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Chapter 8
Chromosome Architecture Studied 
by High-Resolution FISH Banding 
in Three-Dimensionally Preserved Human 
Interphase Nuclei

Thomas Liehr

Abstract The impact of chromosome architecture in the formation of chromosome 
aberrations is a meanwhile well-established finding of interphase-directed molecu-
lar cytogenetic studies. Up to recent years, biomedical research of interphase chro-
mosomes in their integrity was hindered by technical limitations. The introduction 
of three-dimensional suspension-based fluorescence in situ hybridization (S-FISH) 
in combination with microdissection-based engineered DNA probes and fluores-
cence multicolor chromosome banding (MCB) allowed studying interphase chro-
mosome organization, numbers, and rearrangements in different kind of cells. Such 
studies already provided comprehensive information on the interphase architecture 
of normal human sperm, as well as first insights into the influence of chromosomal 
rearrangements on the 3D structure of the sperm nuclei. Also, the influence of addi-
tional chromosomal fragments present in a nucleus was successfully visualized by 
S-FISH.  Finally, S-FISH supported the idea that disease-specific chromosomal 
translocations could be due to tissue specific genomic organization. Overall, S-FISH 
combined with MCB but also other DNA probes is a tool with high potential to 
resolve the influence of chromosomal imbalances and/or rearrangements on the 
interphase architecture, the latter being possibly a part of the epigenetic cell regula-
tion, also being denominated as chromosomics.

 Introduction

In the interphase nucleus, chromosomes are located in specific regions, which are 
called “chromosome territories” (Cremer and Cremer 2001; Williams and Fisher 
2003; Branco and Pombo 2006). Own multicolor banding (MCB)-based studies 
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revealed that the chromosome shape itself is not lost in the interphase nucleus, and 
one can even identify “interphase chromosomes” instead of only chromosome terri-
tory, even irrespective of the cell cycle phase (Weise et al. 2002; Lemke et al. 2002).

Both chromosome size and gene density are discussed to have an important 
impact on the nuclear position of chromosomes. Small chromosomes preferentially 
locate close to the center of the nucleus, while large chromosomes can be found in 
the nuclear periphery (Sun et al. 2000; Bolzer et al. 2005). On the other hand, Croft 
et al. (1999) demonstrated a gene density-correlated radial arrangement of chromo-
somes in nuclei. Mainly gene-dense and early replicating chromatin can be found in 
the central part of the nucleus, while gene-poor and later replicating chromatin is 
located in nuclear periphery (Croft et al. 1999). Interestingly, this nuclear topologi-
cal arrangement is conserved during primate evolution (Manvelyan et al. 2008a).

Here, we summarize the yet published applications of suspension-based fluores-
cence in situ hybridization (S-FISH) combined with FISH banding (Liehr et  al. 
2002, 2006), particularly the yet most used approach array-proven MCB (Weise 
et  al. 2008). Besides, also other protocols were suggested for FISH studies in 
3D-preserved nuclei (e.g., Walter et  al. 2006). Also, recent studies showed that 
inter- and metaphase chromosomes preserve a genome-wide haploid order (Weise 
et al. 2016) and that this order is completely changed in senescent cells (Roediger 
et al. 2014). All these studies provide to the more and more emerging field of chro-
mosomics, as predicted in 2005 by Prof. Uwe Claussen (Claussen 2005).

 S-FISH, the Method

Performing of a FISH experiment on human meta- and interphase cells after air- 
drying method is a well-established approach; it is routinely done as one- to 
multicolor- FISH test (Liehr et  al. 2004a). However, the air-drying procedure of 
chromosome preparation, leading to well-spread metaphases under appropriate 
conditions, leads at the same time to flattening of the originally spherical interphase 
nuclei. Thus, interphase architecture is hard to be studied reliably on such kind of 
preparation (Hunstig et  al. 2009), even though some basic insights can also be 
gained using such material for FISH banding (Weise et al. 2002; Lemke et al. 2002).

Still, there is an easy way to do studies in three-dimensionally (3D) preserved 
interphase nuclei obtained from routinely prepared cytogenetic preparations stored 
in Carnoy’s fixative. One just needs to do the whole FISH procedure in cell suspen-
sion, and as a final step, the nuclei are placed on a polished concave slide before 
evaluation, immobilized in agarose. This approach for 3D-FISH analyses on totally 
spherical interphase nuclei, called suspension-based fluorescence in situ hybridiza-
tion (S-FISH), was published first in 2002 (Steinhaeuser et al. 2002) and further 
developed and slightly modified later (Manvelyan et al. 2008a; Hunstig et al. 2009). 
Its principle is shown in Fig. 8.1.
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 S-FISH: Which DNA Probes May Be Applied?

For S-FISH, all available chromosome or chromosome region-specific DNA are 
principally suited. However, for application in S-FISH, at least double amount of 
the probe is necessary than for “normal” FISH experiments (Hunstig et al. 2009). To 
resolve the chromosome structure as a whole, single chromosome-directed FISH 
banding based on partial chromosome painting probes like in MCB is suited best 
(Weise et al. 2008). Besides, centromeric and/or locus-specific probes can be used 
as well for special questions (e.g., Manvelyan et al. 2009; Hunstig et al. 2009).

Fig. 8.1 Schematic drawing of the suspension-based fluorescence in situ hybridization (S-FISH) 
procedure. Overall, S-FISH avoids this flattening and artificial swelling of the interphase  
nuclei, and the whole experiment is performed in suspension. A certain loss of cells during the 
washing steps is normal, shown here by the reduction of cells/nuclei from step 1 to step 4. In prin-
ciple, Carnoy’s fixative is replaced subsequently by solutions necessary for a FISH, and washing 
steps are included. Finally, the cells/nuclei are immobilized and counterstained in an agarose 
(AGAR) on a glass slide under a coverslip. The details of the protocol are described in Hunstig 
et al. (2009)
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 Applications of S-FISH

Besides some studies done in comparative interphase cytogenetics of human and 
whitehanded gibbon and gorilla (Manvelyan et al. 2008a), S-FISH combined with 
MCB is mainly applied in the field of biomedical basic research of the human inter-
phase nucleus. Here, still many questions are open and unanswered, mainly due to 
lack of suited methods, before introduction of S-FISH.  Besides, more and more 
studies in other animals/species provide insights into the nuclear architecture 
(Karamysheva et al. 2017).

 Human Sperm

For the first time, the distribution of all human chromosomes in sperm was resolved 
comprehensively by S-FISH−/MCB studies. Strikingly, for the majority of the 24 
human chromosomes, the distribution of the territories was alike as in lymphocytes; 
only the acrocentric chromosomes showed another location as in sperm, no nucleo-
lus is formed (Manvelyan et  al. 2008b). Thus, this nonrandom positioning must 
have a biological meaning. In other words, each chromosome needs to have a spe-
cial position in the nucleus in order that the cell can work properly. Sperm are trans-
lationally inactive cells; however, they need to have chromosomes at the right places 
as soon as a sperm enters an oocyte and needs to become active again.

The study of Manvelyan et al. (2008b) showed a direct correlation of chromo-
some positions and their sizes, apart from chromosomes 1, 2, 6, 14, 18, 20, 21, and 
Y, i.e., large chromosomes were in the periphery, small in the center. Exactly those 
eight chromosomes not fitting in the correlation before perfectly aligned with gene 
density theory, i.e., gene-dense chromosomes were in the nuclear center, and gene- 
poor in the periphery.

There are also already other one studies in sperm of male with a chromosomal 
aberration (Bhatt et al. 2009; Karamysheva et al. 2015). Three males with paracen-
tric inversion were studied, and no gross changes in the interphase positioning of the 
affected chromosomes were found. Here for sure, more studies on the influence of 
inborn rearrangements on the nuclear architecture of sperm, but also other in tis-
sues, are necessary.

 Different Tissues with Additional Chromosomal Fragments

Additional chromosomal material present in the cell is suspected to alter or at least 
influence the chromosomal architecture. Besides complete trisomies as inborn or 
acquired aberrations, there is the possibility of partial trisomies induced either by 
derivative chromosomes or by the presence of a small supernumerary marker 
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chromosome (sSMC). The latter condition may be seen in 0.043% of newborn 
infants, 0.077% of prenatal cases, 0.433% of mentally retarded patients, and 0.171% 
of subfertile people (Liehr and Weise 2007). sSMC are defined as structurally 
abnormal chromosomes that cannot be identified or characterized unambiguously 
by conventional banding cytogenetics alone and are generally equal in size or 
smaller than a chromosome 20 of the same metaphase spread. sSMC are mostly 
detected unexpectedly in routine cytogenetics (Liehr et al. 2004b). Also, they are 
not easy to correlate with a specific clinical outcome as besides induction of genomic 
imbalance, mosaicism and other most often epigenetic factors can influence the 
phenotype of an sSMC carrier: Uniparental disomy, heterochromatization, and even 
their influence on the interphase architecture may play a role here. Also, a pilot 
study revealed some potential influence of sSMC presence on nuclear architecture 
recently (Karamysheva et al. 2015).

In a recent study (Klein et al. 2012), S-FISH revealed that an extra piece of DNA 
like an sSMC leads to gross rearrangements within the interphase nucleus, mainly 
concerning the sSMCs’ normal sister chromosomes. Primarily, the position of the 
sSMC is influenced by and/or influencing the position of the homologous chromo-
somes. sSMC and one sister chromosome tend to colocalize; this seems to be driven 
mainly by the amount of euchromatin present in the sSMC. Also, the sSMC seems 
to take over the position of one normal sister chromosome. Thus, the remainder 
sister chromosome is displaced toward another location within the nucleus. These 
observations were made in B and T lymphocytes and/or skin fibroblasts.

 Different Female Tissues and the Position of the X Chromosome

S-FISH/MCB studies in buccal mucosa, B and T lymphocytes, and skin fibroblasts 
for the positioning of normal and derivative X chromosomes in female cells also 
may lead to interesting, yet impossible insights into the nuclear architecture. 
Preliminary yet unpublished results (Fig. 8.2) firstly confirmed that active and inac-
tive X chromosomes are located in the cell periphery and that the inactive X chro-
mosome colocalizes to big parts, even though not perfectly, with the Barr body. 
Interestingly, a dicentric X chromosome, leading to an almost complete trisomy X, 
altered the positioning of the two X chromosomes to each other, inducing a larger 
distance between both normal and derivative X chromosome compared to the nor-
mal cells. Thus, new insights may be obtained also by studying well-known phe-
nomenon like X inactivation by the S-FISH approach.

 Leukemia and the Positions of Chromosomes 8 and 21

Nonrandom positioning of chromosomes in interphase nuclei is known to be of 
importance for genomic stability and formation of chromosome aberrations. So tis-
sue specificity of chromosomal translocations could be due to tissue-specific 
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genome organization (Meaburn et al. 2007; Brianna Caddle et al. 2007), and a posi-
tive correlation between spatial proximity of chromosomes/genes in interphase 
nuclei and translocation frequencies was shown (Bickmore and Teague 2002; Roix 
et al. 2003; Branco and Pombo 2006; Meaburn et al. 2007; Brianna Caddle et al. 
2007; Grasser et al. 2008).

Manvelyan et al. (2008a, b) provided evidence that there might be an effect of 
specific chromosome positioning in myeloid bone marrow cells, i.e., a colocaliza-
tion of chromosomes 8 and 21 could promote a translocation providing selective 
advantage of t(8;21) cells in AML-M2. Additional S-FISH studies confirmed that 
this is specifically true for AML patients having a trisomy 8 (Othman et al. 2012). 
Overall, studies to enlighten the nuclear position of tumor-related oncogenes, which 
are known to be activated by specific translocations are promising targets of future 
S-FISH-studies, as supported by recent comparable findings in thyroid cancer 
(Gandhi et al. 2009).

 S-FISH, Conclusions, and Perspectives

Overall, the combination of S-FISH and MCB for a three-dimensional analysis of 
chromosome position in interphase nucleus is a powerful tool, which can be accom-
panied by the use of locus-specific probes. The topological organization in inter-
phase nucleus is nonrandom, and it becomes more and more obvious that there is a 
physiological reason behind that.

Fig. 8.2 S-FISH results after application of X chromosome-specific DNA probe sets. (a) Active 
and inactive X chromosomes in a lymphocyte nucleus of a normal female labeled with an MCB-X 
probe set. (b) A normal (X) and derivative X chromosome (dic(X)) labeled with partial chromo-
some paints for Xp (green) and Xq (yellow) visualized in the fibroblast cell line GM15859 
(Coriell). The female carrier had a constitutional karyotype 46,X,dic(X)(pter->q28::q28->pter)
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The already done and above summarized S-FISH studies in human show the 
potential of this approach for (i) genome-wide analysis of interphase architecture in 
yet not studied tissues (like done for sperm (Manvelyan et al. 2008b)), (ii) studies 
on architectural changes in nuclei with additional chromosomes or chromosomal 
material (like done for sSMC (Klein et al. 2012; Karamysheva et al. 2015) or the X 
chromosome), and (iii) analysis for the susceptibility of specific parts of the human 
genome for rearrangements due to colocalization (like done for the t(8;21) in AML 
(Manvelyan et  al. 2009; Othman et  al. 2012)). For sure, additional biomedical 
research aspect of interphase chromosomes may also be covered using the S-FISH/
MCB approach, like recently the proof of interaction between distant chromosomal 
regions (Maass et al. 2018) and the description of nuclear architecture in hemato-
poietic stem cells (Grigoryan et al. 2018).

Overall, the approach discussed can be used not only based on human but also, 
if MCB probes are available for, based on probes from other species as already 
demonstrated by one example for murine mcb (Ktistaki et al. 2010). In conclusion, 
big advances in the field of chromosomics can be expected in the future from high- 
resolution FISH banding (MCB/mcb) in three-dimensionally preserved human 
interphase nuclei.
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