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Chapter 4
Interphase Chromosomes of the Human 
Brain

Yuri B. Yurov, Svetlana G. Vorsanova, and Ivan Y. Iourov

Abstract  Molecular neurocytogenetic (neurocytogenomic) studies have shown the 
human brain to demonstrate somatic genome variability (mosaic aneuploidy, sub-
chromosomal rearrangements). Chromosomal mosaicism and instability rates vary 
during ontogeny in the human brain: dramatic increase of the rates in the early brain 
development follows by a significant decrease in the postnatal period. It is highly 
likely that rates of mosaicism and instability increase in the aging brain. Alternatively, 
chromosome-specific instability (aneuploidy and interphase chromosome breaks) 
and increased levels of chromosomal mosaicism confined to the brain are associated 
with a wide spectrum of neurodevelopmental and neurodegenerative diseases. 
Neurocytogenetic/neurocytogenomic analyses may provide further insights into 
genome organization at the chromosomal level in cells of such a high-functioning 
system as the human brain. Here, we review studies of interphase chromosomes in 
the human brain. In this instance, the role of molecular neurocytogenetics and neu-
rocytogenomics in current genetics, genomics, and cell biology of the human brain 
is discussed.
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�Introduction

The availability of interphase molecular cytogenetic techniques (e.g., fluorescence 
in situ hybridization (FISH) with chromosome- and site-specific DNA probes) has 
made possible to analyze chromosomes in almost all cellular populations in humans 
(Soloviev et al. 1995; Yurov et al. 1996, 2013; Vorsanova et al. 2010c; Hu et al. 
2020). Neural chromosomes have been found to demonstrate high rates of varia-
tions manifesting as aneuploidy (gain/loss of chromosomes in a cell), which has 
been hypothesized to mediate neuronal diversity and brain diseases. Currently, 
chromosomal variation in the human brain has shown to represent a mechanism for 
a variety of neurodegenerative and psychiatric diseases (Yurov et al. 2001, 2018b; 
Iourov et al. 2006c; Kingsbury et al. 2006; Arendt et al. 2009; Jourdon et al. 2020). 
Actually, one can distinguish two main directions of studying interphase chromo-
somes in the human brain: (I) analysis of numerical and structural chromosomal 
changes (i.e., aneuploidy, structural abnormalities, copy number variations (CNV), 
chromosome instability, etc.) and (II) uncovering genome organization at the chro-
mosomal level. The former has been the focus of numerous molecular neurocytoge-
netic and neurocytogenomic studies, whereas the latter is likely to become a purpose 
of further neurocytogenetic research.

In the present chapter, we review the latest advances in studying chromosomes in 
the human brain at microscopic, submicroscopic, and molecular levels. Theoretical 
and practical issues of brain-specific cytogenomic analyses are considered.

�Interphase Chromosomes and Brain Ontogeny: Natural 
Chromosomal Variations

The complexity, plasticity, and intercellular variability of the human brain are likely 
to be generated during early ontogenetic stages and to be mediated by genomic 
content of neural progenitor cells (Muotri and Gage 2006; Rohrback et al. 2018b). 
The developing mammalian brain is characterized by high levels of chromosomal 
variations affecting ~30% of cells (Rehen et al. 2001; Yurov et al. 2005, 2007a). 
More precisely, the developing human brain is demonstrated to possess 30–35% of 
aneuploid cells (1.25–1.45% per chromosome) revealed by methods based on fluo-
rescence in situ hybridization (FISH). These are multiprobe FISH, quantitative 
FISH (QFISH), and interphase chromosome-specific multicolor banding (ICS-
MCB) (Yurov et al. 2005, 2007a; Iourov et al. 2010a, 2019a) (Fig. 4.1). Additionally, 

Fig. 4.1  (continued)  (d) – chromosome 9, (e) – chromosome 16, and (f) – chromosome 18. (g) 
Interphase QFISH: (1) a nucleus with two signals for chromosomes 18 (relative intensities: 2058 
and 1772 pixels), (2) a nucleus with one-paired signal mimics monosomy of chromosome 18 (rela-
tive intensity: 4012 pixels), (3) a nucleus with two signals for chromosomes 15 (relative intensities: 
1562 and 1622 pixels), and (4) a nucleus with one signal showing monosomy of chromosome 15 
(relative intensity: 1678 pixels). (From Yurov et al. 2007a, an open-access article distributed under 
the terms of the Creative Commons Attribution License)

Y. B. Yurov et al.



69

Fig. 4.1  Molecular cytogenetic analysis of aneuploidy in the fetal human brain. (a–c). Interphase 
FISH with chromosome-enumeration DNA probes: (a) two nuclei characterized by additional 
chromosomes Y and X and a normal nucleus; (b) a nucleus with monosomy of chromosome 15 and 
a normal nucleus; and (c) a nucleus with monosomy of chromosome 18 and a normal nucleus. 
(d–g) Interphase chromosome-specific MCB: nuclei with monosomy, disomy, trisomy, and 
G-banding ideograms with MCB color-code labeling of a chromosome (from left to right), 
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the developing human brain is the only embryonic tissue so far, which has demon-
strated confined chromosomal mosaicism in contrast to confined placental mosa-
icism (Yurov et  al. 2007a). At the subchromosomal level, similar progressive 
genomic changes are observed (i.e., high rates of brain-specific CNVs involving 
DNA sequences less than 1  Mb) in the developing human brain (McConnell 
et al. 2013; Rohrback et al. 2018a, b). At the sequence level per se, similar somatic 
genomic variations are unlikely to exist (Knouse et al. 2014; Muyas et al. 2020). 
Thus, (sub)chromosomal mosaicism and instability (aneuploidy) are hallmarks of 
the developing mammalian brain.

Taking into account a correlation between number of aneuploid cells (30–35%) 
and number of cells cleared by the programmed cell death (30–50%) in the develop-
ing brain, aneuploidization (progressive accumulation of aneuploid cells) is sug-
gested as a mechanism for cell number regulation during early brain ontogeny 
(Iourov et al. 2006c; Muotri and Gage 2006; Yurov et al. 2010a; Fricker et al. 2018). 
Considering observations evaluating functional effects of aneuploidy either at the 
single cell level or at the tissular level (Iourov et al. 2008a; Dierssen et al. 2009; 
Hultén et al. 2013), mitotic catastrophe (a cascade of abnormal mitotic cell divisions 
producing aneuploidization) has been proposed as a mechanisms for cell number 
decreases in the developing brain because of aneuploid cell death (Iourov et  al. 
2006d, 2019d; Yurov et al. 2007a; Fricker et al. 2018). This hypothesis has been 
supported by studying chromosomal mosaicism in embryonic and extraembryonic 
tissues, which has shown that this mosaicism type is able to cause prenatal death or 
spontaneous abortions (Vorsanova et al. 2005, 2010a). Since aneuploidy is likely to 
have an adverse effect on cellular homeostasis, an alteration to the clearance of 
aneuploid cells during prenatal period may result in high rates of aneuploidy in the 
postnatal human brain, mediating neuropsychiatric and neurodegenerative diseases 
or childhood brain cancer (Iourov et al. 2006c, 2009c, 2019d; Kingsbury et al. 2006; 
McConnell et al. 2017; Yurov et al. 2018a, b, 2019b). On the other hand, aneuploidy 
may represent a mechanism for neuronal diversity in the unaffected human brain 
inasmuch as aneuploid neural cells are functionally active and integrated into brain 
circuitry (Kingsbury et al. 2005). To gain further insights into the role of chromo-
somal variation in the human brain in later ontogeny, one has to study interphase 
chromosome in the childhood and adult human brain.

During the prenatal period, rates of chromosomal and subchromosomal changes 
or instability decrease to 10% or lower (Yurov et al. 2005, 2018b, 2019b; Iourov 
et al. 2006a, 2009b; McConnell et al. 2013; Rohrback et al. 2018a). Interestingly, 
the way of variation in cell numbers mediated by aneuploidization in the develop-
mental brain and programmed cell death is likely to be specific for humans in con-
trast to other vertebrates studied in this context (Rehen et al. 2001; Yurov et al. 2005, 
2007a; Iourov et  al. 2006c; Zupanc 2009; Rohrback et  al. 2018a). Probably, the 
functional uniqueness of the human brain is achieved by such a kind of selective 
pressure at cellular/chromosomal level (Iourov et  al. 2012, 2019d). Additionally, 
intercellular differences between DNA content (~250 Mb) in the adult human brain 
have been reported (Westra et al. 2008, 2010). The variability of the chromosomal 
numbers (aneuploidy) allowed to hypothesize that aneuploidy rates may be higher 
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in late ontogeny. In other words, aneuploidization may be a mechanism for brain 
aging (Iourov et  al. 2008a; Yurov et  al. 2009b, 2010a, b; Faggioli et  al. 2011). 
However, there is no consensus on the matter. Thus, a number of studies report 
increased rates of aneuploidy in the aged brain (Fischer et al. 2012; Andriani et al. 
2017), whereas other reports do not (Van den Bos et al. 2016; Shepherd et al. 2018). 
The lack of consensus is more likely to be a result of technological differences 
between these reports. Single-cell sequencing studies report low rates of genomic 
changes in moderate cell numbers (~100 cell analyzed with the highest resolution 
possible) (Knouse et  al. 2014; Van den Bos et  al. 2016; Rohrback et  al. 2018a), 
whereas molecular cytogenetic studies report high rates of chromosomal variations 
in large cell populations (reviewed by Iourov et al. 2012; Yurov et al. 2018b, 2019b). 
One can propose that combination of sequence-based single-cell techniques and 
molecular cytogenetic (cytogenomic) methods may solve the problem.

The devastating effect of chromosomal abnormalities (aneuploidy and structural 
aberrations) suggests that these genomic variations are able to produce functional 
and structural alterations to the human brain. The confinement of aneuploidy and 
other types of chromosomal variations (instability) to the central nervous system 
has been systematically associated with brain diseases (Yurov et al. 2001, 2018b; 
Iourov et al. 2006c, d, 2013; Tiganov et al. 2012; McConnell et al. 2017; Leija-
Salazar et al. 2018; Iourov 2019; Potter et al. 2019; Heng 2020). It is highly likely 
that each form of brain pathology is linked to a specific type of brain-specific 
genomic alterations.

�Interphase Chromosomes in the Diseased Brain

Chromosomal variations cause functional brain alterations in a wide spectrum of 
psychiatric and neurological diseases (DeLisi et  al. 1994; Iourov et  al. 2008b; 
Vorsanova et al. 2010d; Graham et al. 2019; Potter et al. 2019). Somatic genome 
variations at chromosomal and subchromosomal levels are repeatedly associated 
with neurodevelopmental, neurodegenerative, and/or psychiatric disorders (Iourov 
et al. 2008b, 2010b, 2019d; Smith et al. 2010; Paquola et al. 2017; Vorsanova et al. 
2017; Graham et al. 2019). Chromosomal abnormalities and instability confined to 
the brain have been reported in schizophrenia and neurodegenerative diseases. 
Several neuropsychiatric diseases (e.g., autism and epilepsy) are also hypothesized 
to be associated with neurocytogenetic and neurocytogenomic variations.

The first report on two cases of mosaic aneuploidy (trisomy X and 18) in the 
schizophrenia brain (Yurov et al. 2001) has formed the basis for further neurocy-
togenomic studies of the diseased brain. As a result, several schizophrenia cases 
have been additionally associated with chromosome-1-specific instability and 
gonosomal instability, which are almost exclusively manifested as aneuploidy 
(Yurov et al. 2008, 2016, 2018a). Brain-specific structural chromosomal abnormali-
ties (microdeletions) and CNV have been also found in a number of schizophrenia 
cases (Kim et  al. 2014; Sakai et  al. 2015). These data allow suggesting that a 
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number of schizophrenia cases are the result of chromosomal abnormalities and/or 
instability in the diseased brain (Yurov et al. 2018a, b). Further molecular neurocy-
togenetic (neurocytogenomic) studies would certainly shed light on the involvement 
of “neurochromosomal variation” in schizophrenia and would likely to define the 
exact proportion of schizophrenia cases associated with neural aneuploidy, struc-
tural chromosome aberrations and chromosomal/genomic instability.

Somatic mosaic aneuploidy is one of the commonest types of genomic variations 
in autistic individuals inasmuch as ~10% of autistic males are likely to exhibit low-
level 47,XXY/46,XY mosaicism (Yurov et  al. 2007b). More importantly, gono-
somal mosaicism is common in autistic individuals and their relatives. Several 
familial cases of behavioral abnormalities co-segregating with X chromosome 
aneuploidy and chromosomal instability have been reported (Vorsanova et al. 2007, 
2010b). These data have been used for theoretical explanation of the male-to-female 
ratio in autism (Iourov et al. 2008c). Additionally, the neurocytogenetic hypothesis 
of autism (i.e., a proportion of autism cases may be associated with chromosome 
abnormalities and instability confined to the brain) has been recently described 
using systems biology methodology (Vorsanova et al. 2017). Our preliminary stud-
ies have demonstrated a possible involvement of brain-specific chromosome insta-
bility (chromothripsis) and aneuploidy in pathogenic cascades associated with 
autistic behavior (Iourov et al. 2017a). In the behavioral context, one has to mention 
studies suggesting that genome/chromosome instability probably shapes behavior 
in individuals suffering from neurodevelopmental diseases (Vorsanova et al. 2018) 
and gulf war illness (Liu et al. 2018). However, direct evaluation of interphase chro-
mosomes in the autistic brain is still in process.

Somatic aneuploidy and other types of chromosome instability have been found 
to mediate neurodegeneration (Iourov et  al. 2009a; Leija-Salazar et  al. 2018; 
Shepherd et al. 2018; Yurov et al. 2019a). The Alzheimer’s disease brain has been 
systematically shown to exhibit genome/chromosome instability and related phe-
nomena (i.e., abnormal cell cycle entry, endomitosis, replication stress, abnormal 
DNA damage response, and micronuclei in mitotic tissues) (Herrup and Yang 2007; 
Mosch et al. 2007; Iourov et al. 2011; Yurov et al. 2011, 2019a; Arendt 2012; Bajic 
et al. 2015; Coppedè and Migliore 2015; Hou et al. 2017; Lin et al. 2020; Nudelman 
et al. 2019). Taking into account neurological parallels between Alzheimer’s disease 
and Down syndrome or trisomy of chromosome 21 (Snyder et al. 2020), Professor 
Huntington Potter’s group has proposed that brain-specific copy number changes of 
either whole chromosome 21 or chromosome 21 region containing APP gene are 
able to mediate neurodegeneration in Alzheimer’s disease (Granic et al. 2010; Potter 
et al. 2019). Actually, chromosome 21-psecific instability in the diseased brain is 
one of the most probable mechanisms for Alzheimer’s disease (Iourov et al. 2009b). 
Additionally, genes mutated in rare familial cases of the diseases are involved in 
processes granting proper chromosome segregation during the cell division (Boeras 
et al. 2008; Granic et al. 2010). Similarly, altered chromosome segregation induced 
by LDL/cholesterol seems to contribute to Alzheimer’s disease as well as to 
Niemann-Pick C1 and atherosclerosis (Granic and Potter 2013). Moreover, X chro-
mosome aneuploidy (X chromosome loss) — a cytogenetic biomarker of human 
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aging — has been reported to have higher rates in the Alzheimer’s disease brain as 
to the unaffected brain (Yurov et al. 2014) (Fig. 4.2). Selective cell death of aneu-
ploid neurons (i.e., aneuploidy causes neuron death as it is the case in the develop-
mental brain) has been reported to hallmark the neurodegeneration in the Alzheimer’s 
disease brain (Arendt et al. 2010). Abnormal DNA damage response resulting in 
chromosome/genome instability is likely to result in neurodegeneration in the 
Alzheimer’s disease brain (neural cells with aneuploidy or structurally altered chro-
mosomes produced by DNA damage are susceptible to programmed cell death) 

Fig. 4.2  Molecular neurocytogenetic analyses of the AD brain. (a) Multiprobe (two-probe) and 
quantitative FISH using DNA probes for chromosomes 1 (two red signals/D1Z1) and X (one green 
signal/DXZ1; relative intensity is 2120 pixels) demonstrating true X chromosome monosomy; (b) 
multiprobe (two-probe) and quantitative FISH using DNA probes for chromosomes 1 (two red 
signals/D1Z1) and X (one green signal/DXZ1; relative intensity is 4800 pixels) demonstrating 
overlapping of two X chromosome signals, but not a chromosome loss; (c) ICS-MCB with a probe 
set for chromosome X showing one nucleus bearing two chromosomes X and another nucleus 
bearing single chromosome X. (From Yurov et al. 2014, an open-access article distributed under 
the terms of the Creative Commons Attribution License)
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(Fielder et al. 2017; Lin et al. 2020). Finally, Alzheimer’s disease has been associ-
ated with subchromosomal instability (e.g., nonspecific CNVs) involving the APP 
gene (Kaeser and Chun 2020). In total, chromosome instability, including aneu-
ploidy, represents an element of the Alzheimer’s disease pathogenic cascade (Iourov 
et al. 2011; Yurov et al. 2019a). To link observations on aneuploidy/chromosome 
instability, abortive cell cycle, DNA damage, replication stress, and APP, a hypoth-
esis depicted by Fig. 4.3 has been proposed.

Non-Alzheimer’s disease neurodegeneration has been associated with chromo-
somal variations in the diseased human brain as well. Thus, Lewy body diseases 
exhibit high rates of neural aneuploidy in the neurodegenerating brain (Yang et al. 
2015). MAPT mutations that lead to mitotic defects, neuronal aneuploidy and exten-
sive apoptosis are likely to cause frontotemporal lobar degeneration (Caneus et al. 
2018). Subchromosomal instability involving α-synuclein (SNCA) has been associ-
ated with Parkinson’s disease and multiple system atrophy (Mokretar et al. 2018). 
Probably, the most intriguing example of a neurodegenerative disease associated 
with brain-specific chromosome instability is ataxia-telangiectasia, an autosomal 
recessive chromosome instability syndrome caused by ATM gene mutations and 
characterized by cerebellar degeneration (Iourov et al. 2007b; Potter et al. 2019). In 
fact, neurodegeneration caused by chromosome instability has been firstly demon-
strated during the molecular cytogenetic analysis of the ataxia-telangiectasia brain 
(previously, chromosome instability has been suggested to be almost exclusive 
mechanism for cancer) (Iourov et al. 2009a, b). The ataxia-telangiectasia brain dem-
onstrates chromosome-14 instability (interphase chromosomal breaks and addi-
tional rearranged chromosomes) in ~40% of cells in the degenerating cerebellum 
(Iourov et al. 2009a). These data have been used as a basis for potential therapeutic 
strategies for neurodegeneration mediated by chromosome (genome) instability 
(Yurov et al. 2009a; Iourov et al. 2019b). There are striking differences between 
cancerous chromosome instability and neurodegenerative chromosome instability. 
The differences  are as follows: Cancer: Cancer-susceptibility mutations interact 
with environment producing genome and chromosome instabilities. These pro-
cesses lead to clonal evolution and, thereby, malignancy. Neurodegeneration: 
Chromosome instability and abnormalities are present in a significant proportion of 
cells, and genetic-environment interactions trigger progressive neuronal cell loss 
(neurodegeneration) by natural selection and/or programmed cell death (Iourov 
et al. 2013; Yurov et al. 2019a). Schematically, this model is shown by Fig. 4.4.

In the previous version of the book (Yurov et al. 2013), we proposed a hypothesis 
describing the role of neural aneuploidy and chromosome instability. During the last 
7 years, more evidences for supporting the hypothesis have been provided (Iourov 
et al. 2014, 2019a, b, d; Yurov et al. 2014, 2018a, b, 2019a, b; Bajic et al. 2015; 
Andriani et al. 2017; McConnell et al. 2017; Vorsanova et al. 2017, 2020; Leija-
Salazar et  al. 2018; Rohrback et  al. 2018b; Shepherd et  al. 2018; Graham et  al. 
2019; Iourov 2019; Potter et al. 2019; Jourdon et al. 2020). Accordingly, we would 
like to reproduce schematically the hypothesis (Fig. 4.5).

Y. B. Yurov et al.
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Fig. 4.3  (a) Simplified schematic presentation of the cell cycle theory of AD. Quiescent neuronal 
cells (G0 phase) demonstrate the cell cycle reactivation by either endogenous or environmental 
mitogenic stimuli followed by reentry into the G1 phase. The G0/G1 phase transition is critical for 
a postmitotic neuron and potentially causes neuronal cell death. During G1 phase, diploid neurons 
(chromosomal complement: 2 N; number of chromosomes: 46; DNA content: 2C) demonstrate 
G1-specific cell cycle markers (cyclin D and CDK4/6 complex, cyclin E, and CDK2 complex) 
which are involved in the regulation of G1 phase progression. Cells successfully passing G1 enter 
the S phase (phase of DNA replication). During the S phase, CDK2/cyclin E should be silenced to 
repress additional round of replication of genomic DNA. Protein markers of the S phase are A-type 
cyclins (cyclin A/CDK2 complex). This complex is essential for proper completion of S phase and 
transition from S to G2 phase. DNA content of cells during S phase changes from 2C to 

(continued)
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�Interphase Chromosomes and Genome Organization 
in the Human Brain

Nuclear genome organization in interphase is crucial for regulating chromatin 
remodeling, genome activity (transcription), genome safeguarding (DNA damage 
response, proper chromosome segregation, mitotic checkpoint, etc.), DNA repair 
and replication, and programmed cell death (for details, see Chaps. 1, 2, and 9). 
Previously, we have systematically indicated the importance of neurocytogenetic 
analysis of chromosome organization in interphase nuclei of the human brain 
(Iourov et al. 2006c, 2010a, 2012; Yurov et al. 2013, 2018b). Unfortunately, no sig-
nificant progress has been, as yet, made in this field. Nonetheless, we have attempted 
to list known properties of interphase chromosome behavior in the human brain 

Fig. 4.3  (continued)  4C (chromosome number is still 2 N, but DNA content after replication is 
tetraploid). During G2 phase, cyclin A is degraded, and cyclin B/CDC2 complex (protein bio-
marker of late S/early G2 phases) is formed. Cyclin B/CDC2 complex is essential for triggering 
mitosis. Neuronal cells in G2 phase demonstrate tetraploid (4 N) DNA content or, more precisely, 
possess a nucleus with 46 replicated chromosomes. Chromosomal complement (genomic content) 
of cells in G2 consists of one set of 46 duplicated chromosomes (DNA content: 4 N or 4C; diploid 
nucleus with replicated chromosomes; for more details see, [20]), each having two chromatids—
“mitotic” tetraploidy. It is to note that true constitutional polyploidy is a term used to describe cell 
containing more than two homologous sets of chromosomes (4 N or 92 chromosomes, DNA con-
tent: 4C). We suggest that postmitotic neurons are able to replicate DNA but are not able to make 
a G2/M transition and divide into two daughter cells. (b) The DNA replication stress hypothesis of 
AD. Interplay between essential elements of the AD-type dementia pathogenetic cascade is pro-
posed. The genetic influences (PSEN or APP mutations, trisomy 21, APOE4 genotype), metabolic 
changes, and environmental factors affecting neuronal homeostasis in the aging brain lead to acti-
vation of neuronal proliferation. Mitogens, which do exist in the human brain (neuronal cells), 
induce additional stimuli of extensive adult neurogenesis in the hippocampus. In the AD brain, 
such events would lead to increased hippocampal neurogenesis. A side effect could be that these 
mitogenic stimuli activate cell cycle reentry in postmitotic neurons. The latter is a pathological 
activation of neuronal cell cycle, including reentry into G1 and S phases and initiation of DNA 
replication. Neurons showing protein markers of G2/M phase, probably, contain chromosome set 
of 23 duplicated chromosome pairs with unseparated chromatids (DNA content, 4C; chromosome 
complement, 2 N) and become tetraploid in a sense of DNA content (4C). According to the com-
monly accepted theory of neuronal cell cycle reentry and death, some neuronal populations com-
plete the DNA synthesis but are arrested during the G2/M transition. Therefore, neuronal death 
occurs in G2 phase. Alternatively, one can propose that a large proportion of activated postmitotic 
neurons in the AD brain are unable to pass properly the S phase. This would lead to accumulation 
of genomic and chromosomal instabilities throughout ontogeny (DNA breaks, aneuploidy). In 
addition, replication-induced DNA damages would lead to fork stalling, incomplete or inefficient 
DNA replication, together designated as replication stress. Replication stress may be considered 
the leading cause of neuronal cell death due to processing into S phase or accumulation of genetic 
instabilities, which together constitute an important element of the AD pathogenetic cascade. 
According to the present hypothesis, the possibility to link the two main pathways of AD arises 
from the introduction of accumulation of genomic instabilities associated with DNA replication 
stress, which is able to produce as neuronal cell death (replicative cell death) as chromosomal 
aneuploidy due to natural selection in neural cell populations probably causing extra APP in the 
diseased brain. (From Yurov et al. 2011, an open-access article distributed under the terms of the 
Creative Commons Attribution License)
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along with molecular cytogenetic FISH-based techniques, which are used for the 
analysis.

To perform a successful study of chromosomal arrangement in interphase, one 
has to be aware about the spatial preservation of interphase nuclei during tissue/cell 
suspension preparation for molecular cytogenetic analysis. Although brain cell 
preparation for molecular neurocytogenetic analysis requires specific procedures, it 
does provide an opportunity to preserve interphase nuclei of the human brain 
(Iourov et  al. 2006b; Yurov et  al. 2017b). Pairing of homologous chromosomes 
(chromosomal associations/locus associations) is common in the postnatal human 
brain (Iourov et al. 2005, 2017b; Yurov et al. 2017b). To make accurate scoring of 
the associations, QFISH may be applied (Iourov et al. 2005; Iourov 2017). Finally, 
functional complexity and structural variability of neural cell populations lead to 
requirement of studying integral interphase chromosomes at molecular resolutions 
in a “band-by-band” manner. This technical opportunity is offered by interphase 
chromosome-specific multicolor banding (ICS-MCB) (Iourov et al. 2006a, 2007a). 
An example of ICS-MCB is shown by Fig. 4.6. Nuclear genome organization at the 
chromosomal level may be a mechanism for brain diseases (Iourov 2012; Yurov 

Fig. 4.4  Theoretical model for CIN mediating (a) cancer and (b) neurodegeneration. (a) Genetic 
defects and genetic-environmental interactions may cause chromosomal/genomic changes, which 
produce CIN; alternatively, cell populations may adapt to aneuploidy and CIN evolving to a cell 
population with a fitness advantage. Cells affected by CIN and tolerating deteriorating effects of 
CIN on cellular homeostasis are able to evolve clonally to produce malignancy. (b) CIN/somatic 
mosaicism affecting a significant proportion of cells interacting with environmental triggers may 
result into progressive neuronal cell loss (neurodegeneration) under natural selection pressure and 
through the programmed cell death (N, normal neurons; CIN, neuronal cell affected by CIN). The 
model is based on the observations of CIN in the neurodegenerating brain and cancers. (From 
Yurov et al. 2019a, an open-access article distributed under the terms of the Creative Commons 
Attribution License)

4  Interphase Chromosomes of the Human Brain
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et al. 2013). However, there are no, as yet, studies attempting to correlate specific 
nuclear chromosome organization in neural cells and central nervous system 
dysfunction.

�Conclusion

The present chapter is dedicated to behavior and variation of interphase chromo-
somes in the human brain. Aneuploidy and other types of chromosome instability 
are mechanisms for neuronal diversity and brain diseases. As repeatedly noted 
before, brain-oriented interphase chromosome (neurocytogenetic and neurocytoge-
nomic) analysis brings new insights to neuroscience, human genomics, and molecu-
lar medicine.

Molecular (neuro)cytogenetic and (neuro)cytogenomic studies seem to benefit 
from bioinformatics approaches based on network- or pathway-based analysis, i.e., 
systems biology methodology (Yurov et  al. 2017a, b). Actually, pathway-based 
classification of human diseases is considered the most promising way to unravel 

Fig. 4.5  Schematic representation of the hypothesis on the role of aneuploidy in normal CNS 
development and aging as well as in pathogenesis of brain diseases. During the normal prenatal 
brain development, developmental chromosome instability is cleared leading to three-time 
decrease of aneuploidy rates. Brain aging is likely to be associated with slight increase of aneu-
ploidy. Total failure of clearance of developmental chromosome instability would lead to the per-
sistence as observed in chromosome instability syndromes with brain dysfunction 
(ataxia-telangiectasia) and brain cancers. Clearance may not affect low-level chromosomal mosa-
icism confined to the developing brain, which is extremely frequent among human fetuses. In such 
cases, the postnatal brain exhibits low-level chromosome-specific mosaic aneuploidy. The latter is 
shown to be associated with diseases of neuronal dysfunction and degeneration (mental retarda-
tion, autism, schizophrenia, Alzheimer’s disease). (From Yurov et al. 2013 (previous edition of the 
book — Figure 4.9), reproduced with permission of Springer Nature in the format reuse in a book/
textbook via Copyright Clearance Center)
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Fig. 4.6  FISH using MCB probes on interphase nuclei of the human brain. (a): FISH with MCB 
probe for chromosome 1. R110 signals correspond to 1p32.3Yp36.3 and 1q32Yq43. SO (Spectrum 
Orange) signals Y 1p13Yq21 including constitutive heterochromatin (1qh). TR (Texas Red) sig-
nals Y 1p31.1Yp33 and 1q21.3Yq31. Cy5 signals Y 1p13.1Yp22.3 and 1q32Yq43. DEAC signals 
Y 1q21.3Yq31. Note the upper chromosome 1 is folded around 1qh and bent in the proximal part 
of the q-arm. (b): FISH with MCB probe for chromosome 9. R110 signals correspond to 9p13Yq13 
including constitutive heterochromatin (9qh). SO (Spectrum Orange) signals Y 9p21Yp24 and 
9q32Yq34. TR (Texas Red) signals Y 9q22.2Yq34.1. Cy5 signals Y 9p13Yp23. DEAC signals Y 
9q13Yq22.2. (c): FISH with MCB probe for chromosome 16. R110 signals correspond to 
16p11.1Yp13.1 SO (Spectrum Orange) signals Y 16p13.3Yp21. TR (Texas Red) signals Y 
16q11.1Yq21 including constitutive heterochromatin (16qh). Cy5 signals Y 16q21Yq24. Note the 
single Texas Red signal instead of two; this implies that 16qh regions of two homologous chromo-
somes 16 are overlapped. Therefore, somatic pairing of two homologous chromosomes 16 by 16qh 
region should be suspected. (d): FISH with MCB probe for chromosome 18. R110 signals 

(continued)
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complex relationship between molecular/cellular processes and phenotypes (Iourov 
et  al. 2019b). We suggest that systems biology methodology considered in the 
molecular cytogenomic context is able to provide new information about interphase 
chromosomes in the human brain (Yurov et al. 2017a, b; Iourov et al. 2019c). These 
approaches toward the definition of molecular basis of human brain diseases have 
been already found successful: (i) uncovering molecular mechanisms for somatic 
mosaicism (Iourov et al. 2015), (ii) genomic instability associated with neurological 
and psychiatric diseases (McConnell et al. 2017; Vorsanova et al. 2017), and (iii) 
molecular/cellular alterations causing brain dysfunction (Iourov et al. 2009b, 2019b, 
c). To this end, one has to conclude that interphase chromosome studies certainly 
contribute to our knowledge about the human central nervous system.
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