-coin, and sends the signature to Mj .
– Then the value of the e-coin is transferred to Mj .

11 Our e-cash is somewhat incomparable to existing e-cash since we assume there exist
distributed partially trusted clouds as in [17,29], while other schemes do not.

One-Time Delegation of Unlinkable Signing Rights and Its Application 117

− EC.Setup(1λ) is the same as OAC.Setupotp(1
λ), and B obtains params =

(p, G1, G2, GT , e).
− EC.BKeyGen(params): first run OAC.IKeyGen(params, 3), and B obtain the signing

key skB = X, and partial public key
ppkB = (params, g, gv, gu, fu, g1,otp, g2,otp, gs, g̃, X̃, g̃v, g̃u, f̃u, g̃1,otp, g̃2,otp, g̃s).
Next B computes an additional key H(ppkB) → gu′ ∈ G1 with an appropriate
hash function H : {0, 1}∗ → G1,and lets pkB = (ppkB, gu′).

− EC.UKeyGen(params, pkB): Ui chooses their secret key skUi
∈ Zp for EC and resul-

tant public keys (pkUi
= g

skU
i

u , pk′
Ui

= g
skU

i
u′). Moreover Ui generates PK{(skUi

) :

pkUi
= g

skU
i

u ∧ pk′
Ui

= g
skU

i
u′ } and a signature σ(pkUi

, pk′
Ui

) on (pkUi
, pk′

Ui
) under

their PKI key pk(pki)Ui
, and sends (pkUi

, pk′
Ui

, pk(pki)Ui
, σ(pkUi

, pk′
Ui

), PK) to B 19),
which stores them in the user DB.

− EC.Withdraw(B(skB, pkUi
), Ui(skUi

, pkB)) is the following protocol between B
and Ui where Ui obtains an e-coin corresponding to v dollars 20).

1. Ui sends v, pkUi
, pk′

Ui
to B, and also gives PK{(skUi

) : pkUi
= g

skU
i

u } (Fig.

2) 21). B rejects the request if pkUi
is not found in the user DB.

2. Ui chooses random r, sUi
, ωu ∈ Zp, computes the following commitment C,

and gives the following PK to B.
PK{(r, sUi

, ωu) : C = gr · g
sU

i
s · f

ωu
u }

3. If the PK is valid, B chooses random u, sB, x1,otp, x2,otp, r1,otp, r2,otp ∈ Zp,
computes

C′ ← C ·pkUi
·gv

v ·gsB
s ·gx1,otp

1,otp ·gx2,otp
2,otp = gr ·gv

v ·g
sB+sUi
s ·g

skUi
u ·fωu

u ·gx1,otp
1,otp ·gx2,otp

2,otp ,

σ′ ← (σ′
1, σ′

2) = (gu, (X · C′)u),
and generates the OTP P as follows
P = 〈g̃1,otp, g̃2,otp, g̃

x1,otp
1,otp · g̃

x2,otp
2,otp , p, g̃

r2,otp
2,otp · g̃

r2,otp
2,otp ,

{[ri,otp − c̄ · xi,otp mod p]otp}2
i=1〉.

B sends σ′, sB, P to Ui, and debits Ui’s account v dollars.
4. Ui obtains the signature σ′′ on (v, sn, skUi

, ωu, x1,otp, x2,otp) where sn =
sB + sUi

(called serial number) as
σ′′ = (σ′′

1 , σ′′
2) = (σ′

1, σ′
2/σ′

1
r), which can be verified as

e(σ′′
1 , X̃ · g̃ v

v · g̃ sn
s · g̃

skU
i

u · f̃
ωu
u · g̃

x1,otp
1,otp · g̃

x2,otp
2,otp) ?= e(σ′′

2 , g̃).
Ui can obtain a randomized signature σco on (t, v, sn, skUi

, ωu, x1,otp, x2,otp)
with random s, t ∈ Zp and computing, σco = (σs

1, (σt
1 · σ2)

s).
The obtained e-coin co consists of (σco, t, v, sn, skUi

, ωu, P).

Fig. 8. E-Cash based on signing OTPs (1/2) (19We take the approach similar to group
signatures in [42]. This is needed to identify the user in the real world when disputes
related to double-spending occur. 20We define EC.Withdraw such that Ui can specify
v, but in practice, v may be a constant or chosen from a set of predefined e-coin
denominations to reduce linkability.)

118 T. Nishide

− EC.Spend(Mj(pkB, σco, v, sn), Ui(pkB, co)) is the following protocol between a
merchant Mj who has a signing key pair (skMj

, pkMj
) and Ui where Ui spends

an e-coin co corresponding to v dollars.
1. Mj sends pkMj

, infoj to Ui where infoj is a random bit string.
2. Ui computes cds ← H(pkMj

‖ infoj) called double-spending challenge where
H is a hash function (modeled as an RO), and the following commitments
Comco ← e(σ2, g̃)/e(σ1, X̃ · g̃ v

v · g̃ sn
s) (for proof of knowledge of a signature)

= e(σ1, g̃)t · e(σ1, g̃u)
skU

i · e(σ1, f̃u)
ωu · e(σ1, g̃1,otp)

x1,otp · e(σ1, g̃2,otp)
x2,otp ,

Comds ← g
skU

i
u′ · (g ωu

u′)cds = g
skU

i
u′ · (g cds

u′)ωu (called double-spending tag)
and generates the following signature σ(σco, v, sn, Comds, pkMj

, infoj) on
(σco, v, sn, Comds, pkMj

, infoj) (Sect. 2) by using the OTP P as well, and
sends (σco, v, sn, σ(σco, v, sn, Comds, pkMj

, infoj)) to Mj :
σ(σco, v, sn,Comds, pkMj

, infoj) = SPK{(t, skUi
, ωu, x1,otp, x2,otp) :

Comco = e(σ1, g̃)te(σ1, g̃u)
skUi e(σ1, f̃u)

ωue(σ1, g̃1,otp)
x1,otpe(σ1, g̃2,otp)

x2,otp

∧Comds = g
skU

i
u′ · (g cds

u′)ωu}(σco, v, sn,Comds, pkMj
, infoj). 22)

3. Mj accepts the e-coin if σ(σco, v, sn, Comds, pkMj
, infoj) is a valid signature,

and stores the following tuple which will be deposited later
dpst = 〈σco, v, sn, Comds, pkMj

, infoj , σ(σco, v, sn, Comds, pkMj
, infoj)〉

where sn is the serial number of this e-coin.
− EC.Deposit(dpst): B does the following after receiving from Mj , dpst =

〈σco, v, sn, Comds, pkMj
, infoj , σ(σco, v, sn, Comds, pkMj

, infoj)〉.
1. If σ(σco, v, sn, Comds, pkMj

, infoj) in dpst is invalid, B rejects the deposit.
2. If the verification is successful and the serial number sn is fresh in the

deposit DB, B requires Mj to send a signature σMj
(dpst) on dpst under

pkMj
. If σMj

(dpst) is invalid, B rejects the deposit, and otherwise B stores
(dpst, σMj

(dpst)) in the deposit DB, and credits v dollars to Mj ’s account.
3. If a tuple exists in the deposit DB which has the same sn, pkMj

, infoj as
dpst, B rejects this invalid deposit (i.e., Mj is cheating).

4. If dpst′ = 〈σ′
co, v′, sn, Com′

ds, pkM′
j
, info′

j , σ(σ′
co, v

′, sn, Com′
ds, pkM′

j
, info′

j)〉
exists in the deposit DB which has the same sn as dpst, but different pkM′

j

or info′
j

23), then B can have the proof Πds = (dpst, dpst′) which can be used
to identify the double-spender’s public key in EC.Identify.

− EC.Identify(params, pkB, Πds): B identifies a double-spender as follows:
1. If dpst and dpst′ in Πds have the same serial number, B obtains the double-

spending tags (Comds, cds), (Com′
ds, c′

ds) from Πds.
2. The double-spender’s public key pk′

ds can be computed as

pk′
ds = (Comc′

ds
ds /Com′

ds
cds)1/(c′

ds−cds).
− EC.VrfyGuilt(params, pkB, sn, pk′

ds, Πds): anyone can publicly verify the proof Πds

that the user with pk′
ds is guilty of double-spending the e-coin whose serial number

is sn. The verification can be done by EC.Identify(params, pkB, Πds)
?= pk′

ds.

Fig. 9. E-Cash based on signing OTPs (2/2) (22This includes proofs of knowledge of
equality of discrete logs (skUi

, ωu) [27], and its full description is given in Fig. 10.
23If this occurs, it means the adversary ran an OTP more than once by breaking the
security of OTPs. In this case, it is possible to distribute a list of blocked sn.)

One-Time Delegation of Unlinkable Signing Rights and Its Application 119

Hence, e.g., if Ui has e-coins σco1
, σco2

corresponding to v1, v2 dollars respec-
tively, and signs σco1

by σco2
, then we can think that the value v2 in σco2

is
transferred to σco1

, and that signing a message with σco1
yields v1 + v2 dollars.

This way of thinking can reduce the number of signatures that need to be gener-
ated during the Spend protocol, and we give the overview of this method (which
we call batch spending) as follows:

– Suppose Ui has e-coins, e.g., σco1
, σco2

, σco3
corresponding to v1, v2, v3 dollars

respectively, and wants to spend v1 + v2 + v3 dollars for Mj .
– Then Ui signs σco1

with σco2
, σco3

in advance, obtaining 2 signatures on σco1
.

– In the Spend protocol with Mj , Ui signs the message from Mj with σco1
, and

sends 3 signatures to Mj .
– Mj verifies the 2 signatures on σco1

, and another signature generated by
σco1

12. If all the verifications are successful and the amount of e-coins suffices,
Mj accepts the e-coins.

– Similarly B also verifies all the signatures in the Deposit protocol, and checks
freshness of all the serial numbers.

As we can see, Ui has only to generate 1 signature during the Spend protocol
although actually it spends 3 e-coins. To sign σco1

with σco, as in Step 2 of
EC.Spend (Fig. 9), a double-spending challenge cds ∈ Zp is necessary, for which
H(σco1

) can be used here. To make the difference clear between the signature
on the double-spending tag (i.e., σ(σco, v, sn, Comds, pkMj

, infoj) in Fig. 9) and
signature on the e-coin, we modify the hash calculation of (∗) (Fig. 10) by adding
a simple tag as

c = H(R1 ‖ R2 ‖ σco ‖ v ‖ sn ‖ Comds ‖ 0 ‖ pkMj
‖ infoj)

(case of signature on (σco, v, sn, Comds, pkMj
, infoj)),

c = H(R1 ‖ R2 ‖ σco ‖ v ‖ sn ‖ Comds ‖ 1 ‖ σco1
)

(case with additional e-coin σco1
).

Thus if B or Mj receives a signature with H(R1 ‖ R2 ‖ σco ‖ v ‖ sn ‖ Comds ‖
1 ‖ σco1

), B or Mj also requires another signature by σco1
to accept the e-coins.

Transferring E-Coin . By further extending batch spending, Ui can trans-
fer an e-coin to another, but with somewhat less anonymity as mentioned later.
In batch spending, Ui signs its own e-coins, whereas, in transferring Ui’s e-coin
σcoi

to another e-coin σcoj
of Uj , Ui signs σcoj

with σcoi
, and the value of σcoi

is transferred to σcoj
. Here the value of σcoj

can be zero. To receive the transfer
of many e-coins, we assume that Uj can obtain e-coins whose values are zero
(i.e., they function as placeholders of the transferred e-coins) from B for free in
advance. In this case, however, we have incomplete anonymity in the following
sense: Suppose Ui transferred σcoi

to σcoj
, and the several transfers continued,

and the e-coin originating from σcoi
returned to Ui, then Ui can recognize that

12 More exactly Mj will also need to check that the serial numbers of σco1
, σco2

, σco3
are all different.

120 T. Nishide

Ui used to hold the e-coin. To obtain complete anonymity, the technique from
[4] may be applicable, but its efficient instantiation will be non-trivial.

− In Fig. 9, Ui generates the following SPK in spending v dollars with serial number
sn by running sOTP P ,
σ(σco, v, sn, Comds, pkMj

, infoj) = SPK{(t, skUi
, ωu, x1,otp, x2,otp) :

Comco = e(σ1, g)te(σ1, gu)
skU

i e(σ1, fu)ωue(σ1, g1,otp)
x1,otpe(σ1, g2,otp)

x2,otp

∧ Comds = g
skU

i
u · (g cds

u)ωu}(σco, v, sn, Comds, pkMj
, infoj),

where cds = H(pkMj
infoj),

P = g1,otp, g2,otp, g
x1,otp
1,otp · g

x2,otp
2,otp , p, g

r1,otp
1,otp · g

r2,otp
2,otp ,

{[ri,otp − c̄ · xi,otp mod p]otp}2
i=1 .

1. Ui chooses random α1, α2, β, β1, β2, β3 ∈ Zp and computes
R ← g

r1,otp
1,otp · g

r2,otp
2,otp · g

α1
1,otp · g

α2
2,otp · (g

x1,otp
1,otp · g

x2,otp
2,otp)β

R1 ← e(σ1, g)β1 ·e(σ1, gu)β2 ·e(σ1, fu)β3 ·e(σ1, R) (= e(σ1, g β1 ·g β2
u ·f β3

u ·R))
R2 ← g

β2
u · (g cds

u)β3 (here gu and g
cds
u are bases of the commitment)

c ← H(R1 R2 σco v sn Comds pkMj
infoj) (∗)

z1 ← β1 − c · t mod p, z2 ← β2 − c · skUi
mod p, z3 ← β3 − c · ωu mod p

z4 ← r1,otp − (c − β) · x1,otp + α1 mod p (run with sOTP P)
z5 ← r2,otp − (c − β) · x2,otp + α2 mod p (run with sOTP P)

where {ri,otp − (c−β) ·xi,otp}2
i=1 can be obtained from P by inputting c−β (this

is the same randomization as OS.BSign of Algorithm 1).
2. The signature σ(σco, v, sn, Comds, pkMj

, infoj) consists of (c, z1, z2, z3, z4, z5)
and can be verified by
c

?= H(e(σ1, g)z1 · e(σ1, gu)z2 · e(σ1, fu)z3 · e(σ1, g1,otp)z4 · e(σ1, g2,otp)z5 · Comc
co

g
z2
u · (g cds

u)z3 · Comc
ds σco v sn Comds pkMj

infoj).

Fig. 10. Signature based on Proof of Knowledge (SPK) in Our E-Cash

Acknowledgments. The author thanks Jacob Schuldt for his valuable comments on
the early draft and anonymous reviewers of Financial Cryptography’20 and ProvSec’20
for their helpful comments. This work was supported in part by JSPS KAKENHI Grant
Number 20K11807.

References

1. Acar, T., Chow, S.S.M., Nguyen, L.: Accumulators and U-Prove revocation. In:
Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 189–196. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39884-1 15

2. Amos, R., Georgiou, M., Kiayias, A., Zhandry, M.: One-shot signatures and appli-
cations to hybrid quantum/classical authentication. In: STOC, pp. 255–268 (2020)

https://doi.org/10.1007/978-3-642-39884-1_15

One-Time Delegation of Unlinkable Signing Rights and Its Application 121

3. Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k -TAA. In: De Prisco, R.,
Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg
(2006). https://doi.org/10.1007/11832072 8

4. Baldimtsi, F., Chase, M., Fuchsbauer, G., Kohlweiss, M.: Anonymous transfer-
able e-cash. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 101–124. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 5

5. Baldimtsi, F., Lysyanskaya, A.: Anonymous credentials light. In: CCS, pp. 1087–
1098. ACM (2013)

6. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of
dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–
153. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3 11

7. Benhamouda, F., Lepoint, T., Orrù, M., Raykova, M.: On the (in) security of ROS.
Cryptology ePrint Archive, Report 2020/945 (2020)

8. Bichsel, P., Camenisch, J., Groß, T., Shoup, V.: Anonymous credentials on a stan-
dard Java card. In: CCS, pp. 600–610. ACM (2009)

9. Blömer, J., Bobolz, J.: Delegatable attribute-based anonymous credentials from
dynamically malleable signatures. In: Preneel, B., Vercauteren, F. (eds.) ACNS
2018. LNCS, vol. 10892, pp. 221–239. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-93387-0 12

10. Borisov, N., Brewer, E.A.: Active certificates: a framework for delegation. In: NDSS
(2002)

11. Bourse, F., Pointcheval, D., Sanders, O.: Divisible e-cash from constrained pseudo-
random functions. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS,
vol. 11921, pp. 679–708. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-34578-5 24

12. Brands, S.: Untraceable off-line cash in wallet with observers. In: Stinson, D.R.
(ed.) CRYPTO 1993. LNCS, vol. 773, pp. 302–318. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48329-2 26

13. Brands, S.: Rethinking public key infrastructures and digital certificates: building
in privacy. MIT Press (2000)

14. Camenisch, J., Hohenberger, S., Kohlweiss, M., Lysyanskaya, A., Meyerovich, M.:
How to win the clone wars: efficient periodic n-times anonymous authentication.
In: CCS, pp. 201–210. ACM (2006)

15. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg
(2005). https://doi.org/10.1007/11426639 18

16. Camenisch, J., Kohlweiss, M., Soriente, C.: Solving revocation with efficient update
of anonymous credentials. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS,
vol. 6280, pp. 454–471. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15317-4 28

17. Camenisch, J., Lehmann, A., Neven, G., Samelin, K.: Virtual smart cards: how to
sign with a password and a server. In: Zikas, V., De Prisco, R. (eds.) SCN 2016.
LNCS, vol. 9841, pp. 353–371. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-44618-9 19

18. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In:
CRYPTO, pp 410–424. Springer (1997)

19. R. Canetti. Universally composable security: a new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067 (2000)

20. Canetti, R.: Universally composable signature, certification, and authentication.
In: CSFW, pp. 219–233. IEEE (2004)

https://doi.org/10.1007/11832072_8
https://doi.org/10.1007/978-3-662-46447-2_5
https://doi.org/10.1007/978-3-540-30574-3_11
https://doi.org/10.1007/978-3-319-93387-0_12
https://doi.org/10.1007/978-3-319-93387-0_12
https://doi.org/10.1007/978-3-030-34578-5_24
https://doi.org/10.1007/978-3-030-34578-5_24
https://doi.org/10.1007/3-540-48329-2_26
https://doi.org/10.1007/11426639_18
https://doi.org/10.1007/978-3-642-15317-4_28
https://doi.org/10.1007/978-3-642-15317-4_28
https://doi.org/10.1007/978-3-319-44618-9_19
https://doi.org/10.1007/978-3-319-44618-9_19

122 T. Nishide

21. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006). https://
doi.org/10.1007/11818175 5

22. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp. 199–203. Springer, Boston,
MA (1983). https://doi.org/10.1007/978-1-4757-0602-4 18

23. Chaum, D.: Security without identification: transaction systems to make big
brother obsolete. Commun. ACM 28(10), 1030–1044 (1985)

24. Chaum, D.: Online cash checks. In: Quisquater, J.-J., Vandewalle, J. (eds.) EURO-
CRYPT 1989. LNCS, vol. 434, pp. 288–293. Springer, Heidelberg (1990). https://
doi.org/10.1007/3-540-46885-4 30

25. Chaum, D.: Achieving electronic privacy. Sci. Am. 267(2), 96–101 (1992)
26. Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Goldwasser, S.

(ed.) CRYPTO 1988. LNCS, vol. 403, pp. 319–327. Springer, New York (1990).
https://doi.org/10.1007/0-387-34799-2 25

27. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-48071-4 7

28. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

29. Everspaugh, A., Chaterjee, R., Scott, S., Juels, A., Ristenpart, T.: The Pythia
PRF service. In: USENIX Security Symposium, pp. 547–562 (2015)

30. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

31. Fuchsbauer, G.: Commuting signatures and verifiable encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 224–245. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20465-4 14

32. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Dis
Appl. Math. 156(16), 3113–3121 (2008)

33. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85174-5 3

34. Groth, J.: Fully anonymous group signatures without random oracles. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2 10

35. Kaptchuk, G., Miers, I., Green, M.: Giving state to the stateless: augmenting trust-
worthy computation with ledgers. In: NDSS (2019)

36. Kurnikov, A., Paverd, A., Mannan, M., Asokan, N.: Keys in the clouds: auditable
multi-device access to cryptographic credentials. In: ARES, pp. 40:1–40:10. ACM
(2018)

37. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based PRFs and applications to e-cash. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017. LNCS, vol. 10626, pp. 304–335. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70700-6 11

38. MacKenzie, P., Reiter, M.K.: Delegation of cryptographic servers for capture-
resilient devices. Distrib. Comput. 16(4), 307–327 (2003)

https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/3-540-46885-4_30
https://doi.org/10.1007/3-540-46885-4_30
https://doi.org/10.1007/0-387-34799-2_25
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-20465-4_14
https://doi.org/10.1007/978-3-540-85174-5_3
https://doi.org/10.1007/978-3-540-76900-2_10
https://doi.org/10.1007/978-3-319-70700-6_11
https://doi.org/10.1007/978-3-319-70700-6_11

One-Time Delegation of Unlinkable Signing Rights and Its Application 123

39. Marcedone, A., Pass, R., Shelat, A.: Minimizing trust in hardware wallets with two
factor signatures. In: Goldberg, I., Moore, T. (eds.) FC 2019. LNCS, vol. 11598, pp.
407–425. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32101-7 25

40. Matetic, S., Schneider, M., Miller, A., Juels, A., Capkun, S.: DelegaTEE: Brokered
delegation using trusted execution environments. In: USENIX Security Sympo-
sium, pp. 1387–1403 (2018)

41. Okamoto, T.: Provably secure and practical identification schemes and correspond-
ing signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp.
31–53. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4 3

42. Pointcheval, D., Sanders, O.: Short randomizable signatures. In: Sako, K. (ed.)
CT-RSA 2016. LNCS, vol. 9610, pp. 111–126. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-29485-8 7

43. Teranishi, I., Sako, K.: k -Times anonymous authentication with a constant prov-
ing cost. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 525–542. Springer, Heidelberg (2006). https://doi.org/10.
1007/11745853 34

https://doi.org/10.1007/978-3-030-32101-7_25
https://doi.org/10.1007/3-540-48071-4_3
https://doi.org/10.1007/978-3-319-29485-8_7
https://doi.org/10.1007/978-3-319-29485-8_7
https://doi.org/10.1007/11745853_34
https://doi.org/10.1007/11745853_34

Watermarkable Signature with
Computational Function Preserving

Kyohei Sudo1(B), Masayuki Tezuka1, Keisuke Hara1,2, Yusuke Yoshida1,
and Keisuke Tanaka1

1 Tokyo Institute of Technology, Tokyo, Japan
{sudo.k.ac,tezuka.m.ac,hara.k.am,yoshida.y.aw}@m.titech.ac.jp,

keisuke@c.titech.ac.jp
2 National Institute of Advanced Industrial Science and Technology (AIST),

Tokyo, Japan

Abstract. Software watermarking enables one to embed some infor-
mation called “mark” into a program while preserving its functionality,
and to read it from the program. As a definition of function preserv-
ing, Cohen et al. (STOC 2016) proposed statistical function preserving
which requires that the input/output behavior of the marked circuit is
identical almost everywhere to that of the original unmarked circuit.
They showed how to construct watermarkable cryptographic primitives
with statistical function preserving, including pseudorandom functions
(PRFs) and public-key encryption from indistinguishability obfuscation.
Recently, Goyal et al. (CRYPTO 2019) introduced more relaxed defini-
tion of function preserving for watermarkable signature. Watermarkable
signature embeds a mark into a signing circuit of digital signature. The
relaxed function preserving only requires that the marked signing circuit
outputs valid signatures. They provide watermarkable signature with the
relaxed function preserving only based on (standard) digital signature.

In this work, we introduce an intermediate notion of function preserv-
ing for watermarkable signature, which is called computational function
preserving. Then, we examine the relationship among our computational
function preserving, relaxed function preserving by Goyal et al., and sta-
tistical function preserving by Cohen et al. Furthermore, we propose a
generic construction of watermarkable signature scheme satisfying com-
putational function preserving based on public key encryption and (stan-
dard) digital signature.

1 Introduction

1.1 Backgrounds

Digital Watermarking. Digital watermarking is a technology to embed some
special information called a mark into digital objects such as images, movies,
music files, or programs. Digital watermarking is required to satisfy two basic
requirements. One is function preserving that guarantees a marked object should
not be significantly different from the original object. The other is unremovability
c© Springer Nature Switzerland AG 2020
K. Nguyen et al. (Eds.): ProvSec 2020, LNCS 12505, pp. 124–144, 2020.
https://doi.org/10.1007/978-3-030-62576-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62576-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-62576-4_7

Watermarkable Signature with Computational Function Preserving 125

that guarantees it should be difficult for malicious entities to remove the mark
from a marked object without damaging the object itself.

A critical application of digital watermarking is copyright protection. Let us
consider a situation where we distribute a digital object to unspecified users. In
order to prevent the users from distributing the digital object illegally, we can
embed user’s name in the digital object by using digital watermarking. Due to
the function preserving of digital watermarking, it is ensured that the marked
object has almost same functionality with the original unmarked object. If we
find a digital object copied by some user, we can extract the embedded mark
from the marked object to identify the user.

In cryptography, watermarking schemes were proposed for pseudorandom
functions [4,6,10,11,16–18], encryption schemes [6,8,18], and digital signature
schemes [6,8,18]. In particular, these studies treat an algorithm as a circuit
and aim to embed a mark in the function evaluation circuit for watermarkable
pseudorandom functions, in the decryption circuit for watermarkable encryption
schemes, and in the signing circuit for watermarkable signature schemes.

In particular, a watermarkable signature consists of setup, mark, and extrac-
tion algorithm, in addition to the usual key-generation, signing, and verification
algorithm of digital signature. The mark algorithm embeds a mark to the signing
circuit determined by a signing key. The extraction algorithm extracts the mark
from the marked circuit.

Variation of Function Preserving. The first formal definition for watermarking
was given by Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, and Yang
[2,3]. They proposed a security notion called perfect function preserving which
requires that the input/output behavior of the marked circuit is identical to
that of the original unmarked circuit. They showed an impossibility result that
assuming indistinguishability obfuscation (iO), a watermarking scheme which
satisfies perfect function preserving cannot exist.

Cohen, Holmgren, Nishimaki, Vaikuntanathan, and Wichs[6,7,15] relaxed
perfect function preserving and proposed statistical function preserving which
requires that the input/output behavior of the marked circuit is identical almost
everywhere to that of the original unmarked circuit. They constructed water-
markable pseudorandom functions with statistical function preserving by using
indistinguishability obfuscation (iO). They mentioned the existence of a water-
markable encryption scheme and signature scheme with statistical function pre-
serving under the existence of iO and injective one-way functions. These con-
structions were presented in [15] which are based on the public key encryption
scheme and the signature scheme constructed from iO.

The recent work by Goyal, Kim, Manohar, Waters, and Wu [8] further relaxed
the requirement of function preserving for watermarkable signature and encryp-
tion. For watermarkable signature, the function preserving by Goyal et al. only
requires that a marked circuit still produces valid signatures. This requirement
allows signatures output by the original signing circuit and by a marked sign-
ing circuit to be apparently different. For a watermarkable encryption scheme,
the function preserving by Goyal et al. only requires that a marked circuit

126 K. Sudo et al.

can decrypt ciphertexts. This requirement allows the output of decryption by a
marked decryption circuit to differ from the output of decryption by the original
decryption circuit on invalid ciphertexts. These relaxations for function preserv-
ing allow us to obtain various watermarkable public key primitives from more
reasonable assumptions. Actually, they constructed a watermarkable signature
scheme from digital signature and a watermarkable (attribute-based) encryp-
tion scheme from delegatable attribute-based encryption and mixed functional
encryption.

Motivation. Watermarkable schemes are expected to make the marked objects
as similar as possible to the original. From this perspective, function preserv-
ing by Goyal et al. seems to be too relaxed since this property allows that
input/output behavior of the marked circuits and that of the original circuits to
be distinguishable. Here, a natural question arises:

Is there a reasonable definition of function preserving between statistical
function preserving and function preserving by Goyal et al. ?

1.2 Our Contributions

Based on the above motivation, we firstly define computational function preserv-
ing, which requires the input/output behavior of the marked object is computa-
tionally indistinguishable to that of the original object.

Secondly, we study the relationship between our definition for watermark-
able signature and that of Goyal et al. [8]. Moreover, we extend the definition
of computational function preserving into general watermarkable primitive, and
investigate the relations between our computational function preserving and sta-
tistical function preserving proposed by Cohen et al. [6].

Finally, we construct watermarkable signature satisfying computational func-
tion preserving based on public key encryption and (standard) digital signature.

Computational Function Preserving for Watermarkable Signature. As the most
important difference from previous works, we introduce computational function
preserving for watermarkable signature. Informally, computational function pre-
serving requires that “the input/output behavior of marked and original circuits
are computationally indistinguishable”. See Sect. 2 for the details.

In order to see the usefulness of computational function preserving, let us
consider the following typical application of watermarkable signature. When the
original signer wishes to delegate his/her signing rights to others, the original
signer puts the delegated signer’s identity as a part of the mark embedded into
the signing circuit, and gives the marked circuits to the delegated signers. When
a marked signing circuit leaked illegally, the source of the leak can be identified
from the extracted mark.

If the watermarkable signature only satisfies the function preserving by Goyal
et al., even identities of the honest delegated signers may be revealed from sig-
natures generated by the marked signing circuits. Actually, their watermarkable

Watermarkable Signature with Computational Function Preserving 127

signature scheme allows anyone to see the mark from signatures. This seems
undesirable for honest delegated signers. Computational function preserving
guarantees delegated signer’s privacy.

Note that it seems difficult to achieve computational function preserving
with public extraction. Because, in watermarkable cryptographic primitives, the
embedded mark is extracted from outputs of the marked circuit. If a watermark-
ing scheme supports public extraction, anyone can see the mark from the marked
circuit.

In Sect. 4, we see the relations on function preserving of watermarkable prim-
itives. Firstly, we focus on watermarkable signature and examine the relations
between our computational function preserving of watermarkable signature and
the function preserving by Goyal et al. [8]. There, we see that our computational
function preserving implies function preserving by Goyal et al.

Next, we investigate the relations on function preserving for general water-
markable primitives. Cohen et al. [6] gave a statistical function preserving for
general watermarkable primitives. In order to see the relations, we abstract our
computational function preserving for watermarkable signature to one support-
ing general watermarkable primitives. Then, we provide the relations between
this computational function preserving and statistical function preserving of gen-
eral watermarkable primitive by Cohen et al. As a result, we show that our
computational function preserving is incomparable with the statistical function
preserving by Cohen et al.

Redefining Watermarkable Signature. We replace the extraction algorithm with
an opening algorithm. The extraction algorithm takes an extract key, a verifi-
cation key and a marked circuit, and outputs a mark that is embedded in the
circuit. The difference between these algorithms, an opening algorithm only takes
as input the output of the marked circuit instead of circuit itself. Remember the
application of watermarkable signature we mentioned above, the original signer
puts the delegated signer’s identity as a part of the mark embedded into the sign-
ing circuit. The opening algorithm do not require the leaked circuit itself. The
source of the leak can be identified only from the output of the leaked circuit.
Note that the extraction algorithm can be made from the opening algorithm. In
Sect. 4 we see the relations among our definition, definition by Cohen et al. [6],
and Goyal et al. [8] which we recall in Appendix B.

In previous works, unremovability is defined with the extraction algorithm.
Due to the modification of the syntax, we also modify the definition of unremov-
ability. In our definition, similar to the definition by Goyal et al., we consider
collusion of parties. That is, an adversary is allowed to collect polynomial num-
ber of marked circuits. Additionally, we allow the adversary to get signatures
generated by marked circuits that are not corrupted. It almost covers the security
of unforgeability, which ensures that the watermarkable signature is unforgeable
as a digital signature. Unlike the existing definitions of watermarkable signa-
ture, our definition does not explicitly require unforgeability. See discussions on
unforgeability in Sect. 4 for the details.

128 K. Sudo et al.

Our Construction. We give an overview of our construction of watermarkable
signature satisfying computational function preserving in Sect. 3. Our construc-
tion of watermarkable signature is based on the watermarkable signature scheme
by Goyal et al. [8]. The construction by Goyal et al. is in the public extraction
setting where anyone can extract a mark from a marked circuit. In contrast, our
construction is in the secret extraction setting that requires an extract key is
needed to extract a mark from a marked circuit.

Now, we briefly explain an overview of our construction. Let M be a
message space and T a mark space for a watermarkable signature scheme,
PKE = (PKE.Gen,PKE.Enc,PKE.Dec) a public key encryption scheme and
DS = (DS.Gen,DS.Sign,DS.Verify) a digital signature scheme.

– As a setup, we generate (ek, dk) by running PKE.Gen. ek is used to encrypt a
mark and dk is needed to extract a mark. ek is published and dk is sent to a
party who allowed to extract a mark from a marked circuit.

– The original signing key skWM and verification key vkWM consist of skWM =
(ek, sk1, sk2, w = (vk2, c, σ1)) and vkWM = vk1. ek is generated by a setup
procedure, (vk1, sk1) and (vk2, sk2) is generated by DS.Gen. c is a ciphertext
of a symbol ⊥ which represents “unmarked”. σ1 is a signature computed by
σ1 ← DS.Sign(sk1, (vk2, c)). We explain roles of elements of skWM. sk2 is used
to sign a message. w = (vk2, c, σ1) is a certificate that links vk2 and c. This
implies that ⊥ and vk2 are linked. sk1 is used to generate a marked circuit.
More specifically, sk1 is used to generate certificates.

– By using skWM, a signature σ on a message m ∈ M is computed as σ = (w, σ2)
where σ2 ← DS.Sign(sk2,m).

– A circuit Cτ with an embedded mark τ ∈ T is generated from skWM as
follows. First, compute (vk′

2, sk
′
2) by running DS.Gen and a ciphertext c′ ←

PKE.Enc(ek, τ). Then, generate a new certificate w′ = (vk′
2, c

′, σ′
1) where σ′

1 ←
DS.Sign(sk1, (vk′

2, c
′)). w′ links τ and vk′

2. Finally, generate a marked circuit
Cτ (·) := (w′ = (vk′

2, c
′, σ′

1),DS.Sign(sk′
2, ·)).

– A verification of a pair m and σ = (vk2, c, σ1, σ2) can be done by checking
DS.Verify(vk1, (vk2, c), σ1) = 1 and DS.Verify(vk2,m, σ2) = 1.

– Extraction of a mark from σ = (vk2, c, σ1, σ2) can be done by compute a mark
τ = PKE.Dec(dk, c).

Computational function preserving of our scheme is followed by the indistin-
guishability of PKE. We explain intuition why our construction satisfies unre-
movability. To simplify our explanation, we consider a non-collusion setting.
That is, we consider the case where an adversary has only one marked circuit
and tries to change or remove the embedded mark in the marked circuit with-
out breaking its functionality. We assume that the adversary can get a valid
signature on any message output by any marked circuit and the original signing
circuit via oracle queries. To change or remove the embedded mark, the adver-
sary changes a certificate w embedded in the marked circuit. We can consider
two strategies for the adversary. One strategy is that the adversary forges a new
certificate and embeds it into a forged circuit. However, by the unforgeability
of DS, it is hard for the adversary to generate such a new certificate. The other

Watermarkable Signature with Computational Function Preserving 129

strategy is that the adversary queries a message m̃ for the original signing circuit
or marked circuits, gets a signature σ̃ = (w̃, σ̃2) = ((ṽk2, c̃, σ̃1), σ̃2), embeds w̃
into a forged circuit. However, the adversary does not know s̃k2. Therefore, it is
hard to change or remove the embedded mark from the marked circuit without
breaking its functionality.

Our construction also supports unremovability in a collusion setting where
the adversary can get marked circuits by oracle queries. See Sect. 2 for definition
of unremovability in the collusion setting.

1.3 Related Works

We briefly review several studies related to watermarking. One of the earli-
est works related to watermarking is due to Naccache, Shamir, and Stern [12].
They treated the problem of “copy-righting” public-key encryption schemes in
a setting that is similar to traitor tracing [5]. They gave a method for track-
ing different copies of functionally equivalent algorithms containing a sort of
marks. However, this security is not sufficient for watermarking since it does not
guarantee unremovability.

Barak et al. [2,3] firstly formalize a watermarking scheme and its secu-
rity definition in a simulation based manner. Then, they gave an impossibility
result for general-purpose program watermarking by using impossibility results
of general-purpose program obfuscation [2,3]. General-purpose program water-
marking (resp. obfuscation) is a watermarking scheme (resp., obfuscation) that
can be applied to any program.

Hopper, Molnar, and Wagner [9] proposed a game-based security for water-
marking schemes. They also introduce a notion of secret extraction watermark-
ing. In this setting, to extract the embedded mark the marked object, we need
secret information called an extract key. However, they did not provide any
concrete constructions.

Nishimaki [13,14] proposed watermarking schemes for lossy trapdoor func-
tions. Security of a construction in [13] (resp., [14]) is based on the decisional
linear (DLIN) (resp., the symmetric external Diffie-Hellman (SXDH)) assump-
tion. However, the author considered weaker security and restrictions on the
adversary’s capabilities.

Cohen et al. [6] formalized a notion of statistical function preserving. They
also formalized a watermarkable signature and watermarkable encryption. They
gave a construction of watermarkable pseudorandom functions by using iO in the
public extraction setting. They also showed an impossibility result that water-
marking is impossible for any class of learnable functions.

After the work of Cohen et al., one of main line of watermarking researches
is how to build watermarkable pseudorandom functions with statistical function
preserving scheme from weaker assumptions such as lattice-based assumptions
by Kim and Wu [10,11] or an existence of CCA-secure encryption by Quach,
Wichs, and Zirdelis [16].

Another line of watermarking researches is how to build watermarkable prim-
itives with stronger security.

130 K. Sudo et al.

Yang, Au, Lai, Xu, and Yu [17] improved watermarkable pseudorandom func-
tions in [6]. They achieved public extraction and security which require that only
an entity who holds the mark key should be able to embed a mark into a pro-
gram.

They also proposed a collusion resistant watermarking scheme for pseudo-
random functions and encryption scheme in [18]. They mentioned the existence
of a collusion resistant watermarkable signature scheme. They did not provide a
concrete collusion resistant watermarkable signature scheme in [18].

Some studies focus on watermarking for public key primitives. Baldimtsi,
Kiayias, and Samari [1] showed how to watermark public key cryptographic prim-
itives. However, they consider a stateful setting and a modified security model
where a trusted watermarking authority generates both original and marked cir-
cuits. Watermarkable signature schemes and (attribute) encryption schemes has
been proposed in [8]. These constructions achieves collusion resistance security.

1.4 Road Map

In Sect. 2, we describe our definition of watermarkable signature. In Sect. 3, we
construct a watermarkable signature scheme and give brief security proofs. In
Sect. 4, we explain features of our definition in comparison with previous works.
In Appendix A, we recall the definition of public encryption and digital signature.
In Appendix B, we provide existing definitions of watermarkable signature.

1.5 Notations

In this paper, we use the following notations. Let λ be the security parameter. A
function f : N → R

+ is negligible in λ if f(λ) ≤ 2−ω(log λ). If function f is neg-
ligible in λ, we denote f(λ) ≤ negl(λ). PPT stands for probabilistic polynomial
time. For a finite set S, s ← S denotes choosing an element s from S uniformly
at random. For an integer n, [n] denotes the set {1, . . . , n}. For an algorithm A,
y ← A(x) denotes that the algorithm A outputs y on input x.

2 Watermarkable Signature

We introduce a new definition of watermarkable signature. A watermarkable
signature scheme consists of a setup algorithm, mark algorithm, and opening
algorithm, in addition to the usual key-generation, signing, and verification algo-
rithm of digital signature. The mark algorithm embeds a mark to the signing
circuit determined by a signing key. Instead of a extraction algorithm, the open-
ing algorithm extracts the mark from an output of the marked circuit. We discuss
features of this definition in Sect. 4.

Definition 1 (Watermarkable Signature). A watermarkable signature
scheme WMSS with a message space M and a mark space T is a tuple of PPT
algorithms (WMSetup,SigSetup,Sign,Verify,Mark,Open).

Watermarkable Signature with Computational Function Preserving 131

– WMSetup(1λ) → (wpp,mk, xk) : Given a security parameter 1λ as input, the
watermark setup algorithm outputs a watermark public parameter wpp, a
mark key mk, and an extract key xk.

– SigSetup(wpp) → (vk, sk) : Given a watermark public parameter wpp as input,
the signing setup algorithm outputs a verification key vk and signing key sk.

– Sign(sk,m) → σ : Given a signing key sk and a message m as input, the
signing algorithm outputs a signature σ.

– Verify(vk,m, σ) → 0/1 : Given a verification key vk, a message m, and a
signature σ as input, the verification algorithm outputs 0 or 1.

– Mark(mk, sk, τ) → Cτ : Given a mark key mk, a signing key sk, and a mark
τ , the marking algorithm outputs a marked circuit Cτ .

– Open(xk, vk, σ) → τ/⊥ : Given an extract key xk, a verification key vk and
a signature σ as input, the opening algorithm outputs a mark or the invalid
symbol ⊥.

For functionality and security of WMSS, we define correctness, meaningful-
ness, function preserving, and unremovability.

WMSS is correct if it is correct as a digital signature scheme.

Definition 2 (Correctness). WMSS satisfies correctness if for any public
parameter wpp and message m ∈ M,

Pr

[
Verify(vk,m, σ) = 1 :

(vk, sk) ← SigSetup(wpp),
σ ← Sign(sk,m)

]
= 1

holds.

If WMSS is meaningful, when opening a signature generated by the unmarked
signing algorithm, its output should be invalid.

Definition 3 (Meaningfulness). WMSS satisfies meaningfulness if for all
m ∈ M,

Pr

⎡
⎢⎣Open(xk, vk, σ) = ⊥ :

(wpp,mk, xk) ← WMSetup(1λ),
(vk, sk) ← SigSetup(wpp),
σ ← Sign(sk,m)

⎤
⎥⎦ = 1

holds.

In WMSS, marked circuits should preserve the functionality of the original
signing algorithm. We interpret this requirement as “marking circuits does not
change how their behavior looks like”. In other words, marked circuits work as
indistinguishably the same as unmarked circuits.

Definition 4 (Computational Function Preserving). We define the com-
putational function preserving for WMSS by the following game between a chal-
lenger and a PPT adversary A.

132 K. Sudo et al.

1. The challenger runs (wpp,mk, xk) ← WMSetup(1λ), (vk, sk) ←
SigSetup(wpp), and gives (wpp, vk) to A. Then, A outputs a mark τ .

2. The challenger runs Cτ ← Mark(mk, sk, τ), samples b ← {0, 1}, and sets
Cb := Cτ (·), Cb⊕1 := Sign(sk, ·).

3. The adversary A, given oracle access to the signing circuits C0(·), C1(·), and
the marking oracle Mark(mk, sk, ·), outputs a bit b′.

A WMSS satisfies the function preserving if for all PPT adversaries A,

AdvfuncWMSS,A(λ) :=
∣∣∣∣Pr[b = b′] − 1

2

∣∣∣∣ ≤ negl(λ)

holds.

Computational function preserving is hard to be compatible with public
extraction. As far as we know, in watermarking schemes, embedded mark is
extracted by outputs of the marked circuit. If a watermarking scheme supports
public extraction, anyone can extract embedded mark from the marked circuit.
Due to the reason above, we consider WMSS in the secret extraction setting.

Intuitively, unremovability of WMSS guarantees that it is hard to remove a
mark from a signature while remaining valid. The following definition satisfies
collusion resistance since the adversary can obtain multiple marked circuits.
Furthermore, the adversary is allowed to carry out chosen message attacks on
not only the unmarked signing circuits but also marked circuits.

Definition 5 (Unremovability). The unremovability for WMSS is defined by
the following game between a challenger and a PPT adversary A.

1. The challenger runs (wpp,mk, xk) ← WMSetup(1λ), (vk, sk) ← SigSetup(wpp)
and initializes a list Qsign ← {}, Qmark ← {}, an array A, a counter i := 0.
The challenger gives (wpp,mk, xk, vk) to A.

2. Throughout the entire game, A is given access to the following oracles.
– Signing oracle Sign(sk, ·): Given an input m, the signing oracle runs σ ←

Sign(sk,m), updates Qsign ← Qsign ∪ {(m,σ)}, Qmark ← Qmark ∪ {⊥},
and returns σ to A.

– Make circuit oracle MakeCircuit(·): Given an input τ , the make circuit
oracle runs Cτ ← Mark(mk, sk, τ), updates A[i][1] ← τ , A[i][2] ← Cτ ,
i := i + 1. This oracle returns nothing to A.

– Watermark-signing oracle WMSign(·, ·): Given an input (i,m), the
watermark-signing oracle gets C ← A[i][2] and runs σ ← C(m), updates
Qsign ← Qsign ∪ {(m,σ)}, and returns σ to A.

– Reveal circuit oracle RevealCircuit(·): Given an input i, the watermark-
sining oracle gets τ ← A[i][1], Cτ ← A[i][2], updates Qmark ← Qmark ∪
{τ}, and returns Cτ to A.

3. A outputs a forgery (m∗, σ∗).

Watermarkable Signature with Computational Function Preserving 133

A WMSS satisfies the unremovability if for all PPT adversaries A,

AdvunrWMSS,A(λ)

:= Pr

[
Open(xk, vk, σ∗) /∈ Qmark ∧ Verify(vk,m∗, σ∗) = 1
∧ (m∗, σ∗) /∈ Qsign

]
≤ negl(λ)

holds.

Remark 1. If WMSS satisfies unremovability, then the algorithm Open satisfies
correctness. Specifically, for any τ ∈ T and m ∈ M, the following holds.

Pr

⎡
⎢⎣Open(xk, vk, C(m)) 	= τ :

(wpp,mk, xk) ← WMSetup(1λ),

(sk, vk) ← SigSetup(1λ,wpp),
C ← Mark(mk, sk, τ)

⎤
⎥⎦ ≤ negl(λ)

3 Construction

In this section, we show how to construct a watermark signature scheme from
a digital signature scheme and public-key encryption scheme. We show the con-
struction of our watermarkable signature scheme WMSS in Fig. 1.

3.1 Correctness and Security Proof

In this section, we show that our watermarkable signature scheme WMSS satisfies
correctness and security properties.

Theorem 1. If DS satisfies correctness, then WMSS satisfies correctness.

By construction, it is easy to see that correctness of WMSS is followed by
correctness of DS.

Theorem 2. If PKE satisfies correctness, then WMSS satisfies meaningfulness.

By construction, it is easy to see that meaningfulness of WMSS is followed
by correctness of PKE.

Theorem 3. If PKE satisfies IND-CPA security, then WMSS satisfies compu-
tational function preserving.

Proof of Theorem 3. Let A be any PPT adversary that attacks the com-
putational function preserving of WMSS. Then, by using A, we construct a
PPT adversary B that attacks the variant of IND-CPA security described in
Appendix A.1 of PKE as follows.

1. Upon receiving a public key ek from the challenger, B sets wpp = ek, generates
(vk1, sk1) ← DS.Gen(1λ), and gives a security parameter 1λ, wpp, and vkWM =
vk1 to A.

134 K. Sudo et al.

WMSetup(1λ) :
(ek, dk) ← PKE.Gen(1λ)
Output (wpp,mk, xk) = (ek, ⊥, dk)

SigSetup(wpp) :
Parse wpp as ek
(sk1, vk1) ← DS.Gen(1λ)
(sk2, vk2) ← DS.Gen(1λ)
c ← PKE.Enc(ek, ⊥)
σ1 ← DS.Sign(sk1, (vk2, c))
Output (skWM, vkWM) =

((ek, sk1, sk2, vk2, c, σ1), vk1)
Mark(mk, skWM, τ) :

Parse skWM as ((ek, sk1, sk2, vk2, c), σ1)
(sk′

2, vk
′
2) ← DS.Gen(1λ)

c′ ← PKE.Enc(ek, τ)
σ′
1 ← DS.Sign(sk1, (vk′

2, c
′))

sk′
WM := (sk′

2, vk
′
2, c

′, σ′
1)

Output the following circuit C(sk′
WM, ·)

C(sk′
WM, m) :

Parse sk′
WM as (sk′

2, vk
′
2, c

′, σ′
1)

σ′
2 ← DS.Sign(sk′

2, m)
Output σ = (vk′

2, c
′, σ′

1, σ
′
2)

Sign(skWM, m) :
Parse skWM as ((ek, sk1, sk2, vk2, c), σ1)
σ2 ← DS.Sign(sk2, m)
Output σ = (vk2, c, σ1, σ2)

Open(xk, vkWM, σ) :
Parse σ as (vk2, c, σ1, σ2)
τ ← PKE.Dec(dk, c)
Output τ

Verify(vkWM, m, σ) :
Parse vkWM as vk1
Parse σ as (vk2, c, σ1, σ2)
If DS.Verify(vk1, (vk2, c), σ1) = 1
and DS.Verify(vk2, m, σ2) = 1,

Output 1
else Output 0

Fig. 1. Construction of watermarkable signature scheme.

2. When A outputs a mark τ , B makes a challenge query (m0,m1) = (τ,⊥)
and gets a challenge ciphertext (c0, c1). Then, B generates (vk2, sk2) ←
DS.Gen(1λ) and (vk′

2, sk
′
2) ← DS.Gen(1λ), and computes σ1 ← DS.Sign(sk1,

(vk2, c0)) and σ′
1 ← DS.Sign(sk1, (vk′

2, c1)).
3. B answers an A’s oracle query as follows.

– When A makes a query m for a signing circuit C0(resp., C1), B computes
σ2(resp., σ′

2) ← DS.Sign(sk2(resp., sk′
2),m) and returns (vk2, c0, σ1, σ2)

(resp., (vk′
2, c1, σ

′
1, σ

′
2)) to A.

– When A makes a circuit generation query τ , B generates (ṽk2, s̃k2) ←
DS.Gen(1λ) and computes c ← PKE.Enc(ek, τ) and σ ← DS.Sign(sk1,
(ṽk2, c)). Then, B sets skWM = (s̃k2, ṽk2, c, σ) and returns C(skWM, ·) :=
(ṽk2, c, σ,DS.Sign(s̃k2, ·)) to A.

4. When A finally outputs a bit b′ ∈ {0, 1}, B returns b′ to its challenger.

We can see that B perfectly simulates the game of computational function
preserving in which the challenge bit for A is the same as that in the game
between the challenger and B. Moreover, B just finally returns A’s output b′.

Watermarkable Signature with Computational Function Preserving 135

Therefore, AdvfuncWMSS,A(λ) = Advind-cpavPKE,B (λ) holds. Since PKE satisfies IND-CPA
security, we have AdvfuncWMSS,A(λ) = negl(λ), and thus WMSS satisfies computa-
tional function preserving.
�
(Theorem 3)

Theorem 4. If DS satisfies sEUF-CMA security and PKE satisfies correctness,
then WMSS satisfies unremovability.

Due to the space limitation, we now give only an intuition of this proof here.
The formal proof will be given in the full version of this paper.

Let A be an adversary of unremovability for WMSS and (m∗, σ∗) be a forgery
output by A. To satisfy (m∗, σ∗) /∈ Qsign, A is not allowed to output an answer of
the signing oracle or watermark-signing oracle. When A queries to reveal circuit
oracle and gets a marked circuit C, by correctness of PKE, A is not allowed
to output (m∗, C(m∗)) such that satisfying Open(xk, vk, σ∗) /∈ Qmark. In this
setting, A has three strategies.

One is reusing a verification key, a ciphertext of mark and their signature
from signing oracle, and forging signature of m∗. Namely, A queries m to its
signing or watermark-signing oracle and gives an answer (vk, c, σ1, σ2), outputs
(m∗, (vk, c, σ1, σ

∗
2))((m

∗, σ∗
2) 	= (m,σ2)). In this case, by the sEUF-CMA security

of DS, the advantage of A is negligible.
Another one is reusing a verification key, a ciphertext of mark and their

signature from watermark-signing oracle, and forging signature of m∗. In this
case, as the first one, by the sEUF-CMA security of DS, the advantage of A is
negligible.

The other is computing a verification key, a ciphertext of mark and sig-
nature of m∗, and forging signature of a verification key and a ciphertext.
Namely, A computes (vk, sk) ← DS.Gen(1λ), c ← PKE.Enc(ek, τ)(wpp = ek),
signs σ2 ← DS.Sign(sk,m∗), and outputs (m∗, (vk, c, σ∗

1 , σ2)). Also in this case,
by the sEUF-CMA security of DS, the advantage of A is negligible.

4 Relation with Previous Definitions of Watermarking

In this section, to clarify the features of our definition, we discuss the relationship
between our definition and that of Cohen et al. [6] and Goyal et al. [8] which we
recall in Appendix B.

On the Syntax. Our definition of watermarkable signature is basically based
on Definition 9 proposed by Goyal et al. [8] in which we can mark a signing
circuit with multiple marks by the marking algorithm. This is in contrast to
Definition 15 proposed by Cohen et al. [6], in which no marking algorithm is
employed, instead, a mark is embedded into a circuit when generating signing
and verification keys.

The most characteristic point of our definition is that we introduced the
opening algorithm instead of extraction algorithm. Previous definitions of water-
marking schemes have an extraction algorithm which on input a marked circuit,

136 K. Sudo et al.

output the embedded mark. Clearly, we can construct a trivial extraction algo-
rithm from an opening algorithm just by running the circuit for some input
message and execute the opening for the output of the circuit.

On the Correctness and Meaningfulness. As for the functionality of water-
markable signature, we defined correctness and meaningfulness. These proper-
ties ensure that “signatures generated by unmarked signing key are valid” and
“opening a signature output by (unmarked) signing algorithm should be invalid”
respectively.

Previous works explicitly require “when extracting a marked circuit, the mark
should be correctly extracted” as a part of the correctness (Definition 10, 16)
and “no mark can be extracted from any circuit chosen independently of the
public parameter or mark key” as a part of the meaningfulness (Definition 11).
We do not require correctness for the Open algorithm like the former property
because unremovability implies this correctness. Unremovability also implies fol-
lowing property. For any fixed set, a message m and a signature σ, choosing
independently from watermarking or signature parameters, the provability that
σ is a valid signature for m and Open(xk, vk, σ) outputs any marks except ⊥ is
negligible.

On the Unremovability. Due to the modification of the syntax, our definition of
unremovability differs from that of previous works. Originally, unremovability is
defined with the extraction algorithm, where the goal of the adversary is to work
out a ε-good circuit from which a novel mark is extracted. ε-good means that,
for ε fraction of the domain, behavior of the circuit is the same as the unmarked
signing algorithm (Definition 18), or output of the circuit is valid (Definition 14).
If the watermarkable signature scheme, which has sufficient large message space,
satisfies our unremovability, then it satisfies the unremovability defined with the
trivial extraction algorithm, for any small but noticeable ε-good in the latter
sense, which is the best we can hope for a watermarkable primitive.

Similar to Goyal et al., we consider collusion of adversaries in the definition
of unremovability. Specifically, Goyal et al. give the adversary access to the mark
oracle so that the adversary can collect multiple marked circuits. In our defini-
tion, the adversary can collect marked circuits through access to the make-circuit
and the reveal-circuit oracles. Moreover, our definition allows the adversary to
see signatures generated by marked circuits that are not corrupted. This makes
the definition of unremovability stronger so that it almost covers the security of
unforgeability as explained next.

On (Omission of) Unforgeability. Unlike the existing definitions of watermark-
able signature, our definition does not explicitly require unforgeability which
ensures that the watermarkable signature is unforgeable as a digital signature.
This is because our definition of unremovability almost captures such unforge-
ability. Specifically, when the adversary does not use the reveal-circuit oracle in
the game of unremovability, the game corresponds to that of unforgeability.

Watermarkable Signature with Computational Function Preserving 137

Cohen et al. defined a selective unforgeability (Definition 17), that is, the
adversary chooses a message on which try to forge a signature at the first step
of the game. Definition 13 by Goyal et al. as well as ours captures strongly
existential unforgeability (sEUF) where the adversary output the target message
at the last step.

A shortcoming of Definition 13 is that only the signing oracle is provided to
the adversary. In our definition, the adversary has access to not only the signing
oracle but also the make-circuit oracle and the watermark signing oracle. Thus
we can capture the situations where the adversary can see signatures generated
from not only the unmarked circuit but also marked circuits.

In Definition 13, the watermark authority could be malicious, which means
that the adversary can choose the public parameter, mark-key, and extract-key.
Only this feature is not covered by our definition of unremovability, however, we
can explicitly add such a definition of unforgeability. We can prove our scheme
to be unforgeable in a very similar way as the case of the unremovability.

On the Function Preserving of Watermarkable Signatures. On the function pre-
serving, we firstly examine the relations between the function preserving of our
watermarkable signature and one of Goyal et al.’s watermarkable signature [8]. At
first, we recall the definition of function preserving for Goyal et al.’s watermark-
able signature [8]. Informally, their definition requires only that a marked signing
key still produces valid signatures which verify with respect to the original veri-
fication key. In other words, this definition does not guarantee an input/output
behavior with respect to watermarked signing keys. The formal definition is
described in Appendix B. We can see that our computational function preserv-
ing defined in Sect. 2 is stronger than the Goyal et al.’s function preserving.
Specifically, we have the following statement.

Theorem 5. If watermarkable signature satisfies correctness and computational
function preserving, then it satisfies function preserving.

On the Function Preserving of General Watermarkable Primitives. Next, we
investigate the relations about function preserving on general watermarkable
primitives. Based on our definition for watermarkable signature, we firstly intro-
duce the definition of computational function preserving for general watermark-
able primitives.

A (general) watermarkable primitive with a mark space T is a tuple of the
following four PPT algorithms (WMSetup,Gen,Mark,Extract).

– WMSetup(1λ) → (wpp,mk, xk) : Given a security parameter 1λ as input, the
watermark setup algorithm outputs a watermark public parameter wpp, a
mark key mk, and an extract key xk.

– Gen(wpp) → (pk, C) : Given a watermark public parameter wpp as input, the
circuit generation algorithm outputs a public key pk and a circuit C.

– Mark(mk, C, τ) → Cτ : Given a mark key mk, a circuit C, and a mark τ as
input, the marking algorithm outputs a marked circuit Cτ .

138 K. Sudo et al.

– Extract(xk, pk, Cτ) → τ/⊥ : Given an extract key xk, a public key pk, and a
marked circuit Cτ , the extraction algorithm outputs a mark τ or ⊥.

We define the computational function preserving for a watermarkable prim-
itive as follows.

Definition 6 (Computational Function Preserving for a Watermark-
able Primitive). A watermarkable primitive (WMSetup,Gen,Mark,Extract)
satisfies computational function preserving if there exists a negligible function
negl(·) for any PPT adversary A = (A1,A2),∣∣∣∣∣∣∣∣∣∣∣∣

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

b = b′ :

(wpp,mk, xk) ← WMSetup(1λ),
(pk, C) ← Gen(wpp), (τ, st1) ← A1(wpp, pk),
Cτ ← Mark(mk, C, τ), b ← {0, 1},

Cb := Cτ , Cb⊕1 := C

b′ ← AC0(·),C1(·),Mark(mk,C,·)
2 (st1)

⎤
⎥⎥⎥⎥⎥⎥⎦

− 1
2

∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ),

where C0(·)(resp., C1(·)) is a circuit evaluation oracle that, given an input x,
outputs C0(x) (resp., C1(x)) and Mark(mk, C, ·) is a circuit generation oracle
that, given a mark τ as input, outputs a marked circuit Cτ (·) ← Mark(mk, C, τ).

Then, we see the relations between this computational function preserving
and statistical function preserving of Cohen et al.’s general watermarkable prim-
itive [6]. Next, we recall the definition of statistical function preserving for a gen-
eral watermarkable primitive defined in [6]. Intuitively, their definition captures
a situation where the input/output behavior of the marked circuit is statistically
close to that of the original circuit when we embed any mark into a circuit over
the honest setup. The formal definition is given as follows.

Definition 7 (Statistical Function Preserving for a Watermarkable
Primitive). A watermarkable primitive satisfies statistical function preserving
for a circuit class {C}λ if there exists a negligible function negl(·) for any circuit
C ∈ {C}λ, input x, and τ ∈ T ,

Pr

[
C(x) = Cτ (x) :

(wpp,mk, xk) ← WMSetup(1λ),
Cτ ← Mark(mk, C, τ)

]
≥ 1 − negl(λ).

At first glance, since their definition satisfies a statistical property while our
definition only satisfies a computational property, it seems that their definition
implies ours. However, we can see that the above statistical function preserv-
ing does not imply our computational function preserving. This is because,
in our definition, a marked circuit can be chosen after generating a water-
mark public parameter, a mark key, and an extract key, and an adversary can
choose a challenge mark after seeing a watermarkable public parameter. In gen-
eral, it is important to consider such an adaptive security for cryptographic
primitives capturing a standard security requirement in real-world applications.

Watermarkable Signature with Computational Function Preserving 139

(For example, in a signature setting, our definition can capture an existential
unforgeability while the above definition only captures weak existential unforge-
ability.) Actually, we can extend the above statistical function preserving into
ideal one supporting an adaptive security as follows.

Definition 8 (“Ideal” Statistical Function Preserving). A watermarkable
primitive satisfies “ideal” statistical function preserving if there exists a negligible
function negl(·) for any computationally unbounded adversary A = (A1,A2),

Pr

⎡
⎢⎢⎢⎢⎣C(x′) = Cτ (x′) :

(wpp,mk, xk) ← WMSetup(1λ),
(pk, C) ← Gen(wpp), (τ, st1) ← A1(wpp),
Cτ ← Mark(mk, C, τ),

x′ ← AC(·),Cτ (·),Mark(mk,C,·)
2 (st1)

⎤
⎥⎥⎥⎥⎦ ≥ 1 − negl(λ),

where C(·)(resp., Cτ (·)) is a circuit evaluation oracle that, given an input x,
outputs C(x)(resp., Cτ (x)). A is allowed to access C(·)(resp., Cτ (·)) only poly-
nomial times. Mark(mk, C, ·) is a circuit generation oracle that, given a mark τ
as input, outputs a marked circuit Cτ (·) ← Mark(mk, C, τ).

It is easy to see that the above ideal statistical function preserving implies our
computational function preserving. However, we do not know how to obtain a
watermarkable primitive satisfying this ideal statistical function preserving. On
the other hand, as shown in Sect. 3, we can obtain a watermarkable signature
scheme satisfying computational function preserving by requiring only PKE and
(standard) signature both of which are basic cryptographic primitives.

5 Conclusions

We reorganize the definition of watermarkable signature recently proposed by
Goyal et al. [8] and introduce a new security notion called computational function
preserving for it. Then, we can see that our computational function preserving
defined in Sect. 2 is stronger than the function preserving by Goyal et al. . More-
over, we extend the definition of computational function preserving into general
watermarkable primitive setting, then also investigate the relationships between
our computational function preserving and statistical function preserving pro-
posed by Cohen et al. [6]. In addition, we propose a watermarkable signature
scheme satisfying computational function preserving based on public key encryp-
tion and (standard) digital signature.

Acknowledgements. A part of this work was supported by NTT Secure Platform
Laboratories, JST OPERA JPMJOP1612, JST CREST JPMJCR14D6, JSPS KAK-
ENHI JP16H01705, JP17H01695, JP19J22363, JP20J14338.

140 K. Sudo et al.

A Basic Cryptographic Primitives

A.1 Public Key Encryption

A public key encryption scheme PKE with a message space M is a tuple of PPT
algorithms (PKE.Gen,PKE.Enc,PKE.Dec).

– PKE.Gen(1λ) → (ek, dk) : Given a security parameter 1λ as input, the key
generation algorithm outputs a encryption/decryption key pair (ek, dk).

– PKE.Enc(ek,m) → c : Given an encryption key ek and a plaintext m as input,
the encryption algorithm outputs a ciphertext c.

– PKE.Dec(dk, c) → m/⊥ : Given a decryption key dk and a ciphertext c as
input, the decryption algorithm outputs a message m or invalid symbol ⊥.

Correctness PKE satisfies correctness if for all m ∈ M, Pr[PKE.Dec(dk, c) =
m : (ek, dk) ← PKE.Gen(1λ), c ← PKE.Enc(ek,m)] = 1 holds.

variant of IND-CPA For any PPT adversary A,

Advind-cpavPKE,A :=

∣∣∣∣∣∣∣Pr

⎡
⎢⎣b = b′ :

(ek, dk) ← PKE.Gen(1λ), (m0,m1) ← A(ek),
b ← {0, 1}, cb ← PKE.Enc(ek,m0),
cb ⊕ 1 ← PKE.Enc(ek,m1), b′ ← A(c0, c1)

⎤
⎥⎦ − 1

2

∣∣∣∣∣∣∣
is negl(λ). This security is equivalent to the general one.

A.2 Digital Signature

A digital signature scheme DS with a message space M is a tuple of PPT algo-
rithms (DS.Gen,DS.Sign,DS.Verify).

– DS.Gen(1λ) → (vk, sk) : Given a security parameter 1λ as input, the key
generation algorithm outputs a verification/signing key pair (vk, sk).

– DS.Sign(sk,m) → σ : Given a signing key sk and a message m as input, the
signing algorithm outputs a signature σ.

– DS.Verify(vk,m, σ) → 0/1 : Given a verification key vk, a message m, and a
signature σ as input, the verification algorithm outputs 0 or 1.

Correctness DS satisfies correctness if for all m ∈ M, Pr[DS.Verify(vk,m, σ) =
1 : (vk, sk) ← DS.Gen(1λ), σ ← DS.Sign(sk,m)] = 1

sEUF-CMA The sEUF-CMA security for DS is defined by the following game
between a challenger and a PPT adversary A.
1. The challenger runs (vk, sk) ← DS.Gen(1λ), initializes a list Q ← {}, and

gives vk to A.
2. Throughout the entire game, A is given access to signing ora-

cle DS.Sign(sk, ·). Given an input m, the signing oracle runs σ ←
DS.Sign(sk,m), updates Q ← Q ∪ {(m,σ)}, and returns σ to A

3. A outputs a forgery (m∗, σ∗).
DS satisfies the sEUF-CMA security if for all PPT adversaries A,
AdvunfDS,A := Pr[DS.Verify(vk,m∗, σ∗) = 1 ∧ (m∗, σ∗) /∈ Q] ≤ negl(λ) holds.

Watermarkable Signature with Computational Function Preserving 141

B Watermarkable Signature in Previous Works

To compare with watermarkable signature in previous works, we describe for-
mal definitions of watermarkable signature proposed by Goyal et al. [8] and
Cohen et al. [6].

B.1 Definition by Goyal et al. [8]

Definition 9 (Watermarkable Signature). A watermarkable signature
scheme with a message space M and a mark space T is a tuple of PPT algo-
rithms (WMSetup,SigSetup,Sign,Verify,Mark,Extract).

– WMSetup(1λ) → (wpp,mk, xk)
– SigSetup(1λ,wpp) → C
– Sign(sk,m) → σ

– Verify(vk,m, σ) → 0/1
– Mark(mk, sk, τ) → Cτ

– Extract(xk, vk, Cτ) → τ/⊥

Definition 10 (Correctness). For any m ∈ M and τ ∈ T ,

Pr

⎡
⎢⎣Verify(vk,m,C(m)) 	= 1∨
Extract(xk, vk, C) 	= τ

:

(wpp,mk, xk) ← WMSetup(1λ),

(sk, vk) ← SigSetup(1λ,wpp),
C ← Mark(mk, sk, τ)

⎤
⎥⎦ ≤ negl(λ)

holds.

Definition 11 (Meaningfulness). Meaningfulness requires the following two
properties holds.

1. For all fixed circuits C : M → SIG
1,

Pr

[
Extract(xk, vk, C) 	= ⊥ :

(wpp,mk, xk) ← WMSetup(1λ),

(sk, vk) ← SigSetup(1λ,wpp)

]
≤ negl(λ)

2.

Pr

[
Extract(xk, vk, Sign(sk, ·)) �= ⊥ :

(wpp,mk, xk) ← WMSetup(1λ),

(sk, vk) ← SigSetup(1λ,wpp)

]
≤ negl(λ)

Definition 12 (Function Preserving). For any m ∈ M and τ ∈ T ,

Pr

⎡
⎢⎣Verify(vk,m,C(m)) = 0 :

(wpp,mk, xk) ← WMSetup(1λ),

(sk, vk) ← SigSetup(1λ,wpp),
C ← Mark(mk, sk, τ)

⎤
⎥⎦ ≤ negl(λ)

holds.

1
SIG is a signature space for the watermarkable signature scheme.

142 K. Sudo et al.

Definition 13 (Unforgeability). For any PPT adversary A,

Pr

⎡
⎢⎣Verify(vk,m∗, σ∗) = 1 ∧ m ∈ Q :

wpp ← A(1λ),

(vk, sk) ← SigSetup(1λ,wpp),

(m∗, σ∗) ← ASign(sk,·)(vk)

⎤
⎥⎦ ≤ negl(λ)

holds, where Q ⊆ M is the set of messages A submitted to the signing oracle.

Definition 14 (Unremovability). For any PPT adversary A,

Pr

⎡
⎢⎣Extract(xk, vk, C∗) /∈ Q :

(wpp,mk, xk) ← WMSetup(1λ),

(vk, sk) ← SigSetup(1λ,wpp),

C∗ ← ASign(sk,·)Mark(mk,vk,·)(1λ,wpp, vk)

⎤
⎥⎦ ≤ negl(λ)

holds, where Q ⊆ M is the set of messages A submitted to the Mark oracle. A
is said to be ε-unremovable admissible if the circuit C∗ it outputs is an ε-good
signer for key vk. Here we say that C∗ is an ε-good signer circuit for key vk if
the following Pr [Verify(vk,m,C∗(m)) = 1 : m ← M] ≥ ε holds.

B.2 Definition by Cohen et al. [6]

Definition 15 (Watermarkable Signature). A watermarkable signature
scheme with a message space M and a mark space T is tuple of PPT algorithms
(WMSetup,SigSetup,Sign,Verify,Extract).

– WMSetup(1λ) → (mk, xk)
– SigSetup(1λ,mk, τ) → (vk, sk)
– Sign(sk,m) → σ

– Verify(vk,m, σ) → 0/1

– Extract(xk, vk,DS.Signsk) → τ/⊥

Definition 16 (Correctness). For any λ ∈ N, m ∈ M, and τ ∈ T ,

Pr

⎡
⎢⎣Verify(vk,m,C(m)) 	= 1∨
Extract(xk, vk, C) 	= τ

:

(wpp,mk, xk) ← WMSetup(1λ),

(sk, vk) ← SigSetup(1λ,wpp),
C ← Mark(mk, sk, τ)

⎤
⎥⎦ ≤ negl(λ)

holds.

Definition 17 ((Selective) Unforgeability). For any PPT adversary A,

Pr

⎡
⎢⎣Verify(vk,m∗, σ∗) = 1 :

m∗ ← A(1λ), (mk, xk) ← WMSetup(1λ),

(vk, sk) ← SigSetup(1λ,mk, τ),

σ∗ ← ASignm∗ (sk,·)(vk, xk)

⎤
⎥⎦ ≤ negl(λ)

holds where Signm∗(sk, ·) is an oracle that signs any message except for m∗.

Watermarkable Signature with Computational Function Preserving 143

Definition 18 (Unremovability). For any PPT adversary A and for any
mark τ ,

Pr

⎡
⎢⎣ C∗ ≈ε Signsk ∧
Extract(xk, vk, C∗) 	= τ

:

(mk, xk) ← WMSetup(1λ),

(vk, sk) ← SigSetup(1λ,mk, τ),

C∗ ← A(1λ, sk, xk)

⎤
⎥⎦ ≤ negl(λ)

holds, where C∗ ≈ε Signsk denotes C∗ and Signsk agree on ε fraction of their
inputs.

References

1. Baldimtsi, F., Kiayias, A., Samari, K.: Watermarking public-key cryptographic
functionalities and implementations. In: Nguyen, P., Zhou, J. (eds.) ISC 2017.
LNCS, vol. 10599, pp. 173–191. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-69659-1 10

2. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

3. Barak, B., et al.: On the (im)possibility of obfuscating programs. J. ACM 59(2),
6:1–6:48 (2012)

4. Boneh, D., Lewi, K., Wu, D.J.: Constraining pseudorandom functions privately.
In: Fehr, S. (ed.) PKC 2017, Part II. LNCS, vol. 10175, pp. 494–524. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7 17

5. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-48658-5 25

6. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Water-
marking cryptographic capabilities. In: ACM, STOC 2016, pp. 1115–1127 (2016)

7. Cohen, A., Holmgren, J., Vaikuntanathan, V.: Publicly verifiable software water-
marking. IACR Cryptology ePrint Archive, 2015:373 (2015)

8. Goyal, R., Kim, S., Manohar, N., Waters, B., Wu, D.J.: Watermarking public-key
cryptographic primitives. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019,
Part III. LNCS, vol. 11694, pp. 367–398. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-26954-8 12

9. Hopper, N., Molnar, D., Wagner, D.: From weak to strong watermarking. In: Vad-
han, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 362–382. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-70936-7 20

10. Kim, S., Wu, D.J.: Watermarking cryptographic functionalities from standard lat-
tice assumptions. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS,
vol. 10401, pp. 503–536. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 17

11. Kim, S., Wu, D.J.: Watermarking PRFs from lattices: stronger security via
extractable PRFs. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part
III. LNCS, vol. 11694, pp. 335–366. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-26954-8 11

12. Naccache, D., Shamir, A., Stern, J.P.: How to copyright a function? In: Imai, H.,
Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp. 188–196. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-49162-7 14

https://doi.org/10.1007/978-3-319-69659-1_10
https://doi.org/10.1007/978-3-319-69659-1_10
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-662-54388-7_17
https://doi.org/10.1007/3-540-48658-5_25
https://doi.org/10.1007/3-540-48658-5_25
https://doi.org/10.1007/978-3-030-26954-8_12
https://doi.org/10.1007/978-3-030-26954-8_12
https://doi.org/10.1007/978-3-540-70936-7_20
https://doi.org/10.1007/978-3-319-63688-7_17
https://doi.org/10.1007/978-3-319-63688-7_17
https://doi.org/10.1007/978-3-030-26954-8_11
https://doi.org/10.1007/978-3-030-26954-8_11
https://doi.org/10.1007/3-540-49162-7_14

144 K. Sudo et al.

13. Nishimaki, R.: How to watermark cryptographic functions. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 111–125. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 7

14. Nishimaki, R.: How to watermark cryptographic functions by bilinear maps. IEICE
Trans. Fundam. Electron. Commun. Comput. Sci. 102–A(1), 99–113 (2019)

15. Nishimaki, R., Wichs, D.: Watermarking cryptographic programs against arbitrary
removal strategies. IACR Cryptology ePrint Archive, 2015:344 (2015)

16. Quach, W., Wichs, D., Zirdelis, G.: Watermarking PRFs under standard assump-
tions: public marking and security with extraction queries. In: Beimel, A., Dziem-
bowski, S. (eds.) TCC 2018, Part II. LNCS, vol. 11240, pp. 669–698. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03810-6 24

17. Yang, R., Au, M.H., Lai, J., Xu, Q., Yu, Z.: Unforgeable watermarking schemes
with public extraction. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS,
vol. 11035, pp. 63–80. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
98113-0 4

18. Yang, R., Au, M.H., Lai, J., Xu, Q., Yu, Z.: Collusion resistant watermarking
schemes for cryptographic functionalities. In: Galbraith, S.D., Moriai, S. (eds.)
ASIACRYPT 2019, Part I. LNCS, vol. 11921, pp. 371–398. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34578-5 14

https://doi.org/10.1007/978-3-642-38348-9_7
https://doi.org/10.1007/978-3-030-03810-6_24
https://doi.org/10.1007/978-3-319-98113-0_4
https://doi.org/10.1007/978-3-319-98113-0_4
https://doi.org/10.1007/978-3-030-34578-5_14

Privacy-Preserving Authentication for
Tree-Structured Data with Designated

Verification in Outsourced Environments

Fei Zhu1(B), Xun Yi1, Sharif Abuadbba2, Ibrahim Khalil1, Xu Yang1,
Surya Nepal2, and Xinyi Huang3(B)

1 School of Science, RMIT University, Melbourne, Australia
{fei.zhu,xun.yi,ibrahim.khalil,xu.yang}@rmit.edu.au

2 CSIRO Data61, Sydney, Australia
{sharif.abuadbba,surya.nepal}@data61.csiro.au

3 School of Mathematics and Informatics, Fujian Normal University, Fuzhou, China
xyhuang81@gmail.com

Abstract. Nowadays, the use of database outsourcing is on the rise.
Since the service provider may not be fully trusted, a crucial requirement
in outsourced data sharing is therefore to ensure that users can verify the
integrity and authenticity of their query results. In outsourced healthcare
data sharing, because the data contains sensitive information, an equally
significant issue is to guarantee that the sharing process does not lead to
any information leakages. Though some privacy-preserving authentica-
tion solutions have been presented to address these issues, unfortunately,
none of them consider the risk of privacy leakage during the dissemina-
tion of authenticated healthcare data. That is, the queried data may be
leaked by the user since any third party getting hold of a signed data
would be convinced of its validity. In other words, for privacy concerns,
we need a secure mechanism to ensure that only a specific receiver can
check the integrity and authenticity of shared outsourced data.

To address the these concerns, in our work, we propose a privacy-
preserving authentication scheme with designated verification for tree-
structured data (i.e., XML-based healthcare records). We provide the
formal definition and related security properties of our scheme. We fur-
ther put forward our concrete construction and prove its security under
the standard cryptographic assumption in the random oracle model. The
comparison analysis of theory and practice shows that our scheme pro-
vides stronger privacy protection than existing schemes while having the
shortest key length and signature size. Therefore, our construction is
efficient and practical for outsourced environments.

Keywords: Privacy-preserving authentication · Outsourced
environments · Trees · Privacy · Data sharing

c© Springer Nature Switzerland AG 2020
K. Nguyen et al. (Eds.): ProvSec 2020, LNCS 12505, pp. 145–165, 2020.
https://doi.org/10.1007/978-3-030-62576-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62576-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-62576-4_8

146 F. Zhu et al.

1 Introduction

Database outsourcing [25] is a popular trend in the fast-growing cloud comput-
ing paradigm. In a typical outsourced database (ODB) model, the data owner
outsources his local data to the powerful cloud service provider (SP), and the
SP answers users’ queries on behalf of the data owner. The ODB model not
only provides a flexible solution for resource-constrained users to maintain their
database services, but also enables the SP to take advantage of the concentration
on professional resources. Although this promising service model has numerous
advantages, it poses many challenges to data security and privacy since the SP
may not be fully trusted and may tamper with the contents of the database
for some purpose. The situation is further aggravated if the outsourced data
(such as healthcare, biological, and financial data) contains sensitive informa-
tion that cannot be disclosed. Therefore, in addition to the need for an effec-
tive data authentication scheme to guarantee that users can verify the integrity
and authenticity of their query results, a significant requirement is to make
sure that the authentication process does not lead to any information leakages.
Because tree structure (such as XML-based example) [2,9,13,15,17] is one of
the most extensively used data organization structures, a fundamental but vital
requirement is to design the specific authentication techniques for trees in the
ODB model. Moreover, as shown in Fig. 1, since anyone who obtains the signed
query result can easily verify its authenticity [23], the user can simply send the
tree-signature pair to any interested third-party verifier (i.e., the external entity
beyond the OBD model). What’s even worse is this signed query result can be
further leaked to an unlimited number of third party verifiers [27], thus posing a
serious privacy threat to the data owner. For privacy concerns, how to prevent
the authenticated query result from being leaked by the user is also crucial.

Fig. 1. Data Leakage in the ODB model.

Take the following scenario borrowed from [2,13,15] as an example. As shown
in Fig. 2, the tree T stands for an individual’s XML-based healthcare record; the
tree structure may be publicly known, and the record is signed by the individual
(i.e., the data owner Alice) and remotely stored in a database server. Suppose
that siblings nodes a6, a7 and a8 refer to some different diseases such as cancer,
HIV test, and kidney failure she has suffered from during her life, and the order
between them represents the temporal order in which she suffered from the
diseases. Assume that a researcher (i.e., the user Bob) makes a query for the
healthcare database on a specific group of diseases (see the shaded part) that

Privacy-Preserving Authentication for Tree-Structured Data 147

Fig. 2. The tree representation of a XML-based healthcare record for an individual.

an individual may have suffered from, and the query result returned by the SP
is represented as Tδ. Traditionally, the Merkle hash technique (MHT) [18] is
used to assure the integrity of Tδ. However, the verification process needs some
information (at least the hash value) about a7. Here, we refer the reader to [14]
for the detailed example and related consequence of inference attacks. In all,
because a7 is not part of Tδ, for privacy concerns, Bob cannot be allowed to
infer any information about a7 in the received information. In the meantime,
Bob should be capable of verifying the integrity and authenticity of Tδ.

Motivation. To address this issue, many researchers have deployed redactable
signature schemes (RSSs) [10] into the area of authenticating tree-structured
data [2,11–13,15–17,21]. This is due to the fact that an RSS allows the SP to
delete some portions of the signed data and generate a valid signature for the
remaining data without the signer’s secret key. This homomorphic property in
the RSS makes it differ from the traditional signature scheme on which any
edit operation will destroy the integrity and authenticity of the retained data.
Notably, in an RSS, the retained data and its signature do not leak any con-
tent information about deleted parts. Unfortunately, simply using an RSS is not
enough in the aforementioned scenario. This is because it cannot prevent users
from leaking the authenticated query result to an interested third party.

In the above scenario, for example, since the query result contains some
sensitive information and Alice does not wish Bob to convince any third party
(say Dave) the truth of the result (i.e., might reliably learn her disease), he is
therefore not allowed to let Dave know this fact. Hence, what is needed is a
designated verifier (DV) for the redacted version of the healthcare record. In
other words, when redacting the healthcare record, Alice should be capable of
defining the specified receiver Bob. In this case, although anyone can verify the
integrity and authenticity of a leaked record, only Bob can be sure of its validity.
This can be achieved by constructing the scheme in the following way: The DV

148 F. Zhu et al.

Bob has the ability to forge a signature that is indistinguishable from the real
signature. Thus, the above problem is how does Alice sign a tree-structured data
once (i.e., saving bandwidth), so that the subtree’s integrity and authenticity can
be verified by a designated user Bob without leaking any information about the
removed data. Such requirements call for the need of developing a security model
for ‘privacy-preserving authentication with designated verification’ of trees. Also,
we should be aware that, considering the actual application requirements, the
solution should not sacrifice much performance when providing stronger privacy
protection.

The work in [5] firstly introduced the DV into an RSS. However, RSSs are
usually designed for specific data structures, such as sets, lists, trees, or graphs.
The scheme presented in [5] is mainly designed for sets (a modified version can
be used for lists) but cannot be suitable for trees. This is because the integrity of
sets only refers to content integrity, while trees also involve structural integrity.
Motivated by these observations, in this work, we make use of the concept of
universal designated verifier signatures (UDVSs) [23,27] and propose a practical
privacy-preserving authentication scheme for trees with designated verification
in outsourced healthcare data sharing.

Contributions. Previous solutions of RSS for trees cannot address the above
privacy concern in outsourced healthcare data sharing. To achieve the aforemen-
tioned security and privacy protection requirements, in our work, we put forward
an efficient privacy-preserving authentication scheme for trees with designated
verification (DV-PPAT). More concretely, the scheme supports the integrity and
authenticity verification of tree-structured data returned from the SP with des-
ignated verification. The framework of our DV-PPAT is described as follows: The
data owner signs the original tree-structured data and uploads the tree-signature
pair to a remote database server. Each time when a user wants to make a query
for the stored data, the SP deletes some portions of the signed tree and generates
a valid signature for the retained subtree independently. On this basis, the SP
further computes a DV signature for the subtree and returns the new subtree-
signature pair to the user. After receiving the subtree, only the user himself can
verify its integrity and authenticity, and the verification process reveals noth-
ing about the pruned nodes in the original tree. Our main contributions are as
follows:

1. Existing tree-structured data authentication schemes (such as [12,16]) are
inefficient and have the problem that the authenticated query result may be
leaked by the user (i.e., the requester). We therefore propose a practical DV-
PPAT scheme that can (i) support the integrity and authenticity verification
of the retained subtree (i.e., the query result) returned by the SP without
disclosing any sensitive information about the deleted part, and (ii) prevent
the user from leaking the authenticated query result to any third party, mak-
ing the third party believe that the user holds a valid signature. Notably, our
scheme allows one to redact leaves and inner nodes.

2. Kundu et al. [12] presented the security definition of RSS for trees. We
note that their definition does not appropriately capture the desired security

Privacy-Preserving Authentication for Tree-Structured Data 149

properties. For the first time, we formally define DV-PPAT and related security
properties, including unforgeability and privacy-preserving properties such as
privacy, transparency, and non-transferability. We further present the rigorous
security proofs of our scheme under the standard cryptographic assumption
in the random oracle (RO) model.

3. Our DV-PPAT scheme achieves stronger privacy protection (i.e., the non-
transferability as defined in Sect. 4.2) than that of state-of-the-art schemes.
In the meantime, our scheme does not sacrifice much performance. Instead,
it has a shorter key length and signature size. Specifically, our signature size
for the original tree T is similar to the scheme in [16], and it is about 23.4%
of that of the scheme in [12]. Our signature size for the redacted tree Tδ is
about 66.6% of that of the scheme in [16] and 93.7% of that of the scheme
in [12]. Therefore, our proposed scheme is practical for outsourced healthcare
data sharing.

1.1 Organization

The remaining paper is organized as the following: We describe the related work
in Sect. 2 and give some required preliminaries in Sect. 3. Sect. 4 presents related
definitions and security models of DV-PPAT. Section 5 presents our concrete
construction and its security proofs. Section 6 evaluates the performance of our
scheme and we conclude the paper in Sect. 7.

2 Related Work

Tree-structured data sharing over an untrusted server requires that both
integrity and authenticity must be assured. To address this concern, many
authentication techniques have been proposed in the literature. Assuring the
integrity of tree-structured data is mainly carried by the MHT [18] introduced
by Merkle in 1989. A drawback of such a technique is that a user who receives a
shared subtree will also need to receive some private information about unshared
nodes (such as the hash value) for verification [26]. Therefore, the schemes of the
authenticated data structure (ADS) [7] derived from the MHT technology cannot
also achieve confidentiality-preserving. Groß [8] proposed a third-party auditing
system based on zero-knowledge (ZK) proof for topology graphs; however, the
scheme cannot be used for data sharing and therefore cannot solve our problem.
In 2008, Kundu and Bertino [13] firstly presented an RSS for trees and claimed
that it guarantees both confidentiality and integrity. However, the scheme lacks
formal security definitions and proofs. Subsequently, Brzuska et al. [2] revis-
ited the work in [13], gave definitions and security models for RSS for trees,
and also proposed a provably secure construction under standard cryptographic
assumptions. Unfortunately, the scheme presented in [2] only allows to redact
leaf nodes. Samelin et al. [22] proposed an RSS allowing to independently redact
structure and content. It is worth mention that Samelin et al. [21] presented new
attacks with respect to unforgeability, privacy, and transparency on the RSSs in

150 F. Zhu et al.

[2,13,21], and gave a flexible construction based on the initial idea in [13]. Kundu
et al. [11,12] introduced the concept of secure names and proposed the secure
naming scheme (SNS) in 2012. The SNS can assign ‘secure names’ to nodes such
that these secure names can be used for verifying the order between the nodes
efficiently without revealing any information about other nodes. On this basis,
they used the underlying condensed-RSA scheme [20] and proposed an RSS for
trees. However, their scheme requires a long signature size and a high commu-
nication cost. More importantly, as mentioned before, it cannot prevent users
from sharing the authenticated query result to an external third party, which
may cause the privacy of the data owner to be leaked. In 2018, the work in [12]
was further extended by Liu et al. [16] to achieve redaction control. However,
their construction is inefficient. At present, numerous integrity and authenticity
authentication schemes with privacy protection have been proposed for trees in
outsourced healthcare data sharing; however, none of them consider the risk that
the shared data would be leaked by the user which will lead to severe privacy
problems.

3 Preliminaries

We define some preliminaries used by our paper in this section.

General Notations. The set of positive integers {1, 2, . . .} is denoted as N. We
say a function ξ : N → R is negligible if for any positive polynomial pol(·) there
exists λ0 ∈ N for every λ > λ0, the inequality ξ(λ) < 1/p(λ) holds. We use the

notation x
$←S to represent that the element x is chosen uniformly and randomly

from the set S.

Trees. A tree T = (V,E) consists of a set of nodes V ∈ N and a set of edges
E ⊆ V × V . We use cui

and e(ui, uj) to denote the content of an atomic data
unit ui and an edge from ui to uj respectively. Note that all edges in our scheme
are directed. The fact that uj precedes one of its siblings uk in T is referred as
uj ≺ uk. We use Tδ = (Vδ, Eδ) ⊆ T = (V,E) to represent a subtree of T .

3.1 Complexity Assumption

Bilinear Mapping. Let G1 =< g1 > and G2 =< g2 > be two q-order cyclic
groups, and GT be a group with the same order. Let ê: G1 × G2 → GT be a
pairing with the following three properties:

1. Bilinearity: ê(g1α, g2
β) = ê(g1, g2)αβ for every α, β ∈ Zq.

2. Efficiency: For every α, β ∈ Zq, ê(g1α, g2
β) is efficiently computable.

3. Non-degeneracy: ê(g1, g2) �= 1.

Following [3,24], in this paper, we use the so called Type-2 pairing which
exists an efficiently-computable isomorphism ψ : G2 → G1.

Bilinear Diffie-Hellman (BDH) problem [19]: Given g2, g2
α, g2

β ∈ G2, and

g1
γ ∈ G1, where α, β, γ

$← Z
∗
q , compute ê(g1, g2)αβγ ∈ GT .

Privacy-Preserving Authentication for Tree-Structured Data 151

Let a BDH parameter generator G(1λ) be a probabilistic polynomial time
(p.p.t.) algorithm that taking as input 1λ, and outputs a prime q and an admis-
sible bilinear mapping ê: G1 × G2 → GT .

Definition 1. (BDH assumption). For a p.p.t. adversary F , we define his prob-
ability in solving the BDH problem as

PrBDH
F = Pr

⎡
⎢⎣F

(
q,G1,G2, ê

g2, g2
α, g2

β , g1
γ

)
= ê(g1, g2)

αβγ

∣∣∣∣∣
(q,G1,G2, ê) ← G(1λ),

g1
$← G1, g2

$← G2,

α, β, γ
$← Z

∗
q

⎤
⎥⎦ .

We say that the BDH problem is hard if for any p.p.t. adversary F with negligible
function ξ, PrBDH

F ≤ ξ(λ).

3.2 Secure Naming Scheme

In order to protect the order of siblings of a node in an ordered tree, similar
to [16], we use an underlying secure naming scheme SNS=(NaGen, NaVerify),
described as usual through its p.p.t. name generation and verification algorithms.
Introduced by Kundu et al. in [11,12], the SNS can traverse an ordered tree
T = (V,E) bottom-up and assign secure names θui

to all nodes ui ∈ T . The
aim of using secure names is to prove/disprove the order between a pair of
nodes without leaking anything else about T (such as whether they are adjacent
siblings, how many other siblings are between them).

Remark 1. In the early work of Kundu et al. such as in [13], they used the
randomized traversal numbers as a building block to construct RSSs for trees.
These works were further proven to be insecure in [2,21,22]. Later, Kundu et al.
designed the SNS scheme and proposed new RSSs for trees. To the best of our
knowledge, the SNS scheme has not been cracked so far. As stated by [22], it is
a completely new construction not related to the original idea.

Definition 2. (SNS). A SNS=(NaGen, NaVerify) is defined via the following two
polynomial-time algorithms:

– Θ ← NaGen(1λ, V): On input the security parameter 1λ, and nodes V =
{ui|1 ≤ i ≤ n}, the algorithm outputs Θ = {θui

|1 ≤ i ≤ n}, where θui
is the

probabilistic secure name of ui.
– {0, 1} ← NaVerify(1λ, (ui, θui

), (uj , θuj
)): On input the security parameter

1λ, and two pairs (ui, θui
) and (uj , θuj

), the algorithm outputs a verification
decision d ∈ {0, 1}.

A SNS achieves name-transparency, i.e., anyone who has been given an ordered
set of secure names Θδ ⊆ Θ, can not infer whether Θδ = Θ or Θδ �= Θ. Please
refer to [11,12] for its concrete construction and security proof.

152 F. Zhu et al.

4 Definitions of Our DV-PPAT

In previous work, Kundu et al. presented the definitions of RSS for trees in [12].
However, their model cannot capture the case where the authenticated query
result should not be leaked by the verifier during the process of dissemination.
To overcome this shortcoming, we propose the desirable model of DV-PPAT.

This section will devote to the formal definitions of DV-PPAT, including its
syntax and security properties, such as unforgeability, privacy, transparency, and
non-transferability.

4.1 Syntax of DV-PPAT

A DV-PPAT scheme consists of eight polynomial time algorithms, i.e., DV-PPAT=
(ParaG, SigKG, VerKG, Sign, Verify, Redact, DeSign, DeVerify). Among them,
ParaG, SigKG, and VerKG are used to generate system parameters, key pairs for
the signer (i.e., the data owner) and the DV respectively. Sign is used by the
signer to authentication a given tree T , and Verify is used to verify whether the
received signature is valid. The SP uses Redact to obtain a signature for the
subtree Tδ (i.e., the query result) and then uses DeSign to generate a DV signa-
ture for Tδ. DeVerify is used by the verifier to check whether the DV signature
is valid. Following is the detailed syntax of DV-PPAT:

– para ← ParaG(1λ): On input security parameter 1λ, the probabilistic algo-
rithm outputs common parameters para.

– (xs, ys) ← SigKG(para): On input common parameters para, the probabilistic
algorithm returns a secret/public key pair (xs, ys) for the signer.

– (xv, yv) ← VerKG(para): On input common parameters para, the probabilistic
algorithm returns a secret/public key pair (xv, yv) for the DV.

– σT ← Sign(xs, T): The algorithm takes as input xs and a tree T = (V,E). It
returns σT as the signature for T .

– {0, 1} ← Verify(ys, T, σT): The algorithm takes as input ys, a tree T and its
signature σT as input. It outputs a verification decision d ∈ {0, 1}.

– σTδ
← Redact(ys, T, σT , T ′

δ): The algorithm takes as input ys, an original
authenticated tree T and its signature σT , and a redaction subtree T ′

δ =
(V ′

δ , E′
δ). It outputs a signature σTδ

for a retained tree Tδ = (Vδ, Eδ).
– σds

Tδ
← DeSign(ys, yv, Tδ, σTδ

): The algorithm takes as input ys and yv, a
retained tree Tδ and its signature σTδ

. It outputs a DV signature σds
Tδ

for Tδ.
– {0, 1} ← DeVerify(ys, xv, Tδ, σ

ds
Tδ

): The algorithm takes as input ys, xv, a tree
T and its DV signature σds

Tδ
. The algorithm firstly generates a DV signature

σd̄s
Tδ

for Tδ. To check whether σd̄s
Tδ

=σds
Tδ

holds or not, it outputs a verification
decision d ∈ {0, 1}.

Consistency of DV-PPAT: In general, we require a DV-PPAT scheme should
satisfy two consistency properties:

Privacy-Preserving Authentication for Tree-Structured Data 153

– Verify Consistency of Sign: The signature generated by Sign is accepted as
valid by Verify. Thus, we have: Pr[Verify(ys, T,Sign(xs, T)) = 1] = 1.

– DeVerify Consistency
of DeSign: The DV signature produced by DeSign is accepted as valid by
DeVerify. That is: Pr[DeVerify(ys, xv, Tδ,DeSign(ys, yv, Tδ, σTδ

)) = 1] = 1.

4.2 Notions of Security for DV-PPAT

This section will define some security properties for DV-PPAT, including unforge-
ability and privacy-preserving properties such as privacy, transparency, and non-
transferability.

Unforgeability. We define two types of unforgeability properties in DV-PPAT,
i.e., σT -unforgeability and σds

Tδ
-unforgeability. Intuitively, the former requires

that no adaptive p.p.t. adversary has the ability to forge a valid signature σT

for the original tree T under adaptive chosen message attack. The latter refers
that without σT , no adaptive p.p.t. adversary can forge a valid DV signature
σds

Tδ
for the redacted tree Tδ to convince any third party of this fact (i.e., holding

such a valid σds
Tδ

). It is clear that, since anyone who possesses (ys, yv, T, σT , T ′
δ)

is able to use Redact and DeSign to get σds
Tδ

, the σds
Tδ

-unforgeability implies the
σT -unforgeability. Hence, we only formalize the property of σds

Tδ
-unforgeability.

Let A be an adaptive chosen message p.p.t. adversary. The goal of A is to forge
a valid DV signature σds

Tδ

∗ for a redacted tree Tδ
∗ = (Vδ

∗, Eδ
∗). The security

model of DV-PPAT is defined via the following Unforgeability Experiment 4.2.1
between A and a challenger C:

– Setup Phase: C runs ParaG to generate the common parameters para, then
runs SigKG and VerKG to obtain the signer’s secret/public key pair (xs, ys)
and DV’s secret/public key pair (xv, yv) respectively. C further provides A
with (para, ys, yv).

– Query Phase: Proceeding adaptively, A can request signatures with ys on trees
Ti = (Vi, Ei) (1 ≤ i ≤ n) of his choice. Each time when C responds to A’s
query, he runs the oracle Sign to obtain the signature σTi

for Ti and forwards
(Ti, σTi

) to A.
– Output Phase: Finally, A either concedes failure or forges a DV signature

σds
Tδ

∗ for a redacted tree Tδ
∗ = (Vδ

∗, Eδ
∗). A wins the above experiment if:

(1) DeVerify(ys, xv, Tδ
∗, σds

Tδ

∗) = 1, and (2) Tδ
∗ is not a subtree of any tree

that has been submitted as one of queries in Query Phase.

We define the advantage of A in winning the experiment 4.2.1 as
Adveuf−cma

A,DV−PPAT(1λ).

Definition 3. A scheme DV-PPAT=(ParaG, SigKG, VerKG, Sign, Verify, Redact,
DeSign, DeVerify) is existentially unforgeable under adaptive chosen message
attack (EUF-CMA) if Adveuf−cma

A,DV−PPAT(1λ) is negligible for any p.p.t. adversary
A, where 1λ is the security parameter.

154 F. Zhu et al.

Privacy and Transparency. There are three privacy-preserving properties,
i.e., privacy, transparency, and non-transferability in DV-PPAT. Similar to the
indistinguishability notion for an encryption scheme, the privacy for DV-PPAT
refers that the DV should not be able to gain any knowledge about redacted parts
without having access to them. The transparency for DV-PPAT requires that the
DV cannot decide whether the received tree is the original one or the redacted
version. As stated by Brzuska et al. in [2], this property is a stronger notion and
subsumes privacy which only covers the contents of the deleted nodes. To avoid
duplicate work, we only formally define transparency. Let D1 be an adaptive
chosen message p.p.t. adversary. D1’s goal is to decide whether a given signature
σT for tree T is directly generated by Sign or obtained by Redact. The trans-
parency of DV-PPAT is defined via the following Transparency Experiment 4.2.2
between D1 and a challenger C:

– Setup Phase: This step is similar to the Setup Phase in experiment 4.2.1, but
eventually, C provides D1 with (para, ys, yv, xv).

– Query Phase 1: This step is the same as the Query Phase 1 in experiment 4.2.1.
– Challenge:

(1) At the end of Query Phase 1, D1 selects two trees T0 = (V0, E0) and
T1 = (V1, E1) such that T0 ⊆ T1 and sends them to C.

(2) C randomly flips a coin c ∈ {0, 1}. He runs Sign to generate the signature
σT0 for T0 in the case of c = 0. Otherwise, he uses Sign to obtain the
signature σT1 for T1 and runs Redact to produce the signature σT0 for T0.
C then forwards the challenge pair (T0, σT0) to D1.

– Query Phase 2: During this phase, D1 can make oracles Sign, Verify, and Redact
queries as the same as in the Query Phase 1.

– Output Phase: At the end of this experiment, D1 outputs his guess c′ and
wins the experiment if c′ = c.

We define the advantage of D1 in winning the experiment 4.2.2 as
Adveuf−cma

D1,DV−PPAT(1λ) = |Pr[c′ = c] − 1/2|.
Definition 4. A scheme DV-PPAT=(ParaG, SigKG, VerKG, Sign, Verify, Redact,
DeSign, DeVerify) achieves the property of transparency if Adveuf−cma

D1,DV−PPAT(1λ)
is negligible for any p.p.t. adversary D1, where 1λ is the security parameter.

Non-transferability. The non-transferability for DV-PPAT refers that no DV
can use the signature σds

Tδ
to convince a third party that the tree Tδ was originally

signed by the signer. This property can be achieved because the DV has the
ability to produce the signature σds

Tδ
by using his secret key. That is, even if

he publishes his secret key to a third party, the third party cannot distinguish
whether the σds

Tδ
was generated by the original signer or forged by the DV. Let D2

be an adaptive chosen message p.p.t. adversary. D2’s goal is to decide whether
a given DV signature σds

Tδ
for tree Tδ is signed by the real signer or generated by

the DV. The non-transferability of DV-PPAT is defined via the following Non-
transferability Experiment 4.2.3 between D2 and a challenger C:

Privacy-Preserving Authentication for Tree-Structured Data 155

– Setup Phase: This step is similar to the Setup Phase in experiment 4.2.2.
– Query Phase 1: Proceeding adaptively, D2 can make oracles Sign, Verify,

Redact, DeSign, and DeVerify queries as his wish. Each time when responds
to D2’s query, C proceeds as the real scheme to obtain the related value.

– Challenge:
(1) At the end of Query Phase 1, D2 selects a tree Tδ and sends it to C.
(2) C randomly flips a coin c ∈ {0, 1}. If c = 0, he executes DeSign to gen-

erate the DV signature σds
Tδ

for Tδ. Otherwise, he proceeds as DeVerify to
generate a signature σd̄s

Tδ
. C further provides D2 with the pair (Tδ, σ

ds
Tδ

) or
(Tδ, σ

d̄s
Tδ

) accordingly.
– Query Phase 2: During this phase, D2 can also make oracles queries as the

same as in the Query Phase 1.
– Output Phase: At the end of this experiment, D1 outputs his guess c′ and

wins the experiment if c′ = c.

We define the advantage of D2 in winning the experiment 4.2.3 as
Adveuf−cma

D2,DV−PPAT(1λ) = |Pr[c′ = c] − 1/2|.
Definition 5. A scheme DV-PPAT=(ParaG, SigKG, VerKG, Sign, Verify, Redact,
DeSign, DeVerify) achieves non-transferability if Adveuf−cma

D2,DV−PPAT(1λ) is negligible
for any p.p.t. adversary D2, where 1λ is the security parameter.

5 Our Construction

This section provides a concrete DV-PPAT scheme by integrating the concept of
RSS and UDVS. The scheme deploys the BGLS scheme in [1] and the work in [19]
as building blocks. Similar to [11,12,16], we also make use of the efficient scheme
SNS=(NaGen, NaVerify) as a primitive. However, to avoid duplication work, we
omit its concrete description. Later, we give the detailed security analysis to DV-
PPAT in a model where the hash function is a RO. For simplicity, let n and k be
the number of nodes in the original tree T and the redacted tree Tδ respectively.

– ParaG(1λ): Given a security parameter 1λ, the algorithm chooses a Type-2
pairing ê: G1 × G2 → GT such that all groups have the same order q. Let g1
and g2 be the generator of G1 and G2 respectively. Denote by ψ : G2 → G1 the
isomorphism satisfying ψ(g2) = g1 and H(·) : {0, 1}∗ → G1 the cryptographic
hash function. The parameters are para = (ê, q, g1, g2, ψ, h(·)).

– SigKG(para): Given para, the signer chooses xs
$←− Zq, and computes ys ←

g2
xs ∈ G2. The signer’s secret/public key pair is (xs, ys).

– VerKG(para): Given para, the verifier chooses xv
$←− Zq, and computes yv ←

g2
xv ∈ G2. The verifier’s secret/public key pair is (xv, yv).

– Sign(xs, T): The signer uses this algorithm to sign a tree. The algorithm takes
the signer’s secret key xs and a tree T = (V,E) as input. It proceeds as the
following:

156 F. Zhu et al.

1. Carry out a traversal on T and let cui
be the content of a node ui ∈ V .

Let θui
∈ Zq and θpui

∈ Zq denote the secure names of ui and its parent
that are generated by NaGen.

2. For all ui ∈ V (1 ≤ i ≤ n), it computes hui
← H(θpui

||θui
||cui

) and node
signatures σui

← (hui
)xs ∈ G1.

3. It computes σ′
T ← ∏n

i=1 σui
, and returns σT ← (σ′

T , σui
, ΘT) as the

signature for T , where ΘT ← {(θui
, θpui

)|ui ∈ V } is the set of secure
names of nodes and their respective parents in T .

– Verify(ys, T, σT): The algorithm is processed by the SP. It takes the signer’s
public key ys, a tree T = (V,E) and its signature σT as input. It proceeds as
follows:
1. It parses σT as (σ′

T , σui
, ΘT).

2. It computes hui
← H(θpui

||θui
||cui

) for each ui ∈ V , and ensures ê(g2, σ′
T)

= ê(
∏n

i=1 hui
, ys) holds and rejects otherwise.

3. It verifies the structural relationship of T : (i) Let ui be the parent of
uj . It ensures θui

= θpuj
holds and rejects otherwise. (ii) Let uj and uk

are children of ui, and let uj ≺ uk. It ensures uj ≺ uk holds and rejects
otherwise by using NaVerify.

– Redact(ys, T, σT , T ′
δ): The SP executes this algorithm to obtain a signature for

the redacted tree. The algorithm takes as input the signer’s public key ys, a
tree T and its signature σT , and a subtree T ′

δ to be removed. Let Tδ = (Vδ, Eδ)
be the redacted tree. To cut a subtree T ′

δ = (V ′
δ , E′

δ) from T and generate a
signature σTδ

for Tδ, it proceeds as follows:
1. It parses σT as (σ′

T , σui
, ΘT).

2. If T ′
δ = (V ′

δ , E′
δ) �⊆ T = (V,E), it returns ⊥ to indicate failure.

3. Let ΘTδ
← {(θui

, θpui
)|ui ∈ Vδ} be the set of secure names of nodes and

their respective parents in Tδ.
4. It cuts the subtree T ′

δ = (V ′
δ , E′

δ) from T and computes σ′
Tδ

← ∏k
i=1 σui

.
5. It returns σTδ

← (σ′
Tδ

, ΘTδ
) as the signature for Tδ.

– DeSign(ys, yv, Tδ, σTδ
): The SP uses this algorithm to generate a DV signature

for the redacted tree. The algorithm takes as input the signer’s public key ys,
the verifier’s public key yv, a redacted tree Tδ and its signature σTδ

. It parses
σTδ

as (σ′
Tδ

, ΘTδ
), computes σds′

Tδ
← ê(yv, σ′

Tδ
), and returns σds

Tδ
← (σds′

Tδ
, ΘTδ

)
as the DV signature for Tδ.

– DeVerify(ys, xv, Tδ, σ
ds
Tδ
): The algorithm is operated by the DV. It takes as

input the signer’s public key ys, the DV’s secret key xv, a redacted tree Tδ

and its DV signature σds
Tδ

and operates as follows:
1. It parses σds

Tδ
as (σds′

Tδ
, ΘTδ

).
2. It computes hui

← H(θpui
||θui

||cui
) for each ui ∈ Vδ, computes σd̄s

Tδ
←

ê(ys
xv ,

∏k
i=1 hui

), and ensures σds′
Tδ

=σd̄s
Tδ

holds and rejects otherwise.
3. It operates as the step 3 in Verify to check the structural relationship of

Tδ.

Remark 2. Following previous work on RSSs for trees, the Redact is directly
designed for deriving a signature for the retained subtree. This might be a limi-
tation when the output is a forest. One possible approach is to slightly modify

Privacy-Preserving Authentication for Tree-Structured Data 157

the Sign: It computes H(θui
||θuj

) for all edges e(ui, uj) in T , signs these values,
and sets them as part of our signature. In this way, the secure name of a parent
node is no need to be included in the computation of the integrity verifier of
a node ui, because we directly sign the edge relationships. That is, hui

can be
computed as H(θui

||cui
). However, this will sacrifice some performance for both

the signing and verification of our scheme.

Consistency of DV-PPAT: Obviously, there are two consistency properties
achieved by our proposed DV-PPAT scheme.

– Verify Consistency of Sign: To demonstrate the Verify consistency property of
Sign, we note that if σT

def
=

∏n
i=1 σui

, and σui

def
= (hui

)xs , then

ê(g2, σ′
T) = ê(g2,

n∏

i=1

σui
) = ê(g2,

n∏

i=1

(hui
)xs)

= ê(g2xs ,

n∏

i=1

hui
) = ê(ys,

n∏

i=1

hui
).

– DeVerify Consistency of DeSign: To demonstrate the DeVerify consistency
property of DeSign, we note that if σds′

Tδ

def
= ê(yv, σ′

Tδ
), σ′

Tδ

def
=

∏k
i=1 σui

, σui

def
=

(hui
)xs , and σd̄s

Tδ

def
= ê(ys

xv ,
∏k

i=1 hui
), then

σds′
Tδ

= ê(yv, σ′
Tδ

) = ê(yv,

k∏

i=1

σui
) = ê(g2xv ,

k∏

i=1

(hui
)xs)

= ê(g2xsxv ,

k∏

i=1

hui
) = ê(ys

xv ,

k∏

i=1

hui
) = σd̄s

Tδ
.

5.1 Security Results

We analyze the security of our DV-PPAT scheme in this section.

Theorem 1. (Unforgeability of DV-PPAT). Let A be a p.p.t. forger who
can forge a valid signature of our scheme in the RO model with success prob-
ability Advuf−cma

A,DV−PPAT(1λ) under the security parameter 1λ. In some polyno-
mial time, he can make at most qH hash queries to H(·) and qS signing
queries, then there exists another adversary B who can utilize A to solve an
instance of BDH problem in (G1,G2) with the success probability AdvBDH

B (1λ)
≥ 1/e(nqS + n) · Advuf−cma

A,DV−PPAT(1λ), where e is the base of natural logarithms.

Proof. The proof is presented in Appendix A.

Theorem 2. (Transparency of DV-PPAT). The proposed DV-PPAT is trans-
parent against an adaptive chosen message p.p.t. adversary D1.

158 F. Zhu et al.

Proof. We will show that the DV-PPAT is transparent via an experiment as
defined in the Transparency Experiment 4.2.2, which is carried out by the
interaction between an adaptive chosen message p.p.t. adversary D1 and a
challenger C.

At the beginning, C runs ParaG(1λ) to generate the common parameters para,
and runs SigKG and VerKG to obtain the secret/public key pairs (xs, ys) and
(xv, yv) for the signer and the DV respectively. C then sends (para, ys, xv, yv) to
D1. Note that in D1’s view, all the distributions are equal to the real construction.
The subsequent experimental processes, i.e., Query Phase 1, Challenge, Query
Phase 2, and Output Phase, are the same as the per defined experiment, thus
omitted here for simplicity. Recall that D1’s goal is to decide whether a given
signature σT0 for tree T0 is directly generated by Sign or obtained by Redact.

Observe that the signing algorithm Sign in our scheme firstly computes can-
didate signatures for all nodes ui in a tree and then compresses them into a single
signature for the tree. This signing process is similar to generating an aggregate
signature [1]. Also, note that our scheme deploys an underlying SNS proposed
by Kundu et al. in [11] as a primitive; the scheme is efficient and proven to be
name-transparent in the RO model. In SNS, random numbers are assigned to
the secure names of ui in Tc, where c is chosen uniformly and randomly from
{0, 1}. These properties ensure that our Sign generates a uniformly distributed
aggregate signature for Tc. Besides, deleting a random number from a uniformly
distributed aggregate through the Redact will result in a uniformly distributed
signature again. In such a case, D1 cannot output his guess for c better than at
random, hence the probability for c′ = c is infinitely close to 1/2. In addition,
if the redacted tree would have been signed directly, the distributions are still
uniform, and D1 can also not output his guess c′ = c with a probability non-
negligibly larger than 1/2. Therefore, in the information-theoretical sense, we
have Adveuf−cma

D1,DV−PPAT(1λ) = |Pr[c′ = c] − 1/2| = ξ. ��
Theorem 3. (Non-transferability of DV-PPAT). Our DV-PPAT scheme is non-
transferable against an adaptive chosen message p.p.t. adversary D2.

Proof. We will show that our DV-PPAT scheme is perfectly non-transferable
via an experiment as defined in the Non-transferability Experiment 4.2.3. The
experiment is carried out by the interaction between an adaptive chosen message
p.p.t. adversary D2 and a challenger C.

At the beginning, C uses ParaG(1λ) to generate the common parameters para,
and runs SigKG and VerKG to produce the secret/public key pairs (xs, ys) and
(xv, yv) for the signer and the DV respectively. C then sends (para, ys, xv, yv) to
D2. Note that in D2’s view, all the distributions are equal to the real construction.
The subsequent experimental processes, i.e., Query Phase 1, Challenge, Query
Phase 2, and Output Phase, are the same as the per defined experiment, thus
omitted here for simplicity. Recall that D2’s goal is to decide whether a given
DV signature σds

Tδ
for tree Tδ is directly generated by the signer or the DV.

Observe that the DeVerify Consistency of DeSign in the proposed scheme
ensures that the signature σds

Tδ
generated by DeSign is computational indistin-

Privacy-Preserving Authentication for Tree-Structured Data 159

guishable from the signature σd̄s
Tδ

generated by DeVerify, hence Pr[σds
Tδ

= σd̄s
Tδ

] = 1.
That is, D2 can also not output his guess c′ = c with a probability non-
negligibly larger than 1/2. Therefore, in the information-theoretical sense, we
have Adveuf−cma

D2,DV−PPAT(1λ) = |Pr[c′ = c] − 1/2|=ξ. ��

6 Performance Evaluation

This section evaluates the practical efficiency of our scheme.

Comparison of Computational Costs. Let n and k be the number of nodes
in the original tree T and the redacted tree Tδ respectively. Let notations tm, te,
td, ti, th, and tp be the time cost for a single modular multiplication, exponen-
tiation, division, inversion, map-to-point hash, and pairing operations respec-
tively. Both our scheme and the schemes in [12,16] are using the underlying SNS
scheme which mainly involves some general hash operations and XOR opera-
tions, thus omitted. We summarize the evaluation of DV-PPAT and other related
schemes [12,16] in the following Table 1.

Table 1. Comparison of computational costs

Scheme Sign Verify Redact DeSign DeVerify

[12] O(n(te+tm)) O(k(tm)+te) O(ntm) \ \
[16] O(n(th+te+tm)+tp) O(n(th+te+tm+tp)) O(n(th+tm+tp)+td) \ \
Our O(n(th+te+tm)) O(n(th+tm)+tp) O(ktm) O(tp) O(k(th+tm)+te+tp)

We also built an experiment to roughly compare the time cost of our DV-
PPAT with the other pairing-based scheme in [16]. We firstly quantify the time
cost of serval cryptographic operations by using the PBC library (https://crypto.
stanford.edu/pbc/, version 0.5.14) under the Ubuntu 18.04.4 LTS operating sys-
tem with C programming language. Other information for the experiment envi-
ronment are: Intel(R) Core(TM) i5 − 8250U CPU @ 1.60 GHz and 2.7 GB of
RAM. As stated in [4], any Type 2 scheme can be converted to a Type 3 setting
without loss of functionality, security, or efficiency. For the sake of simplicity, our
tests use the MNT224 curve (providing an 96-bit security level) for pairings since
it is the best Type 3 curve in PBC internals. Table 2 shows the average execution
time of various operations after running 10 times. Due to space limits, we simply
evaluate the time costs when n = 1000, k = 500 and n = 2000, k = 1000 respec-
tively. The final result of our approximate comparison is presented in Table 3.

Table 2. Average time cost for serval cryptographic operations (in ms)

Operation th te tm td tp

Time 0.123 8.074 0.023 0.027 9.375

https://crypto.stanford.edu/pbc/
https://crypto.stanford.edu/pbc/

160 F. Zhu et al.

Table 3. Comparison of time costs (in s)

Scheme Sign Verify Redact DeSign DeVerify

n = 1000 [16] 16.343 17.641 4.761 \ \
k = 500 Our 8.220 0.165 0.011 0.009 0.090

n = 2000 [16] 32.660 35.236 9.521 \ \
k = 1000 Our 16.440 0.311 0.023 0.009 0.163

Table 4. Comparison of features

Scheme Secret key

length

Signature for

T

Signature for

Tδ

Complexity

Problem

Structural

Integrity

Non-leaves

Redaction

Non-

transferability

Privacy

Kundu

et al. [12]

≈ 1024-bit (2n+2)|N|
≈ 2050048-bit

(2k+2)|N|
≈ 1026048-bit

RSA yes yes no

Liu

et al. [16]

≈ 160-bit (3n+2)|G1|
≈ 480320-bit

(3k+2)|GT |
≈ 1441920-bit

co-CDH yes yes no

Our scheme ≈ 160-bit (3n+1)|G1|
≈ 480160-bit

(2k+1)|GT |
≈ 960960-bit

BDH yes yes yes

As shown in these tables, the computation time of these two schemes increases
linearly with the values of n and k, but overall, the time cost of our scheme
is smaller than the scheme in [16]. Note that pairing operation is the most
time-consuming operation of all operations. As we can see, to generate a DV
signature σds

Tδ
for the redacted tree Tδ, the SP only needs one pairing operation.

This is desirable since our DV-PPAT scheme can address privacy issues in the
dissemination of tree-structured data without sacrificing much performance.

Comparison of Features. We also compare some features of the DV-PPAT with
other related schemes [12,16] in terms of lengths of secret keys and signatures,
the complexity problem, and functionality in Table 4. We use |G1|, |GT |, and |N |
to denote the length of groups G1, GT , and the RSA modulus N respectively.
Recall that the 1024-bit key of RSA provides an 80-bit security level. To make
a fair comparison, we here use the MNT160 curve (with embedding degree 6),
which also provides an 80-bit security level. Based on this curve, the approximate
number of bits to optimally represent an element of the group G1 and GT are 160-
bit and 960-bit respectively [6]. The table also shows the bit length of signatures
for T and Tδ respectively when n = 1000 and k = 500.

As we can see, our signature size for T is similar to the scheme in [16], and
it is about 23.4% of that of the scheme in [12]. In the meantime, our signature
size for Tδ is about 66.6% of that of the scheme in [16] and 93.7% of that of the
scheme in [12]. That is, our scheme has a shorter key length and signature size.
It therefore saves substantial communication costs than others. Moreover, our
scheme is the only one that can achieve the non-transferability privacy which
provides stronger privacy protection.

Privacy-Preserving Authentication for Tree-Structured Data 161

In terms of security and efficiency, from the above analysis, we can see that
our scheme is more desirable than related works for tree-structured data sharing
in outsourced environments.

7 Conclusions

In this paper, we explore the issue of integrity and authenticity verification and
privacy protection in the outsourced database model associated with the dissem-
ination of authenticated tree-structured health data. To address this issue, we
introduced a scheme DV-PPAT which allows the SP to share part of the authen-
ticated tree-structured data to users on behalf of the data owner. Our scheme
not only ensures the user can verify the integrity and authenticity of his queried
results without disclosing any privacy of the data owner but also prevents the
user from leaking the query results to any external third party. We prove that
our scheme satisfies three privacy-preserving properties and is unforgeable under
adaptive chosen message attack in the RO model, assuming that the BDH prob-
lem is hard. Finally, the performance evaluation demonstrates that our privacy-
preserving authentication scheme is an efficient and practical solution for trees
with designated verification in outsourced healthcare data sharing.

The problem of constructing a practical DV-PPAT scheme in multi-user set-
ting is an interesting topic for future work.

Acknowledgment. We have no conflicts of interest to this work. We would like to
thank the anonymous reviewers for their valuable comments.

Appendix A

Proof of Theorem 1. The proof is similar to [16,19]. Given w ∈ G1 and g2, u, v ∈
G2, where u = g2

a, v = g2
b and w = g1

c for some unknown a, b, c ∈ Zq, we
will reveal how the adversary B can utilize the forger A to obtain the value
ê(g1, g2)abc.

– Setup Phase: B randomly chooses r1, r2
$←− Zq, and sets ys = u · g2

r1 ∈ G2

and yv = v · g2
r2 ∈ G2 as the signer’s public key and the DV’s public key

respectively. B returns (g2, ys, yv) to A.
– Hash Queries: In this process, A has access to a hash oracle H(·) at any time.

Note that B will act the oracle in our proof. To respond to A’s queries, B
maintains a list of tuples L(m,h, d, c) (initially, L(·, ·, ·, ·) = φ) as explained
below. Each time when A queries the hash oracle H(·) at a point m ∈ {0, 1}∗,
B responds as the following:
1. If m already exists in the L-list in some tuple (mi, hi, di, ci) then B looks

up on the list and responds with H(mi) = hi ∈ G1.
2. Otherwise, B randomly flips a coin ci ∈ {0, 1}, so that Pr[c = 0] =

1/(nqS + n).

162 F. Zhu et al.

3. B randomly chooses di
$←− Zq. If ci = 0 holds, he computes hi ← wi ·

ψ(g2)di ∈ G1; otherwise, he computes hi ← ψ(g2)di ∈ G1.
4. B adds the item (mi, hi, di, ci) into the L-list and answering A’s query as

H(mi) = hi.
Note that each time from the perspective of A, hi is uniform in G2 and hence
its distribution is identical to the real construction.

– Signature Queries: Assume that a tree T = (V,E) be a signing query requested
by A under the signer’s public key ys. To respond to the query, B does as
follows:
1. Similar to our Sign, B carries out a traversal on T and generates secure

names θui
and θpui

for each node ui ∈ V and its parent respectively.
2. B operates as Hash Queries to obtain a hi ∈ G1 such that H(mi) = hi.

Here we assume that (mi, hi, di, ci) be the item in L-list corresponding
to each node ui. If ci = 0 holds, B returns ⊥ to indicate failure and
terminates.

3. If ci = 1 for all ui ∈ V holds and hence hi ← ψ(g2)di ∈ G1, B defines
σi = ψ(u)di · ψ(g2)r1di ∈ G1. Observe that σi = hi

a+r1 and hence that σi

is a valid signature on mi under the public key ys = g2
a+r1 .

4. B computes σ′
T =

∏n
i=1 σi and returns σT ← (σ′

T , ΘT) to A, where ΘT ←
{(θui

, θpui
)|ui ∈ V }.

– Output Phase: Eventually, A halts. A either outputs ⊥ to indicate failure
or forges a valid DV signature σds′

Tδ

∗
for a tree T ∗

δ = (V ∗
δ , E∗

δ) such that no
node ui ∈ V ∗

δ (1 ≤ i ≤ k) has been queried during the process of Signature
Queries. Note that if there is no item (mi, hi, di, ci) in the L-list containing
nodes in V ∗

δ , then B can easily operate as the Hash Queries to obtain these
corresponding items by himself. Again, we stress that σds′

Tδ

∗
must be a valid

signature; otherwise, B returns ⊥ to indicate failure and terminates.
B will not abort when c1 = 0 and ci = 1 (2 ≤ i ≤ k). If c1 = 0, we have
h1 = w ·ψ(g2)

d1 . For 2 ≤ i ≤ k, since ci = 1, we have hi = ψ(g2)
di . Note that

the signature σds′
Tδ

∗
must be successful verified by the DeVerify. That is, the

equation σds′
Tδ

∗
= ê(ys

xv ,
∏k

i=1 hi) holds. B, therefore, computes

σds′
Tδ

∗
= ê(ys

xv , h1) · ê(ys
xv ,

k∏

i=2

hi) = ê(ys
xv , w · ψ(g2)

d1) · ê(ys
xv ,

k∏

i=2

ψ(g2)
di)

= ê(ys
xv , w · g1

d1) · ê(ys
xv ,

k∏

i=2

g1
di).

B now constructs a value Δ = {ê(ys
xv ,

∏k
i=2 g1

di) · ê(w, ur2 · vr1 · g2
r1r2) ·

ê(ud1 , ψ(yv)) · ê(v · g2
r2 , ψ(g2)

d1r1)}−1 and computes the required value

Privacy-Preserving Authentication for Tree-Structured Data 163

ê(g1, g2)abc as σds′
Tδ

∗ · Δ. This can be easily verified because:

σds′
Tδ

∗ · Δ =ê(ys
xv , w · g1

d1) · ê(ys
xv ,

k∏

i=2

g1
di) · Δ

=ê(ys
xv , w · g1

d1) · {ê(w, ur2 · vr1 · g2
r1r2) · ê(ud1 ,

ψ(yv)) · ê(v · g2
r2 , ψ(g2)

d1r1)}−1

=ê(g1, g2)abc.

This completes the description of B. The running time needed for B consists
of three parts, i.e., the running time needed for A, B’s responds to Hash Queries
and Signature Queries, and the time for computing the final BDH solution.

We now analyze B’s probability in solving the given instance of BDH prob-
lem in (G1,G2) with the success probability AdvBDH

B (1λ). B will succeed if the
following three events occur: (1) B does not abort in the Signature Queries

phase (remark as Ev1), (2) A successfully forges a valid DV signature σds′
Tδ

∗

for tree T ∗
δ = (V ∗

δ , E∗
δ) (remark as Ev2), and (3) Event Ev2 occurs, and

c1 = 0 and ci = 1 (2 ≤ i ≤ k), where ci is the c-component of the item
containing mi in the L-list (remark as Ev1). Consequently, the success prob-
ability for B is AdvBDH

B (1λ)= Pr[Ev1 ∧ Ev3]. It further can be decomposed as
Pr[Ev1 ∧ Ev3] = Pr[Ev1] · Pr[Ev2|Ev1] · Pr[Ev3|Ev1 ∧ Ev2].

W.l.o.g., we assume that A queries the hash oracle H(·) and the signature
of each message only once. Because the c-component of the item in the L-list
is independent of A’s view; when A makes qS signature queries, the probability
of Ev1 occurs is Pr[Ev1] ≥ 1 − 1/(nqS + n)nqS . Recall that in A’s view, all the
settings in our simulation are identical to the real construction. Since B did not
abort in the simulation, all his responses to A’s queries are valid. That is, the
probability of A’s forgery output in our RO model is at least Advuf−cma

A,DV−PPAT(1λ)=
ξ. Therefore, we have Pr[Ev2|Ev1] ≥ ξ. Note that ci (1 ≤ i ≤ k) are all inde-
pendent of each other. If the event Ev1 and Ev2 happen, and A generates his
forgery in the case that c1 = 0 and ci = 1 (2 ≤ i ≤ k), then the probability
Pr[Ev3|Ev1 ∧ Ev2] ≥ (1 − 1/(nqS + n))n−1 · 1/(nqS + n). Clearly, we have

AdvBDH
B (1λ) =Pr[Ev1 ∧ Ev3] = Pr[Ev1] · Pr[Ev2|Ev1] · Pr[Ev3|Ev1 ∧ Ev2]

≥(1 − 1/(nqS + n)nqS) · ξ · (1 − 1/(nqS + n))n−1·
1/(nqS + n) ≥ 1/e(nqS + n) · ξ

=1/e(nqS + n) · Advuf−cma
A,DV−PPAT(1λ),

as required, and hence completes the proof. ��

References

1. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-39200-9 26

https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-39200-9_26

164 F. Zhu et al.

2. Brzuska, C., et al.: Redactable signatures for tree-structured data: definitions and
constructions. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 87–
104. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13708-2 6

3. Chatterjee, S., Hankerson, D., Knapp, E., Menezes, A.: Comparing two pairing-
based aggregate signature schemes. Des. Codes Crypt. 55(2–3), 141–167 (2010)

4. Chatterjee, S., Menezes, A.: On cryptographic protocols employing asymmetric
pairings - the role of Ψ revisited. Discret. Appl. Math. 159(13), 1311–1322 (2011)

5. Derler, D., Krenn, S., Slamanig, D.: Signer-anonymous designated-verifier
redactable signatures for cloud-based data sharing. In: Foresti, S., Persiano, G.
(eds.) CANS 2016. LNCS, vol. 10052, pp. 211–227. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-48965-0 13

6. Ferrara, A.L., Green, M., Hohenberger, S., Pedersen, M.Ø.: Practical short signa-
ture batch verification. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp.
309–324. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00862-
7 21

7. Goodrich, M.T., Tamassia, R., Triandopoulos, N.: Efficient authenticated data
structures for graph connectivity and geometric search problems. Algorithmica
60(3), 505–552 (2011)

8. Groß, T.: Efficient certification and zero-knowledge proofs of knowledge on infras-
tructure topology graphs. In: CCSW 2014, pp. 69–80. ACM (2014)

9. Hachicha, M., Darmont, J.: A survey of XML tree patterns. IEEE Trans. Knowl.
Data Eng. 25(1), 29–46 (2013)

10. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Hei-
delberg (2002). https://doi.org/10.1007/3-540-45760-7 17

11. Kundu, A., Atallah, M.J., Bertino, E.: Efficient leakage-free authentication of trees,
graphs and forests. IACR Cryptology ePrint Archive 2012, 36 (2012)

12. Kundu, A., Atallah, M.J., Bertino, E.: Leakage-free redactable signatures. In:
CODASPY 2012, pp. 307–316. ACM (2012)

13. Kundu, A., Bertino, E.: Structural signatures for tree data structures. Proc. VLDB
Endow. 1(1), 138–150 (2008)

14. Kundu, A., Bertino, E.: How to authenticate graphs without leaking. In: EDBT
2010, pp. 609–620. ACM (2010)

15. Kundu, A., Bertino, E.: Privacy-preserving authentication of trees and graphs. Int.
J. Inf. Secur. 12(6), 467–494 (2013). https://doi.org/10.1007/s10207-013-0198-5

16. Liu, J., Ma, J., Zhou, W., Xiang, Y., Huang, X.: Dissemination of authenticated
tree-structured data with privacy protection and fine-grained control in outsourced
databases. In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS 2018. LNCS, vol.
11099, pp. 167–186. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
98989-1 9

17. de Meer, H., Pöhls, H.C., Posegga, J., Samelin, K.: Redactable signature schemes
for trees with signer-controlled non-leaf-redactions. In: Obaidat, M.S., Filipe, J.
(eds.) ICETE 2012. CCIS, vol. 455, pp. 155–171. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44791-8 10

18. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0 21

19. Mihara, A., Tanaka, K.: Universal designated-verifier signature with aggregation.
In: ICITA 2005, pp. 514–519. IEEE (2005)

https://doi.org/10.1007/978-3-642-13708-2_6
https://doi.org/10.1007/978-3-319-48965-0_13
https://doi.org/10.1007/978-3-319-48965-0_13
https://doi.org/10.1007/978-3-642-00862-7_21
https://doi.org/10.1007/978-3-642-00862-7_21
https://doi.org/10.1007/3-540-45760-7_17
https://doi.org/10.1007/s10207-013-0198-5
https://doi.org/10.1007/978-3-319-98989-1_9
https://doi.org/10.1007/978-3-319-98989-1_9
https://doi.org/10.1007/978-3-662-44791-8_10
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21

Privacy-Preserving Authentication for Tree-Structured Data 165

20. Mykletun, E., Narasimha, M., Tsudik, G.: Signature bouquets: immutability for
aggregated/condensed signatures. In: Samarati, P., Ryan, P., Gollmann, D., Molva,
R. (eds.) ESORICS 2004. LNCS, vol. 3193, pp. 160–176. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30108-0 10

21. Samelin, K., Pöhls, H.C., Bilzhause, A., Posegga, J., de Meer, H.: On structural
signatures for tree data structures. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS
2012. LNCS, vol. 7341, pp. 171–187. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-31284-7 11

22. Samelin, K., Pöhls, H.C., Bilzhause, A., Posegga, J., de Meer, H.: Redactable sig-
natures for independent removal of structure and content. In: Ryan, M.D., Smyth,
B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232, pp. 17–33. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-29101-2 2

23. Steinfeld, R., Bull, L., Wang, H., Pieprzyk, J.: Universal designated-verifier sig-
natures. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 523–542.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40061-5 33

24. Uzunkol, O., Kiraz, M.S.: Still wrong use of pairings in cryptography. Appl. Math.
Comput. 333, 467–479 (2018)

25. Wang, J., Chen, X., Huang, X., You, I., Xiang, Y.: Verifiable auditing for out-
sourced database in cloud computing. IEEE Trans. Comput. 64(11), 3293–3303
(2015)

26. Zhu, F., Wu, W., Zhang, Y., Chen, X.: Privacy-preserving authentication for gen-
eral directed graphs in industrial IoT. Inf. Sci. 502, 218–228 (2019)

27. Zhu, F., Zhang, Y., Lin, C., Wu, W., Meng, R.: A universal designated multi-verifier
transitive signature scheme. In: Chen, X., Lin, D., Yung, M. (eds.) Inscrypt 2017.
LNCS, vol. 10726, pp. 180–195. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-75160-3 12

https://doi.org/10.1007/978-3-540-30108-0_10
https://doi.org/10.1007/978-3-642-31284-7_11
https://doi.org/10.1007/978-3-642-31284-7_11
https://doi.org/10.1007/978-3-642-29101-2_2
https://doi.org/10.1007/978-3-540-40061-5_33
https://doi.org/10.1007/978-3-319-75160-3_12
https://doi.org/10.1007/978-3-319-75160-3_12

Encryption Schemes and NIZKs

Semi-Adaptively Secure Offline Witness
Encryption from Puncturable

Witness PRF

Tapas Pal(B) and Ratna Dutta

Department of Mathematics, Indian Institute of Technology Kharagpur,
Kharagpur 721302, India

tapas.pal@iitkgp.ac.in, ratna@maths.iitkgp.ernet.in

Abstract. In this work, we introduce the notion of puncturable witness
pseudorandom function (pWPRF) which is a stronger variant of WPRF
proposed by Zhandry, TCC 2016. The punctured technique is similar to
what we have seen for puncturable PRFs and is capable of extending the
applications of WPRF. Specifically, we construct a semi-adaptively secure
offline witness encryption (OWE) scheme using a pWPRF, an indistin-
guishability obfuscation (iO) and a symmetric-key encryption (SKE),
which enables us to encrypt messages along with NP statements. We
show that replacing iO with extractability obfuscation, the OWE turns
out to be an extractable offline witness encryption scheme. To gain finer
control over data, we further demonstrate how to convert our OWEs into
offline functional witness encryption (OFWE) and extractable OFWE. All
of our OWEs and OFWEs produce an optimal size ciphertext, in partic-
ular, encryption of a message is as small as the size of the message plus
the security parameter multiplied with a constant, which is optimal for
any public-key encryption scheme. On the other hand, in any previous
OWE, the size of a ciphertext increases polynomially with the size of
messages. Finally, we show that the WPRF of Pal et al. (ACISP 2019)
can be extended to a pWPRF and an extractable pWPRF.

Keywords: Puncturable witness pseudorandom function · Offline
witness encryption · Offline functional witness encryption · Obfuscation

1 Introduction

Witness Pseudorandom Function. The purpose of a pseudorandom func-
tion is to generate a pseudorandom value for an input x ∈ X using a secret-key.
Zhandry [26] proposed an enhanced primitive called witness pseudorandom func-
tion (WPRF) which enables us to produce pseudorandom values corresponding
to statements of an NP language L with a relation R : X ×W → {0, 1}. If x ∈ L
then there exists a witness w ∈ W such that R(x,w) = 1, otherwise R maps to 0.
In the setup of WPRF, we generate two keys: a secret function key fk and a pub-
lic evaluation key ek. To compute a pseudorandom value y ∈ Y corresponding to
c© Springer Nature Switzerland AG 2020
K. Nguyen et al. (Eds.): ProvSec 2020, LNCS 12505, pp. 169–189, 2020.
https://doi.org/10.1007/978-3-030-62576-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62576-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-62576-4_9

170 T. Pal and R. Dutta

a statement x ∈ X , we use the secret function key fk. The same pseudorandom
value y can only be recovered using the public evaluation key ek if we have a
witness w such that R(x,w) = 1. The security of pseudorandomness is ensured
by the fact that y is completely uniform over Y if x �∈ L. In extractable WPRF,
we relax the requirement by allowing x to be in L. However, in such a scenario, if
an adversary can distinguish the honestly computed y from a uniformly chosen
element of Y then we can extract a valid witness of x using an efficient extractor.

A list of cryptographic primitives have been realized from WPRF in [26] such
as multiparty non-interactive key exchange without trusted setup, poly-many
hardcore bits for one-way functions and secret sharing for monotone NP lan-
guages. More interestingly, WPRF directly implies a modern primitive called wit-
ness encryption (WE) [18] which encrypts messages with respect to a NP state-
ment and a valid witness for the statement is capable of decrypting the ciphertext
to the original message. Furthermore, one can construct a more refined variant
of WE, termed as reusable WE [26], using WPRF. The main goal of reusable
WE was to make the encryption algorithm relatively efficient and ciphertext size
optimal, besides it provides security in chosen ciphertext attack model. On the
other hand, extractable WPRF was used to build a fully distributed broadcast
encryption [26] where the size of secret-keys, public-keys and ciphertexts are all
poly-logarithmic in the number of users.

Our Contribution. Inspired by the applications of WPRF in [26], we are keen
to build more advanced primitives from WPRF. It is desirable to begin with a rel-
atively closer primitive such as offline witness encryption (OWE) [1] maintaining
the same encryption efficiency of the reusable WE. An OWE is more preferable
over the normal WE because the computationally hard work is shifted from the
encryption algorithm by introducing an additional setup phase. Unfortunately,
WPRF does not immediately achieve OWE or offline functional WE [8]. Existing
OWEs [1,12,24] do not have optimal ciphertext size as in reusable WE of [26].

In this work, we extend the applications of WPRF by introducing a puncturing
technique akin to puncturable pseudorandom function (pPRF) [25]. In the secu-
rity model of normal WPRF, an adversary A is given access to an oracle F(fk, ·)
which on input x ∈ X of A’s choice outputs a pseudorandom value corresponding
to x. Naturally, A is restricted to query on the challenge statement x∗ which is not
in L. In our setting, instead of giving access to F(fk, ·), A is provided with a punc-
tured key fkx∗ which enables A to learn the pseudorandom value corresponding to
any x except x∗. The WPRF is secure if A is unable to distinguish F(fk, x∗) from
a random element. We call this variant of WPRF a puncturable WPRF (pWPRF).
In extractable pWPRF, we allow x∗ to be in L. In that case, there exists an extrac-
tor E which outputs a witness of x∗ with high probability and the run time of E
depends on the distinguishing advantage of A between F(fk, x∗) and a random ele-
ment. A pWPRF having this extractability property is called puncturable witness-
extractable pseudorandom function (pWEPRF).

Both WE and WPRF have been realized using various assumptions on multi-
linear maps [18,26], but recent attacks on multilinear maps [11,13] introduce
threats on the security of those schemes. We bring the punctured program

Semi-adaptively Secure OWE from Puncturable WPRF 171

technique of PRF [25] in case of WPRF. The main idea is to build two equivalent
programs P and P′ where P uses the secret-key oblivious to the adversary and
P′ uses a punctured key available to the adversary. An important tool in this
setup is indistinguishability obfuscation (iO) [16]. We build following primitives
using the additional punctured technique of WPRF:

– We build a semi-adaptively secure OWE scheme (Sect. 3) using a pWPRF,
an iO, a pseudorandom generator (PRG) and a symmetric key encryption
(SKE) scheme. Our OWE is the first to achieve optimal ciphertext-size, namely
|m|+poly(λ) where |m| is the size of message and λ is the security parameter.

– Replacing iO with extractability obfuscation (eO) [8], we convert the OWE
into an extractable OWE (EOWE) in Sect. 3. The ciphertext-size remains the
same which is optimal for any public-key encryption scheme.

– In a plain OWE, a user having a valid witness can learn the whole message.
This all-or-nothing type encryption may not be sufficient for applications
where we need fine-grained access control over the data. In such a scenario,
offline functional WE (OFWE), introduced by Boyle et al. [8], can be utilized
as the user having a valid witness can now learn a function of the message
and witness. In this work, we show that our techniques of achieving OWE can
be extended to realize semi-adaptively secure OFWE and selectively secure
extractable OFWE schemes (Sect. 4).

Finally, we show that the WPRF of [24] satisfies our definition of pWPRF
(Sect. 5). In particular, we can construct pWPRF using a pPRF and an iO.
Furthermore, a pWEPRF can be achieved by replacing the iO with an eO. We
emphasize the implausibility results of [9,17] on eO or extractable WE do not
have any impact on our eO-based constructions as the results can only be applied
for circuits with specific auxiliary inputs.

Feasibility of iO. A natural question is why we build cryptographic primitives
based on iO which is not yet realized from standard assumptions. Recent attacks
on multilinear maps bring cryptographers attention to find new techniques to
build iO. Bitansky and Vaikunthanathan [7] and Ananth and Jain [3] developed
a transformation that achieves iO assuming just functional encryption. Achiev-
ing such functional encryptions from smaller constant degree multilinear maps
and special pseudorandom generators with certain locality properties has been
discussed in [5,22,23]. New ideas were formalized in [2,4] to construct iO from
bilinear maps and specific pseudorandom tools that are conjectured to be secure.

Recently, a very interesting and simple approach is developed by Brakerski et
al. [10] that utilizes fully-homomorphic encryption (FHE) schemes [19,20] to get
full fledge iO. In particular, they proposed a new primitive called split FHE and
showed that split FHE is sufficient for constructing iO. The transformation is
provably secure and relies on (heuristic but) appropriately defined oracle model.
Note that, split FHE can be realized from existing FHEs (based on learning with
errors problem [19,20]) and linearly homomorphic encryption schemes (such as
Damg̊ard-Jurik encryption scheme based on decisional composite residues prob-
lem [14]). In the view of recent developments, it is believed that the community

172 T. Pal and R. Dutta

will arrive at a practical construction of iO in the near future. On the other
hand, we note that all existing constructions of WPRF and OWE are either built
from multilinear maps vulnerable to practical attacks or depend on iO.

Related Works. Zhandry [26] constructed WPRF from subset-sum Diffie-
Hellman assumption related to multilinear maps. Getting a pseudorandom value
using an evaluation key is computationally expensive as one need to apply a mul-
tilinear map with linearity much larger than the size of the NP relation. On the
other hand, we extend the iO-based WPRF of [24] into a puncturable WPRF
to enhance the field of application. We note that, although obfuscation itself is
a powerful assumption, a wide range of functionalities, including the function
classes required in this work, can be efficiently realized using Trusted Execution
Environments (TEEs), Intel’s Software Guard Extensions (SGXs) [6,15].

Abusalah et al. [1] introduced OWE with the purpose of making encryption
much more efficient than the existing WEs. However, the OWE of [1] is selectively
secure and the size of ciphertexts are not promising as it contains a simulation
sound non-interactive zero-knowledge proof along with two (public-key) encryp-
tions of the same message. OWE with semi-adaptive security is built in [12]
relying on iO, but the size of ciphertext is not as compact as one would have
wanted for lightweight devices. Our OWEs deliver semi-adaptive security with
an optimal size ciphertext similar to the reusable WE of [26].

2 Preliminaries

Notations. We denote λ ∈ N by a security parameter. If x ∈ {0, 1}∗, then we
denote |x| by size of the string x. For any set S, the notation x ← S denotes
the process of sampling x uniformly at random from the set S. Let Algo be a
probabilistic polynomial time (PPT) algorithm, then y ← Algo(x) denotes the
execution of Algo with an input x using a fresh randomness and assign the
output to y. If the randomness, say r, is provided externally then we denote
this execution by y ← Algo(x; r). We call {Cλ} as a family of polynomial sized
circuits if there exists a fixed polynomial p such that |C| < p(λ) for any C ∈ Cλ.
We say negl: N → R be a negligible function of λ if for every positive polynomial
p, there exists an integer np ∈ N such that negl(λ) < 1/p(λ) for all n > np.

2.1 Pseudorandom Generator

Definition 1. A pseudorandom generator (PRG) is a deterministic polynomial
time algorithm PRG that on input a seed s ∈ {0, 1}λ outputs a string of length
�(λ) such that the following holds:

– expansion: For every λ it holds that �(λ) > λ.
– pseudorandomness: For all PPT adversary A and s ← {0, 1}λ, r ← {0, 1}�(λ)

there exists a negligible function negl such that

AdvPRGA (λ) = |Pr[A(1λ,PRG(s)) = 1] − Pr[A(1λ, r) = 1]| < negl(λ).

Semi-adaptively Secure OWE from Puncturable WPRF 173

2.2 Puncturable Pseudorandom Function

Definition 2. A puncturable pseudorandom function (pPRF) is a tuple of PPT
algorithms (Gen, PuncKey, Eval, PuncEval) defined as follows:

• K ← Gen(1λ) : on input a security parameter λ, returns a secret-key K.
• Kx ← PuncKey(K, x) : returns Kx, a punctured key for an element x ∈ X .
• y ← Eval(K, x) : returns a pseudorandom value y ∈ Y for x ∈ X .
• PuncEval(Kx, x′) ∈ Y ∪ {⊥} : on input a punctured key Kx and an element

x′ ∈ X , returns a pseudorandom value y ∈ Y if x �= x′, otherwise returns ⊥.

We note that, each of the above algorithms except Gen is a deterministic algo-
rithm. The pPRF is said to be correct if the following holds:

– correctness: For all distinct pair of elements x, x′ ∈ X 2, K ← Gen(1λ), we
require that Pr[Eval(K, x′) = PuncEval(PuncKey(K, x), x′)] = 1.

Definition 3. A puncturable pseudorandom function (pPRF) is said to be
secure (or preserves pseudorandomness at punctured point) if, for all PPT adver-
sary A and any x ∈ X , K ← Gen(1λ), Kx ← PuncKey(K, x) there exists a negli-
gible function negl such that

AdvpPRFA (λ) = |Pr[A(1λ,Kx,Eval(K, x)) = 1] −
Pr[A(1λ,Kx, y ← Y) = 1]| < negl(λ).

2.3 Symmetric Key Encryption

Definition 4. A symmetric key encryption (SKE) scheme is a tuple of PPT
algorithms (Gen, Enc, Dec) defined as follows:

• K ← Gen(1λ) : on input a security parameter λ, returns a key K.
• c ← Enc(K,m) : a deterministic algorithm that returns c, an encryption of

the message m ∈ M.
• Dec(K, c) ∈ M∪{⊥} : a deterministic algorithm that decrypts the ciphertext

c and returns a message m ∈ M, or ⊥ if it fails.

The SKE is said to be correct if the following holds:

– correctness: For all m ∈ M and K ← Gen(1λ), we require that

Pr[Dec(K,Enc(K,m)) = m] = 1

Definition 5. A symmetric key encryption SKE is said to satisfy ciphertext
indistinguishability (CIND) security if, for all PPT adversary A and any pair of
equal length messages (m0,m1) there exists a negligible function negl such that

AdvSKEA (λ) = |Pr[A(1λ,Enc(K, m0)) = 1] −
Pr[A(1λ,Enc(K, m1)) = 1]| < negl(λ)

174 T. Pal and R. Dutta

1. x∗ ← A(1λ)
2. (fk, ek) ← Gen(1λ, R)
3. fkx∗ ← PuncKey(fk, x∗)
4. y0 ← F(fk, x∗), y1 ← Y
5. b ← {0, 1}
6. b′ ← A(ek, fkx∗ , yb)
7. return 1 if (b′ = b) ∧ (x∗ �∈ L)

Fig. 1. ExptpWPRF,R
A (1λ)

1. x∗ ← A(1λ)
2. (ppe, ppd) ← Setup(1λ, R)
3. (m0,m1) ← A(ppe, ppd)
4. b ← {0, 1}
5. c ← Enc(ppe, x∗,mb)
6. b′ ← A(c)
7. return 1 if (b′ = b)∧(x∗ �∈ L)∧(|m0| = |m1|)

Fig. 2. ExptOWE,R
A (1λ)

2.4 Puncturable Witness Pseudorandom Function

Definition 6. A puncturable witness pseudorandom function (pWPRF) for an
NP language L with a relation R is a tuple of PPT algorithms (Gen, F, PuncKey,
PuncF, Eval) defined as follows:

• (fk, ek) ← Gen(1λ, R) : on input a security parameter λ and a relation circuit
R : X × W → {0, 1}, returns a secret function key fk and a public evaluation
key ek.

• y ← F(fk, x) : returns a pseudorandom value y ∈ Y for x ∈ X .
• fkx ← PuncKey(fk, x) : returns fkx, a punctured key for an element x ∈ X .
• PuncF(fkx, x′) ∈ Y ∪ {⊥} : on input a punctured key fkx and an element

x′ ∈ X , returns a pseudorandom value y ∈ Y if x �= x′, otherwise returns ⊥.
• Eval(ek, x, w) ∈ Y ∪ {⊥} : on input an evaluation key ek, an element x ∈ X

and a witness w ∈ W, returns an element y ∈ Y, or ⊥ if it fails.

We note that, each of the above algorithms except Gen is a deterministic
algorithm. The pWPRF is said to be correct if the following properties hold:

– correctness of Eval: For all x ∈ X , w ∈ W and (fk, ek) ← Gen(1λ, R), we
require that

Eval(ek, x, w) =
{
F(fk, x) if R(x,w) = 1
⊥ if R(x,w) = 0

– correctness of PuncF: For all distinct pair of elements x, x′ ∈ X 2 and
(fk, ek) ← Gen(1λ, R), we require that

Pr[F(fk, x′) = PuncF(PuncKey(fk, x), x′)] = 1.

Note that, our definition of pWPRF is crafted in a similar fashion like Sahai and
Waters [25] formalized pPRF from PRF. Instead of providing an oracle to learn
F(fk, x′) as in the case of normal WPRF given by Zhandry [26], the adversary
A can use a punctured key fkx to compute the pseudorandom value F(fk, x′)
by itself if x �= x′. The security experiment ExptpWPRF,R

A (1λ) of our pWPRF is
defined in Fig. 1. We consider the selective model for our applications. At the
last step of the experiment, the challenger verifies that x∗ �∈ L which means
our challenger is not efficient. In this context, we note that WEs, OWEs and
WPRFs are defined in the same way and the definition has been proven useful
in developing many interesting cryptographic primitives [1,18,21,26].

Semi-adaptively Secure OWE from Puncturable WPRF 175

Definition 7. A puncturable witness pseudorandom function pWPRF for an
NP language L with a relation R is said to be selectively secure if, for all PPT
adversary A, there exists a negligible function negl such that

AdvpWPRF,R
A (λ) = |Pr[ExptpWPRF,R

A (1λ) = 1] − 1
2
| < negl(λ)

In extractable pWPRF, we allow the challenge statement x∗ to be in L.
Accordingly, we modify the security experiment defined in Fig. 1 (in particu-
lar, line 7) and rename it as ExptpWEPRF,R

A (1λ).

Definition 8. A puncturable witness pseudorandom function is said to
be extractable or puncturable witness-extractable pseudorandom function
(pWEPRF) for an NP language L with a relation R, if for any PPT adversary A
and any polynomial pA(λ) there exists a PPT extractor E and a polynomial pE
such that

AdvpWEPRF,R
A (λ) = |Pr[ExptpWEPRF,R

A (1λ) = 1] − 1
2
| ≥ 1

pA(λ)

⇒Pr[w∗ ← E(1λ, x∗) : R(x∗, w∗) = 1] ≥ 1
pE(λ)

The extractability says that when the adversary can distinguish the honestly
computed y = F(fk, x∗) from a uniformly chosen element, then it must know a
witness w∗ satisfying R(x∗, w∗) = 1.

2.5 Offline Witness Encryption

Definition 9. An offline witness encryption (OWE) scheme for an NP language
L with a relation R is a tuple of PPT algorithms (Setup, Enc, Dec) defined as
follows:

• (ppe, ppd) ← Setup(1λ, R) : on input a security parameter λ and a relation
R : X × W → {0, 1}, returns two public parameters ppe for encryption and
ppd for decryption.

• c ← Enc(ppe, x,m) : returns c, an encryption of the message m ∈ M with
respect to the statement x ∈ X .

• Dec(ppd, c, w) ∈ M ∪ {⊥} : a deterministic algorithm that decrypts the
ciphertext c using a witness w ∈ W and returns a message m ∈ M, or ⊥.

The OWE scheme is said to be correct if the following holds:

– correctness: For all x ∈ X , w ∈ W, m ∈ M and (ppe, ppd) ← Setup(1λ, R),
we require that

Pr[Dec(ppd,Enc(ppe, x,m), w) = m : R(x,w) = 1] = 1

The semi-adaptive security experiment ExptOWE,R
A (1λ) is defined in Fig. 2.

176 T. Pal and R. Dutta

Definition 10. An offline witness encryption OWE for an NP language L with
a relation R is said to be semi-adaptively secure if, for all PPT adversary A,
there exists a negligible function negl such that

AdvOWE,R
A (λ) = |Pr[ExptOWE,R

A (1λ) = 1] − 1
2
| < negl(λ)

For extractable offline witness encryption we modify the experiment defined
in Fig. 2 so that x∗ may belong to L and rename it as ExptEOWE,R

A (1λ).

Definition 11. An offline witness encryption OWE is said to be semi-adaptively
secure extractable offline witness encryption (EOWE) for an NP language L with
a relation R, if for any PPT adversary A and any polynomial pA(λ) there exists
a PPT extractor E and a polynomial pE such that

AdvEOWE,R
A (λ) = |Pr[ExptEOWE,R

A (1λ) = 1] − 1
2
| ≥ 1

pA(λ)

⇒Pr[w∗ ← E(1λ, x∗) : R(x∗, w∗) = 1] ≥ 1
pE(λ)

2.6 Obfuscation

Definition 12. A PPT algorithm iO is said to be an indistinguishability obfus-
cator for a class of circuits {Cλ}, if it satisfies the following properties:

– Functionality : For all security parameter λ ∈ N, for all C ∈ Cλ, for all inputs
x, we require that

Pr[C̃(x) = C(x) : C̃ ← iO(1λ, C)] = 1

– Indistinguishability : For any PPT distinguisher D, there exists a negligible
function negl such that for all pair of circuits C0, C1 ∈ Cλ that compute the
same function and are of same size, we require that

AdviO
D (λ) = |Pr[b ← {0, 1}, C̃ ← iO(1λ, Cb) : D(C̃, C0, C1) = b]− 1

2
| < negl(λ)

Definition 13. A PPT algorithm eO is said to be an extractability obfuscator
for a class of circuits {Cλ}, if it satisfies the following properties:

– Functionality : For all security parameter λ ∈ N, for all C ∈ Cλ, for all inputs
x, we require that

Pr[C̃(x) = C(x) : C̃ ← eO(1λ, C)] = 1

Semi-adaptively Secure OWE from Puncturable WPRF 177

– Extractability : For any PPT distinguisher D and polynomial pD(λ), there
exists an extractor E and a polynomial pE such that for all pair of circuits
C0, C1 ∈ Cλ that are of same size, for all auxiliary input z ∈ {0, 1}∗, we
require that

AdveO
D (λ) =

∣
∣Pr

[
b ← {0, 1}, C̃ ← eO(1λ, Cb) : D(C̃, C0, C1, z) = b

] − 1
2

∣
∣ ≥ 1

pD(λ)

⇒ Pr[x ← E(1λ, C0, C1, z) : C0(x) �= C1(x)] ≥ 1
pE (λ)

3 Construction: (Extractable) Offline Witness Encryption

In this section, we describe our construction of OWE = (Setup, Enc, Dec) for an
NP language L and a relation R : X × W → {0, 1}. We consider the statement
space X to be {0, 1}λ (containing L) and W = {0, 1}n where n is a polyno-
mial in the security parameter λ. The following primitives are utilized in our
construction:

– A pseudorandom generator PRG : {0, 1}λ → {0, 1}2λ.
– A CIND secure symmetric key encryption SKE = (Gen, Enc, Dec).
– A pWPRF = (Gen, F, PuncKey, PuncF, Eval) for the NP language L′ = {(x, v) :

∃u ∈ {0, 1}λ such that PRG(x⊕u) = v} with a relation R′ : X ′×W ′ → {0, 1}.
So, R′((x, v), u) = 1 if PRG(x ⊕ u) = v, 0 otherwise.

– An obfuscator O for the class of circuits Cλ required in the constructions.
The only difference between the constructions of OWE and extractable OWE
(EOWE) is that: O is an indistinguishability obfuscator (iO) for OWE whereas
O is an extractability obfuscator (eO) for EOWE.

Our OWE construction is shown in Fig. 3 where we assume that the circuit
C[fk] ∈ Cλ and O is an iO. For correctness, we need to verify that the same key
K ← SKE.Gen(1λ; y) is generated during encryption and decryption of OWE. In
particular, the same randomness y should be utilized in Enc as well as in Dec.
Note that, we compute y using the pWPRF.Eval(ek, (x, v), ·) with a witness u
corresponding to the relation R′. While decrypting, by the correctness of Eval, we
generate the same y inside the circuit C̃ using pWPRF.F(fk, (x, v)) extracted from
the ciphertext. Therefore, SKE.Dec(K, cs) returns the same message that was
encrypted in Enc if R(x,w) = 1. Finally, we conclude the correctness by observing
that C[fk] and C̃ compute the same function because of the functionality of iO.
We skip the correctness of EOWE as it can be argued similarly.

Comparison: The ciphertext size of our OWEs is as compact as one can desire:
excluding the instance, it is only |cs| + |v| = |m| + 2λ which is optimal for any
public-key encryption. More precisely, the bit size of a ciphertext encrypting a
λ-bit message is 3λ. Let us compare our ciphertext size with all existing OWEs

178 T. Pal and R. Dutta

Setup(1λ, R):
1. (fk, ek) ← pWPRF.Gen(1λ, R′)
2. ˜C ← O(1λ, C[fk])
3. set ppe = ek, ppd = ˜C
4. return (ppe, ppd)

Enc(ppe, x,m):
1. parse ppe = ek
2. u ← {0, 1}λ, v ← PRG(x ⊕ u)
3. y ← pWPRF.Eval(ek, (x, v), u)
4. K ← SKE.Gen(1λ; y)
5. cs ← SKE.Enc(K,m)
6. return c = (cs, x, v)

C[fk](c, w)

1. parse c = (cs, x, v)
2. if R(x,w) = 1
3. y ← pWPRF.F(fk, (x, v))
4. K ← SKE.Gen(1λ; y)
5. return SKE.Dec(K, cs)
6. else
7. return ⊥

Dec(ppd, c, w):

1. parse ppd = ˜C
2. return ˜C(c, w)

Fig. 3. Construction of OWEs with optimal ciphertexts where O is either iO for normal
OWE or eO for extractable OWE (EOWE)

when encrypting a λ-bit message. The iO and SSS-NIZK based construction of
Abusalah et al. [1] delivers a ciphertext size of at least 64λ-bit (assuming a group
element is of size 2λ-bit [1]). Both the OWE constructions of Pal et al. [24] and
Chvojka et al. [12] achieve a ciphertext of size at least 10λ-bit. The encryption
process of [12] uses a puncturable public-key encryption scheme to produce a
ciphertext corresponding to the pair (x,m). We shift the computation power in
the setup phase as much as possible to accomplish a more compact ciphertext
size for our OWE than any other OWEs. This reduces the communication cost
in practical applications. All existing OWEs utilize iO during the setup phase.
This implies either ppe or ppd (or both) contains an obfuscated circuit the size
of which depends on the simplicity of the circuit. The size of the public param-
eter for encryption ek (or ppe) is proportional to the size of the relation R′. We
observe that the relation R′ is as simple as checking a PRG computation, which
means the evaluation key ek is independent of the relation R, and hence our
OWE encryptions are more efficient than the reusable WE of Zhandry [26]. Fur-
thermore, the notion of functional WE cannot be directly achieved from reusable
WE whereas we extend our OWE to OFWE.

Theorem 1. The OWE = (Setup, Enc, Dec) described in Fig. 3 with O = iO is
a semi-adaptively secure offline witness encryption if PRG is a secure pseudo-
random generator, pWPRF is a selectively secure puncturable witness pseudoran-
dom function, iO is an indistinguishability obfuscator for the circuit class Cλ and
SKE is a CIND secure symmetric key encryption. More specifically, for any PPT
adversary A, there exist PPT adversaries B1, B2, B3 and a PPT distinguisher
D such that:

AdvOWE,R
A (λ) ≤ AdvPRGB1

(λ) + AdvpWPRF,R′
B2

(λ) + AdvSKEB3
(λ) + AdviO

D (λ)

Semi-adaptively Secure OWE from Puncturable WPRF 179

Proof. We prove the theorem using the following sequence of games. We start
with Game 0 which is the standard security experiment ExptOWE,R

A (1λ) as defined
in Fig. 2. For Game i, we denote by Gi the event b = b′. In each game, we assume
that A submits two messages of equal length and that x∗ �∈ L as otherwise the
challenger always returns 0. The circuits used in the proof are assumed to be
padded to a maximum size.

Game 0 ⇒ Game 1: In Game 0, we compute the encryption key as K ←
SKE.Gen(1λ; y) where y ← pWPRF.Eval(ek, (x∗, v), u). But, Game 1 (Fig. 4) sets
y ← pWPRF.F(fk, (x∗, v)) without using the witness u. By the correctness Eval:

pWPRF.Eval(ek, (x∗, v), u) = pWPRF.F(fk, (x∗, v)) as R′((x∗, v), u) = 1.

Therefore, the distribution of ciphertexts in both the games are identical and
hence they are indistinguishable from A’s view. We have Pr[G0] = Pr[G1].

Game 1 ⇒ Game 2: In Game 2, described in Fig. 5, we pick v uniformly at random
from {0, 1}2λ instead of setting it as v ← PRG(x∗ ⊕ u). Note that, given x∗, the
distribution of x∗ ⊕ u is uniform over {0, 1}λ for u ← {0, 1}λ. Let, B1 is a
PRG-adversary. Then, by the security of PRG (Definition 1), the distinguishing
advantage of A between Game 1 and Game 2 can be written as

|Pr[G1] − Pr[G2]| = AdvPRGB1
(λ).

1. x∗ ← A(1λ)
2. (fk, ek) ← pWPRF.Gen(1λ, R′)
3. ˜C ← iO(1λ, C[fk])
4. set ppe = ek, ppd = ˜C
5. (m0,m1) ← A(ppe, ppd)
6. u ← {0, 1}λ, v ← PRG(x∗ ⊕ u)

7. y ← pWPRF.F(fk, (x∗
, v))

8. K ← SKE.Gen(1λ; y)
9. b ← {0, 1}

10. cs ← SKE.Enc(K,mb)
11. set c = (cs, x

∗, v)
12. b′ ← A(c)
13. return 1 if (b = b′)

Fig. 4. Game 1

1. x∗ ← A(1λ)
2. (fk, ek) ← pWPRF.Gen(1λ, R′)
3. ˜C ← iO(1λ, C[fk])
4. set ppe = ek, ppd = ˜C
5. (m0,m1) ← A(ppe, ppd)

6. v ← {0, 1}2λ

7. y ← pWPRF.F(fk, (x∗, v))
8. K ← SKE.Gen(1λ; y)
9. b ← {0, 1}

10. cs ← SKE.Enc(K,mb)
11. set c = (cs, x

∗, v)
12. b′ ← A(c)
13. return 1 if (b = b′)

Fig. 5. Game 2

Game 2 ⇒ Game 3: In Game 3, described in Fig. 6, we replace the circuit C[fk]
by a new circuit C[fkz∗ , x∗] and set the public parameter for decryption ppd ←
iO(1λ, C[fkz∗ , x∗]). The new circuit C[fkz∗ , x∗] is defined as follows:

180 T. Pal and R. Dutta

C[fkz∗ , x∗](c, w)

1. parse c = (cs, x, v)
2. if x = x∗

3. return ⊥
4. else if R(x,w) = 1
5. y ← pWPRF.PuncF(fkz∗ , (x, v))
6. K ← SKE.Gen(1λ; y)
7. return SKE.Dec(K, cs)
8. else
9. return ⊥
Note that, the two circuits C[fk] and C[fkz∗ , x∗] are functionally equivalent. Let
(c̄, w̄) be any arbitrary input where c̄ = (c̄s, x̄, v̄). If x̄ = x∗, then C[fk](c̄, w̄)
outputs ⊥ since x∗ �∈ L implies that R(x∗, w̄) = 0 for any w̄ ∈ W, and
C[fkz∗ , x∗](c̄, w̄) outputs ⊥ because of the check in line 2 of the circuit. If x̄ �= x∗,
then z∗ �= (x̄, v̄) and by the correctness of PuncF we have

pWPRF.F(fk, (x̄, v̄)) = pWPRF.PuncF(fkz∗ , (x̄, v̄))

and hence C[fk](c̄, w̄) = C[fkz∗ , x∗](c̄, w̄). Considering D as a PPT distinguisher
for iO, the indistinguishability property of iO (Definition 12) implies that

|Pr[G2] − Pr[G3]| = AdviO
D (λ)

1. x∗ ← A(1λ)
2. (fk, ek) ← pWPRF.Gen(1λ, R′)
3. v ← {0, 1}2λ, set z∗ = (x∗, v)
4. fkz∗ ← pWPRF.PuncKey(fk, z∗)

5. ˜C ← iO(1λ
, C[fkz∗ , x∗])

6. set ppe = ek, ppd = ˜C
7. (m0,m1) ← A(ppe, ppd)
8. y ← pWPRF.F(fk, (x∗, v))
9. K ← SKE.Gen(1λ; y)

10. b ← {0, 1}
11. cs ← SKE.Enc(K,mb)
12. set c = (cs, x

∗, v)
13. b′ ← A(c)
14. return 1 if (b = b′)

Fig. 6. Game 3

1. x∗ ← A(1λ)
2. (fk, ek) ← pWPRF.Gen(1λ, R′)
3. v ← {0, 1}2λ, set z∗ = (x∗, v)
4. fkz∗ ← pWPRF.PuncKey(fk, z∗)
5. ˜C ← iO(1λ, C[fkz∗ , x∗])
6. set ppe = ek, ppd = ˜C
7. (m0,m1) ← A(ppe, ppd)

8. y ← Y
9. K ← SKE.Gen(1λ; y)

10. b ← {0, 1}
11. cs ← SKE.Enc(K,mb)
12. set c = (cs, x

∗, v)
13. b′ ← A(c)
14. return 1 if (b = b′)

Fig. 7. Game 4

Game 3 ⇒ Game 4: In Game 4, described in Fig. 7, we pick y uniformly at ran-
dom from Y which is the co-domain of pWPRF.F(fk, ·). We show that if A can
distinguish between these two games, then there is an adversary B2 which will
break the selective security of pWPRF (defined in Fig. 1). Let z∗ = (x∗, v) be
the challenge statement of B2 for a random v ← {0, 1}2λ.

Semi-adaptively Secure OWE from Puncturable WPRF 181

B2(1λ, z∗):

1. send z∗ to its challenger
2. The pWPRF-challenger does the following:

(a) generate (fk, ek) ← pWPRF.Gen(1λ, R′)
(b) compute a punctured key fkz∗ ← pWPRF.PuncKey(fk, z∗)
(c) set y0 ← pWPRF.F(fk, z∗) and y1 ← Y
(d) pick b̃ ← {0, 1}
(e) return (ek, fkz∗ , yb̃) to B2

3. compute C̃ ← iO(1λ, C[fkz∗ , x∗]) and set ppe = ek, ppd = C̃
4. receive (m0,m1) ← A(ppe, ppd)
5. compute the encryption key as K ← SKE.Gen(1λ; yb̃)
6. pick b ← {0, 1}
7. compute the ciphertext as cs ← SKE.Enc(K,mb)
8. set c = (cs, x

∗, v)
9. get b′ ← A(c)

10. return 1 if (b = b′)

First, we note that z∗ = (x∗, v) �∈ L′ with overwhelming probability. Since
v ← {0, 1}2λ, the probability that PRG(x∗ ⊕ u) = v for some u ∈ {0, 1}λ is at
most 2−λ which is negligible in λ. So, B2 is a legitimate pWPRF-adversary. If
the pWPRF-challenger picks b̃ = 0 then B2 simulates Game 3, and if it chooses
b̃ = 1 then B2 simulates Game 4. Therefore, the advantage of A in distinguishing
between Game 3 and Game 4 is the same as the advantage of B2 in breaking the
selective security of pWPRF. Hence the following holds:

|Pr[G3] − Pr[G4]| = AdvpWPRF,R′
B2

(λ)

Next, we note that in Game 4, the encryption key is computed as K ←
SKE.Gen(1λ; y) with a fresh randomness y which is independent of the challenge
statement x∗. Therefore, by the CIND security of SKE (Definition 5) we have

|Pr[G4] − 1
2
| = AdvSKEB3

(λ)

where B3 is an adversary of CIND security game. Finally, we conclude the proof
by combining all the probabilities.

In the next theorem, we proof the security of EOWE (Fig. 3 with O = eO)
utilizing the extractor of eO.

Theorem 2. The EOWE = (Setup, Enc, Dec) described in Fig. 3 with O =
eO is a semi-adaptively secure extractable offline witness encryption if PRG is
a secure pseudorandom generator, pWPRF is a selectively secure puncturable
witness pseudorandom function, eO is an extractability obfuscator for the circuit
class Cλ and SKE is a CIND secure symmetric key encryption.

Proof. We start with the standard EOWE experiment ExptEOWE,R
A (1λ)

(Definition 11). We call it as EGame 0. Here, we denote the security games
by EGame i and for each EGame i, let EGi be the event b = b′. We assume that

182 T. Pal and R. Dutta

A submits two messages of equal length in each game and all the circuits used
in the proof are padded to a maximum size.

EGame 0 ⇒ EGame 1: EGame 1 is exactly the same as EGame 0 except we replace
the circuit C[fk] with a new circuit C[fk, x∗] defined in Fig. 8. Suppose, the
adversary A can distinguish between EGame 0 and EGame 1 with an advantage

AdvEG 0-1
A (λ) = |Pr[EG0] − Pr[EG1]| ≥ 1

pA(λ)

for some polynomial pA(λ). Then, we show that there is a PPT extractor E and a
polynomial pE such that E(1λ, x∗) outputs a witness w∗ satisfying R(x∗, w∗) = 1
with probability at least 1

pE(λ)
.

We note that two games differ only in the obfuscated circuits. So, we consider
a PPT distinguisher D of eO as defined in Definition 13. In particular, D collects
two circuits from a circuit sampler S(1λ, ·) and an obfuscated circuit (from it’s
challenger), then it simulates the security game for A as follows:

D(1λ, C̃, C[fk], C[fk, x∗], aux):

1. parse aux = (ek, x∗)
2. set ppe = ek, ppd = C̃
3. (m0,m1) ← A(ppe, ppd)
4. follow steps 6-10 as in EGame 1
5. set c = (cs, x

∗, v)
6. b′ ← A(c)
7. return 1 if b = b′

S(1λ, x∗)

1. (fk, ek) ← pWPRF.Gen(1λ, R′)
2. construct C[fk], C[fk, x∗]
3. set aux = (ek, x∗)
4. return (C[fk], C[fk, x∗], aux)

1. x∗ ← A(1λ)
2. (fk, ek) ← pWPRF.Gen(1λ, R′)

3. ˜C ← eO(1λ
, C[fk, x∗])

4. set ppe = ek, ppd = ˜C
5. (m0,m1) ← A(ppe, ppd)
6. u ← {0, 1}λ, v ← PRG(x∗ ⊕ u)
7. y ← pWPRF.Eval(ek, (x∗, v), u)
8. K ← SKE.Gen(1λ; y)
9. b ← {0, 1}

10. cs ← SKE.Enc(K,mb)
11. set c = (cs, x

∗, v)
12. b′ ← A(c)
13. return 1 if b = b′

C[fk, x∗](c, w)

1. parse c = (cs, x, v)
2. if R(x,w) = 1
3. if x = x∗

4. return ⊥
5. else
6. y ← pWPRF.F(fk, (x, v))
7. K ← SKE.Gen(1λ; y)
8. return SKE.Dec(K, cs)
9. else

10. return ⊥

Fig. 8. EGame 1

If C̃ ← eO(1λ, C[fk]) then D simulates EGame 0 and if C̃ ← eO(1λ, C[fk, x∗])
then D simulates EGame 1. Therefore, D can distinguish between the obfuscated
circuits with the same advantage of A in distinguishing EGame 0 and EGame 1.

Semi-adaptively Secure OWE from Puncturable WPRF 183

By the extractability property of eO (Definition 13), there exists a PPT extractor
E ′ and a polynomial pE′ such that E ′(1λ, C[fk], C[fk, x∗], aux) outputs (c̄, w̄) at
which the two circuits differ with probability at least 1

pE′ (λ) . Note that, the two
circuits differ only when c̄ = (c̄s, x

∗, v̄) is well formed and R(x∗, w̄) = 1.
Now, the extractor E(1λ, x∗) of EOWE simply runs S(1λ, x∗) to obtain

(C[fk], C[fk, x∗], aux) and then executes E ′(1λ, C[fk], C[fk, x∗], aux) to get a wit-
ness w∗ satisfying R(x∗, w∗) = 1 with probability ≥ 1

pE′ (λ) . Thus we can set
pE = pE′ and more importantly we note that E is a PPT extractor since S(·)
runs in poly(λ) time and E ′ is a PPT extractor.

EGame 1 ⇒ EGame 2: EGame 2 is exactly the same as EGame 1 except in line
7 of Fig. 8 where we compute y ← pWPRF.F(fk, (x∗, v)). By the correctness
Eval (using the same argument as in the transition from Game 0 to Game 1 of
Theorem 1), we have Pr[EG1] = Pr[EG2].

EGame 2 ⇒ EGame 3: In EGame 3, we choose v ← {0, 1}2λ instead of computing
v ← PRG(x∗ ⊕u) as in EGame 2. By the security of PRG (Definition 1), we have

|Pr[EG2] − Pr[EG3]| = AdvPRGB1
(λ)

where B1 is a PRG-adversary.

EGame 3 ⇒ EGame 4: In EGame 4, we set ppd ← eO(1λ, C[fkz∗ , x∗]) where
fkz∗ ← pWPRF.PuncKey(fk, z∗) and z∗ = (x∗, v) for some v ← {0, 1}2λ. The
circuit C[fkz∗ , x∗] is the same circuit defined in Fig. 8 except we replace fk
by fkz∗ and use pWPRF.PuncF(fkz∗ , (x, v)) to compute y in line 6. It is easy
to follow that the circuits C[fk, x∗], C[fkz∗ , x∗] compute the same function by
the correctness of PuncF. Suppose, (c̄ = (c̄s, x̄, v̄), w̄) is any arbitrary input
to the circuits. If x̄ �= x∗, then z∗ �= (x̄, v̄) and hence pWPRF.F(fk, (x̄, v̄)) =
pWPRF.PuncF(fkz∗ , (x̄, v̄)). If x̄ = x∗, then both the circuits return ⊥ because
of the check in line 2 or 3. By the extractability property of eO (Definition 13),
we have

|Pr[EG3] − Pr[EG4]| = AdveO
D (λ) = μ(λ)

where μ is a negligible function of λ. If the advantage is not bounded by a
negligible function of λ, then there exists an extractor E ′ which would produce
an input where the two circuits differ, leading towards a contradiction as the
circuits are equivalent.

EGame 4 ⇒ EGame 5: EGame 5 samples y uniformly at random from Y instead
of computing y ← pWPRF.F(fk, (x∗, v)) as in EGame 4, where Y is the co-domain
of pWPRF.F(fk, ·). Note that the probability of z∗ = (x∗, v) ∈ L′ for a random
v ← {0, 1}2λ is negligible in λ. By the selective security of pWPRF, we have

|Pr[EG4] − Pr[EG5]| = AdvpWPRF,R′
B2

(λ)

where B2 is a pWPRF-adversary. We skip the reduction as it is similar to the
reduction described in the transition from Game 3 to Game 4 of Theorem 1.

184 T. Pal and R. Dutta

Finally, the encryption key in EGame 5 is computed as K ← SKE.Gen(1λ; y)
where y is a fresh randomness which is independent of the challenge statement
x∗. The CIND security of SKE (Definition 5) guarantees that

|Pr[EG5] − 1
2
| = AdvSKEB3

(λ).

where B3 is an adversary of CIND game. Finally, we have

AdvEOWE,R
A (λ) = |Pr[EG0] − 1

2
| ≤

4∑

i=0

|Pr[EGi] − Pr[EGi+1]| + |Pr[EG5] − 1

2
|

= AdvEG 0-1
A (λ) + AdvPRGB1 (λ) + μ(λ) + AdvpWPRF,R′

B2
(λ) + AdvSKEB3 (λ)

< AdvEG 0-1
A (λ) + negl(λ) (by the assumptions in the theorem)

Thus, |AdvEOWE,R
A (λ) − AdvEG 0-1

A (λ)| < negl(λ) implies that AdvEG 0-1
A (λ) =

AdvEOWE,R
A (λ) excluding the negligible term. Hence, by the similar arguments as

in the transition from EGame 0 to EGame 1, we conclude that if AdvEOWE,R
A (λ) ≥

1
pA(λ) for some polynomial pA(λ), then there is a PPT extractor E and a poly-
nomial pE such that Pr[w∗ ← E(1λ, x∗) : R(x∗, w∗) = 1] ≥ 1

pE(λ)
.

4 Informal Description: (Extractable) Offline Functional
Witness Encryption

Apart from an NP language L with a witness relation R, Offline functional wit-
ness encryption (OFWE) is associated with a function class {Fλ}. It encrypts
a pair of function and message (f,m) ∈ Fλ × M with respect to a statement
x. Instead of getting the whole message, a valid witness w for the statement x
can only get a user to learn f(m,w). The OWE described in Fig. 3 can be mod-
ified to achieve OFWE. While encryption, we use the key K (computed utilizing
pWPRF.Eval for the statement (x, v)) to encrypt (f,m) via SKE encryption. The
ciphertext becomes c = (cs, x, v) with |cs| = |f | + |m| where |f |, |m| denote the
sizes of f , m respectively. In Setup, we modify C[fk] in line 5 so that the circuit
computes (f,m) ← SKE.Dec(K, cs) and then returns f(m,w) if R(x,w) = 1
holds. The rest of the construction remains the same. Note that the size of
ciphertext is optimal and the encryption maintains similar efficiency akin to
our OWE. For security, we consider semi-adaptive model where the adversary A
commits on the challenge statement x∗ before the setup and adaptively selects
two pairs (f0,m0), (f1,m1) such that f0(m0, w) = f1(m1, w) for all w satisfying
R(x∗, w) = 1. Detail construction with security analysis is available in the full
version.

Replacing iO with an eO leads us to an extractable OFWE which is selectively
secure means that A submits a challenge tuple (x∗, f,m0,m1) before setup.
Depending on the wining advantage of A in guessing the bit b hidden inside
a ciphertext corresponding to (x∗, f,mb), there exists an extractor E which on

Semi-adaptively Secure OWE from Puncturable WPRF 185

input the challenge tuple outputs a witness w satisfying f(m0, w) �= f(m1, w)
and R(x∗, w) = 1 with high probability. We prove the security in the full version
of this paper.

5 Construction: Puncturable Witness(-Extractable)
Pseudorandom Function

In this section, we show that WPRF construction of [24] satisfies our definition
of pWPRF. In addition, we observe that if the indistinguishability obfuscator is
replaced with an extractability obfuscator then the pWPRF becomes extractable.
We now describe the pWPRF = (Gen, F, PuncKey, PuncF, Eval) for any NP
language L with a relation R : X × W → {0, 1}.

The following primitives are required for the construction.

– A pPRF = (Gen, PuncKey, Eval, PuncEval) with domain X and co-domain Y.
– An obfuscator O for the class of circuits Cλ required in the constructions.

The only difference between the constructions of pWPRF and pWEPRF is
that: O is an indistinguishability obfuscator (iO) for pWPRF whereas O is
an extractability obfuscator (eO) for pWEPRF.

The constructions of pWPRFs are shown in Fig. 9. The correctness directly
follows from the correctness of the underlying pPRF and functionality of O.

Gen(1λ, R):
1. K ← pPRF.Gen(1λ)
2. ˜C ← O(1λ, C[K])
3. set fk = K, ek = ˜C
4. return (fk, ek)

pWPRF.F(fk, x):
1. parse fk = K
2. set y ← pPRF.Eval(K, x)
3. return y

pWPRF.PuncKey(fk, x):
1. parse fk = K
2. set fkx ← pPRF.PuncKey(K, x)
3. return fkx

C[K](x,w)

1. if R(x,w) = 1
2. set y ← pPRF.Eval(K, x)
3. return y
4. else
5. return ⊥

pWPRF.PuncF(fkx, x
′)

1. return pPRF.PuncEval(fkx, x
′)

pWPRF.Eval(ek, x, w):

1. parse ek = ˜C
2. return ˜C(x,w)

Fig. 9. Construction of pWPRFs where O is either iO for normal pWPRF or eO for
extractable pWPRF (pWEPRF)

186 T. Pal and R. Dutta

Theorem 3. The pWEPRF = (Gen, F, PuncKey, PuncF, Eval) described in Fig. 5
with O = iO is a selectively secure puncturable witness pseudorandom function
if pPRF is a secure puncturable pseudorandom function and iO is an indistin-
guishability obfuscator for the circuit class Cλ. More specifically, for any PPT
adversary A, there exist a PPT adversary B and a PPT distinguisher D such
that:

AdvpWPRF,R
A (λ) ≤ AdvpPRFB (λ) + AdviO

D (λ)

Proof Sketch. As usual, we start with game 0 which is the standard security
experiment ExptpWPRF,R

A (1λ) as defined in Fig. 1. Next, in game 1, we replace the
circuit C[K] with a new circuit C[fkx∗ , x∗] where fkx∗ ← pPRF.PuncKey(K, x∗).
For any arbitrary input (x,w), the new circuit returns the pseudorandom value
as pPRF.PuncEval(fkx∗ , x) if x �= x∗ and R(x,w) = 1 hold, otherwise it returns ⊥.
It is easy to verify that the two circuits are functionally equivalent and hence by
the security of iO, game 0 and game 1 are indistinguishable. Now, the adversary
knowing fkx∗ cannot distinguish pWPRF.F(fk, x∗) from a random element due
to the security of underlying pPRF (Definition 3). A formal proof is given in
Appendix A.

We discuss the security of pWEPRF in the full version where the extractibility
property of obfuscation (Definition 13) is utilized.

6 Conclusion

In this paper, we initiate the study of puncturable WPRF(pWPRF). We demon-
strate that this puncturing technique enhances the applicability of WPRF. We
construct semi-adaptively secure OWE that produces optimal size ciphertexts, in
particular a ciphertext c for a message m has the size of only |m|+2λ bits where
|m| denotes the bit-length of m. Note that, existing OWEs do not satisfy such
optimality. We further show that our OWE can be extended to offline functional
WE (OFWE) providing more control over data. Moreover, using eO we construct
extractable OWE and extractable OFWE with similar efficiency of encryption.

In future, we expect more cryptographic primitives realized from pWPRF. In
terms of security, it is desirable to construct WPRF in adaptive model without
multilinear maps [26]. This may lead us to OWE with full adaptive security.
Finally, we note that a significant open problem in this area is to construct WPRF
or OWE based on standard assumptions related to bilinear maps or lattices.

A Formal Proof of Theorem 3

Proof. We prove the security using two games. We start with Game 0 which is
the standard selective security experiment as in Definition 6. Let Gi be the event
b = b′ in each Game i.

Semi-adaptively Secure OWE from Puncturable WPRF 187

Game 0 ⇒ Game 1: Game 1 is exactly same as the Game 0 except we replace
the circuit C[K] with a new circuit C[fkx∗ , x∗] defined in Fig. 10, where fkx∗ ←
pPRF.PuncKey(K, x∗). We show that the two circuits C[K] and C[fkx∗ , x∗] are
functionally equivalent. For any arbitrary input (x̄, w̄) to the circuits, we see that
if x̄ �= x∗, then both the circuits return the same value as pPRF.Eval(K, x̄) =
pPRF.PuncEval(fkx∗ , x̄). Otherwise, if x̄ = x∗ then the circuit C[K] returns ⊥,
because x∗ �∈ L implies that R(x̄, w̄) = 0 for all w̄ ∈ W, and the circuit C[fkx∗ , x∗]
returns ⊥ because of the check in line 2 (Fig. 10). Thus, the indistinguishability
property of iO (Definition 12) guarantees that

|Pr[G0] − Pr[G1]| = AdviO
D (λ)

where D is a PPT distinguisher for iO.

1. x∗ ← A(1λ)
2. K ← pPRF.Gen(1λ)

3. ˜C ← iO(1λ
, C[fkx∗ , x∗])

4. set ek = ˜C
5. fkx∗ ← pPRF.PuncKey(K, x∗)
6. y0 ← pPRF.Eval(K, x∗), y1 ← Y
7. b ← {0, 1}
8. b′ ← A(ek, fkx∗ , yb)
9. return 1 if b = b′

C[fkx∗ , x∗](x,w)

1. if R(x,w) = 1
2. if x = x∗

3. return ⊥
4. else
5. y ← pPRF.PuncEval(fkx∗ , x)
6. return y
7. else
8. return ⊥

Fig. 10. Game 1

Suppose, the advantage of A in Game 1 is non-negligible. Then we construct
an adversary B against the security of pPRF (Definition 2) with the same advan-
tage as follow.
B(1λ, x∗):

1. send x∗ to its challenger
2. The pPRF-challenger does the following:

(a) generate K ← pPRF.Gen(1λ)
(b) compute fkx∗ ← pPRF.PuncKey(K, x∗)
(c) set y0 ← pPRF.Eval(K, x∗) and y1 ← Y
(d) pick b ← {0, 1}
(e) return (fkx∗ , yb) to B

3. compute C̃ ← iO(1λ, C[fkx∗ , x∗]) and set ek = C̃
4. get b′ ← A(ek, fkx∗ , yb)
5. return 1 if b = b′

Note that B perfectly simulates Game 1 for A. If A can guess the bit b in
Game 1 with a non-negligible advantage, then B breaks the security of pPRF
with the same advantage. From the security of pPRF, we have

|Pr[G1] − 1
2
| = AdvpPRFB (λ)

Finally, combining all the probabilities we conclude the proof.

188 T. Pal and R. Dutta

References

1. Abusalah, H., Fuchsbauer, G., Pietrzak, K.: Offline witness encryption. In: Manulis,
M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 285–303.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5 16

2. Agrawal, S.: Indistinguishability obfuscation without multilinear maps: new meth-
ods for bootstrapping and instantiation. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019. LNCS, vol. 11476, pp. 191–225. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17653-2 7

3. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9215, pp. 308–326. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-47989-6 15

4. Ananth, P., Jain, A., Lin, H., Matt, C., Sahai, A.: Indistinguishability obfuscation
without multilinear maps: new paradigms via low degree weak pseudorandomness
and security amplification. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019.
LNCS, vol. 11694, pp. 284–332. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26954-8 10

5. Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indistin-
guishability obfuscation from degree-5 multilinear maps. In: Coron, J.-S., Nielsen,
J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 152–181. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56620-7 6

6. Barbosa, M., Portela, B., Scerri, G., Warinschi, B.: Foundations of hardware-based
attested computation and application to SGX. In: 2016 IEEE European Sympo-
sium on Security and Privacy (EuroS&P), pp. 245–260. IEEE (2016)

7. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. J. ACM (JACM) 65(6), 1–37 (2018)

8. Boyle, E., Chung, K.-M., Pass, R.: On extractability (aka differing-inputs) obfus-
cation. In: TCC (2014)

9. Boyle, E., Pass, R.: Limits of extractability assumptions with distributional aux-
iliary input. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol.
9453, pp. 236–261. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48800-3 10

10. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Candidate iO from homomor-
phic encryption schemes. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12105, pp. 79–109. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45721-1 4

11. Cheon, J.H., Cho, W., Hhan, M., Kim, J., Lee, C.: Statistical zeroizing attack:
cryptanalysis of candidates of BP obfuscation over GGH15 multilinear map. Cryp-
tology ePrint Archive, Report 2018/1081 (2018). https://eprint.iacr.org/2018/1081

12. Chvojka, P., Jager, T., Kakvi, S.A.: Offline witness encryption with semi-adaptive
security. Cryptology ePrint Archive, Report 2019/1337 (2019). https://eprint.iacr.
org/2019/1337

13. Coron, J.-S., Notarnicola, L.: Cryptanalysis of CLT13 multilinear maps with inde-
pendent slots. IACR Cryptology ePrint Archive, 2019:309 (2019)

14. Damgard, I., Jurik, M.: A generalisation, a simplification and some applications of
Paillier’s probabilistic public-key system, pp. 13–15 (2001)

15. Fisch, B., Vinayagamurthy, D., Boneh, D., Gorbunov, S.: Iron: functional encryp-
tion using intel SGX. In: Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pp. 765–782. ACM (2017)

https://doi.org/10.1007/978-3-319-39555-5_16
https://doi.org/10.1007/978-3-030-17653-2_7
https://doi.org/10.1007/978-3-030-17653-2_7
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-030-26954-8_10
https://doi.org/10.1007/978-3-030-26954-8_10
https://doi.org/10.1007/978-3-319-56620-7_6
https://doi.org/10.1007/978-3-662-48800-3_10
https://doi.org/10.1007/978-3-662-48800-3_10
https://doi.org/10.1007/978-3-030-45721-1_4
https://doi.org/10.1007/978-3-030-45721-1_4
https://eprint.iacr.org/2018/1081
https://eprint.iacr.org/2019/1337
https://eprint.iacr.org/2019/1337

Semi-adaptively Secure OWE from Puncturable WPRF 189

16. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. SIAM J.
Comput. 45(3), 882–929 (2016)

17. Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-inputs
obfuscation and extractable witness encryption with auxiliary input. Algorithmica
79(4), 1353–1373 (2017)

18. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applica-
tions. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of
Computing, pp. 467–476. ACM (2013)

19. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the Forty-First Annual ACM Symposium on Theory of Computing, pp. 169–178
(2009)

20. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

21. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
How to run turing machines on encrypted data. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1 30

22. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-
5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp.
599–629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 20

23. Lin, H., Tessaro, S.: Indistinguishability obfuscation from trilinear maps and block-
wise local PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 630–660. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 21

24. Pal, T., Dutta, R.: Offline witness encryption from witness PRF and randomized
encoding in CRS model. In: Jang-Jaccard, J., Guo, F. (eds.) ACISP 2019. LNCS,
vol. 11547, pp. 78–96. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
21548-4 5

25. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Proceedings of the Forty-Sixth Annual ACM Symposium on
Theory of Computing, pp. 475–484. ACM (2014)

26. Zhandry, M.: How to avoid obfuscation using witness PRFs. In: Kushilevitz, E.,
Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 421–448. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49099-0 16

https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40084-1_30
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-319-63688-7_21
https://doi.org/10.1007/978-3-319-63688-7_21
https://doi.org/10.1007/978-3-030-21548-4_5
https://doi.org/10.1007/978-3-030-21548-4_5
https://doi.org/10.1007/978-3-662-49099-0_16

Improved Indistinguishability for
Searchable Symmetric Encryption

Moesfa Soeheila Mohamad1,2(B) and Ji-Jian Chin1,3

1 MIMOS Berhad, Kuala Lumpur, Malaysia
soeheila.mohamad@mimos.my

2 Faculty of Computing and Informatics, Multimedia University, Cyberjaya, Malaysia
3 Faculty of Engineering, Multimedia University, Cyberjaya, Malaysia

Abstract. This work presents a new experiment defining indistinguisha-
bility for searchable symmetric encryption to include security against
published practical attacks. The proposed experiment allows the adver-
saries to use their prior knowledge about the stored documents to win.
We solve the problem of modelling the adversaries with prior knowledge
using the interacting split adversary technique. This new indistinguisha-
bility definition is aligned with the security goals and adversary capabil-
ities listed in [4]. The correctness of the indistinguishability experiment
is demonstrated by presenting proofs of strength and vulnerabilities of
Σoφoς-B and one of its variant. We write the security proofs based on
the indistinguishability experiment with an adversary without any prior
knowledge and adversary with full knowledge of the document set. We
show how to win the indistinguishability experiment using the count
attack by an adversary who knows the document distribution, and the
file injection attack by an adversary without prior knowledge.

Keywords: Searchable symmetric encryption · Indistinguishability ·
Adversary model

1 Introduction

Searchable symmetric encryption (SSE) is a type of encryption scheme where
the ciphertexts may be searched by keywords. SSE schemes are designed to work
on a set of documents instead of a single document at each execution. Deploying
SSE schemes for storing documents should protect the document secrecy and
user’s search privacy. However, to add the search functionality, a compromise
has to be made on the encryption security. Information other than document
length is disclosed to the storage server. This is where SSE security departs
from encryption security definitions. Encryption security is defined as document
secrecy with the ciphertext known to the adversary, and possibly encryption
and decryption functions too. For SSE, the documents secrecy and user’s search
privacy are to be protected despite the ciphertexts, metadata and input-output
pairs of query sequence being available to the adversary, along with search and
update functions.
c© Springer Nature Switzerland AG 2020
K. Nguyen et al. (Eds.): ProvSec 2020, LNCS 12505, pp. 190–212, 2020.
https://doi.org/10.1007/978-3-030-62576-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62576-4_10&domain=pdf
https://doi.org/10.1007/978-3-030-62576-4_10

Improved IND for SSE 191

SSE security specifically, indistinguishability and semantic security, currently
holds the definition by Curtmola et al. [9], with some improvement for semantic
security definition by Chase and Kamara [7]. In addition, under adaptive chosen
keyword attack, SSE semantic security implies SSE indistinguishability [9]. Fol-
lowing that, SSE schemes publications including [5,12,13,16,19,22,26] present
proof of the schemes achieving L-security under adaptive chosen keyword attack.
Other SSE security definitions use Universal Composibility [1,16,21] and Infor-
mation Theoretic [25,28] models.

Nevertheless, attacks were designed, and the empirical evidence shows they
are feasible and can recover query keywords from SSE schemes whose access
pattern in search leakage reveals the actual keyword distribution [4,11,29]. The
attacks are labelled Leakage Abuse Attack (LAA) and are applicable to the
schemes proven secure using current SSE security models. The first published
attack is [11], later named IKK after the authors. This attack recovers query key-
words with 100% accuracy after observing 250 queries with the attacker knowing
the whole document set. The count attack [4] exploits knowledge on keywords
with unique frequencies. Combining this attack to the IKK attack, 100% accu-
racy in query recovery can be achieved even on obfuscated distribution in search
results. Using the file injection attack, an attacker who knows only 1% of the
documents can recover 30% of queried keywords. More attacks based on exploit-
ing a scheme’s leakage were published after these initial ideas [18,24]. Analysis
of the attacks [4] provides the attack profile as shown in Table 1.

Table 1. Adversary model proposed by [4].

Attack mode Adversary knowledge Attack objectives

Passivea Query distribution Query recovery

Chosen query attack Known queries Plaintext recoveryb

Chosen document attack Document distribution

Known document
aPassive adversary includes honest-but-curious server.
bThe plaintext recovery goal includes partial plaintext recovery.

As a result of LAA, proposals are put forward including LAA-
resistant scheme designs [28], vulnerability detection framework [27], scheme-
strengthening [15] and data transformation methods [3,15,17,23]. These mea-
sures would result in SSE schemes strong against LAA and the results were
proven by empirical evidence. However, their strengths cannot be expressed in
their security proofs based on current SSE security definitions.

The successful practical attacks indicate some misfits between the SSE secu-
rity definition and the practical attacks. SSE semantic security was defined
in [6,7,9] and renamed as L-security with L denoting the scheme’s leakage
function. The experiment means that by knowing only L, an adversary can-
not deduce the document content because the leakage may be produced by some

192 M. S. Mohamad and J.-J. Chin

other document set. SSE indistinguishability has been defined in [9,10] and the
accepted definition currently is [9, Definition 5]. An SSE scheme is secure under
the definition if the adversary cannot distinguish two independent document
sets and query sequence (history), which implies the scheme conceals the con-
tent of the documents sets even with the revealed information. However, the
experiment requires the input histories to produce equal leakage. This excludes
queries specifically for differentiating the contents, such as keywords which are
known to have unique frequencies. On the other hand, an attack on a scheme
with respect to the semantic security experiment is the existence of one or more
document sets and query sequences for which no simulator can produce indistin-
guishable replies. Similarly, for the indistinguishability experiment, an attack is
when there exist two distinguishable histories which produce the same leakage.
In both cases, an attack indicates that there is information revealed beyond L.
This is in accord to the SSE design intention. The metadata and search algo-
rithm is designed so that the leakage is minimal, hence, the designer only has to
prove the leakage is as declared.

From the discussion above, we understand that the SSE security is defined
to be the secrecy of the document set despite the scheme’s leakage. The misfit
is that the experiments make the adversary generates the entire document set
and hence has all knowledge about the document set. Curiously, the adversary is
unable to use its knowledge to win as expected based on the analysis in [4]. The
analysis shows that an adversary who knows the whole document set can breach
document secrecy in many SSE schemes. In effect, the experiments restrict the
definitions to security against adversaries who have access to the scheme’s leakage
only. In realisation of this [14,23] coined the name Leakage Only Attack(LOA)
in which the L-security game have the document set given in the environment,
instead of being generated by the adversary. This change rectifies the current
adversary model by excluding practical attackers. In other words, the adversary
model now does not consider adversaries with prior knowledge. It remains to
model adversary with prior knowledge.

Bost and Fouque formalised the adversary’s knowledge and included it in
the security definition by introducing the notion of constrained histories in [3]
for Curtmola’s indistinguishability game [9, Definition 4.10]. The adversary’s
prior knowledge is set as the constraint and the two histories to be chosen by
the adversary must fulfil the constraints. The modified definition is named con-
strained adaptive indistinguishability. To model the LAA, constraint includes
a fixed document set so that the known part of the document set is equal in
the two histories. Hence, the two histories differ only in the query keywords
sequence. With that, the constrained adaptive indistinguishability security def-
inition includes the LAA setting. For a constraint C to be included in the secu-
rity definition of a scheme with leakage L, it has to be proven that C is L-
acceptable [3, Definition 3.3]. Having a constraint being acceptable for a leakage
profile means schemes with that leakage profile is safe against an adversary with
such prior knowledge. If it is not acceptable, it implies that schemes with that
leakage profile are vulnerable against an adversary with such prior knowledge.

Improved IND for SSE 193

Cash et al. defined four leakage profiles in [4] by which SSE schemes may be
categorised to indicate their security levels. Leveraging on those leakage profiles,
the analysis in [3] is reduced to defining a constraint and proving that its accept-
ability towards a leakage profile. Nevertheless, the task of proving a constraint
being acceptable for a leakage function is separated from proving that a scheme
achieves the constrained adaptive indistinguishability.

Another misfit is the security goal. The SSE semantic security and indistin-
guishability are currently defined on the secrecy of the document set but LAA
recovers query keywords. The strength against such attack goal is query key-
word privacy and can be modelled by query indistinguishability. This model is
formalised in [8,20] by a security game in which the adversary is required to
distinguish the trapdoors of two query keywords. In [20] the definition for query
indistinguishability was proven to imply L-security and SSE indistinguishability.
In [8] the security of a proposed database encryption scheme is proven to achieve
query indistinguishability under chosen query attack against an adversary with
the power to generate the database. Although this security goal models the pub-
lished attacks accurately, SSE security should also include the secrecy of the
stored documents.

Our Contributions. We propose here a new indistinguishability experiment
for SSE security and a model for adversaries with prior-knowledge.

In the new indistinguishability experiment, only one set of documents are in
play. For the security game, the adversary chooses two documents from the doc-
ument set. The challenger then selects a keyword that only appears in one of the
documents and generates the word’s search token as the challenge. The adversary
wins if it guesses the originating document of the search token correctly.

By defining the SSE security to be the indistinguishability of individual docu-
ments in one set, instead of document sets as in the current definition, the adver-
sary will be able to exploit a scheme’s leakage to win. That means the scheme’s
leakage can be proven to be safe-to-disclose to particular types of adversaries.

As a complement to the indistinguishability experiment, we propose a new
SSE adversary model to describe adversaries with various type and amount of
prior knowledge about the document set. This is the first proposal to directly
use the adversary’s knowledge in a scheme’s analysis.

The variation of adversary models in an experiment to distinguish documents
within a set provides the readers with clear assumptions and the security level of
an SSE scheme. Application of additional measures to strengthen against attacks
can also be seen in the adversary’s advantage statement, hence removing the need
for empirical evidence of security improvement.

We use Σoφoς-B to illustrate the use of the indistinguishability experiment.
We prove that the scheme achieves indistinguishability against a passive adver-
sary without any prior knowledge and then provide an instance of the count
attack by an adversary who knows the document distribution. For result-hiding
Σoφoς-B with cluster padding, we present the security proof against a passive

194 M. S. Mohamad and J.-J. Chin

adversary with full knowledge of the document set and an instance of the file
injection attack by an adversary without prior knowledge.

2 Preliminaries

An SSE scheme is usually specified with two or three functions, namely Setup,
Search, and Update for dynamic schemes. The functions are in fact protocols
because they involve interaction between the SSE client and storage server.

Setup is when secret keys K are generated using KeyGen and a document set
D is prepared for storing. The document set is preprocessed to generate the
set of keywords W and then to build the mapping of every keyword to the
identifiers of documents containing the keyword, DB= {(w,D(w))|w ∈ W}
for input to BuildIndex. The documents are encrypted using a symmetric key
encryption Encrypt with the generated secret key. This function concludes as
the initial ciphertexts c and index I are sent to the storage server.

Search is when the user wants to extract some of the stored documents. The user
will search the storage by keyword w ∈ W which invokes the Trapdoor on the
client to obtain the search token τw. The search token is sent to the server
for input to the server-side Search algorithm. The search result is a list of
document identifiers. For result-hiding schemes, this algorithm returns the
masked results to the client. For result-revealing schemes, the server unmasks
the identifiers before returning them to the client.

Update is called when documents are to be added to the storage or removed from
storage after Setup. The protocol to add a document uses Trapdoor and similar
steps as BuildIndex to create the new index entries. There may be additional
steps to obfuscate the new document’s keyword list. Removing a document
from storage would also modify the index.

An SSE scheme is correct when the search for a keyword w in the scheme
returns identifiers of all documents containing keyword w. In notation, the
scheme is correct if Search(Trapdoor(w)) =D(w).

2.1 Leakage Function

The metadata which enables the search will inevitably disclose information to
the storage server. The disclosure makes SSE weak if considered as a conven-
tional symmetric encryption scheme. So, in SSE security analysis the information
learned by the server from viewing the index and ciphertexts after Setup, and all
input-output pairs of the Search and Update functions must be considered.

The design of a scheme may produce different information or amount of
leakage. Hence, [7] formalised leakage and makes it a parameter in SSE security.
For every SSE scheme SSE, the leakage function should be declared L = (LSetup,
LSearch, LUpdate).

Improved IND for SSE 195

Setup Leakage. LSetup(DB, I, c) specifies the information directly obtained
from index I and ciphertexts c. Minimally the leakage includes the number
of documents and document sizes. Depending on the design of the index, the
number of keywords or number of documents associated with every keyword
may be leaked too.

Search Leakage. LSearch(I, τw, w) specifies the information obtained from
search results. For most SSE schemes, the search token τw is deterministic and
therefore discloses search pattern which indicates whether the search token τw

has been submitted previously. For static SSE scheme, the search pattern is also
called the query pattern. The access pattern shows which ciphertext location
or identifiers accessed during particular keyword search and hence, contains at
least the length of search results. For result-hiding schemes, the access pattern
contains masked identifiers. For result-revealing schemes, the access pattern con-
tains the plain identifiers from which adversary may infer intersection pattern.
Intersection pattern records the document identifiers which occur in the search
results for distinct search tokens. In essence, from the intersection pattern, the
server learns which search tokens are associated with one document, hence the
keyword co-occurrence distribution. For dynamic schemes, the combination of
search pattern and access pattern reveals new or omitted document identifiers
in search results. Such accumulated information for a keyword w is denoted by
Hist(w).

Update Leakage. LUpdate(op,D) specifies information disclosed during opera-
tion op (addition or deletion) of document D. A document addition or deletion
may disclose the number of keywords contained in the document. Schemes that
are not forward-secure would disclose whether D contains any of the searched
keywords [26]. If a scheme is backward-secure, a keyword search would not dis-
close the identifiers of deleted documents which contain the keyword [26].

2.2 SSE Security Model

Security goals of SSE are to protect the document secrecy and the search keyword
privacy. Extending the security definition of conventional symmetric encryption,
SSE security is defined as semantic security or indistinguishability of the cipher-
texts in the existence of metadata and leakage.

For SSE security analysis the adversary is an honest-but-curious server. That
means the server performs its part in the protocol correctly but tries to learn
contents of the stored documents. The server is modelled by giving the adversary
all data and leakage in the defining game. Also, the attack being considered by
most SSE schemes is chosen keyword attack. For this, the adversary has access
to Search and Update oracles.

Semantic security for SSE is defined as L-security to acknowledge the leak-
age. The defining game in [9] is a Real-Ideal game where the adversary is chal-
lenged to identify which environment it is playing. The experiment is presented

196 M. S. Mohamad and J.-J. Chin

in Appendix A. In the Real environment, the challenger runs the SSE scheme
to reply to the adversary’s queries. In the Ideal world, the adversary’s queries
are replied by a simulator based on the leakage of the scheme. Proving secu-
rity of a scheme involves designing a simulator whose replies to the adversary is
computationally indistinguishable from the real scheme’s replies.

For the indistinguishability game proposed in [9], the challenge is to distin-
guish two document sets which produce equal leakage in the SSE scheme. The
game is specified in Appendix B. The game begins with the challenger choosing
randomly b∈{0, 1}. Then the adversary submits two document sets, D0,D1 to
the challenger. The challenger runs the SSE scheme Setup on Db. After receiving
the index and ciphertexts, the adversary makes adaptive queries (w0, w1), where
w0 is a keyword from D0 and w1 from D1, to the Search oracle. The oracle replies
with the search token for wb. After polynomially many queries, the adversary
must guess which document set is being played by the challenger.

These two security games are adopted by almost all published SSE schemes.

2.3 Practical Attacks

The common factor for all attacks is that the attacker has some knowledge
about the stored documents, as listed in Table 1. The adversary knowledge is
also referred to as prior knowledge to mean information the adversary has before
initiating the attacks.

The Count Attack. [4] is an improvement on the IKK attack [11]. This attack
applies to SSE schemes whose LSearch includes access pattern with actual result
length and intersection pattern. The attacker’s prior knowledge includes the
whole or a large part of the document set, and a few pairs of trapdoor-keyword
pairs.

In preparation, the attacker identifies from the known documents keywords
with unique document counts. The documents are also processed to obtain the
co-occurrence matrix. This matrix rows and columns are labelled with keywords
symmetrically, and the element in location (i, j) are document identifiers which
contain both keywords wi and wj .

During the attack, by observing the access pattern in LSearch(wq) of every
search query wq the attacker will capture those result lengths which match a
unique document count, hence matches the keyword to the search token. Next,
the observed intersection pattern is accumulated and at a time, the observed co-
occurrence is matched to the co-occurrence matrix through simulated annealing
to identify the closest match of co-occurrence. Combining the result to the known
and recovered trapdoor-keyword pairs, more searched keywords are recovered.

File Injection Attack. [29] does not require any prior knowledge besides the
set of keywords of the stored documents. However, the attacker needs to find a
way to get their documents into the storage through the scheme and a way to
recognise the injected document identifiers in the search results.

Improved IND for SSE 197

The attacker crafts documents containing keywords such that each keyword
is a unique element in the content intersection for a set of the crafted documents.
After injecting all of the crafted documents into the scheme, the attacker needs
to observe access pattern in LSearch of each search. By identifying which injected
files are included in the access pattern, the attacker determines the keyword
being represented by the search token.

There are variations in crafting the injected documents to reduce the size of
documents or number of required injected files. If the attacker has some known
documents, the attack becomes easier.

LZWT Attack. [18] is an attack where the attacker observes the search queries
traffic to derive the queried keyword distribution from the search pattern in
LSearch. This attack applies to SSE schemes whose search tokens are generated
deterministically from the keywords. Similar to the IKK attack, the observed
distribution is compared to a query distribution estimation to make good guesses
of the queried keywords.

3 Redefining SSE Indistinguishability

Here we redefine SSE indistinguishability by considering the secrecy of individ-
ual documents within the protected document set instead of the secrecy of the
document set as a whole. In one perspective, we are reviving SSE indistinguisha-
bility as defined by Goh in [10] by adopting it for SSE schemes with one index
in the system. Also, we model the adversary whose prior knowledge may be less
than the whole document set using the technique from [22].

3.1 Security Goals

The security goal here is the secrecy of every document in the storage, which also
covers search privacy. We define this by an indistinguishability (IND) experiment
under a chosen keyword attack (CKA) by an adversary Aprior with some prior
knowledge as specified below. Table 2 shows the difference in the experiment for
other attack modes.

In this experiment specification, for sets X and Y , X�Y = (X \Y)∪ (Y \X)
and ˜W(Di) denotes the set of keywords in document Di which has not been
submitted to the Search oracle.

Definition 1 (IND-CKA by Aprior). Let SSE be an index-based SSE scheme
consisting of (Setup, Search, Update), a positive integer k be the security parameter
and A=(A0, A1) be a pair of adversaries who communicates by writing into the
status stA. The indistinguishability experiment for chosen keyword attack by an
adversary with prior knowledge, IndCKA

SSE,Aprior , is defined as follows:

Initiation
1. Given the security parameter 1k, the adversary A0 chooses the document

set D and submits D to the challenger C.

198 M. S. Mohamad and J.-J. Chin

2. Then A0 prepares the prior-knowledge as specified in Table 3 writes it
into stA.

3. The challenger C calls Setup(1k, D) to obtain the keys K=KeyGen(1k),
index I =BuildIndex(DB) and ciphertexts c= Encrypt(K,D).

4. The outputs (I, c) and the set of all keywords W are given to A1.
Queries A1 takes (I, c), W and stA as input and makes polynomially many

queries to the Search oracle. The queried keywords and the corresponding
replies are written into stA.

Challenge
1. On inputs D and stA, A0 chooses two documents D0,D1 ∈ D such that

˜W(D0) � ˜W(D1) �= ∅. The documents are submitted to C and written
into stA.

2. C randomly chooses b ∈ {0, 1} and choose wb ∈ ˜W(Db)\ ˜W(D1−b). The
challenge search token τb =Trapdoor(wb) is sent to A1.

3. After receiving the challenge, A1 may make more Search oracle queries
except for the keywords in D0 and D1.

Response
1. Finally, A1 outputs b′ as a guess of b.
2. The experiment outputs 1 if b′ = b, otherwise output 0.

We say A wins the game if the experiment outputs 1. The advantage of A is
defined as the probability of winning this game beyond guessing,

AdvIND−CKA
SSE,Aprior (k) =

∣

∣

∣

∣

Pr
[

IndCKA
SSE,Aprior(k) = 1

]

− 1
2

∣

∣

∣

∣

where the probability is over A and C’s coin tosses. The SSE scheme is said to
achieve indistinguishability under chosen keyword attack by an adversary with
prior-knowledge if for any A=(A0, A1),

AdvIND−CKA
SSE,Aprior (k) ≤ negl(k).

Table 2. Attack mode determines the oracle access at the Query stage.

Attack Mode A0 A1

Passive May invoke
Search and Update

Gets output of Search and
Update

Chosen keyword
attack

May invoke Update Access to Search oracle and
gets outputs from Update

Chosen document
attack

No oracle access Access to Search and
Update oracles

Improved IND for SSE 199

3.2 Adversary Models

The adversary’s prior knowledge has been listed in [4]. In order to allow the
adversary set up the ideal document set for its attack but controls the knowledge
it may use in the attack, the adversary is split into two adversaries which may
communicate with each other, following the model in [22]. The first adversary,
A0, prepares prior knowledge for the second adversary, A1, in the experiment
initiation. After that A1 updates its status stA based on which A0 may make
Search or Update calls during query stage. The attack is executed by A1 using
its prior knowledge, observed outputs and oracle access. Table 3 shows how our
adversary model represents the adversaries with prior knowledge. Figure 1 shows
the adversary’s knowledge strength rank.

Table 3. Adversary’s prior knowledge is modelled by what is generated by A0 and
given to A1 at the experiment Initiation stage.

Prior Knowledge Abbr. Preparation by A0 Information for A1

No prior knowledge LOA Generates document set, D None

Query distribution KQDA Generates the document set

D, generates a search query

sequence w1, w2, . . . , wq for

some q < |W|

Searched keywords frequency table

{(wi, freq(wi))|1≤ i ≤ q}

Query keywords KQA Generates document set D, use

Search oracle to generate t

searched keyword-token pairs

for some t < |W|

Keyword-token pairs

{(wi,Trapdoor(wi))|1 ≤ i≤t}

Document distribution KDDA Generates document set D and

the keyword-documents map-

ping DB

Keywords frequency table

{(w, |D(w)|) | all w ∈ W}

Partial document set KDA Generates document set D A subset of the document set S ⊂ D

Full document set KFDA Generates document set D The whole document set D

Fig. 1. A map showing the relation of adversary’s strengths with the arrows pointing
from the stronger to the weaker adversaries.

3.3 Relation to Current Security Definitions

The new indistinguishability experiment, IndCKA
SSE,Aprior , is nearer to practical

security especially in considering the benefit of an SSE scheme’s leakage to an
adversary with prior knowledge. In Sect. 4.2 and 5.2, the practical attacks are

200 M. S. Mohamad and J.-J. Chin

used to win in the experiment. The same could not be done in the current indis-
tinguishability (Appendix B) and L-security (Appendix A) experiments.

Furthermore, Theorems 1 and 2 show how IndCKA
SSE,Aprior allows security

improvement to be proven. In the examples, the improvement materialises as the
strength against a more powerful adversary. Besides that, the derived adversary’s
advantage over an SSE scheme contains statistics of the keyword distribution.
This is aligned to the finding in [4] which identified the keyword distribution as
a factor of an attack success rate.

Clearly, IndCKA
SSE,Aprior is a document distinguishing experiment. In that per-

spective, document indistinguishability implies query indistinguishability as
defined in [8,20]. We do not prove this statement in this work but this is appar-
ent from the attack examples. The attack in Sect. 4.2 shows that a document
distinguisher can be built from a query recovery adversary. On the other hand,
Sect. 5.2 concludes that the attack to distinguish documents is easier than a
query recovery attack. Finally, since [20] has proven that query indistinguisha-
bility implies both SSE indistinguishability and L-security, IndCKA

SSE,Aprior implies
both security notions too.

4 Σoφoς-B

An SSE scheme Σoφoς-B was proposed in [2, §5]. The scheme was proven to
achieve SSE indistinguishability as defined in [9]. The scheme is presented in
Appendix C.

The leakage function of Σoφoς-B is LΣ = (LSearch
Σ , LUpdate

Σ) where

LSearch
Σ (w) = (SearchPattern(w),Hist(w))

LUpdate
Σ (add, w, ind) = ⊥ .

LSetup
Σ is not included because at that stage the server only obtains an empty

index table. In the Search algorithm, the document identifiers are unmasked by
the server. Thus, the server can learn whether there have been additions to
the list of documents for keyword w since its last search, Hist(w). Note also
that from Hist(w) the server can infer intersection pattern of all queried search
tokens because it contains plain file identifiers. This scheme claims to have no
leakage caused by Update because the algorithm is defined for one keyword in
one document resulting on one entry in I of unique index key and masked file
identifier.

Considering the Σoφoς-B leakage functions, the scheme falls in the SSE
schemes category vulnerable to the count attack. It is in the category of schemes
defined in [4] as L1 where schemes leak access pattern in search results. The
plain file identifiers in Σoφoς-B search results directly reveal access pattern to
the server. In the rest of this section, we prove using IndCKA

SSE,Aprior that Σoφoς-B
is secure under leakage only attack but is vulnerable to the count attack under
known documents attack.

Improved IND for SSE 201

4.1 IND-CKA by ALOA

Here, we prove Σoφoς-B achieves indistinguishability under Chosen Keyword
Attack by an adversary without prior knowledge (LOA) using the experiment in
Definition 1. This result agrees with the scheme’s security proven in [2].

The adversary with no prior knowledge is modelled by having A0 preparing
the document set but does not give any information about it to A1 at the
initiation stage. Also, at the query stage, A1 is given access to Search oracle
only, for the chosen keyword attack. The Update algorithm may be triggered by
A0 by submitting a document to the challenger. The challenger gives A1 the
update token only. A0 cannot give any information about the added document
or keywords to A1. This experiment ensures that A1 can only use LSearch of its
choice of keywords and LUpdate observed to make its guess.

Theorem 1. Suppose the trapdoor permutation π is one-way, the PRF F is
pseudorandom and the hash functions H1,H2 modelled as random oracles. Then,
Σoφoς-B, denoted by Σ, achieves indistinguishability under chosen keyword
attack by an adversary without prior knowledge.

Proof. This proof is using the game hopping method. The main part of the proof
is at the last hop, from game G2 to G3, where the scheme security is reduced to
security of the PRF.
Game G0 is the IndCKA

Σ,ALOA on the Σoφoς-B scheme. So,

P
[

IndCKA
Σ,ALOA(k) = 1

]

= P [G0 = 1] .

Game G1 is the game G0 on the scheme with hash functions H1 and H2 in
Search and Update of the scheme being replaced by programmable random oracles
which output binary strings of the same length of the hash outputs. So,

P [G0 = 1] − P [G1 = 1] ≤ Advrand
H1,B1

(k) + Advrand
H2,B2

(k).

Next, game G2 is the game G1 on the scheme with the trapdoor π in Search and
π−1 in Update replaced by a random permutation and its inversion mapping.

P [G1 = 1] − P [G2 = 1] ≤ AdvOW
π,B3

(k).

Lastly, Game G3 is the game G2 with the function F replaced with a random
function. The reduction of winning probability depends on the advantage pro-
vided by exploiting the PRF to distinguish D0 and D1 by the challenge search
token τb.

P [G2 = 1] − P [G3 = 1] ≤ P [Identify b by exploiting F] .

Also, in the game G3, the adversary only has the scheme leakage to determine
b beyond simple guessing because all the primitives have been replaced by their
respective ideals.

P [G3 = 1] = P [A identify b from L] .

202 M. S. Mohamad and J.-J. Chin

Note that LSearch(τb) = (SearchPattern(wb) =⊥,Hist(wb)=plain search results)
because wb has not been queried before. Since ALOA does not have any infor-
mation regarding the documents or the keyword distribution, Hist(wb) does not
provide any information to determine b, hence P [G3 = 1] = 1

2 .
Now, we find the probability of winning game G2 by exploiting the PRF. To

do this we reduce the scheme’s security directly to the PRF. In other words,
we show that the existence of adversary ALOA as distinguisher in the IND-CKA
experiment on Σ2 (the scheme in G2) implies the existence of a PRF adversary.

Let A = (A0, A1) be an adversary without prior knowledge of document set
of Σoφoς-B. Consider an adversary B4 of the randomness of the PRF F . For
security parameter k, the PRF indistinguishability game challenger, C′ would
select to play a random function f(·) or the PRF FK(·), where K is a uniformly
chosen key of length k. The task of B4 is to guess the challenger’s choice of
function. Here, B4 uses A in trying to win the PRF game.

The adversary B4 is going to perform the SSE indistinguishability experiment
for A, and submit every wi in A’s queries to C′. The replies from C′ will be
the value used as Kwi

. When A0 submits file Di to be added, B4 invokes the
Update algorithm on (add,wj , di) for all wj ∈ Di. In that, B4 submits wj to C′ and
obtain value for Kwj

and then perform all other steps in the Update algorithm
to return (UTi,j , cj) to A1. When A1 queries wi to the Search oracle, B4 submits
wi to C′ for Kwi

value and then use it in the Search algorithm to return (Kwi
,

STci , ci).
At the challenge stage, A0 submits two files D0 and D1 as prescribed. For the

challenge, B4 chooses keywords w0 from D0 and w1 from D1 such that c0 = c1
from Δ[wi] = (STi, ci), if possible. Otherwise, B chooses any w0 and w1 from
the set. Finally, B makes a random choice of b ∈ {0, 1} and gives to A1 (Kwb

,
STcb , cb) as the challenge search token.

In the case that c0 = c1, if A1 guesses b correctly, B answers that C′ plays
the PRF FK(·). If A1 guessed wrong, then B answers that C′ plays the random
function f . Otherwise, B guesses randomly, independent of A1’s guess.

If C′ plays a random function against B, then A1 would not have the advan-
tage to distinguish the files by utilising the weakness of FK . Hence,

P (B wins) = P [E]
(

P [A wins|FK]P [FK] + P [A loses|f]P [f]
)

+
1
2

≥ P [E]
(

AdvIND−CKA
Σ2,ALOA (k)

1
2
)

+
1
2

P (B wins) − 1
2

≥ P [E]
(

AdvIND−CKA
Σ2,ALOA (k)

1
2
)

.

where E denotes the event that c0 = c1 and, FK and f denote the event that C′

plays the PRF and the random function, respectively. The inequality is brought
about by the unknown probability that A loses|f but it is at least 0. Conse-
quently, by definition of an adversary’s advantage in PRF experiment, and sub-
stituting P [E] with the expected probability of E occuring, ε,

AdvIND−CKA
Σ2,ALOA (k) ≤ 2

ε
AdvPRF

F,B (k).

Improved IND for SSE 203

Finally, the sum of all inequalities from the games G0 to G3 gives

AdvIND−CKA
Σ,ALOA (k) = P

[

IndCKA
Σ,ALOA =1

]

− 1
2

≤ Advrand
H1,A(k) + Advrand

H2,A(k) + AdvOW
π,A (k) +

2
ε
AdvPRF

F,B (k).

The advantage statement implies if F , π, H1 and H2 are secure, then
for document sets with large enough ε, Σoφoς-B achieves indistinguishability
under chosen keyword attack by an adversary without prior knowledge of the
documents.

From the advantage statement, the tightness of A’s advantage does depend
on ε. In the extreme case where the distribution of documents over keyword is
uniform, ε = 1, then A’s advantage is tightly bound to the security of the PRF.
On the other hand, if ε is very small, for example when each keyword is contained
in a distinct number of documents, then A’s advantage increases rapidly. This is
aligned with the empirical evidence regarding the effect of data padding on the
count attack complexity [3, §6.2].

4.2 Count Attack by AKDDA

As a consequence of the result-revealing feature of Σoφoς-B, Hist(·) in LSearch
Σ

contains the search token access pattern and intersection pattern. This puts
Σoφoς-B in leakage profile L1 [4] and makes it vulnerable to the count attack by
adversaries stronger than ALOA. We show here that an adversary with knowledge
of the keyword distribution AKDDA can win the indistinguishability game on
Σoφoς-B by executing the count attack.

Initiation
1. The adversary A0 generates a document set D such that every keyword

in the set is contained by a distinct number of documents. The set D is
given to the challenger.

2. A0 generates the complete keyword distribution information and the set
of all keywords W and gives it to A1.

Challenge
1. A0 chooses any two documents D0,D1 ∈D and submit to the challenger

and A1.
2. When A1 uses the challenge search token (STw, cw) to search the index

I, A1 gets the number of documents associated with wb from LSearch
Σ .

3. Referring to the keyword frequency table, A1 can recover correctly the
corresponding keyword, say w∗.

Response. By the design of the challenge search token, only one of D0 and D1

contains w∗. Hence, by searching for w∗ in the documents, A1 can always
identify the correct document and hence the correct value of b.

204 M. S. Mohamad and J.-J. Chin

5 Σoφoς-B with Cluster Padding

In this section, we analyse the security of Σoφoς-B in the result-hiding scenario
with frequency-based cluster padding parameterized by α [3, §5.4] applied on
the data. The padding is added during preparation of the database DB before
being input to the scheme. The padding algorithm clusters keywords with equal
frequencies. Fake keyword-document pairs are added to the DB to make each
cluster to contain at least α keywords.

For the result-hiding Σoφoς-B, the server is prevented from unmasking the
file identifiers. For completeness, the description of the slightly modified scheme
is presented in Appendix D. The leakage function for the result-hiding Σoφoς-B
denoted by LΣ′ = (LSearch

Σ′ , LUpdate
Σ′) is

LSearch
Σ′ (w) = (SearchPattern(w),Hist′(w))

LUpdate
Σ′ (add,w, ind) = ⊥

where Hist′(w) is the history of keyword w search results. They are lists of
masked file identifiers. Due to this, the intersection pattern cannot be derived
because masked identifiers of the same file cannot be matched. The leakage is
the number of file identifiers in the search result and whether there have been
new files containing the keyword since it was last searched.

In the following sections, we present how result-hiding Σoφoς-B in with
frequency-based cluster padding achieves indistinguishability against a passive
adversary who knows all of the plaintext documents, but vulnerable to file injec-
tion attack.

5.1 IND-CKA by AKFDA

Comparing this version to the original Σoφoς-B, two protections has been added.
The padding renders the observed keyword frequency less useful to identify key-
words, and masked file identifiers in search results conceal intersection pattern.
Therefore, this version of the scheme is expected to be strong against a more
powerful adversary than in Theorem 1. It has been shown [3, Corollary 8] that
result-hiding Σoφoς-B with cluster padding achieves constrained adaptive indis-
tinguishability against adversary with full knowledge of the document set. Here
we show that we can use the proposed indistinguishability experiment and the
model of an adversary with the full knowledge of document set to prove the same
security statement.

For the indistinguishability experiment in Definition 1 the adversary with full
knowledge of the document, AKFDA, is modelled by having A0 generates and
gives the whole document set D to A1. Besides that, A1 has only the Search ora-
cle access. Due to the padding scheme, when the challenger of the experiment
receives the document set D from A0, it would execute the cluster padding
scheme, to produce the padded data D̄B before invoking the Update algorithm
accordingly. Thus, A1 receives update tokens of the padded data.

Improved IND for SSE 205

Theorem 2. Denote by Σ′ the variation of Σoφoς-B as defined in Appendix D.
Suppose the trapdoor permutation π is one-way, the PRF F is pseudorandom
and the hash functions H1,H2 modelled as random oracles. Then Σ′ achieves
indistinguishability under adaptive chosen keyword attack against an adversary
with full knowledge of the document set.

Proof. This proof is using the game hopping method in which at the last hop,
from game G2 to G3, the scheme security is reduced to the security of the PRF.
Since the changes to the scheme in the four games are identical to those in the
proof of Theorem 1 and to adhere to the space limit, we begin with the sum of
the inequalities from the games G0, G1, G2 and G3:

P
[

IndCKA
Σ′,AKFDA(k)=1

]

− P [G3 = 1] (1)

≤ Advrand
H1,A(k) + Advrand

H2,A(k) + AdvOW
π,A (k) + P [Identify b by exploiting F] .

First, we calculate P [G3 = 1]. In the game, the adversary has LSearch
Σ′ (wb)

and its full knowledge of the document set to determine b. Hist(wb) provides
the length of results list which can be compared to Hist(w̃) for all w̃ ∈ ˜W(Di)
for i = 0, 1. Let G∗ denotes the event that w0, w1 belongs to the same cluster.
There are two cases:
Case 1: G∗ occurs which means the adversary could not determine b and thus
the probability of winning is 1

2 .
Case 2: G∗ does not occur which means there is no w̃ ∈ ˜W(D1−b) that matches
the length of search result. So, the adversary has probability 1 to win.
Thus, P [G3 = 1] = 1

2P [G∗] + (1 − P [G∗]) = 1 − 1
2P [G∗].

Secondly, we find the probability of winning game G2 by exploiting the PRF.
To do this we reduce the scheme’s security directly to the PRF. In other words,
we show that the existence of adversary AKFDA as distinguisher in the IND-CKA
experiment on the scheme in G2, Σ2, implies the existence of a PRF adversary.

Let A be an adversary who knows the document set and wins the indis-
tinguishability game with advantage AdvIND−CKA

Σ2,AKFDA(k). Consider the following
adversary B of the randomness of PRF F . To answer the PRF game, B simu-
lates the challenger in the indistinguishability game against A. For the PRF, B
queries C′ in the PRF game. So, When A queries the Search oracle, B also query
the C′ on w to get Kw and produces (Kw, STc, c) as in the scheme Σ2. When
A0 triggers Update(d,w) , B obtains Kw by querying C′ on w and obtains K ′

w by
querying on w||i for each counter i.

When given D0 and D1 at the challenge stage, B selects w0 from D0 and
w1 from D1 such that w0 and w1 are from the same keyword cluster, say G∗, if
possible. Then, B chooses b and proceeds to produce the challenge search token.
If such keywords are not found then B just choose any keyword wb from Db.

If B use keywords from the same cluster and A guesses b correctly, then B
outputs that it is playing the PRF. Otherwise, B outputs that it is playing a
random function. In the case where B use an arbitrary keyword for the challenge,
B makes a random guess in the PRF game.

206 M. S. Mohamad and J.-J. Chin

Let G∗ denotes the event that B found w0, w1 which belongs to the same
cluster, FK the event that C′ plays the PRF and f denotes C′ plays a random
function.

P [B wins] = P [G∗]
(

P [A wins|FK] · P [FK] + P [A loses|f] · P [f]
)

+
1
2

≥ P [G∗]
(1
2
AdvIND−CKA

Σ2,AKFDA(k)
)

+
1
2

P [B wins] − 1
2

≥ P [G∗]
(1
2
AdvIND−CKA

Σ2,AKFDA(k)
)

.

The equation becomes an inequality when we omit the term for the unknown
probability for A loses|f which is at least 0.

Let ε′ be the expected probability of keywords to be in the same cluster in
the cluster padding scheme. By the definition of an adversary’s advantage in the
PRF experiment, we have

AdvIND−CKA
Σ2,AKFDA(k) ≤ 2

ε′ AdvPRF,B(k).

Finally, from Eq. 1,

P
[

IndCKA
Σ′,AKFDA(k)=1

]

− (

1 − 1
2
P [G∗]

)

≤ Advrand
H1,A(k) + Advrand

H2,A(k) + AdvOW
π,A (k) +

2
ε′ AdvPRF

F,B (k).

which gives the upper bound for AdvIND−CKA
Σ′,AKFDA (k) to be

AdvOW
π,A (k) + Advrand

H1,A(k) + Advrand
H2,A(k) +

2
ε′ AdvPRF

F,B (k) +
1 − ε′

2
.

So, given that π, H1, H2 and F are secure, for a large enough ε′, result-hiding
Σoφoς-B with cluster padding achieves indistinguishability under chosen key-
word attack by an adversary with full knowledge of the document set.

5.2 File Injection Attack by ALOA

We describe here the file injection attack [29], which is a chosen document attack,
by an adversary with no prior knowledge on the result-hiding Σoφoς-B with
cluster padding. We assume the attacker knows details of the padding scheme
during Update which processes and upload files by batch. Although the scheme
does not leak access pattern, the attack uses the new index entries resulting from
adding files to the storage.

Initiation
1. The adversary A0 generates a document set D and submit to C.
2. C runs Setup and outputs to A1 the empty index I and public key PK.

Improved IND for SSE 207

3. C performs Update(Di, wj) for all Di ∈ D and all keywords wi, and A1

gets all update tokens (UTi,j , ei,j) and set of all keywords W.
Queries

1. A1 generates documents containing subsets of keywords and organise
them in sets F1, . . . ,Fm such that keywords contained in each file set
do not intersect. The set sizes match the batch size for Update.

2. The document set F1 is submitted to Update oracle and A1 records the
update tokens (UTw,d, ew,d) for the set of injected files, name the set U1.
From this, A1 knows the masked file identifiers for all of their keywords
but cannot work out individual keyword-identifier pairs and group of
identifiers of one file by one-wayness of H1.

3. A1 performs the same for F2, . . . ,Fm and record U2, . . . ,Um.
Challenge. A0 considers stA and chooses documents D0,D1 ∈ D such that

˜W(D0) \ ˜W(D1) and ˜W(D1) \ ˜W(D0) are contained in different batches of
injected files. Let (STb, cb) be the challenge search token from C.

Response
1. A1 extract the keywords of D0 and D1 and matches them to the plain

injected files to identify the injected file batch, say batch F0 for D0 and
F1 for D1.

2. A1 uses (STb, cb) to search I and gets the list of masked identifiers ewb
.

3. Compare the identifiers from ewb
to set of U0 of F0 and U1 of F1.

4. By choice of D0 and D1, only one of U0 and U1 contains all identifiers
from ewb

. Thus, A1 gets the correct value of b.

Notice that in the attack although the challenge keyword is not identified
uniquely, it is enough to distinguish the two files. In addition, this attack requires
fewer injected files because the target keyword subsets intersection is a list of
keywords rather than unique keywords.

6 Conclusion

The proposed indistinguishability experiment for SSE is an adoption of conven-
tional encryption indistinguishability definition similar to [10]. By taking Σoφoς-
B as an example SSE scheme, we have shown how the adversary with prior
knowledge is modelled in the indistinguishability experiment. In the attacks, it
is straightforward for the adversaries to use their prior knowledge on the scheme’s
leakage to win the experiment. Besides, the proposed indistinguishability experi-
ment has forced the document distribution statistics into the adversary’s advan-
tage statement. With that, we have shown that the proposed experiment enables
better security analysis on SSE schemes.

Acknowledgement. This work is part of a project under The 11th Malaysia Plan.
The authors would like to thank the Ministry of Education of Malaysia for providing
part of the financial support for this work through the Fundamental Research Grant
Scheme (Project number: FRGS/1/2019/ICT04/MMU/02/5). Ji-Jian Chin would also
like to thank the Information Security Lab at MIMOS Berhad for hosting his industrial

208 M. S. Mohamad and J.-J. Chin

attachment during which this paper was completed. Finally, we thank the anonymous
reviewers and in particular our shepherd, Dr Benjamin Tan, for their help in improving
this paper.

A L-security by [7]

Let SSE=
(

Setup, Search, Update, Decrypt
)

be an SSE scheme with a leakage profile
LSSE = (LSetup

SSE ,LSearch
SSE ,LUpdate

SSE). Then, SSE is L-secure against adaptive chosen
keyword attacks if for all PPT adversary A, there exists a PPT simulator S such
that

AdvSSE,A,S(k) = |Pr[RealSSE,A(k) = 1] − Pr[IdealSSE,A,S(k) = 1| ≤ negl(k)

where the games are as follows:

RealSSE,A(1k)
1. A generates DB and D and gives to the challenger, C.
2. C executes Setup, where the resulting I and c are given to A.
3. A then makes a polynomial number of Search and Update queries, and

receives the search token and update results.
4. Finally, A returns a bit b as the output of the experiment.

IdealSSE,A,S(1k)
1. A outputs DB and D to C.
2. The simulator S simulates I and c based on the leakage information from

LSetup
SSE , and gives I and c to A.

3. A makes a polynomial number of Search and Update queries.
4. The simulator S returns the search tokens based on LSearch

SSE and update
results based on LUpdate

SSE .
5. Finally, A returns a bit b as the output of the experiment.

B SSE Indistinguishability by [9]

Let SSE=(KeyGen, Encrypt, Trapdoor, Search, Decrypt) be an index-based SSE, k∈
IN be a security parameter, A = (A0,. . . ,Aq+1) be such that q ∈ IN and consider
the following probabilistic experiment Ind∗

A,SSE(k)

Initiation
1. Given the security parameter 1k, challenger C generates the secret key K.
2. Then C randomly chooses a value b ∈ {0, 1}.
3. A0 generates two document sets, D0 and D0, such that

LSetup(D0) =LSetup(D1), and submits them to C. Let W0 and W1 be
the set of all keywords in D0 and D1 respectively.

4. C runs Setup on Db and gives A the index Ib and ciphertexts cb.
Query

1. The adversary A makes q search queries by having Ai choosing w0,i ∈ W0

and w1,i ∈ W1 such that LSearch(w0,i) =LSearch(w1,i).

Improved IND for SSE 209

2. For each i, the Search oracle replies with the search token τi for keyword
wb,i.

Response
1. Finally, Aq+1 makes a guess b′.
2. The experiment outputs 1 if b′ = b. Otherwise, outputs 0.

We say that SSE is secure in the sense of adaptive indistinguishability if for all
PPT adversaries A = (A0, . . . , Aq+1) such that q=poly(k),

Pr
[

Ind∗
SSE,A(k) = 1

] ≤ 1
2

+ negl(k),

where the probability is over the choice of b, and the coins of KeyGen and Encrypt.

C Σoφoς-B

Here is the SSE scheme Σoφoς-B as specified in [2, §5]. In this scheme F is a
pseudorandom function, π is a trapdoor permutation, and H1 and H2 are keyed
hash functions.

Setup. Given a security parameter 1k, the algorithm generates a symmetric key
KS ∈ {0, 1}k, an asymmetric key pair (SK,PK) and prepare two empty
mappings Δ and I. Output to the client (Δ, (KS, SK)) and to server (I,
PK).

Search. To search for keyword w, the client prepares Kw = FKS
(w) and extract

(STc, c) =Δ[w], and then sends (Kw, STc, c) to the server. If (STc, c) =⊥,
directly output ∅. The server goes though counter i = c, c−1, . . . , 0 to compute
UTi = H1(Kw, STi) and extract ei = I[UTi]. The output is unmasked di ←
ei ⊕H2(Kw, STi). For the next counter, server computes STi−1 = πPK(STi).
Finally, The server returns a list of document identifiers (di)i=0,1,...,c.

Update. This algorithm is invoked to update the index for one keyword w from
one document D. Let d denotes the identifier for document D. First the
client recalculate the keyword key Kw = FKS

(w) and extract (STc, c) =Δ[w].
If Δ[w] =⊥ this means the keyword is new, hence the client set the first
token ST0 for w to a random string and create new entry Δ[w] = (ST0, 0).
Otherwise, calculate the next token, STc+1 =π−1

SK(STc) and renew entry
Δ[w] = (STc+1, c+1). Next, compute index key UTc+1 = H1(Kw, STc+1) and
mask the identifier e = d⊕H2(Kw, STc+1). Finally, the client sends (UTc+1, e)
to the server which sets I[UTc+1] = e.

D Result-Hiding Σoφoς-B

Here is a variation of Σoφoς-B where the storage server returns masked file
identifiers to the client during Search.

210 M. S. Mohamad and J.-J. Chin

Setup. Given a security parameter 1k, the algorithm generates a symmetric key
KS ∈ {0, 1}k, an asymmetric key pair (SK,PK) and prepare two empty
mappings Δ and I. Output to the client (Δ, (KS, SK)) and to server (I,
PK).

Search. To search for keyword w, the client prepares Kw = FKS
(w) and extract

(STc, c) =Δ[w], and then sends (Kw, STc, c) to the server. If (STc, c) = ⊥,
directly output ∅. The server goes though counter i = c, c−1, . . . , 0 to compute
UTi = H1(Kw, STi) and then extract ei = I[UTi]. For the next counter, server
computes STi−1 = πPK(STi). The server returns a list of masked document
identifiers (ei)i=0,1,...,c. Finally, the client unmasks the document identifiers
di = ei ⊕ H2(K ′

w, STi) where K ′
w = FKS

(w||ibin) for i = 0, 1, . . . , c.
Update. This algorithm is invoked to update the index for one keyword w from

one document D. Let d denotes the identifier for document D. First the client
recalculate the keyword key Kw = FKS

(w) and extract (STc, c) =Δ[w]. If
Δ[w] =⊥ this means the keyword is new, hence set the first token ST0 to a
random string and set Δ[w] = (ST0, 0). Otherwise, calculate the next token,
STc+1 =π−1

SK(STc) and set Δ[w] = (STc+1, c + 1). Next, compute index key
UTc+1 =H1(Kw, STc+1) and mask the identifier e = d⊕H2(K ′

w, STc+1) where
K ′

w = FKS
(w||(c + 1)bin). Finally, the client sends (UTc+1, e) to the server

which sets I[UTc+1] = e.

References

1. Bosch, C., et al.: Distributed searchable symmetric encryption. In: Proceedings of
the Twelfth Annual Conference on Privacy, Security and Trust (PST 2014). IEEE
(2014)

2. Bost, R.: σoφoς-forward secure searchable encryption. In: Proceedings of the 23rd
ACM SIGSAC Conference on Computer and Communications Security (CCS
2016), pp. 1143–1154. ACM (2016)

3. Bost, R., Fouque, P.A.: Thwarting leakage abuse attacks against searchable encryp-
tion a formal approach and applications to database padding. Cryptology ePrint
Archive, Report 2017/1060 (2017). http://eprint.iacr.org/2017/1060/

4. Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks against
searchable encryption. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pp. 668–679. ACM (2015)

5. Cash, D., et al.: Dynamic Searchable Encryption in Very Large Databases: Data
Structures and Implementation. Cryptology ePrint Archive, Report 2014/853
(2014). http://eprint.iacr.org/2014/853

6. Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on remote
encrypted data. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005). https://doi.org/10.
1007/11496137 30

7. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 33

http://eprint.iacr.org/2017/1060/
http://eprint.iacr.org/2014/853
https://doi.org/10.1007/11496137_30
https://doi.org/10.1007/11496137_30
https://doi.org/10.1007/978-3-642-17373-8_33

Improved IND for SSE 211

8. Cui, S., Asghar, M.R., Galbraith, S.D., Russello, G.: ObliviousDB: practical and
efficient searchable encryption with controllable leakage. In: Imine, A., Fernandez,
J.M., Marion, J.-Y., Logrippo, L., Garcia-Alfaro, J. (eds.) FPS 2017. LNCS, vol.
10723, pp. 189–205. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
75650-9 13

9. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric
encryption: improved definitions and efficient constructions. In: Juels, A., Wright,
R.N., di Vimercati, S.D.C. (eds.) ACM Conference on Computer and Communi-
cations Security, CCS 2006, pp. 79–88. ACM (2006)

10. Goh, E.J.: Secure indexes. Cryptology ePrint Archive, Report 2003/216 (2003).
http://eprint.iacr.org/2003/216/

11. Islam, M.S., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable
encryption: ramification, attack and mitigation. In: 19th Annual Network and Dis-
tributed System Security Symposium, NDSS 2012. The Internet Society (2012)

12. Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryp-
tion. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 258–274. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1 22

13. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM Conference on Computer
and Communications Security - CCS 2012, pp. 965–976. ACM (2012)

14. Kamara, S., Moataz, T.: Boolean searchable symmetric encryption with worst-case
sub-linear complexity. Cryptology ePrint Archive, Report 2017/126 (2017). http://
eprint.iacr.org/2017/126/

15. Kamara, S., Moataz, T., Ohrimenko, O.: Structured encryption and leakage sup-
pression. Cryptology ePrint Archive, Report 2018/551 (2018). http://eprint.iacr.
org/2018/551/

16. Kurosawa, K., Ohtaki, Y.: UC-secure searchable symmetric encryption. In:
Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 285–298. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32946-3 21

17. Lacharité, M.S., Patterson, K.G.: Frequency-smoothing encryption: preventing
snapshot attacks on deterministically-encrypted data. Cryptology ePrint Archive,
Report 2017/1068 (2017). http://eprint.iacr.org/2017/1068/

18. Liu, C., Zhu, L., Wang, M., Tan, Y.: Search pattern leakage in searchable encryp-
tion: attacks and new construction. Inf. Sci. 265, 176–188 (2014)

19. Moataz, T., Shikfa, A.: Boolean symmetric searchable encryption. In: Chen, K.,
Xie, Q., Qiu, W., Li, N., Tzeng, W.G. (eds.) 8th ACM Symposium on Information,
Computer and Communications Security - ASIACCS 2013, pp. 265–276. ACM
(2013)

20. Mohamad, M.S., Tan, S.Y., Chin, J.J.: Searchable symmetric encryption: defining
strength against query recovery attacks. In: Proceedings of the 6th International
Cryptology and Information Security Conference 2018, pp. 85–93 (2018)

21. Naveed, M., Prabhakaran, M., Gunter, C.A.: Dynamic searchable encryption via
blind storage. In: 2014 IEEE Symposium on Security and Privacy, SP 2014, pp.
639–654. IEEE Computer Society (2014)

22. Ogata, W., Kurosawa, K.: No-dictionary searchable symmetric encryption. IEICE
Trans. Fundam. E102A(1), 114–124 (2019)

23. Pouliot, D., Griffy, S., Wright, C.V.: The strength of weak randomization: effi-
ciently searchable encryption with minimal leakage. Cryptology ePrint Archive,
Report 2017/1098 (2017). http://eprint.iacr.org/2017/1098/

https://doi.org/10.1007/978-3-319-75650-9_13
https://doi.org/10.1007/978-3-319-75650-9_13
http://eprint.iacr.org/2003/216/
https://doi.org/10.1007/978-3-642-39884-1_22
http://eprint.iacr.org/2017/126/
http://eprint.iacr.org/2017/126/
http://eprint.iacr.org/2018/551/
http://eprint.iacr.org/2018/551/
https://doi.org/10.1007/978-3-642-32946-3_21
http://eprint.iacr.org/2017/1068/
http://eprint.iacr.org/2017/1098/

212 M. S. Mohamad and J.-J. Chin

24. Pouliot, D., Wright, C.V.: Shadow nemesis: inference attacks on efficiently deploy-
able, efficiently searchable encryption. In: 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, pp. 1341–1352. ACM (2016)

25. Sedghi, S., Doumen, J., Hartel, P., Jonker, W.: Towards an information theoretic
analysis of searchable encryption. In: Chen, L., Ryan, M.D., Wang, G. (eds.) ICICS
2008. LNCS, vol. 5308, pp. 345–360. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-88625-9 23

26. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption
with small leakage. In: Network and Distributed System Security Symposium -
NDSS 2014. Internet Society (2014). https://www.ndss-symposium.org/ndss2014/
programme/practical-dynamic-searchable-encryption-small-leakage/

27. Wright, C.V., Pouliot, D.: Early detection and analysis of leakage abuse vulnera-
bilities. Cryptology ePrint Archive, Report 2017/1052 (2017). http://eprint.iacr.
org/2017/1052/

28. Yoshizawa, T., Watanabe, Y., Shikata, J.: Unconditionally secure searchable
encryption. In: 2017 51st Annual Conference on Information Sciences and Systems
(CISS), pp. 1–6, March 2017

29. Zhang, Y., Katz, J., Papamanthou, C.: All Your Queries Are Belong To Us:
The Power of File-Injection Attacks on Searchable Encryption. Cryptology ePrint
Archive, Report 2016/172 (2016). http://eprint.iacr.org/2016/172/

https://doi.org/10.1007/978-3-540-88625-9_23
https://doi.org/10.1007/978-3-540-88625-9_23
https://www.ndss-symposium.org/ndss2014/programme/practical-dynamic-searchable-encryption-small-leakage/
https://www.ndss-symposium.org/ndss2014/programme/practical-dynamic-searchable-encryption-small-leakage/
http://eprint.iacr.org/2017/1052/
http://eprint.iacr.org/2017/1052/
http://eprint.iacr.org/2016/172/

Receiver Selective Opening CCA
Secure Public Key Encryption
from Various Assumptions

Yi Lu1,2(B), Keisuke Hara1,2, and Keisuke Tanaka1

1 Tokyo Institute of Technology, Tokyo, Japan
{lu.y.ai,hara.k.am}@m.titech.ac.jp, keisuke@is.titech.ac.jp

2 National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan

Abstract. Receiver selective opening (RSO) attacks for public key
encryption (PKE) capture a situation where one sender sends messages
to multiple receivers, and an adversary can corrupt a set of receivers
and get their messages and secret keys. Security against RSO attack
for a PKE scheme ensures confidentiality of other uncorrupted receivers’
ciphertexts. Among all of the RSO security notions, simulation-based
RSO security against chosen ciphertext attack (SIM-RSO-CCA security)
is the strongest notion. In this paper, we explore constructions of SIM-
RSO-CCA secure PKE from various computational assumptions. Toward
this goal, we show that a SIM-RSO-CCA secure PKE scheme can be con-
structed based on an IND-CPA secure PKE scheme and a designated-
verifier non-interactive zero-knowledge (DV-NIZK) argument satisfying
one-time simulation soundness. Moreover, we give the first construction
of DV-NIZK argument satisfying one-time simulation soundness. Con-
sequently, through our generic construction, we obtain the first SIM-
RSO-CCA secure PKE scheme under the computational Diffie-Hellman
(CDH) or learning parity with noise (LPN) assumption.

Keywords: Public-key encryption · Receiver selective opening
security · Chosen ciphertext attacks

1 Introduction

1.1 Background and Motivation

In the context of security notions of public key encryption (PKE), there are a lot
of formulations considering different attack scenarios, such as chosen plaintext
attacks (CPA) and chosen ciphertext attacks (CCA), and different attacker goals,
such as one-wayness, indistinguishability (IND), and non-malleability. However,
Bellare, Hofheinz, and Yilek [3] claimed that IND−CPA or IND−CCA secu-
rity [7,9], which are the most accepted security notions for PKE, can not pro-
vide adequate security in a multi-user scenario. Concretely, they showed that
c© Springer Nature Switzerland AG 2020
K. Nguyen et al. (Eds.): ProvSec 2020, LNCS 12505, pp. 213–233, 2020.
https://doi.org/10.1007/978-3-030-62576-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62576-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-62576-4_11

214 Y. Lu et al.

when some of users has been corrupted, there are situations where we cannot
preserve the other users’ confidentiality of ciphertexts by using only IND−CPA
or IND−CCA secure PKE schemes. Then, they proposed selective opening (SO)
security for PKE which can ensure that the uncorrupted users’ ciphertexts leak
no information about their secrets.

Depending on different attack scenarios, SO security is divided into two set-
tings: sender selective opening (SSO) security [3,4] and receiver selective opening
(RSO) security [2,14]. In this paper, we focus on RSO security. In RSO security,
we consider a situation where there are one sender and multiple receivers. An
adversary can corrupt some receivers, which means he gets their secret keys and
plaintexts. RSO security ensures the confidentiality of uncorrupted receivers’
ciphertexts. Here, if we also consider an active adversary who can execute CCA,
we can also consider RSO−CCA security for PKE.

From another point of view, there are two flavors of definitions for SO secu-
rity: indistinguishability-based SO security and simulation-based SO security. As
mentioned in some previous works [2,14], simulation-based SO security is more
desirable than indistinguishability-based SO security, because the definition of
indistinguishability-based SO security can support only a plaintext space which
satisfies a notion called efficient resamplability [3]. Roughly, efficient resampla-
bility refers to when a part of plaintexts are fixed, the remaining plaintexts can
be resampled efficiently. This requirement is somewhat artificial and limits real-
world applications because a plaintext distribution in practice scenarios do not
necessarily satisfy this requirement.

From the above arguments, simulation-based RSO−CCA (SIM−RSO−CCA)
security is the most favorable notion among all of the RSO security. Recently,
some works [10–12] proposed constructions of SIM−RSO−CCA secure PKE
under standard computational assumptions, such as the decisional Diffie-
Hellman (DDH) assumption and the decisional composite residuosity (DCR)
assumption. One of the important research area for cryptography is making a
cryptographic primitive under the various assumptions. More specifically, we
have two main problems in this area: Can we construct a cryptographic primi-
tive under a weaker computational assumption or a post-quantum computational
assumption ? In particular, National Institute of Standards and Technology
(NIST) launched the Post-Quantum Cryptography Standardization in 2016, and
thus post-quantum cryptography has been attracting more attention. Hence, in
this paper, we tackle the following question:

Is it possible to construct a SIM-RSO-CCA secure PKE scheme from
weaker or post-quantum computational assumptions ?

1.2 Our Contribution

Based on the above motivation, we give affirmative answers to the question. More
precisely, we show that SIM−RSO−CCA secure PKE can be constructed under
the computational Diffie-Hellman (CDH) assumption (weaker computational

RSO-CCA Secure PKE from Various Assumptions 215

assumption) or the learning parity with noise (LPN) assumption (new post-
quantum computational assumption). In the following, we explain the details of
our contribution.

Hara et al.’s Approach and Its Limitation. Toward our goal, we focus on the Hara
et al.’s work [10,11]. In [10,11], they introduced the receiver non-committing
CCA (RNC−CCA) security for receiver non-committing encryption (RNCE),
which is a variant of PKE with a special non-committing property, then showed
that RNC−CCA secure RNCE implies SIM−RSO−CCA secure PKE. More-
over, they proposed a construction of RNC−CCA secure RNCE by using an
IND−CPA secure PKE scheme and a non-interactive zero-knowledge (NIZK)
proof system satisfying one-time simulation soundness.1 In a nutshell, their con-
struction is obtained by combining the classical Naor-Yung paradigm [21] and a
trick for a non-committing property that the decryption key used in a decryption
algorithm of their RNCE scheme is chosen at random from two decryption keys
of an underlying IND−CPA secure PKE scheme.

In order to obtain a SIM−RSO−CCA secure PKE scheme under the CDH
or LPN assumption through their generic construction, all of the components
of their construction should be realized under the CDH or LPN assumption.
Actually, we can construct an IND−CPA secure PKE scheme based on the CDH
assumption [13] or the LPN assumption [1,25]. However, NIZK proof system has
not been proposed under these assumptions so far, and thus we cannot obtain a
CDH or LPN based SIM−RSO−CCA secure PKE scheme through this generic
construction.

Our Approach. In order to circumvent the above problem, we show that an NIZK
proof system is not needed, but a designated-verifier NIZK (DV-NIZK) argument
is sufficient for our goal. More specifically, we show that RNC−CCA secure
RNCE can be obtained from IND−CPA secure PKE and DV-NIZK argument
satisfying one-time simulation soundness. Roughly, a DV-NIZK argument is a
relaxation of an NIZK proof system to the designated-verifier model, in other
words, the model which only a user who has a secret verification key can verify
a proof correctly. Although it is known that IND−CCA secure PKE scheme can
be constructed from these two primitives [8], we have the following nebulous
point for proving the RNC−CCA security for RNCE.

In contrast to IND−CCA security for PKE, when showing RNC−CCA secu-
rity for RNCE, we have to consider a situation where an adversary can get a
decryption key in a security game. For checking the validity of a ciphertext, we
need to include a secret verification key of DV-NIZK argument into a decryp-
tion key of our RNCE scheme. Furthermore, as well as the original Naor-Yung

1 Due to the previous works [22,24], it is known that both of an IND−CPA secure PKE
scheme and an NIZK proof system can be constructed based on the learning with
errors (LWE) assumption, which is one of the post-quantum computational assump-
tion. Thus, by combining with the result [10], we can obtain a SIM−RSO−CCA
secure PKE scheme based on the LWE assumption.

216 Y. Lu et al.

paradigm [21], we need to use zero-knowledge and (one-time simulation) sound-
ness of a DV-NIZK argument in our security proof. However, in DV-NIZK set-
ting, we cannot ensure soundness if a secret verification key is revealed to an
adversary, while zero-knowledge still holds. Thus, it seems that our strategy
does not make sense at first glance. However, by focusing on the details of a
security proof, we have seen through that there is no problem. The main reason
is that soundness is only used to prevent an adversary from making “unfavor-
able” decryption queries in a security proof, and thus soundness need to be
held only while it makes decryption queries. Here, in RNC-CCA security, we
consider decryption queries only before a decryption key (including a secret ver-
ification key) is revealed. Therefore, it is possible to prevent unfavorable decryp-
tion queries without a secret verification key, that is, soundness of DV-NIZK
argument is sufficient for proving RNC−CCA security of RNCE. See Sect. 4.2
for more details.

Construction of One-time Simulation Sound DV-NIZK. Recently, a lot of
works [6,17,18,20,23] showed that a DV-NIZK argument can be constructed
under the CDH and LPN assumption. The notion of a one-time simulation sound
DV-NIZK argument was considered in the Elkind et al.’s work [8]. However,
a concrete construction of one-time simulation sound DV-NIZK argument has
not been proposed so far. Then, in order to complete our RNC−CCA secure
RNCE scheme, we propose a construction of one-time simulation sound DV-
NIZK argument by combining (ordinary) DV-NIZK argument, strong one-time
signature, and commitment based on the Lindell’s approach [19]. See Sect. 3 for
more details. (Note that we can construct strong one-time signature and com-
mitment based on the one-way function, which is obtained under the CDH or
LPN assumption.)

By combining the above results, we can obtain a SIM−RSO−CCA secure
PKE scheme based on the CDH or LPN assumption.

1.3 Related Work

Jia et al. [15] proposed the first construction of SIM−RSO−CCA secure
PKE using indistinguishability obfuscation. Moreover, Jia et al. [16] proposed
indistinguishability-based RSO-CCA (IND-RSO-CCA) secure PKE schemes
based on standard computational assumptions. Concretely, they showed two
generic constructions of IND−RSO−CCA secure PKE. First, they gave a generic
construction based on an IND−RSO−CPA secure PKE scheme, an IND−CCA
secure PKE scheme, an NIZK proof system, and a strong one-time signature
scheme. Second, they gave a generic construction based on a universal hash proof
system. Recently, Huang et al. [12] showed that a SIM−RSO−CCA secure PKE
scheme can be constructed under the DDH or DCR assumption. Moreover, they
showed that a SIM−RSO−CCA secure PKE scheme can be constructed from
an identity-based encryption scheme satisfying RSO security for a master secret
key in the ideal cipher model.

RSO-CCA Secure PKE from Various Assumptions 217

2 Preliminaries

In this section, we define notations and recall the definitions for some crypto-
graphic primitives.

2.1 Notations

In this paper, x ← X denotes sampling an element x from a finite set X uniformly
at random. y ← A(x; r) denotes that a probabilistic algorithm A outputs y for
an input x using a randomness r, and we simply denote y ← A(x) when we do
not need to write an internal randomness explicitly. For strings x and y, x‖y
denotes the concatenation of x and y. Also, x := y denotes that x is defined by
y. λ denotes a security parameter. A function f(λ) is a negligible function in λ,
if f(λ) tends to 0 faster than 1

λc for every constant c > 0. negl(λ) denotes an
unspecified negligible function. PPT stands for probabilistic polynomial time.
If n is a natural number, [n] denotes a set of integers {1, · · · , n}. Also, if a
and b are integers such that a ≤ b, [a, b] denotes a set of integers {a, · · · , b}. If
m = (m1, · · · ,mn) is an n-dimensional vector, mJ denotes a subset {mj}j∈J

where J ⊆ [n]. If O is a function or an algorithm and A is an algorithm, AO

denotes that A has an oracle access to O.

2.2 Public Key Encryption

Here, we review the definition of public key encryption (PKE).

Definition 1 (Public key encryption). A PKE scheme with a plaintext
space M consists of a tuple of the following three PPT algorithms Π =
(KG,Enc,Dec).

KG: The key generation algorithm, given a security parameter 1λ, outputs a
public key pk and a secret key sk.

Enc: The encryption algorithm, given a public key pk and a plaintext m ∈ M,
outputs a ciphertext c.

Dec: The (deterministic) decryption algorithm, given a public key pk, a secret
key sk, and a ciphertext c, outputs a plaintext m ∈ {⊥} ∪ M.

As the correctness for Π, we require that Dec(pk , sk ,Enc(pk ,m)) = m holds
for all λ ∈ N, m ∈ M, and (pk , sk) ← KG(1λ).

Then, we recall IND−CPA security and SIM−RSO−CCA security for PKE.2

Definition 2 (IND-CPA security). We say that Π = (KG,Enc,Dec) is
IND−CPA secure if for any PPT adversary A = (A1,A2),

Advind−cpa
Π,A (λ) := 2·

∣
∣
∣Pr[b ← {0, 1}; (pk , sk) ← KG(1λ); (m∗

0,m
∗
1, st1) ← A1(pk);

c∗ ← Enc(pk ,m∗
b); b

′ ← A2(c∗, st1) : b = b′] − 1
2

∣
∣
∣ = negl(λ),

2 In this paper, as mentioned in Sect. 1.2, we focus on RNC−CCA secure RNCE
to obtain a new SIM−RSO−CCA secure PKE scheme. Although we do not use a
SIM−RSO−CCA security for PKE, we recall the definition here for completeness.

218 Y. Lu et al.

Definition 3 (SIM-RSO-CCA security). Let n be the number of users. For
a PKE scheme Π = (KG,Enc,Dec), an adversary A = (A1,A2,A3), and a
simulator S = (S1,S2,S3), we define the following pair of experiments.

Exprso−cca−real
n,Π,A (λ) :
(pk, sk) := (pk j , sk j)j∈[n] ← (KG(1λ))j∈[n]

(Dist, st1) ← AODec(·,·)
1 (pk)

m∗ := (m∗
j)j∈[n] ← Dist

c∗ := (c∗
j)j∈[n] ← (Enc(pk j ,m

∗
j))j∈[n]

(J, st2) ← AODec(·,·)
2 (c∗, st1)

out ← AODec(·,·)
3 (skJ ,m∗

J , st2)
Return (m∗,Dist, J, out)

Exprso−cca−sim
n,Π,S (λ) :
(Dist, st1) ← S1(1λ)
m∗ := (m∗

j)j∈[n] ← Dist
(J, st2) ← S2(st1)
out ← S3(m∗

J , st2)
Return (m∗,Dist, J, out)

In both of the experiments, we require that the distributions Dist output by A
and S be efficiently samplable. In Exprso−cca−real

n,Π,A (λ), a decryption query (c, j) is
answered by Dec(pk j , sk j , c). A2 and A3 are not allowed to make a decryption
query (c∗

j , j) for any j ∈ [n]. Furthermore, A3 is not allowed to make a decryption
query (c, j) satisfying j ∈ J . (This is without losing generality, since A3 can
decrypt any ciphertext using the given secret keys.)

We say that Π is SIM−RSO−CCA secure if for any PPT adversary A and
any positive integer n = n(λ), there exists a PPT simulator S such that for any
PPT distinguisher D,

Advrso−cca
n,Π,A,S,D(λ) := |Pr[D(Exprso−cca−real

n,Π,A (λ)) = 1] − Pr[D(Exprso−cca−sim
n,Π,S (λ)) = 1]|

= negl(λ).

2.3 Receiver Non-committing Encryption

Here, we review receiver non-committing encryption (RNCE) [5]. Informally,
RNCE is public key encryption (PKE) having the property that it can gener-
ate a fake ciphertext which can be later opened to any plaintext (by showing
an appropriate secret key). In the following, we give a syntax of RNCE and
RNC−CCA security for it [10].

Definition 4 (Receiver non-committing encryption). An RNCE scheme
Π with a plaintext space M consists of the following seven PPT algo-
rithms (KG,Enc,Dec,FKG,Fake,Open,FDec). (KG,Enc,Dec) are the
same algorithms as those of a PKE scheme. (FKG,Fake,Open,FDec) are
defined as follows.

FKG: The fake key generation algorithm, given a security parameter 1λ, outputs
a public key pk and a trapdoor td.

Fake: The fake encryption algorithm, given a public key pk and a trapdoor td,
outputs a fake ciphertext c̃.

Open: The opening algorithm, given a public key pk, a trapdoor td, a fake cipher-
text c̃, and a plaintext m, outputs a fake secret key s̃k .

RSO-CCA Secure PKE from Various Assumptions 219

FDec: The fake decryption algorithm, given a public key pk, a trapdoor td, and
a ciphertext c, outputs m ∈ {⊥} ∪ M.

Definition 5 (RNC-CCA security). For an RNCE scheme Π = (KG,Enc,
Dec,FKG,Fake,Open,FDec) and an adversary A = (A1,A2,A3), we con-
sider the following pair of experiments.

Exprnc−real
Π,A (λ) :

(pk, sk) ← KG(1λ)
(m∗, st1) ← AODec(·)

1 (pk)
c∗ ← Enc(pk,m∗)
st2 ← AODec(·)

2 (c∗, st1)
sk∗ := sk
Return b′ ← A3(sk∗, st2)

Exprnc−sim
Π,A (λ) :

(pk, td) ← FKG(1λ)
(m∗, st1) ← AODec(·)

1 (pk)
c∗ ← Fake(pk, td)
st2 ← AODec(·)

2 (c∗, st1)
sk∗ ← Open(pk, td, c∗,m∗)
Return b′ ← A3(sk∗, st2)

In Exprnc−real
Π,A (λ), a decryption query c is answered by Dec(pk , sk , c). On the other

hand, in Exprnc−sim
Π,A (λ), a decryption query c is answered by FDec(pk , td , c). In

both of the experiments, A2 is not allowed to make a decryption query c = c∗ and
A3 is not allowed to make any decryption query. We say that Π is RNC−CCA
secure if for any PPT adversary A, Advrnc−cca

Π,A (λ) := |Pr[Exprnc−real
Π,A (λ) = 1] −

Pr[Exprnc−sim
Π,A (λ) = 1]| = negl(λ) holds.

In the previous work [10], the following theorem was shown.

Theorem 1 ([10]). If an RNCE scheme Π = (KG,Enc,Dec,FKG,Fake,
Open,FDec) is RNC−CCA secure, then a PKE scheme Πrso := (KG,Enc,
Dec) is SIM−RSO−CCA secure.

2.4 Signature

Here, we review the definition of a signature scheme.

Definition 6 (Signature). A signature scheme Σ with a message space M
consists of the following three PPT algorithms.

SKG: The key generation algorithm, given a security parameter 1λ, outputs a
verification key vk and a signing key sigk.

Sign: The signing algorithm, given a signing key sigk and a message m, and
outputs a signature σ.

SVer: The verification algorithm, given a verification key vk, a message m, and
a signature σ, outputs either 1 (meaning “accept”) or 0 (meaning “reject”).

As the correctness for Σ, we require that for all λ ∈ N, (vk , sigk) ←
SKG(1λ), and messages m ∈ M, it holds that SVer(vk ,m,Sign(sigk ,m)) = 1.

Next, we define strong one-time unforgeability under chosen message attacks
for a signature scheme.

220 Y. Lu et al.

Definition 7 (Strong one-time unforgeability). We say that a signature
scheme Σ = (SKG,Sign,SVer) satisfies strong one-time unforgeability if for
any PPT adversary A = (A1,A2),

AdvunfΩ,A(λ) := Pr[(vk , sigk) ← SKG(1λ); (m, st1) ← A1(vk); σ ← Sign(sigk , m);

(m′, σ′) ← A2(σ, st1) : ((m′, σ′) �= (m, σ)) ∧ (SVer(vk , m′, σ′) = 1)] = negl(λ)

holds.

2.5 Commitment

Here, we review the definition of a commitment scheme.

Definition 8 (Commitment). A Commitment scheme Ω with a plaintext
space M consists of the following two PPT algorithms.

CKG: The key generation algorithm, given a security parameter 1λ, outputs a
public commitment key ck.

Commit: The commit algorithm, given a public commitment key ck and a plain-
text m, outputs a commitment c.

Next, we define the following two security properties for commitment: statis-
tical binding and computationally hiding.

Definition 9 (Statistical binding). Let Ω = (CKG,Commit) be a commit-
ment scheme. We say that Ω satisfies statistical binding if for any computation-
ally unbounded adversary A,

AdvbindΩ,A(λ) := Pr[ck ← CKG(1λ); (m0,m1, r0, r1) ← A(ck) :

Commit(ck ,m0; r0) = Commit(ck ,m1; r1)] = negl(λ)

holds.

Definition 10 (Computational hiding). We say that a commitment scheme
Ω = (CKG,Commit) satisfies computationally hiding if for any PPT adver-
sary A = (A1,A2),

AdvhideΩ,A(λ) :=
∣
∣
∣Pr[b ← {0, 1}; ck ← CKG(1λ); (m0,m1, st1) ← A1(ck);

c ← Commit(ck ,mb); b′ ← A2(c, st1) : b = b′] − 1
2

∣
∣
∣ = negl(λ)

holds.

RSO-CCA Secure PKE from Various Assumptions 221

2.6 Designated-Verifier Non-interactive Zero-Knowledge
Arguments

Here, we review the definition of a designated-verifier non-interactive zero-
knowledge (DV-NIZK) argument [6,17,18,20,23].

Definition 11 (DV-NIZK argument). Let R be an efficiently computable
binary relation and L := {x | ∃w s.t. (x,w) ∈ R}. A DV-NIZK argument for L
consists of a tuple of the following five PPT algorithms Φ = (CRSGen,Prove,
Verify,SimCRS,SimPrv).

CRSGen: The common reference string (CRS) generation algorithm takes a
security parameter 1λ as input, and outputs a CRS crs and a secret verifica-
tion key vsk.

Prove: The proving algorithm takes a CRS crs, a statement x, and a witness w
as input, and outputs a proof π.

Verify: The (deterministic) verification algorithm takes a CRS crs, a secret
verification key vsk, a statement x, and a proof π as input, outputs a bit
v ∈ {0, 1}, which is either 1 (meaning “accept”) or 0 (meaning “reject”).

SimCRS: The simulator’s CRS generation algorithm takes a security parameter
1λ as input, outputs a simulated CRS crs, a simulated secret verification key
vsk, and a trapdoor key tk.

SimPrv: The simulator’s proving algorithm takes a trapdoor key tk and a state-
ment x as input, and outputs a simulated proof π.

We say that a DV-NIZK argument Φ is correct if we have Verify(crs, vsk , x,
Prove(crs, x, w)) = 1 for all λ ∈ N, (crs, vsk) ← CRSGen(1λ), and valid
statement / witness pairs (x,w) ∈ R.

Next, we define (standard) soundness and one-time simulation soundness for
a DV-NIZK argument. We adopt a definition of soundness which was considered
in recent works [6,17,18,20,23]. Moreover, we adopt a definition of one-time
simulation soundness proposed in [8]. We note that in both of security definitions,
an adversary can make multiple verification queries.

Definition 12 (Soundness). We say that a DV-NIZK argument Φ =
(CRSGen,Prove,Verify,SimCRS,SimPrv) satisfies soundness if for any
PPT adversary A,

AdvsoundΦ,A (λ) := Pr[(crs, vsk) ← CRSGen(1λ); (x, π) ← AO(·,·)(crs)

: (x /∈ L) ∧ (Verify(crs, vsk , x, π) = 1)] = negl(λ)

holds, where O(·, ·) is a verification oracle which receives a query (x, π) and
returns v ← Verify(vsk , x, π).

222 Y. Lu et al.

Definition 13 (One-time simulation soundness). We say that a DV-NIZK
argument Φ = (CRSGen,Prove,Verify,SimCRS,SimPrv) satisfies one-
time simulation soundness if for any PPT adversary A = (A1,A2),

Advot−ss
Φ,A (λ) := Pr[(crs, tk , vsk) ← SimCRS(1λ); (x′, st1) ← AO(·,·)

1 (crs);

π′ ← SimPrv(tk , x′); (x, π) ← AO(·,·)
2 (π′, st1)

: ((x, π) �= (x′, π′)) ∧ (x /∈ L) ∧ (Verify(crs, vsk , x, π) = 1)] = negl(λ)

holds, where O(·, ·) is a verification oracle which receives a query (x, π) and
returns v ← Verify(vsk , x, π).

Then, we give the definitions of zero-knowledge and witness indistinguisha-
bility for a DV-NIZK argument. We adopt a definition of zero-knowledge which
was considered in [8]. Our definition of witness indistinguishability is a natural
extension from one of a (standard) NIZK proof system. It is easy to see that our
witness indistinguishability is implied by zero-knowledge.

Definition 14 (Zero-knowledge). For a DV-NIZK argument Φ =
(CRSGen,Prove,Verify,SimCRS,SimPrv) and a PPT adversary A =
(A1,A2), we consider the following two experiments.

Expzk−real
Φ,A (λ) :

(crs, vsk) ← CRSGen(1λ)
(x,w, st1) ← A1(crs, vsk)
π ← Prove(crs, x, w)
b′ ← A2(π, st1)
Return b′

Expzk−sim
Φ,A (λ) :
(crs, vsk , tk) ← SimCRS(1λ)
(x,w, st1) ← A1(crs, vsk)
π ← SimPrv(tk , x)
b′ ← A2(π, st1)
Return b′

In both of the experiments, it is required that x ∈ L and w be a witness for x ∈
L. We say that Φ is zero-knowledge if for any PPT adversary A, AdvzkΦ,A(λ) :=
|Pr[Expzk−real

Φ,A (λ) = 1] − Pr[Expzk−sim
Φ,A (λ) = 1]| = negl(λ) holds.

Definition 15 (Witness indistinguishability). We say that a DV-NIZK
argument Φ = (CRSGen,Prove,Verify,SimCRS,SimPrv) satisfies witness
indistinguishability if for any PPT adversary A = (A1,A2),

AdvwiΦ,A(λ) := 2 ·
∣
∣
∣Pr[(crs, vsk) ← CRSGen(1λ);

(x,w0, w1, st1) ← A1(crs, vsk); b ← {0, 1};

π ← Prove(crs, x, wb); b′ ← A2(π, st1) : b = b′] − 1
2

∣
∣
∣ = negl(λ),

where (x,w0), (x,w1) ∈ R holds.

3 Construction of One-Time Simulation Sound DV-NIZK

In this section, we provide a construction of one-time simulation sound DV-
NIZK. First, in Sect. 3.1, we describe our construction. Then, in Sect. 3.2, we
give a security proof for our construction.

RSO-CCA Secure PKE from Various Assumptions 223

3.1 Description

In this section, we formally describe our construction of one-time simulation
sound DV-NIZK argument for an NP language L′. Let Σ = (SKG,Sign,SVer)
be a signature scheme, Ω = (CKG,Commit) a commitment scheme, and
Π = (CRSGen,Prove,Verify,SimCRS,SimPrv) a (standard) DV-NIZK
argument for L, where

L :=
{

(x′, ck , vk , c) | ∃ (w′, r) s.t. ((x′, w′) ∈ R′) ∨ (c = Commit(ck , vk; r))
}

.

Then, we construct our one-time simulation sound DV-NIZK argument Φ′ =
(CRSGen′,Prove′,Verify′,SimCRS′,SimPrv′) for L′ as described in Fig.1.

3.2 Security Proof

In this section, we show that our scheme Φ′ satisfies one-time simulation sound-
ness (Theorem 2) and zero-knowledge (Theorem 3).

Theorem 2. If Φ satisfies (standard) soundness, Ω satisfies statistical binding,
and Σ satisfies strong one-time unforgeability, then Φ′ satisfies one-time simu-
lation soundness.

Proof of Theorem 2. Let A = (A1,A2) be a PPT adversary that attacks the one-
time simulation soundness of Φ′. The detailed description of one-time simulation
soundness for Φ′ is as follows.

1. The challenger generates ck ← CKG(1λ), (crs, vsk) ← CRSGen(1λ),
and (sigk∗, vk∗) ← SKG(1λ). Then, it samples r ← RΠ and computes
c∗ ← Commit(ck , vk∗; r). Finally, it sets crs ′ := (crs, ck , c∗) and tk :=
(vk∗, sigk∗, r), and runs A1(crs ′). When A1 makes a verification query (x̃, π̃),
the challenger returns v ← Verify(crs, vsk , x̃, π̃) to A1.

2. When A1 outputs (x̂′, st1) and terminates, the challenger sets x̂ :=
(x̂′, ck , vk∗, c∗) and ŵ := (⊥, r), and computes π̂ ← Prove(crs, x̂, ŵ) and
σ̂ ← Sign(sigk∗, (x̂′, π̂)). Then, it sets π̂′ := (vk∗, π̂, σ̂) and runs A2(π̂′, st1).
When A2 makes a verification query (x̃, π̃), the challenger returns v ←
Verify(crs, vsk , x̃, π̃) to A2.

3. A2 outputs a pair of a statement and a proof (x′, π′ = (vk , π, σ)) and
terminates.

Here, in the above experiment, we let Win be the event that ((x′, π′) �=
(x̂′, π̂′))∧ (x′ /∈ L′)∧ (Verify(crs ′, vsk , x′, π′) = 1) holds. We have the inequality
Advot−ss

Φ′,A (λ) = Pr[Win] = Pr[Win ∧ vk �= vk∗] + Pr[Win ∧ vk = vk∗].
In the following, we show that there exist a PPT adversary B against the

soundness of Φ such that AdvsoundΦ,B (λ) = Pr[Win ∧ vk �= vk∗] (Lemma 1) and
a PPT adversary C = (C1, C2) against the strong one-time unforgeability of Σ
such that AdvunfΣ,C(λ) = Pr[Win ∧ vk = vk∗] (Lemma 2).

224 Y. Lu et al.

CRSGen′(1λ) :
ck ← CKG(1λ)
(crs, vsk) ← CRSGen(1λ)
r ← RΩ

c ← Commit(ck , 0|vk|; r)
crs ′ := (crs, ck , c)
Return (crs ′, vsk)

Prove′(crs ′, x′, w′) :
(vk , sigk) ← SKG(1λ)
x := (x′, ck , vk , c)
w := (w′, ⊥)
π ← Prove(crs, x, w)
σ ← Sign(sigk , (x′, π))
Return π′ := (vk , π, σ)

Verify′(crs ′, vsk , x′, π′) :
If SVer(vk , (x′, π), σ) = 1
∧Verify(crs, vsk , (x′, ck , vk , c), π) = 1 then
Return 1

else Return 0
SimCRS′(1λ) :

ck ← CKG(1λ)
(crs, vsk) ← CRSGen(1λ)
(sigk∗, vk∗) ← SKG(1λ)
r ← RΠ

c∗ ← Commit(ck , vk∗; r)
crs ′ := (crs, ck , c∗)
tk := (vk∗, sigk∗, r)
Return (crs ′, tk , vsk)

SimPrv′(crs ′, tk , x′) :
x := (x′, ck , vk∗, c∗)
w := (⊥, r)
π∗ ← Prove(crs, x, w)
σ∗ ← Sign(sigk∗, (x′, π∗))
Return π′ := (vk∗, π∗, σ∗)

Fig. 1. Construction of one-time simulation sound DV-NIZK argument Φ′.

Lemma 1. There exists a PPT adversary B such that AdvsoundΦ,B (λ) = Pr[Win∧
vk �= vk∗].

Proof of Lemma 1. We construct a PPT adversary B that attacks the soundness
of Φ so that AdvsoundΦ,B (λ) = Pr[Win∧vk �= vk∗], using the adversary A as follows.

B(crs) : First, B generates ck ← CKG(1λ), (crs, vsk) ← CRSGen(1λ), and
(sigk∗, vk∗) ← SKG(1λ). Then, it samples r ← RΠ and computes c∗ ←
Commit(ck , vk∗; r). Next, it sets crs ′ := (crs, ck , c) and tk ′ := (vk∗, sigk∗,
r), and runs A1(crs ′). When A1 makes a verification query (x̃′, (ṽk , π̃, σ̃)),
B computes s ← SVer(ṽk , (x̃′, π̃), σ̃), makes a verification query ((x̃′, ck , ṽk ,
c), π̃), and gets the result v. If s = v = 1 holds, B returns 1 to A1. Otherwise,
B returns 0 to A1.
When A1 outputs a pair of a statement and state information (x̂′, st1) and
terminates, B sets x̂ := (x̂′, vk , c) and ŵ := (⊥, r). Next, B computes π̂ ←
Prove(crs, x̂, ŵ) and σ̂ ← Sign(sigk∗, (π̂, x̂′)). Then, B sets π̂′ := (vk , π̂, σ̂)
and runs A2(π̂′, st1). When A2 makes a verification query ((x̃′, ck , ṽk , c), π̃),
B answers in the same way as above. When A2 outputs a pair of a statement
and a proof (x′, (vk , π, σ)) and terminates, B sets x := (x′, ck , vk , c), returns
(x, π) to its experiment, and terminates.

We can see that B perfectly simulates an experiment of one-time simu-
lation soundness for A. Here, we assume that vk �= vk∗ holds. Firstly, if

RSO-CCA Secure PKE from Various Assumptions 225

the event Win occurs, Verify′(crs ′, vsk , x′, π′) = 1 holds, which means that
Verify(crs, vsk , (x′, ck , vk , c), π) = 1 holds.

Secondly, x′ /∈ L′ holds now. Moreover, due to the fact that vk �= vk∗ and
the statistical binding of Ω hold, we can see Commit(ck , vk ; r) �= c. Hence, we
have x /∈ L.

From the above argument, if Win occurs and vk �= vk∗ holds, we can see
that B can make a pair of a statement and a proof (x, π) breaking the soundness
of Φ. Thus, AdvsoundΦ,B (λ) = Pr[Win ∧ vk �= vk∗] holds. � (Lemma 1)

Lemma 2. There exists a PPT adversary C = (C1, C2) such that AdvunfΣ,C(λ) =
Pr[Win ∧ vk = vk∗].

Proof of Lemma 2. We construct a PPT adversary C = (C1, C2) that attacks the
strong one-time unforgeability of Σ so that AdvunfΣ,C(λ) = Pr[Win ∧ vk = vk∗],
using the adversary A as follows.

C1(vk∗): First, C1 generates ck ← CKG(1λ) and (crs, vsk) ← CRSGen(1λ).
Next, C1 samples r ← RΠ and computes c ← Commit(ck , vk∗; r). Then,
C1 sets crs ′ := (crs, ck , c) and runs A1(crs ′). When A1 makes a verification
query of (x̃′, π̃′), C1 returns v ← Verify′(crs ′, vsk , x̃′, π̃′) to A1.
When A1 outputs a pair of a statement and state information (x̂′, st1) and
terminates, C1 sets x̂ := (x̂′, ck , vk∗, c) and ŵ := (⊥, r), and computes π̂ ←
Prove(crs, x̂, ŵ). Then, C1 sets m̂ := (x̂′, π̂) and st′1 as all the information
known to C1, returns (m̂, st1) to its experiment, and terminates.

C2(σ̂, st1): First, C2 sets π̂′ := (vk∗, σ̂, π̂) and runs A2(π̂′, st1). When A2 outputs
a pair of a challenge statement and a proof (x′, (vk , π, σ)), and terminates, C2

sets m′ := (x′, π), returns (σ,m′) to its experiment, and terminates.

We can see that C perfectly simulates an experiment of one-time simulation
soundness for A. Here, we assume that vk = vk∗ holds. If the event Win occurs,
Verify(crs ′, vsk , x′, π′) = 1 holds, which means that SVer(vk∗,m′, σ) = 1 holds.
Moreover, (x′, π′) �= (x̂′, π̂′) holds now, which implies (m′, σ) �= (m̂, σ̂). From the
above argument, if Win occurs and vk = vk∗ holds, we can see that C can make a
pair of a statement and a proof (x′, π) breaking the strong one-time unforgeability
of Σ. Thus, AdvunfΣ,C(λ) = Pr[Win ∧ vk = vk∗] holds. � (Lemma 2)

Putting everything together, we obtain Advot−ss
Φ′,A (λ) ≤ AdvsoundΦ,B (λ) +

AdvunfΣ,C(λ). Since Φ satisfies (standard) soundness and Σ satisfies strong one-time
unforgeability, for any PPT adversary A, Advot−ss

Φ′,A (λ) = negl(λ) holds. Therefore,
Φ′ satisfies one-time simulation soundness. � (Theorem 2)

Theorem 3. If Φ satisfies witness indistinguishability and Ω satisfies computa-
tionally hiding, then Φ′ satisfies zero-knowledge.

Proof of Theorem 3. Let A = (A1,A2) be a PPT adversary that attacks the
zero-knowledge of Φ′. We introduce the following experiments {Expi}2i=0.

226 Y. Lu et al.

Exp0: Exp0 is exactly the same as Expzk−real
Φ′,A (λ). The detailed description is as

follows.
1. Exp0 generates ck ← CKG(1λ) and (crs, vsk) ← CRSGen(1λ). Then,

Exp0 samples r ← RΩ and computes c ← Commit(0|vk |; r). Next, Exp0
sets crs ′ := (crs, ck , c) and runs A1(crs ′, vsk).

2. When A1 outputs a tuple (x′, w′, st1) and terminates, Exp0 generates (vk ,
sigk) ← SKG(1λ) and sets x := (x′, ck , vk , c) and w := (w′,⊥). Then,
Exp0 computes π ← Prove(crs, x, w) and σ ← Sign(sigk , (x′, π)), and
returns π′ := (vk , π, σ) to A2.

3. When A2 outputs a bit b′ ∈ {0, 1} and terminates, Exp0 outputs b′.
Exp1 : Exp1 is identical to Exp0 except that Exp1 generates another

(sigk∗, vk∗) ← SKG(1λ) and computes c ← Commit(vk∗; r) instead of
c ← Commit(0|vk |; r).

Exp2 : Exp2 is identical to Exp1 except that Exp2 sets w := (⊥, r) and uses this
w to make a proof π. Note that Exp2 is exactly the same as Expzk−sim

Φ′,A (λ).

We let pi := Pr[Expi(λ) = 1] for all i ∈ [0, 2]. Then, we have

AdvzkΦ′,A(λ) = |Pr[Expzk−real
Φ′,A (λ) = 1] − Pr[Expzk−sim

Φ′,A (λ) = 1]|

= |p0 − p2| ≤
1∑

i=0

|pi − pi+1|.

It remains to show how each |pi − pi+1| is upper-bounded. To this end, in
the following, we show that there exist an adversary D = (D1,D2) against the
computationally hiding of Ω such that |p0 − p1| = AdvhideΩ,D(λ) (Lemma 3) and
an adversary E = (E1, E2) against the witness indistinguishability of Φ such that
|p1 − p2| = AdvwiΦ,E(λ) (Lemma 4).

Lemma 3. There exists a PPT adversary D = (D1,D2) such that |p0 − p1| =
AdvhideΩ,D(λ).

Proof of Lemma 3. We construct a PPT adversary D = (D1,D2) that attacks
the hiding property of Ω so that |p0 − p1| = AdvhideΩ,D(λ), using the adversary
A = (A1,A2) as follows.

D1(ck): First, D1 generates (crs, vsk) ← CRSGen(1λ) and (sigk∗, vk∗) ←
SKG(1λ). Then, D1 sets m0 := 0|vk∗|, m1 := vk∗, and st1 as all of
the information known to D1, returns (m0,m1, st1) to its experiment, and
terminates.

D2(c): First, D2 sets crs ′ := (crs, c) and runs A1(crs ′). When A1 outputs a tuple
(x′, w′, st′1), D2 sets x := (x′, ck , vk∗, c) and w := (w′,⊥). Then, D2 computes
π ← Prove(crs, x, w) and σ ← Sign(sigk∗, (x′, π)), sets π′ := (vk∗, π, σ), and
runs A2(π′, st1). When A2 outputs a bit b′ ∈ {0, 1} and terminates, D2 returns
b′ to its experiment and terminates.

RSO-CCA Secure PKE from Various Assumptions 227

We let b be the challenge bit for D in its experiment. When b = 0, we
can see that D perfectly simulates Exp0 for A. This ensures that when b = 0,
the probability that D outputs 1 is exactly the same as the probability that A
outputs b′ = 1 in Exp0. On the other hand, when b = 1, we can see that D
perfectly simulates Exp1 for A. This ensures that when b = 1, the probability
that D outputs 1 holds is exactly the same as the probability that A outputs
b′ = 1 in Exp1. Therefore, we have AdvhideΩ,D(λ) = |Pr[b′ = 1|b = 0]−Pr[b′ = 1|b =
1]| = |p0 − p1|. � (Lemma 3)

Lemma 4. There exists a PPT adversary E = (E1, E2) such that |p1 − p2| =
AdvwiΦ,E(λ).

Proof of Lemma 4. We construct a PPT adversary E = (E1, E2) that attacks
the witness indistinguishability of Φ so that |p1 − p2| = AdvwiΦ,E(λ), using the
adversary A = (A1,A2) as follows.

E1(crs): First, E1 generates ck ← CKG(1λ) and (sigk∗, vk∗) ← SKG(1λ). Then,
E1 samples r ← RΩ and computes c ← Commit(ck , vk∗; r). Next, E1 sets
crs ′ := (crs, c) and runs A1(crs ′). When A1 outputs (x′, w′, st1) and termi-
nates, E1 sets x := (x′, ck , vk∗, c), w0 := (w′,⊥), and w1 := (⊥, r). Then, E1

returns (x,w0, w1) and st′1 including all of the information known to E1 to its
experiment, and terminates.

E2(π, st′1): First, E2 computes σ ← Sign(sigk , (x′, π)). Then, E2 sets π′ :=
(π, σ, vk∗) and runs A2(π′, st1). When A2 outputs a bit b′ ∈ {0, 1} and ter-
minates, E2 returns b′ to its experiment and terminates.

We let b be the challenge bit for E in its experiment. When b = 0, we can
see that E perfectly simulates Exp1 for A. This ensures that when b = 0, the
probability that E outputs 1 holds is exactly the same as the probability that
A outputs 1 in Exp1. On the other hand, when b = 1, E perfectly simulates
Exp2 for A. This ensures that when b = 0, the probability that E outputs 1 is
exactly the same as the probability that A outputs 1 in Exp2. Therefore, we have
AdvwiΦ,E(λ) = |Pr[b′ = 1|b = 0] − Pr[b′ = 1|b = 1]| = |p1 − p2|. � (Lemma 4)

Putting everything together, we obtain AdvzkΦ′,A(λ) ≤ AdvhideΩ,D(λ)+AdvwiΦ,E(λ).
Since Ω satisfies computationally hiding and Φ satisfies witness indistinguishabil-
ity, for any PPT adversary A, AdvzkΦ′,A(λ) = negl(λ) holds. Therefore, Φ′ satisfies
zero-knowledge. � (Theorem 3)

4 Construction of RNC−CCA Secure RNCE

In this section, we show that our generic construction of RNC−CCA secure
RNCE with the plaintext space {0, 1}. Firstly, in Sect. 4.1, we describe our
generic construction. Then, in Sect. 4.2, we give a security proof for it.

228 Y. Lu et al.

KG′(1λ) :
α ← {0, 1}
(pk0, sk0) ← KG(1λ)
(pk1, sk1) ← KG(1λ)
(crs, vsk) ← CRSGen(1λ)
pk := (pk0, pk1, crs)
sk := (α, skα, vsk)
Return (pk , sk)

Enc′(pk , m) :
(r0, r1) ← (RΠ)2

c0 ← Enc(pk0, m; r0)
c1 ← Enc(pk1, m; r1)
x := (pk0, pk1, c0, c1)
w := (m, r0, r1)
π ← Prove(crs, x, w)
Return c := (c0, c1, π)

Dec′(pk , sk , c) :
x := (pk0, pk1, c0, c1)
If Verify(crs, vsk , x, π) = 1
then

m ← Dec(pkα, skα, cα)
Return m

else Return ⊥

FKG′(1λ) :
α ← {0, 1}
(pk0, sk0) ← KG(1λ)
(pk1, sk1) ← KG(1λ)
(crs, vsk , tk)

← SimCRS(1λ)
pk := (pk0, pk1, crs)
td := (α, sk0, sk1, vsk , tk)
Return (pk , td)

Fake′(pk , td) :
cα ← Enc(pkα, 0)
c1⊕α ← Enc(pk1⊕α, 1)
x := (pk0, pk1, c0, c1)
π ← SimPrv(tk , x)
Return c̃ := (c0, c1, π)

Open′(pk , td , c̃, m) :
˜sk := (α ⊕ m,

skα⊕m, vsk)
Return ˜sk

FDec′(pk , td , c) :
x := (pk0, pk1, c0, c1)
If Verify(crs, vsk , x, π) = 1
then

m ← Dec(pk0, sk0, c0)
Return m

else Return ⊥

Fig. 2. Construction of RNC−CCA secure RNCE Π ′.

4.1 Description

In this section, we formally describe our generic construction of RNC-CCA
secure RNCE with the plaintext space {0, 1}. Let Π = (KG,Enc,Dec) be
a PKE scheme with the plaintext space {0, 1} and Rπ a randomness space for
the encryption algorithm Enc. Let Φ = (CRSGen,Prove,Verify,SimCRS,
SimPrv) be a DV-NIZK argument for

Leq :=
{

(pk0, pk1, c0, c1)| ∃(m, r0, r1) ∈ {0, 1} × (RΠ)2 s.t.

(c0 = Enc(pk0,m; r0)) ∧ (c1 = Enc(pk1,m; r1))
}

.

Then, we use them to construct our RNCE scheme Π ′ = (KG′,Enc′,
Dec′,FKG′,Fake′,Open′,FDec′) with the plaintext space {0, 1} as described
in Fig. 2. We note that the correctness of our RNCE scheme holds due to the
correctness of Π and Φ.

How to expand the plaintext space of our generic construction. In the above,
we only give the construction whose plaintext space is {0, 1}. However, we can
expand the plaintext space by using our single-bit construction in a parallel way
except for the generation of a proof of a DV-NIZK argument. More concretely,
if we encrypt an 	-bit plaintext m = m1‖ · · · ‖m�, the procedure is as follows.

Firstly, we generate a public key pk = ((pk i
0, pk

i
1)i∈[�], crs) and a secret key

sk = (αi, sk i
αi

, vsk)i∈[�], where α1, · · · , α� ← {0, 1}, (pk i
v, sk i

v) ← KG(1λ) for

RSO-CCA Secure PKE from Various Assumptions 229

all (i, v) ∈ [] × {0, 1}, and crs (resp., vsk) denotes a CRS (resp., a secret
verification key) of a DV-NIZK argument. Next, we compute a ciphertext
c = ((ci

0)i∈[�], (ci
1)i∈[�], π), where ci

v ← Enc(pk i
v,mi) for all (i, v) ∈ [] × {0, 1}

and π is a proof proving that, for each i ∈ [], the ciphertexts ci
0 and ci

1 encrypt
the same plaintext mi ∈ {0, 1}. Similarly, for the other procedures, we execute
one-bit version algorithms in a parallel way for all i ∈ [] except for the procedure
of a DV-NIZK argument. See the full version of the paper for the details.

4.2 Security Proof

In this section, we show the following theorem.

Theorem 4. If Π is an IND−CPA secure PKE scheme and Φ satisfies one-time
simulation soundness and zero-knowledge, then Π ′ is RNC−CCA secure.

Proof of Theorem 4. Let A = (A1,A2,A3) be a PPT adversary that attacks the
RNC−CCA security of Π ′. We introduce the following experiments {Expi}5i=0.

Exp0 : Exp0 is exactly the same as Exprnc−real
Π′,A (λ). The detailed description is as

follows.

1. First, Exp0 samples α ← {0, 1} and computes (pk0, sk0) ← KG(1λ),
(pk1, sk1) ← KG(1λ), and (crs, vsk) ← CRSGen(1λ). Next, Exp0 sets
pk := (pk0, pk1, crs) and sk := (α, skα, vsk), and runs A1(pk). When A1

makes a decryption query c = (c0, c1, π), Exp0 checks whether Verify(crs,
vsk , (pk0, pk1, c0, c1), π) = 1 or not. If this condition holds, Exp0 computes
m ← Dec(pkα, skα, cα) and returns m to A1. Otherwise, Exp0 returns ⊥
to A1.

2. When A1 outputs (m∗, st1) and terminates, Exp0 computes the chal-
lenge ciphertext c∗ as follows. First, Exp0 samples (r∗

0 , r
∗
1) ← (RΠ)2

and computes c∗
0 ← Enc(pk0,m

∗; r∗
0), c∗

1 ← Enc(pk1,m
∗; r∗

1), and
π∗ ← Prove(crs, (pk0, pk1, c

∗
0, c

∗
1), (m

∗, r∗
0 , r

∗
1)). Next, Exp0 sets c∗ =

(c∗
0, c

∗
1, π

∗) and runs A2(c∗, st1). When A2 makes a decryption query c,
Exp0 answers in the same way as above.

3. When A2 outputs state information st2 and terminates, Exp0 runs
A3(sk , st2).

4. When A3 outputs a bit b′ and terminates, Exp0 outputs b′.
Exp1 : Exp1 is identical to Exp0 except for the following change. When

computing the challenge ciphertext c∗, the common reference string
crs is generated by executing (crs, vsk , tk) ← SimCRS(1λ) instead
of (crs, vsk) ← CRSGen(1λ). Moreover, Exp1 generates a simu-
lated proof π∗ ← SimPrv(tk , (pk0, pk1, c

∗
0, c

∗
1)) instead of π∗ ←

Prove(crs, (pk0, pk1, c
∗
0, c

∗
1), (m

∗, r∗
0 , r

∗
1)).

Exp2 : Exp2 is identical to Exp1 except that when computing the challenge cipher-
text c∗, Exp2 computes c∗

1⊕α ← Enc(pk1⊕α, 1 ⊕ m∗; r∗
1⊕α) instead of c∗

1⊕α

← Enc(pk1⊕α,m∗; r∗
1⊕α).

230 Y. Lu et al.

Exp3 : Exp3 is identical to Exp2 except that when responding to a decryption
query c = (c0, c1, π), if Verify(crs, vsk , (pk0, pk1, c0, c1), π) = 1, Exp3 answers
m ← Dec(pk0, sk0, c0) instead of m ← Dec(pkα, skα, cα). Note that the
decryption procedure in Exp3 is exactly the same as FDec′(pk , td , c).

Exp4 : Exp4 is identical to Exp3 except that α ⊕ m∗ is used instead of α. That
is, when computing the challenge ciphertext c∗, Exp4 computes c∗

0 and c∗
1

by c∗
α⊕m∗ ← Enc(pkα⊕m∗ ,m∗) and c∗

α⊕(1⊕m∗) ← Enc(pkα⊕(1⊕m∗), 1 ⊕ m∗).
Moreover, Exp4 gives the secret key sk = (α⊕m∗, skα⊕m∗ , vsk) to A3 instead
of sk = (α, skα).

Exp5 : Exp5 is exactly the same as Exprnc−sim
Π′,A (λ).

We let pi := Pr[Expi(λ) = 1] for all i ∈ [0, 5]. Then, we have Advrnc−cca
Π′,A (λ) =

|Pr[Exprnc−real
Π′,A (λ) = 1] − Pr[Exprnc−sim

Π′,A (λ) = 1]| = |p0 − p5| ≤ ∑4
i=0 |pi − pi+1|.

It remains to show how each |pi − pi+1| is upper-bounded. To this end, we will
show the following lemmata.

Lemma 5. There exists a PPT adversary E = (E1, E2) against the zero-
knowledge of Φ such that |p0 − p1| = AdvzkΦ,E(λ).

Lemma 6. There exists a PPT adversary F = (F1,F2) against the IND−CPA
security of Π such that |p1 − p2| = Advind−cpa

Π,F (λ).

Lemma 7. There exists a PPT adversary G = (G1,G2) against the one-time
simulation soundness of Φ such that |p2 − p3| ≤ Advot−ss

Φ,G (λ).

Lemma 8. |p3 − p4| = 0 holds.

Lemma 9. |p4 − p5| = 0 holds.

As mentioned in Sect. 1.2, compared to the previous work [10], the most
technically obscure part is Lemma 7 using the one-time simulation soundness of
a DV-NIZK argument, and thus we show only it here due to the space limitation.
We will show the rest lemmata formally in the full version of the paper.

Proof of Lemma 7. For i ∈ {2, 3}, we let Badi be the event that A2

makes a decryption query c = (c0, c1, π) satisfying (Dec(pk0, sk0, c0) �=
Dec(pk1, sk1, c1)) ∧ (Verify(crs, vsk , (pk0, pk1, c0, c1), π) = 1) in Expi. (We call
such a decryption query a bad decryption query.) Exp2 proceeds identically to
Exp3 unless Bad2 happens. Therefore, the inequality |p2 − p3| ≤ Pr[Bad2] =
Pr[Bad3] holds. In the following, we show that one can construct a PPT adver-
sary G = (G1,G2) that attacks the one-time simulation soundness of Φ so that
Pr[Bad2] = Advot−ss

Φ,G (λ), using the adversary A = (A1,A2,A3).

G1(crs) : First, G1 samples α ← {0, 1} and computes (pk0, sk0) ← KG(1λ) and
(pk1, sk1) ← KG(1λ). Next, G1 sets pk := (pk0, pk1, crs) and runs A1(pk).
When A1 makes a decryption query c = (c0, c1, π), G1 makes a verification
query ((pk0, pk1, c0, c1), π) to its experiment. Upon receiving a verification

RSO-CCA Secure PKE from Various Assumptions 231

result v ∈ {0, 1}, G1 checks whether v = 1 or not. If this is the case, then
G1 computes m ← Dec(pkα, skα, cα) and returns m to A1. Otherwise, G1

returns ⊥ to A1.
When A1 outputs the challenge plaintext m∗ and state information st1, and
terminates, G1 computes c∗

α ← Enc(pkα,m∗) and c∗
1⊕α ← Enc(pk1⊕α, 1 ⊕

m∗). Finally, G1 sets st′1 as all the information known to it, returns
((pk0, pk1, c

∗
0, c

∗
1), st

′
1) to its experiment, and terminates.

G2(π∗, st′1) : First, G2 sets c∗ := (c∗
0, c

∗
1, π

∗) and runs A2(c∗, st1). When A2 makes
a decryption query c, G2 parses c := (c0, c1, π). Then, G2 makes a verifica-
tion query ((pk0, pk1, c0, c1), π) to its experiment. If the verification result is
0, then G2 returns ⊥ to A2. If the verification result is 1, then G2 checks
whether Dec(pk0, sk0, c0) �= Dec(pk1, sk1, c1) or not. If this is the case, G2

returns ((pk0, pk1, c0, c1), π) to its experiment and terminates. Otherwise, G2

computes m ← Dec(pkα, skα, cα) and returns m to A2. When A2 outputs
state information st2 and terminates, G2 gives up and terminates.

From the above construction of G, it is easy to see that G perfectly sim-
ulates the experiment Exp2 for A. Here, the success condition of G is to out-
put a pair of a statement and a proof (x, π) satisfying ((x∗, π∗) �= (x, π)) ∧
(Verify(crs, vsk , x, π) = 1) ∧ (x /∈ Leq), where x∗ = (pk0, pk1, c

∗
0, c

∗
1) and

x = (pk0, pk1, c0, c1). If A2 makes a bad decryption query c = (c0, c1, π), then
Dec(pk0, sk0, c0) �= Dec(pk1, sk1, c1) and Verify(crs, vsk , x, π) = 1. Thus, we
can see that x /∈ Leq holds now due to the correctness of Π.

Moreover, due to the condition of decryption queries by A2, we have (c∗
0, c

∗
1, π

∗)
= c∗ �= c = (c0, c1, π). That is, we have (x∗, π∗) �= (x, π). Thus, when A2 makes
a bad decryption query c, G achieves its success condition by returning (x, π) to
its experiment. We note that G can detect that the event Bad2 occurs because G
has both of the secret keys sk0 and sk1, and can make a verification query (x, π) to
its experiment. From the above arguments, the probability that A2 makes a bad
decryption query is exactly the same as the probability that G breaks the one-time
simulation soundness of Φ. Therefore, we have Pr[Bad2] = Advot−ss

Φ,G (λ), which in
turn implies |p2 − p3| ≤ Advot−ss

Φ,G (λ). � (Lemma 7)

Putting everything together, we obtain Advrnc−cca
Π′,A (λ) ≤ AdvzkΦ,E(λ) +

Advind−cpa
Π,F (λ) + Advot−ss

Φ,G (λ). Since Π is IND−CPA secure
and Φ satisfies one-time simulation soundness and zero-knowledge, for any PPT
adversary A, Advrnc−cca

Π′,A (λ) = negl(λ) holds. Therefore, Π ′ satisfies RNC−CCA
security. � (Theorem 4)

Acknowledgement. A part of this work was supported by NTT Secure Platform
Laboratories, JST OPERA JPMJOP1612, JST CREST JPMJCR14D6, JSPS KAK-
ENHI JP16H01705, JP17H01695, JP20J14338.

References

1. Alekhnovich, M.: More on average case vs approximation complexity. In: 44th
FOCS, pp. 298–307 (2003)

232 Y. Lu et al.

2. Bellare, M., Dowsley, R., Waters, B., Yilek, S.: Standard security does not imply
security against selective-opening. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 645–662. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-29011-4 38

3. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryp-
tion and commitment secure under selective opening. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01001-9 1

4. Bellare, M., Yilek, S.: Encryption schemes secure under selective opening attack.
Cryptology ePrint Archive, Report 2009/101 (2009)

5. Canetti, R., Halevi, S., Katz, J.: Adaptively-secure, non-interactive public-key
encryption. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 150–168. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 9

6. Couteau, G., Hofheinz, D.: Designated-verifier pseudorandom generators, and their
applications. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol.
11477, pp. 562–592. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17656-3 20

7. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: 23rd ACM STOC, pp. 542–552 (2020)

8. Elkind, E., Sahai, A.: A unified methodology for constructing public-key encryp-
tion schemes secure against adaptive chosen-ciphertext attack. Cryptology ePrint
Archive, Report 2002/042 (2002)

9. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

10. Hara, K., Kitagawa, F., Matsuda, T., Hanaoka, G., Tanaka, K.: Simulation-based
receiver selective opening CCA secure PKE from standard computational assump-
tions. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp.
140–159. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0 8

11. Hara, K., Kitagawa, F., Matsuda, T., Hanaoka, G., Tanaka, K.: Simulation-based
receiver selective opening CCA secure PKE from standard computational assump-
tions. Theor. Comput. Sci. 795, 570–597 (2019)

12. Huang, Z., Lai, J., Chen, W., Au, M.H., Peng, Z., Li, J.: Simulation-based selec-
tive opening security for receivers under chosen-ciphertext attacks. Des. Codes
Cryptogr. 87(6), 1345–1371 (2019)

13. Haralambiev, K., Jager, T., Kiltz, E., Shoup, V.: Simple and efficient public-key
encryption from computational Diffie-Hellman in the standard model. In: Nguyen,
P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 1–18. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-13013-7 1

14. Hazay, C., Patra, A., Warinschi, B.: Selective opening security for receivers. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 443–469.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6 19

15. Jia, D., Lu, X., Li, B.: Receiver selective opening security from indistinguishability
obfuscation. In: Dunkelman, O., Sanadhya, S.K. (eds.) INDOCRYPT 2016. LNCS,
vol. 10095, pp. 393–410. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-49890-4 22

16. Jia, D., Lu, X., Li, B.: Constructions secure against receiver selective opening
and chosen ciphertext attacks. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol.
10159, pp. 417–431. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
52153-4 24

https://doi.org/10.1007/978-3-642-29011-4_38
https://doi.org/10.1007/978-3-642-29011-4_38
https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1007/978-3-540-30576-7_9
https://doi.org/10.1007/978-3-030-17656-3_20
https://doi.org/10.1007/978-3-030-17656-3_20
https://doi.org/10.1007/978-3-319-98113-0_8
https://doi.org/10.1007/978-3-642-13013-7_1
https://doi.org/10.1007/978-3-662-48797-6_19
https://doi.org/10.1007/978-3-319-49890-4_22
https://doi.org/10.1007/978-3-319-49890-4_22
https://doi.org/10.1007/978-3-319-52153-4_24
https://doi.org/10.1007/978-3-319-52153-4_24

RSO-CCA Secure PKE from Various Assumptions 233

17. Katsumata, S., Nishimaki, R., Yamada, S., Yamakawa, T.: Designated veri-
fier/prover and preprocessing NIZKs from Diffie-Hellman assumptions. In: Ishai,
Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 622–651.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 22

18. Kitagawa, F., Matsuda, T.: CPA-to-CCA transformation for KDM security. In:
Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 118–148. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-36033-7 5

19. Lindell, Y.: A simpler construction of CCA2-secure public-key encryption under
general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp.
241–254. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 15

20. Lombardi, A., Quach, W., Rothblum, R.D., Wichs, D., Wu, D.J.: New construc-
tions of reusable designated-verifier NIZKs. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11694, pp. 670–700. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26954-8 22

21. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: 22nd ACM STOC, pp. 427–437 (1990)

22. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (Plain) learn-
ing with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7 4

23. Quach, W., Rothblum, R.D., Wichs, D.: Reusable designated-verifier NIZKs for all
NP from CDH. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol.
11477, pp. 593–621. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17656-3 21

24. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: 37th ACM STOC, pp. 84–93 (2009)

25. Yu, Yu., Zhang, J.: Cryptography with auxiliary input and trapdoor from constant-
noise LPN. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
214–243. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
4 9

https://doi.org/10.1007/978-3-030-17656-3_22
https://doi.org/10.1007/978-3-030-36033-7_5
https://doi.org/10.1007/3-540-39200-9_15
https://doi.org/10.1007/978-3-030-26954-8_22
https://doi.org/10.1007/978-3-030-26954-8_22
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-17656-3_21
https://doi.org/10.1007/978-3-030-17656-3_21
https://doi.org/10.1007/978-3-662-53018-4_9
https://doi.org/10.1007/978-3-662-53018-4_9

A Practical NIZK Argument for
Confidential Transactions over
Account-Model Blockchain

Shunli Ma1,2, Yi Deng1,2(B), Mengqiu Bai1,2, Debiao He3, Jiang Zhang4,
and Xiang Xie5

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

{mashunli,deng,baimengqiu}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China
3 Key Laboratory of Aerospace Information Security and Trusted Computing,

Ministry of Education, School of Cyber Science and Engineering,
Wuhan University, Wuhan, China

hedebiao@163.com
4 State Key Laboratory of Cryptology, Beijing, China

jiangzhang09@gmail.com
5 PlatON, Hong Kong, China
xiexiangiscas@gmail.com

Abstract. We propose a novel non-interactive zero-knowledge (NIZK)
argument for confidential transactions. Our NIZK argument provides a
highly practical prover against other existing works, in which proof gen-
eration and verification times are at the same level. Our NIZK argument
is perfect zero-knowledge in the common reference string model, with its
soundness holds in the random oracle model. Based on the NIZK argu-
ment, we construct a confidential transaction smart contract (CTSC)
scheme which enables transferring coins between users confidentially and
automatically over the account-model blockchain. Furthermore, We pro-
vide a formal security definitions of such a primitive: confidentiality and
transaction soundness, along with a security proof of the construction.

Keywords: Non-interactive zero knowledge · Smart contract ·
Account-model blockchain

1 Introduction

Blockchain systems enable peer-to-peer digital asset transfer in a decentralized
paradigm by maintaining a global tamper-proof digital ledger of transactions
arranged in a chronological order. In traditional blockchain systems such as Bit-
coin [19] and Ethereum [24], all the nodes could verify the validity of the trans-
actions in a plaintext manner. Therefore, the details of the all the transactions

c© Springer Nature Switzerland AG 2020
K. Nguyen et al. (Eds.): ProvSec 2020, LNCS 12505, pp. 234–253, 2020.
https://doi.org/10.1007/978-3-030-62576-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62576-4_12&domain=pdf
https://doi.org/10.1007/978-3-030-62576-4_12

A Practical NIZK Argument for Confidential Transactions 235

are known by all the participants of the system. In some application scenarios,
this is prohibitive. A lot of sensitive information of the users is expected not put
on chain in plaintext. Although most blockchains provide weak anonymity by
using pseudonyms, they lack confidentiality of transactions (e.g. hiding amount
transferred and balance).

Maxwell [18] startups the study of confidential transaction (CT). They
employed Pedersen commitment to hide transfer amount and using range proofs
to ensure correctness of transactions. The homomorphism of Pedersen commit-
ment enables users to directly add up the inputs and outputs of a transaction
respectively without revealing the real values.

Monero [20] used another variant CT approach (named as Ring Confidential
Transaction, RingCT) to achieve confidentiality by using similar approaches as
Maxwell’s scheme, as well as anonymity by employing linkable ring signature
which is modified from [16].

Zcash [1,5] protects the confidentiality of transactions using a more sophis-
ticated zero-knowledge proof called zk-SNARK [6]. zkSNARKs generate short
proofs with constantant group elements, and have very fast verification time.
The downsides of using zk-SNARKs that is based on a unfalsifiable assumption
are the prohibitive proof generation and the intensive memory usage. Although
a subsequent works on zero knowledge such as Bulletproofs [11], zk-STARK [4],
Hyrax [23], and Libra [25] improve the efficiency on different aspects, these
general-purpose zero knowledge proofs do not exploit the characteristics of the
statements that need to be proven but always convert them into large arithmetic
circuits, which is very time consuming.

By observing that, Ma et al. [17] first focused on concealing the transferred
details to protect the confidentiality of transactions in the account-based model.

The authors design an additive-homomorphic enryption to hide the balance
and transfer amount, and construct an efficient NIZK to ensure the validity
of transactions. Based on the NIZK scheme, they also proposed a decentral-
ized smart contract (DSC) system to automatically and securely transfer coins.
Taking use of ElGamal encryption and Bulletproofs, Bünz et al. [10] proposed
Zether, a confidential payment system, which is compatible with Ethereum-like
smart contract platforms. Although their proposal can achieve more practical
hiding and timely updating operations, the homomorphic encryption schemes
used in [10,17] only support small message space in one decryption. For a value
that comes from a large message space, they must divide it into several shorter
blocks, and then encrypt and prove each block separately.

Besides, the verification process in [17] is built under the expensive pairing
operations. Furthermore, DSC presented in [17], as a secure protocol, lacks a
formal security definition and suffers from replay attacks (any user can download
a transaction from the public ledger and send it repeatedly to the designated
recipient of that transaction without being blocked). All of these will greatly
be limitations for many lightweight but widespread used applications such as
mobile phones.

236 S. Ma et al.

1.1 Our Contributions

In this paper, we address the aforementioned issues via three main contributions.

(1) We abstract the framework of [17] and give a definition of confidential trans-
action smart contract (CTSC) scheme over account-based model blockchain,
along with a formal definition of its security goals: confidentiality and trans-
action soundness. Confidentiality captures the requirement that no one can
learn the account balance and transfer amount except the parties in the
transaction. Transaction soundness requires that no one is able to convince
verification nodes of an invalid transaction, even if he has the secret key of
sender.

(2) To instantiate CTSC, we use the additive-homomorphic encryption, Paillier
cryptosystem that supports large message space, to hide the account balance
and transfer amount. As a core building block, we construct an efficient
NIZK argument to ensure the validity of confidential transactions, and such
a NIZK is sound in the common reference string (CRS) model and perfect
zero-knowledge in the random oracle (RO) model. We also prove the security
of the CTSC instantiation under well-studied complexity assumptions.

(3) We propose a C++ implementation of our NIZK protocol. Compared to
other related work, the results show that our scheme is more practicable
and maneuverable in the mentioned actual applications from the analysis of
the performance from both asymptotic and practical views. Indeed, while
our scheme has a more efficient verifier algorithm, a prover algorithm with
similar efficiency and a slightly larger proof size in the case of small message
space [0, 230), we are actually better in the communication and computation
complexity for large message space [0, 240).

1.2 Technical Overview

As an essential building block of CTSC scheme, we use a NIZK argument to
ensure the validity of confidential transactions. We call a transaction valid if
it is well-formed as stated. In our construction of the CTSC scheme based on
account-based model, a user creates an account by initializing a Paillier keypair
(pk, sk) and an encrypted balance C̃, where the public key serves the account
address and the secret key is used to show ownership of the account.

To prevent replay attacks discussed above, for any transaction the user needs
to append a unique serial number sn and generates a signature on this transac-
tion. Such a serial number can be created from current timestamp and its own
public key (e.g., using a secure hash function SHA256).

Let us now consider a scenario where a sender with address pks wants to
transfer amount t to a receiver with address pkr. Denote C̃s and C̃r the encrypted
balance of the involving parties. The sender first encrypts t under both public
keys and get Cs and Cr, respectively. Then the sender generates a NIZK proof
π for a statement x = (pks, pkr, C̃s, Cs, Cr) to ensure: (i) Cs and Cr are well-
formed and encrypt the same value t; (ii) the transfer amount t and the remaining

A Practical NIZK Argument for Confidential Transactions 237

balance of the sender encrypted in C̃s/Cs are in a valid range. The transaction
now is (x, π). After a successful verification of this transaction, the miners would
update the encrypted balance of both parties to be (C̃s/Cs, C̃r · Cr) and post
the transaction to the blockchain.

A Σ-protocol for plaintext-equality of Paillier ciphertexts can be used to
prove that Cs and Cr encrypt the same value, and a range proof is very suit-
able to prove that t and the remaining balance are in a valid range. Though
state-of-the-art range proof is Bulletproofs, it is not very compatible with our
construction due to the following two points: (i) the recursive execution of the
protocol gains the overhead of prover and verifier; (ii) the usage of Pedersen (vec-
tor) commitments to hide the secret enforces us to introduce this primitive and
prove the plaintext-equality between Paillier ciphertexts and Pedersen (vector)
commitments. Thus we follow the work of [17] to use the Boneh-Boyen signature-
based range proof [12]. Suppose that the maximum value allowed in the CTSC
scheme is u� −1. The main idea of proving t ∈ [0, u�) is representing t in u-ary as
t =

∏�−1
i=0 ti ·ui and showing that each ti lies in [0, u). First the receiver sets up a

basic Boneh-Boyen signature keypair (sk, vk) and generates a set of signatures
Sσ = {σj = g

1/(sk+j)
1 } on j ∈ {0, . . . , u − 1}. Then the sender runs a Σ-protocol

to ensure the signatures σti ∈ Sσ. This range proof can be converted to a NIZK
argument by applying Fiat-Shamir heuristic and putting the verification key and
the set of signatures Sσ into the common reference string as public parameters.
While in the design process of our NIZK augment, we encounter some specific
technical challenges.

Obstacle of Handling Different Moduli. Due to the usage of Paillier cryp-
tosystem, the encrypted transfer amount is presented in the form of Cs =
(1+Ns)t ·rNs

1 mod N2
s and Cr = (1+Nr)t ·rNr

2 mod N2
r . While in the employed

range proof, the secret transfer amount t =
∏�−1

i=0 ti · ui is encoded into a group
of prime order p. In order to prove the relations between the messages such as
equality and being in the valid range, as a witness, we should blind t with the
same randomness r. However, it doesn’t work to choose r either from the Paillier
moduli Ns, Nr or the prime modulus p. Such a randomness r should be large
enough to completely cover the value space of t, otherwise there is a risk of leak-
age of t. To overcome this obstacle, we sample r from a modulus represented by
the product Ns · Nr · p.

Obstacle of Removing Pairing. In the range proof that ensures the secret
value t ∈ [0, u�), t is expressed as t =

∏�−1
i=0 ti · ui, and each ti is encoded as

σti = g
1/(sk+ti)
1 by using Boneh-Boyen signature which works on a bilinear group

gk = (p,G1,G2,GT , e, g1, g2). As discussed above, we need to show σti ∈ Sσ

without revealing its value, otherwise ti will be exposed to the receiver. A nat-
ural idea is to randomize σti to get Vi = σvi

ti , and then prove the statement
e(Vi, vk) = e(Vi, g2)−ti · e(g, g)vi using a Σ-protocol. In trying to remove the
time-consuming pairing operations used above, we begin with the work of Arfaoui
et al. [3]. Instead of directly proving Vi = g

vi/(sk+ti)
1 using pairing, we turn to

prove V sk
i = V −ti

i · gvi
1 . This form is similar to the Perdersen commitment by

238 S. Ma et al.

considering ti and vi as committed value and randomness, respectively. However,
Note that the secret key sk of the signature scheme is choosed in the CRS, not by
the verifier, which makes the verification algorithm in [3,12] fails to work. In order
to get around the obstacle, we pre-compute all σsk

i and put them into the CRS.

2 Preliminaries

Notation. We denote the security parameter by n, and abbreviate probabilistic
polynomial-time as PPT. For a set S, x ←$ S means sampling uniformly at ran-
dom an element x from the set S. For a distribution D over a finite set SD, x ←$ D
means sampling x ∈ SD according to the distribution D. We write y = A(x; r) to
denote that an probabilistic algorithm A takes input x and randomness r, out-
puts y. The formula y ← A(x) means picking randomness r uniformly at random
and setting y = A(x; r). A function ε(n) is negligible in n if ε(n) = o(1/nc) for
all c ∈ N. ε(n) = negl(n) denotes that ε(n) is a negligible function in n, and
ε(n) = poly(n) denotes that ε(n) is a polynomial function in n.

2.1 Cryptographic Primitives

In this section, we introduce some cryptographic primitives, including the nec-
essary complexity assumptions and background tools used in our NIZK scheme.

Pairing. We call Gbp(1n) the pairing generator which takes a security param-
eter as input and outputs a description of a bilinear group gk = (p,G1,G2,
GT , e, g1, g2) where p is a n-bit prime. We follow the notations of [9]:

– G1,G2,GT are multiplicative cyclic groups of order p. The elements g1, g2

generates G1,G2 respectively.
– e: G1 × G2 → GT is a nondegenerate bilinear map, and e(g1, g2) generates

GT .
– ∀a, b ∈ Z, e(ga

1 , gb
2) = e(g1, g2)ab.

– It is efficient to compute group operations, compute the bilinear map, and
decide the membership in G1,G2 and GT .

Definition 1 (DCR assumption [21]). Set N = pq where p and q are two
large prime numbers. Given two numbers z0 and z1 s.t. ∃y0 ∈ Z

∗
n2 , z0 = yn

0 mod
N2 and ∀y1 ∈ Z

∗
n2 , z1 �= yn

1 mod N2. We say the decisional composite residiosity
(DCR) assumption holds if for any PPT distinguisher D,

∣
∣
∣ Pr[D(z0) = 1] − Pr[D(z1)]

∣
∣
∣ ≤ negl(n) .

Definition 2 (q-SDH assumption [8]). The q-Strong Diffie-Hellman (q-
SDH) assumption associated to gk holds if for all non-uniform PPT adversary
A, we have

Pr
[

gk ← Gbp(1n), x ←$Zp :
(c, g1/(x+c)

1) ← A(gk, g1, g
x
1 , . . . , gxq

1 , g2, g
x
2)

]

≤ negl(n) , where c ∈ Zp.

A Practical NIZK Argument for Confidential Transactions 239

Paillier Encryption. Paillier encryption scheme [13,21] is a homomorphic
public key encryption that is secure under the DCR assumption. It consists
of three PPT algorithms (KGen,Enc,Dec). The algorithm KGen(1n) first chooses
an admissible RSA modulus N = pq and sets λ = lcm(p−1, q−1), then outputs
(pk, sk) = (N,λ). Given a message m ∈ ZN and public key N , Enc computes
and outputs the ciphertext c = (1 + N)mrN mod N2, where r ←$Z

∗
N . The algo-

rithm Dec takes as input the private key λ and a ciphertext c, and outputs
m = L(cλ mod N2) · λ−1 mod N , where L(x) = x−1

N .

Digital Signatures. A signature scheme consists of three polynomial-time algo-
rithms (KeyGen,Sign,Verify), where KeyGen outputs a secret signing key sk and
a corresponding public verification key vk, Sign generates a signature on an
input message, and Verify checks the validity of the signature w.r.t. the mes-
sage. The correctness of a signature scheme states that any valid signature will
be verified successfully. A signature scheme is said to be existentially unforge-
able under a weak chosen message attack (EUF-WCMA) if no computationally
bounded adversary can create a valid signature on a new message, even after
seeing signatures on other messages.

The basic Boneh-Boyen signature [8] based on a bilinear group gk consists
of a tuple of polynomial-time algorithms (BB.KeyGen,BB.Sign,BB.Verify). The
secret signing key is (sk = χ) ←$Zp, and the corresponding public verification
key is vk = gχ

2 . The signature on an input message m is σ = g
1/(χ+m)
1 . The

verification is done by checking that e(σ, vk · gm
2) = e(g1, g2).

Lemma 1 ([8], Lemma 3.2). Under the q-SDH assumption associated to a
bilinear group gk, then Boneh-Boyen signature scheme is EUF-WCMA.

2.2 Zero Knowledge Proof

Let L be an NP language and R the associated binary relation. We say an
instance x lies in L if and only if there exists a witness w such that (x,w) ∈ R.

We consider a 3-round public-coin protocol with the following form between
two polynomial time parties, where P takes (x,w) as input and V takes x as
input: (1) P sends a message a; (2) V sends a uniformly random challenge e; (3)
P responses with a message z, and V decides to accept or reject based on the
data (x, a, e, z).

Definition 3 (Σ-protocol [14]). A protocol with the above form is a Σ-protocol
if the following conditions hold:

Completeness. If P and V behave honestly, then V always accepts.

Special Soundness. There exists a PPT algorithm Ext, given any instance
x ∈ L and two accepting transcripts (a, e, z) and (a, e′, z′) with e �= e′, always
computes a witness w s.t. (x,w) ∈ R.

240 S. Ma et al.

Special Honest-Verifier Zero-Knowledge. There exists a PPT algorithm S
upon input x and a random e outputs an accepting transcript (a, e, z), whose dis-
tribution is statistically indistinguishable from that of the real transcript between
the honest P,V on input x.

Non-interactive zero knowledge (NIZK) allows the user to convince anyone
in only one round without leaking any other information.

Definition 4 (NIZK [7]). A triple of PPT algorithms (K,P,V) is called a NIZK
argument system for language L if the following conditions hold:

Completeness: For each crs ← K(1n) and (x,w) ∈ R, we have:

Pr[π ← P(crs, x, w) : V(crs, x, π) = 1] ≥ 1 − negl(n) .

(Adaptive) Soundness: For any non-uniform PPT prover P∗, we have

Pr
[

crs ← K(1n), (x, π) ← P∗(crs) :
x /∈ L ∧ V(crs, x, π) = 1

]

≤ negl(n) .

(Adaptive) Zero-Knowledge: There exists a PPT simulator S = (S1,S2),
such that for all stateful non-uniform PPT adversaries A = (A1,A2), we have

∣
∣
∣Pr

[
crs ← K(1n); (x, w, state) ← A1(crs);π ← P(crs, x, w) :

(x, w) ∈ R ∧ A2(crs, π, state) = 1

]

− Pr
[
(crs, td) ← S1(1n); (x, w, state) ← A1(crs);π ← S2(crs, x, td) :

(x, w) ∈ R ∧ A2(crs, π, state) = 1

] ∣
∣
∣ ≤ negl(n) .

We call it statistical zero-knowledge if the above holds even for unbounded A.

Applying Fiat-Shamir heuristic [15], A Σ-protocol can be transformed into a
NIZK under the RO model, via obtaining the challenge e from a random oracle
which takes a as input.

2.3 Smart Contracts for Payment over Blockchains

Assume in a payment system deployed in a account-model blockchain, user A
wants to transfer t coins to B. Following is a smart contract that automatically
transfers coins between users.

User A posts a transaction to the blockchain address where the payment
smart contract is deployed that basically says

Transfer t of my coins to B, and σ is a signature of this transaction.

Being triggered by this message, the smart contract executed by the miners first
checks the validity of the signature, and ensures that A has more than t coins
then does the transfer action and publishes the transaction on the blockchain if
all the checks pass, otherwise it ignores the transaction.

Obviously, anyone can learn the balance and transaction amount of A during
the process.

A Practical NIZK Argument for Confidential Transactions 241

3 NIZK Argument and Its Application to CTSC

In this section, we follow the framework presented in [17], and introduce a con-
fidential transaction smart contract (CTSC) scheme which enables transferring
coins confidentially and automatically over the account-based model. As a main
building block of CTSC, we also construct a new NIZK argument to ensure the
validity of confidential transactions.

3.1 Definition of CTSC Scheme

A CTSC scheme consists of a tuple of polynomial-time algorithms described as
below:

– Setup. This algorithm produces a list of system public parameters:
• input: security parameter n;
• output: system public parameters pp including the maximum amount

allowed in the system MAX and other necessary information.
– CreateAccount. This algorithm generates a user’s information by using a

homomorphic encryption scheme:
• input: public parameters pp, user id id, and an initial balance tid;
• output: a keypair (pkid, skid), and an encrypted balance C̃id.

The public key pkid also links to the user account address. Only the ciphertext
C̃id of the user balance tid is stored in the account book.

– Transfer. This algorithm is invoked by a sender when he transfers t coins to
a receiver.

• input: pp, a keypair (sks, pks) of sender account, a receiver address pkr,
a sender encrypted balance C̃s, a transfer amount t;

• output: a confidential transaction tx. To prevent replay attacks, a unique
serial number sns will be generated and put into tx.

– Update. This algorithm deployed in the blockchain for automatically trans-
ferring will be invoked by the miners.

• input: pp, tx;
• If the transaction tx is valid, the miners update the encrypted balance of

involved parties; otherwise, ignore this transaction.
– CheckBalance. This algorithm is invoked by a user when he checks his balance:

• input: a user secret key skid, and an encrypted balance C̃id;
• output: a balance tid in plaintext.

Correctness. For a CTSC scheme described above, correctness captures the
basic functionality that an honest-generated transaction should be accepted and
appended to the blockchain. This property also requires, if a transaction is ver-
ified, the encrypted balance of involving parties will be updated correctly.

Security Requirements. We define two security requirements for a CTSC
scheme Π = (Setup,CreateAccount,Transfer,Update,CheckBalance): confidential-
ity and transaction soundness. Confidentiality ensures that any computationally
bounded adversary cannot learn the value (i.e., the balance of both parties and

242 S. Ma et al.

the transfer amount) hidden in a confidential transaction except the sender and
receiver. Soundness requires that any computationally bounded adversary can-
not convince verification nodes with an invalid transaction (i.e., a transaction
which is not well-formed as stated), even if he knows the secret key of sender.

More formally, a CTSC scheme is said to be secure (i.e., holding confidential-
ity and transaction soundness) if for any PPT adversary A = (A1,A2), it holds
that

∣
∣
∣ Pr[CONFΠ,A(n) = 1] − 1

2

∣
∣
∣ ≤ negl(n) ,Pr[SOUNDΠ,A(n) = 1] ≤ negl(n) ,

where the probability is over the coin tosses of A, as well as the romdomness
used in the experiments.

CONFΠ,A(n):

1. pp ← Setup(1n);
2. ((t(0)s , t(0), t

(0)
r), (t(1)s , t(1), t

(1)
r), state) ← A1(pp);

3. Return 0 if any of the following conditions holds:
(a) For i ∈ {0, 1}, any of t

(i)
s , t

(i)
r , t(i) is not in the range [0,MAX];

(b) t
(0)
s < t(0) or t

(1)
s < t(1).

4. b ←$ {0, 1};
5. (pks, sks, C̃

(b)
s) ← CreateAccount(pp, ids, t

(b)
s);

6. (pkr, skr, C̃
(b)
r) ← CreateAccount(pp, idr, t

(b)
r);

7. tx(b) ← Transfer(pp, sks, pks, pkr, C̃
(b)
s , t(b));

8. b′ ← A2(tx(b), state);
9. Return 1 if b = b′.

SOUNDΠ,A(n):

1. pp ← Setup(1n);
2. (pks, sks, C̃s, state) ← AOCreateAccount

1 (pp)1;
3. tx∗ ← A2(pp, pks, sks, C̃s, state);
4. Return 1 iff.

(a) tx∗ is an invalid transactions that contains pks;
(b) tx∗ is accepted by verification nodes;

3.2 Non-interactive Zero-Knowledge Argument

Since we use Paillier cryptosystem to hide the balance and transfer amount,
each transaction contains a zero-knowledge proof which ensures the validity of
the transaction without revealing the reasons why it is valid.
1 Adversary A queries the oracle OCreateAccount with a random choosed id and a random

balance tid, and obtains a reply containing (pkid, skid, C̃id).

A Practical NIZK Argument for Confidential Transactions 243

Let us now consider a transaction where a user with balance ts and a Paillier
public key pks = Ns wants to transfer an amount t to a receiver with a public
key pkr = Nr. Denote C̃s the encrypted balance of the sender. In order to hide
the transfer amount t, the sender encrypts t under both public keys to obtain
Cs, Cr, respectively. Now, the sender should provide a NIZK proof to show that:

– The ciphertexts Cs and Cr are well-formed and encrypt the same value t.
– The transfer amount t and the remaining balance of the sender whose cipher-

text is C̃s/Cs, say t′, are in the valid range [0,MAX] .

We set the value MAX = u� − 1 to make it compatible with the employed
primitives.

The sender now should prove (x = (C̃s, Cs, Cr, pks, pkr, vk, g2)) ∈ L in zero-
knowledge, where the NP language L is defined as:

L =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(C̃s, Cs, Cr, pks, pkr, vk, g2) :

∃w = (ts, t, r, r1, r2) s.t.

Cs = (1 + Ns)
t · rNs

1 mod N2
s ∧

Cr = (1 + Nr)
t · rNr

2 mod N2
r ∧

C̃s/Cs = (1 + Ns)
(ts−t) · (r/r1)

Ns mod N2
s ∧

t ∈ [0, u�) ∧ t′ = ts − t ∈ [0, u�) OR
∃χ s.t.
vk = gχ

2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

;

the associated binary relation is R = {(x,w)}.

Remark 1. The introduction of values vk and g2 allows the simulator to prove
vk = gχ

2 with a trapdoor χ to obtain the zero-knowledge property under the CRS
model. Since (vk, g2) are public as shown in our NIZK construction (see Fig. 1),
and the encrypted balance C̃s can be found in the public ledger according to
its account address pks, the sender only needs to send (Cs, Cr, pks, pkr) to the
receiver.

Note that in the verification algorithm of our NIZK, H represents a random
oracle which can be instantiated by a secure hash function mapping any string
into a k-bit one, where k = poly(n) such that 2k is smaller than the smallest
prime factor of Ns, Nr.

Theorem 1. Under the q-SDH assumption associated to a bilinear group, the
protocol described in Fig. 1 is a NIZK argument with soundness in the RO model
and perfect (adaptive) zero-knowledge in the CRS model.

The proof of Theorem 1 is in the Appendix A.

A true statement x implies C̃s = (1 + Ns)ts · rNs mod N2
s , but the sender

probably does not know r since the ciphertexts on the ledger may be timely
updated many times by the verification nodes. A question arises that how we
can prove C̃s/Cs = (1 + Ns)(ts−t) · (r/r1)Ns mod N2

s without the knowledge of
r. Instead of using the randomness, the works of [10,17] take the private key

244 S. Ma et al.

Fig. 1. NIZK argument for validity of transactions

A Practical NIZK Argument for Confidential Transactions 245

sk as a witness to prove that the ciphertext can be decrypted into the message
t′ = ts − t. However using this approach for Paillier ciphertexts cannot induce
an efficient Σ-protocol. To get around this obstacle, we follow the fact that
the Paillier encryption is an isomorphism ψ : ZNs

× Z
∗
Ns

→ Z
∗
N2

s
which can

be inverted given Paillier private key λs, and the sender can use an extractor
described below to compute the randomness r. We refer readers to [13,22] for
background about this algorithm.

Ext(C̃s, Ns, λs):

1. Decrypt the ciphertext to get ts ← Dec(λs, C̃s);
2. Compute r̃ = C̃s · (1 + Ns)−ts mod N2

s ;
3. Compute a such that aλs + 1 = 0 mod Ns, this is possible since

gcd(λs, Ns) = 1;
4. Compute r = r̃(aλs+1)/Ns mod Ns;
5. Return (ts, r).

3.3 Construction of CTSC Scheme

In a nutshell, we use Paillier encryption to hide the transfer amount and the
account balance, and use NIZK to enforce senders to build confidential trans-
actions honestly and make correctness publicly verifiable. We also use digital
signature to authenticate transactions. Let (KGen,Enc,Dec) be Paillier encryp-
tion scheme. Let (K,P,V) be the NIZK protocol described in Fig. 1. Let
(KeyGen,Sign,Verify) be a signature which is EUF-WCMA. The construction
is described as follows.

– Setup.
• Input: security parameter n (in unary);
• Output: pp = (crs, aux).
1. crs ← K(1n);
2. Initialize aux that contains:

* The maximum value MAX = u� − 1 allowed by CTSC scheme;
* Public parameters required by Paillier encryption and the signature.

– CreateAccount.
• Input: pp, user id id, and an initial balance tid ∈ [0,MAX];
• Output: public key(pkid, vkid), secret key (skid, skid), and an encrypted

balance C̃id.
1. (pkid, skid) ← KGen(1n);
2. C̃id ← Enc(pkid, tid).
3. (skid, vkid) ← KeyGen(1n).

246 S. Ma et al.

– Transfer.
• Input: pp, sender public key pks, receiver public key pkr, sender secret

key (sks, sks), sender encrypted balance C̃s, transfer amount t;
• Output: tx = (pks, pkr, Cs, Cr, π, σtx, sns).
1. Choose r1 ←$Z

∗
Ns

, and compute Cs = Enc(pks, t; r1);
2. Choose r2 ←$Z

∗
Nr

, and compute Cr = Enc(pkr, t; r2);
3. (ts, r) ← Ext(C̃s, pks, sks);
4. Set x = (C̃s, Cs, Cr, pks, pkr, vk, g2);
5. Set w = (ts, t, r, r1, r2);
6. π ← P(crs, x, w);
7. Generate a unique serial number sns from current timestamp and pks.
8. σtx ← Sign(sks, (pks, pkr, Cs, Cr, π, sns)).

– Update.
• Input: pp, a transaction tx;
1. Parse tx into the form (pks, pkr, Cs, Cr, π, σtx, sns);
2. Ignore the transaction and abort if sns is not a fresh number;
3. Seek the encrypted balance C̃s, C̃r of both parties from the public ledger;
4. Set x = (C̃s, Cs, Cr, pks, pkr, vk, g2);
5. Abort if any of the following checks fails to pass:

* 1 ← V(crs, x, π);
* 1 ← Verify(vks, (pks, pkr, Cs, Cr, sns), σtx);

6. Set C̃s = C̃s/Cs and C̃r = C̃r · Cr.

– CheckBalance.
• Input: private key skid, encrypted balance C̃id;
• Output: balance tid.
1. tid ← Dec(skid, C̃id).

Correctness of the above CTSC construction immediately follows the cor-
rectness of Paillier encryption, the correctness of the underlying signature, and
the completeness of our NIZK argument.

Theorem 2. Assuming the security of Paillier encryption, NIZK scheme and
the signature scheme, the above construction is a secure CTSC scheme.

Proof. To prove the confidentiality, we now describe a sequence of hybrid exper-
iments CONF0

Π,A(n),CONF1
Π,A(n),CONF2

Π,A(n).

Experiment CONF0
Π,A(n): This experiment is the same as CONFΠ,A(n) defined

in Sect. 3.1, thus
∣
∣
∣ Pr[CONFΠ,A(n) = 1] − Pr[CONF0

Π,A(n) = 1]
∣
∣
∣ = 0. (1)

Experiment CONF1
Π,A(n). This experiment is the same as CONF0

Π,A(n) except
the following point. Instead of using tbs and tbr from the adversary where

A Practical NIZK Argument for Confidential Transactions 247

b ←$ {0, 1}, the challenger creates two accounts by choosing two random val-
ues ts, tr from the set [0,MAX] such that ts ≥ tb:

(pks, vks, sks, sks, C̃s) ← CreateAccount(pp, ids, ts),

(pkr, vkr, skr, skr, C̃r) ← CreateAccount(pp, idr, tr).

Since Paillier encryption is IND-CPA, we have:
∣
∣
∣ Pr[CONF0

Π,A(n) = 1] − Pr[CONF1
Π,A(n) = 1]

∣
∣
∣ ≤ negl(n) . (2)

Experiment CONF2
Π,A(n). This experiment is the same as CONF1

Π,A(n) except
the challenger runs (pp, χ) ← SimSetup(1n) and tx ← SimTransfer(pp, pks,
pkr, C̃s, t, χ), where t is selected randomly from [0,MAX] and t ≤ ts. SimSetup
uses the simulator S1 to fulfill pp, along with a trapdoor χ, and SimTransfer uses
the simulator S2 to simulate the proof using the trapdoor χ and outputs the
simulated transaction. The simulator S = (S1,S2) can be found in Fig. 2. Due
to the adaptively zero-knowledge of our NIZK argument, we have:

∣
∣
∣ Pr[CONF1

Π,A(n) = 1] − Pr[CONF2
Π,A(n) = 1]

∣
∣
∣ ≤ negl(n) . (3)

Note that tx, the output of experiment CONF2
Π,A(n), has nothing to do with b.

Thus,

Pr[CONF2
Π,A(n) = 1] =

1
2
. (4)

From the above formula (1), (2), (3) and (4), we have:
∣
∣
∣ Pr[CONFΠ,A(n) = 1] − 1

2

∣
∣
∣ ≤ negl(n) .

The transaction soundness directly follows the soundness of NIZK and the
unforgeability of underlying signature scheme, and we just sketch its proof here.
Suppose there exists an efficient adversary A that can break such a property
with a non-negligible probability ε(n). That is, the probability that A finally
outputs a new accepted but invalid transaction tx∗ is ε(n):

Pr[SOUNDΠ,A(n) = 1] = ε(n).

Parse the transaction tx∗ into the form (x∗
tx = (pks, pk

∗
r , C

∗
s , C∗

r), π∗, σ∗
tx, sn

∗
s).

Since tx∗ is accepted, we have

1 ← Verify(vks, (x∗
tx, sn

∗
s), σ

∗
tx), 1 ← V(crs, (C̃s, x

∗
tx, vk, g2), π∗).

There exist two cases to be considered. In the first case, x∗
tx is well-formed (i.e.,

C∗
s and C∗

r are ciphertext of t ∈ [0,MAX] under pks and pk∗
r , respectively.) and π∗

is generated honestly, but σ∗
tx is an incorrect signature of (x∗

tx, π
∗, sn∗

s) but can be
validated, which immediately breaks the unforgeability of underlying signature
scheme with probability poly1(ε(n)). In the second case, σ∗

tx is indeed a valid
signature, but x∗

tx is not well-formed which means (x = (C̃s, x
∗
tx, vk, g2)) /∈ L.

An accepted proof π∗ directly breaks the soundness of NIZK with probability
poly2(ε(n)). All of the above shows that ε(n) must be negligible.

248 S. Ma et al.

4 Optimization and Evaluation

In this section, we optimize the proof size of our NIZK scheme shown in Fig. 1
and briefly prove its security, then evaluate its performance.

4.1 Optimization

The main idea is that prover P uses H on the values (as, ar, a
′
s, α, {ai, a

′
i}�−1

i=0)
and gets (cs, cr, c

′
s, cα, {ci, c

′
i}�−1

i=0), respectively. Then compute c̃ = H(cs, cr, c
′
a,

{Vi, V
′
i , ci, c

′
i,Wi,W

′
i}�−1

i=0 , cα). The new proof now is:

π =
(
a = (cs, cr, c

′
s, {Vi, V

′
i , ci, c

′
i,Wi,W

′
i}�−1

i=0 , cα), c,

z = (z1, z2, z3, {zvi
, zv′

i
, zti , zt′

i
}�−1

i=0 , ẑ)
)
.

In the verification procedure, we need to check the following conditions:

– ci = H(W c
i · V

−zti
i · g

zvi
1);

– c′
i = H((W ′

i)
c · (V ′

i)−zt′
i · g

zv′
i

1);
– cs = H((1 + Ns)zt · Cc

s · zNs
1 mod N2

s);
– cr = H((1 + Nr)zt · Cc

r · zNr
2 mod N2

r);
– c′

s = H((1 + Ns)zt′ · (C̃s/Cs)c · zNs
3 mod N2

s);
– cα = H(gẑ

2 · vk−ĉ).

Lemma 2. Assume the NIZK argument in Fig. 1 is secure, the new protocol is
a NIZK argument.

Proof (Sketch). Completeness is obvious. To show soundness, suppose a PPT
prover P∗ generates an accepted proof π = (a, c, z) for a false statement with a
non-negligible probability. Fix his random tape, there exists an extractor output
another valid proof π′ = (a, c′, z′) by rewinding P∗ to a different oracle reply
c̃′ in an expected polynomial time. We have H((1 + Ns)zt · Cc

s · zNs
1 mod N2

s) =
H((1+Ns)z′

t ·Cc′
s ·z′

1
Ns mod N2

s). Since H is a random oracle, (1+Ns)zt ·Cc
s ·zNs

1 =
(1 + Ns)z′

t · Cc′
s · z′

1
Ns mod N2

s , we can extract partial witness (t, r1) by follow-
ing the steps as shown in Appendix A. Similarly, we can continue to extract
the remaining witness (ts, r, r2). If t /∈ [0, u�) or ts − t /∈ [0, u�), we can break
the EUF-WCMA of Boneh-Boyen signature with a non-negligible probability by
using P∗ as a subroutine as shown in Appendix A. To argue its zero-knowledge,
we construct a simulator same as the one described in Fig. 2 except comput-
ing H on the values (as, ar, a

′
s, α, {ai, a

′
i}�−1

i=0) and putting the respective output
(cs, cr, c

′
s, cα, {ci, c

′
i}�−1

i=0) in the proof. It can be seen that the simulated proof is
distributed as the real protocol.

A Practical NIZK Argument for Confidential Transactions 249

4.2 Evaluation

We first analyze the efficiency theoretically and then conduct experiments to
verify the analysis result. To evaluate the communication and storage complexity
of schemes, we count the size of system parameter pp and the proof in every
scheme. In the construction of NIZK scheme, the public parameter size is |G2|+
2u|G1| (|G1| and |G2| denote the element size in groups G1 and G2, respectively),
which is O(2u) as shown in Table 1. The proof size in our scheme is (4
+1)|G1|+
|G2| + 2|ZNs

| + |ZNr
| + 4
|ZN | + (2
 + 5)|Z2k |. It is worth nothing that we omit

the basic parameters of ECC including (e, p, g1, g2, gt) which only account for a
small proportion.

Table 1. Comparison results of computation and communication complexity.

NIZK[17] This paper

Theory Public parameter size |G2| + u(|G1| + |GT |) |G2| + 2u|G1|
Proof size (2�+5)·|G1|+2�·|GT |

+(4� + 6) · |Zp|
(4� + 1)|G1| + |G2| +
2|ZNs | +|ZNr | +
4�|ZN | + (2� + 5)|Z2k |

Practice Choice of MAX 230 240 230 240

Setup (ms) 8700 8700 873 873

Proof (ms) 64.97 130 62 64

Verify (ms) 48.96 98 37.25 40.29

Public parameter size (KB) 451 451 133 133

Proof size (Bytes) 3680 7360 4608 5952

We conduct an experimental evaluation for our NIZK scheme. The SHA256
secure hash function is selected to instantiate our argument. We choose two
different message spaces to compare the efficiency of our scheme with related
work [17]: [0, 230) and [0, 240). We also follow their work to set u = 210. We set
the bit of Paillier modulus and the bit of the order of bilinear group to be 1024.
We run the experiments using the miracle library [2] (a popular cryptographic
library, version 7.0). The system configuration is the Windows system (Windows
10, 64 bits) with an Intel(R) Core(TM) i7 4770 at 3.40 GHz and 16 GB RAM.
The setup phase need only 873 ms to complete and the public parameter size is
only 133 KB, all of which dramatically improves the performance compared with
related work. From the experiment result, in the case that the message space
is [0, 230), our NIZK scheme has a more efficient verifier and a similar efficient
prover, at the cost of a slightly longer proof size than the scheme in work [17].
Unfortunately, their scheme fails to support large message space, which leads
to doubled efficiency lose in computation and communication when turning to
the message space [0, 240). To avoid this problem, we use the Paillier encryption
which supports the large message space. In the case of MAX = 240 − 1, our
scheme actually performs better than that in [17] in prover time, verifier time
and proof size.

250 S. Ma et al.

Acknowledgements. We thank the anonymous reviewers for their invaluable com-
ments. This work is supported by the National Key Research and Development Pro-
gram of China (Grant No. 2017YFB0802500), PlatON, the National Natural Science
Foundation of China (Grant Nos. 61932019, 61772521, 61772522 and 61972294), the
Key Research Program of Frontier Sciences, CAS (Grant No. QYZDB-SSW-SYS035),
the Natural Science Foundation of Hubei Province (Grant No. 2020CFA052), the
Wuhan Municipal Science and Technology Project(Grant No. 2020010601012187).

A Missing Proof of Theorem 1

(Perfect) Completeness. The completeness is trivial, we omit the details here.

(Adaptive) Soundness. Suppose that the soundness does not hold. Then there
must exist a PPT prover P∗ with random tape rP∗ that generates an accepted
proof π for a false statement with probability at least ε(n) > 1

2k , where

π =
(
a = (as, ar, a

′
s, {Vi, V

′
i , ai,a

′
i,Wi,W

′
i}�−1

i=0 , α),

c, z = (z1, z2, z3, {zvi
, zv′

i
, zti , zt′

i
}�−1

i=0 , ẑ)
)
.

Fix such a random tape, the probability that P∗ answers different chal-
lenges c correctly is at least ε(n). Then, we construct such an extractor:
Upon seeing an accepted proof π, E rewinds P∗ to the oracle query H(a)
that returned c̃. It then reprogram the random oracle such that c̃′ = H(a)
with c̃ �= c̃′ and continue the execution of P∗ with the modified random
oracle. In expected polynomial time O(1

ε(n)), another valid proof is obtained:

π′ = (a, c′ = c̃′ + ĉ, z′
1, z

′
2, z

′
3, {z′

vi
, z′

v′
i
, z′

ti , z
′
t′
i
}�−1

i=0 , ẑ).
From the validity of the two transcripts, we have

as = (1 + Ns)
zt · Cc

s · zNs
1 mod N2

s , as = (1 + Ns)
z′
t · Cc′

s · z′
1

Ns mod N2
s ;

ar = (1 + Nr)
zt · Cc

r · zNr
2 mod N2

r , ar = (1 + Nr)
z′
t · Cc′

r · z′
2

Nr mod N2
r ;

a′
s = (1 + Ns)

zt′ · (
C̃s

Cs
)c · zNs

3 mod N2
s , a′

s = (1 + Ns)
z′
t′ · (

C̃s

Cs
)c′ · z′

3
Ns mod N2

s ;

ai = W c
i · V

−zti
i · g

zvi
1 , ai = W c′

i · V
−z′

ti
i · g

z′
vi

1 ;

a′
i = (W ′

i)
c · (V ′

i)
−zt′

i · g
zv′

i
1 , a′

i = (W ′
i)

c′ · (V ′
i)

−z′
t′
i · g

z′
v′
i

1 .

Since c ∈ {0, 1}k and 2k is smaller than the smallest prime factor of Ns and
Nr, (c − c′) is invertible in ZNs

and ZNr
. Hence we get

Cs = (1 + Ns)
(z′

t−zt)/(c−c′) · ((z′
1/z1)

(c−c′)−1
)Ns mod N2

s ;

Cr = (1 + Nr)
(z′

t−zt)/(c−c′) · ((z′
2/z2)

(c−c′)−1
)Nr mod N2

r ;

C̃s

Cs
= (1 + Ns)

(z′
t′ −zt′)/(c−c′) · ((z′

3/z3)
(c−c′)−1

)Ns mod N2
s ;

Wi = V
(zti−z′

ti
)/(c−c′)

i · g
(z′

vi
−zvi)/(c−c′)

1 ; W ′
i = (V ′

i)
(zt′

i
−z′

t′
i
)/(c−c′) · g

(z′
v′
i
−zv′

i
)/(c−c′)

1 .

A Practical NIZK Argument for Confidential Transactions 251

Thus, ti = (z′
ti − zti)/(c − c′), vi = (z′

vi
− zvi

)/(c − c′), t′i = (z′
t′
i
− zt′

i
)/(c −

c′), and v′
i = (z′

v′
i
− zv′

i
)/(c − c′) for all i ∈ [0,
). From the fact that Paillier

encryption algorithm is an isomorphism from the message and the randomness
to the ciphertext, the witness can be obtained by computing modulo Ns:

t = (z′
t − zt)/(c − c′), t′ = (z′

t′ − zt′)/(c − c′),

r1 = (z′
1/z1)(c−c′)−1

, r2 = (z′
2/z2)(c−c′)−1

, r = r1(z′
3/z3)(c−c′)−1

.

Thus if an argument π is accepted by the verifier, one can extract a valid witness
w = (ts = t + t′, t, r, r1, r2).

If t /∈ [0, u�) or t′ /∈ [0, u�), then there must be some ti or t′i not in [0, u).

That is, P∗ generates a valid signature V
v−1
i

i on ti or (V ′
i)v′

i
−1

on t′i with proba-
bility poly(ε(n)). This contradicts to the EUF-WCMA of Boneh-Boyen signature
scheme. Thus ε(n) must be negligible.

Fig. 2. Simulator for our NIZK argument

Perfect (Adaptive) Zero-Knowledge. To argue zero-knowledge we construct
a simulator S = (S1,S2) in Fig. 2. We prove the property of zero-knowledge via
a hybrid experiment where we use S1 to generate crs, but follow the real prover
strategy to produce a NIZK proof. Since S1 proceeds as K except outputting an

252 S. Ma et al.

additional trapdoor χ s.t. vk = gχ
2 , for all A = (A1,A2) we have

∣
∣
∣ Pr

[crs ← K(1n); (x,w, state) ← A1(crs);π ← P(crs, x, w) :
(x,w) ∈ R ∧ A2(crs, π, state) = 1

]

− Pr
[(crs, χ) ← S1(1n); (x,w, state) ← A1(crs);π ← P(crs, x, w) :

(x,w) ∈ R ∧ A2(crs, π, state) = 1
]∣∣
∣ = 0.

Next, instead of generating the proof from P(x,w), we use the trapdoor χ pro-
duced by S1 to simulate the NIZK proof. In the simulated proofs, (α, c, z1, z2, z3,
{zvi

, zv′
i
, zti , zt′

i
}�−1

i=0 , ẑ) are uniformly randomly distributed in their different
distributions, So do as, ar, a

′
s which are determined by these above values. {Vi,

V ′
i , ai, a

′
i,Wi,W

′
i}�−1

i=0 are obvious uniformly distributed at random. While in the
real proofs, the values as, ar, a

′
s, {Vi, V

′
i , ai, a

′
i,Wi,W

′
i}�−1

i=0 , c, α, ẑ are distributed
uniformly and randomly due to the usage of uniform randomness. Thus, the
distribution of the remaining values z1, z2, z3, {zvi

, zv′
i
, zti , zt′

i
}�−1

i=0 is uniformly
distributed at random. Thus, for all PPT A = (A1,A2) we have

∣
∣
∣ Pr

[(crs, χ) ← S1(1n); (x,w, state) ← A1(crs);π ← P(crs, x, w) :
(x,w) ∈ R ∧ A2(crs, π, state) = 1

]

− Pr
[(crs, χ) ← S1(1n); (x,w, state) ← A1(crs);π ← S2(crs, x, χ) :

(x,w) ∈ R ∧ A2(crs, π, state) = 1
]∣∣
∣ = 0.

Hence, the perfect zero-knowledge property holds in the standard CRS model.

References

1. Zcash: Privacy-protecting digital currency. https://z.cash/
2. miracl (2012). https://github.com/miracl/MIRACL
3. Arfaoui, G., Lalande, J.-F., Traoré, J., Desmoulins, N., Berthomé, P., Gharout,

S.: A practical set-membership proof for privacy-preserving NFC mobile ticketing.
Proc. Priv. Enhanc. Technol. 2015(2), 25–45 (2015)

4. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/046 (2018). https://eprint.iacr.org/2018/046

5. Ben-Sasson, E., et al.: Decentralized anonymous payments from bitcoin. In: 2014
IEEE Symposium on Security and Privacy, SP 2014, Berkeley, CA, USA, 18–21
May 2014, pp. 459–474. IEEE Computer Society (2014)

6. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for
C: verifying program executions succinctly and in zero knowledge. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 6

7. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applica-
tions. In Proceedings of the 20rd Annual ACM Symposium Theory of Computing-
STOC 1988, pp. 103–112. ACM Press (1988)

8. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 4

https://z.cash/
https://github.com/miracl/MIRACL
https://eprint.iacr.org/2018/046
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-540-24676-3_4

A Practical NIZK Argument for Confidential Transactions 253

9. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing.
In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1 30

10. Bünz, B., Agrawal, S., Zamani, M., Boneh, D.: Zether: towards privacy in a smart
contract world. In: Financial Cryptography and Data Security (2020). https://
eprint.iacr.org/2019/191

11. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy, pp. 315–334. IEEE (2018)

12. Camenisch, J., Chaabouni, R., shelat: Efficient protocols for set membership and
range proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 234–
252. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7 15

13. Damg̊ard, I., Jurik, M., Nielsen, J.B.: A generalization of Paillier’s public-key sys-
tem with applications to electronic voting. Int. J. Inf. Secur. 9(6), 371–385 (2010)

14. Damg̊ard, I.: On sigma protocols (2010). http://www.cs.au.dk/∼ivan/Sigma.pdf
15. Fiat, A., Shamir, A.: How To prove yourself: practical solutions to identification

and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-
7 12

16. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signa-
ture for ad hoc groups. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP
2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-27800-9 28

17. Ma, S., Deng, Y., He, D., Zhang, J., Xie, S.: An efficient Nizk scheme for
privacy-preserving transactions over account-model blockchain. IEEE Trans.
Depend. Secure Comput. (2020, early access). https://doi.org/10.1109/TDSC.
2020.2969418

18. Maxwell, G.: Confidential transactions
19. Nakamoto, S..: Bitcoin: A peer-to-peer electronic cash system (2008, Consulted)
20. Noether, S., Mackenzie, A., et al.: Ring confidential transactions. Ledger 1, 1–18

(2016)
21. Paillier, P.: Public-key cryptosystems based on composite degree residuosity

classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

22. Volkhausen, T.: Paillier cryptosystem: A mathematical introduction. In: Seminar
Public-Key Kryptographie (WS 05/06) bei Prof. Dr. J. Blömer (2006)

23. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient
zksnarks without trusted setup. In: 2018 IEEE Symposium on Security and Privacy
(SP), pp. 926–943 (2018)

24. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper 151 (2014)

25. Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: succinct zero-
knowledge proofs with optimal prover computation. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 733–764. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26954-8 24

https://doi.org/10.1007/3-540-45682-1_30
https://eprint.iacr.org/2019/191
https://eprint.iacr.org/2019/191
https://doi.org/10.1007/978-3-540-89255-7_15
http://www.cs.au.dk/~ivan/Sigma.pdf
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1109/TDSC.2020.2969418
https://doi.org/10.1109/TDSC.2020.2969418
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-030-26954-8_24

Secure Machine Learning and
Multiparty Computation

Secure Cumulative Reward Maximization
in Linear Stochastic Bandits

Radu Ciucanu1(B), Anatole Delabrouille2, Pascal Lafourcade3,
and Marta Soare4

1 INSA Centre Val de Loire, Univ. Orléans, LIFO EA 4022, Orléans, France
radu.ciucanu@insa-cvl.fr

2 Univ. Bordeaux, LIMOS/LIFO, Clermont-Ferrand, France
anatole.delabrouille@etu.u-bordeaux.fr

3 Univ. Clermont Auvergne, LIMOS CNRS UMR 6158, Clermont-Ferrand, France
pascal.lafourcade@uca.fr

4 Univ. Orléans, INSA Centre Val de Loire, LIFO EA 4022, Orléans, France
marta.soare@univ-orleans.fr

Abstract. The linear stochastic multi-armed bandit is a sequential
learning setting, where, at each round, a learner chooses an arm and
receives a stochastic reward based on an unknown linear function of the
chosen arm. The goal is to collect as much reward as possible. Linear
bandits have popular applications such as online recommendation based
on user preferences, where obtaining a high reward means recommend-
ing an item with high expected rating. We address the security concerns
that occur when outsourcing the data and the cumulative reward maxi-
mization algorithm to an honest-but-curious cloud. We propose LinUCB-
DS, a distributed and secure protocol that achieves the same cumulative
reward as the standard LinUCB algorithm, without disclosing to the
cloud the linear function used to draw arm rewards. We formally prove
the complexity and security properties of LinUCB-DS. We also show that
LinUCB-DS can be easily adapted to secure the SpectralUCB algorithm,
which improves LinUCB for a class of linear bandits. We show the fea-
sibility of our protocols via a proof-of-concept experimental study using
the MovieLens movie recommendation dataset.

1 Introduction

The stochastic multi-armed bandit game is a sequential learning framework,
which consists of a repeated interaction between a learner and the environment.
The learner is given a set of choices (arms) with unknown associated rewards and
a limited number of allowed interactions with the environment (budget). With
the goal of maximizing the sum of the observed rewards, the learner sequen-
tially chooses an arm at each time step and the environment responds with a
stochastic reward corresponding to the chosen arm. In the linear stochastic ban-
dit setting, the input set of arms is a fixed subset of Rd, revealed to the learner
at the beginning of the game. When pulling an arm, the learner observes a noisy
c© Springer Nature Switzerland AG 2020
K. Nguyen et al. (Eds.): ProvSec 2020, LNCS 12505, pp. 257–277, 2020.
https://doi.org/10.1007/978-3-030-62576-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62576-4_13&domain=pdf
https://doi.org/10.1007/978-3-030-62576-4_13

258 R. Ciucanu et al.

reward whose expected value is the inner product between the chosen arm and
an unknown parameter characterizing the underlying linear function (common
to all arms).

Stochastic linear bandits can be used to model online recommendation: the
arms are the objects that might be recommended and a reward is the user’s
response to a recommendation e.g., the click through rate or the score associ-
ated to the recommendation. The recommender wants to maximize the sum of
rewards, thus the recommender needs to predict which object is more likely to
be of interest for a certain user. Also, while discovering such object, the recom-
mender must not disappoint the user with too much bad recommendations. The
unknown parameter of the reward function is the user preference, more precisely
the weights that the user gives to each of the d features in assessing an item.

Data Client

Data OwnerBudget

Cumulative Reward

Data

Fig. 1. Outsourcing data and computations.

In this paper, we consider a scenario inspired from the machine learning as a
service cloud computing model, where the machine learning data and algorithms
are outsourced to the cloud, which yields inherent data security concerns [5]. We
depict this scenario in Fig. 1 and we illustrate it next with an example. Let the
data owner be a large company owning multiple surveys on many types of items
and users. Then, let the data client be a small recommendation company that
is willing to pay a budget to acquire a part of a survey i.e., to find out the
cumulative reward obtainable for a subset of types of items and users. This is
a classical scenario, where small companies benefit of large scale data without
having to perform the survey themselves, and where large companies monetize
their data. The accuracy of the result returned to the data client is correlated
to the invested budget.

The machine learning as a service cloud computing model is useful when
neither the data owner nor the data client want to perform the computations.
They rather choose to entrust the computation to a third-party, for example to a
public cloud such as Google Cloud Platform, Amazon Web Services, or Microsoft
Azure. However, cloud providers do not usually address the fundamental problem
of protecting data security. The outsourced data can be communicated over some
network and processed on some machines where malicious cloud admins could
learn and leak sensitive user data. The data owner wishes to remain the only one
that has the complete knowledge of her data, and only the data client should be
able to gain knowledge of the cumulative reward for which she paid.

We address the data security issues that occur when outsourcing the linear
bandit data and cumulative reward maximization algorithm to a public cloud.

Secure Cumulative Reward Maximization in Linear Stochastic Bandits 259

We propose LinUCB-DS, a secure and distributed protocol based on the standard
LinUCB algorithm [1], which yields the same cumulative reward as LinUCB
while satisfying desirable security properties that we formally prove. The key
ingredients of LinUCB-DS are (i) Paillier cryptographic scheme that is additive
homomorphic i.e., it allows to compute the encrypted value of the sum of two
numbers, given only their ciphertexts, without revealing the numbers in plain,
and (ii) secure multi-party computation i.e., the computation is split among two
cloud participants, which can jointly compute the algorithm output, without
revealing their partial input to each other.

Related Work. Algorithms based on computing upper confidence bounds (UCB)
on arm values are commonly used for cumulative reward maximization strate-
gies. The classical UCB algorithm [3] for multi-armed bandits has been applied
to linear bandits in various works (for instance [1,2,12]) and is referred to as
LinUCB, OFUL (Optimism in the Face of Uncertainty for Linear bandits), or
LinRel (Linear Reinforcement Learning). Following [11, Chapter 19], we use
LinUCB as a generic name for UCB applied to stochastic linear bandits and we
specifically rely on the algorithm in [1], in the case where the set of arms is fixed.

There is a recent line of research on adding privacy-preserving guarantees
to UCB-like algorithms, mostly using differential privacy techniques [7,13,16]
including for linear bandits [15]. The use of differential privacy has a low impact
on execution time compared to non-secured algorithms, but outputs different
cumulative rewards. This is a consequence of the noise added to the input or
the output of differentially-private algorithms. This difference propagates in the
regret analysis, which suffers an additive or multiplicative factor compared to
the regret of standard non-secured algorithms.

In contrast, our approach based on cryptographic schemes and secure multi-
party computation implies heavier computations, but outputs exactly the same
cumulative reward as standard non-secured algorithms. Hence, both approaches
(differential privacy vs cryptography) have advantages and disadvantages. Secure
bandit algorithms using cryptographic techniques have been already proposed
for a different problem: best arm identification in multi-armed bandits [6].

To the best of our knowledge, our work is the first one that adds security
guarantees to linear bandit algorithms using cryptographic techniques.

Summary of Contributions and Paper Organization. In Sect. 2 we introduce Lin-
UCB algorithm and some cryptographic tools. Section 3 is the main contribu-
tion of the paper: we formalize the expected security properties, and we pro-
pose LinUCB-DS, a secure and distributed protocol based on LinUCB. We show
its correctness and we analyze its theoretical complexity by characterizing the
number of cryptographic operations. In Sect. 4, we show the security proper-
ties of LinUCB-DS. In Sect. 5, we present our experimental study based on the
MovieLens dataset, which confirms the feasibility of LinUCB-DS. In Sect. 6, we
show how our protocol can be easily adapted to secure SpectralUCB [17] that is
another algorithm that relies on UCB in the linear setting.

260 R. Ciucanu et al.

2 Preliminaries

We introduce LinUCB algorithm, Paillier encryption, and IND-CPA security.

LinUCB. In cumulative reward maximization algorithms, the learner faces the
so-called exploration-exploitation dilemma: at each round, she has to decide
whether to explore arms with more uncertain associated values, or to exploit
the information already acquired by selecting the arm with the seemingly
largest value. UCB-like algorithms guide the exploration-exploitation trade-off
by updating, after each new observed reward, a score for each arm, given by the
upper-confidence bound of the estimated arm value. In LinUCB, the arm scores
are based on a regularized least-squares estimate of the unknown parameter of
the linear reward function. At the next round, the arm with the largest updated
score is pulled. Following [1], we present the LinUCB algorithm in Fig. 2.

Fig. 2. LinUCB Algorithm [1].

Secure Cumulative Reward Maximization in Linear Stochastic Bandits 261

We rely on the following notations:

• �z� is the set {1, 2, . . . , z}.
• K is the number of arms.
• N is the client’s budget = the number of allowed arm pulls = the number of

observed rewards.
• d is the space dimension = the size of each arm vector = the number of

features of the unknown parameter θ.
• xi (for i ∈ �K�) is an arm = a (d × 1) vector; we assume that all arms are

pairwise distinct.
• ||v||2 is the 2-norm of a R

d vector v.
• ||v||A =

√
v�Av is the weighted 2-norm of a R

d vector v, where A is a (d×d)
positive definite matrix.

• θ is a (d × 1) vector (unknown to the learner) that is the parameter of the
linear reward function.

• 〈xi, θ〉 (for i ∈ �K�) is a scalar (unknown to the learner) defining the expected
reward value of arm xi, computed as the dot product of vectors xi and θ.

• pull(xi) is a function that returns a noisy reward 〈xi, θ〉 + η, where the noise
η is an R-sub-Gaussian random variable, where R ≥ 0 is a fixed constant.

• v(j) is the jth element of a vector v and M(j) is the jth row of a matrix M .

Paillier Asymmetric Encryption. Paillier [14] is an asymmetric partial homo-
morphic encryption scheme defined by a triple of polynomial-time algorithms
(G, E ,D) and a security parameter λ. By 1λ we denote the unary representation
of λ, which is a standard notation in cryptography.

– G(1λ) generates two prime numbers p and q according to λ, sets n = p · q and
Λ = lcm(p − 1, q − 1) (i.e., the least common multiple), generates the group
(Z∗

n2 , ·), randomly picks g ∈ Z
∗
n2 such that M = (L(gΛ mod n2))−1 mod n

exists, with L(x) = (x − 1)/n. It sets sk = (Λ,M), pk = (n, g), it returns
(sk, pk).

– E(m) randomly picks r ∈ Z
∗
n, computes c = gm · rn mod n2 using pk, and

outputs c.
– D(c) computes m = L(cΛ mod n2) · M mod n using sk, and outputs m.

Paillier’s cryptosystem is additive homomorphic. Let m1 and m2 be two plain-
texts in Zn. The product of the two associated ciphertexts with the public key
pk = (n, g), denoted c1 = E(m1) = gm1 · rn

1 mod n2 and c2 = E(m2) = gm2 · rn
2

mod n2, is the encryption of the sum of m1 and m2. Indeed, we have: E(m1) ·
E(m2) = c1 · c2 mod n2 = (gm1 · rn

1) · (gm2 · rn
2) mod n2 = (gm1+m2 · (r1 · r2)n)

mod n2 = E(m1 + m2).
It is also possible to compute the encryption of the product of a ciphertext

and a plaintext: E(m1)m2 = cm2
1 mod n2 = (gm1 · rn)m2 mod n2 = gm1·m2 ·

rn·m2 mod n2 = gm1·m2 · (r′)n mod n2 = E(m1 · m2).
Encryption and decryption with the public and private key of entity E are

noted EE(.) and DE(.) respectively.

262 R. Ciucanu et al.

IND-CPA (INDistinguishability under Chosen-Plaintext Attack)
Let Π = (KeyGen, Encrypt, Decrypt) be a cryptographic scheme. The proba-

bilistic polynomial-time (PPT) adversary A tries to break the security of Π. The
IND-CPA game, denoted by EXP(A), works as follows: the adversary A chooses
two messages (m0,m1) and receives a challenge c = Encrypt(LRb(m0,m1)) from
the challenger who selects a bit b ∈ {0, 1} uniformly at random, and where
LRb(m0,m1) is equal to m0 if b = 0, and m1 otherwise. The adversary, knowing
m0,m1 and c, is allowed to perform any number of polynomial computations or
encryptions of any messages, using the encryption oracle, in order to output a
guess b′ of the encrypted message in c chosen by the challenger. Intuitively, Π
is IND-CPA if there is no PPT adversary that can guess b with a probability
significantly better than 1

2 . By α = Pr[b′ ← EXP(A); b = b′], we denote the
probability that A correctly outputs her guessed bit b′ when the bit chosen by
the challenger in the experiment is b. A scheme is IND-CPA secure if α − 1

2 is
negligible function in λ, where a function ϕ is negligible in λ, denoted negl(λ), if
for every positive polynomial p(·) and sufficiently large λ, ϕ(λ) < 1/p(λ). Paillier
is IND-CPA secure under the decisional composite residuosity assumption [14].

3 LinUCB-DS

We propose LinUCB-DS, a secure and distributed algorithm based on LinUCB
cf. Figure 2 in the setting from Fig. 1. We first list the desired security proper-
ties and the security hypothesis. We next outline the challenges of our problem
setting and the ideas behind our solution. Then, we present the participants of
LinUCB-DS and their pseudo-code. We end this section by arguing the correct-
ness of LinUCB-DS and analyzing its cryptographic overhead.

Security Properties. We expect the following properties, which should hold until
the end of the protocol:

1. No cloud node knows θ.
2. No cloud node knows the cumulative reward, nor any individual reward.
3. An external observer having captured all messages exchanged over the net-

work does not know θ, the rewards, nor which arms have been pulled.

Security Hypothesis. We assume that the cloud is honest-but-curious i.e., it exe-
cutes tasks dutifully, but tries to extract as much information as possible from
the data that it sees. Our model follows a classical formulation [9] (Ch. 7.5, where
honest-but-curious is denoted semi-honest), in particular (i) each cloud node is
trusted: it correctly does the required computations, it does not sniff the net-
work and it does not collude with other nodes, and (ii) an external observer has
access to all messages exchanged over the network. The aforementioned security
model is of practical interest in a real-world cloud environment. In particular,
to satisfy all our theoretical security properties while achieving the no-collusion
hypothesis, it suffices to host each cloud node of our protocol by a different cloud
provider. This should be feasible as our protocol requires only two cloud nodes.

Secure Cumulative Reward Maximization in Linear Stochastic Bandits 263

Challenges. Our problem could be theoretically solved by using a fully homo-
morphic encryption scheme [8], which allows to compute any function directly
in the encrypted domain. However, it remains an open question how to make
such a scheme work fast and be accurate in practice when working with real
numbers. Indeed, by using state-of-the-art fully homomorphic systems (e.g.,
Microsoft SEAL1 or HElib2), it is not currently possible to obtain exactly the
same output as the standard, non-encrypted version when securing LinUCB.

Paillier additive-homomorphic encryption and secure multi-party computa-
tion (where some party does computations on reals in clear) allow us to develop
a protocol satisfying the expected security properties while being feasible in
practice. Indeed, if the data owner outsources E(θ(1)), . . . , E(θ(d)), the cloud
can generate an encrypted reward of arm xi as E(θ(1))xi(1) · · · E(θ(d))xi(d)E(η).
Then, variables s, b, and Bi can be also updated in the encrypted domain. Since
the Bi are encrypted, the cloud cannot compare them and we need to find a
secure way to decrypt and compare the Bi. The idea (already known in the lit-
erature e.g., in the context of private outsourced sort [4]) is that the data owner
does not use the data client’s public key to outsource θ, but instead uses the key
of a second cloud node whose only task is to compare the Bi. At the end, the
cloud nodes perform a key switching without revealing s to the cloud.

Participants of LinUCB-DS (2 of them in the cloud).

• DO (data owner) outsources data to the cloud.
• DC (data client) sends the budget to the cloud. At the end, she receives the

result of the algorithm.
• P is the principal node of the cloud, which receives the arms, budget, and

encrypted θ. This node pulls the arms and updates the variables.
• Comp is a cloud node whose Paillier public key is used to outsource θ. Comp

is the only node that can decrypt and compare the Bi.

Next, we present the three phases of LinUCB-DS: Initialization, Exploration-
Exploitation, and Key Switching. The numbers of the steps refer to those from
Fig. 3 and 4. We rely on the following additional notation:

• z∗ is EE(z), where E is clear from the context.
• EDPpk(v∗, w) =

∏d
j=1(v(j)∗)w(j) is the Encrypted Dot Product of v∗ (vector

of size d of data encrypted with pk) and w (vector of size d of data in clear).
• pull∗(xi) = EDPComp(θ∗, xi)EComp(η) is the encrypted reward drawn for an

arm xi using the encrypted unknown parameter θ∗ and a scalar noise η
cf. Sect. 2. This computation is the encrypted version of the scalar product
defined by the pull(.) function and the homomorphic addition of η.

1 https://github.com/Microsoft/SEAL.
2 http://homenc.github.io/HElib/.

https://github.com/Microsoft/SEAL
http://homenc.github.io/HElib/

264 R. Ciucanu et al.

Initialization.

• Step (1): DC sends to P the budget N . Furthermore, DO sends to P the
arms x1, . . . , xK , the encrypted unknown parameter θ∗ = (θ(1)∗, . . . , θ(d)∗) =
(EComp(θ(1)), . . . , EComp(θ(d))), as well as all algorithm constants cf. Figure 2.

• Step (2): P randomly chooses an arm xi, generates an encrypted reward r∗ =
pull∗(xi), and initializes variables:

s∗ = r∗.

A = γId + xix
�
i .

b∗ = (b∗(1), . . . , b∗(d)) = ((r∗)xi(1), . . . , (r∗)xi(d)).

Exploration-Exploitation. At each round, an interaction between P and Comp
occurs to decide the next arm to pull. More precisely, for 1 ≤ t < N , we repeat:

Fig. 3. Messages exchanged between LinUCB-DS participants. Steps 3 and 4 are done
N−1 times. The dashed rectangle is the cloud. Details on each step are given in Sect. 3.

• Step (3):

(i) P computes θ̂∗ as the product between matrix A−1 and vector b∗:
θ̂∗ = (θ̂(1)∗, . . . , θ̂(d)∗) = (EDPComp(b∗, A−1(1)), . . . ,EDPComp(b∗, A−1(d))).

Secure Cumulative Reward Maximization in Linear Stochastic Bandits 265

(ii) P computes listB∗ that is the list of B∗
1 , . . . , B∗

K such that, for each arm xi,
B∗

i = EDPComp(θ̂∗, xi)EComp(ω||xi||A−1), where ω is the exploration param-
eter cf. Fig. 2. Then, P generates a random permutation σ : �K�→ �K� and
sends σ(listB∗) to Comp.

• Step (4):

(i) Comp decrypts each element of the permuted list of encrypted Bi values.
Then, Comp sends arg maxσ(i)∈�K� Bσ(i) to P.

(ii) P retrieves xm that is an arm maximizing Bi. Then, P computes r∗ =
pull∗(xm) and updates the variables:

s∗ = s∗r∗.

A = A + xmx�
m.

b∗ = (b∗(1), . . . , b∗(d)) = (b∗(1)(r∗)xm(1), . . . , b∗(d)(r∗)xm(d)).

Key Switching. The sum of rewards is re-encrypted using the DC’s public key.

• Step (5): P chooses a random number rand and sends to Comp the following
EComp(rand)s∗ = EComp(rand + s).

• Step (6): Comp decrypts EComp(rand+s), encrypts the result using DC’s public
key, and sends it back to P. Note that Comp sees in clear rand +s but cannot
infer s because it does not know rand .

• Step (7): P sends EDC(s) = EDC(rand + s)EDC(−rand) to DC, which decrypts
EDC(s) and learns s.

This concludes the presentation of the steps of LinUCB-DS. Before ending
this section, we analyze the correctness and complexity of LinUCB-DS.

Correctness. LinUCB-DS outputs exactly the same cumulative reward as Lin-
UCB and it computes the same reward for the same arm at each round. The
reason is that the Paillier scheme does not change the value of any element,
hence throughout the exact computations on encrypted numbers we conserve
the correctness. In fact, Paillier scheme operates in N, but the values of the arms
and θ are defined in R. Furthermore, θ̂ and the Bi are computed using matrix
inverse, square root and division (all these operations are done in plain, but the
results are added or multiplied to ciphered values). Consequently, we need to
use Paillier with real numbers, or the other way around, use real numbers as
integers. Transforming a value in order to use it with an encryption scheme is
called encoding. The encoding3 we perform on a decimal number is simply to
multiply it by a power of 16 to make it an integer. When we decrypt it, we divide
the result by the same power of 16. This implies storing that power alongside the
ciphertext, in plain. In order not to leak any information on the ciphertexts, we
can use the same power for every encryption. Moreover, we can reduce the choice
of the random permutation σ that P generates at each step to the randomness
3 https://python-paillier.readthedocs.io/en/stable/ modules/phe/encoding.html.

https://python-paillier.readthedocs.io/en/stable/_modules/phe/encoding.html

266 R. Ciucanu et al.

Fig. 4. Pseudo-code of cloud nodes.

in the arg max function of standard LinUCB when several Bi are equal. Thus,
the task distribution does not change the choice of the next arm to pull. We also
confirmed experimentally that there is no difference between the arm-selection
strategy and the outputs of LinUCB vs LinUCB-DS.

Secure Cumulative Reward Maximization in Linear Stochastic Bandits 267

Complexity. In Fig. 5, we show the number of Paillier encryptions, decryptions,
and operations on encrypted numbers. We have O(N + d) encryptions, O(NK)
decryptions, O(N(d2 + Kd)) additions and O(N(d2 + Kd)) multiplications.

Phase Encryptions Decryptions Additions Multiplications

Initialization d+ 1 d 2d
Exploration -
Exploitation

N − 1 (N−1)K (N−1)(d2+Kd+2d) (N−1)(d2+Kd+2d)

Key Switching 1 2 2

Fig. 5. Number of Paillier cryptographic operations.

4 Security Analysis

In this section, we take a close look at what each participant knows and does
not know, and we formally show the security properties of LinUCB-DS.

• DC knows, at the end of LinUCB-DS, the cumulative reward for which she
paid. DC does not take part in the cumulative reward maximization algorithm.

• P knows which arm is pulled at each round, this is why it can update A in
plain. Since P sees θ and the rewards encrypted, it cannot see in plain the
value of any among s, b, θ̂, Bi, hence it cannot learn θ nor the sum of rewards.

• Comp decrypts all Bi, but sees these values in a permuted order hence it
cannot associate an arm xi with its value Bi. Since Comp does not know θ,
then every arm could have possibly produced every Bi with some θ, hence
Comp cannot compute the exploration term of a Bi, hopping to retrieve the
rewards generated by some arm.

• An external network observer has access to the exchanged data shown in
Fig. 3. It sees in plain N and the arms, and at each round σ(listB∗) as well
as σ(m) the index of the maximal element in the list. As σ is changed every
round, it cannot deduce the arm that is really pulled. Moreover, it cannot
retrieve s or θ because σ(listB∗) and s are encrypted.

In the rest of this section, we formally state the security properties of P, of
an external observer, and of Comp. We formally prove all these properties in
Appendix A. Recall that we have presented the security hypothesis in Sect. 3. In
particular, we assume that the cloud nodes Comp and P do not collude. For a
participant E, we denote by dataE the data to which E has access. By Apb(d) we
denote the answer of a Probabilistic Polynomial-Time (PPT) adversary A that
knows data d and tries to solve problem pb. We recall that by �K� we denote
the set {1, 2, . . . ,K}. By negl(λ) we denote any negligible function in λ.

268 R. Ciucanu et al.

Security of P. The data to which P has access is θ∗, then at each round t: the
arm pulled, r∗, b∗, θ̂∗, the matrix A, and s∗. At the end, P also knows EDC(s).

Theorem 1. An honest-but-curious P cannot infer any coordinate θ(i) of the
secret θ with probability better than random. More precisely, for all PPT adver-
sary A, |P [

(i, θ(i)′) ← Aθ(dataP); θ(i)′ = θ(i)
] − 1

|θ(i)| | ≤ negl(λ), with θ(i)′ the
guess of A of θ(i), and |θ(i)| the cardinality of the set of possible values of a
coordinate.

Theorem 2. An honest-but-curious P cannot infer any reward generated during
the protocol with better probability than random. More precisely, for any PPT
adversary A, |P [(t, r′) ← Ar(dataP); r′ = r]− 1

|r| | = negl(λ), with (t, r′) the guess
of A of the reward generated at round t, and |r| the cardinality of the set of
possible rewards for the arm chosen at round t.

Theorem 3. An honest-but-curious P cannot infer cumulative reward s.

Security of an External Observer. An external observer has access to the fol-
lowing data: at the beginning θ∗, the arms and the budget N ; at each round,
σ(listB∗) and the argmax of the list; at the end, EComp(rand+s), EDC(rand+s),
and then EDC(s).

Theorem 4. An external observer having access to the set M of all the mes-
sages exchanged during the protocol cannot infer the value of any coordinate of θ
with better probability than random. More precisely, for any PPT adversary A,
|P [

(i, θ(i)′) ← Aθ(M); θ(i)′ = θ(i)
] − 1

|θ(i)| | ≤ negl(λ), with θ(i)′ the guess of A
of θ(i), and |θ(i)| the cardinality of the set of possible values of a coordinate.

Theorem 5. An external observer having access to the set M of all messages
exchanged during the protocol cannot infer the value of the sum of rewards
with better probability than random. More precisely, for any PPT adversary A,
|P [s′ ← As(M); s′ = s] − 1

|s| | ≤ negl(λ), with s′ the guess of A of the sum of
rewards, and |s| the cardinality of the set of possible sums at the end of the
protocol.

Lemma 1. Consider a list l = [l1, . . . , ln], a random permutation σ and the
permuted list σ(l) = [lσ(1), . . . , lσ(n)]. Knowing σ(l), a PPT adversary A cannot
guess one element of l with probability better than random. More specifically,
P

[
(i, g(i)) ← Aσ−1

(σ(l)) ∈ {i, σ−1(i)}i∈�K�

]
= 1

K + negl(λ), where g(i) is A’s
guess for the preimage of the element in position i.

Theorem 6. An external observer having access to the set M of all messages
exchanged during the protocol cannot infer the arm pulled at any round. More
precisely for any PPT adversary A, P [(t, x′

t) ← Ax(M);x′
t = xt] = 1

K +negl(λ),
with x′

t being A’s guess of the arm pulled at round t.

Secure Cumulative Reward Maximization in Linear Stochastic Bandits 269

Security of Comp. Comp can decrypt the elements received from P, hence the
data to which it has access is: at each round, a permuted list σ(listB) of all Bi,
and at the end the value rand + s.

Theorem 7. An honest-but-curious Comp cannot associate an element of
σ(listB) to the arm to which it belongs. More precisely, for any PPT adversary
A, P

[
(i, B′

i) ← Aσ−1
(dataComp);B′

i = Bi

]
= 1

K + negl(λ).

Theorem 8. An honest-but-curious Comp cannot infer cumulative reward s.

5 Experiments

We present a proof-of-concept experimental study that confirms the theoretical
analysis, and shows the scalability and feasibility of LinUCB-DS. For repro-
ducibility reasons, we make our code available on a public Git repository4.

Experimental Setup. We implemented LinUCB-DS in Python 3 and did our
experiments on a laptop with CPU Intel Core i5-8350U @ 1.70 GHz and 16 GB
RAM, running Ubuntu 18.04.5. For Paillier we used the phe library5.

MovieLens Dataset. All our experiments are done on real data using the 100K
MovieLens dataset [10]. This dataset is a collection of 100 K movie ratings on a
scale of 1 to 5, given by 943 users of the MovieLens website on 1682 movies. The
collection of ratings is represented by a matrix F (943 × 1682), whose element
(i, j) is the rating of user i on movie j if the rating exists, otherwise the element
is 0. Since the user-movie matrix F is very sparse, we factored it using low-
rank matrix factorization. To this purpose, we used the Google Colab matrix
factorization code6 and we obtained: a user embedding matrix U (943×d), where
row i is the embedding for user i, and a movie embedding matrix M (1682 × d),
where row j is the embedding for movie j. The embeddings are learned such that
the product UM� is a good approximation of the ratings matrix F . Note that the
(i, j) entry of UM� is the dot product of the embeddings of user i and movie j,
computed such that it should be close to the (i, j) entry of F . Then, for every user
i in matrix U , we were able to use linear bandit algorithms to recommend movies
j from matrix M . In the presentation of the experimental results, the reported
d values correspond to choices of d in the aforementioned matrix factorization
approach, whereas the reported K arms correspond to choosing the first K
movies in the dataset. We set algorithm constants as in a standard related work
setting [17]: γ = 0.01, δ = 0.001, R = 0.01, and S = log t.

Before discussing our experimental results, we would like to stress that for
each run of LinUCB-DS we use exactly the same arm-selection strategy and
obtain the same cumulative reward as LinUCB. The focus of our experiments is
on the study of the feasibility and scalability of LinUCB-DS.
4 https://github.com/anatole33/LinUCB-secure.
5 https://python-paillier.readthedocs.io/en/develop/.
6 https://github.com/google/eng-edu/blob/master/ml/recommendation-systems/

recommendation-systems.ipynb.

https://github.com/anatole33/LinUCB-secure
https://python-paillier.readthedocs.io/en/develop/
https://github.com/google/eng-edu/blob/master/ml/recommendation-systems/recommendation-systems.ipynb
https://github.com/google/eng-edu/blob/master/ml/recommendation-systems/recommendation-systems.ipynb

270 R. Ciucanu et al.

Experimental Results. As outlined in the theoretical complexity analysis at the
end of Sect. 3, LinUCB-DS has an inherent overhead due to the use of crypto-
graphic operations w.r.t. standard LinUCB. Our first implementation naturally
showed this overhead. For example, for d = 3, K = 15, N = 1000, and Pail-
lier keys of 1024 bits, LinUCB-DS takes 115 s, whereas LinUCB takes less than
a second. Seen this overhead, we zoomed on the time taken by the different
steps of LinUCB-DS to understand how we can optimize our implementation.
We observed that three steps of LinUCB-DS take the lion’s share of the compu-
tation time. We refer to these steps using the numbers listed in Sect. 3:

• Step (3).i (done by P): compute θ̂∗ as the product of a matrix of dimension
(d × d) and a vector of size (d × 1). This involves d2 multiplications and d2

additions on cyphertexts.
• Step (3).ii (done by P): compute B∗

i in the encrypted domain as the scalar
product of two vectors of size d, which is done K times as there is a B∗

i -value
for each arm.

• Step (4).i (done by Comp): decrypt the list of B∗
i , which takes K decryp-

tions. The time of a decryption is higher than the time of an addition or a
multiplication.

Each of the aforementioned three steps is done N − 1 times. Fortunately,
these steps are parallelizable. For instance, (3).ii and (4).i can be equivalently
computed by splitting the list and parallelizing the computations. In (3).i, a
coordinate of θ̂∗ is obtained as the scalar product of a row of matrix A−1 and
the vector b∗. We can divide the matrix and compute the coordinates of θ̂∗ in
parallel. We used the multiprocessing7 library to implement a parallel version of
LinUCB-DS that takes advantage of these ideas for parallelizing our code.

In Fig. 6(a) and 6(b), we present the speedup of parallelization on LinUCB-DS
computation time, while zooming on the three aforementioned costliest steps (the
other steps take negligible time), using two distinct input configurations. We used
Paillier keys of 2048 bits. We believe that these figures are sufficient to show that
our implementation correctly follows the theoretical expectations. Indeed, the
computation of θ̂∗ depends only on d, the decryption of the list of B∗

i only on K,
and the construction of the list of B∗

i on both. Moreover, the computation time
decreases when increasing the number of cores, which is a desirable feature as
our implementation is able to take advantage of modern multi-core architectures
in order to reduce the practical overhead due to cryptographic primitives.

In Fig. 6(c), we stress test the scalability of LinUCB-DS, in a scenario where
K is 10 times larger than d. Indeed, in stochastic linear bandits the goal is
to exploit the linear structure and reduce the number of needed estimations,
from the estimation of K arm values to the estimation of the d features of the
common unknown parameter θ. The observed computation time confirms our
theoretical analysis. Moreover, we showed that the parallelization leads to a
significant reduction in the computation time of LinUCB-DS.

7 https://docs.python.org/3/library/multiprocessing.html.

https://docs.python.org/3/library/multiprocessing.html

Secure Cumulative Reward Maximization in Linear Stochastic Bandits 271

(a) K = 50, d = 5, and N = 200. (b) K = 6, d = 18, and N = 200.

(c) K varies, d = K
10
, and N = 200.

Fig. 6. Computation time of LinUCB-DS split on the three costliest steps, with differ-
ent parameters, when increasing the number of cores (6(a) and 6(b)), and the scalability
of LinUCB-DS when increasing K and d (6(c)).

6 Adaptability of LinUCB-DS

We show that LinUCB-DS can be easily adapted to secure SpectralUCB [17],
an algorithm that models with linear bandits the problem of cumulative reward
maximization on a graph. The arms are the graph nodes and the reward of an
arm is a smooth function on the graph. A smooth graph function returns similar
values for close nodes. When the graph models a social network, such a setting
is useful for recommendation systems, since we expect that people close on the
graph have similar tastes and probably like the same recommended items.

To give the right input to SpectralUCB, some preprocessing is necessary. A
matrix of similarities (edge weights) of the graph is used to construct a graph
Laplacian L that is a (K × K) matrix. Then, SpectralUCB computes the eigen-
decomposition of L as QΛLQ�, with Q a (K × K) orthogonal matrix whose
columns are the eigenvectors and ΛL is a diagonal matrix whose elements are
the corresponding eigenvalues. An arm is a row of Q, and the expected reward
value of arm qi is given by 〈qi, θ〉, with θ the parameter of the smooth function,

272 R. Ciucanu et al.

a (K × 1) vector. Note that this implies that in SpectralUCB the dimension of
the vectors is equal to the number of arms (K = d).

As for LinUCB, when pulling an arm qi, in SpectralUCB, one observes a noisy
reward 〈qi, θ〉 + η, where θ is the unknown parameter and the noise η is an R-
sub-Gaussian random variable. To compute an estimation of θ, at each round t,
SpectralUCB uses the arms previously pulled, joined in a matrix AS of dimension
(K×(t−1)) and the rewards previously observed in a vector bS of dimension ((t−
1) × 1). Then, SpectralUCB computes the estimate of the unknown parameter
as θ̂S = (AS + ΛL + γId)−1bS , where ΛL is an additional spectral penalty for
the regularized least-squares estimate. As in LinUCB, to decide the next arm
to be pulled, SpectralUCB relies on updated UCB on the arm-values and picks
the arm with the largest UCB. Differently from LinUCB, the exploration term
in SpectralUCB uses the effective dimension d′ that depends on the eigenvalues
and is small when eigenvalues grow rapidly above t, which is the case when
d = K >> t. Specifically, the exploration parameter of SpectralUCB is given by
ωS = 2R

√
d′ log(1 + t/γ) + 2 log(1/δ)+C, where C is an upper-bound on ||θ||ΛL .

The UCB for an arm qi is given in SpectralUCB by Bi,S = 〈qi, θ̂S〉+ωS ||qi||A−1
S

.
Given the similarities between LinUCB and SpectralUCB, we observed that

it is not difficult to adapt the ideas behind LinUCB-DS to secure SpectralUCB.
Encrypting θ results in generating encrypted rewards, and constructing vector bs

with encrypted values. Then, θ̂S and all Bi,S are also encrypted. The messages
exchanged during the protocol are identical as for LinUCB-DS (cf. Figure 3), in
particular Comp chooses the next arm to pull. By SpectralUCB-DS we denote
the secure and distributed version of SpectralUCB.

In SpectralUCB, the dimension of the vectors is equal to the number of
arms: K = d and for our proof-of-concept experiment (reported in Fig. 7), we
fixed K = N = d. Following the setting in [17], we used a similarity graph over
movies from the MovieLens dataset: the graph contains an edge between movies i
and j if the movie j is among the 10 nearest neighbors of the movie i in the latent
space M. As in [17], the weight on all edges is 1 and parameters’ values are: γ =
0.01, δ = 0.001, R = 0.01, C = log t. As expected, SpectralUCB-DS is slightly
faster than LinUCB-DS because it manipulates a θ̂ computed with a matrix of
size depending on t, and t ≤ K. We have also zoomed on the time taken by each
step of SpectralUCB-DS to observe that the three costliest steps are the same
as for LinUCB-DS, and we have also observed that the parallelization technique
described for LinUCB-DS has a similar positive impact on SpectralUCB-DS.

Secure Cumulative Reward Maximization in Linear Stochastic Bandits 273

Fig. 7. Time of LinUCB-DS vs SpectralUCB-DS.

7 Conclusions

We tackled the problem of secure cumulative reward maximization in linear
stochastic bandits. This problem has applications in recommendation systems
and Web-targeted advertisements, where sensitive user data and preferences
are used for personalized recommendations. We considered a machine learn-
ing as a service scenario, where data and computations are outsourced to some
honest-but-curious cloud, which yields inherent security concerns. We proposed
LinUCB-DS, a distributed and secure protocol that outputs exactly the same
cumulative reward as standard LinUCB, while enjoying desirable security prop-
erties. Towards this goal, we relied on Paillier encryption scheme and secure
multi-party computation. We characterized the overhead of cryptography from
both theoretical and empirical points of view. Our experiments on the Movie-
Lens movie recommendation dataset showed the scalability and feasibility of
LinUCB-DS. Moreover, we showed that LinUCB-DS can be easily adapted to
secure other UCB-like linear bandit algorithms. This happens because the secu-
rity properties of our protocol hold true irrespective of the arm-selection strat-
egy, which differs from an algorithm to another. To show this, we adapted
LinUCB-DS to secure SpectralUCB.

Providing security guarantees for machine learning algorithms is a growing
research topic. The use of distribution of tasks and cryptography is still an under-
explored research direction for this task. We plan to rely on such techniques to
develop further security protocols for other types of bandit algorithms and for
different machine learning settings.

A Appendix: Security Proofs for Sect. 4

Proof of Theorem 1. Assume a PPT adversary A who, given dataP has a prob-
ability of 1

|θ(i)| +x+negl(λ) of guessing one coordinate of θ. In the worst case, it
makes a guess on each coordinate with the same probability 1

d . We also assume
that if dataP is different from the data P has really collected during the protocol

274 R. Ciucanu et al.

(for instance if a value has been changed to another unrelated to the protocol),
then A has not any advantage. We show that using A, an adversary B obtains
an advantage non-negligible in a Paillier IND-CPA game.

B chooses two values m0 and m1 and gives them to a challenger who returns
m∗

b = EComp(mb), with b = 0 or 1 with probability 1
2 . Then B constructs an

execution of the secure protocol, with θ and arms of his choice. In particular,
it sets θ1 = m1. At the end, it calls A on dataP except that it replaces θ′

1 by
m∗

b . Let us call it data ′
P. If Aθ(data′

P) returns (1,m1), then B answers 1 to the
challenger, otherwise it answers at random 0 or 1 with probability 1

2 .
The probability of success of B in every situation is:

– In A’s guess, if i
= 1 (with probability 1− 1
d), then B answers at random and

his probability of success is 1
2 .

– If i = 1 (with probability 1
d):

• If b = 0 (with probability 1
2) then data ′

P is not valid and A has not any
advantage.

∗ It answers (1,m1) with probability 1
|θ1| , where B answers 1 to the

IND-CPA game and is wrong.
∗ It gives an other value for θ′

1 with probability 1− 1
|θ1| , then B answers

at random and has a probability of success of 1
2 .

• If b = 1 (with probability 1
2) then A benefits of its advantage.

∗ By hypothesis, A returns (1,m1) with probability 1
|θ1| +x+negl(λ).

Then B trusts him and is right.
∗ By hypothesis, A returns another value for θ′

1 with probability 1 −
(1

|θ1| +x+negl(λ)). B answers randomly and is correct with probability
1
2 .

Summing it up, the probability of success of B in his IND-CPA game is:
P (B) = (1 − 1

d) 12 + 1
d
1
2 (1 − 1

|θ1|)
1
2 + 1

d
1
2 (1

|θ1| + x + negl(λ)) + 1
d
1
2 (1 − 1

|θ1| − x −
negl(λ))12

1
2 − 1

2d + 1
4d − 1

4d|θ1| + 1
2d|θ1| + 1

2dx + 1
4d − 1

4d|θ1| − 1
4dx + negl(λ) =

1
2 + 1

4dx + negl(λ). It gives him a non-negligible advantage in a classical IND-
CPA game on Paillier scheme, which contradicts the fact that Paillier is IND-
CPA secure. Then our assumption was wrong and an adversary who has an
advantage in retrieving a coordinate of θ with dataP cannot exist.

Proof of Theorem 2. The same proof as above can be applied, with B changing
one of the rewards with m∗

1 after the execution of the protocol. It yields to B an
advantage of 1

2 + 1
4N x + negl(λ) to an IND-CPA game (with N the budget and

the number of pulls) which is impossible if Paillier is IND-CPA secure.

Proof of Theorem 3. Let A be a PPT adversary trying to retrieve the cumulative
sum of rewards and B an adversary trying to retrieve any of the N rewards gen-
erated. As(data) has a non-negligible advantage ⇔ Br(data) has a non-negligible
advantage.

⇐ A can call B and obtains the correct value of one reward with probabil-
ity non-negligible. It gives him a lower bound on the sum of all rewards, and

Secure Cumulative Reward Maximization in Linear Stochastic Bandits 275

consequently reduces the possibilities of s. It now has a better probability than
random to guess s.

⇒ B calls A and obtains the correct value of s with a non-negligible probabil-
ity. It is an upper bound on the value of one reward, and reduces the possibilities
of all rt.

The bounds do not reduce significantly the space of possibilities if N is big
but N can very well be small, even 1. In any case, the advantage one benefits
from the other is non-negligible.

This ensures that P cannot retrieve s, because it would give him an advantage
in retrieving one of the rewards, and it has been proven impossible.

Proof of Theorem 4. Same proof as for Theorem 1 applies.

Proof of Theorem 5. Assume a PPT adversary A who, given M, has a proba-
bility of guessing the correct s with probability 1

|s| + x + negl(λ). Then we show
how an adversary B can use A to gain a non-negligible advantage in a Paillier
IND-CPA game. Again, we assume that if M is changed with a value unrelated
to the protocol, then A does not conserve its advantage. B simulates the exe-
cution of the protocol with θ and arms of his choice. It knows the value of s at
the end. He then chooses s as m1 for the IND-CPA challenge, and a value out
of the set of possible s for m0. It gives m0 and m1 to the challenger who returns
EDC(mb) with b = 0 or 1 with probability 1

2 . B takes the set M of all messages
exchanged by the nodes for the protocol, and replaces EDC(s) with EDC(mb). It
calls As(M′) and observes the output. If it is s, it answers 1 to the decisional
challenge. Else, it answers at random 0 or 1 with probability 1

2 .

– b = 0 (with probability 1
2)

• A returns s with probability 1
|s| and B is wrong.

• A returns something else with probability 1 − 1
|s| , B answers at random

and is right with probability 1
2 .

– b = 1 (with probability 1
2)

• A returns s with probability 1
|s| + x + negl(λ), and B answers 1 and is

right.
• A returns something else with probability 1−(1

|s| +x+negl(λ)), B answers
at random and is right with probability 1

2 .

In total, B answers correctly the challenge with probability P (B) = 1
2 (1 −

1
|s|)

1
2 + 1

2 (1
|s| +x+negl(λ))+ 1

2 (1− 1
|s| −x−negl(λ))12 = 1

4 − 1
4|s| + 1

2|s| + 1
2x+ 1

4 −
1

4|s| − 1
4x + negl(λ) = 1

2 + 1
4x + negl(λ). He has gain a non-negligible advantage

in the Paillier IND-CPA game, which is impossible. Thus, such an adversary A
cannot exist.

Proof of Lemma 1. This is immediate, as all images/preimages are equally likely
if σ is uniformly selected.

276 R. Ciucanu et al.

Proof of Theorem 6. Assume an adversary Ax(M) who has a probability 1
K +

x+negl(λ) of guessing the correct arm pulled at round t. It also knows the index
of the maximal element in the permuted list of Bi that P and Comp exchange at
round t. That index is the permuted index of the arm who is really pulled, xt.
It means that A can make a guess on an element of the permutation σt and is
right with the same probability as it is right at guessing the arm pulled at round
t, and it benefits of the same non-negligible advantage. But A does not know σ
and should only have a probability of 1

K of guessing an element of σ according
to Lemma 1. This is a contradiction, so A cannot exist.

Proof of Theorem 7. Assume a PPT adversary A who, given dataComp is able
to retrieve the value Bi of arm i with probability 1

K +x+negl(λ). After making
his guess B′

i, he can look in σ(listB) the position of B′
i and make a guess on

the value of σ(i). It benefits of the same non-negligible advantage in guessing an
element of the permutation σ on which it has no information. This contradicts
Lemma 1, thus such an adversary cannot exist.

Proof of Theorem 8. For a fixed s, if the random number rand is uniformly
chosen, then rand + s can take all possible values with the same probability.
Hence when Comp sees rand + s, it gains no information on s.

References

1. Abbasi-Yadkori, Y., Pál, D., Szepesvári, C.: Improved algorithms for linear stochas-
tic bandits. In: NIPS, pp. 2312–2320 (2011)

2. Auer, P.: Using confidence bounds for exploitation-exploration trade-offs. JMLR
3, 397–422 (2002)

3. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-Time analysis of the multiarmed
Bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)

4. Baldimtsi, F., Ohrimenko, O.: Sorting and searching behind the curtain. In: Böhme,
R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 127–146. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-47854-7 8

5. Bourse, F., Minelli, M., Minihold, M., Paillier, P.: Fast homomorphic evaluation of
deep discretized neural networks. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10993, pp. 483–512. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96878-0 17

6. Ciucanu, R., Lafourcade, P., Lombard-Platet, M., Soare, M.: Secure best ARM
identification in multi-armed bandits. In: Heng, S.-H., Lopez, J. (eds.) ISPEC 2019.
LNCS, vol. 11879, pp. 152–171. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-34339-2 9

7. Gajane, P., Urvoy, T., Kaufmann, E.: Corrupt Bandits for preserving local privacy.
In: ALT, pp. 387–412 (2018)

8. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–
178 (2009)

9. Goldreich, O.: The Foundations of Cryptography - Volume 2: Basic Applications.
Cambridge University Press, Cambridge (2004)

10. Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM
Trans. Interact. Intell. Syst. (tiis) 5(4), 1–19 (2016)

https://doi.org/10.1007/978-3-662-47854-7_8
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1007/978-3-030-34339-2_9
https://doi.org/10.1007/978-3-030-34339-2_9

Secure Cumulative Reward Maximization in Linear Stochastic Bandits 277

11. Lattimore, T., Szepesvári, C.: Bandit Algorithms. Cambridge University Press
(2020). https://tor-lattimore.com/downloads/book/book.pdf

12. Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to
personalized news article recommendation. In: WWW, pp. 661–670 (2010)

13. Mishra, N., Thakurta, A.: (Nearly) optimal differentially private stochastic multi-
arm bandits. In: UAI, pp. 592–601 (2015)

14. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

15. Shariff, R., Sheffet, O.: Differentially private contextual linear bandits. In: NeurIPS,
pp. 4301–4311 (2018)

16. Tossou, A.C.Y., Dimitrakakis, C.: Algorithms for differentially private multi-armed
bandits. In: AAAI,pp. 2087–2093 (2016)

17. Valko, M., Munos, R., Kveton, B., Kocák, T.: Spectral bandits for smooth graph
functions. In: ICML, pp. 46–54 (2014)

https://tor-lattimore.com/downloads/book/book.pdf
https://doi.org/10.1007/3-540-48910-X_16

Secure Transfer Learning for Machine
Fault Diagnosis Under Different

Operating Conditions

Chao Jin1(B) , Mohamed Ragab2 , and Khin Mi Mi Aung1

1 Institute for Infocomm Research, A*STAR, Singapore, Singapore
{jin chao,mi mi aung}@i2r.a-star.edu.sg

2 School of Computer Science and Engineering, Nanyang Technological University,
Singapore, Singapore

mohamedr002@e.ntu.edu.sg

Abstract. The success of deep learning is largely due to the availabil-
ity of big training data nowadays. However, data privacy could be a big
concern, especially when the training or inference is done on untrusted
third-party servers. Fully Homomorphic Encryption (FHE) is a power-
ful cryptography technique that enables computation on encrypted data
in the absence of decryption key, thus could protect data privacy in
an outsourced computation environment. However, due to its large per-
formance and resource overheads, current applications of FHE to deep
learning are still limited to very simple tasks. In this paper, we first
propose a neural network training framework on FHE encrypted data,
namely PrivGD. PrivGD leverages the Single-Instruction Multiple-Data
(SIMD) packing feature of FHE to efficiently implement the Gradient
Descent algorithm in the encrypted domain. In particular, PrivGD is the
first to support training a multi-class classification network with double-
precision float-point weights through approximated Softmax function
in FHE, which has never been done before to the best of our knowl-
edge. Then, we show how to apply FHE with transfer learning for more
complicated real-world applications. We consider outsourced diagnosis
services, as with the Machine-Learning-as-a-Service paradigm, for multi-
class machine faults on machine sensor datasets under different operating
conditions. As directly applying the source model trained on the source
dataset (collected from source operating condition) to the target dataset
(collect from the target operating condition) will lead to degraded diag-
nosis accuracy, we propose to transfer the source model to the target
domain by retraining (fine-tuning) the classifier of the source model with
data from the target domain. The target domain data is encrypted with
FHE so that its privacy is preserved during the transfer learning pro-
cess. We implement the secure transfer learning process with our PrivGD
framework. Experiments results show that by fine-tuning a source model
for fewer than 10 epochs with encrypted target domain data, the model
can converge to an increased diagnosis accuracy by up to 20%, while the

This research/project is supported by A*STAR under its RIE2020 Advanced Manu-
facturing and Engineering (AME) Programmatic Programme (Award A19E3b0099).

c© Springer Nature Switzerland AG 2020
K. Nguyen et al. (Eds.): ProvSec 2020, LNCS 12505, pp. 278–297, 2020.
https://doi.org/10.1007/978-3-030-62576-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62576-4_14&domain=pdf
http://orcid.org/0000-0002-6858-1177
http://orcid.org/0000-0002-2138-4395
http://orcid.org/0000-0002-5652-3455
https://doi.org/10.1007/978-3-030-62576-4_14

Secure Transfer Learning for Machine Fault Diagnosis 279

whole fine-tuning process takes approximate 3.85 h on our commodity
server.

Keywords: Homomorphic encryption · Data privacy · Transfer
learning · Fault diagnosis

1 Introduction

Machine Learning as a Service (MLaaS) is becoming an increasingly hot topic
in recent years. In this paradigm, large organisations with large amounts of data
can train high quality models, and share their models with other users who
do not own enough data or cannot afford to train complete models of their
own. This is extremely useful when the data of interest is hard to acquire. For
instance, in the healthcare domain, to train a deep learning model that can
predict a rare disease from a patient’s X-Ray image, we need enough amount of
positive samples, i.e., patents’ X-Ray images with that particular disease. While
a large hospital may possess enough data to train a good model, individual
clinics may not have the data and resources to do so. It is therefore beneficial
for the hospital to put its model on the cloud and provide inference services
for the clinics. Another example is the machine fault diagnosis in the advanced
manufacturing domain. It usually requires time and efforts to collect enough
sensor data under machine faulty conditions to train an accurate fault diagnosis
model, especially when there are multiple different failure types and different
operating environments. Take the training of a simple logistic regression model
as an example, it is suggested that at least N = 10 · k/p training samples are
required, where k is the number of covariates (independent variables), and p is
the smallest of the proportions of negative or positive cases in the dataset [1].

Although MLaaS enables model owners to share the usage of their mod-
els without transferring them to the users, it poses data privacy risks on the
users’ side, as the users need to upload their private data to the outsourced
inference servers. In order to solve the data privacy issue, researchers have pro-
posed numbers of privacy-preserving neural network inference solutions, based
on cryptography technologies like Fully Homomorphic Encryption (FHE) [2–9],
Multi-Party Computation (MPC) [10,11], or hybrid of FHE and MPC [12,13].
In particular, FHE [14] provides strong crypto primitives that enable computa-
tion directly on encrypted data. To apply FHE in the MLaaS scenario, a model
is pre-trained on the clear data and deployed on an inference server, a user
encrypts his data using a FHE scheme before sending the data to the inference
server, and then the encrypted user data is evaluated homomorphically with the
model on the inference server, and finally the inference result which is also in
encrypted form is sent back to the user for decryption. FHE based solutions are
considered as non-interactive, in which the server can independently evaluate the
whole model and generate the predicted result. On the other hand, MPC based
solutions, built on top of techniques like Garbled Circuits [15] and Secrete Shar-
ing [16], require interactive communications between the user and the server,

280 C. Jin et al.

and considerable amount of computational load at the user side, which may not
be the optimal case in many application scenarios.

Despite of its strong crypto primitives, FHE in its current state cannot be
directly applied to large and deep neural network models, due to its large compu-
tational and memory resource overhead, as well as the noise growth along with
computational depth. Therefore, current FHE-based solutions are only target-
ing for simple inference tasks like MNIST [2–5] and CIFAR10 [3,4,8], and even
simpler training tasks like logistic regression [17].

In this paper, we apply FHE to the MLaaS scenario with a real-world appli-
cation, machine fault diagnosis on the vibration sensor data. Furthermore, the
sensor data may be collected under different machine operating conditions. We
first assume that a model owner who possesses enough data trains a complete
fault diagnosis model (including a feature extractor and a classifier) for a certain
operating condition. Then the model owner deploys his model on a server and
provides inference services for other users. On the other hand, the users who
could not afford to train their own models can encrypt their own sensor data
using FHE and send to the server for inference. However, multiple challenges
may be faced here. First, the model may be too big and cannot be evaluated
efficiently as a whole in the FHE domain. Second, the user data may be col-
lected in a different machine operating conditions which may results in lower
inference accuracy if directly apply the model on it. To address these challenges,
we propose to use a transfer learning approach: 1) the model owner shares the
feature extractor of his model among the users for them to extract the common
features from their time-series sensor data; and 2) the user extracts and encrypts
the features from his own data and send to the inference server to fine-tune the
classifier; and finally 3) the fine-tuned classifier can be used for fault diagnosis
for the user’s new incoming data. Noted that we leverage transfer learning in
two ways here. First, it enables sharing the common part (i.e., feature extractor)
and protecting only the task-specific part (i.e., classifier) of the model, thus can
significantly reduce the network size in the FHE domain. Second, the fine-tuning
process with user’s private data leverages on the prior knowledge (weights and
biases) of the source model’s classifier, thus can converge to an increased accu-
racy with less data and fewer number of training iterations (compared to training
from scratch).

The fine-tuning process of the fault diagnosis model involves training of a
multi-class classifier in the FHE domain. While training a binary classifier (logis-
tic regression) with FHE may be an easier task, training a multi-class classifier
is a much harder problem as it requires implementation of Softmax activation
function in the FHE domain. To enable efficient neural network training on
FHE encrypted data, we design and implement the PrivGD framework. PrivGD
supports the multi-class classifier training through approximating an estimated
Softmax function in the FHE domain. Moreover, PrivGD offers a more par-
allelized Mini-Batch Gradient Descent training procedure, by designing more
efficient matrix multiplications on the encrypted data based on the powerful
SIMD packing features [18] of modern FHE schemes.

Secure Transfer Learning for Machine Fault Diagnosis 281

The major contributions of our paper are summarized as follows.

– We design and implement PrivGD, a secure neural network training frame-
work on FHE encrypted data. PrivGD offers optimized Mini-Batch Gradient
Descent training with FHE, and is the first to support secure training of
double-precision float-point networks for multi-class classification tasks, to
the best of our knowledge.

– We propose a new paradigm of privacy-preserving MLaaS based on transfer
learning, where a user can use his private data to fine-tune the classifier model
for personalized inference services with improved accuracy.

– We demonstrate the efficiency of our secure transfer learning paradigm on
a real-world application, machine fault diagnosis through sensor data under
different operating conditions. By using PrivGD, one diagnosis model for a
source condition can be fine-tuned with encrypted data from a target con-
dition, to achieve improved accuracy by up to 20% on the target condition
through fewer than 10 training epochs.

The rest of the paper is organized as follows. The next section introduces pre-
liminaries and background knowledge. In Sect. 3 we describe PrivGD, our neural
network training framework on FHE encrypted data. In Sect. 4 we describe our
secure transfer learning paradigm with the real-world application of machine
fault diagnosis, and the experiment results are discussed in Sect. 5. In Sect. 6 we
discuss about related work and finally we conclude the paper in Sect. 7.

2 Preliminaries

2.1 Fully Homomorphic Encryption

Since its first introduction by Rivest et al. [19], FHE has always been an intrigu-
ing technology due to its ability of computing on encrypted data in the absence
of the decryption key. In 2009, Gentry proposed the first construction of a FHE
scheme [14]. Since then, this field has been seen great advancements and a num-
ber of new FHE schemes have been proposed [20–22]. Generally, the FHE plain-
text and ciphertext spaces are polynomial rings. FHE is instantiated to preserve
the algebraic structure between plaintext and ciphertext, and provides the user
with two main computational operations: homomorphic addition and homomor-
phic multiplication. These operations can manipulate ciphertexts and produce
encrypted results that are equivalent to the corresponding plaintext results after
decryption.

Modern FHE schemes conceal plaintext messages with noise that can be iden-
tified and removed with the secret key [23]. As we compute on encrypted data,
the noise magnitude accumulated in a ciphertext increases at a certain rate (high
rate for multiplication and low rate for addition). As long as the noise is below a
certain threshold, that depends on the encryption parameters, decryption can fil-
ter out the noise and retrieve the plaintext message successfully. Although FHE
schemes include a primitive (known as bootstrapping) to refresh the noise [14]

282 C. Jin et al.

inside ciphertexts, it is extremely computationally expensive. Instead, one can
use a levelled FHE scheme [20] that allows evaluating circuits of multiplica-
tive depth below a certain threshold, which can be controlled by the encryption
parameters. In this way, one can avoid the expensive bootstrapping operations
by selecting the appropriate encryption parameters that can accommodate the
computational needs of the applications.

Next we briefly introduce a levelled FHE scheme we use in this paper, the
CKKS scheme [22]. The plaintext and ciphertext are ring elements of a poly-
nomial ring Rq = Zq[X]/(XN + 1), where XN + 1 is the polynomial modulus
with degree N and Zq[x] is the polynomial with integer coefficients based on
modulus q. In particular, q is the product of a group of prime factors, where the
number of primes is called the “level” of the ciphertext. When the input data
is first encrypted, its ciphertext is at the highest level, say level L. Then along
with the computations, the ciphertext may gradually move down to lower levels,
by removing one prime factor from q at a time. In General, L determines the
largest multiplication depth a single ciphertext can have.

CKKS supports standard FHE primitives like encode and decode, encrypt
and decrypt, addition and multiplication (with both ciphertexts and plaintexts).
Besides that, a unique feature of CKKS is that it supports fixed-point arith-
metic for approximate computing on encrypted numbers. To implement this,
the input real numbers are first scaled with a large scaling factor and rounded
to the nearest integer (quantization). Then they are encoded into plaintexts and
subsequently encrypted into ciphertexts. To maintain a constant scaling factor
in the ciphertext after multiplication, CKKS offers an efficient rescaling pro-
cedure which moves down the ciphertext to the next lower level by removing
a prime factor from coefficient modulus q, at the same time scales down the
amplified scaling factor in the ciphertext by the prime that removed from q.
As mentioned before, one can drastically improve FHE performance via Single-
Instruction Multiple-Data (SIMD) packing methods. In CKKS, a vector of up to
N/2 complex numbers can be encoded in a single plaintext element. This allows
one to perform parallelized SIMD homomorphic operations on packed ciphertexts
efficiently. Packing can be viewed as if the ciphertext has independent slots, each
concealing one data item. To manipulate the slots within a ciphertext, CKKS
offers the rotate primitive that can circularly shift the data locations across the
slots.

2.2 Neural Network Inference and Training

A feed-forward neural network composes of a stack of processing layers, where
each layer performs certain computation on its input data according to the layer
type, and outputs the processed data to the next layer for further computation.
The common types of a nerual network layer are as follows.

– Convolution layer. This layer computes weighted sum of the input data. Each
convolution operation is computing the dot product between a weight vector
(i.e., filter map) and a data vector, and then adding a bias to it. The locations

Secure Transfer Learning for Machine Fault Diagnosis 283

of the filter maps are shifted so as to compute with different data vectors from
the whole input data.

– Fully connected layer. This layer can be viewed as a special kind of convolution
layer, where the weighted sum (dot product) is always done between a weight
vector and the whole input data.

– Activation layer. This layer applies an activation function to each of the input
data. The activation functions are usually non-linear functions like Sigmoid,
ReLU, etc.

– Pooling layers. This layer is usually used to down sample the input data to a
smaller size, by returning the maximum (max-pooling) or average (average-
pooling) of input vectors from the whole input data.

Neural networks are used for inference tasks like classification and regression.
The inference phase only involves forward-propagation, where the input data is
feed into the network, processed layer by layer, and the last layer gives the final
output of the network. Before a neural network can be used for inference tasks,
it must be trained. The training phase involves both forward-propagation and
backward-propagation, whereas the backward-propagation is used to compute
the derivatives (gradients) of a loss function with regard to the network weights
and biases. An optimization algorithm (e.g., Gradient Descent) is then used to
update the weights and biases according to the gradients, to minimize the value
of the loss function.

A straightforward implementation of the Gradient Descent (GD) algorithm
would be to update the weights and biases after each training sample, which
is called Stochastic Gradient Descent (SGD). However, in practice people often
adopt a more optimized form called Mini-Batch based GD, which accumulates
the gradients from a batch of training samples, and then update the weights and
biases at one time. Specifically, if the batch size equals the whole training set, the
method is also called Batch Gradient Descent. In our secure training framework,
we adopt Mini-Batch (Batch) Gradient Descent with HE packed data, to take
full advantage of the performance benefit from SIMD-styled computations.

2.3 Transfer Learning

Deep learning (DL) is one of the most successful paradigms in data-driven
approaches that has wide acclaimed performance in many practical applications.
Yet, it works only under the assumption that training data and testing data are
sampled from the same distribution, which may not hold at many practical sce-
narios. Naive approach is to train new model independently for each new data
distribution. Training a new model from scratch for each new data distribution
not only adds additional computational burdens but it also requires large amount
of labeled data. Transfer Learning, which aims to transfer knowledge among dif-
ferent domains, can be a promising candidate to address the aforementioned
challenges [24]. Different from DL, transfer learning leverages the knowledge
from one or more source domains to maximize the performance in the target
domain. Recently, transfer learning has been shown great capability with reduc-
ing the deep learning requirements for both computational requirements and

284 C. Jin et al.

the amount of labeled data [25]. Wide range of deep learning applications has
benefited from transfer learning including Natural Language Processing (NLP),
Computer Vision, and Robotics [26–28]. In our approach, we leverage transfer
learning to realize efficient machine fault diagnosis across different operating
conditions.

3 PrivGD: Secure Neural Network Training with FHE

In this section, we introduce our design and implementation of PrivGD, a FHE-
based secure neural network training framework. We describe the components
and considerations for a generate framework for different network architectures.

3.1 Matrix Multiplications with Packed FHE Ciphertexts

Matrix multiplication is a core operation in neural networks. To enable efficient
matrix multiplications with encrypted data, we leverage the HE packing feature
to pack multiple matrix elements into slots of a single ciphertext. This gives the
dual benefits of reduced ciphertext amount and SIMD-styled parallel computa-
tion. Specifically, we adopt the following formats in PrivGD to pack a matrix
into ciphertexts:

– Row-majored Packing (RP). A m-row n-column matrix Xm×n is packed into
m ciphertexts, with Row ri encrypted in ciphertext Ci (1 ≤ i ≤ m).

– Column-majored Packing (CP). A Matrix Xm×n is packed into n ciphertexts,
with Column cj in Ciphertext Cj (1 ≤ j ≤ n).

– Replicated Packing (REP). A Matrix Xm×n is packed into m×n ciphertexts,
with each element ei,j is replicated in all the slots in Ciphertext Ci,j .

Subsequently, we define the following matrix multiplication operations.

– A REP matrix Xm×k multiplies a RP matrix Y k×n, the result Zm×n is a RP
matrix. In particular, we have the equation: [Ci]Z =

∑k
j=1([Ci,j]X × [Cj]Y),

where [Ci]Z is the ciphertext for row ri of Z, [Ci,j]X is the ciphertext for
element ei,j of X, and [Cj]Y is the ciphertext for row rj of Y .

– A CP matrix Xm×k multiplies a REP matrix Y k×n, the result Zm×n is a CP
matrix. Similarly, we have the equation: [Cj]Z =

∑k
i=1([Ci]X × [Ci,j]Y).

– A RP matrix Xm×k multiplies a CP matrix Y k×n, the result Zm×n is a
REP matrix. The ciphertext [Ci,j]Z for element ei,j of Z is produced by
[Ci]X × [Cj]Y , followed by applying the AllSum [29] algorithm to the mul-
tiplied ciphertext. Note that AllSum adds all the slots in a ciphertexts, and
the sum is replicated in all the slots in that ciphertext. The algorithm uses
log2 N rotations and additions on the ciphertext, where N is the number of
slots.

It should be noted that different matrix formats can be converted between each
other by masking and rotation operations. For example, a REP matrix can be
converted into a RP matrix, and the j-th slot of RP Matrix’s i-th row [Ci]RP is

Secure Transfer Learning for Machine Fault Diagnosis 285

produced by masking out (i.e., multiplying with a one-hot vector where only the
masking location is one) the j-th slot of [Ci,j]REP in REP matrix and add into
[Ci]RP . However, matrix format conversions are generally expensive operations
which cost additional multiplication depths and noise budgets, and should be
avoided wherever possible.

In the next subsection, we will show how to utilize these matrix formats and
multiplication functions to efficiently implement the neural network training
processes.

3.2 Neural Network Training with FHE

Training a neural network generally involves multiple steps. For each iteration
of training, first is to run the forward pass that takes in input and computes
final output of the network, and second is to compute the loss function and its
gradients with regard to the network output, and last is to run the backward
pass that reversely computes the gradients for each layer using chain rule, and
updates the weights and biases accordingly. To enable training with FHE, we
target to solve the challenges in all these steps in PrivGD.

Forward Propagation. The linear computation layers, such as convolution
and fully-connected layers, constitute the major computations in the forward
pass. These layers are generally computing the weighted sum of layer inputs
with regard to weights and biases, which can further be converted into matrix
multiplications. As we adopt mini-batch based gradient descent algorithm in
PrivGD, we target to compute the entire mini-batch in one shot through packed
matrix multiplications described above. In particular, we adopt REP matrix
format for weights and biases, and RP matrix format for batched inputs, where
each column is an input vector and each row ciphertext pack a single element
from each vector. The result of the matrix multiplication is another RP matrix
that holds the output vectors, which is ready to be feed into the next layer for
processing.

On the other hand, the non-linear activation layers, such as ReLU and Sig-
moid, cannot be directly computed with FHE, and they need to be approximated
by polynomials [2,17], or implemented through private table lookups for a quan-
tized version [30]. Max-pooling layers can be replaced with average-pooling or
sum-pooling [2], which are actually special kinds of convolution layers with con-
stant weights.

Loss and Gradient Computation. After getting the last linear-layer’s output
vector z from forward pass, we need to compute a loss function and its gradient
with regard to z. For classification tasks, z usually needs to go through another
activation layer (Sigmoid or Softmax) before loss computation, and for regression
tasks, it is usually directly used for loss computation. Table 1 summarizes the
common loss functions and their gradients with regard to z for various tasks.
For regression tasks, the gradients can be computed by the weighted difference

286 C. Jin et al.

between z and the ground truth label t, which can be computed in HE directly.
For classification tasks, the gradients can be computed by the difference between
the last activation function outputs and the ground truth labels. While the
Sigmoid activation function is easier to be approximated with polynomials and
computed in FHE, the polynomial approximation for Softmax, however, is a
harder problem and little work has been done on it to the best of our knowledge.
In Subsect. 3.3, we introduce a new and efficient way to train multi-class classifier
in FHE with approximated Softmax.

Table 1. Common Loss functions and their Gradients.

Task Activation function on z Loss function Loss Gradient w.r.t z

Binary
classification

Sigmoid Binary
Cross-Entropy

Sigmoid(z) - t

Multi-class
classification

Softmax Multi-class
Cross-Entropy

Softmax(z) - t

Regression – Mean Squared
Error

2
N
(z − t)

Backward Propagation. After getting the gradients for the last linear-layer’s
outputs, we can start the backward pass and reversely compute the gradients for
the weights and biases in all the layers. For each linear layer, two major types of
computations are performed in the backward pass: one is to compute gradients
for the layer weights and biases, and the other is to compute the gradients for the
layer inputs (previous layers’ outputs). Recall that the inputs X and outputs Y
of each layer, as well as their gradients dX and dY , are stored as RP-formatted
matrices, and the layer weights and biases are stored as REP-formatted matrices.
According to chain rule, the gradient of each weight is the multiplication of the
layer input and the gradient of the layer output it associates. Therefore, we have
the following equation for gradient computation of layer weights.

[dW]REP = [dY]RP × [XT]CP (1)

In Eq. 1, dY is the RP matrix holding layer output’s gradients, and XT is the
transpose of layer inputs, which is in CP format. Their multiplication produces
a REP matrix dW , in which each element is exactly the corresponding weight’s
gradient summed on the entire minibatch. For biases, their gradients db simply
equals the gradients of the associated layer outputs, therefore can directly do a
sum up for the minibatch using AllSum on the Ciphertexts. The summed gra-
dients can be directly used to update the weights and biases in a later step. Pay
attention that we do not take the additional step of computing the average gra-
dients for the minibatch, as this can be combined with adjusting of the learning
rate.

Secure Transfer Learning for Machine Fault Diagnosis 287

On the other hand, computing the gradients for the layer inputs, as shown
in Eq. 2, is very similar like the forward propagation process.

[dX]RP = [WT]REP × [dY]RP (2)

Back propagating through an activation function layer is different from a
linear layer in two ways. First, there is no weights in the activation function
layer, thus no weight gradients computation; second, the derivative of the acti-
vation function needs to be computed in order to compute the gradients of the
layer input. As we use polynomials to approximate the activation functions (e.g.,
ReLU), we can take the derivative of the polynomial, which is also an polyno-
mial, as the derivative of the activation function. On the other hand, for some
activation functions the derivatives can also be computed in FHE in their native
forms. For example, the derivative of Sigmoid layer Y = Sigmoid(X) can be
simply computed as Y (1 − Y), and the derivative of Tanh layer Y = Tanh(X)
is 1 − Y 2.

After the gradients of weights and biases in all the linear layers are computed,
the next step is to update the weights and biases based on some optimization
method. The original version of SGD optimizer, W = W − η ·dW where η is the
learning rate, can be directly computed in FHE. One can also add a weight decay
term or momentum term into the optimizer, but at the cost of some additional
computational complexity.

3.3 Multi-class Classifier Training in FHE with Approximated
Softmax

Training a multi-class classifier in FHE requires approximating the Softmax func-
tion with polynomials, which is very challenging due to the fact that Softmax is
a multi-variate function. In PrivGD, we do not target to directly approximate
Softmax with polynomials. Instead, we approximate an estimated version of Soft-
max [31], which is proved to be able to achieve very close parameter estimations
with original Softmax in multi-class classifier training. The output probability
for each of the classes computed by the Estimated Softmax is described in Eq. 3.

Pc =
∏

m �=c

Sigmoid(zc − zm) (3)

Then, we can further compute the Negative Log Likelihood loss function and its
gradients with regard to the last linear layer outputs, which can be expressed in
Eq. 4. We assume each training sample is encrypted and its class label is known
to the training server, and thus it is straightforward to compute the gradients in
Eq. 4. In case the class labels are also encrypted, we just need some additional
masking and addition operations for the gradient computation.

⎧
⎪⎨

⎪⎩

dzt =
∑

m �=t

(Sigmoid(zt − zm) − 1) for class t matches sample label

dzm = 1 − Sigmoid(zt − zm) for all the rest classes

(4)

288 C. Jin et al.

To compute the gradients in Eq. 4 with FHE, we only need to approximate the
Sigmoid function with polynomials, which is a simpler task as Sigmoid approxi-
mation has been widely studied in prior arts [32–34] and used in logistic regres-
sion training with FHE [17]. What’s more, it should be noted that the multi-
plication depth for gradient computation in Eq. 4 equals only a single Sigmoid
approximation, which is the same as in logistic regression training.

3.4 Current Challenges and Our Approach

It should be noted that neural network training with FHE, although possible,
still faces multiple challenges especially for larger networks: 1) deeper networks
consume more multiplication depths as ciphertexts are computed throughout the
layers, and 2) the multiplication depths are doubled in the training phase as it
involves both forward and backward propagation; 3) the training losses usually
need a large number of training iterations to converge, which further amplifies the
multiplication depths; and 4) non-linear functions in the network may need to be
approximated with high-degree polynomials in order to be evaluated accurately
in FHE. Therefore, in order to avoid the expensive bootstrapping operations, one
needs very large encryption parameters to accommodate the large multiplication
depths, which are deemed to be impractical due to high resource overhead and
low performance.

Due to the above reasons, we are not targeting to train complete new models
from scratch with FHE, instead, our approach is to use private data to refine
existing models to make them adapt to new tasks, with a transfer learning app-
roach. In later section, we will demonstrate the efficiency of our framework with a
practical application to fine-tune machine fault diagnosis models with encrypted
user data.

4 Secure Transfer Learning for Personalized Machine
Fault Diagnosis

In this section, we demonstrate our new paradigm of private and personal-
ized MLaaS through secure transfer learning, with the real-world application
of machine fault diagnosis under different operating conditions.

4.1 The Machine Vibration Sensor Datasets

Our application scenario is to utilize deep learning models for diagnosing motor
bearing faults from vibration sensor data attached to the machines. The datasets
are downloaded from the Case Western Reserve University Bearing Data Center
Website [35]. The CWRU bearing dataset is time-series data that collected at
12k sampling rate. It composes 4 different subsets which corresponds to different
loading torques (i.e., operating conditions), where the torque values ranges from
0 to 3. In each subset, the data instances fall into 4 different categories, one
normal category and three faulty categories including inner-race faults (IF),

Secure Transfer Learning for Machine Fault Diagnosis 289

outer-race faults (OF), and bearing-race faults (BF). Each faulty category could
have 3 fault sizes, i.e., 0.007 in., 0.014 in., and 0.021 in., which leads to 10 total
classes (1 normal class, and 9 faulty classes), as shown in Table 2.

4.2 Network Model for Machine Fault Diagnosis

Our model for the fault diagnosis is composed of two components, a feature extrac-
tor and a classifier. In particularly, the feature extractor is a 5-layer convolutional
neural network with 1-dimensional kernels (1D-CNN). It aims to find a latent rep-
resentation of the time-series data that could be class discriminative. On the other

Table 2. CWRU bearing dataset description [36]

Class label Fault type Fault size (inches) Load (hp)

1 Normal 0 0, 1, 2, 3

2 IF 0.007 0, 1, 2, 3

3 IF 0.014 0, 1, 2, 3

4 IF 0.021 0, 1, 2, 3

5 OF 0.007 0, 1, 2, 3

6 OF 0.014 0, 1, 2, 3

7 OF 0.021 0, 1, 2, 3

8 BF 0.007 0, 1, 2, 3

9 BF 0.014 0, 1, 2, 3

10 BF 0.021 0, 1, 2, 3

Fig. 1. Fault diagnosis model and the secure transfer learning approach.

290 C. Jin et al.

hand, the classifier which is composed of a fully connected layer followed by a Soft-
max activation layer, takes the extracted features from the 1D-CNN network as
inputs, and outputs the probabilities the input sample belongs to each of the 10
classes. The detailed structure of our model is shown in Fig. 1.

4.3 Secure Model Fine-Tuning Across Different Operating
Conditions

In the MLaaS paradigm, the model owner deploys his model (i.e., source model)
on a cloud server to provide inference services for other users. In our application
scenario, we assume each user’s machine is operating at a different condition,
and directly applying the source model to the target conditions may lead to
degraded diagnosis accuracy. To solve the problem, we propose a secure transfer
learning approach, where a user can fine-tune the source model with encrypted
data samples from his own machine and the corresponding working condition.
Specifically, the model owner first distributes the source model’s feature extrac-
tor to all the users, and then the users use the feature extractor to extract
features from their own data samples, encrypt the features with FHE, and send
them to the cloud server to fine tune the classifier of the source model. It must
be noted that, when the classifier is fine-tuned by a particular user, its weights
and biases are becoming encrypted, and it can only be used to provide diagnosis
services for that user after fine-tuning.

4.4 Implementation of Secure Fine-Tuning Process

We use PrivGD to implement the fine-tuning process. As shown in Fig. 1, the
user utilizes the encrypted features as input to fine-tune the classifier part of the
source model. PrivGD implements the Estimated Softmax for multi-class classi-
fier training, and we only need to approximate Sigmoid for it to run in FHE. In
[17], the authors suggested to use the Least Squared method to find polynomial
approximations for Sigmoid on certain input interval. We adopt a similar app-
roach and use the degree-3 polynomial g(x) = 0.5 + 0.15012x − 0.00159x3 for
approximating Sigmoid in our model. In order to minimize the number of train-
ing iterations in the fine-tuning process, we employ the batch gradient descent
approach, in which each iteration uses all the training samples from the user.
In our experiment setting, each user uses 2000 samples to fine-tune the source
model, and each input feature dimension is 32, so the input for each training
batch is a 32 × 2000 RP-formatted matrix [X32×2000]RP in ciphertexts.

Before starting the fine-tuning process, we need to fix the number of train-
ing epochs. The number needs to be carefully chosen in order to balance the
required multiplication depth in FHE and the fine-tuning accuracy. For each
training iteration, the following steps are involved: 1) the input features are first
multiplied with the layer weights in the forward pass; 2) then the results are used
to compute the loss gradients as with the formula described in Subsection 3.3
(multiplication-depth is 2 as we use degree-3 polynomial for Sigmoid); 3) and
then the computed gradients are multiplied with the input features to get the

Secure Transfer Learning for Machine Fault Diagnosis 291

gradients for the weights; 4) at last the weights are updated by subtracting the
gradients multiplied with the learning rate. The total multiplication depth in
one round of training iteration is 5. In our experiments, we will show that after
fine-tuning the source model by 10 epochs, it already converges to optimal accu-
racy on the target data, therefore the total number of multiplicative depths in
the whole fine-tuning process can be set to 50.

4.5 FHE Parameters Selection

We choose CKKS to be the underlying FHE scheme as it natively supports
double-precision float-point numbers in neural network training. The CKKS
scheme is governed by three major parameters, the ring dimension (polyno-
mial modulus degree) N , the scaling factor Δ that controls the precision of the
plaintext value, and the ciphertext coefficient modulus q that determines the
largest multiplication depth D of a ciphertext. As with previous analysis, the
whole fine-tuning process needs a multiplication depth of 50, and this requires q
to have at least 52 prime factors1. We select the first and the last factors to be
50-bit primes, and all the intermediate factors to be 30-bit primes. As a result,
the ciphertext coefficient modulus q is to be 1600 bits in total. On the other
hand, we select the scaling factor Δ to be 230, and the rescaling operation after
each multiplication can maintain the same scaling factor for the plaintext value
in the ciphertext. The last step is to choose an appropriate ring dimension N
for the encryption scheme. On the one hand, we need a large enough N to meet
the required security level, and on the other hand, we need to keep N as small
as possible for more efficient FHE computation. Following the recommendation
of NIST [37], we set the security level to be at least 80 bits, and according to
the parameter estimation equation given in [17], we need N to be 216.

5 Experiment Evaluation

5.1 Experiment Server Setup

We carry out the experiments on a server with an Intel Xeon Platinum 8170
CPU @ 2.10 GHz with 26 cores, and 188 GB RAM. The operating system is
Arch Linux. The fault diagnosis model training and fine-tuning on clear (i.e.,
unencrypted) data is done using Pytorch at version 1.3.1, and for the secure
fine-tuning process we use our PrivGD framework implemented on Microsoft
SEAL FHE library version 3.4.5.

1 For CKKS implementation in the SEAL library, the first prime is consumed in
the encryption process, the last prime is used to accommodate the scaled plaintext
value, and all the other primes in between are consumed one by one after each
multiplication.

292 C. Jin et al.

5.2 Experiment Results

We have 4000 data samples in each of the four vibration sensor datasets as
described in Sect. 4.1, denoted as 0hp, 1hp, 2hp, and 3hp according to the
machine operating conditions. For each of the datasets, we first train a com-
plete model (including feature extractor and classifier) with Pytorch and the
original Softmax using all the 4000 samples on the clear data, in which 3000
randomly chosen samples are used as training set and the rest are used as test
set. In each training, we vary the Mini-Batch size and learning rate to maximize
the classification accuracy on the test set. The best test accuracy we can get are
97.6%, 97.75%, 98.15%, 98.65% on the four datasets respectively. Pay attention
to the fact that these are the same-domain accuracy where the trained mod-
els are applied to the data from the same operating condition. In the following
transfer learning experiments, the models will be in turn set as the source model,
and be applied to the data from the other operating conditions, the test accuracy
will be cross-domain accuracy.

50

55

60

65

70

75

80

85

90

95

100

0 1 2 3 4 5 6 7 8 9 10

Te
st

 A
cc

ur
ac

y
(%

)

of Fine-tune Epochs

1hp_to_0hp So max

1hp_to_0hp HE w/ Approx. So max

1hp_to_2hp So max

1hp_to_2hp HE w/ Approx. So max

1hp_to_3hp So max

1hp_to_3hp HE w/ Approx. So max

50

55

60

65

70

75

80

85

90

95

100

0 1 2 3 4 5 6 7 8 9 10

Te
st

 A
cc

ur
ac

y
(%

)

of Fine-tune Epochs

0hp_to_1hp So max

0hp_to_1hp HE w/ Approx. So max

0hp_to_2hp So max

0hp_to_2hp HE w/ Approx. So max

0hp_to_3hp So max

0hp_to_3hp HE w/ Approx. So max

50

55

60

65

70

75

80

85

90

95

100

0 1 2 3 4 5 6 7 8 9 10

Te
st

 A
cc

ur
ac

y
(%

)

of Fine-tune Epochs

2hp_to_0hp So max

2hp_to_0hp HE w/ Approx. So max

2hp_to_1hp So max

2hp_to_1hp HE w/ Approx. So max

2hp_to_3hp So max

2hp_to_3hp HE w/ Approx. So max

50

55

60

65

70

75

80

85

90

95

100

0 1 2 3 4 5 6 7 8 9 10

Te
st

 A
cc

ur
ac

y
(%

)

of Fine-tune Epochs

3hp_to_0hp So max

3hp_to_0hp HE w/ Approx. So max

3hp_to_1hp So max

3hp_to_1hp HE w/ Approx. So max

3hp_to_2hp So max

3hp_to_2hp HE w/ Approx. So max

Fig. 2. Fine-tuned accuracy of transferred models on the target datasets.

Secure Transfer Learning for Machine Fault Diagnosis 293

For each transfer learning experiment, we select one operating condition as
source domain, and the rest operating conditions as target domains. We sepa-
rately fine-tune the source model on each of the target domains. For each fine-
tuning process, we randomly choose 2000 samples from the target dataset and
use Batch Gradient Descent to fine-tune the classifier of the source model, and
another 1000 samples to test the accuracy of the fine-tuned model. Specifically,
we implement two versions of the fine-tuning processes, one is the unencrypted
version with Pytorch and the original Softmax function, and the other is the
encrypted version with PrivGD and approximated Softmax. We also log down
the test accuracy after 1 to 10 fine-tuning epochs respectively, as shown in Fig. 2.

We can see that, before fine-tuning (i.e., at fine-tune epoch #0), the model
accuracy generally drops quite significantly on the target data, compared with
the same-domain accuracy. The fine-tuning process can efficiently improve the
accuracy of the source model on the target data, especially in the first few epochs.
The fine-tuning accuracy converges to the optimal after around 8 epochs, and
after that, the improvement becomes marginal. The fine-tuning improvements
are not the same for different experiments, with the maximal improvement of
20% across all the experiments (70% to 90% in the 3hp to 0hp case). On the
other hand, the secure encrypted version achieves quite close accuracy to the
unencrypted version, at most of the time the difference is within 3%.

5.3 Running Performances of Fine-Tuning with FHE

Memory Usage. A CKKS ciphertext is composed of two degree-N polynomi-
als, with q to be the polynomial coefficient modulus. As with the parameters
chosen in our experiments, we can estimate that each ciphertext is 25MB. We
can further compute that the total number of ciphertexts for the inputs, weights
and biases, and outputs of the classifier as shown in Fig. 1 is 372. Therefore, the
total memory resource usage is about 9.1 GB.

Latency Performance. The total run time for the 10 epochs of fine-tuning is
3.85 h on our experiment server. Pay attention to the fact that the run time for
each epoch gradually decreases with the number of epochs, where the first epoch
takes the longest run time of 42.9 min, and the last epoch takes the shortest of
3.3 min. This is because the level of the ciphertexts is reduced by the rescaling
operations along with the multiplication operations, which results in smaller
coefficient modulus parameters and more efficient ciphertext operations.

6 Related Work

The major effort of our work is to apply transfer learning to the secure MLaaS
scenario. In the convention of transfer learning, the feature extractor is usually
considered as public and shared across different domains, while the domain-
specific part of the model is trained or fine-tunned on domain-specific data. Sev-
eral previous arts have demonstrated the applicability and efficiency of transfer

294 C. Jin et al.

learning with FHE-based secure MLaaS [3,6]. For example, In [3], the authors
proposed the workflow that the user used a public feature extractor to extract
features from medical images, and then encrypted the features with FHE and
sent to cloud for private inference. Similar like [3] and [6], in our approach, we
assume the MLaaS service provider makes the feature extractor public to all
the users, and puts the classifier on the cloud for private inference. However,
our work further demonstrates that, if the classifier of the service provider was
previously trained with data in a different domain (ie, working condition) from
the user data, it may not work well on the user data. Therefore, what our app-
roach is different from [3] and [6] is that, we propose to use a small amount of
encrypted user data to fine-tune the original classifier of the service provider,
and the fine-tuned classifier can provide higher inference accuracy on the user
data. Our approach not only applies to the machine fault diagnosis task in our
paper, but in fact provides a general paradigm that can be applied to other
MLaaS tasks in similar use scenarios.

Our work belongs to the category of secure neural network training on
encrypted data with FHE. Due to the large performance gap compared with
the clear data counterpart, there are very limited prior arts in this category and
most of them focus on the simple task of logistic regression training [17,38].
In [17], the authors tried to train a binary classifier on the encrypted medical
images. They targeted to train a complete model from scratch, which needs many
training iterations and subsequently very larger encryption parameters. On the
contrast, we demonstrate a more practical way of applying secure training with
transfer learning for the real world applications. We show that by fine-tuning on
existing models, it requires much fewer training epochs and smaller encryption
parameters, although for more complicated multi-class classification tasks.

Another category of related work is the secure inference of neural networks.
CryptoNets [2] was the first to implement a inference network with FHE, but
limited to the MNIST dataset. FasterCryptoNets [3] was among the first to try
deeper networks and larger datasets with FHE, but suffered from high resources
overhead. E2DM [5] and LoLa [6] tried to employ the SIMD packing feature
to optimize the performance and resource overhead of inference network with
FHE. These work commonly used polynomials to approximate the ReLU acti-
vation function inside the networks. As they didn’t handle the training phase,
there was no need to approximate the last Sigmoid or Softmax layers for the
classification models. On the other hand, MPC-based solutions, such as Gazelle
[13] and XONN [10], were free from approximation of non-linear functions in net-
works, but required both server and client to be constantly online and suffered
from high communication overhead between them.

7 Conclusion

In this paper, we propose a new secure MLaaS paradigm, in which the user uses
his private data to fine-tune the model on the cloud for higher inference accuracy.
We build up PrivGD, a secure neural network training framework with FHE,

Secure Transfer Learning for Machine Fault Diagnosis 295

and implement the fine-tuning process with it. In particular, PrivGD is the first
to support the approximation of Softmax to train multi-class classifiers in FHE.
We have demonstrated the efficiency of our secure transfer learning approach on
the machine fault diagnosis tasks and datasets. In the future, we plan to apply
our framework and approach to more real-world tasks and datasets.

References

1. Peduzzi, P., Concato, J., Kemper, E., Holford, T.R., Feinstein, A.R.: A simulation
study of the number of events per variable in logistic regression analysis. J. Clin.
Epidemiol. 49(12), 1373–1379 (1996)

2. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.:
CryptoNets: applying neural networks to encrypted data with high throughput and
accuracy. In: International Conference on Machine Learning, pp. 201–210 (2016)

3. Chou, E., Beal, J., Levy, D., Yeung, S., Haque, A., Fei-Fei, L.: Faster cryp-
tonets: leveraging sparsity for real-world encrypted inference. arXiv preprint
arXiv:1811.09953 (2018)

4. Al Badawi, A., et al.: The AlexNet moment for homomorphic encryption: HCNN,
the first homomorphic CNN on encrypted data with GPUs. arXiv preprint
arXiv:1811.00778 (2018)

5. Jiang, X., Kim, M., Lauter, K., Song, Y.: Secure outsourced matrix computation
and application to neural networks. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, pp. 1209–1222 (2018)

6. Brutzkus, A., Elisha, O., Gilad-Bachrach, R.: Low latency privacy preserving infer-
ence. arXiv preprint arXiv:1812.10659 (2018)

7. Bourse, F., Minelli, M., Minihold, M., Paillier, P.: Fast homomorphic evaluation of
deep discretized neural networks. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10993, pp. 483–512. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96878-0 17

8. Hesamifard, E., Takabi, H., Ghasemi, M.: CryptoDL: deep neural networks over
encrypted data. arXiv preprint arXiv:1711.05189 (2017)

9. Jin, C., et al.: CareNets: compact and resource-efficient CNN for homomorphic
inference on encrypted medical images. arXiv preprint arXiv:1901.10074 (2019)

10. Sadegh Riazi, M., Samragh, M., Chen, H., Laine, K., Lauter, K., Koushanfar, F.:
XONN: Xnor-based oblivious deep neural network inference. In: 28th USENIX
Security Symposium (USENIX Security 2019), pp. 1501–1518 (2019)

11. Mishra, P., Lehmkuhl, R., Srinivasan, A., Zheng, W., Popa, R.A.: Delphi: a cryp-
tographic inference service for neural networks. In: 29th USENIX Security Sym-
posium (USENIX Security 20) (2020)

12. Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious neural network predictions via
minionn transformations. In: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pp. 619–631 (2017)

13. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: a low latency
framework for secure neural network inference. In: 27th USENIX Security Sympo-
sium (USENIX Security 2018), pp. 1651–1669 (2018)

14. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the Forty-first Annual ACM Symposium on Theory of Computing, pp. 169–178
(2009)

http://arxiv.org/abs/1811.09953
http://arxiv.org/abs/1811.00778
http://arxiv.org/abs/1812.10659
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1007/978-3-319-96878-0_17
http://arxiv.org/abs/1711.05189
http://arxiv.org/abs/1901.10074

296 C. Jin et al.

15. Yao, A.C.-C.: How to generate and exchange secrets. In: 27th Annual Symposium
on Foundations of Computer Science (SFCs 1986), pp. 162–167. IEEE (1986)

16. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game, or a
completeness theorem for protocols with honest majority. In Proceedings of the
Nineteenth ACM Symposium on Theory of Computing, STOC, pp. 218–229 (1987)

17. Kim, M., Song, Y., Wang, S., Xia, Y., Jiang, X.: Secure logistic regression based on
homomorphic encryption: design and evaluation. JMIR Med. Inf. 6(2), e19 (2018)

18. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes
Cryptogr. 71(1), 57–81 (2014)

19. Rivest, R.L., Adleman, L., Dertouzos, M.L., et al.: On data banks and privacy
homomorphisms. Found. Secure Comput. 4(11), 169–180 (1978)

20. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. ACM Trans. Comput. Theory (TOCT) 6(3), 1–36
(2014)

21. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptology ePrint Archive 2012, 144 (2012)

22. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 15

23. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 29

24. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng.
22(10), 1345–1359 (2009)

25. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in
deep neural networks? In: Advances in Neural Information Processing Systems,
pp. 3320–3328 (2014)

26. Yu, J., Jiang, J.: Learning sentence embeddings with auxiliary tasks for cross-
domain sentiment classification. In: Proceedings of the 2016 Conference on Empir-
ical Methods in Natural Language Processing, pp. 236–246 (2016)

27. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep
learning requires rethinking generalization. arXiv preprint arXiv:1611.03530 (2016)

28. Rusu, A.A., Večeŕık, M., Rothörl, T., Heess, N., Pascanu, R., Hadsell, R.: Sim-
to-real robot learning from pixels with progressive nets. In: Conference on Robot
Learning, pp. 262–270 (2017)

29. Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 554–571. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 31

30. Thaine, P., Gorbunov, S., Penn, G.: Efficient evaluation of activation functions
over encrypted data. In: 2019 IEEE Security and Privacy Workshops (SPW), pp.
57–63. IEEE (2019)

31. Titsias, M.: RC AUEB. One-vs-each approximation to softmax for scalable esti-
mation of probabilities. In: Advances in Neural Information Processing Systems,
pp. 4161–4169 (2016)

32. Basterretxea, K., Tarela, J.M., Del Campo, I.: Approximation of sigmoid function
and the derivative for hardware implementation of artificial neurons. IEE Proc.
Circuits, Devices Syst. 151(1), 18–24 (2004)

33. Vlcek, M.: Chebyshev polynomial approximation for activation sigmoid function.
Neural Netw. World 4(12), 387–393 (2012)

https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-22792-9_29
http://arxiv.org/abs/1611.03530
https://doi.org/10.1007/978-3-662-44371-2_31

Secure Transfer Learning for Machine Fault Diagnosis 297

34. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving
machine learning. In: 2017 IEEE Symposium on Security and Privacy (SP), pp.
19–38. IEEE (2017)

35. Case Western Reserve University Bearing Data Center. Motor bearing fault
datasets. https://csegroups.case.edu/bearingdatacenter/home

36. Jiang, G.-Q., Xie, P., Wang, X., Chen, M., He, Q.: Intelligent fault diagnosis of
rotary machinery based on unsupervised multiscale representation learning. Chin.
J. Mech. Eng. 30(6), 1314–1324 (2017)

37. Barker, E., Barker, W., Burr, W., Polk, W., Smid, M., et al.: Recommendation for
key management: Part 1: General. National Institute of Standards and Technology,
Technology Administration (2006)

38. Kim, A., Song, Y., Kim, M., Lee, K., Cheon, J.H.: Logistic regression model train-
ing based on the approximate homomorphic encryption. BMC Med. Genom. 11(4),
83, (2018)

https://csegroups.case.edu/bearingdatacenter/home

Private Decision Tree Evaluation
with Constant Rounds via (Only) SS-3PC

over Ring

Hikaru Tsuchida1,2(B), Takashi Nishide1, and Yusaku Maeda3

1 University of Tsukuba, Tsukuba, Japan
s2030119@s.tsukuba.ac.jp, nishide@risk.tsukuba.ac.jp

2 NEC Corporation, Tokyo, Japan
3 The University of Tokyo, Tokyo, Japan
yusaku-maeda@g.ecc.u-tokyo.ac.jp

Abstract. Secure computation is the technology that computes an arbi-
trary function represented as a circuit without revealing input values.
Typical technologies related to secure computation are secure multiparty
computation (MPC) that uses secret sharing (SS) schemes, for example,
SS-MPC, garbled circuit (GC), and homomorphic encryption (HE). These
cryptographic technologies have a trade-off relationship with respect to
the computation cost, communication cost, and type of computable cir-
cuit. Hence, the optimal choice depends on the computing resources, com-
munication environment, and function related to applications. The private
decision tree evaluation (PDTE) is one of important applications of secure
computation. There exist several PDTE protocols with constant commu-
nication rounds that use GC, HE, and SS-MPC over the field. However, to
the best of our knowledge, PDTE protocols with constant communication
rounds that use SS-MPC over the ring (requiring only lower computation
costs and communication complexity) is non-trivial and still missing. In
this paper, we propose a PDTE protocol that uses a secure three-party
computation (3PC) protocol over the ring with one corruption.

Keywords: Private decision tree evaluation · Secure multiparty
computation · Constant-round protocol

1 Introduction

1.1 Backgrounds

Secure multiparty computation (MPC) [6,23,46] is the cryptographic technology
that enables multiple parties to compute an arbitrary joint function represented
as a circuit securely. MPC does not reveal each party’s inputs during its execu-
tion even if an adversary corrupts a certain rate of parties. There are two types of
adversaries in MPC protocols: semi -honest adversary and malicious adversary .
The former follows the specifications of the protocol. However, it attempts to

c© Springer Nature Switzerland AG 2020
K. Nguyen et al. (Eds.): ProvSec 2020, LNCS 12505, pp. 298–317, 2020.
https://doi.org/10.1007/978-3-030-62576-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62576-4_15&domain=pdf
https://doi.org/10.1007/978-3-030-62576-4_15

Private DTE with Constant Rounds via (Only) SS-3PC over Ring 299

obtain as much information as possible. The latter does not follow the speci-
fications, and also attempts to obtain as much information as possible about
other parties’ inputs. Therefore, the malicious adversary is stronger than the
semi-honest one.

There are two types of typical MPC: garbled circuit (GC) [5,46] and secret
sharing based MPC (SS -MPC) [6,23]. Most GC protocols compute an arbitrary
function represented as a binary circuit among two parties by using encrypted
truth tables (garbled tables) and oblivious transfer (OT) [1,35] that is a public
key primitive. A GC protocol requires many communication bits and small and
constant communication rounds.

In SS-MPC, each party distributes its inputs, and the computation proceeds
with secret shares that look like random numbers among a number of parties. In
the SS-MPC protocol, each party computes a function, which is represented as a
binary, arithmetic, or mixed circuit (composed of binary and arithmetic circuits)
by using shares locally and communicating among parties. The SS-MPC protocol
requires small communication bits and many communication rounds. There are
two types of SS-MPC: SS -MPC over the field and SS -MPC over the ring . The
two schemes differ in the mathematical structure they use.

The former [6,11] uses a finite field. SS-MPC over the field can compute an
arbitrary function represented as an arithmetic circuit. It can construct constant-
round protocols by using the multiplicative inverse. However, it requires modulo
operations with a large prime number. Therefore, the computational cost of
SS-MPC over the field is heavier than SS-MPC over the ring.

The latter uses a residue ring (e.g., power-of-two ring). In particular, the
secure three-party computation protocol (3PC) over the ring [3] and four-party
computation protocol over the ring [9,38] have gained attention in recent years
because they can perform high throughput even when they compute a complex
function represented as mixed circuits. SS-MPC on the power-of-two ring benefits
from not only a small communication complexity but also a small computation
cost because there is no need to perform a modulo operation explicitly if it uses
a power-of-two ring that equals the size of the data type. However, SS-MPC over
the ring cannot easily construct the constant-round protocol due to a lack of the
multiplicative inverse.

In addition, homomorphic encryption (HE) [16,21,22,24,37,39] computes
the function represented as an arithmetic circuit without revealing input values,
which is different from MPC. Although HE does not require communications
during computation, it requires a large computation cost.

As mentioned above, GC, SS-MPC, and HE have a trade-off relationship
with respect to the computation cost, communication cost, and type of com-
putable circuit. Hence, the optimal choice depends on the computing resources,
communication environment, and function related to applications. To mitigate
this problem, a hybrid scheme of GC and SS-MPC [17,34,38] and that of GC
and HE [25] were proposed and studied. In particular, to mitigate the com-
munication cost problem, the offline-online paradigm is also widely known. It
divides the MPC protocol into an offline phase (where the protocol processes
part of computation that can be computed independently of parties’ inputs)

300 H. Tsuchida et al.

and online phase (where the protocol processes the rest of computation with
parties’ inputs). The offline-online paradigm can reduce the communication cost
of the online phase even if it increases the communication cost of the offline phase
and the whole computation. Therefore, the offline-online paradigm is useful for
MPC applications that focus on the response time of queries.

One typical applications of secure computation (e.g., GC, SS-MPC, and HE)
that has gained attention in recent years is the private decision tree evaluation
(PDTE). A decision tree is a commonly-used tool of decision support and widely
studied in machine learning. The PDTE protocol outputs the (encrypted) class
label assigned to the leaf node as the correct classification result without reveal-
ing confidential (or sensitive) information about the tree (e.g., decision threshold
values assigned to the internal node, comparison operations assigned to the inter-
nal node, or class label assigned to the leaf node) and the input feature vector.
For example, there are several applications of the PDTE: electrocardiogram clas-
sification [4,8], and remote diagnosis [8]. Araki et al. [2] conducted an experiment
about the private evaluation of a decision tree for credit decisions using 3PC over
the ring.

Kiss et al. [29] published a systematization of knowledge paper about
the PDTE. In [29], the PDTE is divided into three phases: feature selection,
comparison, and path evaluation. In the feature selection phase, a feature is
selected from the input feature vector without revealing the values of the input
feature vector, value of the selected feature, or index. In the comparison phase,
the selected feature is compared with the threshold value without revealing the
selected feature, threshold value, or comparison result. In the path evaluation
phase, the classification result is outputted without revealing the comparison
results. In [29], Kiss et al. focused on a constant-round protocol by using GC,
HE, and a hybrid scheme of GC and SS-MPC, but did not mention the constant-
round protocol using only the SS-MPC.

SS-MPC over the field can provide constant-round equality-testing, less-than,
and k-ary OR1 (AND) protocols [11]. Thus, we can easily obtain a constant-
round (but somewhat less efficient) protocol for the PDTE. However, it is non-
trivial to construct the PDTE protocol with constant rounds using only SS-MPC
over the ring. For example, Cock et al. proposed a PDTE protocol using only the
SS-MPC over the ring in [13]. However, the round complexity of their protocol
is proportional to the height of the tree and the bit length of the ring.

If we use GC, HE, or SS-MPC over the field, it is trivial to construct
a constant-round PDTE protocol. However, these techniques are less efficient
regarding the communication complexity and computation cost than SS-MPC
over the ring. On the other hand, it is non-trivial to construct the PDTE proto-
col with constant rounds using only SS-MPC over the ring. Therefore, the PDTE
protocol with SS-MPC over the ring has a larger round complexity. Thus, we
ask the following: Could we construct the constant-round PDTE protocol with
constant rounds using only SS-MPC over the ring (e.g., the 3PC that is based
on the secret sharing scheme over the ring)?

1 This computes
∨k

i=1 xi where xi ∈ {0, 1}.

Private DTE with Constant Rounds via (Only) SS-3PC over Ring 301

1.2 Our Results

We propose a PDTE protocol with constant rounds using the semi-honest 3PC
with single corruption. We propose an efficient constant-round protocol over the
ring in each phase as follows.

1. We propose a more efficient most significant bit (MSB) extraction protocol
with constant rounds than SecureNN [42]. Our scheme is used to construct
the constant-round less-than protocol and the constant-round equality-testing
protocol. Hence, our scheme can compute the process in the comparison phase
with constant rounds efficiently.

2. We propose a more efficient oblivious array read (OAR) protocol over the ring
than existing ones [7]. Our scheme can compute the process in the feature
selection phase with constant rounds efficiently.

3. We propose a path evaluation protocol with constant rounds. To the best of
our knowledge, this is the first constant-round path evaluation protocol over
the ring.

4. We propose a PDTE protocol with constant rounds over the ring using the
above contributions. To the best of our knowledge, this is the first PDTE
protocol proposed with constant rounds over the ring without GC, HE, or
OT (i.e., without public key primitives). Our scheme is based on a 3PC over
the ring that has efficient communication complexity and computation cost.
Therefore, our scheme can be performed efficiently even if the communication
environment has a large latency and limited communication bandwidth.

Table 1 shows the theoretical performance comparison of MSB extraction
protocol between SecureNN [42] and our scheme. Let L be an even number. The
MSB extraction protocol in SecureNN [42] takes the shares over the odd ring
ZL−1 as inputs and outputs the shares over the even ring ZL. However, SS-MPC
over the ring often uses the power-of-two ring (i.e., the even ring) for computa-
tional efficiency. Hence, we should compare the performance of our scheme with
the combination of a share conversion protocol that converts the shares on ZL to
the shares on ZL−1 and the MSB extraction protocol. The protocol combining
the share conversion and MSB extraction protocols in SecureNN [42] requires 9
rounds through the overall computation. On the other hand, our scheme (that
takes the shares on Z2k as inputs and outputs the shares on Z2) requires 7 rounds
in the online phase and 8 rounds in the online + offline phase. If we use the bit
conversion protocol [34] and convert the output the shares of our scheme to the
shares on Z2k , the number of rounds in the online phase is fewer than those of
SecureNN. Therefore, our scheme is superior to SecureNN with respect to round
complexity.

Table 2 shows the theoretical performance comparison of the OAR protocol
between our schemes and the existing schemes [7]. The OAR protocol takes the
shared array elements and shared index value as inputs and outputs the shared
array element corresponding to the index value. Existing schemes [7] take the
shares of the index value on Zm (where m is the length of the array) or shares of
Shamir’s secret sharing as input. However, we note that the share of the index

302 H. Tsuchida et al.

value may not always be on Zm as it depends on the preceding and subsequent
processes of the computation. In the context of the PDTE, both shares of the
index value and array elements may be over the same residue ring if the secure
computing methods (GC, HE, or SS-MPC) are used for not only evaluation
but also constructing the decision tree. Hence, the OAR protocol is required to
be a constant-round protocol even if both shares of the index value and array
elements are over the same residue ring. However, it is not clear whether the
existing schemes [7] are constant-round protocols or not even if both shares of
the index value and array elements are on the same residue ring because most
share conversion methods over the ring require many rounds. On the other hand,
our scheme over the ring (Protocol 3) is a constant-round protocol even if both
shares of the index value and array elements are over the same residue ring Z2k .

Tables 3 and 4 show the theoretical performance comparison of the PDTE
protocol between our schemes and naive constructions. The naive construction
over the ring (Protocol 9) and [13] are not a constant-round protocol, but our
scheme over the ring (Protocol 8) is.

Table 1. Comparison of communication complexity of secure three-party MSB extrac-
tion protocol between existing protocol and ours (k: bit length of ring, L(= 2k): mod-
ulus of ring, p′: smallest prime number greater than k, (2, 2)-ASS: 2-out-of-2 additive
secret sharing scheme, (2, 3)-RSS: 2-out-of-3 replicated secret sharing scheme)

Input Share Output Share Offline Online

Rounds Comm. [bits/all parties] Rounds Comm. [bits/all parties]

Naive MSB Extraction
(using bit-decomposition
protocol of ABY3 [34])

(2,3)-RSS on Z2k (2,3)-RSS on Z2 - - 1 + log2(k) 3k

SecureNN [42] (MSB
Extraction)

(2,2)-ASS on ZL−1 (2,2)-ASS on ZL - - 5 4k log2(p
′) + 13k

SecureNN [42] (Share
Convert + MSB
Extraction)

(2,2)-ASS on ZL (2,2)-ASS on ZL - - 9 8k log2(p
′) + 19k

This Work (Protocol 1) (2,3)-RSS on Z2k (2,3)-RSS on Z2 1 6k(k − 1) 7 11k + 3(k − 1) log2(p
′) + 4

This Work (Protocol 1)
+ Bit Conversion of
ABY3 [34]

(2,3)-RSS on Z2k (2,3)-RSS on Z2k 1 6k(k − 1) 8 17k + 3(k − 1) log2(p
′) + 4

Table 2. Comparison of communication complexity of oblivious array read protocol
between existing protocols and ours (m: length of array, k: bit length of ring, p: prime
number, p′: smallest prime number greater than k, n: number of parties, t(< n/2):
number of corrupted parties, (t + 1, n)-ASS: (t + 1)-out-of-n additive secret sharing
scheme, (t + 1, n)-SSS: (t + 1)-out-of-n Shamir’s secret sharing scheme, (t + 1, n)-RSS:
(t + 1)-out-of-n replicated secret sharing scheme)

Share of Input and
Output Array
Element

Share of Input Index Rounds Comm. [bits/all parties]

[30] (t + 1,n)-SSS on
Fp

(t + 1,n)-SSS on Fp m + 3 (m + 3)n(n + 1) log2(p)

Custom Three-party
Construction over ring [7]

(2,2)-ASS on Z2k (3,3)-ASS on Zm 2 4mk

Custom Three-party
Construction over field [7]

(2,2)-ASS on Fp (2,3)-SSS on Fp 12 (7m + 5 log(m) + 6) log(p)

General Construction (with
Constant Rounds) [7]

(t + 1, n)-SSS on
Fp

(t + 1, n)-SSS on Fp 5 (4m log2(log2(m)) + log2(m) +
2)n(n − 1) log2(p)

This Work over Ring
(Protocol 3)

(2,3)-RSS on Z2k (2,3)-RSS on Z2k 13 log2(m)(6k2 + 9k + (3k − 3) log2(p
′)

+6m + 4) + 4mk + 2m + 3k

Private DTE with Constant Rounds via (Only) SS-3PC over Ring 303

1.3 Related Work

Feature Selection Protocol (Oblivious Array Read Protocol). There are
two types of OAR protocol: circuit-based approach using general MPC [28,30–
32] and oblivious random access machine (ORAM) [18,20,27,43,44,47]. Blanton
et al. [7] proposed the OAR (and write) protocol with constant rounds. They
demonstrated through their experiments that their scheme is superior to state-
of-the-art schemes of the former [31] and the latter [18]. Therefore, to the best
of our knowledge, the OAR protocols in [7] are the latest and most efficient
protocol with constant rounds.

Table 3. Comparison of total communication complexity between naive PDTE proto-
cols and ours (m: number of features, k: bit length of ring, p′: smallest prime number
greater than k, h: height of tree)

Total

Rounds Comm. [bits/all parties]

Naive Construction
over ring (Protocol 9)

log2(m) + 2 log2(k) + log2(h) + 9 (2h −1) · (3 log2(m) log2(k)+6k log2(k)+6m log2(m)+4mk
+5m + 17k + 3) + 2h · (3h + 6k − 3) + 3k

[13] h + log2(k) + 5 (2h − 1) · (10m log2(m) + 30k − 10 log2(k) − 20) +2h · 10hk

This Work over Ring
(Protocol 8)

28 (2h − 1) · (log2(m)(6k2 + 9k + (3k − 3) log2(p
′) + 4)

+6m log2(m)+4mk+2m+18k2+35k+(9k−9) log2(p
′)+22)

Table 4. Comparison of communication complexity between naive PDTE protocols
and ours (m: number of features, k: bit length of ring, p′: smallest prime number
greater than k, h: height of tree)

Feature Selection Comparison Path Evaluation

Rounds Comm. [bits/all parties] Rounds Comm. [bits/all parties] Rounds Comm. [bits/all parties]

Naive Construction
over Ring (Protocol 9)

log2(m) + 5 (2h − 1) · (3 log2(m) log2(k)
+6m log2(m) + 4mk + 5m + 8k)

2 log2(k) + 2 (2h − 1) · (6k log2(k) +9k + 3) log2(h) + 2 2h · (3(h − 1) +6k) + 3k

[13] 2 (2h − 1) · 10m log2(m) log2(k) + 2 (2h−1)·(30k−10 log2(k)−220 h + 1 2h · 10hk

This Work over Ring
(Protocol 8)

13 (2h − 1) · (log2(m)(6k2 + 9k
+(3k − 3) log2(p

′) + 4)
+6m log2(m) + 4mk + 2m + 8k)

11 (2h − 1) · (18k2 + 27k
+(9k − 9) log2(p

′) + 22)
4 2h · (6k + 9h)

Comparison Protocol. In [14,15,19,36], efficient comparison protocols are
proposed. However, these schemes compute the less-than circuit and are not
constant-rounds protocols. ABY [17] and ABY3 [34] can construct a constant-
round comparison protocol over the ring by using GC. However, the constant-
round comparison protocol using only SS-MPC over the ring is not proposed in
[17,34]. To the best of our knowledge, the SecureNN [42] is the only 3PC based
on the secret sharing scheme (SS-3PC) including the MSB extraction protocol
with constant rounds over the ring2. We note that SecureNN [42] did not propose
a constant-round equality testing protocol.
2 In the conference version of FLASH [9], Byali et al. proposed a constant-round

MSB extraction protocol over the ring. However, the flaw was found and fixed in
the preprint version uploaded to the ePrint server. The MSB extraction protocol
of Trident [38] used the same approach as FLASH and had the same flaw. As a
result, the MSB extraction protocols of FLASH and Trident are not constant-round
protocols.

304 H. Tsuchida et al.

Path Evaluation Protocol (k-ary AND/OR Protocol). The path evalu-
ation protocol outputs the shares of class labels assigned to the leaf node where
the comparison result bits regarding the internal nodes included in its path are
all 1. That is, it is easy to construct the path evaluation protocol if the k-ary
AND/OR protocol exists.

Catrina and Hoogh [11] proposed a constant-round k-ary OR protocol over
the field. Ohata and Nuida [36] proposed an efficient k-ary AND protocol (i.e.,
multi-fan-in multiplication/AND protocol) over the ring. However, their protocol
is not a constant-round protocol. To the best of our knowledge, there is no
constant-round k-ary AND protocol over the ring. Therefore, it is still non-trivial
to construct a constant-round path evaluation protocol over the ring.

Private Decision Tree Evaluation Protocol. There are many constructions
of the PDTE protocol including those based on HE [40,45] and GC+HE [4,8].
Kiss et al. published [29] a systematization of knowledge paper that mainly
focused on the constant-round constructions based on GC or HE. On the other
hand, constructions of the PDTE protocol based on ORAM are proposed in
[26,41]. However, these constructions are not constant-round protocols.

Cock et al. [13] proposed an efficient PDTE protocol over the ring in
commodity-based two-party computation. However, in their protocol, each party
must clearly know the features and threshold values or has the shares of the
binary representation of these values. The protocol of Cock et al. uses only the
greater-than-equal protocol in comparison phase, not equality-testing protocol.
In their protocol, the outputs must be clear plain values or the shares of the
binary representation of the class label. Furthermore, their private decision tree
protocol in [13] is not a constant-round protocol. Hence, to the best of our knowl-
edge, there is no PDTE protocol with constant rounds over the ring using only
SS-MPC.

2 Preliminaries

2.1 Notations

Let Z2, Z2k , Zp(=Fp, where p is prime) and Zp′ (=Fp′ , where p′ is the smallest
prime larger than k) be the residue rings modulo 2, 2k, p or p′. We denote the
exclusive OR (XOR) operator and AND operator by ⊕ and ·, respectively. We
also use · as the multiplication operator on ZL where L = 2, 2k, p or p′. Let Pi be
the i-th party (i = 0, 1, 2). The security parameter is denoted by λ. The λ-bit
string is {0, 1}λ. We use the (cryptographically secure) pseudo-random functions
FL : {0, 1}λ × {0, 1}λ → ZL where L = 2, 2k, p or p′.

Let a|j ∈ Z2 be j-th bit of a ∈ Z2k . We also denote by a|j,...,i ∈ Z2k the
part of bit strings of a ∈ Z2k from j(≥ i)-th bit to i-th bit. Let msb(a) be the
MSB of a. For example, if a = 100(2) = 4 ∈ Z23 , we have that a|0 = 0, a|1 = 0,
a|2 = msb(a) = 1 and a|1,...,0 = 00(2) = 0.

Private DTE with Constant Rounds via (Only) SS-3PC over Ring 305

2.2 2-Out-of-3 Replicated Secret Sharing Scheme ((2,3)-RSS) and
2-Out-of-2 Additive Secret Sharing Scheme ((2,2)-ASS)

We denote the (2,3)-RSS shares of x on ZL (L = 2, 2k, p, p′) by [x]L =
([x]L,0, [x]L,1, [x]L,2) where x ∈ ZL. Pi has the share of x, [x]L,i = (xi, xi+1)
where x = x0 + x1 + x2 mod L (xi ∈ ZL, i = 0, 1, 2) and x2+1 = x0. We
also denote the (2,2)-ASS shares of x on ZL by 〈x〉L,(i,j) = (〈x〉L,i, 〈x〉L,j). Pi

and Pj have the share of x, 〈x〉L,i = xi and 〈x〉L,j = xj where x = xi +
xj mod L (xi ∈ ZL, i, j ∈ {0, 1, 2} (i �= j)), respectively. In particular, we
assume 0 ≤ x ≤ 2k−1 − 1 if we use [x]2k or 〈x〉2k .

2.3 Secure Three-Party Computation with One Corruption over
Ring

We use the same addition and multiplication of shares as [3] denoted as [x]L+[y]L
and [x]L · [y]L, respectively. We also use the same scalar addition and multipli-
cation of shares as [3] denoted as c+[x]L and c · [x]L where c ∈ ZL, respectively.
We use the same notation for operations of scalars and one of the shares to keep
the description simple.

We also note that Pi has the pair of shared keys (ki, ki+1) where ki ∈ {0, 1}λ

and k2+1 = k0.

2.4 Structure of Decision Tree

Fig. 1. Toy example of decision tree structure

Let {attri}m−1
i=0 (attri ∈ Z2k) be an input array as the feature vector. Its

length is m. We assume that attri is the i-th attribute.
The tree is assumed to be a complete binary tree. We set T =

(h, δ, {idxj}2
h−2

j=0 , {vj}2
h−2

j=0 , {condj}2
h−2

j=0 , {leafValj′ }2
h−1

j′=0
) as a complete binary

tree. Let h be the height of the tree. We denote the set of the index value idxj by

306 H. Tsuchida et al.

{idxj}2
h−2

j=0 . The j(= 0, . . . , 2h − 2)-th index value idxj ∈ Zm is used to select the

idxj-th attribute for comparison at the j-th internal node. Let {vj}2
h−2

j=0 be the
set of the decision threshold value. We assume vj ∈ Z2k to be the threshold value
assigned to the j-th internal node. Let {condj}2

h−2
j=0 be the set of the conditional

bits to select which comparison operations (less-than (<) or equality-testing
(==)) to perform. If condj = 0, it checks whether attridxj

< vj . If condj = 1, it
checks whether attridxj

== vj .
If the comparison result is true (i.e., 1), the next step is to judge the right

child node. If the comparison result is false (i.e., 0), the next step is to judge the
left child node. That is, 1 or 0 is assigned to each branch.

Each j′(∈ {0, 1, . . . , 2h − 1})-th leaf node has the class label value leafValj′ ∈
Z2k . Let {leafValj′ }2

h−1
j′=0

be a set of class label values assigned to leaf nodes. Also,

let PathBranchj′ = {bj′ ,�}h−1
�=0 (where bj′ ,� ∈ {0, 1}) be a set of paths to the leaf

nodes. We denote the bit assigned to the branch at the height � in the path to the
j′-th leaf node by bj′ ,�. Let δ : {0, . . . , 2h − 1} × {0, . . . , h − 1} → {0, . . . , 2h − 2}
be the map function that takes j′ (i.e., the position of the leaf node) and the
height � as inputs and outputs the position of the corresponding internal node.
Figure 1 shows the toy example of the complete binary tree where h = 2 and
m = 4.

2.5 Building Blocks of Three-Party Computation Protocol over
Ring

The following building blocks have perfect security with computational indistin-
guishability in the presence of one semi-honest corrupted party [3,7,12,33,34,42].
These protocols are universal composability (UC) secure [10], so they can be
combined with other protocols.

– [
∧h−1

j=0 bj]2 ← rArrayAND({[bj]2}h−1
j=0): It runs the logical product of h bits and

takes {[bj]2}h−1
j=0 as inputs and outputs [

∏h−1
j=0 bj]2. Intuitively, it computes

h−1 AND gates by using secure multiplication [3]. It requires log2(h) rounds
and 3(h − 1) bits as its communication cost.

– {[x|j]2}m−1
j=0 ← NaiveBitDec(m, [x]2k): It runs the bit-decomposition protocol

and takes [x]2k and m(≤ k) as inputs and outputs {[x|j]2}m−1
j=0 . For more

details, see [34]. It requires 1+ log2(m) rounds and 3m+3 log2(m) bits as its
communication cost.

– [x]2k ← BitConversion([x]2): It runs the bit conversion protocol and takes
[x]2 (where x ∈ Z2) as input and outputs [x]2k . For more details, see [34]. It
requires 1 round and 6k bits as its communication cost.

– [b]2 ← NaiveRingLT([x]2k , [y]2k): It runs the less-than protocol and takes [x]2k

and [y]2k as inputs and outputs [b]2 (where b = 1 iff x < y and b = 0
otherwise). Intuitively, it runs {[(x − y)|j]2}k−1

j=0 ← NaiveBitDec(k, [x − y]2k

internally. Then, it outputs [b]2 = [msb(x−y)]2. It requires 1+log2(k) rounds
and 3k + 3 log2(k) bits as its communication cost.

Private DTE with Constant Rounds via (Only) SS-3PC over Ring 307

– [b]2 ← NaiveRingEQ([x]2k , [y]2k): It runs the equality testing protocol and
takes [x]2k and [y]2k as inputs and outputs [b]2 (where b = 1 iff x = y and
b = 0 otherwise). Intuitively, it runs {[(x − y)|j]2}k−1

j=0 ← NaiveBitDec(k, [x −
y]2k) internally. Then, it runs [b]2 ← rArrayAND({[(x − y)|j]2 ⊕ 1}k−1

j=0) and
outputs [b]2. It requires 1 + 2 log2(k) rounds and 6k + 3k log2(k) − 3 bits as
its communication cost.

– [
∑h−1

j=0 xj · yj]2k ← rInnerProduct({[xj]2k}h−1
j=0 , {[yj]2k}h−1

j=0): It runs the inner-
product protocol and takes {[xj]2k}h−1

j=0 and {[yj]2k}h−1
j=0 as inputs and outputs

[
∑h−1

j=0 xj · yj]2k . For more details, see [3]. It requires 1 round and 3k bits as
its communication cost.

– [r]L,i ← RndGen(L, ki, ki+1): It generates the share of a random value on
ZL. It is called by each Pi using pseudo-random function FL and the pair of
shared keys (ki, ki+1). For more details, see [3]. It requires no communication
cost.

– [x]L ← rShare(L,Pi, x): It runs the input sharing protocol and takes the
modulus L, the input dealer Pi and the input value x as inputs and outputs
[x]L. For more details, see [3]. It requires 1 round and 4 log2(L) bits as its
communication cost.

– x ← rOpen(Pi, [x]2k): It runs the opening protocol and takes the receiver
Pi and the share [x]2k as inputs and outputs x. For more details, see [3]. It
requires 1 round and log2(L) bits as its communication cost.

– 〈x〉L,(i,i+1) ← aShare(Pi+2, L, x, Pi, Pi+1): It runs the input sharing protocol
and takes the input dealer Pi+2, the modulus L, the input value x and the
receivers Pi and Pi+1 as inputs and outputs 〈x〉L,(i,i+1). It requires 1 round
and 2 log2(L) bits as its communication cost.

– [xa]2k ← rArrayRead({[xj]2k}m−1
j=0 , [a]m): It runs the OAR protocol and takes

the shared array {[xj]2k}m−1
j=0 and the shared index [a]m as inputs and out-

puts [xa]2k . First, P0 and P1 generate {〈xj〉2k,(0,1)}m−1
j=0 from {[xj]2k}m−1

j=0

by setting 〈xj〉2k,0 = xj,0 + xj,1 mod 2k for P0 and 〈xj〉2k,1 = xj,2 for
P1 where [xj]2k,0 = (xj,0, xj,1) and [xj]2k,1 = (xj,1, xj,2). Each party gen-
erates the (2, 2)-ASS share of an index from [a]m. Then, each party runs
the OAR protocol of the custom three-party construction [7] and obtains
〈xa〉2k,(0,2). Next, P0 and P2 run [〈xa〉2k,0]2k ← rShare(2k, P0, 〈xa〉2k,0)
and [〈xa〉2k,2]2k ← rShare(2k, P2, 〈xa〉2k,2), respectively. Finally, it outputs
[xa]2k = [〈xa〉2k,0]2k + [〈xa〉2k,2]2k . It requires 3 rounds and 4mk + 2m + 8k
bits as its communication cost.

– b ← PrivateCompare(x, {〈a|j〉p′ ,(0,1)}k−1
j=0 , β, {sj}k−1

j=0 , {uj}k−1
j=0 , P2): This is

the private compare protocol [42] and takes the value x(∈ Z2k) known to P0

and P1, the shares of binary values {〈a|j〉p′ ,(0,1)}k−1
j=0 (a|j ∈ Z2), the random

bit (known to P0 and P1) β, the random values (known to P0 and P1) {sj}k−1
j=0

and {uj}k−1
j=0 (where sj , uj ∈ F

∗
p′) and the receiver P2 as inputs and outputs

the masked comparison result bit b = β ⊕ (a > x) to P2. It takes 1 round and
2k log2(p′) bits as its communication cost.

308 H. Tsuchida et al.

– {Rσ(j)}m−1
j=0 ← rSetShuffle({Rj}m−1

j=0): It runs the oblivious shuffle protocol for
the multidimensional shared array. Let Rj = {[vj]2k , [cj,0]2, . . . , [cj,h−1]2} be
the set of shares and Sm be the set of all permutation σ : {0, . . . , m − 1} →
{0, . . . , m − 1}. It takes the set of shares {Rj}m−1

j=0 as inputs and outputs
{Rσ(j)}m−1

j=0 = {[vσ(j)]2k , [cσ(j),0]2, . . . , [cσ(j),h−1]2} while no one knows σ.
Intuitively, it runs the oblivious shuffle protocol for (single) shared array
[12,33] in parallel. It requires 3 rounds and 6m(k + h) bits as its communica-
tion cost.

3 Proposed Protocol in Feature Selection Phase

In the feature selection phase, our protocol takes the share of the index [idx]2k

(where 0 ≤ idx ≤ m−1) and the set of shared attributes {[attrj]2k}m−1
j=0 as inputs

and outputs [attridx]2k . To construct our feature selection protocol (Protocol 3),
we propose a subprotocol, the bit-decomposition protocol (Protocol 2) that takes
the bit length m and the shares [x]2k as inputs and outputs the binary shares
{[x|j]}m−1

j=0 of m bits. To construct the subprotocol, we also propose the MSB
extraction protocol (Protocol 1). Therefore, we will explain, Protocols 1, 2 and 3.

Protocol 1. [msb(a)]2 ← πmsbExt([a]2k)

Input: [a]2k s.t. a ∈ Z2k , a =
∑k−1

j=0 2j · a|j
Output: [msb(a)]2(= [a|k−1]2)
1: (Offline phase)
2: for j = 0, . . . , k − 1 do in parallel
3: Each Pi runs [r|j]2,i ← RndGen(2, ki, ki+1) where r =

∑k−1
j=0 2j · r|j . (for

i = 0, 1, 2)
4: [r|j]2k ← BitConversion([r|j]2) // 1 round & 6k bits
5: end for
6: [r|k−2,...,0]2k =

∑k−2
j=0 2j · [r|j]2k

7: [2k−1 · msb(r)]2k = 2k−1 · [r|k−1]2k

8: (Online phase)
9: [a + (r|k−2,...,0)]2k = [a]2k + [r|k−2,...,0]2k

10: [2 · ((a + r)|k−2,...,0)]2k = 2 · [a + (r|k−2,...,0)]2k

11: for i = 0, 1 do in parallel
12: 2 · ((a+ r)|k−2,...,0) ← rOpen(Pi, [2 · ((a+ r)|k−2,...,0)]2k) // 1 round & k

bits
13: end for
14: r|k−2,...,0 ← rOpen(P2, [r|k−2,...,0]2k) // 1 round & k bits
15: for j = 0, . . . , k − 2 do in parallel
16: 〈r|j〉p′ ,(0,1) ← aShare(P2, p

′, r|j , P0, P1) // 1 round & log2(p′) bits
17: end for
18: P0 and P1 generate β ∈ {0, 1}, sj , uj ∈ Z

∗
p by using Fp and k1 for j =

0, . . . , k − 2.

Private DTE with Constant Rounds via (Only) SS-3PC over Ring 309

19: β ⊕ (r|k−2,...,0 > (a + r)|k−2,...,0) ← PrivateCompare((a + r)|k−2,...,0,
{〈r|j〉p′ ,(0,1)}k−2

j=0 , β, {sj}k−2
j=0 , {uj}k−2

j=0 , P2) // 1 round & 2(k − 1) log2(p′)
bits

20: P0, P1 and P2 set [β]2k = ((0, β), (β, 0), (0, 0))
21: P0, P1 and P2 set [(a+r)|k−2,...,0]2k = ((0, (a+r)|k−2,...,0), ((a+r)|k−2,...,0, 0),

(0, 0)).
22: [r|k−2,...,0]2k ← rShare(2k, P2, r|k−2,...,0) // 1 round & 4k bits
23: [u]2k = [β⊕(r|k−2,...,0 > (a+r)|k−2,...,0)]2k ← rShare(2k, P2, β⊕(r|k−2,...,0 >

(a + r)|k−2,...,0)) // 1 round and 4k bits
24: [r|k−2,...,0 > (a + r)|k−2,...,0]2k = ([u]2k − [β]2k)2 // 1 round & 3k bits
25: [a|k−2,...,0]2k = [(a + r)|k−2,...,0]2k − [r|k−2,...,0]2k + 2k−1 · [r|k−2,...,0 > (a +

r)|k−2,...,0]2k

26: [2k−1 · msb(a)]2k = [2k−1 · a|k−1] = [a]2k − [a|k−2,...,0]2k

27: [2k−1 · (msb(a) ⊕ msb(r))]2k = [2k−1 · msb(a)]2k + [2k−1 · msb(r)]2k = 2k−1 ·
[a|k−1]2k + 2k−1 · [r|k−1]2k

28: 2k−1 · (msb(a) ⊕ msb(r)) ← rOpen(P0, [2k−1 · (msb(a) ⊕ msb(r))]2k) // 1
round & k bits

29: [msb(a)⊕msb(r)]2 ← rShare(2, P0, msb(a)⊕msb(r)) // 1 round & 4 bits
30: [msb(a)]2 = [msb(a) ⊕ msb(r)]2 ⊕ [r|k−1]2
31: return [msb(a)]2

Protocol 2. {[x|j]2}m−1
j=0 ← πrBitDec(m, [x]2k)

Input: m(≤ k), [x]2k (s.t. x ∈ Z2k , x =
∑k−1

j=0 2j · x|j , x|j ∈ Z2 for j = 0, . . . , k − 1).

Output: {[x|j]2}m−1
j=0

1: for j = 0, . . . , m − 1 do in parallel
2: [2k−1−j · x|j,...,0]2k = 2k−1−j · [x]2k

3: [x|j]2 = [msb(2k−1−j · x|j,...,0)]2 ← πmsbExt([2
k−1−j · x|j,...,0]2k) // 9 rounds &

6k2 + 9k + (3k − 3) log2(p) + 4 bits

4: end for
5: return {[x|j]2}m−1

j=0

Protocol 3. [attridx]2k ← πrFSelection([idx]2k , {[attrj]2k}m−1
j=0)

Input: [idx]2k , {[attrj]2k}m−1
j=0 (s.t. 0 ≤ idx < m ≤ 2k).

Output: [attridx]2k

1: {[idx|i]2}log2(m)−1
i=0 ← πrBitDec(log2(m), [idx]2k) // 9 rounds & log2(m)(6k2 + 9k +

(3k − 3) log2(p) + 4) bits

2: for i = 0, . . . , log2(m) − 1 do in parallel
3: [idx|i]m ← BitConversion(m, [idx|i]2) // 1 round & 6m bits

4: end for
5: return [attridx]2k ← rArrayRead({[attri]2k}m−1

i=0 ,
∑log2(m)−1

i=0 2i ·[idx|i]m) // 3 rounds

& 4mk + 2m + 8k bits

310 H. Tsuchida et al.

Intuition behind Protocol 1. In the offline phase, each party pre-
pares three types of the shares of random numbers [r|k−2,...,0]2k , [2k−1 ·
msb(r)]2k , [r|k−1]2 (r =

∑k−1
j=0 2k · r|j , r|j ∈ Z2) (from Step 1 to 7).

In the online phase, our first goal is to compute [a|k−2,...,0]2k(= [a mod
2k−1]2k). First, each party uses [r|k−2,...,0]2k(= [r mod 2k−1]2k) to mask the
input share [a]2k , then computes the masked share [a + (r|k−2,...,0)]2k (at Step
9). Next, each party computes [2 · ((a + r)|k−2,...,0)]2k(= 2 · [a + (r|k−2,...,0)]2k)
(at Step 10). Then, P0 and P1 reveal [2 · ((a + r)|k−2,...,0)]2k and obtain 2 · ((a +
r)|k−2,...,0) mod 2k, from which they can obtain (a+r)|k−2,...,0 (from Step 11 to
13). We note that P0 and P1 cannot know the plain MSB bit, msb(a). In parallel,
P2 obtain r|k−2,...,0 (at Step 14). Next, each party runs PrivateCompare [42] and
P2 obtains the masked comparison result bit β ⊕ (r|k−2,...,0 > (a + r)|k−2,...,0)
(from Step 15 to 19). Then, each party removes the mask β by performing
arithmetic XOR operation over the ring (i.e., ([u]2k − [β]2k)2 at Step 24), and
obtains the share of comparison bit [r|k−2,...,0 > (a + r)|k−2,...,0]2k (from Step
20 to 24). Finally, each party computes [a|k−2,...,0]2k = [(a + r)|k−2,...,0]2k −
[r|k−2,...,0]2k + 2k−1 · [r|k−2,...,0 > (a + r)|k−2,...,0]2k(= [(a + r) mod 2k−1]2k −
[r mod 2k−1]2k + 2k−1 · [(r mod 2k−1) > ((a + r) mod 2k−1)]2k).

We note that [a|k−2,...,0]2k = [(a + r)|k−2,...,0]2k − [r|k−2,...,0]2k does not hold
in general. The reason that the equation does not work is because the wrap-
around phenomenon may occur. The wrap-around phenomenon means that the
modulo operation may make (a+r)|k−2,...,0 mod 2k less than r|k−2,...,0 mod 2k.
To deal with a case where wrap-around phenomenon occurs, we must compute
[(a+ r)|k−2,...,0]2k − [r|k−2,...,0]2k +2k−1 · [r|k−2,...,0 > (a+ r)|k−2,...,0]2k similarly
to [14,15,19] to ignore the effect of the wrap-around phenomenon.

Next, each party computes [2k−1 · msb(a)]2k = [2k−1 · a|k−1]2k = [a]2k −
[a|k−2,...,0]2k = [a]2k − [a mod 2k−1]2k (at Step 26). Then, P0 obtains 2k−1 ·
(msb(a)⊕msb(r)), from which P0 can obtain msb(a)⊕msb(r) (from Step 27 and
28). P0 distributes [msb(a)⊕msb(r)]2 (at Step 29). Finally, each party computes
[msb(a)]2 = [msb(a) ⊕ msb(r)]2 ⊕ [r|k−1]2.

Intuitions Behind Protocols 2 and 3. In Protocol 2, each party computes
the right shift (at Step 2) and invokes πmsbExt (at Step 3), repeatedly. Then, each
party gets the shares of each bit over Z2.

In Protocol 3, to convert [idx]2k to [idx]m, each party invokes πrBitDec and runs
BitConversion (from Step 1 to Step 4). Then, each party uses the OAR protocol
[7], rArrayRead and obtains [attridx]2k (at Step 5).

We emphasize that it is non-trivial to convert [idx]2k to [idx]m with constant
rounds. For example, if we use the (naive) circuit-based bit-decomposition pro-
tocol, BitDec, and BitConversion, the conversion of the shared index is not a
constant-round protocol. Hence, the whole of the feature selection protocol is
also not a constant-round protocol if the conversion of the shared index is not a
constant-round protocol.

Private DTE with Constant Rounds via (Only) SS-3PC over Ring 311

4 Proposed Protocol in Comparison Phase

In comparison phase, it is required to compare the attribute value and the deci-
sion threshold value without revealing these values, the comparison operators,
and comparison results. Hence, we construct the less-than protocol (Protocol 4)
and the equality-testing protocol (Protocol 5) as subprotocols. Then, we also
construct the comparison protocol (Protocol 6) by using these subprotocols, i.e.,
oblivious selection protocol for the comparison result.

Protocol 4. [a < b]2 ← πrLT([a]2k , [b]2k)

Input: [a]2k , [b]2k (s.t. a, b ∈ Z2k)
Output: [a < b]2
1: [c]2k = [a]2k − [b]2k

2: [msb(c)]2 ← πmsbExt([c]2k) // 9
rounds & 6k2+9k+(3k−3) log2(p)+4
bits

3: return [msb(c)]2

Protocol 5
. [a == b]2 ← πrEQ([a]2k , [b]2k)

Input: [a]2k , [b]2k (s.t. a, b ∈ Z2k)
Output: [a == b]2
1: [a < b]2 ← πrLT([a]2k , [b]2k) // 9

rounds & 6k2+9k+(3k−3) log2(p)+4
bits

2: [b < a]2 ← πrLT([b]2k , [a]2k) // 9
rounds & 6k2+9k+(3k−3) log2(p)+4
bits

3: [res]2 = ([a < b]2 ⊕ 1) · ([b < a]2 ⊕ 1)
// 1 round & 3 bits

4: return [res]2

Protocol 6. {[compj]2}2h−2
j=0 ← πrComp

({[attridxj]2k}2h−2
j=0 , {[vj]2k}2h−2

j=0 , {[condj]2

}2h−2
j=0)

Input: Attribute set {[attridxj]2k}2h−2
j=0 ,

threshold values {[vj]2k}2h−2
j=0 , condi-

tional values [condj]2}2h−2
j=0

Output: {[compj]2}2h−2
j=0

1: for j = 0, . . . , 2h − 2 do in parallel
2: [vj < attridxj]2 ← πrLT([vj]2k , [attridxj

]2k) // 9 rounds & 6k2 + 9k + (3k −
3) log2(p) + 4 bits

3: [vj == attridxj]2 ← πrEQ

([vj]2k , [attridxj]2k)// 10 rounds &

12k2 + 18k + 2 · (3k − 3) log2(p) + 12
bits

4: [compj]2 = [condj]2 · [vj < attridxj]2 ⊕
(1 ⊕ [condj]2) · [vj == attridxj]2 // 1
round & 6 bits

5: end for
6: return {[compj]2}2h−2

j=0

In Protocol 4, to run the less-than protocol, each party computes [a − b]2k =
[a]2k − [b]2k where we assume 0 ≤ a, b ≤ 2k−1 − 1 and invokes πmsbExt. If a is
smaller than b, msb(a − b) equals 1 and can be outputted as the result of the
less-than protocol. If not, msb(a− b) equals 0 and can be outputted. In Protocol
5, to run the equality-testing protocol, each party invokes πrLT([a]2k , [b]2k) and
πrLT([b]2k , [a]2k) in parallel. a = b holds if (a < b) ⊕ 1 = 1 and (b < a) ⊕ 1 = 1.
Therefore, each party outputs ([a < b]2 ⊕ 1) · ([b < a]2 ⊕ 1) as the result of the
equality-testing protocol.

Protocol 6 takes the shares of the conditional values {[condj]2}2
h−2

j=0 as inputs
and outputs the oblivious comparison results for each internal node. It either
outputs the results of πrLT (if cj = 1) or πrEQ (if cj = 0). Hence, each party
invokes πrLT and πrEQ (at Steps 2 and 3). Then, each party selects one result or
the other as the shared comparison result bit [compj]2, obliviously (at Step 4).

312 H. Tsuchida et al.

Protocol 7. [leafValj′]2k ← πrPathEval({[compj]2}2h−2
j=0 , {[leafValj′]2k}2h−1

j
′
=0

, δ)

Input: Comparison result of intermediate nodes {[compj]2}2h−2
j=0 , set of shared values

assigned to leaf nodes {[leafValj′]2k}2h−1

j
′
=0

, mapping function δ

Output: shared values assigned to leaf node of correct path [leafValj′]2k where j′ s.t.
∧h−1

�=0 (j′|� ⊕ compδ(j′,�) ⊕ 1) = 1.

1: for j
′
= 0, . . . , 2h − 1 do in parallel

2: Initialize Pathj
′ = {[compδ(j

′
,0)]2, [compδ(j

′
,1)]2, . . . , [compδ(j

′
,h−1)]2}.

3: for � = 0, . . . , h − 1 do in parallel
4: Compute [cj

′
,�]2 = j

′ |� ⊕ [compδ(j
′
,�)]2 ⊕ 1 by picking up [compδ(j

′
,�)]2 from

Pathj
′ .

5: end for
6: Set Rj

′ = {[leafValj′]2k , [cj
′
,0]2, . . . , [cj

′
,h−1]2}

7: end for
8: {Rσ(j

′
)}2h−1

j
′
=0

← rSetShuffle({Rj
′ }2h−1

j
′
=0

) // 3 rounds & 6 · 2h · (k + h) bits

9: Initialize countσ(j
′
) = 0 for j

′
= 0, . . . , 2h − 1.

10: for j
′
= 0, . . . , 2h − 1; � = 0, . . . , h − 1 do in parallel

11: Pick up [cσ(j
′
),�]2 from Rσ(j

′
). Then, cσ(j

′
),� ← Open(Pi, [cσ(j

′
),�]2) for i = 0, 1, 2.

// 1 round & 3 bits

12: countσ(j
′
) = countσ(j

′
) + 1 if cσ(j

′
),� = 1.

13: end for
14: return [leafValσ(j

′
)]2k where countσ(j

′
) = h.

Protocol 8. [leafVal]2k ← πrDTEval({[idxj]2k}2h−2
j=0 , {[attri]2k}m−1

i=0 , {[vj]2k}2h−2
j=0 ,

{[condj]2k}2h−2
j=0 , {[leafValj′]2k}2h−1

j
′
=0

, δ)

Input: Set of shared index number {[idxj]2k}2h−2
j=0 , shared feature array {[attri]2k}m−1

i=0 ,

threshold values {[vj]2k}2h−2
j=0 , conditional values {[condj]2k}2h−2

j=0 , set of shared val-

ues assigned to leaf nodes {[leafValj′]2k}2h−1

j
′
=0

, mapping function δ

Output: shared values assigned to leaf node of correct path [leafValj′]2k where j′

s.t.
∧h−1

�=0 (j′|� ⊕ compδ(j′,�) ⊕ 1) = 1. Let compδ(j
′
,�) be condδ(j

′
,�) · (vδ(j

′
,�) <

attridx
δ(j

′
,�)

) ⊕ (condδ(j
′
,�) ⊕ 1)(vδ(j

′
,�) == attridx

δ(j
′
,�)

).

1: Initialize A.
2: for j = 0, . . . , 2h − 2 do in parallel
3: [attridxj]2k ← πrFSelection([idxj]2k , {[attri]2k}m−1

i=0). // 13 rounds & log2(m)(6k2 +
9k + (3k − 3) log2(p) + 4) + 6m2 + 4mk + 2m) bits

4: Set [attridxj]2k into A.
5: end for
6: {[compj]2}2h−2

j=0 ← πComp(A = {[attridxj]2k}2h−2
j=0 , {[vj]2k}2h−2

j=0 , {[condj]2k}2h−2
j=0) //

11 rounds & (2h − 1) · (18k2 + 27k + (9k − 9) log2(p) + 22) bits

7: [leafVal]2k ← πPathEval({[compj]2}2h−2
j=0 , {[leafValj′]2k}2h−1

j
′
=0

, δ) // 4 rounds &

2h(6k + 9h) bits

8: return [leafVal]2k

Private DTE with Constant Rounds via (Only) SS-3PC over Ring 313

5 Proposed Protocol in Path Evaluation Phase

In path evaluation phase, it is required to choose the correct path (and leaf
node) by using the shared comparison result of each node and the shared class
labels assigned to leaf nodes without revealing the information about paths,
comparison results, and class labels. We construct the path evaluation pro-
tocol (Protocol 7) and explain the intuition behind it. Each party initializes
Pathj′ = {[compδ(j′ ,�)]2}h−1

�=0 for each j′-th leaf node (at Step 2). δ is the map-
ping function defined in Sect. 2.4. Next, let [leafValj′]2k be the shares of each
class label value and cj′ ,� be the result of the equality-testing between the
bit assigned to the branch that has the �-th height on the path to the j′-
th leaf node, j′|� and the comparison result compδ(j′ ,�). Each party computes
Rj′ = {[leafValj′]2k , [cj′ ,0]2, . . . , [cj′ ,h−1]2} (from Step 1 to 6).

Next, each party computes {Rσ(j′)}2
h−1

j′=0
by shuffling {Rj′ }2

h−1
j′=0

obliviously
by using the random permutation σ (at Step 8). After initializing countσ(j′) = 0
(at Step 9). Then, each party obtains cσ(j′),� by choosing [cσ(j′),�]2 from Rσ(j′)
and revealing it. If cσ(j′),� = 1, each party increases countσ(j′) by 1 (from Step 10
to Step 13). We note that cσ(j′),� does not leak the positional information j′. In

addition, an adversary can obtain no information about {compδ(j′ ,�)}2
h−2

�=0 and
leafValj′ from cσ(j′),� because the tree is a complete binary tree. For example, we
assume that h = 2. If the correct output leaf node is the leaf node 2(= 10(2)), it
holds that cσ(0),0 = 1, cσ(0),1 = 0, cσ(1),0 = 0, cσ(1),1 = 0, cσ(2),0 = 1, cσ(2),1 = 1,
cσ(3),0 = 0, and cσ(3),1 = 1. That is, the adversary gets all the 2-bit sequences,
00(2), 01(2), 10(2), and 11(2). As another example, if the correct output leaf node
is the leaf node 3(= 11(2)), it holds that cσ(0),0 = 0, cσ(0),1 = 0, cσ(1),0 = 1,
cσ(1),1 = 0, cσ(2),0 = 0, cσ(2),1 = 1, cσ(3),0 = 1, and cσ(3),1 = 1. In this case,
the adversary also obtains all 2-bit sequences, 00(2), 01(2), 10(2), and 11(2). We
note that the random permutation σ is different for each execution of rSetShuffle.
Therefore, the adversary can get no information from cσ(j′),�.

If countσ(j′) = h,
∧h−1

�=0 (σ(j′)|� ⊕compδ(σ(j′),�)⊕1) = 1 holds. Therefore, each
party outputs [leafValσ(j′)]2k (at Step 14).

6 Proposed Protocol of Private Decision Tree Evaluation

Protocol 8 is our construction of PDTE over the ring. It employs Protocol 3 in
the feature selection phase, Protocol 6 in the comparison phase, and Protocol 7
in the path evaluation phase.

7 Security Proof

We follow the formal security definition of perfect security in the presence of one
semi-honest corrupted party [3]. Loosely speaking, our schemes are composed
of the UC secure building blocks and a number of operations without commu-
nications. Therefore, our scheme is secure as long as the building blocks are
secure.

314 H. Tsuchida et al.

8 Conclusion

In this paper, we proposed the PDTE protocol with constant rounds using (only)
the 3PC over the ring for the first time. Our scheme provides the PDTE efficiently
even where the communication environment has a large latency and limited
communication bandwidth. The generalization of the proposed protocol to the
N -party protocol and improvement of its security (e.g., malicious security or
information-theoretic security) are open problems to be addressed in the future.

Acknowledgement. This work was supported in part by JSPS KAKENHI Grant
Number 20K11807.

A Naive Construction of PDTE

To the best of our knowledge, Protocol 9 is the naive construction, i.e., the best
combination of the existing protocols based only on SS-3PC over the ring.

Protocol 9. Naive Construction of PDTE via 3PC over Ring

Input: Set of shared index number {[idxj]2k}2
h−2

j=0 , shared feature array {[attri]2k

}m−1
i=0 , threshold values {[vj]2k}2

h−2
j=0 , conditional values {[condj]2k}2

h−2
j=0 , set

of shared values assigned to leaf nodes {[leafValj′]2k}2
h−1

j′=0
, mapping function

δ
Output: shared values assigned to leaf node of correct path [leafValj′]2k where

j′ s.t.
∧h−1

�=0 (j′|�⊕compδ(j′,�)⊕1) = 1. Let compδ(j′ ,�) be condδ(j′ ,�) ·(vδ(j′ ,�) <

attridx
δ(j

′
,�)

) ⊕ (condδ(j′ ,�) ⊕ 1)(vδ(j′ ,�) == attridx
δ(j

′
,�)

).

1: for j = 0, . . . , 2h − 2 do in parallel
2: (Feature Selection Phase)
3: {[idxj |i′]2}log2(m)−1

i′=0
← NaiveBitDec(log2(m), [idxj]2k) // 1 + log2(m)

rounds & 3 log2(m) + 3 log2(m) · log2(log2(m)) bits
4: for i′ = 0, . . . , log2(m) − 1 do in parallel
5: [idxj |i′]m ← BitConversion(m, [idxj |i′]2) // 1 round & 6m bits
6: end for
7: [idxj]m =

∑log2(m)

i′=0
2i′ · [idxj |i′]m

8: [attridxj]2k ← rArrayRead({[attri]2k}m−1
i=0 , [idxj]m) // 3 rounds & 4mk +

2m + 8k bits
9: (Comparison Phase)

10: [vj < attridxj]2 ← NaiveRingLT([vj]2k , [attridxj]2k) // 1 + log2(k) rounds
& 3k + 3k · log2(k) bits

11: [vj == attridxj
]2 ← NaiveRingEQ([vj]2k , [attridxj

]2k) // 1 + 2 log2(k)
rounds & 6k + 3k log2(k) − 3 bits

12: [compj]2 = [condj]2 · [vj < attridxj
]2 ⊕ (1 ⊕ [condj]2) · [vj == attridxj

]2 // 1
round & 6 bits

13: end for

Private DTE with Constant Rounds via (Only) SS-3PC over Ring 315

14: (Path Evaluation Phase)
15: Initialize Pathj′ = {[compδ(j′ ,0)]2, [compδ(j′ ,1)]2, . . . , [compδ(j′ ,h−1)]2} by

picking up [compδ(j′ ,�)]2 corresponding to the intermediate value which has

(� + 1)-th height in the path to the j
′
-th leaf node from {[compj]2}2

h−2
j=0 .

16: for j
′
= 0, . . . , 2h − 1 do in parallel

17: [pathBitj′]2 ← rArrayAND(Pathj′) // log2(h) rounds & 3(h − 1) bits
18: [pathBitj′]2k ← BitConversion([pathBitj′]2) // 1 round & 6k bits
19: end for
20: return [leafVal]2k ← rInnerProduct({[pathBitj′]2k}2

h−1
j′=0

, {[leafValj′]2k}2
h−1

j′=0
).

// 1 round & 3k bits

References

1. Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell digital
goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6 8

2. Araki, T., Barak, A., Furukawa, J., Keller, M., Ohara, K., Tsuchida, H.: How to
choose suitable secure multiparty computation using generalized SPDZ. In: ACM
Conference on Computer and Communications Security, pp. 2198–2200. ACM
(2018)

3. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-
honest secure three-party computation with an honest majority. In: ACM Confer-
ence on Computer and Communications Security, pp. 805–817. ACM (2016)

4. Barni, M., Failla, P., Kolesnikov, V., Lazzeretti, R., Sadeghi, A.-R., Schneider, T.:
Secure evaluation of private linear branching programs with medical applications.
In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 424–439.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04444-1 26

5. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: STOC, pp. 503–513. ACM (1990)

6. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
STOC, pp. 1–10. ACM (1988)

7. Blanton, M., Kang, A., Yuan, C.: Improved building blocks for secure multi-party
computation based on secret sharing with honest majority. Cryptology ePrint
Archive, Report 2019/718 (2019). https://eprint.iacr.org/2019/718 (Accepted in
ACNS 2020)

8. Brickell, J., Porter, D.E., Shmatikov, V., Witchel, E.: Privacy-preserving remote
diagnostics. In ACM Conference on Computer and Communications Security, pp.
498–507. ACM (2007)

9. Byali, M., Chaudhari, H., Patra, A., Suresh, A.: FLASH: fast and robust framework
for privacy-preserving machine learning. IACR Cryptology ePrint Archive, vol.
2019, p. 1365 (2019). (accepted in PETS 2020)

10. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In FOCS, pp. 136–145. IEEE Computer Society (2001)

11. Catrina, O., de Hoogh, S.: Improved primitives for secure multiparty integer com-
putation. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp.
182–199. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15317-
4 13

https://doi.org/10.1007/3-540-44987-6_8
https://doi.org/10.1007/978-3-642-04444-1_26
https://eprint.iacr.org/2019/718
https://doi.org/10.1007/978-3-642-15317-4_13
https://doi.org/10.1007/978-3-642-15317-4_13

316 H. Tsuchida et al.

12. Chida, K., et al.: An efficient secure three-party sorting protocol with an honest
majority. Cryptology ePrint Archive, Report 2019/695 (2019). https://eprint.iacr.
org/2019/695

13. De Cock, M., et al.: Efficient and private scoring of decision trees, support vector
machines and logistic regression models based on pre-computation. IEEE Trans.
Dependable Secur. Comput. 16(2), 217–230 (2019)

14. Dalskov, A., Escudero, D., Keller, M.: Secure evaluation of quantized neural net-
works. Cryptology ePrint Archive, Report 2019/131 (2019). https://eprint.iacr.
org/2019/131 (Accepted in PETS 2020)

15. Damg̊ard, I., Escudero, D., Frederiksen, T.K., Keller, M., Scholl, P., Volgushev,
N.: New primitives for actively-secure MPC over rings with applications to private
machine learning. In IEEE Symposium on Security and Privacy, pp. 1102–1120.
IEEE (2019)

16. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications
of Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44586-2 9

17. Demmler, D., Schneider, T., Zohner, M.: ABY-A framework for efficient mixed-
protocol secure two-party computation. In: NDSS, The Internet Society (2015)

18. Doerner, J., Shelat, A.: Scaling ORAM for secure computation. In: ACM Confer-
ence on Computer and Communications Security, pp. 523–535. ACM (2017)

19. Escudero, D., Ghosh, S., Keller, M., Rachuri, R., Scholl, P.: Improved primitives
for MPC over mixed arithmetic-binary circuits. In: Micciancio, D., Ristenpart, T.
(eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 823–852. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56880-1 29

20. Faber, S., Jarecki, S., Kentros, S., Wei, B.: Three-party ORAM for secure compu-
tation. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp.
360–385. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-
6 16

21. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

22. Gentry, C.: A fully homomorphic encryption scheme. PhD thesis, Stanford Uni-
versity (2009). https://crypto.stanford.edu/craig

23. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: STOC, pp. 218–229. ACM
(1987)

24. Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker
keeping secret all partial information. In: STOC, pp. 365–377. ACM (1982)

25. Henecka, W., Kögl, S., Sadeghi, A.-R., Schneider, T., Wehrenberg, I.: TASTY: tool
for automating secure two-party computations. In: ACM Conference on Computer
and Communications Security, pp. 451–462. ACM (2010)

26. Ichikawa, A., Ogata, W., Hamada, K., Kikuchi, R.: Efficient secure multi-party
protocols for decision tree classification. In: Jang-Jaccard, J., Guo, F. (eds.) ACISP
2019. LNCS, vol. 11547, pp. 362–380. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-21548-4 20

27. Jarecki, S., Wei, B.: 3PC ORAM with low latency, low bandwidth, and fast batch
retrieval. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp.
360–378. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93387-0 19

28. Keller, M., Scholl, P.: Efficient, oblivious data structures for MPC. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 506–525. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8 27

https://eprint.iacr.org/2019/695
https://eprint.iacr.org/2019/695
https://eprint.iacr.org/2019/131
https://eprint.iacr.org/2019/131
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/978-3-030-56880-1_29
https://doi.org/10.1007/978-3-662-48797-6_16
https://doi.org/10.1007/978-3-662-48797-6_16
https://crypto.stanford.edu/craig
https://doi.org/10.1007/978-3-030-21548-4_20
https://doi.org/10.1007/978-3-030-21548-4_20
https://doi.org/10.1007/978-3-319-93387-0_19
https://doi.org/10.1007/978-3-662-45608-8_27

Private DTE with Constant Rounds via (Only) SS-3PC over Ring 317

29. Kiss, Á., Naderpour, M., Liu, J., Asokan, N., Schneider, T.: SoK: modular and
efficient private decision tree evaluation. PoPETs 2019(2), 187–208 (2019)

30. Laud, P.: A private lookup protocol with low online complexity for secure multi-
party computation. In: Hui, L.C.K., Qing, S.H., Shi, E., Yiu, S.M. (eds.) ICICS
2014. LNCS, vol. 8958, pp. 143–157. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-21966-0 11

31. Laud, P.: Parallel oblivious array access for secure multiparty computation and
privacy-preserving minimum spanning trees. PoPETs 2015(2), 188–205 (2015)

32. Launchbury, J., Diatchki, I.S., DuBuisson, T., Adams-Moran, A.: Efficient lookup-
table protocol in secure multiparty computation. In: ICFP, pp. 189–200. ACM
(2012)

33. Laur, S., Willemson, J., Zhang, B.: Round-efficient oblivious database manipula-
tion. In: Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS, vol. 7001, pp. 262–277.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24861-0 18

34. Mohassel, P., Rindal, P.: Aby3: A mixed protocol framework for machine learning.
In: ACM Conference on Computer and Communications Security, pp. 35–52. ACM
(2018)

35. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA, pp. 448–457.
ACM/SIAM (2001)

36. Ohata, S., Nuida, K.: Towards high-throughput secure MPC over the inter-
net: Communication-efficient two-party protocols and its application. CoRR,
abs/1907.03415 (2019). (Accepted in FC 2020)

37. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

38. Rachuri, R., Suresh, A.: Trident: efficient 4PC framework for privacy preserving
machine learning. Cryptology ePrint Archive, Report 2019/1315 (2019). https://
eprint.iacr.org/2019/1315

39. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems (reprint). Commun. ACM 26(1), 96–99 (1983)

40. Tai, R.K.H., Ma, J.P.K., Zhao, Y., Chow, S.S.M.: Privacy-preserving decision trees
evaluation via linear functions. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.)
ESORICS 2017. LNCS, vol. 10493, pp. 494–512. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-66399-9 27

41. Tueno, A., Kerschbaum, F., Katzenbeisser, S.: Private evaluation of decision trees
using sublinear cost. PoPETs 2019(1), 266–286 (2019)

42. Wagh, S., Gupta, D., Chandran, N.: Securenn: 3-party secure computation for
neural network training. PoPETs 2019(3), 26–49 (2019)

43. Wang, X., Hubert Chan, T.-H., Shi, E.: Circuit ORAM: on tightness of the
goldreich-ostrovsky lower bound. IACR Cryptology ePrint Archieve, vol. 2014, p.
672 (2014)

44. Wang, X.S., Huang, Y., Hubert Chan, T.-H., Shelat, A., Shi, E.: SCORAM: obliv-
ious RAM for secure computation. In: ACM Conference on Computer and Com-
munications Security, pp. 191–202. ACM (2014)

45. Wu, D.J., Feng, T., Naehrig, M., Lauter, K.E.: Privately evaluating decision trees
and random forests. PoPETs 2016(4), 335–355 (2016)

46. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS,
pp. 162–167. IEEE Computer Society (1986)

47. Zahur, S., et al.: Revisiting square-root ORAM: efficient random access in multi-
party computation. In: IEEE Symposium on Security and Privacy, pp. 218–234.
IEEE Computer Society (2016)

https://doi.org/10.1007/978-3-319-21966-0_11
https://doi.org/10.1007/978-3-319-21966-0_11
https://doi.org/10.1007/978-3-642-24861-0_18
https://doi.org/10.1007/3-540-48910-X_16
https://eprint.iacr.org/2019/1315
https://eprint.iacr.org/2019/1315
https://doi.org/10.1007/978-3-319-66399-9_27
https://doi.org/10.1007/978-3-319-66399-9_27

Dispelling Myths on Superposition
Attacks: Formal Security Model and

Attack Analyses

Luka Music1(B), Céline Chevalier2, and Elham Kashefi1,3

1 Département Informatique et Réseaux, CNRS, Sorbonne Université, Paris, France
luka.music@lip6.fr

2 CRED, Université Panthéon-Assas Paris 2, Paris, France
3 School of Informatics, University of Edinburgh, Edinburgh, Scotland

Abstract. With the emergence of quantum communication, it is of folk-
loric belief that the security of classical cryptographic protocols is auto-
matically broken if the Adversary is allowed to perform superposition
queries and the honest players forced to perform actions coherently on
quantum states. Another widely held intuition is that enforcing measure-
ments on the exchanged messages is enough to protect protocols from
these attacks.

However, the reality is much more complex. Security models dealing
with superposition attacks only consider unconditional security. Con-
versely, security models considering computational security assume that
all supposedly classical messages are measured, which forbids by con-
struction the analysis of superposition attacks. To fill in the gap between
those models, Boneh and Zhandry have started to study the quantum
computational security for classical primitives in their seminal work at
Crypto’13, but only in the single-party setting. To the best of our knowl-
edge, an equivalent model in the multiparty setting is still missing.

In this work, we propose the first computational security model con-
sidering superposition attacks for multiparty protocols. We show that our
new security model is satisfiable by proving the security of the well-known
One-Time-Pad protocol and give an attack on a variant of the equally
reputable Yao Protocol for Secure Two-Party Computations. The post-
mortem of this attack reveals the precise points of failure, yielding highly
counter-intuitive results: Adding extra classical communication, which is
harmless for classical security, can make the protocol become subject
to superposition attacks. We use this newly imparted knowledge to con-
struct the first concrete protocol for Secure Two-Party Computation that
is resistant to superposition attacks. Our results show that there is no
straightforward answer to provide for either the vulnerabilities of classi-
cal protocols to superposition attacks or the adapted countermeasures.

Keywords: Cryptographic protocols · Superposition attack · Post
quantum security · Security model · Yao’s protocol

See [16] for the full version.

c© Springer Nature Switzerland AG 2020
K. Nguyen et al. (Eds.): ProvSec 2020, LNCS 12505, pp. 318–337, 2020.
https://doi.org/10.1007/978-3-030-62576-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62576-4_16&domain=pdf
https://doi.org/10.1007/978-3-030-62576-4_16

Formal Computational Security Model for Superposition Attacks 319

1 Introduction

Recent advances in quantum technologies threaten the security of many widely-
deployed cryptographic primitives if we assume that the Adversary has classical
access to the primitive but can locally perform quantum computations. This sce-
nario has led to the emergence of post-quantum cryptography. But the situation is
even worse in the fully quantum scenario, if we assume the Adversary further has
quantum access to the primitive and can query the oracle with quantum states in
superposition. Such access can arise in the case where the Adversary has direct
access to the primitive that is being implemented (eg. symmetric encryption,
hash functions), or if a protocol is used as a sub-routine where the Adversary
plays all roles (as in the Fiat-Shamir transform based on Sigma Protocols) and
can therefore implement them all quantumly. In the future, various primitives
might natively be implemented on quantum machines and networks, either to
benefit from speed-ups or because the rest of the protocol is inherently quan-
tum. In this case, more information could be leaked, leading to new non-trivial
attacks, as presented in a series of work initiated in [1,4,9]. A possible coun-
termeasure against such superposition attacks is to forbid any kind of quantum
access to the oracle through measurements. However, the security would then
rely on the physical implementation of the measurement tool, which itself could
be potentially exploited by a quantum Adversary. Thus, providing security guar-
antees in the fully quantum model is crucial. We focus here on the multiparty
(interactive) setting.

Analysis of Existing Security Models. Modelling the security of classical
protocols in a quantum world (especially multiparty protocols) is tricky, since
various arbitrages need to be made concerning the (quantum or classical) access
to channels and primitives.

A first possibility is to consider classical protocols embedded as quantum
protocols, thus allowing the existence of superposition attacks. However, in such
a setting, previous results only consider perfect security, meaning that the mes-
sages received by each player do not contain more information than its input
and output. The seminal papers starting this line of work are those proving the
impossibility of bit commitment [13,14]. The perfect security of the protocol
implies that no additional information is stored in the auxiliary quantum regis-
ters of both parties at the end of the protocol and can therefore be traced out,
so that an Adversary can easily produce a superposition of inputs and outputs.

This is for example the approach of [4,18], where the perfect correctness
requirement is in fact a perfect (unconditional) security requirement (the proto-
col implements the functionality and only the functionality). In [4], they consider
an even more powerful adversarial scenario where not only the honest player’s
actions are described as unitaries (their inputs are also in superposition) but the
Adversary can corrupt parties in superposition (the corruption is modelled as an
oracle call whose input is a subset of parties and which outputs the view of the
corresponding parties). Both papers show that protocols are insecure in such a
setting: In [4], they show that in the case of a multi-party protocol implementing

320 L. Music et al.

a general functionality (capable of computing any function), no Simulator can
perfectly replicate the superposition of views of the parties returned by the cor-
ruption oracle by using only an oracle call to an Ideal Functionality. In the case
of a deterministic functionality, they give a necessary and sufficient condition
for such a Simulator to exist, but which cannot be efficiently verified and is not
constructive. In [18], they prove that any non-trivial Ideal Functionalities that
accept superposition queries (or, equivalently, perfectly-secure protocols emulat-
ing them) must leak information to the Adversary beyond what the classical
functionality does (meaning that the Adversary can do better than simply mea-
sure in the computational basis the state that it receives from the superposition
oracle). In both cases, they heavily rely on the assumption of unconditional secu-
rity to prove strong impossibility results and their proof techniques cannot be
applied to the computational setting.

The second possibility to model the security of classical protocols in a quan-
tum world is to define purely classical security models, in the sense that all
supposedly classical messages are measured (Stand-Alone Model of [8] or the
Quantum UC Model of [20]). Some (computationally) secure protocols exist in
this setting, as shown by a series of articles in the literature (eg. [12]). How-
ever, these models forbid by construction the analysis of superposition attacks,
precisely since all classical communications are modelled as measurements.

The Missing Link. The results of [4,18] in the unconditional security setting are
not directly applicable to a Computationally-Bounded Adversary. The premiss
to their analyses is that since the perfect execution of non-trivial functionalities
is insecure, any real protocol implementing these functionalities is also insecure
against Adversaries with quantum access (even more since they are simply com-
putationally secure). However it turns out that, precisely because the protocol
is only computationally-secure, the working registers of the parties cannot be
devoid of information as is the case in the perfectly-secure setting (the messages
contain exactly the same information as the secret inputs of the parties, but it
is hidden to computationally-bounded Adversaries) and the techniques used for
proving the insecurity of protocols in the perfect scenario no longer work.

This issue has been partially solved for single-party protocols with oracle
queries in the line of work from [1], but never extended fully to the multi-
party setting. The difficulty arises by the interactive property of such protocols.
Indeed, in a real protocol, more care needs to be taken in considering all the
registers that both parties deal with during the execution (auxiliary qubits that
can be entangled due to the interactive nature of the protocols). Furthermore,
care must also be taken in how the various classical operations are modelled
quantumly, as choosing standard or minimal oracle representations may influence
the applicability of some attacks [10]. The naive implementation of superposition
attacks, applied to a real-world protocol, often leads to a joint state of the form∑

x,m1,m2

|x〉 |m1〉 |m2〉 |f(x, y)〉 for a given value y of the honest player’s input,

and with the second register (containing the set of messages m1 sent by the
Adversary) being in the hands of the honest player (m2 is the set of messages

Formal Computational Security Model for Superposition Attacks 321

sent by the honest player and f(x, y) is the result for input x). This global state
does not allow the known attacks (such as [9]) to go through as the message
registers cannot simply be discarded. This shows that the simple analysis of basic
ideal primitives in the superposition attack setting is not sufficient to conclude
on the security of the overall computationally-secure protocol and motivates the
search for a framework for proving security of protocols against such attacks.

Our Contributions. The main purpose of this paper is thus to bridge a gap
between two settings: one considers the security analysis of superposition attacks,
but either for perfect security [4,18] (both works preclude the existence of secure
protocols by being too restrictive) or only for single-party primitives with oracle
access [1], while the other explicitly forbids such attacks by measuring classical
messages [8,20].

To our knowledge, our result is the first attempt to formalize a security
notion capturing security of two-party protocols against superposition attacks
with computationally-bounded Adversaries as a simulation-based definition. We
consider a more realistic scenario where a computational Adversary corrupts a
fixed set of players at the beginning of the protocol and the input of the honest
players are fixed classical values. We suppose that the ideal world trusted third
party always measures its queries (it acts similarly to a classical participant),
while the honest player always performs actions in superposition unless specifi-
cally instructed by the quantum embedding of the protocol (the Adversary and
the Simulator can do whatever they want). Security is then defined by consider-
ing that an attack is successful if an Adversary is able to distinguish between the
real and ideal executions with non-vanishing probability. The reason for adding
a measurement to the functionality is to enforce that the (supposedly classical)
protocol behaves indeed as a classical functionality. This is further motivated by
the results of previous papers proving that functionalities with quantum behav-
ior are inherently broken.

Case Studies. We present an attack on a slight variant of the Honest-but-Curious
version of the classical Yao’s protocol [19] for Secure Two-Party Computation.
On the other hand, it is secure against Adversaries that have a quantum com-
puter internally but send classical messages, therefore showing a separation.
The variant is presented to demonstrate unusual and counter-intuitive reasons
for which protocols may be insecure against superposition attacks.

Proof Technique. During the superposition attack, the Adversary essentially
makes the honest player implement the oracle call in Deutsch-Jozsa’s (DJ) algo-
rithm [5] through its actions on a superposition provided by the Adversary. The
binary function for which this oracle query is performed is linked to two possible
outputs of the protocol. The Adversary can then apply the rest of the DJ algo-
rithm to decide the nature of the function,1 which allows it to extract the XOR
of the two outputs. Similarly to the DJ algorithm where the state containing the
output of the oracle remains in the |−〉 state during the rest of the algorithm
1 The DJ algorithm decides whether a binary function is balanced or constant.

322 L. Music et al.

(it is not acted upon by the gates applied after the oracle call), the Adversary’s
actions during the rest of the attack do not affect the output register. Inter-
estingly, this means that the attack can thus also be performed on the same
protocol but where the Adversary has no output.

Superposition-Secure Two-Party Computation. Counter-intuitively, it is there-
fore not the output that makes the attack possible, but in this case the attack
vector is a message consisting of information that, classically, the Adversary
should already have, along with a partial measurement on the part of the hon-
est player (which is even stranger considering that it is usually thought that
the easiest way to prevent superposition attack is to measure the state). This
shows that adding extra communication, even an exchange of classical infor-
mation which seems meaningless for classical security, can make the protocol
become subject to superposition attacks. Removing the point of failure by never
sending back this information to the Adversary (as is the case in the original
Yao Protocol) restores the protocol’s security and therefore we show that Yao’s
protocol is secure against superposition attacks if the (honest) Evaluator recov-
ers the output and does not divulge whether or not it has aborted. The proof
relies on the no-signalling principle of quantum mechanics since in this case the
honest player has no communication with the Adversary after receiving the state
in superposition.

Contribution Summary and Outline. After basic notations in Sect. 2:

– Section 3 gives a new security model for superposition attacks;
– Section 4 describes a variant of Yao’s protocol and proves its security against

adversaries exchanging classical messages;
– Section 5.1 presents a superposition attack against this modified protocol;
– Section 5.2 builds a superposition-resistant version of Yao’s protocol by lever-

aging the knowledge acquired through the attack;
– All proofs are postponed to the full version [16].

2 Preliminaries

All protocols will be two-party protocols (between parties P1 and P2). P1 will be
considered as the Adversary (written P ∗

1 when corrupted), while P2 is honest.
Although we consider purely classical protocol, in order to be able to execute

superposition attacks, both parties will have access to multiple quantum regis-
ters. All communications are considered as quantum unless specified (see Sect. 3
for a definition of the network models) and we call quantum operations any
completely positive and trace non-decreasing superoperator acting on quantum
registers (see [17] and the full version [16] for more details).

The principle of superposition attacks is to consider that a player, otherwise
honestly behaving, performs all of its operations on quantum states rather than
on classical states. In fact, any classical operation defined as a binary circuit
with bit-strings as inputs can be transformed into a unitary operation that has

Formal Computational Security Model for Superposition Attacks 323

the same effect on each bit-string (now considered a basis state in the compu-
tational basis) as the original operation by using Toffoli gates. Although any
quantum computation can be turned into a unitary operation (using a large
enough ancillary quantum register to purify it), it may be that the honest player
may have to take a decision based on the value of its internal computations.
This is more naturally defined as a measurement, and therefore such operations
will be allowed but only when required by the protocol (in particular, when the
protocol branches out depending on the result of some computation being cor-
rect). The rest of the protocol (in the honest case) will be modelled as unitary
operations on the quantum registers of the players.

There are two ways to represent a classical function f : {0, 1}n ← {0, 1}m

as a unitary operation. The most general way (called standard oracle of f) is
defined on basis state |x〉 |y〉 (where x ∈ {0, 1}n and y ∈ {0, 1}m) by Uf |x〉 |y〉 =
|x〉 |y ⊕ f(x)〉, where ⊕ corresponds to the bit-wise XOR operation. On the other
hand, if n = m and f is a permutation over {0, 1}n, then it is possible (although
in general inefficient) to represent f as a minimal oracle by Mf |x〉 = |f(x)〉.
Note that this is in general more powerful than the standard orale representation
(see [10] for more information).

The security parameter will be noted η throughout the paper (it is passed
implicitly as 1η to all participants in the protocol and we omit when unam-
biguous). A function μ is negligible in η if, for every polynomial p, for η suf-
ficiently large it holds that μ(η) < 1

p(η) . For any positive integer N ∈ N, let
[N] := {1, . . . , N}. For any element X, #X corresponds to the number of parts
in X (eg. size of a string, number of qubits in a register). The special symbol
Abort will be used to indicate that a party in a protocol has aborted.

3 New Security Model for Superposition Attacks

General Protocol Model. All parties considered in this paper are modelled
as BQP machines, which are also called polynomial quantum Turing machines
and recognise languages in the BQP class of complexity [3,17]. They can perform
any polynomial-sized family of quantum circuits and interact quantumly with
other participants (by sending quantum states which may or may not be in
superposition).

We assume that the input of the honest player is classical, meaning it is a
pure state in the computational basis, unentangled from the rest of the input
state (which corresponds to the Adversary’s input). This is in stark contrast
with other papers considering superposition attacks [4,18] where the input of
the honest players is always a uniform superposition over all possible inputs. We
also consider that the corrupted party is chosen and fixed from the beginning
of the protocol. We will often abuse notation and consider the corrupted party
and the Adversary as one entity.

The security of protocols will be defined using the real/ideal simulation
paradigm, adapted from the Stand-Alone Model of [8]. The parties involved
are: an Environment Z, the parties participating in the protocol, a Real-World

324 L. Music et al.

Adversary A and an Ideal-World Adversary also called Simulator S that runs A
internally and interacts with an Ideal Functionality (that the protocol strives
to emulates). An execution of the protocol (in the real or ideal case) works as
follows:

1. The Environment Z produces the input y of P2, the auxiliary input state ρA
of the Adversary (containing an input for corrupted party P ∗

1 , possibly in
superposition).

2. The Adversary interacts with either the honest player performing the protocol
or a Simulator with single-query access to an Ideal Functionality.

3. Based on its internal state, it outputs a bit corresponding to its guess about
whether the execution was real or ideal. If secure, no Adversary should be
able to distinguish with high probability the two scenarios.

4. The Adversary sends a state to the Environment Z.
5. The Environment Z takes as input this final state and outputs a bit corre-

sponding to its guess of whether the execution was real or ideal.

Network Model. To capture both the security against Adversaries with and
without superposition (so that we may compare both securities for a given pro-
tocol), we parametrize the security Definition 1 below with a network model N.
The quantum network Q is modelled by having both players interact not only
with their internal quantum registers but also with a shared quantum commu-
nication register Q. These actions are defined as unitaries. On the other hand,
the classical network C is modelled as both players having access to a shared
classical tape C which is read the beginning of each activation of a player and a
quantum register initialised using the computational basis vector corresponding
to the message contained within (or equivalently, the shared quantum register
Q from the quantum network is measured in the computational basis). The out-
going messages are written to the tape at the end of each player’s activation.
The case where the network is classical is called classical-style security (as it
is simply a weaker variant of Stand-Alone Security in the usual sense of [8]),
while a protocol that remains secure when the network is quantum is said to
be superposition-resistant. This allows us to demonstrate a separation between
Adversaries with and without superposition access. Conversely, since the classical
network can be seen as a restricted quantum channel, security with superposition
access automatically implies classical-style security.

Ideal Functionality Behaviour and Formal Security Definition. This
section differs crucially from previous models of security. The Two-Party Com-
putation Ideal Functionality implementing a binary function f , formally defined
in the full version [16], takes as input a quantum state from each party, measures
it in the computational basis to get x ∈ {0, 1}nX and y ∈ {0, 1}nY , applies the
function f to the classical measurement results and returns the classical inputs
to each party while one of them also receives the single bit of output z.

While it can seem highly counter-intuitive to consider an ideal scenario where
a measurement is performed (since it is not present in the real scenario), this

Formal Computational Security Model for Superposition Attacks 325

measurement by the Ideal Functionality is necessary in order to have a mean-
ingful definition of security. It is only if the protocol with superposition access
behaves similarly to a classical protocol that it can be considered as resistant
to superposition attacks. It is therefore precisely because we wish to capture
the security against superposition attack, that we define the Ideal Functionality
as purely classical (hence the measurement). If the Ideal Adversary (a Simula-
tor interacting classically with the Ideal Functionality) and the Real Adversary
(which can interact in superposition with the honest player) are indistinguishable
to the Environment, only then is the protocol superposition-secure.

Furthermore, as argued briefly in the Introduction, Ideal Functionalities
which do not measure the inputs of both parties when they receive them as
they always allow superposition attacks, which then extract more information
than the classical case (as proven in [18]). A superposition attack against a pro-
tocol implementing such a functionality is therefore not considered an attack
since it is by definition a tolerated behaviour in the ideal scenario.

We can now give our security Definition 1. A protocol between parties P1

and P2 is said to securely compute two-party functions of a given set F against
corrupted party P ∗

1 if, for all functions f : {0, 1}nX ×{0, 1}nY −→ {0, 1}nZ with
f ∈ F, no Environment Z can distinguish between the real and ideal executions
with high probability.

Definition 1 (Computational Security in Network Class N). Let ε(η) =
o(1) be a function of the security parameter η. Let f ∈ F be the function to
be computed by protocol Π between parties P1 and P2. We say that a proto-
col Π ε(η)-securely emulates Ideal Functionality F computing functions from
set F against adversarial P ∗

1 in network N (with N ∈ {C,Q}) if for all quantum
polynomial-time Adversaries A controlling the corrupted party P ∗

1 and Environ-
ments Z producing y and ρA, there exists a Simulator SP ∗

1
such that, in network

N:
∣
∣
∣P

[
b = 0 | b ← Z

(
vA(SP ∗

1
, ρA)

)]
− P

[
b = 0 | b ← Z

(
vA(P2(y), ρA)

)]∣
∣
∣ ≤ ε(η)

(1)
In the equation above, the variable vA(SP ∗

1
, ρA) corresponds to the final state (or

view) of the Adversary in the ideal execution when interacting with Simulator SP ∗
1

with Ideal Functionality F and vA(P2(y), ρA) corresponds to the final state of
the Adversary when interacting with honest party P2 in the real protocol Π. The
probability is taken over all executions of protocol Π.

We define input-indistinguishability in Definition 2. In the case where the
adversarial player has no input, the two security notions are equivalent (the
Simulator simply performs the protocol with a random input). This is formally
proven in the full version [16].

Definition 2 (Input-Indistinguishability in Network Class N). Let Π
be protocol between parties P1 and P2 with input space {0, 1}nY for P2. We
say that the execution of Π is ε-input-indistinguishable for P ∗

1 in network N if

326 L. Music et al.

there exists an ε(η) = o(1) such that, for all computationally-bounded quantum
Distinguishers D and any two inputs y1, y2 ∈ {0, 1}nY :
∣
∣
∣P

[
b = 0 | b ← D

(
vA(P2(y1), ρA)

)]
−P

[
b = 0 | b ← D

(
vA(P2(y2), ρA)

)]∣
∣
∣ ≤ ε(η)

(2)
In the equation above, the variable vA(P2(yi), ρA) corresponds to the final state
of the Adversary when interacting with honest party P2 (with input yi) in the
real protocol Π. The probability is taken over all executions of protocol Π.

Adversarial Classes. Quantifying Definition 1 or 2 over a subset of Adver-
saries in each class yields flavours such as Honest-but-Curious or Malicious. The
behaviour of an Honest-but-Curious Adversary in a classical network C is the
same as a classical Honest-but-Curious Adversary during the protocol but it
may use its quantum capabilities in the post-processing phase of its attack. We
define an extension of these Adversaries in Definition 3: they are almost Honest-
but-Curious in that there is an Honest-but-Curious Adversary whose Simulator
also satisfies the security definition for the initial Adversary. This is required as
the adversarial behaviour of our attack is not strictly Honest-but-Curious when
translated to classical messages, but it does follow this new definition.

Definition 3 (Extended Honest-but-Curious Adversaries). Let Π be
a protocol that is secure according to Definition 1 against Honest-but-Curious
Adversaries in a classical network C. We say that an Adversary A is Extended
Honest-but-Curious if there exists an Honest-but-Curious Adversary A′ such that
the associated Simulator S ′ satisfies Definition 1 for A if we allow it to output
Abort when the honest party would abort as well.

Comments on the Security Model. The superposition-security of the Clas-
sical One-Time Pad is proven in the full version [16]. In our security model, both
the Adversary and Simulator can have superpositions of states as input. How-
ever, if the Simulator chooses to send a state to the Ideal Functionality, it knows
that this third party will perform on it a measurement in the computational
basis. Note that in any security proof, the Simulator may choose not to perform
the call to the Ideal Functionality. This is because the security definition does
not force the Simulator to reproduce faithfully the output of the honest Client, as
the distinguishing done by the Environment takes only the Adversary’s output
into account. This also means that sequential composability explicitly does not
hold with such a definition, even with the most basic functionalities (whereas the
Stand-Alone Framework of [8] guarantees it). An interesting research direction
would be to find a composable framework for proving security against superpo-
sition attacks and we leave this as an open question. The subtlety of our attack
vector presented below tends to suggest a negative answer.

4 The Modified Honest-but-Curious Yao Protocol

In order to demonstrate the capabilities of our new model in the case of more
complex two-party scenarios, we will analyse the security of the well-known Yao

Formal Computational Security Model for Superposition Attacks 327

Protocol, pioneer of Secure Two-Party Computation, in classical and quantum
networks.

Its purpose is to allow two Parties, the Garbler and the Evaluator, to compute
a joint function on their two classical inputs. The Garbler starts by preparing
an encrypted version of the function and then the Evaluator decrypts it using
keys that correspond to the two players’ inputs, the resulting decrypted value
being the final output.

The Original Yao Protocol secure against Honest-but-Curious classical
Adversaries has first been described by Yao in the oral presentation for [19],
but a rigorous formal proof was only presented in [11]. It has been proven secure
against quantum Adversaries with no superposition access to the honest player
in [2] (for a quantum version of IND-CPA that only allows random oracle queries
to be in superposition).

We start by presenting informal definitions for symmetric encryption schemes
in Sect. 4.1. We then present in Sect. 4.2 the garbled table construction which
is the main building block of Yao’s Protocol and give an informal description
of the Original Yao Protocol. Then in Sect. 4.3 we give a description of a slight
variant of the original protocol, resulting in the Modified Yao Protocol. The
modifications do not make the protocol less secure in classical networks, but will
make superposition attacks possible as presented in Sect. 5.

4.1 Definitions for Symmetric Encryption Schemes

An encryption scheme consists of two classical efficiently computable determinis-
tic functions Enc : K×A×M → K×A×C and Dec : K×A×C → K×A×M (where
K = {0, 1}nK is the set of valid keys, A = {0, 1}nA the set of auxiliary inputs,
M the set of plaintext messages and C the set of ciphertexts, which is supposed
equal to M = {0, 1}nM). We suppose that for all (k, aux,m) ∈ K × A × M, we
have that Deck(aux,Enck(aux,m)) = m.

We will use a symmetric encryption scheme with slightly different properties
compared to the original protocol of [19] or [11]. The purpose of these modifi-
cations is to make it possible to later represent the action of the honest player
(the decryption of garbled values) using a minimal oracle representation when
embedded as a quantum protocol. We give a concrete instantiation of a scheme
satisfying the definitions below in the full version [16].

Definition 4 (Minimal Oracle Representation). Let (Enc,Dec) be an
encryption scheme defined as above, we say that it has a Minimal Oracle
Representation if there exists efficiently computable unitaries MEnc and MDec,
called minimal oracles, such that for all k ∈ K, aux ∈ A and m ∈ M,
MEnc |k〉 |aux〉 |m〉 = |eK(k)〉 |eA(aux)〉 |Enck(aux,m)〉 (in which case M†

Enc =
MDec), where eK and eA are efficiently invertible permutations of the key and
auxiliary value.

We then define the quantum security of such a symmetric encryption scheme
by imposing that sampling the key and giving a black-box access to an encryption

328 L. Music et al.

quantum oracle is indistinguishable for a quantum Adversary from giving it
superposition access to a random permutation. This is simply a quantum game-
based version of the definition for pseudo-random permutations [7].

Definition 5 (Real-or-Permutation Security of Symmetric Encryp-
tion). Let (Enc,Dec) be a symmetric encryption scheme with Minimal Oracle
Representation. Let SnM

be the set of permutations over {0, 1}nM . Consider the
following game Γ between a Challenger and the Adversary:

1. The Challenger chooses uniformly at random a bit b ∈ {0, 1} and:
– If b = 0, it samples a key k ∈ {0, 1}nK uniformly at random, and sets the

oracle O by defining it over the computational basis states |aux〉 |m〉 for
m ∈ {0, 1}nM and aux ∈ {0, 1}nA as O |aux〉 |m〉 = UEnc |k〉 |aux〉 |m〉 =
|k〉 |eA(aux)〉 |Enck(aux,m)〉 (the oracle first applies the minimal encryp-
tion oracle MEnc and then the inverse of dK to the register containing the
key).

– If b = 1, it samples a permutation over {0, 1}nM uniformly at random
σ ∈ SnM

and sets the oracle O as O |aux〉 |m〉 = Uσ,eA
|aux〉 |m〉 =

|eA(aux)〉 |σ(m)〉.
2. For i ≤ q with q = poly(η), the Adversary sends a state ρi of its choice (com-

posed of nM qubits) to the Challenger. The Challenger responds by sampling
an auxiliary value at random auxi ∈ {0, 1}nA , applying the oracle to the state
|auxi〉 ⊗ ρi and sending the result back to the Adversary along with the modi-
fied auxiliary value (notice that the oracle has no effect on the key if there is
one and so it remains unentangled from the Adversary’s system).

3. The Adversary outputs a bit b̃ and stops.

A symmetric encryption scheme is said to be secure against quantum Adver-
saries if there exists ε(η) negligible in η such that, for any Adversary A with
superposition access and initial auxiliary state ρaux :

AdvΓ (A) :=
∣
∣
∣
∣
1
2

− P

[
b = b̃ | b̃ ← A(ρaux , Γ)

]∣∣
∣
∣ ≤ ε(η) (3)

4.2 The Original Yao Protocol

The protocol will be presented in a hybrid model where both players have access
to a trusted third party implementing a 1-out-of-2 String Oblivious Transfer,
in which one party (P1 in our case) has two strings (k0, k1) and the other (P2)
has a bit b ∈ {0, 1}. The output of P2 is the string kb (with no knowledge
about kb̄), while on the other hand P1 has no output and no knowledge about
choice-bit b. The attack presented further below does not rely on an insecurity
from the OT (the classical correctness of the Oblivious Transfer is sufficient),
which will therefore be supposed to be perfectly implemented and, as all Ideal
Functionalities in this model, without superposition access.

We focus on the case where the Garbler’s output is a single bit. Suppose that
the Garbler and Evaluator have agreed on the binary function to be evaluated

Formal Computational Security Model for Superposition Attacks 329

f : {0, 1}nX × {0, 1}nY −→ {0, 1}, with the Garbler’s input being x ∈ {0, 1}nX

and the Evaluator’s input being y ∈ {0, 1}nY .
The protocol can be summarised as follows. Let (Enc,Dec) be a symmet-

ric encryption scheme. The Garbler G samples keys
{

kG,i
0 , kG,i

1

}

i∈[nX]
and

{
kE,i
0 , kE,i

1

}

i∈[nY]
for the Garbler’s and Evaluator’s input respectively. To each

bit of input correspond two keys, one (lower-indexed with 0) if the player chooses
the value 0 for this bit-input and the other if it chooses the value 1. They invoke
nY instances of a 1-out-of-2 String OT Ideal Functionality, the Evaluator’s input
(as Receiver of the OT) to these is yi for i ∈ [nY], while the Garbler inputs (as
Sender) the keys (kE,i

0 , kE,i
1) corresponding to input i of the Evaluator. The

Evaluator therefore recovers kE,i
yi

at the end of each activation of the OT. The
Garbler then sends the keys

{
kG,i

xi

}
i∈[nX]

corresponding to its own input along
with the garbled circuit GC f which is constructed as follows.

For a gate computing a two-bit function g, with inputs wires labelled a and
b and output wire z, the Garbler first chooses keys (ka

0 , ka
1 , kb

0, k
b
1) ∈ K4 for

the input wires and kz ∈ {0, 1} for the output.2 Let auxa and auxb be two
auxiliary values for the encryption scheme. It then iterates over all possible
values ã, b̃ ∈ {0, 1} to compute the garbled table values Ekz

ã,b̃
defined as (with

padding length p = nM − 1, where nM is the bit-length of the messages of the
encryption scheme and ‖ represents string concatenation):

Ekz

ã,b̃
:= Encka

ã

(
auxa,Enckb

b̃
(auxb, g(ã, b̃) ⊕ kz ‖ 0p)

)
(4)

The ordered list thus obtained is called the initial garbled table. The Garbler
then chooses a random permutation π ∈ S4 and applies it to this list, yielding
the final garbled table GT (a,b,z)

g . For gates with fan-in l, the only difference is
that the number of keys used will be 2l (two for each input bit) and the number
of values in the garbled table will be 2l, the rest may be computed in a similar
way (by iterating over all possible values of the function’s inputs). The keys are
always used in an fixed order which is known to both players at time of execution
(we suppose for example that, during encryption, all the keys of the Evaluator
are applied first, followed by the keys of the Garbler).

Finally, after receiving the keys (through the OT protocols for its own, and
via direct communication for the Garbler’s) and garbled table, the Evaluator
uses them to decrypt sequentially each entry of the table and considers it a
success if the last p bits are equal to 0 (except with probability negligible in p,
the decryption of a ciphertext with the wrong keys will not yield p bits set to 0,
see Lemma 1). It then returns the decrypted value to the Garbler.

2 The value kz One-Time-Pads the output, preserving security for the Garbler after
decryption as only one value from the garbled table can be decrypted correctly.

330 L. Music et al.

4.3 Presentation of the Modified Yao Protocol

Differences with the Original Yao Protocol. There are four main differences
between our Modified Yao Protocol 1 and the well-known protocol from [19]
recalled above. The first two are trivially just as secure in the classical case (as
they give no more power to either player): the Garbler sends one copy of its keys
to the Evaluator for each entry in the garbled table and instructs it to use a
“fresh” copy for each decryption; and the Evaluator returns to the Garbler the
copy of the Garbler’s keys that were used in the successful decryption. There
is only one garbled table for the whole function instead of a series of garbled
tables corresponding to gates in the function’s decomposition. This means that
the size of the garbled table is 2l for inputs of size l (equivalently, this modified
protocol can only be used for logarithmically-sized inputs). This is less efficient
but no less secure than the original design in a classical network, as a player
breaking the scheme for this configuration would only have more power if it has
access to intermediate keys as well. The last difference is the use of a weaker
security assumption for the symmetric encryption function (indistinguishability
from a random permutation instead of the quantum equivalents of IND-CPA
security from [1,6,15]). This lower security requirement is imposed in order to
model the honest player’s actions using the minimal oracle representation. This
property influences the security against an adversarial Evaluator, but Theorem 2
shows that this assumption is sufficient here. The reasons for these modifications,
related to our attack, are developed in Sect. 5.

The full protocol for a single bit of output is described formally in Protocol 1.
Its correctness and security in classical networks are captured by Theorems 1
and 2, showing that the modifications above have no impact in this setting
(against both quantum and classical Adversaries).

Theorem 1 (Correctness of the Modified Yao Protocol). Let (Enc,Dec)
be a symmetric encryption scheme with a Minimal Oracle Representation (Def-
inition 4). Protocol 1 is correct with probability exponentially close to 1 in η for
p = η.

Theorem 2 (Classical-Style Security of the Modified Yao Protocol).
Consider a hybrid execution where the Oblivious Transfer is handled by a classical
trusted third party. Let (Enc,Dec) be a symmetric encryption scheme that is
εSym-real-or-permutation-secure (Definition 5). Then, in classical network C,
Protocol 1 is perfectly-secure against adversarial Garbler (with advantage 0) and
(2nX+nY − 1)εSym-secure against adversarial Evaluator.

5 Analysis of Yao’s Protocol with Superposition Access

Section 5.1 presents a superposition attack on the Modified Yao Protocol (Pro-
tocol 1). Section 5.2 then analyses it post-mortem to build a Superposition-
Resistant Yao Protocol. The formal description of the attacks are given in the
full version [16]. We also show in the full version how to slightly improve the

Formal Computational Security Model for Superposition Attacks 331

Protocol 1. Modified Yao Protocol for One Output Bit.
Input: The Garbler and Evaluator have inputs x ∈ {0, 1}nX and y ∈ {0, 1}nY

respectively, with nX + nY = O(log(η)).
Output: The Garbler has one bit of output, the Evaluator has no output.
Public Information: The function f to be evaluated, the encryption scheme
(Enc,Dec) and the size of the padding p.
The Protocol:
1. The Garbler chooses uniformly at random the values

{
kG,i
0 , kG,i

1

}
i∈[nX]

,
{

kE,j
0 , kE,j

1

}
j∈[nY]

from K and kz ∈ {0, 1}. It uses those values to compute

the garbled table GT
(X,Y,Z)
f , with X being the set of wires for the Garbler’s

input, Y the set of wires for the evaluators input, and Z the output wire.
2. The Garbler and Evaluator perform nY interactions with the trusted third party

performing the OT Ideal Functionality. In interaction j:
– The Garbler’s inputs are the keys (kE,j

0 , kE,j
1), the Evaluator’s input is yj .

– The Evaluator’s output is the key kE,j
yj .

3. The Garbler sends the garbled table GT
(X,Y,Z)
f and 2nX+nY copies of the

keys corresponding to its input
{
kG,i
xi

}
i∈[nX]

. It also sends the auxiliary values

{auxk}k∈[nX+nY] that were used for the encryption of the garbled values.
4. For each entry in the garbled table:

(a) The Evaluator uses the next “fresh” copy of the keys supplied by the Garbler
along with the keys that it received from the OT Ideal Functionality to
decrypt the entry in the garbled table.

(b) It checks that the last p bits of the decrypted value are all equal to 0. If so
it returns the register containing the output value and the ones containing
the Garbler’s keys to the Garbler.

(c) Otherwise it discards this “used” copy of the keys and repeats the process
with the next entry in the garbled table. If this was the last entry it outputs
Abort and halts.

5. If the Evaluator did no output Abort, the Garbler applies the One-Time-Pad
defined by the key associated with wire z to decrypt the output: if kz = 1, it
flips the corresponding output bit, otherwise it does nothing. It then sets the bit
in the output register as its output.

bound on the attack by applying the free-XOR technique to an instance of the
Yao Protocol computing the OT function.

Note that this attack does not simply distinguish between the ideal and real
executions, but allows the Adversary to extract one bit of information from
the honest player’s input. It is therefore a concrete attack on the Modified Yao
Protocol 1 (as opposed to a weaker statement about not being able to perform
an indistinguishable simulation in our model).

5.1 Attacking the Modified Yao Protocol via Superpositions

In the following, the classical protocol is embedded in a quantum framework,
all message are stored in quantum registers as quantum states that can be in

332 L. Music et al.

superposition. The encryption and decryption procedures are performed using
the Minimal Oracle Representation from Definition 4. The OT Ideal Function-
ality measures the inputs and outputs states in the computational basis. The
checks of the Evaluator on the padding for successful decryption are modelled
as a quantum measurement of the corresponding register.

We start by presenting the action of the adversarial Garbler during the exe-
cution of Protocol 1 (its later actions are described below). Its aim is to generate
a state containing a superposition of its inputs and the corresponding outputs
for a fixed value of the Evaluator’s input. This State Generation Procedure on
the Modified Yao Protocol 1 can be summarised as follows (it is generalized to
more superpositions in the full version [16]):

1. The Adversary’s choice of keys, garbled table generation (but for both values
of kz) and actions in the OT are performed honestly.

2. Instead of sending one set of keys as its input, it sends a superposition of
keys for two different non-trivial values of the Garbler’s input (x̂0, x̂1) (they
do not uniquely determine the output).

3. For each value in the garbled table, it instead sends a uniform superposition
over all calculated values (with a phase of −1 for states representing garbled
values where kz = 1).

4. It then waits for the Evaluator to perform the decryption procedure and, if
the Evaluator succeeded in decrypting one of the garbled values and returns
the output and register containing the Garbler’s keys, the Adversary performs
a clean-up procedure which translates each key for bit-input 0 (respectively
1) into a logical encoding of 0 (respectively 1). This procedure depends only
on its own choice of keys.

Theorem 3 (State Generation Analysis). The state contained in the Gar-
bler’s attack registers at the end of a successful Superposition Generation Proce-
dure is negligibly close to 1

2

∑

x,kz

(−1)kz ∣
∣xL

〉 |f(x, ŷ) ⊕ kz〉, where xL is a logical

encoding of x and x ∈ {x̂0, x̂1}. Its success probability is lower bounded by 1−e−1

for all values of nX and nY .

Proof (Sketch).
The Evaluator’s state after one decryption of a garbled table entry is (for
x ∈ {x̂0, x̂1}, tracing out the unentangled values and with gx′,y′,c

x,y representing
incorrectly decrypted values):

(∑

x,kz

(−1)kz ∣
∣kG

x

〉 |f(x, ŷ) ⊕ kz〉 |0〉⊗p +
∑

kz,x,x′,y′

(x,y) �=(x′,ŷ)

(−1)kz ∣
∣kG

x

〉 ∣
∣
∣g

x′,y′,kz

x,ŷ

〉)

(5)

With overwhelming probability in η, gx′,y′,c
x,ŷ
= r ‖ 0p and the states in both

sums are orthogonal. Checking the padding is modelled as a measurement with
successful outcome |0p〉〈0p|. If successful, the projected state received by the
Garbler is then: ∑

x,kz

(−1)c
∣
∣kG

x

〉 |f(x, ŷ) ⊕ kz〉 (6)

Formal Computational Security Model for Superposition Attacks 333

The final result after the clean-up procedure is 1
2

∑

x,kz

(−1)kz |xL′〉|f(x, ŷ) ⊕

kz〉 (where xL′
is a logical encoding of x) .

If a given measurement fails, the Evaluator moves to the next garbled
table value with fresh keys, essentially repeating the same procedure. The suc-
cess probability of each attempt is simply given by the number of states cor-
rectly decrypted out of the total number of states 1

2nX+nY
. The probability

that no measurement succeeds in 2nX+nY independent attempts is given by
(
1 − 1

2nX+nY

)2nX+nY ≤ e−1. The success probability is therefore lower-bounded
by 1 − e−1.

�
We can now analyse the actions of the Adversary after the protocol has

terminated. The Full Attack breaking the security of the Modified Yao Protocol 1
(Theorem 4) can be summarised as follows:

1. The Environment provides the Adversary with the values of the Garbler’s
input (x̂0, x̂1). The input of the honest Evaluator is ŷ.

2. The Adversary performs the State Generation Procedure with these inputs.
3. If it has terminated successfully, the Adversary performs an additional clean-

up procedure (which only depends on the values of (x̂0, x̂1)) to change the
logical encoding of x̂b into an encoding of b. The resulting state is 1√

2

(|0〉 +
(−1)b0⊕b1 |1〉) ⊗ |−〉 (omitting the logical encoding, with bi := f(x̂i, ŷ)).

4. The Adversary recover the XOR of the output values for the two inputs
by applying a Hadamard gate to its first register and measuring it in the
computational basis.3

Theorem 4 (Vulnerability to Superposition Attacks of the Modified
Yao Protocol). For any non-trivial two-party function f : {0, 1}nX ×
{0, 1}nY → {0, 1}, let (x̂0, x̂1) be a pair of non-trivial values in {0, 1}nX . For
all inputs ŷ of honest Evaluator in Protocol 1, let PE

f (ŷ) = f(x̂0, ŷ) ⊕ f(x̂1, ŷ).
Then there exists a real-world Adversary A in quantum network Q against Pro-
tocol 1 implementing f such that for any Simulator S, the advantage of the
Adversary over the Simulator in guessing the value of PE

f (ŷ) is lower-bounded
by 1

2 (1 − e−1).

Proof (Sketch). The Superposition Generation Procedure succeeds with proba-
bility 1− e−1. Then the Adversary applies the final steps of Deutsch’s algorithm
as follows and recover the value of the XOR with probability 1. The Adversary
first applies the clean-up procedure on the registers containing x̂i

L′
and obtains

(for a different value L for the logical encoding):

1
2
(|0〉⊗L |f(x̂0, ŷ)〉− |0〉⊗L |f(x̂0, ŷ) ⊕ 1〉+ |1〉⊗L |f(x̂1, ŷ)〉− |1〉⊗L |f(x̂1, ŷ) ⊕ 1〉)

(7)

3 This corresponds to the final steps of the DJ algorithm.

334 L. Music et al.

Let bi := f(x̂i, ŷ), the state is then 1√
2
(−1)b0

(|0〉⊗L +(−1)b0⊕b1 |1〉⊗L)⊗|−〉.
The Adversary then applies the logical Hadamard gate, the resulting state is
|b0 ⊕ b1〉⊗L ⊗ |−〉. The Adversary measures the first qubit in the computational
basis to obtain b0 ⊕ b1 = f(x̂0, ŷ) ⊕ f(x̂1, ŷ).

If the state generation fails, Adversary resorts to guessing the value of the
value of PE

f (ŷ), winning with a probability 1
2 . On the other hand, any Simulator

is only able to guess the value of PE
f (ŷ). The advantage of the Adversary over

any Simulator is lower-bounded by 1
2 (1 − e−1).

�
Finally, the following lemma captures the fact that the previously described

Adversary does not break the Honest-but-Curious security of the Modified Yao
Protocol if it does not have superposition access (a fully-malicious one can triv-
ially break it), thereby demonstrating the separation between Adversaries with
and without superposition access. See full version [16] for a detailed explanation.

Lemma 1 (Adversarial Behaviour Analysis). In a classical network C,
the Adversary described in the Full Attack is an Extended Honest-but-Curious
Adversary (Definition 3).

Justifying the Differences in the Protocol Variant. The fact that the Garbler
sends multiple copies of its keys is what allows the success probability to be
constant and independent from the size of the inputs. Returning the Garbler’s
keys to the Adversary is an essential part of the attack, as described below.
The specificities of the encryption scheme removes the need to add an ancillary
register for encryption and decryption. For the same reason, we do not decompose
the function into elementary gates, as the intermediate keys would add another
entangled register as well.

5.2 Superposition-Resistant Yao Protocol

We can now analyse the crucial points where the security breaks down and
propose counter-measures. We notice that all actions of the Adversary only act
on the registers that contain its own keys (recall that the Evaluator sends back
the Garbler’s keys after a successful decryption) and have no effect on the output
register, which stays in the |−〉 state the whole time. It is thus unentangled
from the rest of the state and the attack on the protocol can therefore also be
performed if the Garbler has no output. As the security in this case still holds
for Adversaries in classical network C via input-indistinguishability, this security
property does not carry over from the classical to the quantum network case.

Therefore, counter-intuitively, the precise point that makes the attack possi-
ble is a seemingly innocuous message consisting of information that the Adver-
sary should (classically) already have, along with a partial measurement on the
part of the honest player (usually, measuring the state is thought to be the
easiest way to prevent superposition attacks).

Formal Computational Security Model for Superposition Attacks 335

Not sending back this register to the Adversary (as in the Original Yao
Protocol) yields the following protocol structure: one party sends everything
to the other, who then simply applies local operations. If the Environment is
able to guess whether it is in the real or ideal situation, this would violate the
no-signalling condition of quantum mechanics. This technique can be used if
the Evaluator has no further communication with the Adversary (by hiding the
success or failure of the garbled table decryption).

We give now a sketch of the formal Superposition-Secure Yao Protocol 2,
along with a statement of security against an adversarial Garbler with super-
position access. It uses Yao’s original construction for the garbled table, where
the function is decomposed into elementary gates (of constant fan-in) and can
therefore be applied to any binary function with inputs that are of polynomial
size in the security parameter [11], as opposed to the Modified Yao Protocol 1.

Protocol 2. Superposition-Secure Yao Protocol (Sketch).
Input: The Garbler and Evaluator have inputs x ∈ {0, 1}nX and y ∈ {0, 1}nY

respectively, with nX + nY = poly(η).
Output: The Garbler has no output, the Evaluator has one bit of output.
Public Information: The function f to be evaluated, the encryption scheme
(Enc,Dec) and the size of the padding p.
The Protocol:
1. The Garbler creates the keys and garbled table as in the original Yao’s Protocol

(with no kz).
2. The Garbler and the Evaluator participate in the OT ideal executions, at the

end of which the Evaluator receives its evaluation keys for its input of choice.
3. The Garbler sends the evaluation keys for its inputs and stops.
4. The Evaluator decrypts each entry in the garbled table sequentially. It stops if

the padding is 0p, the first bit is then set as its output.
5. Otherwise (if none of the values were decrypted correctly), it sets as its output

Abort. This is not communicated to the Garbler.

Theorem 5 (Superposition-Resistant Two-Party Computation). The
Superposition-Resistant Yao Protocol 2 is perfectly-secure against an adversarial
Garbler in quantum network Q in an OT-hybrid execution (Definition 1).

6 Conclusion

Our security model and the attack analysis performed in this paper lie com-
pletely outside of the existing models of security against superposition attacks.
They either consider the computational security of basic primitives or, for more
complex protocols with multiple interactions between distrustful parties, the pro-
tocols are all considered to be statistically-secure (and are therefore essentially
extensions of [14]). This leads to many simplifications which have no equivalent
in the computational setting. We develop a novel security framework, based on

336 L. Music et al.

the simple premise that to be secure from superposition attacks means emu-
lating a purely classical functionality. We show that, given slight modifications
that preserves classical security, it is possible to show superposition attacks on
computationally-secure protocols. The intuition gained from the attack allows
us to build a computationally superposition-resistant protocol for Two-Party
Secure Function Evaluation, a task never achieved before.

Our results demonstrate once again the counter-intuitive nature of quantum
effects, regarding not only the vulnerability of real-world protocols to super-
position attacks (most would require heavy modifications for known attacks to
work), but also attack vectors and the optimal ways to counter them (as partial
measurements can even lead to attacks).

Acknowledgments. This work was supported in part by the French ANR project
CryptiQ (ANR-18-CE39-0015). We acknowledge support of the European Union’s Hori-
zon 2020 Research and Innovation Program under Grant Agreement No. 820445 (QIA).
We would like to thank Michele Minelli, Marc Kaplan and Ehsan Ebrahimi for fruitful
discussions.

References

1. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a
quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1 21

2. Büscher, N., et al.: Secure two-party computation in a post-quantum world. In:
18th International Conference on Applied Cryptography and Network Security
(ACNS’2020), October 2020. http://tubiblio.ulb.tu-darmstadt.de/119789/

3. Yao, A.C.-C: Quantum circuit complexity. In: Proceedings of 1993 IEEE 34th
Annual Foundations of Computer Science, pp. 352–361, November 1993. https://
doi.org/10.1109/SFCS.1993.366852

4. Damg̊ard, I., Funder, J., Nielsen, J.B., Salvail, L.: Superposition attacks on cryp-
tographic protocols. In: Padró, C. (ed.) ICITS 2013. LNCS, vol. 8317, pp. 142–161.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04268-8 9

5. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc.
Royal Soc. Lond. Ser. A: Math. Phys. Sci. 439(1907), 553–558 (1992). https://doi.
org/10.1098/rspa.1992.0167

6. Gagliardoni, T., Hülsing, A., Schaffner, C.: Semantic security and indistinguisha-
bility in the quantum world. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9816, pp. 60–89. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53015-3 3

7. Goldreich, O.: Pseudorandom Permutations, vol. 1, pp. 164–169. Cambridge Uni-
versity Press, Cambridge (2004). https://doi.org/10.1017/CBO9780511721656

8. Hallgren, S., Smith, A., Song, F.: Classical cryptographic protocols in a quan-
tum world. Int. J. Quantum Inf., 13(04), p. 1550028 (2015). https://doi.org/
10.1142/S0219749915500288, https://www.worldscientific.com/doi/abs/10.1142/
S0219749915500288

https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-642-40084-1_21
http://tubiblio.ulb.tu-darmstadt.de/119789/
https://doi.org/10.1109/SFCS.1993.366852
https://doi.org/10.1109/SFCS.1993.366852
https://doi.org/10.1007/978-3-319-04268-8_9
https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1007/978-3-662-53015-3_3
https://doi.org/10.1007/978-3-662-53015-3_3
https://doi.org/10.1017/CBO9780511721656
https://doi.org/10.1142/S0219749915500288
https://doi.org/10.1142/S0219749915500288
https://www.worldscientific.com/doi/abs/10.1142/S0219749915500288
https://www.worldscientific.com/doi/abs/10.1142/S0219749915500288

Formal Computational Security Model for Superposition Attacks 337

9. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking sym-
metric cryptosystems using quantum period finding. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 207–237. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53008-5 8

10. Kashefi, E., Kent, A., Vedral, V., Banaszek, K.: Comparison of quantum oracles.
Phys. Rev. A, 65, p. 050304 (2002). https://doi.org/10.1103/PhysRevA.65.050304,
https://link.aps.org/doi/10.1103/PhysRevA.65.050304

11. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party com-
putation. J. Cryptol. 22(2), 161–188 (2009). https://doi.org/10.1007/s00145-008-
9036-8

12. Liu, M., Krämer, J., Hu, Y., Buchmann, J.A.: Quantum security analysis of a
lattice-based oblivious transfer protocol. Front. Inf. Technol. Electron. Eng. 18(9),
1348–1369 (2017). https://doi.org/10.1631/FITEE.1700039

13. Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56(2),
1154–1162 (1997). https://doi.org/10.1103/physreva.56.1154, http://dx.doi.org/
10.1103/PhysRevA.56.1154

14. Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys.
Rev. Lett. 78, 3414–3417 (1997). https://doi.org/10.1103/PhysRevLett.78.3414,
http://link.aps.org/doi/10.1103/PhysRevLett.78.3414

15. Mossayebi, S., Schack, R.: Concrete Security Against Adversaries with Quantum
Superposition Access to Encryption and Decryption Oracles, September 2016.
arXiv e-prints arXiv:1609.03780

16. Music, L., Chevalier, C., Kashefi, E.: Dispelling Myths on Superposition
Attacks: Formal Security Model and Attack Analyses, July 2020. arXiv e-prints
arXiv:2007.00677

17. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2000)

18. Salvail, L., Schaffner, C., Sotáková, M.: Quantifying the leakage of quantum pro-
tocols for classical two-party cryptography. Int. J. Quantum Inf. 13(04), 14500441
(2015). https://doi.org/10.1142/S0219749914500415

19. Tarjan, R., Lipton, R.J.: Applications of a planar separator theorem. In: 2013 IEEE
54th Annual Symposium on Foundations of Computer Science, Los Alamitos, CA,
USA, pp. 162–170. IEEE Computer Society, October 1977. https://doi.org/10.
1109/SFCS.1977.6, https://doi.ieeecomputersociety.org/10.1109/SFCS.1977.6

20. Unruh, D.: Universally composable quantum multi-party computation. In: Gilbert,
H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 486–505. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13190-5 25

https://doi.org/10.1007/978-3-662-53008-5_8
https://doi.org/10.1103/PhysRevA.65.050304
https://link.aps.org/doi/10.1103/PhysRevA.65.050304
https://doi.org/10.1007/s00145-008-9036-8
https://doi.org/10.1007/s00145-008-9036-8
https://doi.org/10.1631/FITEE.1700039
https://doi.org/10.1103/physreva.56.1154
http://dx.doi.org/10.1103/PhysRevA.56.1154
http://dx.doi.org/10.1103/PhysRevA.56.1154
https://doi.org/10.1103/PhysRevLett.78.3414
http://link.aps.org/doi/10.1103/PhysRevLett.78.3414
http://arxiv.org/abs/1609.03780
http://arxiv.org/abs/2007.00677
https://doi.org/10.1142/S0219749914500415
https://doi.org/10.1109/SFCS.1977.6
https://doi.org/10.1109/SFCS.1977.6
https://doi.ieeecomputersociety.org/10.1109/SFCS.1977.6
https://doi.org/10.1007/978-3-642-13190-5_25

Secret Sharing Schemes

Fair and Sound Secret Sharing from
Homomorphic Time-Lock Puzzles

Jodie Knapp(B) and Elizabeth A. Quaglia(B)

Information Security Group, Royal Holloway, University of London, London, UK
{jodie.knapp.2018,elizabeth.quaglia}@rhul.ac.uk

Abstract. Achieving fairness and soundness in non-simultaneous ratio-
nal secret sharing schemes has proved to be challenging. On the one hand,
soundness can be ensured by providing side information related to the
secret as a check, but on the other, this can be used by deviant players to
compromise fairness. To overcome this, the idea of incorporating a time
delay was suggested in the literature: in particular, time-delay encryption
based on memory-bound functions has been put forth as a solution. In
this paper, we propose a different approach to achieve such delay, namely
using homomorphic time-lock puzzles (HTLPs), introduced at CRYPTO
2019, and construct a fair and sound rational secret sharing scheme in
the non-simultaneous setting from HTLPs.

HTLPs are used to embed sub-shares of the secret for a predetermined
time. This allows to restore fairness of the secret reconstruction phase,
despite players having access to information related to the secret which is
required to ensure the soundness of the scheme. Key to our construction
is the fact that the time-lock puzzles are homomorphic so that players
can compactly evaluate sub-shares. Without this efficiency improvement,
players would have to independently solve each puzzle sent from the other
players to obtain a share of the secret, which would be computationally
inefficient. We argue that achieving both fairness and soundness in a non-
simultaneous scheme using a time delay based on CPU-bound functions
rather than memory-bound functions is more cost-effective and realistic
in relation to the implementation of the construction.

1 Introduction

Threshold secret sharing (SS) schemes provide a way to split a secret into shares
such that the secret can be reconstructed by a threshold number of mutually
distrustful parties. Knowledge of fewer than the threshold number of shares
reveals nothing about the secret [5,37]. SS schemes are an important primitive
used in a variety of settings from multiparty computation [7,9], to attribute-
based encryption [20,41], and threshold cryptography [4,12].

In a SS scheme, a trusted dealer splits the secret into shares and distributes
one to each authorised party. Parties then communicate and process their collec-
tive shares in a reconstruction phase. During the communication phase, parties
broadcast their shares in one of two ways: simultaneously or non-simultaneously.
c© Springer Nature Switzerland AG 2020
K. Nguyen et al. (Eds.): ProvSec 2020, LNCS 12505, pp. 341–360, 2020.
https://doi.org/10.1007/978-3-030-62576-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62576-4_17&domain=pdf
https://doi.org/10.1007/978-3-030-62576-4_17

342 J. Knapp and E. A. Quaglia

That is, with or without synchronicity. Properties of SS schemes are better under-
stood and easier to guarantee in the simultaneous setting [10], due to the fact
that a non-simultaneous construction needs to ensure the final party to commu-
nicate is still incentivised to follow the protocol. However, simultaneous schemes
are difficult to implement in practice, therefore attention has recently turned to
non-simultaneous communication [2].

Typically, in the non-simultaneous setting [17,25,26], schemes consists of
rounds, where one round of the reconstruction phase simply translates to a
capped period of time in which parties have the opportunity to communicate
their share. Parties learn the secret is reconstructed when they reconstruct some
publicly known value (for example, an indicator), in what is known as a revelation
round [22,29]. The previous round to the revelation round is assumed to be the
one in which the secret can be reconstructed from, allowing parties to identify
when they will reconstruct the correct secret.

There is abundant literature for cryptographic [3,4,8,18,22,27–29,34,38]
and game-theoretical SS schemes [2,10,17,19,21,30], two somewhat indepen-
dent research areas considering honest/malicious parties and rational players,
respectively. We refer to Appendix G of [24] for a brief summary of past works.
Rational secret sharing (RSS) was introduced by [21], where they consider the
problem of secret sharing and multiparty computation assuming players pre-
fer to learn the secret over not learning it, and secondly, prefer that as few as
possible other players learn the secret. While for some applications the crypto-
graphic setting is appropriate, for other applications of secret sharing it may be
more suitable to view all parties as rational players. RSS is a good approach
to capture more interesting scenarios, such as how to motivate or force players
to participate honestly and even how a scheme can penalise players for deviant
play. Furthermore, modelling players as rational is not limited to assuming play-
ers always want to learn the secret above all else. Indeed, as we will explore, an
emerging scenario in RSS considers players that prefer to mislead others above
learning the secret. For these reasons, our attention focuses on RSS schemes.

In RSS schemes, the outcome of the game influences the players’ strategies,
as they seek to maximise their payoff. Security of the game requires the strategies
of players to be in some form of equilibrium which motivates them to honestly
communicate1. Achieving an equilibrium between players’ strategies is the most
natural way to demonstrate a fundamental property of SS schemes, called fair-
ness [14,23].

A fair scheme ensures that if a player deviates, the probability that they can
recover the shared secret over honest players is negligible. That is, a player is
at no advantage in learning the secret if they withhold or dishonestly send a
share. In the simultaneous setting, [19,21] both achieve fairness using some form
of publicly known indicator and by demonstrating that their protocol is in a
form of Nash equilibrium [33]. In the non-simultaneous setting, however, a basic
threat to fairness arises: in a (t, n) threshold RSS scheme, the last player out of

1 See Appendices D.1, and D.2 for further discussion on payoff functions and equilib-
rium concepts.

Fair and Sound Secret Sharing from Homomorphic Time-Lock Puzzles 343

t can decide not to communicate their share and use all the other players’ shares
to reconstruct the secret, leaving the (t − 1) honest players with an insufficient
number of shares to do so. The rational behaviour of all parties would therefore
be to withhold their share. In works such as [17,26,30], fairness can be achieved
similarly to the simultaneous setting, whereby players can recognise the reve-
lation round using (or reconstructing) some form of public indicator. However,
this only works under the assumption that players prefer everyone to obtain the
correct output over misleading others [2,10]. If this assumption does not hold,
an alternative way of providing fairness needs to be used, as another property
of SS schemes is no longer ensured, soundness.

In RSS schemes, soundness [2,10] ensures players never reconstruct an incor-
rect secret except with negligible probability. In other words, honest players are
guaranteed to output a correct value, or a special abort symbol ⊥ [2]. Soundness
is becoming of emerging relevance in the non-simultaneous setting, assuming
rational players obtain a greater payoff from misleading other players compared
to learning the secret. Soundness has been achieved in prior work [10] focusing
on non-simultaneous communication as follows: before reconstruction begins, all
players are given protocol-induced side information alongside their list of shares.
They must assume that when a player aborts communication, the previous round
was the revelation round. Even if a deviant player has aborted early, using this
side information, honest players can check that they have the correct value after
reconstruction. If not, they terminate the reconstruction altogether.

However, achieving soundness this way compromises fairness, as a deviant
player can use the side-information to check whether they can abort early and
learn the secret before honest players. The authors of [30] were the first to pro-
pose a fair RSS scheme that can tolerate arbitrary side-information, by propos-
ing the use of time-delay encryption (TDE) [6,32]. The basic idea of a TDE
scheme is to encrypt a message such that it can only be decrypted after a spe-
cific amount of time has elapsed. The scheme in [30] employs a cryptographic
memory-bound function2 (CMBF) [1,16] as a way to achieve time-delay in the
recovery of an encrypted sub-share of the secret. The fairness of their scheme is
restored by setting the runtime of rounds of the secret sharing scheme to be less
than the time it takes to decrypt the encrypted shares. Thus, there is no way
for a deviant player to learn anything about the secret during a reconstruction
round before they must decide whether to abort communication. In addition, a
proof of the sender’s work in computing their message is sent. The scheme pro-
posed in [10] builds upon [30], by encrypting shares (shares are computed using
Shamir’s SS scheme) using the CMBF and further splits the encrypted shares
into sub-shares, distributed to players. During processing, players independently
evaluate the encrypted sub-shares to obtain the encrypted share, decrypt and
then reconstruct the polynomial to obtain the secret. They use a specific form of
side-information, called a checking share, which is an actual share of the secret

2 A CMBF is a family of deterministic algorithms such that an efficiently generated
key can decrypt the encrypted input, with a lower-bound on the number of memory-
access steps to do so.

344 J. Knapp and E. A. Quaglia

that players can use to confirm they have reconstructed the correct secret, thus
achieving soundness.3 We note that the memory-bound running times of employ-
ing the MBF in [16], a cryptographic version of which is used for time-delay
in [10,30], endows a high cost on the players who have to verify the proof of
work from messages received by other players. In addition, the players send-
ing the message can potentially perform less work than what is stated in their
accompanying proof [15,36]. These drawbacks suggest that a better time-delay
mechanism should be explored to guarantee fairness, that reduces verification
costs of the communicated messages and\or increases computational efficiency
for honest players obtaining the secret shares after the delay.

1.1 Our Contributions

In this paper, we improve on [10] and propose a RSS scheme achieving fairness
and soundness in the non-simultaneous communication setting from a CPU-
bound function, as opposed to a CMBF, namely a homomorphic time-lock puzzle.

Informally, a time-lock puzzle (TLP) [35] embeds a secret into a puzzle such
that it cannot be decrypted until a certain amount of time T has elapsed. Char-
acteristics of a TLP include fast puzzle generation and security against parallel
algorithms, assuming the sequentiality of the underlying mathematical problem
[35]. A homomorphic time-lock puzzle (HTLP) scheme evaluates puzzles homo-
morphically using some operation, without the evaluator knowing the secret
shares encapsulated within the corresponding puzzles. The resulting puzzle out-
put contains the homomorphic evaluation of the input puzzles, enabling a more
efficient way for decryptors to obtain the final output solution, as they can solve
just one puzzle rather than solving all of the puzzles individually with standard
TLPs, and then evaluating a final solution.

In our scheme, the dealer splits the secret into shares and creates an addi-
tional share which is broadcast to all players, i.e., the checking share. The rest
of the shares are split into sub-shares, embedded into HTLPs and distributed
to the corresponding players in such a way that the HTLP scheme can recon-
struct the share from them. Intuitively, the checking share is used to verify the
soundness of the secret that players reconstruct, and the delay provided by the
HTLP scheme is used to guarantee fairness in the presence of a checking share for
players communicating non-simultaneously. More specifically, the HTLP scheme
embeds the sub-shares into puzzles that cannot be decrypted before a round of
communication in the reconstruction phase has finished. Fairness is achieved by
setting each round of communication to have an upper time bound of T . Thus, a
player wishing to deviate from their prescribed strategy and quit communication
will not be able to derive the secret before the end of the round, in which case,
the other players realise the deviant player has quit and output the result of the
previous rounds reconstruction. We show that even if a player quits in a round

3 Note that [30] works under the assumption that players prefer everyone to obtain
the correct output over misleading others, therefore soundness is not an issue that
needs to be addressed.

Fair and Sound Secret Sharing from Homomorphic Time-Lock Puzzles 345

and manages to learn the secret, the only case in which they can do so results
in the honest players also learning the secret. Therefore there is no advantage in
a player deviating from their prescribed strategy.

From our generic construction, which we show satisfies soundness and fair-
ness, we provide a concrete instantiation using the multiplicative variant of the
HTLP scheme proposed in [31]. The result is a concrete, efficient scheme whose
security relies on standard assumptions.

We argue that our improvement on prior work is threefold: we base the time
delay of the construction on CPU-bound functions, as opposed to CMBFs; we
provide an efficiency gain by using HTLPs instead of TLPs, and our solution
has inherent flexibility.

Basing the time-delay primitive on CPU-bound functions as opposed to
memory-bound functions captures a more realistic, inexpensive way to imple-
ment a SS scheme construction. Processors are faster than memory and scale
better; even more so, fast memory is considerably more expensive. In practice,
it is easier to raise the computational requirements of a player than it is mem-
ory accesses, up to a point, as adding more processors to a computer is more
accessible than making memory accesses faster. A justification for using MBFs
in [10,30] is that disparities in the computational power of players can cause
unfairness when using standard TLPs for time-delay. However, with reasonable
assumptions on the CPU-power of players, this disparity is not significant.

Furthermore, we use a HTLP for time-delay, which requires less compu-
tational work on behalf of the players decrypting puzzles compared to using
standard TLPs. This efficiency improvement means that the consequence of dis-
parities in CPU-power becomes less significant. To see this, evaluating several
puzzles homomorphically, and then solving just one puzzle, requires fewer com-
putational steps than solving individual puzzles and evaluating a function over
the outputs, as in [10].

Finally, the instantiation of our generic scheme can use any correct SS scheme
with a suitable HTLP, dependent on the application. The HTLPs that we use,
from [31], are adaptable in the following ways: different operators (linear, mul-
tiplicative, and XOR) can be used, we can augment the setup with puzzles of
different time hardness parameters (T1, . . . , Tn) or have a reusable setup, in which
the scheme remains efficiently computable.

We refer the reader to the full version of this paper [24] for the formal security
analysis of our generic scheme and concrete instantiation using multiplicative-
homomorphic TLPs and a multiplicative SS scheme. For the remainder of this
paper, any reference to appendices is in relation to the full version of our paper.

2 Definitions and Modelling

2.1 Secret Sharing

Informally, a (t, n) secret sharing scheme (SS) involves a dealer D, some secret
s, and a set P = {P1, P2, . . . , Pn} of n players. The dealer distributes shares of

346 J. Knapp and E. A. Quaglia

a secret s chosen according to an efficiently samplable distribution of the set of
secrets, labelled S = {Sλ}λ∈N, with security parameter λ. The key idea behind
threshold SS is that no subset t′ < t of players in P can learn the secret s,
including an adversary controlling t′ players. Conversely, every subset t′ ≥ t of
players in P is capable of reconstructing s.

A SS protocol is composed of two phases, share and reconstruction. During
the share phase, the dealer samples a secret s from Sλ and generates n shares
from the secret being distributed to each player in P . The dealer does this
non-interactively, using a share algorithm to generate the set of shares to be
distributed. The dealer digitally signs (typically using information-theoretically
secure MACs) and encrypts the shares before distributing them to individual
players over a broadcast channel 4.

The reconstruction phase itself is composed of two parts: communication and
processing. The communication phase has players interact by sending their share
over the broadcast channel to every other player in P (if a broadcast channel
is not available to parties, then they have to send their share to each of the
other players separately). Once players have communicated, they can move to
the processing phase where they embark on reconstructing the secret s from the
shares that they have received. This is under the assumption that a sufficient
number of shares have been sent and received from other players, and that players
followed the protocol (correctness). If an insufficient amount of shares have been
received, the secret cannot be reconstructed, so players output ⊥. Any player
taking part in reconstruction proceeds to output their result.

Threshold secret sharing schemes have been explored extensively, and were
introduced independently by Shamir [37] and Blakley [5]: Shamir’s scheme is
based on polynomial interpolation over a finite field of prime order, and Blak-
ley’s scheme is based on the uniqueness of hyperplane intersection. Extending
the work of [37], [11,13,40] propose multiplicative homomorphic secret sharing
schemes based on polynomial interpolation over finite groups with respect to
multiplication, that need not be of prime order (See Appendix B [24]).

Next, we recall the formal definition of a threshold secret sharing scheme,
with the implicit assumption that the dealer has digitally signed the shares
before distributing:

Definition 1 ((t, n) Secret Sharing). Given a dealer D, a secret s ∈ Sλ for
security parameter λ, and a set of n authorised players P = {P1, . . . , Pn}, a (t, n)
secret sharing scheme is a tuple of three PPT algorithms (Setup,Share,Recon)
defined as follows:

– Share Phase: D takes as input the secret s and performs the following steps
non-interactively:
1. pp ← Setup(1λ) a probabilistic algorithm that takes as input security

parameter 1λ and outputs public parameters pp, which are broadcast to
all players in P .

4 Privacy and authentication of the distribution of shares is a standard cryptographic
assumption in secret sharing schemes [34].

Fair and Sound Secret Sharing from Homomorphic Time-Lock Puzzles 347

2. {s1, . . . , sn} ← Share(pp, s) a probabilistic algorithm that takes as input
the secret s ∈ Sλ and outputs n shares si, one for each player in P .

3. Distribute si to player Pi for every i ∈ [n] over a secret, authenticated
channel.

– Reconstruction Phase: Any player in P = {P1, . . . , Pn} is able to take part
in this phase.
1. Communication:

(a) Each player Pi sends their share si over a secure broadcast channel
to all other players in P .

(b) Pi checks that they have received (t − 1) or more shares. If so, they
proceed to processing.5

2. Processing:
Once Pi has a set of t′ shares labelled S′, they independently do the
following:
(a) {s,⊥} ← Recon(pp, S′) a deterministic algorithm that takes as input

the set S′ of t′ shares and outputs the secret s if t′ ≥ t or outputs
abort ⊥ otherwise.

A (t, n) threshold SS scheme needs to satisfy the properties of correctness and
secrecy, whose definitions are provided in [24], Appendix A.3. Informally, cor-
rectness means that an honest execution of the scheme results in the true secret
being output, except with negligible probability; and secrecy ensures that recon-
struction with fewer shares than the threshold (t) results in abort (⊥) being
output, except with negligible probability.

2.2 Rational Secret Sharing

Using game-theory notions, players are considered to be rational if they have a
preference in the outcome of the reconstruction phase. In a rational secret sharing
(RSS) scheme, a players strategy is to maximise their payoff from the outcome
of the game. The strategy σi taken by each player Pi must be determined by
the dealer in order to achieve a fair outcome. Observe that depending on the
scheme, the strategies of players in P may be the same or different.

In Definition 1, players only participate in the reconstruction phase. There-
fore, we define a RSS scheme by providing a definition of the reconstruction
phase only.

Definition 2 ((t, n) Rational Secret Reconstruction [10]). A reconstruc-
tion phase Γt,n is defined by Γt,n = (Γ,−→σ) where Γ is the game to be played
by players during the reconstruction phase and −→σ = (σ1, · · · , σn) denotes the
strategy profile of the players in P prescribed by the dealer D during the share
phase for that scheme.
5 Whilst not explicit in the definition, there is an upper bound on how long players

can communicate their shares for. Therefore, at the end of their communication, if
a player Pi has not obtained a sufficient number of shares, then they output ⊥ at
the end of the reconstruction phase.

348 J. Knapp and E. A. Quaglia

The outcome of the phase for all players is defined by the n-dimensional
vector

−→ω ((Γ,−→σ)t,n) = (ω1, . . . , ωn)

where ωi refers to the outcome of the phase for player Pi.

The outcome ωi alludes to whether player Pi learns the entirety of s, nothing
of s, is mislead into learning a fake secret s′ or aborts the reconstruction phase
altogether (⊥). It is important to note that the outcome of the phase depends
on the strategy of the player.

One of the fundamental properties of secret sharing is fairness [39], which guar-
antees that no player has an advantage in the protocol over other players. The
following defines fairness in the context of a RSS scheme. We use the follow-
ing notation for a deviating strategy σ′

i for player Pi, to signify when a player
behaves in a different way to how they are meant to. That is, they do not follow
the protocol. In addition, P−i represents all players in P excluding player Pi,
and σ−i signifies the honest strategies of this set of (n − 1) players, P−i.

Definition 3 (Fairness [10]). The reconstruction phase Γt,n is completely
fair if for every arbitrary alternative strategy σ′

i followed by player Pi for some
i ∈ [n], there exists a negligible function μ in the security parameter λ such that
the following holds:

Pr[ωi(Γ, (σ′
i, σ−i)) = s] ≤ Pr[ω−i(Γ, (σ′

i, σ−i)) = s] + μ(λ).

That is, the probability of player Pi learning the secret when they deviate from
their prescribed strategy in phase Γt,n (but all other players follow their pre-
scribed strategies) is only ever negligibly more than the probability of the other
players learning the secret too. Consequently, such a player has no real advantage
in deviating from their strategy.

How do we ensure that players (despite any preferences they may have) are
motivated to follow a strategy in the non-simultaneous setting? This is typically
done by assuming that the strategies of players are in a computationally strict
Nash equilibrium (or some other variant of a Nash equilibrium) [14,23,33]. This
concept makes certain that if every player Pi ∈ P believes all other players in
P are following their prescribed strategy in the phase, then they have nothing
to gain in deviating from their own strategy and are penalised in some way
by deviating. In our construction, we need to ensure players strategies are in a
computationally strict Nash equilibrium when they additionally have access to
side-information related to the secret. We discuss this further in Appendix D.2
of the full version of this paper [24].

Another fundamental property of RSS is soundness. Simply put, soundness of
the reconstruction phase output means that the probability of players following
the scheme outputting an incorrect secret when another player deviates from
their own strategy is negligible.

Definition 4 (Soundness [10]). Reconstruction phase Γt,n is sound if for
every arbitrary alternative strategy σ′

i followed by player Pi for i ∈ [n], there

Fair and Sound Secret Sharing from Homomorphic Time-Lock Puzzles 349

exists a negligible function μ in the security parameter λ such that the following
holds:

Pr[ω−i(Γ, (σ′
i, σ−i)) �∈ {s,⊥}] ≤ μ(λ)

In our construction, as we shall see, we achieve this property by using a checking
share, similarly to [10]. A checking share is an actual share of the secret, kept
separate from the other shares and publicly broadcast to players. In order to for-
malise our scheme, discussed in Sect. 3, we recall the definition of a homomorphic
time-lock puzzle (HTLP) [31], on which our construction relies.

2.3 Homomorphic TLPs

Informally, a time-lock puzzle (TLP) scheme embeds a secret into a puzzle such
that it cannot be decrypted until a certain amount of time T has elapsed. The
seminal work of [35] outlined the characteristics of a TLP:

– Fast puzzle generation: namely, the time t required to generate a puzzle Z
must be t << T , for a given (time) hardness parameter T .

– Security against parallel algorithms: that is, the encapsulated secret s is dis-
guised within the puzzle Z for circuits of depth < T , regardless of the size of
the circuit.

However, when the decryptor is faced with a significant number of puzzles to
solve, a standard TLP scheme requires the decryptor to solve each individual
puzzle, which could be very inefficient. Driven by this limitation [31] introduced
the notion of a homomorphic TLP (HTLP), a scheme that compactly evaluates
puzzles homomorphically.

Homomorphic time-lock puzzles are augmented TLPs allowing anyone to
evaluate a circuit C over sets of puzzles (Z1, . . . ,Zn) homomorphically using
operation Ψ6, without the evaluator necessarily knowing the secret values
(s1, . . . , sn) encapsulated within the corresponding puzzles. The resulting output
(a puzzle Z) contains the circuit output C(s1, . . . , sn), and the hardness param-
eter T does not depend on the size of the circuit C that was evaluated (this is
called compactness).

Definition 5 (HTLP [31]). Let C = {Cλ}λ∈N be a class of circuits and let
secret space Sλ be a finite domain for security parameter λ. A homomorphic
time-lock puzzle (HTLP) with respect to C and Sλ is defined by a tuple of four
PPT algorithms (HP.Setup,HP.Gen,HP.Solve,HP.Eval) as follows:

– pp ← HP.Setup(1λ, T) is a probabilistic algorithm that takes as input security
parameter 1λ and hardness parameter T and outputs public parameters pp.

– Z ← HP.Gen(pp, s) a probabilistic algorithm that takes as input the public
parameters pp and a secret s ∈ Sλ and outputs a puzzle Z.

6 What Ψ is depends on the application the HTLP is being used for. It could be
addition, multiplication or XOR for example.

350 J. Knapp and E. A. Quaglia

– s ← HP.Solve(pp,Z) is a deterministic algorithm that takes as input public
parameters pp and puzzle Z, and outputs a solution s.

– Z̃ ← HP.Eval(pp,C, Ψ,Z1, . . . ,Zn) is a probabilistic algorithm taking as input
a circuit C ∈ Cλ, parameters pp, homomorphic-operation Ψ , and a set of n
puzzles (Z1, . . . ,Zn), and outputs a master puzzle Z̃.

A HTLP scheme should satisfy correctness, security, and compactness. Infor-
mally, correctness means that if a scheme is executed properly, then the proba-
bility of the output being anything other than the solution is negligible. Captured
within the definition of the correctness of a HTLP scheme [31] is the time-delay
in solving a HTLP puzzle. Informally, given a puzzle evaluated in the scheme,
there exists a fixed polynomial over the security and time hardness parameters
which bounds the runtime solving the puzzle in the HTLP scheme.

Intuitively, a scheme is considered secure if the output of execution is indis-
tinguishable from random to an eavesdropping adversary. Compactness is a non-
trivial property requiring that the complexity of decrypting an evaluated cipher-
text does not depend on the function used to evaluate the ciphertext. Intuitively,
it means that the ciphertext size should not grow through homomorphic oper-
ations and the output length of the homomorphically evaluated ciphertext only
depends on the security parameter. In the context of a HTLP, compactness
therefore requires the size of the evaluated puzzle ciphertexts to be independent
of the size of the circuit, and for the runtime of the evaluation algorithm to be
independent of the hardness parameter T .

3 A Fair and Sound Non-simultaneous Rational Secret
Sharing Scheme

We consider a RSS scheme with the reconstruction phase defined as in Definition
2. In our construction, the dealer runs the share phase, where they sample a value
for the number of shares needed to reconstruct the secret, as well as splitting the
secret into shares and further into sub-shares, similarly to the approach in [10].
Then, the dealer distributes a unique, ordered list of sub-shares to each player,
alongside broadcasting public parameters.

The reconstruction phase works in rounds, with the n players in P performing
the communication phase and processing phase in parallel. In the first round of
the reconstruction phase, only the communication phase occurs. The processing
phase does not start until the second round onwards. Each round (after the first)
of the reconstruction phase works as follows. Players communicate (following the
order of their given list) the sub-share corresponding to the round of Γ that they
are in, one at a time. They must check at the end of the round that they have
obtained sub-shares from all other players.

At the same time, players process the sub-shares received in the previous
round, evaluating them over some function to obtain a share of the secret. After
a certain number of rounds, as decided by the dealer, a sufficient number of
shares will have been derived and players can use these shares to reconstruct

Fair and Sound Secret Sharing from Homomorphic Time-Lock Puzzles 351

the correct secret. The concept of rounds in RSS means that players gradually
recover the secret, by reconstructing just one share per round, motivating all
players to continue following the reconstruction phase.

More specifically, we let the dealer D be honest and non-interactive, only
taking part in the share phase. Following [25], we assume that the dealer
(information-theoretically) authenticates the shares distributed to players so
that a player cannot send an incorrect share to another player, and the set of
shares that a player sends to other players is unique. These assumptions translate
to only one of two actions that a player can perform in each round: communicate
(follow their strategy) or remain silent. We assume the players’ strategies in the
reconstruction phase are in a (computationally) strict Nash equilibrium in order
to motivate them to follow the phase and not deviate.

In the share phase of our construction, D samples r, the revelation value.
The revelation value signifies how many correctly run rounds, or equivalently,
how many recovered shares are sufficient for a player to reconstruct the secret.
D determines r by randomly sampling from an efficiently samplable discrete
distribution G, keeping the value secret from all players. Next, D obtains the
first (r + 1) shares of the secret s; where the 0th share s0 will be the checking
share and is kept separate and broadcast to all players before the reconstruction
phase. We note that the checking share is only used to verify the output of the
reconstruction phase, and cannot be used to reconstruct the secret itself. This
is necessary in order to ensure the soundness of the output.

Additionally, the dealer randomly samples a value d from an efficiently sam-
plable discrete distribution G′ and generates d fake shares, used to disguise
the value r. Typically both G and G′ are geometric distributions [10,18] (see
Appendix C of [24]). Letting m = r + d, the dealer proceeds to create n sub-
shares for each of the m shares, so that each player has a sub-share of every
share, for a total of m sub-shares in each of the n lists, one for each player.

Similarly to [30], we need the sub-shares to be encrypted before being dis-
tributed to a player in a way that no player can decrypt their sub-shares before
a round of communication is over. This is done so that players communicating
non-simultaneously do not know until after they have broadcast their share for
a given round, whether or not that was the revelation round. This is crucial to
achieve fairness and ensure that players continue to be motivated to follow the
scheme [21].

Our construction achieves this time delay using homomorphic time-lock puz-
zles (HTLPs), first introduced in [31] (see Definition 5). Using a HTLP scheme
with hardness parameter T , the dealer sets the time limit for each round of com-
munication to be bounded above by time T . Encrypting the sub-shares creates
so-called sub-puzzles7 of the sub-shares, which the dealer distributes as a list to
individual players before reconstruction begins.

7 We call the HTLP encryption of the sub-shares sub-puzzles for ease of understanding.
They are simply time-lock puzzles that can be homomorphically evaluated to obtain
a puzzle of the share which corresponds to the homomorphic evaluation of the given
sub-shares.

352 J. Knapp and E. A. Quaglia

Each round of the reconstruction phase Γr,r+1 has players communicate non-
simultaneously the corresponding sub-puzzle from their list, whilst processing
in parallel the sub-puzzles received from the previous round. In a round of the
communication phase, players must send their sub-share before time T . Once
this time has elapsed, a player checks that they have received (n−1) sub-puzzles
from the other players. In this case, in the next round of the reconstruction phase,
these n sub-puzzles will be processed.

In the processing phase, players work independently and evaluate the n sub-
puzzles from the previous round. In doing so, they will obtain a puzzle of the
share for the previous round. This is computationally correct given that the sub-
shares were derived by the dealer such that over some function the sub-shares
homomorphically compute this share. The puzzle of the share is decrypted using
the solve algorithm in the HTLP scheme to obtain the corresponding share.

Players attempt to reconstruct the actual secret from the shares that they
have reconstructed so far. They determine whether they have reached the rev-
elation round by using the checking share s0 to confirm whether their solution
is the real secret. If so, players output the secret s. If the reconstructed value
as determined by the checking share, is s′ �= s, the players do not output a
result. Instead, they will start the subsequent reconstruction phase round. Play-
ers repeat this cycle of steps until they have reconstructed the correct secret s
unless either of the following scenarios occurs:

1. A deviant player has quit communicating in a round of the phase. Even if
they correctly guess the right round to quit (round r), the time delay of the
encrypted sub-puzzles ensures that the deviant player cannot decrypt the
evaluated puzzle of the share before the end of a round.
The non-deviant players quit communicating if at the end of the round they
have received fewer than (n − 1) sub-puzzles. As a consequence, they cannot
reconstruct a puzzle share for that round and will have an insufficient number
of reconstructed shares, so the outcome for reconstruction will be ⊥. The
act of aborting means that no player learns the secret including the deviant
player, as they are identified as a cheater before they can reconstruct the
secret, if at all.

2. Players have sent the final, mth sub-puzzle from their list and so have no
more sub-puzzles to share after this round. Players quit communication and
attempt to reconstruct the secret from the shares that were reconstructed in
the previous rounds.

3.1 Our Construction

Given an honest, non-interactive dealer D and a set of n rational players P =
{P1, . . . , Pn} communicating non-simultaneously, we use a HTLP to build a fair
RSS scheme with sound output. Assume that each round of the reconstruction
phase is bounded by the time hardness parameter T .

Fair and Sound Secret Sharing from Homomorphic Time-Lock Puzzles 353

Definition 6 (Non-Simultaneous RSS Scheme).

Given security parameter λ, time hardness parameter T , an efficiently samplable
distribution of the set of secrets Sλ with operator Ψ , secret s ∈ Sλ, efficiently
samplable discrete distributions G,G′, we construct a RSS scheme with recon-
struction phase in the non-simultaneous setting as a tuple of three PPT algo-
rithms (Setup′,Share′,Recon′) from a secret sharing scheme (Setup,Share,Recon)
and a HTLP scheme
(HP.Setup,HP.Gen,HP.Solve,HP.Eval) as follows:

– Sharing Phase: The honest dealer D takes as input the secret s ∈ Sλ and
performs the following steps non-interactively:
1. pp′ ← Setup′(1λ, T) a probabilistic algorithm on inputs 1λ, T in which

the dealer runs:
(a) pp1 ← HP.Setup(1λ, T) which outputs public parameters pp1.
(b) pp2 ← Setup(1λ, T) which outputs the public parameters pp2. Addi-

tionally let for r ←$ G be the sampled revelation value and d be a
random value d ←$ G′.

Outputs are sampled values r, d and public parameters pp′ := {pp1, pp2}.
2. {s0, {list1, . . . , listn}} ← Share′(pp′, s): a probabilistic algorithm that

takes as input the secret s ∈ Sλ and public parameters pp′. The out-
put consists of a checking share s0 and lists labelled listj for j ∈ [n], each
composed of m sub-puzzles for m = r + d.
(a) Run {s0, {s1, . . . , sr}} ← Share(pp2, s) a probabilistic algorithm with

inputs the public parameters pp2 and secret s ∈ Sλ. The outputs are
(r + 1) shares of the secret; the checking share s0 and si for i ∈ [r].

(b) {sr+1, . . . , sm} ←$ Sλ, randomly sample d fake shares from Sλ.
(c) For every i ∈ [m], compute the list of sub-shares {si,1, . . . , si,n} such

that si = Ψ
j∈[n]

si,j .

(d) Run Zi,j ← HP.Gen(pp1, si,j) a probabilistic algorithm that takes as
input sub-shares si,j and public parameters pp1, and outputs sub-
puzzles Zi,j , ∀i ∈ [m],∀j ∈ [n].

(e) D distributes listj = {Z1,j , · · · ,Zr,j ,Zr+1,j , · · · ,Zm,j} to the corre-
sponding player Pj , for every j ∈ [n].

3. The dealer distributes the following:
(a) D broadcasts {pp′, s0} to all P the public parameters pp′ and checking

share s0.
(b) D distributes listj to Pj for every j ∈ [n].

– Reconstruction Phase: All players in P = {P1, . . . , Pn} independently take
part in this phase.

1. Communication: We are in the kth round of the communication, for some
1 < k ≤ m.
(a) Pj sends to all of P the sub-puzzle Zk,j for every j ∈ [n] non-

simultaneously.

354 J. Knapp and E. A. Quaglia

(b) At the end of round k (after time T has elapsed), along with their
own sub-puzzle, player Pj should have received {Zk,1, . . . ,Zk,n} from
all of P .

(c) Move to round (k + 1) of communication and round k of processing,
unless fewer than (n−1) sub-puzzles have been received. In this case,
proceed to abort communication and move to 2c with reconstructed
shares {s1, . . . , sk−1}.

2. Processing: We are in round (k − 1) of processing, for some 1 < k ≤ m.8

For any j ∈ [n], Pj does the following:
(a) Zk−1 ← HP.Eval(pp1, T , Ψ,Zk−1,1, · · · ,Zk−1,n): Run the probabilistic

algorithm HP.Eval with inputs the public parameters pp1, hardness
parameter T , and the list of n sub-puzzles for the (k − 1)th round,
a player homomorphically evaluates sub-puzzles with operator Ψ to
output share puzzle Zk−1.

(b) sk−1 ← HP.Solve(pp1, T ,Zk−1): Run the probabilistic algorithm
HP.Solve that takes as input the public parameters pp1; hardness
parameter T ; and puzzle share Zk−1 and outputs secret share sk−1.
Output the round share sk−1 and move to reconstructing s.

(c) {s,⊥} ← Recon′(pp′, s0, {s1, . . . , sk−1}): where the players run
{s,⊥} ← Recon(pp2, {s1, . . . , sm}), a deterministic algorithm that
inputs public parameters pp2 and (k − 1) reconstructed shares of the
secret {s1, . . . , sk−1}. Player Pj uses checking share s0 to confirm the
soundness of their reconstructed value and outputs either the correct
secret s or abort ⊥.

(d) If Pj outputs ⊥, but no player quit in round k of communication and
every player Pj ∈ P has listj �= ∅, then players go to (k + 1)th round
of reconstruction phase. If either case holds, output ⊥.

We have the following result.

Theorem 1. Our non-simultaneous rational secret scheme (Setup′,Share′,
Recon′) satisfies correctness, fairness and soundness in the presence of side infor-
mation related to the secret, assuming the following properties:

– correctness, security, and compactness of the HTLP scheme,
– correctness and secrecy of the SS scheme,
– the checking share side information is correct, protocol-induced auxiliary

information.

We prove Theorem 1 in Appendix F of [24], demonstrating that our construction
satisfies correctness, achieves soundness in the non-simultaneous setting using
protocol-induced side information, and achieves fairness despite the presence of
this side-information by using a HTLP to provide a time-delay to the scheme.

8 At least one round of communication is required before players can start processing.

Fair and Sound Secret Sharing from Homomorphic Time-Lock Puzzles 355

More specifically, in our security analysis, we summarise the scenarios in
which a deviant player attempts to mislead. In particular, we demonstrate that
if a player aborts in a round k with respect to revelation round r, regardless
of the round that k is, the outcome for all players is the same. Analysing the
scenarios in which a players quits communicating aids the proofs of fairness
and correctness, by providing an intuition to the outcome of the reconstruction
phase.

Fairness of the scheme is proven as follows: we show that Definition 3 is
satisfied in our construction assuming the correctness and security of the HTLP
scheme [31] (definitions of which are provided in [24], Appendix A.2), which is
employed to implement a time-delay in the scheme. We use a reduction to break
the correctness and security of the HTLP scheme, contradicting our assumptions,
in order to show that there does not exist a deviant player with the ability to
decrypt a puzzle in time less than T . Furthermore, assuming the correctness and
secrecy of the underlying SS scheme (see Appendix A.3 [24]), we show that the
probability of a deviant player learning the secret, whilst other players do not,
is negligible in the security parameter λ. Observe that we additionally show in
[24] that the rational players strategies −→σ are in a computationally strict Nash
equilibrium (Appendix D.2, Definition 16 [24]) following the proofs of [10,30].

In order to prove soundness, we provide an Appendix E preceding the analysis
of Theorem 1 in the full version of our paper [24], to define the side information
used to achieve soundness. We closely follow the proof of [10] by firstly defining a
membership oracle. Informally, this is an oracle queried by players in reconstruc-
tion in order to check the soundness of their reconstructed value [30]. Following
[10], we claim and prove that the checking share in our construction can be used
in place of a sound membership oracle (see Definition 18, Appendix E [24]), as a
specific form of protocol-induced side information to ensure soundness. Finally,
we prove that our generic construction achieves soundness with a checking share
(found in Appendix F, Theorem 2 of [24]).

We defer the reader to [24], Appendix F for the full details of our proofs.

Next, we highlight the efficiency improvements our construction achieves by
using a HTLP over standard TLPs. We then discuss how our results improve
upon the scheme of [10], the most relevant related work.

HTLPs vs. TLPs. The homomorphic property of a HTLP scheme means that
solving a puzzle, the most computationally expensive step for the players, need
only be run once rather than n times in the processing phase of our scheme. The
computational cost of running HP.Solve is Ω(2T)-steps9.

Indeed, if we were to use a standard TLP in the processing phase of our
scheme, each player would independently have to solve each of the n sub-puzzles
using P.Solve, and then evaluate the n sub-shares to obtain the share for that
round. Conversely, by using a HTLP in our scheme, players must run HP.Eval

9 In a standard TLP scheme, the computational complexity of the puzzle-solving algo-
rithm P.Solve is the same as HP.Solve.

356 J. Knapp and E. A. Quaglia

once over the n sub-puzzles, outputting a master puzzle, and proceed to run
HP.Solve once on this master puzzle to obtain the corresponding share. Thus,
HTLPs are more efficient by a linear factor of n, where n corresponds to the
number of players participating in the reconstruction phase.

It is important that the homomorphic property of the HTLP scheme satisfies
the definition of compactness in [31] (found in the full version of this paper [24],
Appendix A.2, Definition 9). This means that the runtime of homomorphically
evaluating puzzles, is bounded above by a fixed polynomial that only depends
on the security parameter λ and not the time hardness parameter T . Otherwise,
the trivial solution would be indeed to use a standard TLP scheme.

Comparison with [10]. Our scheme closely follows the work of [10]. Their con-
struction involves linearly evaluating sub-shares encrypted using memory-bound
functions for the time-delay to ensure fairness of the scheme and reconstructing
the secret using Shamir’s SS scheme. In contrast, our generic construction uses
CPU-bound HTLPs to ensure a time-delay in rounds of the scheme, which we
have argued in the Introduction constitutes an improvement.

Furthermore, the construction of [10] requires players to independently
decrypt each share before they proceed to the secret reconstruction using Shamir
SS scheme. The advantage of using HTLPs is that they provide an efficiency
improvement for the honest players evaluating puzzles in comparison to using
standard TLPs. Therefore our contributions are the efficiency improvements for
honest players in homomorphically evaluating puzzles.

Finally, we have generalised our construction so that it can be adapted for
different applications. The HTLP schemes of [31] are flexible in using different
homomorphic operations and can be extended to using puzzles with varying lev-
els of hardness (different T values), with potential for public-coin setup schemes
and reusable setup schemes. Unlike [10] who provide a concrete scheme, our
construction is generic and adaptable to the application for which it is being
used.

3.2 A Concrete Instantiation

Our final contribution is to provide a concrete fair and sound RSS scheme by
instantiating our construction with a specific variant of Shamir’s SS scheme
and a multiplicative HTLP (MHTLP [31]). In more detail, we instantiate our
construction as follows:

– A multiplicative homomorphic threshold secret sharing scheme (Setup,
Share,Recon) (Appendix B of [24]), for a secret space Sλ over a finite group
with respect to multiplication, defined as in [11,13,40],

– A MHTLP scheme (MHP.Setup,MHP.Gen,MHP.Eval,MHP.Solve) (in [24],
Appendix B), which is multiplicatively homomorphic over a ring (JN , ·).

Fair and Sound Secret Sharing from Homomorphic Time-Lock Puzzles 357

The multiplicative operator ⊗ enables the dealer to split the ith share, for some
i ∈ [m], of the secret into n sub-shares in the following way,

si,n = si ·

⎛
⎝

n−1∏
j=1

si,j

⎞
⎠

−1

,

enabling players to homomorphically evaluate sub-puzzles by running MHP.Eval,
and MHP.Solve on the master puzzle output from evaluation to obtain the cor-
rectly reconstructed share for the ith round. To ensure soundness of the con-
crete instantiation, the dealer distributes a checking share s0 to all players.
This is computed as s0 = f(y0) (mod N), for some polynomial f determined
in the setup phase of the scheme from a multiplicative homomorphic threshold
SS scheme.

Whilst we have not implemented the concrete instantiation here, we note the
following: firstly, the inclusion of a MHTLP scheme to a secret sharing scheme
does increase the computational burden on the players participating in recon-
struction, however it provides the important property of fairness in our scheme
when soundness is additionally being provided by the means of side information.
Secondly, we use a multiplicative-homomorphic TLP rather than a standard
TLP in order to reduce the computational overhead for players by a linear factor.
Indeed, in the instantiation, one run of MHP.Eval is necessary, which translates
to n multiplications. This is followed by one run of MHP.Solve of complexity
Ω(2T). If we used a plain TLP in the instantiation instead, assuming the same
parameters, we require n runs of HP.Solve of complexity Ω(2T), followed by n
runs of HP.Eval, which means n multiplications.

In addition to the assumptions used in the security analysis of our generic
construction, the instantiation relies on standard cryptographic and number-
theoretical assumptions, including the sequential squaring and decisional Diffie-
Hellman assumptions for a MHTLP [31], found in Appendix A.2 of [24]. We defer
to [24] (Appendix C) for a full description of the instantiation of our construction.

Final Remarks. In this paper we have proposed a construction for a fair and
sound rational secret sharing scheme in the non-simultaneous setting of com-
munication from homomorphic time-lock puzzles. We have argued the benefits
of this novel approach, and we have suggested a concrete scheme, relying on
standard assumptions.

References

1. Abadi, M., Burrows, M., Manasse, M., Wobber, T.: Moderately hard, memory-
bound functions. ACM Trans. Internet Technol. 5, 299–327 (2005)

2. Asharov, G., Lindell, Y.: Utility dependence in correct and fair rational secret shar-
ing. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 559–576. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 33

https://doi.org/10.1007/978-3-642-03356-8_33

358 J. Knapp and E. A. Quaglia

3. Beimel, A.: Secure Schemes for Secret Sharing and Key Distribution. PhD thesis,
Technion-Israel Institute of technology, Faculty of computer science, Israel (1996)

4. Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., et al. (eds.) IWCC
2011. LNCS, vol. 6639, pp. 11–46. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20901-7 2

5. Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the AFIPS
National Computer Conference, NCC 1979, vol. 48, pp. 313–318. International
Workshop on Managing Requirements Knowledge (MARK). IEEE (1979)

6. Cathalo, J., Libert, B., Quisquater, J.-J.: Efficient and non-interactive timed-
release encryption. In: Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS 2005.
LNCS, vol. 3783, pp. 291–303. Springer, Heidelberg (2005). https://doi.org/10.
1007/11602897 25

7. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(abstract). In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 11–19.
Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 43

8. Cleve, R.: Limits on the security of coin flips when half the processors are faulty. In:
Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing,
STOC 1986, pp. 364–369. Association for Computing Machinery (1986)

9. Cramer, R., Damg̊ard, I., Maurer, U.: General secure multi-party computation
from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 22

10. De, S.J., Pal, A.K.: Achieving correctness in fair rational secret sharing. In:
Abdalla, M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013. LNCS, vol. 8257, pp.
139–161. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02937-5 8

11. Desmedt, Y., Di Crescenzo, G., Burmester, M.: Multiplicative non-abelian sharing
schemes and their application to threshold cryptography. In: Pieprzyk, J., Safavi-
Naini, R. (eds.) ASIACRYPT 1994. LNCS, vol. 917, pp. 19–32. Springer, Heidel-
berg (1995). https://doi.org/10.1007/BFb0000421

12. Desmedt, Y., Frankel, Y.: Shared generation of authenticators and signatures. In:
Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 457–469. Springer, Hei-
delberg (1992). https://doi.org/10.1007/3-540-46766-1 37

13. Desmedt, Y.G., Frankel, Y.: Homomorphic zero-knowledge threshold schemes over
any finite abelian group. SIAM J. Dis. Math. 7(4), 667–679 (1994)

14. Dodis, Y., Rabin, T.: Cryptography and game theory. Algorithmic Game Theor.
181–207 (2007)

15. Doshi, S., Monrose, F., Rubin, A.D.: Efficient memory bound puzzles using pattern
databases. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989,
pp. 98–113. Springer, Heidelberg (2006). https://doi.org/10.1007/11767480 7

16. Dwork, C., Goldberg, A., Naor, M.: On memory-bound functions for fighting spam.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 426–444. Springer, Hei-
delberg (2003). https://doi.org/10.1007/978-3-540-45146-4 25

17. Fuchsbauer, G., Katz, J., Naccache, D.: Efficient rational secret sharing in standard
communication networks. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp.
419–436. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-
2 25

18. Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure two-
party computation. J. ACM (JACM) 58(6), 1–37 (2011)

19. Gordon, S.D., Katz, J.: Rational secret sharing, revisited. In: De Prisco, R., Yung,
M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 229–241. Springer, Heidelberg (2006).
https://doi.org/10.1007/11832072 16

https://doi.org/10.1007/978-3-642-20901-7_2
https://doi.org/10.1007/978-3-642-20901-7_2
https://doi.org/10.1007/11602897_25
https://doi.org/10.1007/11602897_25
https://doi.org/10.1007/3-540-48184-2_43
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/978-3-319-02937-5_8
https://doi.org/10.1007/BFb0000421
https://doi.org/10.1007/3-540-46766-1_37
https://doi.org/10.1007/11767480_7
https://doi.org/10.1007/978-3-540-45146-4_25
https://doi.org/10.1007/978-3-642-11799-2_25
https://doi.org/10.1007/978-3-642-11799-2_25
https://doi.org/10.1007/11832072_16

Fair and Sound Secret Sharing from Homomorphic Time-Lock Puzzles 359

20. Goyal, V., Pandey, O., Sahai, B., Waters, A.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Confer-
ence on Computer and Communications Security, CCS 2006, pp. 89–98. Association
for Computing Machinery (2006)

21. Halpern, J., Teague, V.: Rational secret sharing and multiparty computation:
extended abstract. In: Proceedings of the Thirty-Sixth Annual ACM Symposium
on Theory of Computing, STOC 2004, pp. 623–632. Association for Computing
Machinery (2004)

22. Harn, L., Lin, C., Li, Y.: Fair secret reconstruction in (t, n) secret sharing. J. Inf.
Secur. Appl. 23, 1–7 (2015)

23. Katz, J.: Bridging game theory and cryptography: recent results and future direc-
tions. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 251–272. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 15

24. Knapp, J., Quaglia, E.A.: Fair and sound secret sharing from homomorphic time-
lock puzzles. Cryptology ePrint Archive, Report 2020/1078 (2020). https://eprint.
iacr.org/2020/1078

25. Kol, G., Naor, M.: Cryptography and game theory: designing protocols for exchang-
ing information. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 320–339.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 18

26. Kol, G., Naor, M.: Games for exchanging information. In: Proceedings of the Forti-
eth Annual ACM Symposium on Theory of Computing, STOC 2008, pp. 423–432.
Association for Computing Machinery (2008)

27. Krawczyk, H.: Secret sharing made short. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 136–146. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48329-2 12

28. Laih, C.-S., Lee, Y.-C.: V-fairness (t, n) secret sharing scheme. IEE Proc. Comput.
Digit. Tech. 144(4), 245–248 (1997)

29. Lin, H.-Y., Harn, L.: Fair reconstruction of a secret. Inf. Process. Lett. 55(1), 45–47
(1995)

30. Lysyanskaya, A., Segal, A.: Rational secret sharing with side information in point-
to-point networks via time-delayed encryption. IACR Cryptology ePrint Archive
2010, 540 (2010)

31. Malavolta, G., Thyagarajan, S.A.K.: Homomorphic time-lock puzzles and applica-
tions. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692,
pp. 620–649. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-
7 22

32. May, T.C.: Time-release crypto. In: Manuscript (1993)
33. Nash, J.: Non-cooperative games. Ann. Math. 286–295 (1951)
34. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret

sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

35. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
crypto. Technical Report MIT/LCS/TR-684 (1996)

36. Rosenthal, D.: On the cost distribution of a memory bound function. arXiv preprint
cs/0311005 (2003)

37. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
38. Tian, Y., Ma, J., Peng, C., Zhu, J.: Secret sharing scheme with fairness. In: 10th

International Conference on Trust, Security and Privacy in Computing and Com-
munications, pp. 494–500. IEEE (2011)

39. Tompa, M., Woll, H.: How to share a secret with cheaters. J. Cryptol. 1(3), 133–138
(1988). https://doi.org/10.1007/BF02252871

https://doi.org/10.1007/978-3-540-78524-8_15
https://eprint.iacr.org/2020/1078
https://eprint.iacr.org/2020/1078
https://doi.org/10.1007/978-3-540-78524-8_18
https://doi.org/10.1007/3-540-48329-2_12
https://doi.org/10.1007/3-540-48329-2_12
https://doi.org/10.1007/978-3-030-26948-7_22
https://doi.org/10.1007/978-3-030-26948-7_22
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/BF02252871

360 J. Knapp and E. A. Quaglia

40. Wang, H., Lam, K.Y., Xiao, G.-Z., Zhao, H.: On multiplicative secret shar-
ing schemes. In: Dawson, E.P., Clark, A., Boyd, C. (eds.) ACISP 2000. LNCS,
vol. 1841, pp. 342–351. Springer, Heidelberg (2000). https://doi.org/10.1007/
10718964 28

41. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19379-8 4

https://doi.org/10.1007/10718964_28
https://doi.org/10.1007/10718964_28
https://doi.org/10.1007/978-3-642-19379-8_4

Optimal Threshold Changeable Secret
Sharing with New Threshold Change

Range

Jian Ding1,2, Changlu Lin1,2, and Fuchun Lin3(B)

1 College of Mathematics and Informatics, Fujian Normal University, Fujian, China
dingjian happy@163.com, cllin@fjnu.edu.cn

2 Fujian Provincial Key Lab of Network Security and Cryptology, Fujian Normal
University, Fujian, China

3 Department of Electrical and Electronic Engineering, Imperial College London,
London, UK

flin@ic.ac.uk

Abstract. Motivated by the need of catering for changes of security pol-
icy during the deployment of distribution of trust, threshold changeable
secret sharing studies the construction of secret sharing schemes that
have a built-in mechanism that, when activated, transforms the scheme
into one with different access structures. By combining the two main
techniques frequently used in previous constructions: packing and fold-
ing, we construct optimal threshold changeable ramp schemes that cover
the full threshold change range, while known constructions either achieve
only reconstruction threshold change or change both privacy and recon-
struction thresholds but require the two thresholds to change proportion-
ally. We justify the claim that the full threshold change range for which
optimal schemes are possible is completely covered by proving a com-
pleteness result information-theoretically. The share size of these thresh-
old changeable ramp schemes are much bigger than the lower bounds for
plain ramp schemes (without requiring threshold changeability). This
suggests the natural open question of understanding the share size lower
and upper bounds for ramp schemes with built-in structures.

Keywords: Threshold changeable secret sharing · Universal threshold
changeable secret sharing · Communication efficient secret sharing ·
Admissible threshold change range

1 Introduction

Secret sharing, introduced independently by Blakley [3] and Shamir [18], plays
fundamental roles in many cryptographic applications. The goal in secret shar-
ing is to divide a secret s into a number of shares s1, . . . , sn that are distributed
among n participants such that the shares in an authorized subset of the players
can reconstruct the secret, while on the other hand, the shares in an unautho-
rized subset contains no information about the secret. A secret sharing is called
c© Springer Nature Switzerland AG 2020
K. Nguyen et al. (Eds.): ProvSec 2020, LNCS 12505, pp. 361–378, 2020.
https://doi.org/10.1007/978-3-030-62576-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62576-4_18&domain=pdf
https://doi.org/10.1007/978-3-030-62576-4_18

362 J. Ding et al.

perfect if all subsets of [n] are either authorized or unauthorized. The set of
authorized and unauthorized subsets define an access structure, of which the
most widely used is the so-called threshold access structure. A threshold secret
sharing scheme is defined with respect to an integer parameter r called recon-
struction threshold and satisfies the following property: Any set A ⊂ [n] with
|A| < r is an unauthorized set and any set A ⊂ [n] with |A| ≥ r is an autho-
rized set. A threshold secret sharing is then a perfect secret sharing. The Shamir
scheme with threshold r represents a secret as a finite field element and divides
it by first sampling a uniform random polynomial of degree at most r − 1 that
has the given secret as its constant term and then evaluating the random poly-
nomial at n distinct non-zero elements in the same finite field to generate the
shares. It is straightforward to verify that with r shares, the random polynomial
(including its constant term, the secret) can be recovered through interpolation
and any up to r − 1 shares contain no information about the secret. The Shamir
scheme is optimal in the sense that its secret (same size as each share) is the
largest possible for a threshold scheme. Let log be the logarithm to the base 2,
then the share size of Shamir scheme with n participants is at least log(n + 1)
bits, since we need n distinct non-zero evaluation points from the underlying
finite field for generating the n shares. It turns out that this is also almost the
best possible for a threshold scheme, even when we only share one bit secret [5].

The notion of threshold secret sharing can be relaxed to ramp secret shar-
ing which allows some subset of participants to learn some partial information
about the secret (no longer a perfect secret sharing). A ramp scheme is defined
with respect to two threshold parameters, the privacy threshold t and the recon-
struction threshold r. In a (t, r, n)-ramp scheme, the knowledge of any t shares
or fewer does not reveal any information about the secret, any r shares can be
used to reconstruct the secret and subsets of size in between t+1 and r − 1 may
reveal some partial information about the secret. We consider a threshold secret
sharing scheme with threshold r as a special case of a (t, r, n)-ramp scheme with
t = r − 1. We denote it a (r, n)-threshold scheme. The largest size of secret that
is possible for a (t, r, n)-ramp scheme is larger than the special case of threshold
scheme (proportional to the threshold gap g = r − t). If a (t, r, n)-ramp scheme
has minimum share size, then it is called an optimal (t, r, n)-ramp scheme, which
can be constructed by extending Shamir’s construction. The share size of this
approach, however, is much larger than the share size lower bound for a (t, r, n)-
ramp scheme, which is reversely proportional to the threshold gap g = r − t
[5]. The construction from algebraic geometric codes gives near optimal (t, r, n)-
ramp schemes that also have share size almost matching the share size lower
bound.

These secret sharing schemes with simple access structures (but can be
constructed with rich algebraic structures) are particularly important building
blocks in threshold cryptography [7], which is devoted to mitigate breakdowns
that result from differences between ideal and real implementations of crypto-
graphic algorithms by enabling distribution of trust across operators. In these
applications, we usually do not consider complicated access structures in the

Optimal Threshold Changeable Secret Sharing 363

underlying secret sharing scheme, but crucially need some homomorphic proper-
ties. A good example is the application of secret sharing in the constructions of
secure multi-party computation [6]. Here we need the underlying secret sharing
scheme to allow for each participant to locally compute on his/her shares of a set
of secrets to generate a share of a function of the set of secrets. For example, each
participant adds up his/her share for secret one and his/her share for secret two
to obtain a share for the sum of the two secrets. Continuing on the motivation
of bridging ideal and real implementations of cryptographic algorithms, in real
life implementations the threshold is determined by a security policy based on
an assessment of the running environment. But more than often we encounter
a change of running environment during the life time of the system and need
to adjust the threshold. A standard solution is to discard all the stored data
and re-initiate the system use the new threshold, which demands huge compu-
tational and communicational resources. A much more economic solution would
be to build some flexibility into the underlying secret sharing scheme such that
during a change of running environment, each operator is prompt to (through
broadcast or some form of public discussion) locally apply a share conversion
function to transform a share of the secret sharing scheme corresponding to the
initial threshold to a share of one corresponding to the new threshold, and the
system seamlessly transits into one running with a different threshold.

The concept of threshold changeable secret sharing [1,4,8,15] was proposed
for different models in particular, the model studied in [15] assumes no secure
communication channels nor dealer intervention, hence allows for the local con-
version. A threshold scheme with minimum share size that can be converted
into such a ramp scheme with minimum share size and minimum combiner
communication complexity is defined to be optimal. An explicit construction of
such optimal (r,n)-threshold scheme threshold changeable to r’ was also given in
[15] using the geometric construction of Blakley [3]. There are follow up works
on this model of threshold changeability that gave new constructions of opti-
mal (or near optimal) threshold changeable secret sharing with various features
[11,14,21,22]. For example, the packed Shamir scheme construction in [21] is
essentially an optimal construction for threshold changeable secret sharing and
[22] proposed a variant of the construction that reduces the share size. All these
constructions consider the special case of changing the reconstruction threshold
(the privacy threshold remains the same), which makes this model of threshold
changeable secret sharing coincides with the study of communication efficient
secret sharing [21], where the goal is to minimise the overall download band-
width for reconstructing the secret through contacting a given number (bigger
than the threshold of the threshold scheme) of shares and only download partial
information from each share.

For the above applications in threshold cryptography sketched above, we
would need a threshold changeable secret sharing that is capable of both privacy
threshold and reconstruction threshold changes. The constructions of threshold
changeable secret sharing in [19,20] not only allow both privacy threshold and
reconstruction threshold to change at the same time, but also enjoy the freedom

364 J. Ding et al.

of choosing the new thresholds after the secret is shared by the dealer. The later
property is termed universal in the line of works on communication efficient
secret sharing [2,9,16]. Threshold changeable secret sharing with both privacy
threshold and reconstruction threshold change was formerly defined for general
threshold change range (t, r, n) → (t′, r′, n) and a new construction with uni-
versal property was proposed in [13]. Interestingly, the constructions in [19,20]
and [13], though using totally different philosophy, yield schemes with the same
threshold change pattern, more concretely, the initial thresholds (t, r) and the
new thresholds (t′, r′) satisfy the relation

t′

t
=

r′

r
.

This leaves open the question of whether (optimal) threshold changeable secret
sharing can be constructed for thresholds not satisfying t′

t = r′
r and moreover,

what is the complete range of threshold change that admits (optimal) threshold
changeable secret sharing.

Our Contributions. We propose a generic construction that takes a threshold
changeable ramp scheme that only changes its reconstruction threshold (this
is also known as a communication efficient secret sharing) and construct a
(t, r, n) → (t′, r′, n) threshold changeable ramp scheme that is capable of chang-
ing both privacy and reconstruction thresholds for any 1 < t′

t < r′
r . Threshold

changeable ramp schemes with this type of threshold change range was not
known before. We then show that when the input threshold changeable ramp
scheme is optimal, the (t, r, n) → (t′, r′, n) threshold changeable ramp scheme
constructed using the generic construction is also optimal. We then obtain opti-
mal (t, r, n) → (t′, r′, n) threshold changeable ramp schemes for the new thresh-
old change range 1 < t′

t < r′
r . These new optimal threshold changeable ramp

schemes together with the optimal threshold changeable ramp schemes that only
change the reconstruction threshold (t′ = t) and those with proportional changes
of both privacy and reconstruction thresholds t′

t = r′
r cover the threshold change

range 1 ≤ t′
t ≤ r′

r . We take one step further and consider a (t, r, n)-ramp
scheme which is capable of changing its thresholds to a set of new threshold pairs
T = {(t′k, r

′
k)} universally, where T contains all the pair (t′k, r

′
k) that satisfies

1 ≤ t′
k

t ≤ r′
k

r . With the above newly constructed optimal threshold changeable
ramp schemes, we are now, for the first time, able to construct a universal thresh-
old changeable ramp scheme such that for each new threshold pair (t′k, r

′
k) in the

set T , the scheme is an optimal (t, r, n) → (t′k, r
′
k, n) threshold changeable ramp

scheme. We then call such universal threshold changeable ramp scheme universal
optimal threshold changeable ramp scheme. We note here that our results are
readily extended to near optimal cases that greatly reduce the share size, by
plugging in the algebraic geometry codes based secret sharing constructions. We
discuss these developments in the full version of this paper.

Optimal Threshold Changeable Secret Sharing 365

We also obtain results that argue to the effect that the threshold change
range t < r < r′, t′ < r′ ≤ n, 1 ≤ t′

t ≤ r′
r , namely,

t < r < r′, t′ < r′ ≤ n, 1 ≤ t′

t
≤ r′

r
(1)

is complete range that admits constructions of optimal threshold changeable
ramp schemes. For clarity, we write the proofs for ramp schemes with full recon-
struction, which means that the reconstruction algorithm not only reconstructs
the secret but also reconstructs the full share vector. We present two claims to
describe the relationship about thresholds r, r′, t, t′ and the entropy of the shares
between the initial (t, r, n)-ramp scheme and resulting (t′, r′, n)-ramp scheme.
We then apply claims to an optimal (t, r, n) → (t′, r′, n) ramp scheme, and
get the range (1) by using some bounds about share sizes which have been
given in [10,13]. We further find that this range is covered by our construc-
tions together with [2,13], which means the range (1) is complete range that
admits constructions of optimal threshold changeable ramp schemes. In other
words, we get a necessary and sufficient condition for the existence of an opti-
mal (t, r, n) → (t′, r′, n) ramp scheme. Meanwhile, a range

t < r, t ≤ t′ < r′ ≤ n, r′ − t′ > r − t,

that presented in [13] is only a necessary condition.

Open Questions. Lower and upper bounds on share size for secret sharing
(even sharing one bit secret) with a given access structure is a fundamental topic
in secret sharing. For simple access structures such as (r, n)-threshold scheme
and more generally (t, r, n)-ramp scheme, there are known tight bounds [5]. Our
study of threshold changeable secret sharing suggests an interesting problem of
bounding the share size of simple secret sharing schemes with threshold change
properties. It can be observed that the share size of the constructed thresh-
old changeable secret sharing schemes increases as the amount of flexibility in
threshold change increases and there is a big gap between the lower bound of
plain ramp secret sharing and the constructed threshold changeable secret shar-
ing. It is interesting to see how much a particular threshold change requirement
affects the share size lower bound of a ramp scheme.

Related Works. The works most related to this work are the lattice based
construction [19,20] and the binary secret sharing based construction [13] of
(t, r, n) → (t′, r′, n) ramp secret sharing. Firstly, in terms of the coverage of the
threshold change range, all previous constructions only achieve the threshold
change type 1 < t′

t = r′
r while the results presented in this work cover the full

range of 1 ≤ t′
t ≤ r′

r . Secondly, on one hand, the universal threshold changeable
ramp secret sharing constructed in all previous works have small share size while
the universal variants constructed in this work are huge. On the other hand, the
universal threshold changeable ramp secret sharing constructed in all previous

366 J. Ding et al.

works have weaker forms of privacy/correctness definitions. Though the initial
schemes are standard Shamir scheme and Chinese Remainder Theorem secret
sharing, the privacy of the resulting ramp scheme after applying the share con-
version functions in [19,20] is probabilistic over the randomness of some public
parameters and the secrecy guarantee is to leak at most a ηH(S) bits of entropy,
where η can be made as small as one wishes when the secret is uniformly dis-
tributed. The binary secret sharing based construction of [13] gives statistical
secret sharing, where the privacy is measured by statistical distance. There are
evidence that standard secret sharing and secret sharing with weaker form of
privacy/correctness definitions obey different share size bounds [12].

2 Preliminaries

Let X denote a random variable. The Shannon entropy of X is denoted by H(X).
The mutual information between X and Y is given by

I(X;Y) = H(X) − H(X|Y) = H(Y) − H(Y|X),

where H(Y|X) denotes the conditional Shannon entropy.

Definition 1. Let P = {P1, . . . , Pn} be a group of n participants (a.k.a. share-
holders). Let S be the set of secrets and a secret s ∈ S is denoted in boldface.
Let Si be the share space of the participant Pi. A secret sharing scheme of n
participants is a pair of algorithms: the dealer and the combiner. For a given
secret from S and some random string from R, the dealer algorithm applies the
mapping

D : S × R → S1 × · · · × Sn

to assign shares to participants from P. The shares of a subset A ⊂ [n] of
participants can be input into the combiner algorithm

C :
∏

Pi∈A
Si → S

to reconstruct the secret.

Definition 2. A (t, r, n)-ramp scheme is a secret sharing scheme with n partic-
ipants such that the combiner algorithm always reconstructs the correct secret for
any A ⊂ [n] of size |A| ≥ r and for any A ⊂ [n] of size |A| ≤ t, no information
about the secret can be learned from pooling their shares together. Moreover if
t < r − 1, for any A ⊂ [n] of size t < |A| < r, neither the combiner algorithm
can uniquely reconstruct a secret nor the secret can remain unknown. That is r
is the smallest integer such that correct reconstruction is guaranteed and t is the
biggest integer such that privacy is guaranteed. We associate a probability with
each s ∈ S and obtain a random secret S ← S. The share vector obtained from
sharing the random secret S is denoted by

V ← S1 × · · · × Sn.

Optimal Threshold Changeable Secret Sharing 367

Let H(S|VA) denote the entropy of the random variable S conditioned on the
knowledge of the shares held by the participants in A. The above conditions defin-
ing a (t, r, n)-ramp scheme can be described information-theoretically as follows.

– Correctness: H(S|VA) = 0, for any A ⊂ [n] of size |A| ≥ r;
– Privacy: H(S|VA) = H(S), for any A ⊂ [n] of size |A| ≤ t;
– Ramp security: 0 < H(S|VA) < H(S), for any A ⊂ [n] of size t < |A| < r.

The parameter t is called the privacy threshold and the parameter r is called the
reconstruction threshold. The difference of these two thresholds is called the gap
and denoted by g = r − t. The last item ramp security in Definition 2 is void
when t = r − 1, as there is no integer lying in between t and r. In this case when
the gap g = 1, we call it a (r,n)-threshold scheme for short.

Definition 3 ([13]). A (t, r, n)-ramp scheme threshold changeable to (t′, r′, n),
or a (t, r, n) → (t′, r′, n) ramp scheme for short, is a (t, r, n)-ramp scheme
together with a set of publicly known share conversion functions

hi : Si → S ′
i, i = 1, . . . , n,

and a new combiner algorithm

C′ :
∏

Pi∈A
S ′
i → S

for a subset A ⊂ [n] of participants such that the following properties are sat-
isfied. The share conversion function hi convert the share si ∈ Si of the ith
participant Pi into a new share s′

i = hi(si) ∈ S ′
i. The new combiner algorithm

C′ always reconstructs the correct secret for any A ⊂ [n] of size |A| ≥ r′ and for
any A ⊂ [n] of size |A| ≤ t′, no information about the secret can be learned from
pooling their new shares together. Moreover for any A ⊂ [n] of size t′ < |A| < r′,
neither the combiner algorithm can uniquely reconstruct a secret nor the secret
can remain unknown. That is r′ is the smallest integer such that correct recon-
struction is guaranteed and t′ is the biggest integer such that privacy is guar-
anteed. We associate a probability with each s ∈ S and obtain a random secret
S ← S. The share vector obtained from sharing the random secret S and then
applying the share conversion functions is denoted by

V′ ← S ′
1 × · · · × S ′

n.

Let H(S|V′
A) denote the entropy of the random variable S conditioned on the

knowledge of the new shares held by the participants in A. The above conditions
can be described information-theoretically as follows.

– Correctness: H(S|V′
A) = 0, for any A ⊂ [n] of size |A| ≥ r′;

– Privacy: H(S|V′
A) = H(S), for any A ⊂ [n] of size |A| ≤ t′;

– Ramp security: 0 < H(S|V′
A) < H(S), for any A ⊂ [n] of size t′ < |A| < r′.

368 J. Ding et al.

In Definition 3, the set of share conversion functions {hi}i∈[n] together with
the dealer algorithm D of the initial (t, r, n)-ramp scheme in fact define a new
dealer algorithm D′ through composition of functions.

D′ : S × R → S ′
1 × · · · × S ′

n. (2)

This new dealer algorithm D′ together with the new combiner algorithm C′

define a new secret sharing scheme. In this interpretation, a (t, r, n) → (t′, r′, n)
ramp scheme is a (t, r, n)-ramp scheme equipped with a set of share conversion
functions that can transform it into a (t′, r′, n)-ramp scheme.

Theorem 1 ([13]). Let Π be a (t, r, n) → (t′, r′, n) ramp scheme, where r <
r′ ≤ n and t ≤ t′ < r′ − (r − t). Let hi : Si → S ′

i, i = 1, . . . , n, be its share
conversion functions. Then the following three bounds hold.

1. Bound on initial share size: max
1≤i≤n

log |Si| ≥ H(S)
r−t ;

2. Bound on new share size: max
1≤i≤n

log |S ′
i| ≥ H(S)

r′−t′ ;

3. Bound on combiner communication complexity: for any I ⊂ [n] of | I |= r′,

∑

i∈I

log |S ′
i| ≥ r′H(S)

r′ − t′
.

Definition 4 ([13]). A (t, r, n) → (t′, r′, n) ramp scheme is called optimal if
equality is achieved in all the bounds in Theorem 1.

In other words, a (t, r, n) → (t′, r′, n) ramp scheme is optimal if and only
if both its initial scheme with (D,C) and its new scheme with (D′,C′) have
minimum share size, where D′ is the composition of the initial dealer algorithm D
and the share conversion functions {hi}i∈[n] as described in (2). Our focus in this
work is the range of achievable new privacy threshold t′ and new reconstruction
threshold r′ by optimal (t, r, n) → (t′, r′, n) ramp schemes.

3 Constructions with New Threshold Change Range

We begin with describing our generic construction, which can be understood as
a compiler that takes a threshold changeable secret sharing that only changes
reconstruction threshold to one that changes both privacy and reconstruction
thresholds.

3.1 Generic Construction

Let t, t′, u, v be positive integers such that 1 ≤ v

u
=

t′

t
. Let Π̃ be a (tv, rv, nv) →

(tv, r′u, nv) ramp scheme. Let Π̃′ denote the resulting (tv, r′u, nv) scheme after
applying the share conversion functions of Π̃. We aim to construct a (t, r, n) →

Optimal Threshold Changeable Secret Sharing 369

(t′, r′, n) ramp scheme Π out of Π̃. The idea of the construction is illustrated in
Fig. 1. The scheme Π is simply the v-folding of Π̃. We then define the share con-
version functions of Π with respect to share conversion functions of Π̃ such that
resulting (t′, r′, n) scheme (call it Π′) after applying share conversion functions
of Π is the u-folding of the Π̃′.

Fig. 1. Generic construction of a (t, r, n) → (t′, r′, n) ramp scheme with 1 ≤ v

u
=

t′

t
.

Construction 1 : Generic construction

Let the dealer algorithm D̃, combiner algorithm C̃, share conversion functions
{h̃j} and new combiner algorithm C̃′ of Π̃ be as follows.

D̃ : S × R → S̃1 × · · · × S̃nv; C̃Ã :
∏

P̃j∈Ã
S̃j → S,

for Ã ⊂ [nv] and

h̃j : S̃j → S̃ ′
j , j = 1, . . . , nv; C̃′

Ã :
∏

P̃j∈Ã
S̃ ′
j → S,

for Ã ⊂ [nv].
The dealer algorithm D, combiner algorithm C, share conversion functions

{hj} and new combiner algorithm C′ of Π are defined as follows.

1. Dealer algorithm D: Given a secret s from S, the dealer samples a random
string from R and use the dealer algorithm D̃ of Π̃ to generate

{s̃j ∈ S̃j |j = 1, 2, . . . , nv}.

The dealer prepares n shares by v-folding the above share vector of Π̃.

si � (s̃(i−1)v+1, s̃(i−1)v+2, . . . , s̃iv), i ∈ [n].

The dealer then distributes si to the ith participant Pi for i ∈ [n].

370 J. Ding et al.

2. Combiner algorithm C: Given any A ⊂ [n] of size |A| ≥ r, for si, i ∈ A, the
combiner parses

si = (s̃(i−1)v+1, s̃(i−1)v+2, . . . , s̃iv).

The combiner then recovers Ã ⊂ [nv] from A ⊂ [n] and invoke the combiner
algorithm C̃ of Π̃ with Ã ⊂ [nv] on the parsed si, i ∈ A.

3. Share conversion functions: For any i ∈ [n], the public known share conver-
sion function

hi :
iv∏

j=(i−1)v+1

S̃j �−→
iv−(v−u)∏

j=(i−1)v+1

S̃ ′
j

for the ith participant Pi is defined as follows.

hi(si)
= hi(s̃(i−1)v+1, s̃(i−1)v+2, . . . , s̃(i−1)v+u, s̃(i−1)v+u+1, s̃(i−1)v+u+2, . . . , s̃iv)

= (h̃(i−1)v+1(s̃(i−1)v+1), h̃(i−1)v+2(s̃(i−1)v+2), . . . , h̃(i−1)v+u(s̃(i−1)v+u))

� s′
i.

4. New combiner algorithm C′: Given any A ⊂ [n] of size |A| ≥ r′, for s′
i, i ∈ A,

the combiner parses

s′
i = (s̃′

(i−1)v+1, s̃
′
(i−1)v+2, . . . , s̃(i−1)v+u).

The combiner then recovers Ã ⊂ [nv] from A ⊂ [n] and invoke the combiner
algorithm C̃′ of Π̃′ with Ã ⊂ [nv] on the parsed s′

i, i ∈ A.

Lemma 1. Construction 1 gives a (t, r, n) → (t′, r′, n) threshold changeable
secret sharing.

Proof. Since each share si consists of v shares of Π̃, then it is easy to check that
the dealer algorithm D and combiner algorithm C form a (t, r, n)-ramp scheme.

Next, we prove that Π is a (t, r, n) → (t′, r′, n) ramp scheme with share
conversion functions {hj} and new combiner algorithm C′. According to our
short-hand notation, h̃j(s̃j) is a share of Π̃′ for j = 1, . . . , nv. This means that
each s′

i = hi(si) consists of u shares of Π̃′ for i = 1, . . . , n. (In the process of share
conversion of Π, nv −nu shares of Π̃′ are dropped.) We now verify explicitly the
three defining properties for the share conversion functions and new combiner
algorithm.

– Correctness: Since lu ≥ r′u for any l ≥ r′, then, from the combiner algorithm
C′ and correctness of Π̃′, we have H(S|V′A) = 0, for any A ⊂ [n] of size
|A| ≥ r′.

Optimal Threshold Changeable Secret Sharing 371

– Privacy: Since t, t′, u, v are positive integers such that 1 ≤ v

u
=

t′

t
, for any

l ≤ t′ we have

lu =
l

t′
tv ≤ tv.

From the combiner algorithm C′ and privacy of Π̃′, we get H(S|V′A) = H(S),
for any A ⊂ [n] of size |A| ≤ t′.

– Ramp security: Let t′ < l < r′. Since 1 ≤ v

u
=

t′

t
, then

tv <
l

t′
tv = lu < r′u =

t

t′
r′v ≤ r′v.

From the combiner algorithm C′ and ramp security of Π̃′, we derive 0 <
H(S|V′A) < H(S), for any A ⊂ [n] of size t′ < |A| < r′.

According to Definition 3, the scheme Π obtained from Construction 1 is a
(t, r, n) → (t′, r′, n) ramp scheme.

3.2 New Optimal Threshold Changeable Secret Sharing

Theorem 2. For any positive integers t, t′, r, r′, n satisfying t < r, t′ < r′ ≤ n
and 1 < t′

t < r′
r , there is an optimal (t, r, n) → (t′, r′, n) threshold changeable

secret sharing scheme with share size tt′(r′−t′)
gcd2(t′,t) log q, where q is a prime power

such that q > nt′
gcd(t′,t) .

Proof. Since 1 < v
u = t′

t < r′
r , then r′u > rv, and so we let Π̃ be an optimal

(tv, rv, nv) → (tv, r′u, nv) ramp scheme that constructed in [2].

– Applying Π̃ and its share conversion functions to Construction 1, we can
get an optimal (t, r, n) → (t′, r′, n) ramp scheme. Indeed, Π is a (t, r, n) →
(t′, r′, n) ramp scheme from Lemma 1. Since Π̃ is an optimal (tv, rv, nv) →
(tv, r′u, nv) ramp scheme, then, the share size of Π̃ and Π̃′ are

log |S̃j | =
H(S)

v(r − t)
, log |S̃ ′

j | =
H(S)

r′u − tv
,

respectively. From Construction 1 we know that the share size of Π and Π′

are

log |Si| = v log |S̃j | =
H(S)
r − t

and

log |S ′
i| = u log |S̃ ′

j | =
H(S)

r′ − tv
u

=
H(S)
r′ − t′

respectively, which implies that Π is an optimal (t, r, n) → (t′, r′, n) ramp
scheme from Theorem 1 and Definition 4.

372 J. Ding et al.

– Let v = t′
gcd(t′,t) , then v is the smallest positive integer such that u is a positive

integer and v
u = t′

t . On the other hand, from [2] we have

H(S) = v(r − t)(r′u − tv) log q

with q > nv. Then the share size bound of Π is

log |Si| =
H(S)
r − t

=
tt′(r′ − t′)
gcd2(t′, t)

log q,

where q is a prime power such that q > nt′
gcd(t′,t) .

3.3 Extending the Results to Universal Threshold Change

Definition 5. A universal threshold changeable (t, r, n)-ramp scheme with
respect to a set T ⊂ [n]× [n] of new thresholds is a (t, r, n)-ramp scheme together
with publicly known share conversion functions

h
(t′,r′)
i : Si → S(t′,r′)

i , i = 1, . . . , n, (t′, r′) ∈ T ,

and combiner algorithms

C(t′,r′) :
∏

Pi∈A
S(t′,r′)
i → S, (t′, r′) ∈ T ,

for a subset A ⊂ [n] of participants such that the following properties are satis-
fied. The share conversion function h

(t′,r′)
i converts the share si ∈ Si of the ith

participant Pi into a new share s
(t′,r′)
i = h

(t′,r′)
i (si) ∈ S(t′,r′)

i . The new combiner
algorithm C(t′,r′) correctly reconstructs the secret for any A ⊂ [n] of size |A| ≥ r′

and for any A ⊂ [n] of size |A| ≤ t′, no information about the secret is contained
in new shares specified by A. Moreover for any A ⊂ [n] of size t′ < |A| < r′, nei-
ther the combiner algorithm can uniquely reconstruct a secret nor the secret can
remain unknown. That is r′ is the smallest integer such that correct reconstruc-
tion is guaranteed and t′ is the biggest integer such that privacy is guaranteed.
We associate a probability with each s ∈ S and obtain a random secret S ← S.
The share vector obtained from sharing the random secret S and then applying
the share conversion functions is denoted by

V(t′,r′) ← S(t′,r′)
1 × · · · × S(t′,r′)

n .

Let H(S|V(t′,r′)
A) denote the entropy of the random variable S conditioned on the

knowledge of the new shares held by the participants in A. The above conditions
can be described information-theoretically as follows.

– Correctness: H(S|V(t′,r′)
A) = 0, for any A ⊂ [n] of size |A| ≥ r′;

– Privacy: H(S|V(t′,r′)
A) = H(S), for any A ⊂ [n] of size |A| ≤ t′;

– Ramp security: 0 < H(S|V(t′,r′)
A) < H(S), for any A ⊂ [n] with t′ < |A| < r′.

Optimal Threshold Changeable Secret Sharing 373

We say a (t, r, n) → T ramp scheme is optimal if each (t, r, n) → (t′, r′, n) ramp
scheme is optimal for any (t′, r′) ∈ T .

Theorem 3. For any set T = {(t′1, r
′
1), (t

′
2, r

′
2), . . . , (t

′
m, r′

m)} with positive inte-
gers r, r′

k, t, t
′
k satisfying t < r < r′

k, t
′
k < r′

k ≤ n, 1 ≤ t′
k

t ≤ r′
k

r and k = 1, . . . , m,
there is an optimal (t, r, n) → T threshold changeable secret sharing scheme with
share size bound

v · lcm

(
tv(r′

k1
− t′k1

)
t′k1

, · · · ,
tv(r′

km∗ − t′km∗)
t′km∗

)
log q,

where

v = lcm
(

t′1
gcd(t, t′1)

,
t′2

gcd(t, t′2)
, . . . ,

t′m
gcd(t, t′m)

)
,

m∗ = |T̃ ∗|, T̃ ∗ =
{

(tv,
tvr′

k

t′k
)|r

′
k

r
	= t′k

t
, for k = 1, . . . ,m

}
,

denote T̃ ∗ by

{
(tv,

tvr′
kl

t′kl

) ∈ T̃ ∗ for l = 1, . . . ,m∗
}

,

and q > nv is a prime power.

Proof. Since r, r′
k, t, t

′
k are positive integers such that 1 ≤ t′

k

t ≤ r′
k

r , then r
t ≤ r′

k

t′
k

for k = 1, . . . ,m. Without loss of generality, we let

r

t
≤ r′

m

t′m
≤ r′

m−1

t′m−1

≤ · · · ≤ r′
2

t′2
≤ r′

1

t′1
.

Let v
uk

= t′
k

t for k = 1, . . . ,m, then rv = r
t tv ≤ r′

m

t′
m

tv = r′
mum, and similarly we

have

tv < rv ≤ r′
mum ≤ r′

m−1um−1 ≤ · · · ≤ r′
2u2 ≤ r′

1u1 = r′
1v

t

t′1
≤ nv.

Clearly, T ∗ = {(tv, r′
kuk)|r′

kuk 	= rv, v
uk

= t′
k

t , for k = 1, . . . ,m}. If T ∗ = ∅,
namely,

r

t
=

r′
m

t′m
=

r′
m−1

t′m−1

= · · · =
r′
2

t′2
=

r′
1

t′1
,

then there is an optimal (t, r, n) → T ramp scheme by using folding technique
[13], where the share size bound is v log q and satisfies our statements. Next, we
consider the case T ∗ 	= ∅.

– Let Π̃(tv,rv) be an optimal (tv, rv, nv) → T ∗ ramp scheme that is constructed
in [2]. Let (t′, r′) ∈ T .

374 J. Ding et al.

• If 1 ≤ v
u = t′

t < r′
r , then (tv, r′u) ∈ T ∗, which means Π̃(tv,rv) is an optimal

(tv, rv, nv) → (tv, r′u, nv) ramp scheme. Moreover, Theorem 2 can be easily
extended from 1 < v

u = t′
t < r′

r to 1 ≤ v
u = t′

t < r′
r , and then we get an

optimal (t, r, n) → (t′, r′, n) ramp scheme.
• If 1 < v

u = t′
t = r′

r , then there is an optimal (t, r, n) → (t′, r′, n) ramp scheme
by using folding technique [13].

In a word, there is an optimal (t, r, n) → T ramp scheme if T ∗ 	= ∅.

– Let v = lcm(t1
gcd(t,t1)

, t2
gcd(t,t2)

, . . . , tm
gcd(t,tm)), then v is the smallest positive

integer such that u is a positive integer and v
u = t′

t for any (t′, r′) ∈ T . On
the other hand, from [2] we have that the share size of Π̃(tv,rv) is log |S̃(tv,rv)

j | =
H(S)

v(r−t) , where

H(S) = v(r − t) · lcm

(
tv(r′

k1
− t′k1

)
t′k1

, . . . ,
tv(r′

km∗ − t′km∗)
t′km∗

)
log q.

Then the share size of this optimal (t, r, n) → T ramp scheme is

log |S(t,r)
i | = v · log |S̃(tv,rv)

j |

= v · lcm

(
tv(r′

k1
− t′k1

)
t′k1

, . . . ,
tv(r′

km∗ − t′km∗)
t′km∗

)
log q.

(3)

In conclusion, there is is an optimal (t, r, n) → T ramp scheme, and its share
size is bounded by equation (3).

4 Completeness Results for Secret Sharing with Full
Reconstruction

The definition of full reconstruction threshold is given by Nielsen and Simkin
[17] recently. It defines how many shares are needed to reconstruct all shares
of a secret sharing. We restrict to a special class of secret sharing whose full
reconstruction thresholds are the same as their reconstruction thresholds, and
then argue that the new optimal threshold changeable ramp schemes constructed
in this work together with the constructions from [2,13] cover the full admissible
threshold change range.

Definition 6. For a (t, r, n)-ramp scheme with share vector

V ← S1 × · · · × Sn,

we say it has full reconstruction if H(V|VA) = 0 for any A ⊂ [n] of size |A| ≥ r.

Optimal Threshold Changeable Secret Sharing 375

Many secret sharing schemes have full reconstruction such as Shamir’s (r, n)
secret sharing scheme. Any r participants can reconstruct the random polyno-
mial f(x) with Lagrange interpolating formula, and then all the shares can be
computed with public known values xi for i ∈ [n]. This is also true for the opti-
mal threshold secret sharing schemes constructed in [2,9,13,16,22]. Clearly, this
class of schemes have been used in many scenarios. We assume all the secret
sharing schemes have full reconstruction in the following.

Theorem 4. Let r, r′, t, t′, n be positive integers. Then there is an optimal
(t, r, n) → (t′, r′, n) ramp scheme if and only if t < r < r′, t′ < r′ ≤ n and
1 ≤ t′

t ≤ r′
r .

Proof. We begin by presenting two claims, which will make our proof more
clearly.

Claim (1). If Π is a (t, r, n) → (t′, r′, n) ramp scheme, then

H(Si) ≥ H(S ′
i),H(V′

A′ |VA′) = 0,H(VA) ≥ H(V′A′),

where i ∈ [n], and A,A′ ⊂ [n] of size |A| = r and |A′| = r′ respectively.

Proof of Claim (1): Let si ∈ Si and s′
i ∈ S ′

i be the shares of Π and Π′ respectively,
then s′

i = hi(si) with public known share functions hi for i ∈ [n]. Consequently,
H(S ′

i|Si) = 0 and H(Si) ≥ H(S ′
i). This implies that for any A,A′ ⊂ [n] of size

|A| = r and |A′| = r′, we have H(V′
A′ |VA′) = 0. From Definition 6 we know

that H(V|VA) = 0. Meanwhile, VA′ ⊂ V, and so H(V′
A′ |VA) = 0. By the chain

rule of mutual information we have

I(VA,V′
A′) = H(V′

A′) − H(V′
A′ |VA)

= H(VA) − H(VA|V′
A′).

Therefore

H(VA) = H(V′
A′) − H(V′

A′ |VA) + H(VA|V′
A′)

= H(V′
A′) + H(VA|V′

A′)
≥ H(V′

A′).

Claim (2). If Π is a (t, r, n) → (t′, r′, n) ramp scheme, then

t < r ≤ r′, t ≤ t′ < r′ ≤ n, (t, r) 	= (t′, r′).

Proof of Claim (2): It is straightforward that t < r, t′ < r′ ≤ n and (t, r) 	= (t′, r′)
from Definition 3. Next, we give the proof of r ≤ r′. For any A′ ⊂ [n] of size
|A′| = r′, we have H(S|V′

A′) = 0. Since H(V′
A′ |VA′) = 0 from Claim 4, then

H(S|VA′) = 0, which implies that r′ = |A′| ≥ r from Definition 2. Finally, we
prove t ≤ t′ which has been given by Lin et al. [13]. From s′

i = hi(si) we know
that no information can be generated other than those already contained in si.
Since t participants learn nothing about the secret with their initial shares si, we

376 J. Ding et al.

then obtain that any set of t new shares s′
i does not contain information about

the secret. This indicates that t ≤ t′, and then complete the proof of this claim.
Next, we prove this theorem. Assume that Π is an optimal (t, r, n) → (t′, r′, n)

ramp scheme, then t < r ≤ r′, t ≤ t′ < r′ ≤ n and (t, r) 	= (t′, r′) from Claim
(2). Moreover, the share size of Π and Π′ are minimum, namely,

log |Si| = H(Si) =
H(S)
r − t

, log |S′
i| = H(S′

i) =
H(S)
r′ − t′

,

for any i ∈ [n]. Since H(Si) ≥ H(S′
i) from Claim (1), then r − t ≤ r′ − t′, which

shows that r < r′ for r ≤ r′, t ≤ t′ and (t, r) 	= (t′, r′). Let A,A′ ⊂ [n] of size
|A| = r and |A′| = r′ respectively, then, from Theorem 5 and Result 3 in [10]
we have

rH(S)
r − t

≤ H(VA) ≤
∑

i∈A
H(Si) =

rH(S)
r − t

and
r′H(S)
r′ − t′

≤ H(V′
A′) ≤

∑

i∈A′
H(S′

i) =
rH(S)
r′ − t′

.

This implies that H(VA) =
rH(S)
r − t

and H(V′
A′) =

r′H(S)
r′ − t′

. Since H(VA) ≥

H(V′A′) from Claim (1), then
r′

r
≤ r′ − t′

r − t
. From the above discussion, we

have t < r < r′, t ≤ t′ < r′ ≤ n and
r′

r
≤ r′ − t′

r − t
, which are equivalent to

t < r < r′, t′ < r′ ≤ n and 1 ≤ t′
t ≤ r′

r . This gives the proof of the necessary
part of this theorem.

On the other hand, there is an optimal (t, r, n) → (t′, r′, n) ramp scheme
under the following parameters range.

– Ours (Theorem 2): t < r, t′ < r′ ≤ n and 1 < t′
t < r′

r .
– Bitar et al. [2]: t = t′ < r < r′ ≤ n.
– Lin et al. [13]: t′ < r′ ≤ n, 1 < t′

t = r′
r .

We can check that the union of these ranges are equivalent to t < r < r′, t′ <
r′ ≤ n and 1 ≤ t′

t ≤ r′
r , and complete the proof of the sufficient part of this

theorem.
A necessary condition for the existence of an optimal (t, r, n) → (t′, r′, n)

ramp scheme is given in [13], which is t < r, t ≤ t′ < r′ ≤ n and r′−t′ > r−t. On
the other hand, from the proof of Theorem 4, we know that the full admissible
threshold change range can be also written by t < r < r′, t ≤ t′ < r′ ≤ n

and
r′

r
≤ r′ − t′

r − t
, namely, t < r, t ≤ t′ < r′ ≤ n and 1 <

r′

r
≤ r′ − t′

r − t
. Our

result is a necessary and sufficient condition for the existence of an optimal
(t, r, n) → (t′, r′, n) ramp scheme.

Optimal Threshold Changeable Secret Sharing 377

Remark 1. In this work, we present a new threshold change range 1 < t′
t < r′

r

in Theorem 2, while the previous range in [13] is 1 < t′
t = r′

r . When we consider
to transform the reconstruction threshold r to a given r′, the privacy threshold
can be changed from t to t′1 in the new range and t′2 in the previous range,
respectively, such that 1 <

t′
1
t < r′

r and 1 <
t′
2
t = r′

r . One may wonder why we
need the new threshold change range that makes the privacy threshold t′1 smaller
than t′2? Note that the gap g1 = r′ − t′1 in this work is bigger than the previous
gap g2 = r′ − t′2. This shows that we can share more secrets in new threshold
change range than in the previous range. In fact, this statement is also true for
the scenarios that require to change privacy threshold t to a given t′.

5 Conclusion

We continued the study of threshold changeable ramp scheme with the goal of
making it more practical. Previous constructions either enable only the recon-
struction threshold change or require both thresholds to change proportionally.
We constructed optimal threshold changeable secret sharing schemes with both
thresholds changes and without the limitation of proportionality for privacy
threshold and reconstruction threshold. We further investigate the full admissible
threshold change range for optimal schemes and concluded that our new schemes
together with previous schemes cover the complete range. We also extend these
results to construct optimal schemes that can change both thresholds universally
within the complete threshold change range. An open question of theoretical
interest is how much a special threshold change requirement affects the lower
bound of the share size for a ramp scheme.

Acknowledgements. The authors would like to thank the anonymous reviewers for
their helpful and valuable suggestions. Especially, Remark 1 was inspired by a question
from one of the reviewers. The work of Jian Ding and Changlu Lin was supported partly
by National Natural Science Foundation of China (U1705264 and 61572132), Natural
Science Foundation of Fujian Province (2019J01275), and Anhui Province Natural Sci-
ence Research (KJ2018A0584). The work of Fuchun Lin was supported by EPSRC
grant EP/S021043/1.

References

1. Barwick, S.G., Jackson, W.-A., Martin, K.M.: Updating the parameters of a thresh-
old scheme by minimal broadcast. IEEE Trans. Inf. Theory 51(2), 620–633 (2005)

2. Bitar, R., El Rouayheb, S.: Staircase codes for secret sharing with optimal com-
munication and read overheads. IEEE Trans. Inf. Theory 64(2), 933–943 (2017)

3. Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the National
Computer Conference, vol. 48 (1979)

4. Blundo, C., Cresti, A., De Santis, A., Vaccaro, U.: Fully dynamic secret sharing
schemes. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 110–125.
Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2 10

https://doi.org/10.1007/3-540-48329-2_10

378 J. Ding et al.

5. Bogdanov, A., Guo, S., Komargodski, I.: Threshold secret sharing requires a linear
size alphabet. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 471–
484. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5 18

6. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Secure Multiparty Computation and Secret
Sharing. Cambridge University Press, Cambridge (2015)

7. Desmedt, Y.: Threshold Cryptography, pp. 1288–1293. Springer, Boston (2011)
8. Desmedty, Y., Jajodiay, S.: Redistributing secret shares to new access structures

and its applications (1997)
9. Huang, W., Langberg, M., Kliewer, J., Bruck, J.: Communication efficient secret

sharing. IEEE Trans. Inf. Theory 62(12), 7195–7206 (2016)
10. Jackson, W.-A., Martin, K.M.: A combinatorial interpretation of ramp schemes.

Australas. J. Comb. 14, 51–60 (1996)
11. Jia, X., Wang, D., Nie, D., Luo, X., Sun, J.Z.: A new threshold changeable secret

sharing scheme based on the chinese remainder theorem. Inf. Sci. 473, 13–30 (2019)
12. Lin, F., Cheraghchi, M., Guruswami, V., Safavi-Naini, R., Wang, H.: Secret sharing

with binary shares. In: 10th Innovations in Theoretical Computer Science Confer-
ence (ITCS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)

13. Lin, F., Ling, S., Wang, H., Zeng, N.: Threshold changeable ramp secret sharing. In:
Mu, Y., Deng, R.H., Huang, X. (eds.) CANS 2019. LNCS, vol. 11829, pp. 308–327.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31578-8 17

14. Maeda, A., Miyaji, A., Tada, M.: Efficient and unconditionally secure verifiable
threshold changeable scheme. In: Varadharajan, V., Mu, Y. (eds.) ACISP 2001.
LNCS, vol. 2119, pp. 403–416. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-47719-5 32

15. Martin, K.M., Pieprzyk, J., Safavi-Naini, R., Wang, H.: Changing thresholds in
the absence of secure channels. In: Pieprzyk, J., Safavi-Naini, R., Seberry, J. (eds.)
ACISP 1999. LNCS, vol. 1587, pp. 177–191. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48970-3 15

16. Mart́ınez-Peñas, U.: Communication efficient and strongly secure secret sharing
schemes based on algebraic geometry codes. IEEE Trans. Inf. Theory 64(6), 4191–
4206 (2018)

17. Nielsen, J.B., Simkin, M.: Lower bounds for leakage-resilient secret sharing. In:
Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 556–577.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1 20

18. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
19. Steinfeld, R., Pieprzyk, J., Wang, H.: Lattice-based threshold-changeability for

standard CRT secret-sharing schemes. Finite Fields Appl. 12(4), 653–680 (2006)
20. Steinfeld, R., Pieprzyk, J., Wang, H.: Lattice-based threshold changeability for

standard shamir secret-sharing schemes. IEEE Trans. Inf. Theory 53(7), 2542–
2559 (2007)

21. Wang, H., Wong, D.S.: On secret reconstruction in secret sharing schemes. IEEE
Trans. Inf. Theory 54(1), 473–480 (2008)

22. Zhang, Z., Chee, Y.M., Ling, S., Liu, M., Wang, H.: Threshold changeable secret
sharing schemes revisited. Theory Comput. Sci. 418, 106–115 (2012)

https://doi.org/10.1007/978-3-662-53644-5_18
https://doi.org/10.1007/978-3-030-31578-8_17
https://doi.org/10.1007/3-540-47719-5_32
https://doi.org/10.1007/3-540-47719-5_32
https://doi.org/10.1007/3-540-48970-3_15
https://doi.org/10.1007/3-540-48970-3_15
https://doi.org/10.1007/978-3-030-45721-1_20

Security Analyses

Key Recovery Under Plaintext Checking
Attack on LAC

Ke Wang1,2(B), Zhenfeng Zhang1,2, and Haodong Jiang3

1 TCA Laboratory, State Key Laboratory of Computer Science, Institute of
Software, Chinese Academy of Sciences, Beijing, China

{wangke,zfzhang}@tca.iscas.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

3 State Key Laboratory of Mathematical Engineering and Advanced Computing,
Zhengzhou, Henan, China
hdjiang13@gmail.com

Abstract. The National Institute of Standards and Technology (NIST)
is working on the standardization of post-quantum algorithms. In Febru-
ary 2019, NIST announced 26 candidate post-quantum cryptosystems
had entered the Round 2. Prior work has shown how to mount key recov-
ery attacks on several candidates like FrodoKEM, NewHope, and Kyber,
but their methods do not work for LAC, which uses a different encod-
ing scheme and rounding method. To address this gap, we describe a
powerful new attack on LAC. In particular, we propose a simple and
effective method to recover the reused secret key of LAC.CPA. Follow-
ing the method we show that, using the recommended parameters, thou-
sands of queries are sufficient to recover the full secret key with a 100%
probability, which is verified by experiments. Since LAC.KE is based on
LAC.CPA, our method can be used to assess the key-reuse resilience of
LAC.KE. In particular, if Alice reuses a secret key, Bob can recover it
by communicating with Alice thousands of times. Since LAC is a Round
2 candidate in the NIST PQ process, the presented result may well have
a high impact on the understanding of this important cryptosystem.

Keywords: LAC · PKE · IND-CPA · NIST · Post quantum · Lattice
based · Active attack · Key reuse

1 Introduction

In 1994, Shor [5] proposed a quantum algorithm, which can break most cur-
rent public key cryptosystems based on integer factoring problem, discrete log-
arithm problem etc. Public key cryptosystems based on these hard problems
are no longer secure when large quantum computers are implemented. There
is an urgent need to replace them. For this purpose, the National Institute of
Standards and Technology (NIST) initiated a standardization process for post-
quantum algorithms, and in January 03, 2017, they called for proposals [27] for

c© Springer Nature Switzerland AG 2020
K. Nguyen et al. (Eds.): ProvSec 2020, LNCS 12505, pp. 381–401, 2020.
https://doi.org/10.1007/978-3-030-62576-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62576-4_19&domain=pdf
https://doi.org/10.1007/978-3-030-62576-4_19

382 K. Wang et al.

post-quantum cryptosystems [26,28], including Key Encapsulation Mechanism
(KEM), Public Key Encryption (PKE) and signature.

By the end of 2017, many submissions were present. After the first round
of evaluation, in February 2019, NIST announced 26 candidate post-quantum
cryptosystems have entered the Round 2 [15]. Among these, only a very few
types of algorithms are proposed, such as lattice-based, code-based, hash-based,
multivariate-based or isogeny-based. One of the most promising algorithms is
lattice-based [8,9]. Most lattice-based candidate algorithms, including Frodo,
NewHope, Kyber [11,13,29] and LAC, are based on core IND-CPA PKEs. These
PKEs are inspired by the Regev cryptosystem [23], such as the Lyubashevsky-
Peikert-Regev cryptosystem [7]. Even for these candidate PKEs for which secret
key reuse is considered as a misuse of the mechanism, having an accurate estimate
of the complexity of the secret key recovery really helps to assess the possible
danger [12]. In order to analyze how easy it is to run a key recovery under multiple
key reuse, Băetu et al. [6] mounted a classical key recovery under plaintext
checking attack (KR-PCA) (i.e., with a plaintext checking oracle (PCO) saying
if a given ciphertext decrypts well to a given plaintext) on 12 IND-CPA PKEs
entering the Round 1 [14].

KR-PCA attack is an adaptive key recovery attack and comes from the model
of Fluhrer attacks [1] where an adversary encrypts a message by deviating a bit
from the protocol. Then, he sends the ciphertext for decryption and checks if the
decryption matches what he expected. After a few trials, the adversary recovers
the secret key. The predecessor of KR-PCA attack is what is called a“reaction
attack” in [32] or a “sloppy Alice attack” in [33]: adversary has a guess for the
output of each decryption, and learns whether actual decryption output matches
this guess. Adversary does not need any further information. KR-PCA attack
does not need the full power of a CCA decryption oracle. Security against KR-
PCA attack is implied by IND-CCA security. In particular, at PKC’19, D’Anvers
et al. [31] explored decryption failure attacks on IND-CCA secure lattice-based
schemes, which are CCA attacks. Recently, at ASIACRYPT’2019, the attack
Guo et al. [16] have proposed also falls into this category. KR-PCA attack is
not in the IND-CPA security framework. Hence, a PKE could be IND-CPA
secure but still vulnerable to a KR-PCA attack. In particular, Băetu et al. [6]
can recover the reused secret key of FrodoPKE with a 100% probability by
querying oracle PCO thousands of times.1 However, the method doesn’t work
for NewHope, Kyber and LAC which shorten ciphertexts by rounding off the
low bits and enlarge them when decrypting.2

In order to assess the key-reuse resilience of NewHope [20], Bauer et al.
[12] came up with a new method which can recover the reused secret key of

1 Băetu et al. also recovered the reused secret keys of the other 8 IND-CPA PKEs,
but these schemes did not advance to the second round.

2 In implementation of LAC, in order to minimize the size of the ciphertext, the lower
4 bits for each coefficient in v are discarded, and each coefficient is enlarged by
shifting 4 bits to the left when decrypting.

Key Recovery Under Plaintext Checking Attack on LAC 383

NewHope-CPA-PKE [20] with high probability.3 Recently, Qin et al. [2] and
Okada S et al. [38] improved this method and recovered the secret key with
a higher probability and fewer queries. In addition, Qin et al. [18] also put
forward a method to recover the reused secret key of Kyber.CPAPKE.4 However,
these methods can’t be used directly to analyze LAC.CPA, which uses different
encoding method and rounding method.

1.1 Our Contributions

In this paper, we fill a gap in the post-quantum literature. In particular, we assess
the key-reuse resilience of LAC.CPA and propose a new method to recover the
reused secret key of LAC.CPA by querying oracle PCO. The secret key is a
polynomial of degree n, and recovering the full secret key requires recovering
each coefficient. Using our method, each coefficient can be recovered with a
100% probability with at most 2.63 queries on average, which is verified by
experiments. Since LAC.KE is directly obtained from LAC.CPA, our method can
be used to recover the reused secret key in LAC.KE. In particular, if Alice reuses
secret key, Bob can recover it by communicating with Alice several thousands of
times.

1.2 Techniques

In Băetu’s work [6], in order to recover the reused secret key sk, attacker adds
disturbance x to ciphertext ct = (u,v) and queries oracle PCO with the disturbed
ciphertext (u,v+x) and a given plaintext m. The oracle will return a bit saying
if (u,v+x) decrypts well to m. The returned bit will leak information about the
noise δ to the attacker. By constantly changing the value of x and repeating the
above operations, the attacker can recover δ. Based on the relationship between
sk and δ, the attacker can build a system of equations. By solving the system,
the attacker can get the secret key sk. The noise δ is so small that the attacker
has to change the value of x carefully in this process.

Candidates NewHope-CPA-PKE, Kyber.CPAPKE and LAC.CPA shorten
ciphertexts by rounding off the low bits, which is a common technique for reduc-
ing ciphertext size. In these schemes, ciphertext (u,v) falls into a small space
and is enlarged back into the original space when decrypting. If attacker adds a
disturbance x to (u,v), x will be amplified when decrypting. Unable to fine tune
the value of x, the attacker can’t recover the secret key sk according to Băetu’s
method.

Before introducing our method, we give two observations:
3 In the paper, they recovered the reused secret key of NewHope-CPA-KEM by query-

ing a key mismatch oracle, which can be regarded as an adaptive variant of the
plaintext checking oracle in KEM or key exchange.

4 In the paper, they proposed an efficient key mismatch attack on Kyber.CCAKEM.
However, they replaced oracle O with oracle Om in the attack, where these two
oracles are not equivalent. In fact, they presented a new method to recover the
reused secret key of Kyber.CPAPKE.

384 K. Wang et al.

– When querying oracle PCO with ciphertext (u,v) and a given plaintext m, the
oracle will return a bit saying if m′ = m, where m′ is the result of decrypting
(u,v). In the decryption algorithm of LAC.CPA, m′ = ECCDec(m̂), then the
returned bit indicates whether ECCDec(m̂) = m.

– LAC.CPA adopts error correcting codes, which can correct at most lv errors,
that is to say, at most lv differences between m̂ and ECCEnc(m) are allowed.

In LAC.CPA, the secret key s ∈ Rq is a polynomial of degree n. Therefore,
recovering the complete s requires recovering n coefficients. In order to recover
coefficient si, i = 0, ..., n − 1, we construct (u,v) skillfully based on the algebra
and the encoding method of scheme so that whether (the 0-th positions of) m̂
and ECCEnc(m) are equal or not depends entirely on si. Thus, when the attacker
queries oracle PCO with (u,v), the returned bit will leak 1 bit information of si.
Since si has 3 possible values, −1,0 and 1, si can be completely recovered by a
second query.

First, we assume that the error correcting code has no error ability, that is
to say, no difference between m̂ and ECCEnc(m) is allowed. At this time, the
attacker constructs (u,v) so that

m̂0

{ �= ECCEnc(m)0, si = 1
= ECCEnc(m)0, si ∈ {−1, 0},

m̂j = ECCEnc(m)j , j ∈ [1, lv).

Thus, whether m̂ and ECCEnc(m) are equal or not depends entirely on si. Then
when the attacker queries oracle PCO with (u,v), the returned bit can determine
si = 1. In order to determine si completely, the attacker makes a second query
where (u,v) satisfies

m̂0

{ �= ECCEnc(m)0, si = −1
= ECCEnc(m)0, si ∈ {0, 1},

m̂j = ECCEnc(m)j , j ∈ [1, lv).

When the error correction code can correct up to lt errors, the attacker first
chooses lt positions from [1, lv − 1] and record them in set Ierr, then constructs
(u,v) so that

m̂0

{ �= ECCEnc(m)0, si = 1
= ECCEnc(m)0, si ∈ {−1, 0}, m̂j

{ �= ECCEnc(m)j , j ∈ Ierr

= ECCEnc(m)j , j ∈ ([1, lv) − Ierr).

Thus, whether m̂ and ECCEnc(m) are equal or not depends entirely on si except
for these lt positions. Since the error correcting code can correct these lt errors,
when querying oracle PCO with (u,v), the returned bit can determine si = 1.
In the second query, (u,v) satisfies

m̂0

{ �= ECCEnc(m)j , si = −1
= ECCEnc(m)j , si ∈ {0, 1},

m̂j

{ �= ECCEnc(m)j , j ∈ Ierr

= ECCEnc(m)j , j ∈ ([1, lv) − Ierr).

In summary, in order to recover si, the attacker needs to query the oracle
PCO 2 times. Therefore, it takes 2n queries to recover complete secret key s.

Key Recovery Under Plaintext Checking Attack on LAC 385

In fact, 2n is just an upper bound. Since h
2 coefficients can be determined by

querying once, the actual total number of queries is 2n − h
2 .

Using the method, we successfully recover the secret keys of LAC-128 and
LAC-192, not LAC-256, which adds one more step of D2 encoding to reduce
decryption failure rate. In order to recover the secret key of LAC-256, we improve
the method and recover si and si+lv together. In particular, we describe how to
recover s0 and slv . First, we construct (u,v) so that whether (the 0-th positions
of) m̂ and ECCEnc(m) are equal or not depends entirely on s0 + slv . When
querying oracle PCO with (u,v), the returned bit will leak information of s0+slv .
After at most 4 queries, we can determine the value of s0+slv . Then we construct
(u,v) so that whether (the 0-th positions of) m̂ and ECCEnc(m) are equal or
not depends entirely on s0 − slv . And after at most 4 more queries, we can
determine the values of s0 and slv completely. Therefore, we can recover both
coefficients s0 and slv with a 100% probability after at most 8 queries. In this
way, we can recover 2lv coefficients of the secret key by querying at most 8lv
times. In LAC-256, n = 1024, lv = 400, we can recover the first 800 coefficients
using the method. When recovering the coefficient s800+i, i ∈ [0, 224), at most 2
queries will suffice because s800+i+lv = s800+i+lv−n = si+176 and we have found
this coefficient. Therefore, the total number of queries to recover the complete s
is at most 8lv + 2(n − 2lv). If we consider the distribution of the secret key, the
actual total number should be 46

8 lv + 7
4 (n − 2lv).

LAC.KE is constructed from LAC.CPA by using LAC.CPA to convey a secret
message m. Our method can also be used to recover the reused secret key of
LAC.KE, where Alice reuses key pair and Bob can communicate with Alice which
responds honestly. In particular, according to the results above, Bob can recover
the reused secret key of Alice by communicating with Alice several thousands of
times.

1.3 Related Work

Key leakage in RLWE-based key exchange with reused keys was first pointed out
in [17] but without any concrete description of an attack to exploit the leakage.
In 2016, Fluhrer [1] showed how several RLWE-based key exchange protocols can
be broken, under the assumption that the same public key is used for multiple
exchanges. Following this idea, Ding et al. [3] described an attack on DING12’s
one pass case without relying on the signal function output but using only the
information of whether the final key of both parties agree, and Bernstein et al.
[24] developed a similar attack on HILA5 [19]. In 2017, Ding et al. [4] showed that
the signal function used in RLWE-based key exchange could leak information to
find the secret key of a reused public key. They gave an insight into how long-
term public keys reuse in RLWE-based key exchange protocols can be exploited.
They specifically focused on the attack on the key exchange protocol in [10]. In
response to the attack, Ding Key Exchange, one of cryptosystems entering the
Round 1 [14], includes a RLWE-based key exchange protocol with reusable keys,
which can achieve secure key reuse. Gao et al. [21] constructed a new randomized
RLWE-based key exchange protocol secure against the signal leakage attack. In

386 K. Wang et al.

particular, they incorporated an additional ephemeral public error term into key
exchange materials. However, these two countermeasures only focused on the
security of one party’s reused key and ignored the other party, especially Wang
et al. [30] improved the two countermeasures. Directly motivated by the work
[4], Liu et al. [22] described a new key reuse attack against the NewHope key
exchange protocol proposed by Alkim et al. [25] in 2016. In particular, Ding
et al. [35] presented a simple key reuse attack on LWE and RLWE encryption
schemes used directly as KEMes. This attack could work due to the fact that a
key mismatch in a KEM is accessible to an adversary. At PQCrypto’19, D’Anvers
et al. [34] pointed out that the higher-than-expected failure rate could lead to
more efficient cryptanalysis of the schemes based on Ring/Module Learning with
Errors/Rounding through decryption failure attacks. They provided a method
to estimate the decryption failure probability, taking into account the bit failure
dependency.

Concurrent and Independent Work. We have recently become aware of
a concurrent and independent work by Greuet et al. [36]. In particular, they
studied the security of LAC.KE in a misuse context: when the same secret key
is reused for several key exchanges and an active adversary has access to a
mismatch oracle. This oracle indicates information on the possible mismatch
at the end of the KE protocol. In fact, the oracle is an adaptive variant of the
plaintext checking oracle in key exchange, and the key to the success of the attack
on LAC.KE is essentially that LAC.CPA is vulnerable to a KR-PCA attack.

Having grasped the key point, we focus on the analysis of LAC.CPA. We also
include the analysis of LAC.KE, which is based on the results of LAC.CPA. In
fact, Greuet’s attack is easy to detect because m is always 0lv in many queries.
For this reason, we consider the case of random choice of m. Further, when
analyzing the number of queries required, we give a more accurate estimate
based on the distribution of secret key. This result has been experimentally
confirmed using the reference implementations of LAC.

Most recently, we have noticed another independent work [37] by Dumittan
and Vaudenay, who also studied KR-PCA attack on LAC.CPA and recovered
the reused secret key of LAC-128 successfully. However, they lacked analysis of
LAC-192 and LAC-256, especially LAC-256 which adds one more step of D2
encoding. Similarly, they chose m to be 0lv in many queries, and the number of
queries they theoretically analyzed can be further reduced and refined.

1.4 Organization

In Sect. 2, We introduce some preliminaries, including mathematical nota-
tions, centered binomial distribution, hard problem, PKE, KR-PCA attack and
LAC.CPA algorithm. In Sect. 3, we use our method to recover the reused secret
key of the LAC.CPA by querying the oracle PCO. The secret key s is a poly-
nomial of degree n, and recovering s requires recovering each coefficient. When
recovering si, we first consider a simple case where the attacker chooses a special

Key Recovery Under Plaintext Checking Attack on LAC 387

m, then consider the general case where a random m is chosen. In each case,
we start by assuming that the error correcting code has no error correcting abil-
ity, then consider that it can correct up to lt errors. We also consider the case
where the lower 4 bits of each coefficient in v are discarded. Using the method,
we successfully recover the secret keys of LAC-128 and LAC-192, not LAC-256,
which adds one more step of D2 encoding. In particular, we improve the method
to recover the secret key. Based on the results in Sect. 3, we recover the reused
secret key of LAC.KE in Sect. 4. Finally, we make a conclusion in Sect. 5.

2 Preliminaries

2.1 Mathematical Notations

For an integer q ≥ 1, let Zq be the residue class ring modulo q and Zq = {0, ..., q−
1}. Define the ring of integer polynomials modulo xn + 1 as R = Z[x]/(xn + 1)
for integer n ≥ 1, and the ring Rq = Zq[x]/(xn + 1) denotes the polynomial ring
modulo xn+1 where the coefficients are from Zq. The addition and multiplication
of the elements in Rq are operated according to those of polynomials. Vectors
are denoted by bold lower-case characters, such as a. For a n-dimensional vector
a, where the ai’s are the components of a for 0 ≤ i ≤ n − 1. The elements in Rq

can also be represented as vectors whose i-th coordinate is the coefficient related
to xi. In the sequel, we use either the polynomial notation or the vectorial one.
In particular, for a ∈ Rq, ai denotes the i-th coefficient of a, 0 ≤ i ≤ n − 1. Zl

q

denotes a set of vector of length l and vector components are taken from Zq. For
a ∈ Z

l
q, ai denotes the i-th component of a, 1 ≤ i ≤ l. {0, 1}� denotes a set of

strings of length �. For a ∈ {0, 1}�, ai denotes the i-th bit of a, 0 ≤ i ≤ � − 1. In

particular, 0� denotes an all 0 bit string of length �. For a set S, x
$←− S denotes

that an element x is chosen from S uniformly at random. For a distribution χ,
x

$←− χ denotes that an element x is sampled according to the distribution χ.
A polynomial f ∈ Rq is chosen from S (sampled from χ), we mean that each
coefficient is chosen from S (sampled from χ).

Centered Binomial Distribution. We define centered binomial distribution
Bη as follows:

(a1, ..., aη, b1, ..., bη) $←− {0, 1}2η

and output
η

∑

i=1

(ai − bi).

The samples are in the interval [−η, η]. When we write that a polynomial f ∈ Rq

is sampled from Bη, we mean that each coefficient is sampled from Bη.
See Appendix A for RLWE problems (A.1) and cryptographic definitions

(A.2).

388 K. Wang et al.

2.2 KR-PCA Attack

Definition 1 [6]. The key recovery game with oracle PCO is shown in Fig.1,
where PCO(ct, m) is a plaintext checking oracle which receives ciphertext ct and
plaintext m, runs the decryption and only returns one bit saying if it decrypts to
m.

Game KRPCO
A (): Oracle PCO(ct,m)

1: KeyGen() → (pk, sk) 1: Dec(ct, sk) → m′

2: APCO(·)(pk) → sk’ 2: return 1m′=m

3: return 1sk=sk’

Fig. 1. KR-PCA game

The KR-PCA model comes from the model of Fluhrer attack [1] and makes
sense when an adversary can play with a server with a modified ciphertext and
check if it still decrypts to the same plaintext as before. For instance, in the
client-server protocol where the encryption is used to transport a symmetric
key to start secure messaging, an adversary can try to encrypt a symmetric
key by deviating from the protocol. He generates malformed ciphertexts which
may decrypt to the chosen symmetric key or not. By sending the malformed
ciphertext to the server, the adversary can easily see if secure messaging with
the server is possible, hence simulate a PCO oracle. Clearly, it is devastating that
such an attack would lead to a key recovery [6].

Security against KR-PCA attack is implied by IND-CCA security. KR-PCA
attack is not in the IND-CPA security framework. Hence, a PKE could be IND-
CPA secure but still vulnerable to a KR-PCA attack.

2.3 LAC.CPA

Algorithm 1. LAC.CPA.KeyGen():

Output: Secret key sk ∈ Rq

Output: Public key pk ∈ Rq × {0, 1}ls

1: seeda
$←− {0, 1}ls

2: a ←− Samp(U(Rq), seeda) ∈ Rq

3: s ←− Samp(Bh
η , ε) ∈ Rq

4: d ←− Samp(Bh
η , ε) ∈ Rq

5: b = as+ d ∈ Rq

6: sk = s
7: pk = (b, seeda)
8: return(sk,pk)

Algorithm 2. LAC.CPA.Enc(m, pk, seed):

Output: Ciphertext ct ∈ Rq × Z
lv
q

1: a ←− Samp(U(Rq), seeda) ∈ Rq

2: t ←− Samp(Bh
η , seed) ∈ Rq

3: e ←− Samp(Bh
η , seed) ∈ Rq

4: f ←− Samp(Bη , seed) ∈ Z
lv
q

5: u = at+ e ∈ Rq

6: v = (bt)lv + f+ � q
2
� · (ECCEnc(m)) ∈ Z

lv
q

7: return ct = (u,v)

Key Recovery Under Plaintext Checking Attack on LAC 389

Algorithm 3. LAC.CPA.Dec(ct,sk): decryption

Output: Message m′ ∈ {0, 1}lm

1: m̃ = v − (us)lv

2: for j = 0 to lv-1 do
3: if q

4 ≤ m̃j < 3q
4 then

4: m̂j ← 1
5: else
6: m̂j ← 0
7: end if
8: end for
9: m′ ← ECCDec(m̂)
10: return m′

LAC [15] is a suit of public key cryptographic primitives based on Ring Learning
With Errors. The foundation of LAC is LAC.CPA, an IND-CPA secure public
key encryption scheme. LAC.CPA comprises three algorithms: the key genera-
tion algorithm LAC.CPA.KeyGen, the encryption algorithm LAC.CPA.Enc, the
decryption algorithm LAC.CPA.Dec, as illustrated in Algorithms 1, 2 and 3,
which are simplified descriptions of the algorithms and may partly deviate from
the notations the original specification of these algorithms [15].

See Appendix A for the notations (A.3) and parameters (A.4).

3 KR-PCA Attack on LAC.CPA

In this section, we show how the attacker recover reused secret key s of LAC.CPA
by querying the oracle PCO with (ct = (u,v), m).

The secret key s ∈ Rq is a polynomial of degree n, and recovering the com-
plete s requires recovering n coefficients. In our attack, the method of recov-
ering each coefficient is the same. Generally, we consider recovering coefficient
si, i = 0, ..., n − 1.

3.1 Choosing Special m

When recovering si, the attacker needs to construct ct = (u,v) skillfully based
on ECCEnc(m). In particular, we first consider a simple case where the attacker
chooses m such that ECCEnc(m) = 0lv ∈ {0, 1}lv .5

In LAC.CPA, the byte level modulus incurs a very high decryption error rate
by design. In order to reduce the decryption error rate, LAC.CPA adopts error
correcting codes, which can correct at most lt errors. Next, we will take two
steps to recover si: the first step is to assume that the error correcting code has
no error correcting ability, and the second step is to consider it can correct at
most lt errors.
5 ECCEnc(m) is chosen to be 0lv for ease of explanation. In fact, it’s ok to randomly

choose m and generate ECCEnc(m), which will be explained further later.

390 K. Wang et al.

The Error Correcting Code Has No Error Correcting Ability. Assuming
the error correcting code has no error correcting ability, the attacker constructs
ct such that m̂ and ECCEnc(m) are the same except for the 0-th position, and
the 0-th position of m̂ depends on si. Thus, whether ECCDec(m̂) (or m′) and m
are equal depends on si. Then, when querying the oracle PCO with (ct,m), the
returned bit will leak the information about si.

In particular, when recovering si,

– the attacker first chooses m such that ECCEnc(m) = 0lv .
– Then, the attacker chooses u = q

8xn−i and constructs v1 and v2 as follows:

v1
j =

{

3q
16 , j = 0
0, j ∈ [1, lv),

v2
j =

{

13q
16 , j = 0
0, j ∈ [1, lv).

– Next, the attacker queries the oracle PCO with (ct = (q
8xn−i,v1),m), and

the oracle will return a bit to indicate whether m′ and m are equal.
– Finally, the attacker queries the oracle PCO with (ct = (q

8xn−i,v2),m), and
gets the returned bit.

After getting these two returned bits, the attacker can recover si ∈ {−1, 0, 1},
and the explanation is as follows. Recall that in the decryption algorithm
LAC.CPA.Dec,

m̃ = v − (us)lv , m̂j =
{

1, m̃j ∈ [q
4 , 3q

4)
0, m̃j ∈ ([0, q

4) ∪ [3q
4 , q)),

m′ = ECCDec(m̂).

Given that u = q
8xn−i, v = v1, we have

m̃j =
{

3q
16 + q

8si, j = 0
± q

8s(i+j) mod n, j ∈ [1, lv),

where

3q

16
+

q

8
si ∈

{
[q
4
, 3q

4
), si = 1

([0, q
4
) ∪ [3q

4
, q)), si ∈ {−1, 0},

± q

8
s(i+j) mod n ∈ ([0,

q

4
) ∪ [

3q

4
, q)).

Therefore, we have

m̂0 =
{

1, si = 1
0, si ∈ {−1, 0},

m̂j = 0, j ∈ [1, lv),

and

m̂

{ �= ECCEnc(m), si = 1
= ECCEnc(m), si ∈ {−1, 0}.

Assuming that the error correction code has no error correction capability,
we have

m′
{ �= m, si = 1

= m, si ∈ {−1, 0},

Key Recovery Under Plaintext Checking Attack on LAC 391

that is to say, when querying the oracle PCO with (ct = (q
8xn−i,v1),m), the

returned bit 0 indicates that si = 1, and the bit 1 indicates that si ∈ {−1, 0}.6

In order to further determine whether si is equal to −1 or 0, the attacker
queries the oracle PCO with (ct = (q

8xn−i,v2),m), and we have

m̃j =
{

13q
16 + q

8si, j = 0
± q

8s(i+j) mod n, j ∈ [1, lv),

where
13q

16
+

q

8
si ∈

{

[q
4 , 3q

4), si = −1
([0, q

4) ∪ [3q
4 , q)), si ∈ {0, 1}.

Then

m̂0 =
{

1, si = −1
0, si ∈ {0, 1},

m̂j = 0, j ∈ [1, lv),

and

m̂

{ �= ECCEnc(m), si = −1
= ECCEnc(m), si ∈ {0, 1}.

Therefore, we have

m′
{ �= m, si = −1

= m, si ∈ {0, 1},

which means that when querying the oracle PCO with (ct = (q
8xn−i,v2),m),

the bit 0 indicates that si = −1, and the returned bit 1 indicates that si = 0.
Therefore, after these two queries, the attacker can recover si completely.

The Error Correcting Code can Correct Up to lt Errors. When the error
correcting code can correct up to lt errors, the attacker constructs ct such that
there are lt differences between m̂ and ECCEnc(m) except for the 0-th position.
In particular, he chooses the lt positions from the 1-th to the lv-th and constructs
v1 and v2 as follows:

v1
j =

⎧

⎨

⎩

3q
16 , j = 0
q
2 , j = [1, lt]
0, j = (lt, lv),

v2
j =

⎧

⎨

⎩

13q
16 , j = 0

q
2 , j ∈ [1, lt]
0, j ∈ (lt, lv).

Given that u = q
8xn−i, v = v1, we have

m̃j =

⎧

⎨

⎩

3q
16 + q

8si, j = 0
q
2 ± q

8s(i+j) mod n, j ∈ [1, lt]
± q

8s(i+j) mod n, j ∈ (lt, lv),

where
q

2
± q

8
s(i+j) mod n ∈ [

q

4
,
3q

4
).

6 Recall that in KR-PCA game, when querying the oracle PCO, the oracle return
1m′=m or 0m′ �=m.

392 K. Wang et al.

Then

m̂0 =
{

1, si = 1
0, si ∈ {−1, 0},

m̂j =
{

1, j ∈ [1, lt]
0, j ∈ (lt, lv).

Since the error correction code ECCDec can correct at most lt errors, we have

m′
{ �= m, si = 1

= m, si ∈ {−1, 0}.

Similarly, given that u = q
8xn−i, v = v2, we have

m̃j =

⎧

⎨

⎩

13q
16 + q

8si, j = 0
q
2 ± q

8s(i+j) mod n, j ∈ [1, lt]
± q

8s(i+j) mod n, j ∈ (lt, lv).

Then

m̂0 =
{

1, si = −1
0, si ∈ {0, 1},

m̂j =
{

1, j ∈ [1, lt]
0, j ∈ (lt, lv).

Therefore,

m′
{ �= m, si = −1

= m, si ∈ {0, 1}.

3.2 Choosing m Randomly

When the attacker randomly chooses m and generates ECCEnc(m), he will do
the same except that he will query the oracle PCO with different v1 and v2.
Similarly, we will take two steps and the first step is to assume that the error
correcting code has no error correcting ability.

The Error Correcting Code Has No Error Correcting Ability. After
choosing m and generating ECCEnc(m), the attacker records the positions of 1
and 0 in ECCEnc(m) except for 0-th position in sets I1 and I0 respectively, and
constructs v1 and v2 as follows:

v1
j =

⎧

⎨

⎩

3q
16 , j = 0
q
2 , j ∈ I1
0, j ∈ I0,

v2
j =

⎧

⎨

⎩

13q
16 , j = 0

q
2 , j ∈ I1
0, j ∈ I0.

The Error Correcting Code Can Correct up to lt errors. When the error
correcting code can correct up to lt errors, the attacker chooses lt positions from
I1

⋃

I0, records these positions in set Ierr, and constructs v1 and v2 as follows:

v1
j =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

3q
16 , j = 0
q
2 , j ∈ I1 − Ierr

0, j ∈ I1
⋂

Ierr

0, j ∈ I0 − Ierr
q
2 , j ∈ I0

⋂

Ierr,

v2
j =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

13q
16 , j = 0

q
2 , j ∈ I1 − Ierr

0, j ∈ I1
⋂

Ierr

0, j ∈ I0 − Ierr
q
2 , j ∈ I0

⋂

Ierr.

Key Recovery Under Plaintext Checking Attack on LAC 393

Discarding the Lower 4 Bits of Each Coefficient in v. In the implemen-
tation of LAC.CPA, in order to minimize the size of the ciphertext, the lower
4 bits for each coefficient in v are discarded in the algorithm of LAC.CPA.Enc.
Therefore, vj has 16 possible values and they are k, k = 0, 1, ..., 15.

In order to carry out the attack, when querying the oracle PCO, 3q
16 will be

replaced with such a k that 16k is closest to 3q
16 . It’s the same for q

2 and 13q
16 . Since

3q
16 , q

2 and 13q
16 are closest to 48, 128 and 208 respectively, they will be replaced

with 3, 8 and 13. In general, when the error correcting code can correct up to lt
errors, the attacker chooses m randomly and queries the oracle PCO with

v1
j =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

3, j = 0
8, j ∈ I1 − Ierr

0, j ∈ I1
⋂

Ierr

0, j ∈ I0 − Ierr

8, j ∈ I0
⋂

Ierr,

v2
j =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

13, j = 0
8, j ∈ I1 − Ierr

0, j ∈ I1
⋂

Ierr

0, j ∈ I0 − Ierr

8, j ∈ I0
⋂

Ierr.

Finally, we summarize the process of recovering secret key s into Algorithm 4.

Algorithm 4. Recovering secret key s of LAC.CPA

Input: parameters (n, q, η, lm, lv, lt, h)
Output: s (All the coefficients in s)
1: choose m randomly
2: construct v1 and v2 as described in the previous section
3: for i = 0 to n − 1 do
4: queries the oracle PCO with (ct = (q

8xn−i,v1),m);
5: queries the oracle PCO with (ct = (q

8xn−i,v2),m);
6: recover si according to these 2 returned bits;
7: end for
8: return s

3.3 Attack on LAC-256

According to the Algorithm 4, the attacker can recover the secret keys of LAC-
128 and LAC-192, not LAC-256, where D2 encoding is used in the encryption
procedure and the coordinates of v are duplicated: for all 0 ≤ j ≤ lv −1, vj+lv =
vj . This redundancy in v allows to decrease the decoding error when decrypting.
In the decryption procedure, the first step is to compute m̃ = v − (us)2lv and
when computing m̂j , the decryption algorithm considers two cases: if m̃j and
m̃j+lv < q

2 or m̃j and m̃j+lv ≥ q
2 , the algorithm compares: q

4 <
m̃j+m̃j+lv

2 < 3q
4 ;

if m̃j < q
2 and m̃j+lv ≥ q

2 or m̃j ≥ q
2 and m̃j+lv < q

2 , the algorithm compares:
0 <

|m̃j−m̃j+lv |
2 < q

4 .
Next, we consider recovering s0 and slv together. In particular, we denote

(I0 − Ierr)
⋃

((I0 − Ierr) + lv), (I0
⋂

Ierr)
⋃

((I0
⋂

Ierr) + lv), (I1 − Ierr)
⋃

((I1 −
Ierr) + lv) and (I1

⋂

Ierr)
⋃

((I1
⋂

Ierr) + lv) as Ī0, Î0, Ī1 and Î1, and construct
v3 ∼ v8 as follows:

394 K. Wang et al.

v3
j =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

7q
32 , j = 0, lv
q
8 , j ∈ Ī0

5q
8 , j ∈ Î0
5q
8 , j ∈ Ī1
q
8 , j ∈ Î1,

v4
j =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

q
4 , j = 0, lv
q
8 , j ∈ Ī0

5q
8 , j ∈ Î0
5q
8 , j ∈ Ī1
q
8 , j ∈ Î1,

v5
j =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

25q
32 , j = 0, lv

q
8 , j ∈ Ī0

5q
8 , j ∈ Î0
5q
8 , j ∈ Ī1
q
8 , j ∈ Î1,

v6
j =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

3q
4 , j = 0, lv
q
8 , j ∈ Ī0

5q
8 , j ∈ Î0
5q
8 , j ∈ Ī1
q
8 , j ∈ Î1,

v7
j =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

3q
4 , j = 0
q
4 , j = lv
q
8 , j ∈ Ī0

5q
8 , j ∈ Î0
5q
8 , j ∈ Ī1
q
8 , j ∈ Î1,

v8
j =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

3q
4 , j = 0
3q
8 , j = lv
q
8 , j ∈ Ī0

5q
8 , j ∈ Î0
5q
8 , j ∈ Ī1
q
8 , j ∈ Î1.

Since s0, slv ∈ {−1, 0, 1}, we have s0 + slv ∈ {−2,−1, 0, 1, 2}. When the
attacker queries the oracle PCO with (ct = (q

16 ,v3),m), the returned bit can
reveal that s0+slv = −2. When querying the oracle PCO with (ct = (q

16 ,v4),m),
the returned bit can further reveal that s0+slv = −1. When the attacker queries
the oracle PCO with (ct = (q

16 ,v5),m), he can further determine that s0+slv = 2.
When he queries the oracle PCO with (ct = (q

16 ,v6),m), he can further determine
that s0+slv = 1. In summary, after 4 queries, the attacker can determine s0+slv

completely.
In order to further determine s0 and slv , the attacker first queries the oracle

PCO with (ct = (q
16 ,v7),m) to determine if s0−slv = 1 or −1, and if s0−slv = 2

or −2(0). Then, the attacker queries the oracle PCO with (ct = (q
16 ,v8),m) to

further determine if s0 − slv = −2 or 0. Therefore, the attacker can recover both
coefficients s0 and slv with a 100% probability after 8 queries. In particular, he
can recover 2lv coefficients of secret key s after 8lv queries.

In LAC-256, n = 1024, lv = 400, the attacker can recover the first 800
coefficients by querying 3200 times. When recovering the coefficient s800+i, i ∈
[0, 224), 2 queries will suffice because s800+i+lv = s800+i+lv−n = si+176 and
he has already found this coefficient. Similarly, when the lower 4 bits for each
coefficient in v are discarded, corresponding queries will change, as shown in
Appendix A.5.

3.4 Number of Queries and Probability of Success

To sum up, in LAC-128 and LAC-192, we can recover the each coefficient si with
a 100% probability after 2 queries, and the total number of queries to recover
the complete s is 2n. However, it is a rough estimate. In fact, when querying the
oracle with (ct = (q

8xn−i,v1),m), si = 1 can be determined. Since s is sampled
from Bh

η , the numbers of both 1’s and −1’s are h/2, the number of 0 is n − h.
Therefore, the actual total number of queries to recover the complete s can be
estimated as

h

2
+ (

h

2
+ n − h) × 2 = 2n − h

2
,

Key Recovery Under Plaintext Checking Attack on LAC 395

and it is 7
4n in LAC-128 and 15

8 n in LAC-192.
Based on the results from the previous section, the total number of queries

to recover the complete s of LAC-256 is 8lv + 2(n − 2lv). Similarly, it is a rough
estimate, and the actual total number should be 46

8 lv + 7
4 (n − 2lv), which is

obtained based on the distribution of the secret key.

Experiments. We implement the attack on LAC.CPA’s source code submitted
to NIST, and then compile it with the same makefile in the source code. In
particular, our attack is based on the source code of reference implementation.
The platform of our experiments is Ubuntu 16.04.3 running on a 3.4 GHZ Intel
Core i7 processor with 16 GB RAM. All experiments are in C and compiled with
gcc version 5.4.0. LAC recommends 3 parameter sets for different security levels
and they are LAC-128, LAC-192 and LAC-256. In each parameter set, we first
generate a secret key, count the number of queries and time to recover the full
secret key, then repeat 100 times and average. In particular, the time starts from
the initial generation of the secret key to the recovery of the whole secret key by
accessing the oracle multiple times.

Table 1. The number of queries and time in each parameter set

4 Recovering Reused Key in LAC.KE

LAC.KE is a passively secure unauthenticated key exchange protocol and it
is directly obtained from LAC.CPA, as described in Fig. 2. In particular,
LAC.KE can be divided into three stages. In the first stage, Alice invokes
LAC.CPA.KeyGen, generates public key pk and secret key sk, and sends pk
to Bob. In the second stage, Bob picks secret m and encrypts it by invoking
LAC.CPA.Enc, generates ciphertext ct and sends ct to Alice. In the third stage,
Alice recovers secret m′ by invoking LAC.CPA.Dec. The final shared secret K
(K ′) is derived from the pk and m (m′) by hashing.

According to the results in the previous section, if honest Alice reuses key pair
(pk, sk) and malicious Bob can communicate with Alice who responds honestly,
then Bob can recover the secret key sk of Alice. In particular, in order to recover
the i-th coefficient of sk of LAC-128 and LAC-192,

– Bob first chooses m randomly.

396 K. Wang et al.

H : {0, 1}∗ → {0, 1}lk

boBecilA
(pk, sk) ←− LAC.CPA.KeyGen() pk−−−−−→

m
$←− {0, 1}lm

ct←−−−−− ct ← LAC.CPA.Enc(m, pk)
m′ ← LAC.CPA.Dec(ct, sk) K ← H(pk,m) ∈ {0, 1}lk

K′ ← H(pk,m′) ∈ {0, 1}lk

Fig. 2. LAC.KE

– Then, he sends ct = (q
8xn−i,v1) to Alice and determines whether m′ and m

are equal.7

– Next, Bob sends ct = (q
8xn−i,v2) and determines whether m′ and m are

equal.
– Finally, Bob recovers the i-th coefficient of sk based on the information

obtained in these two communications.

After recovering each coefficient, Bob will get the full secret key sk, which requires
Bob to communicate with Alice 2n − h

2 times. Similarly, based on the results in
previous section, in order to get the full secret key of LAC-256, Bob needs to
communicate with Alice 46

8 lv + 7
4 (n − 2lv) times.

5 Conclusion

In this paper, we propose a simple and effective method to recover the reused
secret key of LAC.CPA by querying the plaintext checking oracle. The secret key
s ∈ Rq is a polynomial of degree n. Therefore, recovering the complete s requires
recovering n coefficients. When recovering coefficient si, we first consider a very
simple case where the attacker chooses m such that ECCEnc(m) = 0lm , and then
analyze the general case where a random m is chosen. In each case, we start by
assuming that the error correcting code has no error correcting ability and then
consider that it can correct at most lt errors. We also consider the case where
the lower 4 bits of each coefficient in v are discarded. Using the method, the
secret keys of LAC-128 and LAC-192 can be recovered completely after 2n − h

2
queries, and 46

8 lv + 7
4 (n − 2lv) queries to recover the secret key of LAC-256.

Since LAC.CPA is used to construct LAC.KE, our method can be used to
recover the reused secret key of Alice in LAC.KE. In particular, based on the

7 In LAC.KE, shared secret is usually used to generate symmetric keys that Alice and
Bob would use to communicate. Bob can generate his symmetric keys based on his
shared secret K; if Alice is able to decrypt (and respond) based on those keys, then
(with high probability) Bob’s shared key K matches Alice’s shared key K′; if Alice
rejects, then Bob’s shared key K mismatches Alice’s shared key K′, which is why
the attack is called key mismatch attack [2,12,18].

Key Recovery Under Plaintext Checking Attack on LAC 397

above results, malicious Bob can recover the reused secret key of Alice by com-
municating with Alice thousands of times. Our future work is to investigate if it
is possible to recover the reused secret keys of other NIST candidates.

Acknowledgements. This work is supported by the National Key Research and
Development Program of China (No. 2017YFB0802000), the National Natural Science
Foundation of China (No. U1536205, 61802376).

Appendix A

A.1 RLWE Problems

Decisional Ring Learning with Errors (RLWE) [7]. Let n, q be positive
integers, and χs, χe be distributions over R. Distinguish the following two dis-
tributions: D0: (a,b) and D1: (a,u), where b = as + e for a $←− Rq, s $←− χs and

e $←− χe, and u $←− Rq.

A.2 Cryptographic Definitions
A public key encryption scheme PKE is a tuple of algorithms (KeyGen, Enc,
Dec):

– KeyGen() → (pk, sk): A probabilistic key generation algorithm that outputs
a public key pk and a secret key sk.

– Enc(m, pk) → ct: A probabilistic encryption algorithm that takes as input a
message m and public key pk, and outputs a ciphertext ct. The deterministic
form is denoted as Enc(m, pk, r) → ct, where the randomness r is passed as
an explicit input.

– Dec(ct, sk) → m′: A deterministic decryption algorithm that takes as input
a ciphertext ct and secret key sk, and outputs a message m′.

We use the notion of indistinguishability under chosen plaintext attacks
(IND-CPA) to define the advantage of an adversary A by:

Advind-cpa
PKE (A) =

∣

∣

∣

∣

∣

∣

∣

∣

Pr

⎡

⎢

⎢

⎣

b′ = b:

(pk, sk) ← KeyGen();
(m0,m1) ← A(pk);

b ← U(0, 1); ct ← Enc(mb, pk);
b′ ← A(pk, ct);

⎤

⎥

⎥

⎦

− 1
2

∣

∣

∣

∣

∣

∣

∣

∣

.

A.3 Notations
Samp is an abstract algorithm which samples a random variable according to a
distribution with a given seed: x ←− Samp(D, seed), where D is a distribution, and
seed is the random seed used to sample x. For an empty seed ε, the process x ←−
Samp(D, ε) is the same as x

$←− D. Bh
η is a n-ary centered binomial distribution

with fixed Hamming weight. For a random variable according to the distribution,
its Hamming weight is fixed to the expectation h, and the numbers of both
1’s and −1’s are h/2, the number of 0 is n − h. ECCEnc and ECCDec are the

398 K. Wang et al.

encoding and decoding of the error correction codes, which switch between a
message m ∈ {0, 1}lm and its encoding m̂ ∈ {0, 1}lv , where lv is a positive integer
denoting the length of the encoding. (·)lv is a function that inputs a polynomial
and outputs the first lv coefficients of the polynomial. For an element x ∈ Q we
denote by
x� rounding of x to the closest integer with ties being rounded up.

A.4 Parameters
The main parameters of the LAC.CPA are integers n, q, η, lm, lv, lt, h, where
n, q are the parameters of the polynomial ring Rq, η is the parameter of the
centered binomial distribution Bη, lm and lv are the length of the message and
the encoding, respectively, lt is the maximum number of errors that can be
corrected by error correcting code, h is the hamming weight of the centered
binomial distribution. LAC.CPA recommends 3 parameter sets: LAC-128, LAC-
192, LAC-256. Throughout these parameter sets q is always 251, lm is always
256. The values of n, η, lv and h vary for different security levels. In particular,

– In LAC-128, n = 512, η = 1, lv = lm + 18 × 8, h = n
2 .

– In LAC-192, n = 1024, η = 1
2 , lv = lm + 9 × 8, h = n

4 .
– In LAC-256, n = 1024, η = 1, lv = lm + 18 × 8, h = n

2 .

The centered binomial distribution Bη with η = 1
2 is defined as follows:

sample (a, b) ← (B1, B1) and output a × b, and the samples are in the interval
[−1, 1].

A.5 Discarding the Lower 4 Bits of Each Coefficient of v in LAC-256.
When the lower 4 bits for each coefficient in v are discarded in the algorithm of
LAC.CPA.Enc, vj has 16 possible values and they are k, k = 0, 1, ..., 15. In order
to carry out the attack, the attacker constructs v3 ∼ v8 as follows:

v3
j =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

3, j = 0, lv
2, j ∈ Ī0

10, j ∈ Î0
10, j ∈ Ī1
2, j ∈ Î1,

v4
j =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

3, j = 0, lv
2, j ∈ Ī0

10, j ∈ Î0
10, j ∈ Ī1
2, j ∈ Î1,

v5
j =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

12, j = 0, lv
2, j ∈ Ī0

10, j ∈ Î0
10, j ∈ Ī1
2, j ∈ Î1,

v6
j =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

12, j = 0, lv
2, j ∈ Ī0

10, j ∈ Î0
10, j ∈ Ī1
2, j ∈ Î1,

v7
j =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

12, j = 0
4, j = lv
2, j ∈ Ī0

10, j ∈ Î0
10, j ∈ Ī1
2, j ∈ Î1,

v8
j =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

11, j = 0
4, j = lv
2, j ∈ Ī0

10, j ∈ Î0
10, j ∈ Ī1
2, j ∈ Î1.

The attacker queries the oracle PCO with (ct = (q
16 ,v3),m) to determine

that s0 + slv = −2, and queries the oracle PCO with (ct = (2q
17 ,v4),m) to

further determine that s0 + slv = −1. When he queries the oracle PCO with
(ct = (q

34 ,v5),m), he can further determine that s0 + slv = 2. When he queries
the oracle PCO with (ct = (2q

17 ,v6),m), he can further determine that s0+slv = 1.

Key Recovery Under Plaintext Checking Attack on LAC 399

When querying the oracle PCO with (ct = (q
16 ,v7),m), he can determine if

s0 − slv = 1 or −1, and if s0 − slv = 2 or −2(0). When querying the oracle PCO
with (ct = (q

16 ,v8),m), he can determine if s0 − slv = −2 or 0.

References

1. Fluhrer, S.R.: Cryptanalysis of ring-LWE based key exchange with key share reuse.
IACR Cryptol. ePrint Arch. 2016, 85 (2016)

2. Qin, Y., Cheng, C., Ding, J.: A complete and optimized key mismatch attack
on NIST candidate NewHope. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.)
ESORICS 2019. LNCS, vol. 11736, pp. 504–520. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-29962-0 24

3. Ding, J., Fluhrer, S., Rv, S.: Complete attack on RLWE key exchange with reused
keys, without signal leakage. In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS,
vol. 10946, pp. 467–486. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-93638-3 27

4. Ding, J., Alsayigh, S., Saraswathy, R.V., et al.: Leakage of signal function with
reused keys in RLWE key exchange. In: 2017 IEEE International Conference on
Communications (ICC), pp. 1–6. IEEE (2017)

5. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factor-
ing. In: Proceedings 35th Annual Symposium on Foundations of Computer Science,
pp. 124–134. IEEE (1994)

6. Băetu, C., Durak, F.B., Huguenin-Dumittan, L., Talayhan, A., Vaudenay, S.: Mis-
use attacks on post-quantum cryptosystems. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019. LNCS, vol. 11477, pp. 747–776. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17656-3 26

7. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

8. Micciancio, D.: Lattice-based cryptography. In: Tilborg, H.C.V., Jajodia, S. (eds.)
Encyclopedia of Cryptography and Security, pp. 713–715. Springer, Boston (2011).
https://doi.org/10.1007/978-3-540-88702-7 5

9. Regev, O.: Lattice-based cryptography. In: Dwork, C. (ed.) CRYPTO 2006. LNCS,
vol. 4117, pp. 131–141. Springer, Heidelberg (2006). https://doi.org/10.1007/
11818175 8

10. Ding, J., Xie, X., Lin, X.: A simple provably secure key exchange scheme based on
the learning with errors problem. IACR Cryptol. EPrint Arch. 2012, 688 (2012)

11. Bos, J., Ducas, L., Kiltz, E., et al.: CRYSTALS-Kyber: a CCA-secure module-
lattice-based KEM. In: IEEE European Symposium on Security and Privacy
(EuroS&P), pp. 353–367. IEEE (2018)

12. Bauer, A., Gilbert, H., Renault, G., Rossi, M.: Assessment of the Key-Reuse
Resilience of NewHope. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp.
272–292. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4 14

13. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lat-
tices. Des. Codes Crypt. 75(3), 565–599 (2014). https://doi.org/10.1007/s10623-
014-9938-4

14. National institute of standards and technology: post-quantum cryptography round
1 submissions (2018). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-1-submissions

https://doi.org/10.1007/978-3-030-29962-0_24
https://doi.org/10.1007/978-3-030-29962-0_24
https://doi.org/10.1007/978-3-319-93638-3_27
https://doi.org/10.1007/978-3-319-93638-3_27
https://doi.org/10.1007/978-3-030-17656-3_26
https://doi.org/10.1007/978-3-030-17656-3_26
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-540-88702-7_5
https://doi.org/10.1007/11818175_8
https://doi.org/10.1007/11818175_8
https://doi.org/10.1007/978-3-030-12612-4_14
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/s10623-014-9938-4
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

400 K. Wang et al.

15. National institute of standards and technology: post-quantum cryptography round
2 submissions (2018). https://csrc.nist.gov/Projects/post-quantum-cryptography/
round-2-submissions

16. Guo, Q., Johansson, T., Yang, J.: A novel CCA attack using decryption errors
against LAC. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS,
vol. 11921, pp. 82–111. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
34578-5 4

17. Kirkwood, D., Lackey, B.C., McVey, J., et al.: Failure is not an option: stan-
dardization issues for post-quantum key agreement. Talk at NIST workshop on
cybersecurity in a post-quantum world (2015). http://www.nist.gov/itl/csd/ct/
post-quantum-crypto-workshop-2015.cfm

18. Qin, Y., Cheng, C., Ding, J.: An efficient key mismatch attack on the NIST second
round candidate Kyber. IACR Cryptol. ePrint Arch. 2019, 1343 (2019)

19. Saarinen, M.-J.O.: HILA5: on reliability, reconciliation, and error correction for
ring-LWE encryption. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol.
10719, pp. 192–212. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
72565-9 10

20. Alkim, E., et al.: NewHope: algorithm specifcations and supporting documentation
(2017). https://newhopecrypto.org/data/NewHope2018 12 02.pdf

21. Gao, X., Ding, J., Li, L., et al.: Practical randomized RLWE-based key exchange
against signal leakage attack. IEEE Trans. Comput. 1, 1–1 (2018)

22. Liu, C., Zheng, Z., Zou, G.: Key reuse attack on NewHope key exchange protocol.
In: Lee, K. (ed.) ICISC 2018. LNCS, vol. 11396, pp. 163–176. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-12146-4 11

23. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM (JACM) 56(6), 34 (2009)

24. Bernstein, D.J., Groot Bruinderink, L., Lange, T., Panny, L.: HILA5 Pindakaas:
on the CCA security of lattice-based encryption with error correction. In: Joux,
A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp.
203–216. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6 12

25. Alkim, E., Ducas, L., Pöppelmann, T., et al.: Post-quantum key exchange-a new
hope. In: USENIX Security Symposium (2016)

26. Bernstein, D.J.: Introduction to post-quantum cryptography. In: Bernstein, D.J.,
Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 1–14. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7 1

27. National institute of standards and technology: announcing request for
nominations for public-key post-quantum cryptographic algorithms (2016).
https://csrc:nist:gov/news/2016/public-key-post-quantum-cryptographic-algorithms

28. Buchmann, J., Ding J.: PQCrypto, Post-quantum cryptography. In: Second Inter-
national Workshop, pp. 17–19 (2008)

29. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 42

30. Wang, K., Jiang, H.: Analysis of two countermeasures against the signal leakage
attack. In: Buchmann, J., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2019.
LNCS, vol. 11627, pp. 370–388. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-23696-0 19

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/978-3-030-34578-5_4
https://doi.org/10.1007/978-3-030-34578-5_4
http://www.nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm
http://www.nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm
https://doi.org/10.1007/978-3-319-72565-9_10
https://doi.org/10.1007/978-3-319-72565-9_10
https://newhopecrypto.org/data/NewHope 2018_12_02.pdf
https://doi.org/10.1007/978-3-030-12146-4_11
https://doi.org/10.1007/978-3-319-89339-6_12
https://doi.org/10.1007/978-3-540-88702-7_1
https://csrc.nist.gov/news/2016/public-key-post-quantum-cryptographic-algorithms
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-030-23696-0_19
https://doi.org/10.1007/978-3-030-23696-0_19

Key Recovery Under Plaintext Checking Attack on LAC 401

31. D’Anvers, J.-P., Guo, Q., Johansson, T., Nilsson, A., Vercauteren, F., Ver-
bauwhede, I.: Decryption failure attacks on IND-CCA secure lattice-based schemes.
In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 565–598. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17259-6 19

32. Hall, C., Goldberg, I., Schneier, B.: Reaction attacks against several public-key
cryptosystem. In: Varadharajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726,
pp. 2–12. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-47942-
0 2

33. Verheul, E.R., Doumen, J.M., van Tilborg, H.C.A.: Sloppy Alice attacks! Adaptive
chosen ciphertext attacks on the McEliece public-key cryptosystem. In: Blaum, M.,
Farrell, P.G., van Tilborg, H.C.A. (eds.) Information, Coding and Mathematics,
pp. 99–119. Springer, Boston (2002). https://doi.org/10.1007/978-1-4757-3585-7 7

34. D’Anvers, J.-P., Vercauteren, F., Verbauwhede, I.: The impact of error dependen-
cies on ring/Mod-LWE/LWR based schemes. In: Ding, J., Steinwandt, R. (eds.)
PQCrypto 2019. LNCS, vol. 11505, pp. 103–115. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-25510-7 6

35. Ding, J., Cheng, C., Qin, Y.: A simple key reuse attack on LWE and ring LWE
encryption schemes as key encapsulation mechanisms (KEMs). IACR Cryptol.
ePrint Arch. 2019, 271 (2019)

36. Greuet, A., Montoya, S., Renault, G.: Attack on LAC key exchange in misuse
situation. IACR Cryptol. ePrint Arch. 2020, 063 (2020)

37. Dumittan, L.H., Vaudenay, S.: Classical misuse attacks on NIST round 2 PQC:
the power of rank-based schemes. IACR Cryptol. ePrint Arch. 2020, 409 (2020)

38. Okada, S., Wang, Y., Takagi, T.: Improving key mismatch attack on NewHope
with fewer queries. IACR Cryptol. ePrint Arch. 2020, 585 (2020)

https://doi.org/10.1007/978-3-030-17259-6_19
https://doi.org/10.1007/978-3-540-47942-0_2
https://doi.org/10.1007/978-3-540-47942-0_2
https://doi.org/10.1007/978-1-4757-3585-7_7
https://doi.org/10.1007/978-3-030-25510-7_6
https://doi.org/10.1007/978-3-030-25510-7_6

Security of Two NIST Candidates
in the Presence of Randomness Reuse

Ke Wang1,2(B), Zhenfeng Zhang1,2, and Haodong Jiang3

1 TCA Laboratory, State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences, Beijing, China

{wangke,zfzhang}@tca.iscas.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

3 State Key Laboratory of Mathematical Engineering and Advanced Computing,
Zhengzhou, Henan, China
hdjiang13@gmail.com

Abstract. The National Institute of Standards and Technology (NIST)
is working on the standardization of post-quantum algorithms. In Febru-
ary 2019, NIST announced 26 candidate post-quantum cryptosystems,
including NewHope and LAC, had entered the second round. In order
to investigate the resilience of various candidate algorithms in key reuse
situations, a series of work has been carried out.

In fact, randomness also has the risk of reuse, and in the real word
random number generators (RNGs) frequently fail and produce bad ran-
domness. In this work, we assess the resilience of candidate NewHope-
CPA-KEM and LAC.KE in randomness reuse situations. In particular,
we propose a method, which can recover the reused randomness after sev-
eral communications. NewHope-CPA-KEM and LAC.KE are based on
NewHope-CPA-PKE and LAC.CPA, respectively. The key to our method
is that they share a common feature: if public key satisfies certain con-
ditions, the ciphertext will reveal information about the randomness of
encryption. The recovered randomness can be used to attack another
session where the same randomness is used.

Keywords: NewHope · LAC · KEM · PKE · IND-CPA · NIST · Post
quantum · Lattice based · Active attack · Randomness reuse

1 Introduction

In 1994, Shor [34] proposed a quantum algorithm, which can break currently
widely deployed public key cryptosystems based on integer factoring problem,
discrete logarithm problem. Public key cryptosystems based on these hard prob-
lems are no longer secure when large-scale quantum computers are implemented.
There is an urgent need to replace them. For this purpose, the National Insti-
tute of Standards and Technology (NIST) initiated a standardization process
for post-quantum algorithms, and on January 03, 2017, they called for proposals

c© Springer Nature Switzerland AG 2020
K. Nguyen et al. (Eds.): ProvSec 2020, LNCS 12505, pp. 402–421, 2020.
https://doi.org/10.1007/978-3-030-62576-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62576-4_20&domain=pdf
https://doi.org/10.1007/978-3-030-62576-4_20

Security of Two NIST Candidates in the Presence of Randomness Reuse 403

[26] for post-quantum cryptosystems, including Key Encapsulation Mechanism
(KEM), Public Key Encryption (PKE) and signature.

By the end of 2017, many algorithms had been submitted. After the first
round of evaluation, in February 2019, NIST announced 26 candidate post-
quantum cryptosystems had entered the second round. Among these, only a
very few types of algorithms are proposed, such as lattice-based, code-based,
hash-based, multivariate-based or isogeny-based. One of the most promising
algorithms is lattice-based, and some lattice-based candidate cryptosystems,
including NewHope [1] and LAC [24], contain a weaker scheme. In particular,
NewHope and LAC contain NewHope-CPA-KEM and LAC.KE, respectively.
Even for these candidate schemes for which secret key reuse is considered as
a misuse of the mechanism, having an accurate estimate of the complexity of
the secret key recovery really helps to assess the possible danger [6]. Aiming to
analyze how easy it is to run a secret key recovery under multiple key reuse, a
series of work [6,18,27,30] has been carried out.1 In particular, after thousands
of communications, the reused secret keys of most candidates can be recovered.

Usually, these candidates are used to implement a purely ephemeral key
exchange protocol [26]. In this case, the randomness can be regarded as (Bob’s)
secret in the protocol, which also has the risk of reuse. In particular, Ding et al.
[11] studied Bob’s reuse of secrets in DING12 [14], and Liu et al. put forward
an attack [23] on NewHope’16 [3] with static Bob. In fact, in the real word,
random number generators (RNGs) are consistently a weak link in the secure
use of cryptography [33], and RNGs used in practice frequently fail, causing
spectacular attacks [36].

Determining how an incorrect use of randomness affects the security of a
candidate can help to identify potential dangers, and also may well have a high
impact on the understanding of the important cryptosystem.

1.1 Our Contributions

In this work, we assess the security of NewHope-CPA-KEM and LAC.KE in
randomness reuse situations. Since they are constructed directly from NewHope-
CPA-PKE and LAC.CPA respectively, we start with these underlying PKEs.

– first, we develop a meta-PKE construction and show both NewHope-CPA-
PKE and LAC.CPA follow this construction.

– next, we observe a feature of meta-PKE: if the public key satisfies certain
conditions, the ciphertext may reveal information about the randomness of
encryption. The feature is true in NewHope-CPA-PKE and LAC.CPA.

– then, based on the features of NewHope-CPA-PKE and LAC.CPA, we recover
the reused randomness in NewHope-CPA-KEM and LAC.KE after several
communications (queries).2 The results in each recommended parameter set
are shown in Table 1.

1 There is also some work to analyze other candidates, such as [4,7,13,21,31].
2 In Sect. 5, we define a reused randomness recovery game and simulate communication

by querying the game.

404 K. Wang et al.

– finally, after recovering the reused randomness in LAC.KE, we demonstrate
that these randomness can be used to recover the shared secret in another
session where the same randomness is used.

Table 1. The results in each recommended parameter set

1.2 Techniques

NewHope-CPA-PKE consists of three algorithms.

– The key generation algorithm NewHope-CPA-PKE.KeyGen generates public
key pk = (b,a)3 and secret key sk = s, where b = as + d.

– The encryption algorithm NewHope-CPA-PKE.Enc encrypts secret pt with
public key pk and random coinB to produce ciphertext ct = (u,Compress(v)),
where u = at+ e, v = bt+ f+ Encode(pt), t, e, f are randomness with coinB
as seed.

– The decryption algorithm NewHope-CPA-PKE.Dec recovers secret pt with
secret key sk.

In NewHope-CPA-PKE, the randomness t, e, f are sampled from centered
binomial distribution Bη and their coefficients are in set {−η,−η+1, ..., η−1, η}.
The coefficients of Encode(pt) belong to set {0, � q

2�}. If public key b is an integer
in Zq, there are at most 2(2η + 1)2 possible values for the coefficients of v. In
particular, if b is chosen to make the coefficients of v have exactly 2(2η + 1)2

possibilities, v will reveal the values of t, f, Encode(pt) (then pt) completely. How-
ever, in order to reduce bandwidth, NewHope-CPA-PKE compresses v, causing
the coefficients of close size in v are compressed into a same coefficient in Com-
press(v). As a result, Compress(v) can reveal the complete pt and part of the
information about t, not f. In order to give the results above, we first develop a
meta-PKE construction. Then, we give a feature of the meta-PKE (Theorem 1).
Finally, we show NewHope-CPA-PKE follows the construction (Example 1) and
also has the feature (Corollary 1 and Example 3).

NewHope-CPA-PKE is directly used to construct NewHope-CPA-KEM,
which can be divided into three stages.

– First, the initiator Alice invokes NewHope-CPA-PKE.KeyGen to generates
public key pk and secret key sk, sends pk to the responder Bob.

– After receiving public key pk, Bob produces secret pt and random coinB,
encrypts pt by invoking NewHope-CPA-PKE.Enc to produce ciphertext ct,
sends ct to Alice.

3 In order to reduce the bandwidth, the public key pk usually contains only a seed
seeda, and then generates a through an expansion algorithm.

Security of Two NIST Candidates in the Presence of Randomness Reuse 405

– After receiving ciphertext ct, Alice recovers secret pt by invoking NewHope-
CPA-PKE.Dec. The final shared secret K is derived from the pt by hashing.

When honest responder Bob generates static randomness t, and reuses it for
multiple communications with malicious initiator Alice, based on the feature of
NewHope-CPA-PKE, Alice can recover t.

In LAC.CPA,v = (bt)lv +f+� q
2�·(ECCEnc(pt)), where function (·)lv is used to

take the first lv coefficients of the polynomial bt. Similarly, if b is chosen properly,
v can reveal the complete f, pt and part of the information about t. However, in
order to minimize the size of the ciphertext, in implementation the lower 4 bits for
each coefficient in v are discarded, causing the coefficients of close size in v are con-
verted into a same coefficient in v, where v is the value after discarding the lower 4
bits of each coefficient in v. As a result, v can reveal the complete pt and part of the
information about t, not f. In order to get the results, we show LAC.CPA follows
the meta-PKE construction (Example 2) and also has the feature (Corollary 2 and
Example 4). Based on the feature, in LAC.KE, when honest responder Bob gener-
ates static randomness t, and reuses it for multiple communications with malicious
initiator Alice, Alice can recover t.

1.3 Related Work

Key leakage in RLWE-based key exchange with reused keys was first pointed
out in [22] but without any concrete description of an attack to exploit the
leakage. In 2016, Fluhrer [15] showed how several RLWE-based key exchange
protocols can be broken, under the assumption that the same public key is
used for multiple exchanges. Following this idea, Ding et al. [11] proposed a
signal leakage attack on DING12 [14]. In order to resist the signal leakage
attack, Ding Key Exchange, one of cryptosystems entering the first round [26],
includes a RLWE-based key exchange protocol with reusable keys, which can
achieve secure key reuse. Gao et al. [17] constructed a new randomized RLWE-
based key exchange protocol secure against the signal leakage attack. However,
these two countermeasures only focused on the security of one party’s reused
key and ignored the other party. Recently, Wang et al. [35] improved the two
countermeasures. At PKC’19, D’Anvers et al. [8] explored decryption failure
attacks on IND-CCA secure lattice-based schemes, which are CCA attacks. At
ASIACRYPT’19, Guo et al. [19] proposed an CCA attack against LAC using
decryption error. At PQCrypto’19, D’Anvers et al. [10] pointed out that the
higher-than-expected failure rate could lead to more efficient cryptanalysis of
the schemes based on Ring/Module Learning with Errors/Rounding through
decryption failure attacks. They provided a method to estimate the decryption
failure probability, taking into account the bit failure dependency. In addition,
Ding et al. [12] presented a simple key reuse attack on LWE and RLWE encryp-
tion schemes used directly as KEMs. Recently, at EUROCRYPT’20, D’Anvers
et al. [9] extended the “failure boosting” technique in PKC’19 and proposed an
approach that we call “directional failure boosting” that uses previously found
“failing ciphertexts” to accelerate the search for new ones.

406 K. Wang et al.

Concurrent and Independent Work. In [6], Bauer et al. also assessed the
security of NewHope-CPA-KEM in randomness reuse situation in Appendix A.
In particular, they proposed a method to recover the reused randomness in
NewHope-CPA-KEM. The method requires Alice to use a different a for each
communication, which makes it does not apply to the situation where the public
global parameter a is cached. In practice, if it turns out to be too expensive to
generate a for every public key, it is possible to cache a [1].

Different from Bauer’s method, our method does’t requires Alice to change
the public global parameter a, so it can apply to the situation where a is
cached. Our method can also be used to analyze other candidate schemes, such
as LAC.KE. Moreover, the analysis of NewHope-CPA-KEM with randomness
reused is only part of our work.

1.4 Organization

In Sect. 2, We introduce some preliminaries including mathematical notations,
RLWE problem, cryptographic definitions, NewHope-CPA-PKE and LAC.CPA.
In Sect. 3, we develop a meta-PKE construction and show both NewHope-CPA-
PKE and LAC.CPA follow this construction. In Sect. 4, we show a feature of
meta-PKE, which is also true in NewHope-CPA-PKE and LAC.CPA. Based on
the features of NewHope-CPA-PKE and LAC.CPA, in Sect. 5, we recover the
reused randomness in LAC.KE and NewHope-CPA-KEM. After recovering the
reused randomness, we also show that these recovered randomness is disastrous
for another session where the same randomness is used. Finally, we make a
conclusion in Sect. 6.

2 Preliminaries

2.1 Mathematical Notations

Let q be a prime number in N and let Zq denote the ring elements Z/qZ. The
elements in Zq can be equivalently represented as integers in {0, ..., q−1}. Define
the ring of integer polynomials modulo xn + 1 as R = Z[x]/(xn + 1) for integer
n ≥ 1, and the ring Rq = Zq[x]/(xn + 1) refers to the polynomial ring modulo
xn + 1 where the coefficients are from Zq. The addition and multiplication of
the elements in Rq are operated according to those of polynomials. For a ∈ Rq,
ai denotes the ith coefficient of a, 1 ≤ i ≤ n. Z

l
q denotes a set of vector of

length l and vector components are taken from Zq. For a ∈ Z
l
q, ai denotes the

ith component of a, 1 ≤ i ≤ l. {0, 1}l denotes a set of strings of length l. For

a ∈ {0, 1}l, ai denotes the ith bit of a, 1 ≤ i ≤ l. For a set S, x
$←− S means

that an element x is chosen from S uniformly at random. For a distribution χ,
x

$←− χ means that an element x is sampled according to the distribution χ. A
polynomial f ∈ Rq or a vector in Z

l
q is chosen from S (sampled from χ), we

mean that each coefficient is chosen from S (sampled from χ).

Security of Two NIST Candidates in the Presence of Randomness Reuse 407

Centered Binomial Distribution. We define centered binomial distribution
Bη as follows:

(a1, ..., aη, b1, ..., bη) $←− {0, 1}2η

and output
η∑

i=1

(ai − bi).

The samples are in the interval [−η, η].

2.2 RLWE Problem

Decisional Ring Learning with Errors (RLWE) [25]. Let n, q be posi-
tive integers, and χs, χe be distributions over R. Distinguish the following two
distributions:

– D0: (a, b), and
– D1: (a, u)

where b = as + e for a
$←− Rq, s

$←− χs and e
$←− χe, and u

$←− Rq.

2.3 Cryptographic Definitions

Public Key Encryption (PKE). A public key encryption scheme PKE is a
tuple of algorithms (KeyGen, Enc, Dec):

– KeyGen() → (pk, sk): A probabilistic key generation algorithm that outputs
a public key pk and a secret key sk.

– Enc(pt, pk) → ct: A probabilistic encryption algorithm that takes as input a
message pt and public key pk, and outputs a ciphertext ct. The deterministic
form is denoted Enc(pt, pk, coin) → ct, where the random coin is passed as
an explicit input.

– Dec(ct, sk) → pt’: A deterministic decryption algorithm that takes as input
a ciphertext ct and secret key sk, and outputs a message pt’.

We use the notion of indistinguishability under chosen plaintext attacks
(IND-CPA) to define the advantage of an adversary A by:

Advind-cpa
PKE (A) =

∣∣∣∣∣∣∣∣
Pr

⎡

⎢⎢⎣b′ = b:

(pk, sk) ← KeyGen();
(pt0, pt1) ← A(pk);

b ← U(0, 1); ct ← Enc(ptb, pk);
b′ ← A(pk, ct);

⎤

⎥⎥⎦ − 1
2

∣∣∣∣∣∣∣∣
.

408 K. Wang et al.

2.4 NewHope-CPA-PKE

NewHope [1] is a suit of cryptographic primitives that rely on the hardness of
RLWE. Its core component is NewHope-CPA-PKE, an IND-CPA secure public
key encryption. NewHope-CPA-PKE has first been described in [2] and it con-
sists of three algorithms: NewHope-CPA-PKE.KeyGen, NewHope-CPA-PKE.Enc
and NewHope-CPA-PKE.Dec, as shown in Algorithms 3, 4, 5, which can be
abbreviated as NewHope.KeyGen/Enc/Dec, respectively. In these algorithms, we
omit some details (e.g. the so-called NTT transform or the encoding of the mes-
sages) to simplify the presentation. These simplifications do not imply any loss
of generality for our analysis. In order to keep the context consistent, the nota-
tions of the algorithms may be different from the original specification of these
algorithms [1].

Notations and Parameters. H is a hash function. Gena is the generating func-
tion of global parameter. Samp is an abstract algorithm which samples a random
variable according to a distribution with a given seed: x ←− Samp(D, seed), where
D is a distribution, and seed is the random seed used to sample x. NewHope-
CPA-PKE uses three main parameters n, q, η, where n, q are the parameters of
the polynomial ring Rq, η is the parameter of the centered binomial distribution
Bη. NewHope-CPA-PKE recommends 2 parameter sets:

– NewHope512: (n, q, η) = (512, 12289, 8).
– NewHope1024: (n, q, η) = (1024, 12289, 8).

NewHope-CPA-PKE uses four specific functions: Encode, Decode, Compress
and Decompress. The following paragraphs describe these functions.

Encode and Decode. The Encode function takes a 256-bit input ν and creates
an element K ∈ Rq which stores 2 (or 4) times the element ν. The redundancy
is used by the function Decode to recover ν with a noisy K.

Compress and Decompress. NewHope-CPA-PKE shortens ciphertexts by
rounding off the low bits as in LWR-based schemes [5], which is a common
technique for reducing ciphertext size also in LWE-based schemes [28,29]. In
particular, this technology is realized by function Compress, which takes as input
a vector C in Rq and applies on each of its component a modulus switching to
obtain an element c in Z8[x]/(xn + 1). For an element x ∈ Q we denote by �x	
rounding of x to the closest integer with ties being rounded up. In particular,

Compress(Ci) = �(8/q) · Ci�, Decompress(ci) = �(q/8) · ci�.

Security of Two NIST Candidates in the Presence of Randomness Reuse 409

Algorithm 1. Encode: {0, 1}256 → Rq

Input: ν ∈ {0, 1}256

Output: K ∈ Rq

1: K ←− 0
2: for i = 0 to 255 do
3: Ki ← νi · � q

2
�

4: Ki+256 ← νi · � q
2
�

5: if n = 1024 then
6: Ki+512 ← νi · � q

2
�

7: Ki+768 ← νi · � q
2
�

8: end if
9: end for
10: return K

Algorithm 2. Decode: Rq → {0, 1}256

Input: K ∈ Rq

Output: ν ∈ {0, 1}256

1: ν ←− 0
2: for i = 0 to 255 do

3: t ← ∑1
j=0 |Ki+256j − � q

2
�|

4: if n = 1024 then

5: t ← ∑3
j=0 |Ki+256j − � q

2
�|

6: end if
7: if t < q then νi ← 1 else νi ← 0
8: end if
9: end for
10: return ν

Algorithm 3. NewHope.KeyGen()

Output: Secret key sk ∈ {0, 1}14·n
Output: Public key pk ∈ {0, 1}14·n+256

1: seed
$←− {0, 1}256

2: (seeda, coinA) = H(seed)
3: a ←− Gena(seeda) ∈ Rq

4: s ←− Samp(Bη , coinA) ∈ Rq

5: d ←− Samp(Bη , coinA) ∈ Rq

6: b = as+ d ∈ Rq

7: sk = s, pk = (b, seeda)
8: return (sk,pk)

Algorithm 4. NewHope.Enc(pt, pk, coinB)

Output: Ciphertext ct ∈ {0, 1}14·n+8·n
1: a ←− Gena(seeda) ∈ Rq

2: t ←− Samp(Bη , coinB) ∈ Rq

3: e ←− Samp(Bη , coinB) ∈ Rq

4: f ←− Samp(Bη, coinB) ∈ Rq

5: u = at+ e ∈ Rq

6: v = bt+ f+ Encode(pt) ∈ Rq

7: ct = (u,Compress(v))
7: return ct

Algorithm 5. NewHope.Dec(ct,sk): decryption

Output: Message pt’ ∈ {0, 1}256

1: v = Decompress(Compress(v)) ∈ Rq

2: pt’ = Decode(v − us)
3: return pt’

2.5 LAC.CPA

LAC [24] is a suit of public key cryptographic primitives based on RLWE. The
foundation of LAC is LAC.CPA, an IND-CPA PKE. LAC.CPA comprises three
algorithms: LAC.CPA.KeyGen, LAC.CPA.Enc, and LAC.CPA.Dec, as illustrated
in Algorithm 6, 7, 8, which are simplified descriptions of the algorithms and may
partly deviate from the notations the original specification of these algorithms [24].

410 K. Wang et al.

Notations and Parameters. {0, 1}ls is the space of random seeds and {0, 1}lm

is the message space, where ls, lm are positive integers. For an empty seed ε, the
process x ←− Samp(D, ε) is the same as x

$←− D. Bh
η is a n-ary centered binomial

distribution with fixed Hamming weight, where 0 < h < n/2 is even. For a
random variable according to the distribution, the numbers of both 1’s and -
1’s are h/2, the number of 0 is n − h. ECCEnc and ECCDec are the encoding
and decoding of the error correction codes, which switch between a message pt ∈
{0, 1}lm and its encoding p̂t ∈ {0, 1}lv , where lv is a positive integer denoting the
length of the encoding. (·)lv is a function that inputs a polynomial and outputs
the first lv coefficients of the polynomial. LAC.CPA recommends 3 parameter
sets: LAC-128, LAC-192, LAC-256. Throughout these parameter sets q is always
251, lm is always 256. The values of n, η and lv vary for different security levels.
In particular,

– In LAC-128, n = 512, η = 1, lv = lm + 18 × 8.
– In LAC-192, n = 1024, η = 1

2 , lv = lm + 9 × 8.
– In LAC-256, n = 1024, η = 1, lv = (lm + 18 × 8) × 2.

The centered binomial distribution Bη with η = 1
2 is defined as follows:

sample (a, b) ← (B1, B1) and output a × b, and the samples are in the interval
[−1, 1].

Algorithm 6. LAC.CPA.KeyGen()

Output: Secret key sk ∈ Rq

Output: Public key pk ∈ Rq × {0, 1}ls

1: seeda
$←− {0, 1}ls

2: a ←− Gena(seeda) ∈ Rq

3: s ←− Samp(Bh
η , ε) ∈ Rq

4: d ←− Samp(Bh
η , ε) ∈ Rq

5: b = as+ d ∈ Rq

6: sk = s, pk = (b, seeda)
7: return (sk,pk)

Algorithm 7. LAC.CPA.Enc(pt, pk, coinB)

Output: Ciphertext ct ∈ Rq × Z
lv
q

1: a ←− Gena(seeda) ∈ Rq

2: t ←− Samp(Bh
η , coinB) ∈ Rq

3: e ←− Samp(Bh
η , coinB) ∈ Rq

4: f ←− Samp(Bη, coinB) ∈ Z
lv
q

5: u = at+ e ∈ Rq

6: v = (bt)lv + f+ � q
2
� · (ECCEnc(pt)) ∈ Z

lv
q

7: ct = (u,v)
8: return ct

Algorithm 8. LAC.CPA.Dec(ct,sk)

Output: Message pt’ ∈ {0, 1}lm

1: p̃t = v − (us)lv

2: for i = 0 to lv-1 do
3: if q

4
≤ p̃ti < 3q

4
then

4: p̂ti ← 1
5: else
6: p̂ti ← 0
7: end if
8: end for
9: pt’ ← ECCDec(p̂t)
10: return pt’

Security of Two NIST Candidates in the Presence of Randomness Reuse 411

3 A Meta-PKE Construction

At Eurocrypt’19, Băetu et al. [4] proposed a meta-PKC construction and showed
9 IND-CPA PKEs [26] entering the first round all follow the construction. In
fact, this construction is inspired by the Regev cryptosystem [32] such as the
Lyubashevsky-Peikert-Regev cryptosystem [25]. In this section, we give a meta-
PKE construction, which is a further refinement of meta-PKC construction. In
particular, both NewHope-CPA-PKE and LAC.CPA follow this construction.

Algorithm KeyGen(): Algorithm Enc(pt, pk, coinB):
1: generate a random seedA and coinA 1: parse pk = (seedA, B)
2: generate A ← GenA(seedA) ∈ SA 2: generate A ← GenA(seedA)
3: sample secrets sk ∈ Ssk, d ∈ SB 3: sample randomness t ∈ St, e ∈ SU , f ∈ SV

from distribution Ψ by using coinA from distribution Ψ by using coinB
4: B ← A × sk+ d ∈ SB 4: U ← t × A + e ∈ SU

5: pk ← (seedA, B) 5: V ← t × B + f + encode(pt) ∈ SV

6: return (sk, pk) 6: return ct = (U, V)

Algorithm Dec(ct,sk):
7: parse ct = (U, V)
8: W ← V − U × sk ∈ SV

9: pt ← decode(W) ∈ M
10: return pt

Fig. 1. The meta-PKE defined on the algebra

We consider six additive Abelian groups Ssk, SA, SB, St, SU , and SV and
four bilinear mappings which are all denoted with ×. The relationships between
the four bilinear mappings and the six additive Abelian groups are as follows:
SA×Ssk → SB , SU ×Ssk → SV , St×SA → SU , and St×SB → SV . In particular,
there is an associativity in the sense that (t×A)× sk = t× (A× sk) for all t ∈ St,
A ∈ SA, and sk ∈ Ssk. We also define three functions GenA : SseedA

→ SA, encode
: M → SV and decode : SV → M .

Finally, we give meta-PKE construction in Fig. 1 where the choice of the
algebra, bilinear mapping, GenA/encode/decode, and the probability distribution
Ψ are left free. Compared with meta-PKC in [4], meta-PKE stresses that secrets
and randomness sk, d, t, e, f are sampled from the same probability distribution
Ψ . In addition, instead of directly picking a random A ∈ SA, meta-PKE generates
A using a random seedA, which is widely adopted by most candidate algorithms.

Example 1 (NewHope-CPA-PKE). NewHope-CPA-PKE defines SA =
Ssk = SB = St = SU = SV = Rq. Bilinear mappings are simply multiplica-
tions of polynomials in Rq. Message pt ∈ {0, 1}256 is encoded by multiplying it

412 K. Wang et al.

by � q
2� and represented twice (four times).4 Namely, Y = encode(pt), and the bit

pti of the message appears at position i and i + 256 (and i + 512, i + 768) of Y
by Yi = Yi+256 (= Yi+512 = Yi+768) = pti� q

2�, i = 1, ..., 256. The distribution Ψ is
the centered binomial distribution Bη with η = 8. In order to compress the size
of ciphertext, function Compress is introduced and it simply performs coefficient-
wise modulus switching between modulus q and modulus 8 by multiplying it by 8
and then performing a rounding division by q.

Example 2 (LAC.CPA). LAC.CPA defines SA = Ssk = SB = St = SU = Rq

and SV = Z
lv
q . Bilinear mappings are simply multiplications of polynomials in

Rq. Message pt ∈ {0, 1}ls is first encoded as ECCEnc(pt) ∈ {0, 1}lv , then it is
encoded as Y by multiplying it by � q

2	, namely, Y = � q
2	 · (ECCEnc(pt)). The bit

ECCEnc(pt)i appears at position i of Y by Yi = ECCEnc(pt)i� q
2	. The secrets and

randomness are sampled from the centered binomial distribution Ψ = Bη with
η = 1 or 1

2 . In particular, in calculating V ← t × B + f + encode(pt), function
(·)lv is introduced and used to take the first lv coefficients of the polynomial t×B.
In addition, in order to minimize the size of the ciphertext, in implementation
the lower 4 bits for each coefficient in V are discarded.

4 A Feature of Meta-PKE

In meta-PKE construction, there is a key step

V ← t × B + f + Y,

where B is part of the public key pk, V is part of the ciphertext ct, t, f are
randomness, Y is the encoding of secret pt and Y = encode(pt). Usually, ran-
domness t, f are sampled from a centered binomial distribution and codeword
Y belongs to set {0, q

2}, the coefficients of t, f and Y are discrete integers. In
particular, the number of possible values they can take are denoted as Ωt, Ωf

and ΩY , respectively.
We observe that if B is chosen as an integer, each coefficient of V has at most

Ωt × Ωf × ΩY possibilities. Further, if Alice chooses B so that each coefficient
of V has exactly Ωt × Ωf × ΩY possibilities, V can reveal the values of t, f ,
Y (then pt) completely. In particular, NewHope-CPA-PKE and LAC.CPA also
have this feature and we use the following theorem and corollaries to explain it.

Theorem 1. t, f, Y ∈ Rq, and the coefficients ti, fi are in {−D, ...,D}, D
 q,
Yi ∈ {0, q

2}, i = 1, ..., n. B ∈ Zq and V = B × t + f + Y mod±q.5 If 2D + 1 ≤
B < q/4D − 1, then V will reveal the values of t, f, Y completely.

4 NewHope recommends 2 parameter sets and they adopt different coding methods.
5 For ease of understanding and explanation, we consider the modular reductions in

[−� q
2
�, � q

2
�], which corresponds to [0, q − 1] one by one. In particular, r′ = r mod±q

is the unique element in range [−� q
2
�, � q

2
�] such that r′ = r mod q.

Security of Two NIST Candidates in the Presence of Randomness Reuse 413

Proof. Given that ti, fi ∈ {−D, ...,D}, B ∈ Zq and B < q/4D − 1, we have

(t×B+f)i ∈ {−DB−D,−DB−(D−1), ...,DB+(D−1),DB+D} ⊂ (−q

4
,
q

4
).

Considering that Yi ∈ {0, q
2}, we have

Vi = (B×t+f +Y)i ∈ ({−DB−D,−DB−(D−1), ...,DB+(D−1),DB+D}∪

{−DB − D +
q

2
,−DB − (D − 1) +

q

2
, ...,DB + D +

q

2
}),

where

{−DB − D +
q

2
,−DB − (D − 1) +

q

2
, ...,DB + D +

q

2
} ⊂ ((−q

2
,−q

4
) ∪ (

q

4
,
q

2
)).

Based on the above analysis, we have that Vi ∈ (− q
4 , q

4) reveals Yi = 0,
and Vi ∈ ((− q

2 ,− q
4) ∪ (q

4 , q
2)) reveals Yi = q

2 . Further, when B ≥ 2D + 1, the
2(2D + 1)2 elements in set

{−DB − D,−DB − (D − 1), ...,DB + (D − 1),DB + D}∪

{−DB − D +
q

2
,−DB − (D − 1) +

q

2
, ...,DB + D +

q

2
}

are different, thus Vi can determine values of ti, fi, Yi uniquely and
definitely. �

In NewHope-CPA-PKE, in order to compress the size of ciphertext, com-
pression function Compress is introduced which simply performs coefficient-wise
modulus switching between q and p by multiplying by p and then performing a
rounding division by q. In this case, it is difficult to recover the value of f from
Compress(V), because the compression function compresses adjacent integers
into the same integer. In particular, we have the following corollary.

Corollary 1. t, f, Y ∈ Rq, and the coefficients ti, fi are in {−D, ...,D}, Yi ∈
{0, � q

2�}, i = 1, ..., n, q = 12289,D = p = 8. B ∈ Zq and V = B×t+f+Y mod±q.
If B satisfies certain conditions, then Compress(V) will reveal the complete Y and
part of the information about t.

Proof. See Appendix A.1 for the proof. �

Example 3 (NewHope-CPA-PKE continued). In NewHope-CPA-PKE,
t, f , Y ∈ Rq, q = 12289, p = 8, ti, fi ∈ {−8, ..., 8}, Yi ∈ {0, � q

2�}, i = 1, ..., n.
According to Corollary 1, if B satisfies B < q/4D − 1, p(8B − D)/q > 1 and
p(7B + D)/q < 1, then Compress(V)i will reveal Yi, and Compress(V)i = 1
and −1 will reveal ti = 8 and −8, respectively; if B satisfies B < q/4D − 1,
p(7B − D)/q > 1 and p(6B + D)/q < 1, then Compress(V)i will reveal Yi,
and Compress(V)i = 1 and −1 will reveal ti is in {8, 7} and {−8,−7}, respec-
tively; ...; if B satisfies B < q/4D − 1, p(B − D)/q > 1, then Compress(V)i

will reveal Yi, and Compress(V)i = 1 and −1 will reveal ti is in {8, 7, ..., 1} and
{−8,−7, ...,−1}, respectively.

414 K. Wang et al.

In LAC.CPA, in order to minimize the size of the ciphertext, in implemen-
tation the lower 4 bits for each coefficient in V are discarded. In this case, it is
difficult to recover the value of f from V , where V is the value after discarding
the lower 4 bits of each coefficient in V , because the operation converts adjacent
integers into the same integer. In particular, we have the following corollary.

Corollary 2. t, f, Y ∈ Rq, and the coefficients ti, fi are in {−D, ...,D}, Yi ∈
{0, � q

2	}, i = 1, ..., n, q = 251,D = 1. B ∈ Zq and V = B × t + f + Y mod q. If
B satisfies certain conditions, then V will reveal t, Y completely.6

Proof. See Appendix A.2 for the proof. �

Example 4 (LAC.CPA continued). In LAC.CPA, t ∈ Rq, f, Y ∈ Z
lv
q , q =

251, ti, fj ∈ {−1, 0, 1}, Yj ∈ {0, � q
2	}, i = 1, ..., n, j = 1, ..., lv. In calculating

V ← t × B + f + encode(pt), function (·)lv is introduced and used to take the
first lv coefficients of the polynomial t×B. According to Corollary 2, if B = 175,
then V i will reveal the values of ti, Yi, i = 1, .., lv; if B = 175xlv , then V i will
reveal the values of tlv+i, Yi, i = 1, .., lv; if B = 175x2lv , then V i will reveal the
values of t2lv+i, Yi, i = 1, .., lv.

5 The Recovery of Reused Randomness in
NewHope-CPA-KEM and LAC.KE

NewHope-CPA-KEM is an IND-CPA KEM and it is constructed from NewHope-
CPA-PKE. LAC.KE is a passively secure unauthenticated key exchange protocol
and it is directly based on LAC.CPA. If randomness t is reused in NewHope-
CPA-KEM and LAC.KE, then it can be recovered according to the results of
the previous section.

5.1 The Reused Randomness Recovery Game

First, we define reused randomness recovery game in key exchange which is
constructed from meta-PKE by using it to convey a secret pt. Since a KEM can
be used as a key exchange, our game can cover both NewHope-CPA-KEM and
LAC.KE.

Definition 1. As shown in Fig. 2, Rand-Rec is the reused randomness recovery
game, where oracle O simulates Bob’s actions and reuses randomness t. Adver-
sary A has access to this oracle to make multiple queries. When adversary A
queries oracle O with pk’, the oracle O generates secret pt, runs the encryption
where randomness t is fixed, returns the ciphertext ct.

The Rand-Rec game comes from Ding’s signal leakage attack model [11],
where the client Bob is static and reuses secret, a malicious server Alice can
initiate key establishment with Bob which responds honestly.
6 If the lower 4 bits for each coefficient in V aren’t discarded, V will reveal t, f, Y

completely.

Security of Two NIST Candidates in the Presence of Randomness Reuse 415

Game Rand-RecO
A(): Oracle O(pk’)

1: KeyGen()→ (sk, pk) 1: generate secret pt
2: AO(·)(pk) → t 2: Enc(pt, pk’, coinB) → ct,
3: return t where randomness t is fixed

3: return ct
4: generate shared secret K

Fig. 2. The reused randomness recovery game

5.2 Recovering Randomness in NewHope-CPA-KEM

In NewHope-CPA-KEM (Fig. 3), if Bob reuses randomness t and malicious Alice
can initiate key establishment with Bob which responds honestly. Based on the
previous results, as long as Alice queries oracle O (initiates key establishment
with Bob) 8 times7 with different b, Alice can recover t completely. Then, e can
be recovered by computing e = u − at.

boBecilA
(pk, sk) ←− NewHope.KeyGen() pk = (b, seeda)−−−−−−−−−−−−−−−→

coin $←− {0, 1}256

pt‖coinB ←− SHAKE256(64, coin)
ct = (u,Compress(v))←−−−−−−−−−−−−−−−− ct ← NewHope.Enc(pt, pk, coinB)

pt ← NewHope.Dec(ct, sk) K ← SHAKE256(32, pt)
K ← SHAKE256(32, pt)

Fig. 3. NewHope-CPA-KEM.

In fact, in NewHope-CPA-KEM, reusing randomness is disastrous. In order
to protect against attacks involving disclosure of system randomness, NewHope-
CPA-KEM computes pt and coinB by hashing random coin, rather than picking
them directly. Further, coinB is used to sample randomness t. Therefore, the
reuse of t actually stems from a reused coin. Since the final shared secret K
is derived from pt by hashing, a reused coin will cause pt to be all the same
in multiple conversations. Thus, the final shared secret K is all the same too.
Therefore, it is very easy for Alice to detect that Bob is reusing randomness.
Further, when Bob communicates with others as a responder using the same
randomness, the shared secret is known to Alice.

7 See Corollary 1 and Example 3 for more details.

416 K. Wang et al.

5.3 Recovering Randomness in LAC.KE

In LAC.KE (Fig. 4), in order to keep the context consistent, random coinB is
passed as an explicit input, which is different from the original specification of
the algorithms [24].

H : {0, 1}∗ → {0, 1}lk

boBecilA
(pk, sk) ←− LAC.CPA.KeyGen() pk = (b, seeda)−−−−−−−−−−−−→

pt $←− {0, 1}lm

coinB $←− {0, 1}ls

ct = (u,v)←−−−−−−−−−−−− ct ← LAC.CPA.Enc(pt, pk, coinB)

pt ← LAC.CPA.Dec(ct, sk) K ← H(pk, pt) ∈ {0, 1}lk

K ← H(pk, pt) ∈ {0, 1}lk

Fig. 4. LAC.KE (v is the value of v after discarding the lower 4 bits of each coefficient.)

If Bob reuses randomness t and malicious Alice can initiate key establish-
ment with Bob which responds honestly. According to the previous results, as
long as Alice queries oracle O (initiates key establishment with Bob) n

lv
	 times

with different b, Alice can recover t completely. Then, e can be recovered by
computing e = u − at.

5.4 Recovering the Shared Secret in Another Session

In LAC.KE, the recovered randomness t can be used to recover the shared secret
in another session, where the same randomness is used. In particular, we consider
a scenario where Bob communicates with Alice and Carol as a responder using
the same randomness t, e, f.8 If Alice gets Bob’s reused randomness t, then Alice
can recover the shared secret between Carol and Bob.

When Bob communicates with Carol as a responder, Carol first sends
pk′ = (b′, seeda′) to Bob. Next, Bob chooses secret pt’, reuses randomness t, e, f,
computes

u′ ← a′t + e,

v′ ← (b′t)lv + f + �q

2
	 · (ECCEnc(pt′)),

discards the lower 4 bits of each coefficient in v′ and gets v′ (Discarding the
lower 4 bits of each coefficient is equivalent to shifting 4 bits to the right.),
Then, Bob sends message ct′ = (u′,v′) to Carol, and computes the shared secret
K ′ ← H(pk’, pt’).

8 We consider that e, f are also reused. In fact, whether they are reused or not does
not affect our analysis.

Security of Two NIST Candidates in the Presence of Randomness Reuse 417

In the process, Alice intercepts pk′ = (b′, seeda′) and ct′ = (u′,v′), shifts
each coefficient of v′ 4 bits to the left and gets ṽ′. Having got randomness t,
Alice computes

�q

2
	 · (ECCEnc(pt′)) ← ṽ′ − (b′t)lv , (1)

pt′ ← ECCDec(ECCEnc(pt′)),

K ′ ← H(pk′, pt′).

Thus, Alice gets the shared secret K ′ between Carol and Bob.
In (1), ṽ′−(b′t)lv actually produces an approximation of (� q

2	·(ECCEnc(pt′)))
due to the noise caused by shift operations and unknown f. However, these noises
are relatively small and don’t affect getting the accurate value. In particular,
ECCEnc(pt′) ∈ {0, 1}lv and (� q

2	 · (ECCEnc(pt′))) ∈ {0, � q
2	}lv , that is to say,

each component of (� q
2	·(ECCEnc(pt′))) is either 0 or � q

2	. By doing experiments,
we found each component of ṽ′ − (b′t)lv is in [110, 127] or ([235, 250] ∪ {0, 1}),
namely, each component is near 0 or � q

2	. Therefore, Alice can get the accurate
value of (� q

2	 · (ECCEnc(pt′))) according to ṽ′ − (b′t)lv .

6 Conclusion

In this paper, we provide better insight into the resilience of NewHope-CPA-
KEM and LAC.KE against randomness reuse. Since they are based on NewHope-
CPA-PKE and LAC.CPA respectively, we start with these underlying PKEs. In
particular, we first show that they share a common feature. Based on the feature,
we recover the reused randomness in NewHope-CPA-KEM and LAC.KE. Since
our method does’t require Alice to change the public global parameter a, it can
apply to the situation where a is cached. Using the parameter sets recommended,
the randomness can be recovered after several communications, which confirm
that randomness reuse should be strictly avoided. After recovering the reused
randomness in LAC.KE, we also demonstrate that these randomness can be used
to recover the shared secret in another session where the same randomness is
used.

Although underlying PKE can be used to construct IND-CCA KEM by
applying the Fujisaki-Okamoto transformation [16,20], the re-encryption pro-
cess in transformation allows Alice access to all the randomness. Our future
work is to investigate if our attack is possible in other NIST candidates.

Acknowledgements. This work is supported by the National Key Research and
Development Program of China (No. 2017YFB0802000), the National Natural Science
Foundation of China (No. U1536205, 61802376).

418 K. Wang et al.

Appendix A

A.1 The Proof of Corollary 1

Proof. According to Theorem 1, when B < q/4D −1, we have that Vi ∈ (− q
4 , q

4)
reveals Yi = 0, and Vi ∈ ((− q

2 ,− q
4) ∪ (q

4 , q
2)) reveals Yi = � q

2�. Considering the
function Compress performs coefficient-wise modulus switching between modulus
q and modulus p, we have that Compress(V)i ∈ (−p

4 , p
4) reveals Yi = 0, and

Compress(V)i ∈ ((−p
2 ,−p

4) ∪ (p
4 , p

2)) reveals Yi = � q
2�.

Further, if B satisfies p(8B − D)/q > 1 and p(7B + D)/q < 1, then
Compress(V)i = 1 and −1 will reveal ti = 8 and −8, respectively; if p(7B −
D)/q > 1 and p(6B + D)/q < 1, then Compress(V)i = 1 and −1 will reveal ti is
in {8, 7} and {−8,−7}, respectively; if p(6B − D)/q > 1 and p(5B + D)/q < 1,
then Compress(V)i = 1 and −1 will reveal ti is in {8, 7, 6} and {−8,−7,−6},
respectively; ...; if p(B − D)/q > 1, then Compress(V)i = 1 and −1 will reveal ti
is in {8, 7, ..., 1} and {−8,−7, ...,−1}, respectively. �

A.2 The Proof of Corollary 2

Proof. Given that ti, fi ∈ {−1, 0, 1}, Yi ∈ {0, 126}, Vi has at most 18 possible
values when B is an integer in Zq. In particular, each possible value corresponds
to a set of values ti, fi and Yi. After discarding the lower 4 bits of Vi, adjacent
integers in V are converted to the same integer in V , which makes it difficult to
recover the value of fi from V i. However, if the public key B ∈ Zq is chosen so
that the coefficient V i has at least 6 possibilities, V i can reveal the values of ti
and Yi. For example, if B = 175, then V i = 4 will reveal ti = −1 and Yi = 0;
V i = 12 will reveal ti = −1 and Yi = 126;..., as shown in Table 2. �

Table 2. The values of ti and Yi revealed by V i when B = 175

References

1. Alkim, E., et al.: Newhope: algorithm specifications and supporting documenta-
tion (2019). https://csrc.nist.gov/Projects/post-quantum-cryptography/round-2-
submissions

2. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Newhope without reconcilia-
tion. IACR Cryptol. ePrint Arch. 2016:1157 (2016)

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-2-submissions

Security of Two NIST Candidates in the Presence of Randomness Reuse 419

3. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange–a
new hope. In: 25th {USENIX} Security Symposium ({USENIX} Security 16), pp.
327–343 (2016)

4. Băetu, C., Durak, F.B., Huguenin-Dumittan, L., Talayhan, A., Vaudenay, S.: Mis-
use attacks on post-quantum cryptosystems. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019. LNCS, vol. 11477, pp. 747–776. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17656-3 26

5. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 42

6. Bauer, A., Gilbert, H., Renault, G., Rossi, M.: Assessment of the key-reuse
resilience of newhope. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp.
272–292. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4 14

7. Bernstein, D.J., Groot Bruinderink, L., Lange, T., Panny, L.: HILA5 pindakaas:
on the CCA security of lattice-based encryption with error correction. In: Joux,
A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp.
203–216. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6 12

8. D’Anvers, J.-P., Guo, Q., Johansson, T., Nilsson, A., Vercauteren, F., Ver-
bauwhede, I.: Decryption failure attacks on IND-CCA secure lattice-based schemes.
In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 565–598. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17259-6 19

9. D’Anvers, J.-P., Rossi, M., Virdia, F.: (One) failure is not an option: bootstrapping
the search for failures in lattice-based encryption schemes. In: Canteaut, A., Ishai,
Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 3–33. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45727-3 1

10. D’Anvers, J.-P., Vercauteren, F., Verbauwhede, I.: The impact of error dependen-
cies on ring/Mod-LWE/LWR based schemes. In: Ding, J., Steinwandt, R. (eds.)
PQCrypto 2019. LNCS, vol. 11505, pp. 103–115. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-25510-7 6

11. Ding, J., Alsayigh, S., Saraswathy, R.V., Fluhrer, S., Lin, X.: Leakage of signal
function with reused keys in RLWE key exchange. In: 2017 IEEE International
Conference on Communications (ICC), pp. 1–6. IEEE (2017)

12. Ding, J., Cheng, C., Qin, Y.: A simple key reuse attack on LWE and ring LWE
encryption schemes as key encapsulation mechanisms (KEMs). IACR Cryptol.
ePrint Arch. 2019:271 (2019)

13. Ding, J., Fluhrer, S., Rv, S.: Complete attack on RLWE key exchange with reused
keys, without signal leakage. In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS,
vol. 10946, pp. 467–486. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-93638-3 27

14. Ding, J., Xie, X., Lin, X.: A simple provably secure key exchange scheme based on
the learning with errors problem. IACR Cryptol. ePrint Arch. 2012:688 (2012)

15. Fluhrer, S.R.: Cryptanalysis of ring-LWE based key exchange with key share reuse.
IACR Cryptol. ePrint Arch. 2016:85 (2016)

16. Fujisaki, E., Okamoto, T.: How to enhance the security of public-key encryption
at minimum cost. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp.
53–68. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49162-7 5

17. Gao, X., Ding, J., Li, L., Liu, J.: Practical randomized RLWE-based key exchange
against signal leakage attack. IEEE Trans. Comput. 67(11), 1584–1593 (2018)

18. Greuet, A., Montoya, S., Renault, G.: Attack on lac key exchange in misuse situ-
ation. IACR Cryptol. ePrint Arch. 2020:63 (2020)

https://doi.org/10.1007/978-3-030-17656-3_26
https://doi.org/10.1007/978-3-030-17656-3_26
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-030-12612-4_14
https://doi.org/10.1007/978-3-319-89339-6_12
https://doi.org/10.1007/978-3-030-17259-6_19
https://doi.org/10.1007/978-3-030-45727-3_1
https://doi.org/10.1007/978-3-030-25510-7_6
https://doi.org/10.1007/978-3-030-25510-7_6
https://doi.org/10.1007/978-3-319-93638-3_27
https://doi.org/10.1007/978-3-319-93638-3_27
https://doi.org/10.1007/3-540-49162-7_5

420 K. Wang et al.

19. Guo, Q., Johansson, T., Yang, J.: A novel CCA attack using decryption errors
against LAC. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS,
vol. 11921, pp. 82–111. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
34578-5 4

20. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70500-2 12

21. Huguenin-Dumittan, L., Vaudenay, S.: Classical misuse attacks on NIST round 2
PQC. In: Conti, M., Zhou, J., Casalicchio, E., Spognardi, A. (eds.) ACNS 2020.
LNCS, vol. 12146, pp. 208–227. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-57808-4 11

22. Kirkwood, D., Lackey, B.C., McVey, J., Motley, M., Solinas Jerome A., Tuller,
D.: Failure is not an option: standardization issues for post-quantum key agree-
ment (2015). https://csrc.nist.gov/csrc/media/events/workshop-on-cybersecurity-
in-a-post-quantum-world/documents/presentations/session7-motley-mark.pdf

23. Liu, C., Zheng, Z., Zou, G.: Key reuse attack on newhope key exchange protocol.
In: Lee, K. (ed.) ICISC 2018. LNCS, vol. 11396, pp. 163–176. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-12146-4 11

24. Lu, X., et al.: LAC: algorithm specifications and supporting documentation (2019).
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-2-submissions

25. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

26. National Institute of Standards and Technology. Post-quantum cryptography stan-
dardization (2016). https://csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization

27. Okada, S., Wang, Y., Takagi, T.: Improving key mismatch attack on newhope with
fewer queries. IACR Cryptol. ePrint Arch. 2020:585 (2020)

28. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem.
In: Proceedings of the Forty-first Annual ACM Symposium on Theory of Comput-
ing, pp. 333–342 (2009)

29. Pöppelmann, T., Güneysu, T.: Towards practical lattice-based public-key encryp-
tion on reconfigurable hardware. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 68–85. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-43414-7 4

30. Qin, Y., Cheng, C., Ding, J.: A complete and optimized key mismatch attack
on NIST candidate newhope. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.)
ESORICS 2019. LNCS, vol. 11736, pp. 504–520. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-29962-0 24

31. Qin, Y., Cheng, C., Ding, J.: An efficient key mismatch attack on the NIST second
round candidate kyber. IACR Cryptol. ePrint Arch. 2019:1343 (2019)

32. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM (JACM) 56(6), 1–40 (2009)

33. Ristenpart, T., Yilek, S.: When good randomness goes bad: virtual machine reset
vulnerabilities and hedging deployed cryptography. In: NDSS (2010)

34. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings 35th Annual Symposium on Foundations of Computer Science,
pp. 124–134. IEEE (1994)

https://doi.org/10.1007/978-3-030-34578-5_4
https://doi.org/10.1007/978-3-030-34578-5_4
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-030-57808-4_11
https://doi.org/10.1007/978-3-030-57808-4_11
https://csrc.nist.gov/csrc/media/events/workshop-on-cybersecurity-in-a-post-quantum-world/documents/presentations/session7-motley-mark.pdf
https://csrc.nist.gov/csrc/media/events/workshop-on-cybersecurity-in-a-post-quantum-world/documents/presentations/session7-motley-mark.pdf
https://doi.org/10.1007/978-3-030-12146-4_11
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/978-3-642-13190-5_1
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://doi.org/10.1007/978-3-662-43414-7_4
https://doi.org/10.1007/978-3-662-43414-7_4
https://doi.org/10.1007/978-3-030-29962-0_24
https://doi.org/10.1007/978-3-030-29962-0_24

Security of Two NIST Candidates in the Presence of Randomness Reuse 421

35. Wang, K., Jiang, H.: Analysis of two countermeasures against the signal leakage
attack. In: Buchmann, J., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2019.
LNCS, vol. 11627, pp. 370–388. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-23696-0 19

36. Yilek, S., Rescorla, E., Shacham, H., Enright, B., Savage, S.: When private keys
are public: results from the 2008 Debian OpenSSL vulnerability. In: Proceedings of
the 9th ACM SIGCOMM Conference on Internet Measurement, pp. 15–27 (2009)

https://doi.org/10.1007/978-3-030-23696-0_19
https://doi.org/10.1007/978-3-030-23696-0_19

Author Index

Abuadbba, Sharif 145
Aung, Khin Mi Mi 278

Bai, Mengqiu 234

Canard, Sébastien 24
Chevalier, Céline 318
Chin, Ji-Jian 190
Ciucanu, Radu 257
Clarisse, Rémi 3

Delabrouille, Anatole 257
Deng, Yi 234
Ding, Jian 361
Dutta, Ratna 169

Fukumitsu, Masayuki 45

Georgescu, Adela 24

Hanaoka, Goichiro 65
Hara, Keisuke 124, 213
Hasegawa, Shingo 45
He, Debiao 234
Huang, Xinyi 145

Jiang, Haodong 381, 402
Jin, Chao 278

Kaim, Guillaume 24
Kajita, Kaisei 85
Kashefi, Elham 318
Khalil, Ibrahim 145
Knapp, Jodie 341

Lafourcade, Pascal 257
Lin, Changlu 361
Lin, Fuchun 361
Lu, Yi 213

Ma, Shunli 234
Maeda, Yusaku 298

Mohamad, Moesfa Soeheila 190
Music, Luka 318

Nepal, Surya 145
Nishide, Takashi 103, 298
Nuida, Koji 85

Ogawa, Kazuto 85
Ohta, Kazuo 65

Pal, Tapas 169

Quaglia, Elizabeth A. 341

Ragab, Mohamed 278
Roux-Langlois, Adeline 24

Sakai, Yusuke 65
Sanders, Olivier 3
Santoso, Bagus 65
Soare, Marta 257
Sudo, Kyohei 124

Takagi, Tsuyoshi 85
Takemure, Kaoru 65
Tanaka, Keisuke 124, 213
Tezuka, Masayuki 124
Traoré, Jacques 24
Tsuchida, Hikaru 298

Wang, Ke 381, 402

Xie, Xiang 234

Yang, Xu 145
Yi, Xun 145
Yoshida, Yusuke 124

Zhang, Jiang 234
Zhang, Zhenfeng 381, 402
Zhu, Fei 145

	Preface
	Organization
	Contents
	Signature Schemes
	Group Signature Without Random Oracles from Randomizable Signatures
	1 Introduction
	2 Preliminaries
	2.1 Bilinear Groups
	2.2 Digital Signature
	2.3 Computational Assumptions

	3 Group Signature
	4 Our Group Signature
	4.1 The Construction
	4.2 Security Results

	5 Efficiency Comparison
	6 Conclusion
	References

	Constant-Size Lattice-Based Group Signature with Forward Security in the Standard Model
	1 Introduction
	1.1 Our Contribution
	1.2 Overview of the Building Blocks for Our Construction
	1.3 Our Construction

	2 Preliminaries
	2.1 Lattices and Trapdoors
	2.2 Delegation Functions
	2.3 Evaluation Functions
	2.4 Building Blocks for Our Construction

	3 Forward-Secure Indexed Attribute-Based Signature Scheme from Lattices
	3.1 Framework and Security Properties
	3.2 Construction of FSI-ABS Scheme from Lattices
	3.3 Security Proofs

	4 Forward-Secure Group Signature Scheme
	4.1 Forward-Secure Group Signature from Lattices
	4.2 Security

	References

	A Lattice-Based Provably Secure Multisignature Scheme in Quantum Random Oracle Model
	1 Introduction
	1.1 Our Contribution
	1.2 Future Works

	2 Preliminaries
	2.1 Quantum Computation
	2.2 Quantum Random Oracle Model
	2.3 Lattice
	2.4 Multisignature Scheme

	3 A Dilithium-Based Multisignature Scheme
	3.1 Supporting Algorithms
	3.2 Proposed Scheme
	3.3 Security

	References

	Achieving Pairing-Free Aggregate Signatures using Pre-Communication between Signers
	1 Introduction
	1.1 Properties of Aggregate Signatures and Multi-signatures
	1.2 Our Contributions
	1.3 Difficulty and Our Techniques
	1.4 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Hardness Assumption

	3 Aggregate Signatures with Pre-Communication
	3.1 Definition
	3.2 Our AS Scheme with PreCom (PCAS)

	4 Performance Comparison among Aggregate Signature Scheme and Related Schemes
	5 How to Avoid Drijvers et al.'s Impossibility
	6 Conclusion
	References

	Short Lattice Signatures in the Standard Model with Efficient Tag Generation
	1 Introduction
	1.1 Background
	1.2 Related Works
	1.3 Contributions

	2 Preliminaries
	2.1 Digital Signatures
	2.2 Security Classes
	2.3 Lattice and Gaussian
	2.4 Lattice Trapdoor
	2.5 Trapdoor Commitments

	3 Mildly Secure Scheme
	3.1 Tags
	3.2 Construction
	3.3 Security Analysis

	4 Fully Secure Scheme
	4.1 Conditions of TCOM
	4.2 Construction
	4.3 Security Analysis

	5 Reduction Loss
	6 Conclusion
	A Proof of Theorem 2
	References

	One-Time Delegation of Unlinkable Signing Rights and Its Application
	1 Introduction
	2 Preliminaries
	3 One-Time Delegation of Okamoto-Schnorr Signing
	3.1 Instantiating OS Signing OTP with Clouds

	4 One-Time Multi-Run-Detectable Delegation Based on Anonymous Credentials
	5 E-Cash Based on Signing OTPs
	References

	Watermarkable Signature with Computational Function Preserving
	1 Introduction
	1.1 Backgrounds
	1.2 Our Contributions
	1.3 Related Works
	1.4 Road Map
	1.5 Notations

	2 Watermarkable Signature
	3 Construction
	3.1 Correctness and Security Proof

	4 Relation with Previous Definitions of Watermarking
	5 Conclusions
	A Basic Cryptographic Primitives
	A.1 Public Key Encryption
	A.2 Digital Signature

	B Watermarkable Signature in Previous Works
	B.1 Definition by Goyal et al. ch7GKMsps19
	B.2 Definition by Cohen et al. ch7CHNsps16

	References

	Privacy-Preserving Authentication for Tree-Structured Data with Designated Verification in Outsourced Environments
	1 Introduction
	1.1 Organization

	2 Related Work
	3 Preliminaries
	3.1 Complexity Assumption
	3.2 Secure Naming Scheme

	4 Definitions of Our DV-PPAT
	4.1 Syntax of DV-PPAT
	4.2 Notions of Security for DV-PPAT

	5 Our Construction
	5.1 Security Results

	6 Performance Evaluation
	7 Conclusions
	References

	Encryption Schemes and NIZKs
	Semi-Adaptively Secure Offline Witness Encryption from Puncturable Witness PRF
	1 Introduction
	2 Preliminaries
	2.1 Pseudorandom Generator
	2.2 Puncturable Pseudorandom Function
	2.3 Symmetric Key Encryption
	2.4 Puncturable Witness Pseudorandom Function
	2.5 Offline Witness Encryption
	2.6 Obfuscation

	3 Construction: (Extractable) Offline Witness Encryption
	4 Informal Description: (Extractable) Offline Functional Witness Encryption
	5 Construction: Puncturable Witness(-Extractable) Pseudorandom Function
	6 Conclusion
	A Formal Proof of Theorem 3
	References

	Improved Indistinguishability for Searchable Symmetric Encryption
	1 Introduction
	2 Preliminaries
	2.1 Leakage Function
	2.2 SSE Security Model
	2.3 Practical Attacks

	3 Redefining SSE Indistinguishability
	3.1 Security Goals
	3.2 Adversary Models
	3.3 Relation to Current Security Definitions

	4 o o -B
	4.1 IND-CKA by ALOA
	4.2 Count Attack by AKDDA

	5 o o -B with Cluster Padding
	5.1 IND-CKA by AKFDA
	5.2 File Injection Attack by ALOA

	6 Conclusion
	A L-security by ch10SECD:ChaseK10
	B SSE Indistinguishability by ch10SSE:CurtmolaGKO06
	C o o -B
	D Result-Hiding o o -B
	References

	Receiver Selective Opening CCA Secure Public Key Encryption from Various Assumptions
	1 Introduction
	1.1 Background and Motivation
	1.2 Our Contribution
	1.3 Related Work

	2 Preliminaries
	2.1 Notations
	2.2 Public Key Encryption
	2.3 Receiver Non-committing Encryption
	2.4 Signature
	2.5 Commitment
	2.6 Designated-Verifier Non-interactive Zero-Knowledge Arguments

	3 Construction of One-Time Simulation Sound DV-NIZK
	3.1 Description
	3.2 Security Proof

	4 Construction of RNC-CCA Secure RNCE
	4.1 Description
	4.2 Security Proof

	References

	A Practical NIZK Argument for Confidential Transactions over Account-Model Blockchain
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview

	2 Preliminaries
	2.1 Cryptographic Primitives
	2.2 Zero Knowledge Proof
	2.3 Smart Contracts for Payment over Blockchains

	3 NIZK Argument and Its Application to CTSC
	3.1 Definition of CTSC Scheme
	3.2 Non-interactive Zero-Knowledge Argument
	3.3 Construction of CTSC Scheme

	4 Optimization and Evaluation
	4.1 Optimization
	4.2 Evaluation

	A Missing Proof of Theorem 1
	References

	Secure Machine Learning and Multiparty Computation
	Secure Cumulative Reward Maximization in Linear Stochastic Bandits
	1 Introduction
	2 Preliminaries
	3 LinUCB-DS
	4 Security Analysis
	5 Experiments
	6 Adaptability of LinUCB-DS
	7 Conclusions
	A Appendix: Security Proofs for Sect.4
	References

	Secure Transfer Learning for Machine Fault Diagnosis Under Different Operating Conditions
	1 Introduction
	2 Preliminaries
	2.1 Fully Homomorphic Encryption
	2.2 Neural Network Inference and Training
	2.3 Transfer Learning

	3 PrivGD: Secure Neural Network Training with FHE
	3.1 Matrix Multiplications with Packed FHE Ciphertexts
	3.2 Neural Network Training with FHE
	3.3 Multi-class Classifier Training in FHE with Approximated Softmax
	3.4 Current Challenges and Our Approach

	4 Secure Transfer Learning for Personalized Machine Fault Diagnosis
	4.1 The Machine Vibration Sensor Datasets
	4.2 Network Model for Machine Fault Diagnosis
	4.3 Secure Model Fine-Tuning Across Different Operating Conditions
	4.4 Implementation of Secure Fine-Tuning Process
	4.5 FHE Parameters Selection

	5 Experiment Evaluation
	5.1 Experiment Server Setup
	5.2 Experiment Results
	5.3 Running Performances of Fine-Tuning with FHE

	6 Related Work
	7 Conclusion
	References

	Private Decision Tree Evaluation with Constant Rounds via (Only) SS-3PC over Ring
	1 Introduction
	1.1 Backgrounds
	1.2 Our Results
	1.3 Related Work

	2 Preliminaries
	2.1 Notations
	2.2 2-Out-of-3 Replicated Secret Sharing Scheme ((2,3)-RSS) and 2-Out-of-2 Additive Secret Sharing Scheme ((2,2)-ASS)
	2.3 Secure Three-Party Computation with One Corruption over Ring
	2.4 Structure of Decision Tree
	2.5 Building Blocks of Three-Party Computation Protocol over Ring

	3 Proposed Protocol in Feature Selection Phase
	4 Proposed Protocol in Comparison Phase
	5 Proposed Protocol in Path Evaluation Phase
	6 Proposed Protocol of Private Decision Tree Evaluation
	7 Security Proof
	8 Conclusion
	A Naive Construction of PDTE
	References

	Dispelling Myths on Superposition Attacks: Formal Security Model and Attack Analyses
	1 Introduction
	2 Preliminaries
	3 New Security Model for Superposition Attacks
	4 The Modified Honest-but-Curious Yao Protocol
	4.1 Definitions for Symmetric Encryption Schemes
	4.2 The Original Yao Protocol
	4.3 Presentation of the Modified Yao Protocol

	5 Analysis of Yao's Protocol with Superposition Access
	5.1 Attacking the Modified Yao Protocol via Superpositions
	5.2 Superposition-Resistant Yao Protocol

	6 Conclusion
	References

	Secret Sharing Schemes
	Fair and Sound Secret Sharing from Homomorphic Time-Lock Puzzles
	1 Introduction
	1.1 Our Contributions

	2 Definitions and Modelling
	2.1 Secret Sharing
	2.2 Rational Secret Sharing
	2.3 Homomorphic TLPs

	3 A Fair and Sound Non-simultaneous Rational Secret Sharing Scheme
	3.1 Our Construction
	3.2 A Concrete Instantiation

	References

	Optimal Threshold Changeable Secret Sharing with New Threshold Change Range
	1 Introduction
	2 Preliminaries
	3 Constructions with New Threshold Change Range
	3.1 Generic Construction
	3.2 New Optimal Threshold Changeable Secret Sharing
	3.3 Extending the Results to Universal Threshold Change

	4 Completeness Results for Secret Sharing with Full Reconstruction
	5 Conclusion
	References

	Security Analyses
	Key Recovery Under Plaintext Checking Attack on LAC
	1 Introduction
	1.1 Our Contributions
	1.2 Techniques
	1.3 Related Work
	1.4 Organization

	2 Preliminaries
	2.1 Mathematical Notations
	2.2 KR-PCA Attack
	2.3 LAC.CPA

	3 KR-PCA Attack on LAC.CPA
	3.1 Choosing Special m
	3.2 Choosing m Randomly
	3.3 Attack on LAC-256
	3.4 Number of Queries and Probability of Success

	4 Recovering Reused Key in LAC.KE
	5 Conclusion
	References

	Security of Two NIST Candidates in the Presence of Randomness Reuse
	1 Introduction
	1.1 Our Contributions
	1.2 Techniques
	1.3 Related Work
	1.4 Organization

	2 Preliminaries
	2.1 Mathematical Notations
	2.2 RLWE Problem
	2.3 Cryptographic Definitions
	2.4 NewHope-CPA-PKE
	2.5 LAC.CPA

	3 A Meta-PKE Construction
	4 A Feature of Meta-PKE
	5 The Recovery of Reused Randomness in NewHope-CPA-KEM and LAC.KE
	5.1 The Reused Randomness Recovery Game
	5.2 Recovering Randomness in NewHope-CPA-KEM
	5.3 Recovering Randomness in LAC.KE
	5.4 Recovering the Shared Secret in Another Session

	6 Conclusion
	References

	Author Index

