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Abstract. Most information systems supporting operational processes
also record event logs. These can be used to diagnose performance and
compliance problems. The majority of process mining techniques extract
models that are descriptive and describe what happened in the past. Few
process mining techniques discover models that allow us to “look into
the future” and perform predictive analyses. Recently, novel approaches
have been developed for scenario-based prediction, i.e., predicting the
effects of process changes on process performance, e.g., investing in an
additional resource. To work accurately, the techniques need an appro-
priate time step-size, the selection of which, thus far, has been an ad-hoc
and manual endeavor. Therefore, in this paper, building upon time-series
analysis and forecasting techniques, we propose a novel semi-automated
time-granularity detection framework. Our framework detects the best
possible time-granularity to be used, whilst taking user preferences into
account. Our evaluation, using both real and synthetic data, confirms
the feasibility of our approach and highlights the importance of using
accurate granularity in time step selection.

Keywords: Process mining · Scenario-based predictions · System
dynamics · What-if analysis · Simulation · Time-series analysis

1 Introduction

Process Mining [1] techniques derive knowledge of the execution of processes, by
means of analyzing the data generated during their execution, which are stored in
event logs. Several techniques exist, e.g., discovering a process model describing
the process (process discovery techniques [7]), examining to what degree reality,
captured in the data, conforms to a given process model (conformance check-
ing techniques [10]), etc. Most techniques, extract models and insights that are
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descriptive. Few approaches focus on prescriptive/predictive models, i.e., models
that allow us to “look into the future”. Yet, at the same time, such techniques
allow us to effectively improve the process, rather than just understanding its
past performance.

In [16], we proposed a new process mining approach, i.e., scenario-based pre-
diction of future process performance, using System Dynamics (SD) [21] as a
prediction technique. The approach transforms an event log into a sequence of
continuous variable values (e.g., process instance arrival rate), referred to as a
System Dynamics Log (SD-Log). The SD-Log forms the basis for simulation and
prediction. Consider Fig. 1, in which we depict the general framework of the
presented approach in [16]. First, we construct an SD-Log (Preprocessing step),
and use it, together with a constructed model, to run a sample simulation (“as-
is situation”). The quality of the simulations, i.e., both terms of validation and
prediction, depends on the stability of the simulation model. In particular, the
window-size of the time steps being used to generate the SD-Log highly affects
the stability. Thus far, selecting such a window-size has been an ad-hoc/manual
endeavor having negative effects on the prediction results.

Event Log Preprocessing Model Crea�onSD Log Simula�on Valida�o
n Model RefinementYes

No

Predic�on

Time window Selec�on SD Log Genera�on

Valida�on 

Fig. 1. The proposed framework for scenario-based process prediction, using system
dynamics [16]. This paper focuses on preprocessing (highlighted), in particular, discov-
ering the best time window for generating system dynamics logs.

Therefore, in this paper, we propose an approach that semi-automatically
identifies the best window-size to be used in order to generate an SD-Log. Ini-
tially, the user provides a set of logical units (hours/days) based on domain
knowledge that she/he wants to use in prediction. Subsequently, using the input
event log, the proposed approach generates SD-Logs, based on several deriva-
tives of the provided units. Subsequently, trend and pattern detection is applied
to the different time-series, and correspondingly, the best step-size is selected.
Within the trend and pattern detection, our approach is able to remove regu-
lar inactive time in the process. Using different real event logs, we assess the
proposed approach including finding periodic behavior of the process including
inactive steps. Then, we train different models and show the effect of the app-
roach on reducing the prediction error. Furthermore, we use synthetic event logs
with known patterns, including artificial noise/infrequent behavior, to test the
feasibility of our approach. Our obtained results discover hidden patterns in the
process variables and highlight the importance of selecting a suitable time step
granularity.

The remainder of this paper is organized as follows. In Sect. 2, we present a
running example. In Sect. 3, we introduce background concepts and notation. In
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Sect. 4, we present our main approach, which we evaluate in Sect. 5. In Sect. 6,
we present related work. Section 7 concludes this work.

2 Running Example

In order to clearly demonstrate each step of our approach, we use a running
example. We consider a simple, fictional process of a car rental company, i.e.,
called CARZ. Working days at CARZ are from Monday to Friday. The working
hours are from 8:00 am to 5:00 pm (including 1 h lunchtime). Requests for a
rental car are received by phone. A different process is executed to handle the
different types of requests, e.g., rent a car or rent a car with a driver. In the
model, the time of the next call is derived from a normal distribution with 5
mins average. The hours of the days affect the probability of generating new
calls, e.g., the intensity of receiving calls at 10:00 am is 3 times higher than 8:00
am. If the number of callers in the queue is more than 20, new calls get rejected.

For each type of request, we use a (different) normal distribution to generate
service times. The service time also gets affected by the number of requests in
the queue. On average, the duration of handling a car with a driver request is
10 mins higher than handling rent a car requests. We designed the model, such
that operators perform the process of the calls faster if the number of calls in
the line is higher. This effect, the queue length on time of processing calls, is
modeled as an exponential nonlinear relation. We modeled the request handling
process of CARZ, using CPN Tools [13].

3 Preliminaries

Here, we introduce background concepts and basic notation. We briefly cover
common notions from the field of process mining, as well as system dynamics.

Process Mining. Process mining techniques analyze the historical execution of
processes, i.e., captured in the form of event logs, [1]. An event log captures what
activity has been performed, at what time, for which instance of the process.

Definition 1 (Event Log). Let ξ denote the universe of events. Furthermore,
let C, A, R and T denote the universe of case identifiers, activities, resources,
and the time universe, respectively. We define projections πC : ξ → C, πA: ξ → A,
πR: ξ → R and πT : ξ → T × T , s.t., given e∈ξ, we have πC(e)=c, πA(e)=a,
πR(e) = r, and πT (e)=(ts, tc), indicating that event e∈ξ captures the execution
of an activity a∈A, in the context of case c∈C by resource r∈R, started at time
ts∈T , and completed at time tc∈T . An event log L is a set of events, i.e., L⊆ξ.

Table 1 depicts a snippet of a generated event log for the running example.
The first row describes an event for which the activity Process next Car Req is
executed by Monika for a request with case ID 10. An event log may include
more data attributes, e.g., here type of requests is also logged (CarRequest or
DriverRequest), but, for simplicity, we abstract from such additional attributes.
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Table 1. Sample event log, generated for the CARZ running example. Each row is an
event in which for each unique customer (case) in the process, a specific activity at a
specific time is performed by a specific resource.

Case ID Activity Request Type Timestamp Complete Timestamp Resource

10 Next Call CarRequest 1/1/2018 10:29 1/1/2018 10:47 Monika

11 Next Call DriverRequest 1/1/2018 10:29 1/1/2018 10:29 System

8 Process Next Driver Req DriverRequest 1/1/2018 10:30 1/1/2018 10:50 Pheobi

10 Process Next CarReq CarRequest 1/1/2018 10:31 1/1/2018 10:49 Chandler

13 Next Call DriverRequest 1/1/2018 10:31 1/1/2018 10:31 System

10 Processed CarReq CarRequest 1/1/2018 10:32 1/1/2018 10:32 System
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Fig. 2. Simple stock-flow
diagram. The value of the
stock number of cases in
process is calculated based
on the arrival rate and finish
rate flows (per time step).
The value of finish rate is
affected by the average ser-
vice time.

System Dynamics. System dynamics techniques
are used to model dynamic systems and their
relations with their environment [21]. One of the
main modeling notations in system dynamics is the
stock-flow diagram, which models the system w.r.t.
three different elements, i.e., stocks, flows and vari-
ables [19]. Stocks are accumulative variables over
time, flows manipulate the stock values and vari-
ables influence the values of flows and other vari-
ables over time. Figure 2 shows a simple stock-flow
diagram for the example in which arrival rate and
finish rate as flows add/remove to/from the values
of number of cases in the process as stock, also, aver-

age service time as a variable affects the finish rate based on the number of cases
in the process.

System Dynamics Logs. Event logs do not suffice to populate a given sys-
tem dynamics model with values for stocks, flows, and variables, therefore, they
should be transformed into an actionable form, i.e., numerical values. Hence, we
define the notion of a System Dynamics Log (SD-Log), i.e., a sequence of con-
tinuous variable values, capturing the numerical values for a set of variables of
interest over time, as described by the event log. Assume that, the first event in
an event log starts at time ts, and, the last event is completed at time tC . Given
time window δ∈N≥0, there are k=�(tC−tS)/δ� subsequent time steps in the event
log for time window δ. An SD-Log captures all the values for the variables of
interest, in each time-window.

Definition 2 (SD-Log). Let L ⊆ ξ be an event log, let V be a set of process
variables, and let δ∈N≥0 be the selected time window. Let tS denote the minimal
start timestamp in L, let tC denote the maximal end timestamp in L and let
k=�(tC−tS)/δ�. An SD-Log of L, given δ, sdL,δ, is a multivariate time-series, i.e.,
sdL,δ∈{1, ..., k}×V → R, s.t., sdL,δ(i, v) represents the value of process variable
v∈V in the ith-time window (1≤i≤k).
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Given an event log L, a set of variables V, and window δ, the event log is
transformed log into an SD-Log. If L is clear from the context, we omit it and
write sdδ. Given sdδ and v ∈ V, we write Πv(sdδ)∈R∗, returning the sequence
of values 〈x1, ..., xk〉 for variable v. Furthermore, πi returns the ith value in a
sequence, for instance, πi(Πv(sdδ))=xi.

Table 2. Example derived SD-Log for the running example with a time window of 1 day
and 6 different process variables. Each row shows a time step, here 1 day, cell-values
represented aggregated variable values.

Time Window

Daily

Arrival

rate

Finish rate Num of unique

resources

Avg service

time

Avg time

in process

Avg waiting time

in process

1 180 180 6 0.3590 0.9689 0.6099

2 147 147 6 0.4156 0.9565 0.5409

3 160 160 6 0.4011 0.9972 0.5961

4 116 116 6 0.4455 0.9363 0.4908

5 94 94 6 0.5024 0.8258 0.3234

6 0 0 0 0 0 0

7 0 0 0 0 0 0

8 147 147 6 0.4421 0.9898 0.5477
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In the running example, consider the set of variables V = {arrival rate,
average service time, number of people in the process}, for a duration of 14 days
with δ = 1 day, i.e., the corresponding SD-Log includes 14 time steps. Consider
Table 2, in the first time window (day) 180 cases were arrived at the process and
6 unique resources were performing the tasks. Πv(sdδ)=〈x1, ..., xk〉 is a series of
values over steps of time with length k, which is in the form of time-series data.

Time-Series. The analysis of sequences of real values and/or sequences of
tuples of real values is often referred to as time-series analysis [12]. Several
models exist that, given a sequence of values and/or tuples of values, predict the
next (sequence of) number(s). Examples include Moving Average models (MA),
Auto-Regressive models (AR), and Auto Regressive Integrated Moving Average
models (ARIMA). The exact type of model used to predict the next likely values
is not relevant for our approach, i.e., any method that allows us to do so suffices.
Hence, in Definition 3, we propose a generic definition of a time-series model.

Definition 3 (Time-Series Model). Let σ=〈x1, ..., xk〉∈R∗ be a sequence of
real values (a time-series). A time-series model θ is a function θ:R∗→R

∗. Given
σ=〈x1, ..., xk〉, θ(σ)=〈x̂1, ..., x̂k〉, s.t., for 1≤i≤k: x̂i is the expected value for xi.

Observe that Definition 3 covers univariate time-series. For predicting the
first value (x1), we use random initial values. To measure the accuracy of the
time-series model (θ), we use Mean Absolute Percentage Error (MAPE =
100%

k

∑k
i=1 |xi−x̂i

xi
|).



82 M. Pourbafrani et al.

4 Proposed Approach

Consider Fig. 3, in which we depict an overview of the approach. The approach
starts with an event log and logical units of time, as shown in the top left side
of Fig. 3. The logical units can be minutes, hours, days, etc. Furthermore, units
are related to one-an-other, e.g., days consist of 24 h, weeks are 7 days, etc.
Our approach starts with a set of initial sizes of time steps, Δ, provided by
the user. Given a set of process variables V and the set of different sizes Δ, for
each δ ∈Δ by the user, a corresponding SD-Log sdδ is calculated. The derived
values in the SD-Logs are tested for repetitive patterns over time, i.e., regular
behavior (Process Behavior Verification step). Inactive steps are removed using
the discovered regular inactive patterns (SD-Logs Post processing). If the SD-
Log shows patterns of inactivity, then all the corresponding inactive steps are
removed. The last step is to find the best time window for extracting the values
for simulation models by training time-series models as explained in Sect. 4.3.

Year: 52W
Week: 7D
Day: 24H

...

Logical Time 
Unit

Simula�on

SD-Log 
Genera�on

Event Log

sd-logδ1

sd-logδ2

sd-logδn

Best
Time Window

SD_Log 
Generator

Time Step 
Sizes

...

Process Behavior Verifica�on 
(Pa�ern Observa�on)

Iden�fying 
Removing Trend 

SD-Logs Post-processing 

Discover Inac�ve Steps 

Remove In-ac�ve 
Time Steps

Detect and Recommend the Best Time 
Window

Train Models
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Calculate Forecast's Error

R
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SD

- Logs

Fig. 3. Proposed approach for discovering the best time window, generating/analyzing
time-series data from event logs, investigating the effect of business processes inactivity
and detecting strong patterns in the processes over time.

4.1 Process Behavior Observation

Observing the process behavior over time makes it possible to see and discover
periodic patterns. We define function Test Time Step (TTS) to discover strong
patterns for process variables that show repetitive behavior in the context of
the process environment over time, e.g., arrival rate. We use the partial auto-
correlation function [20] to find the possible existing patterns in Πv(sdδ) for
variable v ∈ V, for each derived sdδ, δ ∈Δ, where Δ is provided by the user.
In real event logs, process variables over time, e.g., arrival rate, can be highly
correlated to the previous values of themselves, hence, computing the partial
auto-correlation allows us to remove such internal dependencies. By doing so,
we only consider the correlation between two lagged-values, aim in finding clear
patterns inside the data. The lag-value shows that the correlation between which
pair of values should be calculated.
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Definition 4 (Test Time Step). Let σ∈R∗ and T⊆N be the set of possible lag-
values. PACτ :R∗→[−1, 1] defines the partial auto-correlation of given lag-value
τ∈T . Function TestT imeStep is defined as TTSρ : R∗→2T , where ρ∈R≥0. For
σ∈R∗ and threshold ρ, TTSρ(σ)={τ∈T |abs(PACτ (σ))≥ρ}.

By definition, the value of the partial auto-correlation function is always 1
for lag 0. Figure 4 shows the partial auto-correlation values as a sample for the
process arrival rate in an hourly and daily manner. For the running example,
consider sdhour as the derived SD-Log and arrival rate as a process variable
v∈V, Πarrival rate(sdhour) returns a sequence of values for arrival rate per hour.
For ρ= 0.5, the function TTSρ over the derived sequence, returns {24}, i.e., the
process shows similar/stable behavior every 24 h.

Fig. 4. The partial auto-correlations for the process arrival rate. Daily (left) and hourly
(right) time windows (left).

4.2 SD-Log Post-Processing

In addition to the patterns inside the process variables for different sizes of
time steps, the inactivity of the process in each step is also important. There
are time steps in which the process is inactive. Such inactivity can either be
planned/intentional or, unexpected. Differentiating different types of inactivity
is required in order to capture the most stable behavior of the process. This
behavior is directly affecting the simulation results. In this step, first, we need
to discover the inactive steps in the process and then, using the previous step,
TTS function result, remove periodic and regular inactive steps. Function Detect
Inactivity (Definition 5) discovers the inactive steps of time for the process. The
function maps each step of time in the SD-Log into a boolean value, indicating
whether or not there are reasons to believe that the process was inactive, in
that time step. Inactivity is measured on the basis of all the process variables
V combined, i.e., there has to be a significant amount of variables that show
inactivity to classify the step as an inactive step.
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Definition 5 (Detect Inactivity). Let V be the set of process variables and
|V|= n, let γ∈R>0, and let κ∈Rn denote a vector of thresholds for consider-
ing a variable as active. DIAκ:Rn→{0, 1} is a function describing the relative
inactivity of a given x∈Rn, subject to activity threshold κ, i.e.,:

DIAκ,γ(x) =

{
0 if |{i∈{1,...,n}|x(i)≥κ(i)}|

n ≥ γ

1 if |{i∈{1,...,n}|x(i)≥κ(i)}|
n < γ

For instance, given SD-Log sdδ and the set of variables V, function DIAκ,γ

returns 0 if the relative number of values in each time step is above γ, otherwise
it returns 1. The function indicates whether a time step in the process is active
or inactive. The output of the DIA function, is used as input of TTS function.
By applying TTS function on the result of the DIA which is a sequence over
time, we discover whether there are any strong patterns inside the inactive steps.
The strong patterns reveal the periodic inactivity, then we remove the inactive
steps from the SD-Log. We call the new refined SD-Log sd

′
δ. The option for users

with domain knowledge is available here to either remove or keep the detected
inactive time steps. In the running example, the result of Detect inactivity func-
tion DIA for all the steps is 〈1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0...〉, where 0-values are
weekends. Applying the TTS function, again returns 7 days as a strong pattern
in the data, hence, the inactive time steps, i.e., weekends, are removed. Figure. 5
shows the hourly arrival rate of the process for 3 weeks before and after remov-
ing regular inactivity. The removed hours are nights and weekends. Note that in
Fig. 5, the minimum value in the active steps is 1. Furthermore, applying TTS
after removing the regular inactive steps, make it possible to discover whether
there are interesting patterns inside the active steps of the process.

Fig. 5. The arrival rate of the running example in 1 h steps for 3 weeks before (left)
and after (right) removing regular inactivity. In the active steps, the minimum values
are 1. The weekends and night hours have been removed.

4.3 Detect the Best Time Window

After pattern detection and removing inactive time steps, we aim to find the
best window of time, in order to generate the SD-Logs and perform simulations.



Semi-automated Time-Granularity Detection for Data-Driven Simulation 85

Fig. 6. The prediction errors of
the models (ARIMA [9]) for dif-
ferent time windows. The models
are trained based on the values of
arrival rate, before (blue) and after
(red) applying the proposed app-
roach on the SD-Logs (Color figure
online).

Using TTS and DIA functions, we trans-
form the values of process variables in the
SD-Logs into the steady time series values,
which the frequent patterns and inactivity
have been removed. We are looking for the
time step size that displays the most stable
behavior of the process. We use a time-series
prediction model θ, to predict the expected
values of a process variable (Definition 3).
By differencing the values of the generated
time-series data for the process variables, i.e.,
computing the differences between consecu-
tive observations, the data becomes station-
ary and can be used in time-series models,
e.g., ARIMA. The accuracy of the models,
for each of the selected time windows, shows

the best time window to be used in prediction. For each time window δ ∈ Δ
provided by the user and corresponding SD-Log after removing inactivity sd′

δ,
the values for v is Πv(sd

′
δ)=〈x1, ...xk〉. After training the models, we calculate

the Mean Absolute Percentage Error (MAPE). Among all the tested sizes of the
time step, the one with the minimal MAPE value indicates the best time win-
dow to be used for extracting SD-Log and performing the simulation. Variable
arrival rate often is the only variable that shows the influence of the environ-
ment directly on the process. However, in the case of more variables, the average
MAPE value is considered.

In the example, if Δ = {hour, 8h, day, 7 days}, the SD-Logs are sdhour, sd8h,
sdday, and sd7 days. For the process variable v = arrival rate, TTS and DIA
are performed on the results of the projection function Πv. In this step, ARIMA
models are trained with different parameters and the prediction error for each δ
is shown in Fig. 6 (red). The errors indicate that for the time window of 1 day or
7 days the values of arrival rate are more stable. Figure 6 also demonstrates the
errors of the trained models before applying the steps of our approach (blue).
Since there is no inactive week, the error for 7 days is the same, however, for
other steps, after removing the inactivity, the error has reduced, e.g., removing
weekends from daily time step, resulted in more stable and predictable behavior
in the process.

5 Evaluation

To evaluate the approach, we use both synthetic and real event logs. Using
the synthetic event log, we assess the effect of choosing time windows on the
simulation accuracy. We discover the strong patterns in the real event logs.

Implementation. The experiments are conducted with an implementation of
the framework in the PMSD tool [15]. For time-series prediction, used in best
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time window detection (Sect. 4.3), we use ARIMA [9]. To compute ARIMA mod-
els, we need to set three parameters, i.e., differencing-parameter d, AR-term
p ≥ 1 and MA-term q ≥ 1. In the remainder, we write ARIMA(p, d, q).

5.1 Synthetic Event Log: Simulation Case Study

In order to assess the effect of the selected time window on the simulation results,
we use the results of the performed steps on the running example through the
sections to generate a system dynamic simulation model. Consider that busi-
nesses might be interested in a smaller window of time for prediction, e.g., a
daily manner is more useful for decreasing the average daily waiting time rather
than a weekly manner in the process. Therefore, the time window with the min-
imum error is not always the best option for the businesses. We generate the
system dynamic models using the technique presented in [17].

Num in
process casesArrival rate

Finish rate

Service time per
case

Process active
time

Waiting time in
process per case

Time in process
per case

Rejected cases per
time window

Number of
rejected cases

Number of unique
resourcesAdded

resources
Removed
resources

Extera assigned
resources

Maximum queue
lenght

Reject rate

Fig. 7. System dynamics model for the running example. What-if analysis for the
number of rejected cases per time window and the number of resources.
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Fig. 8. The actual (blue) and simulated (red) number of rejected cases using daily
(left) and hourly (right) time windows using the model in Fig. 7. (Color figure online)

The designed model in Fig. 7 is populated with two different SD-Logs, sdday

and sdhour, after applying the approach. The target scenario is to simulate the
number of rejected people in the process per time window and the effect of the
number of resources to decrease the rejected cases.

Figure. 8 shows the results of the simulation for two selected time windows
and the actual values from the event logs. The simulation results using the 1 day
time window is close to reality behavior over 1 h time window. As expected from
the results of the approach, the time windows with lower errors provide more
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accurate simulation results. Note that, we designed the process in Sect. 2 such
that the number of requests is higher for the specific time of the days, e.g., at
10:00 am the number of requests is more than 8:00 am. Therefore, even after
removing regular inactive hours from sdhour, the variation between the values in
high. The results illustrate that selecting a proper time window to extract the
values of variables highly affects the accuracy of the predictions and our approach
is able to provide the information needed to pick the best time window.

5.2 Feasibility Test on Real Event Data

We use two real event logs, BPI Challenge 2012 [24] and BPI Challenge 2017
[25], to evaluate our work. The errors of the models for predicting the values of
variables in different time windows, before and after performing the steps of the
approach show the effect of the approach on selecting the best time window.

BPI Challenge 2012. We start with four time window sizes, 2 h, 8 h, 1 day
and 7 days and extract the SD-Logs for each time window. Using the function
TTS in the process behavior observation step, the strong patterns in the values
of arrival rate are discovered, e.g., with threshold 0.5, there are strong patterns
in every 2 h (lag 1 for 2 h time window in Fig. 9 (right)) and 7 days for the
daily time window. Post processing step and DIA function result in the refined
SD-Logs for the selected time windows by removing possible periodic inactive
steps. In Fig. 9 (left), we present the error of the training ARIMA model with
different parameters before (blue) and after (red) removing inactive steps. For
instance, the best one for the hourly window after removing the inactive steps is
ARIMA(2, 0, 1) and for 1 day window is ARIMA(1, 0, 1). Since in the process,
there is no inactive week, day and 8 h, therefore the prediction errors are the
same for including all the steps and active steps. However, the error of the 2 h
time window has decreased. The reduction shows that in the process there were
periodically inactive steps between each 2 h.

Fig. 9. The prediction errors of the trained models for time windows before and after
removing inactive steps, BPI 2012 (left). The partial auto-correlation after removing
inactive periods for 2 h time window (right).

As expected, the strongest pattern inside the process w.r.t. its environment,
i.e., the arrival rate of cases, is 7 days. Furthermore, the time window sizes based
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on the domain knowledge can be changed, e.g., 8 h is tested to see whether the
process follows the common working hours.

BPI Challenge 2017. In the process, there are different types of activities.
We focus on activities which are triggered by the employees, (activities with a
W prefix). We also use 8 h, 1 day and 7 days as time windows with respect to
the employees’ working hours. Figure 10 represents the partial auto-correlation
of the arrival rate (daily and 8 h) in behavior observation step. As expected, the
strongest pattern is every 7 days (weekly). Also, in 8 h time window, lag 3 shows
a strong pattern.

Fig. 10. The partial auto-correlation before removing inactivity in 1 day window (left)
and 8 h time window (right) for the BPI challenge 2017.

DIA function is applied on the SD-Logs to indicate the inactive steps and
using results of TTS to remove the regular inactive steps, the process shows
more stable behavior. For instance, Fig. 11 (right) is the TTS result on the daily
arrival rate after removing weekends, hence there is no more strong pattern.
This information helps in analyzing the process behavior and have more accurate
simulation models.

Fig. 11. The prediction errors of the arrival rate in the BPI 2017 event log before
and after removing the inactive time steps (left). The partial auto-correlation after
removing inactive time steps (right).

The prediction errors of the trained models for predicting the values of the
arrival rate for three selected time windows are presented in Fig. 11 for the
derived SD-Logs and the refined SD-Logs using our approach. Same as the BPI
Challenge 2012, there are no regular inactive weeks in the process, therefore the
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error has not changed before and after applying the approach. However, in both
8 h and 1 day time windows, there are considerable reductions in the prediction
errors. The evaluation using real event logs indicates that the approach is able to
find a better time window among the possible time step sizes to have the most
stable behavior of the processes.

6 Related Work

Process mining techniques implicitly use time-series data for different purposes
such as performance analysis [3], bottleneck analysis, prediction [2] and the
enhancement of the processes, e.g., providing recommendations [5]. Process min-
ing techniques mostly focus on the current state of processes. At the same time,
in simulation, the current state is employed to generate similar behavior of the
processes. Therefore, the combination of these two fields is a promising direction
for the enhancement of processes [2].

Prediction and simulation techniques in process mining focus mostly on
instances of the process, e.g., the execution/ waiting time for a specific case
in the process [22]. Moreover, in [6] a configurable approach is proposed to con-
struct a process model enhanced with time information from previous instances,
and use the model for prediction, for example, the completion time. However,
most of the mentioned techniques are at a detailed level and missing the effect
of external factors [4]. Furthermore, in [23] a survey of prediction techniques in
process mining is presented in which most of the techniques use a predefined
unit of time such as days or hour. In the context of simulation and prediction
in process mining, there is not enough focus on the effect of the size of time
windows on the result of simulation and prediction techniques. Work such as
[11] explains the possibility of using time-series analysis in data analysis. Two
main types of time-series analysis exist including univariate and multi-variate.
Box et al. introduced the ARIMA method [8]. This method now represents one
of the most frequently used univariate time-series modeling tools. In [14], tech-
niques such as the ARIMA technique are shown to be more effective than LSTM
techniques in univariate time-series data [22].

In most of the techniques in process mining, the selection of the time window
for generating data either has not been mentioned explicitly or they used the
predefined logical unit of time. The techniques at the aggregated level use the
current state of the processes over time. Techniques such as [16] are proposed
which employ different time windows. This approach can be used with domain
knowledge about the working hours of the processes, e.g., a production line
process is running 8 h per day [18].

7 Conclusion

In this paper, we proposed an approach to discover the best window of time
for capturing the most stable behavior of processes over time. The discovered
time window is used for extracting values of process variables from event logs.
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Since these values are an aggregated value for each time window, they behave
like time-series data. We used the derived time-series data to discover strong
patterns inside the process variables related to the process environment, e.g.,
arrival rate. Moreover, in the approach, inactive time windows are distinguished
and removed. A time-series prediction approach (ARIMA) is used to find the
best models that predict the next values accurately and their parameters. The
proposed approach is effective in picking the size of the time window to generate
the performance variables in business processes. The generated values for pro-
cess variables over time that represent the process behavior, i.e., SD-Log, are
exploited for simulation and prediction purpose. The evaluation section shows
that our approach provides business owners with actionable insights into the
current situation of the processes to be used in simulation as system dynamics.
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