
Galina Jirásková
Giovanni Pighizzini (Eds.)

LN
CS

 1
24

42

22nd International Conference, DCFS 2020
Vienna, Austria, August 24–26, 2020
Proceedings

Descriptional Complexity
of Formal Systems

Lecture Notes in Computer Science 12442

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Galina Jirásková • Giovanni Pighizzini (Eds.)

Descriptional Complexity
of Formal Systems
22nd International Conference, DCFS 2020
Vienna, Austria, August 24–26, 2020
Proceedings

123

Editors
Galina Jirásková
Slovak Academy of Sciences
Košice, Slovakia

Giovanni Pighizzini
University of Milan
Milan, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-62535-1 ISBN 978-3-030-62536-8 (eBook)
https://doi.org/10.1007/978-3-030-62536-8

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-7509-7842
https://doi.org/10.1007/978-3-030-62536-8

Preface

The 22nd International Conference on Descriptional Complexity of Formal Systems
(DCFS 2020) was expected to be organized by Rudolf Freund at the TU Wien as part
of the Summer of Formal Languages 2020 in Wien, Austria, and by the International
Federation for Information Processing (IFIP) Working Group 1.02 “Descriptional
Complexity.” Unfortunately, due to development of the crisis caused by COVID-19,
the conference had to be canceled. However, in order to allow researchers in the area of
descriptional complexity to still present their recent results in some form, the DCFS
Steering Committee decided to prepare this volume, collecting papers that have been
selected by a committee after a standard review process.

Descriptional complexity is a field in computer science that deals with the size of all
kinds of objects that occur in computational models, such as Turing machines, finite
automata, grammars, splicing systems, and others. The topics of DCFS conferences are
related to all aspects of descriptional complexity and include, but are not limited to:

– Automata, grammars, languages, and other formal systems; various modes of
operations and complexity measures.

– Succinctness of description of objects, state-explosion-like phenomena.
– Circuit complexity of Boolean functions and related measures.
– Size complexity of formal systems.
– Structural complexity of formal systems.
– Trade-offs between computational models and mode of operation.
– Applications of formal systems – for instance in software and hardware testing, in

dialogue systems, in systems modeling, or in modeling natural languages – and
their complexity constraints.

– Cooperating formal systems.
– Size or structural complexity of formal systems for modeling natural languages.
– Complexity aspects related to the combinatorics of words.
– Descriptional complexity in resource-bounded or structure-bounded environments.
– Structural complexity as related to descriptional complexity.
– Frontiers between decidability and undecidability.
– Universality and reversibility.
– Nature-motivated (bio-inspired) architectures and unconventional models of

computing.
– Blum static (Kolmogorov/Chaitin) complexity, algorithmic information.

DCFS became an IFIP working conference in 2016, continuing the former Work-
shop on Descriptional Complexity of Formal Systems, which was a merger in 2002 of
two other workshops: Formal Descriptions and Software Reliability (FDSR) and
Descriptional Complexity of Automata, Grammars and Related Structures (DCAGRS).
DCAGRS was previously held in Magdeburg, Germany (1999), London, UK (2000),
and Vienna, Austria (2001). FDSR was previously held in Paderborn, Germany (1998),

Boca Raton, USA (1999), and San Jose, USA (2000). Since 2002, DCFS has been
successively held in London, Ontario, Canada (2002), Budapest, Hungary (2003),
London, Ontario, Canada (2004), Como, Italy (2005), Las Cruces, New Mexico, USA
(2006), Nový Smokovec, High Tatras, Slovakia (2007), Charlottetown, Prince Edward
Island, Canada (2008), Magdeburg, Germany (2009), Saskatoon, Canada (2010),
Gießen, Germany (2011), Braga, Portugal (2012), London, Ontario, Canada (2013),
Turku, Finland (2014), Waterloo, Ontario, Canada (2015), Bucharest, Romania (2016),
Milano, Italy (2017), Halifax, Nova Scotia, Canada (2018), and Košsice, Slovakia
(2019).

This volume contains 19 contributed papers, selected by the Selection Committee
out of a total of 31 submissions, by a total of 54 authors from 17 countries (61.3%
acceptance rate). The selection was done on the basis of three reviews per submission,
with the exception of a few papers for which we received only two reviews. The
selection process was carried out by taking into account originality, quality, signifi-
cance, pertinence with DCFS topics, and presentation. We thank all authors who
submitted their works for consideration in this volume. We wish to thank all Selection
Committee members and external reviewers for their competent and timely handling
of the submissions. The scientific level of the volume is guaranteed by their hard work.

During the selection process, we used the EasyChair conference management sys-
tem, which provided excellent support. We wish to thank the editorial team at Springer,
for the efficient production of this volume.

Unfortunately, the conference could not take place this year. Anyway, we hope that
this volume will be of inspiration for new research and cooperations. We really hope to
restart our series of conferences very soon, hopefully in 2021, when DCFS is planned
to take place in Seoul, South Korea.

October 2020 Galina Jirásková
Giovanni Pighizzini

vi Preface

Organization

Steering Committee

Cezar Câmpeanu University of Prince Edward Island, Canada
Erzsébet Csuhaj-Varjú Eötvös Loránd University, Hungary
Stavros Konstantinidis Saint Mary's University, Canada
Martin Kutrib (Chair) Justus Liebig University, Germany
Giovanni Pighizzini University of Milan, Italy
Rogério Reis University of Porto, Portugal

Selection Committee

Cezar Cámpeanu University of Prince Edward Island, Canada
Pawel Gawrychowski University of Wrocław, Poland
Dora Giammarresi University of Rome Tor Vergata, Italy
Galina Jirásková (Co-chair) Slovak Academy of Sciences, Slovakia
Martin Kutrib Justus Liebig University, Germany
Florin Manea University of Göttingen, Germany
František Mráz Charles University, Czech Republic
Dana Pardubská Comenius University, Slovakia
Andrei Pǎun University of Bucharest, Romania
Giovanni Pighizzini

(Co-chair)
University of Milan, Italy

Rogério Reis University of Porto, Portugal
Michel Rigo University of Liège, Belgium
Marinella Sciortino University of Palermo, Italy
Shinnosuke Seki The University of Electro-Communications, Japan
Klaus Sutner Carnegie Mellon University, USA
Bianca Truthe Justus Liebig University, Germany
György Vaszil University of Debrecen, Hungary

Additional Reviewers

Broda, Sabine
Catalano, Costanza
Charlier, Émilie
Cisternino, Célia
Day, Joel
Fleischmann, Pamela
Giannakis, Konstantinos
Holzer, Markus

Jajcayova, Tatiana
Janczewski, Wojciech
Kapoutsis, Christos
Kari, Jarkko
Kostolányi, Peter
Lejeune, Marie
Leroy, Julien
Loff, Bruno

Machiavelo, António
Madonia, Maria
Malcher, Andreas
Marsault, Victor
Massuir, Adeline
Mercaş, Robert
Mereghetti, Carlo
Mitrana, Victor
Monmege, Benjamin
Moreira, Nelma
Peltomäki, Jarkko

Pokorski, Karol
Prigioniero, Luca
Průša, Daniel
Rampersad, Narad
Salomaa, Kai
Schmid, Markus L.
Selmi, Carla
Volkov, Mikhail
Yakaryılmaz, Abuzer
Yamakami, Tomoyuki

viii Organization

Contents

Mutually Accepting Capacitated Automata . 1
Ravid Alon and Orna Kupferman

Bad Pictures: Some Structural Properties Related to Overlaps 13
Marcella Anselmo, Dora Giammarresi, Maria Madonia,
and Carla Selmi

Regular Expression Length via Arithmetic Formula Complexity 26
Ehud Cseresnyes and Hannes Seiwert

Crisp-Determinization of Weighted Tree Automata over Additively Locally
Finite and Past-Finite Monotonic Strong Bimonoids Is Decidable 39

Manfred Droste, Zoltán Fülöp, Dávid Kószó, and Heiko Vogler

On the Power of Generalized Forbidding Insertion-Deletion Systems 52
Henning Fernau, Lakshmanan Kuppusamy, and Indhumathi Raman

State Complexity Bounds for the Commutative Closure of Group
Languages . 64

Stefan Hoffmann

Multiple Concatenation and State Complexity (Extended Abstract) 78
Jozef Jirásek and Galina Jirásková

Combining Limited Parallelism and Nondeterminism in Alternating Finite
Automata . 91

Chris Keeler and Kai Salomaa

Longer Shortest Strings in Two-Way Finite Automata 104
Stanislav Krymski and Alexander Okhotin

Iterated Uniform Finite-State Transducers: Descriptional Complexity
of Nondeterminism and Two-Way Motion . 117

Martin Kutrib, Andreas Malcher, Carlo Mereghetti,
and Beatrice Palano

Descriptional Complexity of Winning Sets of Regular Languages 130
Pierre Marcus and Ilkka Törmä

State Complexity of GF(2)-inverse and GF(2)-star on Binary Languages 142
Alexander Okhotin and Elizaveta Sazhneva

Complexity of Two-Dimensional Rank-Reducing Grammars. 155
Daniel Průša

Palindromic Length of Words with Many Periodic Palindromes 167
Josef Rukavicka

Operational Complexity of Straight Line Programs for Regular Languages . . . 180
Hannes Seiwert

Classifying x-Regular Aperiodic k-Partitions . 193
Victor Selivanov

Recognition and Complexity Results for Projection Languages
of Two-Dimensional Automata . 206

Taylor J. Smith and Kai Salomaa

On the Generative Power of Quasiperiods . 219
Ludwig Staiger

Insertion-Deletion with Substitutions II . 231
Martin Vu and Henning Fernau

Author Index . 245

x Contents

Mutually Accepting Capacitated
Automata

Ravid Alon(B) and Orna Kupferman

The Hebrew University, Jerusalem, Israel
{ravid.alon,orna}@cs.huji.ac.il

Abstract. We study capacitated automata (CAs) [10], where transitions
correspond to resources and have capacities, bounding the number of
times they may be traversed. We follow the utilization semantics of CAs
and view them as recognizers of multi-languages – sets of multisets of
words, where a multiset S of words is in the multi-language of a CA
A if all the words in S can be mutually accepted by A: the multiset
of runs on all the words in S together respects the bounds induced by
the capacities. Thus, capacitated automata model possible utilizations of
systems with bounded resources. We study the basic properties of CAs:
their expressive power in the nondeterministic and deterministic models,
closure under classical operations, and the complexity of basic decision
problems.

1 Introduction

Finite state automata are used in the modelling and design of finite-state sys-
tems and their behaviors, with applications in engineering, databases, linguistics,
biology, and many more. The traditional definition of an automaton does not
refer to its transitions as consumable resources. Indeed, a run of an automaton
is a sequence of successive transitions, and there is no bound whatsoever on the
number of times that a transition may be traversed. In some settings, the use of
a transition may correspond to the use of some resource. For example, it may
be associated with the usage of some energy-consuming machine, application of
some material, or consumption of bandwidth.

In [6], the authors introduced Parikh automata, which do impose restrictions
related to consumption. Essentially, a Parikh automaton is a pair 〈A,C〉, where
A is a nondeterministic finite automaton (NFA) over alphabet Σ, and C ⊆ INΣ is
a set of “allowed occurrences”. A word w is accepted by 〈A,C〉 if A accepts w and
the Parikh’s commutative image of w, which maps each letter in Σ to its number
of occurrences in w, is in C. Thus, the semantics views occurrences of letters as
consumable resources. Several variants of Parikh automata have seen studied. In
particular, [3] studied constrained automata, a variant that counts traversals of
transitions and requires the vector of counters to belong to C, now a semi-linear
set of allowed vectors. Additional models include multiple counters automata
[4], where transitions can be taken only if guards referring to traversals so far

c© Springer Nature Switzerland AG 2020
G. Jirásková and G. Pighizzini (Eds.): DCFS 2020, LNCS 12442, pp. 1–12, 2020.
https://doi.org/10.1007/978-3-030-62536-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62536-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-62536-8_1

2 R. Alon and O. Kupferman

are satisfied, and queue-content decision diagrams, which are used to represent
queue content of FIFO-channel systems [1,2].

In [10], the authors introduced capacitated automata (CAs).1 In this model,
transitions correspond to resources and may have bounded capacities. Formally,
each transition is associated with a (possibly infinite) integral bound on the
number of times it may be traversed. A word w is accepted by a CA A if A
has an accepting run on w; one that reaches an accepting state and respects the
bounds on the transitions. The study of CAs considers two possible semantics to
them. The first, which is more related to the models described above, views CAs
as recognizers of formal languages (see also [9]). The second, referred to in [10]
as the utilization semantics, is related to traditional resource-allocation theory,
and views CAs as labeled flow networks.

Our work here focuses on the second view. In order to understand and moti-
vate it, let us consider a simple example. Consider the CA A appearing in Fig. 1.
In the first semantics, we view A as a recognizer of a language of words. Then, for
example, the word ab is accepted by A, as the run q0, q0, q2 on it “consumes” the
selfloop in q0 and the transition from q0 to q2. Likewise, the word ac is accepted
by A, by its run q0, q1, q3, and so does the word aac, by the run q0, q0, q1, q3. On
the other hand, the word aab is not accepted by A, as an accepting run on it has
to traverse the selfloop in q0 twice, yet the capacity of this selfloop in only 1.

A:

q0

q1

q2

q3
a, 1

a, 2

b, 2

c, 2

Fig. 1. A CA that mutually accepts {b, b, ac, ac}, {ab, b, ac, ac}, {b, b, aac, ac}, and their
sub-multisets.

We now proceed to the utilization semantics. Recall that both ab and ac
are accepted by A. In fact, since the transitions consumed by both runs together
respect the capacity bounds, the A mutually accepts the multiset {ab, ac}. We use
the term multiset, namely a set with possible re-occurrences of elements, as words
may be accepted by A several times, and we care about the number of times
that each word is accepted. For example, since the capacity of the transitions
〈q0, a, q1〉 and 〈q1, c, q2〉 is 2, then A mutually accepts also the multiset {ac, ac},
in which the word ac appears twice. On the other hand, A cannot mutually
accept {ab, aac}, as the accepting runs on both words traverse the selfloop q0,
whose capacity is 1.

As the example above demonstrates, the utilization semantics enables reason-
ing about the utilization of systems with consumable resources. Its applications

1 Not to be confused with finite capacity automata [12], which model the control of an
automated manufacturing system, and are more related to Petri nets.

Mutually Accepting Capacitated Automata 3

depend on the setting modeled by the CA. If, for example, the CA models a
communication network, with transitions corresponding to channels and capac-
ities corresponding to bounds on the number of times a channel may be used,
then the CA accepts multisets of communication routes that can be transmitted
simultanously in the network. Likewise, if the CA models a production system,
then it accepts multisets of chains of services that can be processed mutually in
the system.

The study of the utilization semantics in [10] focuses on the maximal utiliza-
tion problem for CA: Given a CA A, return a multiset S of words, such that
A mutually accepts all the words in S, and |S| is maximal. The max-utilization
problem can be viewed as a generalization of the max-flow problem in networks
[5]. In the max-flow problem, the network is utilized by units of flow, each routed
from the source to the target. The CA model enables a rich description of the
feasible routes. The labels along a path correspond to a sequence of applications
of resources. In particular, paths from an initial state to a final state correspond
to feasible such sequences, and the goal is to mutually process as many of them as
possible. It is shown in [10] that the problem can be solved in polynomial time,
yet if we restrict the set of possible routes by a regular language, it becomes
APX-complete, thus hard to approximate in polynomial time.

Here, we study theoretical properties of CAs as recognizers of multi-
languages. A multi-language over an alphabet Σ is a set of multisets of words
in Σ∗. The multi-language recognized by a CA A is the set M(A) of multisets
S such that A mutually accepts S. For example the CA A from Fig. 1 has in
M(A) the multisets {b, b, ac, ac}, {ab, b, ac, ac}, and {b, b, aac, ac}, as well as all
multisets contained in one of them.

We say that a multi-language M is regular if there is a CA A such that
M(A) = M. We first study the expressive power of CAs, show that not all
finite multi-languages are regular, and that nondeterministic CAs are strictly
more expressive than deterministic ones (DCAs, for short). For example, there
is no DCA that recongnizes the multi-language of the CA from Fig. 1. We then
study closure properties for CAs. In addition to the usual union and intersection
operators, we consider pairwise union and intersection, where the operations are
applied to the multisets in the multi-language. We study closure in both the
nondeterministic and deterministic setting. We show that while regular multi-
languages are closed under pairwise union, they are not closed under the other
operators. Moreover, the deterministic fragment is not closed even under pairwise
union.

Finally, we study the basic decision problems for CAs. We start with the
membership problem, of deciding whether a given multiset is in the multi-
language of a given CA. In practice, this problem is relevant for checking, for
example, whether a certain list of tasks can be accomplished by a manufacturing
system with bounded resources. We show that when the input is given explic-
itly (that is, the multiset is given by a list of its elements, and the capacities
in the CA are given in unary), the problem can be solved in linear time for
DCAs and is NP-complete for CAs. We continue with the containment problem,

4 R. Alon and O. Kupferman

namely deciding, given CAs A and B, whether M(A) ⊆ M(B). In practice, this
problem is relevant for checking, for example, whether every multisets of routes
that can be transmitted simultanously in a communication network A can also
be transmitted in B. We show that the problem is EXPSPACE-complete in the
general setting, going down to co-NP-complete when B is deterministic. The
upper bounds in these latter results are the most technically challenging results
in the paper, as they involve a careful analysis of the length of words in accepted
and rejected multisets in CAs with transitions with infinite capacities.

Due to the lack of space, some proofs are omitted and can be found in the
full version, at the authors’ URLs.

2 Preliminaries

A capacitated automaton (CA, for short) [10] is a tuple A = 〈Σ,Q,Q0,Δ, F, c〉,
where Σ is a finite alphabet, Q is a finite set of states, Q0 ⊆ Q is a set of initial
states, Δ ⊆ Q × Σ × Q is a transition relation, F ⊆ Q is a set of final states,
and c : Δ → IN ∪ {∞} is a capacity function on transitions. If |Q0| = 1, and for
all q ∈ Q and σ ∈ Σ, there is at most one q′ ∈ Q such that 〈q, σ, q′〉 ∈ Δ, then
we say that A is a deterministic CA (DCA, for short).

A multiset is a generalization of a set in which each element may appear more
than once. The number of repetitions of an element is called its multiplicity. A
multiset over a set X of elements can be represented by a list (with repetitions) of
its elements or by a function S : X → IN ∪ {∞}, where S(x) is the multiplicity
of the element x ∈ X. We focus here on multisets of words over some finite
alphabet Σ, and use CAs to define and recognize such multisets. Essentially,
a CA A recognizes a multiset S of words if A can accept all the words in S
simultaneously without exceeding the allowed capacities. Formally, we have the
following.

Let S = {w1, . . . , wn} be a (possibly infinite) multiset of finite words,
with wi = σi

1 · · · σi
ki

. An operation of a CA A on S is a multiset of runs
O = {r1, . . . , rn}, such that the following hold.

1. The operation consists of legal runs: For all 1 ≤ i ≤ n, we have that ri =
qi
0, . . . , q

i
ki

is a run of A on wi: it starts in an initial state, thus qi
0 ∈ Q0, and

it obeys the transition function, thus for all 0 ≤ j ≤ ki − 1, we have that
〈qi

j , σ
i
j+1, q

i
j+1〉 ∈ Δ.

2. The operation respects the capacities: For each run ri, let ti : Δ → IN map
each transition e ∈ Δ to the number of times it is traversed in ri, thus
ti(e) = |{j : e = 〈qi

j , σ
i
j+1, q

i
j+1〉}|. Then, the number of times each transition

is traversed in all the runs in O is bounded by its capacity. Formally, for all
e ∈ Δ, it holds that

∑n
i=1 ti(e) ≤ c(e).

We say that the operation O is accepting if the final states of all its runs are
accepting, thus, qi

ki
∈ F , for all 1 ≤ i ≤ n. When this happens, we say that A

mutually accepts S with the operation O.

Mutually Accepting Capacitated Automata 5

Note that if A is nondeterministic, it may have several operations on S. In
contrast, a DCA has a single operation on each multiset. We say that A mutually
accepts the multiset S if there exists an operation O such that A mutually accepts
S with O.

A multi-language over an alphabet Σ is a set of multisets of words from Σ∗.
The multi-language recognized by a CA A is the set M(A) = {S : A mutually
accepts S} of all multisets of words in Σ∗ that can be mutually accepted by A.

Example 1. Consider the DCA A described in Fig. 2.

A:

q0

q1 q2

q4 q5

q3

q6

a, 1

b, 1

b, 1

d, 1

a, 1 c, 1

c, 1

d, 1

Fig. 2. A DCA A with M(A) = {{abc, bac}, {abd, bac}, {abc}, {abd}, {adc}, {bac}, ∅}.

Consider the runs r0 = q0, q4, q5, q6 and r1 = q0, q1, q2, q3 of A on the words
bac and abc, respectively. Both runs respect the capacity function and end in
an accepting state. Since the runs are disjoint, the multiset of runs {r0, r1} is a
legal operation, it accepts the multiset {abc, bac}, and so {abc, bac} ∈ M(A)

Consider now the run r2 = q0, q1, q5, q6 of A on adc. It respects the capacity
function and ends in an accepting state, and so {adc} ∈ M(A). The run r2
shares the transition e = 〈q5, c, q6〉 with r0. This transition has capacity 1. Thus,
the multiset {r0, r2} does not respect the capacity function and is not a legal
operation, and so {bac, adc}
∈ M(A).

Using similar considerations, it is easy to see that M(A) = {{abc, bac},
{abd, bac}, {abc}, {abd}, {adc}, {bac}, ∅}. �

3 Expressive Power

A multi-language M is regular if there is a CA that recognizes M. We denote
by MREG the classes of regular multi-languages. In this section we study the
expressive power of CAs. We show that not all finite multi-languages are regular,
that nondeterministic CAs are strictly more expressive than deterministic one,
and that the picture of closure properties in MREG is involved.

We first need some definitions and observations. Given two multisets S1 and
S2 over a set X of elements, we say that S1 is a submultiset of S2, denoted
by S1 ⊆ S2, if every element in X appears in S1 (weakly) fewer times than
in S2. That is, for every element x ∈ X, it holds that S1(x) ≤ S2(x). Since a
submultiset of an accepting operation is an accepting operation, we have the
following (see full proof in the full version).

6 R. Alon and O. Kupferman

Theorem 1. Regular multi-languages are closed downwards: Consider a regular
multi-language M and a multiset S ∈ M. For all S′ ⊆ S, it holds that S′ ∈ M.

Given a CA A, we say that a multiset S saturates A if S is mutually accepted
by A and it is maximal with respect to containment in M(A). That is, S ∈
M(A), and for every S′ ∈ M(A), it holds that S
⊂ S′. Theorem 1 implies that
regular multi-languages are characterized uniquely by maximal multisets, which
are the saturating multisets of the CA. Accordingly, we define the saturating
language of a CA A, denoted SM(A), as the set of all saturating multisets of
the CA.

Given a set M of multisets, we denote by sub(M) the set of all submul-
tisets of the multisets in M. Formally, sub(M) = {S′ : there exists S ∈
M such that S′ ⊆ S}. Note that for every CA A, we have that M(A) =
sub(SM(A)).

Example 2. Recall the CA A appearing in Fig. 2. It is easy to see that SM(A) =
{{abc, bac}, {abd, bac}, {adc}}. �

3.1 Regularity

Given a CA A, the language of A, denoted L(A), is the set of all words that can
be accepted by A while respecting the capacity function. It is easy to see that
for every word w ∈ Σ∗, we have that w ∈ L(A) iff {w} ∈ M(A). By the closure
property we study in Sect. 3.3, this implies that for every finite multiset S of
words, there is a CA A with M(A) = sub({S}). Essentially, the proof is similar
to the proof showing that all finite languages are regular: a nondeterministic
automaton for a finite language L ⊆ Σ∗ may consist of |L| components, each
for a word in L. Likewise, a CA for sub({S}) may consist of |S| components,
each for a word in S. On the other hand, as we show below, there are finite
multi-languages that are not regular.

Theorem 2. Not all finite multi-languages are regular.

Proof: Consider the finite multi-language sub({{ab, ac}, {ad}}) = {{ab, ac},
{ad}, {ab}, {ac}, ∅}. In the full version, we prove that it is not regular. Essen-
tially, this follows from the fact that every CA that has both an accepting
operation on {ab, ac} and an accepting operation on {ad}, should also have
an accepting operation on {ab, ad} or {ac, ad}. Yet, these multisets are not in
sub({{ab, ac}, {ad}}). �

3.2 Determinism

A deterministic regular multi-language is a multi-language that can be recognized
by a DCA. We denote by DMREG the class of deterministic regular multi-
languages.

Theorem 3. CAs are strictly more expressive than DCAs.

Mutually Accepting Capacitated Automata 7

Proof: Clearly, every DCA is a CA. In order to prove strictness, consider
the multi-language sub({{a, ab}}). As we show in the full version, a CA for
sub({{a, ab}}) can nondeterministically chooses between reading a and ab, and
so sub({{a, ab}}) ∈ MREG. On the other hand, sub({{a, ab}})
∈ DMREG. Intu-
itively, a DCA that mutually accepts sub({{a, ab}}) should be able to traverse a
twice, and should reach an accepting state while reading a. Yet, sub({{a, ab}})
contains only one occurrence of a. �

Essentially, the reason no DCA can recognize sub({{a, ab}}) is that the DCA
should traverse twice a prefix of two different words, yet may accept only one
occurrence of this prefix. Trying to generalize this to a characterization of lan-
guages in MREG\DMREG, we say that a multi-language M is prefix-replaceable
if whenever a word and its prefix are in a multiset in M, then the multiset
obtained by replacing the word by the prefix is also in M. Formally, for every
multiset of words S ∈ M and every word w ∈ S that is a prefix of another word
w · x ∈ S, with x
= ε, it holds that (S \ {w · x}) ∪ {w} ∈ M.

For example, the multi-language sub({{a, ab}}) is not prefix-replaceable.
Indeed, for S = {a, ab}, the word a is a prefix of the word ab, it is in S, and yet
(S \ {ab}) ∪ {a} = {a, a} is not in sub({{a, ab}}).

In the full version, we prove that prefix-replacability is a necessary yet insuf-
ficient condition for membership in DMREG. Another attempt to characterize
DMREG, in particular for solving the problem of deciding whether a given CA
has an equivalent DCA, considers powerset-typeness. Researchers have studied
typeness for automata in various setting [7,8]. In particular, a class γ of automata
is powerset type if whenever a nondeterministic automaton A in the class γ has
an equivalent deterministic automaton, then an equivalent deterministic automa-
ton can be defined on top of the subset construction of A. It is well known, for
example, that finite automata are powerset type. So are nondeterministic weak
automata on infinite words [8]. On the other hand, Büchi automata are not
powerset type [11].

Theorem 4. CAs are not powerset type.

Proof: Consider the CA A described in Fig. 3. It is easy to see that M(A) ∈
DMREG. Indeed, the DCA D recognizes M(A). On the other hand, applying
the subset construction on A results on the the structure A′, and there is no way
to define initial and final states and capacities on top of it and obtain a DCA
for M(A). �

A:
q0 q1 q2 q3

a, 1 b, 2 c, 1

D:
s1 s2 s3

a, 1

b, 2 c, 1

A′: {q0, q1}

{q1}

{q2} {q3}

a

b

b

c

Fig. 3. The CA A has an equivalent DCA D, yet no equivalent DCA can be defined
on top of its subset construction A′.

8 R. Alon and O. Kupferman

3.3 Closure Properties

In this section we study closure properties for MREG and DMREG. Since all
regular multi-languages are closed downwards, complementation is not interest-
ing in the context of MREG. On the other hand, in addition to the usual union
and intersection operators, we consider pairwise union and intersection, to be
defined below.

Consider a set X of elements. The union of multisets over X is naturally
defined by summing the repetitions of each element. That is, for two multistes
S1 and S2, we define their union S1 ∪ S2 such that for every element x ∈ X, we
have that (S1 ∪ S2)(x) = S1(x) + S2(x). Then, the intersection of multisets is
defined by taking the minimal number of repetitions of each element. That is,
for two multistes S1 and S2, we define their intersection S1 ∩ S2 such that for
every element x ∈ X, we have that (S1 ∩ S2)(x) = min{S1(x), S2(x)}.

We continue to the pairwise operators, where we apply union and intersection
between the multisets in the two sets of multisets. Formally, for two multi-
languages M1 and M2, we define their pairwise union by M1�M2 = {S1 ∪S2 :
S1 ∈ M1 and S2 ∈ M2}, and their pairwise intersection by M1 � M2 = {S1 ∩
S2 : S1 ∈ M1 and S2 ∈ M2}.

Example 3. Let M1 = {{a}, {ab, ac}} and M2 = {{ac}, {a, ab, ac}. Then,

– M1 ∪ M2 = {{a}, {ab, ac}, {ac}, {a, ab, ac}}.
– M1 ∩ M2 = ∅.
– M1�M2 = {{a, ac}, {a, a, ab, ac}, {ab, ac, ac}, {ab, ac, a, ab, ac}}.
– M1 � M2 = {∅, {a}, {ac}, {ab, ac}}.

When we focus on regular multi-languages, it is useful to observe that
for all multisets M1 and M2, it follows directly from the definition that
sub(M1) ∪ sub(M2) = sub(M1 ∪ M2) and sub(M1)�sub(M2) = sub(S1 ∪
S2)S1∈M1,S2∈M2 . In addition, we have the following.

Lemma 1. If M1 and M2 are closed downwards, then M1 �M2 = M1 ∩M2.

Proof: First, by definition, M1 ∩ M2 ⊆ M1 � M2 regardless of M1 and M2

being closed downwards. We prove that M1 � M2 ⊆ M1 ∩ M2. Consider a
multiset S = S1 ∩ S2 for S1 ∈ M1 and S2 ∈ M2. Clearly, S1 ∩ S2 ⊆ S1.
Therefore, as M1 is closed downwards, we have that S1 ∩ S2 ∈ M1. Similarly,
S1 ∩ S2 ∈ M2, and so S1 ∩ S2 ∈ M1 ∩ M2, and we are done.

As MREG and DMREG are closed downwards, Lemma 1 implies that in the
context of MREG and DMREG, pairwise intersection coincides with intersection.
For union, this is not true.

We can now state our results about closure properties. See full proofs in the
full version.

Theorem 5. – DMREG and MREG are not closed under union.
– MREG is closed under pairwise union.
– DMREG is not closed under pairwise union.
– DMREG and MREG are not closed under intersection.

Mutually Accepting Capacitated Automata 9

4 Decision Problems

In this section we study the following decision problems for CAs in the utilization
semantics:

1. Membership: given a CA A and a finite multiset S, decide whether S ∈ M(A).
2. Containment: given two CAs A and B, decide whether M(A) ⊆ M(B).

Remark 1. A classical decision problem for automata is nonemptiness, namely
deciding whether their language is not empty. In the setting of CA, we need to
decide, given a CA A, whether M(A)
= ∅. Since all regular multi-languages are
nonempty, as they contain ∅, this question is not of much interest. Alternatively,
one may ask, in the nonemptiness problem for CA, whether M(A)
= {∅}. It
is easy to see that the latter holds iff the language of A is not empty, which is
NLOGSPACE-complete [10]. �

Studying the complexities of decision problems on CAs, it is important to
specify how the input to the problems is given. For a multiset S of words, we
define the length of S, denoted ‖S‖, as the sum of lengths of words in S. We also
refer to the size of S, denoted |S|, which is the number of words in S. Alternative
definitions represent a multiset by a list of its words along with their multiplicity,
in unary or binary. Note that in either case, the “list with multiplicity” repre-
sentation is more succinct than our “list with repetition” representation. For a
CA A = 〈Σ,Q,Q0,Δ, F, c〉, we define the size of A by

∑
e∈Δ c′(e), where c′(e) is

c(e) + 1 if c(e)
= ∞, and is 1 if c(e) = ∞. Note that our definition corresponds
to a representation of A with capacities given in unary.

For traditional automata, the membership problem is to decide, given a word
w and an NFA or DFA A, whether w ∈ L(A). In both cases, the problem
can be solved in linear time and is NLOGSPACE-complete. For the traditional
semantics of CAs, namely when we care about L(A), the membership problem
can be solved in linear time for DCAs and is NP-complete for CAs [10]. For
the containment problem, the complexity depends on whether the containing
automaton is deterministic. For a CA A, the complexity of deciding whether
L(A) ⊆ L(B) is co-NP-complete for a DCA B and is EXPSPACE-complete for
a CA B [9].

We now study the complexity of the problems for CAs in the utilization
semantics. We start with membership.

Theorem 6. The membership problem in the utilization semantics can be solved
in linear time for DCAs and is NP-complete for CAs.

Proof: Given a DCA A and a finite multiset S, we trace the single run of A
on each word in S and maintain for each transition a counter of the number of
times it is traversed. Clearly, S ∈ M(A) iff all runs end in an accepting state,
and the counters are bounded by the corresponding capacities.

For a CA A and a finite multiset S, a witness to the membership of S in
M(A) is an operation that accepts S. The length of the operation agrees with
that of S, and as in the case of DCAs, it can be checked in linear time.

10 R. Alon and O. Kupferman

For the lower bound, recall that given a CA A and a word w, we have that
w ∈ L(A) iff {w} ∈ M(A). Thus, the lower bound follows from the NP-hardness
of the membership problem in the traditional semantics for CAs [10]. �

We continue to the containment problem. Recall that M(A) and M(B) may
be infinite and may contain infinite multisets, which makes the setting challeng-
ing. Indeed, if all capacities are finite, then all multisets accepted by a CA A
are of length linear in A. As we now show, we are able to bound the length of a
multiset in M(A) \ M(B) even when both may contain transitions with an infi-
nite capacity. Intuitively, long words must traverse cycles all whose transitions
have infinite capacity, and can be shortened.

Lemma 2. Consider CAs A and B. If M(A)
⊆ M(B), then there is a finite
multiset in M(A)\M(B) whose size is linear in the size of B and whose length is
polynomial in A and doubly exponential in B in the general case, and polynomial
in both A and B when B is a DCA.

Proof: Let A = 〈Σ,Q,Q0,Δ, F, c〉 and B = 〈Σ,Q′, Q′
0,Δ

′, F ′, c′〉. As M(A)
⊆
M(B), there is a multiset S ∈ M(A) \M(B). Since M(B) is closed downwards
and ∅ ∈ M(B), there is a submultiset S′ ⊆ S such that S′ /∈ M(B) and for
every S′′ ⊂ S′, it holds that S′′ ∈ M(B). That is, S′ is a minimal submultiset
of S that is not in M(B). Note that since S′ ⊆ S and S ∈ M(A), we have that
S′ ∈ M(A). Hence, S′ ∈ M(A) \ M(B).

We claim that S′ is of a finite size, linear in B. Since S′ is a minimal submul-
tiset of S that is not in M(B), it does not contain words that can be accepted
via a run that only uses transitions with infinite capacities. To see this, assume
by way of contradiction that S′ contains a word w that is read in B along a path
π from Q′

0 to F ′ all whose transitions have capacity ∞. By the minimality of
S′, we have that S′ \ {w} ∈ M(B). But then, by adding to the operation that
mutually accepts S′ \{w} an accepting run on w along the path π, we obtain an
operation that respects the capacities and mutually accepts S′, contradicting the
fact that S′
∈ M(B). Now, consider a word w ∈ S′ and consider the operation
O of B that mutually accepts S′ \{w}. Since S′ does not contain words that can
be accepted via a run that only uses transitions with infinite capacities, we know
that every run in O consumes at least 1 from the capacity of some transition.
Hence, |S′ \ {w}| = |S′| − 1 ≤ |B|, and we are done.

We continue to the length argument and show that we can replace every
word in S′ by a word whose length is polynomial in A and doubly exponential
in B in the general case, and is polynomial in both A and B when B is a DCA,
while maintaining that S′ ∈ M(A) \ M(B). Recall that S′ = {w1, . . . , wn}.
For i = 1, 2, . . . , n, we proceed iteratively and replace wi by w′

i, defined so that
S′′ = S′ ∪ {w′

i} \ {wi} still satisfies S′′ ∈ M(A) \ M(B). Also, if S′′ is no
longer minimal, we take a minimal submultiset of S′′, namely one for which
S′′ \ {w} ∈ M(B) for all w ∈ S′′. Once this is done, we update S′ to S′′, and
continue to the next word in S′.

It is left to point to w′
i. First, if wi is of the required length, then w′

i = wi.
Otherwise, as detailed in the full version, we distinguish between the case B is

Mutually Accepting Capacitated Automata 11

nondeterministic and the case it is deterministic. In the first, we obtain w′
i from

wi by removing subwords that traverse cycles in the product A×B′, where B′ is
a DFA with L(B′) = L(B). In the second, reasoning about the product A×B is
not sufficient, yet we can reason about the product of the CAs obtained from A
and B by reducing the capacities of transitions consumed by wi. In both cases,
the bound on the size of the product gives the desire bound on w′

i. �
Lemma 3. The containment problem for CAs in the utilization semantics is at
least as hard as the containment problem for CAs in the traditional semantics.

Proof: We describe a logspace reduction from the containment problem in the
traditional semantics to the containment problem in the utilization semantics.
Consider a CA A = 〈Σ,Q,Q0,Δ, F, c〉, and let $ be a letter not in Σ. We define
the $$-padding of A as the CA A′ = 〈Σ ∪{$}, Q∪{q0, q1}, {q0},Δ′, F, c′〉, where
Δ′ and c′ are defined as follows.

– The transition relation Δ′ is obtained from Δ by adding one $-transition
from q0 to q1 and |Q0| $-transitions from q1 to all initial states in A. That is,
Δ′ = Δ ∪ {〈q0, $, q1〉} ∪ {〈q1, $, q′〉 : q′ ∈ Q0}.

– The capacity of all new transitions is 1, and the capacity of the transitions
in Δ stays as in A. That is, c′ : Δ′ → IN ∪ {∞} is such that c′(e) = c(e) if
e ∈ Δ, and c′(e) = 1 otherwise.

Note that the construction preserves determinism: the CA A′ has a single initial
state and there is nondeterminism in the transitions from q1 only when |Q0| > 1.

Now, given CAs A and B – an input to the containment problem in the
traditional semantics, our reduction returns their $$-paddings CAs A′ and B′.
Clearly, the reduction can be done in logspace. We prove that the reduction is
correct, thus L(A) ⊆ L(B) iff M(A′) ⊆ M(B′).

First note that L(A′) = $$ · L(A). Indeed, every run of A′ is of the form
q0, q1, r, for a run r of A, and the first two transitions in it can only be traversed
while reading $$. Similarly, L(B′) = $$·L(B), and thus we get that L(A) ⊆ L(B)
iff L(A′) ⊆ L(B′).

Now, since the only transition from the initial state has capacity 1, all mul-
tisets in A′ contain at most one word. Since, in addition, we know that for
every w ∈ (Σ ∪ {$})∗, we have that w ∈ L(A′) iff {w} ∈ M(A′), it follows that
M(A′) = {∅}∪{{w} : w ∈ L(A′)}. Likewise, M(B′) = {∅}∪{{w} : w ∈ L(B′)}.
Accordingly, M(A′) ⊆ M(B′) iff L(A′) ⊆ L(B′) iff L(A) ⊆ L(B), and we are
done. �
Theorem 7. The containment problem M(A) ⊆ M(B) is EXPSPACE-
complete for a CA or a DCA A and a CA B, and is co-NP-complete for a
CA or a DCA A and a DCA B.

Proof: As detailed in the full version, the upper bounds follow from Lemma 2
and we can check that a guessed finite multiset S is indeed in M(A) \ M(B) in
the desired complexity. The lower bounds follow from the known lower bounds in
the traditional semantics, namely EXPSPEC-hard for a CA B and co-NP-hard
for a DCA B, and Lemma 3. �

12 R. Alon and O. Kupferman

References

1. Boigelot, B., Godefroid, P.: Symbolic verification of communication protocols with
infinite state spaces using QDDs. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996.
LNCS, vol. 1102, pp. 1–12. Springer, Heidelberg (1996). https://doi.org/10.1007/
3-540-61474-5 53

2. Bouajjani, A., Habermehl, P., Vojnar, T.: Verification of parametric concurrent
systems with prioritised FIFO resource management. Formal Methods Syst. Des.
32(2), 129–172 (2008)

3. Cadilhac, M., Finkel, A., McKenzie, P.: On the expressiveness of Parikh automata
and related models. In: 3rd Workshop on Non-Classical Models for Automata and
Applications - NCMA, pp. 103–119 (2011)

4. Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and presburger
arithmetic. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 268–
279. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0028751

5. Ford, L., Fulkerson, D.: Flows in Networks. Princeton University Press, Princeton
(1962)

6. Klaedtke, F., Rueß, H.: Monadic second-order logics with cardinalities. In: Baeten,
J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS,
vol. 2719, pp. 681–696. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-45061-0 54

7. Krishnan, S., Puri, A., Brayton, R.: Deterministic ω-automata vis-a-vis determinis-
tic Büchi automata. In: Algorithms and Computations. Lecture Notes in Computer
Science, vol. 834, pp. 378–386. Springer (1994)

8. Kupferman, O., Morgenstern, G., Murano, A.: Typeness for ω-regular automata.
Int. J. Found. Comput. Sci. 17(4), 869–884 (2006)

9. Kupferman, O., Sheinvald, S.: Capacitated automata and systems. Inf. Comput.
961, 269 (2019)

10. Kupferman, O., Tamir, T.: Properties and utilization of capacitated automata. In:
Proceedings 34th Conference on Foundations of Software Technology and Theo-
retical Computer Science. LIPIcs, vol. 29, pp. 33–44. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, Germany (2014)

11. Löding, C.: Optimal bounds for the transformation of ω-automata. In: Proceedings
19th Conference on Foundations of Software Technology and Theoretical Computer
Science. Lecture Notes in Computer Science, vol. 1738, pp. 97–109 (1999)

12. Qiu, R., Joshi, S.: Deterministic finite capacity automata: a solution to reduce
the complexity of modeling and control of automated manufacturing systems. In:
Proceedings Symposium on Computer-Aided Control System Design, pp. 218–223
(1996)

https://doi.org/10.1007/3-540-61474-5_53
https://doi.org/10.1007/3-540-61474-5_53
https://doi.org/10.1007/BFb0028751
https://doi.org/10.1007/3-540-45061-0_54
https://doi.org/10.1007/3-540-45061-0_54

Bad Pictures: Some Structural Properties
Related to Overlaps

Marcella Anselmo1, Dora Giammarresi2(B), Maria Madonia3, and Carla Selmi4

1 Dipartimento di Informatica, Università di Salerno, Via Giovanni Paolo II, 132,
84084 Fisciano, SA, Italy

manselmo@unisa.it
2 Dipartimento di Matematica, Università Roma “Tor Vergata”,

via della Ricerca Scientifica, 00133 Roma, Italy
giammarr@mat.uniroma2.it

3 Dipartimento di Matematica e Informatica,, Università di Catania,
Viale Andrea Doria 6/a, 95125 Catania, Italy

madonia@dmi.unict.it
4 LITIS, Université de Rouen Normandie, Saint Etienne du Rouvray,

76830 Rouen, France
carla.selmi@univ-rouen.fr

Abstract. Given two pictures p and f , p is f -free if f is not a sub-
picture of p. A binary picture f is good if for any pair of f -free pictures
p and q there exists a bit-to-bit transformation from p to q such that
any picture in the intermediate steps is f -free. Such transformation is
called f -free transformation. A binary picture is bad if it is not good.
These notions generalize to pictures the corresponding ones for strings.
We study some properties of bad binary pictures in terms of overlaps
and give some examples. Furthermore, we discuss the properties of an
index of a bad picture f , that is a minimal picture size (h, k) for which
two pictures of such size do not admit a f -free transformation.

Keywords: Bad pictures · Overlap · Index

1 Introduction

In combinatorics of strings the leading actors are all particular strings that gen-
erate interesting and useful patterns. Most of the pecularities of such strings are
based on specific attributes regarding their factors (substrings) or, more specifi-
cally, their prefixes and suffixes. Important properties can be found also studying
strings with overlap (also called bifix or border); they are often crucial to prove

Partially supported by INdAM-GNCS Projects 2019–2020, FARB Project
ORSA190149 of University of Salerno and CREAMS Project of University of
Catania. The second author acknowledges the MIUR Excellence Department Project
awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP
E83C18000100006.

c© Springer Nature Switzerland AG 2020
G. Jirásková and G. Pighizzini (Eds.): DCFS 2020, LNCS 12442, pp. 13–25, 2020.
https://doi.org/10.1007/978-3-030-62536-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62536-8_2&domain=pdf
https://doi.org/10.1007/978-3-030-62536-8_2

14 M. Anselmo et al.

important structural properties as well as to design algorithms for coding or
pattern matching. Recall that, given a string s, an overlap of s is a substring x
that is both prefix and suffix of s.

An interesting notion is the one of good strings as defined for example in
[7]; they are special binary strings that never appear as factors in some string
transformations. More precisely, let Σ = {0, 1} and let f be a string over Σ. A
string w is said f -free if it does not contain f as factor. Given two f -free strings
u and v of the same length d, an f -free transformation from u to v is a succession
of f -free strings x1, x2, . . . , xn, n ≥ 1 such that x1 = u, xn = v and xi differs
from xi+1 only in one position (i.e. the Hamming distance between xi and xi+1

is 1). A string f is called d-good if for any pair of f -free words of length d there
exists an f -free transformation between them. A string is good if it s d-good for
any d while a string is bad if it is not good. The index of a word f is the smallest
integer d for which f is not d-good. Bounding the index of a word is useful to
test whether a given word is good or bad. In [7–11] the structure of bad words
is characterized and related to particular properties on overlaps.

Good strings are also called isometric because they are related to isometric
subgraphs of the n-cube Qn, that is the graph whose vertices consist of the
(binary) words of length n, two vertices being adjacent when the corresponding
words differ in exactly one symbol. Then an f -free transformation of a string
corresponds to a path in this graph through vertices corresponding to strings
that do not contain f . Moreover if f is good, then the subgraph Qn(f) of all
vertices corresponding to f -free strings is isometric to Qn. Such Qn(f) graphs
are also called generalized Fibonacci cubes. Other applications of good strings
are in the problem of pattern matching with errors and also in the context of
studies of strings avoiding special factors.

In this paper, we deal with combinatorics of two-dimensional strings called
pictures. A picture is a rectangular array of symbols taken from a finite alphabet
Σ. The size of a picture is a pair (m,n) corresponding to the number of rows
and columns. The set of all pictures over Σ is usually denoted by Σ∗∗; a two-
dimensional language is thus a subset of Σ∗∗. Extending results from the formal
(string) languages theory to two dimensions is often a challenging task. The
two-dimensional structure in fact imposes some intrinsic difficulties even when
trying to generalize the basic concepts. Nevertheless during the last fifty years,
and still intensively nowadays, several results from string language theory were
extended to pictures.

For what concerns combinatorics on pictures, the notions of factor, prefix ad
suffix can be transposed from strings either in a “light” or in a general version.
Given a picture p of size (m,n) we could consider only portions (sub-pictures)
of p of size either (h, n) of (m, k) with h < m and k < n. This corresponds to
the particular cases of subpictures/ prefixes /suffixes that are a block of rows or
columns, resp., of the picture p. This version is certainly more consistent with the
case of strings. More generally, by exploiting the two-dimensional structure, we
can use sub-pictures of any size (h, k). Then, for example, a prefix of a picture
can be any top-left portion of p. However, in this case if one deletes a prefix

Bad Pictures: Some Structural Properties Related to Overlaps 15

from a picture, the remaining part is not a picture anymore (while, with the
light definition, deleting any sub-pictures leaves rectangular pictures). Adopting
this general definition of sub-picture leads to more interesting results but also
to much involved proof techniques.

The notion of overlap extends very naturally from strings to pictures since
it is not related to any scanning direction. Informally we can say that a picture
p has an overlap if a copy p′ of p can be put on p by placing a corner of p′

somewhere on a position of p in a way that the superposed positions match. The
overlap of p will be the sub-picture corresponding to the portion where p and p′

match. Because of the two dimensions there are several possibilities to specialize
this notion. The simplest one is when the matching is checked only by sliding
the two picture copies with a horizontal or a vertical move; in this case we allow
only overlap with the same number of columns or rows of the picture p itself.
Notice that this case corresponds to the light version of definition for prefixes
and suffixes. In some sense, pictures can be handled as they were thick strings on
the alphabet either of the columns or of the rows. More general overlaps can be
obtained by putting the top-left corner of p inside the copy p′ (called tl-overlap)
or by taking the bottom-left corner (called bl-overlap); and these corresponds
to two different situations. Definition and properties of picture overlaps were
recently studied in [1–5].

We extend the mentioned notion of good string to pictures. The basic defi-
nition can be given naturally by generalizing the corresponding ones for strings.
The alphabet will be always the binary alphabet Σ = {0, 1}. Let f be a picture
of size (m,n) and p a picture of bigger size (h, k) (i.e. h ≥ m and k ≥ n), we say
that p is f-free if p does not contain f as sub-picture. Given two f -free pictures
p and q of the same size, we say that there is an f -free transformation from p to
q if p can be transformed into q by switching one by one all the bits on which
p differs from q and all of the new pictures obtained in this process are f -free.
Then a picture f is (h,k)-good if for any pair of f -free pictures p and q of size
(h, k), there exists a f -free transformation from p to q. A picture is good if it is
(h, k)-good for any positive pair (h, k). Finally, a picture is bad if it is not good.

We study some structural properties of bad pictures. We demonstrate that
the property of being a bad picture is related to the fact of having some kind of
error overlaps i.e. overlaps where some positions do not match. The most difficult
part of the proof is to show that if a picture has a 2-error overlap then it is bad.
For that all possible overlap cases are carefully analyzed. The last part of the
paper considers the problem of finding a minimal (h, k) for which a bad picture
f of given size (m,n) is not (h, k)-good. Such pair is called index of the picture
f . This study can have applications in the context of two-dimensional pattern
matching with errors. Some examples of good and bad pictures are also given.

2 Preliminaries

In this section, we first report some definitions and results on good and bad
strings. Then, we collect all the notions for the two-dimensional setting (i.e.

16 M. Anselmo et al.

pictures) needed for the main results. Throughout the paper, Σ denotes the
binary alphabet {0, 1}.

2.1 Basic Notions and Results on Strings

A string s is a sequence of zero or more symbols from the alphabet Σ. The
number n of symbols that compose s is referred to as the length (or the size) of
s while the positions of such symbols are numbered from 1 to n. We also write
s = s1s2 . . . sn with si ∈ Σ. A string w is a substring of s if s = uwv for some
u, v ∈ Σ∗.

Moreover, we say that w of length h occurs at position j of s if and only if
w = sj . . . sj+h−1. A string u is a prefix of s if u is a substring that occurs in s
at position 1; a string v of length h ≤ n is a suffix of s if it is a substrings that
occurs in s at position n − h + 1. A string x that is both prefix and suffix of s
is called an overlap (also border or bifix) of s. Note that the empty string and
s itself are trivial overlaps of s. Note that the name “overlap” comes from the
fact that we can put a copy s′ of s on s itself in a way that the corresponding
positions match. A string s has an r-error overlap, 0 ≤ r < n, if there exist a
prefix x and a suffix y of s that differ in exactly r positions (i.e., the Hamming
distance between x and y is equal to r).

In [7], it is considered the interesting notion of good strings; they are special
binary strings that never appear as factors in some string transformations. More
precisely, let Σ = {0, 1} and let f be a string over Σ. A string s is said f -free if
it does not contain f as factor.

Given two f -free strings, u and v of the same length d, we can transform u
in v by switching one-by-one all the bits in which they differ. This results in a
sequence of strings x1, x2, . . . , xn such that x1 = u, xn = v and xi differs from
xi+1 only in one position. If each string xi is f -free, we call it an f -free trans-
formation from u to v. The length n of the succession is exactly the Hamming
distance between u and v.

A string f is called d-good if for any pair of f -free words of length d there
exists an f -free transformation between them. A string is good if it is d-good for
any d. A string is bad if it is not good. The structure of bad words is characterized
in [7–11]. In particular we mention the following results.

Proposition 1. A string f is bad if and only if f has a 2-error overlap.

The index of a bad word f , usually denoted by B(f), is defined as the smallest
integer d for which f is not d-good. If f is good then its index is ∞. Bounding
the index of a word, as in the following proposition, is useful to test whether a
given word is good or bad. In [11] it is proved the following result.

Proposition 2. Let f ∈ Σn be a bad string. Then n + 1 ≤ B(f) ≤ 2n − 1.

Bad Pictures: Some Structural Properties Related to Overlaps 17

2.2 Basic Notions on Pictures

We recall some definitions about pictures (see [6]). A picture over a finite alpha-
bet Σ is a two-dimensional rectangular array of elements of Σ. Given a picture
p with m rows and n columns, the size of p is the pair size(p) = (m,n). The
pictures of size (m, 0) or (0, n) for all m,n ≥ 0, called empty pictures, will be
never considered in this paper. The set of all pictures over Σ of fixed size (m,n)
is denoted by Σm,n, while the set of all pictures over Σ is denoted by Σ∗∗.

Let p be a picture of size (m,n). The set of coordinates dom(p) =
{1, 2, . . . ,m} × {1, 2, . . . , n} is referred to as the domain of a picture p. We let
p(i, j) denote the symbol in p at coordinates (i, j). We assume the top-left corner
of the picture to be at position (1, 1). Moreover, to easily detect border positions
of pictures, we use initials of words “top”, “bottom”, “left” and “right”: then,
for example, the tl-corner of p refers to position (1, 1) while the br-corner refers
to position (m,n).

A sub-domain of dom(p) is a set d of the form {i, i + 1, . . . , i′} × {j, j +
1, . . . , j′}, where 1 ≤ i ≤ i′ ≤ m, 1 ≤ j ≤ j′ ≤ n, also specified by the
pair [(i, j), (i′, j′)]. The portion of p corresponding to positions in subdomain
[(i, j), (i′, j′)] is denoted by p[(i, j), (i′, j′)]. Then a non-empty picture x is sub-
picture of p if x = p[(i, j), (i′, j′)], for some 1 ≤ i ≤ i′ ≤ m, 1 ≤ j ≤ j′ ≤ n; if it
is so, we say that x occurs at position (i, j) (its tl-corner).

Given two pictures, p and q, of size (m,n) and (m′, n′), respectively, they can
be concatenated both horizontally by juxtaposing the last column of p with the
first column of q or vertically by juxtaposing the last row of p with the first row
of q. These operations are called the column concatenation of p and q (p � q)
and the row concatenation of p and q (p� q) are partial operations, defined only
if m = m′ and if n = n′, respectively.

p � q = p q p � q =
p
q

Note that any string s = y1y2 · · · yn can be identified either with a single-row
or with a single-column picture, i.e. a picture of size (1, n) or (n, 1).

We now consider the notion of overlap as generalization from strings to pic-
tures (see for example [4]). Informally, as for strings, we say that a picture p has
an overlap if we can put a copy p′ somewhere over p in a way that the corre-
sponding positions match. This implies p has an overlap if and only if we can
find the same rectangular portion at two opposite corners. Note that there are
two different kinds of overlaps depending on the pair of opposite corners that
hold the overlap. We state the following definition.

Definition 3. Given pictures p ∈ Σm,n and x ∈ Σm′,n′
, with 1 ≤ m′ ≤ m and

1 ≤ n′ ≤ n, the picture x is a tl-overlap of p, if x is a sub-picture of p occurring
at position (1, 1) and at position (m−m′ +1, n−n′ +1); picture x is a bl-overlap
of p, if x is a sub-picture of p occurring at position (m−m′+1, 1) and at position
(1, n − n′ + 1). Moreover x is an overlap of p if it is either a tl- or a bl-overlap.

18 M. Anselmo et al.

As special cases, p is a trivial overlap of itself, and x is a proper overlap
of p if it is not trivial. Other particular cases are when the overlap x has the
same number of rows or columns of p: these particular cases are referred to as
horizontal or vertical overlaps, respectively and correspond to the horizontal or
vertical slide movement to put a copy of p into p. A diagonal overlap is an overlap
neither horizontal nor vertical.

Note that a tl-overlap x of a picture p of size (m,n) can be univocally detected
either by giving the position where its tl-corner occurs in p or by giving its size.
The analogous holds for the bl-overlap. Examples of pictures together with their
overlaps are given below; p has a tl-overlap, q and r have a bl-overlap while s
has a vertical overlap.

p =

0 1 0 0 0 0
1 1 0 1 1 1
0 0 1 1 1 0
0 1 1 0 1 0
1 1 1 1 1 0

q =

1 0 0 1 0
1 1 0 1 1
1 1 1 0 0
1 0 1 1 0
1 1 1 1 0
0 0 0 1 0

r =
0 0 1
0 1 1
1 1 1

s =

0 1 0 0
1 1 1 1
0 0 1 1
0 1 0 0
1 1 1 1

For the sequel, given two pictures p and q of the same size, we will be inter-
ested in the number of positions in which they differ. By borrowing the termi-
nology from string theory, we will refer to this number as the Hamming distance
between p and q and denote it by distH(p, q).

3 Good and Bad Pictures

We introduce the notions of good and bad pictures and prove some properties
of bad pictures based on overlaps with errors. The definitions and the results
extend to two dimensions the corresponding theory for strings given in [8].

Definition 4. Let p and f be two pictures on Σ. The picture p is f-free if p
does not contain f as sub-picture.

We now consider two f -free pictures p and q of the same size (h, k). Let d
be the number of positions in which they differ, i.e. d = distH(p, q). We can
“transform” p into q by switching one-by-one the symbols in these positions in
exactly d steps and denote by pi the picture obtained after i changes. If all such
pi are f -free, this sequence of pictures pi, with p0 = p and pd = q, is called an
f-free transformation from p to q. More formally, we give the following definition.

Definition 5. Let f be a picture over Σ and let p, q ∈ Σh,k be two f-free pic-
tures. A f-free tranformation from p to q, which we denote p � q, is a sequence
of pictures p0 = p, p1, . . . , pd = q such that:

1. pi ∈ Σh,k 0 ≤ i ≤ h,
2. distH(pi, pi+1) = 1, for all 0 ≤ i ≤ d − 1,
3. d = distH(p, q),
4. pi is f-free, for all 0 ≤ i ≤ d.

Bad Pictures: Some Structural Properties Related to Overlaps 19

Definition 6. A picture f ∈ Σ∗∗ is (h,k)-good if, for all pairs of f-free pictures
p, q ∈ Σh,k, there exists a f-free transformation from p to q. A picture f on Σ
is good if f is (h, k)-good, for all h, k ≥ 1.

Definition 7. A picture f ∈ Σ∗∗ is (h,k)-bad if there exist f-free pictures p, q ∈
Σh,k for which no f-free transformation from p to q exists. A picture f ∈ Σ∗∗

is bad if it is not good i.e. if f is (h, k)-bad, for some h, k ≥ 1.

Let us now introduce the notion of overlap with errors that will be used to
prove properties of binary bad pictures. A picture p has an r-error tl-overlap
if p has a tl-overlap in the sense of Definition 3 where the two subpictures in
the corners match everywhere except in exactly r positions. Similarly, p has an
r-error bl-overlap if p has a bl-overlap where exactly r points do not match.
A picture p has an r-error overlap if p has an r-error tl-overlap or an r-error
bl-overlap. Note that, trivially, a 0-error overlap is an overlap.

We now show that the notion of 2-error overlap is related to the property of
being bad. For lack of space we do not give all the details of the proof.

Proposition 8. Let f be a picture on Σm,n. If f has a 2-error overlap then f
is bad.

Proof. Let f ∈ Σm,n be a picture with a 2-error tl-overlap. The proof goes
similarly if f has a 2-error bl-overlap. Suppose that the size of the 2-error tl-
overlap is (k, l), for some 1 ≤ k ≤ m and 1 ≤ l ≤ n, and denote r = m − k and
s = n − l. Hence, the subpicture ov ∈ Σk,l of f occurring at position (1, 1) and
the subpicture ov′ ∈ Σk,l of f occurring at position (r + 1, s + 1) coincide in all
positions except for two, say (i1, j1) and (i2, j2). Let f(i1, j1) = ov(i1, j1) = x
and f(i2, j2) = ov(i2, j2) = y, for some x, y ∈ Σ. Then, f(r + i1, s + j1) =
ov′(i1, j1) = x and f(r + i2, s + j2) = ov′(i2, j2) = y.

The proof is split in three parts, following that the 2-error overlap is a diag-
onal, a horizontal, or a vertical 2-error overlap.

First, consider the case that the 2-error overlap of size (k, l) is a diagonal one.
Just to fix ideas, suppose that i1 ≤ i2 and j1 ≤ j2, (i1, j1) �= (i2, j2) The other
cases can be handled in a similar way. We are going to construct two f -free
pictures for which there does not exist a f -free transformation, thus showing
that f is bad.

Let f(1, n) = c and f(m, 1) = e, for some c, e ∈ Σ. Consider the picture α,
of size (m+ r, n+s), constructed as follows. Imagine to take two copies of f and
let the tl-corner of a copy of f coincide with position (r + 1, s + 1) of the other
one. In this way, picture ov is superposed to picture ov′. Thus, the symbols in all
positions match, except for the symbols in two positions that we set as follows:
α(r + i1, s + j1) = x, and α(r + i2, s + j2) = y. The remaining positions in the
domain dtr = [(1, n + 1), (r, n + s)] are filled with c, while the positions in the
domain dbl = [(m + 1, 1), (m + r, s)] are filled with e. The construction of α is
depicted in the following figure.

20 M. Anselmo et al.

ov =
x

y
f =

c
x

y

x

y
e

α =

c c c c c c
x c c c c c

c c c c c
y c c c c c

c c c c c

x

y
e
e e e e e
e e e e e x
e e e e e
e e e e e y
e e e e e

β =

c c c c c c
x c c c c c

c c c c c
y c c c c c

c c c c c

x

y
e
e e e e e
e e e e e x
e e e e e
e e e e e y
e e e e e

We show that α is f -free. In fact, f cannot occur in α with its tl-corner at
position (1, 1), since α(r + i2, s + j2) = y while f(r + i2, s + j2) = y. Picture
f cannot occur even with its br-corner at position (m + r, n + s), since α(r +
i1, s + j1) = x while f(i1, j1) = x. Finally, f cannot occur elsewhere, because
either the tr-corner of this occurrence of f would fall in dtr, or the bl-corner of
this occurrence of f would fall in dbl, or both. In any case this would cause a
mismatch.

Let β the picture of size (m + r, n + s) that differs from α only in positions
(r+i1, s+j1) and (r+i2, s+j2). Actually, β(r+i1, s+j1) = x and β(r+i2, s+j2) =
y, as shown in the previous figure.

Using similar arguments as for α, we can prove that β is f -free. Note that the
pictures α and β differ only in positions (r + i1, s + j1) and (r + i2, s + j2), and
that each time one of these positions is switched, an occurrence of f appears.
Hence, there is no f -free transformation from α to β. This concludes the proof
in the case of a diagonal 2-error overlap in f .

The remaining two cases when the 2-error overlap in f is an horizontal one
and a vertical one, respectively, are very technical; they are not given for lack of
space. �	

Following the construction of the pictures α, β in the previous theorem, we
can say something more about the size of these pictures.

Remark 9. If f ∈ Σm,n has a 2-error overlap then f is (s, t)-bad, with s ≤ 2m−1
and t ≤ 2n − 1 and (s, t) �= (2m − 1, 2n − 1) . Let ov be such 2-error overlap.
Following the construction in the proof of Proposition 8, there exists a pair of
f -free pictures in Σs,t, (either α and β) such that no f -free transformation from
one picture to the other one exists. Note that, if ov is a horizontal (vertical,

Bad Pictures: Some Structural Properties Related to Overlaps 21

resp.) 2-error overlap, then s = m and t ≤ 2n − 1 (s ≤ 2m − 1 and t = n,
resp.). If instead ov ∈ Σh,k is a diagonal 2-error overlap, then s = 2m − h and
t = 2n − k. Moreover, since ov is a 2-error overlap, we have area(p) ≥ 2 (i.e.
it cannot be h = 1 and k = 1) and, therefore, we cannot have s = 2m − 1 and
t = 2n − 1.

Remark 10. The previous proposition suggests a method to construct a fam-
ily of bad pictures. Let p be a picture on a binary alphabet. We choose two
positions in p, switch the symbols in these two positions, and denote by p′ the
picture obtained from p in this way. Any picture f having p and p′ as tl- and br-
corners, respectively, has 2-error overlap and then it is a bad picture applying
Proposition 8.

Unfortunately the vice versa of Proposition 8 is not true and then the pres-
ence of a 2-error overlap does not characterize bad pictures as it holds for strings.
Here is a counterexample.

Example 11. The binary picture f =
1 0 1
0 1 0

has not a 2-error ovelap but

it is a bad picture. In fact, the following pictures p and q are f -free and any
transformation from p to q is not f -free.

p =

1 1 1 0 1 1 1
1 0 1 1 0 0 1
0 1 1 0 0 1 0
1 1 0 1 0 1 0

q =

1 1 1 0 1 1 1
1 0 0 1 1 0 1
0 1 0 0 1 1 0
1 1 0 1 0 1 0

The bits in which p and q differ are written in bold. Switching each of the bold
written bit of p, an occurence of f is generated. So the transformation from p to
q is not f -free.

Very interestlingly, we can prove a weak version of the vice versa of
Proposition 8. In fact we demostrate that if a picture is bad then either it
has a 2-error overlap or it has both a 1-error tl-overlap and a 1-error bl-overlap
(somehow again 2 errors in total). We prove first the following lemma.

Lemma 12. Let f ∈ Σm,n be a bad picture and let p, q ∈ Σs,t be two f-free
pictures of minimal Hamming distance among the pictures of that size with no
f-free transformation. Let V be the set of all positions in which p differs from
q. It holds the following.

1. The distance distH(p, q) = d ≥ 2,
2. Switching any symbol in p in the positions in V will generate an occurrence

of f as sub-picture,
3. Any tranformation p0 = p, p1, . . . , pd−1, pd = q is such that all intermediate

pictures pi, i = 1, . . . , d − 1 are not f-free,
4. The occurrence of f in each pi contains at least two positions in the set V .

22 M. Anselmo et al.

Proof.
1. : If d < 2 then sequence p, q is an f -free transformation from p to q.
2. : By contradiction, we could switch such position getting p′ with distH(p′, q) <
d against minimality hypothesis.
3. : By contradiction, let pr be f -free. We set pr = q′ with distH(p, q′) < d
against minimality hypothesis.
4. : By contradiction, then q is not f -free. �	
Proposition 13. Let f ∈ Σ∗∗. If f is bad then f has a 2-error overlap or a
1-error tl-overlap and a 1-error bl-overlap.

Proof. Let p, q ∈ Σh,k be two f -free pictures of minimal Hamming distance such
that no f -free transformation from p to q does exist. Let distH(p, q) = d. Since
p and q are f -free, we have that d ≥ 2. Let V be the set of the d positions in
which p and q are different. We construct the sequence of pictures of a (non f -
free) transformation p0 = p, p1, . . . , pd−1, pd = q as follows. Take p0 = p, choose
the position in V that is the most “high-and-left”, say (i1, j1), and switch the
symbol; this is the first picture p1. By Lemma 12 we have that p1 contains f
as sub-picture, call it f1, and inside f1 there is at least another position in
V . Choose one of such positions and switch the symbol to get picture p2. Then
repeat the procedure always choosing a position in V to be switched that belongs
to the new occurrence of f we have just generated. Note that all the occurrences
fk of f we generate do overlap and then create a sort of “chain” of 1-error either
tl- or bl- overlaps of f . After d − 1 steps, we get picture pd−1 where we just
switched position (id−1, jd−1) and that have an occurrence of f in it containing
the last position to be switched (id, jd). That is the occurrence of f , called fd−1,
in pd−1 contains positions (id−1, jd−1) and (id, jd). On the other hand if in p
we directly switch the symbol in position (id, jd) then, by Lemma12, we get an
occurrence of f , call it f ′, that should contain also at least another positions
from V , say (ir, jr). Then we have two possibilities. If the occurrence fr of f
contains also position (id, jd) then these two positions ((id, jd) and (ir, jr)) lie
in the overlap of these occurrences f ′ and fr of f and therefore f has a 2-error
overlap. If fr does not contain (id, jd), then this chain of 1-error overlaps of f
contains a sort of loop and therefore there is at least one 1-error tl-overlap and
at least one 1-error bl-overlap. �	

As an immediate consequence of Proposition 13, we can exhibit a family of
good pictures on a binary alphabet.

Corollary 14. Every picture over Σ where all the positions hold the same sym-
bol is good.

4 Index of Bad Pictures

In this last part of the paper we focus on bad pictures and bound the minimum
size for which a bad picture is (h, k)-good. We introduce first a notation. Given

Bad Pictures: Some Structural Properties Related to Overlaps 23

two pairs of positive integers (h1, k1) and (h2, k2), we write (h1, k1) ≤ (h2, k2)
if h1 ≤ h2 and k1 ≤ k2; moreover, we write (h1, k1) < (h2, k2) if h1 ≤ h2,
k1 ≤ k2 and (h1, k1) �= (h2, k2). Note that there exist pairs such that neither
(h1, k1) ≤ (h2, k2) nor (h2, k2) ≤ (h1, k1). In this case, we say that (h1, k1) and
(h2, k2) are not comparable. Consider, as an example, the pairs (h1, k1), (h2, k2)
with h1 ≤ h2 and k1 > k2.

Lemma 15. If f ∈ Σm,n is (h, k)-bad, then (m,n) < (h, k).

Proof. Trivially, m and n are such that (m,n) ≤ (h, k). We show that (m,n) �=
(h, k).

If f is (h, k)-bad, then there are two f -free pictures in Σh,k for which no
f -free transformation from one to the other exists. Let p, q ∈ Σh,k be two pic-
tures of minimal Hamming distance with this property, and p0, p1, · · · , pl be a
transformation of p in q of minimal distance l. If (m,n) = (h, k), then some
picture in the sequence is equal to f . Moreover, the minimality implies that
l = 2, and that the transformation is p, f, q. In other words, p and q differ in two
positions. Exchanging the steps of the transformation, we would obtain a f -free
transformation form p to q, against the hypothesis. �	
Lemma 16. Let f ∈ Σm,n be a picture. If f is (h, k)-bad, then f is (h, k+1)-bad
and f is (h + 1, k)-bad.

Proof. Let p, q ∈ Σh,k be two f -free pictures such that no f -free transformation
from p to q exists. If f(1, n) = x, then consider two picture p′, q′ ∈ Σh,k+1,
obtained by adding a column of symbols x to the right of p and q. It is easy to
prove that p′ and q′ are f -free. Moreover, since the positions where p′ and q′

differ are not in the last column, any transformation from p′ to q′ is in fact a
transformation from p to q. Hence, it is not f -free.

An analogous reasoning shows that f is (h + 1, k)-bad, also. �	
We have now all the ingredients to introduce the definition of index of a

picture.

Definition 17. Given a bad picture f ∈ Σm,n, a pair of positive integers (h, k)
is an index of f if f is (h, k)-bad and f is not (h′, k′)-bad for any pair of positive
integers (h′, k′) < (h, k).

Lemma 15, gives immediately the following bound for an index of a picture.

Proposition 18. Let f ∈ Σm,n be a bad picture. If (h, k) is an index of f , then
(h, k) > (m,n).

Remark 19. Differently from the string case, a picture f could have more than
one index. Indeed, it could exist two different, and not comparable pairs of
positive integers, that are both indexes of f , as shown in the following example.

24 M. Anselmo et al.

Example 20. Consider the following pictures over the alphabet Σ = {1, 0}:

f =
1 1 1
0 0 1
0 0 1

, p =
1 1 1 1
0 0 0 1
0 0 1 1

, q =
1 1 1 1
0 0 1 1
0 0 0 1

, p′ =

1 1 1
1 0 1
0 0 1
0 0 1

, and q′ =

1 1 1
0 1 1
0 0 1
0 0 1

. One

can check that p and q are f -free and no f -free transformation from p to q
exists. Therefore, f is (3, 4)-bad and, from Lemma 15, (3, 4) is an index of f .
The analogous result holds for p′ and q′. Hence, f has two different and not
comparable indexes (3, 4) and (4, 3).

The following Proposition 21 characterizes bad pictures f ∈ Σm,n with min-
imal index (m,n + 1). Note that an analogous characterization holds for bad
pictures f ∈ Σm,n with minimal index (m + 1, n).

Let c ∈ Σm,1 and denote by ch the column concatenation of h copies of c.

Proposition 21. Let f ∈ Σm,n be a bad picture. The pair (m,n+1) is an index
of f if and only if either f = c1

hc2
kc3

t, for some h, k, t ≥ 1, c1, c2, c3 ∈ Σm,1 with
distH(c1, c2) = distH(c2, c3) = 1 or f = c1

hc2
k, for some h, k ≥ 1, c1, c2 ∈ Σm,1

with distH(c1, c2) = 2.

Proof. If (m,n + 1) is an index of f , then there exists a pair of f -free pictures
in Σm,n+1 for which no f -free transformation from one picture to the other one
exists. Suppose that p, q ∈ Σm,n+1 are two f -free pictures of minimal Hamming
distance such that no f -free transformation from p to q exists. Let distH(p, q) = d
and let V = {(i1, j1), (i2, j2), · · · , (id, jd)} be the set of all positions in which p
and q are different. As noted in Lemma 12, we have d ≥ 2 and for any position
(i, j) ∈ V , if we switch p(i, j), we obtain an occurrence of f in p. This implies
that d > 2 is not possible, since p may contain only two different occurrences of
f , for size reasons. More exactly, f can occur in p only at position (1, 1) and at
position (1, 2). Therefore V = {(i1, j1), (i2, j2)} and denote by f(i1,j1) (f(i2,j2),
resp.) the occurrence of f in p that is obtained by switching p(i1, j1) (p(i2, j2),
resp.). Note that both positions (i1, j1) and (i2, j2) are covered by both f(i1,j1)

and f(i2,j2), because there is no f -free transformation from p to q. This implies
that f has a 2-error h-overlap of size (m,n − 1). Now, if j1 �= j2 and w.l.o.g.
j1 < j2, then we have f = c1

hc2
kc3

t, with h = j1, k = j2 − j1, t = n − j2,
c1, c2, c3 ∈ Σm,1 and distH(c1, c2) = distH(c2, c3) = 1. If instead j1 = j2 then
we have f = c1

hc2
k, with h = j1, k = n−j1, c1, c2 ∈ Σm,1 and distH(c1, c2) = 2.

Suppose now that either f = c1
hc2

kc3
t, for some h, k, t ≥ 1, c1, c2, c3 ∈ Σm,1

with distH(c1, c2) =, distH(c2, c3) = 1, or f = c1
hc2

k, for some h, k ≥ 1, with
c1, c2 ∈ Σm,1 and distH(c1, c2) = 2. It is easy to see that, in both cases, f has a
2-error h-overlap of size (m,n−1). Then, following the construction in the proof
of Proposition 8, we can obtain two f -free pictures α and β in Σm,n+1, for which
no f -free transformation from α to β exists. Note that the 2-error h-overlap of f
does not satisfy Condition (*), since s = 1 in this case. Then f is (m,n+1)-bad
and (m,n + 1) is an index of f , applying Lemma 15. �	

We conclude with an example that exploits the above proposition.

Bad Pictures: Some Structural Properties Related to Overlaps 25

Example 22. Consider the picture f ∈ Σ3,3 in Example 20. The pair (3, 4) is
an index of f . Then, following the previous Proposition 21, f = c1

2c2
1 and

distH(c1, c2) = 2 with c1 =
1
0
0

c2 =
1
1
1

.

References

1. Anselmo, M., Giammarresi, D., Madonia, M.: Unbordered pictures: properties and
construction. In: Maletti, A. (ed.) CAI 2015. LNCS, vol. 9270, pp. 45–57. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-23021-4 5

2. Anselmo, M., Giammarresi, D., Madonia, M.: Avoiding overlaps in pictures. In:
Pighizzini, G., Câmpeanu, C. (eds.) DCFS 2017. LNCS, vol. 10316, pp. 16–32.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60252-3 2

3. Anselmo, M., Giammarresi, D., Madonia, M.: Non-expandable non-overlapping
sets of pictures. Theor. Comput. Sci. 657, 127–136 (2017)

4. Anselmo, M., Giammarresi, D., Madonia, M.: Sets of pictures avoiding overlaps.
Int. J. Found. Comput. Sci. 30(6–7), 875–898 (2019)

5. Gamard, G., Richomme, G.: Coverability in two dimensions. In: Dediu, A.-H.,
Formenti, E., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2015. LNCS, vol. 8977, pp.
402–413. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15579-1 31

6. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salo-
maa, A. (eds.) Handbook of Formal Languages, pp. 215–268. Springer, Heidelberg
(1997). https://doi.org/10.1007/978-3-642-59126-6 4

7. Ilic, A., Klavzar, S., Rho, Y.: The index of a binary word. Theor. Comput. Sci.
452, 100–106 (2012)

8. Klavzar, S., Shpectorov, S.V.: Asymptotic number of isometric generalized
Fibonacci cubes. Eur. J. Comb. 33(2), 220–226 (2012)

9. Wei, J.: The structures of bad words. Eur. J. Comb. 59, 204–214 (2017)
10. Wei, J., Yang, Y., Zhu, X.: A characterization of non-isometric binary words. Eur.

J. Comb. 78, 121–133 (2019)
11. Wei, J., Zhang, H.: Proofs of two conjectures on generalized Fibonacci cubes. Euro.

J. Combinatorics 51, 419–432 (2016). https://doi.org/10.1016/j.ejc.2015.07.018

https://doi.org/10.1007/978-3-319-23021-4_5
https://doi.org/10.1007/978-3-319-60252-3_2
https://doi.org/10.1007/978-3-319-15579-1_31
https://doi.org/10.1007/978-3-642-59126-6_4
https://doi.org/10.1016/j.ejc.2015.07.018

Regular Expression Length via
Arithmetic Formula Complexity

Ehud Cseresnyes and Hannes Seiwert(B)

Institute of Computer Science, Goethe University Frankfurt, Frankfurt, Germany
ehud@posteo.de, seiwert@em.uni-frankfurt.de

Abstract. We prove lower bounds on the length of regular expressions
for finite languages by methods from arithmetic circuit complexity. First,
we show a reduction from expression length to monotone arithmetic for-
mula size. This yields lower bounds of nkΩ(log k) for the binomial language
of all words with exactly k ones and n− k zeros, and of nΩ(log n) for the
language of all Dyck words of length 2n. We also determine the blow-up
of expression length when applying the operations intersection or shuffle
to finite languages. Second, we adapt a lower bound method for multilin-
ear arithmetic formulas by Hrubeš and Yehudayoff to regular expressions.
With this method we give a tight lower bound of Ω(n−1plog(n/ log p)−2)
for the language of all binary numbers with n bits that are divisible by a
given odd integer p.

Keywords: Regular expression · Lower bound · Arithmetic formula ·
Arithmetic circuit complexity · Finite language

1 Introduction

Deriving lower bounds on the length of regular expressions is a fundamental
problem in formal language theory [3–5,7,9,17,18]. Particularly interesting are
language families that have small finite automata but require long regular expres-
sions, since they reveal the gap between the descriptional complexity of these
models. However, despite regular expressions being around for some decades,
only few lower bounds are known so far. This is in sharp contrast to state com-
plexity of finite automata which is understood quite well.

One has to distinguish between finite and infinite languages, as well as
between alphabets of constant and growing size. Ehrenfeucht and Zeiger [3] gave
an exponential lower bound for the infinite language of all walks in a complete
graph over an alphabet of size n2. This result was generalized by Gelade and
Neven [5] for four-letter alphabets, and by Gruber and Holzer [7] for binary
alphabets using concepts of star height and cycle rank; in particular, Gruber
and Holzer showed that the length of every expression is exponential in the star

H. Seiwert—Partially supported by DFG grant JU 3105/1–2 (German Research Foun-
dation).

c© Springer Nature Switzerland AG 2020
G. Jirásková and G. Pighizzini (Eds.): DCFS 2020, LNCS 12442, pp. 26–38, 2020.
https://doi.org/10.1007/978-3-030-62536-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62536-8_3&domain=pdf
http://orcid.org/0000-0001-7916-6318
http://orcid.org/0000-0002-2293-6542
https://doi.org/10.1007/978-3-030-62536-8_3

Regular Expression Length via Arithmetic Formula Complexity 27

height of its described language. In this paper, we focus on finite languages. Since
star height of finite languages trivially is zero, this method is not applicable here.
Instead, techniques from circuit complexity have proven useful.

Related Work. For a regular expression R we measure its length by the reverse
polish length rpn(R), namely the number of nodes in its syntax tree. For a regular
language L let rpn(L) be the length of a shortest expression describing L.

Jerrum and Snir [12] showed a lower bound of 2n−2 on rpn(L) for the lan-
guage L of all permutations over the alphabet Σ = {1, . . . , n} using a method
for circuits over semirings, see [12, Sect. 5.4]. Recently, Molina Lovett and Shallit
[17] improved this bound to 4nn−(log n)/4+Θ(1) by a custom method.

Hrubeš and Yehudayoff [11] (implicitly) showed a lower bound of nkΩ(log k)

for the language Lk = {a1a2 · · · ak : 1 ≤ a1 < a2 < · · · < ak ≤ n} over
Σ = {1, . . . , n} with k ≤ n/2 by a method for multilinear arithmetic formulas.

Ellul, Krawetz, Shallit and Wang [4] gave a construction that transforms an
expression R for a language L ⊆ {0, 1}n into a boolean formula for its charac-
teristic function fL : {0, 1}n → {0, 1} of size at most rpn(R). Thus, the length
of an expression describing L is bounded from below by the boolean formula
complexity of fL: rpn(L) ≥ Boolean(fL). Together with a result by Khrapchenko
[15] on the formula complexity of the XOR function, they derived a lower bound
of Ω(n2) for the language Lxor

n = {w ∈ {0, 1}n : |w|1 is even}.
A language L ⊆ {0, 1}n is monotone if it is closed under replacing

any number of zeros by ones. By methods from communication complexity,
Gruber and Johannsen [9] gave a reduction of expression length for mono-
tone languages L to the monotone boolean formula complexity of fL: rpn(L) ≥
Monotone-Boolean(fL). In particular, they showed that converting a DFA with
n states for a finite language into an expression may cause a blow-up of nΩ(log n).
Since DFAs (or NFAs) for finite languages can be simulated by expressions of
length nO(log n) (see [4, Cor. 22] or [9, Cor. 13]), this result is tight. In particu-
lar, expression length of finite languages with polynomial size NFAs is at most
quasi-polynomial.

Our Contribution. The existing methods for finite languages work only for
alphabets of growing size or rely on lower bounds on (monotone) boolean com-
plexity which are rare and usually hard to obtain. Our goal in this paper is to
improve the “boolean methods” [4,9] with regard to strength as well as to sim-
plicity in application. We present two new methods, both working over binary
alphabets, and demonstrate their application on several language families. As a
byproduct, we determine blow-ups of language operations and improve the lower
bound for converting DFAs in the case of finite languages.

The paper is organized as follows. In the next section we give basic definitions.
In Sect. 3 we present our first method, the arithmetic bound (Theorem 2), which
reduces expression length to monotone arithmetic formula complexity. In the
succeeding subsections, we apply this method to uniform languages (Sect. 3.1),

28 E. Cseresnyes and H. Seiwert

investigate the blow-up of operations (intersection and shuffle) for finite lan-
guages (Sect. 3.2) and address limitations (Sect. 3.3). In Sect. 4 we prove our
second method, the balance bound (Theorem 10), and demonstrate its applica-
tion on the language of all n-bit numbers that are divisible by a given number p
in Sect. 4.1. Finally, we summarize the results in Sect. 5.

2 Preliminaries

Throughout let N = {0, 1, 2, . . . } be the set of all nonnegative integers and
[n] = {1, 2, . . . , n}. In this paper, all logarithms have base 2.

For a word w over an alphabet Σ, its length |w| is the number of its letters,
and for a letter a ∈ Σ we denote by |w|a its number of occurrences in w. To
avoid trivialities, we assume throughout that our languages satisfy L �= {ε}, ∅.

Regular expressions (or just expressions) over an alphabet Σ are defined
recursively as follows: The empty word ε and every letter a ∈ Σ is an expression.
If R and R′ are expressions, then so are R∗, (R · R′) and (R + R′). Note that we
do not allow the symbol ∅. Every expression R describes a regular language L(R)
in the usual way. Two expressions R and R′ are equivalent, denoted by R ≡ R′, if
they describe the same language. We identify every expression with its (unique)
syntax tree. The expression defined by the subtree of a node u in the syntax
tree of R is a subexpression of R and denoted by Ru. A language is homogeneous
if all its words have same length, and an expression is homogeneous if every
of its subexpressions describes a homogeneous language. We assume w.l.o.g.
that expressions for finite languages do not contain star operations, and that
expressions for homogeneous languages are homogeneous. For a language L ⊆ Σ∗

we call the homogeneous language Ln := L ∩ Σn its n-slice.

3 Reduction to Monotone Arithmetic Formula Size

In this section we reduce expression length to monotone arithmetic formula size.
Let L ⊆ {0, 1}n be a language and R be a homogeneous expression describing L
that does not contain any symbol ε. Ellul et al. [4, Lem. 24] gave a construction
that transforms R into a boolean formula for the function fR : {0, 1}n → {0, 1}
with fR(x) = 1 iff x ∈ L. Namely, they assigned to each leaf of R a unique
position i, such that its letter occurs as the i-th letter in all words in L(R).
For example, in the expression (a+b)(cd+ce) the positions of the leaves holding
the letters a, b, c, d, e are 1, 1, 2, 3, 3, respectively. The construction is as follows:
Replace each union by OR, each concatenation by AND, and each leaf at posi-
tion i holding the letter 1 (resp. 0) by the literal xi (resp. ¬xi). We present a
similar construction that transforms R into a monotone arithmetic formula.

A monotone arithmetic formula is a rooted tree with leaves holding either
one of the variables x1, . . . , xn or a constant c ∈ R≥0. Every inner node (a gate)
performs one of the operations + (addition) or × (multiplication). The size of a
formula is the total number of its nodes. Every formula computes a polynomial
p(x1, . . . , xn) =

∑
a∈A λa

∏n
i=1 xai

i over R≥0 in a natural manner, where A ⊆ N
n

Regular Expression Length via Arithmetic Formula Complexity 29

is its set of exponent vectors and λa are positive coefficients. Up to coefficients,
the set A determines the polynomial. Let Arith(A) be the size of a smallest
formula that computes a polynomial whose set of exponent vectors is A. We
identify words w = w1 · · · wn with vectors (w1, . . . , wn).

The arithmetic version of R is the monotone arithmetic formula ΦR that is
constructed as follows: Replace each union node of R by an arithmetic addition
gate and each concatenation node by an arithmetic multiplication gate. Replace
each leaf of R holding the letter 0 by the constant 1 and replace each leaf
holding the letter 1 at position i by the variable xi. Note that in both cases a
leaf holding a letter σ ∈ {0, 1} at position i is replaced by xσ

i . For example, the
arithmetic version of the expression 011 + 100 is the formula x2x3 + x1 which
has A = {(0, 1, 1), (1, 0, 0)} as its set of exponent vectors.

Lemma 1. Let R be a homogeneous expression with L(R) ⊆ {0, 1}n and ΦR

be its arithmetic version. Then ΦR has size at most rpn(R) and computes a
polynomial pR with L(R) as its set of exponent vectors.

That is, the formula ΦR computes a polynomial pR(x) =
∑

a∈A λa

∏n
i=1 xai

i with
A = L(R) and some coefficients λa > 0.

Proof. The proof is a simple induction on R, similar to the proof of [4, Lem. 24].
We omit it due to lack of space. ��
Lemma 1 directly yields the following theorem.

Theorem 2 (Arithmetic bound). Let L ⊆ {0, 1}n be a homogeneous language.
Then any regular expression describing L has length at least rpn(L) ≥ Arith(L) .

Informally stated, the following hierarchy for the different formula complexities
holds:

Monotone-Arithmetic ≥ Monotone-Boolean ≥ Boolean

The gaps between these complexities can be exponentially large. So, Theorem 2
covers both boolean bounds mentioned in the introduction and can be exponen-
tially stronger. Another advantage is that lower bounds for arithmetic formulas
can be proven more easily than lower bounds for boolean formulas. In particular,
there are already many strong bounds known, see for example [14]. For a survey
on boolean complexity resp. arithmetic complexity see [13] resp. [19].

Remark 1 (Invariance under permutations). Since arithmetic operations +
and × are commutative, it does not matter at which position a variable occurs.
So, reordering the variables x1, . . . , xn in a polynomial does not change its arith-
metic complexity. For a language L ⊆ {0, 1}n and a permutation σ : [n] → [n]
let σ(L) := {wσ(1) · · · wσ(n) : w1 · · · wn ∈ L}. Then all bounds shown with
Theorem 2 for L also hold for the permuted language σ(L). On the one hand,
this fact strengthens the obtained bounds; on the other hand, it limits the pos-
sibilities for application. In Sect. 3.3 we address this issue in detail.

30 E. Cseresnyes and H. Seiwert

3.1 Bounds for Uniform Languages

A language L ⊆ {0, 1}n is uniform if all words in L contain the same number of
ones. The most basic uniform language is the binomial language

Bn,k = {w ∈ {0, 1}n : |w|1 = k}
investigated by Ellul et al. [4]. They constructed an expression of length nO(log k)

and asked whether its length is optimal. Recently, Mousavi [18] showed the opti-
mality for k ≤ 3 by analyzing a linear program derived from the language. Using
a lower bound shown by Hrubeš and Yehudayoff [11] for arithmetic formulas we
show that the length is asymptotically optimal also for k = nΘ(1).

Corollary 3 (Binomial language). Let k ≤ n/2. Then the binomial language
Bn,k requires regular expressions of length rpn(Bn,k) ≥ nkΩ(log k).

Proof. The result follows as special case of the following corollary. ��
Corollary 4 (Uniform languages). Let k ≤ n/2 and L ⊆ Bn,k be a uniform
language. Then L requires expressions of length rpn(L) ≥ nkΩ(log k) · |L|/(n

k

)
.

Proof. Assume L ⊆ Bn,k. Hrubeš and Yehudayoff [11, Prop. 7] showed that any
polynomial f with a set Af ⊆ Bn,k of exponent vectors requires monotone arith-
metic formulas of size nkΩ(log k)|Af |/(

n
k

)
. Since each vector in Af corresponds

to a word in L, the claim follows by Theorem 2. ��
A Dyck word is a word w ∈ {0, 1}∗ with the same number of zeros and ones,

and such that every prefix of w contains not more ones than zeros. The language
D of all Dyck words usually is interpreted as the language of all correctly nested
sequences of brackets, with 0 representing opening and 1 representing closing
brackets. We consider the 2n-slice D2n := D ∩ {0, 1}2n.

Corollary 5 (Dyck language). The language D2n requires regular expressions
of length rpn(D2n) ≥ nΩ(log n).

Proof. Clearly D2n ⊆ B2n,n holds, since every word in D2n contains the same
number of zeros and ones. It is well known that D2n contains exactly 1

n+1

(
2n
n

)

words – this number is known as the Catalan number – see for example [2] for
an elegant proof. Thus, by Corollary 4, we have rpn(D2n) ≥ 2n

n+1 · nΩ(log n). ��

3.2 Blow-Up of Language Operations

By how much can the length of expressions increase when performing operations
like complementation, intersection or shuffle? While the situation for infinite
languages has been resolved by Gelade and Neven [5] and Gruber and Holzer
[7,8], it is still open for finite languages.

The blow-up of intersection and shuffle for finite languages is at most
nO(log n), see the end of this subsection. We now give matching lower bounds.
Recall the definition of the shuffle operation� (also called interleaving): For two
words v, w, their shuffle v�w is the set of all words of the form v1w1v2w2 · · · vkwk

where k ∈ N, vi, wi ∈ Σ∗ for all i, v1v2 · · · vk = v and w1w2 · · · wk = w. The
shuffle of two languages is defined as L1 � L2 =

⋃
v∈L1,w∈L2

v� w.

Regular Expression Length via Arithmetic Formula Complexity 31

Theorem 6 (Blow-up of intersection and shuffle). There are finite languages
L1, L2 with regular expressions of length O(n), such that

(a) rpn(L1 ∩ L2) ≥ nΩ(log n),
(b) rpn(L1 � L2) ≥ nΩ(log n).

There is a regular language L ⊆ Σ∗ with an expression of length O(n), such that

(c) rpn(L ∩ Σn) ≥ nΩ(log n).

In particular, items (a) and (b) answer a question from [9], while item (c) answers
a question from [4, Open Problem 5] asking for the blow-up of n-slices.

Proof.

(a) Consider the language L1 = (0+ ε)m(1(0+ ε)m)m of all words with exactly
m ones and not more than m zeros in a row, and let L2 = (0 + 1)2m.
If we set n = m2, then both L1 and L2 can be described by expres-
sions of length O(n). The intersection L1 ∩ L2 is exactly the binomial lan-
guage B2m,m and by Corollary 3 rpn(L1 ∩L2) = rpn(B2m,m) ≥ mΩ(log m) =
nΩ(log n) follows.

(b) Consider the languages L1 = 0n and L2 = 1n with expressions of
length O(n). Their shuffle L1� L2 is exactly the binomial language B2n,n,
and Corollary 3 yields rpn(L1 � L2) ≥ nΩ(log n).

(c) Let Σ = {0, 1} and L = 0∗(10∗)�n/2� be the language of all words with
exactly n/2� ones; hence, rpn(L) = O(n). Then L ∩ Σn = Bn,�n/2� and
Corollary 3 yields rpn(L ∩ Σn) ≥ nΩ(log n). ��

The matching upper bounds for intersection and shuffle can be obtained
as follows: Given two expressions R1 and R2 of lengths m1 resp. m2, transform
them into NFAs. Then build their corresponding (intersection or shuffle) product
automaton by the standard construction. For both operations, this gives an NFA
with n = O(m1m2) states. Finally, translate this NFA back into a regular expres-
sion. As its accepted language is finite, length nO(log n) = (m1m2)O(log(m1m2))

suffices according to [9, Cor. 13].

3.3 Limitations of the Arithmetic Bound

Let us address limitations of Theorem 2. We already mentioned in Remark 1
that arithmetic complexity ignores the order of variables. This prevents us from
proving bounds for languages L that have a reordering σ such that σ(L) has
short expressions. Take for example the language L = {wwreverse : w ∈ {0, 1}n}
of all palindromes of length 2n over {0, 1}. With the fooling set method [1,6],
one can easily show an exponential lower bound rpn(L) ≥ Ω(2n). However,
reordering the letters yields the language L′ :={u1u2nu2u2n−1· · · unun+1 :u∈L}
={00, 11}n with rpn(L′) = O(n). According to Remark 1, lower bounds obtained
by Theorem 2 are the same for rpn(L) and rpn(L′), and so are at most linear. In
other words, Arith(L) ≤ O(n), but rpn(L) ≥ Ω(2n). The same problem appears

32 E. Cseresnyes and H. Seiwert

for the boolean methods, Gruber and Johannsen [9] actually presented the same
example.

In the next section, we circumvent this issue by translating a lower bound
method from arithmetic formula complexity directly to expression length.

4 Direct Lower Bounds

In the following, Σ is an arbitrary alphabet, R a homogeneous expression over Σ
and L = L(R). We adapt a lower bound technique by Hrubeš and Yehudayoff [11]
for monotone (or even multilinear) arithmetic formulas by so-called “balanced
polynomials” directly to regular expression length; see also [19, Sect. 3.6].

The high-level idea for lower bounding rpn(L) is roughly as follows. Trans-
form R into a union B1+· · ·+B� of “balanced” expressions Bi, where � ≤ rpn(R)
and every balanced expression Bi can be factorized into several nontrivial fac-
tors Bi ≡ F1F2 · · · Fm. From L derive structural properties that any factor Fj

must have. Finally, upper bound the number of words in any language with these
properties to obtain an upper bound on |L(Bi)|.
Definition 7 (degree, balanced). Let R be a homogeneous expression. The
degree deg R of R is the length of its described words. R is balanced if either

– deg R = 1, or
– if there are homogeneous expressions B,B′ such that B is balanced itself,

deg B ≥ deg B′ and R = BB′ or R = B′B.

In other words, any union of single letters is balanced, and if an expression B
is balanced, then so are BB′ and B′B for any homogeneous expression B′ with
deg B′ ≤ deg B. Given a balanced expression B, we can construct a path from
the root to a leaf by always continuing with the child whose subexpression is
balanced and which has larger degree (i. e. B in Definition 7). We call this path
the canonical path of B; note that all inner nodes on this path are concatenation
nodes and that all their subexpressions are balanced.

The following proposition tells us that every balanced expression has a fac-
torization where most factors have “sufficiently large” degree.

Proposition 8. Let B be a balanced expression of degree deg B = n and let
γ ≥ 1. Then there exist m ≥ log(1 + n/γ) and 2m homogeneous expressions
P1, . . . , Pm, S1, . . . , Sm such that B ≡ P1P2 · · · PmSmSm−1 · · · S1 and deg Pi +
deg Si ≥ γ holds for all i ∈ [m−1], and deg Pm + deg Sm ≤ γ.

We call P1 · · · PmSm · · · S1 a γ-factorization and Pi and Si factors of B. Note
that for every factor F of B there are words x, y such that L(xFy) ⊆ L(B).

Proof. We proceed by induction. For n ≤ γ the claim is trivial, so assume n > γ.
To obtain a γ-factorization of B initialize S = ε, P = ε and follow the canonical
path downwards, starting at the root of B. For each node v = x · y passed by,
update either P or S: if we went to the right child y, set P := P · Bx, if we went
to the left child x, set S := By · S. By this procedure, the invariant B ≡ PBvS

Regular Expression Length via Arithmetic Formula Complexity 33

holds in each step, where v is the currently reached node. Eventually we arrive
at some node u whose degree n′ := deg Bu satisfies (n − γ)/2 < n′ ≤ n − γ.
This is the case just because the degree cannot drop more than by a factor of
two at each step taken. Since Bu is balanced, by induction hypothesis there is
a γ-factorization Bu ≡ P1 · · · Pm′Sm′ · · · S1 with m′ ≥ log(1 + n′/γ). We claim
that PP1 · · · Pm′Sm′ · · · S1S is a γ-factorization of B with 2(m′+1) factors: since
n′ ≤ n − γ, we have deg P + deg S = n − n′ ≥ γ, and since n′ > (n − γ)/2, we
have m := m′ +1 ≥ log(1+n′/γ)+1 > log(1+(n−γ)/2γ)+1 = log(1+n/γ). ��
The following lemma is a straightforward adaption of Lemma 4 in [11].

Lemma 9. Let R �= ε be a homogeneous expression. Then there exist � ≤ rpn(R)
balanced expressions B1, . . . , B� such that R ≡ B1 + · · · + B�.

Proof. We proceed by induction on R. If R is a single letter, the claim is trivial.
If R = R1 + R2 is a union, we can apply the induction hypothesis to both R1

and R2, and are finished. Finally, let R = R1 · R2 be a concatenation. Assume
deg R1 ≥ deg R2, the other case is analogous. By induction hypothesis there are
balanced expressions B1, . . . , B� such that R1 ≡ B1+· · ·+B� for an � ≤ rpn(R1).
Since deg Bi = deg R1 ≥ deg R2 holds for all i, also every expression BiR2 is
balanced. So, R ≡ B1R2 + · · · + B�R2 is a union of � ≤ rpn(R1) ≤ rpn(R)
balanced expressions, as desired. ��
Remark 2. Lemma 9 still holds if we extend regular expressions by a squaring
operation (2) with L(R2) := (L(R))2 as introduced in [16]; see also [10] for a
more recent overview. To show this, proceed analogously to the case when R is
a concatenation of two identical subexpressions R = R′ · R′.

From Lemma 9 our second lower bound method follows.

Theorem 10 (Balance bound). Let L ⊆ Σn be a homogeneous language and
h ∈ R≥0. If |L(B)| ≤ h holds for every balanced expression B with L(B) ⊆ L,
then any expression for L has length at least rpn(L) ≥ |L|/h.

In the next subsection we demonstrate how to apply Theorem 10.

4.1 The Divisibility Language

Let p be an odd integer. Ellul et al. [4] considered the language of all binary
numbers that are divisible by p. This language has small DFAs with just p
states, but it seems that regular expressions must be large. However, no lower
bound is known so far. Here we consider the n-slice of this language. For a word
w ∈ {0, 1}n denote its interpretation as binary number by 〈w〉2; we assume that
the most significant bit is the leftmost letter, for example 〈0101〉2 = 5, and for
convenience let 〈ε〉2 = 0. The divisibility language

Ldiv
n,p =

{
w ∈ {0, 1}n : 〈w〉2 ≡p 0

}

consists of all binary numbers with n bits that are divisible by p. This lan-
guage also has small DFAs with O(np) states and regular expressions of length

34 E. Cseresnyes and H. Seiwert

rpn(Ldiv
n,p) ≤ O(np · plog(n/ log p)) (see below). So, the following lower bound is

tight apart from small polynomial factors.

Theorem 11 (Divisibility language). Let p > 2 be odd. Then any expression
describing the divisibility language has length at least

rpn
(
Ldiv

n,p

) ≥ Ω
(
n−1plog(n/ log p)−2

)
.

In particular, if p is constant, then Ω(n−1plog n) ≤ rpn(Ldiv
n,p) ≤ O(nplog n).

Proof. Let L = Ldiv
n,p and B be any balanced expression with L(B) ⊆ L. We will

show an upper bound h = 2nn · p− log(n/ log p)+1 on the number |L(B)| of words
in L(B). Every p-th natural number (beginning with 0) is divisible by p, so
there are |L| ≥ 2n/p words in L. Hence, the bound rpn(L) ≥ |L|/h ≥ 2n/p ·
2−nn−1plog(n/ log p)−1 = Ω(n−1plog(n/ log p)−2) will follow by Theorem 10.

For γ := log p let P1 · · · PmSm · · · S1 be a γ-factorization of B ensured by
Proposition 8. To prove the bound on |L(B)| we upper bound the number of
words described by each factor. For r ∈ {0, 1, . . . , p−1} and d ∈ N let Lr

d,p :=
{w ∈ {0, 1}d : 〈w〉2 ≡p r} be the language of all d-bit numbers that have
remainder r when divided by p, for example L0

n,p = Ldiv
n,p. For a word w with

〈w〉2 ≡p r and a word x of length d with 〈x〉2 ≡p r′, their concatenation satisfies
〈wx〉2 ≡p r · 2d + r′. Since p is odd, the mapping r �→ r · 2d is a bijection over
{0, 1, . . . , p − 1} for all d. Thus, if 〈w〉2 �≡p 〈v〉2 holds for two words w and v of
same length, then also 〈wx〉2 �≡p 〈vx〉2 and 〈xw〉2 �≡p 〈xv〉2 hold for any word x.

Call a homogeneous expression T pure, if all words in L(T) have the same
remainder r when divided by p, that is, if L(T) ⊆ Lr

d,p holds for some r and d.

Claim 1. Every factor of B is pure.

Proof of Claim 1. Assume to the contrary that some factor F of B is not pure, i. e.
there are words w, v ∈ L(F) with 〈w〉2 �≡p 〈v〉2. Since L(B) ⊆ L, there are words
x, y such that xwy, xvy ∈ L. The observation above yields 〈xwy〉2 �≡p 〈xvy〉2.
But all words in L have remainder r = 0, a contradiction. ��Claim 1

Let Fi := Pi · Si and di := deg Fi = deg Pi + deg Si. The argument above also
implies that concatenations of pure expressions are pure themselves, so every
Fi is pure. For all d and all r we have

∣
∣Lr

d,p

∣
∣ ≤ ⌈

2d/p
⌉ ≤ 2d/p + 1, and since

every expression Fi describes a subset of some language Lr
di,p

, the inequality
|L(Fi)| ≤ 2di/p + 1 must hold. Proposition 8 ensures that for all i ∈ [m−1]
we have di ≥ γ = log p and therefore |L(Fi)| ≤ 2di/p + 1 ≤ 2 · 2di/p. Further,
since our alphabet is binary, |L(Fm)| ≤ 2dm trivially holds. Finally, recall that∑m

i=1 di = n and m ≥ log(1 + n/γ) ≥ log(n/ log p). Hence,

|L(B)| =
m∏

i=1

|L(Fi)| ≤ 2dm ·
m−1∏

i=1

2 · 2di

p
= 2

∑m
i=1 di · (2/p)m−1

≤ 2n (2/p)log(n/ log p)−1 ≤ 2nn · p− log(n/ log p)+1 =:h .

��

Regular Expression Length via Arithmetic Formula Complexity 35

Upper Bound. To show that Theorem 11 is tight, we design an expression for
Ldiv

n,p of corresponding length. For simplicity assume that n is a power of 2. For
each r ∈ {0, . . . , p−1} and d ∈ {n, n/2, n/4, . . . } define an expression Rr

d,p for
the language Lr

d,p recursively by Rr
d,p :=

∑
r1,r2

Rr1
d/2,p · Rr2

d/2,p, where the sum
ranges over all p combinations (r1, r2) with r12d/2 + r2 ≡p r. If d < log p, then
Lr

d,p contains at most a single word w, in this case let Rr
d,p := w. Finally, R0

n,p

describes the language L0
n,p = Ldiv

n,p. This recursion has 2p branches in each step,
depth at most �log(n/ log p)� and every base case has length at most log p. Thus,
length rpn(Ldiv

n,p) ≤ O(log p · (2p)	log(n/ log p)
) ≤ O(np · plog(n/ log p)) suffices.

Blow-Up of DFA Conversion. Gruber and Johannsen [9] considered the
blow-up of DFA conversion for finite languages. They showed that there are
languages that can be accepted by DFAs with n8 states, but require expressions
of length Ω(n(log n)/3). We now can improve on the constants in this gap.

Corollary 12. There are finite languages that can be accepted by DFAs with n2

states, but require expressions of length at least nlog(n)−Θ(log log n).

Proof. Consider the divisibility language Ldiv
n,p and set p = n. The claim for DFA

size is easy to see, the bound on expression length follows from Theorem 11. ��

4.2 Utilizing Noncommutativity

In Sect. 3.3 we have discussed that the arithmetic bound (Theorem 2) is incapable
of giving a nontrivial lower bound for the palindrome language L = {wwreverse :
w ∈ {0, 1}n}. With Theorem 10 we can give a (suboptimal but nevertheless
exponential) lower bound.

One can show that any balanced expression B of degree deg B ≥ 2 can be
written as balanced concatenation of two homogeneous expressions, i. e. one can
write B ≡ P · S for homogeneous expressions P and S whose degrees satisfy
(1/3) deg B ≤ deg P,deg S ≤ (2/3) deg B. We leave the proof to the reader.
Let n = 3k for a positive integer k. For an arbitrary balanced expression B
with L(B) ⊆ L consider a word w = w1 · · · w2n described by B ≡ P · S. All
letters w1, . . . , w2k lie in P and all letters w4k+1, . . . , w6k lie in S. By definition
of L, we must have wi = w6k+1−i for all i ∈ [3k]. Thus, all words in L(P)
have w6kw6k−1 · · · w4k as prefix and all words in L(S) have w2kw2k−1 · · · w1 as
suffix. Hence, |L(B)| = |L(P)| · |L(S)| ≤ 2k · 2k =: h, and Theorem 10 yields
rpn(L) ≥ |L|/h ≥ 23k/22k = 2k = 2n/3.

5 Conclusion

We developed two lower bound methods for expression length of finite languages.
With the arithmetic bound (Theorem 2) we reduced expression length of lan-
guages L ⊆ {0, 1}n to monotone arithmetic formula complexity. This result natu-
rally refines the existing methods of Ellul et al. [4] and Gruber and Johannsen [9]

36 E. Cseresnyes and H. Seiwert

who gave reductions to boolean resp. monotone boolean formula complexity.
With the balance bound (Theorem 10) we adapted a lower bound method for
multilinear arithmetic formulas by Hrubeš and Yehudayoff [11]. This method pro-
vides a general framework that works for arbitrary alphabets, utilizes noncom-
mutativity (see Sect. 4.2) and works even for expressions extended by a squaring
operation (see Remark 2).

By these methods we obtained lower bounds for the binomial language Bn,k =
{w ∈ {0, 1}n : |w|1 = k}, the language D2n of all length 2n Dyck words, and
the divisibility language Ldiv

n,p = {w ∈ {0, 1}n : 〈w〉2 ≡p 0}. As a byproduct,
we determined the blow-up of intersection and shuffle and improved the gap
for DFA conversion, both for finite languages. We summarize these results in
Table 1, together with upper bounds and state complexity for comparison.

Table 1. Results for languages and blow-ups for conversions of finite languages.

language DFA size rpn, upper bound rpn, lower bound

Bn,k O(nk) nO(log k) nkΩ(log k) [Corollary 3]

D2n O(n2) nO(log n) nΩ(log n) [Corollary 5]

Ldiv
n,p O(np) O

(
np · plog(n/ log p)

)
Ω

(
n−1plog(n/ log p)−2

)
[Theorem 11]

conversion upper bound lower bound

RE ∩ RE, RE� RE to RE nO(log n) nΩ(log n) [Theorem 6]

DFA, NFA to RE nlog(n)+O(1) [4,9] n(log n)/4−Θ(log log n) [Corollary 12]

We make two final remarks. The results in this paper were obtained only
for finite languages. However, from them also bounds for infinite languages
can be derived. This might be particularly useful for languages with small
star height or languages whose star height is hard to determine. Gruber and
Holzer showed that languages of star height h require expressions of length
2Ω(h) [7, Thm. 6]. Consider an infinite variant of the binomial language, namely
B′

n,k := {w ∈ {0, 1}∗ : |w|1 ≥ k, |w|0 ≥ n − k}. This language has star
height h = 1, so only a trivial bound follows from this theorem. In contrast,
one can show that rpn(B′

n,k) ≥ rpn(Bn,k) holds, and then rpn(B′
n,k) ≥ nkΩ(log k)

follows from Corollary 3.
Finally, an open problem is to improve accuracy of the balance bound, par-

ticularly of Lemma 9. It seems that this lemma is loose by a factor of n (length
of the words). For example, the language L = {w1 · · · wn} consisting of a single
word w can be written as one balanced expression, but Lemma 9 only tells us,
that rpn(L) = Θ(n) balanced expressions suffice. This imprecision is a crucial
weakness when dealing with languages having short polynomial size expressions.

Acknowledgments. We wish to thank Mario Holldack, Stasys Jukna and Georg
Schnitger for inspiring discussions and thank the anonymous referees for their kind
and useful comments.

Regular Expression Length via Arithmetic Formula Complexity 37

References

1. Birget, J.-C.: Intersection and union of regular languages and state complex-
ity. Inf. Process. Lett. 43(4), 185–190 (1992). https://doi.org/10.1016/0020-
0190(92)90198-5

2. Chen, Y.: The Chung-Feller theorem revisited. Discrete Mathematics 308(7), 1328–
1329 (2008). https://doi.org/10.1016/j.disc.2007.03.068

3. Ehrenfeucht, A., Zeiger, P.: Complexity measures for regular expressions.
J. Comput. Syst. Sci. 12(2), 134–146 (1976). https://doi.org/10.1016/S0022-
0000(76)80034-7

4. Ellul, K., Krawetz, B., Shallit, J., Wang, M.-W.: Regular expressions: new results
and open problems. J. Autom. Lang. Comb. 9(2–3), 233–256 (2004). https://doi.
org/10.25596/jalc-2004-233

5. Gelade, W., Neven, F.: Succinctness of the complement and intersection of regular
expressions. ACM Trans. Comput. Logic (TOCL) 13(1), 4 (2012). https://doi.org/
10.1145/2071368.2071372

6. Glaister, I., Shallit, J.: A lower bound technique for the size of nondeterministic
finite automata. Inf. Process. Lett. 59(2), 75–77 (1996). https://doi.org/10.1016/
0020-0190(96)00095-6

7. Gruber, H., Holzer, M.: Finite automata, digraph connectivity, and regular expres-
sion size. In: ICALP, pp. 39–50. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-70583-3 4

8. Gruber, H., Holzer, M.: Tight bounds on the descriptional complexity of regular
expressions. In: Developments in Language Theory, pp. 276–287. Springer, Heidel-
berg (2009). https://doi.org/10.1007/978-3-642-02737-6 22

9. Gruber, H., Johannsen, J.: Optimal lower bounds on regular expression size using
communication complexity. In: FoSSaCS, pp. 273–286. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-78499-9 20

10. Holzer, M., Kutrib, M.: The complexity of regular(-like) expressions. Int.
J. Found. Comput. Sci. 22(7), 1533–1548 (2011). https://doi.org/10.1142/
S0129054111008866

11. Hrubeš, P., Yehudayoff, A.: Homogeneous formulas and symmetric polynomials.
Comput. Complexity 20(3), 559–578 (2011). https://doi.org/10.1007/s00037-011-
0007-3

12. Jerrum, M., Snir, M.: Some exact complexity results for straight-line computations
over semirings. J. ACM 29(3), 874–897 (1982). https://doi.org/10.1145/322326.
322341

13. Jukna, S.: Boolean Function Complexity: Advances and Frontiers, vol. 27. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-24508-4

14. Jukna, S.: Tropical complexity, sidon sets, and dynamic programming. SIAM J.
Discrete Math. 30, 2064–2085 (2016). https://doi.org/10.1137/16M1064738

15. Khrapchenko, V.M.: Method of determining lower bounds for the complexity of
P -schemes. Math. Notes Acad. Sciences USSR 10(1), 474–479 (1971)

16. Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions
with squaring requires exponential space. In: 13th Annual Symposium on Switching
and Automata Theory, pp. 125–129 (1972). https://doi.org/10.1109/SWAT.1972.
29

17. Molina Lovett, A., Shallit, J.: Optimal regular expressions for permutations. In:
ICALP, pp. 121:1–12 (2019). https://doi.org/10.4230/LIPIcs.ICALP.2019.121

https://doi.org/10.1016/0020-0190(92)90198-5
https://doi.org/10.1016/0020-0190(92)90198-5
https://doi.org/10.1016/j.disc.2007.03.068
https://doi.org/10.1016/S0022-0000(76)80034-7
https://doi.org/10.1016/S0022-0000(76)80034-7
https://doi.org/10.25596/jalc-2004-233
https://doi.org/10.25596/jalc-2004-233
https://doi.org/10.1145/2071368.2071372
https://doi.org/10.1145/2071368.2071372
https://doi.org/10.1016/0020-0190(96)00095-6
https://doi.org/10.1016/0020-0190(96)00095-6
https://doi.org/10.1007/978-3-540-70583-3_4
https://doi.org/10.1007/978-3-540-70583-3_4
https://doi.org/10.1007/978-3-642-02737-6_22
https://doi.org/10.1007/978-3-540-78499-9_20
https://doi.org/10.1142/S0129054111008866
https://doi.org/10.1142/S0129054111008866
https://doi.org/10.1007/s00037-011-0007-3
https://doi.org/10.1007/s00037-011-0007-3
https://doi.org/10.1145/322326.322341
https://doi.org/10.1145/322326.322341
https://doi.org/10.1007/978-3-642-24508-4
https://doi.org/10.1137/16M1064738
https://doi.org/10.1109/SWAT.1972.29
https://doi.org/10.1109/SWAT.1972.29
https://doi.org/10.4230/LIPIcs.ICALP.2019.121

38 E. Cseresnyes and H. Seiwert

18. Mousavi, H.: Lower bounds on regular expression size. CoRR abs/1712.00811
(2017). http://arxiv.org/abs/1712.00811

19. Shpilka, A., Yehudayoff, A.: Arithmetic circuits: a survey of recent results and open
questions. Found. Trends Theor. Comput. Sci. 5(3–4), 207–388 (2010). https://doi.
org/10.1561/0400000039

http://arxiv.org/abs/1712.00811
https://doi.org/10.1561/0400000039
https://doi.org/10.1561/0400000039

Crisp-Determinization of Weighted Tree
Automata over Additively Locally Finite

and Past-Finite Monotonic Strong
Bimonoids Is Decidable

Manfred Droste1, Zoltán Fülöp2, Dávid Kószó2(B), and Heiko Vogler3

1 University of Leipzig, Leipzig, Germany
2 University of Szeged, Szeged, Hungary

koszod@inf.u-szeged.hu
3 Technische Universität Dresden, Dresden, Germany

Abstract. A weighted tree automaton is crisp-deterministic if it is
deterministic and each of its transitions carries either the additive or
multiplicative unit of the underlying weight algebra; weights different
from these units may only appear at the root of the given input tree.
A weighted tree automaton is crisp-determinizable if there exists an
equivalent crisp-deterministic one. We prove that it is decidable whether
weighted tree automata over additively locally finite and past-finite
monotonic strong bimonoids are crisp-determinizable.

Keywords: Strong bimonoid · Semiring · Weighted tree automaton ·
Determinization · Decidability

1 Introduction

In the theory of automata, the determinization problem asks the following: for
a given nondeterministic device of a given type, does there exist an equivalent
deterministic device of the same type? This question was solved positively for
finite-state (string or tree) automata by employing the powerset construction.

For the purpose of analysing quantitative properties, weighted string
automata (wsa) were invented [37]. In a wsa, each transition carries a weight
(quantity) and, in order to calculate with weights, an algebraic structure is
needed such as, e.g., a semiring [3,12,17,29,36], lattice [35,39], strong bimonoid
[9,15,16], valuation monoid [11,13], or multi-cost valuation structure [14]. In
a similar way, finite-state tree automata have been extended to weighted tree
automata (wta) over various algebraic structures [1,2,19,21–23].

Z. Fülöp—Research of this author was supported by grant TUDFO/47138-1/2019-ITM
of the Ministry for Innovation and Technology, Hungary.
D. Kószó—Supported by the ÚNKP-19-3-SZTE-157 New National Excellence Program
of the Ministry for Innovation and Technology.

c© Springer Nature Switzerland AG 2020
G. Jirásková and G. Pighizzini (Eds.): DCFS 2020, LNCS 12442, pp. 39–51, 2020.
https://doi.org/10.1007/978-3-030-62536-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62536-8_4&domain=pdf
https://doi.org/10.1007/978-3-030-62536-8_4

40 M. Droste et al.

For weighted automata the determinization problem is much more challeng-
ing [30], because there exist wta for which there does not exist an equivalent
deterministic wta [7,32]. On the other side, there are particular classes of wsa
for which the determinization problem can be solved positively: (a) wsa over
locally finite semirings [26, p. 293] and [28], (b) trim unambiguous wsa over
the tropical semiring having the twins property [32, Thm. 12], and (c) wsa over
min-semirings having the twins property [26, Thm. 5]. Similar subclasses of wta
were identified for which the determinization problem can be solved positively
[7, Cor. 4.9 and Thm. 4.24], [23, Thm. 3.17], and [8, Thm. 5.2].

In this paper we investigate the crisp-determinization problem for wta: for
a given wta over some strong bimonoid, does there exist an equivalent crisp-
deterministic wta? Intuitively, strong bimonoids are semirings in which distribu-
tivity need not hold. We define the behavior of wta by using the run semantics.
For a comparison with the initial algebra semantics we refer to [9,15,20].

A wta is crisp-deterministic if it is deterministic and each transition carries
the additive or multiplicative unit element of the strong bimonoid as weight;
thus, weights different from these units only occur as final weights (at the root
of a tree). Clearly, for unweighted automata the notions of determinism and
crisp-determinism coincide. The class of weighted tree languages recognized by
crisp-deterministic wta is exactly the class of recognizable step mappings [20,
Lm. 5.3] (cf. [15, Lm. 8 and Prop. 9] for the string case). A recognizable step
mapping is the sum of finitely many weighted tree languages, each of which is
constant over some recognizable tree language (called step language) and zero
over the complement of that language. Hence the image of a recognizable step
mapping is a finite set of elements of the strong bimonoid.

In [20, Thm. 8.5] it is shown that it is undecidable whether, for an arbi-
trary deterministic wta over some strong bimonoid, there is an equivalent crisp-
deterministic wta. On the positive side, for each wsa A over the semiring N of
natural numbers, the crisp-determinization problem is decidable by applying [15,
Lm. 8 and Prop. 9] because (a) for each n ∈ N the preimage of n under the run
semantics of A is a recognizable language [3, III. Cor. 2.5] (preimage property)
and (b) it is shown to be decidable whether the image of the run semantics of
A is finite [31, Cor. 5.2].

In this paper we follow this idea for decidability and extend it to wta over
a new subclass of strong bimonoids. We define the class of monotonic strong
bimonoids and prove that the crisp-determinization problem is decidable (1) for
the class of all wta over additively locally finite and past-finite monotonic strong
bimonoids with effective tests for 0 and 1 and (2) for the class of all unambiguous
wta over past-finite monotonic strong bimonoids with effective tests for 0 and 1
(cf. Theorem 10). For the proof, we will generalize the preimage property [3, III.
Cor. 2.5] to past-finite monotonic strong bimonoids (cf. Lemma 11). Moreover,
for the proof that it is decidable whether the image of the run semantics of a wta
is finite (cf. Theorem 13), we will employ a pumping lemma similar to [4, Lm.
5.5] (cf. Theorem 9). In particular, we will use this pumping lemma to construct
an infinite sequence of values in the past-finite monotonic strong bimonoid. We

Crisp-Determinization of Weighted Tree Automata 41

note that in [5,38] a related concept, the cost-finiteness of wta was considered.
In [5, Thm. 46] it was shown that cost-finiteness is decidable for an arbitrary
wta over a monotonic and finitely factorizing semiring. In general, cost-finiteness
of a wta does not imply that the image of its run semantics is finite, and the
converse implication also fails. However, for wta over additively locally finite
and past-finite monotonic strong bimonoids cost-finiteness and the finite image
property coincide. Also we note that unambiguous wta form a larger class of
wta than deterministic wta. For recent decidability results on wta with various
degrees of unambiguity, we refer the reader to [33].

2 Preliminaries

2.1 General Notions and Notations

We denote by N the set of natural numbers {0, 1, 2, . . .} and by N+ the set N\{0}.
For every k ∈ N we denote the set {i ∈ N | 1 ≤ i ≤ k} by [k].

Let B be a set and � a binary relation on B. As usual, for every a, b ∈ B,
we write a � b instead of (a, b) ∈�, and we write a ≺ b to denote that a � b
and a �= b. We say that � is a partial ordering if it is reflexive, antisymmetric,
and transitive. For each b ∈ B, let past(b) = {a ∈ B | a � b}. We call (B,�)
past-finite if past(b) is finite for each b ∈ B.

Let A be a set. Then |A| denotes the cardinality of A, Pf(A) the set of finite
subsets of A, A∗ the set of all strings over A, and ε the empty string. For every
v, w ∈ A∗, vw denotes the concatenation of v and w, |v| the length of v, and
prefix(v) the set {w ∈ A∗ | (∃u ∈ A∗) : v = wu}.

2.2 Trees and Contexts

We suppose that the reader is familiar with the fundamental concepts and results
of the theory of finite-state tree automata and tree languages [10,18,24]. Here
we only recall some basic definitions.

A ranked alphabet is a tuple (Σ, rk) which consists of an alphabet Σ and
mapping rk : Σ → N, called rank mapping, such that rk−1(0) �= ∅. For each
k ∈ N, we define Σ(k) = {σ ∈ Σ | rk(σ) = k}. Sometimes we write σ(k) to mean
that σ ∈ Σ(k). As usual, we abbreviate (Σ, rk) by Σ if rk is irrelevant or it is
clear from the context.

Let Σ be a ranked alphabet and H be a set disjoint with Σ. The set of Σ-trees
over H, denoted by TΣ(H), is defined in the standard way. We write TΣ for
TΣ(∅). For every γ ∈ Σ(1) and α ∈ Σ(0), we abbreviate the tree γ(. . . γ(α) . . .)
with n occurrences of γ by γn(α) and write γ for γ1. Any subset L of TΣ is
called Σ-tree language.

We define the set of positions of trees as a mapping pos : TΣ(H) → Pf(N∗
+)

such that (i) for each ξ ∈ (Σ(0) ∪ H) let pos(ξ) = {ε} and (ii) for every ξ =
σ(ξ1, . . . , ξk) with k ∈ N+, σ ∈ Σ(k), and ξ1, . . . , ξk ∈ TΣ(H), let pos(ξ) =
{ε} ∪ {iv | i ∈ [k], v ∈ pos(ξi)}. The height and the size of a tree ξ ∈ TΣ are
height(ξ) = max{|v| | v ∈ pos(ξ)} and size(ξ) = |pos(ξ)|, respectively.

42 M. Droste et al.

Let ξ, ζ ∈ TΣ(H) and v ∈ pos(ξ). In the standard way, the following notions
are defined: label of ξ at v (denoted by ξ(v)), subtree of ξ at v (denoted by ξ|v),
and replacement of the subtree of ξ at v by ζ (denoted by ξ[ζ]v).

Let � be a new symbol such that � �∈ Σ. For each ζ ∈ TΣ({�}), we define
pos�(ζ) = {v ∈ pos(ζ) | ζ(v) = �} and for each v ∈ pos(ζ) we abbreviate by
ζ|v the tree ζ[�]v. We denote by CΣ the set {ζ ∈ TΣ({�}) | |pos�(ζ)| = 1} and
call its elements contexts over Σ (for short: Σ-contexts or contexts).

Let c ∈ CΣ with {v} = pos�(c) and ζ ∈ (TΣ ∪CΣ). Then we abbreviate c[ζ]v
by c[ζ]. Obviously, if ζ ∈ CΣ , then also c[ζ] ∈ CΣ . Moreover, for each n ∈ N, we
define the nth power of c, denoted by cn, by induction as follows: c0 = � and
cn+1 = c[cn].

In the rest of this paper, Σ will denote an arbitrary ranked alphabet if not
specified otherwise.

2.3 Strong Bimonoids

A strong bimonoid [9,15,16] is an algebra (B,⊕,⊗,0,1) such that (B,⊕,0) is a
commutative monoid, (B,⊗,1) is a monoid, 0 �= 1, and 0 ⊗ b = b ⊗ 0 = 0 for
each b ∈ B. The strong bimonoid is called commutative if its multiplication ⊗ is
commutative. We say that B is additively locally finite if, for each finite A ⊆ B,
the submonoid of (B,⊕,0) generated by A is finite. If ⊗ is distributive with
respect to ⊕ from both the left and the right, then B is called a semiring. For
each b ∈ B, we let b0 = 1 and for every n ∈ N we let bn+1 = b ⊗ bn. Moreover,
for every k ∈ N and b1, . . . , bk ∈ B, we abbreviate b1 ⊗ · · · ⊗ bk by

⊗k
i=1 bi.

In [5, Def. 12] the concept of monotonic semiring is defined. In the
spirit of this definition, we define monotonic strong bimonoids as follows. Let
(B,⊕,⊗,0,1) be a strong bimonoid and � a partial order on B. We say that
(B,⊕,⊗,0,1,�) is monotonic if the following conditions hold:

(i) for every a, b ∈ B : a � a ⊕ b, and
(ii) for every a, b, c ∈ B \ {0} with b �= 1 we have: a ⊗ c ≺ a ⊗ b ⊗ c.

We call (B,⊕,⊗,0,1,�) past-finite if (B,�) is past-finite.
We note that 0 ≺ 1 ≺ b for each b ∈ B \ {0,1} by [5, Lm. 14]. Also we

note that the only finite monotonic strong bimonoid is the Boolean semiring
(B, sup, inf, 0, 1) with its natural order, where B = {0, 1} [5, p. 122].

Example 1. We give six examples of past-finite monotonic semirings (cf. [5, p.
122]): (i) the semiring of natural numbers (N,+, ·, 0, 1,≤); (ii) the arctic semir-
ing ASRN = (N−∞,max,+,−∞, 0,≤), where N−∞ = N ∪ {−∞}; and (iii) the
semiring Lcm = (N, lcm, ·, 0, 1,≤), where lcm(0, n) = n = lcm(n, 0) for each
n ∈ N and otherwise lcm is the usual least common multiple; (iv) the semir-
ing FSet(N) = (Pf(N),∪,+, ∅, {0},�) where the addition on N is extended to
sets as usual, and � is defined by N1 � N2 if there is an injective mapping
f : N1 → N2 such that n ≤ f(n) for each n ∈ N1; (v) for each n ∈ N+, the semir-
ing Matn(N+) = (Nn×n

+ ∪{0, 1},+, ·, 0, 1,≤) of square matrices over N+ with the

Crisp-Determinization of Weighted Tree Automata 43

common matrix addition and multiplication, where 0 is the n×n zero matrix and
1 is the n×n unit matrix; the partial order ≤ is defined by M ≤ M ′ if Mij ≤ M ′

ij

for each (i, j) ∈ [n]×[n]; (vi) the semiring FLangΣ = (Pf(Σ∗),∪, ·, ∅, {ε},�) over
the alphabet Σ with the operations of union and concatenation, and � is defined
by L1 � L2 if there is an injective mapping f : L1 → L2 such that w is a subword
of f(w) for each w ∈ L1. The semirings (i)–(iv) are commutative and (ii)–(iv),
and (vi) are additively locally finite. ��

Also, there are examples of additively locally finite and past-finite monotonic
strong bimonoids which are not semirings.

Example 2. We show a general method for generating past-finite monotonic
strong bimonoids. Let (B,�) be a past-finite partially ordered set. Let (B,+)
be a commutative semigroup such that, for every a, b ∈ B, we have a � a + b.
Moreover, let (B,×) be a semigroup such that, for every a, b, c ∈ B, we have
a ≺ a × b, c ≺ b × c, and a × c ≺ a × b × c. According to [16, Ex. 2.1(4)], we
construct the strong bimonoid induced by (B,+) and (B,×) to be the strong
bimonoid (B′,⊕,⊗,0,1) defined as follows:

– B′ = B ∪ {0,1} where 0,1 �∈ B;
– we define the operation ⊕ : B′ ×B′ → B′ such that ⊕|B×B = + and for each

b ∈ B′ we let 0 ⊕ b = b = b ⊕ 0 and, if b �= 0, then 1 ⊕ b = b = b ⊕ 1;
– we define the operation ⊗ : B′ ×B′ → B′ such that ⊗|B×B = × and for each

b ∈ B′ we let 0 ⊗ b = 0 = b ⊗ 0, and 1 ⊗ b = b = b ⊗ 1.

We define the partial ordering �′ on B′ such that 0 ≺′ 1 ≺′ b for each b ∈ B
and �′ ∩ (B × B) =�. Then (B′,⊕,⊗,0,1,�′) is past-finite monotonic and is
additively locally finite if, for each finite A ⊆ B, the subsemigroup of (B,+)
generated by A is finite. ��

In the rest of the paper, (B,⊕,⊗,0,1) denotes an arbitrary strong bimonoid
if not specified otherwise.

3 Weighted Tree Automata with Run Semantics

A (Σ,B)-weighted tree language (or: weighted tree language) is a mapping r :
TΣ → B. The image of r is the set im(r) = {r(ξ) | ξ ∈ TΣ}, and for each b ∈ B,
we denote by r−1(b) the set {ξ ∈ TΣ | r(ξ) = b}.

We recall the concept of weighted tree automata over strong bimonoids from
[34] (also cf., e.g., [20,23]). A (Σ,B)-wta is a tuple A = (Q, δ, F), where Q
is a finite nonempty set (states), δ = (δk | k ∈ N) is a family of mappings δk :
Qk×Σ(k)×Q → B (transition mappings), and F : Q → B (root weight mapping).
For each q ∈ Q, we abbreviate F (q) by Fq. We say that A is deterministic (and
crisp-deterministic) if, for every k ∈ N, w ∈ Qk, and σ ∈ Σ(k) there exists at
most one q ∈ Q such that δk(w, σ, q) �= 0 (respectively, there exists a q ∈ Q
such that δk(w, σ, q) = 1, and δk(w, σ, q′) = 0 for each q′ ∈ Q \ {q}). Clearly,
crisp-determinism implies determinism.

44 M. Droste et al.

Let A = (Q, δ, F) be a (Σ,B)-wta, ζ ∈ TΣ({�}), and ρ : pos(ζ) → Q.
We call ρ a run of A on ζ if, for every v ∈ pos(ζ) with ζ(v) ∈ Σ, we have
δk(ρ(v1) · · · ρ(vk), σ, ρ(v)) �= 0 where σ = ζ(v) and k = rkΣ(σ). If ρ(ε) = q for
some q ∈ Q, then we say that ρ is a q-run on ζ. We denote by RA(q, ζ) the
set of all q-runs on ζ and we let RA(ζ) =

⋃
q∈Q RA(q, ζ). If A is deterministic,

then |RA(ζ)| ≤ 1. In particular, for c ∈ CΣ with pos�(c) = {v}, we call each
ρ ∈ RA(q, c) a (q, ρ(v))-run on c and we denote the set of all (q, p)-runs on
c by RA(q, c, p). We note that RA(q, c) =

⋃
p∈Q RA(q, c, p). Each element of

RA(q, c, q) is called loop.
Let ζ ∈ TΣ({�}), ρ ∈ RA(ζ), and v ∈ pos(ζ). We define the mapping

ρ|v : pos(ζ|v) → Q such that, for each v′ ∈ pos(ζ|v), we have ρ|v(v′) = ρ(vv′).
Clearly, ρ|v ∈ RA(ζ|v), and hence we call it the run induced by ρ on ζ|v.

Now we define the weight of a run ρ ∈ RA(ζ) to be the element wtA(ζ, ρ)
of B by induction as follows: (i) if ζ = �, then wtA(ζ, ρ) = 1 and (ii) if ζ =
σ(ζ1, . . . , ζk) with k ∈ N, then wtA(ζ, ρ) is defined by

wtA(ζ, ρ) =
(k⊗

i=1

wtA(ζi, ρ|i)
)

⊗ δk

(
ρ(1) · · · ρ(k), σ, ρ(ε)

)
. (1)

If there is no confusion, then we drop the index A from wtA and write just
wt(ζ, ρ) for the weight of ρ. The run semantics of A is the (Σ,B)-weighted tree
language [[A]] : TΣ → B defined, for each ξ ∈ TΣ , by

[[A]](ξ) =
⊕

ρ∈RA(ξ)

wt(ξ, ρ) ⊗ Fρ(ε) .

We say that A is unambiguous if, for each ξ ∈ TΣ , there is at most one run
ρ ∈ RA(ξ) with Fρ(ε) �= 0. In this case, for each ξ ∈ TΣ (a) for each ρ ∈ RA(ξ)
we have Fρ(ε) = 0 and thus [[A]](ξ) = 0 or (b) there is exactly one ρ ∈ RA(ξ)
with Fρ(ε) �= 0 and [[A]](ξ) = wt(ξ, ρ) ⊗ Fρ(ε). Clearly, each deterministic wta
is unambiguous, and there are easy examples of unambiguous wta A for which
there does not exist a deterministic wta A′ with [[A]] = [[A′]] [27]. A weighted
tree language r : TΣ → B is run-recognizable if there is a (Σ,B)-wta A such
that r = [[A]]. The class of all run-recognizable (Σ,B)-weighted tree languages
is denoted by Rec(Σ,B).

A Σ-tree language L ⊆ TΣ is recognizable if there is a (Σ,B)-wta A such
that L = [[A]]−1(1) (recall that (B, sup, inf, 0, 1) is the Boolean semiring).

We note that also another semantics, called initial algebra semantics, can be
defined for A [20,23,34]. In general, the two kinds of semantics are different [15],
however, if B is a semiring or A is deterministic, then they coincide [15,20].

Example 3. Let Σ = {γ(1), α(0)}. We consider the (Σ,ASRN)-wta A =
({q}, δ, F) with δ0(ε, α, q) = Fq = 0 and δ1(q, γ, q) = 1. Clearly, A is deter-
ministic and not crisp-deterministic (because 1 is not one of the unit elements
of ASRN). Moreover, [[A]](γn(α)) = n for each n ∈ N. We note that im([[A]]) is
infinite. ��

Crisp-Determinization of Weighted Tree Automata 45

Lemma 4. (cf. [20, Lm. 5.3]) Let r : TΣ → B. Then the following statements
are equivalent.

(i) There exists a crisp-deterministic (Σ,B)-wta A such that r = [[A]].
(ii) im(r) is finite and for each b ∈ B the Σ-tree language r−1(b) is recognizable.

Let A = (Q, δ, F) be a (Σ,B)-wta. A state p ∈ Q is useful (in A) if there
exist ξ ∈ TΣ and ρ ∈ RA(ξ) such that Fρ(ε) �= 0 and p ∈ im(ρ). The (Σ,B)-wta
A is trim if each of its states is useful.

Lemma 5. Let B have an effective test for 0 and A be a (Σ,B)-wta. If A
contains a useful state, then we can effectively construct a (Σ,B)-wta A′ such
that A′ is trim and [[A′]] = [[A]]. If A is unambiguous, then A′ is so.

In the rest of this paper, we let A = (Q, δ, F) be an arbitrary (Σ,B)-wta.

4 Pumping Lemma

Pumping lemmas are used in order to achieve structural implications on small
or particular large trees (cf. [24, Lm. 2.10.1] and [4]). Here we follow the idea of
the pumping lemma [4, Lm. 5.5] and transfer it to our setting. On first glance,
[4, Lm. 5.5] might not be appropriate, because it deals with deterministic wta
and employs initial algebra semantics, whereas we deal with (arbitrary) wta and
run semantics. However, we need a pumping lemma for a run of a wta on a
tree and this situation is similar to [4, Lm. 5.5]. In order to spare the reader
the transformation from Borchardt’s setting to our one, we recall the relevant
definitions and statements.

Let c ∈ CΣ , ζ ∈ TΣ , {v} = pos�(c), q′, q ∈ Q, ρ ∈ RA(q′, c, q), and θ ∈
RA(q, ζ). The combination of ρ and θ, denoted by ρ[θ], is the mapping ρ[θ] :
pos(c[ζ]) → Q defined for every u ∈ pos(c[ζ]) as follows: if u = vw for some
w, then we define ρ[θ](u) = θ(w), otherwise we define ρ[θ](u) = ρ(u). Clearly,
ρ[θ] ∈ RA(q′, c[ζ]). For every ξ ∈ TΣ , ρ ∈ RA(ξ), and v ∈ pos(ξ), we define the
run ρ|v on the context ξ|v such that for every w ∈ pos(ξ|v) we set ρ|v(w) = ρ(w).
If ρ ∈ RA(�) with ρ(ε) = q for some q ∈ Q, then sometimes we write q̃ for ρ.

Let c ∈ CΣ , {v} = pos�(c), and ρ ∈ RA(c). We define two mappings lc,ρ :
prefix(v) → B and rc,ρ : prefix(v) → B inductively on the length of their
arguments (cf. [4, p. 526] for deterministic wta). Intuitively, the product (1)
which yields the element wt(c, ρ) ∈ B, can be split into a left subproduct lc,ρ(ε)
and a right subproduct rc,ρ(ε), where the border is given by the factor 1 coming
from the weight of �. Formally, let w ∈ prefix(v). Then, assuming that c(w) = σ
and rkΣ(σ) = k, we let

lc,ρ(w) =

{
1 if w = v
⊗i−1

j=1 wt(c|wj , ρ|wj) ⊗ lc,ρ(wi) if wi ∈ prefix(v) for some i ∈ N+

46 M. Droste et al.

rc,ρ(w) =

⎧
⎪⎨

⎪⎩

1 if w = v

rc,ρ(wi) ⊗ ⊗k
j=i+1 wt(c|wj , ρ|wj) ⊗ δk(ρ(w1) · · · ρ(wk), σ, ρ(w))

if wi ∈ prefix(v) for some i ∈ N+ .

In the sequel, we abbreviate lc,ρ(ε) and rc,ρ(ε) by lc,ρ and rc,ρ, respectively.

Observation 6. Let c ∈ CΣ and ρ ∈ RA(c). Then wt(c, ρ) = lc,ρ ⊗ rc,ρ.

Lemma 7. (cf. [4, Lm. 5.1]) Let c ∈ CΣ , ζ ∈ TΣ , q′, q ∈ Q, ρ ∈ RA(q′, c, q),
and θ ∈ RA(q, ζ). Then wt(c[ζ], ρ[θ]) = lc,ρ ⊗ wt(ζ, θ) ⊗ rc,ρ.

Let c ∈ CΣ , q ∈ Q, and ρ ∈ RA(q, c, q) be a loop. For each n ∈ N, the nth
power of ρ, denoted by ρn, is the run on cn defined by induction as follows:
ρ0 = q̃ (note that c0 = �) and ρn+1 = ρ[ρn]. Next we apply the previous results
to the weights of powers of loops.

Theorem 8. (cf. [4, Lm. 5.3]) Let c′, c ∈ CΣ and ζ ∈ TΣ , q′, q ∈ Q, ρ′ ∈
RA(q′, c′, q), ρ ∈ RA(q, c, q), and θ ∈ RA(q, ζ). Then, for each n ∈ N,

wt(c′[cn[ζ]
]
, ρ′[ρn[θ]

]
) = lc′,ρ′ ⊗ (lc,ρ)n ⊗ wt(ζ, θ) ⊗ (rc,ρ)n ⊗ rc′,ρ′ .

Finally, we prove our pumping lemma for runs of A on trees in TΣ which are
large enough. We note that B need not be commutative.

Theorem 9. (cf. [4, Lm. 5.5]) Let ξ ∈ TΣ , q′ ∈ Q, κ ∈ RA(q′, ξ). If
height(ξ) ≥ |Q|, then there are c′, c ∈ CΣ , ζ ∈ TΣ , q ∈ Q, ρ′ ∈ RA(q′, c′, q),
ρ ∈ RA(q, c, q), and θ ∈ RA(q, ζ) such that ξ = c′[c[ζ]

]
, κ = ρ′[ρ[θ]

]
,

height(c) > 0, height
(
c[ζ]

)
< |Q|, and, for each n ∈ N,

wt(c′[cn[ζ]
]
, ρ′[ρn[θ]

]
) = lc′,ρ′ ⊗ (lc,ρ)n ⊗ wt(ζ, θ) ⊗ (rc,ρ)n ⊗ rc′,ρ′ .

Proof. Since height(ξ) ≥ |Q| there are u,w ∈ N∗
+ such that uw ∈ pos(ξ), |w| > 0,

height(ξ|u) < |Q|, and κ(u) = κ(uw). Then we let c′ = ξ|u, c = (ξ|u)|w, ζ = ξ|uw.
Clearly, ξ = c′[c[ζ]

]
. Moreover, we set ρ′ = κ|u, ρ = (κ|u)|w and θ = κ|uw. Then

the statement follows from Theorem 8. ��

5 Main Result

A (Σ,B)-wta A is crisp-determinizable (with respect to the run semantics) if
there exists a crisp-deterministic (Σ,B)-wta C such that [[A]] = [[C]]. We say that
the strong bimonoid B has effective tests for 0 and 1 if for each b ∈ B we can
decide whether b = 0 and whether b = 1. Then our main result is the following.

Theorem 10. Let B be a past-finite monotonic strong bimonoid with effective
tests for 0 and 1. Then the following two statements hold.

1. If B is additively locally finite, then it is decidable whether an arbitrary
(Σ,B)-wta is crisp-determinizable.

Crisp-Determinization of Weighted Tree Automata 47

2. It is decidable whether an arbitrary unambiguous (Σ,B)-wta is crisp-
determinizable.

The decidability problem addressed in Theorem 10 is meaningful, because
in Example 3 we considered the additively locally finite and past-finite mono-
tonic semiring ASRN and a deterministic (Σ,ASRN)-wta A which is not crisp-
determinizable, due to Lemma 4 and the fact that im([[A]]) is infinite.

The blueprint for the proof of Theorem 10 is delivered by Lemma 4 and
the fact that, for past-finite monotonic strong bimonoids, the preimage of each
element is a recognizable tree language (cf. Lemma 11). Then it remains to show
that the finiteness of im([[A]]) is decidable (cf. Corollary 14).

From now on, (B,⊕,⊗,0,1,�) is a monotonic strong bimonoid.

The following result is a generalization of [3, III. Cor. 2.5] from strings to
trees and from the semiring N to any past-finite monotonic strong bimonoid B.

Lemma 11. Let B be past-finite and r ∈ Rec(Σ,B). Then r−1(b) is a recog-
nizable Σ-tree language for each b ∈ B.

Proof. Let b ∈ B and put C = B \ past(b) = {a ∈ B | a � b}. Moreover, let
∼ be the equivalence relation on the set B defined such that its classes are the
singleton sets {a} for each a ∈ past(b) and the set C. We claim that ∼ is a
congruence. To show that C is a congruence class, let c, c′ ∈ C and d ∈ B. Since
B is monotonic, we have c � c ⊕ d, hence c ⊕ d ∈ C and similarly c′ ⊕ d ∈ C.
Also, if d �= 0, again we obtain c � c ⊗ d and c � d ⊗ c, showing c ⊗ d, d ⊗ c ∈ C
and similarly c′ ⊗ d, d ⊗ c′ ∈ C. Hence C is a congruence class and the relation
∼ is a congruence relation on the strong bimonoid B. Then the quotient strong
bimonoid B/∼ is finite. Let h : B → B/∼ be the canonical strong bimonoid
homomorphism. Then by a straightforward generalization of [6, Lm. 3] and [23,
Thm. 3.9] (from semirings to strong bimonoids), (h◦r) ∈ Rec(Σ,B/∼). Moreover
r−1(b) = (h ◦ r)−1({b}). Since the strong bimonoid B/∼ is finite, by [20, Cor.
7.5], there is a crisp-deterministic (Σ,B/∼)-wta A such that [[A]] = h ◦ r. Then,
by Lemma 4, the set (h ◦ r)−1({b}) is a recognizable Σ-tree language. ��

We say that small loops of A have weight 1 if, for every q ∈ Q, c ∈ CΣ , and
loop ρ ∈ RA(q, c, q), if height(c) < |Q|, then wt(c, ρ) = 1.

Lemma 12. If small loops of A have weight 1, then, for every ξ ∈ TΣ , q′ ∈ Q,
and κ ∈ RA(q′, ξ), there exist ξ′ ∈ TΣ and κ′ ∈ RA(q′, ξ′) such that height(ξ′) <
|Q| and wt(ξ, κ) = wt(ξ′, κ′).

Proof. Let ξ ∈ TΣ , q′ ∈ Q, κ ∈ RA(q′, ξ). We may assume that height(ξ) ≥ |Q|.
Applying Theorem9 (for n = 1 and n = 0), there are c, c′ ∈ CΣ , ζ ∈ TΣ ,
q ∈ Q, ρ′ ∈ RA(q′, c′, q), ρ ∈ RA(q, c, q), and θ ∈ RA(q, ζ) such that ξ = c′[c[ζ]

]
,

κ = ρ′[ρ[θ]
]
, height(c) > 0, height

(
c[ζ]

)
< |Q|, and

wt(ξ, κ) =wt(c′[c[ζ]
]
, ρ′[ρ[θ]

]
) = lc′,ρ′ ⊗ lc,ρ ⊗ wt(ζ, θ) ⊗ rc,ρ ⊗ rc′,ρ′ ,

wt(c′[ζ], ρ′[θ]) = lc′,ρ′ ⊗ wt(ζ, θ) ⊗ rc′,ρ′ .

48 M. Droste et al.

By our assumption wt(c, ρ) = 1, and by Observation 6 we have wt(c, ρ) = lc,ρ ⊗
rc,ρ. Thus lc,ρ = rc,ρ = 1 by monotonicity, and hence wt(ξ, κ) = wt(c′[ζ], ρ′[θ]).

Note that ρ′[θ] ∈ RA(q′, c′[ζ]) and size(c′[ζ]) < size(ξ). If height(c′[ζ]) < |Q|,
then we are ready. Otherwise we continue with c′[ζ], q′, and ρ′[θ] as before. After
finitely many steps, we obtain ξ′ ∈ TΣ and κ′ ∈ RA(q′, ξ′) with height(ξ′) < |Q|
as required. ��
Theorem 13. Let A be trim. Then the following two statements hold.

1. If B is past-finite and im([[A]]) is finite, then small loops of A have weight
1.

2. If (a) small loops of A have weight 1 and (b) B is additively locally finite or
A is unambiguous, then im([[A]]) is finite.

Proof. Proof of 1: We prove by contraposition. Suppose there are q ∈ Q, c ∈ CΣ ,
and ρ ∈ RA(q, c, q) such that height(c) < |Q| and 1 ≺ wt(c, ρ). Since A is trim,
the state q is useful and thus there are ξ ∈ TΣ , θ ∈ RA(q, ξ) and c′ ∈ CΣ , q′ ∈ Q
with Fq′ �= 0, and ρ′ ∈ RA(q′, c′, q). By Theorem 8, for each n ∈ N, we have

wt(c′[cn[ξ]
]
, ρ′[ρn[θ]

]
) = lc′,ρ′ ⊗ (lc,ρ)n ⊗ wt(ξ, θ) ⊗ (rc,ρ)n ⊗ rc′,ρ′ .

Since 1 ≺ wt(c, ρ) = lc,ρ ⊗ rc,ρ , we have 1 ≺ lc,ρ or 1 ≺ rc,ρ and thus by
monotonicity we obtain

wt(c′[c0[ξ]
]
, ρ′[ρ0[θ]

]
) ≺ wt(c′[c1[ξ]

]
, ρ′[ρ1[θ]

]
) ≺ (2)

We construct a sequence ξ1, ξ2, ξ3, . . . of trees in TΣ such that the ele-
ments [[A]](ξ1), [[A]](ξ2), [[A]](ξ3), . . . are pairwise different as follows. We let
ξ1 = c′[c[ξ]

]
. Then P1 = past([[A]](ξ1)) is finite. By (2) we choose n2 such

that wt(c′[cn2 [ξ]
]
, ρ′[ρn2 [θ]

]
) �∈ P1 and let ξ2 = c′[cn2 [ξ]

]
. Since ρ′[ρn2 [θ]

] ∈
RA(q′, ξ2) and B is monotonic, we have

wt(ξ2, ρ′[ρn2 [θ]
]
) � wt(ξ2, ρ′[ρn2 [θ]

]
) ⊗ Fq′ � [[A]](ξ2).

(Note that Fq′ may be 1.) Hence [[A]](ξ2) /∈ P1. Put P2 = past([[A]](ξ2)). Then
we choose n3 ∈ N such that wt(c′[cn3 [ξ]

]
, ρ′[ρn3 [θ]

]
) �∈ P1 ∪ P2 and let ξ3 =

c′[cn3 [ξ]
]
. As before, we have [[A]](ξ3) /∈ P1 ∪ P2. Continuing this process, we

obtain the desired sequence of trees. It means im([[A]]) is infinite.
Proof of 2: Let ξ ∈ TΣ . We have [[A]](ξ) =

⊕
κ∈RA(ξ) wt(ξ, κ) ⊗ Fκ(ε). By

Assumption (a) and Lemma 12, for every κ ∈ RA(ξ) there are ξ′ ∈ TΣ and
κ′ ∈ RA(ξ′) such that height(ξ′) < |Q|, κ(ε) = κ′(ε), and wt(ξ, κ) = wt(ξ′, κ′).

Now we proceed by case analysis. Assume that B is additively locally finite.
Then [[A]](ξ) is contained in the submonoid B′ of (B,⊕,0) generated by the finite
set H = {wt(ξ′, κ′) ⊗ Fq′ | q′ ∈ Q, ξ′ ∈ TΣ ,height(ξ′) < |Q|, κ′ ∈ RA(q′, ξ′)}.
Since B is additively locally finite, the submonoid B′ is finite. Since [[A]](ξ) ∈
B′ for each ξ ∈ TΣ we have that im([[A]]) is finite. Now assume that A is
unambiguous. Then for each ξ ∈ TΣ we have (i) [[A]](ξ) = 0 or (ii) there is a
κ ∈ RA(ξ) with Fκ(ε) �= 0 and [[A]](ξ) = wt(ξ, κ) ⊗ Fκ(ε). Hence im([[A]]) ⊆
(H ∪ {0}). ��

Crisp-Determinization of Weighted Tree Automata 49

Corollary 14. Let B be past-finite and have effective test for 1. Moreover, let A
be trim. If B is additively locally finite or A is unambiguous, then it is decidable
whether im([[A]]) is finite.

Proof. By Theorem 13, im([[A]]) is finite if and only if small loops of A have
weight 1. The latter property is decidable because (a) there are only finitely
many c ∈ CΣ such that height(c) < |Q|, and (b) since B is monotonic, for all
c ∈ CΣ , q ∈ Q, and ρ ∈ RA(q, c, q) we have wt(c, ρ) = 1 if and only if for
each v ∈ pos(c) we have δk(ρ(v1) · · · ρ(vk), σ, ρ(v)) = 1 where σ = c(v) and
k = rkΣ(σ), and (c) this is decidable because B has effective test for 1. ��

We note that from Corollary 14 we can formally derive the well-known result
that the finiteness of context-free languages is decidable [25, Thm. 8.2.2].

Proof (of Theorem 10). Let A be an arbitrary (Σ,B)-wta and assume that B
is additively locally finite or A is unambiguous. By Lemma 5, we can construct
the trim (Σ,B)-wta A′ such that [[A′]] = [[A]]. By Lemmas 4 and 11, A′ is crisp-
determinizable if and only if im

(
[[A′]]

)
is finite. By Corollary 14, it is decidable

if im
(
[[A′]]

)
is finite. ��

References

1. Alexandrakis, A., Bozapalidis, S.: Weighted grammars and Kleene’s theorem. Inf.
Process. Lett. 24(1), 1–4 (1987)

2. Berstel, J., Reutenauer, C.: Recognizable formal power series on trees. Theor. Com-
put. Sci. 18(2), 115–148 (1982)

3. Berstel, J., Reutenauer, C.: Rational Series and Their Languages. EATCS Mono-
graphs on Theoretical Computer Science, vol. 12. Springer, Heidelberg (1988)

4. Borchardt, B.: A pumping lemma and decidability problems for recognizable tree
series. Acta Cybern. 16(4), 509–544 (2004)

5. Borchardt, B., Fülöp, Z., Gazdag, Z., Maletti, A.: Bounds for tree automata with
polynomial costs. J. Autom. Lang. Comb. 10, 107–157 (2005)

6. Borchardt, B., Maletti, A., Šešelja, B., Tepavčevic, A., Vogler, H.: Cut sets as
recognizable tree languages. Fuzzy Sets Syst. 157, 1560–1571 (2006)

7. Borchardt, B., Vogler, H.: Determinization of finite state weighted tree automata.
J. Autom. Lang. Comb. 8(3), 417–463 (2003)

8. Büchse, M., May, J., Vogler, H.: Determinization of weighted tree automata using
factorizations. J. Autom. Lang. Comb. 15(3/4), 229–254 (2010)

9. Ćirić, M., Droste, M., Ignjatović, J., Vogler, H.: Determinization of weighted finite
automata over strong bimonoids. Inf. Sci. 180(18), 3479–3520 (2010)

10. Comon, H., et al.: Tree automata techniques and applications (2008). http://tata.
gforge.inria.fr

11. Droste, M., Götze, D., Märcker, S., Meinecke, I.: Weighted tree automata over
valuation monoids and their characterization by weighted logics. In: Kuich, W.,
Rahonis, G. (eds.) Algebraic Foundations in Computer Science. LNCS, vol. 7020,
pp. 30–55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24897-
9 2

http://tata.gforge.inria.fr
http://tata.gforge.inria.fr
https://doi.org/10.1007/978-3-642-24897-9_2
https://doi.org/10.1007/978-3-642-24897-9_2

50 M. Droste et al.

12. Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata.
EATCS Monographs in Theoretical Computer Science. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01492-5

13. Droste, M., Meinecke, I.: Weighted automata and weighted MSO logics for average
and long-time behaviors. Inf. Comput. 220–221, 44–59 (2012)

14. Droste, M., Perevoshchikov, V.: Multi-weighted automata and MSO logic. Theory
Comput. Syst. 59, 231–261 (2016). https://doi.org/10.1007/s00224-015-9658-9

15. Droste, M., Stüber, T., Vogler, H.: Weighted finite automata over strong bimonoids.
Inf. Sci. 180(1), 156–166 (2010)

16. Droste, M., Vogler, H.: Weighted automata and multi-valued logics over arbitrary
bounded lattices. Theor. Comput. Sci. 418, 14–36 (2012)

17. Eilenberg, S.: Automata, Languages, and Machines - Volume A, Pure and Applied
Mathematics, vol. 59. Academic Press, Cambridge (1974)

18. Engelfriet, J.: Tree automata and tree grammars. Technical report. DAIMI FN-10,
Institute of Mathematics, University of Aarhus, Department of Computer Science,
Denmark (1975). arXiv:1510.02036v1 [cs.FL], 7 October 2015

19. Ésik, Z., Liu, G.: Fuzzy tree automata. Fuzzy Sets Syst. 158, 1450–1460 (2007)
20. Fülöp, Z., Kószó, D., Vogler, H.: Crisp-determinization of weighted tree automata

over strong bimonoids (2019). arXiv:1912.02660v1 [cs.FL], 5 December 2019
21. Fülöp, Z., Maletti, A., Vogler, H.: A Kleene theorem for weighted tree automata

over distributive multioperator monoids. Theory Comput. Syst. 44, 455–499
(2009). https://doi.org/10.1007/s00224-007-9091-9

22. Fülöp, Z., Stüber, T., Vogler, H.: A Büchi-like theorem for weighted tree automata
over multioperator monoids. Theory Comput. Syst. 50(2), 241–278 (2012). https://
doi.org/10.1007/s00224-010-9296-1

23. Fülöp, Z., Vogler, H.: Weighted tree automata and tree transducers. In: Droste,
M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata. EATCS, pp.
313–403. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01492-
5 9

24. Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984).
arXiv:1509.06233v1 [cs.FL], 21 September 2015

25. Harrison, M.: Introduction to Formal Language Theory. Addison-Wesley, Boston
(1978)

26. Kirsten, D., Mäurer, I.: On the determinization of weighted automata. J. Autom.
Lang. Comb. 10, 287–312 (2005)

27. Klimann, I., Lombardy, S., Mairesse, J., Prieur, C.: Deciding unambiguity and
sequentiality from a finitely ambiguous max-plus automaton. Theor. Comput. Sci.
327(3), 349–373 (2004)

28. Kostolányi, P.: On deterministic weighted automata. Inf. Process. Lett. 140, 42–47
(2018)

29. Kuich, W., Salomaa, A.: Semirings, Automata, Languages. EATCS Monographs
in Theoretical Computer Science, vol. 5. Springer, Heidelberg (1986). https://doi.
org/10.1007/978-3-642-69959-7 4

30. Lombardy, S., Sakarovitch, J.: Sequential? Theor. Comput. Sci. 356, 224–244
(2006)

31. Mandel, A., Simon, I.: On finite semigroups of matrices. Theor. Comput. Sci. 5,
101–111 (1977)

32. Mohri, M.: Finite-state transducers in language and speech processing. Comput.
Linguist. 23(2), 269–311 (1997)

https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.1007/s00224-015-9658-9
http://arxiv.org/abs/1510.02036v1
http://arxiv.org/abs/1912.02660v1
https://doi.org/10.1007/s00224-007-9091-9
https://doi.org/10.1007/s00224-010-9296-1
https://doi.org/10.1007/s00224-010-9296-1
https://doi.org/10.1007/978-3-642-01492-5_9
https://doi.org/10.1007/978-3-642-01492-5_9
http://arxiv.org/abs/1509.06233v1
https://doi.org/10.1007/978-3-642-69959-7_4
https://doi.org/10.1007/978-3-642-69959-7_4

Crisp-Determinization of Weighted Tree Automata 51

33. Paul, E.: Finite sequentiality of unambiguous max-plus tree automata. In: 36th
International Symposium on Theoretical Aspects of Computer Science (STACS
2019). vol. 126, pp. 53:1–53:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik
(2019)

34. Radovanović, D.: Weighted tree automata over strong bimonoids. Novi Sad J.
Math. 40(3), 89–108 (2010)

35. Rahonis, G.: Fuzzy languages. In: Droste, M., Kuich, W., Vogler, H. (eds.) Hand-
book of Weighted Automata. EATCS, pp. 481–517. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-01492-5 12

36. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, Cam-
bridge (2009)

37. Schützenberger, M.: On the definition of a family of automata. Inf. Control 4,
245–270 (1961)

38. Seidl, H.: Finite tree automata with cost functions. Theor. Comput. Sci. 126(1),
113–142 (1994)

39. Wechler, W.: The Concept of Fuzziness in Automata and Language Theory, 5th
edn. Studien zur Algebra und ihre Anwendungen, Akademie-Verlag, Berlin (1978)

https://doi.org/10.1007/978-3-642-01492-5_12

On the Power of Generalized Forbidding
Insertion-Deletion Systems

Henning Fernau1 , Lakshmanan Kuppusamy2 ,
and Indhumathi Raman3(B)

1 Fachbereich 4 – Abteilung Informatikwissenschaften, CIRT, Universität Trier,
54286 Trier, Germany
fernau@uni-trier.de

2 School of Computer Science and Engineering, VIT, Vellore 632 014, India
klakshma@vit.ac.in

3 Department of Applied Mathematics and Computational Sciences,
PSG College of Technology, Coimbatore 641 004, India

ind.amcs@psgtech.ac.in

Abstract. We consider generalized forbidding insertion-deletion sys-
tems (GFID) where each insertion-deletion rule is associated with a
set F of words and the rule can be applied to a string only if every
word of F is not a subword of the string. The parameters in the size
(k; n, i′, i′′; m, j′, j′′) of a GFID system denote (from left to right) the
maximum length of a word in F , the maximal length of an insertion
string, the maximal length of the left context for insertion, the maximal
length of the right context for insertion; the last three parameters follow
a similar pattern with respect to deletion. We show that GFID systems of
sizes (k; n, i′, i′′; m, j′, j′′), where k = 2 and n + i′ + i′′ = m + j′ + j′′ = 2,
with n, m > 0 and i′, i′′, j′, j′′ ∈ {0, 1}, describe all recursively enumer-
able languages, by explaining algorithms that transform a given type-0
grammar in some normal form to a GFID system of the required size.

Keywords: Insertion-deletion · Semi-conditional · Forbidding
grammars · Descriptional complexity · Special Geffert Normal Form

1 Introduction

Since the 1930s, many different formal models have been developed that turned
out to be equivalent to Turing machines. We refer to [6,15] for descriptions of
these (early) findings. From the viewpoint of Formal Languages, that means
that there are many mechanisms that can describe the family of recursively
enumerable languages, or RE for short.

Since the 1990s, there have been various attempts to create a formal basis
of models for DNA computing; see [9,16]. One of the key observations here is
that insertions and deletions play a central role in such formalisms. Research of
formal systems based on these operations was initiated by Kari [8].

c© Springer Nature Switzerland AG 2020
G. Jirásková and G. Pighizzini (Eds.): DCFS 2020, LNCS 12442, pp. 52–63, 2020.
https://doi.org/10.1007/978-3-030-62536-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62536-8_5&domain=pdf
http://orcid.org/0000-0002-4444-3220
http://orcid.org/0000-0003-2358-905X
http://orcid.org/0000-0002-0981-9165
https://doi.org/10.1007/978-3-030-62536-8_5

On the Power of Generalized Forbidding Insertion-Deletion Systems 53

For the ease of possible implementations in vitro, quite from the early days of
this area onwards, one of the main research questions was to look into the sim-
plest possible models that can still achieve computational completeness, i.e.,
simulate arbitrary Turing machine computations. A tuple (n, i′, i′′;m, j′, j′′)
is associated with an insertion-deletion (ID) system to denote its size, where
the six parameters are defined in Table 2. For instance, it is known that
insertion-deletion systems of sizes (1, 1, 1; 1, 1, 1), (1, 1, 1; 2, 0, 0), (2, 0, 0; 1, 1, 1),
(2, 0, 0; 3, 0, 0) or (3, 0, 0; 2, 0, 0) are computationally complete (see [10,18]), while
upon decreasing any of the non-zero size parameter bounds, we arrive at systems
that are not capable to simulate every Turing machine; see [12].

For sizes that are too small to simulate Turing machines, a research line
was followed that has been quite successful in a different context of Formal
Languages, namely that of imposing further regulation strategies, as pioneered
in the area of Regulated Rewriting, see [1]; there, mostly context-free rules (which
are themselves too weak to simulate Turing machines) have been combined with
various regulations (like graph-controlled, matrix, semi-conditional) to obtain
computational completeness results. These regulated rewriting mechanisms are
transferred to the insertion-deletion case; see [3,4,17]. In this paper, we follow
this line of research for the case of forbidding context grammars, introduced by
Meduna in [13] and further studied in [2,11,14].

Ivanov and Verlan initiated the study of semi-conditional ins-del (SCID) sys-
tems in [7]. An octuple (i, j;n, i′, i′′;m, j′, j′′) is associated as size of a SCID
system where the parameters denote (from left to right) the maximum length of
a word in permitting set P, the maximum length of a word in forbidding set F ,
the rest of the parameters are defined in Table 2. The pair (i, j) is sometimes
called degree. They proved that SCID systems with sizes (2, 2; 1, 0, 0; 1, 0, 0) and
(1, 1; 2, 0, 0; 1, 1, 0) describe RE, however, SCID systems with size (1, 1) and ID
size (1, 1, 0; 2, 0, 0) and (1, 1, 0;m, 1, 1) are proved to be computationally incom-
plete. No computational (in)completeness results were obtained for SCID sys-
tems of other degrees in [7]. In [3], it was shown that simple SCID systems of
sizes (2, 1; 1 + i, i′, i′′; 1 + j, j′, j′′) describe RE for all i + i′+i′′ = 1 = j+j′ + j′′.
Is this situation the same even if the degree of (simple) SCID is changed from
(2, 1) to (0, 2)? This paper answers this question in the affirmative.

We call an SCID system of degree (0, k) as a generalized forbidding insertion-
deletion (GFID) system of degree k. Here, each insertion-deletion rule is associ-
ated with a set F of words and the rule can be applied to a string only if every
word of F is not a subword of the string. We then show that GFID systems
of sizes (2; 1 + i, i′, i′′; 1 + j, j′, j′′) where i + i′ + i′′ = j + j′ + j′′ = 1 (with
i, i′, i′′, j, j′, j′′ ∈ {0, 1}) are computationally complete; see Table 1 for clarity.

Note that in view of the mentioned computational incompleteness results of
Ivanov and Verlan [7], we know that GFID(1; 1, 1, 0;x, y, z) �= RE for (x, y, z) ∈
{(2, 0, 0), (1, 1, 0), (1, 0, 1)}, so that in this sense, our computational complete-
ness results cannot be further improved. Recall that insertion-deletion systems
(without any regulations) of size (2, 0, 0; 2, 0, 0) are computationally incomplete.

54 H. Fernau et al.

Table 1. Results of this paper

Result Reference

1. GFID(2; 2, 0, 0; 2, 0, 0) = RE Theorem 3
2. GFID(2; 1, 1, 0; 2, 0, 0) = RE Theorem 4
3. GFID(2; 1, 1, 0; 1, 1, 0) = RE Theorem 5
4. GFID(2; 1, 1, 0; 1, 0, 1) = RE Theorem 6
5. GFID(2; 2, 0, 0; 1, 1, 0) = RE Theorem 7

Result Reference

6. GFID(2; 1, 0, 1; 2, 0, 0) = RE Corollary 1
7. GFID(2; 1, 0, 1; 1, 0, 1) = RE Corollary 2
8. GFID(2; 1, 0, 1; 1, 1, 0) = RE Corollary 3
9. GFID(2; 2, 0, 0; 1, 0, 1) = RE Corollary 4

Our results are obtained by simulating so-called space separating special
Geffert normal form grammars (or ssSGNF for short), a restriction of type-0
grammars introduced in [3]. All our results are constructive in the following
sense: We describe algorithms how to transform a given ssSGNF grammar into
a forbidding generalized insertion-deletion system and then prove the correctness
of our algorithm. Incorporating the algorithmic transformations given in [3,5],
we obtain an algorithm that transforms an input Turing machine (accepting a
language L) into a GFID system (of the sizes specified above) that generates L.

2 Important Definitions

We assume some basic knowledge of formal languages on the side of the reader.
We will also use standard notations from that area, for instance, T ∗ is the set of
words over the alphabet T , including the empty word λ. For a word w, sub(w)
denotes the set of subwords (factors) of w and wr denotes the reversal of w.
From [3], we recall the following definition and theorem.

Definition 1. A type-0 grammar G = (N,T, P, S) is said to be in Space Sepa-
rating Special Geffert Normal Form, or ssSGNF for short, if

– N decomposes as N = N ′ ∪ N ′′, where N ′′ = {A,B,C,D,E, F} and N ′

further decomposes as N ′ = NS ∪ NS′ such that NS contains at least the
nonterminal S and NS′ contains at least the nonterminal S′,

– the only non-context-free rules are erasing: AB → λ, CD → λ and EF → λ,
– the non-erasing context-free rules are of the following forms:

X → Y b or X → b′Y (X ∈ NS , Y ∈ N ′, X �= Y, b ∈ T, b′ ∈ {A,C,E}), or
X → Y b or X → b′Y (X,Y ∈ NS′ , X �= Y, b ∈ {B,D,F}, b′ ∈ {A,C,E});

– G contains the erasing context-free rule S′ → λ and also possibly S → λ.

We can restrict our attention to ssSGNF’s whose derivations split into two
phases; in the first phase, only context-free rules are applied and only strings in

{EA,EC}∗NST ∗ ∪ {EA,EC}∗NS′{BF,DF}∗T ∗ ∪ {EA,EC}∗{BF,DF}∗T ∗

are produced; in the second phase, only the said three non-context-free erasing
rules are applied and strings from {EA,EC}∗{λ,EF}{BF,DF}∗T ∗ only can
be derived to terminal strings. This leads us to the following result.

On the Power of Generalized Forbidding Insertion-Deletion Systems 55

Theorem 1. For every recursively enumerable language, there exists a type-0
grammar in ssSGNF that describes it. Moreover, for any w ∈ (N ∪T)∗ such that
S ⇒∗ w, {AA,BB,CC,DD,EE,FF} ∩ sub(w) = ∅. 	

Notice that there is always a unique central part in a sentential form where
derivations can actually happen, referring to a nonterminal from N ′ in the first
phase, and to substrings AB, CD, EF in the second phase.

The core notion of this paper is the following one, see [7].

Definition 2. [7] A generalized forbidding insertion-deletion system is a con-
struct Π = (V, T,A,R), where V is a finite alphabet, T ⊆ V is the terminal
alphabet, A ⊆ V ∗ is a finite set of axioms , R is a finite set of rules of the form
[(u, s, v)t,F] where u, v ∈ V ∗, s ∈ V +, t ∈ {ins, del}, F is finite subset of V ∗.

An element x ∈ A is called an axiom. For clarity, we often use unique labels
for rules, even identifying a rule with its label, i.e., if � ∈ R is a rule (label),
then we write � : [(u�, s�, v�)t�

,F�]. The element u� is called the left context of
s� and v� is called the right context of s�. If both contexts are empty for every
insertion (deletion) rule, then the insertion (deletion) is called context-free. The
set F� is called the forbidding set. The maximum length of a word in F�, taken
over all rules of � ∈ R, is denoted by k and is called the degree of the generalized
forbidding ins-del system. We write x ⇒� y if F� ∩ sub(x) = ∅ and

1. t� = ins and x = x1u�v�x2, y = x1u�s�v�x2, for some x1, x2 ∈ V ∗; or
2. t� = del and x = x1u�s�v�x2, y = x1u�v�x2, for some x1, x2 ∈ V ∗.

The language generated by a GFID system Π is L(Π) = {w ∈ T ∗ | x ⇒∗

w for some x ∈ A} , where ⇒∗ is the reflexive and transitive closure of ⇒.
The descriptional complexity of a GFID system is measured by its size

s = (k;n, i′, i′′;m, j′, j′′), where k is the degree of GFID and the other param-
eters represent resource bounds as given in Table 2. The families of lan-
guages generated by generalized forbidding insertion-deletion systems of size
(k;n, i′, i′′;m, j′, j′′) is denoted as GFID(k;n, i′, i′′;m, j′, j′′).

Table 2. Parameters in the size of ins-del system.

n = max{|η| : (u, η, v)ins ∈ R} m = max{|δ| : (u, δ, v)del ∈ R}
i′ = max{|u| : (u, η, v)ins ∈ R} j′ = max{|u| : (u, δ, v)del ∈ R}
i′′ = max{|v| : (u, η, v)ins ∈ R} j′′ = max{|v| : (u, δ, v)del ∈ R}

3 Main Results

For theorems marked by (∗), proof details are omitted due to page constraint.
However, at some places, we provide a proof sketch for easy understanding.

56 H. Fernau et al.

Theorem 2. (∗) Let L be a language class that is closed under reversal. Then,
for all non-negative integers k, n, i′, i′′,m, j′, j′′,

1. GFID(k;n, i′, i′′;m, j′, j′′) = [GFID(k;n, i′′, i′;m, j′′, j′)]r .
2. L = GFID(k;n, i′, i′′;m, j′, j′′) iff L = GFID(k;n, i′′, i′;m, j′′, j′).

An important special case of the above theorem will be L = RE, as RE is
closed under reversal and we can use this for computational completeness results.
Let |P | be the number of rules in a type-0 grammar. We define some notations:

M = {m | m ∈ [1 . . . |P |]}, M ′ = {m′ | m ∈ [1 . . . |P |]},
M ′′ = {m′′ | m ∈ [1 . . . |P |]}, M ′′′ = {m′′′ | m ∈ [1 . . . |P |]},
M iv = {miv | m ∈ [1 . . . |P |]}, Mv = {mv | m ∈ [1 . . . |P |]},
M′′ = M ∪ M ′ ∪ M ′′, M′′′ = M ∪ M ′ ∪ M ′′ ∪ M ′′′,
Miv = M′′′ ∪ M iv, Mv = M′′′ ∪ M iv ∪ Mv,

The general idea in our proofs is that we consider a type-0 grammar G in
space-separating Special Geffert Normal form as described in Definition 1. We
label the two types of context-free rules as follows: p : X → bY and q : X → Y b
and label the non-context-free rules exemplarily as f : AB → λ. Apart from the
very end, a sentential form ξ of G corresponds to a string σξσ derivable in the
simulating system Π, where σ is a new endmarker symbol. We also use

Φ1 = {A,C,E, σ}({B,D,F, σ}∪T)∪T{A,C,E}∪{ZZ | Z ∈ {A,B,C,D,E, F}}

to check if we are currently simulating phase 1 of the given ssSGNF grammar.

Remark 1. Notice that we are not making this explicit below, but there are mali-
cious strings like Aa that might be derived in G (and hence in the simulating
system Π) where we have to make sure that such strings can never derive any-
thing useful within the simulating system Π. Therefore, we add the forbidden
context Φ1 to any context-free insertion rule. Similarly, if G derives A, then in
Π we would derive σAσ in Π and get blocked.

Theorem 3. GFID(2; 2, 0, 0; 2, 0, 0) = RE.

Proof. Consider a type-0 grammar G = (N,T, P, S) in ssSGNF as in Definition 1
whose rules are labelled uniquely by numbers [1 . . . |P |]. Construct a GFID system
Π = (V, T, {σSσ}, R) of size (2; 2, 0, 0; 2, 0, 0) as follows such that L(Π) = L(G).
Let V = N ∪ T ∪ {σ} ∪ Mv. The set of rules of R in Π is given next. (i) For every
(context-free) rule of type p : X → bY in G, the set of simulating rules is stated in
Fig. 1(a). (ii) For every rule of type q : X → Y b in G, the set of simulating rules
is stated in Figure 1(b). (iii) Rules like UV → λ, with UV ∈ {AB,CD,EF}, are
simulated by the GFID rule fUV = [(λ,UV, λ)del, N

′]. (iv) The erasing rule S′ → λ
is simulated by [(λ, S′, λ)del, ∅] (and possibly S → λ by by [(λ, S, λ)del, ∅]). (v) To
terminate, we include [(λ, σ, λ)del, V \ (T ∪ {σ})].

On the Power of Generalized Forbidding Insertion-Deletion Systems 57

p1 = [(λ, pp′, λ)ins, Mv ∪ (N ′ \ {X}) ∪ Φ1]
p2 = [(λ, p′X, λ)del, (Mv \ {p, p′}) ∪ (N ′ \ {X})]
p3 = [(λ, bp′′, λ)ins, (Mv \ {p}) ∪ N ′ ∪ Φ1]
p4 = [(λ, Y p′′′, λ)ins, (Mv \ {p, p′′}) ∪ N ′ ∪ {p′′Z | Z ∈ V \ {p}}∪

{Zp | Z ∈ V \ {p′′}} ∪ Φ1]
p5 = [(λ, pvpiv, λ)ins, (Mv \ {p, p′′, p′′′}) ∪ (N ′ \ {Y }) ∪ {bp′′}∪

{Zp | Z ∈ V \ {p′′}} ∪ Φ1]
p6 = [(λ, pivp′′′, λ)del, (Mv \ {p, p′′, p′′′, piv, pv}) ∪ (N ′ \ {Y }) ∪ {Y p′′′, bp′′}∪

{p′′′Z | Z ∈ V \ {p′′}} ∪ {Zp | Z ∈ V \ {p′′}}]
p7 = [(λ, p′′, λ)del, (Mv \ {p, p′′, pv}) ∪ (N ′ \ {Y }) ∪ {Y p′′′} ∪ {Zp′′ | Z ∈ V \ {pv}}]
p8 = [(λ, pvp, λ)del, (Mv \ {pv, p}) ∪ (N ′ \ {Y })]

(a) Simulating p : X → bY

q1 = [(λ, qq′, λ)ins, Mv ∪ (N ′ \ {X}) ∪ Φ1]
q2 = [(λ, q′X, λ)del, (Mv \ {q, q′}) ∪ (N ′ \ {X})]
q3 = [(λ, q′′b, λ)ins, (Mv \ {q}) ∪ N ′ ∪ Φ1]
q4 = [(λ, q′′′Y, λ)ins, (Mv \ {q, q′′}) ∪ N ′∪

{Zq′′ | Z ∈ V \ {q}} ∪ {qZ | Z ∈ V \ {q′′}} ∪ Φ1]
q5 = [(λ, qivqv, λ)ins, (Mv \ {q, q′′, q′′′}) ∪ (N ′ \ {Y }) ∪ {q′′b}∪

{qZ | Z ∈ V \ {q′′}} ∪ Φ1]
q6 = [(λ, q′′′qiv, λ)del, (Mv \ {q, q′′, q′′′, qiv, qv}) ∪ (N ′ \ {Y }) ∪ {q′′′Y, q′′b}∪

{Zq′′′ | Z ∈ V \ {q′′}} ∪ {qZ | Z ∈ V \ {q′′}}]
q7 = [(λ, q′′, λ)del, (Mv \ {q, q′′, qv}) ∪ (N ′ \ {Y }) ∪ {q′′′Y, q′′b}∪

{q′′Z | Z ∈ V \ {qv}}]
q8 = [(λ, qqv, λ)del, (Mv \ {qv}) ∪ (N ′ \ {Y })]

(b) Simulating q : X → Y b

Fig. 1. Simulating context-free rules of ssSGNF by GFID(2; 2, 0, 0; 2, 0, 0).

Let w,w′ ∈ {A,C,E}∗N ′{B,D,F}∗T ∗. Then, w ⇒G w′ if and only if
w ⇒+ w′ in Π, not deriving a string from {A,C,E}∗N ′{B,D,F}∗T ∗ inter-
mediately.1 We now show the correctness of the working of the simulating rules
of Figs. 1(a) and 1(b). Due to their similarities, we focus on the working of the
p-rule simulation. Consider a sentential form αXβ derivable in G, where X ∈ N ′

and α ∈ {A,C,E}∗, β ∈ {B,D,F}∗T ∗. By induction, σαXβσ can be derived in
Π. The rules p : X → bY and q : X → Y b are correctly simulated as follows:

αXβ ⇒p1 αpp′Xβ ⇒p2 αpβ ⇒p3 αbp′′pβ ⇒p4 αbY p′′′p′′pβ ⇒p5

αbY pvpivp′′′p′′pβ ⇒p6 αbY pvp′′pβ ⇒p7 αbY pvpβ ⇒p8 αbY β.

αXβ ⇒q1 αqq′Xβ ⇒q2 αqβ ⇒q3 αqq′′bβ ⇒q4 αqq′′q′′′Y bβ ⇒q5

αqq′′q′′′qivqvY bβ ⇒q6 αqq′′qvY bβ ⇒q7 αqqvY bβ ⇒q8 αY bβ.

Conversely, consider a sentential form w0 = αXβ derivable in Π, where X ∈ N ′

and α ∈ {A,C,E}∗, β ∈ {B,D,F}∗T ∗. The only applicable rule is p1, since other
insertion rules forbid the presence of a nonterminal of N ′, namely X. Hence, the
resulting string w1 is obtained from w0 by inserting pp′ anywhere in the string.
1 Here and in the following, we mostly omit the delimiters σ for simplicity.

58 H. Fernau et al.

No rule from p3-p8 can be applied on w1 due to the presence of X ∈ N ′. Also,
p1 cannot be re-applied due to the presence of marker nonterminals. So, rule
p2 has to be applied. This also checks the position of the insertion of pp′. This
means that w1 = αpp′Xβ and the resulting next string w2 = αpβ is determined.

Observe that the presence of p (and absence of p′) forbids us to apply the
rules p1, p2. The absence of p′′, p′′′ prevents the deletion rules from being applied.
So, in principle, the insertion rules p3, p4 or p5 could be applied. However, p4
and p5 ask for p′′ being to the left of the marker p, as something must be there,
possibly σ. Therefore, p3 must be applied, yielding w3 which is obtained from
w2 = αpβ by inserting bp′′ anywhere. Our previous reasoning already shows
that in order to find any continuation (which must be by using the insertion
rules p4 or p5), w3 = αbp′′pβ is enforced. Due to the presence of p′′, the rule
p3 cannot be reapplied. Now, the substring bp′′ in w3 blocks p5 (and also p7)
as a forbidden context. Hence, we have to apply p4, yielding w4. Now, in order
to enable any further derivations, the substring bp′′ must be destroyed, which
means that w4 = αbY p′′′p′′pβ is the only promising continuation. The substring
Y p′′′ blocks p6 and p7, so that we must apply p5. To destroy the substring Y p′′′,
the derivation continues with w5 = αbY pvpivp′′′p′′pβ.

Now, the three deletion rules p6, p7 and p8 should follow. However, the
substring pvpiv blocks p7 and p8, so that p6 must be applied. Hence, w6 =
αbY pvp′′pβ. Now, the application of p7 is enforced, leading to w7 = αbY pvβ.
The only rule that can deal with the presence of pv in the absence of other
marker nonterminals is p8, which yields w8 = αbY β as intended.

With a similar argument, if we intend to apply some q-type rules, we need to
start with q1 on w0 = αXβ, and we have to continue with q2, so that the result-
ing string w2 equals αqβ. Now observe that both the actions of deletions and
insertions as well as the forbidden strings are mirror-symmetric to the situation
when simulating a p-rule, as analyzed above, so that the intended derivation is
enforced also for a q-rule. This mirror symmetry is also reflected in the middle
part of the sentential forms; e.g., bY pvpivp′′′p′′p corresponds to qq′′q′′′qivqvY b.

After a terminal string z is reached, one might be tempted to start (e.g.)
the p simulation stated in Fig. 1(a), applying one of the four random insertion
rules p1, p3, p4 or p5. If we start applying p1, then pp′ is introduced into z at
some random position. Though a sequence of rules, namely p3, p4, p5, p6, p7, p8,
is applicable, the application of p2 is vital in order to get rid of p′ again to derive a
new terminal string z′. This is not possible since p2 says that p′ could be deleted
only along with a nonterminal X beside it. Hence, a yield of new terminal string
z′ from z is not possible. If we start with p4, p5, we introduce the substring
Y pvpivp′′′ anywhere into the string. In order to produce a terminal string, the
next rule to be applied is p6. However we cannot apply p6 on the substring
Y pvpivp′′′, unless p3 was applied prior to the application of p4, p5 to obtain a
substring z′ = bY pvpivp′′′p′′. In other words, we have applied p3, p4, p5 without
applying p1 initially. On z′, we could apply p6, p7, thereby deleting pivp′′′ and p′′

to obtain z′′ = bY pv. The marker pv cannot be deleted by p8, since p does not
occur in z′. As discussed earlier, starting with p1 makes it impossible to derive

On the Power of Generalized Forbidding Insertion-Deletion Systems 59

a new terminal string. Finally, starting with p3, we cannot apply p7 directly, as
p7 requires nothing to the left of p′′ but pv, but after applying p3, the symbol b
is to the left of pv. Hence, we are forced into applying p5 after applying p3, and
the deletion rules guarantee that inbetween, rule p4 has to be applied, which
inevitably leads us into the analysis above.

	

Theorem 4. (∗) GFID(2; 1, 1, 0; 2, 0, 0) = RE.

We only sketch the construction, whose correctness proof is based on a case
analysis similar to the previous proof.

Proof Sketch. The construction itself starts again from a type-0 grammar in
ssSGNF. In particular, a context-free rule of type p : X → bY can be simulated
by the set of rules presented in Fig. 2. The intended simulation is as follows:

αXβ ⇒p1 αXpβ ⇒p2 αpvXpβ ⇒p3 αpβ ⇒p4 αpp′′β ⇒p5

αpp′p′′β ⇒p6 αpbp′p′′β ⇒p7 αpbpivp′p′′β ⇒p8 αpbpivp′Y p′′β ⇒p9

αpbpivp′Y p′′′p′′β ⇒p10 αpbpivp′Y β ⇒p11 αpbY β ⇒p12 αbY β.

The reader might wonder why twelve rules seem to be necessary for the simula-
tion. The intuitive reason is that we have to fight possible malicious derivations.
For instance, why is it not possible to simply insert pv to the left of X (rule
p2) and then delete X with rule p3? The reason is that we forbid something
different from p to the right of the (unique) nonterminal X. As we assume σ to
be present at the right end of the simulating string, this forbidding condition is
equivalent to requiring that the marker symbol p must follow on X when apply-
ing p3. Hence, p1 has to be applied before. Also, the facts that p1 inserts the
marker p to the right of X and that all further insertions rely on the presence
of p render re-starts on terminal strings impossible.

Context-free rules of type q : X → Y b are treated in a mirrored fashion. As
in the previous proof, the non-context-free deletion rules are trivial to simulate
due to the deletion size of (2, 0, 0). 	

Combining the previous theorem with Theorem 2, we obtain:

Corollary 1. GFID(2; 1, 0, 1; 2, 0, 0) = RE.

Theorem 5. (∗) GFID(2; 1, 1, 0; 1, 1, 0) = RE.

Again, due to space constraints, we can only sketch our construction, starting
out from a type-0 grammar in ssSGNF.

Proof Sketch. The context-free rules of type p : X → bY are simulated by eleven
rules, as listed in Fig. 3. Their intended usage is as follows:

αXβ ⇒p1 αpXβ ⇒p2 αpXp′β ⇒p3 αpp′β ⇒p4 αpp′p′′β ⇒p5 αpp′p′′p′′′β ⇒p6 αp′p′′p′′′β
⇒p7 αp′bp′′p′′′β ⇒p8 αp′bp′′Y p′′′β ⇒p9 αp′bp′′Y β ⇒p10 αp′bY β ⇒p11 αbY β.

60 H. Fernau et al.

p1 = [(X, p, λ)ins, Mv ∪ (N ′ \ {X}) ∪ Φ1]
p2 = [(λ, pv, λ)ins, (Mv \ {pv}) ∪ (N ′ \ {X}) ∪ {XZ | Z ∈ V \ {p}} ∪ Φ1]
p3 = [(λ, pvX, λ)del, (Mv \ {p, pv}) ∪ (N ′ \ {X}) ∪ {XZ | Z ∈ V \ {p}}]
p4 = [(p, p′′, λ)ins, (Mv \ {p, pv}) ∪ N ′ ∪ Φ1]
p5 = [(p, p′, λ)ins, (Mv \ {p, p′′, pv}) ∪ N ′ ∪ {pZ | Z ∈ V \ {p′′}} ∪ Φ1]
p6 = [(p, b, λ)ins, (Mv \ {p, p′, p′′}) ∪ N ′ ∪ {pZ | Z ∈ V \ {p′}} ∪ Φ1]
p7 = [(b, piv, λ)ins, (Mv \ {p, p′, p′′, piv}) ∪ N ′ ∪ {pZ | Z ∈ V \ {b}} ∪ Φ1]
p8 = [(p′, Y, λ)ins, (Mv \ {p, p′, p′′, piv}) ∪ N ′ ∪ {p′Z | Z ∈ V \ {p′′}}∪

{rp′ | r ∈ V \ {piv}} ∪ Φ1]
p9 = [(Y, p′′′, λ)ins, (Mv \ {p, p′, p′′, piv, p′′′}) ∪ (N ′ \ {Y }) ∪ {p′′Z | Z ∈ V \ {Y }} ∪ Φ1]

p10 = [(λ, p′′′p′′, λ)del, (Mv \ {p, p′, p′′, piv, p′′′}) ∪ {pp′′, pp′} ∪ (N ′ \ {Y })]
p11 = [(λ, pivp′, λ)del, {p′′, p′′′} ∪ (N ′ \ {Y })]
p12 = [(λ, p, λ)del, (Mv \ {p}) ∪ (N ′ \ {Y })]

Fig. 2. Simulating p : X → bY with GFID rules of size (2; 1, 1, 0; 2, 0, 0)

Similar insertion and deletion rules are used to simulate q-type rules. Now,
we also have to care about a non-trivial simulation of the non-context-free rules
like AB → λ. We refer to Fig. 4. In order to write the conditions concerning
the central part in a more compact form, let N ′′

� := {A,C,E, σ} and N ′′
r :=

{B,D,F, σ}.

αABβt ⇒f1 αAf ′Bβt ⇒f2 αfAf ′Bβt ⇒f3 αfAf ′Bf ′′βt ⇒f4

αff ′Bf ′′βt ⇒f5 αff ′f ′′βt ⇒f6 αff ′′βt ⇒f7 αfβt ⇒f8 αfβt

Notice that the above simulation needs less resources than available, making
it a good candidate for re-use in other simulations. We recall from Theorem 1
that strings of the form AA,BB,CC,DD do not occur in our strings. Hence the
above derivation is the intended one.

p1 = [(λ, p, λ)ins, M′′′ ∪ (N ′ \ {X}) ∪ Φ1]
p2 = [(X, p′, λ)ins, (M′′′ \ {p}) ∪ (N ′ \ {X})]
p3 = [(p, X, λ)del, (M′′′ \ {p, p′}) ∪ (N ′ \ {X}) ∪ ({Xγ | γ ∈ V \ {p′}}]
p4 = [(p′, p′′, λ)ins, (M′′′ \ {p, p′}) ∪ N ′ ∪ ({pZ | Z ∈ V \ {p′}})]
p5 = [(p′′, p′′′, λ)ins, (M′′′ \ {p, p′, p′′}) ∪ N ′ ∪ ({p′Z | Z ∈ V \ {p′′}})]
p6 = [(λ, p, λ)del, (M′′′ \ {p, p′, p′′, p′′′}) ∪ N ′ ∪ {p′Z | Z ∈ V \ {p′′}}]
p7 = [(p′, b, λ)ins, {p′Z | Z ∈ V \ {p′′}} ∪ {p′′Z | Z ∈ V \ {p′′′}} ∪ N ′ ∪ {p}]
p8 = [(p′′, Y, λ)ins, {p′Z | Z ∈ V \ {b}} ∪ {p′′Z | Z ∈ V \ {p′′′}} ∪ N ′ ∪ {p}]
p9 = [(Y, p′′′, λ)del, {p, p′p′′, p′′p′′′} ∪ (N ′ \ {Y })]

p10 = [(b, p′′, λ)del, {p, p′′′, p′p′′} ∪ (N ′ \ {Y })]
p11 = [(λ, p′, λ)del, {p, p′′, p′′′}]

Fig. 3. Simulating p : X → bY by GFID rules of size (2; 1, 1, 0; 1, 1, 0)

On the Power of Generalized Forbidding Insertion-Deletion Systems 61

f1 = [(λ, f ′, λ)ins, N ′ ∪ M′′′ ∪ (N ′′
� N ′′

r \ {AB})]
f2 = [(λ, f, λ)ins, N ′ ∪ (M′′′ \ {f ′}) ∪ {f ′Z | Z ∈ V \ {B}} ∪ N ′′

� N ′′
r]

f3 = [(λ, f ′′, λ)ins, N ′ ∪ (M′′′ \ {f, f ′}) ∪ {f ′Z | Z ∈ V \ {B}} ∪
{fZ | Z ∈ V \ {A}} ∪ N ′′

� N ′′
r]

f4 = [(f, A, λ)del, N ′ ∪ (M′′′ \ {f, f ′, f ′′}) ∪ {f ′Z | Z ∈ V \ {B}} ∪
{Zf ′′ | Z ∈ V \ {B}} ∪ N ′′

� N ′′
r]

f5 = [(f ′, B, λ)del, N ′ ∪ (M′′′ \ {f, f ′, f ′′}) ∪ {fZ | Z ∈ V \ {f ′}}∪
{Zf ′′ | Z ∈ V \ {B}} ∪ N ′′

� N ′′
r]

f6 = [(f, f ′, λ)del, N ′ ∪ (M′′′ \ {f, f ′, f ′′}) ∪ {f ′Z | Z ∈ V \ {f ′′}} ∪
{Zf ′′ | Z ∈ V \ {f ′}} ∪ N ′′

� N ′′
r]

f7 = [(f, f ′′, λ)del, N ′ ∪ (M′′′ \ {f, f ′′}) ∪ N ′′
� N ′′

r]
f8 = [(λ, f, λ)del, {f ′, f ′′}]

Fig. 4. Simulating AB → λ by GFID rules of size (2; 1, 0, 0; 1, 1, 0)

p1 = [(X, p, λ)ins, M′′ ∪ (N ′ \ {X}) ∪ Φ1]
p2 = [(λ, X, p)del, (M′′ \ {p}) ∪ (N ′ \ {X})]
p3 = [(p, Y, λ)ins, (M′′ \ {p}) ∪ N ′]
p4 = [(p, p′, λ)ins, (M′′ \ {p}) ∪ (N ′ \ {Y }) ∪ ({pZ | Z ∈ V \ {Y }})]
p5 = [(p′, b, λ)ins, (M′′ \ {p, p′}) ∪ (N ′ \ {Y }) ∪ ({p′Z | Z ∈ V \ {Y }})]
p6 = [(λ, p, p′)del, {p′Y }]
p7 = [(λ, p′, λ)del, {p}]

Fig. 5. Simulating p : X → bY by GFID(2; 1, 1, 0; 1, 0, 1)

Combining the previous theorem with Theorem 2, we obtain:

Corollary 2. GFID(2; 1, 0, 1; 1, 0, 1) = RE.

Theorem 6. (∗) GFID(2; 1, 1, 0; 1, 0, 1) = RE.

As in all our constructions, we simulate a given type-0 grammar in ssSGNF.

Proof Sketch. The context-free rules of type p are simulated by the rules listed
in Fig. 5. Its intended use amounts in the following derivation:

αXβ ⇒p1 αXpβ ⇒p2 αpβ ⇒p3 αpY β ⇒p4 αpp′Y β ⇒p5 αpp′bY β ⇒p6 αp′bY β ⇒p7 αbY β.

In this case, very few marker variants are needed, because the complimentary
nature of insertion and deletion contexts allow for strong tests. The non-context-
free erasing rules are simulated by a reversed (mirrored) version of the rules
depicted in Fig. 4 to take the right context of deletion into consideration. 	

Combining the previous theorem with Theorem 2, we obtain the following:

Corollary 3. GFID(2; 1, 0, 1; 1, 1, 0) = RE.

Theorem 7. (∗) GFID(2; 2, 0, 0; 1, 1, 0) = RE.

62 H. Fernau et al.

As in all our simulations, we start with a ssSGNF grammar. We can profit
from the simulation of the non-context-free erasing rules as presented in Fig. 4.

Proof Sketch. The context-free rules need another tweak, as displayed in Fig. 6
for the p-type rules. The intended simulations of p : X → bY works as follows.

αXβ ⇒p1 αpXβ ⇒p2 αpXpivp′′′β ⇒p3 αpXp′′′β ⇒p4 αpp′′′β ⇒p5 αpp′′′p′Y β
⇒p6 αpp′′′p′p′′bY β ⇒p7 αpp′′′p′′bY β ⇒p8 αpp′′′bY β ⇒p9 αpbY β ⇒p10 αbY β

Every (context-free) rule of type q : X → Y b in G can be simulated by a set of
simulating rules, very similar to those shown in Fig. 6. 	

p1 = [(λ, p, λ)ins, Miv ∪ (N ′ \ {X})]
p2 = [(λ, pivp′′′, λ)ins, (Miv \ {p}) ∪ (N ′ \ {X})]
p3 = [(X, piv, λ)del, (Miv \ {p, p′′′, piv}) ∪ (N ′ \ {X})]
p4 = [(p, X, λ)del, (Miv \ {p, p′′′}) ∪ (N ′ \ {X}) ∪ {XZ | Z ∈ V \ {p′′′}}]
p5 = [(λ, p′Y, λ)ins, (Miv \ {p, p′′′}) ∪ N ′ ∪ {pZ | Z ∈ V \ {p′′′}}]
p6 = [(λ, p′′b, λ)ins, (Miv \ {p, p′, p′′′}) ∪ (N ′ \ {Y }) ∪

{pZ | Z ∈ V \ {p′′′}} ∪ {Zp′ | Z ∈ V \ {p′′′}}]
p7 = [(p′′′, p′, λ)del, (Miv \ {p, p′, p′′, p′′′}) ∪ (N ′ \ {Y }) ∪ {ZY | Z ∈ V \ {b}}]
p8 = [(p′′′, p′′, λ)del, (Miv \ {p, p′′, p′′′}) ∪ (N ′ \ {Y })]
p9 = [(p, p′′′, λ)del, (Miv \ {p, p′′′}) ∪ (N ′ \ {Y }) ∪ {p′′′Z | Z /∈ {A, C, E}}]

p10 = [(λ, p, λ)del, (Miv \ {p}) ∪ (N ′ \ {Y })]

Fig. 6. Simulating p : X → bY by GFID rules of size (2; 2, 0, 0; 1, 1, 0)

Combining the previous theorem with Theorem 2, we obtain:

Corollary 4. GFID(2; 2, 0, 0; 1, 0, 1) = RE.

4 Conclusions

We have seen that adding forbidden strings of length at most two to insertion-
deletion rules as a kind of global control of derivation helps turn resources (sizes)
of insertion-deletion systems that are too weak by themselves to simulate every
Turing machine into devices that are computationally complete (refer Table 1).
In this line of research, we propose the following for future investigations.

– We needed generalized forbidding insertion-deletion systems of degree two to
prove our computational completeness results. But what happens if we allow
degree one only? Can we still obtain computational completeness ?

– In our simulations, we were very generous with having quite large sets of
forbidding words per rule. Would it be possible to delimit the number of
forbidden strings per rule, without losing computational completeness?

– Another natural measure of descriptional complexity could be the number of
forbidden strings of length two.

On the Power of Generalized Forbidding Insertion-Deletion Systems 63

References

1. Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. EATCS
Monographs in Theoretical Computer Science, vol. 18. Springer, Heidelberg (1989)

2. Fernau, H., Kuppusamy, L., Oladele, R.O., Raman, I.: Improved descriptional com-
plexity results on generalized forbidding grammars. In: Pal, S.P., Vijayakumar, A.
(eds.) CALDAM 2019. LNCS, vol. 11394, pp. 174–188. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-11509-8 15

3. Fernau, H., Kuppusamy, L., Raman, I.: Computational completeness of simple
semi-conditional insertion-deletion systems of degree (2, 1). Nat. Comput. 18(3),
563–577 (2019). https://doi.org/10.1007/s11047-019-09742-w

4. Freund, R., Kogler, M., Rogozhin, Y., Verlan, S.: Graph-controlled insertion-
deletion systems. In: McQuillan, I., Pighizzini, G. (eds.) Proceedings Twelfth
Annual Workshop on Descriptional Complexity of Formal Systems, DCFS. EPTCS,
vol. 31, pp. 88–98 (2010)

5. Geffert, V.: Normal forms for phrase-structure grammars. RAIRO Informatique
théorique et Applications/Theor. Inform. Appl. 25, 473–498 (1991)

6. Haussler, D.: Insertion languages. Inf. Sci. 31(1), 77–89 (1983)
7. Ivanov, S., Verlan, S.: Random context and semi-conditional insertion-deletion sys-

tems. Fundamenta Informaticae 138, 127–144 (2015)
8. Kari, L.: On insertions and deletions in formal languages. Ph.D. thesis, University

of Turku, Finland (1991)
9. Kari, L., Păun, Gh., Thierrin, G., Yu, S.: At the crossroads of DNA computing and

formal languages: characterizing recursively enumerable languages using insertion-
deletion systems. In: Rubin, H., Wood, D.H. (eds.) DNA Based Computers III.
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol.
48, pp. 329–338 (1999)

10. Margenstern, M., Păun, Gh., Rogozhin, Y., Verlan, S.: Context-free insertion-
deletion systems. Theor. Comput. Sci. 330(2), 339–348 (2005)

11. Masopust, T., Meduna, A.: Descriptional complexity of generalized forbidding
grammars. In: Descriptional Complexity of Formal Systems - 9th International
Workshop, DCFS 2007, pp. 170–177, July 2007

12. Matveevici, A., Rogozhin, Y., Verlan, S.: Insertion-deletion systems with one-
sided contexts. In: Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS,
vol. 4664, pp. 205–217. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74593-8 18

13. Meduna, A.: Generalized forbidding grammars. Int. J. Comput. Math. 36, 31–39
(1990)

14. Meduna, A., Svec, M.: Descriptional complexity of generalized forbidding gram-
mars. Int. J. Comput. Math. 80(1), 11–17 (2003)

15. Odifreddi, P.: Classical Recursion Theory. Studies in Logic and Foundations of
Mathematics, vol. 125. North Holland, Amsterdam (1989)

16. Rozenberg, G., Salomaa, A.: DNA computing: new ideas and paradigms. In: Wie-
dermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644,
pp. 106–118. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-48523-
6 9

17. Petre, I., Verlan, S.: Matrix insertion-deletion systems. Theor. Comput. Sci. 456,
80–88 (2012)

18. Takahara, A., Yokomori, T.: On the computational power of insertion-deletion
systems. Nat. Comput. 2(4), 321–336 (2003). https://doi.org/10.1023/B:NACO.
0000006769.27984.23

https://doi.org/10.1007/978-3-030-11509-8_15
https://doi.org/10.1007/s11047-019-09742-w
https://doi.org/10.1007/978-3-540-74593-8_18
https://doi.org/10.1007/978-3-540-74593-8_18
https://doi.org/10.1007/3-540-48523-6_9
https://doi.org/10.1007/3-540-48523-6_9
https://doi.org/10.1023/B:NACO.0000006769.27984.23
https://doi.org/10.1023/B:NACO.0000006769.27984.23

State Complexity Bounds
for the Commutative Closure

of Group Languages

Stefan Hoffmann(B)

Informatikwissenschaften, FB IV, Universität Trier,
Universitätsring 15, 54296 Trier, Germany
hoffmanns@informatik.uni-trier.de

Abstract. In this work we construct an automaton for the commutative
closure of a given regular group language. The number of states of the
resulting automaton is bounded by the number of states of the original
automaton, raised to the power of the alphabet size, times the product
of the order of the letters, viewed as permutations of the state set. This
gives the asymptotic state bound O((n exp(

√
n ln n))|Σ|), if the original

regular language is accepted by an automaton with n states. Depending
on the automaton in question, we label points of N

|Σ|
0 by subsets of states

and introduce unary automata which decompose the thus labelled grid.
Based on these constructions, we give a general regularity condition,
which is fulfilled for group languages.

Keywords: State complexity · Commutative closure · Group
language · Permutation automaton

1 Introduction

The area of state complexity asks for sharp bounds on the size of resulting
automata for regularity-preserving operations. This question goes back at least
to work by Maslov [15], but, starting with the work [19], has revived at the
end of the last millennium. The class of deterministic and complete automata
is the most natural, or prototypical, class. But state complexity questions have
also been explored for non-deterministic automata, or other automata models,
see for example the surveys [5,12,13]. As the number of states of an accepting
automaton could be interpreted as the memory required to describe the accepted
language and is directly related to the runtime of algorithms employing regu-
lar languages, obtaining state complexity bounds is a natural question with
applications in verification, natural language processing or software engineering
[5,16,18]. So, nowadays, it is an active and important area of research under
the broader theme of descriptional complexity of systems. We refer again to the
survey [5] for an introduction and more information. It was shown in [6] that the
commutative closure is regularity preserving on regular group languages. But the
c© Springer Nature Switzerland AG 2020
G. Jirásková and G. Pighizzini (Eds.): DCFS 2020, LNCS 12442, pp. 64–77, 2020.
https://doi.org/10.1007/978-3-030-62536-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62536-8_6&domain=pdf
http://orcid.org/0000-0002-7866-075X
https://doi.org/10.1007/978-3-030-62536-8_6

State Complexity Bounds for the Commutative Closure of Group Languages 65

method of proof was algebraic and used Ramsey-type arguments. The general
form of an accepting automaton was still open, and in [14], a work that system-
atically studies the state complexity of several regularity preserving operations
on group languages, it was, as an open problem, asked for a state complexity
bound of the commutative closure. Here, we give methods to obtain an automa-
ton for the commutative closure of regular group languages, and derive state
bounds for this operation. The state complexity of the commutative closure on
finite languages was investigated in [3,11,17].

2 Prerequisites

Let Σ “ {a1, . . . , ak} be a finite set of symbols1, called an alphabet. The set
Σ∗ denotes the set of all finite sequences, i.e., of all words. The finite sequence
of length zero, or the empty word, is denoted by ε. For a given word w we
denote by |w| its length, and, for a P Σ, by |w|a the number of occurrences of
the symbol a in w. Subsets of Σ∗ are called languages. With N0 “ {0, 1, 2, . . .}
we denote the set of natural numbers, including zero. A finite deterministic and
complete automaton will be denoted by A “ (Σ,S, δ, s0, F), with δ : S ˆ Σ Ñ S
the state transition function, S a finite set of states, s0 P S the start state
and F Ď S the set of final states. The properties of being deterministic and
complete are implied by the definition of δ as a total function. The transition
function δ : S ˆ Σ Ñ S could be extended to a transition function on words
δ∗ : S ˆ Σ∗ Ñ S, by setting δ∗(s, ε) :“ s and δ∗(s, wa) :“ δ(δ∗(s, w), a) for
s P S, a P Σ and w P Σ∗. In the remainder we drop the distinction between both
functions and will also denote this extension by δ. The language accepted by some
automaton A “ (Σ,S, δ, s0, F) is L(A) “ {w P Σ∗ | δ(s0, w) P F}. A language
L Ď Σ∗ is called regular if L “ L(A) for some finite automaton. The state
complexity of a regular language is the size of a minimal automaton accepting this
language. An automaton is called a permutation automaton if the transformation
of the states induced by a letter is a permutation, i.e., a bijective function. A
regular language is called a group language if it is accepted by some permutation
automaton. The map ψ : Σ∗ Ñ N

k
0 given by ψ(w) “ (|w|a1 , . . . , |w|ak

) is called
the Parikh morphism. For a given word w P Σ∗ we define the commutative
closure as perm(w) :“ {u P Σ∗ : ψ(u) “ ψ(w)}. For languages L Ď Σ∗ we set
perm(L) :“ ⋃

wPL perm(w). A language is called commutative if perm(L) “ L,
i.e., with every word each permutation of this word is also in the language.
Every function f : X Ñ Y could be extended to subsets S Ď X by setting
f(S) :“ {f(x) : x P S}, we will do this frequently without special mentioning.
For Z Ď X we denote by f|Z : Z Ñ Y the function obtained by restriction of the
arguments to elements of Z. For a set X, we denote by P(X) “ {Y : Y Ď X}
the power set of X. If X,Y are sets, by X ˆY we denote their cartesian product.
By π1 : X ˆ Y Ñ X and π2 : X ˆ Y Ñ Y we denote the projection maps onto
the first and second component, π1(x, y) “ x and π2(x, y) “ y. If a, b P N0 with
1 If not otherwise stated we assume that our alphabet has the form Σ “ {a1, . . . , ak},

and k denotes the number of symbols.

66 S. Hoffmann

b ą 0, we denote by a mod b the unique number 0 ď r ă b such that a “ bn ` r
for some n ě 0. For n P N0 we set [n] :“ {k P N0 : 0 ď k ă n}. Let M Ď N0 be
some finite set. By max M we denote the maximal element in M with respect
to the usual order, and we set max ∅ “ 0. Also for finite M Ď N0 \ {0}, i.e., M
is finite without zero in it, by lcmM we denote the least common multiple of
the numbers in M , and set lcm ∅ “ 0.

2.1 Unary Languages

Let Σ “ {a} be a unary alphabet. In this section, we collect some results about
unary languages. Suppose L Ď Σ∗ is regular with an accepting complete deter-
ministic automaton A “ (Σ,S, δ, s0, F). Then, by considering the sequence of
states δ(s0, a1), δ(s0, a2), δ(s0, a3), . . . we find numbers i ě 0, p ą 0 with i and
p minimal such that δ(s0, ai) “ δ(s0, ai`p). We call these numbers the index
i and the period p of the automaton A. Suppose A is initially connected, i.e.,
δ(s0, Σ∗) “ Q. Then i ` p “ |S|, the states from {s0, δ(s0, a), . . . , δ(s0, ai´1)}
constitute the tail, and the states from {δ(s0, ai), δ(s0, ai`1), . . . , δ(s0, ai`p´1}
constitute the unique cycle of the automaton. If A is not initially connected,
when we speak of the cycle or tail of that automaton, we nevertheless mean the
above sets, despite the automaton graph might have more than one cycle, or
more than one straight path.

3 Results

3.1 Intuition, Method of Proof and Main Results

We have two main results, first a general automaton construction for the commu-
tative closure of a regular group language, and second a more general framework
to derive this result, which entails a general regularity condition for commutative
closures. The first result, in asymptotic form.

Theorem 1 (asymptotic version). For a group language with state complex-
ity n, the comm. closure is regular with state complexity in O((ne

√
n lnn)|Σ|).

In Theorem 4, a more quantitative version in terms of the constructions will
be given. But this result is more an application of a general scheme, which will
be useful in future investigations as well. So, let us spend some time in explaining
the basic idea. The constructions and definitions that follow in the next sections
are rather involved and technical, but they are, I hope to convince the reader,
the worked out formalisation of quite a natural idea. Imagine you have an oper-
ation that identifies certain words (in our case, we identify words if they are
permutations of each other) and you apply this operation to a regular language.
How could an (hitherto possibly infinite state) automaton for the result of this
operation look? If you have two words u and v, which are identified and drive
the original automaton into two states, say s and t, then in what state should
an automaton end up for the resulting language after this identification? As it

State Complexity Bounds for the Commutative Closure of Group Languages 67

should not distinguish between both words, as they are identified, a possible state
is {u, v} ˆ {s, t}, the set {u, v} represents the read in word under identification,
and {s, t} represents the possible states of the original automaton. Applied to
our situation, words are identified if they have the same Parikh image, i.e., the
letter counts are equals. So, we start with labelling the grid N

k
0 with the states

that are reachable by words whose Parikh image equals the point in question.
Hence, if the original automaton has state set Q, we can think of as constructing
an (infinite) automaton with state set N

k
0 ˆ P(Q). We will not formally construct

this automaton, but it is implicit in the constructions we give. This automaton
could be used to accept the commutative closure, where a word is accepted if,
after reading this word, the second component, the state set label, contains at
least one final state, meaning for some word, which is equivalent to the read in
word, we can reach a final state. For a regular language, this construction could
also be viewed as a generalized Parikh map, where we not only label a point by
the binary information if some word with that letter count is in the language
or not, but we have the more rich information what states are reachable by all
permutations of a given word. By only looking at the state labels containing a
final state, we can recover the original Parikh map. We will adopt this view-
point, which is sufficient for the results, in the formal treatment to follow. Also,
note we have an intuitive correspondence to the power set construction, in the
sense that in this construction, the states, as sets, save all possibilities to end up
after reading a word. Here, our state labels serve the same purpose as saving all
possibilities. So, intuitively and very roughly, the method could be thought of as
both a refined Parikh map for regular languages and a power set construction
for automata that incorporates the commutativity condition.

It turns out that the story does not end here, but that the “generalized
Parikh map”, or state (label) map, as we will call it in the following, admits a
lot of structure that allows to derive a regularity criterion. First, let us state
our regularity condition in intuitive terms, a more refined statement is given as
Theorem 3 later.

Theorem 2 (intuitive form). Suppose the grid N
k
0 is labelled by the states

of a given automaton. If we have a universal bound N ě 0 and a period P ą 0
such that, for p “ (p1, . . . , pk) P N

K
0 \ ([N] ˆ . . . ˆ [N]) and j P {1, . . . , k}, the

labels at p and (p1, . . . , pj´1, pj ´P, pj`1, . . . , pk) are equal, then the commutative
closure of the language described by the original automaton is regular and could
be accepted by an automaton of size at most Nk.

The basic mechanism behind this theorem is a decomposition of the state
labels into unary automata. I must confess, the form of these unary automata,
formally stated in Definition 3, is rather involved and, to be honest, took me quite
some time to come up with. The idea is to implement in these automata how the
state labels are influenced by neighboring state labels. Imagine we are at a certain
point, then we receive an input letter and go to the next point that corresponds
to this additional input letter. What should the new state label look like? First,
we should carry with us the state label from the previous point, but updated with

68 S. Hoffmann

the input letter. But, by the nature of the commutation relation, this input letter
could also be read at a previous point up to permutational identification of words.

Fig. 1. Illustration of how state labels are updated
if new input symbols are read. We are at (p1, p2)
with state label T and read a b. So, we will end up
at (p1, p2 ` 1). Then the state label at (p1, p2 ` 1)
is made up out of the state label T , but also out of
the neighboring state label R. Imagine as “going in
both” ways, i.e., the path ab and ba, to compute the
new state label.

So, we also go back to our
previous point and investi-
gate all the state labels of
its neighboring points from
which we could reach this
point. It turns out that it
is enough to look at those
points from which we could
reach the current point in
one step. Then, we took their
state labels, update them for
the input letter by going into
the direction of this letter,
but, after this, also take the
state label thus obtained back
to our target state label in
correspondence with the let-
ter from which we got from
the neighboring state to the starting state. We go around “both commuting”
letters, please see Fig. 1 for the case of Σ “ {a, b}. It will be shown that this
operational scheme could be implemented into unary automata, which in this
sense decompose the state labelling. So, let us take the journey and see how
these ideas are actually implemented!

Outline: In Sect. 3.2, we first give a labelling of the grid N
k
0 by states of a given

automaton. This labelling is in some sense an abstract description of the commu-
tative closure, which is more precisely stated in Corollary 1. We then construct
unary automata for each letter. Very roughly, and intuitively, they read in letters
parallel to the direction of this letter in N

k
0 , given by the Parikh map. We have one

such automaton for each point on the hyperplane orthogonal to this direction.
These unary automata are then used to describe the mentioned state labelling.
In this sense, the state labelling is decomposed into these automata. This is made
more precise in Proposition 2. If all the automata in this decomposition, for each
letter, only have a bounded number of states, then the commutative closure is a
regular language. By using the indices and periods, we give a state bound for the
resulting automaton in Theorem 3. In Sect. 3.3, these results are applied to the
case that the given automaton is a permutation automaton. It turns out, stated
in Proposition 3 and Proposition 4, that the index and the period are always
bounded, for a bound dependent on the input automaton, which is also stated in
these Propositions. Intuitively, the main observations why this works is that 1)
for permutations, the state labels cannot decrease as the unary automata read
in symbols, and 2) we know when the state labels must become periodic. Finally,

State Complexity Bounds for the Commutative Closure of Group Languages 69

applying our general result, then gives that the commutative closure is regular,
and also yields a state complexity bound.

3.2 A Regularity Condition by Decomposing into Unary Automata

As said in Sect. 2, we assume our alphabet has the form Σ “ {a1, . . . , ak}. First,
we introduce the state label function.

Definition 1 (state label function). Suppose A “ (Σ,Q, δ, s0, F) is a finite
automaton. The state label function, associated to the automaton, is the function
σA : N

|Σ|
0 Ñ P(Q) given by

σA(p) “ {δ(s0, u) : ψ(u) “ p}.

The value of the function σA, for some fixed automaton A “ (Σ,Q, δ, s0, F),
will also be called the state (set) label of that point, or the state set corresponding
to that point.

Example 1. Consider the minimal automaton of the language2 (a1a2)∗. The com-
mutative closure of this language is not regular, as it is precisely the language
of words with an equal number of both symbols.

Fig. 2. The minimal automaton of (a1a2)
∗ and a resulting state labelling in N

k
0 .

Compare this to Example 3, where the labelling is given by a permutation automaton.
The final state set is marked by a double circle. See Example 1 for an explanation.

The image of the Parikh morphism could be described by the state label
function. In this sense, for a fixed regular language, it is a more finer notion of
the Parikh image.
2 Here the minimal automaton has the property that no word induces a non-trivial

permutation on some subset of states. Languages which admit such automata are
called aperiodic in the literature. In some sense these are contrary to group languages,
the class considered in this paper.

70 S. Hoffmann

Proposition 1 (connection with Parikh morphism). Let ψ : Σ∗ Ñ N
k
0

be the Parikh morphism. Suppose A “ (Σ,Q, δ, s0, F) is a finite automaton. Let
σA : N

k
0 Ñ P(Q) be the state label function. Then

ψ(L(A)) “ σ´1
A ({S Ď Q | S X F �“ H}).

As perm(L) “ ψ´1(ψ(L)) for every language L Ď Σ∗, the next is implied.

Corollary 1. Denote by ψ : Σ∗ Ñ N
k
0 the Parikh morphism. Suppose A “

(Σ,Q, δ, s0, F) is a finite automaton. Let σA : N
k
0 Ñ P(Q) be the state label

function. Then

perm(L(A)) “ ψ´1(σ´1
A ({S Ď Q | S X F �“ H})).

Next, we introduce a notion for the hyperplanes that we will use in Defini-
tion 3.

Definition 2 (hyperplane aligned with letter). Let j P {1, . . . , k}. We set

Hj “ {(p1, . . . , pk) P N
k
0 | pj “ 0}. (1)

We will decompose the state label map into unary automata. For each letter
aj with j P {1, . . . , k} and point p P Hj , we construct unary automata A(j)

p .
They are meant to read inputs in the direction ψ(aj), which is orthogonal to
Hj . This will be stated more precisely in Proposition 2.

Definition 3 (unary aut. along letter aj P Σ). Suppose A “ (Σ,Q, δ, s0, F)
is a finite automaton. Fix j P {1, . . . , k} and p P Hj. We define a unary automa-
ton A(j)

p “ ({aj}, Q
(j)
p , δ

(j)
p , s

(0,j)
p , F

(j)
p). But suppose, for points q P N

k
0 with p “

q ` ψ(b) for some b P Σ, the unary automata A(j)
q “ ({aj}, Q

(j)
q , δ

(j)
q , s

(0,j)
q , F

(j)
q)

are already defined. Set3

R “ {A(j)
q | p “ q ` ψ(b) for some b P Σ}.

Let I and P be the maximal index and the least common multiple4 of the periods
of the unary automata in R. Then set

Q(j)
p “ P(Q) ˆ [I ` P]

s(0,j)
p “ (σA(p), 0) (2)

δ(j)p ((S, i), aj) “
{

(T, i ` 1) if i ` 1 ă I ` P
(T, I) if i ` 1 “ I ` P.

(3)

where
T “ δ(S, aj) ∪

⋃

(q,b)PNk
0ˆΣ

p“q`ψ(b)

δ(π1(δ(j)q (s(0,j)
q , ai`1

j)), b) (4)

3 Note, in the definition of R, as p P Hj , we have b �“ aj and q P Hj . In general, points
q P N

k
0 with p “ q ` ψ(b), for some b P Σ, are predecessor points in the grid N

k
0 .

4 Note max H “ 0 and lcm H “ 1.

State Complexity Bounds for the Commutative Closure of Group Languages 71

and F
(j)
p “ {(S, i) | S XF �“ H}. For a state (S, i) P Q

(j)
p , the set S will be called

the state (set) label, or the state set associated with it.

See Example 2 for concrete constructions of the automata from Definition 3.

Example 2. In Fig. 3, we list the reachable part from the start state of the unary
automata A(2)

(0,0), A(2)
(1,0), A(2)

(2,0) and A(2)
(3,0), corresponding to the automaton from

Example 1, in order. Each automaton is constructed from previous ones accord-
ing to Definition 3. Note that, for example for A(2)

(1,0), the state label of the second
state is the union of the action of a2 on {s1}, i.e, the set δ({s1}, a2), but also of
a1 on the state label {s2} of the second state of the previous automaton A(2)

(0,0).
Note also that the second “counter” component is not enough to determine all
states, as at the end some automata have equal values in this entry (this is
essentially how these automata grow in size).

Fig. 3. The reachable part of the unary automata A(2)

(0,0), A(2)

(1,0), A(2)

(2,0) and A(2)

(3,0)

from Definition 3, derived from the automaton from Example 1. In Example 1, these
automata read in inputs in the up direction, but are drawn here horizontally to save
space. See Example 2 for more explanation.

The next statement makes precise what we mean by decomposing the state label
map along the hyperplanes into the automata A(j)

p “ ({aj}, Q
(j)
p , δ

(j)
p , s

(0,j)
p , F

(j)
p)

for j P {1, . . . , k} and p P Hj . Furthermore, it justifies calling the first component
of any state (S, i) P Q

(j)
p also the state set label.

Proposition 2 (state label map decomposition). Let p “ (p1, . . . , pk) P
N

k
0 , j P {1, . . . , k} and p “ (p1, . . . , pj´1, 0, pj`1, . . . , pk) P Hj be the projection

of p onto Hj. Then
σA(p) “ π1(δ

(j)
p (s(0,j)

p , a
pj

j))

for the automata A(j)
p “ ({aj}, Q

(j)
p , δ

(j)
p , s

(0,j)
p , F

(j)
p) from Definition 3.

With this observation, in Theorem 3, we derive a sufficient condition when
the commutative image of some regular language is itself regular. It also gives us
a general bound on the size of a minimal automaton, in case the commutative
language is regular.

72 S. Hoffmann

Theorem 3. Let A “ (Σ,Q, δ, s0, F) be a finite automaton. Suppose, for every
j P {1, . . . , k} and p P Hj, with Hj the hyperplane from Definition 2, the
automata A(j)

p “ ({aj}, Q
(j)
p , δ

(j)
p , s

(0,j)
p , F

(j)
p) from Definition 3 have a bounded

number of states5, i.e., |Q(j)
p | ď N for some N ě 0 independent of p and j.

Then, the commutative closure perm(L(A)) is regular and could be accepted by
an automaton of size

k∏

j“1

(Ij ` Pj),

where Ij denotes the largest index among the unary automata {A(j)
p | p P Hj},

and Pj the least common multiple of all the periods of these automata. In par-
ticular, by the relations of the index and period to the states from Sect. 2.1, the
automaton size is bounded by Nk.

This gives us a general bound in case the commutative closure is regular.
We will apply this to the case of group languages and permutation automata
in Sect. 3.3. Theorem 3 has a close relation to Theorem 6.5 from [4], namely
case (iii), as we could link the periodic languages introduced in this paper to
unary automata, as was done in [9,10]. This linkage, in general, allows us to give
more concrete bounds and constructions. For example, we can list all periodic
languages inside the commutative closure, or we can even give concrete bounds
on resulting automata. The proof in [4] used more abstract well-quasi order
arguments that do not yield concrete automata, nor do they allow the arguments
we employ in Sect. 3.3.

3.3 The Special Case of Group Languages

Here we apply Theorem 3 to derive state bounds for group languages. We need
some basic observations about permutations, see for example [2]. Every per-
mutation could be written in terms of disjoint cycles. For an element6 of the
permutation domain, by the cycle length of that element with respect to a given
permutation, we mean the length of the cycle in which this element appears7.
The order of a permutation is the smallest power such that the identity permu-
tation results, which equals the least common multiple of all cycle lengths for all
elements. Before stating our results, let us make some general assumptions and
fix some notions, to make the statements more concise.

5 Equivalently, the index and period is bounded, which is equivalent with just a finite
number of distinct automata, up to (semi-automaton-)isomorphism. We call two
automata (semi-automaton-)isomorphic if one automaton can be obtained from the
other one by renaming states and alphabet symbols.

6 In this context, the elements are also called points in the literature, but we will stick
to the term elements or states.

7 For a given element m P [n] and a permutation π : [n] Ñ [n], this is the number
|{πi(m) | i ě 0}|, in the literature also called the orbit length of m under the
subgroup generated by π.

State Complexity Bounds for the Commutative Closure of Group Languages 73

Assumption 1 (assumptions for this section). Let Σ “ {a1, . . . , ak}.
Assume a permutation automaton A “ (Σ,Q, δ, s0, F) is given with j P
{1, . . . , k} and a point p P Hj, where Hj denotes the hyperplane from Defi-
nition 2. We denote by A(j)

p “ ({aj}, Q
(j)
p , δ

(j)
p , s

(0,j)
p , F

(j)
p) the automata from

Definition 3. By Lj we will denote the order of the permutation on Q induced
by the letter aj in A, i.e., the least common multiple of the cycle lengths of all
states. Also set8 R “ {A(j)

q | p “ q ` ψ(b) for some b P Σ}. Denote by I the
maximal index and by P the least common multiple of the periods of the unary
automata in R.

A crucial ingredient to our arguments will be the following observation.

Lemma 1. Notation from Assumption 1. Then the state set labels of states from
A(j)

p will not decrease in cardinality as we read in symbols, and their cardinality
will stay constant on the cycle of A(j)

p . More precisely, let (S, x), (T, y) P Q
(j)
p

be any states. If (T, y) “ δ
(j)
p ((S, x), ar

j) for some r ě 0, then |T | ě |S|. And if

(S, x) and (T, y) are both on the cycle, i.e., (S, x) “ δ
(j)
p ((S, x), ar

j) and (T, y) “
δ
(j)
p (S, x), as

j) for some r, s ě 0, then |S| “ |T |.
To give state bounds on a resulting automaton, using Theorem 3, we need

bounds on the indices and periods of the unary automata from Definition 3.
The following result gives us a criterion when we have reached the cycle in these
automata, and will be used in deriving the mentioned bounds.

Lemma 2. Choose the notation from Assumption 1. Suppose S Ď Q and let
LS “ lcm {|{δ(s, ai

j) : i ě 0}| : s P S} be the least common multiple of the cycle
lengths of the elements in S with respect to the letter aj, seen as a permutation
of the states. Then for m ě I and the states (S, x), (T, y) P Q

(j)
p which fulfill

(S, x) “ δ(j)p (s(0,j)
p , am

j) and (T, y) “ δ(j)p (s(0,j)
p , a

m`lcm (P,LS)
j)

we have that if |S| “ |T |, then S “ T and9 x “ y. This also implies that the
period of A(j)

p divides lcm (P,LS).

The next results gives us a bound for the periods of the automata from
Definition 3.

Proposition 3. Choose the notation from Assumption 1. Let p P Hj. Then the
periods of all automata A(j)

p divide Lj.

The criterion for the cycle detection from Lemma 2 could be a little bit
relaxed by the next result, which will be more useful for proving a bound on the
index of the automata from Definition 3. Intuitively, it bounds the way in which
the indices of the automata from Definition 3 can grow.
8 For p P Hj , the condition p “ q ` ψ(b), for some b P Σ, implies q P Hj and b �“ aj .
9 As we assume m ě I, by Eq. (3) from Definition 3, we have x ě I.

74 S. Hoffmann

Corollary 2. Notation from Assumption 1. For (S, x), (T, y) P Q
(j)
p with x ě I

and (T, y) “ δ
(j)
p ((S, x), aLj

i) we have that |T | “ |S| implies T “ S and x “ y.

Finally, we state a bound for the indices of the automata from Definition 3.

Proposition 4. Choose the notation from Assumption 1. Then the index of any
automaton A(j)

p is bounded by (|T | ´ 1) · Lj, where T is any state set label from
a state on the cycle of A(j)

p .

Combining everything gives our state complexity bound.

Theorem 4. Choose the notation from Assumption 1. Then the commutative
closure perm(L(A)) is regular and could be accepted by an automaton with at
most

k∏

j“1

((|Q| ´ 1)Lj ` Lj) “ |Q|k
⎛

⎝
k∏

j“1

Lj

⎞

⎠ (5)

states.

Proof. First note that Proposition 4 gives in particular that the indices of all
automata are at most (|Q| ´ 1)Lj . Also Proposition 3 yields the bound Lj for
the periods. So Theorem 3 gives the result. ��
Example 3. Let Σ “ {a1, a2} and consider the permutation automaton from
Fig. 4. It is the same automaton as given in [6]. As an example for the group
language case, we give its state labelling on N

k
0 and an automaton for the com-

mutative closure, constructed from the unary automata A(j)
p . Note that this is

not the minimal automaton, which could be found in [6]. Also, note that, with
the notational convention from Assumption 1, we have L1 “ 3 and L2 “ 2.
Hence Theorem 4 gives the bound 32 · 6 “ 54. The automaton constructed from
the unary automaton A(j)

p is much smaller here, as the indices stabilize much
faster than given by the theoretical bound.

Example 4. Let Σ “ {a1, a2} and consider A “ (Σ,Q, δ, s0, F) with Q “ [n] for
some n ě 1, s0 and F arbitrary, and δ(0, a1) “ 1, δ(1, a1) “ 0, δ(x, a1) “ x for
x P {2, . . . , n ´ 1}, δ(x, a2) “ (x ` 1) mod n for x P [n]. Then perm(L(A)) could
be accepted by an automaton of size 2n3.

As stated in [5], the maximal order of any permutation on a set of size n

is given by Landau’s function, which is asymptotically like eΘ(
√

n lnn). Hence,
Theorem 1, the asymptotic form of Theorem 4, is implied.

State Complexity Bounds for the Commutative Closure of Group Languages 75

Fig. 4. The constructions from this paper for a permutation automaton, different from
the one given in Fig. 2. In the state labelling of N

|Σ|
0 , the origin is in the bottom left

corner, labeled by {s0}. Also indicated, written beneath, or to the side of, the axes, are
the indices and periods of the unary automata in the direction of ϕ(aj) from Definition
3. This is not the minimal automaton, see Example 3 for explanations.

4 Conclusion

We have shown that the commutative closure of regular group languages is reg-
ular, and have derived a bound on the size of the resulting automaton. The
size is related to the least common multiples of the cycle lengths of the letters,
viewed as permutations on the states, see Eq. (5). I do not know if the bound is
sharp. I have not found a single example that has the property that the index
of the constructed automata A(j)

p , for the letter aj , has length (|Q| ´ 1) · Lj , as
would be necessary to reach the bound stated in Theorem 4. In fact, I believe
that the cycles on individual elements of the state label are never “traversed” in
its entirety before another element is added to the state label, or we reach the
final cycle of the unary automata A(j)

p . So, I conjecture that for larger alphabets
we can improve this bound, as the state labels grow faster in the index part of

76 S. Hoffmann

the automata A(j)
p , as more predecessor automata10 add states of the original

automaton to the state labels of A(j)
p , as inputs are read. This is somehow con-

trary to what usually happens in other existing state complexity results, namely
that we need larger alphabets to reach the state bounds, see for example [1,7,8].
In our situation, I somehow conjecture that for larger alphabets (where surely,
distinct letters have to be distinct permutations), indices of the unary automata
A(j)

p get smaller and smaller. Hence the overall state complexity bound reaches
the product of the least common multiples of the cycle lengths for all letters,
i.e., we have

∏k
j“1 Lj as a bound in the limit for k Ñ ∞, with an alphabet of

size k.

Acknowledgement. I thank my supervisor, Prof. Dr. Henning Fernau, for giving
valuable feedback and remarks on the content of this article that improved its presen-
tation. I also thank the anonymous reviewers for careful reading and suggestions for
improvement.

References

1. Brzozowski, J., Jirásková, G., Liu, B., Rajasekaran, A., Szyku�la, M.: On the state
complexity of the shuffle of regular languages. In: Câmpeanu, C., Manea, F., Shallit,
J. (eds.) DCFS 2016. LNCS, vol. 9777, pp. 73–86. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41114-9 6

2. Cameron, P.J.: Permutation Groups. London Mathematical Society Student Texts.
Cambridge University Press, Cambridge (1999)

3. Cho, D., Goc, D., Han, Y., Ko, S., Palioudakis, A., Salomaa, K.: State complexity
of permutation on finite languages over a binary alphabet. Theor. Comput. Sci.
682, 67–78 (2017)

4. Ehrenfeucht, A., Haussler, D., Rozenberg, G.: On regularity of context-free lan-
guages. Theor. Comput. Sci. 27, 311–332 (1983)

5. Gao, Y., Moreira, N., Reis, R., Yu, S.: A survey on operational state complexity.
J. Automata Lang. Comb. 21(4), 251–310 (2017)

6. Gómez, A.C., Guaiana, G., Pin, J.: Regular languages and partial commutations.
Inf. Comput. 230, 76–96 (2013)

7. Han, Y.-S., Salomaa, K.: State complexity of union and intersection of finite lan-
guages. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol.
4588, pp. 217–228. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-73208-2 22

8. Han, Y., Salomaa, K.: State complexity of union and intersection of finite lan-
guages. Int. J. Found. Comput. Sci. 19(3), 581–595 (2008)

9. Hoffmann, S.: State complexity, properties and generalizations of commutative
regular languages. Inf. Comput. (submitted)

10. Hoffmann, S.: Commutative regular languages - properties and state complexity.
In: Ćirić, M., Droste, M., Pin, J.É. (eds.) CAI 2019. LNCS, vol. 11545, pp. 151–163.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21363-3 13

10 For some automaton A(j)
p , with p P Hj and j P {1, . . . , k}, all automata A(j)

q with

p “ q ` ψ(b), for some b P Σ, are called predecessor automata of A(j)
p .

https://doi.org/10.1007/978-3-319-41114-9_6
https://doi.org/10.1007/978-3-319-41114-9_6
https://doi.org/10.1007/978-3-540-73208-2_22
https://doi.org/10.1007/978-3-540-73208-2_22
https://doi.org/10.1007/978-3-030-21363-3_13

State Complexity Bounds for the Commutative Closure of Group Languages 77

11. Hoffmann, S.: State complexity of permutation on finite languages. CoRR
abs/2006.15178 (2020). https://arxiv.org/abs/2006.15178

12. Holzer, M., Kutrib, M.: Descriptional complexity - an introductory survey. In:
Mart́ın-Vide, C. (ed.) Scientific Applications of Language Methods, Mathemat-
ics, Computing, Language, and Life: Frontiers in Mathematical Linguistics and
Language Theory, vol. 2, pp. 1–58. World Scientific/Imperial College Press (2010)

13. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite
automata - a survey. Inf. Comput. 209(3), 456–470 (2011)

14. Hospodár, M., Mlynárčik, P.: Operations on permutation automata. In: Jonoska,
N., Savchuk, D. (eds.) DLT 2020. LNCS, vol. 12086, pp. 122–136. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-48516-0 10

15. Maslov, A.N.: Estimates of the number of states of finite automata. Dokl. Akad.
Nauk SSSR 194(6), 1266–1268 (1970)

16. Mohri, M.: On some applications of finite-state automata theory to natural lan-
guage processing. Nat. Lang. Eng. 2(1), 61–80 (1996)

17. Palioudakis, A., Cho, D.-J., Goč, D., Han, Y.-S., Ko, S.-K., Salomaa, K.: The state
complexity of permutations on finite languages over binary alphabets. In: Shallit,
J., Okhotin, A. (eds.) DCFS 2015. LNCS, vol. 9118, pp. 220–230. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-19225-3 19

18. Wang, J. (ed.): Handbook of Finite State Based Models and Applications. Chap-
man and Hall/CRC, Boca Raton (2012)

19. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theor. Comput. Sci. 125(2), 315–328 (1994)

https://arxiv.org/abs/2006.15178
https://doi.org/10.1007/978-3-030-48516-0_10
https://doi.org/10.1007/978-3-319-19225-3_19

Multiple Concatenation and State
Complexity (Extended Abstract)

Jozef Jirásek1 and Galina Jirásková2(B)

1 Institute of Computer Science, Faculty of Science, P. J. Šafárik University,
Jesenná 5, 040 01 Košice, Slovakia

jozef.jirasek@upjs.sk
2 Mathematical Institute, Slovak Academy of Sciences, Grešákova 6, 040 01,

Košice, Slovakia
jiraskov@saske.sk

Abstract. We describe witnesses for the concatenation of k languages
over an alphabet of k + 1 symbols with a significantly simpler proof
then that from the literature. Then we use slightly modified Maslov’s
automata to get witnesses over a k-letter alphabet which solves an open
problem stated by Caron et al. [2018, Fund. Inform. 160, 255–279]. We
prove that for k = 3, the ternary alphabet is optimal. We also obtain
lower bounds n1 − 1+ (1/22k−2)2n2+···+nk and (1/22k−2)n12

n2+···+nk in
the binary and ternary case, respectively. Finally, we show that an upper
bound for unary cyclic languages is n1nk/d + n1 + · · · + nk − k + 1 + d
where n1 ≤ · · · ≤ nk and d = gcd(n1, . . . , nk).

1 Introduction

The state complexity of a regular language is the smallest number of states in
any deterministic finite automaton (DFA) recognizing this language. The state
complexity of a regular operation is a function which assigns the maximal num-
ber of states in a DFA recognizing the resulting language to the sizes of DFAs
recognizing the operands.

The first results on the state complexity of regular operations were obtained
by Maslov [5]. In particular, he described binary witnesses meeting the upper
bound m2n − 2n−1 on the state complexity of concatenation of two regular
languages. Yu et al. [8] proved that this upper bound cannot be met if the first
language is recognized by a DFA with more than one final state.

The concatenation of three and four regular languages was considered by
Ésik et al. [2]. Here the witnesses for the concatenation of three language over
a five-letter alphabet can be found. The rather complicated expression for the
upper bounds for the concatenation of k languages, as well as witnesses over
a (2k − 1)-letter alphabet were given by Gao and Yu [3].

J. Jirásek—Research supported by VEGA grant 1/0056/18 and grant APVV-15-0091.
G. Jirásková—Research supported by VEGA grant 2/0132/19 and grant APVV-15-
0091.

c© Springer Nature Switzerland AG 2020
G. Jirásková and G. Pighizzini (Eds.): DCFS 2020, LNCS 12442, pp. 78–90, 2020.
https://doi.org/10.1007/978-3-030-62536-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62536-8_7&domain=pdf
https://doi.org/10.1007/978-3-030-62536-8_7

Multiple Concatenation and State Complexity (Extended Abstract) 79

Caron et al. [1] presented recursive formulas for the upper bounds, and
described witnesses over a (k + 1)-letter alphabet using Brzozowski’s universal
automata. They also showed that to meet the upper bound for the concatenation
of two or three languages, the binary or ternary alphabet, respectively, is enough,
and they conjectured that k symbols could be enough to describe witnesses for
the concatenation of k languages.

In this paper, we study in detail the state complexity of multiple concate-
nation of k languages. We first describe witnesses over an alphabet consisting
of k + 1 symbols with significantly simpler proof than that in [1]. Our witness
automata A1, . . . , Ak are defined over the alphabet {a1, . . . , ak} ∪ {b}. Each ai

performs the big cycle in Ai and the identity in all the other automata. These k
permutation symbols are used to get reachability of all so called valid states in a
DFA for the concatenation. The symbol b performs a contraction in each Ai and
gives the distinguishability of all valid states. Then we use modified Maslov’s
automata to get binary witnesses for the concatenation of two languages.

We combine our ideas used for the (k + 1)-letter alphabet and those for
binary Maslov’s automata to describe witnesses for multiple concatenation over
a k-letter alphabet which solves an open problem stated by Caron et al. [1]. In
the case of k = 3, we show that the ternary alphabet is optimal.

We also examine multiple concatenation on binary, ternary, and unary cyclic
languages. While in the binary and ternary case, the lower bounds remain expo-
nential in n2, . . . , nk, in the case of unary cyclic languages, the upper bound is
significantly smaller than that in the general case.

2 Preliminaries

We assume that the reader is familiar with basic notions in automata and formal
languages theory, and for details, we refer to [4,7].

For a finite non-empty alphabet of symbols Σ, the set of all strings over Σ
is denoted by Σ∗, and it includes the empty string ε. A language is any subset
of Σ∗. The multiple concatenation of k languages L1, L2 . . . , Lk is the langua-
ge L1L2 · · · Lk = {u1u2 · · · uk | u1 ∈ L1, u2 ∈ L2, . . . , uk ∈ Lk}. The size of a
finite set S is denoted by |S|, and the set of all its subsets by 2S .

A deterministic finite automaton (DFA) is a quintuple A = (Q,Σ, ·, s, F)
where Q is a non-empty finite set of states, Σ is a non-empty finite alphabet of
input symbols, · : Q×Σ → Q is the transition function, s ∈ Q is the initial state,
and F ⊆ Q is the set of final (accepting) states. The transition function can be
naturally extended to the domain Q × Σ∗. The language recognized (accepted)
by the DFA A is the set of strings L(A) = {w ∈ Σ∗ | s · w ∈ F}.

We usually omit ·, and write qa instead of q · a. Next, for a subset S of Q,
let wS = {q | qw ∈ S}. Each input symbol a induces a transformation on Q
given by q �→ qa. We denote by a : (q1, q2, . . . , q�) the transformation that maps qi

to qi+1 for i = 1, . . . , � − 1, the state q� to q1, and fixes any other state in Q. In
particular, (q1) denotes the identity. Next, we denote by a : (q1 → q2 → · · · → q�)
the transformation that maps qi to qi+1 for i = 1, 2, . . . , �−1 and fixes any other

80 J. Jirásek and G. Jirásková

state. In particular, the map (q1 → q2) is a contraction that maps q1 to q2 and
fixes any other state.

A DFA is minimal (with respect to the number of states) if all its states
are reachable and pairwise distinguishable. The state complexity of a regular
language L, sc(L), is the number of states in the minimal DFA recognizing L.
The state complexity of a k-ary regular operation f is a function from N

k to N

given by (n1, . . . , nk) �→ max{sc(f(L1, . . . , Lk)) | sc(Li) ≤ ni for i = 1, . . . , k}.
A nondeterministic finite automaton (NFA) is a quintuple N = (Q,Σ, ·, I, F)

where Q, Σ, and F are the same as for a DFA, I ⊆ Q is the set of initial
states, and · : Q × Σ → 2Q is the nondeterministic transition function which
can be naturally extended to the domain 2Q × Σ∗. The language recognized by
the NFA N is the set of strings L(N) = {w ∈ Σ∗ | Iw ∩ F 	= ∅}.

We say that (p, a, q) is a transition in N if q ∈ pa. A state q of N is said to
be a dead state, if no string is accepted by N from q.

The subset automaton of the NFA N is a deterministic finite automa-
ton D(N) = (2Q, Σ, ·, I, {S ⊆ Q | S ∩ F 	= ∅}); here · is the transition func-
tion of N extended to the domain 2Q × Σ. We have L(N) = L(D(N)).

The reverse of the NFA N is the NFA NR = (Q,Σ, ·R, F, I) where the
transition function is defined by q ·R a = {p ∈ Q | q ∈ p · a}.

A subset S of Q is reachable in N if there is a string w in Σ∗ such that S = Iw,
and it is co-reachable in N if it is reachable in the reverse NR.

We use the following two simple observations to prove distinguishability of
states in subset automata.

Lemma 1. Let N = (Q,Σ, ·, I, F), S, T ⊆ Q, and q ∈ S \ T . If the singleton
set {q} is co-reachable in N , then S and T are distinguishable in D(N).

Proof. Since the set {q} is co-reachable in N , there exists a string w which is
accepted by N from and only from the state q. Then w is accepted by D(N)
from S and rejected from T . ��
Corollary 2. If for each state q of an NFA N , the singleton set {q} is co-
reachable in N , then all states of the subset automaton D(N) are pairwise dis-
tinguishable. ��

3 Construction of NFAs for Multiple Concatenation

Let regular languages K and L be recognized by DFAs A = (QA, Σ, ·A, sA, FA)
and B = (QB , Σ, ·B , sB , FB) with QA ∩ QB = ∅. Then the concatenation KL is
recognized by the NFA N = (QA ∪ QB , Σ, ·, I, FB) with I = {sA} if sA /∈ FA

and I = {sA, sB} otherwise, and

q · a =

⎧
⎪⎨

⎪⎩

{q ·A a}, if q ∈ QA and q ·A a /∈ FA;
{q ·A a} ∪ {sB}, if q ∈ QA and q ·A a ∈ FA;
{q ·B a}, if q ∈ QB ,

Multiple Concatenation and State Complexity (Extended Abstract) 81

that is, the NFA N is obtained from the DFAs A and B by adding transi-
tions (q, a, sB) for each state q of A and each symbol a in Σ such that q ·Aa ∈ FA,
and by making appropriate states initial and final.

In the subset automaton D(N), every reachable state is of the form {q} ∪ S
with q ∈ QA and S ⊆ QB since A is a complete DFA. We denote such a set by
the pair (q, S), and with this notation, it is not necessary to have the state sets
disjoint. Nevertheless, since we use properties of the NFA N , we still assume their
disjointness, even if we have QA = {0, 1, . . . ,m − 1} and QB = {0, 1, . . . , n − 1},
and write 0A or 0B if necessary. We also denote all three transition functions by ·,
and simply write (qa, S) or (q, Sb) or (q, S)a. The second important observation
which follows from the construction of the NFA N is the following one: for each
reachable state (q, S) of D(N) such that q ∈ FA, we have sB ∈ S.

The construction above can be generalized to get an NFA for the concatena-
tion of k languages given by DFAs Ai = (Qi, Σ, ·, si, {fi}) with si 	= fi as follows.
We construct an NFA N for L(A1)L(A2) · · · L(Ak) from DFAs A1, A2, . . . , Ak

by adding the transitions (q, a, si+1) whenever qa = fi for i = 1, 2, . . . , k − 1.
The initial state of N is s1 and the final state of N is fk. In the corresponding
subset automaton D(N), every reachable state is of the form (S1, S2, S3, . . . , Sk)
with Si ⊆ Qi for i = 1, 2, . . . , k, and moreover, we have

(1) |S1| = 1,
(2) if Si = ∅ then Si+1 = ∅,
(3) if fi ∈ Si then si+1 ∈ Si+1,

for i = 1, 2, . . . , k − 1. A state satisfying these three conditions is called a valid
state. We usually write (q, S2, . . . , Sk) instead of ({q}, S2, . . . , Sk).

Proposition 3. An upper bound on sc(L(A1)L(A2) · · · L(Ak)) is given by the
number of valid states, which is maximal if each Ai has one final state. ��
Proposition 4. ([3, Theorems 5 and 6]). Let k ≥ 2, ni ≥ 2 for i =
1, 2, . . . , k, and Ai be an ni-state DFA that has one final state. Then the number
of valid states, #τk, is given by the expression

#τk = n12n2+···+nk − D −
k−1∑

i=1

Ei, where

D = n1

k−1∑

�=2

(2n2−1 − 1)(2n3−1 − 1) · · · (2n�−1 − 1)(2n�+1n�+2···nk − 1);

E1 = 1 + (2n2−1 − 1)(1 + (2n3 − 1)(1 + (2n4 − 1) · · · (1 + (2nk−1 − 1)2nk · · ·));
Ei = ((n1 − 1)(2n2−1 − 1) · · · 2ni−1 + · · · + 2n2−2 · · · 2ni−2)·

· (1 + (2ni+1−1 − 1)(1 + (2ni+2 − 1) · · · (1 + (2nk−1 − 1)2nk) · · ·))
for i = 2, . . . , k−1. In the expression above, D counts the states with both S� = ∅
and S�+1 	= ∅ with 2 ≤ � ≤ k − 1, while Ei counts the states with both fi ∈ Si

and si /∈ Si which are not in E1, E2, . . . , Ei−1. ��

82 J. Jirásek and G. Jirásková

Every state (S1, S2, . . . , Sk) with si ∈ Si for i = 2, 3, . . . , k is a valid state,
while every state (S1, S2, . . . , Sk) with f2 ∈ S2 and s3 /∈ S3 is not valid. This
gives the following inequalities for the number of valid states #τk.

Proposition 5. We have 1
2k−1 n1 2n2+···+nk ≤ #τk ≤ 3

4 n1 2n2+···+nk . ��

4 Tightness for a (k + 1)-letter Alphabet

In this section, we describe witnesses for multiple concatenation of k regular
languages over an alphabet of k + 1 symbols with a significantly simpler proof
than that in [1, Sect. 4, pp. 266–271]. We use k permutation symbols to get
reachability of all valid states in the corresponding subset automaton, and one
more symbol to guarantee their distinguishability. Then we use modified Maslov’s
automata to get binary witnesses for L1L2. In the next section, we use all these
results to get witnesses for the concatenation of k languages over a k-letter
alphabet.

Let Σ = {ai | 1 ≤ i ≤ k} ∪ {b} be an alphabet consisting of k + 1 symbols.
Let ni ≥ 3 for i = 1, 2, . . . , k, and define ni-state DFA Ai = (Qi, Σ, ·, si, {fi}),
where Qi = {0, 1, . . . , ni − 1}, si = 0, fi = ni − 1, and ai : (0, 1, . . . , ni − 1),
if j 	= i, then aj : (0), and b : (0 → 1), that is, the symbol ai performs the
circular permutation (big cycle) on Qi, the symbol aj with j 	= i performs the
identity, and the symbol b performs a contraction. The DFA Ai is shown in
Fig. 1.

We first consider the concatenation L(Ai−1)L(Ai) with 2 ≤ i ≤ k. We
construct an NFA for this concatenation from DFAs Ai−1 and Ai by adding
the transitions (fi−1 − 1, ai−1, si) and (fi−1, σ, si) with σ ∈ Σ \ {ai−1}. The
next observation shows that in the corresponding subset automaton each state
({0}, S) is reachable from ({0}, {0}). Moreover, while reaching ({0}, S) with
fi /∈ S, the state fi is never visited. This is a very important property since,
later, we do not wish to influence the (i + 1)th component of a valid state while
setting its ith component.

Lemma 6. Let 2 ≤ i ≤ k and consider the NFA Ni for L(Ai−1)L(Ai) described
above. In the subset automaton D(Ni), for every non-empty subset S of Qi, there
exists a string wS over {ai−1, ai} such that

(i) ({0}, {0}) · wS = ({0}, S);

Ai si 1 . . . ni−2 fi
ai, b ai ai ai

ai

Σ \ {ai, b} Σ \ {ai} Σ \ {ai} Σ \ {ai}

Fig. 1. The witness DFA Ai over Σ = {a1, a2, . . . , ak} ∪ {b}; si = 0, fi = ni − 1.

Multiple Concatenation and State Complexity (Extended Abstract) 83

(ii) if fi /∈ S and ({0}, {0}) · u = ({q}, T) for a prefix u of wS, then fi /∈ T .

Proof (Proof Idea). The proof of both (i) and (ii) is by induction on |S|. The
state ({0}, {j}) is reached from ({0}, {0}) by aj

i , and if j < fi, then (ii) holds.
Next, each state ({0}, {j1, j2, . . . , j�}) where 0 ≤ j1 < j2 < · · · < j� ≤ fi is
reached from ({0}, {j2 − j1, . . . , j� − j1}) by a

ni−1
i−1 aj1

i , and (ii) holds as well. ��
Now, construct the NFA N for L(A1)L(A2) · · · L(Ak) as described in Sect. 3,

and consider its subset automaton D(N).

Lemma 7. Each valid state ({j}, S2, S3, . . . , Sk) is reachable in the subset
automaton D(N). These valid states are pairwise distinguishable.

Proof. Each valid state ({j}, ∅, . . . , ∅) of D(N) is reached from the initial sta-
te ({0}, ∅, . . . , ∅) by the string aj

1. Let 2 ≤ � ≤ k and Si ⊆ Qi and Si 	= ∅
for i = 2, 3, . . . , �. Consider a valid state ({j}, S2, S3, . . . , S�, ∅, . . . , ∅).

Let wSi
for i = 2, 3, . . . , � be the strings over {ai−1, ai} given by Lemma 6;

recall that fi /∈ Si implies that the state fi is never visited while reaching Si,
which in turn implies that si+1 is never added to the (i + 1)th component
in such a case. If fi ∈ Si, then the state si+1 is included in Si+1 since the
state ({j}, S2, S3, . . . , S�, ∅, . . . , ∅) is a valid state, and moreover, there is a loop
on both ai−1 and ai in si+1. It follows that the state ({j}, S2, S3, . . . , S�, ∅, . . . , ∅)
is reached from the initial state (0, ∅, . . . , ∅) by the string

(
�−1∏

i=1

ani
i)(

�−2∏

j=0

wS�−j
)aj

1 = an1
1 an2

2 · · · an�−1
�−1 wS�

wS�−1 · · · wS3wS2a
j
1

since we have

({0}, ∅, ∅, . . . , ∅, ∅, ∅, ∅, . . . , ∅)
a

n1
1 a

n2
2 ···an�−1

�−1−−−−−−−−−−→
({0}, {0}, {0}, . . . , {0}, {0}, {0}, ∅, . . . , ∅)

wS�
over {a�−1,a�}−−−−−−−−−−−−→

({0}, {0}, {0}, . . . , {0}, {0}, S�, ∅, . . . , ∅)
wS�−1 over {a�−2,a�−1}−−−−−−−−−−−−−−−→

({0}, {0}, {0}, . . . , {0}, S�−1, S�, ∅, . . . , ∅)
wS�−2−−−−→ · · · wS3−−→

...

({0}, {0}, S3, . . . , S�−2, S�−1, S�, ∅, . . . , ∅)
wS2 over {a1,a2}−−−−−−−−−−−→

({0}, S2, S3, . . . , S�−2, S�−1, S�, ∅, . . . , ∅)
aj
1−→

({j}, S2, S3, . . . , S�−2, S�−1, S�, ∅, . . . , ∅) .

In the reverse NR, the initial set is {fk}. Next, each singleton set {j} such
that j ∈ Qi (1 ≤ i ≤ k) is reached from {fi} via a string in a∗

i . Finally,
each {fi−1} (2 ≤ i ≤ k) is reached from {si} by b since ni−1 ≥ 3. Thus, for
every state q of N , the singleton set {q} is co-reachable in N . By Corollary 2,
all states of the subset automaton D(N) are pairwise distinguishable. ��

As a corollary of Propositions 3 and 4 and the lemma above, we get our first
result.

84 J. Jirásek and G. Jirásková

A 0 1 2 . . . m−2 m−1
a a a a a

a

b b b b
b

B 0 1 . . . n−3 n−2 n−1

a a a

a

b b b b a, b

b

Fig. 2. Modified Maslov’s [5] binary witnesses for concatenation of two languages.

Theorem 8. Let ni ≥ 3 for i = 1, 2, . . . , k. The DFAs Ai (1 ≤ i ≤ k) from
Fig. 1 defined over the alphabet {a1, a2, . . . , ak} ∪ {b} are witnesses for multiple
concatenation of k regular languages. ��

In the next theorem, we use slightly modified Maslov’s [5] automata to get
binary witnesses for the concatenation of two regular languages. This shows that
the (k + 1)-letter alphabet used in the theorem above is not optimal.

Theorem 9. Let m,n ≥ 3 and A,B and N be automata from Figs. 2 and 3.
Then all valid states are reachable and pairwise distinguishable in the subset
automaton D(N) for L(A)L(B).

Proof. The proof of reachability of all valid states (i, S) is by induction on |S|.
The basis, |S| = 0, holds true since each valid state (i, ∅) is reached from the
initial state (0, ∅) by ai. Let 1 ≤ � ≤ n and assume that our claim holds for each
set of size � − 1. Let (i, S) be a valid state with |S| = �. Recall the we denote
by wS the set of states {q | qw ∈ S}. Consider three cases:

(1) Let i = m − 1, and therefore 0 ∈ S. Since a performs a permutation on the
state set of B, the state (m − 2, a(S \ {0})) is reachable by the induction
hypothesis, and it is sent to (m − 1, S) by a.

(2) Let i = 0. Since a{0} = {0} in B, the state (m − 1, a {j − min S | j ∈ S})
is reachable as shown in case (1), and it is sent to (0, S) by abminS .

(3) Let 1 ≤ i ≤ m−2. Then the state (0, aiS) is reachable as shown in case (2),
and it is sent to (i, S) by ai.

To prove distinguishability, notice that each singleton set is co-reachable in
the NFA N via a string in ε + ab∗a∗ since we have m,n ≥ 3. By Corollary 2, all
states of the subset automaton D(N) are pairwise distinguishable. ��

Multiple Concatenation and State Complexity (Extended Abstract) 85

N 0 1 2 . . . m−2 m−1
a a a a a

a

b b b bb

0 1 . . . n−3 n−2 n−1

a a a

a

b b b b a, b

b

a

b

Fig. 3. An NFA N for L(A)L(B) where A and B are DFAs from Fig. 2.

5 Tightness for a k-letter Alphabet

In this section, we use our previous results to describe witnesses for the con-
catenation of k languages over the k-letter alphabet {a1, a2, . . . , ak−1} ∪ {b}.
The idea is as follows. The transitions on input symbols a1, a2, . . . , ak−1 in
automata A1, A2, . . . , Ak−1 will be the same as in our (k + 1)-letter witnesses
from Theorem 8, while Ak over {ak−1, b} will be the same as the second
Maslov’s automaton from Theorem 9. The input symbol b performs the con-
traction (1 → 0) in each Ai except for Ak, and it is used to get reachability as
well as distinguishability.

Let k ≥ 2, Σ = {a1, a2, . . . , ak−1} ∪ {b}, and ni ≥ 3 for i = 1, 2, . . . , k.
For i = 1, 2, . . . , k − 1, define an ni-state DFA Ai = (Qi, Σ, ·, si, {fi}) where

Qi = {0, 1, . . . , ni − 1}, si = 0, fi = ni − 1, and
ai : (0, 1, . . . , ni − 1),
aj : (0) if j 	= i,
b : (1 → 0).

Define an nk-state DFA Ak = (Qk, Σ, ·, sk, {fk}) where
Qk = {0, 1, . . . , nk − 1}, sk = 0, fk = nk − 1, and
aj : (0) if j 	= k − 1,
aj : (nk − 2, nk − 1) if j = k − 1,
b : (0 → 1 → 2 → · · · → nk−2 → nk−1).

The DFAs Ai with 1 ≤ i ≤ k − 1 and Ak are shown in Fig. 4.
Construct an NFA N for L(A1)L(A2) · · · L(Ak) from DFAs A1, A2, . . . , Ak

by adding the transitions (fi −1, ai, si+1), (fi, aj , si+1) for j 	= i, and (fi, b, si+1)
for i = 1, . . . , k−1; the initial state of N is s1, and the final state is fk. The next
theorem shows that all valid states are reachable and pairwise distinguishable in
the corresponding subset automaton. The proof of reachability is based on our
results concerning (k + 1)-letter witnesses as well as Maslov’s binary witnesses.
The proof of distinguishability is not for free this time.

86 J. Jirásek and G. Jirásková

Ai si 1 2 . . . fi−1 fi
ai ai ai ai ai

ai

b, aj , j �= i aj , j �= i b, aj , j �= i b, aj , j �= i b, aj , j �= i

b

Ak sk 1 . . . fk−2 fk−1 fk

a1, . . . , ak−1 a1, . . . , ak−1 a1, . . . , ak−1 a1, . . . , ak−2

ak−1

b b b b ak−1, b

b, a1, . . . , ak−2

Fig. 4. Witness DFAs Ai for i = 1, . . . , k − 1 and Ak; Σ = {a1, a2, . . . , ak−1} ∪ {b} .

Theorem 10. Let k ≥ 2, ni ≥ 3 for i = 1, 2, . . . , k. Let A1, A2, . . . , Ak and N
be automata over {a1, a2, . . . , ak−1} ∪ {b} described above. Then all valid states
are reachable and pairwise distinguishable in the subset automaton D(N).

Proof. Consider a valid state (j, S2, . . . , Sk−1, Sk). First, let Sk = ∅. Notice
that the transitions on a1, a2, . . . , ak−1 in A1, A2, . . . , Ak−1 are the same as in
automata in Lemma 7. Hence each valid state (j, S2, . . . , Sk−1, ∅) is reachable
exactly the same way as in the proof of Lemma 7.

Now let Sk 	= ∅. As shown in the proof of Theorem 9, for each S, there is a
string vS over {ak−1, b} such that in the subset automaton for L(Ak−1)L(Ak)
we have ({0}, ∅)vS = ({0}, S). Since we have a loop on both ak−1 and b in the
initial state of each Ai with 1 ≤ i ≤ k − 2, we get

(0, ∅, . . . , ∅, ∅)
a

n1
1 a

n2
2 ···ank−2

k−2−−−−−−−−−−→ (0, {0}, . . . , {0}, {0}, ∅) vS−→ (0, {0}, . . . , {0}, {0}, S).

Next, let wSi
for i = 2, . . . , k−1 be the strings over {ai−1, ai} given by Lemma 6;

recall that fi /∈ Si implies that the state fi is not visited while reading wSi
.

Let u = wSk−1 · · · wS3wS2 . Then the state (0, {0}, . . . , {0}, uSk) is reachable as
shown above. Since each ai performs a permutation on Ak, we finally get

(0, {0}, . . . , {0}, uSk) u−→ (0, S2, . . . , Sk−1, Sk)
aj
1−→ (j, S2, . . . , Sk−1, Sk).

To prove distinguishability, let p = (S1, S2, . . . , Sk) and q = (T1, T2, . . . , Tk)
be two distinct valid states of D(N). For each state r in Qk−1∪Qk, the singleton
set {r} is co-reachable in N via a string in ε + ak−1b

∗a∗
k−1. By Lemma 1, the

states p and q are distinguishable if they differ in a state in Qk−1 ∪ Qk.
Let Si 	= Ti for some i with 1 ≤ i ≤ k − 2, while Sj = Tj if j > i. Without

loss of generality, let � ∈ Si \ Ti. First, we read afi−�
i to reach the final state fi

of Ai from p and get states

(S′
1, . . . , S

′
i−1, {fi} ∪ S′

i, {0} ∪ S′
i+1, S

′
i+2, . . . , S′

k) and
(T ′

1, . . . , T
′
i−1, T ′

i , T ′
i+1, T ′

i+2, . . . , T ′
k)

Multiple Concatenation and State Complexity (Extended Abstract) 87

with fi /∈ T ′
i . Now, the string (ai+1b)ni+1 sends all states in (i+1)th components

to state 0, and it fixes each state of Qi except for 1 that is sent to 0. Since fi ≥ 2,
after reading (ai+1b)ni+1 , we get states

(S′′
1 , . . . , S′′

i−1, {fi} ∪ S′′
i , {0}, S′′

i+2, . . . , S′′
k) and

(T ′′
1 , . . . , T ′′

i−1, T ′′
i , T ′′

i+1, T ′′
i+2, . . . , T ′′

k)

with fi /∈ T ′′
i , and T ′′

i+1 = {0} or T ′′
i+1 = ∅. Finally, we read ai+1 that performs

the circular permutation on Qi+1 and the identity on Qi to get states

(S′′′
1 , . . . , S′′′

i−1, {fi} ∪ S′′′
i , {0, 1}, S′′′

i+2, . . . , S′′′
k) and

(T ′′′
1 , . . . , T ′′′

i−1, T ′′′
i , T ′′′

i+1, T ′′′
i+2, . . . , T ′′′

k)

with T ′′′
i+1 = {1} or T ′′′

i+1 = ∅. These states differ in the state 0 of Qi+1. By induc-
tion, the states p and q can be sent to two states that differ in a state of Qk−1,
and therefore are distinguishable. ��

We conjecture that k symbols are necessary for describing witnesses for con-
catenation of k languages. We are able to prove this for k = 3.

Theorem 11. The ternary alphabet used to describe witnesses for the concate-
nation of three languages in Theorem 10 is optimal.

Proof (Proof Idea). Let Ai = (Qi, {a, b}, ·, si, {fi}) for i = 1, 2, 3 be binary DFAs.
To meet the upper bound for the concatenation of three languages, both A2

and A3 must have one permutation and one non-permutation symbol. To reach
the state (0, Q2 \ {f2}, ∅), automaton A2 must have a symbol, say a, that maps
the set Q2 \ {f2} onto Q2 \ {f2}. Then f2 is reached on b in A2 and f2b 	= f2.
Then, depending on whether or not b performs a permutation on Q2, we can
show that both a and b perform permutations on Q3, a contradiction. ��

6 Binary and Ternary Languages

In this section, we examine the state complexity of multiple concatenation on
binary and ternary languages. Our aim is to show that in the binary case, the
resulting complexity is still exponential in n2, n3, . . . , nk, and in the ternary case,
it is the same as in the general case, up to a multiplicative constant.

Theorem 12. Let k ≥ 2, n1 ≥ 3, n2 ≥ 4, and ni ≥ 3 for i = 3, 4, . . . , k.
Let A1, A2, . . . , Ak be the binary DFAs from Fig. 5. Every DFA for the concatena-
tion L(A1)L(A2) · · · L(Ak) has at least n1 − 1 + (1/22k−2) 2n2+n3+···+nk states.

Proof (Proof Idea). Let si and fi be the initial and final states of Ai, respectively.
Construct an NFA for L(A1)L(A2) · · · L(Ak) from the DFAs A1, A2, . . . , Ak as
described in Sect. 3. In this NFA, the states fi and fi+1 with 2 ≤ i ≤ k−1, as
well as the state fk + 1 are dead, and we can omit them.

88 J. Jirásek and G. Jirásková

A1 0 1 . . . n1−2 n1−1
a, b a, b a, b b

a a, b

A2 0 1 . . . n2−3 n2−2 n2−1
a a, b a, b a, b a, b

b a, b

Ai 0 1 . . . ni−3 ni−2 ni−1
a, b a, b a, b a, b a, b

a, b

Fig. 5. Binary lower bound DFAs A1, A2, and Ai for i = 3, 4, . . . , k with
sc(L(A1)L(A2) · · · L(Ak)) ≥ n1 − 1 + (1/22k−2) 2n2+n3+···+nk .

In the subset automaton of the resulting NFA, each valid state (j, ∅, . . . , ∅)
with 0 ≤ j ≤ n1 − 1 is reached from the initial state (0, ∅, . . . , ∅) by bj , and the
state (f1, {s2}, ∅, . . . , ∅) is reached from (f1 − 1, ∅, . . . , ∅) by b. Starting with the
state f1, the NFA accepts all strings having an a in position n2 + n3 · · · + nk −
2k +2 from the end, and we can show that every state (f1, {s2}∪S2, S3, . . . , Sk)
with S2 ⊆ {1, 2, . . . , n2 − 3}, Si ⊆ {0, 1, . . . , ni − 3} for i = 3, 4, . . . , k − 1
and Sk ⊆ {0, 1, . . . , nk − 2} is reachable.

Next, each singleton set is co-reachable via a string in a∗, except for {q}
where q is a non-final state of A1. By Lemma 1, the reachable states (S1, . . . , Sk)
and (T1, . . . , Tk) are distinguishable if they differ in a state of Ai with i ≥ 2 or
in f1. Otherwise, the states (i, ∅, . . . , ∅) and (j, ∅, . . . , ∅) with 0 ≤ i < j < f1 can
be sent to states that differ in f1 by bf1−j . ��

Now, let us add the transitions on letter c to the binary automata from Fig. 5
as follows: c : (0, 1, . . . , n1 − 1) in A1, c : (fi → fi + 1) in Ai with 2 ≤ i ≤ k − 1,
and c : (0) in Ak. Denote the resulting DFAs by Ci (1 ≤ i ≤ k). Then we can
prove the following result.

Theorem 13. Let k ≥ 2, n1 ≥ 3, n2 ≥ 4, and ni ≥ 3 for i = 3, 4, . . . , k.
Let C1, C2, . . . , Ck be the ternary automata described above. Then every DFA
for L(C1)L(C2) · · · L(Ck) has at least (1/22k−2)n12n2+n3+···+nk states. ��

The theorem above shows that the complexity of concatenation of k ternary
languages is the same as in the case of a general alphabet, up to a multiplicative
constant depending on k; cf. inequalities in Proposition 5 on page 4.

7 Unary Cyclic Languages

The state complexity of concatenation of two unary languages is n1n2, and it
can be met by cyclic languages if gcd(n1, n2) = 1 [8]. This gives a trivial upper
bound n1n2 · · · nk for concatenation of k unary languages. Here we show that a
tight upper bound for concatenation of k cyclic unary languages is much smaller.

Multiple Concatenation and State Complexity (Extended Abstract) 89

Let n1, n2, . . . , nk be positive integers with gcd(n1, n2, . . . , nk) = 1.
Then g(n1, n2, . . . , nk) denotes the Frobenius number, that is, the largest

integer that cannot be expressed as x1n1+x2n2+· · ·+xknk for some non-negative
integers x1, x2, . . . , xk. Denote f(n1, . . . , nk) = g(n1, . . . , nk) + n1 + · · · + nk.
Using this notation, we are able to prove the following result.

Theorem 14. Let A1, . . . , Ak be cyclic unary automata with n1, . . . , nk states,
respectively. Let d = gcd(n1, . . . , nk). Then L(A1) · · · L(Ak) is recognized by
a DFA with d · f(n1

d , . . . , nk

d) − k + 1 + d states, and this bound is tight.

Proof (Proof Idea). We show that L(A1)L(A2) · · · L(Ak) is recognized by a unary
DFA with a tail of length d · f(n1

d , n2
d , . . . , nk

d) − k + 1 and a cycle of size d. The
proof follows almost line by line the proof of Theorem 8 in [6]. ��

It is known that if n1 ≤ · · · ≤ nk, then g(n1, n2, . . . , nk) ≤ n1nk. This gives
an upper bound n1nk/d + n1 + · · · + nk − k + 1 + d for concatenation of k cyclic
languages where n1 ≤ n2 ≤ · · · ≤ nk and d = gcd(n1, n2, . . . , nk).

8 Conclusions

We examined in detail the state complexity of multiple concatenation of k lan-
guages. First, we described witness DFAs A1, A2, . . . , Ak over the (k + 1)-
letter alphabet {a1, a2, . . . , ak} ∪ {b}. Then we modified the first automaton
of Maslov’s [5] automata to get binary witnesses for the concatenation of two
languages. Using our results concerning witnesses over a (k + 1)-letter alphabet
as well as the results for modified Maslov’s automata, we described witnesses for
the concatenation of k languages over a k-letter alphabet. This solves an open
problem stated in [1]. For k = 3, we proved that the ternary alphabet is opti-
mal in the sense that the upper bound for the concatenation of three languages
cannot be met by any binary languages. This provides a partial answer to the
second open problem from [1].

We also considered multiple concatenation on binary and ternary
languages, and obtained lower bounds n1 − 1 + (1/22k−2)2n2+···+nk

and (1/22k−2)n12n2+···+nk , respectively. Finally, we investigated multiple con-
catenation on unary cyclic languages. We obtained a tight upper bound
here, and we showed that for k ≥ 3, it is much smaller than a trivial
upper bound n1n2 · · · nk, which is met by cyclic unary languages if k = 2
and gcd(n2, n2) = 1 [8, Theorem 5.4].

Some problems remain open. If n2 = 1, then the state complexity of the con-
catenation of two languages is n1 [8, Theorem 2.4]. What is the state complexity
of multiple concatenation if some languages may be equal to Σ∗? Next, we proved
the optimality of a ternary alphabet for the concatenation of three languages.
However, we cannot see any generalization of the proof. Is a k-letter alphabet
for the concatenation of k languages optimal? Finally, we did not consider unary
languages that are not cyclic.

90 J. Jirásek and G. Jirásková

References

1. Caron, P., Luque, J., Patrou, B.: State complexity of multiple catenations. Fund.
Inform. 160(3), 255–279 (2018). https://doi.org/10.3233/FI-2018-1683

2. Ésik, Z., Gao, Y., Liu, G., Yu, S.: Estimation of state complexity of combined
operations. Theoret. Comput. Sci. 410(35), 3272–3280 (2009). https://doi.org/10.
1016/j.tcs.2009.03.026

3. Gao, Y., Yu, S.: State complexity approximation. In: Dassow, J., Pighizzini, G.,
Truthe, B. (eds.) DCFS 2009. EPTCS, vol. 3, pp. 121–130 (2009). https://doi.org/
10.4204/EPTCS.3.11

4. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley (1979)

5. Maslov, A.N.: Estimates of the number of states of finite automata. Soviet Math.
Doklady 11(5), 1373–1375 (1970)

6. Pighizzini, G., Shallit, J.O.: Unary language operations, state complexity and Jacob-
sthal’s function. Internat. J. Found. Comput. Sci. 13(1), 145–159 (2002). https://
doi.org/10.1142/S012905410200100X

7. Sipser, M.: Introduction to the Theory of Computation. Cengage Learning (2012)
8. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations

on regular languages. Theoret. Comput. Sci. 125(2), 315–328 (1994). https://doi.
org/10.1016/0304-3975(92)00011-F

https://doi.org/10.3233/FI-2018-1683
https://doi.org/10.1016/j.tcs.2009.03.026
https://doi.org/10.1016/j.tcs.2009.03.026
https://doi.org/10.4204/EPTCS.3.11
https://doi.org/10.4204/EPTCS.3.11
https://doi.org/10.1142/S012905410200100X
https://doi.org/10.1142/S012905410200100X
https://doi.org/10.1016/0304-3975(92)00011-F
https://doi.org/10.1016/0304-3975(92)00011-F

Combining Limited Parallelism and
Nondeterminism in Alternating Finite

Automata

Chris Keeler(B) and Kai Salomaa

School of Computing, Queen’s University, Kingston, ON K7L 2N8, Canada
{keeler,ksalomaa}@cs.queensu.ca

Abstract. We introduce the existential width measure (respectively, the
maximal existential width), which, roughly speaking, for an alternating
finite automaton (AFA), counts the number of branches which do not
need to be traversed in an accepting computation (respectively, the max-
imum number of branches which can be ignored in any computation tree
of the AFA). We also define the combined width (respectively, the max-
imal combined width), by combining this new measure with an existing
measure, the universal width (respectively, the maximal universal width),
which counts the minimum number of branches of a computation tree
which must be traversed for an AFA to accept a computation (respec-
tively, the maximum number of branches which can be traversed in any
computation tree of the AFA). We give a polynomial algorithm to decide
whether the (maximal) combined width is bounded, and a construction
showing that an AFA with finite combined width can be simulated by an
NFA with only a polynomial blow-up in the number of states. We also
improve the upper bound for deciding finiteness of an m-state NFA’s tree
width from O(m3) to O(m2).

1 Introduction

Deterministic and nondeterministic finite automata (DFA and NFA) are well
understood models of computation for which a significant number of results
are known. As an extension to nondeterminism, alternation was introduced by
Chandra, Kozen, and Stockmeyer [1], and its presence in pushdown automata
[1,9] and Turing machines [12] has been well-established. Alternation within the
context of finite automata has subsequently been studied by King [8], Hromkovič
[6], Geffert [2], and by Hospodár, Krajnáková, and Jirásková [4].

An automaton is said to alternate when it switches from an existential state to
a universal state (or vice versa) [2]. A computation passing through a universal
state must reach a final state across all nondeterministic branches, instead of
at least one nondeterministic branch. The power of an AFA relies both on the
presence of universal states, and the ability to alternate between universal and
existential states. In the worst case, simulating an AFA with an NFA results
in a doubly-exponential blow-up in the number of states required [1]. However,
c© Springer Nature Switzerland AG 2020
G. Jirásková and G. Pighizzini (Eds.): DCFS 2020, LNCS 12442, pp. 91–103, 2020.
https://doi.org/10.1007/978-3-030-62536-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62536-8_8&domain=pdf
https://doi.org/10.1007/978-3-030-62536-8_8

92 C. Keeler and K. Salomaa

there still exists an exponential state complexity blow-up simulating an AFA
with at most k alternations using an AFA with at most k ´ 1 alternations [2].
The emptiness problem for AFAs was shown to be PSPACE-Complete even for
unary alphabets [3], though it is polynomial for general alphabets under certain
restrictions of an AFA’s computation trees [7].

Restricted nondeterminism in automata has been measured in a number of
different ways, likely the first being ambiguity [11,13]. Another “measure of non-
determinism” with a considerable number of results is the tree width [5,10]. There
has also been a small amount of work done on restricted nondeterminism within
the context of alternating machines [7]. However, little effort has been made
towards examining the combination of restricted nondeterminism and alterna-
tion.

This paper is organized as follows. Section 2 gives the specifics for our model
of alternating finite automata, introduces the notion of pruned computation
trees, and fixes some notation used throughout the paper. Section 2.1 intro-
duces the (maximal) universal width and (maximal) existential width, as well as
several initial results concerning these new metrics. It also introduces the (maxi-
mal) combined width, which shows how these two metrics can measure the total
amount of parallelism and nondeterminism present in a specific alternating com-
putation. Section 3 presents several decision problems involving the new metrics
which can be solved in polynomial time, including whether the maximal com-
bined width of an AFA is bounded by a given constant, or whether the maximal
existential width of an NFA is finite. It also shows that there is at most a poly-
nomial blow-up in the number of states required by an NFA to simulate an AFA
with bounded combined width, as compared to the general doubly-exponential
bound [1]. As a corollary to these results, we improve the bound for deciding the
finiteness of tree width for an m-state NFA from O(m3) [7] to O(m2). Section 4
gives a candidate structure for the greatest (maximal) existential width of any
alternating machine.

2 Preliminaries

An AFA is a 6-tuple, A “ (Qe, Qu, Σ, δ, q0, F) where Qe (the existential state set)
and Qu (the universal state set) are finite sets of states such that Qe X Qu “ ∅,
Σ is the input alphabet, δ : (Qe Y Qu) ˆ Σ → 2QeYQu is the transition function,
q0 P Qe Y Qu is the initial state, and F Ď Qe Y Qu is the set of final states. We
use ε to mean the empty string, and Aq to mean A with a different specified
starting state q P Qe Y Qu.

Remark 1. We note that the standard NFA model can be seen as an AFA where
Qe contains all of the states, and Qu is the empty set.

We further define the language of an AFA, to account for the differences caused
by universal states. We do so by defining them bottom-up with respect to their
states.

Combining Limited Parallelism and Nondeterminism 93

Definition 1. Let A “ (Qe, Qu, Σ, δ, q0, F) be an AFA, and Aq be a copy of the
AFA with q P Qe Y Qu as the initial state. We point out that ε P L(Aq) if q P F .
Consider q P Qe Y Qu, a P Σ where δ(q, a) “ {p1, . . . , pn}. Then for x P Σ∗,
define:

– If q P Qu, then ax P L(Aq) if and only if x P L(Api
) for all 1 � i � n.

– If q P Qe, then ax P L(Aq) if and only if x P L(Api
) for some 1 � i � n.

The language of A is defined as L(A) “ L(Aq0).

A computation tree of an AFA is a tree structure whose internal nodes are labeled
by a tuple (p, a), for p P Qe Y Qu, a P Σ (i.e., each internal node is labeled by a
state and character), and whose leaves are labeled by (q, ε) or the fail symbol ⊥.
We call a node of the computation tree T labeled by (p, a) a p-child of T , and
the leaves of T labeled by (p, a) are called state leaves.

The computation tree of an AFA A on ε from q P Qe Y Qu, denoted TA,q,ε

is the singleton node (q, ε). The computation tree of an AFA A on cv from q,
denoted TA,q,cv, such that q P Qe Y Qu, c P Σ, v P Σ∗ is defined inductively as
the tree where:

– the root is labeled by (q, c), and
– the trees rooted at the children of (q, c) are

• the computation trees (TA,p1,v, . . . , TA,pn,v) if δ(q, c) “ {p1, . . . , pn}, and
• the failure node ⊥ if δ(q, c) “ ∅ (that is, if δ(q, c) is undefined).

If a computation tree of an AFA A on a string x starts on the initial state of A,
then we omit the state label, denoting it as TA,x. If A is an NFA, this yields the
computation trees as considered in [5].

For an AFA A “ (Qe, Qu, Σ, δ, q0, F) and a string cv, where c P Σ, v P Σ∗, a
pruned computation tree of A on cv from q P Qe Y Qu is obtained from TA,q,cv,
where δ(q, c) “ {p1, . . . , pk}, as follows:

1. If q is an existential state, then replace k´1 of the children by a singleton tree
consisting of a node labeled by a new symbol ψ (representing a pruning of
the tree), and the final child TA,pi,v by a pruned computation tree of TA,pi,v,
for some 1 � i � k.

2. If q is a universal state, then each child pi, for all 1 � i � k, is replaced by a
pruned computation tree on TA,pi,v.

We note that each pruned computation tree represents one specific alternating
computation in an AFA.

We use stateLeaves(T) to denote the set of all leaves in a tree T labeled by
a state, and failLeaves(T) to denote the set of all leaves of a tree T labeled by
the fail symbol ⊥. We call leaves labeled by ψ cut leaves, and use cutLeaves(T)
to denote the set of all cut leaves in a tree T .

The set of all pruned computation trees of a tree T is denoted ✂(T). A
pruned computation tree is accepting if all of its leaves labeled by states are
labeled by accepting states, and no leaves are labeled by the fail symbol ⊥. We
denote the set of all accepting pruned computations on a tree T as ✂acc(T). A
string x is accepted by an AFA A if and only if ✂acc(TA,x) �“ ∅.

94 C. Keeler and K. Salomaa

2.1 Tree Width of Alternating Machines

The tree width [10] of an AFA A on a string x, denoted tw(A, x), is the number
of state leaves and fail symbols in the computation tree TA,x. Since there may
be many pruned computation trees for a single alternating computation tree, we
extend the notion of tree width to operate on pruned computation trees.

Definition 2. For an AFA A and a pruned computation tree T p of A, the uni-
versal width of T p, denoted uw(T p), is the number of leaves labeled in T p by a
state, and the maximal universal width, denoted uwmax(T p), is the number of
leaves in T p labeled by a state or by the fail symbol. Formally, these are:

uw(T p) “ |stateLeaves(T p)|, and

uwmax(T p) “ |stateLeaves(T p)| ` |failLeaves(T p)|.
We extend the (maximal) universal width to be on strings:

Definition 3. For an AFA A and a string x P Σ∗, the universal width of A on
x, denoted uw(A, x), is the smallest number of leaves labeled by a state in any
accepting pruned computation tree of TA,x, and the maximal universal width of
A on x, denoted uwmax(A, x), is the largest number of leaves labeled by a state
or fail symbol in any pruned computation tree of TA,x. Formally, these are:

uw(A, x) “ min{uw(T p) | T p P ✂acc(TA,x)}, and
uwmax(A, x) “ max{uwmax(T p) | T p P ✂(TA,x)}.

By counting all of the leaves labeled by states across all pruned computation
trees for a given string x, the universal width of an AFA A on x measures the
universal parallelism in the “best” alternating computation, that is, the number
of branches. Similarly, the maximal universal width of an AFA A on a string x
measures the universal parallelism in the “worst” alternating computation, that
is, the computation tree with the greatest number of branches needing to be
checked to determine the membership of x in the language L(A).

We can also measure the amount of nondeterminism present in an alternating
computation.

Definition 4. For an AFA A and a pruned computation tree T p of A, the exis-
tential width of T p, denoted ew(T p) is the number of leaves labeled by the symbol
ψ. Formally, this is:

ew(T p) “ |cutLeaves(T p)|.
Again, we extend the measure to be on strings:

Definition 5. For an AFA A and a string x P Σ∗, the existential width of A
on x, denoted ew(A, x), is the smallest number of leaves labeled by the symbol ψ
in any accepting pruned computation tree of TA,x, and the maximal existential
width of A on x, denoted ewmax(A, x), is the largest number of leaves labeled by
the symbol ψ in any pruned computation tree of TA,x. Formally, these are:

ew(A, x) “ min{ew(T p) | T p P ✂acc(TA,x)}, and
ewmax(A, x) “ max{ew(T p) | T p P ✂(TA,x)}.

Combining Limited Parallelism and Nondeterminism 95

Intuitively, the existential width (respectively, the maximal existential width)
of an AFA on a string x measures, roughly speaking, the smallest (respectively,
the largest) number of nondeterministic branches that are not followed by a
particular alternating computation on x.

We extend the tree width, (maximal) universal width, and (maximal) exis-
tential width functions as functions on the natural numbers and AFAs in the
normal manner. For f P {tw,uw, ew,uwmax, ewmax}:

f(A, �) “ max{f(A, x) | x P Σ�}, and f(A) “ sup
�PN

{f(A, �)}.

We can calculate the maximal existential width of an AFA through
the following recursive definition on computation trees. For an AFA A “
(Qe, Qu, Σ, δ, q0, F), a state q P Qe YQu, and a string cv, such that c P Σ, v P Σ∗

– ewmax(Aq, ε) “ 0

– ewmax(Aq, cv) “
⎧
⎪⎨

⎪⎩

|δ(q, c)| ´ 1 ` max
rPδ(q,c)

{ewmax(Ar, v)} if q P Qe, or
∑

rPδ(q,c)

ewmax(Ar, v) if q P Qu.

We note that a similar recursive definition exists for calculating the existential
width of an AFA, but that the conditions which cause the maximal existential
width of an AFA to grow infinitely are insufficient in some cases to also cause
the existential width of an AFA to grow infinitely. However, using this recursive
definition for maximal existential width, Lemma 1 is proved similarly to how the
conditions for infinite tree width are proved [10].

Lemma 1. [10] Let A “ (Qe, Qu, Σ, δ, q0, F) be an AFA. Then ewmax(A) is
infinite if and only if there exists a state q P Qe, a letter c P Σ, and a string
v P Σ∗ such that |δ(q, c)| � 2 and q P δ(q, cv).

That is, an AFA will have infinite maximal existential width if it has a nonde-
terministic state involved in a cycle.

We know that, for an m-state AFA A, if the tree width of A is finite, then
tw(A) � 2m´2 [10]. Since the tree width of an AFA is defined over unpruned
computation trees, we get the following inequalities between the measures.

Corollary 1. For any AFA A and string x:

– uw(A, x) � uwmax(A, x) � tw(A, x), uw(A) � uwmax(A) � tw(A),
– ew(A, x) � ewmax(A, x) � tw(A, x), and ew(A) � ewmax(A) � tw(A).

In fact, since the maximal existential width and maximal universal width of an
AFA A are always at most the tree width of A, we get the following corollary.

Corollary 2. Let A be an AFA. Then tw(A) is infinite if and only if ewmax(A)
is infinite or uwmax(A) is infinite.

And for NFAs, in the finite case we get an upper bound on the maximal
existential width.

96 C. Keeler and K. Salomaa

Theorem 1. Let A be an m-state NFA such that ewmax(A) is finite. Then
ewmax(A) � (m´2)(m´1)

2 .

Proof. Let Am “ (Q,Σ, δ, q0, F) be the m-state unary NFA such that ewmax(A)
is finite and the greatest among all m-state unary NFAs.

Let q P Q be an arbitrary state such that |δ(q, a)| � 2, that is, q has outgoing
nondeterministic transitions. Then q cannot reach itself, since that would cause
ewmax(A) to be infinite. So then all 1 � k � m nondeterministic states are in
a partial ordering of reachability, p1 � . . . � pk. That is, there does not exist a
string x P Σ∗ such that pj P δ(pi, x), for 1 � i � j � k.

Let d1, . . . , d� be the deterministic states of Q. Assume there exists a dh, for
1 � h � � such that p1 � . . . � pi � dh � pj That is, dh is a deterministic state
inbetween two nondeterministic states, pi and pj . But, pj cannot be any of the
states p1, . . . , pi, as this would cause there to be a cycle on a nondeterministic
state, and thus ewmax(A) would not be finite.

So then dh’s transition must lead to some other state. However, if dh tran-
sitions to any nondeterministic state pj , then there are at least two states pj`1

and pj`2 such that pj`1, pj`2 P δ(pj , a). This would mean that adding transitions
from dh to pj`1 and pj`2 would increase the maximal existential width, and thus
ewmax(A) is not maximal. So then dh cannot lead to a nondeterministic state.

Therefore, the partial ordering of reachability must be p1 � . . . � pk � d1 �
. . . � d�. There cannot be only one deterministic state, because then the only
way to have |δ(pk, a)| � 2 is for pk to lead to d1 and one of the states p1, . . . , pk,
and this would cause infinite maximal existential width. So then there must be
at least two deterministic states in the tail.

Since adding extra deterministic states at the end of a computation does not
increase the maximal existential width, the number of deterministic states must
be minimized. Therefore, the m-state NFA with the greatest maximal existential
width consists of m ´ 2 nondeterministic states and 2 deterministic states, all
maximally connected without forming a cycle.

We note additionally that adding non-unary transitions would not serve to
increase the maximal existential width, and so this upper bound holds for NFAs
of any alphabet size.

If none of the existential choices made during an alternating computation
precede the universal branching, then the number of parallel branches is the
same regardless of how the computation tree is pruned.

Lemma 2. Let A “ (Qe, Qu, Σ, δ, q0, F), and x P Σ∗ a string.

(i) If there exists a partial ordering on the nodes of TA,x such that no node
labeled by a universal state occurs after a node labeled by a nondetermin-
istic existential state, then uw(TA,x) “ uwmax(TA,x).

(ii) If there exists a partial ordering on the states such that no universal state
occurs after a nondeterministic existential state, then the universal width
and maximal universal width of A are equal. More formally: for all q P Qu,
p P Qe, and a P Σ, if q P δ(p, a) “⇒ |δ(p, a)| “ 1, then uw(A) “
uwmax(A).

Combining Limited Parallelism and Nondeterminism 97

For an AFA A, a string x, and a pruned computation tree T p P ✂(TA,x), the
combined width of T p is a pair of numbers (u, e), where u is the number of state
leaves in T p, and e is the number of cut leaves in T p. Similarly, the maximal
combined width of a pruned computation tree T p P ✂(TA,x) is a pair of numbers
(u, e) where u is the number of state leaves and fail leaves in T p, and e is the
number of cut leaves in T p. Formally:

cw(T p) “ (uw(T p), ew(T p)), and

cwmax(T p) “ (uwmax(T p), ew(T p)).

That is, the (maximal) combined width of a pruned computation tree measures
both nondeterminism and universal parallelism in a specific alternating computa-
tion. Since, for a given AFA and string, there may be many pruned computation
trees, we further specify the (maximal) combined width of AFAs on strings. The
combined width of an AFA A on a string x, denoted cw(A, x), is the set of min-
imal elements from the set {cw(T p) | T p P ✂acc(TA,x)}, where here “minimal”
means a pair of natural numbers minimal with respect to the partial ordering
(a, b) � (c, d) if and only if a � c and b � d. We define similarly the maximal
combined width of an AFA A on a string x, denoted cwmax(A, x), as the set of
maximal elements from the set {cwmax(T p) | T p P ✂(TA,x)}.

For an AFA A and a string x, we say the (maximal) combined width of A
on x is upper bounded by a pair (u, e) if the (maximal) universal width of A on
x is at most u, and the (maximal) existential width of A on x is at most e.

Example 1. Let A be the AFA in Fig. 1. A has four possible pruned computation
trees on strings of at least length 2:

For these four trees, we get cw(T1) “ (3, 1), cw(T2) “ (2, 2), cw(T3) “
cw(T4) “ (1, 3). So then uw(A, aa) “ 1 and ew(A, aa) “ 1, but cw(A, aa) is
not upper bounded by (1, 1). Since none of the pairs are minimal or maximal
with respect to the partial ordering, we get that cw(A, aa) “ cwmax(A, aa) “
{(1, 3), (2, 2), (3, 1)}. Since uwmax(A, aa) “ 3 and ewmax(A, aa) “ 3, then
cw(A, x) and cwmax(A, x) are both upper bounded by the pair (3, 3), even though
there does not exist a tree T such that cw(T) “ (3, 3) or cwmax(T) “ (3, 3).

0

1, u

2

3

4, u

f1

f2

f3

Fig. 1. AFA A where all transitions are on unary symbol a. Universal states are marked
with an additional label ‘u’, and existential states are given as normal.

98 C. Keeler and K. Salomaa

0

ψ1

f3

f3

f2

f2

f1

f1

(a) T1

0

2

4

f3f2

ψ

ψ

(b) T2

0

2

ψ3

f2ψ

ψ

(c) T3

0

2

ψ3

ψf1

ψ

(d) T4

Fig. 2. Pruned computation trees of A. Universal states are denoted by squares.

We define the (maximal) combined width over natural numbers and on AFAs
similarly to the (maximal) existential and (maximal) universal widths, except
as sets of pairs. Formally, for f P {cw, cwmax}: f(A, �) is the set of maximal
elements from the set { ⋃

xPΣ�

f(A, x)}, and f(A) is the set of supremal elements

from the set {⋃

�PN
f(A, �)}. That is, f(A) is the set of maximal elements across all

strings of any length if there exists such a maximum, and is otherwise infinite.
We say that the (maximal) combined width of A is upper bounded by a pair
(u, e) if, for all strings x P Σ∗ the (maximal) combined width of A on x is upper
bounded by (u, e). If the (maximal) combined width of A is upper bounded by
a pair (u, e), then we call A a finite (maximal) combined width AFA (Fig. 2).

Lemma 3. Let A be an AFA, x be a string, (u1, e1) P cw(A, x), and (u2, e2) P
cwmax(A, x). Then

– uw(A, x) � u1 and u2 � uwmax(A, x), and
– ew(A, x) � e1 and e2 � ewmax(A, x).

Remark 2. Let A be an AFA and x an arbitrary string. If A is a DFA, then
the (maximal) combined width of A on x is {(1, 0)}. If A is an NFA, then the
(maximal) combined width of A on x is a set of pairs of the form (1, e), for e P N.
If A is a UFA (that is, all states are universal), or if all existential states of A
are deterministic, then the (maximal) combined width of A on x is a set of pairs
of the form (u, 0), for u P N.

3 Decision Problems

Theorem 2. Let A be an m-state AFA, and u, e be constants. Then we can
decide whether or not cwmax(A) � (u, e) in O(mu · e) time.

Proof. Let A “ (Qu, Qe, Σ, δ, q0, F) be an m-state AFA, and let u, e P N. We
construct NFA B such that L(B) �“ ∅ if and only if cwmax(A) � (u, e) does
not hold. That is, L(B) �“ ∅ if and only if there exists a string x such that
uw(A, x) > u or ew(A, x) > e.

Combining Limited Parallelism and Nondeterminism 99

– States of B are (u ` 1)-tuples of states of A. That is, a state (p1, . . . , pu, g)
where ph P Qe Y Qu Y {#}, 1 � h � u, 0 � g � e, and # is a “dummy
symbol”. B nondeterministically simulates the steps of A, and g is a counter
which keeps track of the number of ψ leaves.

– The start state of B is (q0,#, . . . ,#, 0).
– Transitions of B simulate transitions of A on all components of the tuple. For

each state b “ (e1, . . . , ey, u1, . . . , uz,#, . . . ,#, g) of B where {e1, . . . , ey} Ď
Qe, {u1, . . . , uz} Ď Qu and each character a P Σ:
• Let δ(ei, a) “ {si,1, . . . , si,ki

} for 1 � i � y and 1 � ki.
• Let δ(uj , a) “ {tj,1, . . . , tj,�j

} for 1 � j � z and 1 � �j .

• If state b has at least
z∑

j“1

(�j ´ 1) remaining dummy symbols, then for

si P δ(ei, a), 1 � i � y, b will have outgoing nondeterministic transitions
to all states

(s1, . . . , sy, t1,1 . . . , t1,�1 , . . . , tz,1, . . . tz,�z
,#, . . . ,#, g′),

such that g′ “ g ´ y `
y∑

i“1

|δ(ei, a)|.
That is, for each universal state uj , uj and �j ´ 1 dummy symbols are
replaced in the tuple by tj,1, . . . , tj,�j

, each existential state ei is replaced
by one of its successors in δ(ei, a), and the cut symbol count is increased
by the number of existential branches removed by taking these specific
existential transitions.

• If b has fewer than
z∑

j“1

(�j ´ 1) remaining dummy symbols, or if g > e,

then the transition on a from b instead leads to the sink state.
– We note that a tuple with no remaining dummy symbols can only continue its

simulation further if its transitions do not try to add any more components,
and a tuple whose count value is already e can only continue its simulation
if its transitions are deterministic.

– The only accepting state in B is the sink state, meaning that L(B) �“ ∅

exactly when some pruned computation tree has at least u ` 1 branches, or
if the “count” of pruned branches exceeds e.

– The language of B is then non-empty if and only if the maximal combined
width of A is not bounded by (u, e).

Since B has at most (m ` 1)u · e states, this gives a polynomial time algorithm
to decide whether the maximal combined width is bounded by (u, e). ��

We note that if the existential width of an AFA A is at most polynomially
larger than the number of states of A, then the Theorem 2’s complexity remains
polynomial. In particular, since by Theorem 1 the maximal existential width of
an NFA is at most polynomially larger than the number of states, then we can
decide whether the maximal existential width of an NFA is bounded by a specific
constant, or even whether it is finite.

100 C. Keeler and K. Salomaa

Corollary 3. Let A be an m-state NFA. Then we can decide whether or not
ewmax(A) is finite in O(m2) time.

And since by Corollary 2, the tree width of an NFA is infinite if and only if the
maximal existential width is infinite, then we also improve the known bound for
deciding the finiteness of an NFA’s tree width. Previously, the best-known upper
bound for deciding finiteness of an m-state NFA’s tree width was O(m3) [7].

Corollary 4. Let A be an m-state NFA. Then we can decide whether or not
tw(A) is finite in O(m2) time.

We use a similar construction as in Theorem 2 to efficiently simulate finite
combined width AFAs with NFAs. This is in contrast to the general simulation
of an m-state AFA by an NFA, which can require as many as 22

m

states [1].

Theorem 3. Let A be an m-state AFA, such that, for some constants u and e,
every string w P L(A) has a pruned computation tree T p such that cw(T p) �
(u, e). Then (m ` 1)u · (e ` 1) states are sufficient for an NFA to simulate A.

We can also decide whether or not an AFA’s combined width is bounded by
a specific pair of natural numbers.

Theorem 4. Let A be an AFA, and u, e P N. Then it is decidable whether, for
all strings w P L(A), there exists an accepting pruned computation tree T p

A,w,
such that cw(T p

A,w) � (u, e).

We know that, if the maximal universal width of an m-state AFA is finite,
then it is at most 2m´2 [7]. Under the assumption that the maximal universal
width of an m-state AFA is finite, then we can use the construction from The-
orem 4, with 2m´2 as our u value, and decide whether the existential width of
that AFA is bounded by some value e.

Corollary 5. For an AFA with finite universal width, it is decidable whether
the existential width of A is bounded by e P N.

We also know, by Corollary 1, that the (maximal) existential width of any
AFA A is at most the tree width of A. So then we can also decide, for an m-
state AFA with finite tree width, whether the combined width is also bounded,
by using the construction from Theorem 4 with 2m´2 as our u and e values.

Corollary 6. Let A be an AFA with finite tree width. Then it is decidable
whether the existential width, or, the combined width of A is bounded.

If the construction does not involve the universal width, it is possible that
there is a more efficient way to decide whether the existential width is bounded.

Question 1. For a given AFA A, does there exist a polynomial algorithm to
decide whether A has bounded existential width?

Combining Limited Parallelism and Nondeterminism 101

4 Width Measure Bounds

If an AFA is acyclic, then there exists a “largest” computation tree for that
AFA, where, by largest we mean a tree with the greatest number of internal and
leaf nodes, where an “internal” node is a node with at least one child node not
labeled by the fail symbol ⊥.

Lemma 4. Let A be an m-state unary acyclic AFA. Then the computation tree
TA,am´1 has:

(i) the great est number of leaves for any computation tree on A, and
(ii) the greatest number of internal nodes for any computation tree on A.

We note that we avoid double-counting the nodes leading to fail nodes ⊥ by not
considering them as leaves or internal nodes.

If an AFA’s cycles are all on sink states, then its computation trees still have
a bounded number of leaf nodes.

Lemma 5. Let A be an m-state unary AFA whose only cycles appear on sink
states. Then the computation tree TA,am´1 has the greatest number of leaves for
any computation tree on A.

We know that there exists an m-state acyclic AFA whose (maximal) universal
width is 2m´2 [7]. We use this, in part, to get the following result on the maximal
number of internal nodes for an acyclic AFA.

Lemma 6. Let A be an m-state acyclic unary AFA. Then TA,a� has at most
2m´1 internal and leaf nodes, for any � � 1.

We note that, since the AFAs Am given in Lemma 6 contain only universal
states, then no nodes are removed from the computation tree during a pruning.

Lemma 7. For |Qe| � 3 and |Qu| � 1, there exists an AFA A “
(Qe, Qu, Σ, δ, q0, F) such that

ew(A) “ 2|Qu|´1 ·
(|Qe| ´ 1

2

)

, and ewmax(A) “ 2|Qu|´1 ·
(|Qe|

3

)

.

Taking an m-state AFA of the form given in Fig. 3, the existential width
(respectively, the maximal existential width) is maximized when there are 4 or
5 existential states (respectively, 5 or 6 existential states), and the remaining
state(s) are universal.

Theorem 5. There exists an m-state AFA A and an m-state AFA A′ such that

ew(A) “ 3 · 2m´5, ewmax(A′) “ 5 · 2m´5,

cw(A) “ (2m´5, 3 · 2m´5), and cwmax(A′) “ (2m´7, 5 · 2m´5).

102 C. Keeler and K. Salomaa

u1 . . . ur e1 . . . es
a, b

a

a

a

a

a, b

a

a

a

a, b

a

a

a, b

a

a, b

a

Fig. 3. An AFA with r universal states, s existential states, an existential width of
2r´1 · (s´1

2), and a maximal existential width of 2r´1 · (s3).

Acknowledgements. Research supported by NSERC grant OGP0147224.

References

1. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–
133 (1981)

2. Geffert, V.: An alternating hierarchy for finite automata. Theor. Comput. Sci. 445,
1–24 (2012)

3. Holzer, M.: On emptiness and counting for alternating finite automata. In: Devel-
opments in Language Theory II, At the Crossroads of Mathematics, Computer
Science and Biology, Magdeburg, Germany, 17–21 July 1995, pp. 88–97 (1995)

4. Hospodár, M., Jirásková, G., Krajňáková, I.: Operations on Boolean and alternat-
ing finite automata. In: Fomin, F.V., Podolskii, V.V. (eds.) CSR 2018. LNCS, vol.
10846, pp. 181–193. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
90530-3 16

5. Hromkovič, J., Seibert, S., Karhumäki, J., Klauck, H., Schnitger, G.: Communica-
tion complexity method for measuring nondeterminism in finite automata. Inform.
Comput 172(2), 202–217 (2002)

6. Hromkovic, J.: On the power of alternation in automata theory. J. Comput. Syst.
Sci. 31(1), 28–39 (1985)

7. Keeler, C., Salomaa, K.: Alternating finite automata with limited universal branch-
ing. In: Leporati, A., Mart́ın-Vide, C., Shapira, D., Zandron, C. (eds.) LATA 2020.
LNCS, vol. 12038, pp. 196–207. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-40608-0 13

8. King, K.N.: Alternating multihead finite automata (extended abstract). In:
Automata, Languages and Programming, 8th Colloquium, Acre (Akko), Israel,
July 13–17, 1981, Proceedings, pp. 506–520 (1981)

9. Moriya, E.: A grammatical characterization of alternating pushdown automata.
Theor. Comput. Sci. 67(1), 75–85 (1989)

10. Palioudakis, A., Salomaa, K., Akl, S.G.: State complexity of finite tree width NFAs.
J. Autom. Lang. Comb. 17(2–4), 245–264 (2012)

11. Ravikumar, B., Ibarra, O.H.: Relating the type of ambiguity of finite automata
to the succinctness of their representation. SIAM J. Comput. 18(6), 1263–1282
(1989)

https://doi.org/10.1007/978-3-319-90530-3_16
https://doi.org/10.1007/978-3-319-90530-3_16
https://doi.org/10.1007/978-3-030-40608-0_13
https://doi.org/10.1007/978-3-030-40608-0_13

Combining Limited Parallelism and Nondeterminism 103

12. Ruzzo, W.L.: Tree-size bounded alternation. J. Comput. Syst. Sci. 21(2), 218–235
(1980)

13. Weber, A., Seidl, H.: On the degree of ambiguity of finite automata. Theoret.
Comput. Sci. 88(2), 325–349 (1991)

Longer Shortest Strings in Two-Way
Finite Automata

Stanislav Krymski and Alexander Okhotin(B)

Department of Mathematics and Computer Science, St. Petersburg State University,
7/9 Universitetskaya nab, 199034 Saint Petersburg, Russia
krymskiy.stas@yandex.ru, alexander.okhotin@spbu.ru

Abstract. In a recent paper, Dobronravov et al. (“On the length of
of shortest strings accepted by two-way finite automata”, DLT 2019)
prove that the shortest string in a language recognized by an n-state
two-way finite automaton (2DFA) can be at least 7n/5 − 1 symbols long,
improved to 10n/5−1 = Ω(1.584n) in their latest contribution. The lower
bound was obtained using “direction-determinate” 2DFA, which always
remember their direction of motion at the last step, and used an alphabet
of size Θ(n). In this paper, the method of Dobronravov et al. is extended
to a new, more general class: the semi-direction-determinate 2DFA. This
yields n-state 2DFA with shortest strings of length 7n/4−1 = Ω(1.626n).
Furthermore, the construction is adapted to use a fixed alphabet, result-
ing in shortest strings of length Ω(1.275n). It is also shown that an n-
state semi-direction-determinate 2DFA can be transformed to a one-way
NFA with O(1√

n
3n) states.

1 Introduction

The length of the shortest string in a language is a natural descriptional com-
plexity measure. For one-way nondeterministic finite automata (1NFA) with n
states, this length is at most n − 1, as the length of the shortest part to an
accepting state. For other models, the same question turns out to be much more
interesting. The length of shortest strings not accepted by an n-state 1NFA was
studied by Ellul et al. [5]; Alpoge et al. [1] studied shortest strings in intersec-
tions of deterministic one-way automata (1DFA); Chistikov et al. [2] investigated
the same question for counter automata. The length of shortest strings in formal
grammars was estimated by Pierre [11].

For deterministic two-way finite automata (2DFA) with n states, it is no
surprise that the shortest string can be of length exponential in n: the well-
known result by Kozen [9] on the PSPACE-completeness of their emptiness
problem implicitly relies on this fact. At the same time, an exponential upper
bound on this length is given by transforming a 2DFA to a one-way nonde-
terministic automaton (1NFA) by the method of Kapoutsis [7], which yields(

2n
n+1

)
= Θ(1√

n
4n) states. Therefore, the length of the shortest string is less

Research supported by Russian Science Foundation, project 18-11-00100.

c© Springer Nature Switzerland AG 2020
G. Jirásková and G. Pighizzini (Eds.): DCFS 2020, LNCS 12442, pp. 104–116, 2020.
https://doi.org/10.1007/978-3-030-62536-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62536-8_9&domain=pdf
http://orcid.org/0000-0002-1615-2725
https://doi.org/10.1007/978-3-030-24886-4_6
https://doi.org/10.1007/978-3-030-24886-4_6
https://doi.org/10.1007/978-3-030-62536-8_9

Longer Shortest Strings in Two-Way Finite Automata 105

than 4n. Overall, the longest length of a shortest string is of the order Θ(1)n,
with the base of exponentiation bounded by 4. The question is, what is the exact
base?

This question was first addressed in a recent paper by Dobronravov et al. [3],
who proposed a method for constructing 2DFA with long shortest strings. Their
method is based on taking a small base 2DFA with k states and a shortest string
of length � − 1, and then constructing n-state 2DFA that simulate the base
automaton on multiple levels for different subsets of the alphabet, ultimately
obtaining a shortest string of length Ω((k

√
�)n). The base 2DFA must belong to

a subclass of direction-determinate 2DFA; these are automata that remember the
direction of the last transition in their state. Dobronravov et al. [3,4] presented
a base 2DFA with 5 states and with a shortest string of length 9, leading to
n-state 2DFA with shortest strings of length Ω((5

√
10)n) � Ω(1.584n).

The method of Dobronravov et al. [3] relies on finding sophisticated small
automata, and the direction-determinance requirement makes it complicated.
Furthermore, the n-state 2DFA constructed are also direction-determinate, and
since it is known that every n-state automaton from this class can be transformed
to an equivalent 1NFA with only

(
n

�n/2�
)

= Θ(1√
n
2n) states [6], this method

cannot possibly provide shortest strings of length 2n or more.
This paper presents an improvement to the method of Dobronravov et al. [3],

based on relaxing the condition of direction-determinacy. A more general class
of semi-direction-determinate two-way automata is introduced, and it is shown
that small examples from this class can be used to construct n-state 2DFA with
shortest accepted strings of exponential length. An example of a 3-state semi-
direction-determinate 2DFA with a shortest string of length 3 is presented in
Sect. 3: to compare, a 3-state direction-determinate 2DFA cannot have shortest
string longer than 2 symbols. In Sect. 4, the construction of Dobronravov et al. [3]
is generalized to support semi-direction-determinate automata.

The original construction uses an alphabet of size linear in n, the new con-
struction may use exponentially many symbols. In Sect. 5, the construction is
improved to use a fixed alphabet independent of n, at the expense of obtaining
shorter longest strings.

The resulting new lower bounds on the length of shortest strings are presented
in Sect. 6. The constructions are based on a provided example of a 4-state semi-
direction-determinate 2DFA with a shortest string of length 6. This leads to
n-state 2DFA over a growing alphabet with shortest strings of length Ω(1.626n)
and 2DFA over a fixed alphabet with shortest strings of length Ω(1.275n).

The last result of this paper is a transformation of n-state semi-direction-
determinate 2DFA to 1NFA with O(1√

n
3n) states.

2 Definitions

Definition 1. A nondeterministic two-way finite automaton (2NFA) is a quin-
tuple A = (Σ,Q,Q0, δ, F), in which:

106 S. Krymski and A. Okhotin

– Σ is a finite alphabet, the tape is bounded by a left end-marker � /∈ Σ, and a
right end-marker � /∈ Σ;

– Q is a finite set of states;
– Q0 ⊆ Q is the set of initial states;
– δ : Q×(Σ∪{�,�}) → 2Q×{−1,+1} is the transition function, which specifies all

possible transitions in a certain state while observing a certain tape symbol;
– F ⊆ Q is the set of accepting states, effective at the right end-marker �.

On an input string w ∈ Σ∗, a 2NFA operates on a read-only tape containing
this string enclosed within end-markers (�w�). It begins its computation in any
initial state at the left end-marker (�). At every step, when A is in a state q ∈ Q
and observes a symbol a ∈ Σ ∪ {�,�}, the transition function δ(q, a) provides
a set of pairs (q′, d) of the next state q′ and the direction of head’s motion,
d ∈ {−1,+1}. If any sequence of nondeterministic choices leads the automaton
to an accepting state while at the right end-marker (�), then the string is said
to be accepted.

The set of all accepted strings, denoted by L(A), is the language recognized
by the 2NFA.

Other types of finite automata are obtained by restricting 2NFA. An automa-
ton is deterministic (2DFA), if |Q0| = 1 and |δ(q, a)| � 1 for all q and a. An
automaton is direction-determinate [10], if, for every state q ∈ Q, all transitions
to q move the head in the same direction d(q) ∈ {−1,+1}.

In a one-way automaton (1DFA or 1NFA), all transitions move its head to
the right, so that the automaton makes a single left-to-right pass, accepting or
rejecting in the end. End-markers are of no use in one-way automata, and are
usually omitted from the definition.

Theorem A (Kapoutsis [7]). For every n-state 2NFA, there exists a 1NFA
with

(
2n
n+1

)
= Θ(1√

n
4n) states, which recognizes the same language.

Since a k-state 1NFA cannot have a shortest accepted string of length greater
than k − 1, this has the following implication.

Corollary B For every n-state 2NFA, the length of the shortest string it accepts
is at most

(
2n
n+1

) − 1.

For direction-determinate automata, the bound in Theorem A is reduced by
adapting the method of Kapoutsis [7] to produce fewer states. Accordingly, the
length of their shortest strings cannot exceed the following bound.

Theorem C (Geffert and Okhotin [6]). For every n-state direction-
determinate 2NFA, there is a 1NFA with

(
n

�n/2�
)

= Θ(1√
n
2n) states that rec-

ognizes the same language.

As far as shortest strings are concerned, 2DFA have the same power as 2NFA.

Theorem D (Dobronravov et al. [3]). For every n-state 2NFA, there exists
an n-state 2DFA with the shortest string of the same length.

The construction increases the size of the alphabet by a factor of nn.

Longer Shortest Strings in Two-Way Finite Automata 107

а1 a2 а1 а3 аа1 a2 а1

Ω(1.414n)

Fig. 1. (left) A 3-pass 2DFA with 2 ·3 states and with a shortest string of length 23−1;
(right) the base automaton.

3 Shortest Strings in 2DFA

Two-way automata with n states and with the shortest string of length expo-
nential in n can be constructed by the following simple method.

Example E ([3]). Assume that n = 2k, with k odd, and let the alphabet be Σk =
{a1, . . . , ak}. Consider a 2DFA that makes k passes over the string. At the first
pass, the automaton regards all symbols a2, . . . , ak as separators, and verifies that
there is at least one symbol a1 between every two separators. Similarly, at each
i-th pass, the symbols ai+1, . . . , ak are regarded as separators, and the automaton
checks that there is at least one symbol ai between every two separators. Each
pass uses two states, and the shortest accepted string is of length 2k − 1.

For k = 3, the computation of the resulting 6-state automaton is illustrated
in Fig. 1(left).

This yields automata with shortest strings of length 2n/2 − 1. Together with
Corollary B, this example shows that the longest length of the shortest string
accepted by an n-state 2DFA is of the order Θ(1)n, where the base is between
1.414 and 4. The question is, what is the exact base?

The method of constructing 2DFA with longer shortest accepted strings,
invented by Dobronravov et al. [3], begins with the following interpretation of
Example E. At each i-th pass, counting up to two can be regarded as a sim-
ulation of a 1DFA presented in Fig. 1(right) on the symbols ai. Any symbols
{a1, . . . , ai−1} encountered are ignored, that is, the 2DFA continues moving with-
out changing its state. For any separator from {ai+1, . . . , ak,�,�}, the 2DFA
checks that the currently simulated instance of the 1DFA is in an accepting
state, and restarts the simulation in anticipation of the next substring enclosed
between two separators.

Dobronravov et al. [3] extended this idea to use a direction-determinate 2DFA
as a base automaton. Direction-determinance is essential for the following rea-
son: when the constructed automaton is at an i-th pass simulating the original
automaton’s being in a state q, and it scans one of the symbols a1, . . . , ai−1

that it is expected to skip, it knows that the state q is reachable only from the

108 S. Krymski and A. Okhotin

а b а a

b aa
b

p
q
r

Fig. 2. (left) A 3-state 2DFA with a shortest string of length 3; (right) the equivalent
1DFA.

direction d(q), and therefore can determine the direction in which to proceed: it
will be d(q) for i odd and −d(q) for i even.

The other component of the proof of Dobronravov et al. [3] is a single exam-
ple of a 5-state direction-determinate 2DFA with a shortest string of length 9.
Iterating it in the same way as in Example E yields a family of n-state 2DFA
with shortest accepted strings of length 10n/5 − 1 = Ω(1.584n) [3].

This paper extends the method of Example E beyond direction-determinate
base automata. The new, less restrictive family of base automata is best illus-
trated by the following small specimen.

Example 1. Let A be a 2DFA over the alphabet Σ = {a, b}, with the states Q =
{p, q, r}, where p is initial and r is accepting, and with the following transitions:

δ(p,�) = (p,+1),
δ(p, a) = (p,+1), δ(q, a) = (r,+1),
δ(p, b) = (q,−1), δ(r, b) = (q,+1).

The shortest string accepted by A is w = aba, as illustrated in Fig. 2(left). To
see that w is indeed the shortest string accepted by A, it is sufficient to transform
this automaton to the minimal equivalent partial 1DFA, which is presented in
Fig. 2(right). The shortest string is clearly visible in the figure.

The above automaton is not direction-determinate, since the state q is enter-
able both from the left and from the right. The new notion of semi-direction-
determinate automata allows such states, but imposes special restrictions on each
of them. This new type of automata, which generalizes direction-determinate
automata, is defined as follows.

Definition 2. A 2DFA (Σ,Q, q0, δ, F) is called semi-direction-determinate, if
there exists a partial function d : Q → {−1,+1}, such that:

1. every transition δ(p, a) = (q, d) leading to a state q with d(q) defined moves
the head in the prescribed direction d = d(q);

2. whenever a transition δ(p, a) = (q, d) leads to a state q with d(q) undefined,
the transition δ(q, a) may either proceed to (q, d), or be undefined.

The 2DFA in Example 1 is semi-direction-determinate, with d(p) = d(r) =
+1 and d(q) undefined. Transitions leading to q are δ(p, b) = (q, −1), and
δ(r, b) = (q,+1); since δ(q, b) is undefined, these transitions are allowed.

Longer Shortest Strings in Two-Way Finite Automata 109

а1 b1 а1 а1 b1 а1а2 а1 b1 а1b2 а1 b1 а1а2
p1
q1
r1
p2
q2
r2

Fig. 3. A 2NFA obtained by iterating the semi-direction-determinate 2DFA in Exam-
ple 1 twice, as it accepts its shortest string.

It turns out that the condition of semi-direction-determinance is sufficient to
iterate the example in generally the same way as in Fig. 1, and thus to obtain
longer shortest strings than presented by Dobronravov et al. [3].

4 Iterating Semi-direction-determinate Automata

The proposed new construction of two-way finite automata, given below, actually
produces a nondeterministic automaton, which is then processed by Theorem D.
A 2NFA obtained in this way, along with its shortest string, is illustrated in
Fig. 3.

Lemma 1. Let A = (Σ,Q, qinit, δ, F) be a semi-direction-determinate 2DFA
with k states, which satisfies a further technical condition: for every state q ∈ Q,
if δ(q,�) is defined, then d(q) = −1, and if δ(q, �) is defined or q ∈ F , then
d(q) = +1. Let � − 1 be the length of the shortest string accepted by A. Then,
for every odd number m � 3, there exists a km-state 2NFA Bm, defined over an
alphabet of size m · |Σ|, with the shortest accepted string of length �m − 1.

Proof. Let Q = Q+1 ∪ Q−1 ∪ Q? be A’s set of states, where Q+1 = { q |
d(q) = +1 }, Q−1 = { q | d(q) = −1 } and Q? = { q | d(q) is not defined }. The
new 2NFA Bm is defined over the alphabet Ω =

⋃m
i=1 Σi, where Σi = { ai |

a ∈ Σ }. It makes m passes over the input. At an i-th pass, with i ∈ {1, . . . , m},
it sees its tape as �u0#1u1#2 . . . #nun�, where #1, . . . ,#n ∈ {ai+1, . . . , am}
are separators and u0, . . . , un ∈ (Σ1∪ . . .∪Σi)∗ are the substrings they separate.

The substrings are processed one by one, from left to right for odd i, and
from right to left for even i. For each string uj , the automaton Bm simulates the
computation of A on that string (if i is odd) or on its reverse (if i is even), taking
into account only symbols ai, with a ∈ Σ. All other symbols aj , with j < i and
a ∈ Σ, are ignored by passing over them without changing the state: for states q
with d(q) defined, the new automaton knows in which direction to proceed; and
if d(q) is undefined, then the automaton moves nondeterministically in either
direction.

110 S. Krymski and A. Okhotin

Each symbol #t separates ut−1 from ut, and when the automaton Bm reaches
this symbol in a state qi, it is expected to simulate the computation of A on
an end-marker. By the technical assumption, A may have a transition or accep-
tance there only if d(q) is defined, and B knows from d(q), whether it currently
simulates A on ui−1 or on ui.

The automaton Bm uses the set of states Qm = { qi | q ∈ Q, i ∈ {1, . . . , m} }.
A state qi means simulating A in the state q ∈ Q at the i-th pass. At odd-
numbered passes, the substrings u0, . . . , un are processed from left to right, and
from right to left at even-numbered passes. Let d(i) be the general direction of
traversal at the i-th pass: d(i) = +1 for odd i and d(i) = −1 for even i.

The automaton Bm is constructed as semi-direction-determinate, with
d(qi) = d(q) · d(i) if d(q) is defined, and d(qi) undefined if so is d(q).

Let the initial transition of A be δ(qinit,�) = r. Then, the initial state of Bm

is qinit1 , with the following initial transition.

δ′(qinit1 ,�) = (r1,+1) (1a)

At every i-th pass, with i ∈ {1, . . . , m}, each A’s transition δ(q, a) = (r, d), with
a ∈ Σ and q, r ∈ Q, is implemented in Bm by the following transition on the
symbol ai with a matching subscript.

δ′(qi, ai) = (ri, d · d(i)) (1b)

Each lesser symbol aj , with j < i and a ∈ Σ, is ignored by continuing in the
same direction. Whenever Bm simulates A in a state q with the direction d(q)
defined, it knows in which direction to proceed.

δ′(qi, aj) = (qi, d(q) · d(i)), for q ∈ Q, d(q) is defined, j < i, a ∈ Σ (1c)

If d(q) is undefined, the automaton Bm can move in either direction nondeter-
ministically (and this is the only place where Bm uses its nondeterminism).

δ′(qi, aj) =
{
(qi,+1), (qi,−1)

}
, for q ∈ Q, d(q) undefined, j < i, a ∈ Σ (1d)

Following these transitions, the automaton can freely move over a substring
x ∈ (Σ1 ∪ . . . ∪ Σi−1)∗ in a state qi. If Bm ever crosses this substring, then it
correctly simulates one transition of A. If it returns to the symbol ai from which
it entered x, then, by the definition of semi-direction-determinancy, it cannot
proceed anywhere else except back into x in the same state qi. For this rea-
son, regardless of the nondeterministic choices it makes, Bm can either continue
simulating A, or loop.

Next, let ci and $i be the end-markers at which the i-th pass begins and
ends, respectively (ci = � and $i = � for i odd, and vice versa for i even). For
each A’s transition δ(q,�) = (r,+1) for turning at the left end-marker, with
q 	= qinit, the new automaton executes the same turn on any separator symbols.

δ′(qi, s) = (ri, d(i)), for s ∈ {ci} ∪ Σi+1 ∪ . . . ∪ Σm (1e)

Longer Shortest Strings in Two-Way Finite Automata 111

Each turn at the right end-marker, δ(q,�) = (r,−1), is implemented similarly.

δ′(qi, s) = (ri,−d(i)), for s ∈ {$i} ∪ Σi+1 ∪ . . . ∪ Σm (1f)

If q ∈ F is an accepting state of A, effective at the right end-marker (�), then Bm

moves on to the next block through a separator symbol: if the initial transition is
δ(qinit,�) = (r,+1), it goes through the separator in the state r, thus simulating
the end of one computation and the beginning of another.

δ′(qi, s) = (ri, d(i)), for s ∈ Σi+1 ∪ . . . ∪ Σm (1g)

When Bm finishes processing the last block at its i-th pass, it proceeds to the
next pass.

δ′(qi, $i) = (ri+1, d(i + 1)) (i < m) (1h)

For i = m, the automaton Bm accepts; accordingly, its set of accepting states is
F ′ = {qm}.

Note that, by the technical assumption, case (1e) is possible only for d(q) =
−1, whereas cases (1f–1h) require d(q) = +1 and are mutually exclusive. Hence,
at most one of these transitions may be defined.

The language recognized by this automaton is expressed as follows. For each
i ∈ {0, 1, . . . ,m}, let Li ⊆ (Σ1 ∪ . . . ∪ Σi)∗ be the language representing all
substrings, on which the computation of A is successfully simulated at the i-th
pass. Then, L0 = {ε}, Li =

⋃
a(1)...a(n)∈L(A) Li−1a

(1)
i Li−1a

(2)
i Li−1 . . . a

(n)
i Li−1

for odd i, and symmetrically for even i. The automaton Bm recognizes exactly
Lm, and the length of the shortest string therein is �m − 1. The proof is omitted
due to space constraints.
�

It is also worth note that, once the transformation in Theorem D is applied
to the 2NFA produced by Lemma 1, the resulting 2DFA is semi-direction-
determinate.

For the 3-state base automaton in Example 1, with a shortest string of length
3, Lemma 1 yields a lower bound Ω(4n/3) = Ω(1.587n) for a growing alphabet.
This already improves over the previously known result.

5 Encoding in a Fixed Alphabet

Example E, as well as all other constructions of DFA with exponentially long
shortest accepted strings known to date, essentially rely on using an alphabet
that grows with n. The construction by Dobronravov et al. [3] uses an alphabet
of size Θ(n); the new construction in Lemma 1 provides a 2NFA using Θ(n)
symbols, which is then turned to a 2DFA with exponentially many symbols.

For a fixed alphabet, no results on the length of shortest accepted strings are
known yet. The first such result shall now be presented. This is an adaptation
of the construction in Lemma 1, in which every symbol aj is replaced by an
encoding over a fixed alphabet; a new 2DFA carries out a computation simular
to the one in Lemma 1. It uses twice as many states as in the original version,
resulting in a weaker lower bound.

112 S. Krymski and A. Okhotin

Lemma 2. Let A = (Σ,Q, qinit, δ, F) be a k-state semi-direction-determinate
2DFA that satisfies the conditions of Lemma 1. Let � − 1 be the length of its
shortest string. Then, for every even number m � 2, there exists a (2(m− 1)k +
3
2m − 1)-state 2NFA Cm, defined over an alphabet with 2|Σ| + 1 symbols, with
the shortest accepted string of length at least �m.

Proof (a sketch). Given a base semi-direction-determinate 2DFA over an alpha-
bet Σ, the new 2NFA uses the alphabet Ω = Σ±1 ∪ {s}, where Σ±1 = { ad |
a ∈ Σ, d ∈ {−1,+1} }. The strings in the original construction shall be encoded
by a homomorphism h, with h(a2j+1) = sja+1s

m−2−j for odd-numbered sym-
bols, and h(a2j+2) = sja−1s

m−2−j for even-numbered symbols.
The new 2DFA shall first check that the input string is a well-formed image

of some string, and then proceed with an m-pass simulation, using 2(m − 1)|Q|
states, cf. m|Q| states in Lemma 1. After the last pass, one more state is used
to move the head to the right end-marker.

Checking that an input string is an image under h takes a partial DFA with
3
2m − 2 states; the construction is easy. For the simulation, the 2DFA shall use
states of the form qi,d, where q ∈ Q, −(m2 −1) � i � m

2 −1 and d ∈ {−1,+1}. The
subscript d indicates the general direction of the current pass, that is, d = +1
for the first pass, d = −1 for the second pass, etc. The subscript i reflects the
number of the current pass whenever the automaton is at the first symbol of the
image of some symbol; as the automaton moves over the image, the subscript
i is in constant rotation: the automaton increments i whenever it moves to the
left, and decrements it when it moves to the right. Once i exceeds m

2 − 1, the
counting is wrapped to −(m2 − 1), and the other way around. This allows the
automaton to compare the number of the current pass to the number of the
encoded symbol.

The computation involves keeping track of several directions, and it order to
explain it more clearly, it shall be described for the case of a left-to-right pass in a
right-moving state. Having entered an image h(a2j+1) = sja+1s

m−2−j in a state
q−i,+1 with d(q) = +1, the automaton moves to the right while inrementing i at
every step, and arrives to the symbol a+1 in the state qj−i,+1. If j − i < 0, this
means that this symbol must be ignored, and the automaton proceeds further to
the right while incrementing i, entering the next image in the same state q−i,+1.

If j − i = 0, the automaton simulates the transition on a. If the original
automaton’s transition was δ(q, a) = (r, d(r)), then the new automaton moves
in the direction d(r) in the state r0+d(r),+1, and eventually moves out of the
image in the direction d(r) in the state r−i,+1.

If j−i > 0, the automaton treats this symbol as an end-marker and takes the
appropriate action. Since the automaton is now in a state qj−i,+1 with d(q) = +1,
this must be a right end-marker. If the original automaton had a transition
δ(q,�) = (r,−1), then the new automaton moves in the direction −1 in the
state rj−i−1,+1, and later reaches the first symbol of the image in the state
r−i,+1, leaving the image to the left. If the original automaton accepts in q, the
new automaton should proceed to the next substring to the right; accordingly,
if the initial transition is δ(qinit,�) = (r,+1), the new automaton moves to the

Longer Shortest Strings in Two-Way Finite Automata 113

right in the state rj−i+1,+1 and eventually leaves the image in the direction +1
in the state r−i,+1.

The full list of transitions is omitted due to space constraints.
�
An immediate application of Lemma 2 yields the following result.

Theorem 1. Let A = (Σ,Q, q0, δ, F) be a k-state semi-direction-determinate
2DFA with a shortest string of length � − 1, which satisfies the conditions of
Lemma 1. Then, there exists a fixed alphabet Γ, such that for every n, there
exists an n-state semi-direction-determinate 2DFA over Γ with a shortest string
of length at leas Ω((2k+3

2
√

�)n).

For instance, the automaton in Example 1 has k = 3 and � = 4, and Lemma 2
provides automata with 15

2 m − 7 states and with a shortest string of length �m.
For an n-state base automaton, the length of the shortest string is then of the
order Ω((42/15)n) = Ω(1.203n).

This can be improved by first iterating the base automaton using Lemma 1,
obtaining a larger base automaton, and only then applying Lemma 2.

Theorem 2. Let A = (Σ,Q, q0, δ, F) be a k-state semi-direction-determinate
2DFA with a shortest string of length � − 1, which satisfies the conditions of
Lemma 1. Then, for every ε > 0, there exists an alphabet Γ, such that for
every n, there exists an n-state semi-direction-determinate 2DFA over Γ with a
shortest string of length at least Ω((k

√
� − ε)n).

With this improvement, the base automaton in Example 1 provides shortest
strings of length Ω((6

√
4 − ε)n) = Ω(1.259n) over a fixed alphabet.

6 Automata with Longer Shortest Strings

The efficiency of the proposed method relies on finding small examples of semi-
direction-determinate 2DFA with long shortest accepting strings. Using a better
base example given below leads to further improvement.

Example 2. Let A be a 2DFA over the alphabet Σ = {a, b, c, d}, with the states
Q = {p, q, r, s}, where p is initial and s is accepting, and with transitions illus-
trated in Fig. 4. It is semi-direction-determinate with d(p) = d(q) = d(s) = +1
and d(r) undefined. The shortest string accepted by A is w = abcdbc, this can
be verified by transforming it to a 1DFA.

Corollary 1. For every n, there exists a semi-direction-determinate 2DFA over
an alphabet of size exponential in n, with a shortest string of length at least
Ω(7n/4) = Ω(1.626n).

114 S. Krymski and A. Okhotin

а b c d b c
p
q
r
s

Fig. 4. A 4-state 2DFA with a shortest string of length 6.

Corollary 2. For every n, there exists a semi-direction-determinate 2DFA over
a fixed alphabet, with a shortest string of length at least Ω((8

√
7 − ε)n) =

Ω(1.275n).

7 Transforming Semi-direction-determinate to One-Way

The method of Donbronravov et al. [3] can potentially provide automata with
shortest strings of length up to at most O(1√

n
2n), since direction-determinate

2DFA can be transformed to 1NFA with this number of states. Although the
proposed new method is not subject to this limitation, it has its own limitations,
revealed by the following result.

Theorem 3. For every n-state semi-direction-determinate 2DFA there exists a
1NFA with

∑n−1
k=0

(
n
k

)(
n−k
k+1

)
= Θ(1√

n
3n) states, which recognizes the same lan-

guage.

The construction is based on the known transformation of an arbitrary 2DFA
to an 1NFA by Kapoutsis [7], Upon reading a prefix u of an input string, the
1NFA remembers the states in which the 2DFA crosses the border between the
last symbol of u and the next symbol to the right. This is represented by a
pair (P,R), with P,R ⊆ Q and |P | = |R| + 1. It turns out that for a semi-
direction-determinate automaton, pairs (P,R) with P ∩ R 	= ∅ are useless and
can be omitted. The number of remaining pairs is

(
n
k

)(
n−k
k+1

)
for a fixed cardinality

|P | = k, and summation over all k yields the desired formula. This is a known
integer sequence, OEIS A005717 [12], and it is of the order Θ(1√

n
3n).

8 Conclusion

This paper has made a new addition to the zoo of different variants of two-
way finite automata, such as sweeping, direction-determinate, halting, reversible,
nondeterministic, alternating, pebble, etc. Understanding the difference between
these variants is an important research subject; in particular, the relative size of
2NFA and 2DFA appears to be the key to solving the L vs. NL problem in the
complexity theory [8]. The length of the shortest string is a natural complexity
measure that may be useful to compare some of these models.

http://oeis.org/A005717

Longer Shortest Strings in Two-Way Finite Automata 115

Table 1. The known bounds on the length of shortest strings for subfamilies of 2DFA.

Family Lower bound Upper bound

Sweeping Ω((3
√

3)n) = Ω(1.442n)
(

n
�n/2�

)
= Θ(1√

n
2n)

Direction-determinate Ω((5
√

10)n) = Ω(1.584n)
(

n
�n/2�

)
= Θ(1√

n
2n)

Semi-direction-determinate Ω((4
√
7)n) = Ω(1.626n) O(1√

n
3n)

All 2DFA, and also 2NFA Ω((4
√
7)n) = Ω(1.626n)

(
2n
n+1

)
= Θ(1√

n
4n)

The known lower and upper bounds on the length of shortest accepted strings
in n-state 2DFA from different subclasses are presented in Table 1. There is still
a long way to go to any precise answers.

Acknowledgement. The authors are grateful to the anonymous reviewers for careful
reading and for pertinent remarks.

References

1. Alpoge, L., Ang, T., Schaeffer, L., Shallit, J.: Decidability and shortest strings in
formal languages. In: Holzer, M., Kutrib, M., Pighizzini, G. (eds.) DCFS 2011.
LNCS, vol. 6808, pp. 55–67. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-22600-7 5

2. Chistikov, D., Czerwiński, W., Hofman, P., Pilipczuk, M., Wehar, M.: Shortest
paths in one-counter systems. In: Jacobs, B., Löding, C. (eds.) FoSSaCS 2016.
LNCS, vol. 9634, pp. 462–478. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49630-5 27

3. Dobronravov, E., Dobronravov, N., Okhotin, A.: On the length of shortest strings
accepted by two-way finite automata. In: Hofman, P., Skrzypczak, M. (eds.) DLT
2019. LNCS, vol. 11647, pp. 88–99. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-24886-4 6

4. Dobronravov, E., Dobronravov, N., Okhotin, A.: On the length of shortest strings
accepted by two-way finite automata, revised full version, submitted

5. Ellul, K., Krawetz, B., Shallit, J., Wang, M.-W.: Regular expressions: new results
and open problems. J. Automata Lang. Comb. 10(4), 407–437 (2005)

6. Geffert, V., Okhotin, A.: One-way simulation of two-way finite automata over small
alphabets. In: NCMA 2013 (Ume̊a, vol. 13–14, Sweden, August 2013

7. Kapoutsis, C.: Removing bidirectionality from nondeterministic finite automata.
In: Jȩdrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp.
544–555. Springer, Heidelberg (2005). https://doi.org/10.1007/11549345 47

8. Kapoutsis, C.A.: Two-way automata versus logarithmic space. Theory Comput.
Syst. 55(2), 421–447 (2014)

9. Kozen, D.: Lower bounds for natural proof systems. In: FOCS 1977, pp. 254–266
(1977). http://dx.doi.org/10.1109/SFCS.1977.16

10. Kunc, M., Okhotin, A.: Reversibility of computations in graph-walking automata.
In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 595–606.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40313-2 53

https://doi.org/10.1007/978-3-642-22600-7_5
https://doi.org/10.1007/978-3-642-22600-7_5
https://doi.org/10.1007/978-3-662-49630-5_27
https://doi.org/10.1007/978-3-662-49630-5_27
https://doi.org/10.1007/978-3-030-24886-4_6
https://doi.org/10.1007/978-3-030-24886-4_6
https://doi.org/10.1007/11549345_47
http://dx.doi.org/10.1109/SFCS.1977.16
https://doi.org/10.1007/978-3-642-40313-2_53

116 S. Krymski and A. Okhotin

11. Pierre, L.: Rational indexes of generators of the cone of context-free lan-
guages. Theor. Comput. Sci. 95(2), 279–305 (1992). https://doi.org/10.1016/0304-
3975(92)90269-L

12. Sloane, N.J.A. (ed.): The On-Line Encyclopedia of Integer Sequences, published
electronically at https://oeis.org

https://doi.org/10.1016/0304-3975(92)90269-L
https://doi.org/10.1016/0304-3975(92)90269-L
https://oeis.org

Iterated Uniform Finite-State
Transducers: Descriptional Complexity

of Nondeterminism and Two-Way Motion

Martin Kutrib1 , Andreas Malcher1 , Carlo Mereghetti2(B) ,
and Beatrice Palano3

1 Institut Für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
{kutrib,andreas.malcher}@informatik.uni-giessen.de

2 Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano via
Celoria 16, 20133 Milano, Italy
carlo.mereghetti@unimi.it

3 Dipartimento di Informatica “G. degli Antoni”, Università degli Studi di Milano
via Celoria 18, 20133 Milano, Italy

palano@unimi.i

Abstract. An iterated uniform finite-state transducer executes the same
length-preserving transduction in iterative sweeps. The first sweep occurs
on the input string, while any subsequent sweep works on the output of
the previous one. We consider devices with one-way motion and two-way
motion, i.e., sweeps are either from left to right only, or alternate from
left to right and from right to left. In addition, devices may work deter-
ministically or nondeterministically. Here, we restrict to study devices
performing a constant number of sweeps, which are known to character-
ize exactly the regular languages. We determine the descriptional costs
of removing two-way motion, nondeterminism, and sweeps, and, in par-
ticular, the costs for the conversion to deterministic or nondeterministic
finite automata. Finally, the special case of unary languages is investi-
gated, and a language family is presented that is immune to the resources
of nondeterminism and two-way motion, in the sense that both resources
can neither reduce the number of states nor the number of sweeps.

Keywords: Iterated transducers · Nondeterminism · Two-way motion

1 Introduction

The notion of an iterated uniform finite-state transducer (iufst) has been intro-
duced in [12]. Basically, it consists of a length-preserving finite-state transducer
that works in iterative sweeps from left to right on its input tape. In the first
sweep the input string is processed, while any further sweep operates on the out-
put of the previous sweep. The model is uniform in the sense that every sweep
always starts in the initial state of the transducer. An input string is accepted
whenever the transducer halts in an accepting state at the end of a sweep.
c© Springer Nature Switzerland AG 2020
G. Jirásková and G. Pighizzini (Eds.): DCFS 2020, LNCS 12442, pp. 117–129, 2020.
https://doi.org/10.1007/978-3-030-62536-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62536-8_10&domain=pdf
http://orcid.org/0000-0002-9564-2625
http://orcid.org/0000-0002-9589-5833
http://orcid.org/0000-0002-7778-7257
http://orcid.org/0000-0003-3948-4658
https://doi.org/10.1007/978-3-030-62536-8_10

118 M. Kutrib et al.

A theoretical investigation of iufsts is motivated by the fact that iterated or
cascade transductions show up in several fields of computer science. For example,
in the context of natural language processing, cascades of finite-state transduc-
ers are used in [8] to extract information from natural language texts. In com-
piler design, the lexical analysis is often done by a finite-state transducer whose
output is subsequently processed by a pushdown transducer implementing the
syntactical analysis. Again, from a theoretical perspective, the Krohn-Rhodes
decomposition theorem states that every regular language can be represented
as a cascade of several finite-state transducers with a simple algebraic struc-
ture [9,11]. Finally, cascades of deterministic pushdown transducers as language
accepting devices have been studied in [7]. Yet, in [6,16], iterated finite-state
transducers as language generating devices have been proposed. It might be
worth noticing that only this latter contribution introduces a notion of “unifor-
mity” on iterated transduction, in the sense that always the same transducer is
iteratively applied.

Deterministic and nondeterministic iufsts have been investigated in [12,13].
For a constant number of sweeps, iufsts characterize the class of regular lan-
guages. So, in both papers, a detailed investigation of constant sweep bounded
iufsts descriptional power has been carried on, tackling classical problems such
as the state cost of: removing nondeterminism (see, e.g., [2]) and sweeps (see,
e.g., [15]), and of implementing language operations (see, e.g., [1,3]). The com-
putational complexity of typical decidability questions (see, e.g., [14]) have also
been studied. In case of a non-constant number of sweeps, non-regular languages
can be accepted as soon as at least a logarithmic number of sweeps is provided.
Moreover, all commonly studied decidability questions are undecidable.

In this paper, we enhance both deterministic and nondeterministic iufsts
with two-way motion. More precisely, differently from the already studied models
where sweeps always go from left to right starting in the initial state, now sweeps
alternate from left to right and from right to left, always starting in the initial
state. We focus on constant sweep bounded devices, still accepting all and only
regular languages, and study their descriptional power with respect to that of
classical finite state automata. Moreover, we emphasize how two-way motion
affects the descriptional power of deterministic and nondeterministic iterated
transduction, and highlight situations where adding both nondeterminism and
two-way motion cannot help in reducing the size of iufsts.

In Sect. 2, we define the models of two-way deterministic and nondeterminis-
tic iufsts (2iufsts), providing an illustrative example of their way of processing
languages. In Sect. 3, we study the state costs of turning nondeterministic iufsts
and 2iufsts into equivalent nfas. We show that both nondeterministic iufsts
and 2iufsts operating with k sweeps and n states can be turned to equivalent
nfas with 2nk states. Moreover, since our conversion algorithm preserves deter-
minism, we get that a deterministic iufst with k sweeps and n states can be
converted into an equivalent dfa with 2nk states as well. In Sect. 4, we study
in more detail the conversions of deterministic devices and present upper and
lower bounds on the state cost for the conversions of deterministic iufsts and

Iterated Uniform Finite-State Transducers 119

2iufsts to equivalent dfas, for the conversion of deterministic 2iufsts to equiv-
alent deterministic iufsts (two-way motion removal), and for the conversion of
nondeterministic 2iufsts to deterministic 2iufsts (nondeterminism removal).
In all cases, the upper and lower bounds on the state cost for the conversions
turn out to be exponential. Finally, in Sect. 5, we discuss the special case of
unary languages (see, e.g., [4,5]). We define a family LΠ(p) of unary languages
accepted by deterministic iufsts with p states and π(p) sweeps, with π(p) the
number of primes not exceeding p, and such that any equivalent deterministic or
nondeterministic iufst or 2iufst needs at least p states and cannot have o(π(p))
sweeps. Hence, accepting LΠ(p) represents a task where the size of iufsts cannot
benefit from the additional resources of nondeterminism and two-way motion.

2 Definitions and Preliminaries

We denote the set of positive integers and zero by N. Given a set S, we write 2S

for its power set and |S| for its cardinality. Let Σ∗ denote the set of all words
over the finite alphabet Σ. The length of a word w is denoted by |w|.

Roughly speaking, an iterated uniform finite-state transducer is a finite-state
transducer which processes the input in multiple passes (also sweeps). In the first
pass, it reads the input word enclosed between endmarkers and emits an output
word. In any of the following passes, it reads the output word of the previous pass
and a new word is output. The number of passes taken, the sweep complexity, is
given as a function of the length of the input. We will consider length-preserving
finite-state transducers, also known as Mealy machines [17], to be iterated.

Formally, we define a nondeterministic iterated uniform finite-state trans-
ducer (niufst) as a system T = 〈Q,Σ,Δ, q0,�,�, δ, F 〉, where Q is the set
of internal states, Σ is the set of input symbols, Δ is the set of output symbols,
q0 ∈ Q is the initial state, � ∈ Δ\Σ and � ∈ Δ\Σ are left and right endmarkers,
respectively, F ⊆ Q is the set of accepting states, and δ : Q × (Σ ∪ Δ) → 2Q×Δ

is the partial transition function. The niufst T halts whenever the transition
function is undefined or T enters an accepting state at the end of a sweep. Since
the transduction is applied in multiple passes, that is, in any but the initial pass
it operates on an output of the previous pass, the transition function depends
on input symbols from Σ ∪ Δ. We denote by T (w) the set of possible outputs
produced by T in a complete sweep on input w ∈ (Σ ∪ Δ)∗.

We distinguish between one-way and two-way computations. In a one-way
computation all sweeps are from left to right, whereas in a two-way computa-
tion the sweeps are alternating from left to right and from right to left. So,
a computation of the niufst T on input w ∈ Σ∗ consists of a sequence of
words w1, . . . , wi, wi+1, . . . ∈ (Σ ∪ Δ)∗. If the computation is one-way then
w1 ∈ T (�w�) and wi+1 ∈ T (wi) for i ≥ 1. If the computation is two-way
then w1 ∈ T (�w�) and wi+1 ∈ T (wi) for even i ≥ 2, and wR

i+1 ∈ T (wR
i) for

odd i ≥ 1. We denote an iterated uniform finite-state transducer operating in
one-way (resp., two-way) mode by niufst (resp., 2niufst).

An iterated uniform finite-state transducer is said to be deterministic (iufst,
2iufst) if and only if |δ(p, x)| ≤ 1, for all p ∈ Q and x ∈ (Σ ∪ Δ). In this case,

120 M. Kutrib et al.

we simply write δ(p, x) = (q, y) instead of δ(p, x) = {(q, y)} assuming that the
transition function is a mapping δ : Q × (Σ ∪ Δ) → Q × Δ.

Now we turn to language acceptance. For nondeterministic computations
and some complexity bound, several acceptance modes can be considered. For
instance, a machine accepts a language L ⊆ Σ∗ in the weak mode if for any w ∈ L
an accepting computation exists obeying the complexity bound. Instead, L is
accepted in the strong mode if the machine obeys the complexity bound for all
computations (accepting or not) on every w ∈ Σ∗. Here we deal with the num-
ber of sweeps as (computational) complexity measure. The weak mode seems too
optimistic for this measure, while the strong mode seems too restrictive. There-
fore, we consider an intermediate mode, the so-called accept mode. A language is
accepted in the accept mode if all accepting computations obey the complexity
bound (see [18] for separation of these modes with respect to space complexity).

A computation is halting if there exists an r ≥ 1 such that T halts on
wr, thus performing r sweeps. The input word w ∈ Σ∗ is accepted by T if at
least one computation on w halts at the end of a sweep in an accepting state.
Otherwise it is rejected. Indeed, the output of the last sweep is not used. The
language accepted by T is the set L(T) ⊆ Σ∗ defined as L(T) = {w ∈ Σ∗ |
w is accepted by T }.

Given a function s : N → N, an iterated uniform finite-state transducer T
is said to be of sweep complexity s(n) if for all w ∈ L(T) all accepting compu-
tations on w halt after at most s(|w|) sweeps. In this case, we add the prefix
s(n)- to the notation of the device. It is easy to see that 1-iufsts as well as
1-2iufsts (resp., 1-niufsts as well as 1-2niufsts) are actually deterministic
(resp., nondeterministic) finite automata (dfas and nfas, respectively).

Example 1. For any n, k > 0, the unary language Ln,k = { ac·nk | c ≥ 0 } is
accepted by the n-state k-2iufst T = 〈Q,Σ,Δ, q0,�0,�0, δ, F 〉, with Σ = {a},
Q = {q0, . . . , qn−1}, Δ = {a, �, #,�0, . . . ,�k−1,�0, . . . ,�k−1}, F = {q0}. To
explain the definition of the transition function δ, we first implement the behavior
of T on the endmarkers. In general, the sweep number is identified by the indexes
of the endmarkers. Since q0 is the accepting state, the last step of all but the
last sweep sends T into state q1 to avoid to accept accidentally:

(1) δ(q0, �i) = (q0, �i+1) (2) δ(q0, �i) = (q1, �i+1) for even 0 ≤ i ≤ k − 2,

(3) δ(q0, �i) = (q0, �i+1) (4) δ(q0, �i) = (q1, �i+1) for odd1 ≤ i ≤ k − 2.

In the first sweep, T verifies that the length of the input is divisible by n
and rewrites the input as a sequence of consecutive blocks of the form #�n−1:
(5) δ(q0, a) = (q1, #), (6) δ(qi, a) = (qi+1, �) for 1 ≤ i ≤ n − 2,

(7) δ(qn−1, a) = (q0, �).
In the following k−1 sweeps, T verifies that the number of # symbols is divisible
by n and, from each n symbols #, one remains and n − 1 are replaced by �:
(8) δ(qi, �) = (qi, �) for 0 ≤ i ≤ n − 1,

(9) δ(qi, #) = (qi+1, �) for 0 ≤ i ≤ n − 2, (10) δ(qn−1, #) = (q0, #).

In the last sweep, the endmarkers do not have to be rewritten. If the divisibility
check is positive, the last step sends T into state q0 and, thus T halts accepting:

(11) δ(q0, �k−1) = (q0, �k−1), (12) δ(q0, �k−1) = (q0, �k−1).

Iterated Uniform Finite-State Transducers 121

By construction, T accepts if all divisibility checks are positive. Let m be the
length of an input from language Ln,k. After the first sweep all blocks have
length n, thus, there are m/n symbols # in the output. After the ith sweep there
are m/ni symbols # in the output. So, after the kth sweep it is verified the length
of the input is a multiple of nk. On the other hand, the sole accepting state q0 is
never entered at the end of the first k − 1 sweeps. So, accepting is only possible
after the last sweep. To see that no input of incorrect length is accepted it is
sufficient to look at the states reached at the end of a sweep. If it turns out that
the length of the input is not divisible by n (first sweep) or the number of #
symbols is not divisible by n (remaining sweeps), the sweep ends in some state
unequal to q0 on the endmarker. However, the transition function is undefined
for such situations and T halts in a non-accepting state. �

3 Complexity of Mutual Nondeterministic Simulations

We study the simulation of 2niufsts by nfas, thus restricting to a constant
number of sweeps. The underlying idea of this simulation combines the reverse
guessing and verifying of sweeps with merging several sweeps into one.

Theorem 2. Let k ≥ 1 be an integer. Every n-state k-2niufst can be converted
to an equivalent nfa with at most 2nk states.

Proof. Let T = 〈Q,Σ,Δ, q0,�,�, δ, F 〉 be a k-2niufst with |Q| = n. The nfa N
equivalent to T we are going to construct simulates in its states the k sweeps of T
in parallel, where odd sweeps are simulated directly and even sweeps (which T
performs right to left) are guessed and verified. One problem to cope with is
that T may get stuck in some sweep j ≤ k but an earlier sweep 1 ≤ i < j ends
accepting. To manage this situation the nfa N has to continue the simulation of
all sweeps 1 ≤ i < j and, at the same time, has to remember that the results of all
sweeps after i are irrelevant. Moreover, N has to overcome the problem to verify
an accepting right-to-left sweep of T and to keep the information that the sweep
is initially guessed to be accepting during the simulation. The latter problem
is coped with as follows. If in the first step some even sweep i is guessed to be
accepting then the simulation does not need to care about subsequent sweeps.
Either the guess can be verified and the input would be accepted in the ith sweep
or the guess was wrong and the simulation of all subsequent sweeps ends non-
accepting. So, if in the first step some even sweep i is guessed to be accepting,
all later sweeps are performed by some dummy state d. This means that at most
one simulated right-to-left sweep is initially guessed to be accepting. Moreover,
whenever initially no right-to-left sweep is guessed to be accepting then the last
sweep can be performed by the dummy state if k is even. In particular we have the
following situation. If N is currently simulating an even number of non-dummy
sweeps, the last one is guessed to be accepting and it is the only right-to-left
sweep with this property. If N is currently simulating an odd number of non-
dummy sweeps, there is no possibly accepting right-to-left sweep. This situation
can be kept when a simulated sweep gets stuck. If it is an even sweep it can

122 M. Kutrib et al.

be turned into a dummy sweep and the number of non-dummy sweeps becomes
odd. If it is an odd sweep it can be turned into a dummy sweep together with
its predecessor sweep and the number of non-dummy sweeps remains odd.

Formally, the state set of N is defined as Q′ =
⋃k

i=0 Qi × {d}k−i, where d is
a new state not in Q. The initial state q′

0 ∈ Q′ is (q0, q0, . . . , q0). The transition
function δ′ : Q′×Σ → 2Q′

is defined by a procedure that determines the successor
states. For the initial step, we define (r1, r2, . . . , rk) ∈ δ′((q0, q0, . . . , q0),�) as:
1: r0 := q0; y0 := �; dummynow := false;
2: for i = 1 to k do
3: if dummynow then
4: (ri, yi) := (d, yi−1);
5: else if i is odd then
6: S := δ(q0, yi−1);
7: if S �= ∅ then guess (ri, yi) ∈ S;
8: else
9: (ri, yi) := (d, yi−1); (ri−1, yi−1) := (d, yi−1);

10: dummynow := true;
11: end if
12: else if i is even then
13: S := { (p, y) | (q, y) ∈ δ(p, yi−1) };
14: if S �= ∅ then guess (ri, yi) ∈ S;
15: if δ(ri, yi−1) yields some accepting state then
16: dummynow := true;
17: end if
18: else (ri, yi) := (d, yi−1); dummynow := true;
19: end if
20: end if
21: end for

Further steps are similar but not identical. In particular, the guessed reverse
right-to-left sweeps have to be verified step by step. So, for x ∈ Σ ∪ {�} we
obtain (r1, r2, . . . , rk) ∈ δ′((s1, s2, . . . , sk), x) as:

1: r0 := q0; y0 := x; dummynow := false;
2: for i = 1 to k do
3: if dummynow or si = d then
4: (ri, yi) := (d, yi−1);
5: else if i is odd then
6: S := δ(si, yi−1);
7: if S �= ∅ then guess (ri, yi) ∈ S;
8: else
9: (ri, yi) := (d, yi−1); (ri−1, yi−1) := (d, yi−1);

10: dummynow := true;
11: end if
12: else if i is even then
13: S := { (p, y) | (si, y) ∈ δ(p, yi−1) };
14: if S �= ∅ then guess (ri, yi) ∈ S;
15: else (ri, yi) := (d, yi−1); dummynow := true;
16: end if
17: end if
18: end for

Iterated Uniform Finite-State Transducers 123

To define the set of accepting states of N , we notice that δ′ is well defined even
on the symbol �. If T accepts (for the first time) at the end of a sweep i, the
nfa N can simulate T at least up to that sweep successfully. So, for odd i, any
state (r1, r2, . . . , rk) ∈ Q′ with an ri ∈ F is accepting for N . For even i, the nfa
has simulated exactly i sweeps of T and ri+1 = ri+2 = · · · = rk = d. Moreover,
the initially guessed accepting sweep i can be verified, that is, state ri is the
initial state q0 of T . So, any state (r1, r2, . . . , ri, d, d, . . . , d) ∈ Q′ with an ri = q0
is accepting for N . Finally, for n ≥ 2, |Q′| =

∑k
i=0 ni = nk+1−1

n−1 ≤ 2nk.
�
A direct construction yields the same upper bound for the conversion of

a one-way n-state k-niufst to an equivalent nfa as for the two-way to nfa
conversion. In fact, a simplified version of the proof of Theorem 2 can be applied,
where only left-to-right sweeps have to be simulated. This can be done in parallel
but directly. Moreover, the construction preserves determinism.

Theorem 3. Let k ≥ 1 be an integer. Every n-state k-niufst (k-iufst) can be
converted to an equivalent nfa (dfa) with at most 2nk states.

4 Costs of Simulations Involving Deterministic Devices

The mutual simulations of nondeterministic iterated uniform finite state trans-
ducers revealed that the ability to perform sweeps in the two-way mode helps
only a little to save states compared with the one-way mode and vice versa. The
situation changes drastically in the deterministic case.

We first define a language that witnesses the descriptional power of two-way
sweeping in the deterministic case. Namely, for any integers n, k ≥ 1, we let

En,k = {w | w ∈ {a, b}∗b{a, b}nk−1 }.

Lemma 4. (i) For any n ≥ 2 and even k ≥ 2, the language En,k can be accepted
by a k-2iufst with n2 + 1 states. (ii) For any n ≥ 2 and odd k ≥ 3, the
language En,k can be accepted by a (k + 1)-2iufst with n2 states.

Since any dfa accepting language En,k has at least 2nk

states, Lemma 4
yields a lower bound for the conversion of a k-2iufst to a dfa.

Theorem 5. Let n ≥ 2 and k ≥ 2. If k is even (resp., odd), at least 2(n−1)k/2

(resp., 2n(k−1)/2
) states are necessary in the worst case for a dfa to accept the

language of an n-state k-2iufst.

A size upper bound for turning k-2iufsts to dfas is derived in the following

Theorem 6. Let k ≥ 1 be an integer. Every n-state k-2iufst can be converted
to an equivalent dfa with at most 22nk

states.

Proof. A given n-state k-2iufst is in particular an n-state k-2niufst which in
turn can be converted to an equivalent nfa with at most 2nk states by Theo-
rem 2. Determinization of the nfa gives a dfa with at most 22nk

states.
�

124 M. Kutrib et al.

Next we turn to discuss the descriptional capacity gained in two-way sweeping
compared with one-way sweeping. In the nondeterministic case it was sufficient
to double the number of states to make two-way sweeping one-way and vice
versa. Theorem 6 gives the upper bound of 22nk

states for the two-way to one-
way conversion in the deterministic case. This upper bound includes the sweep
reduction to one. However, we also derive a lower bound that is much more
costly than in the nondeterministic case.

Theorem 7. Let n ≥ 2 and k ≥ 2. (i) Every n-state k-2iufst can be converted
to an equivalent k-iufst with at most 22nk

states. (ii) If k is even (resp., odd),

at least 2((n−1)
k
2 −1)/k (resp., 2(n

k−1
2 −1)/k−1) states are necessary in the worst

case for a k-iufst to accept the language of an n-state k-2iufst.

Proof. It suffices to prove the lower bound. Let k be even. By Lemma 4, the
language En,k is accepted by a k-2iufst T ′ with n′ = n2 + 1 states. Assume T ′

can be turned to a k-iufst T with strictly less than 2
(n′−1)

k
2 −1

k = 2
nk−1

k states.
By Theorem 3, T transforms to an equivalent dfa with strictly less than 2nk

states, a contradiction since each dfa accepting En,k has at least 2nk

states.
Similarly, we derive a contradiction for odd k. By Theorem 3, the language En,k is
accepted by a k′-2iufst T ′ with k′ = k+1 sweeps and n′ = n2 states. Assume T ′

can be turned to a k-iufst T with strictly less than 2
n

′ k
′−1
2 −1

k′−1 = 2
nk−1

k states.
As in the even case, this would result in a dfa accepting En,k with strictly less
than 2nk

states, a contradiction.
�
The next result shows that making one-way sweeping two-way is much

cheaper than the converse, in sharp contrast to the nondeterministic case.

Theorem 8. Let n ≥ 2 and k ≥ 2. Every n-state k-iufst can be converted to
an equivalent k-2iufst with at most n2 states.

Finally we turn to discuss the descriptional complexity of determinization. An
upper bound for the determinization of a k-niufst can be derived with the help
of Theorem 3, where it is shown that every n-state k-niufst can be converted to
an equivalent nfa with at most 2nk states. By the usual powerset construction
one obtains an equivalent dfa with at most 22nk

states. A lower bound has been
shown for the witness language { vbw | v, w ∈ {a, b}∗, |w| = c · nk for c > 0 }
that is accepted by some (n + 1)-state k-niufst [13]. On the other hand, any
equivalent dfa needs at least 2nk+1 states.

Theorem 9. Let n ≥ 2 and k ≥ 1. (i) Every n-state k-niufst can be turned to
an equivalent dfa with at most 22nk

states. (ii) At least 2(n−1)k+1 states are nec-
essary in the worst case for a dfa to accept the language of an n-state k-niufst.

Since the costs for converting between one-way and two-way mode for nonde-
terministic devices are cheap, a similar result can be derived for the conversion

Iterated Uniform Finite-State Transducers 125

from k-2niufst to dfa. However, since this conversion not only determinizes
the device but also reduces the number of sweeps to its minimum, and since the
conversion from two-way to one-way is expensive for deterministic devices, it is
not clear where the expensive costs appear when a k-2niufst is converted to a
dfa. So, we consider next the determinization from k-2niufst to k-2iufst. To
this end, for n, k ≥ 2, we consider the language

Sn,k = {u1$u2$ · · · $ur#v1$v2$ · · · $vs | r, s ≥ 0,

ui, vi ∈ {a, b}k�log n�, {u1, u2, . . . , ur} �= {v1, v2, . . . , vs} },

for which an O(n log n)-state k-2niufst T can be constructed.

Lemma 10. Let k ≥ 2 and n = 2i for some i ≥ 1. Any k-2iufst for Sn,k has
at least 2(n

k−1)/k states.

Proof. Let T = 〈Q,Σ,Δ, q0,�,�, δ, F 〉 be a k-2iufst accepting Sn,k. For sub-
sets {u1, u2, . . . , ur} of {a, b}k log n, we consider computations on inputs of the
form u#u, where u = u1$u2$ · · · $ur. In particular, we consider the states in
which T enters the # symbol during left-to-right sweeps and in which T leaves
the # symbol during right-to-left sweeps. Since T may perform up to k sweeps,
depending on u this sequence of states has a length of at most k.

Assume that for two different subsets {u1, u2, . . . , ur} and {v1, v2, . . . , vs}
the sequences of states coincide. Since neither u#u nor v#v belongs to Sn,k, both
inputs are not accepted. Now we consider the computation of T on input u#v.
Since the state sequences are identical, the behavior of T on the prefix u is the
same as on the prefix u in the computation on u#u. Similarly, the behavior of T
on the suffix #v is the same as on the suffix #v in the computation on v#v.
Therefore, the input u#v is not accepted by T . However, since u and v are based
on different subsets the word u#v belongs to Sn,k. From the contradiction we
conclude that the sequence of states is different for all subsets of {a, b}k log n.

Let m = |Q|. Then there are at most
∑k

i=0 mi = mk+1−1
m−1 ≤ 2mk different

state sequences up to length k. On the other hand, |{a, b}k log n| = nk and, thus,
there are 2nk

different subsets. From 2mk ≥ 2nk

we derive m ≥ 2(n
k−1)/k.
�

By the upper bound from previous results and the lower bound of Lemma 10,
the size cost of determinizing k-2niufst is stated in the following

Theorem 11. Let k ≥ 2. (i) For n ≥ 1, every n-state k-2niufst can be con-
verted to an equivalent dfa (and, thus, to a k-2iufst) with at most 22nk

states.
(ii) For n = 2i with i ≥ 1, at least 2(n

k−1)/k states are necessary in the worst
case for a k-2iufst to accept the language of an O(n log n)-state k-2niufst.

5 Iterated Transduction on Unary Languages

In this section, we single out a family of unary languages whose acceptance by
iterated transduction is particularly hard from a size complexity point of view.

126 M. Kutrib et al.

In fact, we prove that the size of iterated transducers for such family cannot be
lowered by the use of both nondeterminism and two-way motion. On the other
hand, accepting this family by iterated transduction leads to extremely small
devices if compared with equivalent classical finite automata.

To cleverly cope with unary languages, we need to briefly recall some basic
results in Number Theory concerning the distribution of primes (see, e.g.., [10]).
In what follows, by ln we denote the natural logarithm. For any real number x,
let P(x) = { p ∈ N | p } ≤ x and p prime be the set of prime numbers
not exceeding x. By the well-known Prime Number Theorem, the cardinality
π(x) of P(x) satisfies π(x) ∼ x/ ln x (i.e., limx→+∞

π(x)
x/ lnx = 1). Closely related

to π(x), the Chebyshev function ϑ(x) =
∑

p∈P(x) ln p is deeply investigated, for
which ϑ(x) ∼ x holds true. From this latter result, one may easily see that the
primorial function Π(x) =

∏
p∈P(x) p has an asymptotic behavior as Π(x) ∼ ex.

By iterating sum instead of product, the function Σ(x) =
∑

p∈P(x) p can be
defined, whose asymptotic behavior turns out to be Σ(x) ∼ x2/(2 ln x).

We are now ready to define our family of unary regular languages, and design
succinct iufsts for their acceptance. Given a prime number p, we let

LΠ(p) = { 0c·Π(p) | c ≥ 0 }.

Theorem 12. The language LΠ(p) can be accepted by a p-state π(p)-iufst.

Let us now turn to compare the size of the p-state π(p)-iufst T for LΠ(p)

presented in Theorem 12 with that of equivalent dfas and nfas: (i) By pumping
arguments, it is not hard to see that Π(p) states are necessary and sufficient for
dfas and nfas to accept LΠ(p). (ii) As recalled at the beginning of this section,
we have Π(p) ∼ ep. Thus, for large primes p, our p-state iufst T for LΠ(p) turns
out to be exponentially smaller than any equivalent dfa and nfa.

We can prove that this exponential gap cannot be further enlarged by showing
that T simultaneously uses the minimum possible amount of states and sweeps.
The minimality of T in terms of states is provided in the following theorem.

Theorem 13. Any iufst accepting LΠ(p) must use at least p states, regardless
the number of performed sweeps.

Proof. In [12, Thm. 3], it is proved that, for any given prime p, the language
Lp = { 0c·p | c ≥ 0 } cannot be accepted by any iufst with less than p states.
The proof goes by contradiction, assuming the existence of a iufst T for Lp

with less than p states. A string 0c·p ∈ Lp, for c large enough, is then taken. By
a fooling argument, it is shown that T accepts 0c·p if and only if it accepts the
string 0c·p−α as well, α being a product of numbers all strictly less than p. This
contradicts the fact that 0c·p−α does not belong to Lp, whence the result.

This approach adapts to LΠ(p) as follows. We suppose, by contradiction, the
existence of a iufst T for LΠ(p) with less than p states, and now take 0c·p, for c
being a large enough multiple of Π(p)/p, as a fooling string. Clearly, 0c·p belongs
to LΠ(p) and, as above, it is proved to be accepted by T if and only if the string

Iterated Uniform Finite-State Transducers 127

0c·p−α is accepted as well, α being a product of numbers all strictly less than p.
However, 0c·p−α does not belong to LΠ(p), and hence we get the result.
�

Instead, the next theorem states the minimality of our T in terms of sweeps.

Theorem 14. For large primes p, any p-state iufst accepting LΠ(p) cannot use
a number of sweeps which is o(π(p)).

Proof. According to Theorem 3, from any given p-state k-iufst for LΠ(p), we
can obtain an equivalent 2pk-state dfa. By recalling (i) above, we have that
the minimal dfa for LΠ(p) has Π(p) states. So, we must have 2pk ≥ Π(p), or
equivalently, k ≥ ln Π(p)

2 / ln p. For large primes p, we have that Π(p) ∼ ep and
π(p) ∼ p/ ln p. So, k �∈ o((ln ep − ln 2)/ ln p) ⇒ k �∈ o(p/ ln p) ⇒ k �∈ o(π(p)).
�

Even using nondeterministic iterated transduction for accepting LΠ(p) does
not lead to smaller devices. In fact, we obtain similar minimality results on the
number of states and sweeps for niufsts accepting the language LΠ(p):

Theorem 15. (i) The language LΠ(p) can be accepted by a p-state π(p)-niufst.
(ii) Any niufst accepting LΠ(p) must use at least p states, regardless the number
of performed sweeps. (iii) For large primes p, any p-state niufst accepting LΠ(p)

cannot use a number of sweeps which is o(π(p)).

Proof. (i) Clearly, the p-state π(p)-iufst provided in Theorem 12 for LΠ(p) can
be seen as a niufst. (ii) We can use the pumping argument in Theorem 13. Here,
we fool any niufst with less than p states by focusing on an accepting compu-
tation for a string 0c·p ∈ LΠ(p), for c being a large enough multiple of Π(p)/p.
(iii) By Theorem 3, any given p-state k-niufst for LΠ(p) can be turned into an
equivalent 2pk-state nfa. By (i) before Theorem 13, a minimal nfa for LΠ(p)

has Π(p) states. So, 2pk ≥ Π(p), or equivalently, k ≥ ln Π(p)
2 / ln p. The result

follows since, for large primes p, we have that Π(p) ∼ ep.
�
Let us add more features to our iufsts, in the attempt of shrinking the

hardware to accept LΠ(p). So, together with nondeterminism, we also allow two-
way motion. The next theorem shows that even this enhancement does not help.

Theorem 16. (i) The language LΠ(p) can be accepted by a p-state π(p)-2iufst.
(ii) Any 2niufst accepting LΠ(p) must use at least p states, regardless the num-
ber of performed sweeps. (iii) For large primes p, any p-state 2niufst accept-
ing LΠ(p) cannot use a number of sweeps which is o(π(p)).

We conclude by comparing the size of the p-state π(p)-iufst for LΠ(p) pre-
sented in Theorem 12 with that of equivalent one-way isolated cut point prob-
abilistic automata (pfas) [19,21], two-way dfas (2dfas), and two-way nfas
(2nfas): (i) By [19, Thm. 2.8], we get that Σ(p) states are necessary and sufficient
for pfas to accept LΠ(p). By [20, Thm. 9], this size complexity result extends to
2dfas and 2nfas as well. (ii) As noted at the beginning of this section, we have
Σ(p) ∼ p2/(2 ln p). So, for large primes p, our p-state iufst for LΠ(p) turns out
to be almost quadratically smaller than any equivalent pfa, 2dfa, and 2nfa.

128 M. Kutrib et al.

Acknowledgement. The authors wish to thank the anonymous referees for their kind
comments.

References

1. Bednárová, Z., Geffert, V., Mereghetti, C., Palano, B.: The size-cost of Boolean
operations on constant height deterministic pushdown automata. Thoer. Comput.
Sci. 449, 23–36 (2012)

2. Bednárová, Z., Geffert, V., Mereghetti, C., Palano, B.: Removing nondeterminism
in constant height pushdown automata. Inf. Comput. 237, 257–267 (2014)

3. Bertoni, A., Mereghetti, C., Palano, B.: Trace monoids with idempotent generators
and measure only quantum automata. Natl. Comput. 9, 383–395 (2010)

4. Bianchi, M.P., Mereghetti, C., Palano, B.: Complexity of promise problems on
classical and quantum automata. In: Calude, C.S., Freivalds, R., Kazuo, I. (eds.)
Computing with New Resources. LNCS, vol. 8808, pp. 161–175. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-13350-8 12

5. Bianchi, M.P., Palano, B.: Behaviours of unary quantum automata. Fund. Inf. 104,
1–15 (2010)

6. Bordihn, H., Fernau, H., Holzer, M., Manca, V., Mart́ın-Vide, C.: Iterated sequen-
tial transducers as language generating devices. Theor. Comput. Sci. 369, 67–81
(2006)

7. Citrini, C., Crespi-Reghizzi, S., Mandrioli, D.: On deterministic multi-pass analysis.
SIAM J. Comput. 15, 668–693 (1986)

8. Friburger, N., Maurel, D.: Finite-state transducer cascades to extract named enti-
ties in texts. Theor. Comput. Sci. 313, 93–104 (2004)

9. Ginzburg, A.: Algebraic Theory of Automata. Academic Press, New York (1968)
10. Hardy, G., Wright, E.: An Introduction to the Theory of Numbers, 5th edn. Oxford

University Press, Oxford (1979)
11. Hartmanis, J., Stearns, R.E.: Algebraic Structure Theory of Sequential Machines.

Prentice-Hall, Englewood Cliffs (1966)
12. Kutrib, M., Malcher, A., Mereghetti, C., Palano, B.: Descriptional complexity of

iterated uniform finite-state transducers. In: Hospodár, M., Jirásková, G., Kon-
stantinidis, S. (eds.) DCFS 2019. LNCS, vol. 11612, pp. 223–234. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-23247-4 17

13. Kutrib, M., Malcher, A., Mereghetti, C., Palano, B.: Deterministic and nondeter-
ministic iterated uniform finite-state transducers: computational and descriptional
power. In: Anselmo, M., Della Vedova, G., Manea, F., Pauly, A. (eds.) CiE 2020.
LNCS, vol. 12098, pp. 87–99. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-51466-2 8

14. Kutrib, M., Malcher, A., Mereghetti, C., Palano, B., Wendlandt, M.: Determinis-
tic input-driven queue automata: finite turns, decidability, and closure properties.
Theor. Comput. Sci. 578, 58–71 (2015)

15. Malcher, A., Mereghetti, C., Palano, B.: Descriptional complexity of two-way push-
down automata with restricted head reversals. Theor. Comput. Sci. 449, 119–133
(2012)

16. Manca, V.: On the generative power of iterated transductions. In: Words, Semi-
groups, and Transductions - Festschrift in Honor of Gabriel Thierrin, pp. 315–327.
World Scientific (2001)

17. Mealy, G.H.: A method for synthesizing sequential circuits. Bell Syst. Tech. J. 34,
1045–1079 (1955)

https://doi.org/10.1007/978-3-319-13350-8_12
https://doi.org/10.1007/978-3-030-23247-4_17
https://doi.org/10.1007/978-3-030-51466-2_8
https://doi.org/10.1007/978-3-030-51466-2_8

Iterated Uniform Finite-State Transducers 129

18. Mereghetti, C.: Testing the descriptional power of small Turing machines on non-
regular language acceptance. Int. J. Found. Comput. Sci. 19, 827–843 (2008)

19. Mereghetti, C., Palano, B., Pighizzini, G.: Note on the succinctness of determinis-
tic, nondeterministic, probabilistic and quantum finite automata. Theor. Inf. Appl.
35, 477–490 (2001)

20. Mereghetti, C., Pighizzini, G.: Two-way automata simulations and unary lan-
guages. J. Autom. Lang. Comb. 5, 287–300 (2000)

21. Rabin, M.O.: Probabilistic automata. Inf. Control 6, 230–245 (1963)

Descriptional Complexity of Winning
Sets of Regular Languages

Pierre Marcus1 and Ilkka Törmä2(B)

1 M2 Informatique Fondamentale, École Normale Supérieure de Lyon, Lyon, France
pierre.marcus@ens-lyon.fr

2 Department of Mathematics and Statistics, University of Turku, Turku, Finland
iatorm@utu.fi

Abstract. We investigate certain word-construction games with vari-
able turn orders. In these games, Alice and Bob take turns on choosing
consecutive letters of a word of fixed length, with Alice winning if the
result lies in a predetermined target language. The turn orders that result
in a win for Alice form a binary language that is regular whenever the
target language is, and we prove some upper and lower bounds for its
state complexity based on that of the target language.

Keywords: State complexity · Regular languages · Winning sets

1 Introduction

Let us define a word-construction game of two players, Alice and Bob, as follows.
Choose a set of binary words L ⊆ {0, 1}∗ called the target set, a length n ≥ 0 and
a word w ∈ {A,B}n called the turn order, where A stands for Alice and B for
Bob. The players construct a word v ∈ {0, 1}n so that, for each i = 0, 1, . . . , n−1
in this order, the player specified by wi chooses the symbol vi. If v ∈ L, then Alice
wins the game, and otherwise Bob wins. The existence of a winning strategy for
Alice depends on both the target set and the turn order. We fix the target set
L and define its winning set W (L) as the set of those words over {A,B} that
result in Alice having a winning strategy.

Winning sets were defined under this name in [9] in the context of symbolic
dynamics, but they have been studied before that under the name of order-
shattering sets in [1,4]. The winning set has several interesting properties: it is
downward closed in the index-wise partial order induced by A < B (as changing
B to A always makes the game easier for Alice) and it preserves the number of
words of each length. This latter property was used in [8] to study the growth
rates of substitutive subshifts.

If the language L is regular, then so is W (L), as it can be recognized by
an alternating finite automaton (AFA) [9], which only recognizes regular lan-
guages [3]. Thus we can view W as an operation on the class of binary regular

I. Törmä—Author supported by Academy of Finland grant 295095.

c© Springer Nature Switzerland AG 2020
G. Jirásková and G. Pighizzini (Eds.): DCFS 2020, LNCS 12442, pp. 130–141, 2020.
https://doi.org/10.1007/978-3-030-62536-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62536-8_11&domain=pdf
http://orcid.org/0000-0001-5541-8517
https://doi.org/10.1007/978-3-030-62536-8_11

Descriptional Complexity of Winning Sets of Regular Languages 131

languages, and in this article we study its state complexity in the general case
and in several subclasses. In our construction the AFA has the same state set
as the original DFA, so our setting resembles parity games, where two players
construct a path in a finite automaton [10]. The main difference is that in a
parity game, the player who chooses the next move is the owner of the current
state, whereas here it is determined by the turn order word.

In the general case, the size of the minimal DFA for W (L) can be doubly
exponential in that of L. We derive a lower, but still superexponential, upper
bound for bounded regular languages (languages that satisfy L ⊆ w∗

1w
∗
2 · · · w∗

k for
some words wi). We also study certain bounded permutation invariant languages,
where membership is defined only by the number of occurrences of each symbol.
In particular, we explicitly determine the winning sets of the languages Lk =
(0∗1)k0∗ of words with exactly k occurrences of 1.

In this article we only consider the binary alphabet, but we note that the
definition of the winning set can be extended to languages L ⊆ Σ∗ over an
arbitrary finite alphabet Σ in a way that preserves the properties of downward
closedness and |L| = |W (L)|. The turn order word is replaced by a word w ∈
{1, . . . , |Σ|}∗. On turn i, Alice chooses a subset of size wi of Σ, and Bob chooses
the letter vi from this set.

2 Definitions

We present the standard definitions and notations used in this article. For a set
Σ, we denote by Σ∗ the set of finite words over it, and the length of a word
w ∈ Σn is |w| = n. The notation |w|a means the number of occurrences of
symbol a ∈ Σ in w. The empty word is denoted by λ. For a language L ⊆ Σ∗

and w ∈ Σ∗, denote w−1L = {v ∈ Σ∗ | wv ∈ L}. We say L is (word-)bounded
if L ⊆ w∗

1 · · · w∗
k for some words w1, . . . , wk ∈ Σ∗. Bounded languages have been

studied from the state complexity point of view in [5].
A finite state automaton is a tuple A = (Q,Σ, q0, δ, F) where Q is a finite

state set, Σ a finite alphabet, q0 ∈ Q the initial state, δ is the transition function
and F ⊆ Q is the set of final states. The language accepted from state q ∈ Q is
denoted Lq(A) ⊆ Σ∗, and the language of A is L(A) = Lq0(A). The type of δ
and the definition of L(A) depend on which kind of automaton A is.

– If A is a deterministic finite automaton, or DFA, then δ : Q × Σ → Q gives
the next state from the current state and an input symbol. We extend it to
Q × Σ∗ by δ(q, λ) = q and δ(q, sw) = δ(δ(q, s), w) for q ∈ Q, s ∈ Σ and
w ∈ Σ∗. The language is defined by Lq(A) = {w ∈ Σ∗ | δ(q, w) ∈ F}.

– If A is a nondeterministic finite automaton, or NFA, then δ : Q × Σ → 2Q

gives the set of possible next states. We extend it to Q × Σ∗ by δ(q, λ) = {q}
and δ(q, sw) =

⋃
p∈δ(q,s) δ(p,w) for q ∈ Q, s ∈ Σ and w ∈ Σ∗. The language

is defined by Lq(A) = {w ∈ Σ∗ | δ(q, w) ∩ F �= ∅}.
– If A is an alternating finite automaton, or AFA, then δ : Q × Σ → 22

Q

. We
extend δ to Q × Σ∗ by δ(q, λ) = {S ⊆ Q | q ∈ S} and δ(q, sw) = {S ⊆

132 P. Marcus and I. Törmä

Q | {p ∈ Q | S ∈ δ(q, w)} ∈ δ(q, s)} for q ∈ Q, s ∈ Σ and w ∈ Σ∗. The
language is defined by Lq(A) = {w ∈ Σ∗ | F ∈ δ(q, w)}.

All three types of finite automata recognize exactly the regular languages. An
AFA can be converted into an equivalent NFA, and an NFA into a DFA, by the
standard subset constructions. A standard reference for DFAs and NFAs is [6].

Two states p, q ∈ Q of A are equivalent, denoted p ∼ q, if Lp(A) = Lq(A).
Every regular language L ⊆ Σ∗ is accepted by a unique DFA with the minimal
number of states, which are all nonequivalent, and every other DFA that accepts
L has an equivalent pair of states. Two words v, w ∈ Σ∗ are congruent by L,
denoted v ≡L w, if for all u1, u2 ∈ Σ∗ we have u1vu2 ∈ L iff u1wu2 ∈ L. They are
right-equivalent, denoted v ∼L w, if for all u ∈ Σ∗ we have vu ∈ L iff wu ∈ L.
The set of equivalence classes Σ∗/≡L is the syntactic monoid of L, and if L is
regular, then it is finite. In that case the equivalence classes of ∼L can be taken
as the states of the minimal DFA of L.

Let P : 2Σ∗ → 2Σ∗
be a (possibly partially defined) operation on languages.

The (regular) state complexity of P is f : N → N, where f(n) is the maximal
number of states in a minimal automaton of P(L(A)) for an n-state DFA A.

We say that a function f : N → R grows doubly exponentially if there exist
a, b, c, d > 1 with abn ≤ f(n) ≤ cdn

for large enough n, and superexponentially
if for all a > 1, f(n) > an holds for large enough n.

3 Winning Sets

In this section we define winning sets of binary languages, present the construc-
tion of the winning set of a regular language, and prove some general lemmas.
We defined the winning set informally at the beginning of Sect. 1. Now we give
a more formal definition which does not explicitly mention games.

Definition 1 (Winning Set). Let n ∈ N and T ⊆ {0, 1}n be arbitrary. The
winning set of T , denoted W (T) ⊆ {A,B}n, is defined inductively as follows. If
n = 0, then T is either the empty set or {λ}, and W (T) = T . If n ≥ 1, then
W (T) = {Aw | w ∈ W (0−1T) ∪ W (1−1T)} ∪ {Bw | w ∈ W (0−1T) ∩ W (1−1T)}.

For a language L ⊆ {0, 1}∗, we define W (L) =
⋃

n∈N
W (L ∩ {0, 1}n).

For Alice to win on a turn order of the form Aw, she has to choose either 0
or 1 as the first letter v0 of the constructed word v, and then follow a winning
strategy on the target set v−1

0 T and turn order w. On a word Bw, Alice must
have a winning strategy on v−1

0 T and w no matter how Bob chooses v0.
A language L over a linearly ordered alphabet Σ is downward closed if v ∈ L,

w ∈ Σ|v| and wi ≤ vi for each i = 0, . . . , |v| − 1 always implies w ∈ L.

Proposition 1 (Propositions 3.8 and 5.4 in [9]). The winning set W (L)
of any L ⊆ {0, 1}∗ is downward closed (with the ordering A < B) and satisfies
|W (L) ∩ {A,B}n| = |L ∩ {0, 1}n| for all n. If L is regular, then so is W (L).

From a DFA A, we can easily construct an alternating automaton for W (A).

Descriptional Complexity of Winning Sets of Regular Languages 133

Definition 2 (Winning Set Automaton). Let A = (Q, {0, 1}, q0, δ, F) be
a binary DFA. Define a “canonical” AFA for W (L(A)) as (Q, {A,B}, q0, δ

′, F)
where δ′(q,A) = {S ⊂ Q | δ(q, 0) ∈ S or δ(q, 1) ∈ S} and δ′(q,B) = {S ⊂
Q | δ(q, 0) ∈ S and δ(q, 1) ∈ S}. This AFA clearly recognizes W (L(A)). We
transform it into the equivalent NFA (2Q, {A,B}, {q0}, δ′′, 2F), where

δ′′(S,A) = {{δ(q, f(q)) | q ∈ S} | f : S → {0, 1}}
δ′′(S,B) = {{δ(q, b) | q ∈ S, b ∈ {0, 1}}}.

We usually work on the determinization of this NFA, which we denote by
W (A) = (22

Q

, {A,B}, {{q0}}, δW , FW). Here FW = {G ∈ 22
Q | ∃S ∈ G : S ⊆ F}

and δW (G, c) =
⋃

S∈G δ′′(S, c) for G ⊂ 2Q and c ∈ {A,B}.
Intuitively, as Alice and Bob construct a word, they also play a game on the

states of A by choosing transitions. A state G of W (A) is called a game state,
and it represents a situation where Alice can force the game to be in one of the
sets S ∈ G, and Bob can choose the actual state q ∈ S. From the definition
of the AFA it follows that exchanging the labels 0 and 1 on the two outgoing
transitions of any one state of A does not affect δ′. In other words, the winning
set of a DFA’s language is independent of the labels of its transitions.

For example, take L = 0∗1(0∗10∗1)0∗, the language of words with an odd
number of 1-symbols. Its winning set is W (L) = (A + B)∗A, as the last player
has full control of the parity of occurrences of 1s. Fig. 1 shows the minimal DFA
for L and the NFA derived from it that recognizes W (L). One can check that
the language recognized by this NFA is indeed (A + B)∗A. Note how reading
A lets each state of a set evolve independently by 0 or 1, while B makes both
choices for all states simultaneously and results in one large set.

a b {a} {a, b} {b}1

0 0

A

A A
A,B

B B

A A

Fig. 1. A DFA for L = 0∗1(0∗10∗1)0∗, and the derived NFA for W (L).

The following properties follow easily from the definition of W (A).

Lemma 1. Let A be a binary DFA, W (A) the winning set DFA from Defini-
tion 2, and δW the iterated transition function for W (A). Let G and H be game
states of W (A), R,S, T, V ⊆ 2Q sets of states, and w a word over {A,B}.
(a) Sets in game states evolve independently: δW (G ∪ H, w) = δW (G, w) ∪

δW (H, w).

134 P. Marcus and I. Törmä

(b) States in sets evolve almost independently: If S,R ⊆ Q are disjoint, then
δW ({S ∪ R}, w) = {T ∪ V | T ∈ δW ({S}, w), V ∈ δW ({R}, w)}.

(c) Supersets can be removed from game states (since δW is monotone in its
first argument by (a) and (b)): If S,R ∈ G and S � R, then G ∼ G \ {R}.

(d) Sets containing nonaccepting sink states can be removed from game states:
If S ∈ G and some q ∈ S has no path to a final state, then G ∼ G \ {S}.

(e) Accepting sink states can be removed from sets: If S ∈ G and there is a sink
state q ∈ S ∩ F , then G ∼ (G \ {S}) ∪ {S \ {q}}.

The next lemma helps prove equivalences of game states and words. The first
part follows from monotonicity of δW , the second from Lemma 1(a).

Lemma 2. Recall the assumptions of Lemma 1.

(a) Suppose that for each S ∈ G there is R ∈ H with R ⊆ S, and reciprocally.
Then G ∼ H.

(b) Let v, w ∈ {A,B}∗. If for all q ∈ Q, the game states δW ({{q}}, v) and
δW ({{q}}, w) are either both accepting or both rejecting, then v ≡W (L(A)) w.

Recall the Dedekind numbers D(n), which count the number of antichains
of subsets of {1, . . . , n} with respect to set inclusion. Their growth is doubly
exponential: aan

< D(n) < bbn holds for large enough n if a < 2 < b. This
follows from

(
n

�n/2�
) ≤ log2 D(n) ≤ (1 + O(log n/n))

(
n

�n/2�
)

[7] and the well
known asymptotic formula

(
n

�n/2�
)

= Θ(2n/
√

n).

Proposition 2. Let A an n-state DFA. The number of states in the minimal
DFA for W (L(A)) is at most the Dedekind number D(n).

Proof. Every game state is equivalent to an antichain by Lemma 1(c), so the
number of nonequivalent game states is at most D(n). ��

We have computed the exact state complexity of the winning set operation
for DFAs with at most 5 states; the 6-state case is no longer feasible with our
program and computational resources. The sequence begins with 1, 4, 16, 62, 517.

4 Doubly Exponential Lower Bound

In this section we construct a family of automata for which the number of states
in the minimal winning set automaton is doubly exponential. The idea is to reach
any desired antichain of subsets of a special subset of states, and then to make
sure these game states are nonequivalent. To do this we split the automaton into
several components. First we present a “subset factory gadget” that allows to
reach any set of the form {S} where S is a subset of a specific length-n path
in the automaton. This gadget will be used several times to accumulate subsets
in the game state. Then we present a “testing gadget” that lets us distinguish
between game states by whether they contain a (subset of a) given set or not.

Descriptional Complexity of Winning Sets of Regular Languages 135

Recall that the transition labels of a binary DFA are irrelevant to the winning
set of its language. In this section we define automata by describing their graphs,
and a node with two outgoing transitions can have them arbitrary labeled by 0
and 1. Incoming and outgoing transitions in the figures indicate how the gadgets
connect to the rest of the automaton.

Lemma 3 (Subset factory gadget). Let GenSubsetn be the graph in Fig. 2.
For i ∈ {1, . . . , n}, denote oi = e2n+i−1 (the n rightmost states labeled by e).
For S ⊆ {1, . . . , n}, let wgen

S be the concatenation w1w2 . . . wn where wi = BA if
i ∈ S, and wi = AB if i /∈ S. Then δW ({{b1}}, wgen

S)) ∼ {{oi | i ∈ S}} for each
binary DFA that contains GenSubsetn as a subgraph.

The idea is that at step i, reading B adds ci to each subset of the game state,
and then reading A avoids the sink si. On the other hand reading A creates two
versions of each subset of the game state, one that continues on the upper row,
and one that falls into the sink si when B is read, and can then be ignored.

b1 d1 bn−1 dn−1

c1s1 sn−1 cn−1 sn

bn

cn

e3n−2e3n−5 e3n−4 e3n−3e3e2e1

· · ·

· · ·

bn+1

Fig. 2. GenSubsetn, the subset factory gadget.

Lemma 4 (Game state factory gadget). Let GenStaten be the graph in
Fig. 3 and A any DFA over {0, 1} that contains it. For all G = {S1, . . . , S�}
where each Si ⊆ {r1, . . . , rn}, let wgen

G ∈ {A,B}�(3n+1) be the concatenation of
Awgen

Si
An for i ∈ {0, . . . , �}. Then δW ({{a1}}, wgen

G) ∼ G ∪ {{a1}} ∪ G′ for some
game state G′ that does not contain a subset of the states of GenStaten.

The idea is to successively add new sets Si to the game state, while previously
made subsets will wait by rotating in the r-cycle. A singleton set rotates in the
a-cycle so that reading A from the state a1 creates a new singleton set in the
subset factory gadget. The word wgen

Si
transforms it into a set of the correct

form, and then reading An both moves this new subset to the r-cycle with the
previously created sets and rotates the singleton set back to ai.

Lemma 5 (Testing gadget). Let Testingn be the graph in Fig. 4.

(a) For P ⊆ {1, . . . , n}, define wtest
P ∈ {A,B}n by wtest

P [i] = A iff n− i+1 ∈ P .
Then for each I ⊆ {1, . . . , n}, the game state δW ({{qi | i ∈ I}}, wtest

P) is
accepting iff I ⊆ P .

136 P. Marcus and I. Törmä

a1

a2

a3a4

a5

a6

· · ·
a3n

a3n+1

GenSubsetn r1

r2

r3
r4

r5

r6

· · ·r3n

r3n+1

Fig. 3. GenStaten, the game state factory gadget.

q1 q2 · · · qn

r

qn+1 qn+2 · · · q2n r′

Fig. 4. Testingn, the testing gadget.

(b) Let V be the set of nodes of the graph Testingn. Then for all G ∈ 22
V

and
w ∈ {A,B}≥2n, the game state δW (G, w) is not accepting.

The idea is that reading A or B moves the game state toward r′, except when
the set contains the state qn and B is read, causing it to fall into the sink r.

Theorem 1. For each n > 0 there exists a DFA An over {0, 1} with 15n + 3
states such that the minimal DFA for W (L(An)) has a least D(n) states.

Together with Proposition 2, this implies that the state complexity of W
restricted to regular languages grows doubly exponentially.

Proof (sketch). Let An be the DFA obtained by combining Testingn with
the outgoing arrow of GenStaten and assigning a1 as the initial state. For
an antichain G on the powerset of {r1, . . . , rn}, let XG = δW ({{a1}}, wgen

G).
Lemma 4 gives XG ∼ {{a1}} ∪ G ∪ G′ where each set in G′ contains a state of
Testingn.

We show that distinct antichains G result in nonequivalent states. Let P ⊆
{1, . . . , n} and consider X ′

G = δW (XG, AB2nA2n+1wtest
P). We claim that X ′

G is
accepting iff some element of G is a subset of {ri | i ∈ P}. By Lemma 1(a) we
may analyze the components of XG separately.

– We have δW ({{a1}}, A) = {{a2}, {b1}}. The part {b1} is destroyed by the sink
state s1 when we read Bs, and the part {a2} rotates in the a-cycle without
encountering accepting states.

Descriptional Complexity of Winning Sets of Regular Languages 137

– Each set of G′ contains a state of Testingn, which will reach one of the nonac-
cepting sinks r or r′.

– The game state δW (G, AB2nA2n+1) consists of the sets {qi | ri ∈ S} for
S ∈ G, as well as sets that contain at least one element of {r2, . . . , rn+1}.
The latter will rotate in the r-cycle. By Lemma 5, the former sets produce
an accepting game state in X ′

G iff some S ∈ G is a subset of {ri | i ∈ P}.

We have found D(n) nonequivalent states in W (A). ��

5 Case of the Bounded Regular Languages

In this section we prove an upper bound on the complexity of the winning set of
a bounded regular language. Our motivation comes from the fact that bounded
regular languages correspond to so-called zero entropy sofic shifts in symbolic
dynamics, which are defined by the number of words of given length that occur
in them, and the fact that the winning set operation preserves this number. Our
proof technique is based on tracing the evolution of individual states of a DFA A
in the winning set automaton W (A) when reading several A-symbols in a row.

Definition 3 (Histories of Game States). Let A = (Q, {0, 1}, q0, δ, F) be
a DFA. Let G ∈ 22

Q

be a game state of W (A), and for each i ≥ 0, let Gi ∼
δW (G, Ai) be the game state with all supersets removed as per Lemma 1(c). A
history function for G is a function h that associates to each i > 0 and each set
S ∈ Gi a parent set h(i, S) ∈ Gi−1, and to each state q ∈ S a set of parent
states h(i, S, q) ⊆ h(i, S) such that

– {q} ∈ δW ({h(i, S, q)}, A) for all q ∈ S, and
– h(i, S) is the disjoint union of h(i, S, q) for q ∈ S.

Note that this implies S ∈ δW ({h(i, S)}, A) for each i.
The history of a set S ∈ Gi from i under h is the sequence S0, S1, . . . , Si = S

with Sj−1 = h(j, Sj) for all 0 < j ≤ i. A history of a state q ∈ S in S under h
is a sequence q0, . . . , qi = q with qj−1 ∈ h(j, Sj , qj) for all 0 < j ≤ i.

Every game state has at least one history function: each S ∈ Gi has at least
one set R ∈ Gi−1 with S ∈ δW ({R}, A), so we can choose R = h(i, S), and
similarly for the h(i, S, q). It can have several different history functions, and
each of them defines a history for each set S. A state of S can have several
histories under a single history function.

For the rest of this section, we fix an n-state DFA A = (Q, {0, 1}, q0, δ, F) that
recognizes a bounded binary language and has disjoint cycles. Let the lengths of
the cycles be k1, . . . , kp, and let � be the number of states not part of any cycle.

We define a preorder ≤ on the state set Q by reachability: p ≤ q holds if and
only if there is a path from p to q in A. For two history functions h, h′ of a game
state G, we write h ≤ h′ if for each i > 0, each S ∈ Gi and each q ∈ S, there
exists a function f : h(i, S, q) → h′(i, S, q) with p ≤ f(p) for all p ∈ h(i, S, q).
This defines a preorder on the set of history functions of G. We write h < h′ if

138 P. Marcus and I. Törmä

h ≤ h′ and h′ �≤ h. A history function h is minimal if there exists no history
function h′ with h′ < h. Intuitively, a minimal history function is one where
the histories of states stay in the early cycles of A as long as possible. Since
the choices of h(i, S) and h(i, S, q) can be made independently, minimal history
functions always exist.

Lemma 6. Let G ∈ 22
Q

be any game state of W (A). Then there exist k ≤
lcm(k1, . . . , kp) + 2n + maxx	=y lcm(kx, ky) and m ≤ lcm(k1, . . . , kp) such that
δW (G, Ak) ∼ δW (G, Ak+m).

The idea of the proof is that under a minimal history function, no state
q ∈ S ∈ G can spend too long in a cycle it did not start in: the maximal number
of steps is comparable to the lcm of the lengths of successive cycles.

Theorem 2. Let A be an n-state binary DFA whose language is bounded. Then
there is a partition �+k1+ · · ·+kp = n such that the minimal DFA for W (L(A))
has at most

∑�+p+1
m=0 (p · maxx	=y lcm(kx, ky) + 2� + 2lcm(k1, . . . , kp))m states.

Proof. Denote the minimal DFA for W (L(A)) by B. We may assume that A
is minimal, and then it has disjoint cycles, as otherwise the number of length-
n words in L(A) would grow exponentially while in a bounded language this
growth is at most polynomial. Let k1, . . . , kp be the lengths of the cycles and �
the number of remaining states, and denote P = p · maxx	=y lcm(kx, ky) + 2� +
2lcm(k1, . . . , kp). Then any w ∈ L(W (A)) has |w|B ≤ � + p, as otherwise Bob
can win by choosing to leave a cycle whenever possible.

Consider a word w = At0BAt1B · · · BAtm with 0 ≤ m ≤ � + p. If ti ≥ P
for some i, then Lemma 6 implies δW (G, Ati) ∼ δW (G, At) for the game state
G = δW ({{q0}}, At0B · · · Ati−1B) and some t < ti. Thus the number of distinct
states of B reachable by such words is at most Pm+1. The claim follows. ��

The upper bound we obtain (the maximum of the expression taken over
all partitions of n) is at least nn. We do not know whether the actual com-
plexity is superexponential for bounded languages. If we combine the gadgets
GenSubsetn and Testingn, the resulting DFA recognizes a language whose win-
ning set requires at least 2n states, so for finite (and thus bounded) regular
languages the state complexity of the winning set is at least exponential.

6 Chain-Like Automata

In this section we investigate a family of binary automata consisting of a chain
of states with a self-loop on each state. More formally, define a 1-bounded chain
DFA as A = (Q, {0, 1}, q0, δ, F) where Q = {0, 1, . . . , n − 1}, q0 = 0, δ(i, 0) = i
and δ(i, 1) = i + 1 for all i ∈ Q except δ(n − 1, 1) = n − 1, and n − 1 /∈ F . See
Fig. 5 for an example. It is easy to see that these automata recognize exactly
the regular languages L such that w ∈ L depends only on |w|1, and |w|1 is also
bounded. Of course, the labels of the transitions have no effect on the winning
set W (L(A)) so the results of this section apply to every DFA with the structure
of a 1-bounded chain DFA.

Descriptional Complexity of Winning Sets of Regular Languages 139

0 1 2 3 · · · n− 2 n− 1
1 1 1 1 1 1

0 0 0 0 0 0, 1

Fig. 5. A 1-bounded chain DFA. Any states except n− 1 can be final.

Lemma 7. Let A be an n-state 1-bounded chain DFA. Let ≡ stand for
≡W (L(A)).

(a) For every state q ∈ Q and every S ∈ δW ({{q}}, AB), there exists R ∈
δW ({{q}}, BA) with R ⊆ S.

(b) For all k ∈ N, BkAkBk+1 ≡ Bk+1AkBk.
(c) For all k ∈ N, Ak+1BkAk ≡ AkBkAk+1.
(d) An−1 ≡ An and Bn−1 ≡ Bn.

The intuition for (a) is that the turn order BA is better for Alice than AB,
since she can undo any damage Bob just caused. The other items are proved by
concretely analyzing the evolution of game states, which A intuitively “moves
around with precise control” and B “thickens”. Lemma 2 simplifies the analysis.

Theorem 3. Let A be a 1-bounded chain DFA with n states. The number of
states in the minimal DFA of W (L(A)) is O(n1/5e4π

√
n
3).

Proof. Since A does not accept any word with n or more 1-symbols, W (L(A))
contains no word with n or more B-symbols. Lemma 7(b) and (c) allow us
to rewrite every word of W (L(A)) in the form An1Bn2An3Bn4 · · · An2r−1Bn2r

where the sequence n1, . . . , n2r is first nondecreasing and then nonincreas-
ing, and n2 + n4 + · · · + n2r < n. With Lemma 7(d) we can also guarantee
n1, n3, . . . , n2r−1 < n, so that

∑
i ni < 4n. In [2], Auluck showed that the number

Q(m) of partitions m = n1 + . . . nr of an integer m that are first nondecreasing
and then nonincreasing is Θ(m−4/5e2π

√
m/3). Of course, v ≡ w implies v ∼ w.

Thus the number of non-right-equivalent words for W (L(A)), and the number
of states in its minimal DFA, is at most 1 +

∑4n−1
m=0 Q(m) = O(n1/5e4π

√
n
3). ��

7 Case Study: Exact Number of 1-Symbols

In the previous section we bounded the complexity of the winning set of
certain bounded permutation invariant languages. Here we study a particu-
lar case, the language of words with exactly n ones, or L = (0∗1)n0∗. We
not only compute the number of states in the minimal automaton (which is
cubic in n), but also describe the winning set. Throughout the section A is
the minimal automaton for L, described in Fig. 6. For S ⊆ Q, we denote
S = {min(S),min(S) + 1, . . . ,max(S)}, and for any game state G of W (A),
denote G = {S | S ∈ G}.

140 P. Marcus and I. Törmä

0 1 . . . n− 1 n n+ 1

Fig. 6. The minimal DFA for L = (0∗1)n0∗.

Lemma 8. Each game state G of W (A) is equivalent to G.

The idea is that the left and right ends of sets in G evolve independently of
their other elements, and their positions determine whether G is final.

Lemma 9. Let T be the set of integer triples (i, �,N) with 0 ≤ i ≤ n, 1 ≤ � ≤
n − i + 1 and 1 ≤ N ≤ n − i − � + 2. For (i, �,N) ∈ T , let

G(i, �,N) := {{i, . . . , i+�−1}, {i+1, . . . , i+�}, . . . , {i+N −1, . . . , i+�+N −2}}.

(a) Each reachable game state of W (A) is equivalent to some G(i, �,N) for
(i, �,N) ∈ T , or to ∅.

(b) The game states G(i, �,N) for (i, �,N) ∈ T are nonequivalent.
(c) Every G(i, �,N) for (i, �,N) ∈ T is equivalent to some reachable game state.

The game state G(i, �,N) is an interval of intervals, where i is the leftmost
position of the first interval, � is their common length, and N is their number.
The first item is proved by induction, and the others by exhibiting a word over
{A,B} that produces or separates given game states. Then the minimal DFA
for W (L) has |T | + 1 states, and counting them yields the following.

Proposition 3. The minimal DFA for W (L) has n3

6 + n2 + 11n
6 + 2 states.

Proposition 4. W (L) is exactly the set of words w ∈ {A,B}∗ such that |w|A ≥
n, |w|B ≤ n, and every suffix v of w satisfies |v|A ≥ |v|B.

Proof (sketch). Every w ∈ W (L) satisfies |w|A ≥ n since Bob can play only 0s,
and |w|B ≤ 1 since he can play only 1s. Only game states of the form G(i, 1, N)
can be accepting. Since reading A decreases the parameter � by one, and B
increases � by one, words of W (L) must have after each B an associated A
somewhere in the word. This is equivalent to the suffix condition. Conversely, on
words of the given form Alice can win by associating to each wi = B some wj = A
that occurs after it, choosing vj �= vi for the constructed word v ∈ {0, 1}∗, and
choosing the remaining symbols so that |v|1 = n. ��

8 A Context-Free Language

In this section we prove that the winning set operator does not in general pre-
serve context-free languages by studying the winning set of the Dyck language
D ⊆ {0, 1}∗ of balanced parentheses. In our formalism, 0 stands for an opening
parenthesis and 1 for a closing parenthesis.

Descriptional Complexity of Winning Sets of Regular Languages 141

Proposition 5. The winning set of the Dyck language is not context-free.

Proof (sketch). Take L = W (D) ∩ (AA)∗(BB)∗(AA)∗, which is context-free if
W (D) is. We claim that L = {A2iB2jA2k | i ≥ j, k ≥ 2j}. First, if Bob closes
2j parentheses, Alice must open at least 2j parentheses beforehand, so i ≥ j is
necessary. If Bob opens 2j parentheses instead, when Alice plays a second time,
she has to close 4j parentheses, hence k ≥ 2j. Thus the right hand side contains
L. Conversely, Alice can win on A2iB2jA2k by leaving exactly 2j parentheses
open before Bob’s turns and then closing all open parentheses, so L contains the
right hand side. It’s a standard exercise to prove that L is not context-free. ��

References

1. Anstee, R., Rónyai, L., Sali, A.: Shattering News. Graph. Comb. 18(1), 59–73
(2002). https://doi.org/10.1007/s003730200003

2. Auluck, F.: On some new types of partitions associated with generalized Ferrers
graphs. In: Mathematical Proceedings of the Cambridge Philosophical Society,
vol. 47, pp. 679–686. Cambridge University Press (1951). https://doi.org/10.1017/
S0305004100027134

3. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–
133 (1981). https://doi.org/10.1145/322234.322243

4. Friedl, K., Rónyai, L.: Order shattering and Wilson’s theorem. Discrete Math.
270(1), 127–136 (2003). https://doi.org/10.1016/S0012-365X(02)00869-5

5. Herrmann, Andrea., Kutrib, Martin., Malcher, Andreas, Wendlandt, Matthias:
Descriptional complexity of bounded regular languages. In: Câmpeanu, Cezar,
Manea, Florin, Shallit, Jeffrey (eds.) DCFS 2016. LNCS, vol. 9777, pp. 138–152.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41114-9 11

6. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation, 3rd edn. Addison-Wesley Longman Publishing Co.,
Inc, USA (2006)

7. Kleitman, D., Markowsky, G.: On Dedekind’s problem: the number of isotone
Boolean functions. II. Trans. Am. Math. Soc. 213, 373–390 (1975). https://doi.
org/10.2307/1998052

8. Peltomäki, J., Salo, V.: On winning shifts of marked uniform substitutions.
RAIRO-Theor. Inform. Appl. 53(1–2), 51–66 (2019). https://doi.org/10.1051/ita/
2018007

9. Salo, V., Törmä, I.: Playing with subshifts. Fundamenta Informaticae 132(1), 131–
152 (2014). https://doi.org/10.3233/FI-2014-1037

10. Zielonka, W.: Infinite games on finitely coloured graphs with applications to
automata on infinite trees. Theor. Comput. Sci. 200(1), 135–183 (1998). https://
doi.org/10.1016/S0304-3975(98)00009-7

https://doi.org/10.1007/s003730200003
https://doi.org/10.1017/S0305004100027134
https://doi.org/10.1017/S0305004100027134
https://doi.org/10.1145/322234.322243
https://doi.org/10.1016/S0012-365X(02)00869-5
https://doi.org/10.1007/978-3-319-41114-9_11
https://doi.org/10.2307/1998052
https://doi.org/10.2307/1998052
https://doi.org/10.1051/ita/2018007
https://doi.org/10.1051/ita/2018007
https://doi.org/10.3233/FI-2014-1037
https://doi.org/10.1016/S0304-3975(98)00009-7
https://doi.org/10.1016/S0304-3975(98)00009-7

State Complexity of GF(2)-inverse and
GF(2)-star on Binary Languages

Alexander Okhotin1 and Elizaveta Sazhneva1,2(B)

1 Department of Mathematics and Computer Science, St. Petersburg State
University, 7/9 Universitetskaya Nab., Saint Petersburg 199034, Russia

alexander.okhotin@spbu.ru, sazhneva.eliza@yandex.ru
2 Department of Mechanics and Mathematics, Moscow State University,

Moscow 119991, Russia

Abstract. The GF(2)-inverse operation on formal languages is known
to have state complexity 2n+1 for alphabets with at least three symbols,
and 2n−1 + 1 for a one-symbol alphabet. In this paper, it is shown that,
for a two-symbol alphabet, its state complexity is exactly 3

4
2n +3. For a

more general operation of GF(2)-star, its state complexity for a binary
alphabet remains 2n + 1.

1 Introduction

GF(2)-operations on formal languages were recently defined by Bakinova et
al. [1]. These operations are variants of the classical concatenation and Kleene
star, in which the disjunction in the definition is replaced with exclusive OR.
Consider that the classical concatenation of languages K and L is the set of
all such strings w, that there exists at least one partition w = uv with u ∈ K
and v ∈ L, which is a disjunction of |w| + 1 conjunctions. Replacing this dis-
junction with exclusive OR leads to the following new operation called GF(2)-
concatenation.

K � L = {w | # of partitions w = uv, with u ∈ K and v ∈ L, is odd }
Similarly, the Kleene star L∗ is defined as the set of all strings, for which there
is at least one partition into a concatenation of substrings from L; a similar
modification leads to another new operation, the GF(2)-star.

L� = {w | # of partitions w = u1 . . . uk,

with k � 0 and u1, . . . , uk ∈ L \ {ε}, is odd }
Formal languages form a ring, with GF(2)-concatenation as multiplication and
symmetric difference as addition [1]. Furthermore, every language L containing
the empty string has an inverse with respect to GF(2)-concatenation: a language

Supported by Russian Science Foundation, project 18-11-00100.

c© Springer Nature Switzerland AG 2020
G. Jirásková and G. Pighizzini (Eds.): DCFS 2020, LNCS 12442, pp. 142–154, 2020.
https://doi.org/10.1007/978-3-030-62536-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62536-8_12&domain=pdf
http://orcid.org/0000-0002-1615-2725
https://doi.org/10.1007/978-3-030-62536-8_12

State Complexity of GF(2)-inverse and GF(2)-star on Binary Languages 143

Table 1. State complexity of GF(2)-concatenation, GF(2)-inverse and GF(2)-star for
alphabets of different size.

|Σ| = 1 |Σ| = 2 |Σ| � 3

GF(2)-concatenation (�) 2mn [13,14] m2n [1] m2n [1]

GF(2)-inverse (−1) 2n−1 + 1 [13,14] ? 2n + 1 [1]

GF(2)-star (�) 2n [14] ? 2n + 1 [1]

L−1 satisfying L�L−1 = L−1�L = {ε}. The GF(2)-inverse L−1 actually equals
L�. In view of their pleasant algebraic properties, these new operations might
lead to interesting results in the future; a few results on formal grammars with
GF(2)-operations have recently been obtained [10,11].

Classical and GF(2)-operations on languages are different in requiring “at
least one partition” vs. “an odd number of partitions”. These two conditions
become equivalent if there can be at most one partition; the resulting unambigu-
ous concatenation and unambiguous star are often studied in formal language
theory. In particular, their state complexity is known [3,8].

Since all GF(2)-operations are known to preserve regularity [1], their state
complexity also deserves investigation. The following results are known. For an
m-state DFA and an n-state DFA, their GF(2)-concatenation is representable
by a DFA with m2n states, and this number of states is known to be necessary,
with witness languages defined over a two-symbol alphabet [1]. GF(2)-star and
GF(2)-inverse of an n-state DFA can be represented with 2n +1 states, and this
upper bound is known to be tight for a three-symbol alphabet.

In the unary case, GF(2)-concatenation is representable with 2mn states,
which is tight for infinitely many values of m and n. Unary GF(2)-inverse takes
2n−1 +1 states in the worst case, whereas unary GF(2)-star has state compexity
2n. The state complexity of GF(2)-operations for alphabets of different size is
compared in Table 1.

These results leave open the state complexity of GF(2)-inverse and GF(2)-
star in the case of a two-symbol alphabet. Investigating this remaining case and
determining whether the state complexity for binary alphabet is the same as for
ternary is a typical research task in the area of state complexity: the earliest
state complexity results [2,12,15] later had the size of the alphabet refined [6,7].
So far, for GF(2)-inverse, the bounds differ by a factor of two: the lower bound
is 2n−1 + 1 and the upper bound is 2n + 1; for GF(2)-star, the gap is minimal,
with the state complexity contained between 2n and 2n + 1. Both problems are
settled in this paper.

In the case of GF(2)-inverse over a binary alphabet, the exact state com-
plexity turns out to be 3

42n + 3. The upper bound is established in Sect. 3 by
analyzing the set of reachable states: it is proved that, using only two symbols,
around one quarter of all states always remain unreachable. In Sect. 4, a match-
ing lower bound of 3

42n + 3 states is obtained: the argument expands on the
analysis of primitive polynomials over GF(2) used in the proof for the unary
case [13,14], with 2n−2 + 2 extra states reached using the second symbol.

144 A. Okhotin and E. Sazhneva

For the GF(2)-star over a binary alphabet, a new lower bound of 2n+1 states
is established in Sect. 5, thus improving the size of the alphabet in the earlier
result [1].

2 GF(2)-star and GF(2)-inverse

This paper is concerned with one operation, the GF(2)-star, as well as with its
special case, the GF(2)-inverse.

Definition 1. For every language L, its GF(2)-star, denoted by L�, is the set
of all strings w that have an odd number of representations of the form w =
w1w2 . . . wk, with k � 0 and w1, . . . , wk ∈ L \ {ε}.

For every language L ⊆ Σ∗ with ε ∈ L, the GF(2)-star L� is the GF(2)-
inverse L−1 [1, Thm. 2], that is, L−1 � L = L � L−1 = {ε}. Languages not
containing the empty string do not have inverses.

If a language is recognized by an n-state DFA, then one can construct a
DFA with 2n + 1 states recognizing its GF(2)-star. Since a few details of this
construction shall be used in this paper, its summary is given below.

Theorem A (Bakinova et al. [1]). For every n-state DFA A = (Σ,Q, q0, δ,
F), the language L(A)� is recognized by a DFA with the set of states 2Q ∪ {q′

0}.
Proof (Sketch of a proof.). The new automaton B = (Σ, 2Q ∪ {q′

0}, q′
0, δ

′, F ′) is
defined as follows. Its states are all subsets of Q and an extra initial state q′

0.
Its transition function is δ′ : (2Q ∪ {q′

0}) × Σ → 2Q ∪ {q′
0}. The transition in the

state q′
0 by each symbol a ∈ Σ produces a singleton state corresponding to a

single computation of A.

δ′(q′
0, a) = {δ(q0, a)}

In a state S ⊆ Q, upon reading the next symbol a ∈ Σ, the automaton knows
the set S′ of states that occur in an odd number of computations.

S′ = { q | the number of states p ∈ S with δ(p, a) = q is odd }

Furthermore, a new simulated computation is started if the number of accepting
states at the previous step was odd. The transition of B is thus defined as follows.

δ′(S, a) =

{
S′, if |S ∩ F | is even
S′ � {δ(q0, a)}, if |S ∩ F | is odd

The set of accepting states is F ′ =
{

S
∣∣ |S ∩ F | is odd

} ∪ {q′
0}.

State Complexity of GF(2)-inverse and GF(2)-star on Binary Languages 145

3 Upper Bound for the GF(2)-inverse

The starting point for the new upper bound on the state complexity of GF(2)-
inverse for a two-symbol alphabet is the following observation. It turns out that,
in the automaton constructed in Theorem A, the transition from a subset does
not depend on whether the state 0 is in this subset.

Lemma 1. Let A = (Σ,Q, 0, δ, F) be an n-state DFA with 0 ∈ F . Let B =
(Σ, 2Q ∪ {q′

0}, q′
0, δ

′, F ′) be the DFA that recognizes the GF(2)-inverse of L(A),
constructed as in Theorem A. Then, δ′(S, a) = δ′(S ∪ {0}, a) for all S ⊆ Q \ {0}
and a ∈ Σ.

The upper bound argument is based on the notion of an enterable state. Let
A = (Σ,Q, q0, δ, F) be a DFA. A state q ∈ Q is said to be enterable, if q = δ(p, a)
for some p ∈ Q and a ∈ Σ.

Lemma 2. Let A = ({a}, Q, 0, δ, F) be an n-state DFA with 0 ∈ F . Let B =
({a}, 2Q ∪ {q′

0}, q′
0, δ

′, F ′) be the DFA recognizing the GF(2)-inverse of L(A),
defined as in Theorem A. Then, the DFA B has at most 2n−1 + 1 enterable
states.

Consider a DFA for the GF(2)-inverse of a language over a two-symbol alpha-
bet. An upper bound on the number of reachable states is obtained by analyzing
the states enterable by the first and by the second symbol.

Theorem 1. Let A = ({a, b}, Q, 0, δ, F) be an n-state DFA with 0 ∈ F . Then,
the DFA for the GF(2)-inverse L(A)−1, as defined in Theorem A, has at most
3
42n + 2 enterable states, and accordingly at most 3

42n + 3 reachable states.

Depending on the form of A, the proof is handled separately in the following
three cases.

I. The only accepting state is 0.
II. There are accepting states besides 0, and there exists a state not enterable

by some symbol.
III. There are accepting states besides 0, and each state is enterable by both

symbols.

In the first case, the DFA B is proved to have at most n+2 reachable states.
Proofs of the remaining two cases rely on the following technical statement.

Lemma 3. Let A = ({a}, Q, 0, δ, F) be a DFA with n states, in which 0 ∈ F
and |F | � 2. Let all states of A be enterable. Let B = ({a}, 2Q ∪ {q′

0}, q′
0, δ

′, F ′)
be the DFA recognizing the GF(2)-inverse of L(A), defined as in Theorem A.
Then, for every state q ∈ Q, the automaton B has at most 2n−2 + 1 enterable
subset-states containing the state q.

146 A. Okhotin and E. Sazhneva

a
b

p'

p
q

(i)

a
b

p'

p
q

(ii)

a
b

p'

p
q

(iii)

a
b

p'

p
q

(iv)

Fig. 1. Four cases of states enterable by a and by b from states with different acceptance
status.

Case II in the proof of Theorem 1 is established by a direct application of
this lemma. Indeed, if a state q is not enterable by b in A, then, in B, all 2n−1

subsets containing q are not enterable by b, and, according to Lemma 3, at most
2n−2 + 1 of them are enterable by a. Then, a quarter of states are not enterable
by either symbol.

It remains to prove the theorem in the case when every state in A is enterable
both by a and by b, and 0 is not the only accepting state. Let ra = δ(0, a) and
rb = δ(0, b).

All states in A are enterable by a, and hence, for every state q ∈ Q, there
exists a unique state p ∈ Q with δ(p, a) = q. Similarly, there is a unique state
p′ ∈ Q with δ(p′, b) = q. Depending on whether each of these states p and p′

is accepting or rejecting, the set of states of A is split into the following five
classes, as illustrated in Fig. 1.

Qi = {q | ∃p, p′ ∈ Q \ F : δ(p, a) = δ(p′, b) = q},

Qii = {q | ∃p, p′ ∈ F \ {0} : δ(p, a) = δ(p′, b) = q},

Qiii = {q | ∃p ∈ F \ {0}, p′ ∈ Q \ F : δ(p, a) = δ(p′, b) = q},

Qiv = {q | ∃p ∈ Q \ F, p′ ∈ F \ {0} : δ(p, a) = δ(p′, b) = q},

Qv = {ra, rb}.

Proof (Proof of Theorem 1, case III). Assume that, in A, there are accepting
states besides 0, and each state is enterable by both symbols.

The argument is based on a proof that the automaton B has at least 2n−2

subset-states enterable both by a and by b at once. This shall easily imply an
upper bound on the number of states enterable by at least one symbol. Indeed,
by Lemma 2, the image of the transition function by each symbol contains at
most 2n−1 + 1 subsets. Since 2n−2 subsets are enterable by both symbols, the
overall number of enterable states is at most (2n−1 + 1) · 2 − 2n−2 = 3

42n + 2.
It remains to prove the existence of 2n−2 subsets enterable both by a and by b.

The proof is split into five cases depending on the structure of the automaton A.
Case 0. ra = rb = r.

Then it is claimed that for every subset-state T ⊆ Q \ {r} the following
subsets are enterable both by a and by b, and their total number is at least
2n−2.

State Complexity of GF(2)-inverse and GF(2)-star on Binary Languages 147

a. T , if |T ∩ (Qii ∪ Qiii)| ≡ |T ∩ (Qii ∪ Qiv)| ≡ 0 (mod 2);
b. T ∪ {r}, if |T ∩ (Qii ∪ Qiii)| ≡ |T ∩ (Qii ∪ Qiv)| ≡ 1 (mod 2).

For every T , let S = { s | δ(s, a) ∈ T } and S′ = { s | δ(s, b) ∈ T }, be the sets
of pre-images of the states in T by the symbols a and b.

– In the case (a), the condition implies that both subsets S and S′ are rejecting.
Then a transition by a from the subset S does not create extra states and
leads to the subset T .

δ′(S, a) = { δ(s, a) | s ∈ S } = T

A transition from S′ by b similarly leads to T .

δ′(S′, b) = { δ(s, b) | s ∈ S′ } = T

– In the case (b), it follows from the condition that both subsets S and S′ turn
out to be accepting. Then, both the transition from S by a, as well as the
transition from S′ by b create an extra state r and lead to the same subset.

δ′(S, a) = { δ(s, a) | s ∈ S } ∪ {r} = T ∪ {r}
δ′(S′, b) = { δ(s, b) | s ∈ S′ } ∪ {r} = T ∪ {r}

It is left to prove that at least 2n−2 subsets can be accessed in this way.
If Qiii �= ∅, then there exists a state q̂ ∈ Qiii. The claim is applicable to 2n−1

subsets T ⊆ Q \ {r}, and for every pair of subsets T and T�{q̂}, one of them
satisfies the condition (a–b). This provides 2n−2 desired subsets. The proof in
the case Qiv �= ∅ is symmetric.

Finally, if Qiii = Qiv = ∅, then every T satisfies the condition (a–b), and
2n−1 subsets of the desired form shall be reached. This completes the proof of
Case 0.

Now let ra �= rb. Denote by sa the state, from which there is a transition by
a to rb. The state with a transition by b to ra is denoted by sb. Depending on
whether sa is accepting or not, and whether sb is accepting or not, there are four
cases to consider. Each of them is handled by an argument generally similar to
the one for Case 0; these proofs are omitted due to space constraints.

Overall, it has been shown that there are at least 3
42n+2 enterable subsets in

the automaton B, and each of them is potentially reachable from q′
0. The initial

state q′
0 is the only state that is reachable but not enterable, whence the upper

bound 3
42n + 3 on the number of reachable subsets. �

4 Lower Bound for the GF(2)-inverse

The upper bound on the state complexity of the GF(2)-inverse over a binary
alphabet established in Theorem 1 is 3

42n + 3, and the aim of this section is to
obtain a matching lower bound.

148 A. Okhotin and E. Sazhneva

The proof elaborates on the method used to establish the state complexity of
this operation in the unary case. It was shown that, for every n � 2, there exists
a unary language L ⊆ a∗, with ε ∈ L, which is recognized by an n-state cyclic
DFA, whereas the minimal DFA recognizing its GF(2)-inverse L−1 has 2n−1 + 1
states [13].

Automata with this property are constructed on the basis of primitive poly-
nomials over GF(2), that is, polynomials f(x) = an−1x

n−1 + . . . + a1x + a0 of
degree n− 1 over GF(2), with a0, . . . , an−1 ∈ {0, 1} and an−1 = 1, such that the
sequence {xi mod f(x)}i�0 contains all 2n−1 −1 non-zero polynomials. For each
n � 2, primitive polynomials are known to exist, and all of them have a0 = 1 [9].

Next, for every primitive polynomial f(x) of degree n − 1, one can construct
the corresponding cyclic DFA Af = ({a}, Q, 0, δ, F), with Q = {0, . . . , n − 1},
δ(i, a) = i + 1 mod n for all i, and F = {n − 1 − i | ai = 1 }. Then, the
automaton for the GF(2)-inverse of L(Af), constructed by Theorem A, is in a
certain correspondence with the sequence {xi mod f(x)}, and has exactly 2n−1+
1 reachable and pairwise incomparable states.

In this paper, this proof method needs to be refined by ensuring a small
detail: there is such an automaton L(Af) as described above, with the additional
condition that it accepts a one-symbol string a. In order to obtain such an
automaton from a primitive polynomial f(x) by the above correspondence, this
polynomial should have a coefficient an−2 = 1. As proved by Davenport [4] and
Han [5], for every n there is a primitive polynomial f(x) = an−1x

n−1 + . . . +
a1x + a0 of degree n − 1 over GF(2), with an−2 = 1, an−1 = 1 and a0 = 1. This
is enough to construct the desired automaton.

An example of an automaton corresponding to such a polynomial is given
below.

Example 1. Consider the primitive polynomial f(x) = x4 + x3 + 1. The cyclic
automaton Af corresponding to f(x) is defined as Af = ({a}, Q, 0, δ, F), with
Q = {0, 1, 2, 3, 4}, δ(i, a) = i + 1 mod 5 and F = {0, 1, 4}.

0 1 2a 3 4a a a

a

The DFA for its inverse, constructed as in Theorem A, is shown in Fig. 2.
The automaton has 17 reachable states. Its cycle consists of 15 states, and 8 of
them are accepting. Further 16 states are unreachable.

Lemma 4 ([13, Lemmata 12, 13, 16]). Let f(x) = an−1x
n−1 + . . .+a1x+a0

be a primitive polynomial over GF(2), with an−1 = a0 = 1. Let Af =
({a}, Q, 0, δ, F), with Q = {0, . . . , n−1}, δ(i, a) = i+1 mod n and F = {n−1−i |
0 � i � n − 1, ai = 1 } be a cyclic automaton correponding to this polynomial.
Let Bf be the automaton for L(Af)−1 constructed as in Theorem A. Then this
automaton is comprised of a tail of length 2 and a cycle of length 2n−1 − 1, and
all its states are pairwise distinguishable.

State Complexity of GF(2)-inverse and GF(2)-star on Binary Languages 149

{3}

{3,4}

{2,3,4}{1,2}

{1}

{0,3}

{2,3}

{0,1,2}

{0,4}

q0'

{0,2}

{1,3,4}
{0,1,3,4}

{2,4}

{1,3}

{0,2,3,4}

{1,2,3}

{0,1,2,3,4}

{0,3,4}

{1,4}

{4}

{1,2,4}

{0,2,4}

{0,1,3}

{0,2,3}

{0,1,2,3}

{1,2,3,4}

{0,1,2,4}

{0,1,4}

{0,1}

{0} ∅

{2}

Fig. 2. DFA for the GF(2)-inverse of the language in Example 1.

In this paper, the number of accepting states in the cycle in Bf becomes
essential. For each i, with 0 � i � 2n−1, let αi = 1 if ai ∈ L(Bf), and αi = 0
otherwise. Then, the binary sequence α2, α3, . . . , α2n−1 represents the acceptance
status of the states in the cycle of Bf . The number of accepting states in this
sequence is calculated as follows.

Lemma 5. Let f(x) = an−1x
n−1+ . . .+a1x+a0 be a primitive polynomial over

GF(2), with an−1 = a0 = 1, let Af and Bf be as in Lemma 4. Then, the binary
sequence {αi}2n−1

i=2 defined above contains exactly 2n−2 −1 zeroes and 2n−2 ones.

Proof. The sequence α2, . . . , α2n−1 is naturally regarded as a cyclic sequence.
Then, it is known to contain all binary substrings of length n − 1, except for
0n−1 [13, Lemmata 12, 14].

Consider a partition of these binary substrings into pairs: the string 1n−1 is
left without a pair, and each substring of the form 0, x2, . . . , xn−1 corresponds

150 A. Okhotin and E. Sazhneva

0 1 2a 3 4a a a

a

b bb b b

Fig. 3. A 5-state DFA in Example 2.

to the negated substring 1,¬x2, . . . ,¬xn−1. In each of these 2n−2 pairs, there is
substring beginning with 1 and a substring beginning with 0. Furthermore, the
substring 1n−1 begins with an extra 1. Overall, the number of accepting states
in the cycle is greater by 1 than the number of rejecting states. �

Example 2. The automaton in Example 1 is expanded by adding transitions by
another symbol b: for each state q ∈ Q, let δ(q, b) = q. The resulting automaton
in given in Figure 3.

The automaton for the GF(2)-inverse of this language, constructed according
to Theorem A, is presented in Figure 4. It has 27 reachable subsets, and none
of these states could be merged.

This example matches the upper bound 3
42n + 3 obtained in Theorem 1, for

n = 5. It turns out that matching witness languages to this upper bound can be
obtained for all values of n.

Theorem 2. For every n � 2, there exists a language L over an alphabet
Σ = {a, b}, with ε ∈ L, recognized by n-state DFA, for which the minimal DFA
recognizing its GF(2)-inverse L−1 has 3

42n + 3 states.

Proof. The witness language is given by an n-state DFA A = (Σ,Q, 0, δ, F) with
the set of states Q = {0, . . ., n − 1}, where 0 is the initial state.

Let f(x) = an−1x
n−1+. . .+a1x+a0 be a primitive polynomial, with an−1 = 1

and a0 = 1, which further satisfies an−2 = 1. Then the set of accepting states is
defined as F = {n − 1 − i | ai = 1 }.

The transitions in each state i ∈ Q are defined as follows.

δ(i, a) = i + 1 (mod n)
δ(i, b) = i

Let B = ({a, b}, 2Q∪{q′
0}, q′

0, δ
′, F ′) be the DFA defined in Theorem A, which

recognizes the GF(2)-inverse of L(A).
If only transitions by a are considered, the automaton B degrades to the

unary DFA described in Lemma 4, which consists of a tail of length 2 and a
cycle of length 2n−1. Let C = { δ′(q′

0, a
i) | i � 2 } be the states in this cycle.

State Complexity of GF(2)-inverse and GF(2)-star on Binary Languages 151

{3}

{3,4}

{2,3,4}{1,2}

{1}

{0,3}

{2,3}

{0,1,2}

{0,4}

q0'

{0,2}

{1,3,4}
{0,1,3,4}

{2,4}

{1,3}

{0,2,3,4}

{1,2,3}

{0,1,2,3,4}

{0,3,4}

{1,4}

{4}

{1,2,4}

{0,2,4}

{0,1,3}

{0,2,3}

{0,1,2,3}

{1,2,3,4}

{0,1,2,4}

{0,1,4}

{0,1}

{0} ∅

{2}

Fig. 4. DFA for the GF(2)-inverse of the language in Example 2.

By Lemma 5, the set C contains 2n−2 accepting states of B. For each of
them—that is, for each subset T ∈ C ∩ F ′—a transition by b simply toggles the
membership of the state 0.

δ′(T, b) =
⋃
t∈T

{δ(t, b)}�{0} = T�{0}

By Lemma 1, transitions by a from the subsets T and T�{0} led to the same
subset, which belongs to the cycle C by definition. Since only one pre-image
of the subset could be in the cycle, it follows that all subsets T�{0}, with
T ∈ C ∩ F ′, do not belong to the cycle.

152 A. Okhotin and E. Sazhneva

0 1 2a n–2

a

b

n–1

b

. . .

. . .a
b

a
b

a

b

a

b

Fig. 5. Witness DFA for the GF(2)-star used in Theorem 3.

Thus, using transitions by the symbol b from accepting subsets in C, as
many as 2n−2 subsets not in C have been reached. The resulting set of subsets
is denoted by C ′ = {T�{0} | T ∈ C and T ∈ F ′ }.

This is the essential point of the proof. The rest of the proof confirms that
none of these subsets are reachable by a, two more subsets, ∅ and {0}, are
reachable by b but not by a, and finally, that all the states in B are pairwise
distinguishable, in the sense that for every pair of states there is a string accepted
from one of them but not from the other. The proofs of these details are omitted
due to space constraints.

This completes the proof of the state complexity of GF(2)-inverse over a
binary alphabet: it is 3

42n + 3, cf. 2n−1 + 1 in the unary case and 2n + 1 in the
ternary case.

In the case of the GF(2)-star, the result is more expected: the state complex-
ity in the binary case turns out to be the same as for larger alphabets.

5 Lower Bound for the GF(2)-star

Theorem 3. For every n � 3, there exists a language L over an alphabet Σ =
{a, b}, with ε /∈ L, which is recognized by a DFA with n states, whereas every
DFA recognizing its GF(2)-star L� must have at least 2n + 1 states.

Proof. The witness language is given by an n-state DFA A = (Σ,Q, 0, δ, F) with
the set of states Q = {0, . . ., n − 1}, where 0 is the initial state, and the only
accepting state is n−1. The transitions in each state i ∈ Q are defined as follows.

δ(i, a) = i + 1 (mod n)

δ(i, b) =

{
0, if i = 0
i + 1 (mod n), if 1 � i � n − 1

This DFA is illustrated in Fig. 5.
Let B = (Σ, 2Q∪{q′

0}, q′
0, δ

′, F ′) be the DFA constructed for A by Theorem A.
It is claimed that every subset S ⊆ Q is reachable from the initial state q′

0 by
some string, and that for every two states of B, there exists a string that is
accepted from one of them and not from the other. This shall confirm that every
DFA recognizing the same language must have at least 2n +1 states. The details
of the proof are omitted due to space constraints.

State Complexity of GF(2)-inverse and GF(2)-star on Binary Languages 153

6 Conclusion

The state complexity of GF(2)-concatenation, GF(2)-inverse and GF(2)-star has
now been determined precisely for every alphabet size. The suggested topics for
future research include estimating the state complexity of these operations for
NFA and 2DFA, and perhaps investigating other possible GF(2)-based opera-
tions and their state complexity.

References

1. Bakinova, E., Basharin, A., Batmanov, I., Lyubort, K., Okhotin, A., Sazhneva, E.:
Formal languages over GF(2). In: Klein, S.T., Mart́ın-Vide, C., Shapira, D. (eds.)
LATA 2018. LNCS, vol. 10792, pp. 68–79. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-77313-1 5

2. Birget, J.-C.: Partial orders on words, minimal elements of regular languages and
state complexity. Theor. Comput. Sci. 119, 267–291 (1993). https://doi.org/10.
1016/0304-3975(93)90160-U

3. Daley, M., Domaratzki, M., Salomaa, K.: Orthogonal concatenation: Language
equations and state complexity. J. Univ. Comput. Sci. 16(5), 653–675 (2010).
https://doi.org/10.3217/jucs-016-05-0653

4. Davenport, H.: Bases for finite fields. J. London Math. Soc. s1–43(1), 21–39 (1968)
5. Han, W.-B.: The coefficients of primitive polynomials over finite fields. Math. Com-

put. 65(213), 331–340 (1996). http://www.jstor.org/stable/2153850
6. Jirásková, G.: State complexity of some operations on binary regular languages.

Theor. Comput. Sci. 330, 287–298 (2005). https://doi.org/10.1016/j.tcs.2004.04.
011

7. Jirásková, G., Okhotin, A.: State complexity of cyclic shift. RAIRO Informatique
Théorique et Appl. 42(2), 335–360 (2008). https://doi.org/10.1051/ita:2007038

8. Jirásková, G., Okhotin, A.: State complexity of unambiguous operations on deter-
ministic finite automata. Theor. Comput. Sci. 798, 52–64 (2019). https://doi.org/
10.1016/j.tcs.2019.04.008

9. Lidl, R., Niederreiter, H.: Introduction to Finite Fields and their Applica-
tions. Cambridge University Press, Cambridge (1994). https://doi.org/10.1017/
CBO9781139172769

10. Makarov, V.: Bounded languages described by GF(2)-grammars. CoRR
abs/1912.13401 https://arxiv.org/abs/1912.13401 (2019)

11. Makarov, V., Okhotin, A.: On the expressive power of GF(2)-grammars. In: Cata-
nia, B., Královič, R., Nawrocki, J., Pighizzini, G. (eds.) SOFSEM 2019. LNCS,
vol. 11376, pp. 310–323. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-10801-4 25

12. Maslov, A.N.: Estimates of the number of states of finite automata. Sov. Math.
Dokl. 11, 1373–1375 (1970)

13. Okhotin, Alexander, Sazhneva, Elizaveta: State complexity of GF(2)-concatenation
and GF(2)-inverse on unary languages. In: Hospodár, Michal, Jirásková, Galina,
Konstantinidis, Stavros (eds.) DCFS 2019. LNCS, vol. 11612, pp. 248–259.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23247-4 19

https://doi.org/10.1007/978-3-319-77313-1_5
https://doi.org/10.1007/978-3-319-77313-1_5
https://doi.org/10.1016/0304-3975(93)90160-U
https://doi.org/10.1016/0304-3975(93)90160-U
https://doi.org/10.3217/jucs-016-05-0653
http://www.jstor.org/stable/2153850
https://doi.org/10.1016/j.tcs.2004.04.011
https://doi.org/10.1016/j.tcs.2004.04.011
https://doi.org/10.1051/ita:2007038
https://doi.org/10.1016/j.tcs.2019.04.008
https://doi.org/10.1016/j.tcs.2019.04.008
https://doi.org/10.1017/CBO9781139172769
https://doi.org/10.1017/CBO9781139172769
https://arxiv.org/abs/1912.13401
https://doi.org/10.1007/978-3-030-10801-4_25
https://doi.org/10.1007/978-3-030-10801-4_25
https://doi.org/10.1007/978-3-030-23247-4_19

154 A. Okhotin and E. Sazhneva

14. Okhotin, A., Sazhneva, E.: State complexity of GF(2)-operations on unary lan-
guages, submitted

15. Yu, S., Zhuang, Q., Salomaa, K.: The state complexity of some basic operations
on regular languages. Theor. Comput. Sci. 125, 315–328 (1994). https://doi.org/
10.1016/0304-3975(92)00011-F

https://doi.org/10.1016/0304-3975(92)00011-F
https://doi.org/10.1016/0304-3975(92)00011-F

Complexity of Two-Dimensional
Rank-Reducing Grammars

Daniel Pr̊uša(B)

Faculty of Electrical Engineering, Czech Technical University, Karlovo nám. 13,
12135 Prague 2, Czech Republic
daniel.prusa@fel.cvut.cz

Abstract. We study properties of a two-dimensional grammar intro-
duced recently for use in document analysis and recognition. The gram-
mar is obtained from the two-dimensional context-free grammar by
restricting the form of productions. Variants (ranks) of the grammar
with regard to productions complexity are defined. It is suggested that
the lowest-rank variant can be considered as a natural generalization of
the regular matrix grammar, which in addition has good properties with
respect to the membership and emptiness problems. However, it is also
showed that the higher-rank variants do not loosen complexity of the
context-free grammar too much. There is a conditional lower bound pre-
venting to propose a linear-time parsing algorithm. Moreover, the gram-
mar is able to simulate the 2-counter Minsky machine, which results in
non-recursive trade-offs and undecidability of the emptiness problem.

Keywords: Picture language · Two-dimensional context-free
grammar · Regular matrix grammar · Parsing complexity ·
Decidability · Descriptional complexity

1 Introduction

The two-dimensional (2D) context-free grammar, also known as Kolam grammar,
was proposed by Siromoney et al. in 1972 [18] and later independently by other
authors [9,17]. It is a natural generalization of the context-free grammar in the
Chomsky normal form. It uses productions of the forms N → A, N → AB,
N → A

B to generate 2D arrays of symbols (so called pictures) by concatenating
subpictures produced by A and B.

The grammar proved to be useful in the field of document analysis and recog-
nition if it is relaxed to generate planar layouts of printed or handwritten char-
acters [1,8,14]. The parsing algorithms used by the related recognition systems
are generalizations of the CYK [20] or Earley [3] algorithm. Although the sys-
tems can apply certain types of document domain-related constraints to speed
up the parsing, they still inherit the worst case time complexity from the 2D

The author was supported by the Czech Science Foundation grant no. 19-21198S.

c© Springer Nature Switzerland AG 2020
G. Jirásková and G. Pighizzini (Eds.): DCFS 2020, LNCS 12442, pp. 155–166, 2020.
https://doi.org/10.1007/978-3-030-62536-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62536-8_13&domain=pdf
https://doi.org/10.1007/978-3-030-62536-8_13

156 D. Pr̊uša

context-free grammar by Siromoney. As it was shown in [2,17], the generalized
CYK algorithm works in O(m2n2(m + n)) time for pictures of size m × n.

A subclass of the grammar, called a 2D rank-reducing grammar, was proposed
in an attempt to suppress the parsing complexity [13]. The grammar introduces
nonterminal ranks and allows only those productions N → AB, N → A

B where
the rank of B does not exceed the rank of N and the rank of A is strictly less than
the rank of B. It was showed in [13] that such a restricted grammar is powerful
enough to describe logical layouts of documents. A simple text document and a
fragment of a rank-reducing grammar expressing the document structure is given
in Fig. 1. A top-down parsing algorithm for the grammar, which uses regular
expressions to find feasible splits, was proposed and empirically evaluated [13].

Little Math Test

1. What is the GCD of 18 and 24 ?
a) 4 b) 6 c) 8

2. What is x when 2x + 4 = 3x − 3 ?
a) 5 b) 6 c) 7

(a)

Document → Title / Tasks

Tasks → Task / Tasks

Tasks → Task

Task → Question / Answers

Answers → Answer | Answers

Answers → Answer

(b)

Fig. 1. (a) A document sample. (b) A subset of productions defining the document
logical layout (‘/’ and ‘|’ represent vertical and horizontal concatenation, respectively).

If there are no productions of the form N → A
B , the rank-reducing grammar

generates just regular languages. It can thus be seen as a candidate for a 2D
generalization of the regular grammar. It is definitely more practical than the
regular matrix grammar [18] or other proposals of 2D regular-like grammars
(see, e.g., [4]), since their abilities to model documents are limited.

In this paper we slightly revise the rank-reducing grammar definition
(Sect. 3), show a conditional lower bound on the parsing complexity (Sect. 4) and
prove pumping lemmas that imply (un)decidability of the emptiness problem,
an infinite hierarchy of generated languages with respect to the maximum rank
and non-recursive trade-offs among the corresponding grammar classes (Sect. 5).

2 Preliminaries

N = {0, 1, 2, . . .} is the set of natural numbers, N
+ = N � {0}.

We use the common notation and terms on pictures and picture languages
(see, e.g., [5]). If Σ is a finite alphabet, then Σ∗,∗ denotes the set of all pictures
over Σ, that is, if P ∈ Σ∗,∗, then P is a matrix of symbols from Σ. If P has m
rows and n columns, we say it is of size m × n, and we write P ∈ Σm,n. We also
write am,n to denote the picture over {a} of size m × n. The symbol in the i-th
row and j-th column of P is referred by P (i, j). The empty picture of size 0 × 0

Complexity of Two-Dimensional Rank-Reducing Grammars 157

is denoted by Λ. Moreover, Σ+,+ = Σ∗,∗
� {Λ} is the set of non-empty pictures.

Each a ∈ Σ is also treated as the picture a1,1.
For integers 1 ≤ i ≤ k ≤ m, 1 ≤ j ≤ � ≤ n, and a picture P ∈ Σm,n, we use

P (i, j : k, �) to denote the non-empty subpicture of P of size (k−i+1)×(�−j+1)
whose top-left and bottom-right corners are in P at coordinates (i, j) and (k, �),
respectively. Moreover, we say that a picture P ′ is a submatrix of P if P ′ can
be obtained from P by deleting a collection of its rows and columns. Namely,(

a b
c d

)
is a submatrix of P if there are integers i, j, k, � such that P (i, j) = a,

P (i, �) = b, P (k, j) = c and P (k, �) = d.
Two partial binary operations are introduced to concatenate pictures. Let P

be a picture of size k × � such that pij is the symbol in the i-th row and j-th
column. Similarly, let Q be a picture of size m×n with symbols qij . The column
concatenation P �Q is defined if k = m, and the row concatenation P �Q is
defined if � = n. The products are given by the following schemes:

P �Q =

⎛

⎜
⎝

p11 . . . p1� q11 . . . q1n

...
. . .

...
...

. . .
...

pk1 . . . pk� qm1 . . . qmn

⎞

⎟
⎠ , P �Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p11 . . . p1�

...
. . .

...
pk1 . . . pk�

q11 . . . q1n

...
. . .

...
qm1 . . . qmn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Beside that, both operations are always defined when at least one of the
operands is Λ. In this case, Λ is the neutral element, so Λ �P = P �Λ = Λ �P =
P �Λ = P for any picture P .

Definition 1. A two-dimensional context-free grammar (2CFG) is a tuple G =
(VN, VT,P, S), where VN is a set of nonterminals, VT is a set of terminals,
S ∈ VN is the initial nonterminal and P is a set of productions in one of the
following forms:

(1a) N → A, (1b) S → Λ, (1c) N → AB, (1d) N → A
B

where N ∈ VN and A,B ∈ VT ∪ VN.

We say that a production of type (1c) is horizontal as it generates a horizontal
line composed of A and B. Analogously, a production of type (1d) is vertical.

Definition 2. Let G = (VN , VT ,P, S) be a 2CFG. The set of pictures generated
by G from any N ∈ VN, denoted L(G, N), is the smallest set fulfilling:

a) If N → A is in P, and P = A ∈ VT or P ∈ L(G, A), then P ∈ L(G, N),
b) if S → Λ is in P, then Λ ∈ L(G, S),
c) if N → AB is in P, P1 = A ∈ VT or P1 ∈ L(G, A), P2 = B ∈ VT or

P2 ∈ L(G, B), and P = P1
�P2, then P ∈ L(G, N), and

d) if N → A
B is in P, P1 = A ∈ VT or P1 ∈ L(G, A), P2 = B ∈ VT or

P2 ∈ L(G, B), and P = P1
�P2, then P ∈ L(G, N).

158 D. Pr̊uša

The picture language generated by G is defined as L(G) = L(G, S).

Remark 1. To simply proofs in the next sections, we will assume without loss of
generality that whenever a grammar contains the production of type (1b), then
the initial nonterminal does not appear at the right-hand side of any production.

3 Two-Dimensional Rank-Reducing Grammar

We introduce a 2D rank-reducing grammar as a 2CFG G = (VN, VT,P, S)
equipped with a ranking relation �, which is a linear order on VN ∪ VT ful-
filling for all A,B ∈ VN ∪ VT that (A � B) ∨ (B � A) whereas it may be true
that (A � B) ∧ (B � A). For every a, b ∈ VT and N ∈ VN, it is also required
that a � b and ¬(N � a). It means that � induces a partition of VN ∪ VT into
sets R0 = VT, R1, . . . , Rn where, for all 0 ≤ i ≤ n and {A,A′} ⊆ Ri, it holds
that (A � A′) ∧ (A′ � A), and, for all 0 ≤ i < j ≤ n, A ∈ Ri, B ∈ Rj , it holds
that (A � B) ∧ ¬(B � A). Based on the partition, we define rank of A ∈ Ri to
be i (we write rank(A) = i). For i = 1, . . . , n, we also write VN(i) = Ri.

Definition 3. A two-dimensional rank-reducing grammar of rank k (2RRG(k))
is a tuple G = (VN, VT,P, S,�) where (VN, VT,P, S) is a 2CFG, � is a ranking
relation, k = rank(S) = maxN∈VN

rank(N), each N → B ∈ P � {S → Λ}
satisfies rank(B) ≤ rank(N), and each N → AB and N → A

B in P satisfies
rank(A)<rank(B)=rank(N).

If G is a 2RRG(1), then the horizontal and vertical productions are of the form
N → aB and N → a

B , respectively, where a is a terminal. This means that L(G)
contains only one-row and one-column pictures generated by regular grammars.

2RRG(2) generalizes the regular matrix grammar, which uses horizontal reg-
ular productions to generate a string of nonterminals from an initial meta-
nonterminal, and vertical regular productions to generate columns of the same
height to replace the nonterminals – see Fig. 2(a). Compared to that, a 2RRG(2)
generates a picture by repeatedly appending one-row and one-column subpic-
tures. Each generated picture is thus a concatenation of subpictures, where each
subpicture is generated from a nonterminal of rank 1. Moreover, these nonter-
minals can be visualized as a connected chain – see Fig. 2(b).

The next proposition proves that the 2D rank-reducing grammar can rather
be viewed as a generalization of the regular than context-free grammar.

Theorem 1. Let G be a 2RRG(k) (k ≥ 1) with n nonterminals that does not
contain vertical productions. There is a regular grammar with at most nk non-
terminals equivalent to G.

Proof. Let G = (VN, VT,P, S,�) be a 2RRG(k) without any vertical production.
We first show how to construct a 2RRG(k − 1) G′ = (V ′

N, VT,P ′, S,�′) such that
L(G) = L(G′) and |V ′

N| = |VN| + |VN(k)| · |VN(k − 1)|.
Denote P1 = {N → AM | N,M ∈ VN(k)∧A ∈ VN(k−1)}. Since P1 consists

exactly of those productions that prevent nonterminals in VN(k)∪VN(k−1) to be

Complexity of Two-Dimensional Rank-Reducing Grammars 159

↓ ↓ ↓ ↓ ↓ ↓A A B B A B

(a)

A A B

B

A B

A A B

↓ ↓

↓

→
→

→

(b)

Fig. 2. A picture generated by (a) a regular grammar, (b) a 2RRG(2). Symbols A and
B are nonterminals (of rank 1 in case (b)). The arrows represent expansions of nonter-
minals to one-column and one-row pictures (if there is no arrow, then the nonterminal
is replaced by a terminal).

of the same rank, our idea is to introduce new nonterminals of the form (A,M)
to represent the sentential form AM generated by a production N → AM ∈ P1.
Hence, for all i = 1, . . . , k − 2, we define V ′

N(i) = VN(i), and V ′
N(k − 1) =

VN(k−1)∪VN(k)∪(VN(k − 1) × VN(k)). Moreover, we define P ′ = (P � P1)∪P ′
2

where P ′
2 is the minimum set of productions that fulfill the following rules:

– If N → AM ∈ P1, then N → (A,M) ∈ P ′
2,

– if A ∈ VN(k − 1), M ∈ VN(k), A → C B ∈ P, then (A,M) → C (B,M) ∈ P ′
2,

– if {A,B} ⊆ VN(k−1), M ∈ VN(k), A → B ∈ P, then (A,M) → (B,M) ∈ P ′
2,

– if A ∈ VN(k − 1), B /∈ VN(k − 1), M ∈ VN(k) and A → B ∈ P, then
(A,M) → B M ∈ P ′

2.

For each N → AM ∈ P1, the productions of P ′
2 ensure that A

∗⇒G B1 . . . Bs

if and only if (A,M) ∗⇒G′ B1 . . . BsM for Bi’s in VN ∪ VT of rank lower than
k − 1. Hence, it holds that L(G) = L(G′).

The procedure can be repeated to get grammars Gk, . . . ,G1 where Gk is the
given 2RRG(k) G and, for i = 1, . . . , k − 1, Gi is the 2RRG(i) obtained from Gi+1.

It remains to show that G1 has at most |VN|k nonterminals. For i = 1, . . . , k,
let ni = |VN(i)| and let σi denote the number of nonterminals of rank i in Gi.
We can observe that σk = nk and σi = ni + σi+1 + ni · σi+1 for i = 1, . . . , k − 1.

We prove σi ≤ (ni + . . .+nk)k−i+1 by induction on i. The inequality trivially
holds for σk. If i < k, we use the induction hypotheses and derive

σi = σi+1 (1 + ni) + ni ≤ (ni+1 + . . . + nk)k−i (1 + ni) + ni

≤ (ni + . . . + nk)k−i (ni + . . . + nk) = (ni + . . . + nk)k−i+1
,

which implies that σ1 ≤
(∑k

i=1 ni

)k

= |VN|k. ��

4 Parsing Complexity

We will show that the membership problem for 2RRG(3) is not easier than the
Triangle Finding problem which aims to decide whether a given undirected graph

160 D. Pr̊uša

with n vertices contains a triangle (3-clique). This problem can be solved by
Boolean matrix multiplication in time O(nω) [6], where ω < 2.373 denotes the
matrix multiplication exponent [19]. However, it is currently unknown whether
Triangle Finding can be solved in time O(n2). Note that conditional lower bounds
based on Triangle Finding are known for several problems [7,11].

Let LTF be a picture language over Σ = {0, 1, 2} such that P ∈ Σ∗,∗ is in
LTF if and only if (1 2

1 1) is a submatrix of P .

Lemma 1. Triangle Finding in an undirected graph with n vertices reduces in
O(n2) time to the membership problem for LTF.

Proof. According to [10], a graph G = ({v1, . . . , vn}, E) has a triangle if and
only if (1 2

1 1) is a submatrix of the n by n matrix MG satisfying MG(i, i) = 2 for
all i = 1, . . . , n, MG(i, j) = 1 whenever {vi, vj} ∈ E and i < j, and MG(i, j) = 0
in all the other cases. Hence, G contains a triangle iff MG ∈ LTF. ��
Lemma 2. There is a 2RRG(3) grammar G such that L(G) = LTF.

Proof. Let G = (VN, Σ,P, S,�) be a 2RRG(3) where VN(3) = {S, T, F}, VN(2) =
{U,U1, U2}, VN(1) = {Ar, Ac, R1, R

′
1, R2, R

′
2}, Σ = {0, 1, 2} and P is the set of

productions (we use the N → A |B notation to represent N → A and N → B)

S → Ar

S
|Ac S |T , T → U F |U , U → R1

U1
, F → U2 , U2 → Ar

U2
|Ar ,

U1 → Ar

U1
| R2

U2
|R2 , Ar → aAr | a (∀a ∈ Σ) , Ac → a

Ac
| a (∀a ∈ Σ) ,

R1 → 1R′
1 , R2 → 1R′

2 , R′
1 → aR′

1 | 2 and R′
2 → aR′

2 | 1 (∀a ∈ Σ) .

It holds that L(G, F) = L(G, U2) = Σ+,+. Moreover, L(G, U) consists of pictures
containing the submatrix (1 2

1 1) aligned with both top corners, L(G, T) consists
of pictures containing (1 2

1 1) aligned with the top-left corner and L(G, S) consists
of pictures containing (1 2

1 1) positioned arbitrarily. ��
Corollary 1. There is no algorithm deciding the membership problem for
2RRG(3) in O(mn) time for m×n pictures unless Triangle Finding can be decided
in O(n2) time for graphs with n vertices.

Theorem 2. Let G be a 2RRG(2). There is an algorithm deciding the membership
problem for G in O(mn) time for pictures of size m × n.

Proof. Let G = (VN, VT,P, S,�) be a 2RRG(2). Let P be a nonempty picture over
VT of size m×n. To decide if P ∈ L(G), construct three m by n matrices: MR and
MC whose entries are subsets of VN(1), and M whose entries are subsets of VN(2).
Entries are defined as follows. For all feasible (i, j), it holds that N ∈ MR(i, j)
if and only if P (i, j : i, n) ∈ L(G, N). Analogously, N ∈ MC(i, j) if and only
if P (i, j : m, j) ∈ L(G, N). Finally, N ∈ M(i, j) if and only if P (i, j : m,n) ∈
L(G, N). Notice that P ∈ L(G) ⇔ S ∈ M(1, 1).

Entries of MR and MC can be computed in O(mn) time. It suffices to con-
struct finite automata accepting the mirror image of L(G, A) where A ∈ VN(1)

Complexity of Two-Dimensional Rank-Reducing Grammars 161

and apply the automata over rows and columns of P . Entries of M are com-
puted using dynamic programming. First we compute M(m, j) and M(i, n) for
j = 1, . . . , n and i = 1, . . . ,m, which is similar to the computation of MR

and MC. The other entries are computed row by row. For (i, j) where i < m
and j < n, we decide whether N ∈ M(i, j) based on productions of the forms
N → A, N → AB, N → A

B and the previously computed entries. For example,
if N → AB ∈ P, A ∈ MC(i, j) and B ∈ M(i + 1, j), then N belongs to M(i, j).
Each entry is computed in a constant time, hence the time complexity is O(mn).

��
LTF is a candidate for showing that 2RRG(3) is more powerful than 2RRG(2).

The next lemma confirms that this is indeed true.

Lemma 3. LTF is not generated by any 2RRG(2).

Proof. By contradiction. Let G = (VN, {0, 1, 2},P, S,�) be a 2RRG(2) such that
L(G) = LTF. Let n = 4 · |VN| + 1. For i = 1, . . . , n − 1, k = 1, . . . , n − i, define
a picture Pi,k over {0, 1, 2} of size n × n as follows: Pi,k(i, i) = Pi,k(i + k, i) =
Pi,k(i+ k, i+ k) = 1, Pi,k(i, i+ k) = 2, and the other entries of Pi,k equal 0. The
definition ensures that Pi,k ∈ LTF. There are n

2 (n − 1) pictures Pi,k in total.
Consider Pi,k written as a concatenation of one-row and one-column subpic-

tures as depicted in Fig. 2(b). Let Ri,k be the one-row or one-column subpicture
containing the cell (i, i) of Pi,k. Without loss of generality, there is an A ∈ VN(1)
and a set S containing at least n(n−1)

4·|VN| pictures Pi,k for which Ri,k is a one-row
picture in L(G, A). The lengths of Ri,k’s are in [2, n]. Since n = 4 · |VN| + 1, the
pigeonhole principle implies that we can find two different pictures Pi1,k1 , Pi2,k2

in S such that |Ri1,k1 | = |Ri2,k2 |. Observe that the definition of Pi,k ensures
that Ri1,k1 �= Ri2,k2 . If Ri1,k1 in Pi1,k1 is replaced by Ri2,k2 , we obtain a picture
that is also generated by G, but this picture is not in LTF, which is a desired
contradiction. ��

5 Decidability and Descriptional Complexity

In this section we present pumping lemmas for 1) “large” pictures generated by a
unary 2RRG(2), and 2) sufficiently “wide” pictures generated by a unary 2RRG(k),
k ≥ 3. The lemmas imply results on decidability and grammar trade-offs.

Lemma 4. Let L be a unary regular language over {a} accepted by an n-state
deterministic finite automaton A. Then, L = Lfin ∪ ⋃k

i=1 Li where k ≤ n, Lfin

is a finite set containing only words of length up to n, and there are integers
0 ≤ d, c1, . . . , ck ≤ n such that Li = {aci+d·j | j ∈ N} for all i = 1, . . . , k.

Proof. The proof can be easily done by analyzing the underlying directed graph
of A formed of states and transitions. ��
Lemma 5. Let G = (VN, {a},P, S,�) be a 2RRG(2). If L(G) contains a picture
am,n such that max{m,n} ≥ 2|VN|2 · 8|VN|2 , then there are integers c, d such that
0 ≤ c < m, 0 ≤ d < n, c + d ≥ 1 and am−c+c·i,n−d+d·i ∈ L(G) for all i ∈ N.

162 D. Pr̊uša

Proof. Let P = am,n ∈ L(G) where max{m,n} ≥ 2|VN|2·8|VN|2 . For each A ∈ VN,
let LR(G, A) and LC(G, A) denote the subset of all one-row and one-column
pictures in L(G, A), respectively.

For each A ∈ VN(1), there is a regular grammar with |VN(1)| < |VN| non-
terminals generating LC(A,G), hence, there is a deterministic finite automaton
with at most 2|VN| states accepting LC(A,G). By Lemma 4, there is an integer
1 ≤ dA ≤ 2|VN| and a finite set of integers IA such that any one-column pic-
ture ak,1 of height k > 2|VN| is in LC(A,G) if and only if (k mod dA) ∈ IA.
Let DC = {dA | A ∈ VN(1)}. Let DR be analogously defined for the case when
languages LR(A,G) are considered instead of languages LC(A,G).
Case I: min{m,n} > |VN| · 4|VN|2 + 2|VN|. For P1 = am1,n1 , P2 = am2,n2 and
a nonterminal N ∈ VN, let us write P1 ≈N P2 if and only if P1, P2 ∈ L(G, N),
m1,m2, n1, n2 > 2|VN|, m1 ≡ m2 (mod d) for all d ∈ DC and n1 ≡ n2 (mod d) for
all d ∈ DR. Observe the following fact. If P1 ≈N P2 and M → AN ∈ P can be
used to produce P ′

1 = am1,n1+1 ∈ L(G,M) from P1, then it can also be used to
produce P ′

2 = am2,n2+1 ∈ L(G,M) from P2, and it further holds that P ′
1 ≈M P ′

2.
A completely analogous observation can be made for productions M → A

N . In
addition, it is also evident that every production M → N yields P1 ≈M P2.

In accordance to the scheme depicted in Fig. 2(b), there is a sequence of
pictures P1, . . . , Ps and nonterminals N1, . . . , Ns from VN(2) such that s ≥
min{m,n}−2|VN|, P = P1, N1 = S, Pi = ami,ni ∈ L(G, Ni), min{mi, ni} > 2|VN|,
and Pi is generated by concatenating a column or row picture and Pi+1.

Since s > |VN| · 4|VN|2 ≥ |VN| · (
2|VN|)|DC| · (

2|VN|)|DR|
, there are two distinct

indexes k and � such that k < �, Nk = N� = N ∈ VN(2) and Pk ≈N P�.
This means that 1) we can apply a sequence of productions S, which produce
P = am,n from Pk = amk,nk , to produce am−(mk−m�),n−(nk−n�) ∈ L(G) from
P� = am�,n� ∈ L(G, N), and 2) we can i times apply a sequence of productions
that produce Pk from P� to produce P ′

i = amk+i·(mk−m�),nk+i·(nk−n�) ∈ L(G, N)
from Pk and then the sequence S to produce am+i·(mk−m�),n+i·(nk−n�) ∈ L(G)
from P ′

i .
Case II: min{m,n} ≤ |VN| · 4|VN|2 + 2|VN|. Without loss of generality, let n ≥
2|VN|2 ·8|VN|2 . We adjust the equivalence ≈N to the new setting: For P1 = am1,n1 ,
P2 = am2,n2 and N ∈ VN, we write P1 ≈′

N P2 if and only if P1, P2 ∈ L(G, N),
n1, n2 > 2|VN|, m1 = m2 and n1 ≡ n2 (mod d) for all d ∈ DR.

There is a sequence of pictures P1, . . . , Ps and nonterminals N1, . . . , Ns from
VN(2) ∪ VN(1) such that s ≥ n − 2|VN|, P = P1, N1 = S, Pi = ami,ni ∈ L(G, Ni),
ni > 2|VN| and Pi is produced from Pi+1 by appending a column or row to Pi+1.
Moreover, if Pi is a one-row picture, then Pi = a �Pi+1. Since

s ≥ n − 2|VN| = 2|VN|2 · 8|VN|2 − 2|VN| ≥ |VN|2 · 8|VN|2 + |VN| · 2|VN|2 · 2|VN|

= |VN| · 2|VN|2 ·
(
|VN| · 4|VN|2 + 2|VN|

)
> |VN| · m ·

(
2|VN|

)|DR|
,

there are two indexes k and � such that k < �, Nk = N� = N ∈ VN(1)
⋃

VN(2)
and Pk ≈′

N P�, hence we can draw the same conclusion as in Case I. ��

Complexity of Two-Dimensional Rank-Reducing Grammars 163

Lemma 6. Let G = (VN, {a},P, S,�) be a 2RRG(k) where k ≥ 1. For every
nonterminal N ∈ VN and picture am,n ∈ L(G, N) it holds that if n > |VN|k ·mk−1,
then am,n+i·n! ∈ L(G, N) for all i ∈ N.

Proof. We will prove the lemma by induction on the grammar rank k and the
number of picture rows m. Without loss of generality, we assume that P does
not contain productions N → M such that rank(N) = rank(M).
Base Case I: m = 1 and k ≥ 1. If P = a1,n ∈ L(G, N) where n > |VN|k,
then P is a string generated by G from N without using vertical productions.
By Theorem 1, there is a regular grammar G′ = (V ′

N, {a},P ′, N) such that
|V ′

N| ≤ |VN|k and P ∈ L(G′) ⊆ L(G, N). The standard pumping lemma applied
to G′ yields that a1,n+i·p ∈ L(G′) for a suitable p ≤ n and all i ∈ N, hence
a1,n+i·n! ∈ L(G, N) for all i ∈ N.
Base Case II: k = 1 and m ≥ 1. Since G is of rank 1, it generates only one-row
and one-column pictures. If P = am,n ∈ L(G, N) where n > |VN| ≥ 1, then P is
a one-row picture, hence Base case II is included in Base case I.
Induction Step: Let k > 1 and m > 1. Moreover, let n > |VN|k ·mk−1. We will
inspect how P = am,n ∈ L(G, N) is generated by G from N .

Let {Ni → AiNi+1}s
i=1 be a maximum length sequence of productions from P

satisfying N1 = N and there are pictures P1, . . . , Ps+1 such that Pi ∈ L(G, Ai) if
i ∈ {1, . . . , s}, Ps+1 ∈ L(G, Ns+1) and P = P1

�. . . �Ps
�Ps+1. We examine three

cases.

(1) If there is i ∈ {1, . . . , s} such that Pi = am,n′
and n′ > |VN|k−1 · mk−2, then

the induction hypotheses applies to Pi.
(2) If s > |VN|, then N

∗⇒G A1 . . . AsNs+1 implies that

N
∗⇒G A1 . . . Ak−1 (Ak . . . A�)

i
A�+1 . . . AsNs+1

for some 1 ≤ k ≤ � ≤ s, hence am,n+p·i ∈ L(G) for all i ∈ N and p equal to
the number of columns of Pk

�· · · �P� where it holds that p divides n!.
(3) Since {Ni → AiNi+1}s

i=1 is a maximum length sequence, P contains a pro-
duction Ns+1 → B

Ns+2
and there are pictures Q1, Q2 such that Q1 ∈ L(G, B),

Q2 ∈ L(G, Ns+2) and Ps+1 = Q1
�Q2. If Ps+1 has more than |VN|k·(m−1)k−1

columns, then the induction hypotheses applies to Q1 as well as to Q2.

All three cases (1), (2) and (3) yield that an,n+i·n! ∈ L(G, N) for all i ∈ N. At
the same time, one of these cases must occur. If none of them occurs, it holds

n ≤ |VN| · |VN|k−1 · mk−2 + |VN|k · (m − 1)k−1 ≤ |VN|k · mk−1 ,

which contradicts the assumption on n. ��
For each k ≥ 1, it is possible to propose a 2RRG(k + 1) Gk which shows that

the picture width assumption in Lemma 6 is asymptotically optimal.

Lemma 7. For every k ∈ N
+, there is a 2RRG(k + 1) grammar Gk such that

L(Gk) = {ai,ik | i ∈ N
+}.

164 D. Pr̊uša

Proof. Let us denote Lk = {ai,ik | i ∈ N
+}. Define G1 = (V 1

N, {a},P1, S1,�1)
where V 1

N(2) = {S1, T1}, V 1
N(1) = {R,C} and P1 consists of productions

S1 → R
T1

| a , T1 → C S1 , R → aR | a , C → a
C

| a .

It is easy to check that L(G1) consists of all nonempty square pictures.
To generate a P ∈ L2, the equality (n + 1)2 = 1 + 2n + n2 suggests to write

an+1,(n+1)2 = a1,n+1 �

(
an,1 �an,n �an,n �an,n2

)
.

It leads to a 2RRG(3) G2 = (V 1
N ∪ V 2

N, {a},P1 ∪ P2, S2,�2) where V 2
N(3) =

{S2, T2, U2, V2}, V 2
N(2) = V 1

N(2), V 2
N(1) = V 1

N(1) and P2 consists of productions

S2 → R
T2

| a , T2 → C U2 , U2 → S1 V2 , V2 → S1 S2 .

The above approach generalizes to any k ≥ 3. Utilizing the binomial expansion
formula, the picture from Lk of size (n + 1) × (n + 1)k can be expressed as

an+1,(n+1)k

= a1,n+1 �
(
an,1 �P2

�· · · �P2k

)

where P2k = an,nk ∈ Lk and all pictures P2, . . . , P2k−1 are in L1 ∪ . . . ∪ Lk−1.
Hence, a 2RRG(k + 1) generating Lk can be constructed. ��
Theorem 3. For each k ≥ 1, the picture languages generated by 2RRG(k) form
a proper subset of the picture languages generated by 2RRG(k + 1).

Proof. By Lemma 7, Lk = {ai,ik | i ∈ N
+} is generated by a 2RRG(k + 1).

Assume that Gk = (VN, {a},P, S,�) is a 2RRG(k) and L(Gk) = Lk. Let m =
|VN|k + 1 and n = mk. Since am,n ∈ Lk and n = mk > |VN|k · mk−1, Lemma 6
implies that am,n+n! ∈ Lk, which is a contradiction. ��

It was proved in [15, Theorem 1] that 2CFG is powerful enough to simulate
the 2-counter Minsky machine. The proof can be easily adapted to 2RRG(3).

Theorem 4. For every deterministic n-state 2-counter Minsky machine M,
there is a 2RRG(3) G with O(n) nonterminals fulfilling: If M halts in time t
when launched with initially zeroed counters, then L(G) = {a�,�} for some � ≥ t;
if M does not halt, then L(G) = ∅.
Theorem 5. The emptiness problem is decidable for 2RRG(2) and undecidable
for 2RRG(k) if k ≥ 3.

Proof. By Theorem 4, the halting problem reduces to the emptiness for 2RRG(3).
Let G = (VN, VT,P, S,�) be a 2RRG(2) and π : VT → {a} be a projection.

Deciding whether L(G) = ∅ is equivalent to deciding whether π(L(G)) = ∅. The
family of picture languages generated by 2RRG(2) is apparently closed under
projection, hence, without loss of generality we can assume that VT = {a}.

By Lemma 5, L(G) �=∅ iff there is am,n ∈L(G) with max{m,n} < 2|VN|28|VN|2 ,
it thus suffices to check membership to L(G) for finitely many pictures. ��

Complexity of Two-Dimensional Rank-Reducing Grammars 165

The next theorem characterizes descriptional complexity of 2RRG(k). Size of
a grammar is measured as the number of its nonterminals. In the proof we work
with the non-recursive busy beaver function bb : N → N [16].

Theorem 6. The trade-off between 2RRG(k + 1) and 2RRG(k) is non-recursive
for every k ≥ 2.

Proof. Let {Mj}∞
j=1 be a sequence of deterministic 2-counter Minsky machines

where each Mj is equivalent to a j-th busy beaver Turing machine. By Theo-
rem 4, for each Mj , there is a 2RRG(3) G1

j with O(j) nonterminals generating
{a�,�} where � ≥ bb(j).
Case I: k ≥ 3. By Lemma 7, there is a 2RRG(k + 1) grammar G2

j generating
the picture language {ai,ik | i ∈ N

+}. Assume that G1
j and G2

j do not share any
nonterminal. Let S1

j and S2
j be the initial nonterminal of G1

j and G2
j , respectively.

Define a 2RRG(k + 1) Gj which inherits all nonterminals and productions in G1
j

and G2
j , preservers the rank of all nonterminals, and introduces a new initial

nonterminal Sj of rank k + 1 and an extra production Sj → S1
j S2

j . It holds that
L(Gj) = {a�1,�2} where �1 ≥ bb(j) and �2 = �1 + �k

1 > �k
1 .

Since L(Gj) is finite, there is a 2RRG(k) G3
j such that L(G3

j) = L(Gj). Let nj

be the number of nonterminals in G3
j . It must fulfill �2 ≤ (nj)k�k−1

1 , otherwise
Lemma 6 applies and contradicts that |L(G3

j)| = 1. Hence, (nj)
k ≥ �2/�k−1

1 ≥
bb(j) , which implies that {nj}∞

j=1 grows faster than any recursive function.
Case II: k = 2. For each j ∈ N

+, it suffices to consider a 2RRG(2) Gj which
generates L(G1

j) = {a�,�} with � ≥ bb(j). Lemma 5 enforces � < 2 · (nj)2 · 8(nj)
2
,

hence {nj}∞
j=1 grows again faster than any recursive function. ��

6 Conclusion

We studied theoretical properties of the two-dimensional rank-reducing gram-
mar. We showed that the variant of rank 2 generalizes the principle of the regular
matrix grammar and still has quite good properties. However, from a practical
point of view, it is not powerful enough since the grammars used in [13] to
describe the structure of common documents are of rank at least 5.

We demonstrated that the grammar properties greatly change when going
from rank 2 to rank 3. As in the case of 2CFG, the grammar of rank 3 is able
to encode computations of the 2-counter Minsky machine. The subsequently
induced non-recursive trade-offs are then in a line with the results in [12].

There are some interesting topics that remained untouched by this paper,
like closure properties, or parsing algorithms for the grammar of rank 3 and 4.
These topics may therefore be the subject of future research.

References

1. Álvaro, F., Cruz, F., Sánchez, J.A., Ramos Terrades, O., Bened́ı, J.M.: Structure
detection and segmentation of documents using 2D stochastic context-free gram-
mars. Neurocomputing 150(PA), 147–154 (2015)

166 D. Pr̊uša

2. Crespi Reghizzi, S., Pradella, M.: A CKY parser for picture grammars. Inf. Process.
Lett. 105(6), 213–217 (2008)

3. Earley, J.: An efficient context-free parsing algorithm. Commun. ACM 13(2), 94–
102 (1970)

4. Fernau, H., Paramasivan, M., Schmid, M.L., Thomas, D.G.: Simple picture pro-
cessing based on finite automata and regular grammars. J. Comput. Syst. Sci. 95,
232–258 (2018)

5. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salo-
maa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 215–267. Springer, New
York (1997). https://doi.org/10.1007/978-3-642-59126-6 4

6. Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. In: Proceedings of the
9th Annual ACM Symposium on Theory of Computing (STOC 1977), STOC 1977,
pp. 1–10. ACM, New York (1977)

7. Lee, L.: Fast context-free grammar parsing requires fast Boolean matrix multipli-
cation. J. ACM 49(1), 1–15 (2002)

8. Lemaitre, A., Mouchère, H., Camillerapp, J., Coüasnon, B.: Interest of syntactic
knowledge for on-line flowchart recognition. In: 9th IAPR International Workshop
on Graphics Recognition, 2011, GREC 2011, pp. 85–88 (2011)

9. Matz, O.: Regular expressions and context-free grammars for picture languages.
In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 283–294.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0023466

10. Mráz, F., Pr̊uša, D., Wehar, M.: Two-dimensional pattern matching against basic
picture languages. In: Hospodár, M., Jirásková, G. (eds.) CIAA 2019. LNCS, vol.
11601, pp. 209–221. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
23679-3 17

11. de Oliveira Oliveira, M., Wehar, M.: Intersection non-emptiness and hardness
within polynomial time. In: Hoshi, M., Seki, S. (eds.) DLT 2018. LNCS, vol.
11088, pp. 282–290. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
98654-8 23

12. Pr̊uša, D.: Non-recursive trade-offs between two-dimensional automata and gram-
mars. Theor. Comput. Sci. 610, 121–132 (2016)

13. Pr̊uša, D., Fujiyoshi, A.: Rank-reducing two-dimensional grammars for document
layout analysis. In: 14th IAPR International Conference on Document Analysis
and Recognition (ICDAR 2017), vol. 01, pp. 1120–1125 (2017)

14. Pr̊uša, D., Hlaváč, V.: Mathematical formulae recognition using 2D grammars.
In: 9th International Conference on Document Analysis and Recognition (ICDAR
2007), pp. 849–853. IEEE Computer Society (2007)

15. Pr̊uša, D., Reinhardt, K.: Undecidability of the emptiness problem for context-free
picture languages. Theor. Comput. Sci. 679, 118–125 (2017)

16. Radó, T.: On non-computable functions. Bell Syst. Tech. J. 41(3), 877–884 (1962)
17. Schlesinger, M.I., Hlaváč, V.: Ten Lectures on Statistical and Structural Pattern

Recognition (Computational Imaging and Vision), 1st edn. Springer, Dordrecht
(2012)

18. Siromoney, G., Siromoney, R., Krithivasan, K.: Abstract families of matrices and
picture languages. Comput. Graph. Image Process. 1(3), 284–307 (1972)

19. Williams, V.V.: Multiplying matrices faster than Coppersmith-Winograd. In: 44th
Annual ACM Symposium on Theory of Computing (STOC 2012), pp. 887–898.
ACM, New York (2012)

20. Younger, D.: Recognition of context-free languages in time n3. Inf. Control 10,
189–208 (1967)

https://doi.org/10.1007/978-3-642-59126-6_4
https://doi.org/10.1007/BFb0023466
https://doi.org/10.1007/978-3-030-23679-3_17
https://doi.org/10.1007/978-3-030-23679-3_17
https://doi.org/10.1007/978-3-319-98654-8_23
https://doi.org/10.1007/978-3-319-98654-8_23

Palindromic Length of Words with Many
Periodic Palindromes

Josef Rukavicka(B)

Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering,
Czech Technical University in Prague, Prague, Czech Republic

josef.rukavicka@seznam.cz

Abstract. The palindromic length PL(v) of a finite word v is the min-
imal number of palindromes whose concatenation is equal to v. In 2013,
Frid, Puzynina, and Zamboni conjectured that: If w is an infinite word
and k is an integer such that PL(u) ≤ k for every factor u of w then w
is ultimately periodic.

Suppose that w is an infinite word and k is an integer such PL(u) ≤ k
for every factor u of w. Let Ω(w, k) be the set of all factors u of w that
have more than k

√
k−1|u| palindromic prefixes. We show that Ω(w, k)

is an infinite set and we show that for each positive integer j there are
palindromes a, b and a word u ∈ Ω(w, k) such that (ab)j is a factor of
u and b is nonempty. Note that (ab)j is a periodic word and (ab)ia is a
palindrome for each i ≤ j. These results justify the following question:
What is the palindromic length of a concatenation of a suffix of b and a
periodic word (ab)j with “many” periodic palindromes?

It is known that if u, v are nonempty words then |PL(uv) − PL(u)| ≤
PL(v). The main result of our article shows that if a, b are palindromes, b
is nonempty, u is a nonempty suffix of b, |ab| is the minimal period of aba,
and j is a positive integer with j ≥ 3PL(u) then PL(u(ab)j)−PL(u) ≥ 0.

1 Introduction

In 2013, Frid, Puzynina, and Zamboni introduced a palindromic length of a finite
word [6]. Recall that the word u = x1x2 . . . xn of length n is called a palindrome
if x1x2 . . . xn = xn . . . x2x1, where xi are letters and i ∈ {1, 2, . . . , n}. The
palindromic length PL(u) of the word u is defined as the minimal number k
such that u = u1u2 . . . uk and uj are palindromes, where j ∈ {1, 2, . . . , k}; note
that the palindromes uj are not necessarily distinct. Let ε denote the empty
word. We define that PL(ε) = 0.

In general, the factorization of a finite word into the minimal number of
palindromes is not unique; for example PL(011001) = 3 and the word 011001
can be factorized in two ways: 011001 = (0110)(0)(1) = (0)(1)(1001).

The authors of [6] conjectured that:

Conjecture 1. If w is an infinite word and P is an integer such that PL(u) ≤ P
for every factor u of w then w is ultimately periodic.

c© Springer Nature Switzerland AG 2020
G. Jirásková and G. Pighizzini (Eds.): DCFS 2020, LNCS 12442, pp. 167–179, 2020.
https://doi.org/10.1007/978-3-030-62536-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62536-8_14&domain=pdf
https://doi.org/10.1007/978-3-030-62536-8_14

168 J. Rukavicka

So far, Conjecture 1 remains open. We call an infinite word that satisfies the
condition from Conjecture 1 a word with a bounded palindromic length. Note
that there are infinite periodic words that do not have a bounded palindromic
length; for example (012)∞. Hence the converse of Conjecture 1 does not hold.

In [6] the conjecture was proved for infinite words that are k-power free for
some positive integer k. It follows that if w is an infinite word with a bounded
palindromic length, then for each positive integer j there is a nonempty factor
r such that rj is a factor of w.

In [11], another variation of Conjecture 1 was considered:

Conjecture 2. Every aperiodic (not ultimately periodic) infinite word has pre-
fixes of arbitrarily high palindromic length.

In [11], the author proved that Conjecture 1 and Conjecture 2 are equivalent.
More precisely, it was proved that if every prefix of an infinite word w is a
concatenation of at most n palindromes then every factor of w is a concatenation
of at most 2n palindromes. It follows that Conjecture 2 remains also open.

In [7] Conjecture 1 and Conjecture 2 have been proved for all Sturmian words.
The properties of the palindromic length of Sturmian words have been investi-
gated also in [2]. In [1], the authors study the palindromic length of factors of
fixed points of primitive morphisms. In [8], the lower bounds for the palindromic
length of prefixes of infinite words can be found.

In [4], a left and right greedy palindromic length have been introduced as a
variant to the palindromic length. It is shown that if the left (or right) greedy
palindromic lengths of prefixes of an infinite word w is bounded, then w is
ultimately periodic.

In addition, algorithms for computing the palindromic length were researched
[3,5,10]. In [10], the authors present a linear time online algorithm for computing
the palindromic length.

In the current paper we investigate infinite words with a bounded palindromic
length. Let k be a positive integer, let w be an infinite word such that k ≥ PL(t)
for every factor t of w, and let Ω(w, k) be the set of all factors u of w that have
more than k

√
k−1|u| palindromic prefixes. We show that Ω(w, k) is an infinite

set and we show that for each positive integer j there are palindromes a, b and
a word u ∈ Ω(w, k) such that (ab)j is a factor of u and b is nonempty. Note
that (ab)j is a periodic word and (ab)ia is a palindrome for each i ≤ j. In this
sense we can consider that w has infinitely many periodic palindromes with an
arbitrarily high exponent j.

The existence of infinitely many periodic palindromes in w is not surprising.
It can be deduced also from the result in [6], which says, as mentioned above,
that if w is an infinite word with a bounded palindromic length, then for each
positive integer j there is a nonempty factor r such that rj is a factor of w.

These results justify the following question: What is the palindromic length
of a concatenation of a suffix of b and a periodic word (ab)j with “many” periodic
palindromes?

It is known that if u, v are nonempty words then |PL(uv) − PL(u)| ≤ PL(v)
[11]. Less formally said, it means that by concatenating a word v to a word u the

Palindromic Length of Words 169

change of the palindromic length is at most equal to the palindromic length of v.
The main result of our article shows that if a, b are palindromes, b is nonempty,
u is a nonempty suffix of b, |ab| is the minimal period of aba, and j is a positive
integer with j ≥ 3PL(u) then PL(u(ab)j) − PL(u) ≥ 0.

The results of our article should shed some light on infinite words for which
Conjecture 1 and Conjecture 2 remain open. For the moment, for given factor
u, we identified factors v such that PL(uv) − PL(v) ≥ 0. The idea for the future
development of this result is, for given k ∈ N, to identify factors u, v such that
PL(u) = k and PL(uv) − PL(u) > 0. The existence of such factors would, in
consequence, allow us to prove the Conjecture 1 and Conjecture 2.

2 Preliminaries

Let N denote the set of all positive integers, let N0 = N ∪ {0} denote the set
of all nonnegative integers, let R denote the set of all real numbers, and let R

+

denote the set of all positive real numbers.
Let A denote a finite alphabet with |A| ≥ 2 letters. Let A+ denote the set

of all finite nonempty words over the alphabet A and let A∗ = A+ ∪ {ε}; recall
that ε denotes the empty word. Let AN denote the set of all right infinite words.

Let n ∈ N and let w = w1w2 . . . wn ∈ A∗ (or w = w1w2 · · · ∈ AN),
where wi ∈ A and i ∈ {1, 2, . . . , n} (or i ∈ {1, 2, . . . }). We denote by
w[i, j] = wiwi+1 . . . wj the factor of w starting at position i ∈ N and ending
at position j ∈ N, where i, j ∈ N and i ≤ j ≤ n

We call the word v ∈ A∗ a factor of the word w ∈ A∗ ∪AN if there are words
a ∈ A∗ and b ∈ A∗ ∪ AN such that w = avb. Given a word w ∈ A∗ ∪ AN, we
denote by Fac(w) the set of all factors of w. It follows that ε ∈ Fac(w) and if
w ∈ A∗ then also w ∈ Fac(w).

We call the word v ∈ A∗ a prefix of the word w ∈ A∗ ∪ AN if there is
t ∈ A∗ ∪AN such that w = vt. Given a word w ∈ A∗ ∪AN, we denote by Prf(w)
the set of all prefixes of w. It follows that ε ∈ Prf(w) and if w ∈ A∗ then also
w ∈ Prf(w).

We call the word v ∈ A∗ a suffix of the word w ∈ A∗ if there is t ∈ A∗ such
that w = tv. Given a word w ∈ A∗, we denote by Suf(w) the set of all suffixes
of w. It follows that ε, w ∈ Suf(w).

Let w = w1w2 . . . wn ∈ A+, where wi ∈ A and i ∈ {1, 2, . . . , n}. Let wR

denote the reversal of the word w ∈ A+; it means wR = wnwn−1 . . . w2w1.
In addition we define that the reversal of the empty word is the empty word;
formally εR = ε.

Realize that w ∈ A∗ is a palindrome if and only if wR = w. Let Pal ⊂ A∗

denote the set of all palindromes over the alphabet A. We define that ε ∈ Pal.
Let Pal+ = Pal \ {ε} be the set of all nonempty palindromes.

Given w ∈ A∗∪AN, let PalPrf(w) = Pal∩Prf(w) be the set of all palindromic
prefixes of w.

170 J. Rukavicka

Given w ∈ A+, let MPF(w) denote the set of all k-tuples of palindromes
whose concatenation is equal to w and k = PL(w); formally

MPF(w) = {(t1, t2, . . . , tk) | k = PL(w) and t1t2 . . . tk = w and

t1, t2, . . . , tk ∈ Pal+}.

We call a k-tuple (t1, t2, . . . , tk) ∈ MPF(w) a minimal palindromic factorization
of w.

Let Q denote the set of all rational numbers. We say that the word w ∈ A+ is
a periodic word, if there are α ∈ Q, r ∈ Prf(w)\{ε}, and r̄ ∈ Prf(r)\{r} such that
α > 1, w = rr . . . rr̄, and |w|

|r| = α; note that r̄ is uniquely determined by r. We

write w = rα and the period of w is equal to |r|. For example 12341 = (1234)
5
4

and 12341234123 = (1234)
11
4 .

Given w ∈ A+, let

Period(w) = {(r, α) | rα = w and r ∈ Prf(w) \ {ε} and α ∈ Q and α > 1}.

The set Period(w) contains all couples (r, α) such that rα = w. Let

MinPer(w) = min{|r| | (r, α) ∈ Period(w)} ∈ N.

The positive integer MinPer(w) is the minimal period of the word w. The word
w ∈ A+ has a period δ ∈ Q if there is a couple (r, α) ∈ Period(w) such that
|r| = δ.

We will deal a lot with periodic palindromes. The two following known lem-
mas will be useful for us.

Lemma 1 (see [9, Lemma 1]). Suppose p is a period of a nonempty palindrome
w; then there are palindromes a and b such that |ab| = p, b �= ε, and w = (ab)∗a.

Lemma 2 (see [9, Lemma 2]). Suppose w is a palindrome and u is its proper
suffix-palindrome or prefix-palindrome; then the number |w| − |u| is a period of
w.

3 Periodic Palindromic Factors

We start the section with a definition of a set of real non-decreasing functions
that diverge as n tends towards the infinity.

Let Λ denote the set of all functions φ such that

– φ(n) : N → R,
– φ(n) ≤ φ(n + 1), and
– limn→∞ φ(n) = ∞.

Let k ∈ N, let τ(n, k) = k
√

k−1n ∈ Λ, let w ∈ AN, and let

Ω(w, k) = {t ∈ Fac(w) | |PalPrf(t)| ≥ τ(|t|, k)}.

Palindromic Length of Words 171

The definition says that the set Ω(w, k) contains a factor t of w if the number
of palindromic prefixes of t is larger than or equal to τ(|t|, k) = k

√
k−1|t|.

The next proposition asserts that if w is an infinite word with a bounded
palindromic length, then the set of factors that have more than τ(n, k) palin-
dromic prefixes is infinite, where n is the length of the factor in question and
k ≥ PL(t) for each factor t of w.

Proposition 1. If w ∈ AN, k ∈ N and k ≥ max{PL(t) | t ∈ Fac(w)} then
|Ω(w, k)| = ∞.

Proof. Suppose that |Ω(w, k)| < ∞ and let

K = max{|PalPrf(t)| | t ∈ Ω(w, k)}.

Less formally said, the value K is the maximal value from the set of numbers of
palindromic prefixes of factors t of w that have more than τ(|t|, k) palindromic
prefixes. Clearly K < ∞, because of the assumption |Ω(w, k)| < ∞.

Let p ∈ Prf(w) be the shortest prefix of w such that τ(|p|, k) > K. Since
limn→∞ τ(n, k) = ∞, it is clear that such prefix p exists.

To get a contradiction suppose that |PalPrf(t)| ≥ τ(|p|, k) for some t ∈
Fac(p). Since τ(|t|, k) ≤ τ(|p|, k) and thus |PalPrf(t)| ≥ τ(|t|, k), it follows that
t ∈ Ω(w, k) and consequently |PalPrf(t)| ≤ K. It is a contradiction, because
K < τ(|p|, k). Hence we have that

|PalPrf(t)| < τ(|p|, k) for each t ∈ Fac(p). (1)

Let n, j ∈ N and let

Θ(n, j) = {(v1, v2, . . . , vj) | vi ∈ Pal+ and i ∈ {1, 2, . . . , j} and
|v1v2 . . . vj | ≤ n and v1v2 . . . vj ∈ Prf(w)}.

The set Θ(n, j) contains j-tuples of nonempty palindromes whose concatenation
is of length smaller than or equal to n and also the concatenation is a prefix of
w.

Thus from (1) we get that

|Θ(|p|, j)| < (τ(|p|, k))j . (2)

The Eq. (2) follows from the fact that each factor of p has at most τ(|p|, k)
palindromic prefixes. In consequence there are at most (τ(|p|, k))j of j-tuples of
palindromes.

Let Θ̄(|p|, j) =
⋃k

j>0 Θ(|p|, j). Since τ(n, k) ≤ τ(n + 1, k) we have from (2)
that

|Θ̄(|p|, k)| ≤ k|Θ(|p|, k)| < k(τ(|p|, k))k ≤ k
(

k
√

k−1|p|
)k

= |p|. (3)

The inequality (3) says that the number of prefixes of p having the form
v1v2 . . . vj , where j ≤ k and vi ∈ Pal+ is smaller than the length of p. But p has
|p| nonempty prefixes. It is a contradiction. Since

⋃
r∈Prf(p) MPF(r) ⊆ Θ̄(|p|, k)

we conclude that Ω(w, k) is an infinite set.

172 J. Rukavicka

Remark 1. In the proof of Proposition 1, we used the idea that the number of
prefixes of a word of length n that are a concatenation of at most k palindromes
is smaller than n. This idea was used also in Theorem 1 in [6].

We show that if Σ is an infinite set of words r such that the number of
nonempty palindromic prefixes of r grows more than ln |r| as |r| tends towards
infinity then for each positive integer j there are palindromes a, b and a word
t ∈ Σ such that (ab)j is a prefix of t and b is nonempty. Realize that (ab)ja is a
palindrome for each j ∈ N0. This means that Σ contains infinitely many words
that have a periodic palindromic prefix of arbitrarily high exponent j.

Proposition 2. If Σ ⊆ A∗, |Σ| = ∞, φ(n) ∈ Λ, limn→∞ (φ(n) − ln n) = ∞,
and |PalPrf(t) \ {ε}| ≥ φ(|t|) for each t ∈ Σ then for each j ∈ N there are
palindromes a ∈ Pal, b ∈ Pal+ and a word t ∈ Σ such that (ab)j ∈ Prf(t).

Proof. Given t ∈ Σ, let μ(t, i) be the lengths of all palindromic prefixes of t
such that μ(t, 1) = 1 (a letter is a palindrome) and μ(t, i) < μ(t, i + 1), where
i ∈ {1, 2, . . . , ht}. For example if t = 0100010111, then μ(t, 1) = |0| = 1, μ(t, 2) =
|010| = 3, μ(t, 3) = |0100010| = 7. Let ht = |PalPrf(t) \ {ε}|; the integer ht is
the number of nonempty palindromic prefixes of t. Let i ∈ {1, 2, . . . , ht − 1}. It
is clear that

μ(t, i + 1) = μ(t, i)
μ(t, i + 1)

μ(t, i)
. (4)

From (4) we have that

μ(t, ht)
μ(t, ht − 1)

μ(t, ht − 1)
μ(t, ht − 2)

μ(t, ht − 2)
μ(t, ht − 3)

· · · μ(t, 2)
μ(t, 1)

= μ(t, ht) ≤ |t|. (5)

Suppose that there is α ∈ R such that α > 1 and for each t ∈ Σ and for each
i ∈ {1, 2, . . . , ht − 1} we have that μ(t,i+1)

μ(t,i) ≥ α. It follows from (5) that

αht−1 ≤ ht ≤ |t|. (6)

Let c = 1
lnα ∈ R

+. Then |t| = αc ln |t|. Since ht ≥ φ(|t|) we get that

αht−1

|t| ≥ αφ(|t|)−1

|t| =
αφ(|t|)−1

αc ln |t| = αφ(|t|)−1−c ln |t|. (7)

Because limn→∞ (φ(n) − ln n) = ∞ the Eq. (7) implies that there is n0 such that
for each t ∈ Σ with |t| > n0 we have that

αht−1

|t| ≥ αφ(|t|)−1−c ln |t| > 1. (8)

From (6) and (8) we have that αht−1 ≤ |t| and αht−1

|t| > 1, which is a contra-
diction. We conclude there is no such α. In consequence, for each β ∈ R

+ with
β > 1 there is t ∈ Σ and i ∈ {1, 2, . . . , ht − 1} such that μ(t,i+1)

μ(t,i) ≤ β.

Palindromic Length of Words 173

Let j ∈ N, let

γ ≤ 1
j

+ 1 ∈ R
+, (9)

let t ∈ Σ, and i ∈ {1, 2, . . . , ht} be such that μ(t,i+1)
μ(t,i) ≤ γ. Let δ = μ(t,i+1)

μ(t,i) ≤ γ.
Let u, v ∈ Prf(t) be such that |u| = μ(t, i) and |v| = μ(t, i + 1). Then v is a
periodic palindrome with a period |v| − |u| = μ(t, i + 1) − μ(t, i) = μ(t, i)δ −
μ(t, i) = μ(t, i)(δ − 1); see Lemma 2. Lemma 1 implies that there are a ∈ Pal
and b ∈ Pal+ such that (ab)ka = v for some k ∈ N. From Lemma 1 we have
also that |ab| is the period of v. Thus

|ab| = μ(t, i)(δ − 1) ≤ μ(t, i)(γ − 1). (10)

From (9) and (10) it follows that

|ab| ≤ μ(t, i)(γ − 1) ≤ μ(t, i)
1
j
. (11)

Note that v = (ab)ka and u ∈ Prf((ab)k). Since μ(t, i) = |u| we get that
μ(t,i)
|ab| ≤ k. From (11) we have that

j ≤ μ(t, i)
|ab| ≤ k.

Thus for arbitrary j ∈ N we found t, a, b, k such that (ab)k ∈ Prf(t) and j ≤ k.
The proposition follows.

A corollary of Proposition 1 and Proposition 2 says that if w is an infinite
word with a bounded palindromic length then for each positive integer j there
are palindromes a, b such that (ab)j is a factor of w and ab is a nonempty word.

Corollary 1. If w ∈ AN, k ∈ N, and k ≥ max{PL(t) | t ∈ Fac(w)} then for
each j ∈ N there are a ∈ Pal and b ∈ Pal+ such that (ab)j ∈ Fac(w).

Proof. Just take Σ = Ω(w, k). Obviously limn→∞ (τ(n, k) − ln n) = ∞. Then
Proposition 2 implies the corollary.

4 Palindromic Length of Concatenation

In this section we present some known results about the palindromic length of
concatenation of two words.

The first lemma shows the very basic property of the palindromic length that
the palindromic length of concatenation of two words x and y is smaller than or
equal to the sum of palindromic length of x and y. We omit the proof.

Lemma 3. If x, y ∈ A∗ then PL(xy) ≤ PL(x) + PL(y).

174 J. Rukavicka

An another basic property says that if (t1, t2, . . . , tk) ∈ MPF(w) is a minimal
palindromic factorization of the word w then the palindromic length of the factor
titi+1 . . . tj is equal to j − i + 1 for each i, j ∈ {1, 2, . . . , k} and i ≤ j. We omit
the proof.

Lemma 4. If w ∈ A+, k = PL(w), and (t1, t2, . . . , tk) ∈ MPF(w) then for each
i, j ∈ {1, 2, . . . , k} with i ≤ j we have that PL(titi+1 . . . tj) = j − i + 1.

The following result has been proved in [11]. It says that if x, y are words then
the palindromic length of y is the maximal absolute difference of palindromic
lengths of x and xy; i.e. |PL(x) − PL(xy)| ≤ PL(y).

Lemma 5 (see [11, Lemma 6]). If x, y ∈ A∗ then

– PL(y) ≤ PL(x) + PL(xy) and
– PL(x) ≤ PL(y) + PL(xy).

We have two following immediate corollaries of Lemma 5.

Corollary 2. If x, y ∈ A∗ and y ∈ Pal then |PL(xy) − PL(x)| ≤ 1.

Proof. It is enough to consider y in Lemma 5 to be a palindrome. Thus we have
PL(y) = 1 if y �= ε or PL(y) = 0 if y = ε. The corollary follows.

Corollary 3. If x, y ∈ A∗ and xy ∈ Pal then |PL(x) − PL(y)| ≤ 1.

Proof. If x = yR then PL(x) − PL(y) = 0, because clearly PL(y) = PL(yR).
Suppose that x �= yR. It follows that |x| �= |y|, since xy ∈ Pal. Without loss of
generality suppose that |x| > |y|. Let x̄ be such that x = yRx̄. Then xy = yRx̄y.
Thus x̄ ∈ Pal+. Corollary 2 implies that |PL(yRx̄) − PL(y)| ≤ 1. The corollary
follows.

5 Concatenation of Periodic Palindromes

To simplify the notation of the next two lemmas and the theorem we define an
auxiliary set Δ. Let Δ be the set of all 4-tuples (u, d, v, n) such that

– d ∈ Pal+,
– v ∈ Pal,
– u ∈ Suf(d) \ {ε},
– n ∈ N,
– |dv| = MinPer(dvd), and
– n ≥ 3PL(u).

Remark 2. The set Δ contains all 4-tuples (u, v, d, n) such that d is a nonempty
palindrome, v is a palindrome (possibly empty), u is a nonempty suffix of d,
|dv| is the minimal period of the word dvd, and n is a positive integer such that
n ≥ 3PL(u). It follows that n ≥ 3, since u is nonempty and thus PL(u) ≥ 1.

Palindromic Length of Words 175

Lemma 6. If (u, v, d, n) ∈ Δ, r ∈ Fac(u(vd)n), and |r| ≥ 3|vd| then dvd ∈
Fac(r).

Proof. Let w̄ = u(vd)n, let p ∈ Prf(r) be such that |p| = 3|vd|, and let ī, j̄ ∈
{1, 2, . . . , |w̄|} be such that p = w̄[̄i, j̄]. Let ū ∈ Prf(d) be such that d = ūu.
Note that |uvū| = |vd| and thus (uvū, β) ∈ Period(w̄), where β = |w̄|

|uvū| > 1.
Let k ∈ N0 and w ∈ Suf(w̄) be such that w̄ = (uvū)kw, ī > |(uvū)k|,

and ī ≤ |(uvū)k+1|. Obviously such k and w exist. Let i = ī − k|uvū| and
j = j̄ − k|uvū|. It is easy to see that p = w[i, j].

We distinguish:

– If i ∈ {1, 2, . . . , |u|} then p = tvdvdvt̄ for some t ∈ Suf(u) and for t̄ such that
d = t̄t.

– If i ∈ {|u|+1, |u|+2, . . . , |uv|} then p = tdvdvdt̄ for some t ∈ Suf(v) and for
t̄ such that v = t̄t.

– If i ∈ {|uv| + 1, |uv| + 2, . . . , |uv| + |ū|} then p = tvdvdvt̄ for some t ∈ Suf(d)
and for t̄ such that d = t̄t.

In all three cases one can see that dvd ∈ Fac(p). It is easy to see that if dvd ∈
Fac(p) then dvd ∈ Fac(r) for each r ∈ Fac(w) with p ∈ Prf(r). The lemma
follows.

Remark 3. Note in the previous proof that with the condition |r| ≥ |(vd)2|
it would be possible that dvd �∈ Fac(p). In the cases 1 and 3 we would have
p = tvdvt̄. That is why the condition |r| ≥ |(vd)3| is necessary. For this reason
in the definition of Δ we state that n ≥ 3PL(u).

The next lemma shows that if (u, v, d, n) ∈ Δ, k is the palindromic length of
u, and (t1, t2, . . . , tk) ∈ MPF(u(vd)n) is a minimal palindromic factorization of
u(vd)n then there is j ∈ {1, 2, . . . , k} such that tj is a palindrome having the
factor dvd in the “center” of tj ; formally tj = pd(vd)γpR for some positive
integer γ and for some proper suffix p of dv.

Lemma 7. If (u, v, d, n) ∈ Δ, w = u(vd)n, k = PL(w), and (t1, t2, . . . , tk) ∈
MPF(w) then there are j ∈ {1, 2 . . . , k}, p ∈ Suf(dv)\{dv}, and γ ∈ N such that
tj = pd(vd)γpR.

Proof. Suppose that |ti| < 3|vd| for each i ∈ {1, 2, . . . , k}. It follows that

|t1t2 . . . tk| < 3k|vd|.

Since u(vd)n = t1t2 . . . tk and n ≥ 3k ≥ 3 it is a contradiction. It follows
that there is j such that |tj | ≥ |(vd)3|. Lemma 6 asserts that dvd ∈ Fac(tj).
Then clearly there are γ ∈ N and p1, p2 ∈ A∗ such that p1 ∈ Suf(dv) \ {dv},
p2 ∈ Prf(vd) \ {vd}, and tj = p1d(vd)γp2.

To get a contradiction suppose that p1 �= pR
2 . Without loss of generality

suppose that |p1| > |p2|. It follows that p2 ∈ Prf(pR
1). Obviously p1d(vd)γpR

1 ∈

176 J. Rukavicka

Pal. Thus we have two palindromes p1d(vd)γpR
1 and p1d(vd)γp2. Lemma 2 implies

that p1d(vd)γpR
1 is periodic with a period

δ = |p1d(vd)γpR
1 | − |p1d(vd)γp2| = |p1| − |p2|.

Clearly δ < |dv|. This is a contradiction to the condition |dv| = MinPer(dvd),
see Definition of Δ. We conclude that p1 = pR

2 . The lemma follows.

We step to the main theorem of the article.

Theorem 1. If (u, v, d, n) ∈ Δ, m = PL(u), and w = u(vd)n then PL(w) ≥
m.

Proof. Let (t1, t2, . . . , tk) ∈ MPF(w). Lemma 7 asserts that there are γ ∈ N,
j ∈ {1, 2, . . . , k}, and p ∈ Suf(dv) \ {dv} such that tj = pd(vd)γpR.

Let a ∈ Prf(w) and b ∈ Suf(w) be such that w = atjb. Realize that a =
t1t2 . . . tj−1 and b = tj+1tj+2 . . . tk. Note that a or b can be the empty word;
then j = 1 or j = k respectively. Lemma 4 implies that

PL(w) = PL(t1t2 . . . tj−1) + PL(tj) + PL(tj+1tj+2 . . . tk) =
PL(a) + PL(tj) + PL(b).

(12)

We distinguish three distinct cases.

1. u �∈ Prf(a): This case is depicted in Table 1. Let u2 ∈ Suf(u) be such that
u = au2. Let p̄ ∈ Suf(d) be such that p̄u2 = d. It follows that uR

2 p̄R = d
and pRp̄R = vd.
Then we have that uR

2 b = uR
2 p̄R(vd)β = d(vd)β ∈ Pal+ for some β ∈ N0.

Hence PL(uR
2 p̄R(vd)β) = 1. In consequence PL(u2) ≥ PL(b) − 1 and

PL(b) ≥ PL(u2) − 1, (13)

since PL(uR
2) = PL(u2) and uR

2 b ∈ Pal+; see Corollary 3.
Lemma 3 implies that

PL(a) + PL(u2) ≥ PL(u). (14)

From (12), (13), and (14) we have that

PL(w) = PL(a) + PL(tj) + PL(b) ≥ PL(a) + 1 + PL(u2) − 1 ≥ PL(u).

Table 1. Case 1: The structure of the word w with u �∈ Prf(a).

a tj b

a p d(vd)γ pR p̄R (vd)β

a u2 v d(vd)γ v uR
2 p̄R (vd)β

u (vd)γ+1 v d (vd)β

Palindromic Length of Words 177

2. u ∈ Prf(a) and p ∈ Suf(v): This case is depicted in Table 2. Let p̄ ∈ Prf(v) be
such that p̄p = v. Note that if p = v then p̄ = ε, and if p = ε then p̄ = v.
It is easy to verify that b = p̄Rd(vd)β for some β ∈ N0 and a = u(vd)αp̄ for
some α ∈ N0.
Let ā be such that a = uā. We have that ā = (vd)αp̄ and b = p̄Rd(vd)β . It
follows that either ā = bRd(vd)δ or b = āRd(vd)δ for some δ ∈ N0.
Since d(vd)δ ∈ Pal, Corollary 2 implies that

|PL(ā) − PL(b)| ≤ 1. (15)

It follows from Lemma 5 that

PL(a) + PL(ā) ≥ PL(u). (16)

From (12), (15), and (16) we have that

PL(w) = PL(a) + PL(tj) + PL(b) ≥ PL(a) + 1 + PL(ā) − 1 ≥ PL(u).

Table 2. Case 2: The structure of the word w with u ∈ Prf(a) and p ∈ Suf(v).

a tj b

u (vd)α p̄ p d(vd)γ pR p̄R d(vd)β

ā v

3. u ∈ Prf(a) and p �∈ Suf(v): This case is depicted in Table 3. Since p ∈ Suf(vd)\
{vd} and p �∈ Suf(v) it follows that p ∈ Suf(dv) \ (Suf(v) ∪ {dv}).

Table 3. Case 3: The structure of the word w with u ∈ Prf(a) and p �∈ Suf(v).

a tj b

u v(dv)α p̄ p d(vd)γ pR p̄R (vd)β

ā vd

Let p̄ ∈ Prf(d) be such that p̄p = dv and consequently pRp̄R = vd. Then
a = u(vd)αp̄ for some α ∈ N0 and b = p̄(vd)β for some β ∈ N0.
Let ā be such that a = uā. We have that ā = v(dv)αp̄. It follows that either
ā = bR(vd)δv or b = āR(vd)δv for some δ ∈ N0.
The rest of the proof of Case 3 is analogue to Case 2: Since v(dv)δ ∈ Pal,
Corollary 2 implies that

|PL(ā) − PL(b)| ≤ 1. (17)

178 J. Rukavicka

It follows from Lemma 5 that

PL(a) + PL(ā) ≥ PL(u). (18)

From (12), (17), and (18) we have that

PL(w) = PL(a) + PL(tj) + PL(b) ≥ PL(a) + 1 + PL(ā) − 1 ≥ PL(u).

We proved for each case that PL(w) ≥ PL(u). Since obviously for each u and
each p one of the three cases applies, this completes the proof.

Acknowledgments. This work was supported by the Grant Agency of the Czech
Technical University in Prague, grant No. SGS20/183/OHK4/3T/14.

References

1. Ambrož, P., Kadlec, O., Masáková, Z., Pelantová, E.: Palindromic length of words
and morphisms in class P. Theor. Comput. Sci. 780, 74–83 (2019). https://doi.
org/10.1016/j.tcs.2019.02.024

2. Ambrož, P., Pelantová, E.: On palindromic length of Sturmian sequences. In: Hof-
man, P., Skrzypczak, M. (eds.) Developments in Language Theory, pp. 244–250.
Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-
030-24886-4 18

3. Borozdin, K., Kosolobov, D., Rubinchik, M., Shur, A.M.: Palindromic length in lin-
ear time. In: Kärkkäinen, J., Radoszewski, J., Rytter, W. (eds.) 28th Annual Sym-
posium on Combinatorial Pattern Matching (CPM 2017). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 78, pp. 23:1–23:12. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2017). https://doi.org/10.
4230/LIPIcs.CPM.2017.23

4. Bucci, M., Richomme, G.: Greedy palindromic lengths. Int. J. Found. Comput.
Sci. 29(03), 331–356 (2018). https://doi.org/10.1142/S0129054118500077

5. Fici, G., Gagie, T., Kräkkäinen, J., Kempa, D.: A subquadratic algorithm for min-
imum palindromic factorization. J. Discrete Algorithms 28, 41–48 (2014). https://
doi.org/10.1016/j.jda.2014.08.001. stringMasters 2012 & 2013 Special Issue (Vol-
ume 1)

6. Frid, A., Puzynina, S., Zamboni, L.: On palindromic factorization of words. Adv.
Appl. Math. 50(5), 737–748 (2013). https://doi.org/10.1016/j.aam.2013.01.002

7. Frid, A.E.: Sturmian numeration systems and decompositions to palindromes. Eur.
J. Comb. 71, 202–212 (2018). https://doi.org/10.1016/j.ejc.2018.04.003

8. Frid, A.E.: First lower bounds for palindromic length. In: Hofman, P., Skrzypczak,
M. (eds.) Developments in Language Theory, pp. 234–243. Springer International
Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-24886-4 17

9. Kosolobov, D., Rubinchik, M., Shur, A.M.: Palk is linear recognizable online. In:
Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.J., Wattenhofer,
R. (eds.) SOFSEM 2015: Theory and Practice of Computer Science, pp. 289–301.
Springer, Berlin Heidelberg, Berlin, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46078-8 24

https://doi.org/10.1016/j.tcs.2019.02.024
https://doi.org/10.1016/j.tcs.2019.02.024
https://doi.org/10.1007/978-3-030-24886-4_18
https://doi.org/10.1007/978-3-030-24886-4_18
https://doi.org/10.4230/LIPIcs.CPM.2017.23
https://doi.org/10.4230/LIPIcs.CPM.2017.23
https://doi.org/10.1142/S0129054118500077
https://doi.org/10.1016/j.jda.2014.08.001
https://doi.org/10.1016/j.jda.2014.08.001
https://doi.org/10.1016/j.aam.2013.01.002
https://doi.org/10.1016/j.ejc.2018.04.003
https://doi.org/10.1007/978-3-030-24886-4_17
https://doi.org/10.1007/978-3-662-46078-8_24
https://doi.org/10.1007/978-3-662-46078-8_24

Palindromic Length of Words 179

10. Rubinchik, M., Shur, A.M.: EERTREE: an efficient data structure for processing
palindromes in strings. In: Lipták, Z., Smyth, W.F. (eds.) IWOCA 2015. LNCS,
vol. 9538, pp. 321–333. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
29516-9 27

11. Saarela, A.: Palindromic length in free monoids and free groups. In: Brlek, S., Dolce,
F., Reutenauer, C., Vandomme, É. (eds.) WORDS 2017. LNCS, vol. 10432, pp.
203–213. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66396-8 19

https://doi.org/10.1007/978-3-319-29516-9_27
https://doi.org/10.1007/978-3-319-29516-9_27
https://doi.org/10.1007/978-3-319-66396-8_19

Operational Complexity of Straight Line
Programs for Regular Languages

Hannes Seiwert(B)

Institute of Computer Science, Goethe University Frankfurt, Frankfurt, Germany
seiwert@em.uni-frankfurt.de

Abstract. A straight line program (SLP) is a circuit with letters as
inputs and gates performing one of the operations union, concatenation,
or star; its size is the number of its nodes. Every SLP describes a regular
language in a natural manner. We study the complexity of language
operations on SLPs and show that the complexity is exponential for
intersection and shuffle, and double exponential for complementation.
These results carry over to constant height pushdown automata and non-
self-embedding grammars, since these models and SLPs are polynomially
equivalent. We also examine extended SLPs that may perform additional
operations and show that the cost of simulating an extended SLP with
shuffle or intersection by a conventional SLP is double exponential.

Keywords: Regular language · Straight line program · Lower bound ·
Operational complexity · Shuffle · Constant height pushdown
automaton

1 Introduction

There are many ways to describe a regular language, e.g. various kinds of
automata, regular expressions, or grammars. Recently, the model of straight line
programs (SLPs) was investigated by Geffert et al. [8]. An SLP is a circuit whose
input nodes hold a letter a ∈ Σ, the empty word ε or the empty language ∅,
and whose gates perform one of the operations union (+), concatenation (·) or
star (∗). Thus, an SLP is nothing else than a regular expression (RE) with its syn-
tax tree replaced by a directed acyclic graph. The possibility to use a node several
times allows exponential savings in size. For example, the language L = {an}
can be described by an SLP of size O(log n) (via iterated squaring), while every
RE requires length Ω(n). SLPs are tightly related to automata and grammars,
namely, they are polynomially equivalent to constant height pushdown automata
(h-PDAs) [8] and to non-self-embedding context-free grammars [14].

Given a language operation and a descriptional model, a classical question is,
by how much can the size increase when applying this operation. For example,
there are languages L1, L2 with REs of length n, but their intersection L1 ∩ L2

requires REs of length 2Ω(n) [10,11]; hence the complexity of intersection for
REs is exponential. A lot of research was done in this area, including operational
c© Springer Nature Switzerland AG 2020
G. Jirásková and G. Pighizzini (Eds.): DCFS 2020, LNCS 12442, pp. 180–192, 2020.
https://doi.org/10.1007/978-3-030-62536-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62536-8_15&domain=pdf
http://orcid.org/0000-0002-2293-6542
https://doi.org/10.1007/978-3-030-62536-8_15

Operational Complexity of Straight Line Programs for Regular Languages 181

complexity for finite automata (see [7] for a survey), REs [10–13] and h-PDAs
[1,2,4]. Also, the descriptional complexity of extended REs that may perform
additional operations was studied. For example, the cost of simulating a RE
with intersection or shuffle by a conventional RE is double exponential [9,13].

In this paper, we study the complexity of operations on SLPs (thereby also
continuing the study of operations for h-PDAs by Bednárová et al. [1,2,4]) and
show that it is exponential for intersection and shuffle, and double exponential
for complementation. The results for intersection and complementation already
follow from the corresponding results for h-PDAs [1,4], however, we present alter-
native proofs that are considerably simpler. Secondly, we investigate extended
SLPs in analogy to extended REs and show the same double exponential sim-
ulation costs for SLPs with intersection or shuffle. All results are achieved on
finite languages over constant size alphabets.

2 Preliminaries

Throughout let N = {0, 1, 2, . . . } be the set of all nonnegative integers and
[n] = {1, 2, . . . , n}. We assume the reader to be familiar with basics of formal
languages. For a word w its length |w| is the number of its letters. Regular
expressions (REs, or just expressions) over an alphabet Σ are defined as follows:
The empty word ε, the empty language ∅ and all letters a ∈ Σ are expressions.
If R and R′ are expressions, then so are (R+R′), (R·R′) and R∗. Every expression
R describes a regular language L(R) defined as

L(ε) = {ε}, L(∅) = ∅, L(a) = {a},

L(R + R′) = L(R) ∪ L(R′), L(R · R′) = L(R) · L(R′), L(R∗) = (L(R))∗.
(1)

The length of an expression is the number of nodes in its syntax tree. With a
slight abuse of notation we identify expressions with their described languages,
e.g. (a+b) stands for the language {a, b}. The shuffle operation � (also called
interleaving) is defined as follows: For two words v, w, their shuffle v�w is the set
of all words v1w1v2w2 · · · vkwk where k ∈ N, vi, wi ∈ Σ∗ for all i, v1v2 · · · vk = v
and w1w2 · · · wk = w. The shuffle of two languages is L1�L2 =

⋃
v∈L1,w∈L2

v�w.
Since shuffle is associative, we write�n

i=1 Li for L1 � · · ·� Ln. The reversal
wR of a word w = w1 · · · wn is wR = wn · · · w1.

Straight Line Programs for Regular Languages. There are several equi-
valent ways to define straight line programs, we here choose circuits. A straight
line program (SLP) for a regular language [8] is a directed acyclic graph (DAG)
with one sink; parallel edges are allowed. Each in-degree-zero node holds either
a letter a ∈ Σ, the empty word ε or the empty language ∅. Every other node, a
gate, either has in-degree two and performs one of the operations union (+) or
concatenation (·) or has in-degree one and performs the star operation (∗). An
SLP whose underlying graph is a tree is just a regular expression.

Every node u describes a regular language L(u) defined analogously to Eq.
(1). The language L(S) described by an SLP S is the language described by its

182 H. Seiwert

sink. The size of S is the number of its nodes and its depth is the length of a
longest path. For a regular language L let slp(L) be the size of a smallest SLP
describing L.

An equivalent definition, explaining the name “straight line program”, is the
following: An SLP S consists of variables V1, . . . , Vk and instructions of the form
Vi = Ri where Ri is a RE over the alphabet Σ ∪ {ε, ∅} ∪ {Vj : j < i}.1 Every
variable Vi describes a language L(Vi) := L(Ri), and S describes the language
L(S) := L(Vk); its size is the sum of lengths of all expressions Ri. We will use
the two definitions interchangeably. For further reading we refer to [8].

Example 1. Let Σ = {a1, . . . , ak} be an alphabet, n be a power of two and I =
{1, 2, 4, . . . , n/2}. Then the languages Σi for i ∈ I and Σn−1 can simultaneously
be described the variables Si and Sn−1 of the following SLP of size O(k +log n):

S1 = a1 + · · · + ak, S2i = SiSi ∀i ∈ I, Sn−1 = S1S2S4 · · · Sn/2 (2)

Analogously, the languages Σ≤n or Σ≥n can be described if we replace each
letter a by (a+ε) or aa∗. We will use these SLPs later implicitly in our proofs.

Example 2. The palindrome language Lpal
n := {wwR : w ∈ Σn} over an alphabet

Σ = {a1, . . . , ak} can be described by the following program Pn of size O(kn):

P0 = ε, Pi = a1Pi−1a1 + · · · + akPi−1ak ∀i ∈ [n] (3)

A similar (but not identical) model is that of non-self-embedding grammars.
A context-free grammar is non-self-embedding (NSE) if there is no derivation
A ⇒∗ αAβ (a “cycle”) with both α and β being non-empty [5]. Any SLP can
be transformed into an NSE grammar, and vice versa, with only polynomially
increasing size [14] – just simulate cycles by star operations, and vice versa.

A language L is homogeneous if all its words have same length, and its
degree deg L is the length of its words. An SLP is homogeneous if every of its
nodes g describes a homogeneous language L(g); the degree of such a node is
deg g = deg L(g). We assume w.l.o.g. that an SLP for a homogeneous language is
homogeneous, and that an SLP for a finite language contains no star operation.
So, for finite languages, NSE grammars and SLPs are identical models, since
there are neither stars nor cycles.

Constant Height Pushdown Automata. We assume the reader to be familiar
with nondeterministic finite automata (NFAs) and pushdown automata (PDAs).
For a regular language L denote by nsc(L) the minimal number of states of an
NFA that accepts L. Following [8], a constant height pushdown automaton (h-
PDA) A = (Q,Σ, Γ, δ, q0, F, h) of height h is a PDA whose pushdown store never
contains more than h symbols; a deterministic h-PDA (h-DPDA) is defined in
the natural way. For a comparison between h-PDAs and h-DPDAs see [3]. The
connection between automata and SLPs is given by the two facts below.
1 For convenience and in contrast to [8], we allow arbitrary regular expressions (pos-

sibly with many operations) on the RHS of instructions instead of just single oper-
ations.

Operational Complexity of Straight Line Programs for Regular Languages 183

Fact 1 (Geffert et al. [8, Thm. 1]).

(a) Every NFA with n states can be simulated by an SLP of size O(n3).
(b) Every h-PDA A = (Q,Σ, Γ, δ, q0, F, h) can be simulated by an SLP of size

O(h|Q|4|Γ | + |Q|2|Σ|).
Fact 2 (Geffert et al. [8, Thm. 2]). Every SLP of size n can be simulated by an

(a) NFA with O(2n) states,
(b) h-PDA with O(n) states, height h ≤ n and pushdown alphabet size |Γ | ≤ n.

3 Lower Bound Techniques

In this section we prepare our lower bound methods. For SLPs describing finite
languages – hence, not containing any gates performing star operations – we can
use methods from circuit complexity. The following lemma is due to Hrubeš,
Wigderson and Yehudayoff [15]. Originally, they stated it for non-commutative
arithmetic polynomials, here we reformulate it in terms of languages. Filmus [6]
used a similar method to obtain lower bounds for context-free grammars.

Definition 1 (Rectangle). Let X be a homogeneous language and Y a set
of pairs of words (y, ỹ) such that all words yỹ have same length. We call the
language {yxỹ : x ∈ X, (y, ỹ) ∈ Y } a semi-rectangle and denote it by X ⊗ Y .
If all words y have same length d and all words ỹ have same length d̃, then
X ⊗ Y is a rectangle. A rectangle is balanced if n/3 ≤ deg X ≤ 2n/3 holds for
n := d+d̃+ deg X.

In other words, a rectangle is just a cyclic permuted concatenation X · Y of
two homogeneous languages X and Y , and is balanced if the degrees of both
parts X,Y differ at most by a factor of 2.

To get some intuition, consider an SLP for a homogeneous language L. If we
delete one incoming edge of all union gates, we obtain a tree that consists solely
of concatenation gates and describes a single word w ∈ L. Every tree has a node
vx whose subtree contains about half of its leaves. This gives us a “balanced”
decomposition w = yxỹ of w, where x is the word described by the node vx. If
we repeat this for all words in L and collect all the decompositions, we obtain a
set of balanced rectangles such that every word in L lies in at least one of them.

Lemma 2 ([15, Prop. 3.2]). Let n ≥ 2 and L ⊆ Σn be a homogeneous language.
Then L is a union of s ≤ n · slp(L) balanced rectangles X1 ⊗ Y1, . . . , Xs ⊗ Ys.

Proof. Let S be a homogeneous SLP for L, let g1, . . . , gt be all nodes gi in S
with n/3 ≤ deg gi < 2n/3 and let Xi := L(gi) be their described languages.

Claim 1. For every node f in S with deg f ≥ n/3, its described language
L(f) is a union of semi-rectangles L(f) =

⋃t
i=1 Xi ⊗ Yi(f) for some sets

Y1(f), . . . , Yt(f).

184 H. Seiwert

Proof of Claim 1. Proceed by induction on the depth. If deg f < 2n/3, then
f = gi for an i ∈ [t] and we set Yi(f) = {(ε, ε)} and Yj(f) = ∅ for all j ∈ [t]\{i}.
Otherwise, deg f ≥ 2n/3 holds. If f = h1 + h2 is a union gate, then deg f =
deg h1 = deg h2. By induction there are sets Yi(hj) for i ∈ [t], j ∈ {1, 2} such
that L(hj) =

⋃t
i=1 Xi ⊗Yi(hj) is a union of semi-rectangles. Then let Yi(f) :=

Yi(h1) ∪ Yi(h2) for all i ∈ [t]. If f = h1 · h2 is a concatenation gate, then
deg f = deg h1 + deg h2. Since deg f ≥ 2n/3, we have deg h1 ≥ n/3 or deg h2 ≥
n/3. Assume deg h1 ≥ n/3, the other case is analogous. By induction, there
are sets Yi(h1) for i ∈ [t] such that L(h1) =

⋃t
i=1 Xi ⊗Yi(h1) is a union of

semi-rectangles. Then let Yi(f) := {(y, ỹw) : (y, ỹ) ∈ Yi(h1), w ∈ L(h2)} for all
i ∈ [t]. �Claim 1

Applying Claim 1 to the sink z of S yields a union of semi-rectangles L(z) =
⋃t

i=1 Xi ⊗ Yi(z). For every i ∈ [t] and d ∈ {0, . . . , n− deg Xi} define Y
(d)
i :=

{(y, ỹ) ∈ Yi(z) : |y| = d}. Then every set Xi ⊗Y
(d)
i is a balanced rectangle and

we obtain L = L(z) =
⋃t

i=1

⋃n−deg Xi

d=0 Xi ⊗Y
(d)
i . �

To show a lower bound on slp(L) for a homogeneous language L, it suffices
to upper bound the number of words in every balanced rectangle X ⊗Y ⊆ L.

Theorem 3 (Rectangle bound). Let L ⊆ Σn be a homogeneous language. If
|X ⊗Y | ≤ h holds for every balanced rectangle X ⊗Y ⊆ L, then slp(L) ≥ |L|/nh.

Proof. Let S be an SLP of size s for L and assume |X ⊗ Y | ≤ h for all balanced
rectangles X ⊗Y ⊆ L. By Lemma 2, L is a union of at most sn such rectangles.
At least sn ≥ |L|/h such rectangles are necessary to describe all words in L. �

We will deal with languages that give restrictions of the form: For some
indices i, j and all words w = w1 · · · wn ∈ L, the letters wi and wj must coincide.
This motivates the following notion. For a homogeneous language L ⊆ Σn we
call a (maximal) set M ⊆ [n] a mirror set of L if wi = wj holds for every word
w ∈ L and all i, j ∈ M . For example, the copy language Lcopy

n := {ww : w ∈ Σn}
has the mirror sets Mi = {i, n+i} for all i ∈ [n] and the palindrome language
Lpal

n = {wwR : w ∈ Σn} has the mirror sets Mi = {i, 2n+1−i} for all i ∈ [n].
We will use mirror sets to upper bound the cardinality of balanced rectangles.

Roughly speaking, if a mirror set contains positions of both parts X and Y of a
rectangle, then the corresponding letters are identical in every word x ∈ X and
pair (y, ỹ) ∈ Y . Formally, given a homogeneous language L ⊆ Σn and a rectangle
X ⊗ Y ⊆ L with |y| = d and |ỹ| = d̃ for all (y, ỹ) ∈ Y , we say that Y covers the
positions 1, . . . , d, n−d̃+1, . . . , n, and X covers the positions d+1, . . . , d+deg X.
That is, for any word yxỹ ∈ X ⊗Y , the positions of the letters belonging to x
are covered by X and the positions of the letters belonging to yỹ are covered by
Y . A mirror set M is separated (w.r.t. X ⊗ Y), if there are i, j ∈ M such that i
is covered by X and j is not covered by X (and, hence, is covered by Y).

Lemma 4. Let L be a homogeneous language, X ⊗ Y ⊆ L a rectangle and M a
separated mirror set of L. Then wj = w′

j holds for all words w,w′ ∈ X ⊗Y and
all j ∈ M .

Operational Complexity of Straight Line Programs for Regular Languages 185

We call the letters wj with j ∈ M fixed and call {wj : j ∈ M} a group of letters.

Proof. Let M be a separated mirror set of L such that X covers k ∈ M and
Y covers 	 ∈ M . Assume to the contrary that there are words w,w′ ∈ X ⊗Y
with wj �= w′

j for a j ∈ M . The rectangle X ⊗Y gives unique decompositions
of w and w′: There are words x, x′ ∈ X and pairs (y, ỹ), (y′, ỹ′) ∈ Y such that
w = yxỹ and w′ = y′x′ỹ′. So, also the word u := y′xỹ′ lies in X ⊗Y . Since X
covers k, the letter uk belongs to x, implying uk = wk, and since Y covers 	, the
letter u� belongs to y′ỹ′, implying u� = w′

�. Since j, k, 	 are in the same mirror set
M , we have wk = wj and w′

� = w′
j . Thus, uk = wk = wj �= w′

j = w′
� = u�. But

since k, 	 ∈ M and u ∈ X ⊗ Y ⊆ L, we must have uk = u�, a contradiction. �
We demonstrate how to apply Theorem 3 and Lemma 4 on the copy language.
In fact, all lower bounds in this paper are based on this language or variations
of it.

Corollary 5 (Copy language). Let Σ be a non-unary alphabet. Then the copy
language Lcopy

n = {ww : w ∈ Σn} requires SLPs of size slp(Lcopy
n) ≥ |Σ|Ω(n).

Proof. Let X ⊗Y ⊆ Lcopy
n be a balanced rectangle with 2n/3 ≤ deg X ≤ 4n/3.

Our goal is to upper bound the number of words in X ⊗Y . The language Lcopy
n

has the mirror sets Mi = {i, n + i} for all i ∈ [n]. We claim that at least 2n/3
mirror sets are separated. Distinguish two cases.

Case 1: If deg X ≤ n, then X covers at most one position of every mirror
set. Hence, all mirror sets that contain a position covered by X are separated,
and since deg X ≥ 2n/3, there are at least 2n/3 such positions.

Case 2: If deg X ≥ n, then X covers at least one position of every mirror set.
Hence, all mirror sets that contain a position not covered by X are separated,
and since deg X ≤ 4n/3, there are at least 2n − 4n/3 = 2n/3 such positions.

So, from Lemma 4 follows that at least 2n/3 groups of letters are fixed in
every word in X ⊗Y , and therefore |X ⊗Y | ≤ |Σ|n−2n/3 = |Σ|n/3. Hence, by
Theorem 3 we have slp(Lcopy

n) ≥ |Σ|n/(2n|Σ|n/3) ≥ |Σ|Ω(n). �
The class of context-free languages is closed under intersection with regular

languages. So, a standard trick for showing that a language L is not context-
free is to pick a regular language L′ and show that L ∩ L′ is not context-free,
intending that L∩L′ is easier to analyze. Similarly, for a regular language L, we
can obtain a lower bound on slp(L) from the intersection L ∩ L′ for an “easy”
language L′.

Lemma 6. Let L and L′ be regular languages. Then L requires SLPs of size at
least slp(L) ≥ Ω

(
6
√

slp(L ∩ L′)/nsc(L′)
)
.

In particular, if slp(L ∩ L′) ≥ 2Ω(n) and nsc(L′) = 2o(n), then slp(L) ≥ 2Ω(n) fol-
lows.

Proof. Let S be an SLP for L of size n and N be an NFA for L′ with m states.
By Fact 2(b), S can be simulated by an h-PDA A with O(n) states, height h ≤ n
and pushdown alphabet of size |Γ | ≤ n. By [4, Thm. 3.1], the intersection L∩L′

186 H. Seiwert

can be accepted by an h-PDA A′ with at most nm states and same pushdown
alphabet and height as A. Finally, by Fact 1(b) the h-PDA A′ can be simulated
by an SLP of size O((nm)4 · n2) ≤ O((nm)6). Thus, slp(L ∩ L′) ≤ O((nm)6),
and rearranging yields slp(L) = n ≥ Ω(6

√
slp(L ∩ L′)/m). �

4 SLP-Complexity of Operations

We now examine the complexity of operations on SLPs, i.e. by how much the
size can increase when applying an operation. Bednárová et al. showed that the
complexity of intersection for h-PDAs is exponential [4, Thm. 3.4]. Their result
already carries over to SLPs, however, we here give a simpler proof without
taking a “detour” over h-PDAs.

Theorem 7 (Intersection, [4]). There are finite languages L1 and L2 such that
slp(L1), slp(L2) ≤ O(n) but slp(L1 ∩ L2) ≥ 2Ω(n).

Proof. Let Σ = {a, b}. We use the witness languages L1 = {wwRw′ : w,w′ ∈
Σn} and L2 = {w′wRw : w,w′ ∈ Σn}. Since L1 = Lpal

n · Σn and L2 = Σn · Lpal
n ,

both languages can be described by SLPs of size O(n) (see Example 2).
The intersection of the above languages is L := L1∩L2 = {wwRw : w ∈ Σn}.

In order to apply Theorem 3 to L, take a balanced rectangle X ⊗Y ⊆ L satisfying
n ≤ deg X ≤ 2n. The language L has the mirror sets Mi = {i, 2n+1−i, 2n+i} for
all i ∈ [n]. Since deg X ≤ 2n, for every i ∈ [n] not both i and 2n+i can be covered
by X. Since deg X ≥ n, at least n/2 sets Mi contain a position covered by X.
Thus, all these mirror sets are separated. By Lemma 4 all n/2 corresponding
groups of letters are fixed in every word in X ⊗Y . Therefore |X ⊗ Y | ≤ 2n−n/2 =
2n/2, and Theorem 3 yields slp(L) ≥ 2n/(3n2n/2) = 2Ω(n). �
Next, we turn to the shuffle operation which was not studied for h-PDAs yet.

Theorem 8 (Shuffle). There are finite languages L1 and L2 such that slp(L1),
slp(L2) ≤ O(n) but slp(L1 � L2) ≥ 2Ω(n).

Proof. Let Σ1 = {0, 1} and Σ2 = {a, b} be two disjoint alphabets. We use the
witness languages L1 = {uuR : u ∈ Σn

1 } and L2 = {vvR : v ∈ Σn
2 }. Their shuffle

is the language L := L1 � L2 =
{
uuR

� vvR : u ∈ Σn
1 , v ∈ Σn

2

}
. As shown in

Example 2, L1 and L2 can be described by programs of size O(n).
To prove the lower bound on slp(L), consider the sublanguage L′ := L ∩

Σn
1 Σn

2 Σn
1 Σn

2 = {uvuRvR : u ∈ Σn
1 , v ∈ Σn

2 }. Clearly nsc(Σn
1 Σn

2 Σn
1 Σn

2) ≤ O(n),
so by Lemma 6 it suffices to prove an exponential lower bound on slp(L′). We
apply Theorem 3 to L′. Let X ⊗ Y ⊆ L′ be a balanced rectangle satisfying
4n/3 ≤ deg X ≤ 8n/3. The language L′ has the mirror sets Mi = {i, 3n+1−i}
and Mn+i = {n+i, 4n+1−i} for all i ∈ [n]. We claim that at least n/3 mirror sets
of L′ are separated. Split the range [4n] into four quarters Q1, . . . , Q4 defined as
Qj = {(j − 1)n+1, . . . , jn}. So, for every mirror set M either M ⊆ Q1 ∪ Q3 or
M ⊆ Q2 ∪ Q4 holds. Distinguish two cases.

Operational Complexity of Straight Line Programs for Regular Languages 187

Case 1: Assume that X covers no position in Q1. Then, since deg X ≥
4n/3, the first or the last n/3 positions in Q3 must be covered by X. Thus, the
corresponding mirror sets of these n/3 positions are separated.

Case 2: Assume that X covers at least one position in Q1. Then, since
deg X ≥ 4n/3, the first n/3 positions in Q2 must be covered by X. Since
deg X ≤ 8n/3, the last n/3 positions in Q4 cannot be covered by X. Thus,
the corresponding mirror sets Mn+1, . . . ,Mn+n/3 are separated.

By Lemma 4, at least n/3 groups of letters are fixed in every word in X ⊗ Y .
So, |X ⊗ Y | ≤ 22n−n/3 =: h and Theorem 3 yields slp(L′) ≥ 22n/4nh = 2Ω(n). �
The exponential blow-up for shuffle in Theorem 8 can be shown also for deter-
ministic h-PDAs by the same witness languages, we leave the proof to the reader.
Thus, the following corollary answers questions from Bednárová et al. asking for
the complexity of other language operations for h-PDAs [4] resp. h-DPDAs [2].

Corollary 9. There are finite languages L1, L2 that can be accepted by h-
DPDAs of size O(n), but any h-PDA accepting L1 � L2 has size 2Ω(n).

The complexity of complementation also was studied for h-PDAs [1,4],
Bednárová and Geffert [1] showed that it is double exponential. Again, this
result implies double exponential complexity also for SLPs. Nevertheless, we
give a simpler, direct proof, and in particular with a cofinite witness language.

Theorem 10 (Complementation, [1]). There are cofinite languages L such that
slp(L) ≤ O(n) but slp(Σ∗\L) ≥ 2Ω(2n).

Proof. Let Σ = {a, b}, let n ∈ N and k = 2n. By Corollary 5 the copy language
Lcopy

k = {ww : w ∈ Σk} requires SLPs of size 2Ω(k) = 2Ω(2n). Now we give
an SLP of size O(n) for its complement L := Σ∗ \Lcopy

k = {ww′ : w,w′ ∈
Σk, w �= w′} ∪ {w ∈ Σ∗ : |w| �= 2k}. The latter part of L is trivial (see Example
1). To describe the first part we simulate a binary search for a position on
which the words w and w′ differ. Define variables Si describing the languages
Li := {ubvbu′ : b �= b ∈ Σ, v ∈ Σk−1, uu′ ∈ Σi−1} recursively by

S1 = aΣk−1b + bΣk−1a,

S2i = SiΣ
i + ΣiSi ∀i ∈ {1, 2, 4, . . . , k/2}.

(4)

The variable S2i correctly describes L2i since the first term SiΣ
i describes all

words with |u′| ≥ i and the second term ΣiSi describes all words with |u| ≥ i.
So, Sk describes the language Lk = {ww′ : w,w′ ∈ Σk, w �= w′} with

O(log k) variables and a constant number of operations per variable. Additional
size O(log k) is sufficient for all Σi- and Σk−1-terms (see Example 1). Finally
the program S := Sk + Σ<2k + Σ>2k of size O(log k) = O(n) describes L. �

Matching upper bounds for intersection and complementation, showing that
Theorems 7 and 10 are tight, were given by Bednárová et al. [4]. For shuffle a
similar construction as given in [4, Thm. 3.1] for intersection is possible, this
shows that Theorem 8 is tight. Since the proof is straightforward, we omit it.

188 H. Seiwert

Proposition 11. Let L1, L2 be languages with slp(L1) ≤ n and slp(L2) ≤ m.
Then their shuffle can be described by an SLP of size slp(L1�L2) ≤ 2O(m+log n).

5 Complexity of Extended SLPs

We now investigate SLPs that may perform additional operations. For a set
O ⊆ {∩,�} of operations, an extended regular expression RE[O] (resp. an
extended straight line program SLP[O]) is an expression (resp. SLP) that may
additionally perform operations from O. Any extended RE or SLP describes a
regular language in the obvious way, i.e. L(R◦R) = L(R)◦L(R) for ◦ ∈ {∩,�}.
For a regular language L, denote by slp[O](L) the size of a smallest SLP[O]
describing L. We do not consider complementation here, since already the blow-
up for REs with complementation is non-elementary [16], i.e. larger than any
function exp(exp(. . . exp(n) . . .)).

Theorem 12 (SLPs with intersection). There are finite languages L such that
slp[∩](L) ≤ O(n) but slp(L) ≥ 2Ω(2n).

Proof. Let Σ = {a, b}, let n ∈ N and k = 2n. We use again the witness language
L := Lcopy

k = {ww : w ∈ Σk}. In Corollary 5 we showed a lower bound slp(L) ≥
2Ω(k) = 2Ω(2n). Now we design an SLP[∩] of size O(log k) = O(n) for L. Define
variables Si for the languages Li := {wuw : w ∈ Σi, u ∈ Σk−i} recursively by2

S1 = aΣk−1a + bΣk−1b,

S2i = (SiΣ
i) ∩ (ΣiSi) ∀i ∈ {1, 2, 4, . . . , k/2}.

(5)

The variable S2i describes L2i, since for every word w = w1 · · · wk+2i ∈ L(S2i)
the first term (SiΣ

i) ensures that the first i letters w1 · · · wi coincide with their
counterparts wk+1 · · · wk+i, and the second term (ΣiSi) ensures that the last i
letters wk+i+1 · · · wk+2i coincide with their counterparts wi+1 · · · w2i.

So, the program Sk describes the language Lk = Lcopy
k with O(log k) variables

and a constant number of operations per variable. Additional size O(log k) is
sufficient to compute all Σi- and Σk−1-terms (see Example 1). �
Theorem 13 (SLPs with shuffle). There are finite languages L such that
slp[�](L) ≤ O(n) but slp(L) ≥ 2Ω(2n).

The idea is to generalize the proof of Theorem 8 using a shuffle of m = 2n dis-
tinguishable instances of Lpal

i = {wwR : w ∈ Σi} (it turns out that already i = 1
suffices) and then focus on words of the form w1w2 · · · wmw1

Rw2
R · · · wR

m. How-
ever, we cannot use distinct alphabets for all instances, because already the size
needed to describe every letter once would be too large. Instead, we use binary
numbers to identify start and end of each instance and mark its middle by the
symbol $.

2 Note the duality to the program given in Eq. 4 for the language Σ2k\Lcopy
k .

Operational Complexity of Straight Line Programs for Regular Languages 189

Proof. Let Σ = {0, 1, a, b, $}, let n ∈ N and m = 2n. For k being a power of two
and a number j ∈ [k], denote by 〈j〉k the word in {0, 1}log2 k that corresponds to
the binary representation of j−1 and let 〈j〉Rk be its reversal. For example, 〈1〉k =
0log2 k, 〈k〉k = 1log2 k and 〈1〉1 = ε. Define variables Sk for the languages Lk :=
�k

j=1

(〈j〉k(a$a + b$b)〈j〉Rk
)

recursively by

S1 = a$a + b$b,

S2k = (0kSk0k)� (1kSk1k) ∀k ∈ {1, 2, 4, . . . ,m/2}.
(6)

For brevity let c$c := a$a + b$b. Since σk(�k
i=1 Ti)σk =�k

i=1(σTiσ) holds for
any languages Ti and letter σ, the variable S2k correctly describes L2k:

(0kLk0k)� (1kLk1k) =
(
0k

k

�
j=1

(〈j〉kc$c〈j〉Rk
)
0k

)
�

(
1k

k

�
j=1

(〈j〉kc$c〈j〉Rk
)
1k

)

=
k

�
j=1

((
0〈j〉k
︸ ︷︷ ︸
〈j〉2k

c$c 〈j〉Rk 0
︸ ︷︷ ︸
〈j〉R2k

)
�

(
1〈j〉k
︸ ︷︷ ︸

〈2k+j〉2k

c$c 〈j〉Rk 1
︸ ︷︷ ︸

〈2k+j〉R2k

))
=

2k

�
j=1

(〈j〉2kc$c〈j〉R2k

)
= L2k.

So, the program Sm describes the language L := Lm, this will be our witness
language. The program has O(log m) variables and uses a constant number of
operations for each. Additionally, size O(log m) is sufficient for all 0k- and 1k-
terms (see Example 1). Hence, in total size O(log m) = O(n) suffices.

We now show the lower bound on slp(L). Let 〈j〉 := 〈j〉m. In order to apply
Lemma 6, take the language H := 〈1〉(a+b) · · · 〈m〉(a+b)$m(a+b)〈1〉R· · · (a+b)〈m〉R.

Claim 2. L ∩ H = L′ := {〈1〉c1 · · · 〈m〉cm $m c1〈1〉R · · · cm〈m〉R : c ∈ {a, b}m}.

Proof of Claim 2. The direction L′ ⊆ L∩H is trivial. We show the other direction
L ∩ H ⊆ L′. Let w be an arbitrary word in L ∩ H. Since w ∈ L, there are letters
c1, . . . , cm ∈ {a, b} such that w ∈�m

i=1(ui$vi) for ui := 〈i〉ci and vi := ci〈i〉R.
Since w ∈ H, it must be of the form w = 〈1〉cj1 · · · 〈m〉cjm

$mcj′
1
〈1〉R · · · cj′

m
〈m〉R

where j1, . . . , jm and j′
1, . . . , j

′
m are permutations of [m].

We claim that w = u1 · · · um$mv1 · · · vm must hold, i.e. ji = j′
i = i for all

i ∈ [m]. The block $m in the middle of w ensures that the left part of w is a
shuffle of the ui’s and the right part is a shuffle of the vi’s. We show inductively
for i = 0, . . . ,m that u1 · · · ui is a prefix of w. By an analogous argument follows
that v1 · · · vm is a suffix of w.

For i = 0 there is nothing to prove. Assume that the claim holds for i−1 < m,
thus, u1 · · · ui−1〈i〉cji

is a prefix of w. Since uji
= 〈ji〉cji

, the word 〈ji〉 must stand
somewhere before cji

, potentially “shuffled”. But since all letters in front of 〈i〉
by induction belong to the words u1, . . . , ui−1, the word 〈ji〉 can only stand (as
continuous factor) right before cji

, implying 〈ji〉 = 〈i〉; hence, cji
= ci must hold.

Thus, ji = i and 〈i〉cji
= ui, as desired.

Finally, from w = u1 · · · um$mv1 · · · vm follows w ∈ L′. �Claim 2

190 H. Seiwert

Clearly, H can be described by an expression of length O(m log m), and thus, also
by an NFA of size nsc(H) ≤ O(m log m). Hence, in order to show slp(L) ≥ 2Ω(m),
by Lemma 6 together with Claim 2 it suffices to show slp(L′) ≥ 2Ω(m).

Let L′′ be the language that results from L′ by deleting all letters 0, 1 and $.
Then, L′′ = {cc : c ∈ {a, b}m} is the copy language Lcopy

m over the alphabet
{a, b}. Clearly slp(L′) ≥ slp(L′′) holds, since any SLP for L′ can be transformed
into an SLP for L′′ by just deleting all occurrences of 0, 1 and $ without increas-
ing size. In Corollary 5 we showed slp(L′′) ≥ 2Ω(m) which completes the proof. �

We now show how to simulate extended SLPs by extended REs and by con-
ventional SLPs, thereby proving the tightness of Theorems 12 and 13. The sim-
ulation is an easy adaption of results from Gelade [9] and Geffert et al. [8].

Proposition 14. Every SLP[∩,�] of size n can be simulated by an RE[∩,�]
of length 2O(n) or by an SLP of size 22

O(n)
.

Proof. Take an SLP[∩,�] S of size n and depth d ≤ n. Since every gate has fan-
in at most 2, we can simulate S by a RE[∩,�] R of length r = 2O(d) ≤ 2O(n) by
expanding its underlying DAG as tree, analogously to [8, Prop. 2]. According to
[9, Prop. 4], R can be simulated by an NFA of size 2O(r) ≤ 22

O(n)
. Translating this

NFA into an SLP increases size at most polynomially according to Fact 1(a). �

Table 1. Complexity of conversions for non-unary, constant size alphabets.

Conversion Upper bound Lower bound

SLP∩ SLP → SLP 2O(n) [4, Thm. 3.1] 2Ω(n) [4, Thm. 3.4], [Thm. 7]

SLP� SLP → SLP 2O(n) [Prop. 11] 2Ω(n) [Thm. 8]

Σ∗\SLP → SLP 22
O(n)

[4, Thm.4.2] 22
Ω(n)

[1, Thm.3.5], [Thm. 10]

h-DPDA� h-DPDA → h-PDA 2Ω(n) [Cor. 9]

SLP[∩], SLP[�],
SLP[∩,�]

}
→ SLP 22

O(n)
[Prop. 14] 22

Ω(n)
[Thm. 12, Thm. 13]

RE SLP RE[∩,] SLP[∩,]

NFA

exp [Prop. 14]exp [8]

double exp [9] double exp [Thms. 12, 13]

≤poly [8] exp [9]
exp

exp

exp [Prop. 14]

Fig. 1. Simulation costs between (extended) REs, (extended) SLPs and NFAs. The
edges from SLP to NFA and RE[∩,�] trivially follow from the language L = {an}.

Operational Complexity of Straight Line Programs for Regular Languages 191

6 Conclusion

We determined the complexity of the shuffle operation for SLPs as well as for
(deterministic) h-PDAs, thereby answering questions from [2,4]. For the com-
plexities of intersection and complementation we gave alternative proofs. The
lower bound method based on non-commutative circuit complexity (see Sect. 3)
might be of independent interest, not only for SLPs but also for h-PDAs or NSE
grammars. We also determined the complexity of extended SLPs with shuffle or
intersection. The results are summarized in Table 1 and the hierarchy between
conventional and extended REs and SLPs is depicted in Fig. 1.

All shown blow-ups are in analogy with closure properties of context-free
languages (this class is not closed under ∩, � or complementation; cf. [2]) and
with REs (exactly the same blow-ups occur here [9–11,13]). However, let us
emphasize that the lower bounds here were obtained already on finite languages
(cofinite for complementation). This stands in contrast to these analogies:

– The class of context-free languages (trivially) is closed under ∩ and � of
finite and complement of cofinite languages.

– The blow-up of REs is at most nO(log n) for ∩ and � on finite and 2O(n2) for
complement on cofinite languages and the simulation cost of RE[∩,�]s for
finite languages is at most 2O(n2).

The latter claim can be seen by considering the standard conversion chain “REs
→ NFAs → product NFA/powerset DFA → RE”. For finite languages, the cost
of the last step is only nΘ(log n) (while 2Θ(n) for infinite ones). Surprisingly, for
SLPs there is no such difference between finite and infinite languages.

Acknowledgments. We thank the referees for their helpful comments.

References

1. Bednárová, Z., Geffert, V.: Two double-exponential gaps for automata with a lim-
ited pushdown. Inf. Comput. 253, 381–398 (2017). https://doi.org/10.1016/j.ic.
2016.06.005

2. Bednárová, Z., Geffert, V., Mereghetti, C., Palano, B.: The size-cost of boolean
operations on constant height deterministic pushdown automata. Theor. Comput.
Sci. 449, 23–36 (2012). https://doi.org/10.1016/j.tcs.2012.05.009

3. Bednárová, Z., Geffert, V., Mereghetti, C., Palano, B.: Removing nondeterminism
in constant height pushdown automata. Inf. Comput. 237, 257–267 (2014). https://
doi.org/10.1016/j.ic.2014.03.002

4. Bednárová, Z., Geffert, V., Mereghetti, C., Palano, B.: Boolean language operations
on nondeterministic automata with a pushdown of constant height. J. Comput.
Syst. Sci. 90, 99–114 (2017). https://doi.org/10.1016/j.jcss.2017.06.007

5. Chomsky, N.: On certain formal properties of grammars. Inf. Control. 2(2), 137–
167 (1959). https://doi.org/10.1016/S0019-9958(59)90362-6

6. Filmus, Y.: Lower bounds for context-free grammars. Inf. Process. Lett. 111(18),
895–898 (2011). https://doi.org/10.1016/j.ipl.2011.06.006

https://doi.org/10.1016/j.ic.2016.06.005
https://doi.org/10.1016/j.ic.2016.06.005
https://doi.org/10.1016/j.tcs.2012.05.009
https://doi.org/10.1016/j.ic.2014.03.002
https://doi.org/10.1016/j.ic.2014.03.002
https://doi.org/10.1016/j.jcss.2017.06.007
https://doi.org/10.1016/S0019-9958(59)90362-6
https://doi.org/10.1016/j.ipl.2011.06.006

192 H. Seiwert

7. Gao, Y., Moreira, N., Reis, R., Yu, S.: A survey on operational state complexity. J.
Autom. Lang. Comb. 21(4), 251–310 (2016). https://doi.org/10.25596/jalc-2016-
251

8. Geffert, V., Mereghetti, C., Palano, B.: More concise representation of regular
languages by automata and regular expressions. Inf. Comput. 208(4), 385–394
(2010). https://doi.org/10.1016/j.ic.2010.01.002

9. Gelade, W.: Succinctness of regular expressions with interleaving, intersection
and counting. Theor. Comput. Sci. 411(31), 2987–2998 (2010). https://doi.org/
10.1016/j.tcs.2010.04.036

10. Gelade, W., Neven, F.: Succinctness of the complement and intersection of regular
expressions. ACM Trans. Comput. Logic (TOCL) 13(1), 4 (2012). https://doi.org/
10.1145/2071368.2071372

11. Gruber, H., Holzer, M.: Finite automata, digraph connectivity, and regular expres-
sion size. In: ICALP, pp. 39–50 (2008). https://doi.org/10.1007/978-3-540-70583-
3 4

12. Gruber, H., Holzer, M.: Language operations with regular expressions of poly-
nomial size. Theor. Comput. Sci. 410(35), 3281–3289 (2009). https://doi.org/10.
1016/j.tcs.2009.04.009

13. Gruber, H., Holzer, M.: Tight bounds on the descriptional complexity of regular
expressions. In: Developments in Language Theory, pp. 276–287. Springer, Heidel-
berg (2009). https://doi.org/10.1007/978-3-642-02737-6 22

14. Guillon, B., Pighizzini, G., Prigioniero, L.: Non-self-embedding grammars,
constant-height pushdown automata, and limited automata. In: CIAA, pp. 186–197
(2018). https://doi.org/10.1007/978-3-319-94812-6 16

15. Hrubes, P., Wigderson, A., Yehudayoff, A.: Non-commutative circuits and the
sum-of-squares problem. In: STOC, pp. 667–676 (2010). https://doi.org/10.1145/
1806689.1806781

16. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: prelim-
inary report. In: STOC, pp. 1–9 (1973). https://doi.org/10.1145/800125.804029

https://doi.org/10.25596/jalc-2016-251
https://doi.org/10.25596/jalc-2016-251
https://doi.org/10.1016/j.ic.2010.01.002
https://doi.org/10.1016/j.tcs.2010.04.036
https://doi.org/10.1016/j.tcs.2010.04.036
https://doi.org/10.1145/2071368.2071372
https://doi.org/10.1145/2071368.2071372
https://doi.org/10.1007/978-3-540-70583-3_4
https://doi.org/10.1007/978-3-540-70583-3_4
https://doi.org/10.1016/j.tcs.2009.04.009
https://doi.org/10.1016/j.tcs.2009.04.009
https://doi.org/10.1007/978-3-642-02737-6_22
https://doi.org/10.1007/978-3-319-94812-6_16
https://doi.org/10.1145/1806689.1806781
https://doi.org/10.1145/1806689.1806781
https://doi.org/10.1145/800125.804029

Classifying ω-Regular Aperiodic
k-Partitions

Victor Selivanov(B)

A.P. Ershov Institute of Informatics Systems and Saint Petersburg State University,
St. Petersburg, Russia
vseliv@iis.nsk.su

Abstract. We develop a theory of ω-regular aperiodic k-partitions (for
arbitrary k ≥ 2) that extends existing results for the ω-regular k-
partitions and for the fine hierarchy of regular aperiodic ω-languages
(which coincide with 2-partitions). In particular, we characterize the
structure of Wadge degrees of ω-regular aperiodic k-partitions, prove
the decidability of many related problems, and discuss their complexity.

Keywords: Aperiodic k-partition · Acceptor · Transducer · Iterated
labeled tree · Fine hierarchy · Reducibility

1 Introduction

In [20] K. Wagner discovered a topological classification of regular ω-languages
which is in a sense the finest possible. In [12] the Wagner hierarchy was related
to the Wadge hierarchy [19] and to the author’s fine hierarchy (see also [1,2,4]
for an alternative approach). Later some results from [12,20] were extended
to languages recognized by more complicated computing devices (see e.g. [3,
5,13]) for which some important properties of the Wagner hierarchy (e.g., the
decidability of levels) usually fail. It is also natural to investigate variants of the
Wagner hierarchy for popular subclasses of regular languages the most important
of which is certainly the class of regular aperiodic ω-languages (for brevity, just
aperiodic sets). In [15] a complete analogue of the Wagner hierarchy for aperiodic
sets was developed which has its own flavour.

In this paper we extend the latter theory from the aperiodic sets to the
aperiodic k-partitions A : Xω → k of the set Xω of ω-words over a finite alphabet
X, i.e. k-tuples (A0, . . . , Ak−1) of pairwise disjoint aperiodic sets satisfying A0 ∪
· · · ∪ Ak−1 = Xω (the ω-languages are in a bijective correspondence with the
2-partitions of Xω). Motivations for this generalization come from the fact that
similar objects are noticeable in descriptive set theory, computability theory and
complexity theory (see e.g. the introduction to [10] for useful examples of similar
objects).

Supported by the Russian Science Foundation, project 18-11-00100.

c© Springer Nature Switzerland AG 2020
G. Jirásková and G. Pighizzini (Eds.): DCFS 2020, LNCS 12442, pp. 193–205, 2020.
https://doi.org/10.1007/978-3-030-62536-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62536-8_16&domain=pdf
https://doi.org/10.1007/978-3-030-62536-8_16

194 V. Selivanov

A similar theory for regular k-partitions was roughly sketched in [16] which
required to develop a machinery of iterated labeled trees and of the fine hier-
archy (FH) of k-partitions (systematized in [17]) which turned out crucial for
the corresponding extension of Wadge theory to k-partitions in [18] and, as a
concluding step, to the of Borel Q-partitions, for arbitrary better quasiorder
Q [8]. This machinery is recalled and systematized in Sect. 2. In Sect. 3 we use
the notions and results from [15–18] to further develop the fruitful interaction
between descriptive set theory and automata theory.

This yields principal facts about aperiodic k-partition, and simplifies rather
technical results in [16] (in fact, the current work subsumes the results in [16]
which are obtained by changing “aperiodic” to “regular”). We characterize the
degree structures of aperiodic k-partitions under natural reducibilities and hier-
archies, and establish several facts on the computability and complexity of the
corresponding decision problems which are new even for the case of sets.

2 Preliminaries

In this section we recall (with some modification and adaptation) notation,
notions and facts used in subsequent sections. We use standard set-theoretic
notation. For sets A and S, P (S) is the class of subsets of S and SA is the
class of all functions from A to S. For a class C ⊆ P (S), Č is the dual class
{S \ C | C ∈ C}, and BC(C) is the Boolean closure of C. We assume familiar-
ity with notions from first-order logic, including the notions of structure and
quotient-structure.

2.1 Aperiodic Acceptors and k-partitions

Fix a finite alphabet X containing more than one symbol (for simplicity we may
assume that X = m = {x | x < m} for a natural number m > 1, so 0, 1 ∈ X).
Note that usually we work with the fixed alphabet X but sometimes we are
forced to consider several alphabets simultaneously. The “fixed-alphabet mode”
is the default one.

Let X∗, X+, and Xω denote resp. the sets of all words, all nonempty words,
and all ω-words over X. Let ε be the empty word and X≤ω = X∗ ∪Xω. We use
standard notation concerning words and ω-words. For w ∈ X∗ and ξ ∈ X≤ω,
w � ξ means that w is a substring of ξ, w · ξ = wξ denote the concatenation,
l = |w| is the length of w = w(0) · · · w(l − 1). For w ∈ X∗,W ⊆ X∗ and
A ⊆ X≤ω, let w · A = {wξ : ξ ∈ A} and W · A = {wξ : w ∈ W, ξ ∈ A}. For
k, l < ω and ξ ∈ X≤ω, let ξ[k, l) = ξ(k) · · · ξ(l − 1) and ξ �k = ξ[0, k).

By an automaton (over X) we mean a triple M = (Q, f, in) consisting
of a finite non-empty set Q of states, a transition function f : Q × X → Q
and an initial state in ∈ Q. The function f is extended to the function f :
Q × X∗ → Q by induction f(q, ε) = q and f(q, u · x) = f(f(q, u), x), where
u ∈ X∗ and x ∈ X. Similarly, we may define the function f : Q × Xω → Qω

by f(q, ξ)(n) = f(q, ξ �n). Associate with any automaton M the set of cycles

Classifying ω-Regular Aperiodic k-Partitions 195

CM = {fM(ξ) | ξ ∈ Xω} where fM(ξ) is the set of states which occur infinitely
often in the sequence f(in, ξ) ∈ Qω. A Muller acceptor is a pair (M,F) where
M is an automaton and F ⊆ CM; it recognizes the set L(M,F) = {ξ ∈ Xω |
fM(ξ) ∈ F}. The Muller acceptors recognize exactly the regular ω-languages.

An automaton M = (Q,X, f) is aperiodic if for all q ∈ Q, u ∈ X+ and
n > 0 the equality f(q, un) = q implies f(q, u) = q. This is equivalent to saying
that for all q ∈ Q and u ∈ X+ there is m < ω with f(q, um+1) = f(q, um). An
acceptor is aperiodic if so is the corresponding automaton. A language A ⊆ X∗

(A ⊆ Xω) is aperiodic if it is recognized by an aperiodic (Muller) acceptor. Ape-
riodic sets are precisely those which satisfy a fixed first-order sentence (see e.g.
[11] for details). We denote by A and Ak the classes of aperiodic ω-languages
and aperiodic k-partitions of Xω resp.; note that A = A2. We need a character-
isation of the aperiodic k-partitions similar to Proposition 1 of [14]. An aperiodic
k-acceptor is a pair (M, c) where M is an aperiodic automaton and c : CM → k
is a k-partition of CM. It recognizes the aperiodic k-partition L(M, c) = c◦fM
where fM : Xω → CM is defined above.

Proposition 1. A k-partition A : Xω → k is aperiodic iff it is recognized by an
aperiodic k-acceptor.

Proof. We consider only the non-trivial direction. Let A be an aperiodic k-
partition and k > 2 (for k = 2 the assertion is obvious). Then Al is aperiodic
for every l < k, hence Al = L(Ml,Fl) for some aperiodic acceptors (Ml,Fl).
Let M = (Q, f, in) where Q = Q0 × · · · × Qk−2, f((q0, . . . , qk−2), x) =
(f0(q0, x), . . . , fk−2(qk−2, x)) and in = (in0, . . . , ink−2). By Proposition 4 in
[15], M is aperiodic. We have prl(fM(ξ)) = fMl

(ξ) for all l < k − 1 and
ξ ∈ Xω, where prl : Q → Ql is the projection to the l-th coordinate. Since
Al are pairwise disjoint, so are also pr−1

l (Fl). Let c : CM → k be the unique
partition of CM satisfying c−1(l) = pr−1

l (Fl) for all l < k − 1. Then (M, c)
recognizes A. �	

2.2 Aperiodic Transducers and Games

The set Xω carries the Cantor topology with the open sets W · Xω, where W ⊆
X∗. The Borel sets in Xω are obtained by closing the class of open sets by
the operations of complement and countable unions. Let Σ0

n,Π0
n,Δ0

n denote the
levels of the Borel hierarchy in Xω [7], then A ⊂ BC(Σ0

2) ⊂ Δ0
3.

The continuous functions on Xω are also called here, following [20], continious
asynchronous functions, or CA-functions. A continuous synchronous function, or
just CS-function, is a function f : Xω → Xω satisfying f(ξ)(n) = φ(ξ �(n+1))
for some φ : X∗ → X; in descriptive set theory such functions are known as
Lipschitz functions. Clearly, every CS-function is a CA-function. Both classes
of functions are closed under composition.

A synchronous transducer (over X,Y) is a tuple T = (Q,X, Y, f, g, in),
also written as T = (M, Y, g, in), consisting of an automaton M as above, an
initial state in and an output function g : Q × X → Y . The output function is

196 V. Selivanov

extended to the function g : Q × X∗ → Y ∗ defined by induction g(q, ε) = ε and
g(q, u · x) = g(q, u) · g(f(q, u), x), and to the function g : Q × Xω → Y ω defined
by

g(q, ξ) = g(q, ξ(0)) · g(f(q, ξ(0)), ξ(1)) · g(f(q, ξ[0, 2)), ξ(2)) · · · . (1)

In other notation, g(q, ξ) = limng(q, ξ �n). The transducer T computes the
function gT : Xω → Y ω defined by gT (ξ) = g(in, ξ).

Asynchronous transducers are defined in the same way, only now the out-
put function g maps Q × X into Y ∗. As a result, the value g(q, ξ) defined
as in (1) is now in Y ≤ω, and gT : Xω → Y ≤ω. Functions computed by syn-
chronous (resp. asynchronous) transducers are called DS-functions (resp. DA-
functions). Both classes of functions are closed under composition [20]. A trans-
ducer T = (M, Y, g, in) is aperiodic if M is aperiodic. Functions computed by
aperiodic synchronous (resp. asynchronous) transducers are called AS-functions
(resp. AA-functions). By Proposition 10 in [15], both classes of functions are
closed under composition. Obviously, every AS-function (resp. AA-function) is
a DS-function (resp. DA-function), and every DS-function (resp. DA-function)
is a CS-function (resp. CA-function).

We associate with any A ⊆ (X × Y)ω the Gale-Stewart game G(A) played
by two players 0 and 1 as follows. Player 0 chooses a letter x0 ∈ X, then player
1 chooses a letter y0 ∈ Y , then 0 chooses x1 ∈ X, then 1 chooses y1 ∈ Y and
so on. Each player knows all the previous moves. After ω moves, player 0 (resp.
player 1) has constructed a word ξ = x0x1 · · · ∈ Xω (resp. η = y0y1 · · · ∈ Y ω).
Player 1 wins if ξ × η = (x0, y0)(x1, y1) · · · ∈ A, otherwise player 0 wins.

A strategy for player 1 (player 0) in the game G(A) is a function h : X+ → Y
(respectively, h : Y ∗ → X) that prompts the player 1’s move (respectively, the
player 0’s move) for any finite string of the opponent’s previous moves. The
strategies for player 1 (for 0) are in a bijective correspondence with the CS-
functions h : Xω → Y ω (respectively, with the delayed CS-functions h : Y ω →
Xω) [15]; we identify strategies with the corresponding CS-functions.

A strategy h for player 1 (player 0) in the game G(A) is winning if the player
always wins following the strategy, i.e. if ξ × h(ξ) ∈ A for all ξ ∈ Xω (resp.
h(η) × η ∈ A for all η ∈ Y ω). For any aperiodic set A ⊆ (X × Y)ω, one of
the players has a winning strategy in G(A), the winner is computable and has
an AS-winning strategy which is also computed effectively (Theorem 1 in [15]).
Below we refer to this result as the aperiodic determinacy theorem.

2.3 Semilattices and Labeled Posets

We assume the reader to be familiar with the standard terminology and notation
related to parially ordered sets (posets) and preorders; we often apply the ter-
minology about posets to preorders meaning the corresponding quotient-poset.
Recall that a semilattice is a structure (S;) with binary operation 	 such that
(x 	 y) 	 z = x 	 (y 	 z), x 	 y = y 	 x and x 	 x = x, for all x, y, z ∈ S. By
≤ we denote the induced partial order on S: x ≤ y iff x 	 y = y. The operation
	 can be recovered from ≤ since x 	 y is the supremum of x, y w.r.t. ≤. The

Classifying ω-Regular Aperiodic k-Partitions 197

semilattice is distributive if x ≤ y 	 z implies that x = y′ 	 z′ for some y′ ≤ y
and z′ ≤ z. All semilattices considered in this paper are distributive (sometimes
after adjoining a new smallest element).

Element x of the semilattice S is join-reducible if it is non-zero and can be
represented as the supremum of some elements strictly below x. Element x is
join-irreducible if it is not σ-join-reducible. If S is distributive then x is join-
irreducible iff x ≤ y 	 z implies that x ≤ y or x ≤ z. By a decomposition of
x we mean a representation x = x0 	 · · · 	 xn where the components xi are
join-irreducible and pairwise incomparable. Such a decomposition is canonical if
it is unique up to a permutation of the components.

We associate with any preorder Q the preorder (Q∗;≤∗) where Q∗ is the
set of non-empty finite subsets of Q and S ≤∗ R iff ∀s ∈ S∃r ∈ R(s ≤ r).
Let Q� be the quotient-poset of (Q∗;≤∗) and 	 be the operation on S induced
by the operation of union on Q∗. Then Q� is a semilattice the join-irreducible
elements of which coincide with the elements induced by the singleton sets in
Q∗. The semilattice Q�

⊥ with the adjoint new bottom element (corresponding
to the empty subset of Q) is distributive. Any element of Q�

⊥ has a canonical
decomposition. We will use the following easy fact: Let f : Q → I(S) be a
monotone function from a poset Q to the set of join-irreducible elements of a
semilattice S. Then there is a unique semilattice homomorphism f� : Q� → S
extending f . If f is an embedding and S is distributive then f� is an embedding.

Let (P ;≤) be a finite poset; if ≤ is clear from the context, we simplify the
notation of the poset to P . Any subset of P may be considered as a poset with
the induced partial ordering. The rank of a finite poset P is the cardinality of
a longest chain in P . By a forest we mean a finite poset in which every upper
cone ↑ x is a chain. A tree is a forest having the largest element (called the root
of the tree).

Let (Q;≤) be a preorder. A Q-poset is a triple (P,≤, c) consisting of a finite
nonempty poset (P ;≤), P ⊆ ω, and a labeling c : P → Q. A morphism f : (P,≤
, c) → (P ′,≤′, c′) between Q-posets is a monotone function f : (P ;≤) → (P ′;≤′)
satisfying ∀x ∈ P (c(x) ≤ c′(f(x))). The h-preorder ≤h on PQ is defined as
follows: P ≤h P ′, if there is a morphism f : P → P ′. Let PQ, FQ, and TQ

denote the sets of all finite Q-posets, Q-forests, and Q-trees, respectively. For the
particular case Q = k̄ = {0, · · · , k − 1} of antichain with k elements we denote
the corresponding preorders by Pk, Fk, and Tk. For any q ∈ Q let s(q) ∈ TQ be
the singleton tree labeled by q; then q ≤ r iff s(q) ≤h s(r). Identifying q with
s(q), we may think that Q is a substructure of TQ.

The structure (FQ;≤h,) is a semilattice equivalent to (T �
Q ;≤h,) above.

The supremum operation is given by the disjoint union F 	 G of Q-forests F,G,
the join-irreducible elements are precisely the elements h-equivalent to trees.
In this paper, the iterations Q �→ TTQ

, Q �→ FTQ
, and Q �→ PPQ

of these
constructions are relevant. Using the identification q = s(q), we may think that
TQ is a substructure of TTQ

. Define the binary operation · on FTQ
as follows: F ·G

is obtained by adjoining a copy of G below any leaf of F . One easily checks that
this operation is associative (i.e. (F ·G) ·H ≡h F · (G ·H)) but not commutative

198 V. Selivanov

(this was the reason for changing the notation + for this operation in [16] to ·).
For F ∈ FQ, let r(F) =

⊔
{c(x) | x ∈ F}; then r : FQ → Q� is a semilattice

homomorphism such that q = r(s(q)) for every q ∈ Q.
By Proposition 8.7(2) of [17], for any finite Q-poset (P,≤, c) there exist a

finite Q-forest F = F (P) of the same rank as P (obtained by a top-down
unfolding of P) and a morphism f from F onto P which is a bijection between
the maximal elements of F, P , and for any non-minimal element x ∈ F , f is a
bijection between the predecessors of x in F and the predecessors of f(x) in P .
Moreover, F is a largest element in ({G ∈ FQ | G ≤h P};≤h). This extends to
the iterated version (Proposition 8.7(1) in [17]): for any (P,≤, c) ∈ PPQ

there is
an ≤h-largest element (F (P) ≤, d) ∈ FFQ

below P : it suffices to set d = F ◦c◦f .
If c(p) has a largest element for every p ∈ P then (F (P) ≤, d) ∈ FTQ

.
A finite Q-labeled 2-preorder is a tuple (S;≤0,≤1, c) where S is a finite

nonempty set, c : S → k, and ≤0,≤1 are preorders on S such that x ≤1 y implies
x ≡0 y. A morphism of k-labeled 2-preorders S, S1 is a function g : S → S1 that
respects the preorders and satisfies ∀x ∈ S(c(x) ≤ c1(g(x))). By Proposition 8.8
in [17], the category of finite Q-labeled 2-preorders is equivalent to the category
PPQ

. The Q-poset corresponding to (S;≤0,≤1, c) is (P ;≤, d) where (P :≤) is
the quotient-poset of (S;≤0) and d([x]0) = ([x]0;≤1, c) for x ∈ S.

Recall that a well quasiorder (wqo) is a preorder that has neither infinite
descending chains nor infinite antichains A famous Kruskal’s theorem implies
that if Q is a wqo then (FQ;≤h) and (TQ;≤h) are wqo’s; it is not hard to see
that (PQ;≤h) is, in general, not a wqo. Note that the iterated preorders TTQ

and FTQ
are wqo’s whenever Q is a wqo.

3 Classifying Aperiodic k-partitions

In this section we briefly describe the main results of this work and discuss
remaining open questions.

3.1 Reducibilities and Operations on k-partitions

Let F be a set of unary functions on Xω which is closed under composition
and contains the identity function. For A,B ∈ kXω

, A is said to be F-reducible
to B (in symbols A ≤F B), if A = B ◦ f for some f ∈ F . The relation ≤F
is a preorder on Xω, the induced equivalence relation is denoted by ≡F ; the
≡F -equivalence classes are called F-degrees. For C ⊆ kXω

, a k-partition C is
F-complete in C if C ∈ C and any A ∈ C is F-reducible to C.

For the functions in Subsect. 2.2, we obtain reducibilities ≤CA,≤CS ,≤DA

,≤DS ,≤AA,≤AS . By Σ0
2-function we mean a unary function f on Xω such that

f−1(A) ∈ Σ0
2 for every A ∈ Σ0

2; we denote the corresponding reducibility by
≤2. Clearly, ≤AS⊆≤CS⊆≤CA⊆≤2 and ≤AA⊆≤CA. From the results in [15] it
follows that Ak is closed downwards under ≤AA,≤AS but not under ≤CS .

We define the binary operation A ⊕ B on kXω

by: (A ⊕ B)(0ξ) = A(ξ) and
(A ⊕ B)(iξ) = B(ξ) for all 0 < i < m and ξ ∈ Xω (recall that X = m).

Classifying ω-Regular Aperiodic k-Partitions 199

Then (kXω

;≤CA,⊕) is a semilattice which becomes distributive after adjoining
a new smallest element; the same holds for ≤CS ,≤2. Since Ak is closed under
⊕, (Ak;≤AA,⊕) and (Ak;≤AS ,⊕) have the same property. Similar facts hold
for the other reducibilities. We abbreviate I(Ak;≤AA,⊕) to IAA, and similarly
for the other reducibilities.

We are ready to formulate our first main result which will follow from Facts
1 — 6 in this and the next subsection.

Theorem 1. 1. The relations ≤CA and ≤AA coincide on Ak, and we have
(Ak;≤AA,⊕) � (FTk

;≤h,).
2. The relations ≤CA,≤AA,≤CS ,≤AS coincide on ICA = IAA = ICS = IAS,

and (IAA;≤AA) � (TTk
;≤h).

3. We have: (Ak;≤2,⊕) � (Fk;≤h,) and (I2;≤2) � (Tk;≤h).

Fact 1. For all A,B ∈ Ak, A ≤CS B iff A ≤AS B.

Proof. We prove the direction from left to right; the opposite direction is obvious.
Let A ≤CS B via a CS-function f : Xω → Xω. Consider the game G(A,B)
where players produce resp. ξ and η from Xω as in Subsect. 2.2; let player 1 win
iff A(ξ) = B(η), i.e. ξ ∈ Ai ↔ η ∈ Bi for every i < k. Then f is a winning
strategy for player 1. Since all Ai, Bi are aperiodic and A is closed under the
Boolean operations, G(A,B) is aperiodic. By the aperiodic determinacy, player
1 has an AS-winning strategy g. Then A ≤AS B via g. �	

The remaining facts are about some operations on kXω

closely related to the
corresponding operations in [16,18]; modifications are designed to make the set
of aperiodic k-partitions closed under these operations. First, we recall the unary
operations q0, . . . , qk−1 on kXω

from [16] (which extend and modify the operation
from [19]) which use a coding of alphabets to guarantee the preservation
of aperiodicity. To simplify notation, we do this only for the binary alphabet
X = {0, 1} = 2 (it will be clear how to modify the idea for larger alphabets).
Define the function f : 3ω → 2ω by f(x0x1 · · ·) = x̃0x̃1 · · · where x0, x1 . . . < 3
and 0̃ = 110000, 1̃ = 110100, 2̃ = 110010 (in the same way we may define
f : 3∗ → 2∗). It is easy to see that f is an AA-function, its image f(3ω) is
a closed aperiodic set, and there is an AA-function f1 : 2ω → 3ω such that
f1 ◦ f = id3ω . For all i < k and A ∈ kXω

, we define qi(A) ∈ kXω

by

[qi(A)](ξ) =

⎧
⎨

⎩

i, if ξ �∈ f(3ω) ∨ ∀p∃n ≥ p(ξ[n, n + 5] = 2̃),
A(f1(ξ)), if ξ ∈ f(2ω),
A(η), if ξ = f(σ2η)

for some (unique) σ ∈ 3ω and η ∈ 2ω.
Using the same coding of 3ω into 2ω, we define the binary operation · on

kXω

(which modify the operation + from [16,19]) as follows (we again consider
the typical particular case X = 2). Define an AA-function g : Xω → Xω by
g(x0x1 · · ·) = x̃02̃x̃12̃ · · · where x0, x1, . . . ∈ X (in the same way we may define
g : X∗ → X∗). Obviously, g(Xω) is a closed aperiodic set and there is an AA-
function g1 : Xω → Xω such that g1 ◦ g = idXω . For all k-partitions A,B of
Xω, we set

200 V. Selivanov

4

[A · B](ξ) =
{

A(g1(ξ)), if ξ ∈ g(Xω),
B(η), if ξ = g(u) · v · η,

where u ∈ X∗, η ∈ Xω, and v ∈ X+ is the shortest word such that g(u) · v ·
Xω ∩ g(Xω) = ∅. We will also use unary operations pi(A) ≡AA i · A where
i = λx.i, i < k, is the constant k-partition. Equivalent operations with the
names p0, . . . , pk−1 were used in [16,18].

Fact 2. The class Ak is closed under the introduced operations.

Proof. Let B = qi(A) and let A be aperiodic. It suffices to prove that Bj is
aperiodic for any j ∈ k̄\{i}. By the definition, ξ ∈ Bj iff ξ ∈ f(3ω) and there are
only finitely many n with ξ[n, n + 6) = 2̃ and either (ξ ∈ f(2ω) and f1(ξ) ∈ Aj)
or ∃n(ξ[n, n + 6) = 2̃ ∧ ∀m > n(ξ[n, n + 6) �= 2̃) ∧ ξ[n + 6,∞) ∈ f−1

1 (Aj)).
Since Aj is aperiodic, so is also Bj , by the logical characterisation of aperiodic
sets.

For the operation ·, let C = A ·B and i < k. Then ξ ∈ Ci iff (ξ ∈ g(Xω) and
g1(ξ) ∈ Ai) or (ξ �∈ g(Xω) and η ∈ Bi) where η as in the definition of C. From
aperiodicity of Ai, Bi and the definition of u, v it is easy to find a first-order
sentence defining Ci. Thus, C is aperiodic. �	

Next we define functions μ, ν, ρ (which are variants of the corresponding func-
tions from Sect. 6 of [18]) from labeled trees to k-partitions using the operations
pi, qi, ·. It is technically convenient to realise finite trees as initial segments (T ;≤)
of (ω∗;�) where ω∗ is the set of finite strings of natural numbers (including the
empty string ε), � is the substring relation, and ≤ is the reverse relation for
�. Then forests may be represented as T \ {ε} where T ⊆ ω∗ is a tree. We use
some standard notation related to such “concrete” trees and forests. Clearly, any
labeled tree of forest from Subsect. 2.3 is h-equivalent (even isomorphic) to such
“concrete” labeled tree or forest.

Let (T ; c) ∈ Tk. We associate with any node σ ∈ T the k-partition μT (σ) by
induction on the rank rk(σ) of σ in (T ;�) as follows: if rk(σ) = 0, i.e. σ is a
leaf of T then μT (σ) = i where i = c(σ); otherwise, μT (σ) = pi(

⊕
{μT (σn) |

n < ω, σn ∈ T}). Now we define a function μ : Tk → kXω

by μ(T) = μT (ε). We
define ν : Tk → kXω

in the same way but using qi instead of pi.
Now let (T ; c) ∈ TTk

. We associate with any node σ ∈ T the k-partition
ρT (σ) by induction on the rank rk(σ) of σ in (T ;�) as follows: if rk(σ) = 0 then
ρT (σ) = ν(V) where V = c(σ) ∈ Tk; otherwise, ρT (σ) = ν(V) · (

⊕
{ρT (σn) |

n < ω, σn ∈ T}). Finally, define a function ρ : TTk
→ kXω

by ρ(T) = ρT (ε).

Fact 3. For all T, V ∈ TTk
we have: ρ(T) ∈ ICA, T ≤h V iff ρ(T) ≤CA ρ(V),

and similarly for ≤CS ,≤AA,≤AS .

Proof. For ≤CA the assertion follows from Proposition 16 in [18]. To see this,
note that the definitions of μ, ν, ρ in [18] are for k-partitions of ωω (ω-words
over ω) rather than for Xω. The main difference between ωω and Xω is that the
latter space in compact while the former is not. This difference is essential only
for the countable version of ⊕; since here we deal only with finitary version of
⊕, the definitions and arguments of [18] make sense here. Another difference is

Classifying ω-Regular Aperiodic k-Partitions 201

that here we use some additional coding to preserve aperiodicity; this is also not
essential up to ≡CA. For ≤CS , the assertion follows from Proposition 6 in [18].
For ≤AA and ≤AS the assertion follows from Fact 1. �	

The next fact follows in the same way from Propositions 15 and 9 in [18].

Fact 4. For all T, V ∈ Tk we have: ν(T) ∈ I2, and T ≤h V iff ν(T) ≤2 ν(V).
The reducibilities ≤CA,≤CS ,≤AA,≤AS coincide with ≤2 on I2.

By the remarks in Subsect. 2.3 about semilattices, the functions μ, ν, ρ
uniquely extend to labeled forests to obtain semilattice embeddings of the cor-
responding quotient-structures. We denote the extensions by the same letters.

Fact 5. For all F,G ∈ FTk
we have: F ≤h G iff ρ(F) ≤CA ρ(G), and similarly

for ≤AA. For all F,G ∈ Fk we have: F ≤h G iff ν(F) ≤2 ν(G).

Proof. Consider e.g. ≤AA. Let F =
⊔

i Ti and G =
⊔

i Vj be the decomposi-
tions to trees. By Fact 3, F ≤AA G iff ∀i(Ti ≤AA G) iff ∀i∃j(Ti ≤AA Vj) iff
∀i∃j(ρ(Ti) ≤AA ρ(Vj)) iff ∀i(ρ(Ti) ≤AA ρ(G) iff ρ(F) ≤AA ρ(G). �	

3.2 The Fine Hierarchy of k-partitions

Here we describe the FH of aperiodic k-partitions which provides their classifi-
cation in terms of set operations. We first briefly recall some relevant technical
notions (slightly adapted from [17]).

A base in a set S is a sublattice L of (P (S);∪,∩) such that ∅, S ∈ L and L
has the reduction property (i.e., for any A,B ∈ L there are disjoint A′, B′ ∈ L
such that A′ ⊆ A, B′ ⊆ B, and A′ ∪ B′ = A ∪ B). For (T, c) ∈ Tk, a T -family
over L is a family {Uτ}τ∈T of L-sets such that Uε = S, Uτ ⊇ Uτi for τi ∈ T ,
and Uτi ∩ Uτj = ∅ for τi, τj ∈ T with i �= j. Any such T -family determines the
k-partition A : S → k̄ by A(x) = c(τ) where τ is the unique string in T such
that x ∈ Ũτ = Uτ \

⋃
{Uτi | τi ∈ T}. The FH of k-partitions over L is the family

{L(T)}T∈Tk
where L(T) is the set of k-partitions determined by T -families over

L. Examples of bases in Xω relevant to this paper are Σ0
1, Σ0

2, K0 = A ∩ Σ0
1,

and K1 = A ∩ Σ0
2 [15].

A 2-base in a set S is a pair L = (L0,L1) of bases in S such that L0 ⊆ L1∩Ľ1.
For (T, c) ∈ TTk

, a T -family over L is a pair ({Uτ}, {Uτσ}) where {Uτ} is a
T -family over L0 and, for any τ ∈ T , {Uτσ} is a c(τ)-family over the base
{Ũτ ∩ B | B ∈ L1} in Ũτ . Any such T -family over L determines the k-partition
A : S → k̄ by A(x) = c1(σ), for unique τ ∈ T and σ ∈ c(τ) = (T1, c1) ∈ Tk such
that x ∈ Ũτσ. The FH of k-partitions over L is the family {L(T)}T∈TTk

where
L(T) is the set of k-partitions determined by T -families over L. Examples of 2-
bases in Xω relevant to this paper are S = (Σ0

1,Σ
0
2) and K = (K0,K1).

The next theorem relates the FHs over the mentioned bases and 2-bases to
each other and to the k-partitions from the previous subsection. Items 1 and 2
follow from the results in [8,18] and extend the corresponding facts in Section
III.C of [19]; together with Facts 4 and 5 they imply items 3 and 4.

202 V. Selivanov

Theorem 2. 1. For any T ∈ Tk, the level Σ0
2(T) is closed downwards under

≤2, and ν(T) is CS-complete in Σ0
2(T).

2. For any T ∈ TTk
, the level S(T) is closed downwards under ≤CA, and ρ(T)

is CS-complete in S(T).
3. For any T ∈ TTk

, the level K(T) is closed downwards under ≤AA, and ρ(T)
is AS-complete in K(T).

4. For any T ∈ TTk
, K(T) = Ak ∩ S(T).

Fact 6. For any A ∈ Ak there is F ∈ FTk
with A ≡AA ρ(F).

Proof Sketch. Let (M, d) be an aperiodic k-acceptor which recognizes A. Follow-
ing [20], we define the preorders ≤0 and ≤1 on CM as follows: D ≤0 E iff some
state in D is reachable in the graph of M from some state in E; D ≤1 E iff
D ⊆ E. For any D ∈ CM the ≡0-class of D contains the largest element w.r.t.
⊆ (such elements are precisely the strongly connected components of the graph
of M). Then (CM;≤0,≤1, d) is a k-labeled 2-preorder.

Let (PM, c) be the corresponding iterated k̄-poset (see the end of Subsection
2.3). Since any label of PM has a largest element, the unfolding F = F (PM)
is in FTk

. Let F = T0 	 · · · 	 Tn where Ti are the trees whose roots are these
largest elements (recall that the maximal elements of F are precisely those of
PM). Let C0, . . . , Cn be the strongly connected components such that their ≡0-
equivalence classes are precisely the maximal elements of PM and let f be the
transition function of M. Then for any ξ ∈ Xω the set {f(in, ξ �j) | j < ω} of
states visited along the run of M on ξ intersects Ci for precisely one i ≤ n. Let
Ui be the set of all such ξ, then (U0, . . . , Un) is a clopen partition of Xω. Since
any Ui is a retract of Xω, we can think that the restriction A|Yi

is a k-partition
of Xω. It is not hard to show (see the proof of Theorem 3 in [16] for details)
that A|Yi

∈ K(Ti), hence A|Yi
≤AA ρ(Ti). From the definition of ρ(Ti) and the

structure of Ti it is straightforward to construct an CS-reduction of ρ(Ti) to
A|Yi

. By Fact 1, ρ(Ti) ≡AS A|Yi
for all i ≤ n, hence ρ(F) ≡AA A. �	

It is easy to see that Theorem 1 follows from Facts 1 — 6 and the remarks
in Subsection 2.3 about canonical decompositions in FTk

.

3.3 Computability and Complexity Issues

There are many natural algorithmic problems related to topological properties
of regular sets considered e.g. in [9,20,21]. Here we briefly discuss extensions of
these problems to k-partitions, and several new algorithmic problems.

First we discuss a problem which was apparently not considered before in the
literature on automata theory but is very popular in computability theory where
people are interested in characterizing the complexity of presentation of natural
countably infinite structures of finite signatures. Such a structure is computably
presentable if it is isomorphic to a structure whose universe is ω and all signature
functions and relations are computable. A structure is p-presentable if there is a
surjection from a polynomial-time computable set of words over a finite alphabet
onto the universe of the structure modulo which all signature functions and

Classifying ω-Regular Aperiodic k-Partitions 203

relations, and also the equality relation, are polynomial-time computable. We
abbreviate “polynomial-time computable” to “p-computable”.

In preceding subsections we (implicitly) considered natural structures like
the quotient-structure Ak of (Ak; ICA, I2,≤CA,≤2,⊕, ·) under ≡CA and the
quotient-structure A′

k of (Ak; I2,≤2,⊕, q0, . . . , qk−1) under ≡2. The definitions of
relations and functions suggest that the presentation complexity of these struc-
tures is high but in fact the following surprising result holds.

Theorem 3. The structures Ak and A
′
k are p-presentable.

Proof Sketch. We consider the first structure, for the second one the proof is
similar. Theorem 1 suggests that we could find an isomorphic copy of Ak with
universe FTk

. For the smaller signature {≤CA,⊕} the isomorphism follows from
Facts 1 — 6, so it remains to describe copies of relations and functions corre-
sponding to ICA, I2,≤2, · in FTk

. For ICA, it suffices to take the relation Ih true
precisely on I(FTk

;≤h,⊕). For ·, we take the operation · on FTk
. From associa-

tivity of this operation in both structures it is easy to check by induction on
the rank that ρ(F · G) ≡CA ρ(F) · ρ(G), for every F,G ∈ FTk

. For I2,≤2, let
F ≤h2 G mean r(F) ≤h r(G) where r : FTk

→ Fk is the semilattice surjection
from Subsect. 2.3, and let Ih2(F) mean r(F) ∈ I(Fk;≤h,). Theorem 3 in [10]
implies that Ih2(F) iff I2(ρ(F)) and F ≤h2 G iff ρ(F) ≤2 ρ(G).

Therefore, the quotient-structure FTk
of (FTk

; Ih, Ih2,≤h,≤h2,	, ·) under ≡h

is isomorphic to Ak, hence it suffices to show that FTk
is p-presentable. In the

proof of Theorem 7 in [6], a coding of Fk by words in a p-computable set of
words was defined in which the relation ≤h is p-computable. It is not hard to
extend the coding and proofs in [6] to (FTk

;≤h). Moreover, similar proofs show
that Ih, Ih2,≤h2,	, · are also p-computable w.r.t. this coding. Thus, FTk

is p-
presentable. �	

The computational complexity of functions and relations about regular lan-
guages are usually studied when the languages are given by their standard
“names” like automata or regular expressions. In our context it is natural to
think that k-partitions are given by k-acceptors. In particular, for the relation
I2 we have to estimate the complexity of the problem: given an aperiodic k-
acceptor (M; c), is the k-partition L(M; c) join-irreducible in (Ak;≤2,⊕)? For
the function ·, we have to estimate the complexity of the problem: given ape-
riodic k-acceptors for A,B ∈ Ak, find an aperiodic k-acceptor for A · B (up to
≡CA). From the results above we easily obtain the following.

Corollary 1. All the signature functions and relations on Ak in Theorem 3 are
computable w.r.t. the k-acceptor presentation.

Proof. Consider e.g. the relation ≤CA. Given acceptors (M; c) and (M1; c1)
recognising resp. A and A1, compute (using the algorithm in the proof of Fact
6) F, F1 ∈ FTk

such that A ≡CA ρ(F) and A1 ≡CA ρ(F1), and check F ≤h F1

using the p-presentation in the proof of Theorem 3. �	

204 V. Selivanov

The method of Corollary 1 and the computability of many other relations
and functions on the wqo FTk

imply the computability of many other topological
problems about regular k-partitions. The complexity of such problems is more
subtle and leads to interesting open questions. Even the p-computability of ≤CA

for k > 2 is currently open because our approach needs to compute the unfolding
of a k̄-labeled 2-preorder to a forest (see the proof of Fact 6) in polynomial
time which is easy for k = 2 but not obvious for k > 2. For k = 2 the
p-computability of ≤CA is known from [9,21].

References

1. Carton, O., Perrin, D.: Chains and superchains for ω-rational sets, automata and
semigroups. Int. J. Algebra Comput. 7, 673–695 (1997)

2. Carton, O., Perrin, D.: The wagner hierarchy of ω-rational sets. Int. J. Algebra
Comput. 9, 673–695 (1999)

3. Duparc, J.: A hierarchy of deterministic context-free ω-languages. Theor. Comput.
Sci. 290(3), 1253–1300 (2003)

4. Duparc, J., Riss, M.: The missing link for ω-rational sets, automata, and semi-
groups. Int. J. Algebra Comput. 16, 161–185 (2006)

5. Finkel, O.: Borel ranks and Wadge degrees of context-free ω-languages. Math.
Struct. Comput. Sci. 16, 813–840 (2006)

6. Hertling P., Selivanov V.L.: Complexity issues for preorders on finite labeled forests.
In: Brattka, V., Diener, H., Spreen, D. (eds.) Logic, Computation, Hierarchies, pp.
165–190. Ontos Publishing, de Gruiter, Boston-Berlin (2014)

7. Kechris, A.S.: Classical Descriptive Set Theory. Springer, New York (1994).
https://doi.org/10.1007/978/-1-4612-4190-4

8. Kihara, T., Montalbán, A.: On the structure of the Wadge degrees of BQO-valued
Borel functions. Trans. Am. Math. Soc. 371(11), 7885–7923 (2019)

9. Krishnan, S.C., Puri, A., Brayton, R.K.: Structural complexity of ω -automata. In:
Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 143–156. Springer,
Heidelberg (1995). https://doi.org/10.1007/3-540-59042-0 69

10. Kihara T., Selivanov V.: Wadge-like degrees of Borel BQO-valued functions. Arxiv
1909.10835 (2019)

11. Perrin D., Pin J.-E.: Infinite Words. v. 141 of pure and applied mathematics (Else-
vier, 2004)

12. Selivanov, V.L.: Fine hierarchy of regular ω-languages. Theor. Comput. Sci. 191,
37–59 (1998)

13. Selivanov, V.L.: Wadge degrees of ω-languages of deterministic turing machines.
Theor. Inf. Appl. 37, 67–83 (2003)

14. Selivanov V.L.: Classifying omega-regular partitions. In: Preproceedings of LATA-
2007, Universitat Rovira i Virgili Report Series, 35/07, pp. 529–540 (2007)

15. Selivanov, V.L.: Fine hierarchy of regular aperiodic ω-languages. Int. J. Found.
Comput. Sci. 19(3), 649–675 (2008)

16. Selivanov, V.: A fine hierarchy of ω-regualr k-partitions. In: Löwe, B., Normann,
D., Soskov, I., Soskova, A. (eds.) CiE 2011. LNCS, vol. 6735, pp. 260–269. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21875-0 28

17. Selivanov, V.L.: Fine hierarchies via priestley duality. Ann. Pure Appl. Logic 163,
1075–1107 (2012)

https://doi.org/10.1007/978/-1-4612-4190-4
https://doi.org/10.1007/3-540-59042-0_69
https://doi.org/10.1007/978-3-642-21875-0_28

Classifying ω-Regular Aperiodic k-Partitions 205

18. Selivanov, V.L.: Extending wadge theory to k -partitions. In: Kari, J., Manea, F.,
Petre, I. (eds.) CiE 2017. LNCS, vol. 10307, pp. 387–399. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-58741-7 36

19. Wadge W.: Reducibility and determinateness in the Baire space. PhD thesis, Uni-
versity of California, Berkely (1984)

20. Wagner, K.: On ω-regular sets. Inf. Control 43, 123–177 (1979)
21. Wilke, T., Yoo, H.: Computing the Wadge degree, the Lifschitz degree, and the

Rabin index of a regular language of infinite words in polynomial time. In: Mosses,
P.D., Nielsen, M., Schwartzbach, M.I. (eds.) CAAP 1995. LNCS, vol. 915, pp.
288–302. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59293-8 202

https://doi.org/10.1007/978-3-319-58741-7_36
https://doi.org/10.1007/3-540-59293-8_202

Recognition and Complexity Results
for Projection Languages

of Two-Dimensional Automata

Taylor J. Smith(B) and Kai Salomaa(B)

School of Computing, Queen’s University, Kingston, ON K7L 2N8, Canada
{tsmith,ksalomaa}@cs.queensu.ca

Abstract. The row projection (resp., column projection) of a given two-
dimensional language L is the one-dimensional language consisting of
first rows (resp., first columns) of all two-dimensional words in L. The
operation of row projection has previously been studied under the name
“frontier language”, and previous work in this area has focused primarily
on one- and two-dimensional language classes.

In this paper, we study projections of languages recognized by various
two-dimensional automaton classes. We show that both the row and col-
umn projections of languages recognized by (four-way) two-dimensional
automata are exactly context-sensitive. We also show that the column
projections of languages recognized by unary three-way two-dimensional
automata can be recognized using nondeterministic logspace. Finally,
we study the state complexity of projection languages for two-way two-
dimensional automata, focusing on the language operations of union and
diagonal concatenation.

Keywords: Language classes · Projection languages · Space
complexity · Three-way automata · Two-dimensional automata ·
Two-way automata

1 Introduction

A two-dimensional word, also known in the literature as a picture, is a generaliza-
tion of the notion of a word from a one-dimensional string to a two-dimensional
array or matrix of symbols. Two-dimensional words are used as the input to
two-dimensional automata, whose input heads move through the input word in
a variety of ways, depending on the model.

We may define special projection operations on two-dimensional words that
produce either the first row or the first column of the given word. In this way,
a projection can be thought of as a conversion from a two-dimensional word
to a one-dimensional word. Note that projection operations are lossy (i.e., all

Smith and Salomaa were supported by Natural Sciences and Engineering Research
Council of Canada Grant OGP0147224.

c© Springer Nature Switzerland AG 2020
G. Jirásková and G. Pighizzini (Eds.): DCFS 2020, LNCS 12442, pp. 206–218, 2020.
https://doi.org/10.1007/978-3-030-62536-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62536-8_17&domain=pdf
https://doi.org/10.1007/978-3-030-62536-8_17

Recognition and Complexity Results for Projections of 2D Automata 207

but the first row/column of the two-dimensional word is lost when a projection
operation is applied).

The row projection operation has been studied in the past [2,13], with a
particular focus on formal language theory. (We summarize previous results in
Sect. 2.1.) However, little work has yet been done on investigating projections
of languages recognized by various two-dimensional automaton models.

Our results are as follows. We show that both the row and column pro-
jections of languages recognized by (four-way) two-dimensional automata are
exactly context-sensitive. We also show that the column projections of languages
recognized by unary three-way two-dimensional automata belong to the class
NSPACE(O(log(n))). Finally, we study the state complexity of projection lan-
guages, focusing on the state complexity of union and diagonal concatenation
for projections of languages recognized by two-way two-dimensional automata.

2 Preliminaries

A two-dimensional word is a matrix of symbols from some alphabet Σ. If a
two-dimensional word w has m rows and n columns, then we say that w is
of dimension m × n. A two-dimensional language consists of two-dimensional
words. There exist two special languages in two dimensions: Σm×n consists of
all words of dimension m × n for some fixed m,n ≥ 1, and Σ∗∗ consists of all
two-dimensional words.

The row projection (resp., column projection) of a two-dimensional lan-
guage L is the one-dimensional language consisting of the first rows (resp., first
columns) of all two-dimensional words in L. We formalize these notions in terms
of individual two-dimensional words. In the following definition, we assume we
have an m × n two-dimensional word

w =

⎡
⎢⎣

a1,1 · · · a1,n

...
. . .

...
am,1 · · · am,n

⎤
⎥⎦ .

Definition 1 (Row/column projection). Given a two-dimensional word w ∈
Σm×n, the row projection (resp., column projection) of w is the one-dimensional
word

prR(w) = a1,1a1,2 · · · a1,n (resp., prC(w) = a1,1a2,1 · · · am,1),

where a1,j ∈ Σ for 1 ≤ j ≤ n (resp., ai,1 ∈ Σ for 1 ≤ i ≤ m).

The row/column projection of a two-dimensional language L is produced by
taking the row/column projections of all words w ∈ L.

Note that one may view the column projection operation as taking the “trans-
pose” of the first column of a two-dimensional word in order to produce a one-
dimensional string. The row projection operation has been considered in previous
papers, where it was called the “frontier” of a word or language [13].

208 T. J. Smith and K. Salomaa

When a two-dimensional word is used as the input to a two-dimensional
automaton, we surround the outer border of the word with a special boundary
marker #. (For example, the upper-left boundary marker is at position (0, 0) and
the lower-right boundary marker is at position (m + 1, n + 1) in the word.) The
boundary marker prevents the input head of the automaton from leaving the
input word: upon reaching the border, the input head can reverse its previous
move (if possible) to reenter the word.

The formal definition of a two-dimensional automaton is as follows:

Definition 2 (Two-dimensional automaton). A two-dimensional automa-
ton is a tuple (Q,Σ, δ, q0, qaccept), where Q is a finite set of states, Σ is the input
alphabet (with # �∈ Σ acting as a boundary marker), δ : (Q\{qaccept}) × (Σ ∪
{#}) → Q × {U,D,L,R} is the partial transition function, and q0, qaccept ∈ Q
are the initial and accepting states, respectively.

The specific model in Definition 2 is sometimes referred to as a “four-
way two-dimensional automaton”. In this paper, we also consider three-way
and two-way variants of two-dimensional automata. In the three-way case, the
transition function is restricted to use only the directions {D,L,R}. Like-
wise, in the two-way case, the transition function uses only the directions
{D,R}. We may optionally include a direction N , which corresponds to “no
move” and does not change the recognition power of the model. We abbreviate
each automaton model as 2(D/N)FA-kW(-1Σ), where D/N denotes determin-
istic/nondeterministic, k ∈ {2, 3, 4} denotes the number of directions of input
head movement, and 1Σ denotes a unary alphabet. In later sections, we will use
the notation LC to denote the set of languages recognized by some automaton
model C.

2.1 Previous Work

A number of survey articles and other works have been written about both two-
dimensional languages [5,14] and two-dimensional automaton models [9,15,19].
Previous work on projection operations has taken two perspectives: language-
theoretic and automata-theoretic.

Language-Theoretic. One of the earliest results on two-dimensional row pro-
jection, due to Latteux and Simplot [13], showed that a one-dimensional lan-
guage F is context-sensitive if and only if there exists a two-dimensional lan-
guage L ∈ REC such that F = prR(L). The class REC denotes the class of
tiling-recognizable two-dimensional languages, or languages whose words can be
defined by a finite set of 2 × 2 tiles [4].

Anselmo et al. [2] later extended this direction of research to give equiva-
lent characterizations for unambiguous and deterministic context-sensitive one-
dimensional languages; namely, F is unambiguous (resp., deterministic) context-
sensitive if and only if there exists L ∈ UREC (resp., L ∈ Row-URECt) such that
F = prR(L). The classes UREC and Row-URECt are subclasses of REC, where

Recognition and Complexity Results for Projections of 2D Automata 209

UREC consists of languages defined by an unambiguous tiling system [4] and
Row-URECt consists of languages that are “top-to-bottom row-unambiguous”;
Anselmo et al. give a formal definition of the class Row-URECt in an earlier
paper [1].

Some classes smaller than Row-URECt (namely, the class of deterministic
recognizable languages DREC [1]) have no known characterization in terms of
one-dimensional language classes.

Automata-Theoretic. A (four-way) two-dimensional automaton can recognize
whether or not an input word has either an exponential or a doubly-exponential
side length [11]. It is well-known that the language of unary strings of exponential
length is context-sensitive but not context-free [8]. This fact implies that, if L
is a language recognized by a four-way two-dimensional automaton, then both
prR(L) and prC(L) may be non-context-free, even in the unary case.

Restricting ourselves to the three-way model, we obtain results that dif-
fer based on the projection operation under consideration. Let L be a unary
language. If L is recognized by a nondeterministic three-way two-dimensional
automaton, then prR(L) is regular. On the other hand, if L is recognized by
a deterministic three-way two-dimensional automaton, then prC(L) need not
be regular [20]. We can refine this result by showing that prC(L) may be
non-context-free for three-way two-dimensional automata, since the language
Lcomposite used in the proof of the non-regularity result is context-sensitive in
both the unary and general-alphabet cases [6,16,17].

Finally, for the two-way model, we know that if a language L is recognized by
a nondeterministic two-way two-dimensional automaton, then both prR(L) and
prC(L) are regular [20]. This applies also to deterministic and unary two-way
two-dimensional automata.

3 Recognition Power and Space Complexity

From previous work, we know that prR(L) is context-sensitive when L ∈ REC
[13]. It is known that L2DFA-4W ⊂ L2NFA-4W ⊆ REC [3,10], so prR(L) is also
context-sensitive when L ∈ L2DFA-4W. The following theorem gives the other
direction of this inclusion.

Theorem 1. Let K be a context-sensitive language. Then there exists L ∈
L2DFA-4W such that K = prR(L).

The proof of Theorem 1 uses the technique of recognizing computation tables
of linear-bounded automata via two-dimensional automaton models. A similar
technique has been used in the past, for example, to prove that the emptiness
problem for the class of local picture languages is undecidable [4].

The same technique used to prove Theorem 1 also works for nondeterministic
two-dimensional automata. Moreover, it is straightforward to show that prC(L)
is context-sensitive when L ∈ L2DFA-4W, and so Theorem 1 can similarly be
adapted to apply to column projection languages. These observations, taken
together, lead to the following characterization.

210 T. J. Smith and K. Salomaa

Corollary 1. Both the row and column projections of languages recognized
by four-way two-dimensional automata consist exactly of the class of context-
sensitive languages.

3.1 Three-Way Two-Dimensional Automata

Recall from Sect. 2.1 that the row projection of any language accepted by a three-
way two-dimensional automaton A is regular. Since REG ∈ DSPACE(O(1)) [18],
we immediately get that prR(L(A)) ∈ DSPACE(O(1)) as well.

We further noted in the same section that the column projection of a language
in L2NFA-3W-1Σ may be non-context-free, depending on the choice of language.
Here, we investigate the space complexity of column projection languages for
L2NFA-3W-1Σ .

In what follows, we use the notation rsoi[r, s] to denote the subword occur-
rence of the ith row starting at index r and ending at index r + s; that is, a
subword of length s + 1. Since we are considering unary languages, all sym-
bols of rsoi[r, s] are identical and independent of the value i. Thus, by “subword
occurrence”, we mean the cells of the ith row at indices r through r + s inclusive.

The following technical lemma states that every string w in the column pro-
jection of a language in L2NFA-3W-1Σ is a projection of a two-dimensional word
z, where the number of columns of z is at most some constant multiple of the
length of w. The proof, intuitively speaking, uses the fact that when we have a
two-dimensional word containing a large number of columns with no downward
moves, we can remove some of these columns and simulate the same computation
of the three-way two-dimensional automaton.

Lemma 1. Let A be a unary three-way two-dimensional automaton with k
states, and consider a word w ∈ prC(L(A)). Then there exists a two-dimensional
word z with |w| rows and at most (|w| + 3) · (k22k + 2) columns accepted by A.

Proof. Let H = k22k . Consider a two-dimensional word z ∈ L(A) of dimension
|w| × n1, where

n1 > (|w| + 3) · (H + 2). (1)

Let Cz be an accepting nondeterministic computation of A on input word z.
Without loss of generality, we may assume that Cz accepts at the bottom border
of z.

By the inequality in Eq. 1, the input word z must have k2k + 1 consecutive
columns such that the computation Cz does not make a downward move in any
such column. Furthermore, we may assume that these consecutive columns do
not include either the first H columns or the last H columns of z. That is,
there exists H ≤ j ≤ (n1 − 2H) such that the computation Cz does not make a
downward move in any of the subword occurrences

rsoi[j,H], i = {1, . . . , |w|}.

Let Q be the set of states of A and define Q = {q | q ∈ Q} to be a disjoint
copy of states in Q. For each column x ∈ {j, j + 1, . . . , j + H}, define a function
fx : Q → 2Q∪Q by setting, for all p ∈ Q,

Recognition and Complexity Results for Projections of 2D Automata 211

– q ∈ fx(p) if, for some i, the computation Cz on the ith row in column x and
state p exits the subword occurrence rsoi[j,H] to the left in state q; and

– q ∈ fx(p) if, for some i, the computation Cz on the ith row in column x and
state p exits the subword occurrence rsoi[j,H] to the right in state q.

Note that the computation of Cz may visit the subword occurrence multiple
times. By our definition, q ∈ fx(p) if, at some point, Cz is in the xth column in
state p and, when Cz next exits rsoi[j,H], it exits to the left in state q.

Note also that the accepting computation must exit each subword occur-
rence rsoi[j,H] either to the left or to the right since, by our choice of j, the
computation Cz makes no downward moves in any of the columns j, . . . , (j + H).

Since the number of functions from Q to 2Q∪Q is H = k22k , there exist
columns x1 and x2, j ≤ x1 < x2 ≤ (j +H), such that fx1 = fx2 . Moreover, since
the computation Cz makes no downward moves in any of the columns j, . . . , (j +
H), there exists an accepting computation of A on the two-dimensional word z′

obtained by removing the columns x1, . . . , (x2 − 1) from z.
The above observation relies on our earlier assumption that the designated

columns j, . . . , (j +H) are at distance at least H from the left and right borders
of the word. For example, consider a situation where q ∈ fx2(p); that is, where
the computation starting in column x2 and state p exits the subword occurrence
to the right in state q. When simulating the same computation on the modified
word z′ starting in column x1, the computation could, at some point, move to
the left of column j. Since j ≥ H, this guarantees that the computation would
not reach the left border.

Altogether, the two-dimensional word z′ has x2 − x1 fewer columns than the
original word z. By repeated application of the previous argument, we see that
A must accept a two-dimensional word of dimension |w| × n2, where n2 ≤ H.
�

An application of Lemma 1 allows us to obtain our main space complexity
result for column projections of languages recognized by unary three-way two-
dimensional automata.

Theorem 2. Let A be a unary three-way two-dimensional automaton. Then
prC(L(A)) ∈ NSPACE(O(log(n))).

Proof. Suppose A has k states. We describe the operation of a nondeterministic
logspace Turing machine M recognizing prC(L(A)).

On input word w, M first writes to its work tape a binary representation of
a nondeterministically-chosen natural number n1 ≤ (|w| + 3) · (k22k + 2). Since
k is constant, this binary representation can be written in space O(log(|w|)).

The machine M then simulates a nondeterministic computation of A on a
two-dimensional input word z with |w| rows and n1 columns. The input head
of M keeps track of the current row of z, while a binary counter stored on the
work tape of M keeps track of the current column of z. The work tape also
contains the originally-guessed value n1 so that M is able to determine when its
simulated computation encounters the right border of the input word.

212 T. J. Smith and K. Salomaa

By Lemma 1, we know that if w ∈ prC(L(A)), then w must be a column
projection of a two-dimensional word with at most (|w| + 3) · (k22k + 2) columns
that is accepted by A.
�

Since the language class CSL coincides with the nondeterministic space com-
plexity class NSPACE(O(n)) [12], one consequence of Corollary 1 is that the row
and column projections of languages recognized by four-way two-dimensional
automata consist exactly of languages in NSPACE(O(n)). Theorem 2 gives a
significantly improved nondeterministic space complexity upper bound for col-
umn projections of languages recognized by unary three-way two-dimensional
automata.

4 State Complexity

Since projections of languages in L2DFA-2W and L2NFA-2W are known to be always
regular, it is possible to consider questions of state complexity involving these
projection languages.

Although they seem never to have appeared anywhere in the literature, it
is straightforward to prove the following closure results for Boolean operations
over two-way two-dimensional automata.

Lemma 2. L2DFA-2W is not closed under union or intersection.

Lemma 3. L2NFA-2W is closed under union, but is not closed under intersection
or complement.

Moreover, the present authors previously investigated closure properties of
concatenation operations over two-way two-dimensional automata [21]. In this
section, therefore, we will focus on the state complexity of projections of union
and concatenation operations for nondeterministic two-way two-dimensional
automata.

4.1 Union of 2NFA-2W Languages

Before we proceed, we require a slight modification to the definition of a two-way
two-dimensional automaton that we introduced in Sect. 2. For the remainder of
this section, when we refer to a “two-way two-dimensional automaton”, we use
the following definition.

Definition 3 (IBR-accepting two-way two-dimensional automaton).
An IBR-accepting two-way two-dimensional automaton A is a tuple
(Q,Σ, δ, q0, qaccept) as in Definition 2, where, when the input head reads a bound-
ary marker #, A either enters qaccept in the next transition or the transition is
undefined.

Recognition and Complexity Results for Projections of 2D Automata 213

The abbreviation “IBR-accepting” refers to the automaton “immediately-
bottom-right accepting”; by this, we mean that the automaton immediately halts
and accepts if, upon reading a boundary marker on the bottom or right border
of the word, qaccept is reachable from its current state. The two-way model is the
only model for which we can make this modification; neither three- nor four-way
models can be made to halt immediately upon reading a boundary marker.

Remark 1. The accepting state of an IBR-accepting two-way two-dimensional
automaton, qaccept, is a “dummy” state used only as the target of accepting
transitions on the boundary marker #. Thus, by the “size” of such an automaton
A we mean the size of the set Q\{qaccept}. This convention ensures that an IBR-
accepting two-way two-dimensional automaton recognizing single-row words has
the same size as the corresponding one-dimensional automaton accepting the
same string language.

The following result shows that we may convert between the usual and
IBR-accepting types of two-way two-dimensional automata without incurring
a penalty on the number of states.

Proposition 1 [21]. Given a two-way two-dimensional automaton A with
n states, there exists an equivalent IBR-accepting two-way two-dimensional
automaton A′ with n states.

Using a construction from a previous paper investigating projections of non-
deterministic two-way two-dimensional automaton languages [20], we may obtain
an upper bound on the nondeterministic state complexity of projection languages
for this model.

Proposition 2. Let A be a nondeterministic two-way two-dimensional automa-
ton with n states. Then both prR(L(A)) and prC(L(A)) are recognized by a non-
deterministic one-dimensional automaton with 2n states.

We can show that the following lower bound applies for the same model.

Lemma 4. There exists a nondeterministic two-way two-dimensional automa-
ton A with n states such that any nondeterministic one-dimensional automaton
recognizing prR(L(A)) requires at least 2n − 1 states.

Proof. Define A as follows: the alphabet is Σ = {0, 1}, the set of states is Q =
{q0, q1, . . . , qn−1} (and additionally qaccept), the initial state is q0, the accepting
state is qaccept, and the transition function δ consists of the following:

– δ(qi, 0) = (qi+1, R) for all 0 ≤ i ≤ n − 2;
– δ(qn−1, 0) = {(q0, R), (qn−1,D)}; and
– δ(q0,#) = (qaccept, N).

Each rightward-moving transition counts modulo n, and the only downward-
moving transition occurs in a column position congruent to −1 mod n. More-
over, the downward-moving transition does not change the state (i.e., the col-
umn count is preserved). Note also that A makes no transitions upon reading

214 T. J. Smith and K. Salomaa

the symbol 1; this is because, after reading n−1 copies of 0 and making a down-
ward move, the first row can contain any symbols after that column position so
long as the number of total columns remains a multiple of n. Combining these
observations, we see that the row projection of L(A) is

prR(L(A)) = 0n−1(0 + 1)((0 + 1)n)∗ + ε.

To show that the nondeterministic state complexity of prR(L(A)) is at least
2n − 1, we use the following extended fooling set [7]:

S = {(x, y) | xy = 0n−11n+1, |y| ≥ 2}.

The set S contains 2n − 1 elements and, by its definition, for any pair (x, y) ∈ S,
xy = 0n−11n+1 ∈ prR(L(A)).

Consider two distinct pairs (x, y) and (x′, y′). Without loss of generality,
assume x is a proper prefix of x′. If |x′| − |x| �= n, then |xy′| is not a multiple of
n, and xy′ �∈ prR(L(A)). Otherwise, |x′| − |x| = n. In this case, since |x′y′| = 2n
and |y′| ≥ 2, we have that |x′| ≤ 2n − 2. Thus, |x| ≤ n − 2, and so x = 0i for
some 0 ≤ i ≤ n − 2. However, this means that xy′ �∈ prR(L(A)), because in this
case y′ consists only of the symbol 1.
�

Using the previous results, we can obtain a state complexity bound for the
projection of the union of two languages recognized by nondeterministic two-way
two-dimensional automata.

Theorem 3. (i) If A and B are nondeterministic two-way two-dimensional
automata with m and n states, respectively, then prR(L(A) ∪ L(B)) is recog-
nized by a nondeterministic one-dimensional automaton with 2(m + n + 1)
states.

(ii) There exist nondeterministic two-way two-dimensional automata A and
B with n and m states, respectively, such that any nondeterministic one-
dimensional automaton recognizing prR(L(A) ∪ L(B)) requires at least 2(m +
n − 1) states.

Since two-way two-dimensional automata operate symmetrically with respect
to rows and columns, there also exist nondeterministic state complexity bounds
for column projections analogous to those established in Theorem 3.

4.2 Diagonal Concatenation of 2NFA-2W Languages

Given two-dimensional words w and v of dimension m × n and m′ × n′ respec-
tively, the diagonal concatenation of w and v, denoted w � v, produces a two-
dimensional language consisting of words of dimension (m + m′) × (n + n′)
where w is in the top-left quadrant, v is in the bottom-right quadrant, and words
x ∈ Σm×n′

and y ∈ Σm′×n are in the top-right and bottom-left quadrants of
w � v, respectively. We assume that the symbols in x and y come from the same
alphabet Σ as the symbols in w and v. The diagonal concatenation language is

Recognition and Complexity Results for Projections of 2D Automata 215

formed by adding to the top-right and bottom-left quadrants all possible words
x and y over Σ. Note also that no boundary markers appear within a diagonal
concatenation w � v.

Nondeterministic two-way two-dimensional automata are known to be closed
under diagonal concatenation over a general alphabet and, moreover, this is the
only concatenation operation under which two-way two-dimensional automaton
languages over general alphabets are closed [21]. Thus, the natural question
arises: given a pair of nondeterministic two-way two-dimensional automata A
and B recognizing languages L(A) and L(B), respectively, how large must such
an automaton be to recognize prR(L(A) � L(B))?

We begin by making an elementary observation. In one dimension, an ε-NFA
extends an ordinary NFA by allowing ε-transitions; i.e., “stay-in-place” moves.

Lemma 5 (Wood [22]). Any n-state ε-NFA has an equivalent n-state NFA
without ε-transitions.

Moreover, for a pair of nondeterministic one-dimensional automata with m′

and n′ states recognizing languages L1 and L2, respectively, a total of m′ + n′

states are necessary and sufficient to recognize the concatenation language L1 ·L2

in the general alphabet case, while m′ + n′ − 1 states are necessary in the unary
case [7].

Theorem 4. (i) If A and B are nondeterministic two-way two-dimensional
automata with m and n states, respectively, then prR(L(A) � L(B)) is recog-
nized by a nondeterministic one-dimensional automaton with 2m + n states.

(ii) There exist nondeterministic two-way two-dimensional automata A and
B with m and n states, respectively, such that any nondeterministic one-
dimensional automaton recognizing prR(L(A) � L(B)) requires at least m + n − 1
states.

Proof. We prove (i) by constructing a nondeterministic one-dimensional automa-
ton C to recognize the language prR(L(A) � L(B)). The following procedure
allows C to simulate the computation of A and B on a word in the language
L(A) � L(B):

1. The input head of C begins by simulating rightward moves of the input head
of A. If the input head of A makes a downward move, C remembers that a
downward move occurred and replaces it with a “stay-in-place” move.

2. At some point during its computation, C nondeterministically switches to
simulating moves of B. Again, the input head of C only simulates rightward
moves, and replaces downward moves with “stay-in-place” moves.

By Lemma 5, “stay-in-place” moves can be used without affecting the number
of states. However, by a construction similar to that used in Proposition 2, the
requirement in Step 1 to remember whether a downward move occurred doubles
the number of states needed to simulate the computation of A. Remembering
downward moves is not required when simulating the computation of B. Further-
more, in Step 2, the input head of C ignores the alphabet symbols it is reading.

216 T. J. Smith and K. Salomaa

Since the simulation only needs to check that B accepts a two-dimensional word
with the correct number of columns, the exact symbols being read at this stage
may be ignored.

If the computation of C accepts, then the computation of A and B must have
also accepted, and therefore C recognizes words in the language prR(L(A) �
L(B)). Moreover, 2m + n states are sufficient for C to perform its computation
in this way.

We now prove (ii). Let A′ (respectively, B′) be an m-state (respectively, n-
state) unary nondeterministic one-dimensional automaton such that the concate-
nation of L(A′) and L(B′) requires m + n − 1 states [7]. The language L(A′) can
be recognized by an m-state nondeterministic two-way two-dimensional automa-
ton A that recognizes words consisting of one row. Similarly, L(B′) can be recog-
nized by an n-state nondeterministic two-way two-dimensional automaton B. In
this case, the languages prR(L(A)�L(B)) and L(A′) ·L(B′) are equal. It follows
that m + n − 1 states are necessary for any nondeterministic one-dimensional
automaton to recognize prR(L(A) � L(B)).
�

Again, there exist nondeterministic state complexity bounds for column pro-
jections analogous to those established in Theorem 4.

5 Conclusion

In this paper, we established results linking one-dimensional language classes to
two-dimensional projection languages; namely, that both the row and column
projections of languages L ∈ L2DFA-4W or L2NFA-4W are exactly context-sensitive.
This improves on the previously-known non-context-free lower bound, which
remains for other two-dimensional automaton models.

We also proved space complexity results for projection languages. While both
the row and column projections of languages L ∈ L2DFA-4W or L2NFA-4W belong
to the class NSPACE(O(n)), the column projection of languages L ∈ L2DFA-3W-1Σ

or L2NFA-3W-1Σ belongs to the class NSPACE(O(log(n))).
Finally, we investigated the state complexity of projection languages. We

showed that, given a pair of nondeterministic two-way two-dimensional automata
A and B with m and n states, respectively, between 2(m + n − 1) and 2(m +
n + 1) states are needed to recognize prR(L(A) ∪ L(B)) and between m + n − 1
and 2m + n states are needed to recognize prR(L(A) � L(B)). These bounds
apply also to the column projections of such languages.

We conclude by giving a selection of open problems arising from work done
in this paper.

1. Which class of one-dimensional languages characterizes the column projec-
tion of languages in L2DFA-3W or L2NFA-3W (or their unary equivalents)?

2. Which class of one-dimensional languages characterizes either the row or
column projection of languages in L2DFA-4W-1Σ or L2NFA-4W-1Σ?

3. If a two-dimensional automaton A with n states recognizes a language L,
how many states are necessary/sufficient for a one-dimensional automaton
A′ to recognize the language prR(L)/prC(L)?

Recognition and Complexity Results for Projections of 2D Automata 217

Problems 1 and 2 are likely difficult; it may be more reasonable to obtain an
improved upper bound on the related question of space complexity for prob-
lem 2, say DSPACE(O(n)). Moreover, for problem 3, we can obtain a trivial
lower bound of n states by constructing an n-state nondeterministic three/four-
way two-dimensional automaton A that accepts only one-row words (i.e., words
of dimension 1 × k, k ≥ 1), and taking A′ to be the minimal nondeterministic
two-way one-dimensional automaton recognizing the language prR(L(A)).

References

1. Anselmo, M., Giammarresi, D., Madonia, M.: Deterministic and unambiguous fam-
ilies within recognizable two-dimensional languages. Fund. Inform. 98(2–3), 143–
166 (2010)

2. Anselmo, M., Giammarresi, D., Madonia, M.: Classification of string languages via
tiling recognizable picture languages. In: Dediu, A.-H., Inenaga, S., Mart́ın-Vide,
C. (eds.) LATA 2011. LNCS, vol. 6638, pp. 105–116. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21254-3 7

3. Blum, M., Hewitt, C.: Automata on a 2-dimensional tape. In: Miller, R.E. (ed.)
SWAT 1967, pp. 155–160 (1967)

4. Giammarresi, D., Restivo, A.: Recognizable picture languages. Int. J. Pattern
Recogn. Artif. Intell. 6(2–3), 241–256 (1992)

5. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salo-
maa, A. (eds.) Handbook of Formal Languages, pp. 215–267. Springer, Heidelberg
(1997). https://doi.org/10.1007/978-3-642-59126-6 4

6. Hartmanis, J., Shank, H.: On the recognition of primes by automata. J. ACM
15(3), 382–389 (1968)

7. Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular lan-
guages. Int. J. Found. Comput. Sci. 14(6), 1087–1102 (2003)

8. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

9. Inoue, K., Takanami, I.: A survey of two-dimensional automata theory. Inf. Sci.
55(1–3), 99–121 (1991)

10. Inoue, K., Takanami, I.: A characterization of recognizable picture languages. In:
Nakamura, A., Nivat, M., Saoudi, A., Wang, P.S.P., Inoue, K. (eds.) ICPIA 1992.
LNCS, vol. 654, pp. 133–143. Springer, Heidelberg (1992). https://doi.org/10.1007/
3-540-56346-6 35

11. Kari, J., Moore, C.: Rectangles and squares recognized by two-dimensional
automata. In: Karhumäki, J., Maurer, H., Păun, G., Rozenberg, G. (eds.) Theory
Is Forever. LNCS, vol. 3113, pp. 134–144. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-27812-2 13

12. Kuroda, S.Y.: Classes of languages and linear-bounded automata. Inf. Control 7(2),
207–223 (1965)

13. Latteux, M., Simplot, D.: Context-sensitive string languages and recognizable pic-
ture languages. Inf. Comput. 138(2), 160–169 (1997)

14. Morita, K.: Two-dimensional languages. In: Mart́ın-Vide, C., Mitrana, V., Păun, G.
(eds.) Formal Languages and Applications, Studies in Fuzziness and Soft Comput-
ing, vol. 148, pp. 427–437. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-39886-8 22

https://doi.org/10.1007/978-3-642-21254-3_7
https://doi.org/10.1007/978-3-642-59126-6_4
https://doi.org/10.1007/3-540-56346-6_35
https://doi.org/10.1007/3-540-56346-6_35
https://doi.org/10.1007/978-3-540-27812-2_13
https://doi.org/10.1007/978-3-540-27812-2_13
https://doi.org/10.1007/978-3-540-39886-8_22
https://doi.org/10.1007/978-3-540-39886-8_22

218 T. J. Smith and K. Salomaa

15. Rosenfeld, A.: Picture Languages: Formal Models for Picture Recognition. Com-
puter Science and Applied Mathematics. Academic Press, New York (1979)

16. Salomaa, A.: Theory of Automata, International Series of Monographs in Pure and
Applied Mathematics, vol. 100. Pergamon Press, Oxford (1969)

17. Salomaa, A.: Formal Languages. Academic Press, New York (1973)
18. Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM

J. Res. Dev. 3(2), 198–200 (1959)
19. Smith, T.J.: Two-dimensional automata. Technical report 2019–637. Queen’s Uni-

versity, Kingston (2019)
20. Smith, T.J., Salomaa, K.: Decision problems for restricted variants of two-

dimensional automata. In: Hospodár, M., Jirásková, G. (eds.) CIAA 2019. LNCS,
vol. 11601, pp. 222–234. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-23679-3 18

21. Smith, T.J., Salomaa, K.: Concatenation operations and restricted variants of two-
dimensional automata. arXiv:2008.11164 (2020)

22. Wood, D.: Theory of Computation. Computer Science and Technology Series.
Harper & Row, New York (1987)

https://doi.org/10.1007/978-3-030-23679-3_18
https://doi.org/10.1007/978-3-030-23679-3_18
http://arxiv.org/abs/2008.11164

On the Generative Power of Quasiperiods

Ludwig Staiger(B)

Institut für Informatik, Martin-Luther-Universität Halle-Wittenberg,
06099 Halle (Saale), Germany

staiger@informatik.uni-halle.de

Abstract. It is shown that, for every length l ≥ 3, a quasiperiod of the
form anban (or anbban if l is even) generates the largest language Q of
words having this word as quasiperiod. As a means of comparison we use
the growth of the function which counts the number of words of length
l in the language Q.

Moreover, we give the exact ordering of the lengths l with respect to
the largest language Q generated by a quasiperiod of length l.

Keywords: Quasiperiod · Formal language · Asymptotic growth ·
Polynomial

1 Introduction

Informally, a word q is a quasiperiod of another word w if q is a prefix and a
suffix of w and every position of w is covered by q.

In this paper we investigate the languages Qq of words w having q as quasi-
period. We are interested in the question of which quasiperiods q generate
large languages Qq. Since different quasiperiods may have incomparable w.r.t.
set inclusion languages Qq, we compare the languages Qq by their functions
sq : IN → IN which count the number of words of length n in Qq. As a means
of comparison we use their asymptotic growth. It turns out that the languages
Qq are essentially regular star-languages, therefore their function sq satisfies
sq(n) ≈ const. · λn

q , where the value λq ≥ 1 depends on the quasiperiod q.
The aim of this paper is to estimate, for every length n ≥ 3 the words q which

have the largest value λq. To this end we consider along with language-theoretical
properties of Qq some combinatorial properties of quasiperiods. Moreover, we
need to consider a special class of integer polynomials related to quasiperiods.

The paper is organised as follows. After some preliminaries we deal with com-
binatorial properties of quasiperiods and the generated languages. The asymp-
totic growth of Qq is the subject of Sect. 4. Then we deal with basic properties of
polynomials related to quasiperiods. In these sections we mainly report results
of the papers [8] and [12]. The following Sects. 6 and 7 deal with the proof
of the main theorem. Here we derive also the complete ordering of the values
λn = max{λq : |q| = n}.

c© Springer Nature Switzerland AG 2020
G. Jirásková and G. Pighizzini (Eds.): DCFS 2020, LNCS 12442, pp. 219–230, 2020.
https://doi.org/10.1007/978-3-030-62536-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62536-8_18&domain=pdf
https://doi.org/10.1007/978-3-030-62536-8_18

220 L. Staiger

2 Notation and Preliminaries

We introduce the notation used throughout the paper. By IN = {0, 1, 2, . . .} we
denote the set of natural numbers. Let X be a finite alphabet. By a, b ∈ X we
mean two different letters. X∗ is the set (monoid) of words on X, including the
empty word e.

For w, v ∈ X∗ let w · v be their concatenation. This concatenation product
extends in an obvious way to subsets W,L ⊆ X∗. For a language W let W ∗ :=⋃

i∈IN W i be the submonoid of X∗ generated by W . The smallest subset of a
language W which generates W ∗ is called its star root ∗√W [4]. It holds

∗√
W = (W \ {e}) \ (W \ {e})2 · W ∗ .

Furthermore |w| is the length of the word w ∈ X∗, and by w 	 v we denote the
fact that w is a prefix of v.

A word w ∈ X∗\{e} is called primitive if w = vn implies n = 1, that is, w is
not the power of a shorter word.

As usual a language L ⊆ X∗ is called a code provided w1 · · · wl = v1 · · · vk

for w1, . . . , wl, v1, . . . , vk ∈ L implies l = k and wi = vi. A code L is said to be
a suffix code provided no codeword is a suffix of another codeword.

Finally, we define the language Qq of words having q ∈ X∗ \ {e} as quasi-
period.

(0)e ∈ Qq, and
(1)w ∈ Qq, if and only if w ∈ X∗ · q and

there is a w′ � w,w′ ∈ Qq, with w 	 w′ · q.

3 Quasiperiodic Words

In this part we consider the finite language Pq (L(q) in [7]) which is tightly
related to Qq. Most of the results are contained in [7,8] and [12].

We set
Pq := {v : e � v 	 q � v · q} . (1)

We have the following property.

Qq \ {e} = P ∗
q · q ⊆ P ∗

q ∩ q · X∗ . (2)

3.1 Combinatorial Properties of Pq

We investigate basic properties of Pq using simple facts from combinatorics on
words (see [2,6,10]).

Proposition 1. v ∈ Pq if and only if |v| ≤ |q| and there is a prefix v̄ � v such
that q = vk · v̄ for k =

⌊|q|/|v|⌋.
Corollary 1. v ∈ Pq if and only if |v| ≤ |q| and there is a k′ ∈ IN such that
q 	 vk′

.

On the Generative Power of Quasiperiods 221

Now set q0 := min� Pq. Then in view of Proposition 1 and Corollary 1 we have
the following canonical representation.

q = qk
0 · q̄ where k =

⌊|q|/|q0|
⌋

and q̄ � q0 . (3)

We will refer to q0 as the repeated prefix and to k as the repetition factor. If
|q0| > |q|/2, that is, if k = 1 we will refer to q as irreducible.1

Corollary 2. Every word v ∈ ∗
√

Pq is primitive.

Proof. Assume v = vl
1 for some v ∈ ∗

√
Pq and l > 1. Then q 	 vk′

= vl·k′
1 , and,

according to Corollary 1 v1 ∈ Pq contradicting v ∈ ∗
√

Pq.

Proposition 2. Let q ∈ X∗, q �= e, q0 = min� Pq, q = qk
0 · q̄ and v ∈ P ∗

q \{e}.
1. If w 	 q then v · w 	 q or q 	 v · w.
2. If w · v 	 q then w ∈ {q0}∗.
3. If |v| ≤ |q| − |q0| then v ∈ {q0}∗.

Corollary 3. If q /∈ {q0}∗ then q0 is not a suffix of q.

Proof. Let q = w · q0. Then according to Proposition 2.2 w ∈ {q0}∗.

Next we derive a slight improvement of Proposition 2.3. To this end, we use the
Theorem of Fine and Wilf.

Theorem 1 [5]. Let v, w ∈ X∗. Suppose vm and wn, for some m,n ∈ IN, have
a common prefix of length |v| + |w| − gcd (|v|, |w|). Then v and w are powers of
a common word u ∈ X∗ of length |u| = gcd (|v|, |w|).2

Proposition 3. Let q ∈ X∗, q �= e, q0 = min� Pq, q = qk
0 · q̄ and v ∈ Pq. If

|v| ≤ |q| − |q0| + gcd (|v|, |q0|) then v ∈ {q0}∗.

Proof. q0, v ∈ Pq imply that q is a common prefix of qk+1
0 and vk′

for some
k′ ∈ IN. In view of |v| ≤ |q| − |q0| + gcd (|v|, |q0|) Theorem 1 implies that q0 and
v are powers of a common word, that is, v ∈ {q0}∗.

3.2 The Reduced Quasiperiod q̂

Next we investigate the relation between a quasiperiod q = qk
0 · q̄ where q0 =

min� Pq and q̄ � q0 and its reduced quasiperiod q̂ := q0 · q̄. Since q ∈ Qq̂, we have
Qq̂ ⊇ Qq.

We continue with a relation between Pq and Pq̂. It is obvious that qi
0 ∈ Pq

for every i = 1, . . . , k. Then Proposition 3 shows that

∗√Pq ⊆ {q0} ∪ {v′ : v′ 	 q ∧ |v′| > |q| − |q0| + gcd (|v′|, |q0|)} . (4)

1 Superprimitive in the sense of [1,7] quasiperiods are irreducible but not vice versa
(see [12, Section 2.3.4]).

2 Here gcd (k, l) denotes the greatest common divisor of two numbers k, l ∈ IN.

222 L. Staiger

Lemma 1 [12, Lemma 2.2]. Let q ∈ X∗, q �= e, q0 = min� Pq, q = qk
0 · q̄ and

q̂ = q0 · q̄ the reduced quasiperiod of q. Then

Pq = {qi
0 : i = 1, . . . , k − 1} ∪ {qk−1

0 · v : v ∈ Pq̂} .

This implies

∗√Pq ⊆ {q0} ∪ qk−1
0 · (Pq̂ \ {q0}) , and (5)

Pq̂ ⊆ {v : q̂0 	 v 	 q̂} (6)

Moreover, we have the following.

Lemma 2. Let q = qk
0 · q̄ with k ≥ 2, q̄ � q0 and q̂ = q0 · q̄.

If q̂0 �= q0 for the repeated prefix of q̂0 then q̄ � q̂0 � q0 and |q̂0| > |q̄| +
gcd (|q0|, |q̂0|). Moreover, then there is a nonempty suffix v �= e of q0 such that
v � q̂0 and v · q̄ � q̂20.

Proof. We have q̄ 	 q0 and, since q0 ∈ Pq̂, also q̂0 	 q0. Moreover, q̂ 	 q20
and q̂ 	 q̂k′

0 for some k′ ∈ IN. Since q0 �= q̂0 and both prefixes are primitive
words, Theorem 1 shows that the common prefix q̂ = q0 · q̄ has to satisfy |q̂| <
|q0| + |q̂0| − gcd (|q0|, |q̂0|), that is, |q̂0| > |q̄| + gcd (|q0|, |q̂0|). The assertion
q̄ � q̂0 � q0 now follows from a comparison of the lengths of q̄, q̂0 	 q0.

Now, let v be the suffix of q0 defined by q̂k′
0 · v = q0 � q̂k′+1

0 . Then v � q̂0
and v · q̄ � (q̂0)2.

4 Asymptotic Growth

In this section we use the fact that ∗√Pq is a suffix code to estimate the exponen-
tial growth of the family

(|Qq ∩ Xn|)
n∈IN

. In view of the identity Qq\{e} = P ∗
q ·q

we have |Qq ∩ Xn+|q|| = |P ∗
q ∩ Xn|. So we may use P ∗

q instead of Qq.
First we mention that ∗√Pq is a suffix code. This generalises Proposition 7

of [7].

Proposition 4 [8,12]. ∗√Pq is a suffix code.

In order to derive the announced exponential growth we refer to Corollary 4 of
[11] which shows that for every regular language L ⊆ X∗ there are constants
c1, c2 > 0 and a λ ≥ 1 such that

c1 · λn ≤i.o. |L∗ ∩ Xn| ≤ c2 · λn . (7)

In the remainder of this section we use, without explicit reference, known
results from the theory of formal power series, in particular about generating
functions of languages and codes which can be found in the literature, e.g. in
[2,3] or [9].

As P ∗
q is a regular language the value λq for L = Pq in Eq. (7) is λq =

lim supn→∞ n

√
|P ∗

q ∩ Xn| which is the inverse of the convergence radius of the

On the Generative Power of Quasiperiods 223

power series s∗
q(t) :=

∑
n∈IN |P ∗

q ∩ Xn| · tn. The series s∗
q is also known as the

structure generating function of the language P ∗
q .

Since ∗√Pq is a code, we have s∗
q(t) = 1

1−sq(t)
where sq(t) :=

∑
v∈ ∗√Pq

t|v|

is the structure generating function of the finite language ∗√Pq. Thus λ−1
q is

the smallest root of 1 − sq(t). Hence λq is the largest root of the polynomial
pq(t) := t|q| − ∑

v∈ ∗√Pq
t|q|−|v|.

Summarising our observations we obtain the following.

Lemma 3. Let q ∈ X∗\{e}. Then there are constants cq,1, cq,2 > 0 such that

cq,1 · λn
q ≤i.o. |P ∗

q ∩ Xn| ≤ cq,2 · λn
q

where λq is the largest (positive) root of the polynomial pq(t).

5 Polynomials

Before proceeding to the proof of our main theorem we derive some properties
of polynomials of the form p(t) = tn − ∑

i∈M ti,M ⊆ {i : i ∈ IN ∧ i < n}. We
are mainly interested in results which are useful for comparing their maximal
roots.

The polynomials p(t) ∈ P̂ :=
{
tn − ∑

i∈M ti : ∅ �= M ⊆ {0, . . . , n − 1}} have
the following easily verified properties.

p(0) ≤ 0, p(1) ≤ 0, p(2) ≥ 1 and p(t) < 0 for 0 < t < 1 . (8)

If ε > 0 and p(t′) ≥ 0 for some t′ > 0 then p
(
(1 + ε) · t′

)
> 0 . (9)

Since p(1) ≤ 0 and p(2) ≥ 1 for p(t) ∈ P̂, Eq. (9) shows that once p(t′) ≥ 0, t′ ≥
1, the polynomial p(t) has no further root in the interval (t′,∞) and p(t) ∈ P̂
has exactly one root in the interval [1, 2). This yields the following fundamental
property.

Property 1. If t0 is the positive root of the polynomial p(t) ∈ P̂ in [1, 2) and
1 ≤ t′ < 2 then p(t′) ≤ 0 if and only if t′ ≤ t0.

For the roots of maximal modulus we have the following theorem.

Theorem 2 (Cauchy). Let p(t) =
∑n

i=0 ai · ti be a complex polynomial. Then
every root t′ of p(t) satisfies |t′| ≤ t0 where t0 is the maximal root of the polyno-
mial |an| · tn − ∑n−1

i=0 |ai| · ti.
This implies the following property of polynomials p(t) ∈ P̂.

If p(t) = 0 then |t| ≤ t0 . (10)

From Property 1 we derive the following criterion to compare the maximal roots
of polynomials in P̂.

224 L. Staiger

Criterion 1. Let p1(t), p2(t) ∈ P̂ have maximal roots t1 and t2, respectively.
Then p2(t1) > 0 if and only if t1 > t2. In particular, p2(t1) > 0 implies t1 > t2.

We conclude this section with a bound on the maximal root of certain polyno-
mials in P̂.

Lemma 4. Let p(t) = tn − ∑m
i=0 ti, n > m ≥ 1. Then p(t) < 0 for 1 ≤ t ≤

2n−m
√

(m + 1)2 and p(t) > 0 for n−m
√

m + 1 ≤ t.

Proof. The assertion follows from the inequality tn − (m + 1) · tm < p(t) <
tn − (m + 1) · tm/2 when t > 1. The first part holds for t > 1, and the second
uses the arithmetic-geometric-means inequality

∑m
i=0 ti > (m+1)· m+1

√∏m
i=0 ti =

(m + 1) · tm/2.

The following special case is needed below.

Corollary 4. If p(t) = tn − ∑n−3
i=0 ti, n ≥ 4, then p(t) < 0 for 1 ≤ t ≤

n+3
√

(n − 2)2.

The subsequent sections are devoted to the proof of our main theorem.

6 Irreducible Quasiperiods

We start with irreducible quasiperiods. As quasiperiods q, |q| ≤ 2, have triv-
ially P ∗

q = {q}∗, in the subsequent sections. we confine our considerations to
quasiperiods q of length |q| ≥ 3.

6.1 Extremal Polynomials

The polynomials pq(t) of irreducible quasiperiods have non-zero coefficients only
for |q| and i < |q|

2 . Therefore we investigate the set

P :=
{
tn − ∑

i∈M ti : n ≥ 1 ∧ ∅ �= M ⊆ {j : j ≤ n−1
2 }}

.

Let pn(t) := tn − ∑	n−1
2

i=0 ti ∈ P.

Property 2. Let p(t) ∈ P a polynomial of degree n. Then pn(t) ≤ p(t) for t ∈
[1, 2], and pn(t) has the largest positive root among all polynomials of degree n
in P.

Proof. This follows from tn − ∑	n−1
2

i=0 ti ≤ p(t) for p(t) ∈ P when 1 < t ≤ 2 and
Criterion 1.

Observe that, for n ≥ 1,

p2n+1(t) = t2n+1 − ∑n
i=0 ti and p2n+2(t) = t2n+2 − ∑n

i=0 ti .

Moreover, anban and anwan, w ∈ {xb, bx}, x ∈ X are quasiperiods corresponding
to the extremal polynomials p2n+1(t) ∈ P and p2n+2(t) ∈ P, respectively.

Let Qmax := {anban : n ≥ 1} ∪ {anwan : w ∈ X · b ∪ b · X,n ≥ 1}.
In what follows we will always assume that the first letter of a quasiperiod

q is a. Then Qmax is the set of quasiperiods corresponding to the extremal
polynomials.

On the Generative Power of Quasiperiods 225

Lemma 5. Qmax := {q : q ∈ X∗ ∧ |q| ≥ 3 ∧ pq(t) = p|q|(t)}

Proof. If q ∈ Qmax then obviously pq(t) = p|q|(t). Conversely, if pq(t) = t|q| −
∑

v∈ ∗√Pq
t|q|−|v| = p|q|(t) then ∗

√
Pq = {v : v 	 q ∧ |v| > |q|

2 }. Then, in view

of q 	 v · q, every prefix w 	 q of length |w| < |q|
2 is also a suffix of q. This is

possible only for q ∈ Qmax or q ∈ {a}∗.

In the sequel the positive root of pn(t) is denoted by λn. From Criterion 1 we
obtain immediately.

Criterion 2. Let t ≥ 1. We have t < λn if and only if pn(t) < 0.

Then Property 2 implies the following.

Theorem 3. If q ∈ X∗, |q| ≥ 3, is an irreducible quasiperiod then λq lambda|q|,
and λq = λ|q| if and only if q ∈ Qmax.

6.2 The Ordering of the Maximal Roots λn

Before we proceed to the case of reducible quasiperiods we determine the ordering
of the maximal roots λn. This will not only be interesting for itself but also useful
for proving λq < λ|q| when q is reducible (see Eq. (21) below).

The extremal polynomials pn(t) satisfy the following general relations.3

t · p2n−2(t) − 1 = p2n−1(t) , (11)
p2n(t) − t2 · p2n−2(t) = tn − t − 1, (12)

tn−2 · p2n+1(t) − (tn + 1) · p2n−1(t) =
∑n−3

i=0 ti, and (13)

tn−2 · p2n+3(t) − (tn+1 + 1) · p2n(t) = −tn +
∑n−3

i=0 ti (14)

Lemma 6. The polynomials t3 − t − 1 and t5 − t2 − t − 1 = (t2 + 1)·(t3 − t − 1)
have largest positive roots λ3 = λ5 among all polynomials in P, λ5 > λ4 and
λ2n−1 > λ2n+1 > λ2n for n ≥ 3.

Proof. From Eq. (11) we have p2n+1(λ2n) = −1 < 0 and, therefore, λ2n < λ2n+1

when n ≥ 1.
Similarly, Eq. (13) yields p2n+1(λ2n−1) = λ

−(n−2)
2n−1 · ∑n−3

i=0 λi
2n−1 > 0 which

implies λ2n+1 < λ2n−1 for n ≥ 3 and λ3 = λ5 when n = 2.

So far we have ordered the ‘odd’ roots: λ3 = λ5 > λ7 > λ9 > · · · . Next we are
going to investigate the ordering of the ‘even’ roots λ2n, n ≥ 2.

To this end we derive the following bounds.

Lemma 7. 1. 3n+1
√

n2 ≤ λ2n ≤ n+1
√

n and 3n−1
√

n2 ≤ λ2n−1 ≤ n
√

n for n ≥ 2.
2. Let n ≥ 5. Then λ2n ≥ n−1

√
2.

3 By convention,
∑m

i=k ai = 0 if k > m.

226 L. Staiger

Proof. 1. follows from Lemma 4.
2. We calculate p2n(n−1

√
2) = 4 · n−1

√
4 − ∑n−1

i=0
n−1

√
2i ≤ 4 · 4

√
4 − (2 + (n −

1)) = 4 · √2 − (n + 1) < 0 if n ≥ 5 and the assertion follows with Property 1.

Remark 1. The lower bound of Lemma 7.2 does not exceed the lower bound
in Lemma 7.1. However, the latter is more convenient for the purposes of the
subsequent Lemma 8.

Lemma 8. If n ≥ 5 then λ2n−2 > λ2n and λ2n > λ2n+3.

Proof. If t ≥ n−1
√

2 then tn − t − 1 ≥ t − 1 > 0. Consequently, Eq. (12) implies
p2n(λ2n−2) > 0 whence λ2n < λ2n−2.

Equation (14), Corollary 4 and the inequality λ2n ≤ n+1
√

n ≤ n+3
√

(n − 2)2

when n ≥ 5 imply λ2n · p2n+3(λ2n) = −(λn
2n − ∑n−3

i=0 λi
2n) > 0 whence λ2n >

λ2n+3 for n ≥ 5.

Since p8(
3
√

2) > 0, the proof of Lemma 8 cannot be applied to lower values of
n. Thus it remains to establish the order of the λi for i ≤ 13. To this end, we
consider some special identities and use Criterion 2 and Lemma 8.

p12(t) − (t8 + t5 + t4 + t2 + t) · p4(t) = t2 − 1 and (15)
p13(t) − t · (t8 + t5 + t4 + t2 + t) · p4(t) = t3 − t − 1 = p3(t) . (16)

Lemma 9. λ8 > λ10 > λ13 > λ4 > λ12

Proof. Lemma 8 shows λ8 > λ10 > λ13. Equation (15) yields p12(λ4) = λ2
4−1 > 0

whence λ4 > λ12, and Eq. (16) yields p13(λ4) = p3(λ4) < 0, that is λ13 > λ4.
This shows our assertion.

For the remaining part we consider the identities

t2 · p11(t) − (t5 + 1) · p8(t) = −t4 + t + 1 = −p4(t) (17)
p11(t) − (t5 + 1) · p6(t) = t3 · p4(t) and (18)

t · p9(t) − (t4 + 1) · p6(t) = −t3 + 1 . (19)

Lemma 10. λ9 > λ6 > λ11 > λ8

Proof. We use Eqs. (17) to (19). Then p11(λ8) = −p4(λ8) < 0 implies λ11 > λ8,
p11(λ6) = λ3

6 · p4(λ6) > 0 implies λ6 > λ11, and, finally, λ6 · p9(λ6) = −λ3
6 + 1

implies λ9 > λ6.

Now Lemmata 6, 8, 9 and 10 yield the complete ordering of the values λn.
Theorem 4. Let λn, n ≥ 3, be the maximal root of the polynomial pn(t). Then
the overall ordering of the values λn starts with

λ3 = λ5 > λ7 > λ9 > λ6 > λ11 > λ8 > λ10 > λ13 > λ4 > λ12

and continues as follows λ2n+1 > λ2n > λ2n+3, n ≥ 7.
From Lemma 7.1 we obtain immediately.

Corollary 5. Let M ⊆ IN\{0, 1, 2} be infinite. Then inf{λi : i ∈ M} = 1.

On the Generative Power of Quasiperiods 227

7 Reducible Quasiperiods

Reducible quasiperiods q have a repeated prefix q0 = min� Pq with |q0| ≤ |q|/2
and a repetition factor k ≥ 2 such that q = qk

0 · q̄ where q̄ � q0. Moreover
|q̄| < |q0| ≤ |q|/2. Observe that q0 is primitive.

We shall consider three cases depending on the relation between the lengths
n = |q|, � = |q0|, the length of the suffix |q̄| < |q0| and the repetition factor
k ≥ 2.

7.1 The Case |q̄| + |q0| ≤ 2

The case |q̄| + |q0| ≤ 2 is the simplest one. Here, in view of q̄ � q0 we have
necessarily q̄ = e and q ∈ a∗ ∪ {ab}∗, a, b ∈ X, a �= b and, therefore, λq = 1 for
q ∈ a∗ ∪ {ab}∗.

The remaining cases are divided according to the additional requirement
|q| − 2|q0| ≥ 3 and its complementary one |q| − 2|q0| ≤ 2.

7.2 The Case |q| − 2|q0| ≥ 3 ∧ |q̄| + |q0| ≥ 3

Under the restricting condition |q̄| < |q0| this is equivalent to the fact that
|q̄| ≥ 3 or the repetition factor k ≥ 3. Moreover, then |q| = 7 (where q = (ab)3a)
or |q| ≥ 9.

From Eq. (4) we have

∗√Pq ⊆ {q0} ∪ {v : v 	 q ∧ |v| > |q| − |q0|} (20)

This implies that for |q0| ≤ |q|/2 the polynomials pq(t) have non-zero coefficients
only for |q| = n, |q| − |q0| = n − � and i < |q0|., that is, are of the form
pq(t) = tn − tn−� − ∑

i∈Mq
ti where Mq ⊆ {i : i < �}.4 Therefore, in the sequel

we consider the positive roots of polynomials in

Pred :=
{
tn − tn−� −

∑

i∈M

ti : n ≥ 1 ∧ � ≤ n

2
∧ M ⊆ {i : i < �}}

Let pn,�(t) := tn − tn−� − ∑�−1
i=0 ti ∈ Pred and λn,� be its maximal root. Similar

to the Property 2, Criterion 2 and Theorem 3 we have the following.

Property 3. Let n ≥ 3, � ≤ n
2 and p(t) ∈ Pred. Then p(t) ≥ pn,�(t) for t ∈ [1, 2],

and pn,�(t) has the largest positive root among all polynomials of degree n and
parameter � in Pred.

Lemma 11. If q, |q| = n, is a quasiperiod with |q0| = � ≤ n/2 then pq(t) ≥
pn,�(t) for t ≥ 1, in particular, λq ≤ λn,�.

4 Eq. (4) shows that even Mq ⊆ {i : i < � − 1}. For the Eq. (21) below this stronger
version is not needed.

228 L. Staiger

We have the following relation between the polynomials pn(t) and pn,�(t).

pn(t) − t� · pn−2�(t) = pn,�(t), for n − 2� ≥ 3 (21)

This yields

Corollary 6. Let n − 2 · � ≥ 3. If λn < λn−2� then λn,� < λn.

Proof. If λn < λn−2� then pn−2�(λn) < pn−2�(λn−2�) = 0. Thus pn,�(λn) =
λ�

n · pn−2�(λn) > 0, that is, λn > λn,�.

Next we show the relation λq < λ|q| for all quasiperiods q having |q0| ≤ |q|/2
and |q0| + |q̄| ≥ 3.

Lemma 12. Let |q| − 2|q0| ≥ 3 and |q0| + |q̄| ≥ 3. Then λq < λ|q|.

Proof. Above we have shown that |q| − 2|q0| ≥ 3 and |q0| + |q̄| ≥ 3 imply |q| ≥ 7
or |q| ≥ 10 according to whether |q| is odd or even.

The ordering of Theorem 4 and Corollary 6 show λn > λn,� for all odd values
n ≥ 7 and for all even values n ≥ 12.

It remains to consider the exceptional case when |q| = 10. Here |q|−2|q0| ≥ 3
and |q0| + |q̄| ≥ 3 imply |q0| = 3. Then Eq. (4) shows ∗√Pq = {q0, q} whence
pq(t) = t10 − t7 − 1 = p10(t) − t2 · p5(t).

From λ5 > λ10 and p10(λ10) = 0 we have pq(λ10) = −λ2
10 · p5(λ10) > 0, that

is, λq < λ10.

Remark 2. In the exceptional case when n = 10 and � = 3 we have indeed
λ10,3 > λ10. This follows from p10(t) − p10,3(t) = t3 · p4(t) and λ4 < λ10.

This shows also that, in contrast to Property 2, not for every polynomial
pn,�(t) there is a quasiperiod q such that pq(t) = pn,�(t).

7.3 The Case |q| − 2|q0| ≤ 2 ∧ |q0| + |q̄| ≥ 3

This amounts to |q| = 2 · |q0| + |q̄| where |q̄| ∈ {0, 1, 2}.
Here we have to go into more detail and to take into consideration also the

reduced quasiperiod q̂ = q0 · q̄ of q and its repeated prefix q̂0 = min� Pq̂. Observe
that both repeated prefixes q0, q̂0 are primitive.

Taking into consideration the repeated prefix q̂0, for q = qk
0 · q̄, k ≥ 2, we have

from Eqs. (5) and (6)

pq(t) ∈ {
t|q| − t|q|−|q0| − ∑

i∈M ti : M ⊆ {0, . . . , |q̂| − |q̂0|}
}

.

Observe that |q̂| − |q̂0| = |q0| − (|q̂0| − |q̄|) < |q0|.
Let P ′

red :=
{
tn − t� − ∑

i∈M ti : n > � > j ∧ M ⊆ {0, . . . , � − j}} and
pn,�,j(t) = tn − t� − ∑�−j

i=0 ti. Then similar to Property 3 and Lemma 11 we have

Property 4. Let n, � ≥ 3, � ≤ n
2 , � > j, and p(t) ∈ P ′

red. Then p(t) ≥ pn,�,j(t)
for t ∈ [1, 2], and pn,�,j(t) has the largest positive root among all polynomials of
degree n and parameters � and j in P ′

red.

On the Generative Power of Quasiperiods 229

Lemma 13. If q, |q| = n, is a quasiperiod with |q0| = � ≤ n/2 and |q̂0| − |q̄| ≥ j
then pq(t) ≥ pn,�,j(t) for t ≥ 1, in particular, λq ≤ λn,�,j.

We consider the cases |q̄| ∈ {0, 1, 2} separately.

The Case q = q2
0 ∧ |q̄| = 0. In view of Sect. 7.1 we may consider only the case

when |q0| ≥ 3. Here we have the following relation between p2�(t) and p2�,�,3(t).

p2�(t) − p2�,�,3(t) = t�−2(t2 − t − 1) (22)

Lemma 14. If q = q20 and |q0| = � ≥ 3 then λq < λ|q|.

Proof. First we suppose |q̂0| ≥ 3. Then |q̂0| − |q̄| ≥ 3 and Property 4 and
Lemma 13 yield pq(t) ≥ p2�,�,3(t) for t ∈ [1, 2]. Now Eq. (22) shows pq(λ2�) ≥
p2�,�,3(λ2�) = −λ�−2

2� (λ2
2� − λ2� − 1). Since t2 − t − 1 < 0 and pq(t) ≥ p2�,�,3(t)

for 1 ≤ t ≤ λ3 = max{λn : n ∈ IN} and λ2� < λ3, it follows pq(λ2�) > 0, that is
λq < λ2�.

It remains to consider 1 ≤ |q̂0| ≤ 2. If q̂0 ∈ a∗ then q0 = a� which is not
primitive. Thus q̂0 = ab and, since q0 is primitive, q0 = (ab)ma, m ≥ 1, and
q = q20 = (ab)ma · (ab)ma. We obtain ∗√Pq = {(ab)ma · (ab)i : i = 0, . . . ,m} and,
consequently, pq(t) = t4m+2 − ∑m

i=0 t2i+1. From pq(t) = t4m+2 − ∑m
i=0 t2i+1 ≥

p4m+2(t) − t2m−2(t3 − t2 − 1) and t3 − t2 − 1 < 0 for 1 < t ≤ λ3, in the same
way as above, we obtain pq(λ4m+2) > 0.

The Case q = q2
0 · q̄ ∧ |q̄| = 1. Here we have the following relation between

p2�+1(t) and p2�+1,�,2(t).

p2�+1(t) − p2�+1,�,2(t) = t�−1(t2 − t − 1) (23)

Lemma 15. If q = q20 · a, a ∈ X, then λq < λ|q|.

Proof. First we suppose |q̂0| − |q̄| ≥ 2. Then � = |q0| ≥ |q̂0| ≥ 3, and Property 4
and Eq. (23) yield pq(λ2�+1) ≥ p2�+1,�,2(λ2�+1) = p2�+1(λ2�+1) − λ�−1

2�+1(λ
2
2�+1 −

λ2�+1 − 1).
Since t2 − t − 1 < 0 and pq(t) ≥ p2�+1,�,2(t) for 1 < t ≤ λ3 and λ2�+1 < λ3,

it follows pq(λ2�+1) > 0, that is λq < λ2�+1.
It remains to consider |q̂0| = 2. Then Lemma 2 implies q̂0 = q0 whence

q = ababa. Now, one easily verifies λababa < λ5 = λ3

The Case q = q2
0 · q̄ ∧ |q̄| = 2. Here we have the following relation between

p2�+2(t) and p2�+2,�,2(t).

p2�+2(t) − p2�+2,�,2(t) = t�−1(t3 − t − 1) (24)

230 L. Staiger

Lemma 16. If q = q20 · q̄ with |q̄| = 2 then λq < λ|q|.

Proof. First we suppose |q̂0| ≥ 4. Then Property 4 and Eq. (24) yield
p2�+2(λ2�+2) − pq(λ2�+2) ≤ p2�+2(λ2�+2) − p2�+2,�,2(λ2�+2) = λ�−1

2�+2(λ
3
2�+2 −

λ2�+2 − 1).
Since t3−t−1 < 0 and pq(t) ≥ p2�+2,�,2(t) for 1 < t ≤ max{λ2n : n ∈ IN} < λ3

and λ2�+2 < λ3, it follows pq(λ2�+2) > 0, that is, λq < λ2�+2.
It remains to consider |q̂0| = 3. Again, Lemma 2 implies q̂0 = q0. Then

|q0| = 3 and |q| = 8, and Eq. (4) yields ∗√Pq ⊆ {q0, v, q} where v � q and
|v| = |q| − 1 = 7 whence pq(t) ≥ t8 − t5 − t − 1 = p8(t) − t2 · p3(t) for 1 ≤ t ≤ λ3.

This shows pq(λ8) ≥ −λ2
8 · p3(λ8) > 0, that is, λq < λ8.

Our main theorem then follows from Theorem 3 and the results of Sect. 7.

Theorem 5. If q ∈ X∗, |q| ≥ 3, is a quasiperiod then λq ≤ λ|q|, and λq = λ|q|
if and only if q ∈ Qmax.

References

1. Apostolico, A., Farach, M., Iliopoulos, C.S.: Optimal superprimitivity testing for
strings. Inf. Process. Lett. 39(1), 17–20 (1991). https://doi.org/10.1016/0020-
0190(91)90056-N

2. Berstel, J., Perrin, D.: Theory of Codes. Academic Press, Orlando (1985)
3. Berstel, J., Reutenauer, C.: Rational Series and Their Languages, EATCS Mono-

graphs on Theoretical Computer Science, vol. 12. Springer, Berlin (1988)
4. Brzozowski, J.A.: Roots of star events. J. ACM 14(3), 466–477 (1967). https://

doi.org/10.1145/321406.321409
5. Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proc. Am. Math.

Soc. 16, 109–114 (1965)
6. Lothaire, M.: Combinatorics on Words, 2nd edn. Cambridge University Press,

Cambridge (1997)
7. Mouchard, L.: Normal forms of quasiperiodic strings. Theor. Comput. Sci. 249(2),

313–324 (2000). https://doi.org/10.1016/S0304-3975(00)00065-7
8. Polley, R., Staiger, L.: The maximal subword complexity of quasiperiodic infinite

words. In: McQuillan, I., Pighizzini, G. (eds.) Proceedings 12th DCFS, Electronic
Proceedings in Theoretical Computer Science (EPTCS), vol. 31, pp. 169–176. Open
Publishing Association (2010)

9. Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series.
Springer, New York (1978). https://doi.org/10.1007/978-1-4612-6264-0

10. Shyr, H.J.: Free Monoids and Languages, 3rd edn. Hon Min Book Company,
Taichung (2001)

11. Staiger, L.: The entropy of finite-state ω-languages. Probl. Control Inform. The-
ory/Problemy Upravlen. Teor. Inform. 14(5), 383–392 (1985)

12. Staiger, L.: Quasiperiods of infinite words. In: Bellow, A., Calude, C.S., Zamfirescu,
T. (eds.) Mathematics Almost Everywhere. In Memory of Solomon Marcus, pp.
17–36. World Scientific, Hackensack (2018)

https://doi.org/10.1016/0020-0190(91)90056-N
https://doi.org/10.1016/0020-0190(91)90056-N
https://doi.org/10.1145/321406.321409
https://doi.org/10.1145/321406.321409
https://doi.org/10.1016/S0304-3975(00)00065-7
https://doi.org/10.1007/978-1-4612-6264-0

Insertion-Deletion with Substitutions II

Martin Vu1(B) and Henning Fernau2(B)

1 FB3 - Informatik, Universität Bremen, Bremen, Germany
martin.vu@uni-bremen.de

2 Universität Trier, Fachber. 4 – Abteilung Informatikwissenschaften,
54286 Trier, Germany
fernau@uni-trier.de

Abstract. We discuss substitutions as a further type of operations,
added to (in particular, one-sided) insertion-deletion systems. This way,
we obtain new characterizations of classes of context-sensitive and recur-
sively enumerable languages. Moreover, we obtain new families of lan-
guages containing all regular or contained in the context-free languages.

Keywords: Computational completeness · Context-sensitive ·
Insertions · Deletions · Substitutions

1 Introduction

Insertion-deletion systems, or ins-del systems for short, are well established as
computational devices and as a research topic within Formal Languages through-
out the past decades, starting with the works of Haussler and Kari [3,4].

However, from its very beginning, papers highlighting the potential use of
such systems in modelling DNA computing also discussed the replacement of
single letters (possibly within some context) by other letters, an operation called
substitution in [2,5]. Interestingly, all theoretical studies on grammatical mech-
anisms involving insertions and deletions omitted including the substitution
operation in their studies. We are stepping into this gap by studying ins-del
systems with substitutions, or ins-del-sub systems for short. Omitted proofs are
marked with a star (∗). We also refer to the master thesis [14] and the companion
paper [15] for proofs and further results.

2 Basic Definitions and Observations

Definitions. We assume the reader to be familiar with the basics of formal
language theory. Contrasting their traditional exposition, we are now describing
insertion-deletion-substitution systems, or ins-del-sub systems for short, in terms
of the better known category of rewriting systems. Let u, x, y, v ∈ V ∗. Then,
uv → uyv is called an insertion, uxv → uv is called a deletion, and uxv → uyv
is called a substitution if |x| = |y| = 1. More traditionally, these types of rules
are written as (u, y, v)ins, (u, x, v)del, or (u, x → y, v), respectively, omitting
c© Springer Nature Switzerland AG 2020
G. Jirásková and G. Pighizzini (Eds.): DCFS 2020, LNCS 12442, pp. 231–243, 2020.
https://doi.org/10.1007/978-3-030-62536-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62536-8_19&domain=pdf
http://orcid.org/0000-0002-4444-3220
https://doi.org/10.1007/978-3-030-62536-8_19

232 M. Vu and H. Fernau

the subscripts ins or del if clear from the context. Formally, we define an ins-
del-sub system to be a sixtuple IDς = (V, T,A, I,D, S), where V , T ⊆ V are
alphabets, A ⊆ V ∗ is a finite set of axioms, and I, D and S are finite sets
of insertion, deletion and substitution rules, respectively. If S = ∅, we face an
insertion-deletion system, or ins-del system for short. The system IDς defines
the relation =̂⇒ ⊆ V ∗ × V ∗ by w =̂⇒w′ iff w = w1uxvw2, w′ = w1uyvw2, and
uxv → uyv ∈ I ∪ D ∪ S. We define the closures =̂⇒∗ and =̂⇒+ as usual. The
language generated by the ins-del-sub system IDς is defined as L(IDς) = {w ∈
T ∗ | α =̂⇒∗ w, α ∈ A}. For clarity, we write =⇒ ⊆ V ∗ × V ∗ for the one-step
derivation relation of an ins-del system. The size of IDς , defined by the tuple
(n,m,m′; , q, q′; r, r′), describes its descriptional complexity, where

n = max{|y| | (u, y, v) ∈ I}, p = max{|x| | (u, x, v) ∈ D},
m = max{|u| | (u, y, v) ∈ I}, q = max{|u| | (u, x, v) ∈ D},
m′ = max{|v| | (u, y, v) ∈ I}, q′ = max{|v| | (u, x, v) ∈ D},

r = max{|u| | (u, x → y, v) ∈ S}, r′ = max{|v| | (u, x → y, v) ∈ S}.

Especially, the size of an ins-del system can be described by the tuple
(n,m,m′; p, q, q′). By INSm,m′

n DELq,q′
p we denote the family of all ins-del sys-

tems of size (n,m,m′; p, q, q′) [1,13]. Depending on the context, we also denote
the family of languages characterized by ins-del systems of size (n,m,m′; p, q, q′)
by INSm,m′

n DELq,q′
p . We call a family INS0,0

n DEL0,0
p a family of context-free

ins-del systems, while we call a family INSm,m′
n DELq,q′

p with (m + m′ > 0 ∧
mm′ = 0) or (q + q′ > 0 ∧ qq′ = 0) a family of one-sided ins-del systems.
INSm,m′

n DELq,q′
p SUBr,r′

refers to a similar convention for ins-del-sub systems.

Example 1 (An insertion-deletion system with substitution rules).
Consider the system IDς = (V, T, A, I, D, S) with V = T = {a, b, c, d}, A = {acd}, I =
{(c, c, λ), (c, b, λ), (a, d, λ), (a, a, λ)}, D = ∅, S = {(λ, a → b, λ)}. Example derivation:

acd =⇒5
(a,a,λ)ins aaaaaacd =⇒2

(c,b,λ)ins aaaaaacbbd =⇒6
(λ,a→b,λ)sub

bbbbbbcbbd.

The language generated by IDς is L(IDς) = (a|b)(a|b|d)∗c(c|b)∗d.

Let us define the term resolve. Let IDς = (V, T,A, I,D, S) be an ins-del-sub
system. We say that a nonterminal X ∈ V \T of IDς is resolved if X is either
deleted or substituted. Clearly, in any terminal derivation of IDς , all nonter-
minals must be resolved at some point of the derivation. Nonterminal X may
be resolved by being substituted with a nonterminal Y , which in turn must be
resolved.

Results. Now, we are ready to survey old and new results in this area. Ins-del
systems have been extensively studied regarding the question if they can describe
all of the recursively enumerable languages. Let us summarize first computational
completeness results by listing the classes of languages known to be equal to RE:
INS1,1

1 DEL1,1
1 [12], INS0,0

3 DEL0,0
2 and INS0,0

2 DEL0,0
3 [8], INS1,1

1 DEL0,0
2 [10, Theo-

rem 6.3], INS0,0
2 DEL1,1

1 [6], INS0,1
2 DEL0,0

2 and INS1,2
1 DEL1,0

1 [9], INS1,0
1 DEL1,2

1 [6].

Insertion-Deletion with Substitutions II 233

By way of contrast, the following language families are known not to be equal
to RE, the first one is even a subset of CF: INS0,0

2 DEL0,0
2 [13], INS1,1

1 DEL1,0
1 [9],

INS1,0
1 DEL1,1

1 [6], INS1,0
1 DEL0,0

2 and INS0,0
2 DEL1,0

1 [7].
In this paper, we put special emphasis on extending one-sided ins-del systems

with substitutions, because we can conclude that INSm,m′
1 DELq,q′

1 SUB1,1 = RE
for any m,m′, q, q′ ≥ 0 from our findings on extending context-free ins-del sys-
tems with substitutions, which we collected in the companion paper [15]; these
results are also contained in [14]. Further computationally complete classes are:

– INS1,0
1 DEL1,0

1 SUB0,1, INS0,1
1 DEL0,1

1 SUB1,0,

– INS1,1
1 DEL1,0

1 SUB1,0, INS1,1
1 DEL0,1

1 SUB0,1,
– INS1,0

1 DEL0,0
2 SUB0,1, INS0,1

1 DEL0,0
2 SUB1,0.

INS0,1
1 DEL1,1

1 SUB0,0 is not computationally complete, as it cannot even
describe all regular languages. Moreover, INS1,0

1 DEL0,0
0 SUB0,1 is a proper super-

class of REG and a sub-class of CS, while INS1,0
1 DEL0,0

1 SUB0,0, which equals
INS1,0

1 DEL0,0
0 SUB0,0, is a proper sub-class of CF.

Normal Forms. As in the case of ins-del systems without substitution rules [1],
we define a normal form for ins-del-sub systems. An ins-del-sub system

IDς = (V ∪ {$}, T, A, I,D ∪ {(λ, $, λ)}, S)

of size (n,m,m′; p, q, q′; r, r′) is said to be in normal form if

– for any (u, a, v) ∈ I, it holds that |a| = n, |u| = m and |v| = m′;
– for any (u, a, v) ∈ D, it holds that |a| = p, |u| = q and |v| = q′;
– for any (u, a → b, v) ∈ S, it holds that |u| = r and |v| = r′.

Theorem 1. (∗) For every ins-del-sub system IDς of size (n,m,m′; p, q,
q′; r, r′), there is an equivalent ins-del-sub system ID′

ς of the same size in normal
form.

Further Observations. In the following, R denotes the reversal (mirror) operator.

Lemma 1. L ∈ INSm,m′
n DELq,q′

p SUBr,r′
iff LR ∈ INSm′,m

n DELq′,q
p SUBr′,r.

Lemma 2. Let L be a family of languages that is closed under reversal. Then:

1. L ⊆ INSm,m′
n DELq,q′

p SUBr,r′
iff L ⊆ INSm′,m

n DELq′,q
p SUBr′,r.

2. INSm,m′
n DELq,q′

p SUBr,r′ ⊆ L iff INSm′,m
n DELq′,q

p SUBr′,r ⊆ L.

Due to the definition of ins-del-sub systems, the following result is clear.

Lemma 3. INSm,m′
n DELq,q′

p ⊆ INSm,m′
n DELq,q′

p SUBr,r′
.

234 M. Vu and H. Fernau

Whether this inclusion is proper is the question that will be addressed in
the following sections. We will see that while in some cases an arbitrary
system of size (n,m,m′; p, q, q′, r, r′) can be simulated by a system of size
(n,m,m′; p, q, q′), this is not the general case. Furthermore, we will see that
families INSm,m′

n DELq,q′
p , which are not computationally complete, may reach

computational completeness via an extension with substitution rules. Addition-
ally, we will see below that families of ins-del systems which are equally pow-
erful may no longer be after being extended with the same class of substitu-
tion rules, i.e., we have INSm1,m′

1
n1

DELq1,q′
1

p1
= INSm2,m′

2
n2

DELq2,q′
2

p2
, but possibly

INSm1,m′
1

n1
DELq1,q′

1
p1

SUBr,r′ ⊂ INSm2,m′
2

n2
DELq2,q′

2
p2

SUBr,r′
. The reverse case, i.e.,

not equally powerful families becoming equally powerful after being extended
with substitution, might occur, as well.

As the insertion rule (u, x, v) corresponds to the monotone rewriting rule
uv → uav and similarly, substitution rules are monotone, a monotone grammar
can simulate derivations of an insertion-substitution system. (More technically
speaking, we have to do the replacements on the level of pseudo-terminals Na

for each terminal a and also add rules Na → a, all minor details.) Hence, we can
conclude:

Theorem 2. For any integers m,m′, n, r, r′ ≥ 0, INSm,m′
n DEL0,0

0 SUBr,r′ ⊆ CS.

3 Main Results

We will focus on non-context-free ins-del systems, which are extended with sub-
stitution rules. We will discuss the computational power of various one-sided
ins-del systems extended with substitution rules. In particular, we are inter-
ested in one-sided ins-del systems which are not computationally complete and
wish to answer whether extending those systems with substitution rules yields
a computationally complete system. Furthermore, we wish to answer whether
an extension with context-free or one-sided substitution rules is sufficient for
reaching computational completeness.

Remark 1. Notice that only context-free or one-sided substitution rules are of
interest here, as we have shown the equality INS0,0

1 DEL0,0
1 SUB1,1 = RE in

the companion paper [15]. Hence, INSm,m′
1 DELq,q′

1 SUB1,1 = RE holds for any
m,m′, q, q′. Additionally, we have shown that INS0,0

1 DEL0,0
0 SUB1,1 = CS holds.

Therefore, CS = INS0,0
1 DEL0,0

0 SUB1,1 ⊆ INSm,m′
1 DEL0,0

0 SUB1,1 holds for any
m,m′. By Theorem 2, all these classes even characterize CS.

3.1 Extension with Context-Free Substitution

In this subsection, we wish to answer the question whether, given a system IDς

with substitution rules of size (n,m,m′; p, q, q′; 0, 0) with (m + m′ > 0 ∧ mm′ =
0) or (q + q′ > 0 ∧ qq′ = 0), is there a system ID without substitution rules
of size (n,m,m′; p, q, q′), such that L(IDς) = L(ID) as in the case of context-
free ins-del systems extended with context-free substitution rules, as shown in

Insertion-Deletion with Substitutions II 235

the companion paper [15]. We will show that in general this is not the case,
considering the language generated by the system described in Example 1.

Lemma 4. The language L = (a|b)(a|b|d)∗c(c|b)∗d cannot be generated by an
ins-del system of size (1, 1, 0; 0, 0, 0).

Proof. Assume there is a system ID = (V ′, T, A′, I ′, ∅) of size (1, 1, 0; 0, 0, 0) such
that L(ID) = L. Then clearly V ′ = T , as there are no deletion rules. Further-
more, let γ = max{|α| | α ∈ A′}. As bndncbd ∈ L, n > γ, and L(ID) = L, there
is a derivation starting from some α ∈ A′, such that α =⇒∗ bndncbd. At some
point of the derivation, in order to form the substring dn, a rule adding a letter d
has to have been used, because n > γ. All possible insertion rules that could
have been used are (λ, d, λ), (b, d, λ) and (d, d, λ). Analyzing the language L, we
see that every word of the language includes at least one letter c which may
be followed by an arbitrary number of letters c and b. However, there is only
exactly one letter d appearing after the first c. Assuming that α =⇒∗ bndncbd
for some α ∈ A′, either of the rules (λ, d, λ), (b, d, λ) or (d, d, λ) would allow
w =⇒∗ bndncbd =⇒ bndncbdd with bndncbdd /∈ L, yielding a contradiction. �
Corollary 1. INS1,0

1 DEL0,0
0 ⊂ INS1,0

1 DEL0,0
0 SUB0,0.

We will now show that the language generated by an ins-del-sub system IDς

of size (1, 1, 0; 0, 0, 0; 0, 0) is included in CF.

Theorem 3. For every given ins-del-sub systems IDς of size (1, 1, 0; 0, 0, 0; 0, 0),
one can construct a context-free grammar G such that L(IDς) = L(G).

Proof. Let IDς be an arbitrary ins-del-sub system of size (1, 1, 0; 0, 0, 0; 0, 0) and
ID′

ς = (V ′, T ′, A′, I ′, {(λ, $, λ)}, S′) be the normal form of IDς . We define G =
({Na | a ∈ V ′}∪{S}, T, P, S). Without loss of generality, we assume S /∈ V ′. We
define the set of context-free rules as P = P1 ∪ P2 ∪ P3 ∪ P4 ∪ {N$ → λ}, with

P1 = {Na → NaNb | (a, b, λ) ∈ I ′}, P2 = {Na → Nb | (λ, a → b, λ) ∈ S′},
P3 = {Na → a | a ∈ T}, P4 = {S → Na1 . . . Nan

| a1 . . . an ∈ A}.

The basic idea is as follows. The axioms a1 . . . an ∈ A are simulated by context-
free rules S → Na1 . . . Nan

from P4. Every insertion rule (a, b, λ) corresponds to
a context-free rule Na → NaNb in P1 and vice versa. The same correspondence
exists between a substitution rule (λ, a → b, λ) and a context-free rule Na →
Nb in P2. Furthermore, the rule N$ → λ simulates the deletion rule (λ, $, λ).
Together with the rules from P3, they terminate the derivation of G. �

Interestingly, adding context-free deletion rules does not increase the power
of INS1,0

1 DEL0,0
0 SUB0,0. Namely, deletion rules can be simulated by substitution

rules, keeping in mind that the only purpose of symbols that are to be deleted
is to serve as context of insertion rules. Working out this idea leads to:

Theorem 4. (∗) INS1,0
1 DEL0,0

1 SUB0,0 = INS1,0
1 DEL0,0

0 SUB0,0.

236 M. Vu and H. Fernau

Let ID = (V, T, A, I, D) be an ins-del system of size (1, 1, 1; 1, 1, 1) in modified normal
form, i.e., there is a single context-free deletion rule (λ, X, λ) that is only applicable
to the first or last symbol of a sentential form, as discussed in [14]. Assume that all
rules of ID are bijectively labelled. Define IDς = (V ′, T, A, I ′, D′, S), with

V ′ = V ∪ {Xi | i is the label of a rule in I or D} ,

I ′ = {(u, Xi, λ) | i labels an insertion rule (u, a, v)} and

D′ = {(u, Xi, λ) | i labels a deletion rule (u, a, v) �= (λ, X, λ)} ∪ {(λ, X, λ)} .

The set of substitution rules is defined as S = S1 ∪ S2, with

S1 = {(λ, Xi → a, v) | i labels an insertion rule (u, a, v)} ,

S2 = {(λ, a → Xi, v) | i labels a deletion rule (u, a, v) �= (λ, X, λ)} .

Construction 1: Construction of an ins-del-sub system of size (1, 1, 0; 1, 1, 0; 0, 1)

By way of contrast, without substitutions, we can prove by using Example 1:

Proposition 1. (∗) INS1,0
1 DEL0,0

0 � INS1,0
1 DEL0,0

1 .

Due to Theorem 3, the following can be concluded:

Corollary 2. INS1,0
1 DEL0,0

0 SUB0,0 = INS1,0
1 DEL0,0

1 SUB0,0 ⊆ CF.

Using the regular language (ba)+ (as in [1, Theorem 9.28]), we can show that
the inclusion in Corollary 2 is proper.

Theorem 5. (∗) REG \ INS1,0
1 DEL1,1

1 SUB0,0 �= ∅.
Due to Theorem 5, we reach the following conclusions.

Corollary 3. REG\INS1,0
1 DEL1,0

0 SUB0,0 �= ∅, REG\INS1,0
1 DEL0,0

0 SUB0,0 �= ∅.
Corollary 4. INS1,0

1 DEL1,1
1 SUB0,0 ⊂ RE.

We remark that it can be shown that analogous results hold for the respective
mirror language families.

Corollary 5. The following statements hold:

1. INS0,1
1 DEL0,0

0 SUB0,0 = INS0,1
1 DEL0,0

1 SUB0,0 ⊂ CF.
2. INS0,1

1 DEL1,1
1 SUB0,0 ⊂ RE.

3.2 Extension with One-Sided Substitution

In the following paragraphs, we will show that an arbitrary ins-del system ID
of size (1, 1, 1; 1, 1, 1) can be simulated by an ins-del-sub system IDς of size
(1, 1, 0; 1, 1, 0; 0, 1). IDς is built as shown in Construction 1. Every deletion rule
(u, a, v) of ID with label i corresponds (in IDς) to a nonterminal Xi, a substi-
tution rule (λ, a → Xi, v) ∈ S2 and a deletion rule (u,Xi, λ) ∈ D′. Likewise,

Insertion-Deletion with Substitutions II 237

Let M = (Q, T, δ, q0, F) be a DFA accepting L. We define the ins-del-sub system of
size (1, 1, 0; 0, 0, 0; 0, 1) which will simulate M as IDς = (V, T, A, I, ∅, S), with

V = {(qi, qj), X(qi,qj), (qi, qj)
′ | qi, qj ∈ Q, ∃t ∈ T : δ(qi, t) = qj} ∪ {X} ,

A = {(q0, qi)X | qi ∈ Q, ∃t ∈ T : δ(q0, t) = qi} ∪ {w ∈ L | |w| ≤ 1} ,

I = {((qi, qj), X(qj ,qk), λ) | qi, qj , qk ∈ Q, ∃t1, t2 ∈ T : δ(qi, t1) = qj , δ(qj , t2) = qk} ,

S = S1 ∪ S2 ∪ S3 , where

S1 = {(λ, X(qi,qj) → (qi, qj), X) | qi, qj ∈ Q, ∃t ∈ T : δ(qi, t) = qj} ,

S2 = {(λ, X → (qi, qf)
′, λ) | qi ∈ Q, qf ∈ F, ∃t ∈ T : δ(qi, t) = qf}

∪ {(λ, (qi, qj) → (qi, qj)
′, (qj , qk)

′) | qi, qj , qk ∈ Q} and

S3 = {(λ, (qi, qj)
′ → t, λ) | qi, qj ∈ Q, t ∈ T, δ(qi, t) = qj} .

Construction 2: Simulating a DFA by a system of size (1, 1, 0; 0, 0, 0; 0, 1)

an insertion rule (r, s, t) of ID with label j is linked to a nonterminal Xj , an
insertion rule (r,Xj , λ) ∈ I ′ and a substitution rule (λ,Xj → s, t) ∈ S1 of IDς .

The basic idea of this construction is to leave checking the right context to
the substitution rules, as insertion/deletion rules of size (1, 1, 0) cannot perform
right context checks by themselves. It is easy to see that the application of the
rule (λ, a → Xi, v) ∈ S2, immediately followed by an application of the rule
(u,Xi, λ) ∈ D′, is equivalent to the deletion rule (u, a, v) ∈ D, i.e.,

w1uavw2 =̂⇒(λ,a→Xi,v) w1uaXivw2 =̂⇒(u,Xi,λ)del w1uvw2

is equivalent to the application of the deletion rule (u, a, v) ∈ D. Similarly, the
successive application of the rules (r,Xj , λ) ∈ I ′ and (λ,Xj → s, t) ∈ S1 is
equivalent to the insertion rule (r, s, t) ∈ I.

Theorem 6. (∗) Given ID ∈ INS1,1
1 DEL1,1

1 , one can construct an ins-del-sub
system IDς ∈ INS1,0

1 DEL1,0
1 SUB0,1 such that L(ID) = L(IDς).

Note that every derivation within IDς can be re-ordered such that auxiliary
nonterminals Xi are immediately resolved. This is essential for showing L(ID) ⊇
L(IDς). With the previous theorem, reference [12] and Lemma 2, we conclude:

Corollary 6. RE = INS1,1
1 DEL1,1

1 = INS1,0
1 DEL1,0

1 SUB0,1 = INS0,1
1 DEL0,1

1 SUB1,0.

It is known that there are regular languages which ins-del systems of size
(1, 1, 0; 0, 0, 0) cannot generate. Consider for instance the regular language (ba)+,
which even systems of size (1, 1, 0; 1, 1, 1) cannot generate; cf. [1]. Now, we will
show that the set of all regular languages is included in INS1,0

1 DEL0,0
0 SUB0,1.

More precisely, we will show that all deterministic finite automata can be sim-
ulated by ins-del systems with substitution rules of size (1, 1, 0; 0, 0, 0; 0, 1). We
will build such a system as shown in Construction 2. We now describe its basic
idea. Clearly {w ∈ L | |w| ≤ 1} ⊆ L(IDς) follows from {w ∈ L | |w| ≤ 1} ⊆ A.
We remark that if w ∈ L with |w| ≤ 1 is the axiom of a derivation, then no word
other than w can be derived, as no rule in I or S is applicable to the axiom.

238 M. Vu and H. Fernau

Let (q0, qi1)X with qi1 ∈ Q and δ(q0, t) = qi1 for some t ∈ T be the axiom of
a derivation. Then the idea is to generate a terminal word from a string of the
form (qi0 , qi1)

′(qi1 , qi2)
′ . . . (qin−1 , qin)′(qin , qin+1)

′ such that δ(qim , tm) = qim+1

holds for every tuple (qim , qim+1)
′ for some tm ∈ T with 0 ≤ m ≤ n, q0 = qi0

and qin+1 ∈ F . The terminal string is generated by substituting each tuple
(qim , qim+1)

′ with a letter tm ∈ T with the above property. A word t0t1 . . . tn
obtained by such substitutions is accepted by the deterministic finite automa-
ton M with the sequence of states that are passed while processing t0t1 . . . tn
being qi0 . . . qin+1 . Details of Construction 2 are contained in [14].

Theorem 7. (∗) For any deterministic finite automaton M , one can construct
an ins-del-sub system of size (1, 1, 0; 0, 0, 0; 0, 1) which generates L(M).

Proof. Consider an ins-del-sub system IDς of size (1, 1, 0; 0, 0, 0; 0, 1) built as in
Construction 2. By the above, L(IDς) ⊆ L(M) holds. We now show the converse.
By construction, it is clear that {w ∈ L(M) | |w| ≤ 1} ⊆ L(IDς) holds. Let
w ∈ L(M) with |w| ≥ 2. Let q0q1 . . . qnqf be the sequence of states passed by M
during a run on w. Now, IDς can generate a string of the form

(q0, q1)′(q1, q2)′ . . . (qn−1, qn)′(qn, qf)′

and hence w. Therefore, L(M) ⊆ L(IDς) holds. �
Due to the theorem above, we conclude the following consequences.

Corollary 7. INS1,0
1 DEL0,0

0 ⊂ INS1,0
1 DEL0,0

0 SUB0,1, REG ⊂ INS1,0
1 DEL0,0

0 SUB0,1.

Proof. The first inclusion holds as it is known that the regular language (ba)+

cannot be generated systems of size (1, 1, 0; 1, 1, 1) [1, Theorem 9.28], while sys-
tems of size (1, 1, 0; 0, 0, 0; 0, 1) can generate all regular languages.
The second inclusion follows due to the fact that even systems of size
(1, 1, 0; 0, 0, 0) can generate non-regular languages; see [13, Example 5.1]. �

As regular languages are closed under reversal, we conclude that, due to
Lemma 2, all regular languages are included in INS0,1

1 DEL0,0
0 SUB1,0, as well.

Recall that due to Theorem 2, ins-del-sub systems without deletions always
define context-sensitive languages.

While ins-del systems of size (1, 1, 1; 1, 1, 0) are known to be unable to gen-
erate the language {anbn | n ≥ 1} (see [9, Theorem 7]) and are therefore not
computationally complete, we show in the following paragraphs that these sys-
tems can reach computational completeness if extended with one-sided substi-
tution rules of the form (a, b → c, λ). Consider an arbitrary type-0 grammar
G = (V, T, P, S) in Penttonen normal form; see [11]. We show that this grammar
can be simulated by an ins-del-sub system of size (1, 1, 1; 1, 1, 0; 1, 0). This system
is built as shown in Construction 3. The simulation of G is conducted as follows:
rewriting rules of the form AB → AC and A → a with A,B,C ∈ V , a ∈ T are
simulated directly by the substitution rules (A,B → C, λ) and (λ,A → a, λ),
respectively, while rules of the form A → λ are simulated by deletion rules of

Insertion-Deletion with Substitutions II 239

Assume that all production rules in P are bijectively labelled. Let {#} ∩ V = ∅. We
define the ins-del-sub system simulating G as IDς = (V ′, T, {#S}, I ′, D′, S′), with

V ′ = V ∪ T ∪ {#} ∪ {Ni, N
′
i , N

′′
i , Ni,0, Ni,1 | i is the label of a rule A → BC} ,

I ′ = {(X, Ni,0, Ni), (Ni,0, Ni,1, N
′
i) | i labels rule A → BC, A �= B, X ∈ V ∪ {#}}

∪ {(A, B, λ) | A → AB ∈ P} ,

D′ = {(X, A, λ) | A → λ ∈ P, X ∈ V ∪ {#}} ∪ {(λ,#, λ)}
∪ {(X, Ni0 , λ) | i labels rule A → BC, X ∈ V ∪ {#}} and

S′ = {(A, B → C, λ) | AB → AC ∈ P} ∪ {(λ, A → a, λ) | A → a ∈ P}
∪ {(λ, A → Ni, λ), (Ni,0, Ni → N ′

i , λ), (Ni,1, N
′
i → N ′′

i , λ), (Ni,0, Ni,1 → B, λ),

(B, N ′′
i → C, λ) | i labels rule A → BC} .

Construction 3: Simulating a Penttonen normal form grammar G = (V, T, P, S) by
an ins-del-sub system of size (1, 1, 1; 1, 1, 0; 1, 0).

the form (X,A, λ) with X ∈ V ∪ {#}. These deletion rules have this particu-
lar form instead of the form (λ,A, λ) in order to simplify subsequent proofs. In
order to see that this change is insignificant, consider the following: Consider
an arbitrary derivation of IDς . It is easy to see that we can assume that the
deletion of the nonterminal # introduced as part of the axiom is the last action
to be performed in the derivation. Additionally, we remark that no symbol can
be inserted left of the nonterminal #, as all insertion rules have left context.
Therefore, in an arbitrary derivation of IDς any nonterminal A with A → λ ∈ P
can always be deleted by the application of a rule (X,A, λ) with X ∈ V ∪ {#},
as A always has left context until the end of the derivation. Rule A → AB is
simulated by the insertion rule (A,B, λ). Production rules of the form A → BC,
A �= B, are simulated by the following sequence of rules. Let i be the label of
A → BC, A �= B, then we begin with the application of the substitution rule
(λ,A → Ni, λ), which in turn is followed by the application of an insertion rule
(λ,Ni,0, Ni), i.e.,

w1Aw2 =̂⇒ w1Niw2 =̂⇒ w1Ni,0Niw2.

The subsequent rules applied in the simulation of A → BC are:
(1) (Ni,0, Ni → N ′

i , λ)sub, (2) (Ni,0, Ni,1, N
′
i)ins, (3) (Ni,1, N

′
i → N ′′

i , λ)sub, (4)
(Ni,0, Ni,1 → B, λ)sub, (5) (B,N ′′

i → C, λ)sub and finally (6) (λ,Ni0 , λ)del, i.e.,

w1Ni,0Niw2 =̂⇒ w1Ni,0N
′
iw2 =̂⇒ w1Ni,0Ni,1N

′
iw2 =̂⇒ w1Ni,0Ni,1N

′′
i w2

=̂⇒w1Ni,0BN ′′
i w2 =̂⇒ w1Ni,0BCw2 =̂⇒ w1BCw2.

The basic idea is that the symbols Ni,0 and Ni (and all primed variants of Ni)
delimit the insertion site. The idea of the delimiters is that the working insertion
sites are separated from each other to avoid any interactions. Furthermore, the
delimiters prevent any interaction between the symbols in the insertion site and
all symbols outside it. (The idea behind this approach is the same as in [13,
Theorem 3.5].) As mentioned before, in the course of the simulation of A →

240 M. Vu and H. Fernau

Assuming a bijective labelling of the rules of ID, the ins-del-sub system which will
simulate ID is defined as IDς = (V ′, T, A, I ′, D, S′), with

V ′ = V ∪ {Xi | i is the label of an insertion rule of ID}
I ′ = {(r, Xi, λ) | i is the label of an insertion rule (r, s, t) ∈ I}
S′ = {(λ, Xi → s, t) | i is the label of an insertion rule (r, s, t) ∈ I}.

Construction 4: Simulating an ins-del system ID = (V, T, A, I, D) of size
(1, 1, 1; 2, 0, 0) in normal form by an ins-del-sub system of size (1, 1, 0; 2, 0, 0; 0, 1).

BC, primed variants of Ni, that is N ′
i and N ′′

i , will be introduced. The idea
behind these symbols is that they serve as indicators that certain symbols have
been introduced. For instance N ′

i , which is introduced by the substitution rule
(Ni,0, Ni → N ′

i , λ) ∈ S′′, indicates that a symbol Ni,0 has been introduced to
the left of Ni. Likewise N ′′

i , introduced by (Ni,1, N
′
i → N ′′

i , λ) ∈ S′′, indicates
the introduction of Ni,1.

It is easy to see that applying these rules in the order specified above yields
a simulation of A → BC. We also have to show that we can always assume
this particular application order. More precisely, we can show that prematurely
applying certain substitution or deletion rules results in sentential forms from
which no terminal string can be derived. Due to Lemma 2, we can then state:

Theorem 8. (∗) RE = INS1,1
1 DEL1,0

1 SUB1,0 = INS1,1
1 DEL0,1

1 SUB0,1.

While it is known that the family of languages generated by ins-del systems
of size (1, 1, 0; 2, 0, 0) is a proper subset of RE [7], we now show that extending
this family of ins-del-sub systems yields computational completeness.

This claim is proved in the following paragraphs by showing that an arbitrary
ins-del system of size (1, 1, 1; 2, 0, 0) can be simulated by an ins-del-sub systems
of size (1, 1, 0; 2, 0, 0; 0, 1).

The computational completeness of INS1,1
1 DEL0,0

2 has been shown in [10,
Theorem 6.3]. Hence, by showing that a system of size (1, 1, 1; 2, 0, 0) can be
simulated by a system with substitution rules of size (1, 1, 0; 2, 0, 0; 0, 1), we show
that ins-del-sub systems of size (1, 1, 0; 2, 0, 0; 0, 1) are computationally complete.
The basic idea of Construction 4 is the same as in Construction 1, i.e., an

insertion rule (r, s, t) of ID is simulated by an application of an insertion rule
(r,Xi, λ) ∈ I ′ and a substitution rule (λ,Xi → s, t) ∈ S′.

Let α ∈ A. We prove the equality L(ID) = L(IDς) as usual by showing that
for every derivation α =̂⇒∗ w ∈ T ∗, there is an alternative derivation from α to w
in which all nonterminals V ′\V are resolved immediately after being introduced.

Lemma 5. Consider a derivation w =̂⇒∗ w′ ∈ T ∗ of IDς with w ∈ V ∗ with at
most m ∈ N insertion rules. Then there is an alternative derivation from w to
w′ in which nonterminals V ′\V are resolved immediately after being introduced.

Proof. We prove our claim by induction. The base case m = 0 is obvious.
m → m + 1: Consider a derivation w =̂⇒∗ w′ ∈ T ∗ with w ∈ V ∗ where m +

Insertion-Deletion with Substitutions II 241

1 insertion rules are used. Due to our construction, all inserted symbols are
nonterminals in V ′\V . Clearly one of these nonterminals has to be the first to
be resolved in the derivation. We denote this nonterminal by Xi. Let the label i
correspond to the insertion rule (r, s, t) of ID. Then Xi is introduced via an
insertion rule (r,Xi, λ) and resolved via a substitution rule (λ,Xi → s, t). Then,
the derivation w =̂⇒∗ w′ ∈ T ∗ is of the form

w =̂⇒∗ w1rw2 =̂⇒w1rXiw2 =̂⇒∗ w′
1Xitw

′
2 =̂⇒w′

1stw
′
2 =̂⇒∗ w′ (1)

with w1, w
′
1, w2, w

′
2 ∈ V ′∗. As the nonterminal Xi is the first symbol in V ′\V to

be resolved in the derivation, it follows that the symbol r which has been used to
insert Xi, as well as the symbol t which has been used to resolve Xi have been
introduced as part of w. We denote this specific r and t by r and t, respectively.
Let w = u1ru2tu3 with u1, u2, u3 ∈ V ∗. Consider the derivation

w = u1ru2tu3 =̂⇒∗ w1rw2 =̂⇒w1rXiw2 =̂⇒∗ w′
1Xitw

′
2 (2)

up to this point. As all rules used up to this point are either context-free deletion
rules or one-sided insertion rules with only left context, it is easy to see that

u1r =̂⇒∗ w1r =̂⇒∗ w′
1 (3)

holds. Furthermore, w2 = w2,1tw2,2 holds as t cannot be substituted and per
definition not be deleted before t has been used to resolve Xi.
Additionally, ru2tu3 =̂⇒∗ rw2 = rw2,1tw2,2 holds as only context-free deletion
rules and one-sided insertion rules with left context are applied. Consequently,
using the same argument as in the case of Derivation (3), we obtain

ru2 =̂⇒∗ rw2,1 and tu3 =̂⇒∗ tw2,2 . (4)

Due to w1rXiw2 = w1rXiw2,1tw2,2 =̂⇒∗ w′
1Xitw

′
2, we also conclude that

w2,1 =̂⇒∗ λ and tw2,2 =̂⇒∗ tw′
2 hold, as Xi is not used as a context in any rule.

Hence, with Derivations (4) we get

ru2 =̂⇒∗ rw2,1 =̂⇒∗ r and tu3 =̂⇒∗ tw2,2 =̂⇒∗ tw′
2 . (5)

We remark that we can assume that only deletion rules are used in Deriva-
tion (5). Any symbol that would be inserted in Derivation (5) is an element of
V ′\V and any symbol in V ′\V must be substituted with a symbol in V before
it can be deleted. However, up to the point specified in Derivation (2), no sub-
stitution rule is used. Consider the following derivation

w = u1ru2tu3 =̂⇒derivation (5)∗u1rtu3 =̂⇒u1rXitu3 =̂⇒u1rstu3

=̂⇒derivation (3)∗w′
1stu3 =̂⇒derivation (5)∗w′

1stw
′
2 =̂⇒∗ w′ ∈ T ∗,

where the last part of the derivation follows due to Derivation (1). The derivation
above implies u1rstu3 =̂⇒∗ w′ ∈ T ∗ and that in the derivation u1rstu3 =̂⇒∗ w′ ∈
T ∗ at most m insertion rules are used. Therefore, our claim follows with the
induction hypothesis. �

242 M. Vu and H. Fernau

With Lemma 5, we can see that the next theorem follows.

Theorem 9. L(IDς) = L(ID).

As any ins-del system of size (1, 1, 1; 2, 0, 0) can be simulated by an ins-del-sub
system of size (1, 1, 0; 2, 0, 0; 0, 1), the following corollary holds by Lemma 2.

Corollary 8. RE = INS1,1
1 DEL0,0

2 = INS1,0
1 DEL0,0

2 SUB0,1 = INS0,1
1 DEL0,0

2 SUB1,0.

4 Conclusions

We have shown that several classes of ins-del-sub systems are computation-
ally complete. Yet, there are quite a number of classes where we do not
know if they are. We rather conjecture incompleteness for INS1,0

1 DEL1,0
1 SUB1,0

and for INS1,0
1 DEL0,0

2 SUB1,0, because of the unidirectional flow of informa-
tion; we are less sure about INS1,0

1 DEL0,1
1 SUB1,0. We strongly conjecture that

RE = INS1,0
1 DEL0,0

1 SUB0,1.

References

1. Alhazov, A., Krassovitskiy, A., Rogozhin, Y., Verlan, S.: Small size insertion and
deletion systems. In: Martin-Vide, C. (ed.) Applications of Language Methods, pp.
459–515. Imperial College Press (2010)

2. Beaver, D.: Computing with DNA. J. Comput. Biol. 2(1), 1–7 (1995)
3. Haussler, D.: Insertion languages. Inf. Sci. 31(1), 77–89 (1983)
4. Kari, L.: On insertions and deletions in formal languages. Ph.D. thesis, University

of Turku, Finland (1991)
5. Karl, L.: DNA computing: arrival of biological mathematics. Math. Intell. 19(2),

9–22 (1997). https://doi.org/10.1007/BF03024425
6. Krassovitskiy, A., Rogozhin, Y., Verlan, S.: Further results on insertion-deletion

systems with one-sided contexts. In: Mart́ın-Vide, C., Otto, F., Fernau, H. (eds.)
LATA 2008. LNCS, vol. 5196, pp. 333–344. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-88282-4 31

7. Krassovitskiy, A., Rogozhin, Y., Verlan, S.: Computational power of insertion-
deletion (P) systems with rules of size two. Nat. Comput. 10, 835–852 (2011)

8. Margenstern, M., Păun, Gh., Rogozhin, Y., Verlan, S.: Context-free insertion-
deletion systems. Theor. Comput. Sci. 330(2), 339–348 (2005)

9. Matveevici, A., Rogozhin, Y., Verlan, S.: Insertion-deletion systems with one-
sided contexts. In: Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS,
vol. 4664, pp. 205–217. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74593-8 18

10. Păun, Gh., Rozenberg, G., Salomaa, A.: DNA Computing: New Comput-
ing Paradigms. Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-662-
03563-4

11. Penttonen, M.: One-sided and two-sided context in formal grammars. Inf. Control
(now Inf. Comput.) 25, 371–392 (1974)

12. Takahara, A., Yokomori, T.: On the computational power of insertion-deletion
systems. Nat. Comput. 2(4), 321–336 (2003)

https://doi.org/10.1007/BF03024425
https://doi.org/10.1007/978-3-540-88282-4_31
https://doi.org/10.1007/978-3-540-88282-4_31
https://doi.org/10.1007/978-3-540-74593-8_18
https://doi.org/10.1007/978-3-540-74593-8_18
https://doi.org/10.1007/978-3-662-03563-4
https://doi.org/10.1007/978-3-662-03563-4

Insertion-Deletion with Substitutions II 243

13. Verlan, S.: Recent developments on insertion-deletion systems. Comput. Sci. J.
Moldova 18(2), 210–245 (2010)

14. Vu, M.: On insertion-deletion systems with substitution rules. Master’s thesis,
Informatikwissenschaften, Universität Trier, Germany (2019)

15. Vu, M., Fernau, H.: Insertion-deletion systems with substitutions I. In: Anselmo,
M., Della Vedova, G., Manea, F., Pauly, A. (eds.) CiE 2020. LNCS, vol. 12098, pp.
366–378. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51466-2 33

https://doi.org/10.1007/978-3-030-51466-2_33

Author Index

Alon, Ravid 1
Anselmo, Marcella 13

Cseresnyes, Ehud 26

Droste, Manfred 39

Fernau, Henning 52, 231
Fülöp, Zoltán 39

Giammarresi, Dora 13

Hoffmann, Stefan 64

Jirásek, Jozef 78
Jirásková, Galina 78

Keeler, Chris 91
Kószó, Dávid 39
Krymski, Stanislav 104
Kupferman, Orna 1
Kuppusamy, Lakshmanan 52
Kutrib, Martin 117

Madonia, Maria 13
Malcher, Andreas 117
Marcus, Pierre 130
Mereghetti, Carlo 117

Okhotin, Alexander 104, 142

Palano, Beatrice 117
Průša, Daniel 155

Raman, Indhumathi 52
Rukavicka, Josef 167

Salomaa, Kai 91, 206
Sazhneva, Elizaveta 142
Seiwert, Hannes 26, 180
Selivanov, Victor 193
Selmi, Carla 13
Smith, Taylor J. 206
Staiger, Ludwig 219

Törmä, Ilkka 130

Vogler, Heiko 39
Vu, Martin 231

	Preface
	Organization
	Contents
	Mutually Accepting Capacitated Automata
	1 Introduction
	2 Preliminaries
	3 Expressive Power
	3.1 Regularity
	3.2 Determinism
	3.3 Closure Properties

	4 Decision Problems
	References

	Bad Pictures: Some Structural Properties Related to Overlaps
	1 Introduction
	2 Preliminaries
	2.1 Basic Notions and Results on Strings
	2.2 Basic Notions on Pictures

	3 Good and Bad Pictures
	4 Index of Bad Pictures
	References

	Regular Expression Length via Arithmetic Formula Complexity
	1 Introduction
	2 Preliminaries
	3 Reduction to Monotone Arithmetic Formula Size
	3.1 Bounds for Uniform Languages
	3.2 Blow-Up of Language Operations
	3.3 Limitations of the Arithmetic Bound

	4 Direct Lower Bounds
	4.1 The Divisibility Language
	4.2 Utilizing Noncommutativity

	5 Conclusion
	References

	Crisp-Determinization of Weighted Tree Automata over Additively Locally Finite and Past-Finite Monotonic Strong Bimonoids Is Decidable
	1 Introduction
	2 Preliminaries
	2.1 General Notions and Notations
	2.2 Trees and Contexts
	2.3 Strong Bimonoids

	3 Weighted Tree Automata with Run Semantics
	4 Pumping Lemma
	5 Main Result
	References

	On the Power of Generalized Forbidding Insertion-Deletion Systems
	1 Introduction
	2 Important Definitions
	3 Main Results
	4 Conclusions
	References

	State Complexity Bounds for the Commutative Closure of Group Languages
	1 Introduction
	2 Prerequisites
	2.1 Unary Languages

	3 Results
	3.1 Intuition, Method of Proof and Main Results
	3.2 A Regularity Condition by Decomposing into Unary Automata
	3.3 The Special Case of Group Languages

	4 Conclusion
	References

	Multiple Concatenation and State Complexity (Extended Abstract)
	1 Introduction
	2 Preliminaries
	3 Construction of NFAs for Multiple Concatenation
	4 Tightness for a (k+1)-letter Alphabet
	5 Tightness for a k-letter Alphabet
	6 Binary and Ternary Languages
	7 Unary Cyclic Languages
	8 Conclusions
	References

	Combining Limited Parallelism and Nondeterminism in Alternating Finite Automata
	1 Introduction
	2 Preliminaries
	2.1 Tree Width of Alternating Machines

	3 Decision Problems
	4 Width Measure Bounds
	References

	Longer Shortest Strings in Two-Way Finite Automata
	1 Introduction
	2 Definitions
	3 Shortest Strings in 2DFA
	4 Iterating Semi-direction-determinate Automata
	5 Encoding in a Fixed Alphabet
	6 Automata with Longer Shortest Strings
	7 Transforming Semi-direction-determinate to One-Way
	8 Conclusion
	References

	Iterated Uniform Finite-State Transducers: Descriptional Complexity of Nondeterminism and Two-Way Motion
	1 Introduction
	2 Definitions and Preliminaries
	3 Complexity of Mutual Nondeterministic Simulations
	4 Costs of Simulations Involving Deterministic Devices
	5 Iterated Transduction on Unary Languages
	References

	Descriptional Complexity of Winning Sets of Regular Languages
	1 Introduction
	2 Definitions
	3 Winning Sets
	4 Doubly Exponential Lower Bound
	5 Case of the Bounded Regular Languages
	6 Chain-Like Automata
	7 Case Study: Exact Number of 1-Symbols
	8 A Context-Free Language
	References

	State Complexity of GF(2)-inverse and GF(2)-star on Binary Languages
	1 Introduction
	2 GF(2)-star and GF(2)-inverse
	3 Upper Bound for the GF(2)-inverse
	4 Lower Bound for the GF(2)-inverse
	5 Lower Bound for the GF(2)-star
	6 Conclusion
	References

	Complexity of Two-Dimensional Rank-Reducing Grammars
	1 Introduction
	2 Preliminaries
	3 Two-Dimensional Rank-Reducing Grammar
	4 Parsing Complexity
	5 Decidability and Descriptional Complexity
	6 Conclusion
	References

	Palindromic Length of Words with Many Periodic Palindromes
	1 Introduction
	2 Preliminaries
	3 Periodic Palindromic Factors
	4 Palindromic Length of Concatenation
	5 Concatenation of Periodic Palindromes
	References

	Operational Complexity of Straight Line Programs for Regular Languages
	1 Introduction
	2 Preliminaries
	3 Lower Bound Techniques
	4 SLP-Complexity of Operations
	5 Complexity of Extended SLPs
	6 Conclusion
	References

	Classifying -Regular Aperiodic k-Partitions
	1 Introduction
	2 Preliminaries
	2.1 Aperiodic Acceptors and k-partitions
	2.2 Aperiodic Transducers and Games
	2.3 Semilattices and Labeled Posets

	3 Classifying Aperiodic k-partitions
	3.1 Reducibilities and Operations on k-partitions
	3.2 The Fine Hierarchy of k-partitions
	3.3 Computability and Complexity Issues

	References

	Recognition and Complexity Results for Projection Languages of Two-Dimensional Automata
	1 Introduction
	2 Preliminaries
	2.1 Previous Work

	3 Recognition Power and Space Complexity
	3.1 Three-Way Two-Dimensional Automata

	4 State Complexity
	4.1 Union of 2NFA-2W Languages
	4.2 Diagonal Concatenation of 2NFA-2W Languages

	5 Conclusion
	References

	On the Generative Power of Quasiperiods
	1 Introduction
	2 Notation and Preliminaries
	3 Quasiperiodic Words
	3.1 Combinatorial Properties of Pq
	3.2 The Reduced Quasiperiod

	4 Asymptotic Growth
	5 Polynomials
	6 Irreducible Quasiperiods
	6.1 Extremal Polynomials
	6.2 The Ordering of the Maximal Roots n

	7 Reducible Quasiperiods
	7.1 The Case ||+|q0|2
	7.2 The Case |q|-2|q0|3||+|q0|3
	7.3 The Case |q|-2|q0|2|q0|+||3

	References

	Insertion-Deletion with Substitutions II
	1 Introduction
	2 Basic Definitions and Observations
	3 Main Results
	3.1 Extension with Context-Free Substitution
	3.2 Extension with One-Sided Substitution

	4 Conclusions
	References

	Author Index

