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Chapter 7
Twenty-First Century FISH: Focus 
on Interphase Chromosomes

Svetlana G. Vorsanova, Yuri B. Yurov, Oxana S. Kurinnaia, Alexei D. Kolotii, 
and Ivan Y. Iourov

Abstract  Interphase molecular cytogenetics provides opportunities for analysis of 
chromosomes in almost all types of human cells at any stage of the cell cycle. 
Generally, interphase fluorescence in situ hybridization (I-FISH) is a basic techno-
logical platform for visualization of individual chromosomes (chromosomal 
regions) in single cells. The achievements of studying human interphase chromo-
somes have allowed numerous discoveries in chromosome research (molecular 
cytogenetics) and genomics (cytogenomics). In the postgenomic era, interphase 
chromosome analysis by I-FISH remains an important part of biomedical research. 
Here, we describe the spectrum of FISH applications with special emphasis on 
interphase chromosome biology and molecular cytogenetic/cytogenomic diagnosis.

�Introduction

Fluorescence in situ hybridization (FISH) is recognized as one of essential techno-
logical platforms for molecular cytogenetics. During the last decades, FISH has 
been found useful for a wide spectrum of applications from molecular diagnosis to 
basic chromosome biology (van der Ploeg 2000; Vorsanova et al. 2010c; Yurov et al. 
2013; Liehr 2017; Hu et al. 2020). Previous edition of this book contained a chapter 
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dedicated to technological solutions in interphase chromosome biology, i.e., inter-
phase FISH (I-FISH) (Vorsanova et al. 2013). Since that time, no groundbreaking 
technological developments have been made in I-FISH or related techniques for 
studying interphase chromosomes. However, it seems that reconsidering techno-
logical aspects of interphase molecular cytogenetics is required, inasmuch as gen-
eral decrease of interest to molecular cytogenetics (e.g., FISH) may be observed in 
the postgenomic era (Liehr 2017; Iourov 2019b; Heng 2020). Here we have reviewed 
I-FISH in the light of its application in the postgenomic context.

No fewer than one million cytogenetic and molecular cytogenetic analyses are 
suggested to be performed per year (Gersen and Keagle 2005). Molecular (cytoge-
netic) diagnosis is the standard of medical care for clinical genetics, reproduction, 
oncology, neurology, psychiatry, etc. (Vorsanova et al. 2010d; Bint et al. 2013; Liehr 
et al. 2015; Viotti 2020). The diagnostic value of FISH has been repeatedly noted 
and has been considered as either an alternative to conventional cytogenetic analysis 
or a confirmatory method (Feuk et  al. 2006; Iourov et  al. 2008c; Martin and 
Warburton 2015; Liehr 2017). In addition, I-FISH-like protocols are used in micro-
biology (Frickmann et  al. 2017), genetic toxicology (Hovhannisyan 2010; Iurov 
et  al. 2011), somatic cell genetics/genomics (Yurov et  al. 2001, 2018b, 2019a; 
Iourov et al. 2008b, 2010b), aging research (Yurov et al. 2009, 2010a), and single-
cell biology (Iourov et al. 2012, 2013a; Yurov et al. 2019b; Gupta et al. 2020). In 
summary, one can be certain that FISH-based molecular cytogenetic analysis has an 
important role in biomedicine.

In basic research, I-FISH is used for studying somatic chromosomal mosaicism 
(Iourov et al. 2006c, 2010a, 2017, 2019a, d; Arendt et al. 2009; Bakker et al. 2015; 
Andriani et al. 2019) and genome organization in interphase nuclei at the chromo-
somal level (Rouquette et al. 2010; Iourov 2012; Cui et al. 2016; Baumgartner et al. 
2018). A successful study of the aforementioned phenomena requires the applica-
tion of various I-FISH-based techniques, which are described in this chapter.

�I-FISH

FISH is an umbrella term for molecular cytogenetic visualization techniques for 
studies of genome (specific genomic loci) using DNA/RNA probes. FISH resolu-
tion is defined by DNA sequence size of the probes. DNA probes are centromeric 
and telomeric (repetitive-sequence DNA), site-specific (euchromatic DNA, e.g., 
gene DNAs), and whole chromosome painting (wcp; hybridizing to the whole chro-
mosomes DNAs) (Liehr et al. 2004; Iourov et al. 2008b; Vorsanova et al. 2013). 
Basically, I-FISH requires (i) cell suspensions prepared specifically for FISH analy-
sis, (ii) denaturation of chromosomal DNA and hybridization, and (iii) microscopic 
visual and digital analysis of FISH results (Iourov et  al. 2006b, 2017; Yurov 
et al. 2017).

FISH analysis of repetitive genomic sequences is performed with centromeric 
(chromosome enumeration or chromosome-specific). I-FISH with DNA probes for 
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repetitive sequences is applicable for analysis of nuclear chromosomal organization 
and numerical chromosome abnormalities (Yurov et al. 1996; Soloviev et al. 1998). 
I-FISH using centromeric DNA probes is used in molecular diagnosis (medical 
genetics, oncology, and reproduction) (Pinkel et al. 1986; Vorsanova et al. 1986, 
2005b, 2010a; Yurov et al. 2007b, 2010b; Savic and Bubendorf 2016). Furthermore, 
I-FISH demonstrates these protocols highly applicable for studies encompassing 
chromosome biology, genome research (chromosomal and nuclear), evolution, 
behavior, and variation in health and disease (Liehr 2017). Near 100% hybridization 
efficiency and chromosome specificity (apart from chromosomes 5 and 19, 13 and 
21, 14 and 22) defines I-FISH with these DNA probes as an effective molecular 
cytogenetic approach (e.g., analysis of homologous chromosomes in interphase) 
(Iourov et al. 2006d; Wan 2017; Russo et al. 2016; Yurov et al. 2017; Weise et al. 
2019) (Fig. 7.1). I-FISH is shown to have the highest efficiency in uncovering mosa-
icism rates (Iourov et al. 2013b).

Site-specific DNA probes (yeast artificial chromosomes or YACS, bacterial arti-
ficial chromosomes or BACs, P1-derived artificial chromosomes or PACs, cosmids) 
provide the visualization of euchromatic chromosomal DNA. These probes are use-
ful for targeted FISH assays to diagnose structural and, more rarely, numerical chro-
mosome imbalances (Fig. 7.2) (Soloviev et al. 1995; Liehr et al. 2004; Riegel 2014; 
Cheng et al. 2017; Liehr 2017). The use of I-FISH assays with site-specific DNA 
probes is systematically applied in cancer research and molecular oncologic diagno-
sis (Chrzanowska et al. 2020). In the postgenomic era, these methods is applicable 
for mapping altered genomic loci, chromosome instability analysis, and arrange-
ment of specific chromosomal loci in interphase.

I-FISH with chromosome-enumeration and site-specific probes may be affected 
by several phenomena occurring in interphase nuclei. Variable efficiency of hybrid-
ization complicates simultaneous applications of different probe sets, i.e., some sig-
nals can be invisible because of intensity differences (Iourov et al. 2006a). S phase 
DNA replication cause doubling of I-FISH signals (site-specific and centromeric 
probes) (Soloviev et al. 1995; Vorsanova et al. 2001a). False-positive chromosome 
abnormalities may be “uncovered” due to specific nuclear interphase chromosome 
architecture (genome organization). For instance, chromosomal associations affect 
I-FISH interpretation. Chromosomal associations/pairing are common in postmi-
totic cells types (Yurov et al. 2005, 2007a, 2008, 2014, 2018a; Iourov et al. 2009a, 
b). Quantitative FISH (QFISH) is used to differ between chromosome losses and 
chromosomal associations (discussed below). Solutions for these problems are 
given in Fig.  7.3. Finally, an appreciable increase of FISH efficiency may be 
achieved using microwave activation (for more details, see Soloviev et al. [1994], 
Durm et al. [1997], Weise et al. [2005]).

7  Twenty-First Century FISH: Focus on Interphase Chromosomes
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�ICS-MCB

Microdissected DNA probes may be combined to produce pseudo-G banding using 
FISH or multicolor banding (MCB) (Liehr et  al. 2002). This technique may be 
applied to interphase chromosomes in a chromosome-specific manner. Interphase 
chromosome-specific MCB (ICS-MCB) allow the visualization of interphase 

Fig. 7.1  Two- and three-color I-FISH with centromeric DNA probes. (a) Normal diploid nucleus 
with two signals for chromosome 1 and chromosome 15. (b) Monosomic nucleus with two signals 
for chromosome 1 and one signal for chromosome 15. (c) Trisomic nucleus with two signals for 
chromosome 1 and three signals for chromosome 15. (d) Normal diploid nucleus with two signals 
for chromosome 1, chromosome 9, and chromosome 16. (e) Monosomic nucleus with two signals 
for chromosome 1 and chromosome 9 and one signal for chromosome 16. (f) Trisomic nucleus 
with two signals for chromosome 1 and chromosome 16 and three signals for chromosome 9. (g) 
Triploid nucleus with three signals for chromosome 16 and chromosome 18. (h) Tetraploid nucleus 
with two signals for chromosome X and chromosome Y. (i) Tetraploid nucleus with two signals for 
chromosome X and chromosome Y and four signals for chromosome 1. (Copyright © Vorsanova 
et al. 2010c; licensee BioMed Central Ltd. This is an Open Access article distributed under the 
terms of the Creative Commons Attribution License, http://creativecommons.org/licenses/by/2.0)
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Fig. 7.2  I-FISH with site-specific DNA probes. (a) Normal diploid nucleus with two signals for 
chromosome 21. (b) Trisomic nucleus with three signals for chromosome 21. (c) Interphase 
nucleus exhibiting co-localization of ABL and BCR genes probably due to t(9;22)/Philadelphia 
chromosome. (Copyright © Vorsanova et al. 2010a; licensee BioMed Central Ltd. This is an Open 
Access article distributed under the terms of the Creative Commons Attribution License, http://
creativecommons.org/licenses/by/2.0)

Fig. 7.3  Problems of I-FISH with centromeric/site-specific DNA probes. (a) and (b) Replication 
of specific genomic loci (LSI21 probe). Some nuclei exhibit replicated signals, whereas in some 
nuclei, it is not apparent. Note the distance between signals can be more than a diameter of a signal. 
(c) Asynchronous replication of a signal (DXZ1) in case of tetrasomy of chromosome X. Note the 
difficulty to make a definitive conclusion about number of signals in the right nucleus. (d) Two-
color FISH with centromeric/site-specific DNA probes for chromosome 1 shows chromosomal 
associations in a nucleus isolated from the adult human brain. Note the impossibility to identify 
number of chromosomes. (e) QFISH demonstrating an association of centromeric regions of 
homologous chromosomes 9, but not a monosomy or chromosome loss. (Copyright © Vorsanova 
et al. 2010a; licensee BioMed Central Ltd. This is an Open Access article distributed under the 
terms of the Creative Commons Attribution License, http://creativecommons.org/licenses/by/2.0)
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chromosomes in their integrity at molecular resolution (Iourov et al. 2006a, 2007). 
The method has been found highly effective for analysis of interphase chromosome 
instability and nuclear genome organization at chromosomal level (Iourov et  al. 
2006a, 2009a, b, 2019a; Yurov et al. 2007a, 2008, 2010b, 2014, 2019b; Liehr and 
Al-Rikabi 2019; Weise et  al. 2019). Figure  7.4 gives a series of examples of 
ICS-MCB.

�Immuno-FISH

Immuno-FISH is the combination of immunohistochemical detection of proteins 
and I-FISH (Liehr 2017). Our experience demonstrates that this technique is useful 
for studying chromosome instability in the human brain following by uncovering 
new mechanisms for neurodegeneration (Iourov et al. 2009a, b; Yurov et al. 2018b, 
2019a). More precisely, immuno-FISH using NeuN antibody allows the detection 
of chromosomal DNA in neuronal cells (Fig. 7.5).

Fig. 7.4  Molecular cytogenetic analyses of the developing and adult human brain by ICS-MCB: 
(a) loss of chromosome 18 (monosomy) in a cell isolated from telencephalic regions of the fetal 
brain; (b) loss of chromosome 16 (monosomy) in a cell isolated from the cerebral cortex of the 
normal human brain; (c) loss of chromosome 1 (monosomy) in a cell isolated from the cerebral 
cortex of the schizophrenia brain; (d) gain of chromosome 21 (trisomy) in a cell isolated from the 
cerebral cortex of the Alzheimer’s disease brain; (e) loss of chromosome 21 (monosomy) in a cell 
isolated from the cerebellum of the ataxia-telangiectasia brain; (f) chromosome instability in the 
cerebellum of the ataxia-telangiectasia brain manifesting as the presence of a rearranged chromo-
some 14 or der(14)(14pter- > 14q12:). (From Yurov et al. 2013 (Fig. 9.2) reproduced with permis-
sion of Springer Nature in the format reuse in a book/textbook via Copyright Clearance Center)
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�QFISH

Interindividual variability of centromeric (heterochromatic) DNAs has been used of 
developing QFISH. This method is applicable for metaphase and interphase analy-
sis of human chromosomes (Iourov et  al. 2005; Vorsanova et  al. 2005a; Iourov 
2017). QFISH with chromosome-enumeration probes may be used for the detection 
of numerical imbalances of interphase chromosome (monosomy or chromosome 
loss). The latter is useful for prenatal and postnatal molecular diagnosis, cancer 
diagnosis and prognosis, and analysis of somatic genomic variability (Iourov 2017; 
Wan 2017; Yurov et al. 2017) (Fig. 7.6).

�Molecular Diagnosis

An advantage of FISH-based techniques is referred to the availability of single-cell 
analysis (Iourov et  al. 2012; Moffitt et  al. 2016; Zhang et  al. 2018). Despite the 
availability of DNA sequencing technologies for single-cell analysis (Knouse et al. 
2014; Gawad et al. 2016), these cannot substitute FISH due to following reasons: 
FISH has the highest possible cell scoring potential and allows visualization of 
arrangement of genomic loci in interphase/metaphase chromosomes (Moffitt et al. 
2016; Yurov et al. 2018b, 2019b). Accordingly, I-FISH is an important technique 
used in molecular cytogenetic diagnosis. Chromosomal imbalances cause a wide 
spectrum of diseases from congenital malformations, intellectual disability, autism, 
epilepsy, cancers, neurodegeneration, and reproductive problems (Vorsanova et al. 
2001b, 2007, 2010b; Yurov et al. 2001, 2007b, 2019a, b; Gersen and Keagle 2005; 
Iourov et al. 2006c, 2008a, b, 2010b, 2011; Ye et al. 2019). Thus, the aforemen-
tioned FISH methods may be applicable for the molecular diagnosis. Since a diag-
nosis is aimed at uncovering molecular and cellular mechanisms for a disease, FISH 

Fig. 7.5  Immuno-FISH. I-FISH using centromeric probe for chromosome Y (DYZ3) with immu-
nostaining by NeuN (neuron-specific antibody) performed for the analysis of cells isolated from 
the human brain. (Copyright © Vorsanova et al. 2010a; licensee BioMed Central Ltd. This is an 
Open Access article distributed under the terms of the Creative Commons Attribution License, 
http://creativecommons.org/licenses/by/2.0)
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should be considered as a technique additional to whole-genome analysis (e.g., 
whole-genome sequencing or molecular karyotyping) for uncovering processes, 
which are involved in the pathogenetic cascade of a disease (i.e., chromosome insta-
bility). The postgenomic era offers numerous possibilities for pathway-based clas-
sification of genome variations to model functional consequences of a genomic 
change. As a result, candidate processes may be suggested (Iourov 2019b; Iourov 
et al. 2019b, c). Currently, several bioinformatics tools are available for molecular 
cytogenetics (Iourov et al. 2012, 2014b; Zeng et al. 2012). Once applied, knowledge 
about mechanisms of disease mediated by chromosome abnormalities allows to 
propose successful therapeutic strategies for presumably incurable genetic condi-
tions (Iourov 2016; Iourov et al. 2015b). Our experience of combination of whole-
genome analysis (molecular karyotyping), I-FISH, and bioinformatics analysis is 
shown by Fig. 7.7 (Iourov et al. 2015a). Moreover, I-FISH analysis of chromosome 
inability may be integrated into molecular cytogenetic diagnostic workflows (Iourov 
et al. 2014a).

Taking into account promising biomarkers revealed by FISH, an algorithm for 
identifying disease mechanisms may be proposed. To succeed, two data sets are 
required: (1) cytogenetic/FISH data set (analysis of large cell populations for 

Fig. 7.6  QFISH with using enumeration-centromeric probes for chromosomes 1 (red signals/
D1Z1) and X (green signals/DXZ1): Nucleus A demonstrates a green signal with a relative inten-
sity of 2120 pixels—true X chromosome monosomy. Nucleus B demonstrates a green signal with 
a relative intensity of 4800 pixels—two overlapping chromosome X signals but not a chromosome 
loss. (From Yurov et al. 2017 reproduced with permission of Springer Nature in the format reuse 
in a book/textbook via Copyright Clearance Center)
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uncovering intercellular karyotypic variations) and (2) data set obtained by molecu-
lar karyotyping and analyzed using systems biology (bioinformatic) methodology 
for determining functional consequences of regular genomic variations. Once 
obtained, correlative analysis between these data sets is to be performed (Iourov 
2019a; Vorsanova et al. 2019). Figure 7.8 reproduces this algorithm.

�Conclusion

I-FISH seems to be an important technological part of current biomedical research 
and molecular diagnosis. Regardless of significant achievements in genomics and 
molecular biology, there is a wide spectrum of applications of this molecular cyto-
genetic technique. Mosaic chromosome abnormalities and chromosomal instability 
are relevant to numerous areas of biomedicine and require specific molecular cyto-
genetic approaches to the detection. Indeed, I-FISH-based techniques have to be 
included in the algorithms of detecting somatic genome variations at chromosomal 
and sub-chromosomal levels. In addition to detecting chromosomal mosaicism per 
se, I-FISH-based techniques are applicable to monitor somatic genomic changes 
and/or uncovering genome/chromosome insatiability, which may be either a cause 
of disease or an element of the pathogenetic cascade. Nuclear arrangement of chro-
mosomes cannot be adequately addressed without I-FISH-based techniques. These 
studies are valuable for understanding genetic processes occurring in the interphase 
nucleus. Moreover, it is highly likely that exogenous influencing of chromosomal 
arrangement in interphase nuclei is a therapeutic opportunity for diseases associated 
with chromosomal imbalances, susceptibility to chromosome/genome instability, 

Fig. 7.7  Interphase FISH analysis of CIN (somatic aneuploidy). (a) FISH with DNA probes for 
chromosomes 7 (green) and 18 (red) showing chromosome 7 loss in the right nucleus (metaphase 
chromosomes show positive signals for these DNA probes). (b) Interphase FISH with DNA probes 
for chromosomes Y (green) and X (red) showing chromosome Y loss in the nucleus (metaphase 
chromosomes show positive signals for these DNA probes). (c) Rates of chromosome losses (red 
bars) and gains (golden bars). (From Iourov et al. 2015a, an article is distributed under the terms 
of the Creative Commons Attribution 4.0 International License, http://creativecommons.org/
licenses/by/4.0/)
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altered programmed cell death, and abnormal chromatin remodeling. In total, one 
can conclude that interphase molecular cytogenetics possesses actual methodology 
for basic and diagnostic research in genetics/genomics, cellular and molecular biol-
ogy, and molecular (genome) medicine despite the availability of postgenomic 
technologies.
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Fig. 7.8  Schematic depiction of the algorithm for investigating the molecular and cellular mecha-
nisms of diseases mediated by CIN. To succeed, one has to follow green arrows or, in other words, 
to analyze chromosome instability by karyotyping and FISH (analysis of larger amounts of cells) 
instead of the commonly accepted workflow including only cytogenetic karyotyping and molecu-
lar karyotyping; bioinformatics is mandatory for uncovering disease mechanisms. (Copyright © 
Vorsanova et  al. 2019; an open access article distributed under the conditions of the Creative 
Commons by Attribution License, which permits unrestricted use, distribution, and reproduction in 
any medium or format, provided the original work is correctly cited)
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