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We dedicate this work to our close relative and colleague, Ilia V 
Soloviev, who will never be forgotten. He was a talented young 
researcher and a pioneer of molecular cytogenetics, genome, and 
chromosome research. His prodigious work and original ideas have 
formed our current research directions.

Dr. Ilia V Soloviev

The book is also dedicated to Prof. Yuri B Yurov, who left us in 2017. 
It is hardly possible to describe Yuri’s contribution to bioscience and 
molecular cytogenetics. For more details, please see Iourov IY, 
Vorsanova SG: Yuri B. Yurov (1951–2017). Molecular Cytogenetics 
2018; 11:36

Prof. Yuri B Yurov
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Preface

In 2013, Human Interphase Chromosomes—Biomedical Aspects edited by Yuri 
B. Yurov, Svetlana G. Vorsanova, Ivan Y. Iourov (Springer Science+Business Media, 
LLC 2013; Print ISBN: 978-1-4614-6557-7; Online ISBN: 978-1-4614-6558-4) 
was published. Taking into account the success of that publication, we have accepted 
the kind invitation of Springer for issuing the second edition of Human Interphase 
Chromosomes—Biomedical Aspects. Tragically, our co-editor Prof. Yuri B Yurov 
passed away in 2017. Nevertheless, his name has to be among the editors and 
authors of chapters inasmuch as his original ideas and prodigious work underlies the 
content of the book.

The study of human interphase chromosomes is important for understanding 
eukaryotic DNA expression and replication as the interphase represents the essen-
tial period of cellular life. Knowledge about the architectural organization of chro-
mosomes inside the nuclear space is important for understanding genome functioning 
during the cell cycle. Moreover, human chromosomal variations require the use of 
molecular cytogenetic techniques for interphase chromosomal analysis, because the 
human organism has >200 cell types, the majority of which are in interphase. As we 
noted in the preface to the previous edition: interphase cytogenetics “is often viewed 
as an esoteric discipline that is only concerns few specialists trying to implement 
single-cell approaches to genome biology and medicine. However, studying inter-
phase chromosomes is relevant to numerous fields of life sciences including but not 
limited to molecular and cell biology, biomedicine, genetics (including medical 
genetics), neuroscience, evolution, oncology, and genomics.”

The main body of the book is composed of nine chapters. Chapter 1 (by Prof. 
Ivan Iourov et al.) is devoted to Human Interphase Cytogenomics, “the rebranded 
research area integrates data on chromosomes acquired by visualization, array/
sequencing and bioinformatics assays for understanding the 3D genome, molecular/
cellular pathways and phenome in health and disease.” Chapter 2 (contributed by 
Prof. SV Razin and his colleagues) is a brilliant description of spatial genome 
behavior in interphase. The third chapter (by Drs. JW Oh and A Abyzov) acknowl-
edges current trends in analysis of cell and nuclear genome by next-generation 
sequencing providing the state of the art in studying cellular genomes at the DNA 
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sequence level. Chapter 4 (by Prof. YB Yurov et al.) is dedicated to interphase chro-
mosomes of the human brain. The role of chromosomal variation in the normal and 
diseased human brain is discussed. Drs. JM Bridger and HA Foster have described 
cellular senescence in the genomic/chromosomal context in Chap. 5. Unclassified 
chromosome abnormalities and genome behavior in interphase are described by 
Prof. H. Heng and his colleagues in Chap. 6. Chapter 7 (by Prof. SG Vorsanova and 
her colleagues) is dedicated to the role of interphase fluorescence in situ hybridiza-
tion in current biomedical research and molecular diagnosis. Prof. T.  Liehr has 
described the analysis of chromosome architecture using high-resolution FISH- 
banding in three-dimensionally preserved human interphase nuclei in Chap. 8. The 
final chapter (Chap. 9) expresses a chromosome-centric view on the genome. In the 
authors’ opinion, “there is an urgent need for expressing chromosome-centric con-
cepts for filling the “chromosomal gap” in human genetics (genomics) and genomic 
medicine. To succeed, one has to look at the problem from different perspectives: 
theoretical, empirical, diagnostic, and educational.” To this end, we hope that the 
second edition of Human Interphase Chromosomes—Biomedical Aspects is able to 
repeat the success of the first edition.

Moscow, Russia  Ivan Y. Iourov 
   Svetlana G. Vorsanova  

Preface
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Chapter 1
Human Interphase Cytogenomics

Ivan Y. Iourov, Svetlana G. Vorsanova, and Yuri B. Yurov

Abstract Landmark discoveries in chromosome biology are intimately associated 
with introducing novel molecular technologies. Cytogenetic analysis remains the 
gold standard for technological advances in human genetics. However, since the 
resolution of the analysis is rather low (~5 Mb), numerous molecular technologies 
with a higher resolution have been introduced to cytogenetics. Among these, there 
is interphase fluorescence in situ hybridization, which has also become a “must- 
use” platform for studying human chromosomes in interphase. Subsequently, tech-
niques for analyzing spatial chromatin organization (C techniques) and whole 
genomes at cellular level (single-cell array and sequencing techniques) have been 
developed. Although these methods have become technological breakthroughs, 
numerous structural and functional aspects of chromosomal organization in inter-
phase remain to be elucidated. Here, the role of interphase chromosomal analysis in 
contemporary biomedicine is assessed. It is generally accepted that nuclear chromo-
some organization contributes to almost all key intranuclear processes in health and 
disease. Additionally, interphase chromosomal analysis sheds light on intercellular 
and interindividual genome variability. Acknowledging the trend in molecular cyto-
genetics initiated more than a decade ago, we have rebranded human interphase 
cytogenetics. Accordingly, the term has been changed to human interphase cytoge-
nomics. The rebranded research area integrates data on chromosomes acquired by 
visualization, array/sequencing, and bioinformatics assays for understanding the 3D 
genome, molecular/cellular pathways, and phenome in health and disease.

I. Y. Iourov (*) 
Mental Health Research Center, Moscow, Russia 

Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National 
Research Medical University, Ministry of Health of Russian Federation, Moscow, Russia 

Medical Genetics Department of Russian Medical Academy of Continuous Postgraduate 
Education, Moscow, Russia 

S. G. Vorsanova · Y. B. Yurov 
Mental Health Research Center, Moscow, Russia 
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Research Medical University, Ministry of Health of Russian Federation, Moscow, Russia
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Almost 30 years ago, it was postulated that studying chromosome organization in 
the interphase nucleus is unavoidable for proper understanding of molecular pro-
cesses involving nucleic acids in a cell (Manuelidis 1990). Technological develop-
ments in cytogenetics (molecular cytogenetics) have always been the driving force 
of chromosome research (Ferguson-Smith 2015; Liehr 2017). On the long and 
winding road to chromosomal analysis at any stage of the cell cycle, the introduc-
tion of interphase fluorescence in situ hybridization (FISH) has been the long- 
awaited starting point for the real studies of chromosome structures beyond the 
metaphase chromosomes. These aspects of human interphase chromosomes have 
been reviewed historically in a chapter of the previous edition of this book (Yurov 
et  al. 2013b). Regardless of the availability of numerous molecular approaches 
toward single-cell DNA analysis, interphase FISH-based methods apparently 
remain the essential technological strategies for unraveling spatial arrangement and 
structural behavior of whole chromosomes in eukaryotes (Vorsanova et al. 2010a; 
Liehr 2017; Iourov et al. 2019c; Hu et al. 2020). Nonetheless, taking into account 
the data, which may be provided by the methodological arsenal of current biosci-
ence, it seems absurd to disintegrate genomic, cytogenetic, epigenetic, proteomic, 
metabolomic, biochemical, etc., knowledge. Accordingly, microarray (molecular 
karyotyping), sequencing, and chromatin analysis (i.e., chromosome conformation 
capture or 3C techniques) together with data acquired by molecular cytogenetic and 
banding cytogenetic analyses might be extremely useful for chromosome biology. 
The integrated knowledge would certainly form a blueprint of cellular homeostasis. 
In this instance, cytogenomics (i.e., cytogenetic studies in the genomic context as 
initially defined in Iourov et al. 2008) seems to become more important biomedical 
area than previously recognized.

Chromosomal order in the interphase nucleus has been a focus of biological 
research from the second half of the nineteenth century to the present (Rabl 1885; 
Cremer et al. 2020). During the second half of the twentieth century, several com-
patible models were proposed to describe chromosome/chromatin order in the inter-
phase nucleus (Comings 1968, 1980; Vogel and Schroeder 1974; Manuelidis 1990). 
This line of research had been purely theoretic until in situ DNA hybridization 
(Pinkel et al. 1986; Vorsanova et al. 1986) allowed the direct analysis of interphase 
chromosomal structures in humans (overviewed in Yurov et  al. 2013a and Liehr 
2017). Chromosomal analysis in interphase has provided evidences that chromo-
somes are spatially arranged in the nucleus occupying “chromosome territories” to 
modulate genome behavior at the supramolecular (intranuclear) level (Cremer and 
Cremer 2010; Rouquette et al. 2010). Structurally and functionally, spatial chromo-
some arrangement in interphase nuclei correlates with genome organization at 
sequence and banding levels (Foster and Bridger 2005; Jabbari and Bernardi 2017). 
Therefore, it is not surprising that further studies have discovered the involvement 
of spatial interphase chromosome arrangement in such critical biological processes/
phenomena as transcriptional regulation, DNA replication and reparation, genomic 
imprinting, genome stability maintenance, programmed cell death, development, 
aging, and evolution (see reviews by Bickmore and van Steensel 2013; Gasser 2016; 
Finn and Misteli 2019; Fritz et al. 2016, 2019; Seeber et al. 2018; Henry et al. 2019; 

I. Y. Iourov et al.
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Ravi et  al. 2020). Disease phenotypes are occasionally associated with specific 
nuclear chromosome architecture as well (Foster and Bridger 2005; Iourov 2012; 
Kemeny et al. 2018; Finn and Misteli 2019). Furthermore, changes in chromatin 
behavior and state are systematically associated with the spatial arrangement of 
interphase chromosomes (Rosa and Everaers 2008; Zhang and Wolynes 2015; Yu 
and Ren 2017; Chicano and Daban 2019). In total, one may conclude that the ubiq-
uitous concept “Form Follows Functions” (3F) comprehensively describing the 
global functional three-dimensional (3D) organization of human genome (i.e., the 
first dimension, DNA sequence; the second dimension, chromatin; the third dimen-
sion, chromosomes) culminates in the spatial chromosome arrangement in 
interphase.

The genomic 3F-3D interplay has been further delineated by 3C-based tech-
niques, which have been found useful for uncovering missing links between genome 
behavior and DNA arrangement in interphase nuclei (reviewed by Dekker and 
Mirny 2016; Han et al. 2018; Kempfer and Pombo 2020). These studies have formed 
the firm basis for a new concept of 3D genomics, which integrates data on chroma-
tin organization and its impact on the genome behavior mediated by spatial DNA 
arrangement in interphase (Dekker and Mirny 2016; Yu and Ren 2017; Spielmann 
et  al. 2018). 3D genomics’ concept has also been found applicable to determine 
mechanisms for a variety of diseases (Chakraborty and Ay 2019). For instance, 3D 
genomic concepts have long been proposed as a basis of new paradigm or as a new 
frontier in brain diseases (Mitchell et al. 2014). However, one has to note that chro-
mosomal organization in interphase nuclei of the human brain remains a kind of 
dark matter of neuroscience/biomedicine (Yurov et  al. 2018). Notwithstanding, 
changes in 3D genome organization producing pathological cell phenotypes are 
clearly demonstrated in various cancers, and it has been suggested that action of 3D 
genome-disrupting drugs might be effective in anticancer therapy (Kantidze et al. 
2020). Additionally, several complex and monogenic diseases seem to exhibit spe-
cific chromatin arrangement referred to 3D genome alterations (Chakraborty and Ay 
2019). In summary, to advance the 3D genome concept and to understand the rele-
vance of genomic 3F-3D interplay in health and disease, human interphase cytoge-
netic analysis appears to be required.

Interphase molecular cytogenetics encompasses an important set of methods for 
uncovering genomic variations. Until recently, chromosomal analysis in interphase 
has been almost exclusively based on FISH, which is used for detection of 
chromosome- specific DNAs (i.e., DNA located at pericentromeric heterochromatin 
or euchromatic regions) and, more rarely, whole chromosomes (Yurov et al. 1996; 
Ried 1998; Fung et  al. 2000; Iourov et  al. 2006b, 2019c; Arendt et  al. 2009; 
Vorsanova et al. 2010a; Wang et al. 2016). Even nowadays, the application of inter-
phase FISH may be almost as effective as whole-genome single-cell analysis 
(single- cell whole-genome sequencing) for studying aneuploidy and specific chro-
mosomal rearrangements in interphase nuclei (Bakker et al. 2015; Yurov et al. 2018; 
Andriani et al. 2019). Moreover, FISH-based methods (e.g., interphase chromosome- 
specific multicolor banding) are able to detect interphase chromosome breaks and 
abnormal chromosomal behavior in interphase, which hallmark a variety of 

1 Human Interphase Cytogenomics
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pathogenic processes and are undetectable by other methods (Iourov et al. 2006a, 
2007, 2009a). Chromosomal DNA replication appears to be another phenomenon 
specifically requiring interphase FISH for the analysis (Vorsanova et  al. 2001). 
Currently, there are two alternative platforms for detecting genomic/chromosomal 
changes in individual cells: single-cell whole-genome or targeted sequencing (or, 
more rarely, microarray analysis) (Wang et al. 2013; Gawad et al. 2016; Paolillo 
et al. 2019) and interphase FISH (Yurov et al. 1996; Fung et al. 2000; Iourov et al. 
2006a, 2007, 2012, 2019c; Andriani et al. 2019). Thus, interphase FISH-based tech-
niques remain an important technological part of studying genomic variations 
despite of developments in single-cell analyses of DNA fractions by sequencing and 
microarray.

The importance of uncovering genomic variations in single cells of tissues, 
which are inappropriate for cytogenetic methods, has been consistently recognized. 
Interphase FISH has been found applicable for analyzing aneuploidy/polyploidy 
during prenatal development (Vorsanova et  al. 2005; Yurov et  al. 2005, 2007a; 
Russo et al. 2016). To achieve high efficiency in postnatal diagnosis of chromo-
somal mosaicism, interphase FISH is performed as well (Vorsanova et al. 2010b; 
Jackson-Cook 2011; Iourov et al. 2019c). More importantly, molecular cytogenetic 
analyses in brain diseases using interphase FISH-based approaches have allowed 
the discovery of new mechanisms for psychiatric and neurodegenerative diseases 
(Yurov et al. 2001, 2007b, 2018, 2019; Arendt et al. 2009; Iourov et al. 2009b, 2013; 
Frade and Gage 2017; Graham et al. 2019). Chromosomal instability and specific 
chromosomal rearrangements detectable in almost all types of cancers are repeat-
edly addressed by interphase FISH (Ried 1998; Nordgren et al. 2002; Liehr 2017). 
Actually, data acquired by interphase FISH has contributed to our understanding of 
aneuploidy’s role and system (fuzzy) inheritance in such a devastating condition as 
cancer (Christine et al. 2018). Finally, human aging mediated by the accumulation 
of somatic chromosomal mutations (e.g., aneuploidy) is a focus of studies per-
formed by interphase molecular cytogenetic techniques (Yurov et al. 2010; Zhang 
and Vijg 2018). To put the molecular cytogenetic data into the genomic context, one 
can suggest to integrate data acquired by visualization techniques (mainly, inter-
phase FISH) and techniques for DNA fraction analysis (i.e., array/sequencing). For 
succeeding in the integration followed by the interpretation of data on genome vari-
ations, bioinformatic approaches/systems analyses are to be used. Our previous in 
silico molecular cytogenetic analyses, for example, have demonstrated that systems 
analysis of functional consequences of chromosomal imbalances and copy number 
variations may be useful for linking intercellular and interindividual genome vari-
ability (Iourov et al. 2014, 2019b; Iourov 2019a). Since the methodology encom-
passing visualization techniques, methods for studying DNA fractions (single-cell/
multiple-cell) and bioinformatics (cytogenomics) may determine functioning of 
complex genetic systems at sequence, chromatin, and chromosome levels, one can 
suggest the success of introducing cytogenomic paradigm to interphase 
cytogenetics.

Cytogenomics is the study of chromosomes in the genomic context or inversely 
the study of the genome (genome variability) in chromosomal context (Iourov et al. 

I. Y. Iourov et al.
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2008). Defined this way, cytogenomics has gained significant momentum in recent 
years (Bernheim 2010; Silva et al. 2019). Postgenomics methodology has further 
significantly contributed to cytogenomics’ development (cytopostgenomics), open-
ing new opportunities through systems biology (medicine) analysis (Iourov 2019b). 
In the postgenomic perspective, chromosome research requires massive data sets of 
genomic variations, transcriptome, proteome (interactome), and metabolome (Heng 
et al. 2018; Iourov 2019a, b). In terms of the chromosomal variation (variability of 
spatial chromosome arrangement + genomic variations at the chromosomal or sub-
chromosomal level) in single cells, genomics (cytogenomics) using system biology 
has already been found useful to identify causes and consequences of genomic vari-
ations in individual cells (Iourov et al. 2012; Wang et al. 2013; Paolillo et al. 2019). 
Similarly, single-cell transcriptomic analyses have been successfully used for 
related purposes (Stubbington et  al. 2017). The next task for the 3D genomics 
research would be the integration of (cyto)genomic and epigenomic data with the 
results of studying chromatin behavior. Fortunately, there have been developed a 
panel of protocols to succeed in empirical and in silico chromatin analysis 
(Woodcock and Ghosh 2010; Ramani et al. 2016; Weinreb and Raphael 2016). The 
description of the 3D genome requires, thereby, the completed sets of cytoge-
nomic data.

Chromosomal analysis in interphase nuclei has generally been referred to as 
interphase molecular cytogenetics (Yurov et al. 2013b). In rapidly evolving research 
fields, rebranding of terms appears to be impending. In our opinion, taking into 
account the aforementioned rationale of modern interphase chromosome analysis, 
molecular cytogenetic studies of human interphase chromosomes may be desig-
nated as human interphase cytogenomics.

How does human interphase cytogenomics work? What place does it have in cur-
rent biomedicine? Summarizing the previous  ideas, it works as follows. Firstly, 
cytogenomic data acquired by visualization techniques (cytogenetic, molecular 
cytogenetic, and/or cytochemical methods) and techniques for analysis of DNA 
fractions (microarray/sequencing) are integrated using bioinformatics (systems 
analysis of genome variations at genome, epigenome, proteome, and metabolome 
levels). The acquired knowledge underlies interphase cytogenomics as a biomedical 
discipline. Secondly, using high-resolution 3C-/4C-/5C-based techniques for chro-
matin analysis, interphase cytogenomics plus chromatin data provide data on the 3D 
genome. Thirdly, systems analysis, applied to molecular, cellular, and tissular path-
ways in the 3D genomic context, is an apparent basis for molecular bioscience. To 
achieve a (bio)medical relevance, this global knowledge should be correlated with 
the results of phenome analysis. Visually, the way how human interphase cytoge-
nomics works and its place in current biomedicine may be schematically presented 
as shown by Fig. 1.1.

If cytogenomic data are classified using pathways, one may uncover the molecu-
lar and cellular processes altered/modified by the genomic variations (for more 
details, see Iourov et al. 2019b). Slowly but surely, current medicine moves toward 
a systems science. As a result, pathway-based classification has become an impor-
tant element of almost all representative biomedical studies, suggesting a 

1 Human Interphase Cytogenomics
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Fig. 1.1 Human interphase cytogenomics and its place in current biomedicine. The basis of 
human interphase cytogenomics is formed by knowledge acquired from visualization (micros-
copy/(molecular) cytogenetic techniques; greenish area) and multiple-cell/single-cell of DNA 
fractions by array-/sequencing-based techniques (reddish area) integrated by systems analysis 
using in silico analyses of genome, epigenome, proteome, and metabolome (bioinformatics; bluish 
area). Interphase cytogenomic data with chromatin analysis (3C-/4C-/5C-based techniques) is the 
way to the reconstruction of the 3D genome (3D genomics). Systems biology analysis of molecu-
lar, cellular, and tissular pathways in the 3D genomic context (molecular bioscience) correlated 
with detailed phenome analysis may be the essence of current biomedicine

I. Y. Iourov et al.
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reevaluation of disease etiology in an unprecedented manner (Iourov et al. 2019a). 
Unfortunately, neither the results of interphase chromosomal analyses nor the data 
on spatial chromosome organization have been addressed by a pathway-based (sys-
tems biology or cyto(post)genomic) analysis. Since studies dedicated to human 
interphase cytogenomics have the potential to complement our understanding of 
genome behavior at the supramolecular/chromosomal level at all stages of cell cycle 
in health and disease, it is important to incorporate cytogenomic data on interphase 
chromosomes into global omics’ data sets.
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Chapter 2
Eukaryotic Genome in Three Dimensions

Sergey V. Razin, Alexey A. Gavrilov, and Sergey V. Ulianov

Abstract Modern ideas regarding the three-dimensional organization of the 
genome and its role in controlling gene expression are largely based on the results 
of research performed using the proximity ligation protocol. It has been demonstrated 
that genome folding is much less regular than was previously assumed. On the other 
hand, the genome was found partitioned into semi-independent structural-functional 
units commonly referred to as topologically associating domains (TADs). TAD 
borders restrict the areas of enhancer action via interfering with establishment of 
long-distance enhancer-promoter contacts. Within TADs, spatial juxtaposing of 
promoters to various enhancers or silencers results in the assembly of activating or 
repressing chromatin hubs that constitute an important part of epigenetic mechanisms 
regulating gene expression in higher eukaryotes. Within the cell nucleus, the spatial 
organization of the genome is tightly connected with functional compartmentalization 
of the nucleus. Recent evidence suggests that liquid phase separation plays an 
important role in establishing both the 3D genome organization and nuclear 
compartmentalization. In this chapter, we review the present state and outline the 
most important trends for future research in the area of 3D genomics.

 Introduction

Studies of the 3D genome organization have become a trend in modern genomics. 
One may say that modern genomics has acquired a third dimension. As is often the 
case in science, a new stage in the study of genome organization and functioning 
was predetermined by the development of appropriate research tools. One 
biochemical protocol that had a major impact on the development of 3D genomics 
is the chromosome conformation capture protocol (Dekker et al. 2002). The main 
steps of this protocol are presented in Fig. 2.1. The key step of this procedure is 
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introduction of breaks into DNA within a fixed nucleus, followed by cross-ligation 
of closely located ends of broken DNA. Joining of DNA fragments located far from 
each other on the DNA chain but close in physical space creates chimeric DNA 
sequences containing information about the spatial proximity of the corresponding 
segments of genomic DNA.  Analysis of the pools of chimeric fragments allows 
reconstructing the spatial organization of the genome based on the sets of captured 
pairwise interactions. This procedure was first successfully used to demonstrate that 
all remote enhancers of mouse beta-globin genes along with the promoters of genes, 
which are actually expressed, are organized into a common active chromatin hub 
(Tolhuis et  al. 2002; de Laat and Grosveld 2003). This work highlighted the 
importance of 3D genome organization for the regulation of transcription. It has 
long been assumed that, to activate a gene, an enhancer should be in direct contact 
with this gene ((Bondarenko et al. 2003; West and Fraser 2005; Vernimmen and 
Bickmore 2015) and references herein). Taking into account that most enhancers 
are located far from the target gene, the ideal solution is to loop out the intervening 
segment of DNA, and 3C analysis has demonstrated that such situations are indeed 
quite common (Tolhuis et al. 2002; de Laat and Grosveld 2003; Gavrilov and Razin 
2008; Philonenko et al. 2009; Vernimmen et al. 2007; Vernimmen et al. 2009). The 

Fig. 2.1 Main steps of the 
chromosome conformation 
capture protocol. 
Restriction enzymes are 
used to cut chromatin in 
intact nuclei isolated from 
formaldehyde-fixed cells. 
DNA fragments located in 
close proximity to each 
other are ligated with the 
T4 DNA ligase. qPCR or 
next-generation sequencing 
are used for the analysis of 
DNA chimeras obtained

S. V. Razin et al.
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number of enhancers in mammalian and Drosophila cells exceeds at least ten times 
the number of genes (Arnold et al. 2013; Consortium et al. 2012). The possibility of 
gene activation by different combinations of enhancers likely increases the 
regulatory capacity of the eukaryotic cell transcription control system. Disclosure 
of the functionally dependent mouse beta-globin gene domain 3D organization 
(Tolhuis et al. 2002; de Laat and Grosveld 2003) demonstrated for the first time how 
one gene or group of genes can be simultaneously activated by one or several 
enhancers.

The original 3C procedure allowed studying interactions between various regions 
within individual genomic loci. Eventually, various derivative procedures were 
developed collectively known as C-methods (reviewed in de Wit and de Laat 
(2012)). Most of these procedures, such as 4C (van de Werken et al. 2012), Hi-C 
(Lieberman-Aiden et  al. 2009), and ChIA-PET (Fullwood et  al. 2009), allowed 
performing genome-wide analysis. Application of these experimental protocols has 
provided deep insights into the role of 3D genome organization in transcription 
control (Denker and de Laat 2016; Dekker and Mirny 2016; Valton and Dekker 
2016; Krijger and de Laat 2016). Of special importance, the genome was found to 
be partitioned into semi-independent self-interacting domains termed topologically 
associating domains or TADs (Nora et al. 2012; Dixon et al. 2012; Sexton et al. 
2012). TADs appear to restrict the areas of enhancer action and thus can be 
considered as structural-functional units of the eukaryotic genome (Symmons et al. 
2014, 2016). Disruption of TAD borders results in development of various genetic 
diseases (Lupianez et al. 2015, 2016; Krumm and Duan 2018; Franke et al. 2016). 
In normal situations, the patterns of enhancer-promoter spatial interactions change 
in the course of cell differentiation accordingly to activation and/or repression of 
particular genes. However, most of these changes occur within TADs while the TAD 
borders remain relatively stable (Dixon et al. 2016; Fraser et al. 2015). Nevertheless, 
a certain fraction of TAD boundaries is changed in the course of cell differentiation 
(Bonev and Cavalli 2016). To obtain further insights into mechanisms of eukaryotic 
genome functioning, it is highly important to disclose the nature of both TADs and 
TAD borders. This task is complicated by the fact that in virtually all eukaryotic 
cells studied, the contact chromatin domains are hierarchical (i.e., within larger 
domains, it is possible to annotate several levels of smaller and more dense nested 
domains) (Phillips-Cremins et al. 2013; Luzhin et al. 2019; Weinreb and Raphael 
2016). It is not always obvious the domain of which level should be considered as 
TADs. Some authors claim that TADs can be discriminated only based on their 
functionality (i.e., as functional units of the genome rather than the units of a 
particular level of hierarchical genome folding) (Zhan et al. 2017). In this review, 
we shall discuss mechanisms of TAD formation and the impact of TADs on genome 
functioning.

2 Eukaryotic Genome in Three Dimensions
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 Hierarchical Model of DNA Packaging in Chromatin

In most textbooks, it is possible to read that, in eukaryotic cells, genomic DNA is 
sequentially folded into 10 nm chromatin fiber (nucleosomal chain), into 30 nm 
chromatin fiber (which is frequently represented as a solenoid or zigzag), and then 
into loops of 30 nm fiber or several levels of “supersolenoid” structures (Fig. 2.2). 
Remarkably, this model of chromatin folding into regular structures was proposed 
approximately 30 years ago (Getzenberg et al. 1991) and is poorly supported by 
recent data. On the contrary, it is becoming increasingly evident that the only regular 
level of genomic DNA folding is wrapping of DNA around the octamers of 
nucleosome histones, resulting in formation of 10 nm fibers (Fussner et al. 2012). 
The latter then aggregate to form more or less compact chromatin masses (Maeshima 
et al. 2014a, b, 2016). Aggregation of chromatin fibers is promoted under conditions 
of macromolecular crowding (Hancock 2008) typical for nucleoplasm. Although at 
a medium scale thus formed chromatin masses appear irregular, at larger scales, 
they are subdivided into self-interacting domains that are commonly interpreted as 
chromatin globules. Such chromatin globules were observed in a high-resolution 
microscopic study of cell nuclei hybridized to chromosome- or locus-specific 
probes (Markaki et al. 2012; Smeets et al. 2014). Furthermore, the same structures 

Fig. 2.2 A classical view of hierarchical folding of DNA in the nucleus. 10 nm nucleosome fiber 
folds into 30  nm fiber of variable architecture, which then forms hierarchical loops and 
supersolenoid structures

S. V. Razin et al.
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(1  Mb chromatin clusters) appear to correspond to early replicating chromatin 
domains (Markaki et al. 2010). In a recent study by the Cavalli laboratory, it was 
directly shown that TADs correspond to chromatin globules that can be visualized 
using FISH with TAD- and locus-specific probes (Szabo et al. 2018). Within the 
entire chromatin domain, TADs containing mostly active and mostly repressed 
chromatin are spatially segregated into the so-called A and B chromatin 
compartments, which likely correspond to euchromatin and heterochromatin 
(Lieberman-Aiden et al. 2009; Gibcus and Dekker 2013; Eagen 2018).

Most of the current knowledge about higher levels of DNA packaging in chroma-
tin is based on the results of Hi-C analysis. The contact chromatin domains were 
observed in different taxa including mammals (Dixon et al. 2012; Nora et al. 2012), 
insects (Sexton et al. 2012), and birds (Ulianov et al. 2017). Of note, in Drosophila, 
TADs have a size in the range of 100 Kb (Sexton et al. 2012; Hou et al. 2012), while 
mammalian TADs are ten times larger (Dixon et  al. 2012, 2016). Some contact 
domains can also be revealed in the genomes of plants and lower eukaryotes (Wang 
et al. 2015; Hsieh et al. 2015; Eser et al. 2017; Nikolaou 2017). However, they are 
substantially different from the TADs of mammals and Drosophila both in size and 
in the levels of insulation and genome coverage.

Interpretation of Hi-C maps strongly depends on resolution of the analysis. At 
1 Mb resolution, only segregation of active and inactive chromatin can be registered 
(Lieberman-Aiden et al. 2009). 20–100 Kb resolution revealed TADs (Dixon et al. 
2012, 2016; Gibcus and Dekker 2013). Finally, 1 Kb resolution maps demonstrated 
that TADs comprise two types of self-interacting domains, namely, looped domains 
and ordinary domains (Rao et al. 2014). The distinctive feature of looped domains 
in Hi-C maps is a spot at the top of a triangle reflecting a spatial proximity of loop 
bases (Fig. 2.3). In mammalian cells, chromatin loops originate due to enhancer- 
promoter interaction (Jin et al. 2013; Sahlen et al. 2015; Ghavi-Helm et al. 2014) or 

Fig. 2.3 Potential role of CTCF in defining chromatin spatial organization and epigenetic state. 
(a) Chromatin loop is manifested as a filled triangle in the Hi-C heat map only if numerous 
interactions between loop internal regions occur. (b) In a “traffic jam” model, DNA-bound CTCF 
restricts the spreading of histone posttranslation modifications along the chromatin fiber, preventing 
binding of chromatin-modifying complexes to nucleosomes located downstream of the CTCF- 
binding site. (c) Point-to-point interactions between CTCF-binding sites are unable to insulate 
extended loops from each other in the 3D nuclear space

2 Eukaryotic Genome in Three Dimensions



16

because of interactions between CTCF-binding sites (Sanborn et  al. 2015). The 
nature of ordinary chromatin domains is less clear. It has been proposed that these 
domains originate due to clustering and spatial segregation of active and inactive 
genomic regions. Accordingly, it was proposed to call them “compartmental 
domains” (Rowley and Corces 2018). The mechanisms underlying the spatial 
segregation of chromatin compartments (or compartmental domains) are still 
unclear. A current model postulates that proteins enriched in different chromatin 
types trigger phase separation, resulting in their spatial segregation (Nuebler et al. 
2018; Rada-Iglesias et al. 2018).

 Functional Domains of the Eukaryotic Genome

The eukaryotic genome has long been proposed to be a mosaic of semi-independent 
structural-functional domains (Bodnar 1988; Goldman 1988). The original model 
was inspired by the results of analysis of DNaseI sensitivity of individual genes and 
genomic segments (Weintraub and Groudine 1976; Weintraub et al. 1981; Lawson 
et al. 1982; Jantzen et al. 1986). It was proposed that the entire genome is built from 
similarly organized structural-functional units (domains) that may be either active 
or repressed. The transcriptional status of the domain was thought to be controlled 
at the level of chromatin packaging. The model stimulated research aimed to identify 
regulatory elements controlling the chromatin status of genomic domains. These 
studies resulted in identification of domain bordering elements (insulators) (Kellum 
and Schedl 1991, 1992; Udvardy et al. 1986), nuclear matrix attachment regions 
(MARs) (Cockerill and Garrard 1986), and locus control regions (LCRs) (Forrester 
et al. 1987, 1990; Grosveld et al. 1987; Li et al. 1990). Although in its initial form 
the domain model of eukaryotic genome organization cannot account for a number 
of recent observations, it can be upgraded taking into account the 3D genome 
organization (Razin and Vassetzky 2017). Considering the necessity of juxtaposition 
of enhancers and promoters, one may conclude that any self-interacting chromatin 
domain would impose certain restrictions on enhancer action. Indeed, it has been 
demonstrated that, in most cases, the areas of enhancers’ action are restricted to the 
so-called insulating neighborhoods (Sun et  al. 2019), regulatory archipelagos 
(Montavon et al. 2011), regulatory landscapes (Spitz et al. 2003; Zuniga et al. 2004), 
or regulatory domains (Symmons et al. 2014). These functional genomic blocks are 
large (100 Kb to 1 Mb) segments of the genome within which non-related genes 
demonstrate similar tissue specificity of expression. Being integrated in such a 
domain, a reporter gene under control of a minimal promoter demonstrates a tissue- 
specific expression profile typical for the domain as a whole (Ruf et  al. 2011; 
Symmons et al. 2014). Although there is still some discrepancy in the results of 
different authors, they all agree that insulated areas colocalize with self-interacting 
chromatin domains identified by Hi-C analysis, either with TADs (Montavon et al. 
2011; Symmons et  al. 2014) or looped domains (sub-TADs) (Sun et  al. 2019). 
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Interestingly, TADs harboring superenhancers are preferentially insulated by bound-
aries possessing a particularly high insulation score (Gong et al. 2018).

Partitioning of the genome into semi-independent structural-functional domains 
appears important for two reasons. First, it minimizes the possibility of an off-target 
activity of any given enhancer. To this end, it is of note that genomic rearrangements 
affecting TAD boundaries frequently result in compromising gene regulation 
networks and development of diseases (Lupianez et al. 2015; Franke et al. 2016; 
Valton and Dekker 2016; Ibn-Salem et al. 2014; Vicente-Garcia et al. 2017). Second, 
partitioning of the genome into TADs restricts the area the enhancer should explode 
to find a target promoter. Correspondingly, the time necessary to establish enhancer- 
promoter communication is reduced (Symmons et al. 2016). Lack of rigidity in the 
TAD structure is of importance in this context. Alternative configurations of the 
chromatin fiber continuously interchange within a TAD (Tiana et al. 2016). This 
interchange is likely to provide additional possibilities for cell adaptation to a 
changing environment (Razin et  al. 2013). The functional relevance of genome 
partitioning into TADs is likely to explain the apparent conservation of this 
organization in the genomes of related species (Dixon et al. 2012) as well as the fact 
that TADs are stable against rearrangements during evolution (Krefting et al. 2018; 
Lazar et al. 2018). Interestingly, paralog gene pairs are enriched for colocalization 
in the same TAD and frequently share common enhancer elements (Ibn-Salem 
et al. 2017).

Besides constituting the insulation neighborhoods for transcription regulation, 
the TADs also contribute to the control of replication because they correspond to 
units of replication timing (replication domains) (Pope et al. 2014). Interestingly, 
after being disrupted in mitosis (Naumova et al. 2013), TADs are re-established in 
G1 phase of the cell cycle at about the same time with the establishment of the 
replication-timing program (Dileep et al. 2015a, b). It may be that exactly at the 
level of chromatin packaging, the link between active transcription and early 
replication is established.

 TAD Assembly and Insulation

Taking into consideration the fact that TADs restrict the areas of enhancer action, it 
is particularly important to understand how they are assembled and why they are 
insulated. Comparison of Hi-C maps with genome-wide distribution of various 
epigenetic marks demonstrated that, in mammals, TAD boundaries are enriched in 
CTCF-binding sites and active genes (Dixon et al. 2012). Also, cohesin was found 
enriched at TAD boundaries (Hansen et al. 2017). Deletion of CTCF-binding sites 
at TAD boundaries resulted in a full or partial loss of TAD insulation (Narendra 
et al. 2015, 2016; Lupianez et al. 2015; Sanborn et al. 2015). The same effect was 
observed upon targeted degradation of CTCF in living cells (Nora et  al. 2017). 
CTCF has long been implicated in mediation of enhancer-blocking activity of 

2 Eukaryotic Genome in Three Dimensions



18

insulators (Chung et al. 1997). In addition, it mediates formation of DNA/chromatin 
loops (Vietri Rudan and Hadjur 2015; Holwerda and de Laat 2012). It should be 
mentioned, however, that by itself, formation of a chromatin loop is not sufficient 
for TAD assembly. Within a loop, only the bases are permanently located in a spatial 
proximity. On a Hi-C heat map, a DNA loop can be recognized as a high interaction 
signal between bases that looks like a spot at the top of a triangle. However, to “fill” 
the triangle, it is necessary to ensure mutual interaction of internal parts of the loop 
(Fig.  2.3a). It is also not clear how deposition of CTCF at TAD boundaries can 
prevent spatial interactions between internal regions of different TADs. Although 
CTCF is a large protein (~130  kDa), the octamer of histones constituting the 
nucleosomal core has approximately the same summary weight, and the 1  Mb 
mammalian TAD is composed of ~5000 nucleosomes. It is easy to speculate about 
a mechanism by which deposition of CTCF can interfere with spreading if signals 
travel along a linear chromatin fiber. Here, a traffic jam model fits perfectly 
(Fig. 2.3b). However, it is difficult to see how spatial interactions between internal 
regions of large TADs can be prevented by CTCF (Fig. 2.3c). In fact, it is easier to 
consider a possibility that TAD is held together by some internal links (see below). 
However, preferential deposition of CTCF as well as cohesin at mammalian TAD 
boundaries is an established fact (Sofueva et al. 2013; Nora et al. 2012; Dixon et al. 
2012; Zuin et  al. 2014; Wutz et  al. 2017), and there should be a reason for this 
deposition.

The model explaining the roles of CTCF and cohesion in TAD formation was 
suggested by two research teams (Fudenberg et  al. 2016; Sanborn et  al. 2015). 
According to the model, cohesin mediates DNA loop extrusion. The process of 
extrusion may start anywhere in the genome but cannot pass CTCF-binding sites 
present in a certain orientation. The last supposition was based on the observation 
that CTCF-binding motive has a direction and that CTCF-binding motives present 
at TAD boundaries (and bases of sub-TAD loops) usually have convergent orientation 
(Sanborn et  al. 2015; Vietri Rudan et  al. 2015; de Wit et  al. 2015). Of note, the 
model considers TAD as a population phenomenon. In each individual cell, only a 
loop or a set of loops exist within the area that is considered as a TAD. However, all 
Hi-C maps that have been discussed so far were obtained when cell populations 
were studied. That is typical for a normal biochemical experiment. In a typical Hi-C 
protocol, one starts with 1–10 millions of cells. The loop extrusion model assumes 
that filled triangles (TADs) seen on population Hi-C maps represent superimposition 
of signals reflecting mainly interaction of bases of a variety of loops extruded in 
individual cells. This model has been supported by in silico modeling (Fudenberg 
et al. 2016). Also, it has been demonstrated that depletion or degrading of cohesin 
results in partial or full disruption of TADs (Sofueva et al. 2013; Rao et al. 2017), 
whereas depletion of cohesin unloading factor WAPL results in generation of longer 
chromatin loops (Wutz et al. 2017; Haarhuis et al. 2017) as predicted by the DNA 
loop extrusion model. The main challenge of the model is that the ability of cohesin 
to extrude DNA loops was not directly demonstrated. At the same time, it is known 
that cohesin possesses ATPase activity (Hirano 2005) and is able to move along 
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DNA both in vitro (Stigler et al. 2016; Kanke et al. 2016) and in vivo (Busslinger 
et al. 2017). Of note, this movement is restricted by CTCF (Davidson et al. 2016; 
Busslinger et al. 2017). Recently published results of Casellas’s lab demonstrated 
that loop domains are formed by a process that requires cohesin ATPases (Vian et al. 
2018). Finally, a condensin complex that is closely related to cohesin was found 
able to extrude DNA loops (Ganji et al. 2018). Taken together, these observations 
strongly support a supposition that cohesin may act as a DNA loop extrusion motor 
in the interphase nucleus.

It should be stressed that the DNA loop extrusion model (Fudenberg et al. 2016; 
Sanborn et al. 2015) considers TAD as a population phenomenon. The single-cell 
Hi-C studies performed so far have not provided a definitive answer to the question 
of whether there are TADs in individual mammalian cells due to a low resolution of 
Hi-C maps (Nagano et al. 2013; Flyamer et al. 2017). On the other hand, compact, 
and at first approximation globular, domains can be visualized in nuclei by FISH 
with TAD-specific probes (Bintu et al. 2018; Szabo et al. 2018). It is thus likely that 
there should be another mechanism that ensures compactization of entire TADs or 
extruded loops. It has been proposed that entropic forces primarily drive the 
formation of compact contact domains in a polymer confined to a limited space 
(Vasquez et  al. 2016). This supposition made based on results of computational 
simulations is indirectly supported by the fact that contact domains occur in one or 
another form in the genomes of various organisms, including bacteria (Le et  al. 
2013), and special cell types, such as spermatozoa, which contain protamines in 
place of histones in their nuclei (Battulin et  al. 2015). However, organization of 
nucleosomal fiber into compact domains may be also promoted by electrostatic 
interaction between nucleosomal particles. The ability of nucleosomal fibers to 
form various conglomerates is well documented. The conglomerates are stabilized 
by interactions between positively charged N-terminal tails of histones H3 and H4 
and a negatively charged acidic patch on the surface of a nucleosomal globule 
(Kalashnikova et al. 2013; Pepenella et al. 2014). The same interactions facilitate 
the formation of 30-nm nucleosome fibers at low fiber concentrations, when 
between-fiber contacts are unlikely (Luger et  al. 1997; Sinha and Shogren- 
Knaak 2010).

The main concern regarding the model of TAD assembly by condensation of 
nucleosomal fibers is to explain why individual TADs are separated. To this end, it 
should be mentioned that, in Drosophila, CTCF loops do not play a major role in 3D 
genome organization (Rowley et al. 2017). We and others reported that, in Drosophila 
cells, TAD boundaries harbor transcribed genes and are enriched in histone 
modifications typical for active chromatin (Ulianov et al. 2016; Sexton et al. 2012; 
Hou et al. 2012). Histone acetylation, which is typical of active chromatin, decreases 
the histone charge and prevents internucleosome interactions (Shogren-Knaak et al. 
2006; Allahverdi et al. 2011). We argued that these processes may be sufficient to 
prevent assembly of active chromatin regions into compact domains (Ulianov et al. 
2016). Thus, the distribution of active and inactive genes along a DNA molecule 
may determine the profile of chromosome organization in TADs. To test this idea, 
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we performed computer modelling of self-folding of a virtual polymer that consists 
of alternating nucleosome blocks of two types reproducing the properties of active 
and inactive chromatin regions (Fig.  2.4) (Ulianov et  al. 2016). The particles of 
inactive block (500 particles in each block) were allowed to establish a limited 
number of relatively unstable contacts with the particles of the same type from the 
same or other inactive blocks. The particles of active blocks (50 particles in each 
block) were not allowed to establish contacts with each other or with particles from 
inactive blocks. The self-folding of polymer simulated using dissipative particle 
dynamics algorithm resulted in formation of globular structures roughly colocalizing 
with inactive blocks separated by unfolded active blocks (Ulianov et al. 2016). Of 
course, in each individual simulation, the folding of polymer was not fully regular. 
In some cases, conglomerates of inactive nucleosomes fused to produce 
superconglomerates; in other cases, nucleosomes of one inactive block formed 
more than one conglomerate with less compact spacers between the conglomerates 
(Fig. 2.4). However, averaging of the results of 12 simulations allowed generation 
of a Hi-C map containing contact domains (TADs) that coincided with inactive 
nucleosome blocks and were separated by spacers of active nucleosomes (Ulianov 
et  al. 2016). Other simulations have demonstrated that short patches of “active 
chromatin” inserted into “inactive chromatin” blocks tend to be extruded on a 
surface of inactive block (Gavrilov et  al. 2016). Insertion of larger stretches of 
“active chromatin” resulted rather in splitting of inactive blocks. This observation 
was in agreement with experimental observations that activation of transcription of 
tissue-specific genes located within TADs correlates with decompacting of the 
corresponding region, which, in some cases, resulted in TAD splitting (Ulianov 
et al. 2016).

Fig. 2.4 Model heteropolymer built up from long blocks of inactive particles (non-acetylated 
nucleosomes interacting with each other) interspersed with short blocks of active particles 
(acetylated nucleosomes unable to interact with other nucleosomes) recapitulates some structural 
properties of chromatin. Polymer simulations demonstrate that blocks of inactive particles fold 
into globules manifested as TADs in spatial distance maps of the polymer. The results of a typical 
simulation are presented
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It should be mentioned that DNA loop extrusion and nucleosome condensation 
are not mutually exclusive. Thus, nucleosome condensation may contribute to the 
compaction of extruded chromatin loops in mammalian cells. There is yet another 
group of models postulating that TAD formation is mediated by architectural 
proteins that form intra-TAD links, thus pulling together remote segments of a 
chromatin fiber. To explain the existence of isolated TADs, the models assume a 
multiplicity of architectural protein groups, each ensuring the formation of a 
particular TAD (Barbieri et al. 2012, 2013; Pombo and Nicodemi 2014). The models 
are supported by computer simulations but seem implausible biologically because 
there are 100 times fewer architectural protein types than TADs even in Drosophila, 
which is known to have several architectural proteins in addition to CTCF (Zolotarev 
et al. 2016).

 3D Organization of the Genome in the Context 
of Nuclear Compartmentalization

The current model of the global genome organization within the eukaryotic cell 
nucleus was formulated long before the development of Hi-C and other C-methods. 
Initially, this model was based exclusively on the results of microscopic studies. 
Territorial organization of interphase chromosomes and the existence of an 
interchromatin domain (ICD) that spans chromosomal territories are the main points 
of the model (Cremer and Cremer 2001, 2010, 2018; Cremer et al. 2017, 2018). The 
interchromatin domain is the place where various membraneless nuclear bodies 
such as nucleoli, splicing speckles, Cajal bodies, paraspeckles, histone locus bodies, 
and PML bodies are assembled (for a review, see Mao et al. (2011); Ulianov et al. 
(2015); Stanek and Fox (2017)). The initial version of the model placed ICD 
between chromosomal territories (Cremer et al. 1993; Zirbel et al. 1993). With the 
increase of resolution of microscopic methods, it became evident that the ICD also 
penetrates chromosomal territories (Cremer and Cremer 2010, 2018). Chromosome 
territories themselves are composed of chromatin domains and chromatin domain 
clusters that likely correspond to TADs and contact domains of higher order. 
Interestingly, internal parts of these domains appear to contain mostly inactive 
chromatin, whereas active genes are preferentially located at the perichromatin 
layer (Cremer and Cremer 2018; Cremer et  al. 2018). Although individual 
chromosomes constitute rather separated entities within the cell nucleus, 
interchromosomal contacts could still be found at various reaction centers such as 
transcription factories, PML bodies, and splicing speckles. Such contacts were first 
observed using FISH to visualize various genes in combination with immunostaining 
to observe functional nuclear compartments (Wang et  al. 2004; Sun et  al. 2003; 
Shopland et  al. 2003; Szczerbal and Bridger 2010; Moen et  al. 2004) and then 
reanalyzed using genome-wide C-methods (Wang et al. 2016; Schoenfelder et al. 
2010; Quinodoz et al. 2018).
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It should be mentioned that biochemical protocols based on a proximity ligation 
(C-methods) allow for identification of only particularly close spatial contacts. 
Recruitment of several genomic regions to the same compartment is difficult, if not 
impossible, to detect using C-methods. Development of alternative experimental 
protocols based on barcoding of DNA fragments present within the same, even 
quite large, fixed chromatin complex (Quinodoz et al. 2018) solved the problem. 
Using such an experimental procedure termed “SPRITE” (split-pool recognition of 
interactions by tag extension), Quinodoz et  al. have identified two hubs of 
interchromosomal interactions that are arranged around the nucleolus (repressed 
hub) and nuclear speckles (active hub) (Quinodoz et al. 2018). Another genome- 
wide protocol that enables measuring distances between various genes and nuclear 
compartments is TSA-Seq (Chen et al. 2018). The procedure utilizes the tyramide 
amplification cascade (Wang et al. 1999) to biotinylate DNA in the vicinity of sites 
to which horseradish peroxidase (HRP) catalyzes the formation of tyramide-biotin 
free radicals recruited using an appropriate cascade of antibodies. Biotinylated 
DNA is then pulled down on streptavidin and sequenced. Using TSA-Seq, Belmont 
and coauthors confirmed clustering of active genes close to nuclear speckles. In 
agreement with a number of previous reports (Shevelyov and Nurminsky 2012; van 
Steensel and Belmont 2017), the repressed genes were found more in proximity to 
the nuclear lamina (Chen et al. 2018).

Taking together, the above observations argue that 3D organization of the genome 
and functional compartmentalization of the cell nucleus are mutually dependent. 3D 
organization is not simply a sum of enhancer-promoter and CTCF loops. It relies on 
a number of factors present in non-disturbed nuclei. Various fractionation procedures 
compromise this complex organization and drastically affect the results of analysis 
based on capturing pairwise interactions of remote DNA fragments (Gavrilov et al. 
2013). Juxtaposition of remote genomic elements is not only ensured by interaction 
of proteins bound to these elements but rather represents a result of specific folding 
of a large genomic segment supported by numerous interactions outside the 
juxtaposed regions (Razin et al. 2013). These interactions include repositioning of 
various genomic segments to the vicinity of functional nuclear compartments. On 
the other hand, the folded genome as a whole provides a structural basis for nuclear 
compartmentalization (Misteli 2007; Schneider and Grosschedl 2007; Lanctot et al. 
2007; Razin et al. 2013). The ICD where all these compartments are assembled is 
formed by exclusion from the areas occupied by chromatin. Segregation of 
interphase chromosomes resulting in the existence of chromosomal territories 
appears to be ensured by basic physical properties of charged polymers (Rosa and 
Everaers 2008; Mateos-Langerak et  al. 2009; Bohn and Heermann 2010; Tark- 
Dame et  al. 2011). It is less clear what supports the existence of channeled 
compartment within chromosomal territories. The simplest supposition is that 
repulsion between surfaces of TADs is of primary importance. The key point to be 
taken into account is that the surface of TADs should be more charged than the 
internal regions. Recent results of the Cremer team demonstrate that active chromatin 
is located at the surface of 1 Mb chromatin domains (TADs) (Cremer and Cremer 
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2018; Cremer et  al. 2018) and thus lines the ICD channels. This finding is 
corroborated by the results of in silico modeling of TAD assembly (Gavrilov et al. 
2016). High levels of histone acetylation typical for active chromatin (Shogren- 
Knaak et al. 2006; Allahverdi et al. 2011) should make the perichromatin layer more 
negatively charged compared to the internal part of chromatin domains/TADs. Thus, 
the perichromatin layer should stabilize and insulate inactive chromatin domains/
TADs via generating electrostatic repulsion between them. This layer may prevent 
intermingling of TADs and ensure existence of intrachromosomal channels. The 
basic landscape for nuclear compartmentalization is thus directed only by physical 
laws (Rosa and Everaers 2008; Cook and Marenduzzo 2009; Dorier and Stasiak 
2009; Kim and Szleifer 2014). Once established after mitosis, the territorial organi-
zation of interphase chromosomes becomes stabilized by interaction of certain 
chromosomal regions with the nuclear lamina (Guelen et al. 2008; Pickersgill et al. 
2006) and nucleolus (Nemeth et al. 2010; van Koningsbruggen et al. 2010). Nucleoli 
are assembled at particular genomic loci harboring arrays of rRNA genes. The same 
is true for histone locus bodies. Transcription factories are likely to assemble sto-
chastically by aggregation of closely located transcription complexes (Razin et al. 
2011). Still, spatial positioning of the involved transcribed genes will predetermine 
their location. Typically for biological systems, this organization is highly dynamic. 
This dynamism applies to the both folding of interphase chromosomes and assem-
bly of nuclear compartments. Live imaging studies have demonstrated that both 
chromosome territories and individual domains within chromosomal territories 
undergo constant movement (Marshall et al. 1997a, b, Marshall 2002; Levi et al. 
2005; Pliss et al. 2013). The typical configuration of an interphase chromosome or 
shorter genomic segments represents an equilibrium of a number of possible con-
figurations (Nagano et  al. 2013; Stevens et  al. 2017). The nature of functional 
nuclear compartments has been a matter of long-term discussions. The current 
model suggests that these compartments are liquid droplets formed by phase separa-
tion. They can fuse or separate into smaller droplets depending on external condi-
tions. Although each type of compartments is rich in a particular set of proteins, the 
sets of proteins present in different compartments may overlap, and proteins present 
within compartments rapidly exchange with those proteins present in nucleoplasm. 
Furthermore, while speckles were reported to be positionally stable within hours 
(Misteli et al. 1997; Kruhlak et al. 2000), Cajal bodies and PML bodies appear to 
diffuse within the ICD as freely as an artificially created inert object of the same 
dimensions (Gorisch et al. 2004). An apparent order within the cell nucleus is thus 
likely to emerge out of a disorder due to a shaky equilibrium of different forces 
including a depletion attraction force (Cho and Kim 2012; Marenduzzo et al. 2006; 
Hancock 2004b; Rippe 2007). Apparently, the interplay between various functional 
processes that occur in the nucleus in any given moment directs both the chromo-
some folding and spatial compartmentalization of the nucleus (Rippe 2007; Kim 
and Szleifer 2014; Hancock 2004a; Razin et al. 2013; Golov et al. 2015; Sengupta 
2018; Shah et al. 2018). Consequently, the cell nucleus should be considered as an 
integrated system, the properties of which emerge due to the interaction of 
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numerous components and cannot be fully explained or predicted based on the 
properties of individual components. Further progress in understanding mecha-
nisms of eukaryotic genome functioning will depend on reconsideration of all pull 
of existing data in terms of systems biology.
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Chapter 3
Analysis of Cell and Nucleus Genome 
by Next-Generation Sequencing

Ji Won Oh and Alexej Abyzov

Abstract Genomic variants that are acquired during a lifetime as a result of devel-
opment, environmental exposure, and aging are present in every cell of the human 
body. While some variants are shared between cells, most of them are not. Therefore, 
analyzing the nuclear genome of a cell is the ultimate way to study genomic mosa-
icism. However, comprehensive evaluation of variations in a single cell’s genome is 
not yet possible due to unresolved technical issues, while the analysis of a bulk of 
cells can provide a valuable insight into mosaicism in a studied sample. Here, we 
describe, compare, and discuss strategies, experimental techniques, and analytical 
methods for discovery of a spectrum of mosaic variants from a bulk of cells and 
from single cells. We specifically focus on next-generation sequencing technologies 
for genome analysis as they enable the discovery of mosaic variants of all types.

 Mosaic Variants During Lifetime

 Introduction

Mosaic genome variation is a difference in the DNA sequence between cells of the 
same individual. Such differences can be as small as one nucleotide and as large as 
the entire chromosome and are subdivided into the following types: single nucleotide 
variants (SNV), small insertions and deletions (indel), copy number alterations 
(CNA), copy number neutral losses of heterozygosity (CNN-LOH), sequence 
inversions, interchromosomal translocations, chromosomal aneuploidies, 
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multiploidies, and insertions of retrotransposable elements (Box 3.1). For general-
ization, variants other than SNVs and indels are called structural variants (SVs). 
Mosaic variants of all types have commonalities relevant to their detection. Variants 
with low frequency in cells of an individual are harder to discover as their contribu-
tion to the experimental measurable signal used for discovery (e.g., sequencing 
data) is also small. The rarity of variants can be the result of them being disadvanta-
geous to the cells carrying them. For instance, variants that reduce cell proliferation 
or viability are likely to be less frequent in a tissue and thus are harder to detect 
experimentally. At an extreme, mosaic variants leading to cell death for whatever 
reason cannot be discovered at all. On the other hand, variants that increase prolif-
eration or viability will likely be more frequent (Poduri et  al. 2012) and, conse-
quently, are easier to detect. Certain variants could interfere with the experimental 
procedure for data generation and variant detection such as cell cloning or transfor-
mation, preventing the discovery of the variants in such conditions.

Box 3.1 Types of mosaic genomic variations
Single nucleotide variant (SNV) is a difference at a particular genomic posi-
tion in a single nucleotide such as A to G.

Indel is an insertion (in-) or a deletion (−del) of a few consecutive nucleo-
tides with typical size of less than 50 bps or 100 bps.

Copy number alteration (CNA) is a region with fewer (deletion) or more 
(duplication) copies of DNA. CNAs typically refer to somatic alterations and 
are distinguished from indels by size (CNAs are larger). But mechanistic 
origin of indels and CNA could also be different.

Copy number neutral loss of heterozygosity (CNN-LOH) is a genomic 
region where two haplotypes (paternal and maternal) are identical. The term 
is used to describe acquired mutations.

Inversion is a replacement of a 5′–3′ nucleotide sequence end to end with 
the reverse complement.

Interchromosomal translocation is the rearrangement that connects 
sequences of two different chromosomes.

Chromosomal aneuploidy is the variation in the number of copies for a 
chromosome.

Multiploidy is global change in the number of chromosomes.
Structural variant (SV) is a general category that encompasses CNAs, 

CNN-LOH, inversions, interchromosomal translocations, chromosomal 
aneuploidies, multiploidies, MEIs, and complex rearrangements that carry 
signatures of multiple just-listed types.

Mobile element insertion (MEI) is an insertion into the genome of a ret-
rotransposon. In the human genome, four retrotransposon families are known, 
ALU, LINE1, SVA, and HERV, but the latter is believed to be inactive (Solyom 
and Kazazian 2012).
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 Mosaic Variants in Development and Aging

Right after conception, hundreds of spontaneous mutations begin to accumulate in 
cells of a developing fetus, a process that continues at a much slower rate well into 
adulthood. Every time a cell divides, its two progenies have shorter telomeres and 
are likely to acquire mutations from replication errors (Kunkel 2004; Aubert and 
Lansdorp 2008). These variants are then passed on to their progenies at the next 
divisions. Additionally, unrepaired or incorrectly repaired DNA damage also results 
in mutations. The damage can be either spontaneous, for example, deamination 
caused by interaction with reactive oxygen species (Bacolla et al. 2014), or environ-
mentally driven, for example, caused by ultraviolet radiation from the sun expo-
sure (Ikehata and Ono 2011). It is therefore very likely that in every human being, 
there are no two single cells with identical genomes. Moreover, as variations in each 
cell accumulate with time (Ramsey et  al. 1995; Jacobs et  al. 2012; Laurie et  al. 
2012; Forsberg et al. 2012; Blokzijl et al. 2016; Lodato et al. 2018), cellular genomes 
in every individual diverge, i.e., become more different from each other.

However, the rates at which genomes accumulate mutations in development and 
during aging are only partially known. Our ability to measure mutation rates in 
development is fundamentally limited by the common ethics prohibiting experiments 
with human embryos. The fundamental challenge for the estimation of mutation 
rates in the context of aging is the rarity of mutations accumulated by each cell. 
Namely, variants acquired by a cell in adulthood are quite likely to exist only in that 
single cell, making their discovery technologically challenging and experimental 
validation impossible in principle. The ability to comprehensively characterize the 
entire genome of a single cell is lacking. Most experimental techniques require 
single-cell genome amplification, which, as discussed below, is a technical chal-
lenge, while a few that do not, like fluorescent in situ hybridization, provide only 
crude resolution. A notable exception to this challenge is stem cells of every tissue 
and organ. These cells will pass acquired mutations to their offsprings (Blokzijl 
et al. 2016; Bae et al. 2018) and are also culturable, allowing to bypass error-prone 
in vitro amplification.

Initially, mutation rates were estimated indirectly. Based on the frequency (50 to 
100) of de novo SNVs in genomes of newborn humans, it was estimated that cells 
in the germline lineage acquired 1.2 SNVs per cell division during development and 
about 0.1–0.2 SNVs per cell division post puberty (Conrad et al. 2010; Michaelson 
et al. 2012; Rahbari et al. 2016; Maretty et al. 2017; Yuen et al. 2017; Milholland 
et  al. 2017). Recent studies provided a more direct insight into the rates. 
Reconstruction of a cell progeny tree during cleavages yielded the rate of 1.3 SNVs 
per division per progeny (Bae et  al. 2018). As such cells contribute to all germ 
lineages including germline, this estimate is consistent with the one provided by 
studies of de novo SNVs. The same study suggested a higher mutation rate during 
neurogenesis and a shift in mutation spectrum from dominantly C > T to dominantly 
C > A mutations (Bae et al. 2018). Similar results were obtained by another group 
(Kuijk et al. 2019). Overall higher mutation rates during organogenesis is consistent 

3 Analysis of Cell and Nucleus Genome by Next-Generation Sequencing



38

with the results of measuring mutation load across several tissues (Blokzijl et al. 
2016; Lodato et al. 2018; Franco et al. 2018; Abyzov et al. 2017). It was revealed 
that already at birth, muscle, neurons, skin fibroblasts, intestine, colon, and liver 
cells have a similar order of 500–1000 mutations.

The same studies have also estimated that the rate of accumulation of mosaic 
SNVs postnatally is rather slow, from 10 to 60 SNVs per year. Additionally, a gain 
in knowledge about genome variation with age has been obtained from indirect 
studies, such as analyses of cancer genomes. As almost all cancers are expanded 
from a single cell, the genome of the founder cell is replicated in every cell of a 
cancer. However, variant frequency in a given cancer sample is not a good indication 
of time of origin because secondary mutations that occur in cancer cells can rise to 
high frequency due to subclonal expansion. Apart from that, cancer samples are 
often not perfectly clonal because of the admixture of normal and immune cells. 
Despite all that, multiple lines of evidence suggest that most mutations observed in 
cancer originate in healthy cells prior to malignant transformation, and their analysis 
is informative about mutagenesis in normal cells and its relationship to aging 
(Tomasetti et al. 2013; Milholland et al. 2015; Lee et al. 2019). A rather simple cross 
correspondence of mutation burden in cancers with patient age estimated a somatic 
mutation rate of about 100 SNVs per cell per year in over 20 tissues (Milholland 
et al. 2017; Podolskiy et al. 2016).

A better estimate is possible by decomposing the spectrum of SNVs across thou-
sands of cancers of different types into individual components, the so-called muta-
tion signatures (Alexandrov et  al. 2013; Lawrence et  al. 2013). Some of these 
signatures match to known mutational mechanisms such as damage by ultraviolet 
light and DNA editing by the APOBEC enzyme. The overall thought is that most of 
these signatures represent mutational processes. Together with the decomposition, it 
is also possible to estimate the contribution of each signature to the mutation spec-
trum of each individual cancer. Consequently, one can analyze the contribution of 
each signature in relation to an individual’s age. It was found that only two signa-
tures, #1 and #5, showed a monotonic increase with age in most cancer types, sug-
gesting that they represent mutational processes during natural cell aging (Alexandrov 
et al. 2015). By considering only those signatures, the mutation rate across various 
tissues in adults was estimated to vary from a few to 30 SNVs per genome per year 
(Alexandrov et al. 2015). These estimates are consistent with the direct measure-
ments of mutation accumulation in the liver, colon, and small intestine (Blokzijl et al. 
2016). A similar mutation rate in neurons was reported by a single- cell study (Lodato 
et al. 2018). At the same time, it is also clear that the environment can have a dra-
matic impact on mutation burden in a cell. Specifically, ultraviolet light damage can 
result in an order of magnitude higher mutation count seen in a cell (Saini et al. 2016).

Contrary to somatic tissues, germline lineage was consistently observed to have 
lower background mutability. Regression on parental age implies that variants detected 
as de novo in children accumulate at a rate of two to three SNVs per year in father 
sperm and 0.5–1 SNVs in mother oocytes (Michaelson et al. 2012; Rahbari et al. 2016; 
Maretty et al. 2017), i.e., about an order of magnitude lower mutability. Other evidence 
suggests an even larger difference of two orders of magnitude (Milholland et al. 2017).
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Less insight was gained into the association with the aging of variant types other 
than SNVs. This was dictated by their  – variants of other types  – overall less- 
frequent occurrence, difficulties in their discovery, and challenges in deriving proper 
descriptors for the mutational spectrum. Somatic CNAs were observed in at least 
seven human tissues (O'Huallachain et al. 2012). Analysis of SNP arrays for DNA 
from blood from over 50,000 individuals revealed that CNAs larger than 2 mbp are 
found in less than 0.5% of individuals younger than 50 years but are substantially 
more frequent (in about 2%) in elderly people (older than 70 years) (Jacobs et al. 
2012; Laurie et  al. 2012). Recently, a more sensitive (toward lower-frequency 
CNAs) study using improved analytical methodology updated those estimates, 
showing that rare CNAs are detectable in 5% of people (Loh et al. 2018). The major 
limitation of these studies is that they are based on SNP arrays and can only detect 
large CNAs. They, therefore, only inform about the most frequent and, likely, 
expanded cell clones.

A direct estimation of how many cells have CNAs and how their frequency and 
spectrum change during a  lifetime was possible from single-cell studies. It was 
estimated that about 30% of fibroblast cells and neuronal nuclei carry CNAs 
(Abyzov et  al. 2012; McConnell et  al. 2013; Cai et  al. 2014). It was, however, 
suggested that CNAs in neurons decrease with age (Chronister et  al. 2019). 
Aneuploidies were detected in liver hepatocytes, oocytes, and neurons (Duncan 
et al. 2012; Jones 2008; Yurov et al. 2007). Their frequency, however, is debated 
(Knouse et al. 2014). Additionally, it is known that somatic insertions of mobile 
elements such as L1 are present in brain cells; however, similar to aneuploidies, 
their frequency is controversial, and their association with age is unknown (Evrony 
et al. 2012; Evrony et al. 2015; Baillie et al. 2011; Erwin et al. 2016; Fig. 3.1).

Fig. 3.1 Depiction of main variant types in the human genome (see Box 1 for definitions). For 
germline variants, the type of variant call may depend on the sequence of the reference 
genome (lower panel). For example, mobile element insertion, if present in the reference, will be 
discovered as deletion. For mosaic variants, there is no such ambiguity. LOH stands for loss of 
heterozygosity
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 Application of Mosaic Variants for Cell Lineage Tracing

In 1892, Edmund Wilson used “cell lineage” when he analyzed the contribution to 
the cytogeny of the annelid body (Wilson 1892). He found that each cell has the 
trajectory of continuous divisional events based on their fates, leading to the con-
cept of “cell lineage.” Thirteen years after the work of E.  Wilson, in  1905, 
E.G.  Conklin expanded the concept by defining invariant and non-invariant cell 
lineages based on the investigation of ascidian egg (Conklin 1905). E. Wilson and 
E.G. Conklin used their bare eyes under the optical microscope without any molec-
ular intervention or chemical staining of the cells. Their works needed to investigate 
each cell very carefully, and they had to infer the divisional trajectory based on 
topological contribution, limiting their speculation only to the early cellular division 
of embryological cleavages. It was almost impossible to track the cells after certain 
divisions due to the relatively large cell number, necessitating a new method. In 
1929, Vogt utilized the chemical staining for the tracking of groups of cells (Vogt 
1929). His work with the grafting experiment of Spemann and Mangold expanded 
the concept of “cell lineage” to the amphibian germ cell study (Spemann and 
Evolution 1924). The chemical stain could give clear trajectory evidence on cellular 
division, although the stain was diluted after each division.

Intriguingly, in the same year that Spemann and Mangold used amphibian tissues 
for tracking cellular lineages, Sturtevant used the large-scale structural variants, 
chromosomal elimination, for the cellular lineage tracking in Drosophila (Sturtevant 
1929). Before this work, the group of T.H.  Morgan developed the experimental 
methods to generate spontaneous mosaicism, which is inherited by divisional 
daughter cell. Sturtevant investigated the cell of the insects retrospectively and 
found that their chromosomal elimination is highly linked with the gene function. 
His work inspired not only the distribution of ring X chromosomal study but many 
other lineage tracking studies of Drosophila (Catcheside et al. 1945; Wald 1936; 
Garcia-Bellido and Merriam 1969; Hotta and Benzer 1973; Zalokar 1976; Ferrús 
and Garcia-Bellido 1977).

Before the development of a genetically modified animal model for lineage trac-
ing in 1993 (Harrison and Perrimon 1993), microscopic inspection with bare eye led 
to a major biological findings. One of them is the work of Sir John Edward Sulston, 
who tracked every cellular division in Caenorhabditis elegans, showing the entire 
embryonic cell lineage tree of an individual organism (Sulston et  al. 1983). His 
study eventually led to find the physiological cellular disappearance while an 
embryo keeps dividing, earning him the 2002 Nobel Prize for Physiology or 
Medicine for the discovery of programmed cell death, apoptosis. Additionally, he 
and his colleagues reported the first complete genome sequence of an animal in 
1998 (C. elegans Sequencing Consortium 1998). Cellular lineage studies led to the 
development of key concepts in biology, not only apoptosis but cell commitment 
(Conklin 1905), cell fate potential (Tam et al. 1997), and cellular behaviors (Garcia- 
Bellido A. Cell Lineages and Genes 1985; Garcia-Bellido et al. 1973).
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 Lineage Tracing Using the Genetic Tools

To overcome the dilutional limitation of experimental methods using chemical 
stain, it was necessary to develop prospective genetic tools. Advances in recombinant 
DNA technology finally led to reporter genes transfer systems introduced into the 
live animal. Using retrovirus, they could incorporate the external gene sequences 
such as β-galactosidase and green fluorescent protein into the animal host genome 
(Turner and Cepko 1987; Frank and Sanes 1991). The integrated gene sequences are 
then inherited by the daughter cells of the infected founder cell. In principle, the 
approache works the same way as chemical stain injection experiments, however, 
since the reporter genes are genetically incorporated, there are no dilutional issues 
even though the cells keep dividing. Though retroviral labeling had some advantages 
over previous lineage tracing methods, there are several limitations. One of the 
limitations of using the retroviral gene transfer is that they can be incorporated into 
multiple cells at the first trial, making several founder cells. Researchers overcame 
this issue by limiting dilution assay of virus to label only one single founder cell. 
The other issue is the retroviral silence, leading to biased experimental results due 
to the under-evaluation of the number of descendants. If retroviral silencing happens, 
the transfer genes are not detected experimentally although their genome has the 
incorporated gene by retrovirus (Yao et al. 2004).

Tissue-specific genetic recombination tools broaden the fields of cellular lineage 
tracing to elucidate the various biological questions from the embryologic 
development to the adult stem cell biology. Genetic induction using FLP-FRT or 
Cre-loxP can control the incorporation of external DNA sequences spatially as well 
as temporally. In 1993, D.A.  Harrison and N.  Perrimon applied the site-specific 
yeast FLP recombinase combined with a heat shock-inducible promoter (Harrison 
and Perrimon 1993). The system in Drosophila successfully catalyzed the genetic 
recombination at the FRT (FLP recombination target), resulting in site-specific 
recombination inherited to every progeny from founder clone. In 1998, the 
Engrailed-Cre gene with b-actin-loxSTOPlox-lacZ gene was introduced into the 
mouse whole genome. Since the Engrailed gene was only expressed site-specifically, 
the lacZ turns on where Engrailed genes were expressed due to the Cre enzyme 
cleavage of loxP STOP codon sites (Zinyk et al. 1998). This experimental strategy 
elucidated the fate mapping of mouse midbrain-hindbrain constriction.

After these experiments, several tissue-specific promoters driving Cre systems 
were employed to elucidate the cellular behavior of stem cells (Snippert et al. 2010). 
Temporal control systems such as antibiotic-inducible systems (tetracycline- 
controlled transcriptional activation, Tet-On/Tet-Off) and hormone-dependent 
systems (tamoxifen-inducible CreER recombinase) were introduced as well (Gossen 
and Bujard 1992; Feil et al. 1997). The Brainbow system in neuron and Confetti 
system in the entire mouse body were reported to overcome, marking a limited 
number of stem cell lineages (Snippert et al. 2010; Livet et al. 2007). These systems 
utilized the stochastic selection of recombinase to choose multiple copies of 
fluorescent markers. After selection, each cell had unchanged different fluorescent 
color resulting from the random recombinase-mediated reporter sequences. 
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Theoretically, the system can distinguish around 90 cellular lineages depending on 
the possible combinations. The recent advent of intravital imaging technology 
combined with Cre-LoxP genetic recombination provides the window for in vivo 
stem cell behaviors (Yaniv et al. 2006).

 Lineage Tracing Using Mosaic Variants

Due to the ethical reasons, we cannot incorporate the genes into the human or trans-
fer extrinsic barcodes for the prospective lineage tracking. Thus, naturally occurring 
somatic mutation is an indispensable marker for the retrospective human lineage 
tracing experiment. In the case of genome replication including human species, 
there are several repair machineries for the accurate duplication of DNA (Friedberg 
2003). However, due to the limited function of DNA polymerase as well as proof-
read machineries, de novo mosaic mutations occur in every cellular division. It is 
assumed that these mutations can happen inevitably without any functional cause, 
and therefore, their occurrence does not impair development. Somatic mutations 
occur stochastically all over the entire genome, making whole-genome sequencing 
(WGS) a requisite as an experimental tool in lineage tracing of human (De 2011). 
In a lineage, progenies can have the same shared mutations, which are inherited 
from the same ancestor, and certain accumulated somatic variants can be utilized for 
inferring the phylogenetic trajectory origin (Behjati et al. 2014; Shapiro et al. 2013). 
Recent studies are focusing on the early postzygotic variants as a form of somatic 
mutation for the lineage tracing (Bae et al. 2018; Behjati et al. 2014; Lodato et al. 
2015), and such variants are shared by a large number of cells within an individual, 
so scientists can avoid some limitations of WGS errors bioinformatically and vali-
date the true signal using a limited number of samples within a person.

In order to reconstruct a precise cellular lineage, strategies to avoid the false- 
positive errors from the biological experiments and to find the shared somatic vari-
ants across cells are important bioinformatically as well as experimentally. Because 
of the limitation of the substantial error rate of the current sequencing methods, 
there are various experimental strategies for the identification of somatic variants, 
such as single-cell whole-genome DNA sequencing, bulk sequencing, and in vitro 
clonal expansions. Each has its own advantages and limitations; we will discuss 
these strategies in detail. A critical reason for the development of each different 
strategy is mainly because experimental errors (false-positive signal) are more fre-
quent than the genuine somatic variants.

In 2014, the first reconstruction of early developmental lineage using somatic 
variants was reported in mice (Behjati et al. 2014). Combined with the advances in 
sequencing technology and organoid cultivation methods, the authors observed 
an asymmetric contribution of the first reconstructed cell division, hypothesized by 
the previous developmental studies (Plusa et al. 2005; Bruce and Zernicka-Goetz 
2010). The inequal contribution was repetitively confirmed in humans by several 
independent groups using different organs and experimental strategies (Ju et  al. 
2017; Lee-Six et al. 2018; Huang et al. 2018). Organoid culture techniques were 
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especially useful to expand the single clones in  vitro specifically in the internal 
organs; these were utilized to estimate the tissue-specific mutation rate of the human 
adult stem cell (Blokzijl et al. 2016). For the reconstruction of the early embryonic 
lineage, the critical analytical strategy in the clonal expansion method is to find the 
key somatic variants that are shared in at least two expansional clones as well as 
absent from at least one clone (Fig. 3.2).

 Discovering Mosaic Variants 
from Next-Generation Sequencing

Next-generation sequencing (NGS) refers to multiple technologies enabling parallel 
(and, because of that, cost-effective) sequencing of fragmented DNA. A special 
preparation of fragmented DNA – the so-called library – is typically required to 
conduct the sequencing. From a prepared library, sequencing instruments output 
millions and even billions of reads – nucleotide sequences. To discover variants, the 
reads are first aligned against the reference genome in a procedure called mapping. 
Then the analysis of imperfections in the alignments allows one to discover variants 
in the studied genome relative to the human reference genome. For example, 
consistent mismatches or gaps in reads at a certain genomic position will indicate, 

Fig. 3.2 Example of sequential events of early postzygotic somatic variants. When the zygote 
divides into two daughter cells, if the mutation “A” happens in the one cell and “B” in the other 
cell, one of the “A” or “B” mutations should be found in every cell of the analyzed sample. 
Furthermore, the shared mutations (including “A”, “B” and later “C”, “D”, “E”, etc.) can be 
utilized for the lineage reconstruction. Later arising mutation “F” and “G” will be shared by a 
relatively small number of cells. Rare or private mutations, such as “H,” can only be found in one 
cell and are unlikely to be detected in bulk sequencing. The important experimental strategy to 
reconstruct cellular lineages is to segregate the shared mutations
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respectively, SNVs and indels (Fig. 3.1). Comparison of two samples allows for the 
discovery of variants that are present in only one of the samples. Such comparison 
is most commonly made by comparing read mappings to the reference genome and 
rarely by direct read comparison of the two samples.

Currently, NGS technologies can be broadly classified as generating short or 
long reads (Table 3.1). Short reads come in pairs, and each pair represents sequences 
of the ends of a DNA fragment. Paired reads improve the mapping and carry 
additional information that can be used to discover structural variations in the 
studied genome. Specifically, paired reads are generated to have a certain expected 
distance from each other and certain expected orientation relative to each other. 
Loci with systematic deviation from such expectations likely harbor structural 
variants. The main advantage of short reads is lower per base cost and low error rate.

Long reads represent sequence from either end of DNA fragments. Due to at 
least an order of magnitude higher per base cost (as compared to short reads), their 
use is still not very common. However, because of the read length, they are much 
more beneficial for discovering SVs. Just recently, Pacific Biosciences reported that 
multiple readouts of the same read can provide superior sequencing quality while 
still keeping reads significantly long, on average 13.5 kbps (Wenger et al. 2019). 
This advance yet comes at significantly increased per base sequencing cost.

Overall, current sequencing technologies enable discovery across most of the 
human genome of all types of mosaic variants, and because of that, we will focus on 
describing their application to mosaic variant discovery. The efficiency of applying 
NGS to variant discovery depends on three key parameters: (i) read length, (ii) 
precision of sequencing, and (iii) depth of coverage. The longer the reads are, the 
better one can detect variants in repeats and avoid false positives. For short read 
technologies, the resolution of repeats depends both on read length and DNA 
fragment size. Reads come in pairs because they represent ends of the same DNA 
fragment and thus are considered as one entity for alignment and analysis. So effec-
tively, the sequenced length is double the read length but not longer than the frag-
ment size. But even with such consideration, short read technologies generate reads 
that are at least an order of magnitude shorter than those made by long read tech-
nologies. Regarding the other two parameters, the more the precise reads and the 

Table 3.1 Characteristics of sequencing technologies

Characteristic Short read Long read

Companies that offer sequencing 
technologies

Illumina and BGI Pacific Biosciences and Oxford 
Nanopore Technologies

Typical read length 100–150 bp Over 20 kbp
Typical fragment length 450 bp Unlimited
Reads are in pairs Yes No
Maximum read length 300 bps Over 1 mbp
Sequencing error rate ~1% mostly 

mismatches
~10% mostly indels

Price per base Lower Higher
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higher the coverage (both are a strength of short read technologies), the better and 
the more efficient is the discovery of variants.

Mosaic variants can be detected from genome analysis of a bulk of cells and 
analysis of single cells or nuclei (Fig. 3.3). In the first case, the genomes of many 
cells from brain or other tissue are investigated per experiment (Poduri et al. 2012). 
Analysis of bulk is frequently utilized in research studies because of easier, faster, 
and cheaper sample preparation/handling and data generation than those for single- 
cell analyses. One can extract and sequence DNA from all cells in a tissue/organ or 
from some cell fraction positive for a certain cell-type marker, thereby allowing the 
study of mosaicism in and between cell types (Matevossian and Akbarian 2008). 
Variant validation in the primary sample is relatively straightforward and can be 
done with more sensitive and orthogonal techniques than those used for discovery.

Sequencing data from bulk, however, represents a genome of at least a few hun-
dred and more typically a few thousand cells, so the number of reads supporting a 
mosaic variant is proportional to its frequency in the studied sample. This is the 

Fig. 3.3 Overview of the strategies for mosaic variants discovery. A sample can be analyzed in 
bulk (top), but in such a  strategy rare variants cannot be discovered. At a standard sequencing 
coverage of 30X, variants below 20% allele frequency are unlikely to be detectable. However, 
technical and biological validations are equivalent. In the other strategy, individual nuclei or cells 
are analyzed (bottom). Here, amplification of a cell’s genome by either whole genome amplification 
(WGA) or cloning is required. Because of this, validation of variant cells in amplified DNA 
(technical validation) is not equivalent to validation in the original sample (biological validation). 
However, the latter is challenging for rare variants
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main and essential disadvantage of this strategy. Namely, analysis of bulk can 
discover common variants, but rare variants will likely be missed. The definition of 
common and rare mosaic variants is similar to that of heritable variants in a 
population where single nucleotide polymorphisms (SNPs) with population 
frequency above 1% are considered common (Bodmer and Bonilla 2008). But even 
for common variants, the sensitivity of their detection is a function of the depth of 
read coverage – higher sensitivity is enabled by higher coverage. At coverage of 
30X, which is widely accepted as adequate to find germline SNPs, only mosaic 
SNVs with variant allele frequency (VAF) above 5%–10% can be discovered as 
variants with smaller frequencies are likely to have no supporting reads. Such 
coverage will also be adequate to find mosaic CNAs and aneuploidies as for them, 
one can integrate and analyze read coverage across the entire length of the mosaic 
region. Sequencing at higher coverage will be more sensitive to lower-frequency 
variants, but it will also be proportionally more expensive. The cost associated with 
deep sequencing is the other constraint of bulk analysis. Because of that, many 
studies conducted up to now targeted specific genomic regions and thereby 
ascertained only a fraction of the human genome, for example, only exons or only 
L1 retrotransposons. We, however, caution that target approaches have more biases 
and artifacts in data generation, requiring more careful analysis and thorough 
validation.

In the second strategy, the genome of an individual nucleus or cell is studied 
(Fig. 3.3). Its fundamental strength is the suitability to discover variants present in 
the studied cell, independent of their frequency in a tissue. Namely, the number of 
reads supporting a mosaic variant in a cell is not related to the variant’s frequency 
of the studied tissue. Theoretically, it is expected to detect all mosaic variants by 
sequencing a cell to an adequate coverage. Additionally, one can employ to own 
advantage that mosaic variants in a cell typically reside on only one out of the two 
alleles present in a cell for most chromosomes (apart from aneuploidies, only sex 
chromosomes have single haplotypes in males). Consequently, the mosaic variants 
should be present at ~50% VAF in data from single-cell sequencing experiments. 
This provides a precise analytical way for distinguishing true variants from false 
positives of DNA preparation or data generation. Furthermore, this feature makes 
mosaic variants identical (in terms of frequency characteristics) to the heterozygous 
germline variants in the same cell, enabling testing, optimizing, refining, validating, 
and estimating the sensitivity of variant discovery methodology using the germline 
variants as a reference set. A straightforward study design would be to discover 
heritable germline variants for a bulk sample, isolate and sequence single cell, 
calibrate and/or ascertain discovery method based on the heritable variant set for 
data from each cell, discover variants in each cell, and then conduct validations.

This advantage is also a challenge. Since mosaic and germline variants are indis-
tinguishable in frequency, one must compare a genome of single cells to a genome 
of some other isogenic tissue or cells in order to discover mosaic variants. But if a 
variant is present in the compared tissue or cell, it may not be discovered. Apparently, 
common variants are more likely to be present in compared tissue and multiple cells 
and therefore may escape detection in such pairwise comparison. Below, we will 
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describe an approach for robust finding of common variants in such a setting. Also 
note, when discovering variants in bulk, it is not necessary to compare to other tis-
sue since mosaic variants are distinct from germline variants by having a lower 
frequency. But comparison with other tissue improves the discovery sensitivity 
toward rare variants, albeit at the same expense of likely missing common variants.

The other fundamental challenge of single-cell studies is that most of the detected 
variants could be so rare in the primary tissue that they could never be validated 
(Blokzijl et al. 2016; Bae et al. 2018; Abyzov et al. 2017; Abyzov et al. 2012; Behjati 
et al. 2014; Lodato et al. 2015). It is also unlikely to detect such variants multiple 
times in distinct cells. Furthermore, as also discussed below, some techniques for 
manipulations of DNA from a single cell (e.g., whole-genome amplification [WGA]) 
require significant enhancements to reduce artifacts into the resulting and sequenced 
DNA. Such artifacts can mimic a real variant, and a call for a variant may reflect 
such a confounder rather than a real variant present in the original tissue and 
analyzed cell/nucleus. These false calls may be still validated in the amplified 
DNA. Therefore, it is necessary to differentiate between technical validation and 
validation of variant presence in manipulated DNA (technical validation) and 
validation of variants in cells from the original tissue sample (biological validation) 
(Fig. 3.3). Also, such false calls arising from amplification artifacts will be random 
from cell to cell and will thus look like rare variants. For that reason, in order to have 
high confidence in and make conclusions about rare variants, one must minimize 
DNA artifacts created during DNA preparation or at least understand the artifacts 
and have robust analytics for filtering them out. Finally, analysis of single cells has 
a fundamental advantage over bulk sequencing for cell lineage tracing – the presence 
of multiple variants in a cell  – and their sharing across multiple cells is easily 
inferred.

 Whole-Genome Sequencing

Whole-genome sequencing (WGS) is the least biased and most comprehensive way 
to analyze the genome of a bulk or a cell. Analysis of WGS data allows one to study 
all variant types, albeit with variable efficiency, across the entire genome. So far, 
studies of mosaic variants with WGS were conducted by using only short read 
sequencing technologies to keep a lower cost of data generation. The efficiency of 
detecting mosaic variants in WGS from bulk depends on the coverage depth, while 
for single cells, it also depends on the uniformity of amplification across the entire 
genome. As was reasoned above for discovering SNVs (and indels) from bulk, it is 
necessary to have a coverage of 100X or more. However, 30X–40X coverage of the 
genome of clones or single cells is sufficient for finding both germline and mosaic 
variants, as in single cells or clones mosaic variants have characteristics of 
heterozygous germline variants (Blokzijl et al. 2016; Bae et al. 2018; Abyzov et al. 
2017; Lodato et al. 2015; Wang et al. 2012).
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The power to detect SVs from WGS depends on physical coverage, i.e., when 
counting bases in an entire DNA  fragment rather than just  in sequenced reads 
(Korbel et al. 2007; Korbel et al. 2009). Therefore, using mate pair libraries with 
DNA fragments of 2–20 kbp in length allows for an efficient and cost-effective way 
to detect mosaic SVs as with such libraries, physical coverage is folds larger than 
sequencing coverage.

Another strength of WGS is that read coverage at a given locus is roughly pro-
portional to its copy number, i.e., a deletion or duplication of a particular region is 
reflected, respectively, in a decreased or increased coverage, so analysis of the depth 
of coverage can be used to find CNAs and aneuploidies (Bentley et al. 2008; Abyzov 
et al. 2011). Although biases in the coverage do exist, they can be corrected for as 
their sources are known. In single cells with uniform amplification, where the CNA 
is present at 50% VAF, analysis of coverage can reveal CNAs as small as a few 
dozen kbp in size even at shallow coverages of 1X–5X (Abyzov et  al. 2012; 
McConnell et al. 2013). Additional separation of reads by DNA strands by means of 
special library preparation allows for discovering SVs (other than CNA) at extremely 
shallow coverage (Falconer et al. 2012). However, such library preparation can be 
conducted for dividing cells only. Regarding discoveries in bulk, a depth-of- 
coverage approach will only detect frequent CNAs, i.e., present in a large fraction 
of the cells.

 Capture and Sequencing

During the preparation of a sequencing library, one can enrich for particular regions 
of the genome  – target regions  – to increase the sequencing coverage of those 
regions while generating fewer reads, resulting in a cost-effective analytic strategy 
either in single cells or in bulk. Additionally, higher coverage of targeted regions 
increases the sensitivity for detecting variants with low frequency in bulk. 
Enrichment is conducted by hybridizing fragments of DNA from a sample to a set 
of oligomers synthesized to be complementary to the targeted genomic regions. 
Specifically, the oligos are complementary to the sequences of the target regions in 
the reference genome. The oligos with hybridized sample DNA are pulled out of the 
hybridization reaction using attached baits, typically a biotin moiety. The DNA is 
then melted, oligomers are removed, and the remaining sample DNA is then 
prepared as a library and sequenced. It is now a routine practice to use such a capture 
approach to sequence only the coding portion of the genome – exome sequencing. 
Exons comprise only about 1% of the entire human genome but harbor most variants 
with strong functional consequences. The shortcoming of the capture is that it 
introduces biases into the coverage across the whole genome and between target 
regions. As a consequence, coverage across the genome is not uniform. While 
depth-of-coverage analysis is still possible, it is only powerful to find large CNAs in 
single cells and is likely unsuitable for finding mosaic CNAs in bulk. Additionally, 
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indels within the target regions are poorly captured as the corresponding fragments 
of DNA are not complementary to the oligomers.

Custom capture libraries can target genes of interest, their exons and promoters, 
regulatory elements, or any regions of interest including sites where mosaic variants 
have been discovered. The latter case was proven to be effective for genotyping and 
confirming across multiple brain regions the presence of mosaic variants discovered 
from the analysis of clones (Bae et  al. 2018). Furthermore, capture libraries can 
target certain elements in the genome, regardless of their location, as was shown for 
families of retrotransposons in the human genome (Baillie et al. 2011; Upton et al. 
2015). When sequenced, such captured DNA yields reads mapping primarily on or 
around sequences of retrotransposons across the entire genome, enabling the 
discovery of variations reflecting insertions of both germline and mosaic 
retrotransposons. However, it is important to note that when applied to bulk, biases 
and artifacts during capture can result in false positives that look like low-frequency 
mosaic insertions. Consequently, the variant cells are to be validated with orthogo-
nal techniques.

 Amplicon-Seq and Enrichment for L1 Elements

Amplicon-seq is an approach where one sequences a pool of DNA from multiple 
(up to a few hundred) PCR reactions, amplifying sequences of distinct target 
genomic regions; it is an alternative to capture sequencing. Same as capture, it 
results in an enrichment of targeted regions in the DNA to be sequenced. And since 
the total length of the regions is manyfold smaller than the length of the entire 
genome, sequencing only a million reads per amplicon pool already yields an 
extremely deep coverage of the targets, allowing discovery and confirmation of low- 
frequency mosaic variants (Martincorena et al. 2015). As individual amplification 
reaction needs to be conducted for each target region, this approach is used for a 
relatively few regions at a time, such as the analysis of genomic sequence in coding 
regions of up to hundreds of genes (Easton et al. 2015). Similar to capture, amplicon- 
seq can be employed for a genome-wide variant discovery in loci with a particular 
genomic sequence, like a sequence of retrotransposons. It was shown that semi- 
targeted PCR of L1 retrotransposon (only one of the primers contains the 3′-end of 
active L1 elements, while other primers degenerate) allows finding mosaic and 
previously unknown germline L1 elements in human brain (Evrony et  al. 2012; 
Erwin et al. 2016; Badge et al. 2003). Same as the capture approach, amplicon-seq 
results in uneven coverage between targeted regions; however, unlike capture, it is 
well suited to amplify indels.

Its main caveat is that the DNA polymerase introduces errors, such as mis-
matches and indels, into the amplified DNA, and the errors may look like mosaic 
variants. To alleviate this drawback, one may use high-fidelity polymerase. In order 
to confidently detect mosaic variants from the data generated by amplicon-seq, esti-
mation of polymerase’s background error rate is necessary (Abyzov et al. 2017). 
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Another disadvantage of amplicon-seq is that PCR reactions can create chimeric 
DNA fragments, and chimeras are more likely to form for loci with common repeat 
sequences in the human genome, including Alu and L1 retroelements. Such chimeras 
can lead to false calls, particularly for low-frequency mosaic retrotransposon 
insertions. Furthermore, the lack of a global view of variations in genomes can lead 
to the misinterpretation of deletions as mosaic L1 insertions (Erwin et al. 2016).

 Single-Cell Whole-Genome Amplification

The amount of DNA contained in a cell is roughly 6  ng and is too little to be 
sequenced by the current sequencing methods and, consequently, needs to be 
amplified. In vitro whole-genome amplification (WGA) is the most crucial step in 
the analysis of genomes of a single cell since the quality of the amplified DNA is the 
major determinant for finding mosaic variants. WGA is conducted using one of 
several enzymatic protocols that apply DNA polymerases and, recently, RNA 
polymerases. Two major characteristics that define the quality of WGA are error 
rate in the amplified DNA and the uniformity of amplification across the genome. 
While biases in amplification and errors in the amplified DNA are intrinsic to all of 
existing protocols, they typically vary between different protocols and utilized 
polymerases. The uniformity of amplification is judged by various metrics, including 
variance in the distribution of VAFs for heterozygous SNPs (Zhang et al. 2015), the 
rate of allele dropouts (i.e., fraction of the genome with only one haplotype 
amplified) (Evrony et al. 2012), median absolute pairwise difference  measure (Cai 
et al. 2014), and variation in the coverage (i.e., variance in read-depth distribution 
for bins of a particular size across the genome) (Chen et al. 2017). Amplification 
errors in DNA can be judged from the fraction of read mismatches in sequenced 
reads (de Bourcy et al. 2014) and the rate of chimeric sequences (Picher et al. 2016).

The earliest method for WGA is degenerate oligonucleotide-primed PCR (DOP- 
PCR) (Telenius et  al. 1992). Still now, this popular method and its modification 
result in the most uniform coverage across the genome at a larger scale (i.e., few- 
dozen kbp). Because of that, it is best suited for finding CNAs and chromosomal 
aneuploidies (McConnell et al. 2013; Cai et al. 2014; Knouse et al. 2014; Navin 
et al. 2011; Gawad et al. 2016). Another widely used method is multiple displacement 
amplification (MDA), which conducts amplification at a constant temperature by 
using the ϕ29 polymerase (Dean et al. 2002). Owing to high processivity and fidelity 
of the polymerase, this method has the advantage over DOP-PCR by producing 
much longer – up to several kbp – DNA fragments and having a much lower base 
substitution rate in the produced DNA.  Because of these properties, DNA from 
MDA is well suited for the discovery of SNVs, indels, and MEIs (Lodato et  al. 
2018; Evrony et al. 2012; Lodato et al. 2015). On the other hand, due to its suffering 
from a relatively high rate of allelic dropouts and generally nonuniform coverage, 
discovering CNAs and aneuploidies from MDA amplified cells is problematic (Cai 
et al. 2014). Still, since theoretically MDA can enable ascertainment of all variant 
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types in a cell, it is viewed as the most promising amplification method. Its main 
weakness is the exponential nature of amplification resulting in an uneven coverage 
and leading to errors in the first steps of amplification being propagated at high 
frequency into the resulting DNA. Similarly, the amplification propagates unrepaired 
DNA damage in the original DNA as error into the amplified DNA.  Ongoing 
developments to improve the method are mostly focused on mitigating these 
weaknesses.

A quasilinear amplification can be conducted with multiple annealing and loop-
ing-based amplification cycles (MALBAC) (Zong et al. 2012). Following the proto-
col of the method, one is able to conduct up to five cycles of linear amplification 
from the original cell’s DNA by utilizing the combination of special primers and 
optimized temperatures for DNA melting, looping, and amplification. After this 
pre-amplification, one conducts an exponential amplification phase the same as in 
regular MDA. It was found that the addition of the single-stranded DNA binding 
protein from Thermus thermophilus HB8 improved the efficiency of MDA 
amplification (Inoue et al. 2006). Recently, it was proposed to improve MDA by 
utilizing a DNA primase from Thermus thermophilus that would prime amplifica-
tion strand instead of random primers (Picher et  al. 2016). The innovation was 
reported to result in fewer allelic dropouts, a more uniform coverage, and improved 
SNV detections (Picher et al. 2016). Improvement in the amplification uniformity 
was observed from limiting reaction volume (Hutchison et al. 2005; Marcy et al. 
2007; Gole et al. 2013; Fu et al. 2015) and from the addition of proper concentration 
of trehalose (Pan et  al. 2008). Recently, described Linear Amplification via 
Transposon Insertion (LIANTI) conducts linear amplification by means of T7 RNA 
polymerase (Chen et al. 2017). As apparent from the name of the utilized enzyme, 
the amplified material is RNA, which is, at the final step of the protocol, being 
reverse-transcribed into the DNA.

The same work has also proposed a solution to the dominant amplification error 
of cytosine to tyrosine. The prominent source of the errors is cytosine deamination 
into uracil upon cell lysis, which is read as tyrosine when copied by a polymerase 
or being sequenced. To a lesser extent, deamination is caused by a natural process 
that occurs at a low rate randomly in the genome (Shen et al. 1994). The proposed 
solution is based on treating DNA from lysed cells with uracil-DNA glycosylase, 
which eliminated uracil-deaminated bases (Chen et al. 2017). In parallel, the errors 
were shown to be diminished or entirely eliminated by performing cell lysis and 
DNA denaturation on ice through alkaline lysis prior to conducting MDA (Dong 
et al. 2017). In particular, when using human primary fibroblasts, the frequency of 
substitutions of called SNVs in amplified single cells closely resembled those in 
called SNVs in clonally expanded colonies (Dong et al. 2017).

All these improvements pave the way for precise and complete variant calling in 
a single cell, potentially enabling such discoveries now. However, we caution the 
reader that many of the recent modifications to amplification protocols have not yet 
been independently verified. Additionally, it is not clear how and whether the 
amplification outcomes of various protocols depend on cell type, nuclei, and 
different prior conditions of sample collection, storage, and cell/nuclei extraction.
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 Single-Cell Clonal Expansion

Currently, single-cell WGA is far less faithful than genome duplication in a divid-
ing cell. Instead of just polymerase, cells employ a sophisticated molecular 
machinery to minimize error during copying their genome, as well as to proofread 
and correct error. The strategy of single-cell clonal expansion leverages the highly 
precise DNA amplification in proliferating cells. Specifically, cells extracted from 
a sample are cultured until the size of such clonal colony (i.e., the number of cells) 
is large enough to extract the necessary amount of DNA for sequencing (Blokzijl 
et al. 2016; Bae et al. 2018; Abyzov et al. 2017; Saini et al. 2016; Abyzov et al. 
2012; Behjati et al. 2014) (Fig. 3.3). Cells of each colony will have the genome of 
the founder cell cloned, thereby bypassing challenges of WGA. Each cell may also 
have variants created during culture, which can be distinguished from the genuine 
mosaic variant of the founder cell by their frequency. Ideally, if all cells in a col-
ony proliferate at the same rate and do not die, then variants created in culture will 
have a small VAF in the colony except for those created during the first few divi-
sions. For the division of the founder cell (i.e., first division in colony), created 
variants will be present on only one haplotype out of four for diploid chromo-
somes and out of two for haploid chromosomes after genome duplication. 
Therefore, when haplotypes segregate into daughter cells, the allele frequency of 
created variants in the colony will be 25% and 50%, respectively. In the ideal case, 
these values will be propagated through all later division and will be significantly 
lower than 50% and 100% allele frequency for genuine mosaic variants on, respec-
tively, diploid and haploid chromosomes when DNA is harvested. In reality, how-
ever, cells divide at different rates, die, and senescence, increasing frequency of 
some culture-introduced variants and making them less distinct from mosaic vari-
ants in the founder cell. Higher sequencing coverage would allow for a finer dis-
tinction between small deviations from 50% (or 100%) VAF, but that would also 
make experiments more expensive. Therefore, monitoring early stages of clonal 
expansion and checking that there was no disparity at the start of cell proliferation 
are likely to ensure clonality of the produced colonies – the key assumption in the 
discussed approach. In many current studies, clonality is presumed as very likely 
(Abyzov et al. 2012) or verified from the obtained sequencing data (Blokzijl et al. 
2016; Bae et al. 2018).

The fundamental limitation of the clonal expansion is that it relies on prolifera-
tion potential of the cell. This makes it hardly applicable to study terminally differ-
entiated cells, like neurons, and undifferentiated cells with mosaic mutations, 
preventing their proliferation. A notable exception is cells that can be reprogrammed 
into induced pluripotent state and then cultured (Abyzov et  al. 2012). Currently, 
several cell types such as fibroblasts, keratinocytes, blood cells, and renal epithelial 
cells can be reprogrammed into induced pluripotent stem cells (iPSC) (Zhou et al. 
2011; Zhou et al. 2012). However, a possibility to make a colony out of a cell may 
also depend on the cell’s mosaic mutations. Consequently, the mutations making a 
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cell unculturable or not amendable to reprogramming cannot be detected, and this 
results in an intrinsic bias of the strategy for discovering mosaic variants from clonal 
expansion.

 Other Strategies

To mitigate and overcome limitations of WGA and clonal expansion, a few strate-
gies have been developed and described. Perhaps the most prominent one, particu-
larly for the analysis of mosaicism in the brain, is an extension of clonal expansion 
for terminally differentiated somatic cells – Somatic Cell Nuclear Transfer (SCNT) 
(Hazen et al. 2016). In this strategy, to clonally expand a somatic cell of a mouse, 
the cell’s nucleus is transferred to an enucleated oocyte. When implanted into the 
uterus, the oocyte can develop into a living mouse pup. DNA collected from any 
tissue of the animal will represent the genome of the originally transferred nucleus 
with the addition of mosaic variants occurring in the development of the animal, 
referred to above as created during culture. As reasoned in the previous section, it is 
straightforward to distinguish such variants by their allele frequency. As this strategy 
was successfully applied to study mosaicism in mouse brain, it is likely to be 
applicable to other mammals and animals. However, using it in humans is unethical. 
Furthermore, this strategy still is not able to discover mutations that make cells 
unculturable, like mutations that prevent a cell from replication.

Another hybrid strategy mitigates the challenges of WGA for cells with limited 
proliferation potential. It starts from a single cell, arrests its division at S-phase, and 
proceeds with WGA from the still-undivided cell (Leung et al. 2015). The advan-
tage is that WGA starts from a larger DNA amount, improving the quality and uni-
formity of amplified DNA. The strategy could be beneficial for studying mosaicism 
in cells that may not proliferate long enough to be extended into a colony, such as 
glial cells.

 Analytics of Variant Discovery

 Concept of Variant Discovery

Once sequencing data has been generated, it has to be analyzed to discover variants. 
The most common workflow for this analysis consists of the two major steps: (i) 
aligning of sequencing reads to a reference genome, called mapping, and (ii) finding 
systematic abnormalities in the data to generate variant calls. Mappings are done 
with dedicated software that assumes that sequenced reads map somewhere in the 
reference with a high 95%–99% sequence identity. Such a  valid assumption, as 
genomic diversity in the human population is less than 0.5% (Chaisson et al. 2019), 
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allows for fast read mapping. Still, billions of WGS reads per personal genome take 
hours to map even when utilizing dozens of CPUs. Systematic abnormalities could 
be the same mismatch at the same position across multiple reads – suggesting SNV, 
abnormally large distances between pairs of read at a certain genomic location 
(fragment size is defined by prepared sequencing library) – suggesting a deletion 
and others (McKenna et  al. 2010; Medvedev et  al. 2009). As a result, personal 
variants are called relative to the reference genome. Therefore, variants that have the 
strongest signal in the data (such as germline variants, particularly those that are 
homozygous) are easier to discover. Variants existing in a subset of sequenced 
alleles, such as mosaic variants in a tissue, have weaker signals and are hard to 
distinguish from false positives. To boost the power in discovering low-frequency 
variants, it is common to perform variant discovery in the sample of interest relative 
to some other reference sample from the same person. Such a comparison is widely 
used in the field of cancer genomics where a sample of cancer is compared against 
some normal sample of the same individual. Still, the comparison is made through 
sequencing of each sample and mapping reads to the reference genome.

An alternative to reference-based read alignment is assembly-based variant dis-
covery where reads are first assembled into long contigs and then compared to the 
reference genome. While this approach is theoretically more accurate, it is also 
computationally much more intensive. Therefore, the standard in the field is to first 
map reads to the reference and then perform local assembly around the sites of 
suspected variants.

 Leveraging Analytics from Cancer Genomics

As discussed, finding mosaic variants is in many ways similar to finding somatic 
variants in cancers, and therefore, the wealth of analytics developed in cancer 
genomics for pairwise sample comparison can be applied (Abyzov et  al. 2012; 
Koboldt et  al. 2012; Cibulskis et  al. 2013; Wala et  al. 2018; Kim et  al. 2018). 
However, there are essential differences. When discovering variants from single- 
cell analysis, variant calls with measured low frequency in data from each cell will 
likely represent amplification, or culturing artifacts, are not of interest and should be 
filtered out. Next, pairwise comparison of bulk samples will miss mosaic variants 
with high VAF in the reference tissue as such variants are hard to distinguish from 
germline variants. In cancer genomics, according to the main paradigm of clonal 
cancer evolutions, driver mutations are absent in normal tissues and only observable 
in cancer samples. In contrast, mosaic variants with high frequency in a tissue are 
likely to exhibit the largest phenotypic effect on the tissue (or organism) and thus 
could be of the highest importance to detect. Besides, higher-frequency variants are 
the most informative markers for lineage tracing (Bae et  al. 2018; Evrony et  al. 
2015; Behjati et al. 2014; Lodato et al. 2015; Lee-Six et al. 2018), which can inform 
about development (Bae et al. 2018) and clonality in a tissue (Abyzov et al. 2017; 
Lodato et  al. 2015; Lee-Six et  al. 2018). Therefore, paying attention to 
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high- frequency variants is of paramount importance in discovering mosaic variants. 
However, what to consider as high frequency can be different in each study case.

 Detecting High-Frequency Variants

A few high-frequency variants can be detected when comparing genome of a cell to 
a tissue. Specifically, their discovery is possible if the variants have been sampled in 
multiple cells and gained no or little support in the read data for tissue (Bae et al. 
2018; Abyzov et al. 2012; Lodato et al. 2015). Because of the latter, such variants 
would typically have 1% allele frequency or lower in tissues, i.e., be on the lower 
end of the frequency spectrum for high-frequency variants. Increasing sequencing 
depth would allow for a finer distinction of germline and high-frequency mosaic 
variants at the expense of higher experimental cost. For instance, at WGS of 80X for 
both single cells and the compared tissue, a mosaic SNV with a VAF of 20% is 
distinguished from 50% VAF of germline SNP with a p-value of about 10−4. But 
since the individual genome has roughly two million heterozygous SNPs (1000 
Genomes Project Consortium et  al. 2015), such statistical confidence is not 
significant when adjusting for multiple hypothesis (i.e., the number of the SNPs) 
testing.

Three strategies to solve this issue have been proposed. In the first and, likely, the 
most comprehensive strategy, instead of comparing to tissues from the same person, 
a cell’s genome is compared to genomes of a twin or the parents of the individual 
from whom the cell was obtained (Abyzov et al. 2017). Such a comparison would 
eliminate all inherited germline variants, calling mosaic and germline de novo 
variants in each cell. Germline de novo variants can then be identified as being 
present in all cells. The obvious disadvantage of this strategy is that parental 
genomes are rarely available along with the primer tissue for the analysis. In the 
second strategy, the genome of each cell is compared to some other unrelated 
genome (Lee-Six et al. 2018). In this case, germline variants different between the 
two genomes are called alone with mosaic variants. While filtering out germline 
variants is also straightforward – they must be present in (almost) all cells – the 
large count of different germline variants in unrelated individuals (over a million) 
makes the filtering prone to errors. Besides, comparing unrelated genomes is likely 
to generate more false calls due to violation of the basic assumption that compared 
genomes are mostly the same (Fig. 3.4). The last strategy mitigates disadvantages 
for the first two by conducting a complete comparison between all sequenced cells 
from an individual, so  called cell-to-cell comparison (Bae et  al. 2018). In this 
strategy, the same variant can be called multiple times from different compared 
pairs of cells. By analyzing how consistently the same variant is called for the same 
cell or a group of cells, one can distinguish mosaic variants, germline SNPs, and 
false positives (Bae et al. 2018). The major limitation of such comparison is that it 
requires a number of comparisons that is roughly squared to the number of available 
cells. For a larger number of cells sequenced, such computations may become 
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prohibitively long. So far, the advantage of complete cell-to-cell comparison was 
demonstrated for finding SNVs from sequencing data from clones, but conceptually, 
it should be applicable to finding all variants both from clones and from single cells. 
But we also note that the approach is not capable or intended to distinguish 
amplification errors from genuine mosaic variants.

Fig. 3.4 Conceptual depiction of resolving true mosaic SNV from WGA error by haplotype phas-
ing. A cell or a nucleus has heterozygous germline SNP A > G, a nearby true mosaic SNVs G>C 
(in blue), and a nearby amplification error C>T (in red). Two haplotypes in a cell/nucleus are 
unevenly amplified so there is a larger count of haplotypes with A-allele of the SNP in the analyzed 
DNA. Regardless of bias in amplification, the C-allele of true mosaic SNVs will always be in phase 
with one (G-allele) and out of phase with the other on (A-allele) alleles of the SNP, i.e., there will 
always be two haplotypes. An amplification error, on the other hand, will sometimes co-occur with 
one allele (A-allele) and be out of phase with the other one (G-allele) of the SNP, i.e., there will be 
three haplotypes existing in DNA. Such haplotype structure will be propagated into sequenced 
reads and can be reconstructed from it. Note that in this example, the measured VAFs for the 
mosaic SNVs are lower than that of the error, yet haplotype reconstruction will differentiate 
between the two. Also note that a WGA error can also be present on two haplotypes (not shown)
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 Resolving WGA Errors

Filtering out false positives due to base substitution errors during WGA can be par-
tially accomplished by setting a cutoff on VAF in the sequencing data from a cell. 
For variants discovered from sequencing data for clones, the measured VAF is tight 
already at 30X coverage, with standard deviation reflecting stochastic coverage 
fluctuations. In such a case, the VAF cutoff can efficiently separate mosaic SNVs 
and germline heterozygous SNPs from culturing artifacts. However, in WGA data, 
measured VAF is over-dispersed primarily due to uneven amplification. In such a 
case, distributions of VAF for culturing artifacts and for mosaic SNVs and germline 
heterozygous SNPs overlap significantly, and applying VAF cutoff is not that 
effective. An alternative approach is to determine the haplotype of the candidate 
mosaic variants. A real mosaic variant must be on one and only one haplotype and, 
by extrapolation, on all copies of the haplotype generated by WGS. When analyzing 
corresponding sequencing data, such a variant must be perfectly in phase with 
nearby heterozygous germline allele, if such allele exists (Fig. 3.4). In other words, 
the data should suggest the existence of only two haplotypes: one with a variant and 
another one without  it. Note, only heterozygous germline variants allow for 
distinguishing two haplotypes in a cell. Errors of WGA can be on both or only one 
haplotype; however, on one haplotype, they (the errors) are likely to be only on a 
fraction of the haplotype’s copies, as they occurred during amplification, rather than 
being constitutive to the haplotype before amplification. These conditions will result 
in poor phasing for WGA errors. A remarkable advantage over imposing VAF cutoff 
is that this approach enables confident distinction between real mosaic variants and 
an amplification error even if the frequency of the former is lower than the frequency 
of the latter (Fig. 3.4).

Theoretically, the approach is applicable to all variant types including indels, 
SVs, CNAs, and MEIs, but its utility so far has been demonstrated for mosaic SNVs 
(Lodato et  al. 2018; Ju et  al. 2017; Freed and Pevsner 2016). Furthermore, the 
efficiency of the approach depends on the number of heterozygous SNPs in a 
personal genome and on the length of the sequencing reads/fragments. There are 
approximately four million germline variants per human genome, with less than 
three million being heterozygous (1000 Genomes Project Consortium et al. 2015). 
Consequently, on average, each human has a heterozygous variant per 500–2000 
bases. Existing short read next-generation technologies sequence fragments of 
about 450 bp in length, allowing for confident haplotype resolution for a limited 
fraction of only about ~20% of candidate mosaic variants (Lodato et  al. 2018). 
Therefore, read/fragment length represents the major challenge of the haplotype- 
phasing approach for filtering out false positives. It can be anticipated that long 
reads generated by Oxford Nanopore Technologies and Pacific Biosciences will 
allow for utilizing the approach to its full potential; however, as discussed above, 
long reads are two to ten times more expensive per sequenced base and suffer from 
excessive sequencing error rate. A possible and somewhat intermediate solution 
could be sequencing with linked short reads by 10X genomics that can be used to 
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phase variants into long haplotypes of millions of bases in length (Chaisson et al. 
2019; Kitzman 2016), thereby promising near complete phasing of mosaic variants. 
However, the applicability and efficiency of this sequencing technology for finding 
mosaic variants in with WGA DNA has not yet been demonstrated.
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Chapter 4
Interphase Chromosomes of the Human 
Brain

Yuri B. Yurov, Svetlana G. Vorsanova, and Ivan Y. Iourov

Abstract Molecular neurocytogenetic (neurocytogenomic) studies have shown the 
human brain to demonstrate somatic genome variability (mosaic aneuploidy, sub-
chromosomal rearrangements). Chromosomal mosaicism and instability rates vary 
during ontogeny in the human brain: dramatic increase of the rates in the early brain 
development follows by a significant decrease in the postnatal period. It is highly 
likely that rates of mosaicism and instability increase in the aging brain. Alternatively, 
chromosome-specific instability (aneuploidy and interphase chromosome breaks) 
and increased levels of chromosomal mosaicism confined to the brain are associated 
with a wide spectrum of neurodevelopmental and neurodegenerative diseases. 
Neurocytogenetic/neurocytogenomic analyses may provide further insights into 
genome organization at the chromosomal level in cells of such a high-functioning 
system as the human brain. Here, we review studies of interphase chromosomes in 
the human brain. In this instance, the role of molecular neurocytogenetics and neu-
rocytogenomics in current genetics, genomics, and cell biology of the human brain 
is discussed.
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 Introduction

The availability of interphase molecular cytogenetic techniques (e.g., fluorescence 
in situ hybridization (FISH) with chromosome- and site-specific DNA probes) has 
made possible to analyze chromosomes in almost all cellular populations in humans 
(Soloviev et al. 1995; Yurov et al. 1996, 2013; Vorsanova et al. 2010c; Hu et al. 
2020). Neural chromosomes have been found to demonstrate high rates of varia-
tions manifesting as aneuploidy (gain/loss of chromosomes in a cell), which has 
been hypothesized to mediate neuronal diversity and brain diseases. Currently, 
chromosomal variation in the human brain has shown to represent a mechanism for 
a variety of neurodegenerative and psychiatric diseases (Yurov et al. 2001, 2018b; 
Iourov et al. 2006c; Kingsbury et al. 2006; Arendt et al. 2009; Jourdon et al. 2020). 
Actually, one can distinguish two main directions of studying interphase chromo-
somes in the human brain: (I) analysis of numerical and structural chromosomal 
changes (i.e., aneuploidy, structural abnormalities, copy number variations (CNV), 
chromosome instability, etc.) and (II) uncovering genome organization at the chro-
mosomal level. The former has been the focus of numerous molecular neurocytoge-
netic and neurocytogenomic studies, whereas the latter is likely to become a purpose 
of further neurocytogenetic research.

In the present chapter, we review the latest advances in studying chromosomes in 
the human brain at microscopic, submicroscopic, and molecular levels. Theoretical 
and practical issues of brain-specific cytogenomic analyses are considered.

 Interphase Chromosomes and Brain Ontogeny: Natural 
Chromosomal Variations

The complexity, plasticity, and intercellular variability of the human brain are likely 
to be generated during early ontogenetic stages and to be mediated by genomic 
content of neural progenitor cells (Muotri and Gage 2006; Rohrback et al. 2018b). 
The developing mammalian brain is characterized by high levels of chromosomal 
variations affecting ~30% of cells (Rehen et al. 2001; Yurov et al. 2005, 2007a). 
More precisely, the developing human brain is demonstrated to possess 30–35% of 
aneuploid cells (1.25–1.45% per chromosome) revealed by methods based on fluo-
rescence in situ hybridization (FISH). These are multiprobe FISH, quantitative 
FISH (QFISH), and interphase chromosome-specific multicolor banding (ICS- 
MCB) (Yurov et al. 2005, 2007a; Iourov et al. 2010a, 2019a) (Fig. 4.1). Additionally, 

Fig. 4.1 (continued) (d) – chromosome 9, (e) – chromosome 16, and (f) – chromosome 18. (g) 
Interphase QFISH: (1) a nucleus with two signals for chromosomes 18 (relative intensities: 2058 
and 1772 pixels), (2) a nucleus with one-paired signal mimics monosomy of chromosome 18 (rela-
tive intensity: 4012 pixels), (3) a nucleus with two signals for chromosomes 15 (relative intensities: 
1562 and 1622 pixels), and (4) a nucleus with one signal showing monosomy of chromosome 15 
(relative intensity: 1678 pixels). (From Yurov et al. 2007a, an open-access article distributed under 
the terms of the Creative Commons Attribution License)
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Fig. 4.1 Molecular cytogenetic analysis of aneuploidy in the fetal human brain. (a–c). Interphase 
FISH with chromosome-enumeration DNA probes: (a) two nuclei characterized by additional 
chromosomes Y and X and a normal nucleus; (b) a nucleus with monosomy of chromosome 15 and 
a normal nucleus; and (c) a nucleus with monosomy of chromosome 18 and a normal nucleus. 
(d–g) Interphase chromosome-specific MCB: nuclei with monosomy, disomy, trisomy, and 
G-banding ideograms with MCB color-code labeling of a chromosome (from left to right), 
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the developing human brain is the only embryonic tissue so far, which has demon-
strated confined chromosomal mosaicism in contrast to confined placental mosa-
icism (Yurov et  al. 2007a). At the subchromosomal level, similar progressive 
genomic changes are observed (i.e., high rates of brain-specific CNVs involving 
DNA sequences less than 1  Mb) in the developing human brain (McConnell 
et al. 2013; Rohrback et al. 2018a, b). At the sequence level per se, similar somatic 
genomic variations are unlikely to exist (Knouse et al. 2014; Muyas et al. 2020). 
Thus, (sub)chromosomal mosaicism and instability (aneuploidy) are hallmarks of 
the developing mammalian brain.

Taking into account a correlation between number of aneuploid cells (30–35%) 
and number of cells cleared by the programmed cell death (30–50%) in the develop-
ing brain, aneuploidization (progressive accumulation of aneuploid cells) is sug-
gested as a mechanism for cell number regulation during early brain ontogeny 
(Iourov et al. 2006c; Muotri and Gage 2006; Yurov et al. 2010a; Fricker et al. 2018). 
Considering observations evaluating functional effects of aneuploidy either at the 
single cell level or at the tissular level (Iourov et al. 2008a; Dierssen et al. 2009; 
Hultén et al. 2013), mitotic catastrophe (a cascade of abnormal mitotic cell divisions 
producing aneuploidization) has been proposed as a mechanisms for cell number 
decreases in the developing brain because of aneuploid cell death (Iourov et  al. 
2006d, 2019d; Yurov et al. 2007a; Fricker et al. 2018). This hypothesis has been 
supported by studying chromosomal mosaicism in embryonic and extraembryonic 
tissues, which has shown that this mosaicism type is able to cause prenatal death or 
spontaneous abortions (Vorsanova et al. 2005, 2010a). Since aneuploidy is likely to 
have an adverse effect on cellular homeostasis, an alteration to the clearance of 
aneuploid cells during prenatal period may result in high rates of aneuploidy in the 
postnatal human brain, mediating neuropsychiatric and neurodegenerative diseases 
or childhood brain cancer (Iourov et al. 2006c, 2009c, 2019d; Kingsbury et al. 2006; 
McConnell et al. 2017; Yurov et al. 2018a, b, 2019b). On the other hand, aneuploidy 
may represent a mechanism for neuronal diversity in the unaffected human brain 
inasmuch as aneuploid neural cells are functionally active and integrated into brain 
circuitry (Kingsbury et al. 2005). To gain further insights into the role of chromo-
somal variation in the human brain in later ontogeny, one has to study interphase 
chromosome in the childhood and adult human brain.

During the prenatal period, rates of chromosomal and subchromosomal changes 
or instability decrease to 10% or lower (Yurov et al. 2005, 2018b, 2019b; Iourov 
et al. 2006a, 2009b; McConnell et al. 2013; Rohrback et al. 2018a). Interestingly, 
the way of variation in cell numbers mediated by aneuploidization in the develop-
mental brain and programmed cell death is likely to be specific for humans in con-
trast to other vertebrates studied in this context (Rehen et al. 2001; Yurov et al. 2005, 
2007a; Iourov et  al. 2006c; Zupanc 2009; Rohrback et  al. 2018a). Probably, the 
functional uniqueness of the human brain is achieved by such a kind of selective 
pressure at cellular/chromosomal level (Iourov et  al. 2012, 2019d). Additionally, 
intercellular differences between DNA content (~250 Mb) in the adult human brain 
have been reported (Westra et al. 2008, 2010). The variability of the chromosomal 
numbers (aneuploidy) allowed to hypothesize that aneuploidy rates may be higher 
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in late ontogeny. In other words, aneuploidization may be a mechanism for brain 
aging (Iourov et  al. 2008a; Yurov et  al. 2009b, 2010a, b; Faggioli et  al. 2011). 
However, there is no consensus on the matter. Thus, a number of studies report 
increased rates of aneuploidy in the aged brain (Fischer et al. 2012; Andriani et al. 
2017), whereas other reports do not (Van den Bos et al. 2016; Shepherd et al. 2018). 
The lack of consensus is more likely to be a result of technological differences 
between these reports. Single-cell sequencing studies report low rates of genomic 
changes in moderate cell numbers (~100 cell analyzed with the highest resolution 
possible) (Knouse et  al. 2014; Van den Bos et  al. 2016; Rohrback et  al. 2018a), 
whereas molecular cytogenetic studies report high rates of chromosomal variations 
in large cell populations (reviewed by Iourov et al. 2012; Yurov et al. 2018b, 2019b). 
One can propose that combination of sequence-based single-cell techniques and 
molecular cytogenetic (cytogenomic) methods may solve the problem.

The devastating effect of chromosomal abnormalities (aneuploidy and structural 
aberrations) suggests that these genomic variations are able to produce functional 
and structural alterations to the human brain. The confinement of aneuploidy and 
other types of chromosomal variations (instability) to the central nervous system 
has been systematically associated with brain diseases (Yurov et al. 2001, 2018b; 
Iourov et al. 2006c, d, 2013; Tiganov et al. 2012; McConnell et al. 2017; Leija- 
Salazar et al. 2018; Iourov 2019; Potter et al. 2019; Heng 2020). It is highly likely 
that each form of brain pathology is linked to a specific type of brain-specific 
genomic alterations.

 Interphase Chromosomes in the Diseased Brain

Chromosomal variations cause functional brain alterations in a wide spectrum of 
psychiatric and neurological diseases (DeLisi et  al. 1994; Iourov et  al. 2008b; 
Vorsanova et al. 2010d; Graham et al. 2019; Potter et al. 2019). Somatic genome 
variations at chromosomal and subchromosomal levels are repeatedly associated 
with neurodevelopmental, neurodegenerative, and/or psychiatric disorders (Iourov 
et al. 2008b, 2010b, 2019d; Smith et al. 2010; Paquola et al. 2017; Vorsanova et al. 
2017; Graham et al. 2019). Chromosomal abnormalities and instability confined to 
the brain have been reported in schizophrenia and neurodegenerative diseases. 
Several neuropsychiatric diseases (e.g., autism and epilepsy) are also hypothesized 
to be associated with neurocytogenetic and neurocytogenomic variations.

The first report on two cases of mosaic aneuploidy (trisomy X and 18) in the 
schizophrenia brain (Yurov et al. 2001) has formed the basis for further neurocy-
togenomic studies of the diseased brain. As a result, several schizophrenia cases 
have been additionally associated with chromosome-1-specific instability and 
gonosomal instability, which are almost exclusively manifested as aneuploidy 
(Yurov et al. 2008, 2016, 2018a). Brain-specific structural chromosomal abnormali-
ties (microdeletions) and CNV have been also found in a number of schizophrenia 
cases (Kim et  al. 2014; Sakai et  al. 2015). These data allow suggesting that a 
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number of schizophrenia cases are the result of chromosomal abnormalities and/or 
instability in the diseased brain (Yurov et al. 2018a, b). Further molecular neurocy-
togenetic (neurocytogenomic) studies would certainly shed light on the involvement 
of “neurochromosomal variation” in schizophrenia and would likely to define the 
exact proportion of schizophrenia cases associated with neural aneuploidy, struc-
tural chromosome aberrations and chromosomal/genomic instability.

Somatic mosaic aneuploidy is one of the commonest types of genomic variations 
in autistic individuals inasmuch as ~10% of autistic males are likely to exhibit low- 
level 47,XXY/46,XY mosaicism (Yurov et  al. 2007b). More importantly, gono-
somal mosaicism is common in autistic individuals and their relatives. Several 
familial cases of behavioral abnormalities co-segregating with X chromosome 
aneuploidy and chromosomal instability have been reported (Vorsanova et al. 2007, 
2010b). These data have been used for theoretical explanation of the male-to-female 
ratio in autism (Iourov et al. 2008c). Additionally, the neurocytogenetic hypothesis 
of autism (i.e., a proportion of autism cases may be associated with chromosome 
abnormalities and instability confined to the brain) has been recently described 
using systems biology methodology (Vorsanova et al. 2017). Our preliminary stud-
ies have demonstrated a possible involvement of brain-specific chromosome insta-
bility (chromothripsis) and aneuploidy in pathogenic cascades associated with 
autistic behavior (Iourov et al. 2017a). In the behavioral context, one has to mention 
studies suggesting that genome/chromosome instability probably shapes behavior 
in individuals suffering from neurodevelopmental diseases (Vorsanova et al. 2018) 
and gulf war illness (Liu et al. 2018). However, direct evaluation of interphase chro-
mosomes in the autistic brain is still in process.

Somatic aneuploidy and other types of chromosome instability have been found 
to mediate neurodegeneration (Iourov et  al. 2009a; Leija-Salazar et  al. 2018; 
Shepherd et al. 2018; Yurov et al. 2019a). The Alzheimer’s disease brain has been 
systematically shown to exhibit genome/chromosome instability and related phe-
nomena (i.e., abnormal cell cycle entry, endomitosis, replication stress, abnormal 
DNA damage response, and micronuclei in mitotic tissues) (Herrup and Yang 2007; 
Mosch et al. 2007; Iourov et al. 2011; Yurov et al. 2011, 2019a; Arendt 2012; Bajic 
et al. 2015; Coppedè and Migliore 2015; Hou et al. 2017; Lin et al. 2020; Nudelman 
et al. 2019). Taking into account neurological parallels between Alzheimer’s disease 
and Down syndrome or trisomy of chromosome 21 (Snyder et al. 2020), Professor 
Huntington Potter’s group has proposed that brain-specific copy number changes of 
either whole chromosome 21 or chromosome 21 region containing APP gene are 
able to mediate neurodegeneration in Alzheimer’s disease (Granic et al. 2010; Potter 
et al. 2019). Actually, chromosome 21-psecific instability in the diseased brain is 
one of the most probable mechanisms for Alzheimer’s disease (Iourov et al. 2009b). 
Additionally, genes mutated in rare familial cases of the diseases are involved in 
processes granting proper chromosome segregation during the cell division (Boeras 
et al. 2008; Granic et al. 2010). Similarly, altered chromosome segregation induced 
by LDL/cholesterol seems to contribute to Alzheimer’s disease as well as to 
Niemann-Pick C1 and atherosclerosis (Granic and Potter 2013). Moreover, X chro-
mosome aneuploidy (X chromosome loss) — a cytogenetic biomarker of human 
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aging — has been reported to have higher rates in the Alzheimer’s disease brain as 
to the unaffected brain (Yurov et al. 2014) (Fig. 4.2). Selective cell death of aneu-
ploid neurons (i.e., aneuploidy causes neuron death as it is the case in the develop-
mental brain) has been reported to hallmark the neurodegeneration in the Alzheimer’s 
disease brain (Arendt et al. 2010). Abnormal DNA damage response resulting in 
chromosome/genome instability is likely to result in neurodegeneration in the 
Alzheimer’s disease brain (neural cells with aneuploidy or structurally altered chro-
mosomes produced by DNA damage are susceptible to programmed cell death) 

Fig. 4.2 Molecular neurocytogenetic analyses of the AD brain. (a) Multiprobe (two-probe) and 
quantitative FISH using DNA probes for chromosomes 1 (two red signals/D1Z1) and X (one green 
signal/DXZ1; relative intensity is 2120 pixels) demonstrating true X chromosome monosomy; (b) 
multiprobe (two-probe) and quantitative FISH using DNA probes for chromosomes 1 (two red 
signals/D1Z1) and X (one green signal/DXZ1; relative intensity is 4800 pixels) demonstrating 
overlapping of two X chromosome signals, but not a chromosome loss; (c) ICS-MCB with a probe 
set for chromosome X showing one nucleus bearing two chromosomes X and another nucleus 
bearing single chromosome X. (From Yurov et al. 2014, an open-access article distributed under 
the terms of the Creative Commons Attribution License)
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(Fielder et al. 2017; Lin et al. 2020). Finally, Alzheimer’s disease has been associ-
ated with subchromosomal instability (e.g., nonspecific CNVs) involving the APP 
gene (Kaeser and Chun 2020). In total, chromosome instability, including aneu-
ploidy, represents an element of the Alzheimer’s disease pathogenic cascade (Iourov 
et al. 2011; Yurov et al. 2019a). To link observations on aneuploidy/chromosome 
instability, abortive cell cycle, DNA damage, replication stress, and APP, a hypoth-
esis depicted by Fig. 4.3 has been proposed.

Non-Alzheimer’s disease neurodegeneration has been associated with chromo-
somal variations in the diseased human brain as well. Thus, Lewy body diseases 
exhibit high rates of neural aneuploidy in the neurodegenerating brain (Yang et al. 
2015). MAPT mutations that lead to mitotic defects, neuronal aneuploidy and exten-
sive apoptosis are likely to cause frontotemporal lobar degeneration (Caneus et al. 
2018). Subchromosomal instability involving α-synuclein (SNCA) has been associ-
ated with Parkinson’s disease and multiple system atrophy (Mokretar et al. 2018). 
Probably, the most intriguing example of a neurodegenerative disease associated 
with brain-specific chromosome instability is ataxia-telangiectasia, an autosomal 
recessive chromosome instability syndrome caused by ATM gene mutations and 
characterized by cerebellar degeneration (Iourov et al. 2007b; Potter et al. 2019). In 
fact, neurodegeneration caused by chromosome instability has been firstly demon-
strated during the molecular cytogenetic analysis of the ataxia-telangiectasia brain 
(previously, chromosome instability has been suggested to be almost exclusive 
mechanism for cancer) (Iourov et al. 2009a, b). The ataxia-telangiectasia brain dem-
onstrates chromosome-14 instability (interphase chromosomal breaks and addi-
tional rearranged chromosomes) in ~40% of cells in the degenerating cerebellum 
(Iourov et al. 2009a). These data have been used as a basis for potential therapeutic 
strategies for neurodegeneration mediated by chromosome (genome) instability 
(Yurov et al. 2009a; Iourov et al. 2019b). There are striking differences between 
cancerous chromosome instability and neurodegenerative chromosome instability. 
The differences  are as follows: Cancer: Cancer-susceptibility mutations interact 
with environment producing genome and chromosome instabilities. These pro-
cesses lead to clonal evolution and, thereby, malignancy. Neurodegeneration: 
Chromosome instability and abnormalities are present in a significant proportion of 
cells, and genetic-environment interactions trigger progressive neuronal cell loss 
(neurodegeneration) by natural selection and/or programmed cell death (Iourov 
et al. 2013; Yurov et al. 2019a). Schematically, this model is shown by Fig. 4.4.

In the previous version of the book (Yurov et al. 2013), we proposed a hypothesis 
describing the role of neural aneuploidy and chromosome instability. During the last 
7 years, more evidences for supporting the hypothesis have been provided (Iourov 
et al. 2014, 2019a, b, d; Yurov et al. 2014, 2018a, b, 2019a, b; Bajic et al. 2015; 
Andriani et al. 2017; McConnell et al. 2017; Vorsanova et al. 2017, 2020; Leija- 
Salazar et  al. 2018; Rohrback et  al. 2018b; Shepherd et  al. 2018; Graham et  al. 
2019; Iourov 2019; Potter et al. 2019; Jourdon et al. 2020). Accordingly, we would 
like to reproduce schematically the hypothesis (Fig. 4.5).
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Fig. 4.3 (a) Simplified schematic presentation of the cell cycle theory of AD. Quiescent neuronal 
cells (G0 phase) demonstrate the cell cycle reactivation by either endogenous or environmental 
mitogenic stimuli followed by reentry into the G1 phase. The G0/G1 phase transition is critical for 
a postmitotic neuron and potentially causes neuronal cell death. During G1 phase, diploid neurons 
(chromosomal complement: 2 N; number of chromosomes: 46; DNA content: 2C) demonstrate 
G1-specific cell cycle markers (cyclin D and CDK4/6 complex, cyclin E, and CDK2 complex) 
which are involved in the regulation of G1 phase progression. Cells successfully passing G1 enter 
the S phase (phase of DNA replication). During the S phase, CDK2/cyclin E should be silenced to 
repress additional round of replication of genomic DNA. Protein markers of the S phase are A-type 
cyclins (cyclin A/CDK2 complex). This complex is essential for proper completion of S phase and 
transition from S to G2 phase. DNA content of cells during S phase changes from 2C to 

(continued)
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 Interphase Chromosomes and Genome Organization 
in the Human Brain

Nuclear genome organization in interphase is crucial for regulating chromatin 
remodeling, genome activity (transcription), genome safeguarding (DNA damage 
response, proper chromosome segregation, mitotic checkpoint, etc.), DNA repair 
and replication, and programmed cell death (for details, see Chaps. 1, 2, and 9). 
Previously, we have systematically indicated the importance of neurocytogenetic 
analysis of chromosome organization in interphase nuclei of the human brain 
(Iourov et al. 2006c, 2010a, 2012; Yurov et al. 2013, 2018b). Unfortunately, no sig-
nificant progress has been, as yet, made in this field. Nonetheless, we have attempted 
to list known properties of interphase chromosome behavior in the human brain 

Fig. 4.3 (continued) 4C (chromosome number is still 2 N, but DNA content after replication is 
tetraploid). During G2 phase, cyclin A is degraded, and cyclin B/CDC2 complex (protein bio-
marker of late S/early G2 phases) is formed. Cyclin B/CDC2 complex is essential for triggering 
mitosis. Neuronal cells in G2 phase demonstrate tetraploid (4 N) DNA content or, more precisely, 
possess a nucleus with 46 replicated chromosomes. Chromosomal complement (genomic content) 
of cells in G2 consists of one set of 46 duplicated chromosomes (DNA content: 4 N or 4C; diploid 
nucleus with replicated chromosomes; for more details see, [20]), each having two chromatids—
“mitotic” tetraploidy. It is to note that true constitutional polyploidy is a term used to describe cell 
containing more than two homologous sets of chromosomes (4 N or 92 chromosomes, DNA con-
tent: 4C). We suggest that postmitotic neurons are able to replicate DNA but are not able to make 
a G2/M transition and divide into two daughter cells. (b) The DNA replication stress hypothesis of 
AD. Interplay between essential elements of the AD-type dementia pathogenetic cascade is pro-
posed. The genetic influences (PSEN or APP mutations, trisomy 21, APOE4 genotype), metabolic 
changes, and environmental factors affecting neuronal homeostasis in the aging brain lead to acti-
vation of neuronal proliferation. Mitogens, which do exist in the human brain (neuronal cells), 
induce additional stimuli of extensive adult neurogenesis in the hippocampus. In the AD brain, 
such events would lead to increased hippocampal neurogenesis. A side effect could be that these 
mitogenic stimuli activate cell cycle reentry in postmitotic neurons. The latter is a pathological 
activation of neuronal cell cycle, including reentry into G1 and S phases and initiation of DNA 
replication. Neurons showing protein markers of G2/M phase, probably, contain chromosome set 
of 23 duplicated chromosome pairs with unseparated chromatids (DNA content, 4C; chromosome 
complement, 2 N) and become tetraploid in a sense of DNA content (4C). According to the com-
monly accepted theory of neuronal cell cycle reentry and death, some neuronal populations com-
plete the DNA synthesis but are arrested during the G2/M transition. Therefore, neuronal death 
occurs in G2 phase. Alternatively, one can propose that a large proportion of activated postmitotic 
neurons in the AD brain are unable to pass properly the S phase. This would lead to accumulation 
of genomic and chromosomal instabilities throughout ontogeny (DNA breaks, aneuploidy). In 
addition, replication- induced DNA damages would lead to fork stalling, incomplete or inefficient 
DNA replication, together designated as replication stress. Replication stress may be considered 
the leading cause of neuronal cell death due to processing into S phase or accumulation of genetic 
instabilities, which together constitute an important element of the AD pathogenetic cascade. 
According to the present hypothesis, the possibility to link the two main pathways of AD arises 
from the introduction of accumulation of genomic instabilities associated with DNA replication 
stress, which is able to produce as neuronal cell death (replicative cell death) as chromosomal 
aneuploidy due to natural selection in neural cell populations probably causing extra APP in the 
diseased brain. (From Yurov et al. 2011, an open-access article distributed under the terms of the 
Creative Commons Attribution License)
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along with molecular cytogenetic FISH-based techniques, which are used for the 
analysis.

To perform a successful study of chromosomal arrangement in interphase, one 
has to be aware about the spatial preservation of interphase nuclei during tissue/cell 
suspension preparation for molecular cytogenetic analysis. Although brain cell 
preparation for molecular neurocytogenetic analysis requires specific procedures, it 
does provide an opportunity to preserve interphase nuclei of the human brain 
(Iourov et  al. 2006b; Yurov et  al. 2017b). Pairing of homologous chromosomes 
(chromosomal associations/locus associations) is common in the postnatal human 
brain (Iourov et al. 2005, 2017b; Yurov et al. 2017b). To make accurate scoring of 
the associations, QFISH may be applied (Iourov et al. 2005; Iourov 2017). Finally, 
functional complexity and structural variability of neural cell populations lead to 
requirement of studying integral interphase chromosomes at molecular resolutions 
in a “band-by-band” manner. This technical opportunity is offered by interphase 
chromosome-specific multicolor banding (ICS-MCB) (Iourov et al. 2006a, 2007a). 
An example of ICS-MCB is shown by Fig. 4.6. Nuclear genome organization at the 
chromosomal level may be a mechanism for brain diseases (Iourov 2012; Yurov 

Fig. 4.4 Theoretical model for CIN mediating (a) cancer and (b) neurodegeneration. (a) Genetic 
defects and genetic-environmental interactions may cause chromosomal/genomic changes, which 
produce CIN; alternatively, cell populations may adapt to aneuploidy and CIN evolving to a cell 
population with a fitness advantage. Cells affected by CIN and tolerating deteriorating effects of 
CIN on cellular homeostasis are able to evolve clonally to produce malignancy. (b) CIN/somatic 
mosaicism affecting a significant proportion of cells interacting with environmental triggers may 
result into progressive neuronal cell loss (neurodegeneration) under natural selection pressure and 
through the programmed cell death (N, normal neurons; CIN, neuronal cell affected by CIN). The 
model is based on the observations of CIN in the neurodegenerating brain and cancers. (From 
Yurov et al. 2019a, an open-access article distributed under the terms of the Creative Commons 
Attribution License)
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et al. 2013). However, there are no, as yet, studies attempting to correlate specific 
nuclear chromosome organization in neural cells and central nervous system 
dysfunction.

 Conclusion

The present chapter is dedicated to behavior and variation of interphase chromo-
somes in the human brain. Aneuploidy and other types of chromosome instability 
are mechanisms for neuronal diversity and brain diseases. As repeatedly noted 
before, brain-oriented interphase chromosome (neurocytogenetic and neurocytoge-
nomic) analysis brings new insights to neuroscience, human genomics, and molecu-
lar medicine.

Molecular (neuro)cytogenetic and (neuro)cytogenomic studies seem to benefit 
from bioinformatics approaches based on network- or pathway-based analysis, i.e., 
systems biology methodology (Yurov et  al. 2017a, b). Actually, pathway-based 
classification of human diseases is considered the most promising way to unravel 

Fig. 4.5 Schematic representation of the hypothesis on the role of aneuploidy in normal CNS 
development and aging as well as in pathogenesis of brain diseases. During the normal prenatal 
brain development, developmental chromosome instability is cleared leading to three-time 
decrease of aneuploidy rates. Brain aging is likely to be associated with slight increase of aneu-
ploidy. Total failure of clearance of developmental chromosome instability would lead to the per-
sistence as observed in chromosome instability syndromes with brain dysfunction 
(ataxia-telangiectasia) and brain cancers. Clearance may not affect low-level chromosomal mosa-
icism confined to the developing brain, which is extremely frequent among human fetuses. In such 
cases, the postnatal brain exhibits low-level chromosome-specific mosaic aneuploidy. The latter is 
shown to be associated with diseases of neuronal dysfunction and degeneration (mental retarda-
tion, autism, schizophrenia, Alzheimer’s disease). (From Yurov et al. 2013 (previous edition of the 
book — Figure 4.9), reproduced with permission of Springer Nature in the format reuse in a book/
textbook via Copyright Clearance Center)
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Fig. 4.6 FISH using MCB probes on interphase nuclei of the human brain. (a): FISH with MCB 
probe for chromosome 1. R110 signals correspond to 1p32.3Yp36.3 and 1q32Yq43. SO (Spectrum 
Orange) signals Y 1p13Yq21 including constitutive heterochromatin (1qh). TR (Texas Red) sig-
nals Y 1p31.1Yp33 and 1q21.3Yq31. Cy5 signals Y 1p13.1Yp22.3 and 1q32Yq43. DEAC signals 
Y 1q21.3Yq31. Note the upper chromosome 1 is folded around 1qh and bent in the proximal part 
of the q-arm. (b): FISH with MCB probe for chromosome 9. R110 signals correspond to 9p13Yq13 
including constitutive heterochromatin (9qh). SO (Spectrum Orange) signals Y 9p21Yp24 and 
9q32Yq34. TR (Texas Red) signals Y 9q22.2Yq34.1. Cy5 signals Y 9p13Yp23. DEAC signals Y 
9q13Yq22.2. (c): FISH with MCB probe for chromosome 16. R110 signals correspond to 
16p11.1Yp13.1 SO (Spectrum Orange) signals Y 16p13.3Yp21. TR (Texas Red) signals Y 
16q11.1Yq21 including constitutive heterochromatin (16qh). Cy5 signals Y 16q21Yq24. Note the 
single Texas Red signal instead of two; this implies that 16qh regions of two homologous chromo-
somes 16 are overlapped. Therefore, somatic pairing of two homologous chromosomes 16 by 16qh 
region should be suspected. (d): FISH with MCB probe for chromosome 18. R110 signals 
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complex relationship between molecular/cellular processes and phenotypes (Iourov 
et  al. 2019b). We suggest that systems biology methodology considered in the 
molecular cytogenomic context is able to provide new information about interphase 
chromosomes in the human brain (Yurov et al. 2017a, b; Iourov et al. 2019c). These 
approaches toward the definition of molecular basis of human brain diseases have 
been already found successful: (i) uncovering molecular mechanisms for somatic 
mosaicism (Iourov et al. 2015), (ii) genomic instability associated with neurological 
and psychiatric diseases (McConnell et al. 2017; Vorsanova et al. 2017), and (iii) 
molecular/cellular alterations causing brain dysfunction (Iourov et al. 2009b, 2019b, 
c). To this end, one has to conclude that interphase chromosome studies certainly 
contribute to our knowledge about the human central nervous system.
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Chapter 5
Senescence and the Genome

Joanna M. Bridger and Helen A. Foster

Abstract Cellular senescence is commonly initiated in response to replicative or 
cell stress pathways. Senescent cells remain in a state of permanent cell cycle arrest, 
and although being metabolically active, they exhibit distinct senescence phenotypes. 
Though cellular senescence may be beneficial in tumour suppression and wound 
healing, it is commonly associated with age-related diseases. There are various 
mechanisms and drivers that contribute to ageing, but it is becoming increasingly 
apparent that processes related to chromatin and the epigenome are also important. 
Indeed, three of the nine hallmarks of ageing are genome specific including genomic 
instability, epigenetic alterations and telomere attrition. With the advent of new 
technologies like DNA adenine methyltransferase identification and chromosome 
conformation capture, the features and complexity of the ageing genome are being 
revealed. This chapter will address key characteristics of interphase nuclei during 
cellular senescence including the spatio-temporal organisation of chromosomes, 
chromatin remodelling and epigenome changes.

 The Senescence Phenotype

The term “cellular senescence” was originally coined by Hayflick in 1965 (Hayflick 
1965). It was described as an important mechanism to suppress tumorigenicity. 
Senescence can be categorised into four types as shown in Fig. 5.1: (1) replicative 
senescence (RS) as a result of telomere dysfunction or shortening; (2) genotoxic 
stress-induced senescence due to endogenous stress, e.g. oxidative stress and severe 
or irreparable DNA damage; (3) oncogene-induced senescence (OIS) via the 
activation of aberrant signalling pathways caused by different mechanisms including 
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natural endogenous processes such as mitogenic signalling or oxidative respiration, 
physical or chemical insults encountered during life or therapeutic treatment such as 
irradiation or chemotherapy; and (4) embryonic-senescence which occurs in a 
developmentally regulated manner (Coppé et al. 2010; Munoz-Espin et al. 2013; 
Storer et al. 2013; Graziano and Gonzalo 2017). The characteristics of senescence 
may vary depending on the mechanism by which it was induced; for instance, a 
senescence-associated secretory phenotype (SASP) that secretes proinflammatory 
mediators is present with some forms of senescence, but not others (Coppé et al. 
2010). Regardless of the type of senescence, they each share the characteristic arrest 
in cell proliferation (Coppé et al. 2010). This chapter will concentrate on how the 
genome and its behaviour are altered during senescence.

 Organisation of Chromatin and the Epigenome During Ageing

DNA contains genetic information that, when expressed, ultimately codes for the 
synthesis of a range of proteins vital for the correct functioning of cells, tissues and 
the whole organism. The genome, when housed in cell nuclei, needs to be organised 
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Fig. 5.1 The four main categories of senescence. Genomic stress-induced senescence can be 
induced via products from cellular metabolism, e.g. reactive oxygen species (ROS) produced by 
mitochondria or DNA damage due to errors in DNA replication, recombination or repair 
mechanisms. Activation of aberrant signalling pathways can lead to oncogene-induced senescence 
and may result from mitogenic signalling or genotoxic agents such as chemical mutagens and 
radioactivity. Embryonic senescence is important for developmentally regulated growth and 
patterning. Replicative senescence can lead to irreversible cell cycle arrest by telomere shortening 
or dysfunction
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correctly so that this information can be safely conveyed during proliferation and 
cell division to daughter cells, be protected from damage and allow genes to be 
expressed or repressed depending on the protein requirements of the cell and 
differentiated tissue. The nucleosome is an octamer of histone proteins composed of 
two copies of histones H2A, H2B, H3 and H4. There are approximately 30 million 
nucleosomes within the genome, and DNA wraps around these nucleosome 
complexes to form chromatin (Xu and Liu 2019). Epigenetics involves heritable 
changes that alter the expression of genes but do not change the DNA sequence. 
These modifications can act directly on the DNA by adding methyl groups to 
cytosine; through post-translational modifications to histones including acetylation, 
methylation, phosphorylation, sumoylation or ubiquitination; or via non-coding 
RNAs such as microRNA (miRNA), Piwi-interacting RNA (piRNA) and small 
interfering RNA (siRNA) (Dupont et al. 2009; Wei et al. 2017). Deregulation of 
epigenetic mechanisms has been highlighted in disease aetiology and ageing. 
Epigenetic clocks predict the chronological age of individuals by studying the 
methylation status of cytosines in specific GC-rich regions of the genome, known as 
CpG islands (Horvath 2013). Mathematical algorithms are employed to determine 
DNA methylation levels (5-methylcytosine or 5mC) from sets of CpG islands to 
estimate the age of the DNA source (Horvath and Raj 2018). CpG islands are 
commonly found near promoter regions of the genome, are ≥0.5 kb long with a GC 
content of ≥55% and are generally unmethylated (Jeziorska et  al. 2017). Global 
DNA hypomethylation, with hypermethylation of specific loci, is associated with 
physiological ageing (Gensous et  al. 2017). Changes in DNA methylation have 
been demonstrated in a number of age-related diseases such as cancer (Xie et al. 
2019), Parkinson’s disease (Miranda-Morales et al. 2017; Navarro-Sánchez et al. 
2018) and Alzheimer’s disease (Levine et al. 2015) as well in cells derived from 
Hutchinson-Gilford progeria syndrome (HGPS) patients (Ehrlich 2019). However, 
epigenetic changes during ageing are complex. Although region-specific 
hypermethylation may be determined at specific CpG islands and gene loci, ageing 
is also associated with global hypomethylation across the genome (Gensous et al. 
2017) and loss of heterochromatin (Goldman et al. 2004; Chandra et al. 2015).

The degree of chromatin compaction can vary in cells, with euchromatin being 
less compact and open in structure and heterochromatin being more condensed. 
Generally, euchromatin is rich in CpG islands, has a high GC content, is gene-dense 
and is associated with short interspersed elements (SINEs) and transcriptional activ-
ity (Medstrand et  al. 2002; Elbarbary et  al. 2016; Vanrobays 2017). Conversely, 
heterochromatin is AT-rich and gene-poor, associated with long interspersed 
elements (LINEs), and is inaccessible to transcription factors (Vanrobays 2017; 
Medstrand et  al. 2002; Elbarbary et  al. 2016). Epigenetically, histones in 
heterochromatin generally have methylated H3K9 and H3K27, whilst euchromatin 
has both acetylation and methylation of H3K4 and H3K36 (Ahringer and Gasser 
2018). Heterochromatin can be further subdivided into constitutive heterochromatin 
and facultative heterochromatin. Constitutive heterochromatin is not transcribed, 
contains highly repetitive sequences and is H3K9 methylated to maintain a stable 
condensed state important for chromosome structure such as in centromeres and 
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telomeres (Ahringer and Gasser 2018). Facultative heterochromatin is reversible 
and may adopt both open or compact conformations according to (1) spatial 
parameters, e.g. changes in nuclear localisation due to factors such as signalling; (2) 
temporal changes, e.g. within the cell cycle or development; or (3) heritable factors, 
e.g. chromosome X inactivation (Trojer and Reinberg 2007). Thus, euchromatin has 
the potential to be decondensed and express genes in certain tissues. Euchromatic 
and heterochromatic domains are established during embryogenesis and 
development to generate tissue-specific gene expression patterns (Villeponteau 
1997). Commonly within interphase nuclei, heterochromatin is concentrated at the 
nuclear periphery, nucleoli, centromeres and telomeres (Goldman et  al. 2002), 
whilst euchromatin is positioned within the nuclear interior (Romero-Bueno et al. 
2019). However, ageing is associated with substantial changes in heterochromatin 
distribution and epigenetic modifications.

During ageing, altered histone modifications and the redistribution of hetero-
chromatin is thought to be associated with changes in global gene expression and 
genomic instability. Whole-genome bisulfite sequencing (WGBS) and CpG DNA 
methylation microarrays have been used to examine the epigenetic profiles of sam-
ples derived from a newborn and centenarian (103-year-old) (Heyn et  al. 2012). 
Overall, the centenarian sample had a lower DNA methylation content, with the 
most hypomethylated sequences in CpG-poor promoters and tissue-specific genes 
(Heyn et  al. 2012). Interestingly, the methylation status in middle-aged adults 
showed an intermediate level of global DNA methylation, suggesting an 
accumulative change with advancing age (Heyn et al. 2012). This is not unique as 
loss of heterochromatin has also been linked to an ageing phenotype in model 
organisms including Caenorhabditis elegans and Drosophila (Haithcock et  al. 
2005; Larson et al. 2012; Maleszewska et al. 2016). Modifications to histones are 
made through histone-modifying enzymes including histone methyltransferases, 
histone demethylases, histone deacetylases and histone acetylases (Black et  al. 
2012). Therefore, changes in expression or activity of these enzymes may have a 
profound influence on the epigenetic landscape of the genome. This is observed in 
Arabidopsis thaliana whereby reduced transcription of methyltransferases and 
increased transcription of demethylases are associated with hypomethylation in 
ageing (Ogneva et al. 2016). Furthermore, mutations in a H3K4 methyltransferase 
in C. elegans and yeast have been shown to reduce longevity, whilst reduced levels 
of H3K36 demethylase increases lifespan (Sen et al. 2015; Ni et al. 2012).

Epigenetic changes during ageing and loss of heterochromatin also contribute to 
the derepression of previously silenced genes at those loci (Sturm et al. 2015). This 
can result in the activation and potential remobilisation of transposable elements 
(TEs) throughout the genome (Sturm et  al. 2015). Given that nearly half of the 
human genome consists of TEs, this could lead to genomic instability if a TE were 
to relocate into a coding or regulatory sequence within the genome (Mills et  al. 
2006; de Koning et  al. 2011; Sturm et  al. 2015). Ultimately, the resulting DNA 
damage and instability may result in age-related diseases such as cancer (O’Donnell 
and Burns 2010), and there are data to demonstrate this mobility, enhancing 
senescence in humans (Baillie et al. 2011; De Cecco et al. 2013; Keyes 2013).
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Nucleosome density has been shown to alter during ageing and is associated with 
a loss of histones (Hu et al. 2014; Song and Johnson 2018). Nucleosome density 
naturally varies across the genome with transcriptionally active regions having a 
lower density and more open chromatin and transcriptionally inactive regions being 
densely populated with nucleosomes (Boeger et al. 2003; Sidler et al. 2017). Loss 
of nucleosomes in yeast leads to an increase in transcriptional activity from 
previously repressed promoters and corresponds with extensive chromosomal 
alterations and elevation of DNA strand breaks (Hu et  al. 2014). Changes in 
nucleosome density could be due to two mechanisms: (1) alterations in the activity 
of histone chaperones and (2) reduction in histone biogenesis within the cell (Booth 
and Brunet 2016). There is evidence that nucleosome assembly may be regulated by 
the histone chaperone ASF1 in both a DNA synthesis-dependent and DNA synthesis- 
independent manner along with other histone chaperones, chromatin assembly 
factor 1 (CAF-1) and histone repression A factor (HIRA) (Galvani et al. 2008). In 
yeast, loss of function of ASF1 may lead to aberrant heterochromatin formation and 
genomic instability (Tanae et  al. 2012). Indeed, ASF1 expression decreases with 
increasing age in human cells (O’Sullivan et  al. 2010). Here, the synthesis of 
histones in fibroblasts derived from an old individual was half that compared to 
those derived from a child (O’Sullivan et al. 2010). Histone biosynthesis was also 
altered in replicative senescent IMR90 and WI38 cells, leading to downregulation 
of the synthesis of histones H3 and H4 and post-translational modifications 
(O’Sullivan et  al. 2010; Song and Johnson 2018). Thus, nucleosome density 
combined with changes in epigenetic post-translational modifications could be an 
important factor in the loss of heterochromatin observed in ageing.

Conversely, there are regions of the genome that become associated with hetero-
chromatin during ageing (Tsurumi and Li 2012). Chromatin may be organised 
within senescence-associated heterochromatin foci (SAHF) (Morris et  al. 2019; 
Lenain et al. 2017; Braig et al. 2005; Michaloglou et al. 2005; Haugstetter et al. 
2010). SAHF share epigenetic features and characteristics commonly found in 
heterochromatin including late replicating DNA domains (Shah et  al. 2013); 
epigenetic markers H3K9me3 and H3K27me3 (Chandra et al. 2012; Chandra et al. 
2015; Chandra and Narita 2013); HP1 α, β and γ (Boumendil et  al. 2019); 
heterochromatic proteins; histone variant macroH2A; and high-mobility group A 
(HMGA) proteins (Morris et al. 2019). SAHF structure encompasses a chromatin 
core that is compacted and enriched in H3K9m3 (a marker of constitutive 
heterochromatin) and an outer ring of chromatin containing H3K27me3 (a marker 
of facultative heterochromatin), which is protein rich but more relaxed (Lenain et al. 
2017; Chandra et al. 2012; Sadaie et al. 2013). Over 90% of SAHF are commonly 
observed in cells that have undergone OIS (Chandra et al. 2015) with only a small 
proportion seen in replicative senescence in cultures (Chandra et al. 2015; Boumendil 
et al. 2019). SAHFs are not present in HGPS or senescent mouse cells, and it is 
unclear if they occur in vivo (Lazzerini Denchi et al. 2005; Shumaker et al. 2006; 
Scaffidi and Misteli 2006; Swanson et al. 2013). The formation of SAHF represses 
the expression of genes that are important for proliferation and the cell cycle such 
as cyclin A, proliferating nuclear antigen (PCNA), E2F target genes (Aird and 
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Zhang 2013) and cyclin D1 (Zhang et al. 2007; Park et al. 2018) and thus leads to 
senescence. Evidence suggests that SAHF may result from an increase in nuclear 
pore density during OIS, with the nucleoporin TPR having a vital role in inducing 
the formation of SAHF and their maintenance (Boumendil et al. 2019).

Epigenetic modifications and heterochromatin distribution are altered in prema-
ture ageing syndromes. The majority of premature ageing syndromes are caused by 
either mutations leading to alterations in the nuclear lamina and matrix proteins or 
via defects in DNA repair systems (Musich and Zou 2009; Tiwari and Wilson 3rd 
2019). Hutchinson-Gilford progeria syndrome (HGPS) is a premature ageing dis-
ease caused by a mutated lamin A protein. Here, there is a reduction in H3K9me3 
and HP1 and loss of peripheral heterochromatin (Shumaker et al. 2006; Scaffidi and 
Misteli 2006). Werner syndrome (WS) is another progeroid syndrome that similarly 
has a loss of H3K9me3. WS is caused by mutations within the Werner helicase 
(WRN). Interestingly, WRN has been shown to associate with the methyltransferase 
SUV39H1 and HP1α and thus may be important in regulating heterochromatin dur-
ing ageing (Zhang et al. 2015; Wang et al. 2016). Mesenchymal stem cells with an 
induced WRN deficiency show altered heterochromatin distribution and global loss 
of associated epigenetic methylation of histone H3 (Zhang et al. 2015; Shumaker 
et al. 2006). Loss of peripheral heterochromatin adjacent to the nuclear envelope 
(NE) (Goldman et al. 2004; Zhang et al. 2015) and a reduction in H3K9me3 and 
H3K27me3 levels but increase in H4K27me3 have been shown in HGPS cultured 
cells (Shumaker et al. 2006; Scaffidi and Misteli 2006).

 Nuclear Lamina and Nucleoskeleton

The nuclear lamina is located adjacent to the inner nuclear membrane (INM) and is 
composed of type V intermediate filaments proteins—lamins and lamina-associated 
proteins. Lamins are subdivided into the B-type lamins which are constitutively 
expressed within mammalian cells and A-type lamins that are developmentally 
regulated in differentiated cells. The nuclear lamina interacts with INM proteins, 
nuclear pore complexes and chromatin. It has a number of important roles including 
organising chromatin, involvement in DNA replication and gene expression and to 
support structurally the nucleus and its processes (Cau et al. 2014). The peripheral 
nuclear lamina is interconnected and part of a larger structural protein network 
known as the nuclear matrix (NM) (Cau et al. 2014) or nucleoskeleton. This structure 
is believed to be a filamentous meshwork of proteins (e.g. lamins A and C), DNA 
and RNA localised throughout the nucleoplasm that are resistant to high-salt 
treatment and nucleases during experiments. Similarly, the matrix structure is 
important for the structural integrity of nuclei and also supports gene expression, 
chromatin organisation, DNA replication and repair (Chattopadhyay and Pavithra 
2007; Wilson and Coverley 2017; Bridger et al. 2014; Mehta et al. 2007; Elcock and 
Bridger 2008; Godwin et al. 2021). The NM interacts with chromatin typically via 
specialised AT-rich DNA sequences called scaffold/matrix attachment regions (S/
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MARs) (Barboro et al. 2012) and helps maintain the compartmentalisation of the 
nucleus and higher-order chromatin organisation important for the spatio-temporal 
dynamics of the cell.

Laminopathies include progeroid syndromes linked to A-type lamin mutations. 
These are typically characterised as having nuclear envelope deformities (Cau et al. 
2014), with blebbing, herniations, invaginations and altered nuclear shape. These 
are caused by mutations that influence the post-translational processing of proteins, 
ultimately leading to defective protein function. For instance, in HGPS, there is a 
cryptic splice site that leads to a truncated form of lamin A which is permanently 
bound to a farnesyl moiety, termed “progerin” (Gilbert and Swift 2019). The 
build-up of progerin at the INM is toxic, leading to altered nuclear envelope integrity 
and perturbed chromatin organisation (Chandra et al. 2015; Stephens et al. 2018; 
Bikkul et al. 2018). Although progerin is primarily associated with HGPS, it has 
been suggested that a progerin-dependent mechanism may lead to natural ageing 
(Scaffidi and Misteli 2006; McClintock et al. 2007; Ashapkin et al. 2019). Evidence 
acquired by reverse transcription polymerase chain reaction (RT-PCR) has shown 
that fibroblasts obtained from naturally aged individuals expressed progerin mRNA, 
albeit at a low frequency of less than 50-fold (Scaffidi and Misteli 2006). Progerin 
has also been detected in cell lines derived from skin biopsies that had undergone 
prolonged cell culture, particularly in cells derived from older individuals 
(McClintock et al. 2007). However, it should be noted that the levels were very low. 
Senescence is frequently accompanied with profound changes to the INM 
organisation and accompanying processes.

The nuclear lamina interacts with the genome directly through lamina-associated 
domains (LADs) and via lamin-binding partners. DNA adenine methyltransferase 
identification (DamID) technology has been used to extensively map LADs 
throughout the nucleus. This technique is used to identify binding sites between 
DNA and chromatin-binding proteins. For instance, combining a nuclear lamin 
protein (e.g. lamin B1) to a bacterial DNA adenine methyltransferase (Dam) will 
highlight areas of DNA that have been in contact with the nuclear lamins as they 
will undergo adenine methylation. As adenine methylation does not naturally occur 
in eukaryotes, it acts as a detectable marker. LADs are of fundamental importance 
in anchoring transcriptionally silent heterochromatin to the nuclear lamina and 
maintaining the three-dimensional spatial arrangement of chromosomes (van 
Steensel and Belmont 2017; Romero-Bueno et al. 2019). However, lamins can be 
found throughout the nucleoplasm (Bridger et al. 1993) and not just at the nuclear 
envelope, and thus, this should be taken into consideration. LADs are also 
heterogeneous between cell types (Peric-Hupkes et al. 2010; Meuleman et al. 2013) 
but are associated with lamin B1 and lamin B1 receptor (LBR), which anchor 
heterochromatin to the nuclear lamina (Lukasova et  al. 2018). However, during 
cellular senescence, LADs become extensively redistributed (Lochs et  al. 2019). 
Normally, after DNA replication, DNA methyltransferase DNMT1 restores the 
histone methylation pattern; however, this appears to fail during senescence (Lochs 
et al. 2019) leading to hypomethylation. This hypomethylation, combined with the 
loss of lamin B1, leads to heterochromatin dissociating from the nuclear lamina 
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(Lochs et al. 2019) and away from the nuclear periphery. This LAD rearrangement 
may also be associated with the accumulation of SAHF, which relocates 
heterochromatin to the nuclear interior (Lenain et al. 2017; Chandra et al. 2015).

 Nucleolus

The nucleolus is also important for spatio-temporal regulation of the genome and is 
formed from chromosomes containing active nucleolar organiser regions (NORs) 
and other non-acrocentric but gene-rich chromosomes (van Koningsbruggen et al. 
2010; Nemeth et al. 2010). Nucleoli are important in ribosome biogenesis and are 
initiated from the transcription of ribosomal RNA (rRNA) genes found in high copy 
number and arranged in tandem repeats within NORs (Bersaglieri and Santoro 
2019). Genomic regions that are localised in close proximity to the nucleolus are 
termed nucleolus-associated domains (NADs) (Nemeth et al. 2010). Genome-wide 
mapping has demonstrated that NADs derived from HeLa, IMR90 and HT1080 
human cell lines have a low gene density, low transcriptional levels, late-replicating 
loci and heterochromatin enriched with repressive histone modifications H4K20me3, 
H3K27me3 and H3K9me3 (van Koningsbruggen et al. 2010; Nemeth et al. 2010; 
Dillinger et al. 2017). During senescence, nucleoli may fuse and are associated with 
an increased size (Mehta et al. 2007). H3K9me3 modified heterochromatin localised 
at the nucleolus, is remodelled and is coupled with an observed dissociation of 
centromeric and pericentromeric satellite regions away from the nucleolus (Dillinger 
et al. 2017). Interestingly, mapping of NADs using Hi-C in senescent cells remains 
similar to that seen in proliferating cell lines although there are changes in sub- 
NADs association with nucleoli (subdomains smaller than 100 kb), which appear to 
correspond to transcriptional changes (Dillinger et al. 2017; Mehta et al. 2010).

 Centromeres and Telomeres

Centromeres are heterochromatic regions and have satellite II and α-satellite repeat 
sequences that are normally constitutively repressed (De Cecco et  al. 2013). 
However, in replicative senescent cells, the pericentric satellite has been shown to 
distend, and chromatin is reorganised becoming more accessible and hypomethylated 
(De Cecco et al. 2013; Cruickshanks et al. 2013). This centromere distension has 
been termed “senescence-associated distension of satellites” (SADS) and is 
associated with epigenetic modifications associated with early senescence (Criscione 
et  al. 2016). Silencing of pericentric satellite DNA is helped and maintained by 
SIRT6, a histone deacetylase, which removes H3K18 acetylation in normal 
proliferative cells (Nagai et al. 2015; Tasselli et al. 2016). It is possible that SIRT6 
depletion could lead to senescence (Tasselli et al. 2016; Nagai et al. 2015). Indeed, 
SIRT6 is an early factor sequestered to double-strand breaks, so prolonged 
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recruitment to irreversibly damaged DNA associated with ageing may lead to 
depletion of SIRT6 at pericentric satellite DNA leading to the unravelling and 
SADS phenotype (Toiber et al. 2013; Nagai et al. 2015; Tasselli et al. 2016). SADS 
occurs as a common feature of senescence, irrespective of how senescence is 
induced and whether the p16 or p21 pathways are activated (Swanson et al. 2013). 
Unlike SAHF, SADS are found both during normal senescence and in progeria 
(Swanson et al. 2013).

Telomeres, and their associated shelterin protein complex, are located at the ends 
of linear chromosomes and have a protective role in preventing genome instability 
by shielding exposed ends of DNA.  During replication, DNA polymerases are 
unable to completely replicate the telomere region of the lagging strand leading to 
shortening due to the progressive loss of telomere repeats. This has been termed the 
“end-replication problem.” Consequently, the length of the telomeres shortens with 
each cell division leading to attrition. This has been extensively reported in ageing 
studies and is particularly pronounced within in  vitro primary cells leading to a 
finite number of cell divisions or “replicative senescence” due to the shortened 
telomere lengths. The resulting exposure of the chromosome ends leads to the 
activation of DNA repair mechanisms and a persistent DNA damage response 
(DDR) (Victorelli and Passos 2017). Nevertheless, telomere dysfunction can occur 
irrespective of length with telomeric DNA damage being associated with an increase 
in senescence markers such as p16 (Victorelli and Passos 2017; Birch et al. 2015). 
Indeed, in postmitotic cardiomyocytes, there is an increase in DNA damage foci 
associated with telomeres during ageing (Anderson et al. 2019). Telomeres interact 
with a telomere repeat-binding factors 1 and 2 (TRF1 and TRF2, respectively) to 
form t-loops. TRF1 is thought to prevent fusion of telomere ends and regulate 
telomere length (van Steensel et al. 1998; Celli and de Lange 2005), whilst TRF2 
forestalls the DNA damage response (Karlseder et al. 2004).

The positioning of telomeres in interphase nuclei appears to vary between spe-
cies, cell type and disease status (Weierich et al. 2003; Chuang et al. 2004; Arnoult 
et al. 2010; Gilson et al. 2013). Nevertheless, positioning is non-random and inte-
gral to genomic stability (Chuang et al. 2004). There is evidence that telomeres are 
closely associated with the nucleoskeleton and A-type lamins (Ottaviani et al. 2009; 
de Lange 1992) in addition to reports that the telomeres of acrocentric chromo-
somes localise to perinucleolar regions (Ramirez and Surralles 2008). Loss of TRF2 
has been linked to an increased DNA damage response and senescence (van Steensel 
et al. 1998; Okamoto et al. 2013). TRF2 may interact with lamin A/C, which are 
important proteins within the INM and nuclear matrix (Wood et al. 2014). In HGPS, 
there is a reduction in TRF2 (Wood et  al. 2014) and apparent telomere loss. 
Interestingly, studies using human telomerase reverse transcriptase (hTERT) to 
evade replicative senescence on proliferating fibroblasts and HGPS cells have 
shown dramatic genome reorganisation with the mislocalisation of whole chromo-
somes 18 in the control cells and chromosome 18 and X in HGPS cells (Bikkul et al. 
2019). Differences in telomere organisation have also been demonstrated in termi-
nally differentiated cells or quiescent cells in culture that have been contact inhib-
ited (Nagele et al. 2001). Here, interphase nuclei exhibit close telomeric associations 
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within quiescent, non-cycling cells compared with proliferating cells (Nagele et al. 
2001). Clustering of telomeres has also been demonstrated in mouse embryonic 
fibroblasts, as well as partial association with centromeric clusters and promyelo-
cytic leukaemia bodies (PML) (Molenaar et al. 2003; Weierich et al. 2003; Uhlirova 
et al. 2010).

Epigenetic changes also accompany telomere maintenance during ageing 
(Uhlirova et al. 2010). Levels of H3K9me3, H4K20me3 and HP1 protein have been 
shown to decrease in HGPS (Scaffidi and Misteli 2006). Treatment of embryonic 
mouse fibroblast with the histone deacetylase inhibitor Trichostatin A (TSA) led to 
the repositioning of telomeres to the nuclear interior and centromeres towards the 
nuclear periphery (Uhlirova et al. 2010). This has been observed in another system 
where telomere and centromeres were often polarised to opposite ends of the 
chromosome territories (Amrichova et al. 2003). This may have further ramifications 
as genes located in close proximity to telomeric heterochromatin are often silenced 
due to the “telomeric position effect” (TPE) (Baur et al. 2001; Ning et al. 2003). 
There is evidence of expression changes in telomeric genes during senescence 
(Ning et al. 2003) with increased expression of the 16q telomeric genes MGC3101 
and CPNE7  in senescence and GAS11 and CDK10  in both senescent/quiescent 
cells (Ning et  al. 2003). Thus, change in the epigenetic status of constitutive 
heterochromatin could lead to senescent-specific expression patterns.

 Chromosomes and Chromosome Territories

In interphase nuclei, whole chromosomes occupy specific non-random locations 
within the nuclear space called chromosome territories (CTs), occupying similar 
locations between cell types and in vitro compared to ex vivo (Foster et al. 2012). In 
proliferating human fibroblasts, CTs are functionally compartmentalised with gene- 
rich chromosomes occupying a central position within the nucleus and are generally 
characterised as having higher levels of gene expression, open chromatin 
conformations and early replication timing (Croft et al. 1999; Cremer and Cremer 
2001; Foster and Bridger 2005; Bridger et  al. 2014). Conversely, gene-poor 
chromosomes are commonly associated with the nuclear periphery or nucleoli and 
are synonymous with heterochromatin, repression of gene expression, repressive 
histone modifications and late replication timing (Chiang et al. 2018; Croft et al. 
1999). These functionally different compartments have been shown to be of 
importance during ageing. There is evidence that whole chromosome territories can 
occupy different nuclear locations during senescence (Bridger et al. 2000; Mehta 
et  al. 2007). For instance, human chromosome 18 has been shown to occupy a 
peripheral position within proliferating fibroblast nuclei; however, upon replicative 
senescence, chromosome 18 was shown to be repositioned away from the nuclear 
periphery (Bridger et al. 2000). Therefore, CTs appear to be repositioned from a 
gene-density radial distribution in proliferating fibroblasts to a size-correlated radial 
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position within senescent fibroblasts whereby small chromosomes are positioned 
within the nuclear interior and large chromosomes are localised at the nuclear 
periphery (Mehta et al. 2007). Altered nuclear positioning of whole chromosomes 
13 and 18 from the nuclear periphery towards the interior has also been shown in 
cells with A-type lamins (Meaburn et  al. 2005; Meaburn et  al. 2007). Indeed, 
genome reorganisation is more finely observed with changes in the Topologically 
Associated Domain (TADs) compartment re-positioning in replicative senescent 
cells (Criscione et al. 2016; Sun et al. 2018).

 Advances in Technologies

New technologies including CRISPR-multicolour (Ma et  al. 2015) and 
CRISPRainbow (Ma et al. 2016) enable the study of higher-order chromatin and 
nuclear architecture organisation. Here, a live-cell system that utilises super- 
resolution microscopy is used to track genomic loci that are labelled by different 
coloured fluorescent-tagged dCas9-sgRNAs (Ma et  al. 2016). Changes in 
transcriptional activity upon a specific stimulus can also be investigated by tracking 
the dynamics of a promoter and its interaction with cis-/trans-acting regulatory 
elements (Lau and Suh 2017).  New advances in interrogating Hi-C data from 
senescent cells  are permitting chromosome territory postions to be extrapolated 
from these data sets (Das et al. 2020). 

 Summary

The complexity of the ageing genome and structural organisation of the nucleus 
during senescence are becoming increasingly apparent, especially with advances in 
microscopy and global analyses such as super-resolution microscopy and 
chromosome conformation capture. Generally, the ageing epigenome is characterised 
by global hypomethylation and loss of heterochromatin; however, on the contrary, 
some regions of the genome are packaged into heterochromatin, e.g. SAHF. Satellite 
sequences may also be altered in senescence with distension of centromeres, or 
SADS, and shortening or dysfunction of telomeres. Characteristic structural changes 
to the nucleus include an increased size in senescent cells, reorganisation of LADs 
and sub-NADs and nuclear envelope deformities associated with mutations in lamin 
and lamin-associated proteins. Together, these can lead to large-scale reorganisation 
of the genome with repositioning of whole chromosome territories. Overall, these 
fundamental changes to the epigenome lead to alterations in global gene expression 
and genomic instability associated with ageing (Fig. 5.2).
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nuclear lamina contains A- and B-type lamins and lamina-associated proteins that play a role in 
organising the genome. Within senescent and progeroid cells, the INM organisation is altered and 
often associated with nuclear envelope deformities
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Chapter 6
Unclassified Chromosome Abnormalities 
and Genome Behavior in Interphase

Christine J. Ye, Sarah Regan, Guo Liu, Batoul Abdallah, Steve Horne, 
and Henry H. Heng

Abstract The discovery and characterization of abnormal chromosomes have been 
an important tradition for cytogenetics. In the past 70 years, extensive efforts have 
been made to illustrate the molecular mechanisms of various chromosomal abnor-
malities and to apply them for clinical diagnosis and monitoring treatment responses. 
As a result, clinical cytogenetic analyses represent an essential component of labo-
ratory medicine. However, efforts in both basic research and clinical implications 
have been focused on recurrent or clonal types of abnormalities, and the majority of 
non-clonal chromosome/nuclear aberrations remain unclassified and lack their 
deserved attention. In recent years, these stochastic genome-level alterations have 
become an important topic due to the emergence of the genome theory, in which 
chromosomal/nuclear variations play the ultimately important role both in somatic 
and organismal evolution. In this chapter, following a brief review of these studies 
on unclassified chromosomal/nuclear abnormalities, both the rationale and signifi-
cance of studying these structures will be presented. Specifically, the dynamic rela-
tionship between normal and “abnormal” chromosomal structures, and among 
diverse types of “abnormal variations,” will be discussed through the lens of 
genome-mediated somatic evolution. This discussion will not only enforce the 
importance of new genomic concepts, such as system inheritance, fuzzy inheri-
tance, and emergent cellular behavior based on interaction among lower-level 
agents, but can also shine light on many current puzzling issues, such as missing 
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heritability and the challenge of clinical prediction based on gene mutation profiles. 
Together, genome-based genomic information will play an important role in future 
cytogenetics and cytogenomics.

 Historical Perspective

Following the establishment of the correct number of human chromosomes (Tjio 
and Levan 1956), abnormal chromosomes were soon linked to diseases such as 
Down syndrome and chronic myelocytic leukemia or CML (Lejeune et al. 1959; 
Nowell and Hungerford 1960). In particular, with the introduction of various chro-
mosomal banging methods to identify individual chromosomes (Caspersson et al. 
1970), medical cytogenetics entered a new era marked by the successful identifica-
tion of many known types of chromosomal abnormalities (both structural and 
numerical) and their linkage with an array of human diseases. Such chromosome 
identification capability was further strengthened due to the development of FISH 
technology (Langer et al. 1981; Lichter et al. 1990; Heng et al. 1991, 1992, 1997), 
especially once SKY (spectral karyotyping) and multiple color FISH became popu-
lar, as these techniques can rapidly and precisely identify individual chromosomes/
chromosomal regions both for mitotic and meiotic chromosomes (Speicher et al. 
1996; Schröck et al. 1996; Heng et al. 2003; Ye et al. 2006). In recent years, differ-
ent cytogenomic methods have also been applied to chromosomal analyses includ-
ing various array and sequencing platforms (Dong et al. 2018).

Despite these technical advances, however, most of these identified chromo-
somal abnormalities fall in the category of recurrent or clonal types (clonal chromo-
some aberrations or CCAs) as they are commonly shared within patient populations. 
Furthermore, it is relatively easy to identify these signatures by classical cytoge-
netic/cytogenomic methods. According to clinical cytogenetic guidelines, “current 
cytogenetics defines CCAs as a given chromosome aberration which can be detected 
at least twice within 20 to 40 randomly examined mitotic figures. Based on this defi-
nition, the frequency of CCA needs to be higher than 5–10% in an examined cell 
population. In literature, however, when a CCA is reported, researchers often refer 
to aberrations with frequencies that are over 30%.” (Heng et al. 2006a, b, 2016a).

Obviously, a large amount of “non-clonal chromosome aberrations” or NCCAs 
are not reported in the literature. Even though most NCCAs have a frequency of less 
than 10% among examined mitotic figures, the total number of them in their diverse 
types is enormous, given the fact that NCCAs can be detected from any individual, 
regardless of whether or not they are a patient. Unfortunately, however, these over-
whelmingly numerous NCCAs were considered as insignificant “noise” and were 
largely ignored in the name of pattern identification (Mitelman 2000; Heng et al. 
2006a, 2016a, b; Ye et al. 2018a).

Not surprisingly, at different fronts of genomic research, so-called genomic noise 
is overwhelming as well, as reflected by CNV and gene mutation profiles in patients, 
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as well as in normal individuals (Iafrate et  al. 2004; Heng 2007a, 2015, 2017a, 
2019; Liehr 2016). In fact, these unexpected findings have started to challenge gene 
mutation theory (Heng et al. 2011a, b; Heng 2009). To illustrate this point, in this 
chapter, we will mainly use cytogenetic examples.

Our interests in NCCAs, including the initial descriptions of various abnormal 
chromosomes and nuclei, started in the early 1980s. With the discovery of free chro-
matin, sister unit fibers, partially or uncompleted-packing-mitotic figures or UPMs 
(later termed as Defective Mitotic Figures or DMFs), various nuclear fragments, 
and massively newly rejoined chromosomes (Heng and Chen 1985, 1988a), it was 
confirmed that these structures are real (rather than non-chromatin artifacts) (Heng 
and Shi 1997). Even though they were initially linked to drug treatments, these were 
clearly chromosome-related structures, which represented opportunities to study 
the high-order structure of the chromosome, and could be useful for monitoring dif-
ferent stages of the cell cycle.

Several research projects have promoted the realization of their importance, 
including the development of high-resolution fiber FISH and the characterization of 
genome chaos during cancer evolution (Heng et al. 1992, 1997). For more details, 
please see Heng and Shi (1997), Heng et al. (2013a, b), and Heng (2015, 2019). A 
number of representative examples are listed in Table 6.1.

It should be pointed out that, historically, it was highly significant when research-
ers could identify the linkages of these common and signature chromosomal abnor-
malities to various diseases, which supported the gene mutation theory of cancer 
and human diseases. Prior to the acceptance of the genetic basis of cancer, for exam-
ple, the highly diverse chromosomal changes detected from cancer were used as 
evidence against the idea that cancer is caused by genetic aberrations. The identifi-
cation of a specific translocation from CML and the subsequent cloning of the Bcr/
Abl fusion gene have played highly significant roles in the acceptance of the gene 
mutation theory of cancer (Rowley 2013). Now, based on how challenging it has 
proven to be to identify commonly shared genetic aberrations for most cancer cases, 
coupled with the new realization that the majority of nonrecurrent genomic variants 
are of importance for somatic evolutionary potential, the new era of studying 
NCCAs is arriving. This transition represents an era in which it is necessary to deal 
with bio-complexity and uncertainty (Horne et al. 2013).

In the case of cancer research and, in particular, when studying the process of 
genome chaos, increased nuclear abnormalities are also linked to different types of 
chromosomal abnormalities and, ultimately, to CIN-mediated cancer evolution 
(Sheltzer et al. 2011; Siegel and Amon 2012; Zhu et al. 2012; Heng et al. 2013a, b; 
Heng 2015). Many interesting phenomena, including micronuclei clusters, giant 
nuclei, rapid nuclear fusion/fission/budding/bursting, and entosis, are now under 
increased investigation, leading to the realization that these abnormal nuclei can 
also change the chromosomal coding. In other words, genome reorganization can 
unify different types of chromosomal/nuclear variations under the evolutionary 
mechanism of genome-based selection (Heng 2015, 2019; Ye et  al. 2018a, b, 
2019a, b).

6 Unclassified Chromosome Abnormalities and Genome Behavior in Interphase
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Table 6.1 Examples of various NCCAs reported in literature

Experiments and 
new concepts Key findings Main conclusions Comments References

Using drug 
treatment to induce 
elongated 
chromosomes in 
frog and human 
blood culture

Elevated 
frequencies of 
free chromatin, 
unit fibers, and 
DMFs were 
observed

They are chromatin 
materials rather than 
non-DNA 
contaminations. 
Both unit fibers and 
DMFs potentially 
represent various 
stages of the process 
of high-order 
structural formation. 
These chromosomal 
aberrations can be 
induced by drug 
treatment, 
especially within 
the G2 phase of the 
cell cycle

Despite a few 
publications, it 
failed to 
generate 
follow-up 
studies from 
others due to the 
reasons that the 
mechanism of 
their generation 
is not clear, and 
there is no 
guideline to 
score these 
structures

Heng and 
Chen (1985), 
Heng et al. 
(1988a, 1992, 
2013a, b) and 
Heng (2015, 
2019)

High-resolution fiber 
FISH was initially 
developed using free 
chromatin and 
elongated 
chromosomes

Using topo II 
inhibitors and other 
reagents to induce 
chromosomal 
de-condensation or 
DMFs

Elevated 
frequencies of 
DMFs, massive 
chromosome 
fragments, 
elongated 
chromosomes, 
and newly 
formed joined 
chromosomes

Various 
chromosomal 
aberrations can be 
induced from 
various cell lines

Observed 
mitotic cell 
death, genome 
chaos during the 
1980s. But these 
data were held 
until 2004, 
waiting for 
additional 
mechanistic 
studies

Heng et al. 
(1988b), Haaf 
and Schmid 
(1989), Smith 
et al. (2001) 
and Heng 
(unpublished 
observations)

Both the 
compromise of the 
G2-M checkpoint 
and interference with 
condensation is 
required to induce 
DMFs (unpublished 
data)

Examining the 
baseline and 
inducibility of free 
chromatin and 
DMFs using normal 
individuals’ blood 
culture

Free chromatin, 
C-Frag, 
aneuploidy, and 
translocations 
can be detected 
from hundreds of 
normal 
individuals with 
variable 
frequencies

Various aberrations 
can be observed 
from normal 
individuals, albeit at 
much lower 
frequencies

There likely is a 
base level of 
NCCAs for 
normal 
individuals

Heng et al. 
(2004a)

(continued)
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Table 6.1 (continued)

Experiments and 
new concepts Key findings Main conclusions Comments References

Watching karyotype 
evolution in action 
using in vitro 
immortalization 
model

Massive 
chromosomal 
aberrations, 
including 
karyotype chaos, 
were observed 
during the 
punctuated phase 
of cancer 
macroevolution

In the punctuated 
discontinuous phase 
of genome 
evolution, there is 
no traceable clonal 
expansion between 
cellular generations, 
and the frequencies 
of NCCAs reach 
their peak

CCAs are often 
observed from 
the stepwise 
micro- 
evolutionary 
phase, while the 
peak of NCCAs 
is mapped into 
the macro- 
evolutionary 
phase

Heng et al. 
(2006a, b, c, 
(2011a, b) and 
Heng (2015, 
2019)

Comparing 
frequencies of 
NCCAs from cell 
lines with different 
degrees of CIN; 
compare the 
baseline of NCCAs 
to induced NCCAs; 
compare the 
transcriptome 
profile of cell 
populations with 
different degrees of 
NCCAs; examine 
drug resistance 
from cell lines with 
variable degree of 
NCCAs

The frequencies 
of NCCAs are 
linked to the 
degree of CIN, 
transcriptome 
dynamics, cancer 
evolutionary 
potential, and 
drug resistance

NCCAs can be used 
as an index of CIN 
and evolutionary 
potential

NCCAs are not 
insignificant 
noise but 
valuable 
chromosomal 
variants

Stevens et al. 
(2013, 2014) 
and Heng 
et al. (2011a, 
b, 2013a, b)

Linking various 
chromosomal and 
nuclear 
abnormalities to 
cancer and other 
types of diseases

Linking 
aneuploidy to 
metastasis; 
describing 
entosis; giant 
nuclei in cancer; 
mosaicism in 
diseases

There are many 
diverse types of 
NCCAs; NCCAs 
are associated with 
an array of diseases

Most of the 
different types 
of abnormalities 
are linked by 
CIN

Ye et al. 
(2019a, b), 
Bloomfield 
and Duesberg 
(2016), Zhang 
et al. (2014), 
Iourov et al. 
(2008, 2010, 
2019) and 
Horne et al. 
(2015)

(continued)
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Table 6.1 (continued)

Experiments and 
new concepts Key findings Main conclusions Comments References

The establishment 
of the concepts of 
system inheritance 
and fuzzy 
inheritance

Cellular 
inheritance can 
be classified into 
gene-defined 
“parts 
inheritance” and 
genome-defined 
“system 
inheritance”

System inheritance 
represents a new 
type of coding 
which determines 
the gene interaction 
relationship. The 
order of genes and 
other DNA 
sequences within a 
chromosome and 
among different 
chromosomes 
provides the 
physical platform 
for gene interaction 
to work. The main 
function of sexual 
reproduction can 
maintain the 
chromosomal 
coding for a given 
species

System 
inheritance 
explains why 
chromosomal 
variations are 
important, and 
fuzzy 
inheritance 
explains why 
there are so 
many different 
types of the 
chromosomal 
variants

Heng (2009, 
2015), Heng 
et al. (2009, 
2011b, 2016a, 
b) and Ye et al. 
(2019a, b)

By and large, 
genomic 
information is 
fuzzy rather than 
precise. This 
fuzziness is the 
genomic basis 
for heterogeneity

Fuzzy inheritance 
can be observed 
from multiple levels 
(e.g., gene and 
epigenetic levels) of 
bio-informational 
organization

System 
inheritance and 
fuzzy 
inheritance 
explain why it is 
challenging to 
understand 
missing 
heritability 
based on a 
gene-centric 
view

Heng et al. 
(2001, 2004b)

There is a high 
level of dynamics 
in the chromatin 
loop domain 
during the normal 
cell cycle

(continued)
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 Examples of Unclassified Chromosome/Nuclear Abnormalities

As a freshly graduated student, one of us (HH) was very surprised and excited upon 
initially observing high frequencies of unknown chromosome/chromatin abnormal-
ities and later realized that these high frequencies are observed even on chromo-
somal slides prepared from normal individuals without any special treatment. At 
that time, however, the majority of cytogeneticists dismissed these structures, and 
many considered them simply as contaminations or artifacts of slide-making. It was 
difficult to even publish these observations in mainstream cytogenetics journals.

A few years later, some of these elongated chromatin structures and chromo-
somes were used for the development of high-resolution fiber FISH (Heng et al. 
1992, 1997). Despite this success, the biological meaning of these structures has 
been continuously ignored.

Table 6.1 (continued)

Experiments and 
new concepts Key findings Main conclusions Comments References

Link stress and 
stress responses to 
cell death and the 
induced emergence 
of outliers 
following genome 
reorganization

While induced 
cell death can 
eliminate a large 
portion of cells, 
the induced 
surviving cells 
with new 
genomes can 
escape death and 
become 
dominant

Highly diverse 
genome alterations 
generated from 
different molecular 
mechanisms, 
including 
aneuploidy, 
micronuclear 
clusters, entosis, 
and chaotic 
genomes, share the 
same fact: Their 
genome systems 
have altered due to 
the changing of the 
chromosomal 
coding

That is the 
reason why it is 
essential to 
study the 
informational 
and evolutionary 
meaning of 
chromosomal 
variations, rather 
than the 
molecular 
mechanisms that 
lead to them, as 
there are so 
many ways to 
achieve new 
systems by 
altering the 
chromosomes

Stevens et al. 
(2011), Heng 
et al. (2011a, 
b), Ye et al. 
(2018a, b, 
2019a, b), 
Heng et al. 
(2016b, 2019) 
and Horne 
et al. (2014)

Search for the 
evolutionary and 
informational 
mechanism of the 
highly diverse 
nuclear and 
chromosomal 
variations

The highly 
diverse abnormal 
nuclei and 
chromosomes 
can contribute to 
the formation of 
new genomes: a 
key strategy of 
survival

Genome theory 
aims to unify 
multiple levels of 
genomic and 
non-genomic 
variants in both 
somatic and 
organismal 
evolution

Nearly all 
genomic variants 
are potentially 
useful for 
cellular 
adaptation, but 
as a trade-off, 
they can lead to 
diseases 
conditions

The genome is the 
basic unit for 
macroevolution

NCCAs (at the 
genome level) 
and other 
stochastic 
genomic and 
non-genomic 
alterations serve 
as evolutionary 
potential

Heng (2009, 
2015, 2017a, 
b, 2019)

6 Unclassified Chromosome Abnormalities and Genome Behavior in Interphase



114

The third wave of studying these variants was triggered by the linkage of NCCAs 
and genome instability using various in vitro and in vivo cancer models, especially 
once the frequencies of NCCAs were linked to cancer evolutionary potentials (Heng 
et al. 2004a, 2006a, b, c). With the introduction of chromosomal coding and system 
inheritance, all of a sudden, it made the prefect sense to us why NCCAs are impor-
tant and are detectable from normal and disease tissues but at different frequencies, 
and why there is a relationship among stress, cellular adaptation, system survival, 
and disease conditions. We have thus published accumulated data over the course of 
nearly three decades (Heng et  al. 2004a, 2008, 2011a, b, 2013a, b; Heng 2019; 
Stevens et al. 2007, 2011, 2013). Furthermore, with the appreciation of fuzzy inheri-
tance and emergent properties, more attention has been paid to the characterization 
and classification of different types of chromosomal/nuclear variants (Heng 2019; 
Ye et al. 2019a, b; Heng et al. 2019). Some examples of unclassified chromosome/
nuclear abnormalities are listed below.

 Free Chromatin

Free chromatin refers to those released chromatin materials detected from conven-
tional cytogenetic preparation. They often display a spindle- or ropelike shape, and 
there is no apparent nuclear envelope. The generation of free chromatin can be 
achieved by various drug treatment and manipulating release conditions. For exam-
ple, using a special high-PH buffer, an extremely long linear structure can be 
released (Heng et al. 1992; Heng and Tsui 1994; Heng 2000). Despite that elevated 
frequencies of free chromatin can be observed in some pathological conditions, 
even under routine slide-making conditions, the biological significance is still 
unclear. Potential causes might include the instability of the nuclear envelope and 
cell cycle checkpoints (Fig. 6.1).

 Defective Mitotic Figures or DMFs

DMFs refer to partially condensed mitotic figures in which condensed chromo-
somes or chromosomal regions and uncondensed chromatin fibers coexist. There 
are three types of DMFs according to their morphological features, and the common 

Fig. 6.1 (continued) comparison between interphase nuclei and various free chromatin generated 
from protocols releasing free chromatin (Heng et al. 1992). Interphase nuclei (b and c) and free 
chromatin (d–i) were prepared from a human-hamster hybrid cell line 4AF/106/KO15, which con-
tains an altered human chromosome 7. (b, d, f and h) FISH detection results. The yellow signals 
represent a human chromosome (the FISH probe used is total human DNA). (c, e, g and i) 
Corresponding DAPI staining. From d to h, there is an increased degree of stretching. (Reused 
from Heng et al. 2013a)
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Fig. 6.1 Examples of free chromatin. (a) An example of the typical morphology of free chromatin 
(spindle and rope shapes) and three interphase nuclei detected from routine chromosome prepara-
tions without any treatment (reverse DAPI staining image). (b–i) FISH signals and morphological  
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feature is the mixed degree of condensation. Elevated DMFs can be obtained by 
using topo II inhibitor, especially in cells with a G2-M checkpoint deficiency (Heng 
et al. unpublished observation). Using DMF as a case study, it was realized that even 
the same types of chromosomal abnormalities can be linked to different errors from 
different phases of the cell cycle. For example, DMFs can be generated from inter-
fering with different stages of the cell cycle, such as directly interfering with con-
densation in the G2 phase or indirectly interfering with DNA replication in S phase 
(Heng and Chen 1985; Heng et  al. 1988a; Haaf and Schmid 1989; Smith et  al. 
2001). Even without drug treatment, the baseline of DMFs is elevated for many 
cancer patients, as well as in other illness conditions such as GWI and CFS (Liu 
et al. 2018; Heng et al. unpublished data) (Fig. 6.2).

 Chromosome Fragmentations or C-Frag

C-Frags refer to the phenomenon of fragmented chromosome or nuclei. Often, dif-
ferent proportions of chromosomal fragments and chromosomes coexist. C-Frags 
represent a form of mitotic cell death (Heng et al. 2004a; Stevens et al. 2007). There 
are different subtypes of C-Frags based on the time fragmentation occurs (in an 
earlier or later stage of metaphase) and/or the degree of fragmentation (the propor-
tion of chromosome vs. fragments). Further studies are needed to investigate if 
interphase nuclei can be fragmented as well. Importantly, various types of stresses 
(genomic and environmental alike) have been linked to the induction of C-Frags 
(Stevens et al. 2011; Stevens and Heng 2013), revealing the general link between 
various molecular pathways or mechanisms to the same end product, mitotic death. 
Such a connection is of importance for unifying highly diverse molecular mecha-
nism and diverse chromosomal variations. Studies of C-Frags also help us to under-
stand the mechanism of genome chaos (Heng et al. 2006c; Liu et al. 2014; Heng 
2015, 2019). Furthermore, nuclear fragmentations are also observed (Ye et  al. 
unpublished observations) (Fig. 6.3).

 Unit Fibers

Unit fibers describe various treatment-generated (chromosomal isolation or drug 
treatment to interfere with condensation) substructures of metaphase chromosomes 
(Bak et  al. 1979; Heng et  al. 1988b). Unit fibers display a constant diameter of 
approximately 0.4 um, which have been observed from cells of different species, 
including frog and human. The detection of unit fibers strongly suggested that there 
might be an intermediate structure between metaphase and interphase chromatin 
fiber. The further characterization of both unit fibers and DMFs will illustrate how 
the last step of chromosome packaging is achieved (Heng et al. 2013a, b; Heng 2019).
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 Sticky Chromosomes

Sticky chromosomes have traditionally been described in plant chromosome 
research, and less attention has been paid to these structures in human chromosome 
studies. Sticky chromosomes can be induced by various drugs, and they are fre-
quently observed from studies of plant hybrids. Sticky chromosomes are often 
observed from samples displaying high frequencies of DMFs (Heng et al. 2013b). 
Recently, sticky chromosomes were also detected from GWI patients (Liu et  al. 
2018). Sticky chromosomes can be linked to aneuploidy and translocation as well. 

Fig. 6.2 Examples of DMFs detected from Gulf War illness patients. (a–c), Type 1 DMFs with the 
typical polarizing shape, in which the condensed chromosomes group at one end, and the uncon-
densed chromatin extends out in the opposite direction (Giemsa staining). In (c), an arrow indi-
cates a less condensed chromosome. (d) Type 2 DMF with more a random distribution of 
de-condensed chromosomes. In this image, there is a mixture of DMFs and sticky chromosomes. 
(Reused from Liu et al. 2018)

Fig. 6.3 Morphological features of chromosome fragmentation. Chromosomes undergoing frag-
mentation display many breaks and often seem frayed. Giemsa staining shows that chromosome 
fragmentation is a progressive process, with early stages showing few fragmented chromosomes 
(left, chromosome fragmentation (red arrows); intact chromosomes (blue arrows)), mid stage with 
approximately half of the chromosomes fragmented (middle), and late stage with nearly all chro-
mosomes except for one at the top showing degradation (right). (Reused from Stevens et al. 2007)
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We also found that cells displaying high levels of sticky chromosomes might be 
more frequently involved in exchanging DNA among cells, an example of fuzzy 
inheritance. For more information, see Heng (2019) (Fig. 6.4).

 Micronuclei Clusters

Unlike classical micronuclei (the small nuclei that result from chromosomes or 
chromosomal fragments getting separated from the daughter nucleus during cell 
division), the term micronuclear cluster refers to a group of various sizes of 
nuclei, often burst dividing from a single cell (Heng et al. 2013a, b; Heng 2019; 
Ye et  al. 2019a). Micronuclei clusters can also be derived from giant nuclei 
which contain hundreds of chromosomes (Heng et al. 2013a, b, 2016a, b; Liu 
et al. 2014; Zhang et al. 2014; Chen et al. 2018). In a recent case study of the 
relationship between micronuclei and genome chaos, a general model was pro-
posed that illustrates the mechanism of how micronuclei can promote the for-
mation of new genome systems by reorganizing the chromosomal coding (Ye 
et al. 2019b) (Fig. 6.5).

Fig. 6.4 Images of sticky chromosomes. Left: A portion of the mitotic figure displays sticky chro-
mosomes, where multiple sticky chromosomes form a cluster (as indicated by the arrows). Right: 
A comparison between nonsticky chromosomes (top right) and sticky chromosomes (indicated by 
an arrow): This image is different from left image, as the sticky chromosome cluster likely belongs 
to a different mitotic figure. (Reused from Liu et al. 2018)
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 Fusion/Fission/Budding/Bursting/Entosis

Nuclei can exhibit many bizarre ways of dividing or rejoining, including cell-to-cell 
fusion, fission, budding, bursting, and entosis (cannibalism or emperipolesis) 
(Erenpreisa et al. 2005; Walen 2005; Heng 2013). On the surface, there are many 
differences (in regard to both morphology and mechanisms) among these many dif-
ferent types. Fundamentally, however, they all share the key features of altering the 
system inheritance or chromosomal coding and a high degree of uncertainty. 
Evolutionarily speaking, they all represent a stress response for cellular adaptation 
or survival. Despite the massive cell death involved, some outliers will have the 
chance to become the dominating population or serve as essential transitional popu-
lations for a new stable population to be possible. For example, entosis is a way of 
changing the genome through polyploidy, and polyploidy is linked to aneuploidy, 
translocations, and genome chaos; fusion/fission cycles are associated with genome 
chaos and can produce cells with altered genomes.

 Chaotic Genome

This category includes many drastically altered chromosomes and nuclei (Heng 
et al. 2004a, 2008, 2013a, b; Liu et al. 2014; Heng 2015, 2019). For example, in 
addition to giant nuclei, an entire genome can form one single giant chromosome. 
There are chromatid rings and many other forms of alterations, most of which have 
yet to be named. In general, almost any form of abnormality can be detected.

It should be pointed out that chaotic genomes were initially described by cytoge-
netic analyses and later confirmed by sequencing. Furthermore, chromothripsis 
belongs to one subtype of genome chaos (Heng 2007c; Liu et al. 2011; Stephens 

Fig. 6.5 Morphological comparison between normal interphase nucleus and micronuclei cluster. 
A normal nucleus is displayed at the left corner. A micronuclei cluster is located at middle to right. 
There are more than ten individual nuclei with different sizes (micronuclei were stained by Giemsa)
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et al. 2011; Heng et al. 2006a, b, c, 2008, 2011a; Setlur and Lee 2012; Righolt and 
Mai 2012; Forment et al. 2012; Crasta et al. 2012; Baca et al. 2013; Horne and Heng 
2014; Liu et al. 2014).

The main reason that detections of chromothripsis have been more frequently 
reported than other types of genome chaos by current sequencing analysis is that 
these locally limited alterations can be favored by evolutionary selection and are 
easily detectable in clonal populations (Liu 2011; Heng et al. 2013a, b; Liu et al. 
2014; Heng 2015, 2017a, b, 2019). In fact, due to the limitations of DNA sequenc-
ing (which is unable to detect cell subpopulations below 10–15%), only clonal cha-
otic genomes can be detected (single-cell sequencing can solve this problem, but a 
large number of cells are needed). In contrast, cytogenetic method is so far the most 
effective and economic one, as it is comprised of single-cell-based populational 
analysis.

By tracing the process of genome chaos using an in vitro model, it becomes clear 
that different types of chromosomal/nuclear abnormalities are linked by the degree 
of CIN, the phase of evolution, and the level of system stress and stress response. 
For example, cells with giant nuclei can be generated by the genome chaos process, 
and giant cells can be linked to micronuclei clusters and more complicated translo-
cations. To make the situation more complicated, some transitional structures can 
trigger further stress responses even though these will not be survived at the end of 
the chaotic process. As a conclusion, it is possible that in the future, we will need to 
monitor evolutionary mechanisms rather than specific types of chromosomal abnor-
malities as they are constantly changing.

Nevertheless, before we achieve the future goal of using quantitative general 
biomarkers (rather than using one specific type of abnormalities alone), further 
characterization and classification of types of abnormalities are needed, as many of 
them involve different names, and some confusion about them exists as well. For 
example, despite their similar morphological features, C-Frag differs from PCC 
(premature chromosome condensation), both from a morphological and mechanis-
tic point of view (for more details, please see Stevens and Heng [2013]). Similarly, 
many terms are overlapping, such as chromosome pulverization, shattering, and 
mitotic catastrophe. These can all be termed as forms of C-Frag, a means of mitotic 
cell death. More generally, they are unified by genome chaos. Clearly, one impor-
tant concept is the heterogeneity of cell death (Stevens et  al. 2013). Drastically 
altered chromosomal morphological features do not mean the elimination of the 
system but the emergence of a new system, albeit at very low frequencies (Fig. 6.6).

 The Evolutionary Mechanism of Stochastic Chromosome/
Nuclear Alterations

Prior to recent evolutionary mechanism-focused research, most chromosomal/
nuclear abnormalities are studied by different investigators within the premise of 
studying specific molecular mechanisms. For example, aneuploidy has mainly been 
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linked to the chromosome segregation mechanism. With various large scale -omics 
studies, however, many different specific molecular mechanisms have been linked 
to aneuploidy, which makes aneuploidy research much more complicated. This situ-
ation calls for a new strategy of studying the general evolutionary mechanisms of 
aneuploidy which can unify diverse molecular mechanisms (Ye et  al. 2018a, b). 
Obviously, such a strategy should be used for studying all types of chromosomal/
nuclear abnormalities (Heng 2015, 2019).

 The General Causative Factor of Genome Alterations

Even though many different molecular mechanisms can be linked to a given type of 
abnormality (e.g., over a dozen different treatments/mechanisms can be linked to 
C-Frag) (Stevens et  al. 2011), the general causative factors can be described as 
internal genomic stochasticity and stress response-mediated cellular adaptation, in 
addition to bio-errors produced under dynamic environmental conditions. It is 
important to point out that even the process of cell death can eliminate many 
unwanted cells (to reduce the average population size); under many circumstances, 
the process itself can trigger further system changes with unexpected consequences 
(such as the creation and/or favoring of some outliers which provide resistance). 
The long-term consequences, for better or worse, depend on the multiple levels of 
the systems and the fate of evolutionary selection.

Fig. 6.6 Examples of structural and numerical chaotic genomes. Despite that there are many sub-
types of chaotic genomes, structural chaotic genomes commonly involve multiple translocations 
(as in the SKY image, in which the chromosomes in the left corner are formed by at least 15 large 
chromosome fragments, some of which are indicated by arrows with different colors) (left image). 
On the other hand, numerical chaotic genomes can contain hundreds of chromosomes, as exempli-
fied by the right image, in which the genome contains over 700 human chromosomes or > 15 n of 
DNA content. Two images are reused from Heng (2013) and Liu et al. (2014)
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 The Evolutionary Mechanism of Genome Alterations

 (a) Promoting genomic variants at the somatic cell level: solving the conflicts of 
constraint (germline) and dynamics (somatic)

In working to solve the conflict between species’ genomic stability and the 
genomic dynamism necessary for adaptation (the two faces of the coin that are 
essential for evolution), it was realized that genome integrity is maintained by the 
stability of the genomic landscape of the germline (which is ensured by the function 
of the sex) (Heng 2007b; Gorelick and Heng 2011; Heng 2015, 2019). The genomic 
dynamics of the somatic cell, on the other hand, are achieved by the fuzzy inheri-
tance of somatic cells and environmental interaction (which is promoted by the 
needs of cellular adaptation within changing environments). Therefore, as long as 
the germline’s karyotype coding is preserved, somatic alterations can be pushed to 
very high levels. As the trade-off for the benefit of cellular adaptation, there are 
many disease conditions caused by the increased variants generated (Heng et al. 
2016a, b; Heng 2017b).

Interestingly, the concept of system inheritance, combined with the separation of 
germline constraint and somatic dynamics, can also explain part of the missing heri-
tability (Heng 2010, 2019). The gene-centric concept will not able to identify the 
missing heritability. Unfortunately, current major efforts are still within the genome 
centric framework, although they are making greater use of computational models.

 (b) Genome reorganization and evolutionary potential

With so many different types of unclassified chromosomal abnormalities, and 
even due to the presence of just one given type, there are high degrees of morpho-
logical heterogeneity, which makes it rather challenging to understand the main 
function of these abnormalities. As different types of chromosomal abnormalities 
can be linked to many different molecular mechanisms, molecular mechanistic 
understanding as a whole becomes less certain. As a result, even though increased 
molecular knowledge is available, much of this knowledge can only explain limited 
cases. Examples can be found in aneuploidy and micronuclei research (Ye et al. 
2018b, 2019a). As a result, the underlying common principles that can unify all of 
these chromosomal and nuclear variants are lacking, and the incidence of clinical 
prediction based on individual molecular mechanisms is low.

Clearly, a correct approach is to go above the individual molecular mechanisms 
(as there are so many) to search for an evolutionary and informational mechanism, 
which is applicable to all chromosomal abnormalities.

One holistic understanding is that regardless of their morphological and mecha-
nistic differences, all of these NCCAs are simply chromosomal or nuclear variants 
with altered chromosomal codes. In other words, their informational meaning and 
evolutionary mechanism is the same: the creation of a new information package 
with evolutionary potential.

A general model has been proposed when discussing the mechanism of how 
genome chaos leads to a new system by reorganizing the chromosomes (Heng et al. 
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2011a). This model was also applied to explain how micronuclei clusters can form 
different genomes (Ye et  al. 2019a). (Fig.  6.7, Micronuclei cluster model of the 
reorganizing of the genome)

This model can be applied to explain how different chromosomal/nuclear abnor-
malities contribute to new genome formation, including polyploidy/aneuploidy, 
sticky chromosomes, giant nuclei, and entosis (Ye et al. 2019b). All of these are 
associated with the stress response and unstable genome status, in conjunction with 
system adaptation and survival. Fundamentally, they all contribute to the emergence 
of an end product with altered genomic coding.

 (c) Heterogeneity of abnormalities caused by fuzzy inheritance and dynamic 
environments

Of course, fuzzy inheritance at the chromosomal level represents the basis for the 
heterogeneity of chromosomal abnormalities. Fuzzy coding is responsible for the 
potential phenotype, and it is the environment that selects the specific phenotypes. 
However, the selected phenotypes can easily be altered again under different selec-
tive conditions as the inherited code itself is highly flexible, and the phenotypes 
themselves exist within a range of potential options, a concept which differs from 
classical genetic frameworks (Heng 2015, 2019; Ye et  al. 2018a, b). Nature has 
beautifully solved the key conflict of survival as a species (by not changing the 
entire system) and while rendering the species’ bio-information flexible enough to 
adapt to current conditions. Clearly, the fuzzy inheritance of somatic cells, includ-
ing the separation of germline and somatic cells, plays an important role.

It should be pointed out that there is emerging interest in somatic mosaicism 
(Yurov et al. 2007; Iourov et al. 2008, 2010, 2019; Biesecker and Spinner 2013; 
Heng et  al. 2013a, b) and core genomes-associated multiple levels of genomic 

Fig. 6.7 The diagram of how micronuclei create a new genome by reorganizing karyotype coding. 
When under a high level of stress (either internal or environmental), the cluster of micronuclei is 
formed, which can lead to death, proportional survival (partial population survival without altering 
the genome), the formation of an emergent genome through a fusion/fission cycle, or simply the 
combination of micronuclei with other nuclei, resulting in a new cell with an emergent genome 
(defined by altered chromosomal coding). (Reused from Ye et al. 2019a)
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interactions (Heng et al. 2013a, b, 2016a; Shapiro 2017, 2019; Heng 2019), which 
are closely related to fuzzy inheritance and genome-based evolution. These mecha-
nisms, including minimal genomic variations in the germline, somatic alteration 
and mosaicism, and the host microbiome, allow diverse variants to be achieved by 
the same core genome interacting with other genomic and environmental factors. 
Under many conditions, such genome level interaction plus epigenetic changes can 
provide enough variations without relying on the changing of gene mutation fre-
quencies within a population, the key mechanism of natural selection. Just passing 
the core genome is sufficient for passing the potential of different combinations of 
genomic interaction. As long as such interaction is there, there is no need to accu-
mulate gene mutation for most traits as the environments are constantly changing 
back and forth.

 Future Perspectives

In recent years, there have been increased reports on the significance of using vari-
ous chromosomal/nuclear abnormalities in both genomic research and clinical 
implications (Chandrakasan et  al. 2011; Heng et  al. 2013a, b; Stepanenko and 
Kavsan 2014; Stepanenko and Dmitrenko 2015a, b; Niederwieser et  al. 2016; 
Bloomfield and Duesberg 2016; Stepanenko and Heng 2017; Poot 2017; Rangel 
et al. 2017; Iourov et al. 2019; Vargas-Rondón et al. 2017; Liu et al. 2018; Heng 
et al. 2018; Frias et al. 2019; Ramos et al. 2018; Chin et al. 2018; Salmina et al. 
2019). With an appreciation of the importance of karyotype or chromosomal cod-
ing, and of how these stochastic abnormalities can play a key role in somatic evolu-
tion, a new wave of studies will likely soon come of age. Along with some frequently 
discussed perspectives (Heng et al. 2016a, 2018; Heng 2013, 2015, 2019; Heng and 
Regan 2018; Ye et al. 2018a, 2019a, b), several issues should be addressed for fur-
ther classifying and applying the knowledge of chromosomal abnormalities in clinic 
settings. First, the baselines of some major types of abnormalities in normal indi-
viduals and in patients are needed to be established and give reference to age, gen-
der, and possible racial difference. Of course, for many common and complex 
diseases or illnesses, research is needed to examine if elevated levels of NCCAs are 
involved. Second, a quantitative measurement based on total chromosomal abnor-
malities is needed to link to different types of diseases, treatments, and overall sys-
tem instability. Such studies might lead to new biomarkers based on the pattern of 
genome dynamics. The possibility of combining chromosomal and nuclear abnor-
malities together to predict system instability and evolutionary potential should also 
be studied. Third, the pattern of chromosomal abnormalities should be used to study 
the behavior of outliers within different phases of somatic evolution. The profile of 
outlier versus average is particularly interesting during phase transitions (Heng 
2015, 2019). Fourth, another challenge is to integrate different types of variants into 
somatic chromosomal mosaicism (Iourov et al. 2019). Obviously, mosaicism plays 
an important role during the emergence of systems behavior (Heng et  al. 2019). 
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Lastly, it should be noticed that the concept of chromosomal coding mainly applies 
to eukaryotes with typical chromosomes. As the chromosome represents a major 
innovation of our evolutionary history, the function of chromosome- based genomes 
drastically differs from that of prokaryotic genomes. As soon as chromosomes were 
formed on Earth, prokaryotes and eukaryotes have followed different games of evo-
lution. For example, meiosis has become a main constraint for maintaining species’ 
identities, while the breakage of chromosomal coding has become the major tool for 
rapid macroevolution, with increased system complexity. The chromosome-based 
information package has likely provided the separation of germline and somatic 
cells, which further increased the power of fuzzy inheritance. Of course, more 
research is needed to compare the evolutionary and informational mechanism of 
non-chromosome-based and chromosome-based genomes.
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Chapter 7
Twenty-First Century FISH: Focus 
on Interphase Chromosomes

Svetlana G. Vorsanova, Yuri B. Yurov, Oxana S. Kurinnaia, Alexei D. Kolotii, 
and Ivan Y. Iourov

Abstract Interphase molecular cytogenetics provides opportunities for analysis of 
chromosomes in almost all types of human cells at any stage of the cell cycle. 
Generally, interphase fluorescence in situ hybridization (I-FISH) is a basic techno-
logical platform for visualization of individual chromosomes (chromosomal 
regions) in single cells. The achievements of studying human interphase chromo-
somes have allowed numerous discoveries in chromosome research (molecular 
cytogenetics) and genomics (cytogenomics). In the postgenomic era, interphase 
chromosome analysis by I-FISH remains an important part of biomedical research. 
Here, we describe the spectrum of FISH applications with special emphasis on 
interphase chromosome biology and molecular cytogenetic/cytogenomic diagnosis.

 Introduction

Fluorescence in situ hybridization (FISH) is recognized as one of essential techno-
logical platforms for molecular cytogenetics. During the last decades, FISH has 
been found useful for a wide spectrum of applications from molecular diagnosis to 
basic chromosome biology (van der Ploeg 2000; Vorsanova et al. 2010c; Yurov et al. 
2013; Liehr 2017; Hu et al. 2020). Previous edition of this book contained a chapter 
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dedicated to technological solutions in interphase chromosome biology, i.e., inter-
phase FISH (I-FISH) (Vorsanova et al. 2013). Since that time, no groundbreaking 
technological developments have been made in I-FISH or related techniques for 
studying interphase chromosomes. However, it seems that reconsidering techno-
logical aspects of interphase molecular cytogenetics is required, inasmuch as gen-
eral decrease of interest to molecular cytogenetics (e.g., FISH) may be observed in 
the postgenomic era (Liehr 2017; Iourov 2019b; Heng 2020). Here we have reviewed 
I-FISH in the light of its application in the postgenomic context.

No fewer than one million cytogenetic and molecular cytogenetic analyses are 
suggested to be performed per year (Gersen and Keagle 2005). Molecular (cytoge-
netic) diagnosis is the standard of medical care for clinical genetics, reproduction, 
oncology, neurology, psychiatry, etc. (Vorsanova et al. 2010d; Bint et al. 2013; Liehr 
et al. 2015; Viotti 2020). The diagnostic value of FISH has been repeatedly noted 
and has been considered as either an alternative to conventional cytogenetic analysis 
or a confirmatory method (Feuk et  al. 2006; Iourov et  al. 2008c; Martin and 
Warburton 2015; Liehr 2017). In addition, I-FISH-like protocols are used in micro-
biology (Frickmann et  al. 2017), genetic toxicology (Hovhannisyan 2010; Iurov 
et  al. 2011), somatic cell genetics/genomics (Yurov et  al. 2001, 2018b, 2019a; 
Iourov et al. 2008b, 2010b), aging research (Yurov et al. 2009, 2010a), and single- 
cell biology (Iourov et al. 2012, 2013a; Yurov et al. 2019b; Gupta et al. 2020). In 
summary, one can be certain that FISH-based molecular cytogenetic analysis has an 
important role in biomedicine.

In basic research, I-FISH is used for studying somatic chromosomal mosaicism 
(Iourov et al. 2006c, 2010a, 2017, 2019a, d; Arendt et al. 2009; Bakker et al. 2015; 
Andriani et al. 2019) and genome organization in interphase nuclei at the chromo-
somal level (Rouquette et al. 2010; Iourov 2012; Cui et al. 2016; Baumgartner et al. 
2018). A successful study of the aforementioned phenomena requires the applica-
tion of various I-FISH-based techniques, which are described in this chapter.

 I-FISH

FISH is an umbrella term for molecular cytogenetic visualization techniques for 
studies of genome (specific genomic loci) using DNA/RNA probes. FISH resolu-
tion is defined by DNA sequence size of the probes. DNA probes are centromeric 
and telomeric (repetitive-sequence DNA), site-specific (euchromatic DNA, e.g., 
gene DNAs), and whole chromosome painting (wcp; hybridizing to the whole chro-
mosomes DNAs) (Liehr et al. 2004; Iourov et al. 2008b; Vorsanova et al. 2013). 
Basically, I-FISH requires (i) cell suspensions prepared specifically for FISH analy-
sis, (ii) denaturation of chromosomal DNA and hybridization, and (iii) microscopic 
visual and digital analysis of FISH results (Iourov et  al. 2006b, 2017; Yurov 
et al. 2017).

FISH analysis of repetitive genomic sequences is performed with centromeric 
(chromosome enumeration or chromosome-specific). I-FISH with DNA probes for 
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repetitive sequences is applicable for analysis of nuclear chromosomal organization 
and numerical chromosome abnormalities (Yurov et al. 1996; Soloviev et al. 1998). 
I-FISH using centromeric DNA probes is used in molecular diagnosis (medical 
genetics, oncology, and reproduction) (Pinkel et al. 1986; Vorsanova et al. 1986, 
2005b, 2010a; Yurov et al. 2007b, 2010b; Savic and Bubendorf 2016). Furthermore, 
I-FISH demonstrates these protocols highly applicable for studies encompassing 
chromosome biology, genome research (chromosomal and nuclear), evolution, 
behavior, and variation in health and disease (Liehr 2017). Near 100% hybridization 
efficiency and chromosome specificity (apart from chromosomes 5 and 19, 13 and 
21, 14 and 22) defines I-FISH with these DNA probes as an effective molecular 
cytogenetic approach (e.g., analysis of homologous chromosomes in interphase) 
(Iourov et al. 2006d; Wan 2017; Russo et al. 2016; Yurov et al. 2017; Weise et al. 
2019) (Fig. 7.1). I-FISH is shown to have the highest efficiency in uncovering mosa-
icism rates (Iourov et al. 2013b).

Site-specific DNA probes (yeast artificial chromosomes or YACS, bacterial arti-
ficial chromosomes or BACs, P1-derived artificial chromosomes or PACs, cosmids) 
provide the visualization of euchromatic chromosomal DNA. These probes are use-
ful for targeted FISH assays to diagnose structural and, more rarely, numerical chro-
mosome imbalances (Fig. 7.2) (Soloviev et al. 1995; Liehr et al. 2004; Riegel 2014; 
Cheng et al. 2017; Liehr 2017). The use of I-FISH assays with site-specific DNA 
probes is systematically applied in cancer research and molecular oncologic diagno-
sis (Chrzanowska et al. 2020). In the postgenomic era, these methods is applicable 
for mapping altered genomic loci, chromosome instability analysis, and arrange-
ment of specific chromosomal loci in interphase.

I-FISH with chromosome-enumeration and site-specific probes may be affected 
by several phenomena occurring in interphase nuclei. Variable efficiency of hybrid-
ization complicates simultaneous applications of different probe sets, i.e., some sig-
nals can be invisible because of intensity differences (Iourov et al. 2006a). S phase 
DNA replication cause doubling of I-FISH signals (site-specific and centromeric 
probes) (Soloviev et al. 1995; Vorsanova et al. 2001a). False-positive chromosome 
abnormalities may be “uncovered” due to specific nuclear interphase chromosome 
architecture (genome organization). For instance, chromosomal associations affect 
I-FISH interpretation. Chromosomal associations/pairing are common in postmi-
totic cells types (Yurov et al. 2005, 2007a, 2008, 2014, 2018a; Iourov et al. 2009a, 
b). Quantitative FISH (QFISH) is used to differ between chromosome losses and 
chromosomal associations (discussed below). Solutions for these problems are 
given in Fig.  7.3. Finally, an appreciable increase of FISH efficiency may be 
achieved using microwave activation (for more details, see Soloviev et al. [1994], 
Durm et al. [1997], Weise et al. [2005]).
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 ICS-MCB

Microdissected DNA probes may be combined to produce pseudo-G banding using 
FISH or multicolor banding (MCB) (Liehr et  al. 2002). This technique may be 
applied to interphase chromosomes in a chromosome-specific manner. Interphase 
chromosome-specific MCB (ICS-MCB) allow the visualization of interphase 

Fig. 7.1 Two- and three-color I-FISH with centromeric DNA probes. (a) Normal diploid nucleus 
with two signals for chromosome 1 and chromosome 15. (b) Monosomic nucleus with two signals 
for chromosome 1 and one signal for chromosome 15. (c) Trisomic nucleus with two signals for 
chromosome 1 and three signals for chromosome 15. (d) Normal diploid nucleus with two signals 
for chromosome 1, chromosome 9, and chromosome 16. (e) Monosomic nucleus with two signals 
for chromosome 1 and chromosome 9 and one signal for chromosome 16. (f) Trisomic nucleus 
with two signals for chromosome 1 and chromosome 16 and three signals for chromosome 9. (g) 
Triploid nucleus with three signals for chromosome 16 and chromosome 18. (h) Tetraploid nucleus 
with two signals for chromosome X and chromosome Y. (i) Tetraploid nucleus with two signals for 
chromosome X and chromosome Y and four signals for chromosome 1. (Copyright © Vorsanova 
et al. 2010c; licensee BioMed Central Ltd. This is an Open Access article distributed under the 
terms of the Creative Commons Attribution License, http://creativecommons.org/licenses/by/2.0)
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Fig. 7.2 I-FISH with site-specific DNA probes. (a) Normal diploid nucleus with two signals for 
chromosome 21. (b) Trisomic nucleus with three signals for chromosome 21. (c) Interphase 
nucleus exhibiting co-localization of ABL and BCR genes probably due to t(9;22)/Philadelphia 
chromosome. (Copyright © Vorsanova et al. 2010a; licensee BioMed Central Ltd. This is an Open 
Access article distributed under the terms of the Creative Commons Attribution License, http://
creativecommons.org/licenses/by/2.0)

Fig. 7.3 Problems of I-FISH with centromeric/site-specific DNA probes. (a) and (b) Replication 
of specific genomic loci (LSI21 probe). Some nuclei exhibit replicated signals, whereas in some 
nuclei, it is not apparent. Note the distance between signals can be more than a diameter of a signal. 
(c) Asynchronous replication of a signal (DXZ1) in case of tetrasomy of chromosome X. Note the 
difficulty to make a definitive conclusion about number of signals in the right nucleus. (d) Two- 
color FISH with centromeric/site-specific DNA probes for chromosome 1 shows chromosomal 
associations in a nucleus isolated from the adult human brain. Note the impossibility to identify 
number of chromosomes. (e) QFISH demonstrating an association of centromeric regions of 
homologous chromosomes 9, but not a monosomy or chromosome loss. (Copyright © Vorsanova 
et al. 2010a; licensee BioMed Central Ltd. This is an Open Access article distributed under the 
terms of the Creative Commons Attribution License, http://creativecommons.org/licenses/by/2.0)
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chromosomes in their integrity at molecular resolution (Iourov et al. 2006a, 2007). 
The method has been found highly effective for analysis of interphase chromosome 
instability and nuclear genome organization at chromosomal level (Iourov et  al. 
2006a, 2009a, b, 2019a; Yurov et al. 2007a, 2008, 2010b, 2014, 2019b; Liehr and 
Al-Rikabi 2019; Weise et  al. 2019). Figure  7.4 gives a series of examples of 
ICS-MCB.

 Immuno-FISH

Immuno-FISH is the combination of immunohistochemical detection of proteins 
and I-FISH (Liehr 2017). Our experience demonstrates that this technique is useful 
for studying chromosome instability in the human brain following by uncovering 
new mechanisms for neurodegeneration (Iourov et al. 2009a, b; Yurov et al. 2018b, 
2019a). More precisely, immuno-FISH using NeuN antibody allows the detection 
of chromosomal DNA in neuronal cells (Fig. 7.5).

Fig. 7.4 Molecular cytogenetic analyses of the developing and adult human brain by ICS-MCB: 
(a) loss of chromosome 18 (monosomy) in a cell isolated from telencephalic regions of the fetal 
brain; (b) loss of chromosome 16 (monosomy) in a cell isolated from the cerebral cortex of the 
normal human brain; (c) loss of chromosome 1 (monosomy) in a cell isolated from the cerebral 
cortex of the schizophrenia brain; (d) gain of chromosome 21 (trisomy) in a cell isolated from the 
cerebral cortex of the Alzheimer’s disease brain; (e) loss of chromosome 21 (monosomy) in a cell 
isolated from the cerebellum of the ataxia-telangiectasia brain; (f) chromosome instability in the 
cerebellum of the ataxia-telangiectasia brain manifesting as the presence of a rearranged chromo-
some 14 or der(14)(14pter- > 14q12:). (From Yurov et al. 2013 (Fig. 9.2) reproduced with permis-
sion of Springer Nature in the format reuse in a book/textbook via Copyright Clearance Center)
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 QFISH

Interindividual variability of centromeric (heterochromatic) DNAs has been used of 
developing QFISH. This method is applicable for metaphase and interphase analy-
sis of human chromosomes (Iourov et  al. 2005; Vorsanova et  al. 2005a; Iourov 
2017). QFISH with chromosome-enumeration probes may be used for the detection 
of numerical imbalances of interphase chromosome (monosomy or chromosome 
loss). The latter is useful for prenatal and postnatal molecular diagnosis, cancer 
diagnosis and prognosis, and analysis of somatic genomic variability (Iourov 2017; 
Wan 2017; Yurov et al. 2017) (Fig. 7.6).

 Molecular Diagnosis

An advantage of FISH-based techniques is referred to the availability of single-cell 
analysis (Iourov et  al. 2012; Moffitt et  al. 2016; Zhang et  al. 2018). Despite the 
availability of DNA sequencing technologies for single-cell analysis (Knouse et al. 
2014; Gawad et al. 2016), these cannot substitute FISH due to following reasons: 
FISH has the highest possible cell scoring potential and allows visualization of 
arrangement of genomic loci in interphase/metaphase chromosomes (Moffitt et al. 
2016; Yurov et al. 2018b, 2019b). Accordingly, I-FISH is an important technique 
used in molecular cytogenetic diagnosis. Chromosomal imbalances cause a wide 
spectrum of diseases from congenital malformations, intellectual disability, autism, 
epilepsy, cancers, neurodegeneration, and reproductive problems (Vorsanova et al. 
2001b, 2007, 2010b; Yurov et al. 2001, 2007b, 2019a, b; Gersen and Keagle 2005; 
Iourov et al. 2006c, 2008a, b, 2010b, 2011; Ye et al. 2019). Thus, the aforemen-
tioned FISH methods may be applicable for the molecular diagnosis. Since a diag-
nosis is aimed at uncovering molecular and cellular mechanisms for a disease, FISH 

Fig. 7.5 Immuno-FISH. I-FISH using centromeric probe for chromosome Y (DYZ3) with immu-
nostaining by NeuN (neuron-specific antibody) performed for the analysis of cells isolated from 
the human brain. (Copyright © Vorsanova et al. 2010a; licensee BioMed Central Ltd. This is an 
Open Access article distributed under the terms of the Creative Commons Attribution License, 
http://creativecommons.org/licenses/by/2.0)
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should be considered as a technique additional to whole-genome analysis (e.g., 
whole-genome sequencing or molecular karyotyping) for uncovering processes, 
which are involved in the pathogenetic cascade of a disease (i.e., chromosome insta-
bility). The postgenomic era offers numerous possibilities for pathway-based clas-
sification of genome variations to model functional consequences of a genomic 
change. As a result, candidate processes may be suggested (Iourov 2019b; Iourov 
et al. 2019b, c). Currently, several bioinformatics tools are available for molecular 
cytogenetics (Iourov et al. 2012, 2014b; Zeng et al. 2012). Once applied, knowledge 
about mechanisms of disease mediated by chromosome abnormalities allows to 
propose successful therapeutic strategies for presumably incurable genetic condi-
tions (Iourov 2016; Iourov et al. 2015b). Our experience of combination of whole- 
genome analysis (molecular karyotyping), I-FISH, and bioinformatics analysis is 
shown by Fig. 7.7 (Iourov et al. 2015a). Moreover, I-FISH analysis of chromosome 
inability may be integrated into molecular cytogenetic diagnostic workflows (Iourov 
et al. 2014a).

Taking into account promising biomarkers revealed by FISH, an algorithm for 
identifying disease mechanisms may be proposed. To succeed, two data sets are 
required: (1) cytogenetic/FISH data set (analysis of large cell populations for 

Fig. 7.6 QFISH with using enumeration-centromeric probes for chromosomes 1 (red signals/
D1Z1) and X (green signals/DXZ1): Nucleus A demonstrates a green signal with a relative inten-
sity of 2120 pixels—true X chromosome monosomy. Nucleus B demonstrates a green signal with 
a relative intensity of 4800 pixels—two overlapping chromosome X signals but not a chromosome 
loss. (From Yurov et al. 2017 reproduced with permission of Springer Nature in the format reuse 
in a book/textbook via Copyright Clearance Center)

S. G. Vorsanova et al.



139

uncovering intercellular karyotypic variations) and (2) data set obtained by molecu-
lar karyotyping and analyzed using systems biology (bioinformatic) methodology 
for determining functional consequences of regular genomic variations. Once 
obtained, correlative analysis between these data sets is to be performed (Iourov 
2019a; Vorsanova et al. 2019). Figure 7.8 reproduces this algorithm.

 Conclusion

I-FISH seems to be an important technological part of current biomedical research 
and molecular diagnosis. Regardless of significant achievements in genomics and 
molecular biology, there is a wide spectrum of applications of this molecular cyto-
genetic technique. Mosaic chromosome abnormalities and chromosomal instability 
are relevant to numerous areas of biomedicine and require specific molecular cyto-
genetic approaches to the detection. Indeed, I-FISH-based techniques have to be 
included in the algorithms of detecting somatic genome variations at chromosomal 
and sub-chromosomal levels. In addition to detecting chromosomal mosaicism per 
se, I-FISH-based techniques are applicable to monitor somatic genomic changes 
and/or uncovering genome/chromosome insatiability, which may be either a cause 
of disease or an element of the pathogenetic cascade. Nuclear arrangement of chro-
mosomes cannot be adequately addressed without I-FISH-based techniques. These 
studies are valuable for understanding genetic processes occurring in the interphase 
nucleus. Moreover, it is highly likely that exogenous influencing of chromosomal 
arrangement in interphase nuclei is a therapeutic opportunity for diseases associated 
with chromosomal imbalances, susceptibility to chromosome/genome instability, 

Fig. 7.7 Interphase FISH analysis of CIN (somatic aneuploidy). (a) FISH with DNA probes for 
chromosomes 7 (green) and 18 (red) showing chromosome 7 loss in the right nucleus (metaphase 
chromosomes show positive signals for these DNA probes). (b) Interphase FISH with DNA probes 
for chromosomes Y (green) and X (red) showing chromosome Y loss in the nucleus (metaphase 
chromosomes show positive signals for these DNA probes). (c) Rates of chromosome losses (red 
bars) and gains (golden bars). (From Iourov et al. 2015a, an article is distributed under the terms 
of the Creative Commons Attribution 4.0 International License, http://creativecommons.org/
licenses/by/4.0/)
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altered programmed cell death, and abnormal chromatin remodeling. In total, one 
can conclude that interphase molecular cytogenetics possesses actual methodology 
for basic and diagnostic research in genetics/genomics, cellular and molecular biol-
ogy, and molecular (genome) medicine despite the availability of postgenomic 
technologies.
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Fig. 7.8 Schematic depiction of the algorithm for investigating the molecular and cellular mecha-
nisms of diseases mediated by CIN. To succeed, one has to follow green arrows or, in other words, 
to analyze chromosome instability by karyotyping and FISH (analysis of larger amounts of cells) 
instead of the commonly accepted workflow including only cytogenetic karyotyping and molecu-
lar karyotyping; bioinformatics is mandatory for uncovering disease mechanisms. (Copyright © 
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Commons by Attribution License, which permits unrestricted use, distribution, and reproduction in 
any medium or format, provided the original work is correctly cited)

S. G. Vorsanova et al.

http://www.ncbi.nlm.nih.gov/pmc/about/copyright.html


141

References

Andriani GA, Maggi E, Piqué D et al (2019) A direct comparison of interphase FISH versus low- 
coverage single cell sequencing to detect aneuploidy reveals respective strengths and weak-
nesses. Sci Rep 9(1):10508

Arendt T, Mosch B, Morawski M (2009) Neuronal aneuploidy in health and disease: a cytomic 
approach to understand the molecular individuality of neurons. Int J Mol Sci 10(4):1609–1627

Bakker B, van den Bos H, Lansdorp PM et al (2015) How to count chromosomes in a cell: an 
overview of current and novel technologies. BioEssays 37(5):570–577

Baumgartner A, Ferlatte Hartshorne C, Polyzos A et al (2018) Full karyotype interphase cell analy-
sis. J Histochem Cytochem 66(8):595–606

Bint SM, Davies AF, Ogilvie CM (2013) Multicolor banding remains an important adjunct to array 
CGH and conventional karyotyping. Mol Cytogenet 6(1):55

Cheng L, Zhang S, Wang L et al (2017) Fluorescence in situ hybridization in surgical pathology: 
principles and applications. J Pathol Clin Res 3(2):73–99

Chrzanowska NM, Kowalewski J, Lewandowska MA (2020) Use of fluorescence in situ hybridiza-
tion (FISH) in diagnosis and tailored therapies in solid tumors. Molecules 25(8):1864

Cui C, Shu W, Li P (2016) Fluorescence in situ hybridization: cell-based genetic diagnostic and 
research applications. Front Cell Dev Biol 4:89

Durm M, Haar F-M, Hausmann M et al (1997) Optimized Fast-FISH with a-satellite probes: accel-
eration by microwave activation. Braz J Med Biol Res 30(1):15–22

Feuk L, Marshall CR, Wintle RF et al (2006) Structural variants: changing the landscape of chro-
mosomes and design of disease studies. Hum Mol Genet 15(1):R57–R66

Frickmann H, Zautner AE, Moter A et al (2017) Fluorescence in situ hybridization (FISH) in the 
microbiological diagnostic routine laboratory: a review. Crit Rev Microbiol 43(3):263–293

Gawad C, Koh W, Quake SR (2016) Single-cell genome sequencing: current state of the science. 
Nat Rev Genet 17(3):175–188

Gersen SL, Keagle MB (2005) The principles of clinical cytogenetics, 2nd edn. Humana 
Press, Totowa

Gupta P, Balasubramaniam N, Chang HY et al (2020) A single-neuron: current trends and future 
prospects. Cell 9:1528

Heng HH (2020) New data collection priority: focusing on genome-based bioinformation. Res 
Result Biomed 6(1):5–8

Hovhannisyan GG (2010) Fluorescence in situ hybridization in combination with the comet assay 
and micronucleus test in genetic toxicology. Mol Cytogenet 3:17

Hu Q, Maurais EG, Ly P (2020) Cellular and genomic approaches for exploring structural chromo-
somal rearrangements. Chromosom Res 28(1):19–30

Iourov IY (2012) To see an interphase chromosome or: how a disease can be associated with spe-
cific nuclear genome organization. BioDiscovery 4:e8932

Iourov IY (2016) Post genomics: towards a personalized approach to chromosome abnormalities. 
J Down Syndr Chromosom Abnorm 2(1):2:e104

Iourov IY (2017) Quantitative fluorescence in situ hybridization (QFISH). Methods Mol Biol 
1541:143–149

Iourov IY (2019a) Cytogenomic bioinformatics: practical issues. Curr Bioinformatics 
14(5):372–373

Iourov IY (2019b) Cytopostgenomics: what is it and how does it work? Curr Genomics 20(2):77–78
Iourov IY, Soloviev IV, Vorsanova SG et al (2005) An approach for quantitative assessment of 

fluorescence in situ hybridization (FISH) signals for applied human molecular cytogenetics. J 
Histochem Cytochem 53:401–408

Iourov IY, Liehr T, Vorsanova SG et al (2006a) Visualization of interphase chromosomes in postmi-
totic cells of the human brain by multicolour banding (MCB). Chromosom Res 14(3):223–229

Iourov IY, Vorsanova SG, Pellestor F et  al (2006b) Brain tissue preparations for chromosomal 
PRINS labeling. Methods Mol Biol 334:123–132

7 Twenty-First Century FISH: Focus on Interphase Chromosomes



142

Iourov IY, Vorsanova SG, Yurov YB (2006c) Chromosomal variation in mammalian neuronal cells: 
known facts and attractive hypotheses. Int Rev Cytol 249:143–191

Iourov IY, Vorsanova SG, Yurov YB (2006d) Intercellular genomic (chromosomal) variations 
resulting in somatic mosaicism: mechanisms and consequences. Curr Genomics 7:435–446

Iourov IY, Liehr T, Vorsanova SG et al (2007) Interphase chromosome-specific multicolor banding 
(ICS-MCB): a new tool for analysis of interphase chromosomes in their integrity. Biomol Eng 
24(4):415–417

Iourov IY, Vorsanova SG, Yurov YB (2008a) Chromosomal mosaicism goes global. Mol 
Cytogenet 1:26

Iourov IY, Vorsanova SG, Yurov YB (2008b) Molecular cytogenetics and cytogenomics of brain 
diseases. Curr Genomics 9(7):452–465

Iourov IY, Vorsanova SG, Yurov YB (2008c) Recent patents on molecular cytogenetics. Recent Pat 
DNA Gene Seq 2(1):6–15

Iourov IY, Vorsanova SG, Liehr T et al (2009a) Increased chromosome instability dramatically dis-
rupts neural genome integrity and mediates cerebellar degeneration in the ataxia-telangiectasia 
brain. Hum Mol Genet 18(14):2656–2669

Iourov IY, Vorsanova SG, Liehr T et al (2009b) Aneuploidy in the normal, Alzheimer’s disease 
and ataxia-telangiectasia brain: differential expression and pathological meaning. Neurobiol 
Dis 34(2):212–220

Iourov IY, Vorsanova SG, Solov’ev IV et al (2010a) Methods of molecular cytogenetics for study-
ing interphase chromosome in human brain cells. Russ J Genet 46(9):1039–1041

Iourov IY, Vorsanova SG, Yurov YB (2010b) Somatic genome variations in health and disease. 
Curr Genomics 11:387–396

Iourov IY, Vorsanova SG, Yurov YB (2011) Genomic landscape of the Alzheimer’s disease brain: 
chromosome instability  – aneuploidy, but not tetraploidy  – mediates neurodegeneration. 
Neurodegener Dis 8:35–37

Iourov IY, Vorsanova SG, Yurov YB (2012) Single cell genomics of the brain: focus on neuronal 
diversity and neuropsychiatric diseases. Curr Genomics 13(6):477–488

Iourov IY, Vorsanova SG, Yurov YB (2013a) Somatic cell genomics of brain disorders: a new oppor-
tunity to clarify genetic-environmental interactions. Cytogenet Genome Res 139(3):181–188

Iourov IY, Vorsanova SG, Voinova VY et al (2013b) Xq28 (MECP2) microdeletions are common 
in mutation-negative females with Rett syndrome and cause mild subtypes of the disease. Mol 
Cytogenet 6(1):53

Iourov IY, Vorsanova SG, Liehr T et al (2014a) Mosaike im Gehirn des Menschen. Diagnostische 
Relevanz in der Zukunft? Med Genet 26(3):342–345

Iourov IY, Vorsanova SG, Yurov YB (2014b) In silico molecular cytogenetics: a bioinformatic 
approach to prioritization of candidate genes and copy number variations for basic and clinical 
genome research. Mol Cytogenet 7(1):98

Iourov IY, Vorsanova SG, Demidova IA et  al (2015a) 5p13.3p13.2 duplication associated with 
developmental delay, congenital malformations and chromosome instability manifested as 
low-level aneuploidy. Springerplus 4(1):616

Iourov IY, Vorsanova SG, Voinova VY et al (2015b) 3p22.1p21.31 microdeletion identifies CCK 
as Asperger syndrome candidate gene and shows the way for therapeutic strategies in chromo-
some imbalances. Mol Cytogenet 8:82

Iourov IY, Vorsanova SG, Yurov YB (2017) Interphase FISH for detection of chromosomal mosa-
icism. In: Liehr T (ed) Fluorescence in situ hybridization (FISH) – application guide (springer 
protocols handbooks), 2nd edn. Springer, Berlin/Heidelberg, pp 361–372

Iourov IY, Liehr T, Vorsanova SG et  al (2019a) The applicability of interphase chromosome- 
specific multicolor banding (ICS-MCB) for studying neurodevelopmental and neurodegenera-
tive disorders. Res Result Biomed 5(3):4–9

Iourov IY, Vorsanova SG, Yurov YB (2019b) Pathway-based classification of genetic diseases. Mol 
Cytogenet 12(4)

S. G. Vorsanova et al.



143

Iourov IY, Vorsanova SG, Yurov YB (2019c) The variome concept: focus on CNVariome. Mol 
Cytogenet 12:52

Iourov IY, Vorsanova SG, Yurov YB et al (2019d) Ontogenetic and pathogenetic views on somatic 
chromosomal mosaicism. Genes (Basel) 10(5):E379

Iurov II, Vorsanova SG, Solov’ev IV et al (2011) Original molecular cytogenetic approach to deter-
mining spontaneous chromosomal mutations in the interphase cells to evaluate the mutagenic 
activity of environmental factors. Gig Sanit 5:90–94

Knouse KA, Wu J, Whittaker CA et al (2014) Single cell sequencing reveals low levels of aneu-
ploidy across mammalian tissues. Proc Natl Acad Sci U S A 111:13409–13414

Liehr T (2017) Fluorescence in situ hybridization (FISH) – application Guide. Springer, Berlin/
Heidelberg

Liehr T, Al-Rikabi A (2019) Mosaicism: reason for normal phenotypes in carriers of small super-
numerary marker chromosomes with known adverse outcome. A systematic review. Front 
Genet 10:1131

Liehr T, Heller A, Starke H et al (2002) Microdissection based high resolution multicolor banding 
for all 24 human chromosomes. Int J Mol Med 9(4):335–339

Liehr T, Starke H, Weise A et al (2004) Multicolor FISH probe sets and their applications. Histol 
Histopathol 19(1):229–237

Liehr T, Othman MA, Rittscher K et al (2015) The current state of molecular cytogenetics in can-
cer diagnosis. Expert Rev Mol Diagn 15(4):517–526

Martin CL, Warburton D (2015) Detection of chromosomal aberrations in clinical practice: from 
karyotype to genome sequence. Annu Rev Genomics Hum Genet 16:309–326

Moffitt JR, Hao J, Bambah-Mukku D et al (2016) High-performance multiplexed fluorescence in 
situ hybridization in culture and tissue with matrix imprinting and clearing. Proc Natl Acad Sci 
U S A 113(50):14456–14461

Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high-sensitivity, 
fluorescence hybridization. Proc Natl Acad Sci U S A 83(9):2934–2938

Riegel M (2014) Human molecular cytogenetics: from cells to nucleotides. Genet Mol Biol 
37(1):194–209

Rouquette J, Cremer C, Cremer T et al (2010) Functional nuclear architecture studied by micros-
copy: present and future. Int Rev Cell Mol Biol 282:1–90

Russo R, Sessa AM, Fumo R et al (2016) Chromosomal anomalies in early spontaneous abortions: 
interphase FISH analysis on 855 FFPE first trimester abortions. Prenat Diagn 36(2):186–191

Savic S, Bubendorf L (2016) Common fluorescence in situ hybridization applications in cytology. 
Arch Pathol Lab Med 140(12):1323–1330

Soloviev IV, Yurov YB, Vorsanova SG et  al (1994) Microwave activation of fluorescence in 
situ hybridization: a novel method for rapid chromosome detection and analysis. Focus 
16(4):115–116

Soloviev IV, Yurov YB, Vorsanova SG et al (1995) Prenatal diagnosis of trisomy 21 using inter-
phase fluorescence in situ hybridization of post-replicated cells with site-specific cosmid and 
cosmid contig probes. Prenat Diagn 15:237–248

Soloviev IV, Yurov YB, Vorsanova SG et al (1998) Fluorescent in situ hybridization analysis of 
α-satellite DNA in cosmid libraries specific for human chromosomes 13, 21 and 22. Rus J 
Genet 34:1247–1255

van der Ploeg M (2000) Cytochemical nucleic acid research during the twentieth century. Eur J 
Histochem 44(1):7–42

Viotti M (2020) Preimplantation genetic testing for chromosomal abnormalities: aneuploidy, 
mosaicism, and structural rearrangements. Genes 11:602

Vorsanova SG, Yurov YB, Alexandrov IA et al (1986) 18p- syndrome: an unusual case and diagno-
sis by in situ hybridization with chromosome 18-specific alphoid DNA sequence. Hum Genet 
72:185–187

7 Twenty-First Century FISH: Focus on Interphase Chromosomes



144

Vorsanova SG, Yurov YB, Kolotii AD et al (2001a) FISH analysis of replication and transcrip-
tion of chromosome X loci: new approach for genetic analysis of Rett syndrome. Brain and 
Development 23:S191–S195

Vorsanova SG, Yurov YB, Ulas VY et al (2001b) Cytogenetic and molecular-cytogenetic studies of 
Rett syndrome (RTT): a retrospective analysis of a Russian cohort of RTT patients (the investi-
gation of 57 girls and three boys). Brain and Development 23:S196–S201

Vorsanova SG, Iourov IY, Beresheva AK et al (2005a) Non-disjunction of chromosome 21, alphoid 
DNA variation, and sociogenetic features of Down syndrome. Tsitol Genet 39(6):30–36

Vorsanova SG, Kolotii AD, Iourov IY et  al (2005b) Evidence for high frequency of chromo-
somal mosaicism in spontaneous abortions revealed by interphase FISH analysis. J Histochem 
Cytochem 53(3):375–380

Vorsanova SG, Yurov IY, Demidova IA et  al (2007) Variability in the heterochromatin regions 
of the chromosomes and chromosomal anomalies in children with autism: identification of 
genetic markers of autistic spectrum disorders. Neurosci Behav Physiol 37(6):553–558

Vorsanova SG, Iourov IY, Kolotii AD et al (2010a) Chromosomal mosaicism in spontaneous abor-
tions: analysis of 650 cases. Rus J Genet 46:1197–1200

Vorsanova SG, Voinova VY, Yurov IY et  al (2010b) Cytogenetic, molecular-cytogenetic, and 
clinical- genealogical studies of the mothers of children with autism: a search for familial 
genetic markers for autistic disorders. Neurosci Behav Physiol 40(7):745–756

Vorsanova SG, Yurov YB, Iourov IY (2010c) Human interphase chromosomes: a review of avail-
able molecular cytogenetic technologies. Mol Cytogenet 3:1

Vorsanova SG, Yurov YB, Soloviev IV et al (2010d) Molecular cytogenetic diagnosis and somatic 
genome variations. Curr Genomics 11(6):440–446

Vorsanova SG, Yurov YB, Iourov IY (2013) Technological solutions in human interphase cytoge-
netics. In: Yurov YB, Vorsanova SG, Iourov IY (eds) Human interphase chromosomes (bio-
medical aspects). Springer, New York/Heidelberg/Dordrecht/London, pp 179–203

Vorsanova SG, Yurov YB, Soloviev IV et al (2019) FISH-based analysis of mosaic aneuploidy and 
chromosome instability for investigating molecular and cellular mechanisms of disease. OBM 
Genetics 3(1):9

Wan TS (2017) Cancer cytogenetics. Springer, New York
Weise A, Liehr T, Claussen U et al (2005) Increased efficiency of fluorescence in situ hybridization 

(FISH) using the microwave. J Histochem Cytochem 53(10):1301–1303
Weise A, Mrasek K, Pentzold C et al (2019) Chromosomes in the DNA era: perspectives in diag-

nostics and research. Med Genet 31(1):8–19
Ye CJ, Stilgenbauer L, Moy A et al (2019) What is karyotype coding and why is genomic topology 

important for cancer and evolution? Front Genet 10:1082
Yurov YB, Soloviev IV, Vorsanova SG et al (1996) High resolution multicolor fluorescence in situ 

hybridization using cyanine and fluorescein dyes: rapid chromosome identification by directly 
fluorescently labeled alphoid DNA probes. Hum Genet 97(3):390–398

Yurov YB, Vostrikov VM, Vorsanova SG et al (2001) Multicolor fluorescent in situ hybridization 
on post-mortem brain in schizophrenia as an approach for identification of low-level chro-
mosomal aneuploidy in neuropsychiatric diseases. Brain and Development 23(1):S186–S190

Yurov YB, Iourov IY, Monakhov VV et  al (2005) The variation of aneuploidy frequency in 
the developing and adult human brain revealed by an interphase FISH study. J Histochem 
Cytochem 53(3):385–390

Yurov YB, Iourov IY, Vorsanova SG et al (2007a) Aneuploidy and confined chromosomal mosa-
icism in the developing human brain. PLoS One 2(6):e558

Yurov YB, Vorsanova SG, Iourov IY et al (2007b) Unexplained autism is frequently associated 
with low-level mosaic aneuploidy. J Med Genet 44(8):521–525

Yurov YB, Iourov IY, Vorsanova SG et al (2008) The schizophrenia brain exhibits low-level aneu-
ploidy involving chromosome 1. Schizophr Res 98:139–147

Yurov YB, Vorsanova SG, Iourov IY (2009) GIN’n’CIN hypothesis of brain aging: deciphering the 
role of somatic genetic instabilities and neural aneuploidy during ontogeny. Mol Cytogenet 2:23

S. G. Vorsanova et al.



145

Yurov YB, Vorsanova SG, Iourov IY (2010a) Ontogenetic variation of the human genome. Curr 
Genomics 11(6):420–425

Yurov YB, Vorsanova SG, Solov’ev IV et al (2010b) Instability of chromosomes in human nerve 
cells (normal and with neuromental diseases). Russ J Genet 46(10):1194–1196

Yurov YB, Vorsanova SG, Iourov IY (2013) Human interphase chromosomes  – biomedical  
aspects. Springer, New York/Heidelberg/Dordrecht/London

Yurov YB, Vorsanova SG, Liehr T et al (2014) X chromosome aneuploidy in the Alzheimer’s dis-
ease brain. Mol Cytogenet 7(1):20

Yurov YB, Vorsanova SG, Soloviev IV et  al (2017) FISH-based assays for detecting genomic 
(chromosomal) mosaicism in human brain cells. NeuroMethods 131:27–41

Yurov YB, Vorsanova SG, Demidova IA et al (2018a) Mosaic brain aneuploidy in mental illnesses: 
an association of low-level post-zygotic aneuploidy with schizophrenia and comorbid psychi-
atric disorders. Curr Genomics 19(3):163–172

Yurov YB, Vorsanova SG, Iourov IY (2018b) Human molecular neurocytogenetics. Curr Genet 
Med Rep 6(4):155–164

Yurov YB, Vorsanova SG, Iourov IY (2019a) Chromosome instability in the neurodegenerating 
brain. Front Genet 10:892

Yurov YB, Vorsanova SG, Iourov IY (2019b) FISHing for unstable cellular genomes in the human 
brain. OBM Genetics 3(2):11

Zeng H, Weier JF, Wang M et al (2012) Bioinformatic tools identify chromosome-specific DNA 
probes and facilitate risk assessment by detecting aneusomies in extra-embryonic tissues. Curr 
Genomics 13(6):438–445

Zhang C, Cerveira E, Rens W et al (2018) Multicolor fluorescence in situ hybridization (FISH) 
approaches for simultaneous analysis of the entire human genome. Curr Protoc Hum Genet 
99(1):e70

7 Twenty-First Century FISH: Focus on Interphase Chromosomes



147© Springer Nature Switzerland AG 2020
I. Iourov et al. (eds.), Human Interphase Chromosomes, 
https://doi.org/10.1007/978-3-030-62532-0_8

Chapter 8
Chromosome Architecture Studied 
by High-Resolution FISH Banding 
in Three-Dimensionally Preserved Human 
Interphase Nuclei

Thomas Liehr

Abstract The impact of chromosome architecture in the formation of chromosome 
aberrations is a meanwhile well-established finding of interphase-directed molecu-
lar cytogenetic studies. Up to recent years, biomedical research of interphase chro-
mosomes in their integrity was hindered by technical limitations. The introduction 
of three-dimensional suspension-based fluorescence in situ hybridization (S-FISH) 
in combination with microdissection-based engineered DNA probes and fluores-
cence multicolor chromosome banding (MCB) allowed studying interphase chro-
mosome organization, numbers, and rearrangements in different kind of cells. Such 
studies already provided comprehensive information on the interphase architecture 
of normal human sperm, as well as first insights into the influence of chromosomal 
rearrangements on the 3D structure of the sperm nuclei. Also, the influence of addi-
tional chromosomal fragments present in a nucleus was successfully visualized by 
S-FISH.  Finally, S-FISH supported the idea that disease-specific chromosomal 
translocations could be due to tissue specific genomic organization. Overall, S-FISH 
combined with MCB but also other DNA probes is a tool with high potential to 
resolve the influence of chromosomal imbalances and/or rearrangements on the 
interphase architecture, the latter being possibly a part of the epigenetic cell regula-
tion, also being denominated as chromosomics.

 Introduction

In the interphase nucleus, chromosomes are located in specific regions, which are 
called “chromosome territories” (Cremer and Cremer 2001; Williams and Fisher 
2003; Branco and Pombo 2006). Own multicolor banding (MCB)-based studies 
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revealed that the chromosome shape itself is not lost in the interphase nucleus, and 
one can even identify “interphase chromosomes” instead of only chromosome terri-
tory, even irrespective of the cell cycle phase (Weise et al. 2002; Lemke et al. 2002).

Both chromosome size and gene density are discussed to have an important 
impact on the nuclear position of chromosomes. Small chromosomes preferentially 
locate close to the center of the nucleus, while large chromosomes can be found in 
the nuclear periphery (Sun et al. 2000; Bolzer et al. 2005). On the other hand, Croft 
et al. (1999) demonstrated a gene density-correlated radial arrangement of chromo-
somes in nuclei. Mainly gene-dense and early replicating chromatin can be found in 
the central part of the nucleus, while gene-poor and later replicating chromatin is 
located in nuclear periphery (Croft et al. 1999). Interestingly, this nuclear topologi-
cal arrangement is conserved during primate evolution (Manvelyan et al. 2008a).

Here, we summarize the yet published applications of suspension-based fluores-
cence in situ hybridization (S-FISH) combined with FISH banding (Liehr et  al. 
2002, 2006), particularly the yet most used approach array-proven MCB (Weise 
et  al. 2008). Besides, also other protocols were suggested for FISH studies in 
3D-preserved nuclei (e.g., Walter et  al. 2006). Also, recent studies showed that 
inter- and metaphase chromosomes preserve a genome-wide haploid order (Weise 
et al. 2016) and that this order is completely changed in senescent cells (Roediger 
et al. 2014). All these studies provide to the more and more emerging field of chro-
mosomics, as predicted in 2005 by Prof. Uwe Claussen (Claussen 2005).

 S-FISH, the Method

Performing of a FISH experiment on human meta- and interphase cells after air- 
drying method is a well-established approach; it is routinely done as one- to 
multicolor- FISH test (Liehr et  al. 2004a). However, the air-drying procedure of 
chromosome preparation, leading to well-spread metaphases under appropriate 
conditions, leads at the same time to flattening of the originally spherical interphase 
nuclei. Thus, interphase architecture is hard to be studied reliably on such kind of 
preparation (Hunstig et  al. 2009), even though some basic insights can also be 
gained using such material for FISH banding (Weise et al. 2002; Lemke et al. 2002).

Still, there is an easy way to do studies in three-dimensionally (3D) preserved 
interphase nuclei obtained from routinely prepared cytogenetic preparations stored 
in Carnoy’s fixative. One just needs to do the whole FISH procedure in cell suspen-
sion, and as a final step, the nuclei are placed on a polished concave slide before 
evaluation, immobilized in agarose. This approach for 3D-FISH analyses on totally 
spherical interphase nuclei, called suspension-based fluorescence in situ hybridiza-
tion (S-FISH), was published first in 2002 (Steinhaeuser et al. 2002) and further 
developed and slightly modified later (Manvelyan et al. 2008a; Hunstig et al. 2009). 
Its principle is shown in Fig. 8.1.
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 S-FISH: Which DNA Probes May Be Applied?

For S-FISH, all available chromosome or chromosome region-specific DNA are 
principally suited. However, for application in S-FISH, at least double amount of 
the probe is necessary than for “normal” FISH experiments (Hunstig et al. 2009). To 
resolve the chromosome structure as a whole, single chromosome-directed FISH 
banding based on partial chromosome painting probes like in MCB is suited best 
(Weise et al. 2008). Besides, centromeric and/or locus-specific probes can be used 
as well for special questions (e.g., Manvelyan et al. 2009; Hunstig et al. 2009).

Fig. 8.1 Schematic drawing of the suspension-based fluorescence in situ hybridization (S-FISH) 
procedure. Overall, S-FISH avoids this flattening and artificial swelling of the interphase  
nuclei, and the whole experiment is performed in suspension. A certain loss of cells during the 
washing steps is normal, shown here by the reduction of cells/nuclei from step 1 to step 4. In prin-
ciple, Carnoy’s fixative is replaced subsequently by solutions necessary for a FISH, and washing 
steps are included. Finally, the cells/nuclei are immobilized and counterstained in an agarose 
(AGAR) on a glass slide under a coverslip. The details of the protocol are described in Hunstig 
et al. (2009)
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 Applications of S-FISH

Besides some studies done in comparative interphase cytogenetics of human and 
whitehanded gibbon and gorilla (Manvelyan et al. 2008a), S-FISH combined with 
MCB is mainly applied in the field of biomedical basic research of the human inter-
phase nucleus. Here, still many questions are open and unanswered, mainly due to 
lack of suited methods, before introduction of S-FISH.  Besides, more and more 
studies in other animals/species provide insights into the nuclear architecture 
(Karamysheva et al. 2017).

 Human Sperm

For the first time, the distribution of all human chromosomes in sperm was resolved 
comprehensively by S-FISH−/MCB studies. Strikingly, for the majority of the 24 
human chromosomes, the distribution of the territories was alike as in lymphocytes; 
only the acrocentric chromosomes showed another location as in sperm, no nucleo-
lus is formed (Manvelyan et  al. 2008b). Thus, this nonrandom positioning must 
have a biological meaning. In other words, each chromosome needs to have a spe-
cial position in the nucleus in order that the cell can work properly. Sperm are trans-
lationally inactive cells; however, they need to have chromosomes at the right places 
as soon as a sperm enters an oocyte and needs to become active again.

The study of Manvelyan et al. (2008b) showed a direct correlation of chromo-
some positions and their sizes, apart from chromosomes 1, 2, 6, 14, 18, 20, 21, and 
Y, i.e., large chromosomes were in the periphery, small in the center. Exactly those 
eight chromosomes not fitting in the correlation before perfectly aligned with gene 
density theory, i.e., gene-dense chromosomes were in the nuclear center, and gene- 
poor in the periphery.

There are also already other one studies in sperm of male with a chromosomal 
aberration (Bhatt et al. 2009; Karamysheva et al. 2015). Three males with paracen-
tric inversion were studied, and no gross changes in the interphase positioning of the 
affected chromosomes were found. Here for sure, more studies on the influence of 
inborn rearrangements on the nuclear architecture of sperm, but also other in tis-
sues, are necessary.

 Different Tissues with Additional Chromosomal Fragments

Additional chromosomal material present in the cell is suspected to alter or at least 
influence the chromosomal architecture. Besides complete trisomies as inborn or 
acquired aberrations, there is the possibility of partial trisomies induced either by 
derivative chromosomes or by the presence of a small supernumerary marker 
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chromosome (sSMC). The latter condition may be seen in 0.043% of newborn 
infants, 0.077% of prenatal cases, 0.433% of mentally retarded patients, and 0.171% 
of subfertile people (Liehr and Weise 2007). sSMC are defined as structurally 
abnormal chromosomes that cannot be identified or characterized unambiguously 
by conventional banding cytogenetics alone and are generally equal in size or 
smaller than a chromosome 20 of the same metaphase spread. sSMC are mostly 
detected unexpectedly in routine cytogenetics (Liehr et al. 2004b). Also, they are 
not easy to correlate with a specific clinical outcome as besides induction of genomic 
imbalance, mosaicism and other most often epigenetic factors can influence the 
phenotype of an sSMC carrier: Uniparental disomy, heterochromatization, and even 
their influence on the interphase architecture may play a role here. Also, a pilot 
study revealed some potential influence of sSMC presence on nuclear architecture 
recently (Karamysheva et al. 2015).

In a recent study (Klein et al. 2012), S-FISH revealed that an extra piece of DNA 
like an sSMC leads to gross rearrangements within the interphase nucleus, mainly 
concerning the sSMCs’ normal sister chromosomes. Primarily, the position of the 
sSMC is influenced by and/or influencing the position of the homologous chromo-
somes. sSMC and one sister chromosome tend to colocalize; this seems to be driven 
mainly by the amount of euchromatin present in the sSMC. Also, the sSMC seems 
to take over the position of one normal sister chromosome. Thus, the remainder 
sister chromosome is displaced toward another location within the nucleus. These 
observations were made in B and T lymphocytes and/or skin fibroblasts.

 Different Female Tissues and the Position of the X Chromosome

S-FISH/MCB studies in buccal mucosa, B and T lymphocytes, and skin fibroblasts 
for the positioning of normal and derivative X chromosomes in female cells also 
may lead to interesting, yet impossible insights into the nuclear architecture. 
Preliminary yet unpublished results (Fig. 8.2) firstly confirmed that active and inac-
tive X chromosomes are located in the cell periphery and that the inactive X chro-
mosome colocalizes to big parts, even though not perfectly, with the Barr body. 
Interestingly, a dicentric X chromosome, leading to an almost complete trisomy X, 
altered the positioning of the two X chromosomes to each other, inducing a larger 
distance between both normal and derivative X chromosome compared to the nor-
mal cells. Thus, new insights may be obtained also by studying well-known phe-
nomenon like X inactivation by the S-FISH approach.

 Leukemia and the Positions of Chromosomes 8 and 21

Nonrandom positioning of chromosomes in interphase nuclei is known to be of 
importance for genomic stability and formation of chromosome aberrations. So tis-
sue specificity of chromosomal translocations could be due to tissue-specific 
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genome organization (Meaburn et al. 2007; Brianna Caddle et al. 2007), and a posi-
tive correlation between spatial proximity of chromosomes/genes in interphase 
nuclei and translocation frequencies was shown (Bickmore and Teague 2002; Roix 
et al. 2003; Branco and Pombo 2006; Meaburn et al. 2007; Brianna Caddle et al. 
2007; Grasser et al. 2008).

Manvelyan et al. (2008a, b) provided evidence that there might be an effect of 
specific chromosome positioning in myeloid bone marrow cells, i.e., a colocaliza-
tion of chromosomes 8 and 21 could promote a translocation providing selective 
advantage of t(8;21) cells in AML-M2. Additional S-FISH studies confirmed that 
this is specifically true for AML patients having a trisomy 8 (Othman et al. 2012). 
Overall, studies to enlighten the nuclear position of tumor-related oncogenes, which 
are known to be activated by specific translocations are promising targets of future 
S-FISH-studies, as supported by recent comparable findings in thyroid cancer 
(Gandhi et al. 2009).

 S-FISH, Conclusions, and Perspectives

Overall, the combination of S-FISH and MCB for a three-dimensional analysis of 
chromosome position in interphase nucleus is a powerful tool, which can be accom-
panied by the use of locus-specific probes. The topological organization in inter-
phase nucleus is nonrandom, and it becomes more and more obvious that there is a 
physiological reason behind that.

Fig. 8.2 S-FISH results after application of X chromosome-specific DNA probe sets. (a) Active 
and inactive X chromosomes in a lymphocyte nucleus of a normal female labeled with an MCB-X 
probe set. (b) A normal (X) and derivative X chromosome (dic(X)) labeled with partial chromo-
some paints for Xp (green) and Xq (yellow) visualized in the fibroblast cell line GM15859 
(Coriell). The female carrier had a constitutional karyotype 46,X,dic(X)(pter->q28::q28->pter)
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The already done and above summarized S-FISH studies in human show the 
potential of this approach for (i) genome-wide analysis of interphase architecture in 
yet not studied tissues (like done for sperm (Manvelyan et al. 2008b)), (ii) studies 
on architectural changes in nuclei with additional chromosomes or chromosomal 
material (like done for sSMC (Klein et al. 2012; Karamysheva et al. 2015) or the X 
chromosome), and (iii) analysis for the susceptibility of specific parts of the human 
genome for rearrangements due to colocalization (like done for the t(8;21) in AML 
(Manvelyan et  al. 2009; Othman et  al. 2012)). For sure, additional biomedical 
research aspect of interphase chromosomes may also be covered using the S-FISH/
MCB approach, like recently the proof of interaction between distant chromosomal 
regions (Maass et al. 2018) and the description of nuclear architecture in hemato-
poietic stem cells (Grigoryan et al. 2018).

Overall, the approach discussed can be used not only based on human but also, 
if MCB probes are available for, based on probes from other species as already 
demonstrated by one example for murine mcb (Ktistaki et al. 2010). In conclusion, 
big advances in the field of chromosomics can be expected in the future from high- 
resolution FISH banding (MCB/mcb) in three-dimensionally preserved human 
interphase nuclei.
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Chapter 9
Chromosome-Centric Look at the Genome

Ivan Y. Iourov, Yuri B. Yurov, and Svetlana G. Vorsanova

Abstract Undoubtedly, genome-centric and gene-centric are the words to describe 
actual concepts in human genetics. In a world of genes and genomes, the lack of 
required attention to chromosomes is often observed. As a result, chromosome 
research gradually loses the genetic (genomic) context. Certainly, brilliant insights 
into chromosome biology obtained by studies dedicated to molecular/cell biology, 
evolution, biochemistry, biophysics, etc., are fascinating. However, genome research 
and human (medical) genetics miss the essential link between genes and genomes, 
which is determined by chromosomal analysis (i.e., cytogenetics, molecular cytoge-
netics, cytogenomics). This is also the case for diagnostic research, which has 
recently suffered problems in quality of cytogenetic diagnosis. Ignoring chromo-
somal and subchromosomal variations creates a blurred vision on genetic etiology 
of a disease. Data on genes and genomes are useless outside the chromosomal con-
text when intrinsic molecular and cellular pathways are highlighted in health and 
disease. Without the chromosomal context, genes are virtual elements interacting 
with each other in an elusive digital universe. Unfortunately, this situation is gener-
ally the case for numerous attempts to analyze and interpret genomic data. More 
dramatically, education programs in genomics and genomic medicine developed for 
medical/biological students, physicians, or the public generally conceal any infor-
mation about the chromosome, the physical (biological) storage of genomic data. In 
our opinion, there is an urgent need for expressing chromosome-centric concepts 
for filling the “chromosomal gap” in human genetics (genomics) and genomic med-
icine. To succeed, one has to look at the problem from different perspectives: theo-
retical, empirical, diagnostic, and educational.
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 Introduction: Where Have All the Chromosomes Gone?

More than a century ago, the chromosome theory of heredity was developed 
(Bridges 1916). Since that time, cytogenetics (the study of chromosomes) has 
evolved into a huge area of biomedical research. Actually, chromosomal analyses 
are relevant to almost all fields of bioscience. Basic and diagnostic research in medi-
cine, molecular and cell biology, evolution, and, more specifically, human genetics 
and genomics benefit from the knowledge generated by cytogenetics, molecular 
cytogenetics, and cytogenomics (CM2C1) (Gersen and Keagle 2005; Page and 
Holmes 2009; Liehr 2017, 2019). However, CM2C seem to be excluded from the 
essential scope (“mainstream”) of current human genetics, and genome medicine 
supposed to have preferentially diagnostic value (Liehr 2019). However, chromo-
somal banding (appearance of metaphase chromosomes) and the analysis in the 
CM2C context have long been shown to be important for understanding genome 
organization and behavior (Korenberg and Rykowski 1988; Bickmore and Sumner 
1989; Holmquist 1992; Costantini et  al. 2007; Kosyakova et  al. 2009;  Bernardi 
2015; Daban 2015). Furthermore, studying chromosomes at different cell cycle 
stages (interphase) has demonstrated that chromosomal structural and functional 
organization mediates behavior, stability, and replication of the nuclear genome 
(Manuelidis 1990; Sadoni et  al. 1999; Vorsanova et  al. 2010b; Rodriguez and 
Bjerling 2013; Yurov et al. 2013; Cook and Marenduzzo 2018; Cremer and Cremer 
2019; Jerković et al. 2020). Additionally, systems biology analyses of chromosomal 
variations allow unravelling genetic/genomic pathways to a wide spectrum of dis-
eases (Iourov et  al. 2014a, b, 2019b; Vorsanova et  al. 2017; Yurov et  al. 2017; 
Zelenova et al. 2019). In summary, on the one hand, CM2C are exciting fields of 
biomedical discoveries in medical genetics and genomics, whereas on the other 
hand, these are the foundations of a world parallel to mainstream research in medi-
cal genetics/genomics. Because of this dilemma, one may be curious to learn about 
the place of chromosome research in postmodern bioscience.

Chromosomal banding (cytogenetic analysis) was the technological basis of the 
majority of studies performed during the first 30–40 years of the history of empiri-
cal genetics (i.e., genetic studies using laboratory methods) from late 1950s to 
1990s (Liehr 2017, 2019). Probably, the unavailability of more or less adequate 
alternatives for cytogenetic analysis has led lately to an erroneous impression that 
studying human chromosomes is unable to give further insights into medical genet-
ics and genomics. The “golden age” of banding (classical) cytogenetics 
(1960s–1980s) was the era of human genetics when it was established that a disease 
may be associated with a genetic defect. In other words, banding cytogenetics was 
the start of medical genetics as an empirical discipline. Currently, a multitude of 
pathological conditions are associated with chromosomal abnormalities 

1 All three terms mean studies of chromosomes but differ with respect to the technological basis. 
Since true cytogenetic researchers are urged to become engaged in all these areas, we prefer to 
represent simultaneously these three biomedical fields by a single abbreviation—CM2C.
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(variations). As a result, CM2C data are dispersed over many biomedical areas, i.e., 
cancer research, reproduction, pediatrics, cardiology, neurology, psychiatry, etc. 
(Gersen and Keagle 2005; Iourov et al. 2006a, 2008b; Liehr 2013; Gonzales et al. 
2016). This is also applicable to genomic variations at the subchromosomal level 
(e.g., copy number variations or CNVs) (Feuk et al. 2006; Iourov et al. 2008b; Liehr 
2013; Savory et  al. 2020). Thus, chromosomal and subchromosomal variations 
seem to be a focus of genetic studies dedicated to specific biomedical fields rather 
than human/medical genetics per se. It is to note that chromosome abnormalities 
and CNVs are still considered an important focus of diagnostic research and devel-
opment of sequencing technologies (Ho et al. 2020; Savory et al. 2020). However, 
massive genomic data acquired through the last decade are generally out of the 
chromosomal context (Hochstenbach et  al. 2019; Liehr 2019; Heng 2020). 
Consequently, genomes are considered to be loose sets of genes and noncoding 
DNAs, whereas genes are considered as protein-coding texts “floating” in immate-
rial space though genes may be interconnected through networks (pathways) by 
systems biology analysis. Canonical authors occasionally indicate chromosomal 
localization of a genomic change. Still, the chromosomal aspects of genome varia-
tions (i.e., intrinsic chromosomal localization/neighboring, CNVs of mutated genes, 
implication in a pathway related to chromosome instability, etc.) are ignored. These 
genomic studies give further insight neither to consequence of a variation in terms 
of genomic milieu nor to variation’s biological basis (Iourov et al. 2019b). Since 
chromosomes are the physical (biological) storages of genomic data, the falling out 
of the scope of genomics and genomic medicine leads to a gap in our knowledge 
about the real (material) cellular genome. As such, numerous genomic studies (basic 
and diagnostic) usually deal with a “virtual” genome, which is easily manageable 
for theoretical and public relations purposes, but this “genome” does not correspond 
to the “real” genome (i.e., karyotype or complete sets of nuclear/chromosomal 
DNAs) in a cell. CM2C studies are able to reconcile the concepts of “virtual” and 
“real” genome.

The idea that sequence-based genome analysis cannot be the unique basis of 
genomic research is not new (Heng et al. 2011). However, the chromosomal basis of 
genomic variations has been permanently left aside since the introduction of high- 
resolution (next-generation) sequencing technologies (Iourov et  al. 2006b, 2010; 
Liehr 2019; Heng 2020). As a result, insights into chromosome biology are brought 
by a wide spectrum of biomedical disciplines different to human genetics and 
genomics (Iourov 2019b). The latest knowledge on chromosome variations and 
behavior has been acquired by a myriad of brilliant studies dedicated to cancer (for 
more details, see Liehr [2017], Christine et al. [2018], Hnisz et al. [2018], Ye et al. 
[2019], Umbreit et al. [2020]). Data on ontogenetic (ontogenomic) variability at the 
chromosomal level have been essentially accumulated during molecular cytoge-
netic analysis of developing and aging human tissues (Yurov et al. 2007, 2009b, 
2010, 2014). Structural origins of human chromosomes and basic principles of the 
behavior have been uncovered by an enormous amount of evolution studies (Page 
and Holmes 2009; Liehr 2013; Ye et al. 2019). Cellular/nuclear genome behavior 
(the behavior of real vs. virtual genome) at the supramolecular or chromosomal 
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level is the focus of cell biology (+molecular biology, biophysics, biochemistry) and 
is rarely addressed in genomics’ context (Chevret et al. 2000; Dixon et al. 2016; 
Nagano et al. 2017; Knoch 2019; Maass et al. 2019; Szczepińska et al. 2019; Cremer 
et al. 2020). Finally, chromosome-centric analyses have been found useful in large- 
scale proteomics research (Archakov et al. 2012). In the postgenomic era, we do 
have opportunities to describe numerous aspects of human chromosome behavior 
(Iourov 2019b). Using pathway-based technologies, it becomes possible to have a 
more precise look at the cellular genome and its behavior (Iourov et  al. 2019a). 
Since the “real” genome basically functions in interphase (Manuelidis 1990; Yurov 
et al. 2013; Cremer et al. 2020), interphase chromosomes are to be studied in the 
postgenomic context. Thus, current achievements in genomics made by sequencing 
and microarraying are able to gain a chromosomal context.

 It’s All in the Nucleus, Interphase Nucleus

Apart from being useful for uncovering chromosome aberrations, chromosomal 
bands express the genome organization local to specific chromosome regions: GC 
content, repeat content, meiotic recombination rate, replication timing, and gene 
density (Bickmore and Sumner 1989; Costantini et  al. 2007; Bernardi 2015). 
Moreover, chromatin- and DNA-based biophysical (biomechanical) properties of 
chromosomes (chromosomal loci) are band-specific and shape genome behavior at 
the level of individual genes or gene sets/clusters (Holmquist 1992; Kosyakova 
et al. 2009; Watanabe and Maekawa 2013; Daban 2015; Tortora et al. 2020). Indeed, 
these properties of chromosomes have been systematically observed to determine 
genome organization in the interphase nucleus (Sadoni et al. 1999; Carvalho et al. 
2001; Küpper et al. 2007; Kumar et al. 2020; Tortora et al. 2020). Structurally, chro-
mosome arrangement in interphase is intimately related to chromatin architecture 
and, thereby, to chromatin remodeling, which is critical for genome activity in a cell 
(Dixon et al. 2016; Jabbari et al. 2019). More importantly, genome activity (tran-
scription) throughout the cell cycle is modulated by chromosome arrangement and 
behavior of chromosomal loci in interphase (Cook and Marenduzzo 2018; Cremer 
and Cremer 2019; Jerković et al. 2020). Additionally, nuclear organization of chro-
mosomes mediates genome safeguarding (DNA damage response, proper chromo-
some segregation, mitotic checkpoint, etc.), DNA repair and replication, and 
programmed cell death (Chevret et al. 2000; Rodriguez and Bjerling 2013; Shachar 
and Misteli 2017; Nagano et al. 2017; Maass et al. 2019; Kumar et al. 2020). In 
other words, almost all homeostatic processes involving nuclear genomes are con-
nected to chromosome behavior in interphase. Changes in nuclear genome organi-
zation have been associated with pathogenic processes in human diseases. These 
observations have led to proposing diagnostic value of studying spatial genome 
organization at the chromosomal level (Meaburn 2016; Ouimette et al. 2019). Here, 
it is to note that spatial arrangement of interphase chromosomes may predispose to 
chromosomal abnormalities in somatic cells (e.g., translocations), which cause 
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cancers (Maharana et al. 2016; McCord and Balajee 2018; Szczepińska et al. 2019). 
In summary, CM2C, chromatin studies, and postgenomics have underlain the devel-
opment of 3D genomics, which aims to understand spatial chromatin/chromosome 
organization specific to different cell types in health and disease (Meaburn 2016; 
Shachar and Misteli 2017; Knoch 2019; Jerković et al. 2020; Kumar et al. 2020). 
Accordingly, two important aspects of studying interphase chromosomes in the 
genomic context are to be emphasized: (1) chromosome arrangement in interphase 
is a key to understanding genome behavior, and (2) knowledge about arrangement 
of interphase chromosome is critical to understand causes and consequences of 
disease-causing genomic variations.

 Genomic Variations: Mind the Chromosome

CM2C continuously generate data on chromosomal abnormalities presented by 
cohort case-control studies or case reports. Currently, balanced and unbalanced 
chromosomal rearrangements (including CNVs) represent the commonest type of 
genomic variations associated with morbid conditions (Gersen and Keagle 2005; 
Feuk et al. 2006; Iourov et al. 2006a, 2008b, 2019b; Liehr 2013; Gonzales et al. 
2016; Ho et al. 2020). Cancer is associated with (somatic) chromosomal aberrations 
and instability (Heng et  al. 2011; Liehr 2017; Christine et  al. 2018; Hnisz et  al. 
2018; Ye et al. 2019). Surprisingly, deserved attention is not currently paid to this 
fact in human genetics and genomics (Crellin et al. 2019; Whitley et al. 2020). Still, 
the contribution of chromosomal or subchromosomal (genomic) rearrangements to 
human morbidity is to be kept in mind.

During the last decades, somatic genome variations manifesting as somatic chro-
mosomal mosaicism have become a major focus of biomedical research. 
Interestingly, this type of intercellular genomic variations is relevant to a wide spec-
trum of diseases and morbid conditions (Yurov et  al. 2001, 2018b; Iourov et  al. 
2006a, 2006b, 2008a, 2019c; Vorsanova et  al. 2010a, 2010c; Heng et  al. 2011). 
Alternatively, chromosomal mosaicism and instability are mechanisms of natural 
genomic variation in cellular populations (Yurov et  al. 2005, 2007; Iourov et  al. 
2009b). However, it is generally accepted that clinical populations (intellectual dis-
ability and congenital malformations) and fetal specimens exhibit high rates of 
chromosomal mosaicism (Gersen and Keagle 2005; Yurov et al. 2007; Iourov et al. 
2008a, 2019c; Vorsanova et al. 2010c). Chromosomal mosaicism confined to the 
brain may cause neuropsychiatric diseases (schizophrenia, autism, epilepsy) (Yurov 
et al. 2001, 2008, 2016, 2018a; Vorsanova et al. 2007). Furthermore, neurodegen-
eration is mediated by aneuploidy (gains/losses of chromosomes) and chromosome 
instability confined to degenerating brain areas (Iourov et al. 2009a, 2011; Yurov 
et al. 2011, 2014, 2019). It appears that behavioral changes/problems are able to be 
associated with dynamic nature of somatic (chromosomal) mosaicism (Vorsanova 
et al. 2018). Finally, aging is associated with accumulation of somatic chromosomal 
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mutations (aneuploidy/chromosome losses) as previously mentioned (Yurov et al. 
2009b, 2010, 2014). Certainly, the occurrence of somatic mutations is the result of 
genetic-environmental interactions, which may either generate or inhibit accumula-
tion of somatic chromosomal mutations (Iourov et al. 2013). Fortunately, there are 
available molecular cytogenetic approaches to analyze chromosomal variations in 
the environmental context (Hovhannisyan 2010; Iurov et al. 2011). Somatic chro-
mosomal mosaicism requires specific methods of the diagnosis. CM2C research has 
demonstrated that molecular cytogenetic/cytogenomic monitoring and analysis of 
postmitotic tissues are required for proper surveying of somatic chromosomal 
mosaicism (Vorsanova et al. 2010b, 2010c; Liehr 2017; Iourov et al. 2019c). For 
establishing causes and consequences of chromosome abnormalities (+somatic 
chromosomal mosaicism and instability), systems biology or bioinformatics analy-
ses are to be applied. These methods may be used to modulate functional conse-
quences of chromosome/genomic imbalances at epigenome, proteome, and 
metabolome levels or, in other words, unravel disease mechanisms (Iourov et al. 
2014a, 2019a, 2019b; Vorsanova et  al. 2017; Yurov et  al. 2017; Zelenova et  al. 
2019). For example, in silico molecular cytogenetic technologies appreciably 
increase diagnostic outcomes of CM2C studies of children with neurodevelopmen-
tal diseases (Iourov et al. 2016). In some cases, these may provide unprecedented 
correlations between phenotypes and molecular karyotypes (i.e., neuropsychologi-
cal genotype/phenotype correlations) (Iourov et al. 2018). In addition, systems biol-
ogy analysis of genomic variation allows evaluations of causative alterations to 
molecular pathways, which are involved in generation of chromosomal aberrations 
and instability (Iourov et al. 2015a). Thus, according to CM2C studies, effective 
analysis of the genome requires three technological blocks: visualization (banding 
cytogenetics + metaphase/interphase FISH; single-cell analyses), whole genome 
scanning (whole genome microarray and/or sequencing), and bioinformatics 
(Iourov et al. 2012, 2014b; Vorsanova et al. 2019). In total, basic and diagnostic 
CM2C analyses seem to become more sophisticated than previously recognized.

Probably the most exciting outcome of the interaction of systems biology and 
CM2C is the development of therapeutic interventions in diseases resulting from 
chromosome imbalances and instability, which have been condemned to be incur-
able (Yurov et al. 2009a; Iourov et al. 2015b; Iourov 2016, 2019a). To succeed regu-
larly, there is a need for a systems biology analysis complemented by data obtained 
by chromosome-oriented studies offering a chromosome-centric look at the genome 
behavior. These data should encompass variome (the whole set of genome varia-
tions specific for an individual or a disease), methylome, chromatin remodeling and 
organization, and chromosomal arrangement in the nucleus (Iourov et  al. 2012, 
2014a, 2019a, 2019b; Yurov et al. 2017; Christine et al. 2018; Knoch 2019; Zelenova 
et al. 2019; Heng 2020). In our opinion, such processing of systems biology data is 
better to show using linear algebra. Empirical or theoretical data about effects (inter-
relations) of genomic variations (mosaic/non-mosaic sequence variations/CNV/
chromosome abnormalities and chromosomal/genomic instability) on chromatin 
behavior and chromosomal nuclear organization may be used for constructing a 
matrix. The systems biology analysis of this matrix (evaluation of these effects in 
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transcriptome, interactome, proteome, and metabolome context; for more details, 
see Iourov et al. [2012, 2014a], Yurov et al. [2017]) would be multiplication by row 
matrix. The operation is shown in Fig. 9.1. The ability to fully interpret CM2C data 
is required to understand the blueprint of life.

 Cytogeneticists: The Superheroes 
of Translational Biomedicine

There is a perception that cytogenetics is in crisis (Liehr 2013, 2019; Hochstenbach 
et al. 2017, 2019). “The alarm bell has started to ring” because of appreciable fading 
competency of European cytogenetic diagnostic laboratories (Hochstenbach et al. 
2017). Our experience indicates that “the alarm bell” might ring a decade earlier. 
Optimistically, it takes 2–5 years for a researcher to become a more or less autono-
mous in banding cytogenetic analysis. Certainly, theoretical issues in cytogenetics 
are less time-consuming, but streamlining this knowledge in a biomedical context 
requires time. Relentless pursuit of simplicity has negatively impacted cytogenetics 
as a science and as a diagnostic discipline. Thus, it has become less popular among 
biomedical students due to the complexity of the microscopic analysis and unjusti-
fied ignorance of CM2C data by researchers’ community from other areas of 
genomics/medical genetics (Vorsanova et al. 2008). Further ignorance produced by 
scientifically unsupported simplifications resulted in leaving aside numerous aspects 
of chromosomes such as constitutive heterochromatin, chromosomal heterogeneity 
at supramolecular and microscopic levels, and low-level chromosomal mosaicism. 

Fig. 9.1 Basic principle of the systems genome analysis complemented by the chromosome- 
centric look is schematically shown by matrix multiplication: “(3D) genome-chromosome” matrix, 
where interrelations between genomic variability (sequence variome, CNVariome, numerical chro-
mosome imbalances) and epigenetic variations + spatial genome organization are designated by 
letters A1-A4, B1-B4, C1-C4, and D1-D4, is “multiplied” by the systems biology row matrix. The idea 
is that all the data on genome variability and epigenetic variation/spatial genome organization 
should be considered in the light of systems biology (transcriptome, interactome, proteome, and 
metabolome)
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However, heterochromatic regions of human chromosomes represent an intriguing 
and important matter of genome biology and chromosome research (Vorsanova 
et al. 2007, 2008, 2010a; Liehr 2013). Chromosomal heterogeneity and low-level 
mosaicism are phenomena relevant to numerous areas of bioscience (Iourov et al. 
2008a, 2010, 2014b, 2019c; Vorsanova et al. 2010c; Heng 2020). Therefore, there is 
a need for more effective and student friendly educational efforts in cytogenetics, 
which should encompass CM2C in the widest sense possible.

Facing the challenges of CM2C, we have to envision a new kind of superhero in 
an attempt to portray today’s cytogeneticist. In a postgenomic (postmodern) world, 
cytogeneticist performing basic and diagnostic research should able to (i) perform 
banding cytogenetic analysis (classics), (ii) handle microarray data (at least at the 
elementary level), (iii) understand the meaning of chromosomal bands and chromo-
some variations in the genomic context and in the context of the spatial arrangement 
in interphase nuclei (Bickmore and Sumner 1989; Sadoni et al. 1999; Iourov et al. 
2006a; Kosyakova et  al. 2009; Vorsanova et  al. 2010b; Watanabe and Maekawa 
2013; Yurov et al. 2013; Bernardi 2015; Daban 2015; Cremer et al. 2020), (iv) pro-
cess CM2C data using systems biology methodology (Iourov et al. 2014a, 2019b; 
Vorsanova et al. 2017; Yurov et al. 2017; Iourov 2019a; Zelenova et al. 2019), (v) 
apply molecular cytogenetic techniques (e.g., FISH) to uncover chromosomal 
mosaicism and instability (Vorsanova et al. 2010c, 2019; Iourov et al. 2012), (vi) 
interpret/correlate data on non-mosaic genomic variations and chromosomal mosa-
icism/instability (Iourov et  al. 2015a, 2019a; Heng 2020), and (vii) envisage the 
applications of single-cell genomic technologies (Iourov et al. 2012; McClelland 
2019). In fact, modern cytogeneticists are those who are able to ensure translational 
nature of current biomedicine, i.e., connecting human genetics and genomics, 
molecular and cell biology, evolution, oncology, and systems biology. That is a bit 
too much, isn’t it? Some competencies are likely to be distributed among the per-
sonnel. Figure  9.2 shows the “quest” of such a “superhero” a.k.a. true 
cytogeneticist.

 Conclusion: Learn, Learn, and Learn

Taking into account the way cytogenetics goes (Vorsanova et al. 2008; Hochstenbach 
et al. 2017, 2019; Liehr 2019) and the requirements cytogeneticists have to meet, a 
question arises: What is to be done? The question becomes even more crucial when 
current education programs in genomics are considered. For instance, the latest 
descriptions of education programs in genomics and genomic medicine for bio-
medical students, physicians, or the public do not have any information about chro-
mosomes (Korf et al. 2014; Crellin et al. 2019; McClaren et al. 2020; Whitley et al. 
2020). The word “chromosome” is absent. Hence, we conclude that education is an 
urgent and significant issue in current cytogenetics.

The expected detriment of ignorance of CM2C studies and cytogenetics as an 
important area of biomedical research has already led to negative outcomes. Basic 
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chromosome research losses the genomic context and vice versa. Cytogenetic diag-
nostics is shown to be affected by fading competency. A need to recover from these 
impacts appears to exist. We suggest that a promotion of chromosome-centric look 
at the genome or genomic data may help. To succeed, the aforementioned problems 
are likely to be solved, when considered in four dimensions: theoretical, empirical, 
diagnostic, and educational. Theoretical solutions for current cytogenetics are based 
on integration of CM2C data processed by systems biology protocols. The experi-
mental solutions are rooted from putting CM2C data in the genomic context and 
vice versa putting genomic data (data on genes) in the chromosomal context. 
Improvements in molecular diagnosis of causative genome variations have to come 
from developments in translational medicine, which provided effective co- 
application of visualization, genome scanning, and bioinformatics techniques. Out 
of the chromosomal context, genomic data are poorly applicable for unraveling dis-
ease mechanisms and developing therapeutic strategies. Finally, theoretical, empiri-
cal, and diagnostic solutions are not guaranteed without the educational one, which 
should not disintegrate human genetics/genomics into specialized and disconnected 
parts attributed to either genome biology or chromosome research.

Fig. 9.2 The quest of cytogeneticists in a postmodern world. A cytogeneticist has to acquire and 
analyze data using cytogenetic single-cell analyses: chromosome banding (e.g., metaphase plate in 
the lower left) and FISH-based techniques (i.e., metaphase FISH and I-FISH). These data require 
an appreciable experience in the field of cytogenetics; otherwise, the data are useless for further 
system biology analyses to discover molecular pathways to diseases (disease mechanisms). In 
addition, CM2C is also the study of microarray and, in some instances, sequencing data (schemati-
cally shown in the upper left). These data require bioinformatics’ approaches to acquire and inter-
pret the data. Finally, cytogeneticists (a.k.a. molecular cytogeneticists or “cytogenomicists”) have 
to integrate these two massive data sets for each individual sample to identify causes and conse-
quences of genomic variations at the chromosomal level
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