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Chapter 5
Senescence and the Genome

Joanna M. Bridger and Helen A. Foster

Abstract Cellular senescence is commonly initiated in response to replicative or 
cell stress pathways. Senescent cells remain in a state of permanent cell cycle arrest, 
and although being metabolically active, they exhibit distinct senescence phenotypes. 
Though cellular senescence may be beneficial in tumour suppression and wound 
healing, it is commonly associated with age-related diseases. There are various 
mechanisms and drivers that contribute to ageing, but it is becoming increasingly 
apparent that processes related to chromatin and the epigenome are also important. 
Indeed, three of the nine hallmarks of ageing are genome specific including genomic 
instability, epigenetic alterations and telomere attrition. With the advent of new 
technologies like DNA adenine methyltransferase identification and chromosome 
conformation capture, the features and complexity of the ageing genome are being 
revealed. This chapter will address key characteristics of interphase nuclei during 
cellular senescence including the spatio-temporal organisation of chromosomes, 
chromatin remodelling and epigenome changes.

 The Senescence Phenotype

The term “cellular senescence” was originally coined by Hayflick in 1965 (Hayflick 
1965). It was described as an important mechanism to suppress tumorigenicity. 
Senescence can be categorised into four types as shown in Fig. 5.1: (1) replicative 
senescence (RS) as a result of telomere dysfunction or shortening; (2) genotoxic 
stress-induced senescence due to endogenous stress, e.g. oxidative stress and severe 
or irreparable DNA damage; (3) oncogene-induced senescence (OIS) via the 
activation of aberrant signalling pathways caused by different mechanisms including 
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natural endogenous processes such as mitogenic signalling or oxidative respiration, 
physical or chemical insults encountered during life or therapeutic treatment such as 
irradiation or chemotherapy; and (4) embryonic-senescence which occurs in a 
developmentally regulated manner (Coppé et al. 2010; Munoz-Espin et al. 2013; 
Storer et al. 2013; Graziano and Gonzalo 2017). The characteristics of senescence 
may vary depending on the mechanism by which it was induced; for instance, a 
senescence-associated secretory phenotype (SASP) that secretes proinflammatory 
mediators is present with some forms of senescence, but not others (Coppé et al. 
2010). Regardless of the type of senescence, they each share the characteristic arrest 
in cell proliferation (Coppé et al. 2010). This chapter will concentrate on how the 
genome and its behaviour are altered during senescence.

 Organisation of Chromatin and the Epigenome During Ageing

DNA contains genetic information that, when expressed, ultimately codes for the 
synthesis of a range of proteins vital for the correct functioning of cells, tissues and 
the whole organism. The genome, when housed in cell nuclei, needs to be organised 
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Fig. 5.1 The four main categories of senescence. Genomic stress-induced senescence can be 
induced via products from cellular metabolism, e.g. reactive oxygen species (ROS) produced by 
mitochondria or DNA damage due to errors in DNA replication, recombination or repair 
mechanisms. Activation of aberrant signalling pathways can lead to oncogene-induced senescence 
and may result from mitogenic signalling or genotoxic agents such as chemical mutagens and 
radioactivity. Embryonic senescence is important for developmentally regulated growth and 
patterning. Replicative senescence can lead to irreversible cell cycle arrest by telomere shortening 
or dysfunction
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correctly so that this information can be safely conveyed during proliferation and 
cell division to daughter cells, be protected from damage and allow genes to be 
expressed or repressed depending on the protein requirements of the cell and 
differentiated tissue. The nucleosome is an octamer of histone proteins composed of 
two copies of histones H2A, H2B, H3 and H4. There are approximately 30 million 
nucleosomes within the genome, and DNA wraps around these nucleosome 
complexes to form chromatin (Xu and Liu 2019). Epigenetics involves heritable 
changes that alter the expression of genes but do not change the DNA sequence. 
These modifications can act directly on the DNA by adding methyl groups to 
cytosine; through post-translational modifications to histones including acetylation, 
methylation, phosphorylation, sumoylation or ubiquitination; or via non-coding 
RNAs such as microRNA (miRNA), Piwi-interacting RNA (piRNA) and small 
interfering RNA (siRNA) (Dupont et al. 2009; Wei et al. 2017). Deregulation of 
epigenetic mechanisms has been highlighted in disease aetiology and ageing. 
Epigenetic clocks predict the chronological age of individuals by studying the 
methylation status of cytosines in specific GC-rich regions of the genome, known as 
CpG islands (Horvath 2013). Mathematical algorithms are employed to determine 
DNA methylation levels (5-methylcytosine or 5mC) from sets of CpG islands to 
estimate the age of the DNA source (Horvath and Raj 2018). CpG islands are 
commonly found near promoter regions of the genome, are ≥0.5 kb long with a GC 
content of ≥55% and are generally unmethylated (Jeziorska et  al. 2017). Global 
DNA hypomethylation, with hypermethylation of specific loci, is associated with 
physiological ageing (Gensous et  al. 2017). Changes in DNA methylation have 
been demonstrated in a number of age-related diseases such as cancer (Xie et al. 
2019), Parkinson’s disease (Miranda-Morales et al. 2017; Navarro-Sánchez et al. 
2018) and Alzheimer’s disease (Levine et al. 2015) as well in cells derived from 
Hutchinson-Gilford progeria syndrome (HGPS) patients (Ehrlich 2019). However, 
epigenetic changes during ageing are complex. Although region-specific 
hypermethylation may be determined at specific CpG islands and gene loci, ageing 
is also associated with global hypomethylation across the genome (Gensous et al. 
2017) and loss of heterochromatin (Goldman et al. 2004; Chandra et al. 2015).

The degree of chromatin compaction can vary in cells, with euchromatin being 
less compact and open in structure and heterochromatin being more condensed. 
Generally, euchromatin is rich in CpG islands, has a high GC content, is gene-dense 
and is associated with short interspersed elements (SINEs) and transcriptional activ-
ity (Medstrand et  al. 2002; Elbarbary et  al. 2016; Vanrobays 2017). Conversely, 
heterochromatin is AT-rich and gene-poor, associated with long interspersed 
elements (LINEs), and is inaccessible to transcription factors (Vanrobays 2017; 
Medstrand et  al. 2002; Elbarbary et  al. 2016). Epigenetically, histones in 
heterochromatin generally have methylated H3K9 and H3K27, whilst euchromatin 
has both acetylation and methylation of H3K4 and H3K36 (Ahringer and Gasser 
2018). Heterochromatin can be further subdivided into constitutive heterochromatin 
and facultative heterochromatin. Constitutive heterochromatin is not transcribed, 
contains highly repetitive sequences and is H3K9 methylated to maintain a stable 
condensed state important for chromosome structure such as in centromeres and 
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telomeres (Ahringer and Gasser 2018). Facultative heterochromatin is reversible 
and may adopt both open or compact conformations according to (1) spatial 
parameters, e.g. changes in nuclear localisation due to factors such as signalling; (2) 
temporal changes, e.g. within the cell cycle or development; or (3) heritable factors, 
e.g. chromosome X inactivation (Trojer and Reinberg 2007). Thus, euchromatin has 
the potential to be decondensed and express genes in certain tissues. Euchromatic 
and heterochromatic domains are established during embryogenesis and 
development to generate tissue-specific gene expression patterns (Villeponteau 
1997). Commonly within interphase nuclei, heterochromatin is concentrated at the 
nuclear periphery, nucleoli, centromeres and telomeres (Goldman et  al. 2002), 
whilst euchromatin is positioned within the nuclear interior (Romero-Bueno et al. 
2019). However, ageing is associated with substantial changes in heterochromatin 
distribution and epigenetic modifications.

During ageing, altered histone modifications and the redistribution of hetero-
chromatin is thought to be associated with changes in global gene expression and 
genomic instability. Whole-genome bisulfite sequencing (WGBS) and CpG DNA 
methylation microarrays have been used to examine the epigenetic profiles of sam-
ples derived from a newborn and centenarian (103-year-old) (Heyn et  al. 2012). 
Overall, the centenarian sample had a lower DNA methylation content, with the 
most hypomethylated sequences in CpG-poor promoters and tissue-specific genes 
(Heyn et  al. 2012). Interestingly, the methylation status in middle-aged adults 
showed an intermediate level of global DNA methylation, suggesting an 
accumulative change with advancing age (Heyn et al. 2012). This is not unique as 
loss of heterochromatin has also been linked to an ageing phenotype in model 
organisms including Caenorhabditis elegans and Drosophila (Haithcock et  al. 
2005; Larson et al. 2012; Maleszewska et al. 2016). Modifications to histones are 
made through histone-modifying enzymes including histone methyltransferases, 
histone demethylases, histone deacetylases and histone acetylases (Black et  al. 
2012). Therefore, changes in expression or activity of these enzymes may have a 
profound influence on the epigenetic landscape of the genome. This is observed in 
Arabidopsis thaliana whereby reduced transcription of methyltransferases and 
increased transcription of demethylases are associated with hypomethylation in 
ageing (Ogneva et al. 2016). Furthermore, mutations in a H3K4 methyltransferase 
in C. elegans and yeast have been shown to reduce longevity, whilst reduced levels 
of H3K36 demethylase increases lifespan (Sen et al. 2015; Ni et al. 2012).

Epigenetic changes during ageing and loss of heterochromatin also contribute to 
the derepression of previously silenced genes at those loci (Sturm et al. 2015). This 
can result in the activation and potential remobilisation of transposable elements 
(TEs) throughout the genome (Sturm et  al. 2015). Given that nearly half of the 
human genome consists of TEs, this could lead to genomic instability if a TE were 
to relocate into a coding or regulatory sequence within the genome (Mills et  al. 
2006; de Koning et  al. 2011; Sturm et  al. 2015). Ultimately, the resulting DNA 
damage and instability may result in age-related diseases such as cancer (O’Donnell 
and Burns 2010), and there are data to demonstrate this mobility, enhancing 
senescence in humans (Baillie et al. 2011; De Cecco et al. 2013; Keyes 2013).
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Nucleosome density has been shown to alter during ageing and is associated with 
a loss of histones (Hu et al. 2014; Song and Johnson 2018). Nucleosome density 
naturally varies across the genome with transcriptionally active regions having a 
lower density and more open chromatin and transcriptionally inactive regions being 
densely populated with nucleosomes (Boeger et al. 2003; Sidler et al. 2017). Loss 
of nucleosomes in yeast leads to an increase in transcriptional activity from 
previously repressed promoters and corresponds with extensive chromosomal 
alterations and elevation of DNA strand breaks (Hu et  al. 2014). Changes in 
nucleosome density could be due to two mechanisms: (1) alterations in the activity 
of histone chaperones and (2) reduction in histone biogenesis within the cell (Booth 
and Brunet 2016). There is evidence that nucleosome assembly may be regulated by 
the histone chaperone ASF1 in both a DNA synthesis-dependent and DNA synthesis- 
independent manner along with other histone chaperones, chromatin assembly 
factor 1 (CAF-1) and histone repression A factor (HIRA) (Galvani et al. 2008). In 
yeast, loss of function of ASF1 may lead to aberrant heterochromatin formation and 
genomic instability (Tanae et  al. 2012). Indeed, ASF1 expression decreases with 
increasing age in human cells (O’Sullivan et  al. 2010). Here, the synthesis of 
histones in fibroblasts derived from an old individual was half that compared to 
those derived from a child (O’Sullivan et al. 2010). Histone biosynthesis was also 
altered in replicative senescent IMR90 and WI38 cells, leading to downregulation 
of the synthesis of histones H3 and H4 and post-translational modifications 
(O’Sullivan et  al. 2010; Song and Johnson 2018). Thus, nucleosome density 
combined with changes in epigenetic post-translational modifications could be an 
important factor in the loss of heterochromatin observed in ageing.

Conversely, there are regions of the genome that become associated with hetero-
chromatin during ageing (Tsurumi and Li 2012). Chromatin may be organised 
within senescence-associated heterochromatin foci (SAHF) (Morris et  al. 2019; 
Lenain et al. 2017; Braig et al. 2005; Michaloglou et al. 2005; Haugstetter et al. 
2010). SAHF share epigenetic features and characteristics commonly found in 
heterochromatin including late replicating DNA domains (Shah et  al. 2013); 
epigenetic markers H3K9me3 and H3K27me3 (Chandra et al. 2012; Chandra et al. 
2015; Chandra and Narita 2013); HP1 α, β and γ (Boumendil et  al. 2019); 
heterochromatic proteins; histone variant macroH2A; and high-mobility group A 
(HMGA) proteins (Morris et al. 2019). SAHF structure encompasses a chromatin 
core that is compacted and enriched in H3K9m3 (a marker of constitutive 
heterochromatin) and an outer ring of chromatin containing H3K27me3 (a marker 
of facultative heterochromatin), which is protein rich but more relaxed (Lenain et al. 
2017; Chandra et al. 2012; Sadaie et al. 2013). Over 90% of SAHF are commonly 
observed in cells that have undergone OIS (Chandra et al. 2015) with only a small 
proportion seen in replicative senescence in cultures (Chandra et al. 2015; Boumendil 
et al. 2019). SAHFs are not present in HGPS or senescent mouse cells, and it is 
unclear if they occur in vivo (Lazzerini Denchi et al. 2005; Shumaker et al. 2006; 
Scaffidi and Misteli 2006; Swanson et al. 2013). The formation of SAHF represses 
the expression of genes that are important for proliferation and the cell cycle such 
as cyclin A, proliferating nuclear antigen (PCNA), E2F target genes (Aird and 
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Zhang 2013) and cyclin D1 (Zhang et al. 2007; Park et al. 2018) and thus leads to 
senescence. Evidence suggests that SAHF may result from an increase in nuclear 
pore density during OIS, with the nucleoporin TPR having a vital role in inducing 
the formation of SAHF and their maintenance (Boumendil et al. 2019).

Epigenetic modifications and heterochromatin distribution are altered in prema-
ture ageing syndromes. The majority of premature ageing syndromes are caused by 
either mutations leading to alterations in the nuclear lamina and matrix proteins or 
via defects in DNA repair systems (Musich and Zou 2009; Tiwari and Wilson 3rd 
2019). Hutchinson-Gilford progeria syndrome (HGPS) is a premature ageing dis-
ease caused by a mutated lamin A protein. Here, there is a reduction in H3K9me3 
and HP1 and loss of peripheral heterochromatin (Shumaker et al. 2006; Scaffidi and 
Misteli 2006). Werner syndrome (WS) is another progeroid syndrome that similarly 
has a loss of H3K9me3. WS is caused by mutations within the Werner helicase 
(WRN). Interestingly, WRN has been shown to associate with the methyltransferase 
SUV39H1 and HP1α and thus may be important in regulating heterochromatin dur-
ing ageing (Zhang et al. 2015; Wang et al. 2016). Mesenchymal stem cells with an 
induced WRN deficiency show altered heterochromatin distribution and global loss 
of associated epigenetic methylation of histone H3 (Zhang et al. 2015; Shumaker 
et al. 2006). Loss of peripheral heterochromatin adjacent to the nuclear envelope 
(NE) (Goldman et al. 2004; Zhang et al. 2015) and a reduction in H3K9me3 and 
H3K27me3 levels but increase in H4K27me3 have been shown in HGPS cultured 
cells (Shumaker et al. 2006; Scaffidi and Misteli 2006).

 Nuclear Lamina and Nucleoskeleton

The nuclear lamina is located adjacent to the inner nuclear membrane (INM) and is 
composed of type V intermediate filaments proteins—lamins and lamina-associated 
proteins. Lamins are subdivided into the B-type lamins which are constitutively 
expressed within mammalian cells and A-type lamins that are developmentally 
regulated in differentiated cells. The nuclear lamina interacts with INM proteins, 
nuclear pore complexes and chromatin. It has a number of important roles including 
organising chromatin, involvement in DNA replication and gene expression and to 
support structurally the nucleus and its processes (Cau et al. 2014). The peripheral 
nuclear lamina is interconnected and part of a larger structural protein network 
known as the nuclear matrix (NM) (Cau et al. 2014) or nucleoskeleton. This structure 
is believed to be a filamentous meshwork of proteins (e.g. lamins A and C), DNA 
and RNA localised throughout the nucleoplasm that are resistant to high-salt 
treatment and nucleases during experiments. Similarly, the matrix structure is 
important for the structural integrity of nuclei and also supports gene expression, 
chromatin organisation, DNA replication and repair (Chattopadhyay and Pavithra 
2007; Wilson and Coverley 2017; Bridger et al. 2014; Mehta et al. 2007; Elcock and 
Bridger 2008; Godwin et al. 2021). The NM interacts with chromatin typically via 
specialised AT-rich DNA sequences called scaffold/matrix attachment regions (S/
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MARs) (Barboro et al. 2012) and helps maintain the compartmentalisation of the 
nucleus and higher-order chromatin organisation important for the spatio-temporal 
dynamics of the cell.

Laminopathies include progeroid syndromes linked to A-type lamin mutations. 
These are typically characterised as having nuclear envelope deformities (Cau et al. 
2014), with blebbing, herniations, invaginations and altered nuclear shape. These 
are caused by mutations that influence the post-translational processing of proteins, 
ultimately leading to defective protein function. For instance, in HGPS, there is a 
cryptic splice site that leads to a truncated form of lamin A which is permanently 
bound to a farnesyl moiety, termed “progerin” (Gilbert and Swift 2019). The 
build-up of progerin at the INM is toxic, leading to altered nuclear envelope integrity 
and perturbed chromatin organisation (Chandra et al. 2015; Stephens et al. 2018; 
Bikkul et al. 2018). Although progerin is primarily associated with HGPS, it has 
been suggested that a progerin-dependent mechanism may lead to natural ageing 
(Scaffidi and Misteli 2006; McClintock et al. 2007; Ashapkin et al. 2019). Evidence 
acquired by reverse transcription polymerase chain reaction (RT-PCR) has shown 
that fibroblasts obtained from naturally aged individuals expressed progerin mRNA, 
albeit at a low frequency of less than 50-fold (Scaffidi and Misteli 2006). Progerin 
has also been detected in cell lines derived from skin biopsies that had undergone 
prolonged cell culture, particularly in cells derived from older individuals 
(McClintock et al. 2007). However, it should be noted that the levels were very low. 
Senescence is frequently accompanied with profound changes to the INM 
organisation and accompanying processes.

The nuclear lamina interacts with the genome directly through lamina-associated 
domains (LADs) and via lamin-binding partners. DNA adenine methyltransferase 
identification (DamID) technology has been used to extensively map LADs 
throughout the nucleus. This technique is used to identify binding sites between 
DNA and chromatin-binding proteins. For instance, combining a nuclear lamin 
protein (e.g. lamin B1) to a bacterial DNA adenine methyltransferase (Dam) will 
highlight areas of DNA that have been in contact with the nuclear lamins as they 
will undergo adenine methylation. As adenine methylation does not naturally occur 
in eukaryotes, it acts as a detectable marker. LADs are of fundamental importance 
in anchoring transcriptionally silent heterochromatin to the nuclear lamina and 
maintaining the three-dimensional spatial arrangement of chromosomes (van 
Steensel and Belmont 2017; Romero-Bueno et al. 2019). However, lamins can be 
found throughout the nucleoplasm (Bridger et al. 1993) and not just at the nuclear 
envelope, and thus, this should be taken into consideration. LADs are also 
heterogeneous between cell types (Peric-Hupkes et al. 2010; Meuleman et al. 2013) 
but are associated with lamin B1 and lamin B1 receptor (LBR), which anchor 
heterochromatin to the nuclear lamina (Lukasova et  al. 2018). However, during 
cellular senescence, LADs become extensively redistributed (Lochs et  al. 2019). 
Normally, after DNA replication, DNA methyltransferase DNMT1 restores the 
histone methylation pattern; however, this appears to fail during senescence (Lochs 
et al. 2019) leading to hypomethylation. This hypomethylation, combined with the 
loss of lamin B1, leads to heterochromatin dissociating from the nuclear lamina 
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(Lochs et al. 2019) and away from the nuclear periphery. This LAD rearrangement 
may also be associated with the accumulation of SAHF, which relocates 
heterochromatin to the nuclear interior (Lenain et al. 2017; Chandra et al. 2015).

 Nucleolus

The nucleolus is also important for spatio-temporal regulation of the genome and is 
formed from chromosomes containing active nucleolar organiser regions (NORs) 
and other non-acrocentric but gene-rich chromosomes (van Koningsbruggen et al. 
2010; Nemeth et al. 2010). Nucleoli are important in ribosome biogenesis and are 
initiated from the transcription of ribosomal RNA (rRNA) genes found in high copy 
number and arranged in tandem repeats within NORs (Bersaglieri and Santoro 
2019). Genomic regions that are localised in close proximity to the nucleolus are 
termed nucleolus-associated domains (NADs) (Nemeth et al. 2010). Genome-wide 
mapping has demonstrated that NADs derived from HeLa, IMR90 and HT1080 
human cell lines have a low gene density, low transcriptional levels, late-replicating 
loci and heterochromatin enriched with repressive histone modifications H4K20me3, 
H3K27me3 and H3K9me3 (van Koningsbruggen et al. 2010; Nemeth et al. 2010; 
Dillinger et al. 2017). During senescence, nucleoli may fuse and are associated with 
an increased size (Mehta et al. 2007). H3K9me3 modified heterochromatin localised 
at the nucleolus, is remodelled and is coupled with an observed dissociation of 
centromeric and pericentromeric satellite regions away from the nucleolus (Dillinger 
et al. 2017). Interestingly, mapping of NADs using Hi-C in senescent cells remains 
similar to that seen in proliferating cell lines although there are changes in sub- 
NADs association with nucleoli (subdomains smaller than 100 kb), which appear to 
correspond to transcriptional changes (Dillinger et al. 2017; Mehta et al. 2010).

 Centromeres and Telomeres

Centromeres are heterochromatic regions and have satellite II and α-satellite repeat 
sequences that are normally constitutively repressed (De Cecco et  al. 2013). 
However, in replicative senescent cells, the pericentric satellite has been shown to 
distend, and chromatin is reorganised becoming more accessible and hypomethylated 
(De Cecco et al. 2013; Cruickshanks et al. 2013). This centromere distension has 
been termed “senescence-associated distension of satellites” (SADS) and is 
associated with epigenetic modifications associated with early senescence (Criscione 
et  al. 2016). Silencing of pericentric satellite DNA is helped and maintained by 
SIRT6, a histone deacetylase, which removes H3K18 acetylation in normal 
proliferative cells (Nagai et al. 2015; Tasselli et al. 2016). It is possible that SIRT6 
depletion could lead to senescence (Tasselli et al. 2016; Nagai et al. 2015). Indeed, 
SIRT6 is an early factor sequestered to double-strand breaks, so prolonged 
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recruitment to irreversibly damaged DNA associated with ageing may lead to 
depletion of SIRT6 at pericentric satellite DNA leading to the unravelling and 
SADS phenotype (Toiber et al. 2013; Nagai et al. 2015; Tasselli et al. 2016). SADS 
occurs as a common feature of senescence, irrespective of how senescence is 
induced and whether the p16 or p21 pathways are activated (Swanson et al. 2013). 
Unlike SAHF, SADS are found both during normal senescence and in progeria 
(Swanson et al. 2013).

Telomeres, and their associated shelterin protein complex, are located at the ends 
of linear chromosomes and have a protective role in preventing genome instability 
by shielding exposed ends of DNA.  During replication, DNA polymerases are 
unable to completely replicate the telomere region of the lagging strand leading to 
shortening due to the progressive loss of telomere repeats. This has been termed the 
“end-replication problem.” Consequently, the length of the telomeres shortens with 
each cell division leading to attrition. This has been extensively reported in ageing 
studies and is particularly pronounced within in  vitro primary cells leading to a 
finite number of cell divisions or “replicative senescence” due to the shortened 
telomere lengths. The resulting exposure of the chromosome ends leads to the 
activation of DNA repair mechanisms and a persistent DNA damage response 
(DDR) (Victorelli and Passos 2017). Nevertheless, telomere dysfunction can occur 
irrespective of length with telomeric DNA damage being associated with an increase 
in senescence markers such as p16 (Victorelli and Passos 2017; Birch et al. 2015). 
Indeed, in postmitotic cardiomyocytes, there is an increase in DNA damage foci 
associated with telomeres during ageing (Anderson et al. 2019). Telomeres interact 
with a telomere repeat-binding factors 1 and 2 (TRF1 and TRF2, respectively) to 
form t-loops. TRF1 is thought to prevent fusion of telomere ends and regulate 
telomere length (van Steensel et al. 1998; Celli and de Lange 2005), whilst TRF2 
forestalls the DNA damage response (Karlseder et al. 2004).

The positioning of telomeres in interphase nuclei appears to vary between spe-
cies, cell type and disease status (Weierich et al. 2003; Chuang et al. 2004; Arnoult 
et al. 2010; Gilson et al. 2013). Nevertheless, positioning is non-random and inte-
gral to genomic stability (Chuang et al. 2004). There is evidence that telomeres are 
closely associated with the nucleoskeleton and A-type lamins (Ottaviani et al. 2009; 
de Lange 1992) in addition to reports that the telomeres of acrocentric chromo-
somes localise to perinucleolar regions (Ramirez and Surralles 2008). Loss of TRF2 
has been linked to an increased DNA damage response and senescence (van Steensel 
et al. 1998; Okamoto et al. 2013). TRF2 may interact with lamin A/C, which are 
important proteins within the INM and nuclear matrix (Wood et al. 2014). In HGPS, 
there is a reduction in TRF2 (Wood et  al. 2014) and apparent telomere loss. 
Interestingly, studies using human telomerase reverse transcriptase (hTERT) to 
evade replicative senescence on proliferating fibroblasts and HGPS cells have 
shown dramatic genome reorganisation with the mislocalisation of whole chromo-
somes 18 in the control cells and chromosome 18 and X in HGPS cells (Bikkul et al. 
2019). Differences in telomere organisation have also been demonstrated in termi-
nally differentiated cells or quiescent cells in culture that have been contact inhib-
ited (Nagele et al. 2001). Here, interphase nuclei exhibit close telomeric associations 
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within quiescent, non-cycling cells compared with proliferating cells (Nagele et al. 
2001). Clustering of telomeres has also been demonstrated in mouse embryonic 
fibroblasts, as well as partial association with centromeric clusters and promyelo-
cytic leukaemia bodies (PML) (Molenaar et al. 2003; Weierich et al. 2003; Uhlirova 
et al. 2010).

Epigenetic changes also accompany telomere maintenance during ageing 
(Uhlirova et al. 2010). Levels of H3K9me3, H4K20me3 and HP1 protein have been 
shown to decrease in HGPS (Scaffidi and Misteli 2006). Treatment of embryonic 
mouse fibroblast with the histone deacetylase inhibitor Trichostatin A (TSA) led to 
the repositioning of telomeres to the nuclear interior and centromeres towards the 
nuclear periphery (Uhlirova et al. 2010). This has been observed in another system 
where telomere and centromeres were often polarised to opposite ends of the 
chromosome territories (Amrichova et al. 2003). This may have further ramifications 
as genes located in close proximity to telomeric heterochromatin are often silenced 
due to the “telomeric position effect” (TPE) (Baur et al. 2001; Ning et al. 2003). 
There is evidence of expression changes in telomeric genes during senescence 
(Ning et al. 2003) with increased expression of the 16q telomeric genes MGC3101 
and CPNE7  in senescence and GAS11 and CDK10  in both senescent/quiescent 
cells (Ning et  al. 2003). Thus, change in the epigenetic status of constitutive 
heterochromatin could lead to senescent-specific expression patterns.

 Chromosomes and Chromosome Territories

In interphase nuclei, whole chromosomes occupy specific non-random locations 
within the nuclear space called chromosome territories (CTs), occupying similar 
locations between cell types and in vitro compared to ex vivo (Foster et al. 2012). In 
proliferating human fibroblasts, CTs are functionally compartmentalised with gene- 
rich chromosomes occupying a central position within the nucleus and are generally 
characterised as having higher levels of gene expression, open chromatin 
conformations and early replication timing (Croft et al. 1999; Cremer and Cremer 
2001; Foster and Bridger 2005; Bridger et  al. 2014). Conversely, gene-poor 
chromosomes are commonly associated with the nuclear periphery or nucleoli and 
are synonymous with heterochromatin, repression of gene expression, repressive 
histone modifications and late replication timing (Chiang et al. 2018; Croft et al. 
1999). These functionally different compartments have been shown to be of 
importance during ageing. There is evidence that whole chromosome territories can 
occupy different nuclear locations during senescence (Bridger et al. 2000; Mehta 
et  al. 2007). For instance, human chromosome 18 has been shown to occupy a 
peripheral position within proliferating fibroblast nuclei; however, upon replicative 
senescence, chromosome 18 was shown to be repositioned away from the nuclear 
periphery (Bridger et al. 2000). Therefore, CTs appear to be repositioned from a 
gene-density radial distribution in proliferating fibroblasts to a size-correlated radial 
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position within senescent fibroblasts whereby small chromosomes are positioned 
within the nuclear interior and large chromosomes are localised at the nuclear 
periphery (Mehta et al. 2007). Altered nuclear positioning of whole chromosomes 
13 and 18 from the nuclear periphery towards the interior has also been shown in 
cells with A-type lamins (Meaburn et  al. 2005; Meaburn et  al. 2007). Indeed, 
genome reorganisation is more finely observed with changes in the Topologically 
Associated Domain (TADs) compartment re-positioning in replicative senescent 
cells (Criscione et al. 2016; Sun et al. 2018).

 Advances in Technologies

New technologies including CRISPR-multicolour (Ma et  al. 2015) and 
CRISPRainbow (Ma et al. 2016) enable the study of higher-order chromatin and 
nuclear architecture organisation. Here, a live-cell system that utilises super- 
resolution microscopy is used to track genomic loci that are labelled by different 
coloured fluorescent-tagged dCas9-sgRNAs (Ma et  al. 2016). Changes in 
transcriptional activity upon a specific stimulus can also be investigated by tracking 
the dynamics of a promoter and its interaction with cis-/trans-acting regulatory 
elements (Lau and Suh 2017).  New advances in interrogating Hi-C data from 
senescent cells  are permitting chromosome territory postions to be extrapolated 
from these data sets (Das et al. 2020). 

 Summary

The complexity of the ageing genome and structural organisation of the nucleus 
during senescence are becoming increasingly apparent, especially with advances in 
microscopy and global analyses such as super-resolution microscopy and 
chromosome conformation capture. Generally, the ageing epigenome is characterised 
by global hypomethylation and loss of heterochromatin; however, on the contrary, 
some regions of the genome are packaged into heterochromatin, e.g. SAHF. Satellite 
sequences may also be altered in senescence with distension of centromeres, or 
SADS, and shortening or dysfunction of telomeres. Characteristic structural changes 
to the nucleus include an increased size in senescent cells, reorganisation of LADs 
and sub-NADs and nuclear envelope deformities associated with mutations in lamin 
and lamin-associated proteins. Together, these can lead to large-scale reorganisation 
of the genome with repositioning of whole chromosome territories. Overall, these 
fundamental changes to the epigenome lead to alterations in global gene expression 
and genomic instability associated with ageing (Fig. 5.2).
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