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4 LITIS, Université de Rouen Normandie, Saint Etienne du Rouvray,

76830 Rouen, France
carla.selmi@univ-rouen.fr

Abstract. Given two pictures p and f , p is f -free if f is not a sub-
picture of p. A binary picture f is good if for any pair of f -free pictures
p and q there exists a bit-to-bit transformation from p to q such that
any picture in the intermediate steps is f -free. Such transformation is
called f -free transformation. A binary picture is bad if it is not good.
These notions generalize to pictures the corresponding ones for strings.
We study some properties of bad binary pictures in terms of overlaps
and give some examples. Furthermore, we discuss the properties of an
index of a bad picture f , that is a minimal picture size (h, k) for which
two pictures of such size do not admit a f -free transformation.
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1 Introduction

In combinatorics of strings the leading actors are all particular strings that gen-
erate interesting and useful patterns. Most of the pecularities of such strings are
based on specific attributes regarding their factors (substrings) or, more specifi-
cally, their prefixes and suffixes. Important properties can be found also studying
strings with overlap (also called bifix or border); they are often crucial to prove
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important structural properties as well as to design algorithms for coding or
pattern matching. Recall that, given a string s, an overlap of s is a substring x
that is both prefix and suffix of s.

An interesting notion is the one of good strings as defined for example in
[7]; they are special binary strings that never appear as factors in some string
transformations. More precisely, let Σ = {0, 1} and let f be a string over Σ. A
string w is said f -free if it does not contain f as factor. Given two f -free strings
u and v of the same length d, an f -free transformation from u to v is a succession
of f -free strings x1, x2, . . . , xn, n ≥ 1 such that x1 = u, xn = v and xi differs
from xi+1 only in one position (i.e. the Hamming distance between xi and xi+1

is 1). A string f is called d-good if for any pair of f -free words of length d there
exists an f -free transformation between them. A string is good if it s d-good for
any d while a string is bad if it is not good. The index of a word f is the smallest
integer d for which f is not d-good. Bounding the index of a word is useful to
test whether a given word is good or bad. In [7–11] the structure of bad words
is characterized and related to particular properties on overlaps.

Good strings are also called isometric because they are related to isometric
subgraphs of the n-cube Qn, that is the graph whose vertices consist of the
(binary) words of length n, two vertices being adjacent when the corresponding
words differ in exactly one symbol. Then an f -free transformation of a string
corresponds to a path in this graph through vertices corresponding to strings
that do not contain f . Moreover if f is good, then the subgraph Qn(f) of all
vertices corresponding to f -free strings is isometric to Qn. Such Qn(f) graphs
are also called generalized Fibonacci cubes. Other applications of good strings
are in the problem of pattern matching with errors and also in the context of
studies of strings avoiding special factors.

In this paper, we deal with combinatorics of two-dimensional strings called
pictures. A picture is a rectangular array of symbols taken from a finite alphabet
Σ. The size of a picture is a pair (m,n) corresponding to the number of rows
and columns. The set of all pictures over Σ is usually denoted by Σ∗∗; a two-
dimensional language is thus a subset of Σ∗∗. Extending results from the formal
(string) languages theory to two dimensions is often a challenging task. The
two-dimensional structure in fact imposes some intrinsic difficulties even when
trying to generalize the basic concepts. Nevertheless during the last fifty years,
and still intensively nowadays, several results from string language theory were
extended to pictures.

For what concerns combinatorics on pictures, the notions of factor, prefix ad
suffix can be transposed from strings either in a “light” or in a general version.
Given a picture p of size (m,n) we could consider only portions (sub-pictures)
of p of size either (h, n) of (m, k) with h < m and k < n. This corresponds to
the particular cases of subpictures/ prefixes /suffixes that are a block of rows or
columns, resp., of the picture p. This version is certainly more consistent with the
case of strings. More generally, by exploiting the two-dimensional structure, we
can use sub-pictures of any size (h, k). Then, for example, a prefix of a picture
can be any top-left portion of p. However, in this case if one deletes a prefix
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from a picture, the remaining part is not a picture anymore (while, with the
light definition, deleting any sub-pictures leaves rectangular pictures). Adopting
this general definition of sub-picture leads to more interesting results but also
to much involved proof techniques.

The notion of overlap extends very naturally from strings to pictures since
it is not related to any scanning direction. Informally we can say that a picture
p has an overlap if a copy p′ of p can be put on p by placing a corner of p′

somewhere on a position of p in a way that the superposed positions match. The
overlap of p will be the sub-picture corresponding to the portion where p and p′

match. Because of the two dimensions there are several possibilities to specialize
this notion. The simplest one is when the matching is checked only by sliding
the two picture copies with a horizontal or a vertical move; in this case we allow
only overlap with the same number of columns or rows of the picture p itself.
Notice that this case corresponds to the light version of definition for prefixes
and suffixes. In some sense, pictures can be handled as they were thick strings on
the alphabet either of the columns or of the rows. More general overlaps can be
obtained by putting the top-left corner of p inside the copy p′ (called tl-overlap)
or by taking the bottom-left corner (called bl-overlap); and these corresponds
to two different situations. Definition and properties of picture overlaps were
recently studied in [1–5].

We extend the mentioned notion of good string to pictures. The basic defi-
nition can be given naturally by generalizing the corresponding ones for strings.
The alphabet will be always the binary alphabet Σ = {0, 1}. Let f be a picture
of size (m,n) and p a picture of bigger size (h, k) (i.e. h ≥ m and k ≥ n), we say
that p is f-free if p does not contain f as sub-picture. Given two f -free pictures
p and q of the same size, we say that there is an f -free transformation from p to
q if p can be transformed into q by switching one by one all the bits on which
p differs from q and all of the new pictures obtained in this process are f -free.
Then a picture f is (h,k)-good if for any pair of f -free pictures p and q of size
(h, k), there exists a f -free transformation from p to q. A picture is good if it is
(h, k)-good for any positive pair (h, k). Finally, a picture is bad if it is not good.

We study some structural properties of bad pictures. We demonstrate that
the property of being a bad picture is related to the fact of having some kind of
error overlaps i.e. overlaps where some positions do not match. The most difficult
part of the proof is to show that if a picture has a 2-error overlap then it is bad.
For that all possible overlap cases are carefully analyzed. The last part of the
paper considers the problem of finding a minimal (h, k) for which a bad picture
f of given size (m,n) is not (h, k)-good. Such pair is called index of the picture
f . This study can have applications in the context of two-dimensional pattern
matching with errors. Some examples of good and bad pictures are also given.

2 Preliminaries

In this section, we first report some definitions and results on good and bad
strings. Then, we collect all the notions for the two-dimensional setting (i.e.
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pictures) needed for the main results. Throughout the paper, Σ denotes the
binary alphabet {0, 1}.

2.1 Basic Notions and Results on Strings

A string s is a sequence of zero or more symbols from the alphabet Σ. The
number n of symbols that compose s is referred to as the length (or the size) of
s while the positions of such symbols are numbered from 1 to n. We also write
s = s1s2 . . . sn with si ∈ Σ. A string w is a substring of s if s = uwv for some
u, v ∈ Σ∗.

Moreover, we say that w of length h occurs at position j of s if and only if
w = sj . . . sj+h−1. A string u is a prefix of s if u is a substring that occurs in s
at position 1; a string v of length h ≤ n is a suffix of s if it is a substrings that
occurs in s at position n − h + 1. A string x that is both prefix and suffix of s
is called an overlap (also border or bifix ) of s. Note that the empty string and
s itself are trivial overlaps of s. Note that the name “overlap” comes from the
fact that we can put a copy s′ of s on s itself in a way that the corresponding
positions match. A string s has an r-error overlap, 0 ≤ r < n, if there exist a
prefix x and a suffix y of s that differ in exactly r positions (i.e., the Hamming
distance between x and y is equal to r).

In [7], it is considered the interesting notion of good strings; they are special
binary strings that never appear as factors in some string transformations. More
precisely, let Σ = {0, 1} and let f be a string over Σ. A string s is said f -free if
it does not contain f as factor.

Given two f -free strings, u and v of the same length d, we can transform u
in v by switching one-by-one all the bits in which they differ. This results in a
sequence of strings x1, x2, . . . , xn such that x1 = u, xn = v and xi differs from
xi+1 only in one position. If each string xi is f -free, we call it an f -free trans-
formation from u to v. The length n of the succession is exactly the Hamming
distance between u and v.

A string f is called d-good if for any pair of f -free words of length d there
exists an f -free transformation between them. A string is good if it is d-good for
any d. A string is bad if it is not good. The structure of bad words is characterized
in [7–11]. In particular we mention the following results.

Proposition 1. A string f is bad if and only if f has a 2-error overlap.

The index of a bad word f , usually denoted by B(f), is defined as the smallest
integer d for which f is not d-good. If f is good then its index is ∞. Bounding
the index of a word, as in the following proposition, is useful to test whether a
given word is good or bad. In [11] it is proved the following result.

Proposition 2. Let f ∈ Σn be a bad string. Then n + 1 ≤ B(f) ≤ 2n − 1.
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2.2 Basic Notions on Pictures

We recall some definitions about pictures (see [6]). A picture over a finite alpha-
bet Σ is a two-dimensional rectangular array of elements of Σ. Given a picture
p with m rows and n columns, the size of p is the pair size(p) = (m,n). The
pictures of size (m, 0) or (0, n) for all m,n ≥ 0, called empty pictures, will be
never considered in this paper. The set of all pictures over Σ of fixed size (m,n)
is denoted by Σm,n, while the set of all pictures over Σ is denoted by Σ∗∗.

Let p be a picture of size (m,n). The set of coordinates dom(p) =
{1, 2, . . . ,m} × {1, 2, . . . , n} is referred to as the domain of a picture p. We let
p(i, j) denote the symbol in p at coordinates (i, j). We assume the top-left corner
of the picture to be at position (1, 1). Moreover, to easily detect border positions
of pictures, we use initials of words “top”, “bottom”, “left” and “right”: then,
for example, the tl-corner of p refers to position (1, 1) while the br-corner refers
to position (m,n).

A sub-domain of dom(p) is a set d of the form {i, i + 1, . . . , i′} × {j, j +
1, . . . , j′}, where 1 ≤ i ≤ i′ ≤ m, 1 ≤ j ≤ j′ ≤ n, also specified by the
pair [(i, j), (i′, j′)]. The portion of p corresponding to positions in subdomain
[(i, j), (i′, j′)] is denoted by p[(i, j), (i′, j′)]. Then a non-empty picture x is sub-
picture of p if x = p[(i, j), (i′, j′)], for some 1 ≤ i ≤ i′ ≤ m, 1 ≤ j ≤ j′ ≤ n; if it
is so, we say that x occurs at position (i, j) (its tl-corner).

Given two pictures, p and q, of size (m,n) and (m′, n′), respectively, they can
be concatenated both horizontally by juxtaposing the last column of p with the
first column of q or vertically by juxtaposing the last row of p with the first row
of q. These operations are called the column concatenation of p and q (p � q)
and the row concatenation of p and q (p� q) are partial operations, defined only
if m = m′ and if n = n′, respectively.

p � q = p q p � q =
p
q

Note that any string s = y1y2 · · · yn can be identified either with a single-row
or with a single-column picture, i.e. a picture of size (1, n) or (n, 1).

We now consider the notion of overlap as generalization from strings to pic-
tures (see for example [4]). Informally, as for strings, we say that a picture p has
an overlap if we can put a copy p′ somewhere over p in a way that the corre-
sponding positions match. This implies p has an overlap if and only if we can
find the same rectangular portion at two opposite corners. Note that there are
two different kinds of overlaps depending on the pair of opposite corners that
hold the overlap. We state the following definition.

Definition 3. Given pictures p ∈ Σm,n and x ∈ Σm′,n′
, with 1 ≤ m′ ≤ m and

1 ≤ n′ ≤ n, the picture x is a tl-overlap of p, if x is a sub-picture of p occurring
at position (1, 1) and at position (m−m′ +1, n−n′ +1); picture x is a bl-overlap
of p, if x is a sub-picture of p occurring at position (m−m′+1, 1) and at position
(1, n − n′ + 1). Moreover x is an overlap of p if it is either a tl- or a bl-overlap.
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As special cases, p is a trivial overlap of itself, and x is a proper overlap
of p if it is not trivial. Other particular cases are when the overlap x has the
same number of rows or columns of p: these particular cases are referred to as
horizontal or vertical overlaps, respectively and correspond to the horizontal or
vertical slide movement to put a copy of p into p. A diagonal overlap is an overlap
neither horizontal nor vertical.

Note that a tl-overlap x of a picture p of size (m,n) can be univocally detected
either by giving the position where its tl-corner occurs in p or by giving its size.
The analogous holds for the bl-overlap. Examples of pictures together with their
overlaps are given below; p has a tl-overlap, q and r have a bl-overlap while s
has a vertical overlap.

p =

0 1 0 0 0 0

1 1 0 1 1 1

0 0 1 1 1 0

0 1 1 0 1 0
1 1 1 1 1 0

q =

1 0 0 1 0
1 1 0 1 1
1 1 1 0 0

1 0 1 1 0

1 1 1 1 0

0 0 0 1 0

r =

0 0 1

0 1 1

1 1 1

s =

0 1 0 0

1 1 1 1

0 0 1 1

0 1 0 0
1 1 1 1

For the sequel, given two pictures p and q of the same size, we will be inter-
ested in the number of positions in which they differ. By borrowing the termi-
nology from string theory, we will refer to this number as the Hamming distance
between p and q and denote it by distH(p, q).

3 Good and Bad Pictures

We introduce the notions of good and bad pictures and prove some properties
of bad pictures based on overlaps with errors. The definitions and the results
extend to two dimensions the corresponding theory for strings given in [8].

Definition 4. Let p and f be two pictures on Σ. The picture p is f-free if p
does not contain f as sub-picture.

We now consider two f -free pictures p and q of the same size (h, k). Let d
be the number of positions in which they differ, i.e. d = distH(p, q). We can
“transform” p into q by switching one-by-one the symbols in these positions in
exactly d steps and denote by pi the picture obtained after i changes. If all such
pi are f -free, this sequence of pictures pi, with p0 = p and pd = q, is called an
f-free transformation from p to q. More formally, we give the following definition.

Definition 5. Let f be a picture over Σ and let p, q ∈ Σh,k be two f-free pic-
tures. A f-free tranformation from p to q, which we denote p � q, is a sequence
of pictures p0 = p, p1, . . . , pd = q such that:

1. pi ∈ Σh,k 0 ≤ i ≤ h,
2. distH(pi, pi+1) = 1, for all 0 ≤ i ≤ d − 1,
3. d = distH(p, q),
4. pi is f-free, for all 0 ≤ i ≤ d.
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Definition 6. A picture f ∈ Σ∗∗ is (h,k)-good if, for all pairs of f-free pictures
p, q ∈ Σh,k, there exists a f-free transformation from p to q. A picture f on Σ
is good if f is (h, k)-good, for all h, k ≥ 1.

Definition 7. A picture f ∈ Σ∗∗ is (h,k)-bad if there exist f-free pictures p, q ∈
Σh,k for which no f-free transformation from p to q exists. A picture f ∈ Σ∗∗

is bad if it is not good i.e. if f is (h, k)-bad, for some h, k ≥ 1.

Let us now introduce the notion of overlap with errors that will be used to
prove properties of binary bad pictures. A picture p has an r-error tl-overlap
if p has a tl-overlap in the sense of Definition 3 where the two subpictures in
the corners match everywhere except in exactly r positions. Similarly, p has an
r-error bl-overlap if p has a bl-overlap where exactly r points do not match.
A picture p has an r-error overlap if p has an r-error tl-overlap or an r-error
bl-overlap. Note that, trivially, a 0-error overlap is an overlap.

We now show that the notion of 2-error overlap is related to the property of
being bad. For lack of space we do not give all the details of the proof.

Proposition 8. Let f be a picture on Σm,n. If f has a 2-error overlap then f
is bad.

Proof. Let f ∈ Σm,n be a picture with a 2-error tl-overlap. The proof goes
similarly if f has a 2-error bl-overlap. Suppose that the size of the 2-error tl-
overlap is (k, l), for some 1 ≤ k ≤ m and 1 ≤ l ≤ n, and denote r = m − k and
s = n − l. Hence, the subpicture ov ∈ Σk,l of f occurring at position (1, 1) and
the subpicture ov′ ∈ Σk,l of f occurring at position (r + 1, s + 1) coincide in all
positions except for two, say (i1, j1) and (i2, j2). Let f(i1, j1) = ov(i1, j1) = x
and f(i2, j2) = ov(i2, j2) = y, for some x, y ∈ Σ. Then, f(r + i1, s + j1) =
ov′(i1, j1) = x and f(r + i2, s + j2) = ov′(i2, j2) = y.

The proof is split in three parts, following that the 2-error overlap is a diag-
onal, a horizontal, or a vertical 2-error overlap.

First, consider the case that the 2-error overlap of size (k, l) is a diagonal one.
Just to fix ideas, suppose that i1 ≤ i2 and j1 ≤ j2, (i1, j1) �= (i2, j2) The other
cases can be handled in a similar way. We are going to construct two f -free
pictures for which there does not exist a f -free transformation, thus showing
that f is bad.

Let f(1, n) = c and f(m, 1) = e, for some c, e ∈ Σ. Consider the picture α,
of size (m+ r, n+s), constructed as follows. Imagine to take two copies of f and
let the tl-corner of a copy of f coincide with position (r + 1, s + 1) of the other
one. In this way, picture ov is superposed to picture ov′. Thus, the symbols in all
positions match, except for the symbols in two positions that we set as follows:
α(r + i1, s + j1) = x, and α(r + i2, s + j2) = y. The remaining positions in the
domain dtr = [(1, n + 1), (r, n + s)] are filled with c, while the positions in the
domain dbl = [(m + 1, 1), (m + r, s)] are filled with e. The construction of α is
depicted in the following figure.
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ov =
x

y
f =

c
x

y

x

y
e

α =

c c c c c c
x c c c c c

c c c c c
y c c c c c

c c c c c

x

y
e
e e e e e
e e e e e x
e e e e e
e e e e e y
e e e e e

β =

c c c c c c
x c c c c c

c c c c c
y c c c c c

c c c c c

x

y
e
e e e e e
e e e e e x
e e e e e
e e e e e y
e e e e e

We show that α is f -free. In fact, f cannot occur in α with its tl-corner at
position (1, 1), since α(r + i2, s + j2) = y while f(r + i2, s + j2) = y. Picture
f cannot occur even with its br-corner at position (m + r, n + s), since α(r +
i1, s + j1) = x while f(i1, j1) = x. Finally, f cannot occur elsewhere, because
either the tr-corner of this occurrence of f would fall in dtr, or the bl-corner of
this occurrence of f would fall in dbl, or both. In any case this would cause a
mismatch.

Let β the picture of size (m + r, n + s) that differs from α only in positions
(r+i1, s+j1) and (r+i2, s+j2). Actually, β(r+i1, s+j1) = x and β(r+i2, s+j2) =
y, as shown in the previous figure.

Using similar arguments as for α, we can prove that β is f -free. Note that the
pictures α and β differ only in positions (r + i1, s + j1) and (r + i2, s + j2), and
that each time one of these positions is switched, an occurrence of f appears.
Hence, there is no f -free transformation from α to β. This concludes the proof
in the case of a diagonal 2-error overlap in f .

The remaining two cases when the 2-error overlap in f is an horizontal one
and a vertical one, respectively, are very technical; they are not given for lack of
space. �	

Following the construction of the pictures α, β in the previous theorem, we
can say something more about the size of these pictures.

Remark 9. If f ∈ Σm,n has a 2-error overlap then f is (s, t)-bad, with s ≤ 2m−1
and t ≤ 2n − 1 and (s, t) �= (2m − 1, 2n − 1) . Let ov be such 2-error overlap.
Following the construction in the proof of Proposition 8, there exists a pair of
f -free pictures in Σs,t, (either α and β) such that no f -free transformation from
one picture to the other one exists. Note that, if ov is a horizontal (vertical,
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resp.) 2-error overlap, then s = m and t ≤ 2n − 1 (s ≤ 2m − 1 and t = n,
resp.). If instead ov ∈ Σh,k is a diagonal 2-error overlap, then s = 2m − h and
t = 2n − k. Moreover, since ov is a 2-error overlap, we have area(p) ≥ 2 (i.e.
it cannot be h = 1 and k = 1) and, therefore, we cannot have s = 2m − 1 and
t = 2n − 1.

Remark 10. The previous proposition suggests a method to construct a fam-
ily of bad pictures. Let p be a picture on a binary alphabet. We choose two
positions in p, switch the symbols in these two positions, and denote by p′ the
picture obtained from p in this way. Any picture f having p and p′ as tl- and br-
corners, respectively, has 2-error overlap and then it is a bad picture applying
Proposition 8.

Unfortunately the vice versa of Proposition 8 is not true and then the pres-
ence of a 2-error overlap does not characterize bad pictures as it holds for strings.
Here is a counterexample.

Example 11. The binary picture f =
1 0 1
0 1 0

has not a 2-error ovelap but

it is a bad picture. In fact, the following pictures p and q are f -free and any
transformation from p to q is not f -free.

p =

1 1 1 0 1 1 1
1 0 1 1 0 0 1
0 1 1 0 0 1 0
1 1 0 1 0 1 0

q =

1 1 1 0 1 1 1
1 0 0 1 1 0 1
0 1 0 0 1 1 0
1 1 0 1 0 1 0

The bits in which p and q differ are written in bold. Switching each of the bold
written bit of p, an occurence of f is generated. So the transformation from p to
q is not f -free.

Very interestlingly, we can prove a weak version of the vice versa of
Proposition 8. In fact we demostrate that if a picture is bad then either it
has a 2-error overlap or it has both a 1-error tl-overlap and a 1-error bl-overlap
(somehow again 2 errors in total). We prove first the following lemma.

Lemma 12. Let f ∈ Σm,n be a bad picture and let p, q ∈ Σs,t be two f-free
pictures of minimal Hamming distance among the pictures of that size with no
f-free transformation. Let V be the set of all positions in which p differs from
q. It holds the following.

1. The distance distH(p, q) = d ≥ 2,
2. Switching any symbol in p in the positions in V will generate an occurrence

of f as sub-picture,
3. Any tranformation p0 = p, p1, . . . , pd−1, pd = q is such that all intermediate

pictures pi, i = 1, . . . , d − 1 are not f-free,
4. The occurrence of f in each pi contains at least two positions in the set V .
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Proof.
1. : If d < 2 then sequence p, q is an f -free transformation from p to q.
2. : By contradiction, we could switch such position getting p′ with distH(p′, q) <
d against minimality hypothesis.
3. : By contradiction, let pr be f -free. We set pr = q′ with distH(p, q′) < d
against minimality hypothesis.
4. : By contradiction, then q is not f -free. �	
Proposition 13. Let f ∈ Σ∗∗. If f is bad then f has a 2-error overlap or a
1-error tl-overlap and a 1-error bl-overlap.

Proof. Let p, q ∈ Σh,k be two f -free pictures of minimal Hamming distance such
that no f -free transformation from p to q does exist. Let distH(p, q) = d. Since
p and q are f -free, we have that d ≥ 2. Let V be the set of the d positions in
which p and q are different. We construct the sequence of pictures of a (non f -
free) transformation p0 = p, p1, . . . , pd−1, pd = q as follows. Take p0 = p, choose
the position in V that is the most “high-and-left”, say (i1, j1), and switch the
symbol; this is the first picture p1. By Lemma 12 we have that p1 contains f
as sub-picture, call it f1, and inside f1 there is at least another position in
V . Choose one of such positions and switch the symbol to get picture p2. Then
repeat the procedure always choosing a position in V to be switched that belongs
to the new occurrence of f we have just generated. Note that all the occurrences
fk of f we generate do overlap and then create a sort of “chain” of 1-error either
tl- or bl- overlaps of f . After d − 1 steps, we get picture pd−1 where we just
switched position (id−1, jd−1) and that have an occurrence of f in it containing
the last position to be switched (id, jd). That is the occurrence of f , called fd−1,
in pd−1 contains positions (id−1, jd−1) and (id, jd). On the other hand if in p
we directly switch the symbol in position (id, jd) then, by Lemma12, we get an
occurrence of f , call it f ′, that should contain also at least another positions
from V , say (ir, jr). Then we have two possibilities. If the occurrence fr of f
contains also position (id, jd) then these two positions ((id, jd) and (ir, jr)) lie
in the overlap of these occurrences f ′ and fr of f and therefore f has a 2-error
overlap. If fr does not contain (id, jd), then this chain of 1-error overlaps of f
contains a sort of loop and therefore there is at least one 1-error tl-overlap and
at least one 1-error bl-overlap. �	

As an immediate consequence of Proposition 13, we can exhibit a family of
good pictures on a binary alphabet.

Corollary 14. Every picture over Σ where all the positions hold the same sym-
bol is good.

4 Index of Bad Pictures

In this last part of the paper we focus on bad pictures and bound the minimum
size for which a bad picture is (h, k)-good. We introduce first a notation. Given
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two pairs of positive integers (h1, k1) and (h2, k2), we write (h1, k1) ≤ (h2, k2)
if h1 ≤ h2 and k1 ≤ k2; moreover, we write (h1, k1) < (h2, k2) if h1 ≤ h2,
k1 ≤ k2 and (h1, k1) �= (h2, k2). Note that there exist pairs such that neither
(h1, k1) ≤ (h2, k2) nor (h2, k2) ≤ (h1, k1). In this case, we say that (h1, k1) and
(h2, k2) are not comparable. Consider, as an example, the pairs (h1, k1), (h2, k2)
with h1 ≤ h2 and k1 > k2.

Lemma 15. If f ∈ Σm,n is (h, k)-bad, then (m,n) < (h, k).

Proof. Trivially, m and n are such that (m,n) ≤ (h, k). We show that (m,n) �=
(h, k).

If f is (h, k)-bad, then there are two f -free pictures in Σh,k for which no
f -free transformation from one to the other exists. Let p, q ∈ Σh,k be two pic-
tures of minimal Hamming distance with this property, and p0, p1, · · · , pl be a
transformation of p in q of minimal distance l. If (m,n) = (h, k), then some
picture in the sequence is equal to f . Moreover, the minimality implies that
l = 2, and that the transformation is p, f, q. In other words, p and q differ in two
positions. Exchanging the steps of the transformation, we would obtain a f -free
transformation form p to q, against the hypothesis. �	
Lemma 16. Let f ∈ Σm,n be a picture. If f is (h, k)-bad, then f is (h, k+1)-bad
and f is (h + 1, k)-bad.

Proof. Let p, q ∈ Σh,k be two f -free pictures such that no f -free transformation
from p to q exists. If f(1, n) = x, then consider two picture p′, q′ ∈ Σh,k+1,
obtained by adding a column of symbols x to the right of p and q. It is easy to
prove that p′ and q′ are f -free. Moreover, since the positions where p′ and q′

differ are not in the last column, any transformation from p′ to q′ is in fact a
transformation from p to q. Hence, it is not f -free.

An analogous reasoning shows that f is (h + 1, k)-bad, also. �	
We have now all the ingredients to introduce the definition of index of a

picture.

Definition 17. Given a bad picture f ∈ Σm,n, a pair of positive integers (h, k)
is an index of f if f is (h, k)-bad and f is not (h′, k′)-bad for any pair of positive
integers (h′, k′) < (h, k).

Lemma 15, gives immediately the following bound for an index of a picture.

Proposition 18. Let f ∈ Σm,n be a bad picture. If (h, k) is an index of f , then
(h, k) > (m,n).

Remark 19. Differently from the string case, a picture f could have more than
one index. Indeed, it could exist two different, and not comparable pairs of
positive integers, that are both indexes of f , as shown in the following example.
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Example 20. Consider the following pictures over the alphabet Σ = {1, 0}:

f =
1 1 1
0 0 1
0 0 1

, p =
1 1 1 1
0 0 0 1
0 0 1 1

, q =
1 1 1 1
0 0 1 1
0 0 0 1

, p′ =

1 1 1
1 0 1
0 0 1
0 0 1

, and q′ =

1 1 1
0 1 1
0 0 1
0 0 1

. One

can check that p and q are f -free and no f -free transformation from p to q
exists. Therefore, f is (3, 4)-bad and, from Lemma 15, (3, 4) is an index of f .
The analogous result holds for p′ and q′. Hence, f has two different and not
comparable indexes (3, 4) and (4, 3).

The following Proposition 21 characterizes bad pictures f ∈ Σm,n with min-
imal index (m,n + 1). Note that an analogous characterization holds for bad
pictures f ∈ Σm,n with minimal index (m + 1, n).

Let c ∈ Σm,1 and denote by ch the column concatenation of h copies of c.

Proposition 21. Let f ∈ Σm,n be a bad picture. The pair (m,n+1) is an index
of f if and only if either f = c1

hc2
kc3

t, for some h, k, t ≥ 1, c1, c2, c3 ∈ Σm,1 with
distH(c1, c2) = distH(c2, c3) = 1 or f = c1

hc2
k, for some h, k ≥ 1, c1, c2 ∈ Σm,1

with distH(c1, c2) = 2.

Proof. If (m,n + 1) is an index of f , then there exists a pair of f -free pictures
in Σm,n+1 for which no f -free transformation from one picture to the other one
exists. Suppose that p, q ∈ Σm,n+1 are two f -free pictures of minimal Hamming
distance such that no f -free transformation from p to q exists. Let distH(p, q) = d
and let V = {(i1, j1), (i2, j2), · · · , (id, jd)} be the set of all positions in which p
and q are different. As noted in Lemma 12, we have d ≥ 2 and for any position
(i, j) ∈ V , if we switch p(i, j), we obtain an occurrence of f in p. This implies
that d > 2 is not possible, since p may contain only two different occurrences of
f , for size reasons. More exactly, f can occur in p only at position (1, 1) and at
position (1, 2). Therefore V = {(i1, j1), (i2, j2)} and denote by f(i1,j1) (f(i2,j2),
resp.) the occurrence of f in p that is obtained by switching p(i1, j1) (p(i2, j2),
resp.). Note that both positions (i1, j1) and (i2, j2) are covered by both f(i1,j1)

and f(i2,j2), because there is no f -free transformation from p to q. This implies
that f has a 2-error h-overlap of size (m,n − 1). Now, if j1 �= j2 and w.l.o.g.
j1 < j2, then we have f = c1

hc2
kc3

t, with h = j1, k = j2 − j1, t = n − j2,
c1, c2, c3 ∈ Σm,1 and distH(c1, c2) = distH(c2, c3) = 1. If instead j1 = j2 then
we have f = c1

hc2
k, with h = j1, k = n−j1, c1, c2 ∈ Σm,1 and distH(c1, c2) = 2.

Suppose now that either f = c1
hc2

kc3
t, for some h, k, t ≥ 1, c1, c2, c3 ∈ Σm,1

with distH(c1, c2) =, distH(c2, c3) = 1, or f = c1
hc2

k, for some h, k ≥ 1, with
c1, c2 ∈ Σm,1 and distH(c1, c2) = 2. It is easy to see that, in both cases, f has a
2-error h-overlap of size (m,n−1). Then, following the construction in the proof
of Proposition 8, we can obtain two f -free pictures α and β in Σm,n+1, for which
no f -free transformation from α to β exists. Note that the 2-error h-overlap of f
does not satisfy Condition (*), since s = 1 in this case. Then f is (m,n+1)-bad
and (m,n + 1) is an index of f , applying Lemma 15. �	

We conclude with an example that exploits the above proposition.
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Example 22. Consider the picture f ∈ Σ3,3 in Example 20. The pair (3, 4) is
an index of f . Then, following the previous Proposition 21, f = c1

2c2
1 and

distH(c1, c2) = 2 with c1 =
1
0
0

c2 =
1
1
1

.
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