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Abstract. A pair of fully automatic brain tissue and tumor segmen-
tation frameworks are introduced in current paper, these consist of a
parallel and cascade architectures of a specialized convolutional deep
neural network designed to develop binary segmentation. The main con-
tributions of this proposal imply their ability to segment Magnetic Reso-
nance Imaging (MRI) of the brain, of different acquisition modes without
any parameter, they do not require any preprocessing stage to improve
the quality of each slice. Experimental tests were developed considering
BraTS 2017 database. The robustness and effectiveness of this proposal
is verified by quantitative and qualitative results.

Keywords: Magnetic resonance imaging of the brain · Tissues and
tumor segmentation · Convolutional deep neural network

1 Introduction

Magnetic resonance imaging is a medical modality used to guide the diagnosis
process and the treatment planning. To do so, it needs to develop the images
or slices segmentation, in order to detect and characterize the lesions, as well
as to visualize and quantify the pathology severity. Based on their experiences
and knowledge, medical specialists make a subjective interpretation of this type
of images; in other words, a manual segmentation is performed. This task is
long, painstaking and subject to human variability. Brain tumor segmentation is
one of the crucial steps for surgery planning and treatment evaluation. Despite
the great amount of effort being put to address this challenging problem in the
past two decades, segmentation of brain tumor remains to be one of the most
challenging tasks in medical image analysis. This is due to both the intrinsic
nature of the tumor tissue being heterogeneous and the extrinsic problems with
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unsatisfactory image quality of clinical MRI scans. For example, the tumor mass
of a glioma patient, the most common brain tumor, often consists of peritumoral
edema, necrotic core, enhancing and non-enhancing tumor core. In addition to
the complicated tumor tissue pattern, the MRI images can be further corrupted
with a slowly varying bias field and/or motion artifacts, etc. Brain MRIs in
most cases do not have well-defined limits between the elements that compose
them; in addition, they include non-soft tissues, as well as artifacts that can
hinder segmentation. Despite all these inherent conditions, numerous automatic
algorithms or techniques have been developed and introduced in state-of-the-
art. Among approaches exclusively designed to segment the brain tissues stand
out those that are based on the paradigm of fuzzy clustering as well as all its
variants [1–4,28]. With the same purpose, hybrid methods based on combina-
tions of different paradigms of machine learning and optimization algorithms
have also been presented, e.g. [5–7]. On the other hand, methods designed to
segment brain tumors or other abnormalities have also been introduced, among
which one can refer to [8–14,29]. For this task it is possible to affirm that in
the state-of-the-art the proposals based on Deep Learning are the most novel
and have the best results. The majority of these proposals yielded a high perfor-
mance in the image processing task, specifically when these were brain magnetic
resonance images. Nevertheless, after the pertinent analysis it was noted that
most methods of them suffer from one or more challenges such as: training need,
special handcrafted features (local or global), sensitive to initializations, many
parameters that require a tuning, various processing stages, designed to segment
just T1 -weighted brain MRI images, among others. In this research paper, we
concentrate on brain tissues and tumors segmentation in magnetic resonance
images. For that purpose we introduce a system consisting in a cascade of U-
Net models enhanced with a fusion information approach, this proposal can be
considered an extension to the one presented in [29], as well as a formalization
of theoretical concepts. The introduced proposal has the following special fea-
tures in contrast with those above-mentioned: 1) it is able to segment RMIs with
different relaxation times such as T1, T2, T1ce and Flair, 2) it is easily adapt-
able to segment brain tumors, 3) it does not require the initialization of any
parameter, such as the number of regions in which the slice will be segmented,
4) it does not require any preprocessing stage to improve the segmentation qual-
ity of each slice and 5) it does not need various processing stages to increase
its performance. The rest of this paper is organized as follow. A mathematical
formulation of U-Net is introduced in detail in Sect. 2. The parallel and cas-
cade architectures of Convolutional Neural Networks are introduced in Sect. 3.
Experimental results and a comparative analysis with other current methods in
the literature are presented in Sect. 4. In the final section the Conclusions are
drawn and future work is outlined.
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2 U-Net: Convolutional Networks for Biomedical Image
Segmentation

Deep neural networks have shown remarkable success in domains such as image
classification [6,15], object detection and localization [17–19], language pro-
cessing applications [20,21], speech recognition [22], medical image processing
[16,23,24], among many others. In the deep learning paradigm, Convolutional
Neural Networks (CNNs) outstands as the major architecture, they deploy con-
volution operations on hidden layers for weight sharing and parameter reduction,
in order to extract local information from grid-like input data. In simple words,
they process de information by means of hierarchical layers in order to under-
stand representations and features from data in increasing levels of complexity.

For biomedical image segmentation, U-Net is one of the most important archi-
tectures that have been introduced in the state of the art [25]. It is a fully convolu-
tional neural network model originally designed to develop a binary segmentation;
that is, the main object and the background of the image. This network is divided
into two parts, in the first part, the images are subjected to a downward sampling
(Contracting Path or Encoder), by means of convolution operations with a kernel
of 3 × 3 each followed by a rectified linear unit (ReLU) and a maximum grouping
layer of 2×2. The next part of the model (Expanding Path or Decoder) consists of
layers of deconvolution and convolution with 2 × 2 kernel, finally the output will
correspond to a specific class of objects to be segmented. The processing implies
nineteen convolutions (C), four subsamplings (S), four upsamplings (U) and four
mergings (M). To understand the model variant that we propose to segment brain
tumors from BraTS 2017, it can be see Fig. 1.

Fig. 1. U-Net model.

In the Contracting Path: Layer 1 is a convolution layer which takes input
image X of size 240×240 and convolves it with 32 filters of size 3×3; producing
32 feature maps of 240 × 240. In order to make the output of linear operation
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nonlinear, it is advisable to output of convolution operation is passed through
a Rectified Linear Units (ReLU) activation function σ(x) = max(0, x), in this
way:

C1ki,j = σ

(
2∑

m=0

2∑
n=0

wk
m,n ∗ Xi+m,j+n + bk

)
(1)

where C1k stands for k-th output feature map in C1 layer, (m,n) are the indices
of the k-th kernel (filter), while that (i, j) are the indices of output. C1ki,j is
convolved with 32 kernels of size 3 × 3; in the same way, the output is rectified:

C2ki,j = σ

(
31∑
d=0

2∑
m=0

2∑
n=0

wk,d
m,n ∗ C1di+m,j+n + bk

)
(2)

In Layer 2, the output of the convolution layer C2k is fed to max-pooling layer
S1k = max Pool

(C2k
)
. For each feature map in C2k, max-pooling performs the

following operation:

S1ki,j = max
( C2k2i,2j C2k2i+1,2j

C2k2i,2j+1 C2k2i+1,2j+1

)
(3)

where (i, j) are the indices of k-th feature map of output, and k is the feature
map index. The output consists in 32 feature maps with size of 120×120, which
implies one-half the size of the input image (X/2). S1k is convolved with 64
kernels of size 3 × 3, and the result is rectified:

C3ki,j = σ

(
63∑
d=0

2∑
m=0

2∑
n=0

wk,d
m,n ∗ S1di+m,j+n + bk

)
(4)

By means of 64 3×3 filters C3k is convolved, and then the results is rectified:

C4ki,j = σ

(
63∑
d=0

2∑
m=0

2∑
n=0

wk,d
m,n ∗ C3di+m,j+n + bk

)
(5)

Layers 3, 4 and 5 a similar process than Layer 2. A max-pooling filtering
followed that two convolutional stages along with their respective linear rectifi-
cation. In brief, for Layer 3 :

S2ki,j = max
( C4k2i,2j C4k2i+1,2j

C4k2i,2j+1 C4k2i+1,2j+1

)
(6)

with size (X/4) is convolved with 128 × 128 kernels with size 3 × 3 kernel in
order to obtain 128 × 128 feature maps:

C5ki,j = σ

(
127∑
d=0

2∑
m=0

2∑
n=0

wk,d
m,n ∗ S2di+m,j+n + bk

)
(7)
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C6ki,j = σ

(
127∑
d=0

2∑
m=0

2∑
n=0

wk,d
m,n ∗ C5di+m,j+n + bk

)
(8)

For Layer 4, the max-pooling filtering on C6k is calculated as:

S3ki,j = max
( C6k2i,2j C6k2i+1,2j

C6k2i,2j+1 C6k2i+1,2j+1

)
(9)

The result with size (X/8) is convolved with 3 × 3 size 256 × 256 kernels to
obtain same number of rectified feature maps:

C7ki,j = σ

(
255∑
d=0

2∑
m=0

2∑
n=0

wk,d
m,n ∗ S3di+m,j+n + bk

)
(10)

C8ki,j = σ

(
255∑
d=0

2∑
m=0

2∑
n=0

wk,d
m,n ∗ C7di+m,j+n + bk

)
(11)

Last layer in contracting path takes as input C8k, and performances a down-
sampling to reduce the feature maps into 15 × 15 size (i.e. X/16), the filter is
given as:

S4ki,j = max
( C8k2i,2j C8k2i+1,2j

C8k2i,2j+1 C8k2i+1,2j+1

)
(12)

A 3 × 3 pair of kernels are considered to extract the deepest features, for
that purpose S4k is convolved with 512 kernels, and the result is once again
convolved with other 512 kernels, in both cases it is necessary to consider a
linear rectification to avoid negative numbers, these operations are given as:

C9ki,j = σ

(
511∑
d=0

2∑
m=0

2∑
n=0

wk,d
m,n ∗ S4di+m,j+n + bk

)
(13)

C10ki,j = σ

(
511∑
d=0

2∑
m=0

2∑
n=0

wk,d
m,n ∗ C9di+m,j+n + bk

)
(14)

In the Expanding Path: Layer 6 develops an un-pooling process by means
of nearest interpolation with an up-sampling factor of ↑2 for rows and columns.
In short, it repeats twice each row and column of the k-th feature map:

U1ki,j =
[C10k2i,2j C10k2i,2j
C10k2i,2j C10k2i,2j

]
(15)

U1k makes that the k-th feature map increase its size to X/8. Layers 6 and
4 are merged such as a concatenation process, i.e.:

M1ki,j =
[U1ki,j ; C8ki,j

]
(16)
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M1k consists of 768 × 768 feature maps. In Layer 7, M1k is in the first
instance convolved with 256×256 kernels with a size of 3×3, each of the results
is rectified in order to avoid negative numbers:

C11ki,j = σ

(
255∑
d=0

2∑
m=0

2∑
n=0

wk,d
m,n ∗ M1di+m,j+n + bk

)
(17)

C12ki,j = σ

(
255∑
d=0

2∑
m=0

2∑
n=0

wk,d
m,n ∗ C11di+m,j+n + bk

)
(18)

Afterwards, (18) is up-sampling with a ↑2 factor in order to increase the
feature maps to an X/4 size:

U2ki,j =
[C12k2i,2j C12k2i,2j
C12k2i,2j C12k2i,2j

]
(19)

Outflows of Layers 7 and 3 are concatenated as:

M2ki,j =
[U2ki,j ; C6ki,j

]
(20)

M2k consists of 384 × 384 feature maps. Layers 8 and 9 follow a similar
processing than Layer 7 ; but with a decreasing of feature maps number. In this
regard, for Layer 8 :

C13ki,j = σ

(
127∑
d=0

2∑
m=0

2∑
n=0

wk,d
m,n ∗ M1di+m,j+n + bk

)
(21)

C14ki,j = σ

(
127∑
d=0

2∑
m=0

2∑
n=0

wk,d
m,n ∗ C13di+m,j+n + bk

)
(22)

U3ki,j =
[C14k2i,2j C14k2i,2j
C14k2i,2j C14k2i,2j

]
(23)

U3k makes that all feature maps increase their size to X/2. U3k is concate-
nated with C4k, the output implies 192 × 192 features maps:

M3ki,j =
[U3ki,j ; C4ki,j

]
(24)

For Layer 9 :

C15ki,j = σ

(
63∑
d=0

2∑
m=0

2∑
n=0

wk,d
m,n ∗ M3di+m,j+n + bk

)
(25)

C16ki,j = σ

(
63∑
d=0

2∑
m=0

2∑
n=0

wk,d
m,n ∗ C15di+m,j+n + bk

)
(26)
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U4ki,j =
[C16k2i,2j C16k2i,2j
C16k2i,2j C16k2i,2j

]
(27)

Last up-sampling process U4k makes that all feature maps increase their size
to X. U4k is concatenated with C2k:

M4ki,j =
[U4ki,j ; C2ki,j

]
(28)

M4k implies 96× 96 features maps, these are convolved with 32× 32 kernels
with size 3 × 3:

C17ki,j = σ

(
31∑
d=0

2∑
m=0

2∑
n=0

wk,d
m,n ∗ M4di+m,j+n + bk

)
(29)

C18ki,j = σ

(
31∑
d=0

2∑
m=0

2∑
n=0

wk,d
m,n ∗ C17di+m,j+n + bk

)
(30)

Last convolution layer convolves C18k with 32 kernels of size 1×1, the linear

activation function is replaced by a Sigmoid one, σ(x) =
1

1 + exp−x
; this function

lets to highlight the region of interest (region to be segmented) in the segmented
image X̌, since it squashes to C18k into the range [0, 1]. In this way:

X̌i,j = σ

(
31∑
d=0

1∑
m=0

1∑
n=0

wk,d
m,n ∗ C18di+m,j+n + bk

)
(31)

The segmented image X̌ has a size 240 × 240 such as the input image X.
Expressions (1) to (31) let us to depict how CNNs follow a hierarchical processing
to extract specific features in order to detect and segment specific regions; in this
case, brain tumors.

3 Deep Learning Systems for Brain Image Segmentation

3.1 Proposed Parallel System for Brain Tissues Segmentation

Conventionally, it may be assumed that different tissues can be found in a MRI
slice: (1) White Matter (WM), (2) Gray Matter (GM), (3) Cerebral Spinal Fluid
(CSF) and (4) Abnormalities (ABN). Nevertheless, it should be clarified that
depending on the slice, not all regions may be present or the magnitude of their
presence will be variant. In order to develop an automatic soft tissues recognition
and their segmentation we suggest the system depicted in Fig. 2; it is basically
comprised by four U-Nets models trained to work on a specific soft. After each
tissue segmentation, it is necessary to perform the joint area representation by
means of a method that determines appropriately the target and background
region. From following rules [26], it is possible to perform the fusion of the
segmented tissues, the background fusion, as well as the fusion of the detected
and regions:
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1. If R1 and R2 do not intersect, two regions are formed in the representation
of joint area, that is R3

1 = R1 and R3
2 = R2.

2. If R1 and R2 are partly intersected, three regions are formed in the represen-
tation of joint area, that is R3

1 = R1 ∩ R2, R3
2 = R1 − R3

1, R3
3 = R2 − R3

1.
3. If there is an area that is completely include, such as R1 ⊂ R2, then two

regions are formed in the representation of joint area, that is R3
1 = R2 and

R3
2 = R2 − R3

1.

Fig. 2. Parallel deep learning system for tissues segmentation.

The operation of proposed scheme is quite intuitive, in the first instance any
slice of a study must be entered into the system, then a binary segmentation is
developed by each U-Net model. That is, all of them have to identify the pixels
that correspond to the tissue for which it was trained, and therefore must be
able to segment it. After that, the binary segmented images are merged in order
to obtain the final segmentation. Two remarks must be stated: (1) Depending
on the slice number, the different tissues should appear; in this situation, if
the input image does not contain certain specific tissue, the U-Net in charge
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of segmenting it will return the corresponding label to the background of the
image as a result. (2) If the study corresponds to a healthy patient, then there
will be no abnormality or tumor, in the same way as in the previous remark,
the result should be the label of the image background. This adaptive capacity
of the proposed scheme allows it to be able to segment all slices of a complete
medical study, automatically and without human assistance.

3.2 Proposed Cascade System for Brain Tumors Segmentation

To address the automatic brain tumor segmentation in multimodal MRI of high-
grade (HG) glioma patients, a variation of the proposed previous system should
be considered, since the information provided by the tissues is not sufficient to
detect and segment correctly a brain tumor. In this regard, other modalities T1,
T1 contrast-enhanced, T2 and Flair must be taking into account. How it was
stated in [27], Enhancing Tumor (ET) structure is visible in T1ce, whereas the
Tumor Core (TC) is in T2, and Whole Tumor (WT) by means of FLAIR. In
view of this, the proposal to detect an segment these sub-regions is illustrated
in Fig. 3.

Fig. 3. Cascade deep learning system for tumor segmentation.

As can be seen, these is an U-Net trained for segmenting a specific glioma
sub-region; then, the binary outputs are fused to reshape whole brain tumor,
based on three rules stated in Subsect. (3.1). It is necessary to point out that
although both methods are based on the same deep neural network, they cannot
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be used alternately, since the first model must be trained to identify and segment
the soft tissues of the brain, while the second is trained to detect and segment
the sub-regions of the gliomas and therefore reconstruct a brain tumor. As is
well known, CNNs from the input information but with a specific objective.

4 Experimental Setup

4.1 Data

In this research paper, it was considered BraTS2017 database. In specific, 210
pre-operative MRI scans of subjects with glioblastoma (GBM/HGG) were used
for training and 75 scans of subjects with lower grade glioma (LGG) were used
for testing the proposed system. Each study has RMIs in modalities T1, T1ce,
T2 and Flair, as well as their respective ground truth images, for each modality
there are 155 images of 8-bits with a size of 240 × 240 pixels.

4.2 Training

In order to obtain the best results in the test phase it is suggested for BraTS2017
database: a) gray-scale of 8− bits, b) TIFF image format, c) Adaptive Moment
Estimation (ADAM) optimization method, d) 1000 epochs and e) learning rate
of 0.001.

4.3 Evaluation

In order to evaluate quantitative and objectively the image segmentation perfor-
mance as well as the robustness three metrics were considered in this study. To
measure the segmentation accuracy, we used the Misclassification Ratio (MCR),
which is given by:

MCR =
misclassified pixels

overall number of pixels
× 100 (32)

where, the values can ranges from 0 to 100, a minimum value means better
segmentation. Dice Similarity Coefficient is used to quantify the overlap between
segmented results with ground-truth; it is expressed in terms of true positives
(TP ), false positives (FP ), and false negatives (FN) as:

Dice =
2 · TP

2 · TP + FP + FN
(33)

where TP + FP + TN + FN = number of brain tissue pixels in a brain MR
image. In this metric a higher value means better agreement with respect to
ground-truth. In addition to stated metrics, the Intersection-Over-Union (IOU)
metric was also considered. This is defined by:

IOU =
TP

TP + FP + FN
(34)

The IOU metric takes values in [0, 1] with a value of 1 indicating a perfect
segmentation.



Deep Learning Systems for Automated Segmentation 11

5 Results and Discussion

5.1 Tissues Segmentation

A convincing way to know the true performance of the proposed method is to
subject it to the task of tissues segmentation of real brain magnetic resonance
images. In this regard, the first experiment is related with the segmentation
of images with modalities T1, T1ce, T2 and Flair taken from the BraTS-2017
database; specifically, the Low-grade Gliomas Brats17 TCIA 420 1 study.

The performance of the proposed Parallel and Cascade Deep Learning Sys-
tems (for convenience they will be identified as P-DLS and C-DLS, respectively)
is compared with other methods designed to segment brain tissues, which were
mentioned previously in the introductory section, such as the Chaotic Firefly
Integrated Fuzzy C-Means (C-FAFCM) [2], Discrete Cosine Transform Based
Local and Nonlocal FCM (DCT-LNLFCM) [4], Generalized Rough Intutionis-
tic Fuzzy C-Means (GRIFCM) [3], Particle Swarm Optimization - Kernelized
Fuzzy Entropy Clustering with Spatial Information and Bias Correction (PSO-
KFECSB) [7]. All of them were implemented in the MATLAB R2018a envi-
ronment, while for ours we used CUDA+CuDNN+TensorFlow+ Keras, that
is, conventional frameworks and libraries for Deep Learning, as well as a GPU
Nvidia Titan X.

The quantitative evaluation was done considering the MCR, Dice and IOU
metrics. A summary of these is presented in Table 1. The numerical results reveal
a superior performance of the segmentation method proposed in all the metrics
considered, as well as all exposition modalities.

Table 1. Average performance on Brats17 TCIA 420 1 study.

Modality Metric C-FAFCM DCT-LNLFCM GRIFCM PSO-KFECSB P-DLS

T1 MCR 8.042 8.991 9.274 10.181 7.132

Dice 0.899 0.892 0.879 0.827 0.915

IOU 0.911 0.905 0.880 0.840 0.924

T1ce MCR 8.937 10.412 10.402 11.698 7.388

Dice 0.891 0.864 0.853 0.814 0.908

IOU 0.895 0.868 0.853 0.818 0.911

T2 MCR 9.294 9.500 9.638 10.487 7.491

Dice 0.886 0.846 0.876 0.805 0.907

IOU 0.894 0.855 0.877 0.814 0.914

Flair MCR 9.743 10.797 9.015 11.321 7.621

Dice 0.872 0.800 0.862 0.783 0.899

IOU 0.880 0.809 0.863 0.792 0.905
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Fig. 4. Tissues segmentation sample results of Brats17 TCIA 420 1 study.
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A sample image and the segmentation provided by all algorithms evaluated in
this experiment are depicted in Fig. 4, it is possible to see that just the proposed
algorithm was able to segment images with different modalities. On the other
hand, all the other methods presented problems of loss of information in the
segmented regions, and in some cases they were not even able to segment the
images in the 4 established regions. In brief, a good segmentation of the images
in these modalities can guarantee the identification and segmentation of brain
tumors.

5.2 Tumor Segmentation

Second experiment is related with Multimodal Brain Tumor Segmentation, with
the aim to detect and segment the sub-regions: ET, WT and TC. In this respect,
the proposed cascade system is used (see Fig. 3). In order to make a compari-
son of system performance, some methods based on deep learning are considered;
particularly, Multi-dimensional Gated Recurrent Units for Brain Tumor Segmen-
tation (MD-GRU-BTS) [10], Masked V-Net (MV-N) [11], 3D Deep Detection-
Classification Model (3DDD-CM) [12], Ensembles of Multiple Models and Archi-
tectures (EMMA) [13] and Deep U-Net (DU-N) [14]. The quantitative evaluation
is made from the studies CBICA ATX 1 and TCIA 639 1 considering the met-
rics established previously, a summary of the obtained results is given in Table
2 and Table 3, respectively.

Table 2. Average performance on the CBICA ATX 1 study.

Approach ET WT TC

MCR Dice IOU MCR Dice IOU MCR Dice IOU

MD-GRU-BTS 10.762 0.833 0.872 12.213 0.797 0.822 10.409 0.841 0.856

MV-N 11.531 0.793 0.811 12.639 0.757 0.774 10.756 0.831 0.834

3DDD-CM 14.028 0.768 0.860 14.657 0.734 0.784 12.687 0.783 0.792

EMMA 15.451 0.709 0.745 15.633 0.675 0.702 13.748 0.732 0.740

DU-N 12.553 0.755 0.816 13.855 0.755 0.767 12.457 0.778 0.790

C-DLS 10.182 0.863 0.882 11.511 0.835 0.846 9.585 0.876 0.889

Table 3. Average performance on the TCIA 639 1 study.

Approach ET WT TC

MCR Dice IOU MCR Dice IOU MCR Dice IOU

MD-GRU-BTS 11.809 0.810 0.842 12.440 0.768 0.776 12.648 0.826 0.843

MV-N 11.934 0.789 0.830 13.279 0.753 0.765 14.010 0.820 0.846

3DDD-CM 13.183 0.747 0.787 15.404 0.704 0.704 13.141 0.771 0.784

EMMA 12.981 0.689 0.704 14.851 0.654 0.681 11.153 0.772 0.819

DU-N 14.238 0.753 0.784 15.901 0.752 0.756 18.270 0.763 0.774

C-DLS 10.227 0.841 0.850 11.877 0.826 0.829 10.119 0.875 0.869
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The numerical results reveal a superior performance of the segmentation
method proposed in all the metrics considered for three tumor sub-regions.
In brief, for CBICA ATX 1 study the proposed system obtained 9.585 ≤
MCR ≤ 11.511, 0.835 ≤ Dice ≤ 0.876 and 0.846 ≤ IOU ≤ 0.889; whilst
for other study results showed a slight change, i.e. 10.119 ≤ MCR ≤ 11.877,
0.875 ≤ Dice ≤ 0.826 and 0.829 ≤ IOU ≤ 0.869. Although all the methods
evaluated are based on the use of deep neural networks, the fusion of informa-
tion that we consider in our proposal helped to increase its performance. To
ratify and illustrate the quantitative results obtained, it can be seen in Fig. 5,
samples 71 of the first study and 127 of the second study, where a segmentation
closer to ground-truth can be seen. It can also be seen that some of the com-
parative methods could not correctly identify and segment the three sub-regions
considered.

Fig. 5. Tumor segmentation sample results of CBICA ATX 1 and TCIA 639 1 studies.
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6 Conclusions and Future Improvements

Based on the U-Net CNN, it was introduced a parallel system to detect and
segment tissues on RMIs with different modalities; considering the same idea, a
cascade version was proposed to detect and segment brain tumors. Both systems
were enhanced by means three fusion rules in order to do a better job. The first
proposal was able to segment different modalities of real RMI images degraded
inherent noise densities. Instead, the second proposal was able to detect and
segment the ET, WT and TC sub-regions of a brain tumor, with a superior
performance than all comparative methods. As future work, we will consider
proposing a deep neural network that can perform both tasks simultaneously.
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