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Abstract. In a recent paper, Dobronravov et al. (“On the length of
of shortest strings accepted by two-way finite automata”, DLT 2019)
prove that the shortest string in a language recognized by an n-state
two-way finite automaton (2DFA) can be at least 7n/5 − 1 symbols long,
improved to 10n/5−1 = Ω(1.584n) in their latest contribution. The lower
bound was obtained using “direction-determinate” 2DFA, which always
remember their direction of motion at the last step, and used an alphabet
of size Θ(n). In this paper, the method of Dobronravov et al. is extended
to a new, more general class: the semi-direction-determinate 2DFA. This
yields n-state 2DFA with shortest strings of length 7n/4−1 = Ω(1.626n).
Furthermore, the construction is adapted to use a fixed alphabet, result-
ing in shortest strings of length Ω(1.275n). It is also shown that an n-
state semi-direction-determinate 2DFA can be transformed to a one-way
NFA with O( 1√

n
3n) states.

1 Introduction

The length of the shortest string in a language is a natural descriptional com-
plexity measure. For one-way nondeterministic finite automata (1NFA) with n
states, this length is at most n − 1, as the length of the shortest part to an
accepting state. For other models, the same question turns out to be much more
interesting. The length of shortest strings not accepted by an n-state 1NFA was
studied by Ellul et al. [5]; Alpoge et al. [1] studied shortest strings in intersec-
tions of deterministic one-way automata (1DFA); Chistikov et al. [2] investigated
the same question for counter automata. The length of shortest strings in formal
grammars was estimated by Pierre [11].

For deterministic two-way finite automata (2DFA) with n states, it is no
surprise that the shortest string can be of length exponential in n: the well-
known result by Kozen [9] on the PSPACE-completeness of their emptiness
problem implicitly relies on this fact. At the same time, an exponential upper
bound on this length is given by transforming a 2DFA to a one-way nonde-
terministic automaton (1NFA) by the method of Kapoutsis [7], which yields(

2n
n+1

)
= Θ( 1√

n
4n) states. Therefore, the length of the shortest string is less

Research supported by Russian Science Foundation, project 18-11-00100.

c© Springer Nature Switzerland AG 2020
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than 4n. Overall, the longest length of a shortest string is of the order Θ(1)n,
with the base of exponentiation bounded by 4. The question is, what is the exact
base?

This question was first addressed in a recent paper by Dobronravov et al. [3],
who proposed a method for constructing 2DFA with long shortest strings. Their
method is based on taking a small base 2DFA with k states and a shortest string
of length � − 1, and then constructing n-state 2DFA that simulate the base
automaton on multiple levels for different subsets of the alphabet, ultimately
obtaining a shortest string of length Ω(( k

√
�)n). The base 2DFA must belong to

a subclass of direction-determinate 2DFA; these are automata that remember the
direction of the last transition in their state. Dobronravov et al. [3,4] presented
a base 2DFA with 5 states and with a shortest string of length 9, leading to
n-state 2DFA with shortest strings of length Ω(( 5

√
10)n) � Ω(1.584n).

The method of Dobronravov et al. [3] relies on finding sophisticated small
automata, and the direction-determinance requirement makes it complicated.
Furthermore, the n-state 2DFA constructed are also direction-determinate, and
since it is known that every n-state automaton from this class can be transformed
to an equivalent 1NFA with only

(
n

�n/2�
)

= Θ( 1√
n
2n) states [6], this method

cannot possibly provide shortest strings of length 2n or more.
This paper presents an improvement to the method of Dobronravov et al. [3],

based on relaxing the condition of direction-determinacy. A more general class
of semi-direction-determinate two-way automata is introduced, and it is shown
that small examples from this class can be used to construct n-state 2DFA with
shortest accepted strings of exponential length. An example of a 3-state semi-
direction-determinate 2DFA with a shortest string of length 3 is presented in
Sect. 3: to compare, a 3-state direction-determinate 2DFA cannot have shortest
string longer than 2 symbols. In Sect. 4, the construction of Dobronravov et al. [3]
is generalized to support semi-direction-determinate automata.

The original construction uses an alphabet of size linear in n, the new con-
struction may use exponentially many symbols. In Sect. 5, the construction is
improved to use a fixed alphabet independent of n, at the expense of obtaining
shorter longest strings.

The resulting new lower bounds on the length of shortest strings are presented
in Sect. 6. The constructions are based on a provided example of a 4-state semi-
direction-determinate 2DFA with a shortest string of length 6. This leads to
n-state 2DFA over a growing alphabet with shortest strings of length Ω(1.626n)
and 2DFA over a fixed alphabet with shortest strings of length Ω(1.275n).

The last result of this paper is a transformation of n-state semi-direction-
determinate 2DFA to 1NFA with O( 1√

n
3n) states.

2 Definitions

Definition 1. A nondeterministic two-way finite automaton (2NFA) is a quin-
tuple A = (Σ,Q,Q0, δ, F ), in which:
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– Σ is a finite alphabet, the tape is bounded by a left end-marker � /∈ Σ, and a
right end-marker � /∈ Σ;

– Q is a finite set of states;
– Q0 ⊆ Q is the set of initial states;
– δ : Q×(Σ∪{�,�}) → 2Q×{−1,+1} is the transition function, which specifies all

possible transitions in a certain state while observing a certain tape symbol;
– F ⊆ Q is the set of accepting states, effective at the right end-marker �.

On an input string w ∈ Σ∗, a 2NFA operates on a read-only tape containing
this string enclosed within end-markers (�w�). It begins its computation in any
initial state at the left end-marker (�). At every step, when A is in a state q ∈ Q
and observes a symbol a ∈ Σ ∪ {�,�}, the transition function δ(q, a) provides
a set of pairs (q′, d) of the next state q′ and the direction of head’s motion,
d ∈ {−1,+1}. If any sequence of nondeterministic choices leads the automaton
to an accepting state while at the right end-marker (�), then the string is said
to be accepted.

The set of all accepted strings, denoted by L(A), is the language recognized
by the 2NFA.

Other types of finite automata are obtained by restricting 2NFA. An automa-
ton is deterministic (2DFA), if |Q0| = 1 and |δ(q, a)| � 1 for all q and a. An
automaton is direction-determinate [10], if, for every state q ∈ Q, all transitions
to q move the head in the same direction d(q) ∈ {−1,+1}.

In a one-way automaton (1DFA or 1NFA), all transitions move its head to
the right, so that the automaton makes a single left-to-right pass, accepting or
rejecting in the end. End-markers are of no use in one-way automata, and are
usually omitted from the definition.

Theorem A (Kapoutsis [7]). For every n-state 2NFA, there exists a 1NFA
with

(
2n
n+1

)
= Θ( 1√

n
4n) states, which recognizes the same language.

Since a k-state 1NFA cannot have a shortest accepted string of length greater
than k − 1, this has the following implication.

Corollary B For every n-state 2NFA, the length of the shortest string it accepts
is at most

(
2n
n+1

) − 1.

For direction-determinate automata, the bound in Theorem A is reduced by
adapting the method of Kapoutsis [7] to produce fewer states. Accordingly, the
length of their shortest strings cannot exceed the following bound.

Theorem C (Geffert and Okhotin [6]). For every n-state direction-
determinate 2NFA, there is a 1NFA with

(
n

�n/2�
)

= Θ( 1√
n
2n) states that rec-

ognizes the same language.

As far as shortest strings are concerned, 2DFA have the same power as 2NFA.

Theorem D (Dobronravov et al. [3]). For every n-state 2NFA, there exists
an n-state 2DFA with the shortest string of the same length.

The construction increases the size of the alphabet by a factor of nn.
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а1 a2 а1 а3 аа1 a2 а1

Ω(1.414n)

Fig. 1. (left) A 3-pass 2DFA with 2 ·3 states and with a shortest string of length 23−1;
(right) the base automaton.

3 Shortest Strings in 2DFA

Two-way automata with n states and with the shortest string of length expo-
nential in n can be constructed by the following simple method.

Example E ([3]). Assume that n = 2k, with k odd, and let the alphabet be Σk =
{a1, . . . , ak}. Consider a 2DFA that makes k passes over the string. At the first
pass, the automaton regards all symbols a2, . . . , ak as separators, and verifies that
there is at least one symbol a1 between every two separators. Similarly, at each
i-th pass, the symbols ai+1, . . . , ak are regarded as separators, and the automaton
checks that there is at least one symbol ai between every two separators. Each
pass uses two states, and the shortest accepted string is of length 2k − 1.

For k = 3, the computation of the resulting 6-state automaton is illustrated
in Fig. 1(left).

This yields automata with shortest strings of length 2n/2 − 1. Together with
Corollary B, this example shows that the longest length of the shortest string
accepted by an n-state 2DFA is of the order Θ(1)n, where the base is between
1.414 and 4. The question is, what is the exact base?

The method of constructing 2DFA with longer shortest accepted strings,
invented by Dobronravov et al. [3], begins with the following interpretation of
Example E. At each i-th pass, counting up to two can be regarded as a sim-
ulation of a 1DFA presented in Fig. 1(right) on the symbols ai. Any symbols
{a1, . . . , ai−1} encountered are ignored, that is, the 2DFA continues moving with-
out changing its state. For any separator from {ai+1, . . . , ak,�,�}, the 2DFA
checks that the currently simulated instance of the 1DFA is in an accepting
state, and restarts the simulation in anticipation of the next substring enclosed
between two separators.

Dobronravov et al. [3] extended this idea to use a direction-determinate 2DFA
as a base automaton. Direction-determinance is essential for the following rea-
son: when the constructed automaton is at an i-th pass simulating the original
automaton’s being in a state q, and it scans one of the symbols a1, . . . , ai−1

that it is expected to skip, it knows that the state q is reachable only from the
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Fig. 2. (left) A 3-state 2DFA with a shortest string of length 3; (right) the equivalent
1DFA.

direction d(q), and therefore can determine the direction in which to proceed: it
will be d(q) for i odd and −d(q) for i even.

The other component of the proof of Dobronravov et al. [3] is a single exam-
ple of a 5-state direction-determinate 2DFA with a shortest string of length 9.
Iterating it in the same way as in Example E yields a family of n-state 2DFA
with shortest accepted strings of length 10n/5 − 1 = Ω(1.584n) [3].

This paper extends the method of Example E beyond direction-determinate
base automata. The new, less restrictive family of base automata is best illus-
trated by the following small specimen.

Example 1. Let A be a 2DFA over the alphabet Σ = {a, b}, with the states Q =
{p, q, r}, where p is initial and r is accepting, and with the following transitions:

δ(p,�) = (p,+1),
δ(p, a) = (p,+1), δ(q, a) = (r,+1),
δ(p, b) = (q,−1), δ(r, b) = (q,+1).

The shortest string accepted by A is w = aba, as illustrated in Fig. 2(left). To
see that w is indeed the shortest string accepted by A, it is sufficient to transform
this automaton to the minimal equivalent partial 1DFA, which is presented in
Fig. 2(right). The shortest string is clearly visible in the figure.

The above automaton is not direction-determinate, since the state q is enter-
able both from the left and from the right. The new notion of semi-direction-
determinate automata allows such states, but imposes special restrictions on each
of them. This new type of automata, which generalizes direction-determinate
automata, is defined as follows.

Definition 2. A 2DFA (Σ,Q, q0, δ, F ) is called semi-direction-determinate, if
there exists a partial function d : Q → {−1,+1}, such that:

1. every transition δ(p, a) = (q, d) leading to a state q with d(q) defined moves
the head in the prescribed direction d = d(q);

2. whenever a transition δ(p, a) = (q, d) leads to a state q with d(q) undefined,
the transition δ(q, a) may either proceed to (q, d), or be undefined.

The 2DFA in Example 1 is semi-direction-determinate, with d(p) = d(r) =
+1 and d(q) undefined. Transitions leading to q are δ(p, b) = (q, −1), and
δ(r, b) = (q,+1); since δ(q, b) is undefined, these transitions are allowed.
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а1 b1 а1 а1 b1 а1а2 а1 b1 а1b2 а1 b1 а1а2
p1
q1
r1
p2
q2
r2

Fig. 3. A 2NFA obtained by iterating the semi-direction-determinate 2DFA in Exam-
ple 1 twice, as it accepts its shortest string.

It turns out that the condition of semi-direction-determinance is sufficient to
iterate the example in generally the same way as in Fig. 1, and thus to obtain
longer shortest strings than presented by Dobronravov et al. [3].

4 Iterating Semi-direction-determinate Automata

The proposed new construction of two-way finite automata, given below, actually
produces a nondeterministic automaton, which is then processed by Theorem D.
A 2NFA obtained in this way, along with its shortest string, is illustrated in
Fig. 3.

Lemma 1. Let A = (Σ,Q, qinit, δ, F ) be a semi-direction-determinate 2DFA
with k states, which satisfies a further technical condition: for every state q ∈ Q,
if δ(q,�) is defined, then d(q) = −1, and if δ(q, �) is defined or q ∈ F , then
d(q) = +1. Let � − 1 be the length of the shortest string accepted by A. Then,
for every odd number m � 3, there exists a km-state 2NFA Bm, defined over an
alphabet of size m · |Σ|, with the shortest accepted string of length �m − 1.

Proof. Let Q = Q+1 ∪ Q−1 ∪ Q? be A’s set of states, where Q+1 = { q |
d(q) = +1 }, Q−1 = { q | d(q) = −1 } and Q? = { q | d(q) is not defined }. The
new 2NFA Bm is defined over the alphabet Ω =

⋃m
i=1 Σi, where Σi = { ai |

a ∈ Σ }. It makes m passes over the input. At an i-th pass, with i ∈ {1, . . . , m},
it sees its tape as �u0#1u1#2 . . . #nun�, where #1, . . . ,#n ∈ {ai+1, . . . , am}
are separators and u0, . . . , un ∈ (Σ1∪ . . .∪Σi)∗ are the substrings they separate.

The substrings are processed one by one, from left to right for odd i, and
from right to left for even i. For each string uj , the automaton Bm simulates the
computation of A on that string (if i is odd) or on its reverse (if i is even), taking
into account only symbols ai, with a ∈ Σ. All other symbols aj , with j < i and
a ∈ Σ, are ignored by passing over them without changing the state: for states q
with d(q) defined, the new automaton knows in which direction to proceed; and
if d(q) is undefined, then the automaton moves nondeterministically in either
direction.
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Each symbol #t separates ut−1 from ut, and when the automaton Bm reaches
this symbol in a state qi, it is expected to simulate the computation of A on
an end-marker. By the technical assumption, A may have a transition or accep-
tance there only if d(q) is defined, and B knows from d(q), whether it currently
simulates A on ui−1 or on ui.

The automaton Bm uses the set of states Qm = { qi | q ∈ Q, i ∈ {1, . . . , m} }.
A state qi means simulating A in the state q ∈ Q at the i-th pass. At odd-
numbered passes, the substrings u0, . . . , un are processed from left to right, and
from right to left at even-numbered passes. Let d(i) be the general direction of
traversal at the i-th pass: d(i) = +1 for odd i and d(i) = −1 for even i.

The automaton Bm is constructed as semi-direction-determinate, with
d(qi) = d(q) · d(i) if d(q) is defined, and d(qi) undefined if so is d(q).

Let the initial transition of A be δ(qinit,�) = r. Then, the initial state of Bm

is qinit1 , with the following initial transition.

δ′(qinit1 ,�) = (r1,+1) (1a)

At every i-th pass, with i ∈ {1, . . . , m}, each A’s transition δ(q, a) = (r, d), with
a ∈ Σ and q, r ∈ Q, is implemented in Bm by the following transition on the
symbol ai with a matching subscript.

δ′(qi, ai) = (ri, d · d(i)) (1b)

Each lesser symbol aj , with j < i and a ∈ Σ, is ignored by continuing in the
same direction. Whenever Bm simulates A in a state q with the direction d(q)
defined, it knows in which direction to proceed.

δ′(qi, aj) = (qi, d(q) · d(i)), for q ∈ Q, d(q) is defined, j < i, a ∈ Σ (1c)

If d(q) is undefined, the automaton Bm can move in either direction nondeter-
ministically (and this is the only place where Bm uses its nondeterminism).

δ′(qi, aj) =
{
(qi,+1), (qi,−1)

}
, for q ∈ Q, d(q) undefined, j < i, a ∈ Σ (1d)

Following these transitions, the automaton can freely move over a substring
x ∈ (Σ1 ∪ . . . ∪ Σi−1)∗ in a state qi. If Bm ever crosses this substring, then it
correctly simulates one transition of A. If it returns to the symbol ai from which
it entered x, then, by the definition of semi-direction-determinancy, it cannot
proceed anywhere else except back into x in the same state qi. For this rea-
son, regardless of the nondeterministic choices it makes, Bm can either continue
simulating A, or loop.

Next, let ci and $i be the end-markers at which the i-th pass begins and
ends, respectively (ci = � and $i = � for i odd, and vice versa for i even). For
each A’s transition δ(q,�) = (r,+1) for turning at the left end-marker, with
q 	= qinit, the new automaton executes the same turn on any separator symbols.

δ′(qi, s) = (ri, d(i)), for s ∈ {ci} ∪ Σi+1 ∪ . . . ∪ Σm (1e)
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Each turn at the right end-marker, δ(q,�) = (r,−1), is implemented similarly.

δ′(qi, s) = (ri,−d(i)), for s ∈ {$i} ∪ Σi+1 ∪ . . . ∪ Σm (1f)

If q ∈ F is an accepting state of A, effective at the right end-marker (�), then Bm

moves on to the next block through a separator symbol: if the initial transition is
δ(qinit,�) = (r,+1), it goes through the separator in the state r, thus simulating
the end of one computation and the beginning of another.

δ′(qi, s) = (ri, d(i)), for s ∈ Σi+1 ∪ . . . ∪ Σm (1g)

When Bm finishes processing the last block at its i-th pass, it proceeds to the
next pass.

δ′(qi, $i) = (ri+1, d(i + 1)) (i < m) (1h)

For i = m, the automaton Bm accepts; accordingly, its set of accepting states is
F ′ = {qm}.

Note that, by the technical assumption, case (1e) is possible only for d(q) =
−1, whereas cases (1f–1h) require d(q) = +1 and are mutually exclusive. Hence,
at most one of these transitions may be defined.

The language recognized by this automaton is expressed as follows. For each
i ∈ {0, 1, . . . ,m}, let Li ⊆ (Σ1 ∪ . . . ∪ Σi)∗ be the language representing all
substrings, on which the computation of A is successfully simulated at the i-th
pass. Then, L0 = {ε}, Li =

⋃
a(1)...a(n)∈L(A) Li−1a

(1)
i Li−1a

(2)
i Li−1 . . . a

(n)
i Li−1

for odd i, and symmetrically for even i. The automaton Bm recognizes exactly
Lm, and the length of the shortest string therein is �m − 1. The proof is omitted
due to space constraints. 
�

It is also worth note that, once the transformation in Theorem D is applied
to the 2NFA produced by Lemma 1, the resulting 2DFA is semi-direction-
determinate.

For the 3-state base automaton in Example 1, with a shortest string of length
3, Lemma 1 yields a lower bound Ω(4n/3) = Ω(1.587n) for a growing alphabet.
This already improves over the previously known result.

5 Encoding in a Fixed Alphabet

Example E, as well as all other constructions of DFA with exponentially long
shortest accepted strings known to date, essentially rely on using an alphabet
that grows with n. The construction by Dobronravov et al. [3] uses an alphabet
of size Θ(n); the new construction in Lemma 1 provides a 2NFA using Θ(n)
symbols, which is then turned to a 2DFA with exponentially many symbols.

For a fixed alphabet, no results on the length of shortest accepted strings are
known yet. The first such result shall now be presented. This is an adaptation
of the construction in Lemma 1, in which every symbol aj is replaced by an
encoding over a fixed alphabet; a new 2DFA carries out a computation simular
to the one in Lemma 1. It uses twice as many states as in the original version,
resulting in a weaker lower bound.
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Lemma 2. Let A = (Σ,Q, qinit, δ, F ) be a k-state semi-direction-determinate
2DFA that satisfies the conditions of Lemma 1. Let � − 1 be the length of its
shortest string. Then, for every even number m � 2, there exists a (2(m− 1)k +
3
2m − 1)-state 2NFA Cm, defined over an alphabet with 2|Σ| + 1 symbols, with
the shortest accepted string of length at least �m.

Proof (a sketch). Given a base semi-direction-determinate 2DFA over an alpha-
bet Σ, the new 2NFA uses the alphabet Ω = Σ±1 ∪ {s}, where Σ±1 = { ad |
a ∈ Σ, d ∈ {−1,+1} }. The strings in the original construction shall be encoded
by a homomorphism h, with h(a2j+1) = sja+1s

m−2−j for odd-numbered sym-
bols, and h(a2j+2) = sja−1s

m−2−j for even-numbered symbols.
The new 2DFA shall first check that the input string is a well-formed image

of some string, and then proceed with an m-pass simulation, using 2(m − 1)|Q|
states, cf. m|Q| states in Lemma 1. After the last pass, one more state is used
to move the head to the right end-marker.

Checking that an input string is an image under h takes a partial DFA with
3
2m − 2 states; the construction is easy. For the simulation, the 2DFA shall use
states of the form qi,d, where q ∈ Q, −(m2 −1) � i � m

2 −1 and d ∈ {−1,+1}. The
subscript d indicates the general direction of the current pass, that is, d = +1
for the first pass, d = −1 for the second pass, etc. The subscript i reflects the
number of the current pass whenever the automaton is at the first symbol of the
image of some symbol; as the automaton moves over the image, the subscript
i is in constant rotation: the automaton increments i whenever it moves to the
left, and decrements it when it moves to the right. Once i exceeds m

2 − 1, the
counting is wrapped to −(m2 − 1), and the other way around. This allows the
automaton to compare the number of the current pass to the number of the
encoded symbol.

The computation involves keeping track of several directions, and it order to
explain it more clearly, it shall be described for the case of a left-to-right pass in a
right-moving state. Having entered an image h(a2j+1) = sja+1s

m−2−j in a state
q−i,+1 with d(q) = +1, the automaton moves to the right while inrementing i at
every step, and arrives to the symbol a+1 in the state qj−i,+1. If j − i < 0, this
means that this symbol must be ignored, and the automaton proceeds further to
the right while incrementing i, entering the next image in the same state q−i,+1.

If j − i = 0, the automaton simulates the transition on a. If the original
automaton’s transition was δ(q, a) = (r, d(r)), then the new automaton moves
in the direction d(r) in the state r0+d(r),+1, and eventually moves out of the
image in the direction d(r) in the state r−i,+1.

If j−i > 0, the automaton treats this symbol as an end-marker and takes the
appropriate action. Since the automaton is now in a state qj−i,+1 with d(q) = +1,
this must be a right end-marker. If the original automaton had a transition
δ(q,�) = (r,−1), then the new automaton moves in the direction −1 in the
state rj−i−1,+1, and later reaches the first symbol of the image in the state
r−i,+1, leaving the image to the left. If the original automaton accepts in q, the
new automaton should proceed to the next substring to the right; accordingly,
if the initial transition is δ(qinit,�) = (r,+1), the new automaton moves to the
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right in the state rj−i+1,+1 and eventually leaves the image in the direction +1
in the state r−i,+1.

The full list of transitions is omitted due to space constraints. 
�
An immediate application of Lemma 2 yields the following result.

Theorem 1. Let A = (Σ,Q, q0, δ, F ) be a k-state semi-direction-determinate
2DFA with a shortest string of length � − 1, which satisfies the conditions of
Lemma 1. Then, there exists a fixed alphabet Γ, such that for every n, there
exists an n-state semi-direction-determinate 2DFA over Γ with a shortest string
of length at leas Ω(( 2k+3

2
√

�)n).

For instance, the automaton in Example 1 has k = 3 and � = 4, and Lemma 2
provides automata with 15

2 m − 7 states and with a shortest string of length �m.
For an n-state base automaton, the length of the shortest string is then of the
order Ω((42/15)n) = Ω(1.203n).

This can be improved by first iterating the base automaton using Lemma 1,
obtaining a larger base automaton, and only then applying Lemma 2.

Theorem 2. Let A = (Σ,Q, q0, δ, F ) be a k-state semi-direction-determinate
2DFA with a shortest string of length � − 1, which satisfies the conditions of
Lemma 1. Then, for every ε > 0, there exists an alphabet Γ, such that for
every n, there exists an n-state semi-direction-determinate 2DFA over Γ with a
shortest string of length at least Ω(( k

√
� − ε)n).

With this improvement, the base automaton in Example 1 provides shortest
strings of length Ω(( 6

√
4 − ε)n) = Ω(1.259n) over a fixed alphabet.

6 Automata with Longer Shortest Strings

The efficiency of the proposed method relies on finding small examples of semi-
direction-determinate 2DFA with long shortest accepting strings. Using a better
base example given below leads to further improvement.

Example 2. Let A be a 2DFA over the alphabet Σ = {a, b, c, d}, with the states
Q = {p, q, r, s}, where p is initial and s is accepting, and with transitions illus-
trated in Fig. 4. It is semi-direction-determinate with d(p) = d(q) = d(s) = +1
and d(r) undefined. The shortest string accepted by A is w = abcdbc, this can
be verified by transforming it to a 1DFA.

Corollary 1. For every n, there exists a semi-direction-determinate 2DFA over
an alphabet of size exponential in n, with a shortest string of length at least
Ω(7n/4) = Ω(1.626n).
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а b c d b c
p
q
r
s

Fig. 4. A 4-state 2DFA with a shortest string of length 6.

Corollary 2. For every n, there exists a semi-direction-determinate 2DFA over
a fixed alphabet, with a shortest string of length at least Ω(( 8

√
7 − ε)n) =

Ω(1.275n).

7 Transforming Semi-direction-determinate to One-Way

The method of Donbronravov et al. [3] can potentially provide automata with
shortest strings of length up to at most O( 1√

n
2n), since direction-determinate

2DFA can be transformed to 1NFA with this number of states. Although the
proposed new method is not subject to this limitation, it has its own limitations,
revealed by the following result.

Theorem 3. For every n-state semi-direction-determinate 2DFA there exists a
1NFA with

∑n−1
k=0

(
n
k

)(
n−k
k+1

)
= Θ( 1√

n
3n) states, which recognizes the same lan-

guage.

The construction is based on the known transformation of an arbitrary 2DFA
to an 1NFA by Kapoutsis [7], Upon reading a prefix u of an input string, the
1NFA remembers the states in which the 2DFA crosses the border between the
last symbol of u and the next symbol to the right. This is represented by a
pair (P,R), with P,R ⊆ Q and |P | = |R| + 1. It turns out that for a semi-
direction-determinate automaton, pairs (P,R) with P ∩ R 	= ∅ are useless and
can be omitted. The number of remaining pairs is

(
n
k

)(
n−k
k+1

)
for a fixed cardinality

|P | = k, and summation over all k yields the desired formula. This is a known
integer sequence, OEIS A005717 [12], and it is of the order Θ( 1√

n
3n).

8 Conclusion

This paper has made a new addition to the zoo of different variants of two-
way finite automata, such as sweeping, direction-determinate, halting, reversible,
nondeterministic, alternating, pebble, etc. Understanding the difference between
these variants is an important research subject; in particular, the relative size of
2NFA and 2DFA appears to be the key to solving the L vs. NL problem in the
complexity theory [8]. The length of the shortest string is a natural complexity
measure that may be useful to compare some of these models.

http://oeis.org/A005717
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Table 1. The known bounds on the length of shortest strings for subfamilies of 2DFA.

Family Lower bound Upper bound

Sweeping Ω(( 3
√

3)n) = Ω(1.442n)
(

n
�n/2�

)
= Θ( 1√

n
2n)

Direction-determinate Ω(( 5
√

10)n) = Ω(1.584n)
(

n
�n/2�

)
= Θ( 1√

n
2n)

Semi-direction-determinate Ω(( 4
√
7)n ) = Ω(1.626n ) O( 1√

n
3n )

All 2DFA, and also 2NFA Ω(( 4
√
7)n ) = Ω(1.626n )

(
2n
n+1

)
= Θ( 1√

n
4n)

The known lower and upper bounds on the length of shortest accepted strings
in n-state 2DFA from different subclasses are presented in Table 1. There is still
a long way to go to any precise answers.

Acknowledgement. The authors are grateful to the anonymous reviewers for careful
reading and for pertinent remarks.
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